

Computer Aided
Design and

Design
Automation

The Circuits and Filters
Handbook

Third Edition

Fundamentals of Circuits and Filters

Feedback, Nonlinear, and Distributed Circuits

Analog and VLSI Circuits

Computer Aided Design and Design Automation

Passive, Active, and Digital Filters

Edited by

Wai-Kai Chen

Edited by

Wai-Kai Chen
University of Illinois

Chicago, U. S. A.

The Circuits and Filters Handbook
Third Edition

Computer Aided
Design and

Design
Automation

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4200-5918-2 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Computer aided design and design automation / Wai-Kai Chen.
p. cm.

Includes bibliographical references and index.
ISBN-13: 978-1-4200-5918-2
ISBN-10: 1-4200-5918-1
1. Engineering design. 2. Electric engineering--Computer-aided design. I. Chen, Wai-Kai, 1936- II.

Title.

TA174.C58135 2009
621.3--dc22 2008048129

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Contents

Preface .. vii

Editor-in-Chief .. ix

Contributors .. xi

SECTION I Computer Aided Design and Optimization

1 Modeling of Circuit Performances .. 1-1
Sung-Mo Kang and Abhijit Dharchoudhury

2 Symbolic Analysis Methods .. 2-1
Benedykt S. Rodanski and Marwan M. Hassoun

3 Numerical Analysis Methods ... 3-1
Andrew T. Yang

4 Design by Optimization ... 4-1
Sachin S. Sapatnekar

5 Statistical Design Optimization .. 5-1
Maciej A. Styblinski

6 Physical Design Automation .. 6-1
Naveed A. Sherwani

7 Design Automation Technology .. 7-1
Allen M. Dewey

8 Computer-Aided Analysis ... 8-1
J. Gregory Rollins and Peter Bendix

9 Analog Circuit Simulation .. 9-1
J. Gregory Rollins

SECTION II Design Automation

10 Internet-Based Microelectronic Design Automation Framework 10-1
Moon-Jung Chung and Heechul Kim

v

11 System-Level Design ... 11-1
Alice C. Parker, Yosef Tirat-Gefen, and Suhrid A. Wadekar

12 Performance Modeling and Analysis Using VHDL and SystemC 12-1
Robert H. Klenke, Jonathan A. Andrews, and James H. Aylor

13 Embedded Computing Systems and Hardware=Software Codesign 13-1
Wayne Wolf

14 Design Automation Technology Roadmap ... 14-1
Donald R. Cottrell

Index .. IN-1

vi Contents

Preface

As system complexity continues to increase, the microelectronic industry must possess the ability to
adapt quickly to the market changes and new technology through automation and simulations. The
purpose of this book is to provide in a single volume a comprehensive reference work covering the broad
spectrum of computer aided design and optimization techniques, which include circuit performance
modeling, design by optimization, statistical design optimization, physical design automation, computer
aided analysis and circuit simulations; and design automation, which includes system-level design,
performance modeling and analysis, and hardware=software codesign. This book is written and devel-
oped for the practicing electrical engineers and computer scientists in industry, government, and
academia. The goal is to provide the most up-to-date information in the field.

Over the years, the fundamentals of the field have evolved to include a wide range of topics and a broad
range of practice. To encompass such a wide range of knowledge, this book focuses on the key concepts,
models, and equations that enable the design engineer to analyze, design, and predict the behavior of
large-scale systems. While design formulas and tables are listed, emphasis is placed on the key concepts
and theories underlying the processes.
This book stresses fundamental theories behind professional applications and uses several examples to

reinforce this point. Extensive development of theory and details of proofs have been omitted. The reader
is assumed to have a certain degree of sophistication and experience. However, brief reviews of theories,
principles, and mathematics of some subject areas are given. These reviews have been done concisely with
perception.
The compilation of this book would not have been possible without the dedication and efforts of

Professor Steve Sung-Mo Kang, and most of all the contributing authors. I wish to thank them all.

Wai-Kai Chen

vii

Editor-in-Chief

Wai-Kai Chen is a professor and head emeritus of the Department
of Electrical Engineering and Computer Science at the University of
Illinois at Chicago. He received his BS and MS in electrical engin-
eering at Ohio University, where he was later recognized as a
distinguished professor. He earned his PhD in electrical engineering
at the University of Illinois at Urbana–Champaign.

Professor Chen has extensive experience in education and indus-
try and is very active professionally in the fields of circuits and
systems. He has served as a visiting professor at Purdue University,
the University of Hawaii at Manoa, and Chuo University in Tokyo,
Japan. He was the editor-in-chief of the IEEE Transactions on
Circuits and Systems, Series I and II, the president of the IEEE
Circuits and Systems Society, and is the founding editor and the
editor-in-chief of the Journal of Circuits, Systems and Computers.
He received the Lester R. Ford Award from the Mathematical

Association of America; the Alexander von Humboldt Award from Germany; the JSPS Fellowship
Award from the Japan Society for the Promotion of Science; the National Taipei University of Science
and Technology Distinguished Alumnus Award; the Ohio University Alumni Medal of Merit for
Distinguished Achievement in Engineering Education; the Senior University Scholar Award and the
2000 Faculty Research Award from the University of Illinois at Chicago; and the Distinguished Alumnus
Award from the University of Illinois at Urbana–Champaign. He is the recipient of the Golden Jubilee
Medal, the Education Award, and the Meritorious Service Award from the IEEE Circuits and Systems
Society, and the Third Millennium Medal from the IEEE. He has also received more than a dozen
honorary professorship awards from major institutions in Taiwan and China.
A fellow of the Institute of Electrical and Electronics Engineers (IEEE) and the American Association

for the Advancement of Science (AAAS), Professor Chen is widely known in the profession for the
following works: Applied Graph Theory (North-Holland), Theory and Design of Broadband Matching
Networks (Pergamon Press), Active Network and Feedback Amplifier Theory (McGraw-Hill), Linear
Networks and Systems (Brooks=Cole), Passive and Active Filters: Theory and Implements (John Wiley),
Theory of Nets: Flows in Networks (Wiley-Interscience), The Electrical Engineering Handbook (Academic
Press), and The VLSI Handbook (CRC Press).

ix

Contributors

Jonathan A. Andrews
Department of Electrical and

Computer Engineering
Virginia Commonwealth

University
Richmond, Virginia

James H. Aylor
Department of Electrical

Engineering
University of Virginia
Charlottesville, Virginia

Peter Bendix
Technology Modeling

Associates, Inc.
Palo Alto, California

Wai-Kai Chen
Department of Electrical and

Computer Engineering
University of Illinois at Chicago
Chicago, Illinois

Moon-Jung Chung
Department of Computer

Science
Michigan State University
East Lansing, Michigan

Donald R. Cottrell
Silicon Integration

Initiative, Inc.
Austin, Texas

Allen M. Dewey
Department of Electrical and

Computer Engineering
Duke University
Durham, North Carolina

Abhijit Dharchoudhury
Beckman Institute
University of Illinois

at Urbana–Champaign
Urbana, Illinois

Marwan M. Hassoun
Department of Electrical and

Computer Engineering
Iowa State University
Ames, Iowa

Sung-Mo Kang
Office of Chancellor
University of California, Merced
Merced, California

Heechul Kim
Department of Computer

Science and Engineering
Hankuk University of Foreign

Studies
Yongin, Korea

Robert H. Klenke
Department of Electrical and

Computer Engineering
Virginia Commonwealth

University
Richmond, Virginia

Alice C. Parker
Ming Hsieh Department of

Electrical Engineering
University of Southern

California
Los Angeles, California

Benedykt S. Rodanski
Faculty of Engineering
University of Technology
Sydney, New South Wales,

Australia

J. Gregory Rollins
Technology Modeling

Associates, Inc.
Palo Alto, California

Sachin S. Sapatnekar
Department of Electrical and

Computer Engineering
University of Minnesota
Minneapolis, Minnesota

Naveed A. Sherwani
Intel Corporation
Hillsboro, Oregon

Maciej A. Styblinski
Department of Electrical

Engineering
Texas A&M University
College Station, Texas

xi

Yosef Tirat-Gefen
Ming Hsieh Department of

Electrical Engineering
University of Southern

California
Los Angeles, California

Suhrid A. Wadekar
Ming Hsieh Department of

Electrical Engineering
University of Southern

California
Los Angeles, California

Wayne Wolf
Department of Electrical

Engineering
Princeton University
Princeton, New Jersey

Andrew T. Yang
Apache Design Solutions, Inc.
San Jose, California

xii Contributors

I
Computer Aided
Design and
Optimization
Sung-Mo Kang
University of California, Merced

1 Modeling of Circuit Performances Sung-Mo Kang
and Abhijit Dharchoudhury ... 1-1
Introduction . Circuit Performance Measures . Input–Output Relationships .

Dependency of Circuit Performances on Circuit Parameters . Design of Experiments .

Least-Squares Fitting . Variable Screening . Stochastic Performance Models . Other
Performance Modeling Approaches . Example of Performance Modeling . References

2 Symbolic Analysis Methods Benedykt S. Rodanski and Marwan M. Hassoun 2-1
Introduction . Symbolic Modified Nodal Analysis . Solution Methods . Ideal
Operational Amplifiers . Applications of Symbolic Analysis . Symbolic Analysis
Software Packages . References

3 Numerical Analysis Methods Andrew T. Yang .. 3-1
Equation Formulation . Solution of Linear Algebraic Equations . References

4 Design by Optimization Sachin S. Sapatnekar ... 4-1
Introduction . Optimization Algorithms . Transistor Sizing Problem for CMOS
Digital Circuits . Analog Design Centering Problem . References

5 Statistical Design Optimization Maciej A. Styblinski ... 5-1
Introduction . Problems and Methodologies of Statistical Circuit Design . Underlying
Concepts and Techniques . Statistical Methods of Yield Optimization .

Conclusion . References

6 Physical Design Automation Naveed A. Sherwani .. 6-1
Introduction . Very Large-Scale Integration Design Cycle . Physical Design Cycle .

Design Styles . Partitioning . Other Partitioning Algorithms . Placement . Routing .

Classification of Global Routing Algorithms . Classification of Detailed Routing Algorithms .

Compaction . Summary . References

I-1

7 Design Automation Technology Allen M. Dewey ... 7-1
Introduction . Design Entry . Conceptual Design . Synthesis . Verification .

Test . Frameworks . Summary . References

8 Computer-Aided Analysis J. Gregory Rollins and Peter Bendix 8-1
Circuit Simulation Using SPICE and SUPREM . Appendix A . References . Parameter
Extraction for Analog Circuit Simulation . References

9 Analog Circuit Simulation J. Gregory Rollins ... 9-1
Introduction . Purpose of Simulation . Netlists . Formulation of the Circuit Equations .

Modified Nodal Analysis . Active Device Models . Types of Analysis . Verilog-A .

Fast Simulation Methods . Commercially Available Simulators . References

I-2 Computer Aided Design and Design Automation

1
Modeling of Circuit

Performances

Sung-Mo Kang
University of California, Merced

Abhijit Dharchoudhury
University of Illinois at Urbana–
Champaign

1.1 Introduction.. 1-1
1.2 Circuit Performance Measures ... 1-2
1.3 Input–Output Relationships.. 1-3

Memoryless (Static) Relationship . Dynamic Relationships

1.4 Dependency of Circuit Performances on Circuit
Parameters... 1-3

1.5 Design of Experiments ... 1-5
Factorial Design . Central Composite Design .

Taguchi’s Orthogonal Arrays . Latin Hypercube Sampling

1.6 Least-Squares Fitting... 1-11
1.7 Variable Screening... 1-13
1.8 Stochastic Performance Models ... 1-14
1.9 Other Performance Modeling Approaches...................... 1-14
1.10 Example of Performance Modeling................................... 1-15
References .. 1-16

1.1 Introduction

The domain of computer-aided design and optimization for circuits and filters alone is very
broad, especially since the design objectives are usually multiple. In general, the circuit design can be
classified into

. Electrical design

. Physical design

Physical design deals with concrete geometrical parameters while electrical design deals with the electrical
performances of the physical object. Strictly speaking, both design aspects are inseparable since any
physical design is a realization of a particular electrical design. On the other hand, electrical design
without proper abstraction of the corresponding physical design can be futile in the sense that its
implementation may not meet the design goals. Thus, electrical and physical design should go hand in
hand. Most literature deals with both designs using weighted abstractions. For example, in the design of
a digital or analog filter, various effects of physical layout are first captured in the parasitic models
for interconnects and in the electrical performance models for transistors. Then, electrical design is
performed using such models to predict electrical performances. In physical design optimization,
geometrical parameters are chosen such that the predicted electrical performances can meet the design

1-1

objectives. For example, in the timing-driven physical layout of integrated circuits, circuit components
will be laid out, placed and interconnected to meet timing requirements. In order to make the
optimization process computationally efficient, performance models are used during the optimization
process instead of simulation tools. In this chapter, the focus of design optimization is on the electrical
performance. The computer-aided electrical design can be further classified into performance analysis
and optimization. Thus, this chapter first discusses the modeling of electrical performances, symbolic and
numerical analysis techniques, followed by optimization techniques for circuit timing, and yield enhance-
ment with transistor sizing and statistical design techniques.

1.2 Circuit Performance Measures

The performance of a particular circuit can be measured in many ways according to application and
design goals. In essence, each performance measure is an indication of the circuit output which the
designer is interested in for a particular operating condition. The circuit performance, in general, is
dependent on the values of the designable parameters such as the transistor sizes, over which the designer
has some degree of control, and the values of the noise parameters such as the fluctuation in power
supply voltage or the threshold voltages of the transistors, which are random in nature. Also, the
performance measure used is dependent on the type of the circuit. The performance measures of digital
circuits are usually quite different from those of analog circuits or filters. Some of the important
performance measures of digital circuits are

. Signal propagation delay from an input to an output

. Rise and fall times of signals

. Clock signal skew in the circuit

. Power dissipation

. Manufacturing yield

. Failure rate (reliability)

Important performance measures for analog circuits are

. Small-signal gain and bandwidth in frequency domain

. Sensitivities to various nonideal factors (noise)

. Slew rate of operational amplifiers

. Power dissipation

. Manufacturing yield

. Failure rate (reliability)

The modeling of digital circuit performances is usually more difficult to derive than the modeling of
analog circuit performances, mainly due to the nonlinear nature of digital circuits. Thus, simple
transistor models have been used often to obtain simple qualitative models for propagation delays, rise
and fall times, and power dissipation. On the other hand, due to the small-signal nature, the device
models required by analog designers need to be much more accurate. Another important performance
measure is the manufacturing yield, which determines the product cost. The yield depends on both the
quality of manufacturing process control and the quality of the design. A challenging design problem is
how to come up with a design which can be robust to nonideal manufacturing conditions and thereby
produce a good manufacturing yield. The model for failure rate is difficult to derive due to several
complex mechanisms that determine the lifetime of chips. In such cases, empirical models, which are not
physical, have been introduced.
In order to develop models for analog circuits, transistors in the circuit are first DC-biased at the

proper biasing points. Then, small-signal circuit models are developed at those DC operating points. The
resulting linear circuits can be analyzed by either using mathematical symbols (symbolic analysis) or by
using simulators.

1-2 Computer Aided Design and Design Automation

1.3 Input–Output Relationships

The circuit functionally depends on the input–output relationships and thus circuit specifications and
test specifications are made on the basis of the input–output relationships. For modeling purposes, the
input–output relationships can be classified into static relationships and dynamic relationships.

1.3.1 Memoryless (Static) Relationship

A given input–output pair is said to have a memoryless relationship if it can be described statically
without the use of any ordinary or partial differential equation. It is important to note that the choice of
input and output variables can determine the nature of the relationship. For instance, the relationship
between input charge q and the output voltage v in a 1 F capacitor is static. On the other hand, the
relationship between an input current i and the output voltage v, in the same capacitor is nonstatic since
the voltage is dependent on the integral of the input current. Ideally, basic circuit elements such as
resistor, capacitor, inductor, and source should be characterized by using static relationships, so-called
constitutive relationships, with proper choice of input and output variables. However, for circuits and
systems design, since their input–output relationships are specified in terms of specific variables of
interest, such choice of variables cannot be made arbitrarily. Often, both input and output variables are
voltages, especially in digital circuits.

1.3.2 Dynamic Relationships

A given input–output pair is said to have a dynamic relationship if the modeling of the relationship
requires a differential equation. In most cases, since the circuits contain parasitic capacitors or inductors
or both, the input–output relationship is dynamic. For instance, the input–output relationship of an
inverter gate with capacitive load Cload can be described as

Cload
dVout

dt
¼ i(Vout,Vin,VDD) (1:1)

where
Vout and Vin denote the output and input voltages
i denotes the current through the pull-up or pull-down transistor
VDD denotes the power supply voltage

Although the relationship is implicit in this case, Equation 1.1 can be solved either analytically or
numerically to find the relationship. Equation 1.1 can be generalized by including noise effects due to
variations in the circuit fabrication process.

1.4 Dependency of Circuit Performances on Circuit Parameters

Circuit performances are functions of circuit parameters, which are usually not known explicitly. In order
to design and analyze analog or digital circuits, the dependency of the circuit performances on the various
circuit parameters need to be modeled.
The actual value of a circuit parameter in a manufactured circuit is expected to be different from the

nominal or target value due to inevitable random variations in the manufacturing processes and in the
environmental conditions in which the circuit is operated. For example, the actual channel widthW of an
MOS transistor can be decomposed into a nominal componentW0 and a statistically varying component
DW, i.e., W¼W0þDW. The nominal component is under the control of the designer and can be set to
a particular value. Such a nominal component is said to be designable or controllable, e.g., W0.

Modeling of Circuit Performances 1-3

The statistically varying component, on the other hand, is not under the control of the designer and is
random in nature. It is called the noise component, and it represents the uncontrollable fluctuation of a
circuit parameter about its designable component, e.g., DW. For certain circuit parameters, e.g., device
model parameters (like the threshold voltages of MOS transistors) and operating conditions (like
temperature or power supply voltage), the nominal values are not really under the control of the circuit
designer and are set by the processing and operating conditions. For these circuit parameters, the
nominal and random components are together called the noise component. In general, therefore, a
circuit parameter xi can be expressed as follows:

xi ¼ di þ si (1:2)

where
di is the designable component
si is the noise component

It is common to group all the designable components to form the set of designable parameters, denoted
by d. Similarly, all the noise parameters are grouped together to form the noise parameters, denoted by
the random vector s. Vectorially, Equation 1.2 can be rewritten as

x ¼ dþ s (1:3)

A circuit performance measure is a function of the circuit parameters. For example, the propagation
delay of a CMOS inverter circuit is a function of the nominal channel lengths and widths of the NMOS
and PMOS transistors. It is also a function of the threshold voltages of the transistors and the power
supply voltage. Thus, in general, a circuit performance is a function of the designable as well as the noise
parameters:

y ¼ y(x) ¼ y(d, s) (1:4)

If this function is known explicitly in terms of the designable and noise parameters, then optimization
methods can be applied directly to obtain a design which is optimal in terms of the performances or the
manufacturing yield. More often than not, however, the circuit performances cannot be expressed
explicitly in terms of the circuit parameters. In such cases, the value of a circuit performance for given
values of circuit parameters can be obtained by circuit simulation. Circuit simulations are computation-
ally expensive, especially if the circuit is large and transient simulations are required. A compact
performance model in terms of the circuit parameters is an efficient alternative to the circuit simulator.
Two factors determine the utility of the performance model. First, the model should be computationally
efficient to construct and evaluate so that substantial computational savings can be achieved. Second, the
model should be accurate.
Figure 1.1 shows the general procedure for constructing the model for a performance measure y in

terms of the circuit parameters x. The model-building procedure consists of four steps. In the first stem,
m training points are selected from the x-space. The ith training point is denoted by xi, i¼ 1, 2, . . . ,m. In
the second step, the circuit is simulated at these m training points and the values of the performance
measure are obtained from the circuit simulation results as y(x1), y(x2), . . . , y(xm). In the third step, a
preassigned function of y in terms of x is ‘‘fitted’’ to the data. In the fourth and final step, the model is
validated for accuracy. If the model accuracy is deemed inadequate, the modeling procedure is repeated
with a larger number of training points or with different models.
The model is called the response surface model (RSM) [1] of the performance and is denoted by ŷ(x).

The computational cost of modeling depends on the number of training points m, and the procedure of
fitting the model to the data. The accuracy of the RSM is quantified by computing error measures which

1-4 Computer Aided Design and Design Automation

quantify the ‘‘goodness of fit.’’ The accuracy of the RSM is greatly influenced by the manner in which the
training points are selected from the x-space. Design of experiment (DOE) [2] techniques are a
systematic means of obtaining the training points such that the maximum amount of information
about the model can be obtained from these simulations or experimental runs. In the next section, we
review some of the most commonly used experimental design techniques in the context of performance
optimization and statistical design. To illustrate certain points in the discussion below, we will assume
that the RSM of the performance measure y is the following quadratic polynomial in terms of the circuit
parameters:

ŷ(x) ¼ â0 þ
Xn
i¼1

âixi þ
Xn
i¼1

Xn
j¼1

âijxixj (1:5)

where the âs are the coefficients of the model. Note, however, that the discussion is valid for all RSMs in
general.

1.5 Design of Experiments

1.5.1 Factorial Design

In this experimental design, each of the circuit parameters x1, x2, . . . , xn is quantized into two levels or
settings, which are denoted by �1 and þ1. A full factorial design contains all possible combinations of
levels for the n parameters, i.e., it contains 2n training points or experimental runs. The design matrix for
the case of n¼ 3 is shown in Table 1.1 and the design is pictorially described in Figure 1.2. The value of
the circuit performance measure for the kth run is denoted by yk.

Much information about the relationship between the circuit performance y and the circuit parameters
xi, i¼ 1, 2, . . . , n can be obtained from a full factorial experiment. The main or individual effect of a

Circuit parameters SPICE circuit description

Experimental design

Circuit simulation (SPICE)

Circuit parameter
data

Extracted performance values

Fit response surface model

Inadequate
Validate model

Adequate

Fitted models

FIGURE 1.1 Performance modeling procedure.

Modeling of Circuit Performances 1-5

parameter quantifies how much a parameter
affects the performance singly. The main effect
of xi, denoted by vi, is given by

vi ¼ 1
2n

X2n

k¼1

xik � yk (1:6)

where
xik is the value of xi in the kth run
yk is the corresponding performance value

Thus, the main effect is the difference between
the average performance value when the param-
eter is at the high level (þ1) and the average
performance value when the parameter is at the

low level (�1). The main effect of xi is the coefficient of the xi term in the polynomial RSM of Equation
1.5. Similarly, the interaction effect of two or more parameters quantities how those factors jointly affect
the performance. The two-factor interaction effect is computed as the difference between the average
performance value when both factors are at the same level and the average performance value when they
are at different levels. The two-factor interaction effect of parameters xi and xj, denoted by vi3j, i 6¼ j, is
defined as follows:

vi�j ¼ 1
2

vijj¼þ1 � vijj¼�1

� �

¼ 1
2n

X2n

k¼1

xik � xjk � yk (1:7)

The two-factor interaction effect of xi and xj, vi3j, is the coefficient of the xixj terms in the quadratic RSM
of Equation 1.5. Note that vi3j is the same as vj3i. Moreover, higher-order multifactor interaction effects
can be computed recursively as before. Note that the interaction columns of Figure 1.2 are obtained by
the aggregated ‘‘sign-multiplication’’ given in Equation 1.7.
Thus, the full factorial design allows us to estimate the coefficients of all the first-order and cross-factor

second-order coefficients in the RMS of Equation 1.5. However, it does not allow us to estimate the
coefficients of the pure quadratic term xi

2. Moreover, the number of experimental runs increases
exponentially with the number of circuit parameters; this may become impractical for a large number

TABLE 1.1 Full Factorial Design for n¼ 3

Parameter Levels Interaction Levels

Run x1 x2 x3 x13 x2 x13 x3 x23 x3 x13 x23 x3 y

1 �1 �1 �1 þ1 þ1 þ1 �1 y1
2 �1 �1 þ1 þ1 �1 �1 þ1 y2
3 �1 þ1 �1 �1 þ1 �1 þ1 y3
4 �1 þ1 þ1 �1 �1 þ1 �1 y4
5 þ1 �1 �1 �1 �1 þ1 þ1 y5
6 þ1 �1 þ1 �1 þ1 �1 �1 y6
7 þ1 þ1 �1 þ1 �1 �1 �1 y7
8 þ1 þ1 þ1 þ1 þ1 þ1 þ1 y8

(–1, +1, +1)

(–1, +1, –1)

(–1, –1, +1) (+1, –1 +1)

(+1, +1, –1)

(+1, +1, +1)

(+1, –1, –1)(–1, –1, –1)

FIGURE 1.2 Pictorial representation of full factorial
design for n¼ 3.

1-6 Computer Aided Design and Design Automation

of circuit parameters. In many cases, high-order multifactor interactions are small and can be ignored.
In such cases, it is possible to reduce the size of the design by systematically eliminating some interactions
and considering only some of the runs. The accuracy with which the main effects and the low-order
interaction effects are estimated does not have to be compromised. Such designs are called fractional
factorial designs. The most popular class of fractional factorial designs are the 2n–p designs, where a
1=2pth fraction of the original 2n design is used. One of the half fractions of the 23 design shown in
Table 1.1, i.e., a 23�1 design is shown in Table 1.2.

We observe that some of the columns of Table 1.2 are now identical. It can be seen from Equations 1.6
and 1.7 that we cannot distinguish between effects that correspond to identical columns. Such effects are
said to be confounded or aliased with each other. From Table 1.2, we see that v3, the main effect of x3, and
v132, the interaction effects of x1 and x2, are confounded with each other. Moreover the three-factor
interaction effect v13233 is confounded with the grand average of the performance (corresponding to a
column of 1’s). Confounding, however, is not really a problem, since in most applications, high-order
interaction effects are negligible. For example, in the quadratic RSM of Equation 1.5, only main effects
and two-factor interaction effects are important, and it can be assumed that all higher-order interaction
effects are absent.
There is a systematic way of obtaining fractional factorial designs by first isolating a set of basic factors

(circuit parameters) and then defining the remaining nonbasic factors in terms of the interaction of the
basic factors. These interactions that define the nonbasic factors in terms of the basic factors are called
generators. The set of basic factors and the generator functions completely characterize a fractional
factorial design. For example, the generator function used in the example of Table 1.2 is

x3 ¼ x1 � x2 (1:8)

Note that, once the generator function is known for a fractional design, the confounding pattern is also
completely known. Moreover, note that the generator functions are not unique. The generator functions
x1¼ x23 x3 and x2¼ x13 x3 also give rise to the design of Table 1.2. This can be understood by realizing
that a column corresponding to a parameter sign-multiplied by itself results in a column of all 1s, i.e., the
identity column, denoted by I. Thus, multiplying both sides of Equation 1.8 by x2, we get x33 x2¼
x13 x23 x2¼ x13 I¼ x1, which is also a generator function. Thus, an appropriate set of generator
functions must be defined.
Another important concept related to confounding is called the resolution of a design, which indicates

the clarity with which individual effects and interaction effects can be evaluated in a design. A resolution III
design is one in which no two main effects are confounded with each other (but they may be confounded
with two-factor and=or higher-order interaction effects). An important class of resolution III designs is the
saturated fractional factorial designs. Suppose that the number of factors (parameters), n, can be expressed
as n¼ 2q� 1, for some integer q. Then, a resolution III design can be obtained by first selecting q basic
factors and then saturating the 2q design by assigning a nonbasic factor to each of the possible combin-
ations of the q basic factors. There are p¼ n� q nonbasic factors and generator functions, and these

TABLE 1.2 Half Fraction of a Full Factorial Design for n¼ 3

Parameter Levels Interaction Levels

Run x1 x2 x3 x13 x2 x13 x3 x23 x3 x13 x23 x3 y

1 �1 �1 þ1 þ1 �1 �1 þ1 y1
2 �1 þ1 �1 �1 þ1 �1 þ1 y2
3 þ1 �1 �1 �1 �1 þ1 þ1 y3
4 þ1 þ1 þ1 þ1 þ1 þ1 þ1 y4

Modeling of Circuit Performances 1-7

designs are called 2n�p
III designs, since 2q¼ nþ 1 runs are required for n factors. Note that the

fractional factorial design of Table 1.2 is a 2n�p
III design, with n¼ 3 and p¼ 1. In the saturated design for

n¼ 2q� 1 factors, the confounding patterns for the basic and nonbasic factors are the same, which
implies that any of the q factors may be chosen as the basic factors. However, if nþ 1 is not an integral
power of 2, then q is chosen as q¼ [log2 (nþ 1)]. Next, we define q basic factors and generate a 2q design.
Next, we assign p¼ n� q nonbasic factors to p generators and form the 2n�p

III design. Note that, in this
case, only p of the 2q� q� 1 available generators are used, and the confounding pattern depends on the
choice of the q basic factors and the p generators. The number of runs in the saturated design is
considerably less than 2d.
Another important class of designs commonly used is called resolution V designs. In these designs, no

main effect or two-factor interaction effect is confounded with another main effect or two-factor
interaction effect. Such designs are denoted by 2n�p

V designs, where as before, n is the number of factors
and p is the number of generators. These designs can be used to estimate the coefficients of all but the
pure quadratic terms in the RSM of Equation 1.5. Since the number of such coefficients (including the
constant term) is C¼ 1þ nþ n(n� 1)=2, there must be at least C runs. Note that C is still substantially
less than 2n. Another important advantage of the factorial designs is that they are orthogonal, which
implies that the model coefficients can be estimated with minimum variances (or errors). An algorithmic
method for deriving resolution V designs is given in [3].

1.5.2 Central Composite Design

As mentioned previously, one of the problems of factorial designs in regard to the RMS of Equation 1.5 is
that the coefficients of the pure quadratic terms cannot be estimated. These coefficients can be estimated
by using a central composite design. A central composite design is a combination of a ‘‘cube’’ and a
‘‘star’’ subdesign. Each factor in a central composite design takes on five values: 0, �1, and �g. Figure 1.3
shows the central composite design for the case of n¼ 3. The cube subdesign, shown in dotted lines in
Figure 1.3, is a fractional factorial design with the factor levels set to �1. This design is of resolution V so
that linear and cross-factor quadratic terms in the RSM of Equation 1.5 can be estimated. The star

(0,0,0)(–γ,0,0)

(0,0,–γ)
(0,–γ,0)

(0,γ,0)

(0,0,γ)

(γ,0,0)

FIGURE 1.3 Central composite design for n¼ 3.

1-8 Computer Aided Design and Design Automation

subdesign, shown in solid lines in Figure 1.3, is used to estimate the pure quadratic terms, x21, in the
RMS, and consists of

. One center point, where all the parameters are set to 0

. 2n Axial points, one pair for each parameter by setting its value to �g and þg and setting all other
parameters to 0

The parameter g (chosen by the user) is selected so that the composite plan satisfies the rotatability
property [1]. The main advantage of the central composite design is that all the coefficients of
Equation 1.5 can be estimated using a reasonable number of simulations.

1.5.3 Taguchi’s Orthogonal Arrays

Taguchi’s method using orthogonal arrays (OA) [4] is another popular experimental design technique. An
orthogonal array is a special kind of fractional factorial design. These orthogonal arrays can be classified
into two types. The first category of OAs corresponds to two-level designs, i.e., the parameters are
quantized to two levels each, while the second corresponds to three-level designs, i.e., the parameters
are quantized to three levels each. These arrays are often available as tables in books which discuss Taguchi
techniques [4]. As an example, we show the L18 OA in Table 1.3. The number in the designation of the
array refers to the number of experimental runs in the design. The L18 OA belongs to the second category
of designs, i.e., each parameter has three levels. In the Taguchi technique, the experimental design matrix
for the controllable or designable parameters is called the inner array, while that for the noise parameters is
called the outer array. The L18 design of Table 1.3 can be used as an inner array as well as an outer array.

1.5.4 Latin Hypercube Sampling

The factorial, central composite, and Taguchi experimental designs described earlier set the parameters to
certain levels or quantized values within their ranges. Therefore, most of the parameters space remains

TABLE 1.3 Taguchi’s L18 OA

Run Parameter Levels

1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2

3 1 1 3 3 3 3 3 3

4 1 2 1 1 2 2 3 3

5 1 2 2 2 3 3 1 1

6 1 2 3 3 1 1 2 2

7 1 3 1 1 1 3 2 3

8 1 3 2 3 2 1 3 1

9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1

11 2 1 2 1 1 3 3 2

12 2 1 3 2 2 1 1 3

13 2 2 1 2 3 1 3 2

14 2 2 2 3 1 2 1 3

15 2 2 3 1 2 3 2 1

16 2 3 1 3 2 3 1 2

17 2 3 2 1 3 1 2 3

18 2 3 3 2 1 2 3 1

Modeling of Circuit Performances 1-9

unsampled. It is therefore desirable to have a more ‘‘space-filling’’ sampling strategy. The most obvious
method of obtaining a more complete coverage of the parameter space is to perform random or Monte
Carlo sampling [5]. In random sampling, each parameter has a particular statistical distribution and the
parameters are considered to be statistically independent. The distribution of the circuit parameters can
often be obtained from test structure measurements followed by parameter extraction. Often, however,
based on previous experience or reasonable expectation, the circuit parameters are considered to be
normal (or Gaussian). Since the designable parameters are deterministic variables, they are considered to
be independent and uniformly distributed for the purposes of random sampling. Random samples are
easy to generate and many inferences can be drawn regarding the probability distribution of the
performances. The problem with random sampling, however, is that a large sample is usually required
to estimate quantities with sufficiently small errors. Moreover, circuit parameters are usually not
statistically independent. In particular, the noise parameters are statistically correlated because of the
sequential nature of semiconductor wafer processing. Further, a random sample may not be very space
filling either. This can be understood by considering the bell-shaped Gaussian density curve. In random
sampling, values near the peak of the bell-shaped curve would be more likely to occur in the sample since
such values have higher probability of occurrence. In other words, values away from the central region
would not be well represented in the sample.
Latin hypercube sampling (LHS) [6,7] is a sampling strategy that alleviates this problem to a large

extent. For each parameter xi, all portions of its distribution are represented by sample values. If S is the
desired size of the sample, then the range of each xi, i¼ 1, 2, . . . , n is divided into S nonoverlapping
intervals of equal marginal probability 1=S. Each such interval is sampled once with respect to the
probability density in that interval to obtain S values for each parameter. Next, the S values for one
parameter are randomly paired with the S values for another parameter, and so on. Figure 1.4 illustrates
this process for the case of two circuit parameters x1 and x2, where x1 is a uniform random variable, and
x2 is a Gaussian random variable, and S¼ 5. The marginal probability in an interval is defined as the area
under the probability density curve for that interval. Therefore, intervals with equal probability are
intervals with equal areas under the probability density curve. For the uniformly distributed x1, equal
probability intervals are also of equal length. For x2, however, the intervals near the center are smaller
(since the density there is higher) than the intervals away from the center (where the density is lower).
Figure 1.4 shows that S¼ 5 values are chosen from each region for x1 and x2 (shown as open circles).
These values are then randomly paired so as to obtain the sample points (shown as filled dots). If the
circuit parameters are correlated, then the pairing of the sample values can be controlled so that

Probability density

x
 (G

au
ss

ian
)

x1 (uniform)

FIGURE 1.4 Latin hypercube sampling for a uniform and a Gaussian random variable.

1-10 Computer Aided Design and Design Automation

the sample correlation matrix is close to the user-provided correlation matrix for the circuit parameters.
Note that LHS will provide a more uniform coverage of the parameter space than other experimental design
techniques. Moreover, a sample of any size can be easily generated and all probability densities are handled.

1.6 Least-Squares Fitting

After the experimental design has been used to select the training points in the parameter space, the
circuit is simulated at the training points and the values of the performance measure are extracted from
the simulation results. Let S denote the number of experimental runs, and yk, k¼ 1, . . . , S denote the
corresponding performance values. The aim in least-squares fitting is to determine the coefficients in the
RSM so that the fitting error is minimized. Let C denote the number of coefficients in the RSM. For
example, the value of C for the RSM of Equation 1.5 is C¼ (nþ 1)(nþ 2)=2, where n is the number of
circuit parameters. There are interpolation-based methods that can be used to determine the coefficients
when there are a smaller number of data points than coefficients, i.e., when S<C. One such method is
called maximally flat quadratic interpolation and is discussed later in this chapter. We will restrict our
discussion to the case of S�C. If S¼C, then there are as many data points as coefficients, and simple
simultaneous equation solving will provide the values of the coefficients. In this case, the model
interpolates the data points exactly, and there is no fitting error to be minimized. When S>C, the
coefficients can be determined in such a way that the fitting error is minimized. This method is called
least-squares fitting (in a numerical analysis context) or linear regression (in a statistical context). The
error measure is called the sum of squared errors and is given by

2 ¼
XS

i¼1

(yk � ŷk)
2 (1:9)

where
yk denotes the simulated performance value
ŷk denotes the model-predicted value at the kth data point

Least-squares fitting can then be stated as

min
âi

2 ¼
Xs

i¼1

(yk � ŷk)
2 (1:10)

where âi represents the (unknown) coefficients of the RSM. The error « is used to determine the
adequacy of the model. If this error is too large, the modeling procedure should be repeated with a
larger number of training points or a different sampling strategy, or a different model of the performance
may have to be hypothesized.
From a statistical point of view (linear regression), the actual performance value is considered to be

yi ¼ ŷi þ ei, i ¼ 1, 2, . . . , S (1:11)

where ei denotes the random error in the model. In least-squares fitting, this random error is implicitly
assumed to be independent and identically distributed normal random variables with zero mean and
constant variance. In particular, we assume that

E(ei) ¼ 0

Var(ei) ¼ s2

and Cov(ei,ej) ¼ 0, i 6¼ j

(1:12)

Modeling of Circuit Performances 1-11

If the RSM of the performance measure is linear, then it can be written as

ŷ(x) ¼
XC
i¼1

aifi(x) (1:13)

where
fi(x) are the known basis functions of the circuit parameters
C denotes the number of basis functions

Note that the RSM is said to be linear (and least-squares fitting can be used) if it is linear in terms of the
model coefficients ai. The basis functions fi(x) need not be linear. For instance, the basis functions used
in the quadratic RSM of Equation 1.5 are 1, xi, and xixj.

Let y and e be S-vectors: y ¼ [y1, . . . , yS]
T and e ¼ [e1, . . . , eS]

T, where S is the number of data
points. Also, let us define the model coefficients as a¼ [a1, . . . ,aC]. Finally, let X denote the following
S3C matrix:

X ¼
f1(x1) � � � fC(x1)

..

. ..
. ..

.

f1(xS) . . . fC(xS)

2
64

3
75 (1:14)

Then, Equation 1.11 can be vectorially written as

y ¼ Xaþ e (1:15)

We choose a to minimize the function

RSS(a) ¼ (y � Xa)T(y � Xa) (1:16)

The least squares estimate â of a is given by the following formula:

â ¼ (XTX)�1XTy (1:17)

The function Equation 1.16 evaluated at â is called the residual sum of squares, abbreviated RSS, and is
given by

RSS ¼ (y � Xâ)T(y � Xâ) (1:18)

It can be shown that an estimate of the variance of the random error is

ŝ2 ¼ RSS
S� C

(1:19)

and that â is unbiased, i.e., E(â)¼a, and the variance of the estimate is

var(â) ¼ â2(XTX)�1 (1:20)

Another figure of merit of the linear regression is called the coefficient of determination, denoted by R2,
and given by

1-12 Computer Aided Design and Design Automation

R2 ¼ 1� RSSPs
i¼1 (y1 � �y)2

(1:21)

where �y is the sample average of the yis, i¼ 1, . . . , S. The coefficient of determination measures the
proportion of variability in the performance that is explained by the regression model. Values of R2 close
to 1 are desirable.

1.7 Variable Screening

Variable screening is used in many performance modeling techniques as a preprocessing step to select
the significant circuit parameters that are used as independent variables in the performance model.
Variable screening can be used to substantially reduce the number of significant circuit parameters that
must be considered, and thereby reduce the complexity of the analysis. The significant circuit parameters
are included in the performance model, while the others are ignored. Several variable screening
approaches have been proposed; in this chapter, we discuss a simple yet effective screening strategy
that was proposed in [8].
The variable screening method of [8] is based on the two-level fractional factorial designs discussed

earlier. We assume that the main effects (given by Equation 1.6) of the circuit parameters dominate over
the interaction effects and this assumption enables us to use a resolution III design. Suppose that there
are n original circuit parameters, denoted by x1, . . . , xn. Then, we can use the simulation results from
the fractional factorial design to compute the following quantities for each of the circuit parameters
xi, i¼ 1, . . . , n:

1. Main effect vi computed using Equation 1.6
2. High deviation dhi from the nominal or center point, computed by

dhi ¼ 2
nr

X
k2Kþ

i

yk � yc (1:22)

where
nr is the number of simulations
Ki

þ is the set of indices where xi is þ1
yc is the performance value at the center point

3. The low deviation dli from the center point, computed using a formula similar to Equation 1.22,
with Ki

þ replaced by Ki
�

Note that only two of the preceding quantities are independent, since the third can be obtained as a linear
combination of the other two. A statistical significance test is now used to determine if xi is significant. To
this end, we assume that the quantities vi, dhi , and dli are sampled from a normal distribution with a
sample size of n (since there are n circuit parameters). Denoting any one of the above quantities vi, dhi , or
dli by di, the hypothesis for the significance test is

Null hypothesis H0: dij j ¼ 0, i:e:, xi is insignifiant

H0 is rejected if dij j=sd > tas=2,n�1
(1:23)

In Equation 1.23, a two-sided t-test is used [9] with significance level as and sd denotes the estimate of
the standard deviation of di � tas=2,n�1 denotes the value of the t statistic with significance level as=2 and
degrees of freedom n� 1. We declare a parameter xi to be insignificant if it is accepted in the tests for at
least two of vi, dhi , and dli . This screening procedure is optimistic in the sense that an insignificant

Modeling of Circuit Performances 1-13

parameter may be wrongly deemed significant from the preceding significance tests. The values of the
t-variable can be read off from standard t-distribution tables available in many statistics text books.

1.8 Stochastic Performance Models

As stated earlier, the objective of performance modeling is to obtain an inexpensive surrogate to the
circuit simulator. This performance model can then be used in a variety of deterministic and statistical
optimization tasks in lieu of the expensive circuit simulator. The circuit simulator is a computer model,
which is deterministic in the sense that replicate runs of the model with identical inputs will always result
in the same values for the circuit performances. This lack of random error makes computer-based
experiments fundamentally different from physical experiments. The experimental design and response
surface modeling techniques presented earlier have the tacit assumption that the experiments are physical
and the difference between the observed performance and the regression model behaves like white noise.
In the absence of random error, the rationale for least-squares fitting of a response surface is not clear
even though it can be looked upon solely as curve fitting. Stochastic performance modeling [10,11] has
been used recently to model the outputs (in our case, the circuit performances) of computer codes or
models (in our case, the circuit simulator). The basic idea is to consider the performances as realizations
of a stochastic process and this allows one to compute a predictor of the response at untried inputs and
allows estimation of the uncertainty of prediction.
The model for the deterministic performance y treats it as a realization of a stochastic process Y(x)

which includes a regression model:

Y(x) ¼
Xk
i¼1

aifi(x)þ Z(x) (1:24)

The first term in Equation 1.24 is the simple regression model for the performance and the second term
represents the systematic departure of the actual performance from the regression model as a realization
of a stochastic process. This model is used to choose a design that predicts the response well at untried
inputs in the parameter space. Various criteria based on functionals of the means square error matrix are
used to choose the optimal design. One the design is selected, the circuit simulator is exercised at those
design points, and the circuit performance values are extracted. Next, a linear (in themodel coefficients âis)
predictor is used to predict the values of the performance at untried points. This predicted value can be
shown to be the sum of two components: the first component corresponds to the first term in Equation 1.24
and uses the generalized least squares estimate of the coefficients a, and the second component is a
smoothing term, obtained by interpolating the residuals at the experimental design points. The main
drawback of the stochastic performance modeling approach is the excessive computational cost of
obtaining the experimental design and of predicting the performance values.

1.9 Other Performance Modeling Approaches

The most popular performance modeling approach combines experimental design and least-squares-
based response surface modeling techniques described previously [8,12–15]. A commonly used assump-
tion valid for MOS circuits that has been used frequently is based on the existence of four critical noise
parameters [16–18]. These four critical parameters are the flat-band voltage, the gate-oxide thickness, the
channel length reduction, and the channel width reduction.
Several other performance modeling approaches have been proposed, especially in the context of

statistical design of integrated circuits. One such approach is based on self-organizing methods [19] and
is called the group method of data handling (GMDH) [20]. An interesting application of GMDH for
performance modeling is presented in [21,22]. Another interesting approach is called maximally flat

1-14 Computer Aided Design and Design Automation

quadratic interpolation (MFQI) [23]. A modeling approach combining the advantages of MFQI and
GMDH is presented in [24]. It has been tacitly assumed in the discussion so far that a single RSM is
sufficiently accurate to approximate the circuits performances over the entire circuit parameter space.
This may not be true for many circuits. In such cases, a piecewise modeling approach may be used
advantageously [8]. The circuit parameter space is divided into smaller regions, in each of which a single
performance model is adequate. The continuous performance models in the various regions are then
stitched together to preserve continuity across the regions.

1.10 Example of Performance Modeling

Below, we show an application of performance modeling applied to the clock skew of a clock distribution
circuit. Consider the clock driver circuit shown in Figure 1.5. The top branch has three inverters and the
lower branch has two inverters to illustrate the problem of signal skew present in many clock trees. We
define the clock skew to be the difference between the times at which CLK and its complement cross a
threshold of 0.5 VDD. Two skews occur, as shown in Figure 1.6, one corresponding to the rising edge of
the CLK, DSr, and another corresponding to the falling edge of CLK, DSf. The performance measure of
interest is the signal skew DS defined as the larger of the two skews.
The designable circuit parameters of interest in this example are the nominal channel widths of each of

the transistors in the second and third inverters in the top branch and the last inverter in the lower

CLKin
W1, W2 W3, W4

W5, W6

CLK

CLK

FIGURE 1.5 Clock distribution circuit.

CLK

Δ Sf Δ Sr

CLK

FIGURE 1.6 Definition of rising and falling clock skews.

Modeling of Circuit Performances 1-15

branch. The designable parameters are denoted byW1,W2,W3,W4,W5, andW6 and are marked in Figure
1.5. The noise parameters of interest are the randomvariations in the channel widths and lengths of all nMOS
and pMOS transistors in the circuit, and the common gate oxide thickness of all the transistors. These
are denoted by DWn (channel width variation of nMOS transistors), DLn (channel length varia-
tion nMOS transistors), DWp (channel width variation of pMOS transistors), DLp (channel length variation
of pMOS transistors), and tox (gate oxide thickness of all nMOS and pMOS transistors). We hypothesize a
linear RSM for the clock skew in terms of the designable and noise parameters of the circuit. To this end, we
generate an experimental design of size 30 using Latin hypercube sampling. The circuit is simulated at each
of these 30 training points, and the value of the clock skewDS is extracted from the simulation results. Then,
we use regression to fit the following linear RSM:

DS ¼ 1:93975� 0:0106W1 þ 0:0121W2 þ 0:0045W3 � 0:1793W4

þ 0:0400W5 þ 0:0129W6 � 0:0149DWn � 0:0380DWp

� 0:0091DLn þ 0:0115DLp þ 0:161tox (1:25)

This RSM has an R2 of 0.999. The prediction accuracy for the preceding RSM is in Figure 1.7 where the
values of DS predicted from the RSM are plotted against the simulated values for a set of checking points
(different from the training points used to fit the RSM). Most of the points lie near the 458 line indicating
that the predicted values are in close agreement with the simulated values.

References

1. G. E. P. Box and N. R. Draper, Empirical Model Building and Response Surfaces, New York: Wiley,
1987.

2. G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters: An Introduction to Design,
Data Analysis, and Model Building, New York: Wiley, 1987.

3. N. R. Draper and T. J. Mitchell, The construction of saturated 2k�p
R designs, Ann. Math. Stat., 38:

1110–1126, August 1967.

2.02

2

1.98

1.96

1.94

1.92

1.9
1.88

1.88

1.9

1.92 1.94 1.96 1.98 2 2.02
Simulated skew (ns)

Fi
tte

d
sk

ew
 (n

s)

FIGURE 1.7 Plot of predicted versus simulated values for RSM of Equation 1.25.

1-16 Computer Aided Design and Design Automation

4. P. J. Ross, Taguchi Techniques for Quality Engineering, New York: McGraw-Hill, 1988.
5. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, London: Methuen and Co. Ltd.,

1964.
6. M. D. McKay, R. J. Beckman, and W. J. Conover, A comparison of three methods for selecting values

of input variables in the analysis of output from a computer code, Technometrics, 21: 239–245,
May 1979.

7. R. L. Iman and W. J. Conover, A distribution-free approach to inducing rank correlations among
input variables, Commn. Stat., B11(3): 311–334, 1982.

8. K. K. Low and S. W. Director, An efficient methodology for building macromodels of IC fabrication
processes, IEEE Trans. Comput. Aided Des., 8: 1299–1313, December 1989.

9. D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis, New York:
Wiley, 1982.

10. J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments,
Stat. Sci., 4(4): 409–435, 1989.

11. M. C. Bernardo, R. Buck, L. Liu, W. A. Nazaret, J. Sacks, and W. J. Welch, Integrated circuit design
optimization using a sequential strategy, IEEE Trans. Comput. Aided Des., 11: 361–372, March 1992.

12. T. K. Yu, S. M. Kang, I. N. Hajj, and T. N. Trick, Statistical modeling of VLSI circuit performances,
Proceedings of the IEEE International Conference Computer-Aided Design, Santa Clara, CA,
November 1986, pp. 224–227.

13. T. K. Yu, S. M. Kang, I. N. Hajj, and T. N. Trick, Statistical performance modeling and parametric
yield estimation of MOS VLSI, IEEE Trans. Comput. Aided Des., CAD-6: 1013–1022, November
1987.

14. T. K. Yu, S. M. Kang, W. Welch, and J. Sacks, Parametric yield optimization of CMOS analog circuits
by quadratic statistical performance models, Int. J. Circuit Theory Appl., 19: 579–592, November
1991.

15. A. Dharchoudhury and S. M. Kang, An integrated approach to realistic worst-case design optimiza-
tion of MOS analog circuits, Proceedings of the 29th ACM=IEEE Design Automation Conference,
Anaheim, CA, June 1992, pp. 704–709.

16. P. Cox, P. Yang, S. S. Mahant-Shetti, and P. Chatterjee, Statistical modeling for efficient parametric
yield estimation, IEEE J. Solid State Circuits, SC-20: 391–398, February 1985.

17. P. Yang and P. Chatterjee, Statistical modeling of small geometry MOSFETs, IEEE International
Electron Device Meeting, San Franscisco, CA, December 1982, pp. 286–289.

18. P. Yang, D. E. Hocevar, P. Cox., C. Machala, and P. Chatterjee, An integrated and efficient approach
for MOS VLSI statistical circuit design, IEEE Trans. Comput. Aided Des., 5: 5–14, January 1986.

19. S. J. Farlow, Ed., Self-Organizing Methods in Modeling: GMDH Type Algorithms, New York:
Marcel Dekker, 1984.

20. A. G. Ivakhnenko, The group method of data handling, a rival of the method of stochastic
approximation, Sov. Autom. Control, 13(3): 43–45, 1968.

21. A. J. Strojwas and S. W. Director, An efficient algorithm for parametric fault simulation of
monolithic IC’s, IEEE Trans. Comput. Aided Des., 10: 1049–1058, August 1991.

22. S. Ikeda, M. Ochiai, and Y. Sawaragi, Sequential GMDH and its application to river flow prediction,
IEEE Trans. Syst. Man Cybern., SMC-6: 473–479, July 1976.

23. R. M. Biernacki and M. A. Styblinski, Statistical circuit design with a dynamic constraint approxi-
mation scheme, Proceedings of the IEEE ISCAS, San Jose, CA, 1986, pp. 976–979.

24. M. A. Styblinski and S. A. Aftab, Efficient circuit performance modeling using a combination of
interpolation and self organizing approximation techniques, Proceedings of the IEEE ISCAS,
New Orleans, LA, 1990, pp. 2268–2271.

Modeling of Circuit Performances 1-17

2
Symbolic Analysis

Methods

Benedykt S. Rodanski
University of Technology, Sydney

Marwan M. Hassoun
Iowa State University

2.1 Introduction .. 2-1
2.2 Symbolic Modified Nodal Analysis 2-3
2.3 Solution Methods... 2-7

Determinant-Based Solutions . Parameter Reduction Solutions

2.4 Ideal Operational Amplifiers... 2-12
Nullator, Norator, and Nullor . Ideal Op-Amp Model

2.5 Applications of Symbolic Analysis....................................... 2-16
Frequency Response Evaluation . Circuit Response
Optimization . Sensitivity Analysis . Circuit Sizing .

Parameter Extraction in Device Modeling .

Statistical Analysis . Fault Diagnosis of Analog Circuits .

Insight into Circuit Operation . Education

2.6 Symbolic Analysis Software Packages 2-18
References .. 2-19

2.1 Introduction

The late 1980s and 1990s saw a heightened interest in the development of symbolic analysis techniques
and their applications to integrated circuits analysis and design. This trend continues in the new
millennium. It resulted in the current generation of symbolic analysis methods, which include several
software implementations like ISSAC [Gie89], SCAPP [Has89], ASAP [Fer91], EASY [Som91], SYNAP
[Sed88], SAPWIN [Lib95], SCYMBAL [Kon88], GASCAP [Hue89], SSPICE [Wie89], STAINS [Pie01],
and Analog Insydes [Hen00]. This generation is characterized by an emphasis on the production of
usable software packages and a large interest in the application of the methods to the area of analog
circuit design. This includes extensive efforts to reduce the number of symbolic expression generated by
the analysis through hierarchical methods and approximation techniques [Fer92,Sed92,Wam92,Hsu94,
Yu96]. This generation also includes attempts at applying symbolic analysis to analog circuit synthesis
[Gie91,Cab98], parallel processor implementations [Has93b,Mat93,Weh93], time-domain analysis
[Has91,Als93,Lib93], and behavioral signal path modeling [Ley00].
The details of traditional symbolic analysis techniques as they apply to linear circuit theory are given in

[Rod08]. This chapter addresses symbolic analysis as a computer-aided design tool and its application to
integrated circuit design. Modern symbolic analysis is mainly based on either a topological approach or a
modified nodal analysis (MNA) approach. The basic topological (graph-based) methodologies are
discussed in [Rod08] because the methods are part of traditional symbolic analysis techniques. The
methodology addressed in this chapter is based on the concept of MNA [Ho75] as it applies to symbolic
analysis.

2-1

Traditional symbolic circuit analysis is performed in the frequency domain where the results are in
terms of the frequency variable s. The main goal of performing symbolic analysis on a circuit in the
frequency domain is to obtain a symbolic transfer function of the form:

H(s, x) ¼ N(s, x)
D(s, x)

, x ¼ x1 x2 . . . xp
� �

, p � pall (2:1)

The expression is a rational function of the complex frequency variable s, and the variables x1 through xp
representing the variable circuit elements, where p is the number of variable circuit elements and pall is the
total number of circuit elements. Hierarchical symbolic analysis approaches are based on a decomposed
form of Equation 2.1 [Sta86,Has89,Has93a,Pie01]. This hierarchical representation is referred to as a
sequence of expressions representation to distinguish it from the single expression representation of
Equation 2.1. The major advantage of having a symbolic transfer function in single expression form is
the insight that can be gained by observing the terms in both the numerator and the denominator. The
effects of the different terms can, perhaps, be determined by inspection. This process is very valid for the
cases where there are relatively few symbolic terms in the expression.
The heart of any circuit simulator, symbolic or numeric, is the circuit analysis methodology used to

obtain the mathematical equations that characterize the behavior of the system. The circuit must satisfy
these equations. These equations are of three kinds: Kirchhoff’s current law (KCL), Kirchhoff’s voltage
law (KVL), and the branch relationship (BR) equations [Chu75]. KCL and KVL are well known and have
been discussed earlier in this book. The definition of BR is ‘‘For independent branches, a branch
relationship defines the branch current in terms of the branch voltages.’’ The most common independent
branches are resistors, capacitors, and inductors. For the case of dependent branches, the branch current
or voltage is defined in terms of other branches’ currents or voltages. The four common types of
dependent branches are the four types of controlled sources: voltage-controlled voltage source (VCVS),
voltage-controlled current source (VCCS), current-controlled voltage source (CCVS), and current-
controlled current source (CCCS). A linear element would produce a BR equation that is linear, and a
nonlinear element would produce a nonlinear BR equation. The scope of this section is linear elements.
If a nonlinear element is to be included in the circuit, a collection of linear elements could be used to
closely model the behavior of that element around a dc operating point (quiescent point) in a certain
frequency range [Gie94]. BR equations are not used on their own to formulate a system of equations to
characterize the circuit. They are, however, used in conjunction with KCL or KVL equations to produce a
more complete set of equations to characterize the circuit. Hybrid analysis [Chu75] uses a large set of BR
equations in its formulation.
A system of equations to solve for the circuit variables, a collection of node voltages and branch

currents, does not need to include all of the above equations. Several analysis methods are based on these
equations or a subset thereof. Mathematically speaking, an equal number of circuit unknowns and
linearly independent equations is required in order for a solution for the system to exist. The most
common analysis methods used in circuit simulators are as follows:

1. A modification of nodal analysis as used in the numeric circuit simulators SPICE2 [Nag75], and
SLIC [Idl71], and in the formulation of the symbolic equations in [Ald73]. Nodal analysis [Chu75]
uses KCL to produce the set of equations that characterize the circuit. Its advantage is its relatively
small number of equations. This results in a smaller matrix, which is very desirable in computer
implementations. Its limitation, however, is that it only allows for node-to-datum voltages as
variables. No branch current variables are allowed. Also the only type of independent power
sources it allows are independent current sources. However, voltage sources are handled by using
their Norton equivalent. A further limitation to this method is that only VCCSs are allowed, none
of the other dependent sources are allowed in the analysis. To overcome these limitations, the
MNA method was proposed in [Ho75]. It allows branch current as variables in the analysis,

2-2 Computer Aided Design and Design Automation

which in turn leads to the ability to include voltage sources and all four types of controlled
sources in the analysis. The MNA method is described in more detail in the next section because
it is used in symbolic analysis after further modification to it. These modifications are necessary
in order for the analysis to accept ideal operational amplifiers (op-amps), and to produce a
compact circuit characterization matrix. This matrix is referred to as the reduced MNA matrix
(RMNAM).

2. Hybrid analysis [Chu75] is used in the numeric simulators ASTAP [Wee73] and ECAP2 [Bra71].
The method requires the selection of a tree and its associated co-tree. It uses cutset analysis (KCL)
and loop analysis (KVL) to formulate the set of equations. The equations produced solve for the
branch voltages and branch currents. The method is able to accommodate voltage sources and all
four types of dependent sources. It utilizes a much larger matrix than the nodal analysis methods;
however, it is a very sparse matrix (lots of zero entries). The main drawback is that the behavior of
the equations is highly dependent on the tree selected. A bad tree could easily result in an ill-
conditioned set of equations. Some methods of tree selection can guarantee a well-conditioned set
of hybrid equations [Nag75]. Therefore, special rules must be observed in the tree selection process
that constitutes a large additional overhead on the analysis.

3. Sparse tableau analysis [Hac71] has been used in symbolic analysis to employ the parameter
extraction method (this chapter). It uses the entire set of circuit variables: node voltages, branch
voltages, and branch currents, for the symbolic formulation in addition to capacitor charges
and inductor fluxes in the case of numeric simulations. This results in a huge set of equations
and in turn a very large matrix but a very sparse one. This method uses all the above
stated equation formulation methods: KCL, KVL and the BR. The entire system of equations
is solved for all the circuit variables. The disadvantage of the method is its inherent problem of
ill-conditioning [Nag75].

It has been found that the sparse tableau method only produces a very minor improvement in the
number of mathematical operations, the nodal analysis methods despite its large overhead, stemming
from a large matrix, and the large and rigid set of variables that have to be solved for. The MNA method
gives the choice of what branch current variables to be solved for and equations are added accordingly.
The tableau method would always have a fixed size matrix and produce unneeded information to the user.
For the purpose of symbolic analysis, as highlighted in this chapter, the entire analysis is performed in

the frequency domain with the aid of the complex frequency variable s. The Laplace transform
representation of the value of any circuit element is therefore used in the formulation. Also, since a
modification of the nodal admittance matrix is used, the elements may be represented by either their
admittance or impedance values.

2.2 Symbolic Modified Nodal Analysis

The initial step of MNA is to formulate the nodal admittance matrix Y [Chu75] from the circuit. The
circuit variables considered here are all the node-to-datum voltages, referred to simply as node voltages;
there are nv of them. They are included in the variable vector V. So V has the dimensions of (nv3 1).
The vector J, also of dimensions (nv3 1), represents the values of all independent current sources in the
circuit. The ith entry of J is the sum of all independent current sources entering node i. The linear system
of node equations can be represented in the following matrix form:

YV ¼ J (2:2)

Row i of Y represents the KCL equation at node i. The coefficient matrix, Y, called the node admittance
matrix, is constructed by writing KCL equations at each node, except for the datum node. The ith

Symbolic Analysis Methods 2-3

equation then would state that the sum of all currents leaving node i is equal to zero. The equations are
then put into the matrix form of Equation 2.2. The following example illustrates the process.

Example 2.1

Consider the circuit in Figure 2.1.
Collecting the node voltages would produce the following V:

V ¼
v1
v2
v3

2
4

3
5 (2:3)

Considering all the independent current sources in the circuit, the vector J becomes

J ¼
J1
J4
0

2
4

3
5 (2:4)

Notice that the last entry of J is a zero because no independent current sources are connected to node 3.
Now, writing KCL equations at the three non-datum nodes produces

G2v1 þ G3(v1 � v2)þ 1
sL7

(v1 � v3) ¼ J1

G5v2 þ G3(v2 � v1)þ sC6(v2 � v3) ¼ J4

sC6(v3 � v2)þ 1
sL7

(v3 � v1)þ g8VR3 ¼ 0

(2:5)

Substituting VR3¼ v1� v2 in the third equation of the set Equation 2.5 and rearranging the variables
results in

G2 þ G3 þ 1
sL7

� �
v1 � G3v2 � 1

sL7
v3 ¼ J1

� G3v1 þ G3 þ G5 þ sC6ð Þv2 � sC6v3 ¼ J4

g8 � 1
sL7

� �
v1 � g8 þ sC6ð Þv2 þ 1

sL7
þ sC6

� �
¼ 0

(2:6)

1 + R3 – 2
3

J1

R2 J4

C6

g8 VR3

L7

R5

FIGURE 2.1 MNA example circuit.

2-4 Computer Aided Design and Design Automation

Finally, rewriting Equation 2.6 in a matrix form of Equation 2.2 yields

G2 þ G3 þ 1
sL7

�G3 � 1
sL7

�G3 G3 þ G5 þ sC6 �sC6
g8 � 1

sL7
� g8 þ sC6ð Þ 1

sL7
þ sC6

2
66664

3
77775

v1

v2

v3

2
64

3
75 ¼

J1

J4

0

2
64

3
75 (2:7)

An automatic technique to construct the node admittance matrix is the element stamp method
[Ho75]. The method consists of going through each circuit component and adding its contribution to
the nodal admittance matrix in the appropriate positions. It is an easy way to illustrate the impact of each
element on the matrix.* Resolving Example 2.1 using the element stamps would produce exactly the same
Y matrix, V vector, and J vector as in Equation 2.7.
The MNA technique, introduced in [Ho75], expands on the above nodal analysis in order to readily

include independent voltage sources and the three other types of controlled sources: VCVS, CCCS,
and CCVS. This is done by introducing some branch currents as variables into the system of equations,
which in turn allows for the introduction of any branch current as an extra system variable. Each extra
current variable introduced would need an additional equation to solve for it. The extra equations are
obtained from the BRs for the branches whose currents are the extra variables. The effect on the nodal
admittance matrix is the deletion of any contribution in it due to the branches whose currents have been
declared as variables. This matrix is referred to as Yn. The addition of new variables and a corresponding
number of equations to the system results in the need to append extra rows and columns to Yn. The
augmented Ym matrix is referred to as the MNA matrix (MNAM). The new system of equations, in
matrix form, is

Yn B
C D

� �
V
I

� �
¼ J

E

� �
(2:8)

where
I is a vector of size ni whose elements are the extra branch current variables introduced
E contains the values of the independent voltage sources
C and D correspond to BR equations for the branches whose currents are in I

An important feature of the MNAM approach is its ability to include impedance elements in the
formulation. Let Zx be an impedance connected between nodes i and j. Introduce the current through Zx
as new variable ix. The extra equation needed is provided by the corresponding BR: vi� vj�Zxix¼ 0. The
usefulness of this approach can be appreciated when one needs to handle short circuits (R¼ 0) or
inductors at dc. It becomes indispensable in approximation techniques that require the circuit matrix to
contain only entries of the type a¼aþ sb.
According to [Ho75], the MNA current variables should include all branch currents of independent

voltage sources, controlled voltage sources, and all controlling currents. Further modifications of this
procedure, like RMNA formulations [Has89], compacted MNA (CMNA) formulations [Gie89], and
supernode analysis [Som93] relax these constraints and result in fewer MNA equations.

Example 2.2

As an example of a MNAM formulation, consider the circuit of Figure 2.2. The extra current variables
are the branch currents of the independent voltage source E1 (branch 1), the CCVS (branch 5), and the

* Program STAINS has the animate option that allows viewing the animated process of matrix formulation.

Symbolic Analysis Methods 2-5

inductor L8 (branch 8). They are referred to as i1, i5, and i8, respectively. The CCCS b9i2 can be transformed
to a VCCS by noticing that i2¼G2(v1� v2), so we have b9i2¼b9G2(v1� v2). Similarly, the CCVS r5i3
becomes a VCVS r5G3v2.

Using element stamps, the MNA system of equations becomes

G2 �G2 0 0 0 1 0 0
�G2 G2 þ G3 þ G4 0 0 0 0 0 1
b9G2 �G4 � b9G2 G4 þ sC7 �sC7 0 0 1 0
�b9G2 b9G2 �sC7 G6 þ sC7 0 0 0 �1

0 0 0 0 G10 0 �1 0

1 0 0 0 0 0 0 0
0 �r5G3 1 0 �1 0 0 0
0 1 0 �1 0 0 0 �sL8

2
6666666666664

3
7777777777775

v1
v2
v3
v4
v5
i1
i5
i8

2
66666666664

3
77777777775

¼

0
0
0
J11
0
E1
0
0

2
66666666664

3
77777777775

The above system of linear algebraic equations can be written in the following matrix form:

Ax ¼ b (2:9)

where
A is a symbolic matrix of dimension n3 n
x is a vector of circuit variables of length n
b is a symbolic vector of constants of length n
n is the number of circuit variables: currents, voltages, charges, or fluxes

The analysis proceeds by solving Equation 2.9 for x.

i8

i2

i1 i3

i5

R2

R3

R10

R6

R41 2 3 4

5

r5 i3

9 i2

J11

C7

L8

E1

+

+

FIGURE 2.2 Circuit of Example 2.2.

2-6 Computer Aided Design and Design Automation

2.3 Solution Methods

2.3.1 Determinant-Based Solutions

Here the basic idea is to apply an extension of Cramer’s rule, symbolically, to find a transfer function
from the coefficient matrix of Equation 2.9. According to Cramer’s rule, the value of a variable xi in
Equation 2.9 is calculated from the following formula:

xi ¼
A(i)
�� ��
Aj j (2:10)

where A(i) is obtained from matrix A by replacing column i with the vector b and j.j denotes the
determinant. Any transfer function, which is a ratio of two circuit variables, can be found by application
of Equation 2.10:

xi
xj
¼ A(i)

�� ��= Aj j
A(j)
�� ��= Aj j ¼

A(i)
�� ��
A(j)
�� �� (2:11)

Several symbolic algorithms are based on the concept of using Cramer’s rule and calculating the
determinants of an MNAM. Most notably is the program ISSAC [Gie89], which uses a recursive
determinant expansion algorithm to calculate the determinants of Equation 2.11. Although there are
many other algorithms to calculate the determinant of a matrix, like elimination algorithms and nested
minors algorithms [Gie91], recursive determinant expansion algorithms were found the most suitable for
sparse linear matrices [Wan77]. These algorithms are cancellation-free given that all the matrix entries
are different, which is a very desirable property in symbolic analysis.
Let A be a square matrix of order n. Delete row i and column j from A and denote the resulting matrix

of order n� 1 by A�i�j. Its determinant,Mij¼ jA�i�jj, is called aminor of A of order n� 1. The quantity
Dij¼ (�1)iþjMij is called a cofactor of a matrix element aij. The determinant of A can be calculated by
recursive application of the following formula:*

Aj j ¼
Pn
j¼1

aijDij ¼
Pn
j¼1

ajiDji for n > 1

a11 for n ¼ 1

8<
: (2:12)

where i is an arbitrary row or column of matrix A.
As an example, the determinant of a 33 3 matrix is calculated by this method as

a11 a12 a13
a21 a22 a23
a31 a32 a33

�������

�������
¼ (�1)1þ1a11

a22 a23
a32 a33

����
����þ (�1)1þ2a12

a21 a23
a31 a33

����
����þ (�1)1þ3a13

a21 a22
a31 a32

����
����

¼ a11a22a33 � a11a23a32 � a12a21a33 þ a12a23a31 þ a13a21a32 � a13a22a31

Here, i was chosen to be, arbitrarily, row 1. The expression is cancellation-free in this example because all
the matrix entries are unique. Note that for matrices with duplicated entries, the algorithm is not
cancellation-free.

* Single application of Equation 2.12 is known as the Laplace expansion of the determinant.

Symbolic Analysis Methods 2-7

Most symbolic analysis problems deal with two-port circuits of the form shown in Figure 2.3, where
the signal source, IS, is the only independent source in the circuit.

Let the two-port be described by the modified nodal equation of the form as in Equation 2.8. The right-
hand side of this equation will have only two nonzero entries: þIS at position i and �IS at position j.
Applying Cramer’s rule to calculate potential at any node k, we get

vk ¼
ISDik � ISDjk

D
(2:13)

Now, if we wish, for example, to calculate the voltage transmittance of the two-port in Figure 2.3, using
Equation 2.13, we obtain

Tv ¼
vo � vp
vi � vj

¼ Dio � Djo � Dip þ Djp

Dii � Dji � Dij þ Djj
(2:14)

Equation 2.14 simplifies considerably if, as it is often the
case, nodes j and p are identical with the reference node. We
then have

Tv ¼ vo
vi
¼ Dio

Dii
(2:15)

Example 2.3

As an example, the voltage transfer function Tv¼ v2=v1
for the circuit in Figure 2.4 is to be calculated. The MNAM
of this circuit is

Ym ¼

G1 0 �G1 0 0
0 Gf þ sCf �Gf � sCf 0 1
�G1 �Gf � sCf G1 þ Gf þ sCf 0 0
0 0 0 G2 0

0 1 m �m 0

2
666664

3
777775

IS

i

j

Vin VoutA = Ym

p0

o
+ +

– –

FIGURE 2.3 Two-port representation of a circuit.

1
Rf

R2

R1

V
μV+

+

3 2

4

–

Cf

FIGURE 2.4 Circuit for Example 2.3.

2-8 Computer Aided Design and Design Automation

Using Equation 2.15 and expanding the cofactors according to Equation 2.12, we get

Tv ¼ v2
v1
¼ D12

D11
¼

(�1)1þ2
0 �Gf � sCf 0 1

�G1 G1 þ Gf þ sCf 0 0

0 0 G2 0

0 m �m 0

���������

���������

(�1)1þ1
Gf þ sCf �Gf � sCf 0 1

�Gf � sCf G1 þ Gf þ sCf 0 0

0 0 G2 0

1 m �m 0

���������

���������

¼ �G1G2m

�G2 m �Gf � sCfð Þ � G1 þ Gf þ sCfð Þ½ � ¼ �
G1m

G1 þ Gf þ sCf þ m Gf þ sCfð Þ

Note that cancellation of a common term (G2) in the numerator and denominator occurred. Although
not present in the above example, cancellation of terms in each determinant expansion may occur in
general if matrix entries are not unique.

2.3.2 Parameter Reduction Solutions

These methods use basic linear algebra techniques, applied symbolically, to find the solution to Equa-
tion 2.9. The goal here is to reduce the size of the system of equations by manipulating the entries of
matrix A down to a 23 2 size. The two variables remaining in x are the ones for which the transfer
function is to be calculated. The manipulation process, which in simple terms is solving for the two
desired variables in terms of the others, is done using methods like Gaussian elimination [Nob77]. This
methodology is used in the symbolic analysis programs SCAPP [Has89] and STAINS [Pie01]. Both
programs use successive application of a modified Gaussian elimination process to produce the transfer
function of the solution. The main difference between the techniques used in SCAPP and STAINS is in
pivot selection strategy. While SCAPP selects pivots from the diagonal of A, STAINS employs a locally
optimal pivot selection [Mar57,Gus70] that minimizes the number of arithmetic operations at each
elimination step, thus producing more compact sequences of expressions. The process is applied to the
MNAM and the result is a RMNAM (YR). The process of reducing a circuit variable, whether a node
voltage or a branch current, is referred to as variable suppression.
If the signal (input) source is the only independent source in the circuit, then the reduction process

leads to the final RMNAM being identical with the well-known two-port admittance matrix. Its
elements are known as the short-circuit admittance parameters or simply the y-parameters and have
been used in circuit analysis from the 1940s. Since the two-port representation is the most commonly
encountered in symbolic analysis problems, for the rest of this section we concern ourselves with
terminated two-ports, depicted in Figure 2.5. The advantage of such a representation is the fact
that once the y-parameters and the terminating admittances, YS and YL, are known, all other
parameters of interest, like input=output impedances and various gains, can be readily calculated
(e.g., [Gha65]). With no loss of generality we can assign numbers 1 and 2 to the input and output
nodes, respectively. All other circuit variables are numbered from 3 to n. To focus our attention, we will
only consider a (very typical) case when the input and output ports have a common terminal, which is
the reference node.
The circuit of Figure 2.5 can be described by the set of symbolic equations of the form as in Equation

2.9, rewritten here more explicitly:

Symbolic Analysis Methods 2-9

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
a31 a32 a33 . . . a3n
..
. ..

. ..
. . .

. ..
.

an1 an2 an3 . . . ann

2
666664

3
777775

V1

V2

x3
..
.

xn

2
666664

3
777775
¼

I1
I2
0
..
.

0

2
66664

3
77775

(2:16)

The elements aij are symbolic entries of general form: a¼aþ sb.
Since we are only interested in the relationship between the input and output variables (V1, I1 and

V2, I2 in our case), all other variables can be suppressed. Suppose that we wish to suppress the variable xp.
To achieve this, we can use any equation from the set (Equation 2.16), except the first two equations that
has a nonzero coefficient at xp. Let us choose it to be equation q> 2. The qth equation can be written in
the expanded form as follows:

aq1V1 þ aq2V2 þ � � � þ aqpxp þ � � � þ aqnxn ¼ 0 (2:17)

Provided that jaqpj 6¼ 0, we can calculate xp from Equation 2.17 as

xp ¼ �
aq1
aqp

V1 �
aq2
aqp

V2 �
aq3
aqp

x3 � � � � �
aqn
qqp

xn (2:18)

Substituting Equation 2.18 into Equation 2.16 will eliminate the variable xp and equation q from the set.
During the elimination, each element aij of A undergoes the transformation:

aij aij � aqjaip
aqp

; i, j ¼ 1, 2, . . . , n; i 6¼ q, j 6¼ p (2:19)

This process of suppression of a variable is the very well-known Gaussian elimination. The only
difference from the usual appearance of the elimination formula (Equation 2.19) in the literature is the
fact that the pivot, aqp, may be off-diagonal (p 6¼ q). In practice, the transformation (Equation 2.19) is
only applied to the matrix elements aij for which jaqjjjaipj 6¼ 0. When any of the updated elements of A

1 2

0

IS V1 V2

+

–

+

–
YS YL

I2I1

3

n

FIGURE 2.5 Terminated two-port for symbolic analysis.

2-10 Computer Aided Design and Design Automation

is initially zero, a new nonzero element, a fill-in, is created in A. The pivot is chosen as to minimize either
the number of arithmetic operations* or the number of fill-ins created at each elimination step.
All internal variables are successively eliminated using identical procedure. At the end of this process,

we are left with a set of two equations:

y11 y12
y21 y22

� �
V1

V2

� �
¼ I1

I2

� �
¼ IS � YSV1

�YLV2

� �
(2:20)

Note that the two entries in the right-hand side vector, I1 and I2, have not been updated during
the elimination process, thus coefficients yij in Equation 2.20 are the short-circuit admittance parameters
of the original two-port, described by Equation 2.16. Various gain and immittance relations (network
functions) can be expressed in terms of the two-port parameters and the termination admittances [Gha65].
For example, the voltage transmittance, V2=V1, and the current transmittance,�I2=I1, can be calculated as

Tv ¼ V2

V1
¼ � y21

y22 þ YL
, Ti ¼ �I2I1

¼ �y21YL

y11(y22 þ YL)� y12y21

A simple example serves to illustrate and easily verify the formulation of the RMNAM and advantages of
a proper pivoting strategy.

Example 2.4

Consider the circuit in Figure 2.6.
Using element stamps, the modified nodal equation of the circuit in Figure 2.4 can be written as

G1 0 �G1 0
0 G4 þ sC3 �sC3 0
�G1 �sC3 G1 þ sC3 1
�m 0 1 0

2
664

3
775

V1
V2
v3
i4

2
664

3
775 ¼

I1
I2
0
0

2
664

3
775 (2:21)

* Minimization of the number of arithmetic operations is equivalent with minimization of the number of matrix updates via
Equation 2.19. If the numbers of nonzero elements in the pivot row and column are nq and np, respectively, then the
number of updates required to suppress xp using equation q is equal to (nq� 1)(np� 1).

1
2

3R1

R4

C3
I2I1

V1 V2

+ +
+

– –i4

μV1

FIGURE 2.6 Circuit of Example 2.4.

Symbolic Analysis Methods 2-11

To reduce the coefficient matrix in Equation 2.21 to the two-port admittance matrix, the variables v3 and
i4 must be eliminated. If we select pivots from the main diagonal only, we have no choice but to first take
the element a33¼G1þ sC3. Since row 3 and column 3 have four nonzero elements each, elimination of
v3 using the third equation requires (4 – 1)(4 – 1)¼ 9 updates. Moreover, six fill-ins will be created,
making the matrix full. Four more updates are required to suppress the current variable, i4, increasing the
total number of updates to 13. On the other hand, if we are not restricted to diagonal pivots, the best
choice for the first one is the element a34¼ 1. Inspection of Equation 2.21 reveals that elimination of the
fourth variable (i4) using equation 3 requires no updates at all (np – 1¼ 0). With no computational effort,
we obtain

G1 0 �G1

0 G4 þ sC3 �sC3
�m 0 1

2
4

3
5

V1
V2
v3

2
4

3
5 ¼

I1
I2
0

2
4

3
5 (2:22)

Now, using the element a33¼ 1 of Equation 2.22 as a pivot, only two updates are required to suppress
variable v3. The final equation becomes

G1 � mG1 0
�msC3 G4 þ sC3

� �
V1
V2

� �
¼ I1

I2

� �

By unrestricted pivot selection, we have achieved the desired result with only 2 updates, compared to 13
updates if the pivot was chosen from the main diagonal only.

2.4 Ideal Operational Amplifiers

Neither the classical nodal analysis, nor the MNA in its original form [Ho75], accounts for ideal op-amps
in their equation formulation. The way op-amps have usually been handled in those analyses is by
modeling each op-amp by a VCVS with a large gain in an attempt to characterize the infinite gain of the
ideal op-amp.
The ideal op-amp is a two-port device for which one of the output terminals is usually assumed to be

grounded.* Op-amps are used extensively in the building of a large number of analog circuits, especially
analog filters, where symbolic circuit simulators have found extensive applications in obtaining transfer
functions for the filters. It is therefore necessary for a modern symbolic analysis program to handle ideal
op-amps. Both SCAPP and STAINS include ideal op-amps in their lists of available circuit components.
There are two ways by which the ideal op-amps can be handled in an automatic formulation of circuit

equation. The first method is simply an extension of the MNA, which accounts for op-amps by adding the
constraining equations to the MNA set, introducing an element stamp for the op-amp [Vla94]. The other
approach reduces the size of the MNA set by removing variables that are known to be identical (node
voltages at both op-amp inputs) and by removing unnecessary equations (KCL equation at the op-amp
output) [Has89,Lin91]. The latter method is known as compacting of the MNAM due to op-amps; the
resulting matrix is termed compacted MNA matrix (CMNAM). Both approaches are presented below.

2.4.1 Nullator, Norator, and Nullor

Before the characterization of the ideal op-amp is attempted, the concepts of the nullator, the norator,
and the nullor are explored [Bru80]. They are not real elements. These ideal components are tools to
introduce some mathematical constraints into a circuit. They are used as an aid to the development of
insight into the behavior of ideal devices like the ideal op-amp.
The symbol for the nullator is shown in Figure 2.7. A nullator is defined as follows:

* If neither of the output terminals of the op-amp are grounded, such op-amp is said to be floating [Vla94].

2-12 Computer Aided Design and Design Automation

Definition 2.1: A nullator is a two-terminal element defined by the
constraints

v1 � v2 � 0

i � 0
(2:23)

The symbol for the norator is presented in Figure 2.8. A norator is defined
as follows:

Definition 2.2: A norator is a two-terminal element for which the voltage
and current are not constrained. That is,

v1 � v2 ¼ arbirtary

i ¼ arbirtary
(2:24)

A norator in a circuit introduces freedom from some constraints on the nodes
it is connected to.

A circuit must contain an equal number of nullators and norators; in other
words, a nullator and a norator must appear in a circuit as a pair. The
combination of a nullator and a norator to produce a two-port, as shown in
Figure 2.9, is referred to as a nullor. The equations characterizing the nullor are
represented then by Equations 2.23 and 2.24.
In the MNA formulation, each nullator introduces additional equation:

vi� vj¼ 0 into the set. The required extra variable is the corresponding
norator’s current. Nullor’s contribution to the MNAM can be represented
as its unique element stamp in similar way as it was done for VCVS, CCVS,
etc. This is best illustrated in an example.

V 0

1

2

i 0

FIGURE 2.7 Nullator.

Arbitrary i

Arbitrary V

1

2 –i

FIGURE 2.8 Norator.

i

j

k

l

FIGURE 2.9 Nullor.

Symbolic Analysis Methods 2-13

Example 2.5

Write the MNA equation for the circuit containing a nullor, as shown in Figure 2.10.
To formulate the MNAM, needed in the equation, we start with a 63 6 matrix and use element

stamps to include the capacitor and the conductances in the usual manner. The nullator equation, v2 –
v5¼ 0, creates two entries in row 6. The norator current, our extra variable i6, must be included in the KCL
equations for the nodes 3 and 4, creating two entries in column 6. This results in the equation

G1 þ sC1 �G1 0 0 �sC1 0
�G1 G1 þ G2 �G2 0 0 0
0 �G2 G2 0 0 1
0 0 0 G3 �G3 �1
�sC1 0 0 �G3 G3 þ G4 þ sC1 0

0 1 0 0 �1 0

2
6666664

3
7777775

v1
v2
v3
v4
v5
i6

2
6666664

3
7777775
¼

IS
0
0
0
0
0

2
6666664

3
7777775

(2:25)

The sixth row and the sixth column of the MNAM in Equation 2.25 represent the element stamp of the
nullor.

2.4.2 Ideal Op-Amp Model

The two characteristics of an ideal op-amp are

1. Zero voltage differential and no current flowing between its input nodes (the virtual short-circuit)
2. Arbitrary current that the output node supplies (to satisfy the KCL at this node)

Both properties are perfectly modeled using a nullor (Figure 2.9), with terminal l grounded. Adding a
nullor stamp to our repertoire of element stamps creates a natural extension of the MNA method.
There is, however, another way of looking

at ideal op-amp’s (nullor’s) contribution to the
set of nodal equations, describing a circuit. Con-
sider first the input of an ideal op-amp. Due to
property 1, potentials at both input nodes must be
identical. So, one of the two variables (node poten-
tials) can be eliminated without any loss of infor-
mation about the circuit. With one less variable,
we must also remove one equation, for the system
to have a unique solution. Since the ideal op-amp
will always supply the exact current required to
satisfy the KCL at the output node, the KCL equa-
tion at this node is unnecessary and can be simply
deleted from the set. This process results in a
MNAM that is more compact than the matrix
obtained with the use of ideal op-amp stamp.
Thus, the resulting matrix is called the CMNAM.
The rules for formulating CMNAM for a circuit

containing ideal op-amps are as follows:

1. Remove the ideal op-amps from the circuit.
2. Write the MNAM Ym for this circuit; label

all columns and rows of Ym with numbers
corresponding to variables.

R1

R2

R3

R4

1

2 3

45

IS

C1

FIGURE 2.10 Circuit with nullor.

2-14 Computer Aided Design and Design Automation

3. Repeat for every ideal op-amp in the circuit:
a. For an ideal op-amp with the input terminals connected to nodes i (�) and j (þ), add the column

containing label j to the column containing label i and delete the former column; append all labels
of the former column to the labels of the latter column. If one of the input nodes is the reference
node, simply delete the column and the variable corresponding to the other node.

b. For an ideal op-amp with the output terminal connected to node k, delete row with label k from
the matrix.

Example 2.6

We wish to obtain the CMNAM of the gyrator circuit with two ideal op-amps, as shown in Figure 2.11.
Following the compacting rules, we first formulate the NAM of the circuit with op-amps removed and
label the rows and columns as shown below:

1 2 3 4 5

Ym ¼

1

2

3

4

5

G4 0 0 0 �G4

0 G1 þ G2 �G2 0 0

0 �G2 G2 þ G3 �G3 0

0 0 �G3 G3 þ sC1 �sC1
�G4 0 0 �sC1 G4 þ sC1

2
6666664

3
7777775

Next, according to Rule 3a, for the first op-amp, we add the column containing label 1 to the column
containing label 2, delete the former column, and append its labels to the labels of the latter column.
Output of O1 is connected to node 3. Rule 3b requires that we delete row with label 3. This results in the
following matrix:

2,1 3 4 5

Ym ¼

1

2

4

5

G4 0 0 �G4

G1 þ G2 �G2 0 0

0 �G3 G3 þ sC1 �sC1
�G4 0 �sC1 G4 þ sC1

2
6664

3
7775

O1

R2R1

O2

C1

R4

R3

1

2

3
5

4
+

–

–

+

FIGURE 2.11 Gyrator circuit with two ideal op-amps for Example 2.6.

Symbolic Analysis Methods 2-15

Applying Rule 3 to the op-amp O2, we add column containing label 1 to the column containing label 4,
delete the former column, and append its labels (2,1) to the labels of column 4. According to Rule 3b, we
delete row with label 5. The resulting matrix is shown below:

3 4,2,1 5

YCM ¼
1

2

4

0 G4 �G4

�G2 G1 þ G2 0

�G3 G3 þ sC1 �sC1

2
64

3
75

It is customary to rearrange the columns of the CMNAM in ascending order of their smallest labels. After
exchanging columns 1 and 2, the final matrix becomes

4,2,1 3 5

YCM ¼
1

2

4

G4 0 �G4

G1 þ G2 �G2 0

G3 þ sC1 �G3 �sC1

2
64

3
75

2.5 Applications of Symbolic Analysis

There are many specific applications for which symbolic analysis algorithms have been developed over
the years. The following is an attempt to categorize the uses of symbolic analysis methods. For a
given application, some overlap of these categories might exist. The goal here is to give a general idea
of the applications of symbolic analysis methods. It must be noted that most of these applications cover
both s-domain and z-domain analyses.
It is now widely accepted that in all applications where symbolic formula is generated in order to

provide means for subsequent repetitive exact numerical calculation, use of sequential formulas is most
effective. For the purpose of interpretation, that is, gaining deeper understanding of circuit behavior, only
a single formula can be used. Approximate symbolic analysis emerges here as a very promising approach.

2.5.1 Frequency Response Evaluation

This is an obvious application of having the symbolic transfer function stated in terms of the circuit
variable parameters. The process of finding the frequency response curve over a frequency range for a
given circuit involves the repetitive evaluation of Equation 2.1 with all the parameters numerically
specified and sweeping the frequency over the desired range. A numerical simulator would require a
simulation run for each frequency point.

2.5.2 Circuit Response Optimization

This process involves the repetitive evaluation of the symbolic function generated by a symbolic
simulator [Lin91,Gie94]. The response of the circuit is repetitively evaluated by substituting different
values for the circuit parameters in the equation until a desired numerical response is achieved. The
concept, of course, requires a good deal of management in order to reduce the search space and the
number of evaluations needed. Such a method for filter design by optimization is discussed in [Tem77]
and [Bas72], and a method for solving piecewise resistive linear circuits is discussed in [Chu75]. The
idea here is that for a given circuit topology, only one run through the symbolic circuit simulator is
necessary.

2-16 Computer Aided Design and Design Automation

2.5.3 Sensitivity Analysis

Sensitivity analysis is the process of finding the effect of the circuit performance due to changes in
an element value [Lin92,Bal98,Bal01]. There are two types of sensitivities of interest to circuit designers:
small-change (or differential) sensitivity and large-change sensitivity. The normalized differential
sensitivity of a transfer function H with respect to a parameter x is given as

SHx ¼
@(lnH)
@(ln x)

¼ @H
@x

x
H

The above expression can be found symbolically and then evaluated for the different circuit parameter
values. For the transfer function H in a single expression form, the differentiation process is quite
straightforward. When H is given in a sequence of expressions form, the most compact formula is
obtained by the application of the two-port transimpedance concept and an efficient method of symbolic
calculations of the elements of the inverse of the reduced modified node admittance matrix [Bal98].
Similar approach is used to obtain the large-change sensitivity [Bal01], defined as

dHx ¼
DH
H

x
Dx

Once the sequence of expressions for the network function has been generated, only a few additional
expressions are needed to determine the sensitivity (both differential and large-change). Additional effort
to calculate sensitivities is practically independent of circuit size, making this approach attractive for
large-scale circuits.

2.5.4 Circuit Sizing

Circuit sizing refers to the process of computing values for the elements of a given circuit topology such
that some set of behavioral circuit specifications is satisfied [Hen00]. This process can be supported by
symbolic techniques in two ways. Computer algebra can help to solve a system of design equations
symbolically for the circuit parameters in order to obtain a set of generic analytic sizing formulas, or to
set up and preprocess a system of design equations for subsequent numerical solution.

2.5.5 Parameter Extraction in Device Modeling

This process involves the repeated comparison of measured data from fabricated devices with the
simulation results using the mathematical models for these devices [Kon93,Avi98]. The goal of
the process is to update the device models to reflect the measured data. The model parameters are
incrementally adjusted and the evaluation process is repeated until the difference between the measured
and the simulated results are minimized. Such approaches are reported in [Kon89] and [Kon93] (active
devices) and [Avi98] (passive devices).

2.5.6 Statistical Analysis

Awidely used statistical analysis method is throughMonte Carlo simulations [Sty95]. The circuit behavior
has to be repetitively evaluated many times in order to evaluate the statistical variation of a circuit output
in response to parameter mismatches due to, for instance, integrated circuits process variations.

2.5.7 Fault Diagnosis of Analog Circuits

The process reported in [Man93] takes measurements from the faulty fabricated circuit and compares it
to simulation results. The process is continuously repeated with the parameter values in the simulations

Symbolic Analysis Methods 2-17

changed until the faulty element is detected. Symbolic techniques have also been applied to multiple fault
detection [Fed98].

2.5.8 Insight into Circuit Operation

The insight that can be provided by obtaining the symbolic transfer function versus its numerical
counterpart is very evident. The simple example in Section 2.5 illustrates this powerful application.
The effect of the different elements on the behavior of the circuit can be observed by inspecting the
symbolic expression. This, of course, is possible if the number of symbolic parameters is small, that is,
the circuit is small. Insight, however, can also be obtained by observing an approximate symbolic
expression that reduces the number of symbolic terms to a manageable figure. Several approximation
techniques are reported in [Wam92], [Fer92], [Sed92], [Hsu94], [Yu96], and [Hen00].

2.5.9 Education

Symbolic analysis is most helpful for students as a supplement to linear circuit analysis courses. These
courses require the derivation of expressions for circuit impedances, gains, and transfer functions. A
symbolic simulator can serve as a check for the correctness of the results in addition to aiding instructors
in verifying solutions and making up exercises and examples [Hue89].
Symbolic methods in conjunction with mathematical software are used in teaching analog electronics

in addition to numerical simulators. This adds another dimension to standard analysis and design
process, gives students greater flexibility, and encourages creativeness [Bal00].

2.6 Symbolic Analysis Software Packages

Several stand-alone symbolic simulators available for public use exist nowadays. A comparison of these
software packages based on their functionality is given in Table 2.1. The list is by no means exhaustive;
it should be treated just as a representative sample. The software packages that were compared are

TABLE 2.1 Comparison between Some Symbolic Simulation Programs

ISSAC ASAP SYNAP SAPWIN SSPICE SCYMBAL SCAPP STAINS

Analysis domains s and z s dc and s s s z s s

Primitive elements All All All All All — All All

Small-signal linearization Yes Yes Yes No Yes No Yes No

Mismatching Yes Yes Yes No No No No No

Approximation Yes Yes Yes Yes Yes No No No

Weakly nonlinear analysis Yes No No No No No No No

Hierarchical analysis No No No No Limited No Yes Yes

Pole=zero extraction No Limited No Yes Limited No No No

Graphical interface No Yes No Yes No No Yes No

Equation formulation CMNA SFG MNA MNA Y SFG RMNA
SFG

RMNA

Language LISP C Cþþ Cþþ C FORTRAN C VBA

Source: Adapted from Gielen, G. and Sansen, W., Symbolic Analysis for Automated Design of Analog Integrated Circuits,
Kluwer Academic, Boston, MA, 1991.
Note: SFG, signal flowgraph; Y, admittance matrix; VBA, Visual Basic for ApplicationsE.

2-18 Computer Aided Design and Design Automation

ISSAC [Gie89], SCAPP [Has89], ASAP [Fer91], SYNAP [Sed88], SCYMBAL [Kon88], STAINS [Pie01],
SAPWIN [Lib95], and SSPICE [Wie89].
Add-on packages (toolboxes) that run in symbolic mathematics software environments, like Mathe-

matica, belong to another class of symbolic analysis programs. Analog Insydes [Hen00] is a good example
of such an add-on. The toolbox includes approximation algorithms, netlist management, linear and
nonlinear device and behavioral modeling, setting up and solving circuit equations, numerical circuit
analysis in the frequency and time domains, two- and three-dimensional graphing of analysis results, and
data exchange with other circuit simulators. Some routines in the toolbox were written in C to overcome
Mathematica’s limitations in efficiently handling large sparse systems.

References

[Ald73] G.E. Alderson and P.M. Lin, Computer generation of symbolic network functions: A new theory
and implementation, IEEE Transactions on Circuit Theory, 20(1): 48–56, January 1973.

[Als93] B. Alspaugh and M.M. Hassoun, A mixed symbolic and numeric method for closed-form
transient analysis, Proceedings of the 5th International Workshop on European Conference on
Circuit Theory and Design, Davos, Switzerland, pp. 1687–1692, September 1993.

[Avi98] G. Avitabile et al., Parameter extraction in electronic device modelling using symbolic tech-
niques, Proceedings of the 5th International Workshop on Symbolic Methods and Applications in
Circuit Design, Kaiserslautern, Germany, pp. 253–259, October 1998.

[Bal98] F. Balik and B. Rodanski, Calculation of first-order symbolic sensitivities in sequential form via
the transimpedance method, Proceedings of the 5th International Workshop on Symbolic Methods
and Applications in Circuit Design, Kaiserslautern, Germany, pp. 169–172, October 1998.

[Bal00] F. Balik and B. Rodanski, Symbolic analysis in the classroom, Proceedings of the 6th International
Workshop on Symbolic Methods and Applications in Circuit Design, Lisbon, Portugal, pp. 17–20,
October 2000.

[Bal01] F. Balik and B. Rodanski, Obtaining large-change symbolic sensitivities for large-scale circuits,
Proceedings of the European Conference on Circuit Theory and Design, Espoo, Finland, pp. 205–208,
August 2001.

[Bas72] S. Bass, The application of a fast symbolic analysis routine in a network optimization program,
Proceedings of the Midwest Symposium on Circuit Theory, Rolla, MO, May 1972.

[Bra71] F.H. Branin et al., ECAP II: A new electronic circuit analysis program, IEEE Journal of Solid-State
Circuits, 6(4): 146–165, August 1971.

[Bru80] L.T. Bruton, RC Active Circuits: Theory and Design. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[Cab98] R. Cabeza and A. Carlosena, The use of symbolic analysers in circuit synthesis, Proceedings of the

5th International Workshop on Symbolic Methods and Applications in Circuit Design, Kaiserslau-
tern, Germany, pp. 146–149, October 1998.

[Chu75] L.O. Chua and P.M. Lin, Computer-Aided Analysis of Electronic Circuits: Algorithms and
Computational Techniques. Englewood Cliffs, NJ: Prentice-Hall, 1975.

[Fed98] G. Fedi et al., On the application of symbolic techniques to the multiple fault location in low
testability analog circuits, IEEE Transactions on Circuits and Systems—II: Analog and Digital Signal
Processing, 45(10): 1383–1388, October 1998.

[Fer91] F.V. Fernandez, A. Rodriguez-Vazquez, and J.L. Huertas, An advanced symbolic analyzer for the
automatic generation of analog circuit design equations, Proceedings of the IEEE International
Symposium on Circuits and Systems, Singapore, pp. 810–813, June 1991.

[Fer92] F.V. Fernandez et al., On simplification techniques for symbolic analysis of analog integrated
circuits, Proceedings of the IEEE International Symposium on Circuits and Systems, San Diego, CA,
pp. 1149–1152, May 1992.

[Gha65] M.S. Ghausi, Principles and Design of Linear Active Circuits. New York: McGraw-Hill, 1965.

Symbolic Analysis Methods 2-19

[Gie89] G. Gielen, H. Walscharts, and W. Sansen, ISSAC: A symbolic simulator for analog integrated
circuits, IEEE Journal of Solid-State Circuits, 24(6): 1587–1597, December 1989.

[Gie91] G. Gielen and W. Sansen, Symbolic Analysis for Automated Design of Analog Integrated Circuits,
Boston, MA: Kluwer Academic, 1991.

[Gie94] G. Gielen, P. Wambacq, and W. Sansen, Symbolic analysis methods and applications for analog
circuits: A tutorial overview, Proceeding of the IEEE, 82(2): 287–301, February 1994.

[Gus70] F.G. Gustavson, W. Liniger, and R. Willoughby, Symbolic generation of an optimal Crout
algorithm for sparse systems of linear equations, Journal of ACM, 17(1): 87–109, 1970.

[Hac71] G.D. Hachtel et al., The sparse tableau approach to network analysis and design, IEEE
Transactions on Circuit Theory, 18(1): 101–113, January 1971.

[Has89] M.M. Hassoun and P.M. Lin, A new network approach to symbolic simulation of large-scale
networks, Proceedings of the IEEE International Symposium on Circuits and Systems, Portland, OR,
pp. 806–809, May 1989.

[Has91] M.M. Hassoun and J.E. Ackerman, Symbolic simulation of large-scale circuits in both frequency
and time domains, Proceedings of the IEEE Midwest Symposium on Circuits and Systems, Calgary,
Canada, pp. 707–710, August 1990.

[Has93a] M.M. Hassoun and K. McCarville, Symbolic analysis of large-scale networks using a hierarch-
ical signal flowgraph approach, International Journal on Analog Integrated Circuits and Signal
Processing, Kluwer Academic, 3(1): 31–42, January 1993.

[Has93b] M.M. Hassoun and P. Atawale, Hierarchical symbolic circuit analysis of large-scale networks
on multi-processor systems, Proceedings of the IEEE International Symposium on Circuits and
Systems, Chicago, IL, pp. 1651–1654, May 1993.

[Hen00] E. Henning, Symbolic approximation and modeling techniques for analysis and design of analog
circuits, PhD dissertation, University of Kaiserslautern. Aachen, Germany: Shaker Verlag, 2000.

[Ho75] C. Ho, A.E. Ruehli, and P.A. Brennan, The modified nodal approach to network analysis, IEEE
Transactions on Circuits and Systems, 25(6): 504–509, June 1975.

[Hsu94] J.J. Hsu and C. Sechen, DC small-signal symbolic analysis of large analog integrated circuits,
IEEE Transactions on Circuits and Systems—I: Fundamental Theory and Applications, 41(12): 817–
828, December 1994.

[Hue89] L.P. Huelsman, Personal computer symbolic analysis programs for undergraduate engineering
courses, Proceedings of the IEEE International Symposium on Circuits and Systems, Portland, OR,
pp. 798–801, May 1989.

[Idl71] T.E. Idleman et al., SLIC: A simulator for linear integrated circuits, IEEE Journal of Solid-State
Circuits, 6(4): 188–204, August 1971.

[Kon88] A. Konczykowska and M. Bon, Automated design software for switched-capacitor ICs with
symbolic simulator SCYMBAL, Proceedings of the Design Automation Conference, Anaheim, CA,
pp. 363–368, June 1988.

[Kon89] A. Konczykowska and M. Bon, Symbolic simulation for efficient repetitive analysis and artificial
intelligence techniques in CAD, Proceedings of the IEEE International Symposium on Circuits and
Systems, Portland, OR, pp. 802–805, May 1989.

[Kon93] A. Konczykowska et al., Parameter extraction of semiconductor devices electrical models using
symbolic approach, Alta Frequenza Rivista Di Elettronica, 5(6): 3–5, November 1993.

[Ley00] F. Leyn, G. Gielen, and W. Sansen, Towards full insight in small-signal behavior of analog
circuits: Assessment of different symbolic analysis approaches, Proceedings of the 7th International
Workshop on Symbolic Methods and Applications in Circuit Design, Lisbon, Portugal, pp. 89–93,
October 2000.

[Lib93] A. Liberatore et al., Simulation of switching power converters using symbolic techniques, Alta
Frequenza Rivista Di Elettronica, 5(6): 16–23, November 1993.

2-20 Computer Aided Design and Design Automation

[Lib95] A. Liberatore et al., A new symbolic program package for the interactive design of analog
circuits, Proceedings of the IEEE International Symposium on Circuits and Systems, Seattle, WA,
pp. 2209–2212, May 1995.

[Lin91] P.M. Lin, Symbolic Network Analysis. Amsterdam, the Netherlands: Elsevier Science, 1991.
[Lin92] P.M. Lin, Sensitivity analysis of large linear networks using symbolic programs, Proceedings of the

IEEE International Symposium on Circuits and Systems, San Diego, CA, pp. 1145–1148, May 1992.
[Man93] S. Manetti and M. Piccirilli, Symbolic simulators for the fault diagnosis of nonlinear

analog circuits, International Journal on Analog Integrated Circuits and Signal Processing, Kluwer
Academic, 3(1): 59–72, January 1993.

[Mar57] H.M. Markowitz, The elimination form of the inverse and its application to linear program-
ming, Management Science, 3(3): 255–269, April 1957.

[Mat93] T. Matsumoto, T. Sakabe, and K. Tsuji, On parallel symbolic analysis of large networks and
systems, Proceedings of the IEEE International Symposium on Circuits and Systems, Chicago, IL,
pp. 1647–1650, May 1993.

[Nag75] L.W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits, Memo ERL-
M520, Electronics Research Laboratory, University of California, Berkeley, CA, May 1975.

[Nob77] B. Noble and J. Daniel, Applied Linear Algebra, 2nd edn. Englewood Cliffs, NJ: Prentice-Hall, 1977.
[Pie01] M. Pierzchala and B. Rodanski, Generation of sequential symbolic network functions for large-

scale networks by circuit reduction to a two-port, IEEE Transactions on Circuits and Systems—I:
Fundamental Theory and Applications, 48(7): 906–909, July 2001.

[Rod08] B. Rodanski and M. Hassoun, Symbolic analysis, Fundamentals of Circuits and Filters, W.-K.
Chen, Ed. CRC Press: Boca Raton, 2008.

[Sed88] S. Seda, M. Degrauwe, and W. Fichtner, A symbolic analysis tool for analog circuit
design automation, 1988 International Conference on Computer-Aided Design, Santa Clara, CA,
pp. 488–491, 1988.

[Sed92] S. Seda, M. Degrauwe, and W. Fichtner, Lazy-expansion symbolic expression approximation in
SYNAP, 1992 International Conference on Computer-Aided Design, Santa Clara, CA, pp. 310–317,
1992.

[Som91] R. Sommer, EASY: An experimental analog design system framework, Proceedings of the
International Workshop on Symbolic Methods and Applications in Circuit Design, Paris, France,
October 1991.

[Som93] R. Sommer, D. Ammermann, and E. Hennig, More efficient algorithms for symbolic network
analysis: Supernodes and reduced loop analysis, International Journal on Analog Integrated Circuits
and Signal Processing, Kluwer Academic, 3(1), 73–83, January 1993.

[Sta86] J.A. Starzyk and A. Konczykowska, Flowgraph analysis of large electronic networks, IEEE
Transactions on Circuits and Systems, 33(3): 302–315, March 1986.

[Sty95] M.A. Styblinski and M. Qu, Comparison of symbolic analysis, approximation and macro-
modeling techniques for statistical design for quality of analog integrated circuits, Proceedings of
the IEEE International Symposium on Circuits and Systems, Seattle, WA, pp. 2221–2224, May 1995.

[Tem77] G. Temes, Introduction to Circuit Synthesis and Design, New York: McGraw Hill, 1977.
[Vla94] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, 2nd Ed. New York:

Van Nostrand Reinhold, 1994.
[Wan77] P. Wang, On the expansion of sparse symbolic determinants, Proceedings of the International

Conference on System Sciences, Honolulu, HI, 1977.
[Wee73] W.T. Weeks et al., Algorithms for ASTAP: A network analysis program, IEEE Transactions on

Circuit Theory, 20(11): 628–634, November 1973.
[Weh93] E. Wehrhahn, Symbolic analysis on parallel computers, Proceedings of the European Conference

on Circuit Theory and Design, Davos, Switzerland, pp. 1693–1698, September 1993.
[Wie89] G. Wiezba et al., SSPICE: A symbolic SPICE program for linear active circuits, Proceedings of the

Midwest Symposium on Circuits and Systems, Urbana, IL, pp. 1197–1201, August 1989.

Symbolic Analysis Methods 2-21

[Wam92] P. Wambacq, G. Gielen, and W. Sansen, A cancellation free algorithm for the symbolic
simulation of large analog circuits, Proceedings of the IEEE International Symposium on Circuits
and Systems, San Diego, CA, pp. 1157–1160, May 1992.

[Yu96] Q. Yu and C. Sechen, A unified approach to the approximate symbolic analysis of large analog
integrated circuits, IEEE Transactions on Circuits and Systems—I: Fundamental Theory and
Applications, 43(8): 656–669, August 1996.

2-22 Computer Aided Design and Design Automation

3
Numerical Analysis

Methods

Andrew T. Yang
Apache Design Solutions, Inc.

3.1 Equation Formulation... 3-1
Implications of KCL, KVL, and the Element Branch
Characteristics . Sparse Tableau Formulation . Nodal
Analysis . Modified Nodal Analysis . Nodal Formulation
by Stamps . Modified Nodal Formulation by Stamps

3.2 Solution of Linear Algebraic Equations.............................. 3-11
Factorization . Forward Substitution . Backward Substitution .

Pivoting . Computation Cost of LU Factorization

References .. 3-16

3.1 Equation Formulation

The method by which circuit equations are formulated is essential to a computer-aided circuit analysis
program. It affects significantly the setup time, the programming effort, the storage requirement, and the
performance of the program.
A linear time-invariant circuit with n nodes and b branches is completely specified by its network

topology and branch constraints. The fundamental equations that describe the equilibrium conditions of
a circuit are the Kirchhoff ’s current law (KCL) equations, the Kirchhoff ’s voltage law (KVL) equations,
and the equations which characterize the individual circuit elements. Two methods are popular: the
sparse tableau approach and the modified nodal approach.

3.1.1 Implications of KCL, KVL, and the Element Branch Characteristics

Given an example with n¼ 4 and b¼ 6 (as shown in Figure 3.1) we can sum the branch currents leaving
each node to zero and obtain

�1 1 1 0 0 0
0 0 �1 1 �1 0
0 0 0 0 1 1
1 �1 0 �1 0 �1

2
664

3
775

ib1
ib2
ib3
ib4
ib5
ib6

2
6666664

3
7777775
¼

0
0
0
0
0
0

2
6666664

3
7777775

3-1

or

Aa � ib ¼ 0

where
Aa is an n3 b incidence matrix contains þ1, �1, and 0 entries
ib is the branch current

Note that Aa is linearly dependent since the entries in each column add up to zero. A unique set of
equations can be obtained by defining a datum node and eliminating its corresponding row of Aa. Hence,
KCL results in n� 1 equations and b unknowns. It implies

A� ib ¼ 0 (3:1)

where A is called the reduced incidence matrix.
KVL results in b equations with bþ n� 1 unknowns. It implies

vb ¼ AT � Vn (3:2)

where
AT is the transpose of the reduced incidence matrix
vb is the branch voltage
Vn is the node-to-datum (nodal) voltage

Define the convention as follows (Figure 3.2):

vb1

ib1

Datum

V3 V4

+ –

FIGURE 3.2 Reference convention for voltages and current.

ib3

ib2
ib4

ib5

ib1
ib6

321

FIGURE 3.1 Network used to illustrate KCL, KVL, and the element branch characteristics.

3-2 Computer Aided Design and Design Automation

One can sum the voltages around the loop using KVL (Figure 3.3):

vb1

V3 V4

+ –

+

–

+

–

FIGURE 3.3 Voltage around the loop using KVL.

or

vb1 ¼ V3 � V4

Apply KVL to the example above and we obtain

vb1
vb2
vb3
vb4
vb5
vb6

2
6666664

3
7777775
¼

�1 0 0
1 0 0
1 �1 0
0 1 0
0 �1 1
0 0 1

2
6666664

3
7777775

V1

V2

V3

2
4

3
5

or

vb ¼ AT � Vn

where vb and Vn are unknowns.
The element characteristic results in generalized constraints equations in the form of

Yb � vb þ Zb � ib ¼ Sb (3:3)

For example,
Resistor:

1
R
vb � ib ¼ 0

Voltage source:

vb ¼ E

Numerical Analysis Methods 3-3

VCCS (Figure 3.4):

1=R 0
g 0

� �
vb1
vb2

� �
þ �1 0

0 1

� �
ib1
ib2

� �
¼ 0

0

� �

3.1.2 Sparse Tableau Formulation

The sparse tableau method simply combines Equations 3.1 through 3.3. The equation and unknown
count can be summarized as follows:

Number of Equations Number of Unknowns

(3.1) n� 1 b

(3.2) b bþ n� 1

(3.3) b 0

Total 2bþ n� 1 2bþ n� 1

The sparse tableau in the matrix form is shown next:

0 A 0
AT 0 �1
0 Zb Yb

2
4

3
5

Vn

ib
vb

2
4

3
5 ¼

0
0
Sb

2
4

3
5 (3:4)

Equation 3.4 is a system of linear equations.
Note that the matrix formulated by the sparse tableau approach is typically sparse with many zero

value entries. The main advantage is its generality (i.e., all circuit unknowns including branch current=
voltage and node-to-datum voltage can be obtained in one pass). Since the number of equations is usually
very large, an efficient sparse linear system solver is essential.

3.1.3 Nodal Analysis

The number of equations in Equation 3.4 can be reduced significantly by manipulating Equations 3.1
through 3.3. Motivated by the fact that the number of branches in a circuit is generally larger than the
number of nodes, nodal analysis attempts to reduce the number of unknowns to Vn. As we will see, this is
achieved by a loss of generality (i.e., not all types of linear elements can be processed).

ib1
ib2

gvb1

vb1
vb2

R

+ +

– –

FIGURE 3.4 Voltage-controlled current source (VCCS).

3-4 Computer Aided Design and Design Automation

We can eliminate the branch voltages vb by substituting Equation 3.2 into Equation 3.3. This yields

YbA
TVn þ Zbib ¼ Sb (3:5)

A� ib ¼ 0 (3:6)

Combining Equations 3.5 and 3.6 to eliminate the branch currents, ib, we obtain a set of equations with
Vn as unknowns:

A � Z�1
b � �YbA

TVn þ Sb
� � ¼ 0 (3:7)

Since the Zb matrix may be singular, not all elements can be processed. For example, a voltage-controlled
voltage source, as shown in Figure 3.5, can be cast in the form of Equation 3.3:

0 0
u �1

� �
vb1
vb2

� �
þ 1 0

0 0

� �
ib1
ib2

� �
¼ 0

0

� �

Note that Zb is singular and it cannot be inverted. Consider a special case where Equation 3.3 can be
expressed as

Ybvb � ib ¼ 0 (3:8)

or �Zb is a unit matrix and Sb¼ 0. This condition is true if the circuit consists of

. Resistor

. Capacitor

. Inductor

. Voltage-controlled current source

For example, Figure 3.6 is a VCCS.

ib2

vb1
vb2uV1

+ +

– –

+

–

ib1 k

l

i

j

FIGURE 3.5 Voltage-controlled voltage source (VCVS).

ib1
ib2

vb1
vb2

gV1

+

–

+

–

Z

FIGURE 3.6 VCCS.

Numerical Analysis Methods 3-5

The branch constraints can be cast as

1=z 0
g 0

� �
vb1
vb2

� �
þ �1 0

0 �1

� �
ib1
ib2

� �
¼ 0

0

� �

and z¼ 1=jvC for the capacitor, z¼ jvL for an inductor, and z¼R for a resistor. For this type of circuit,
the nodal analysis results in n� 1 equations with Vn as unknowns, or

AYbA
T � Vn ¼ 0

A circuit of this type contains no excitation (voltage=current source). The current sources can be
included in the formulation by letting the corresponding edges of the current sources be numbered last.
Hence, we can partition the reduced incidence matrix A into

A ¼ AbjAJ½ � (3:9)

where AJ corresponds to the subincidence matrix of the current source branches. Then, Equations 3.1,
3.2, and 3.8 can be expressed as

Abib þ AJJ ¼ 0 (3:10)

vb ¼ AT
bVn (3:11)

ib ¼ Ybvb (3:12)

Rearranging these equations yields

AbYbA
T
b � Vn ¼ �AJJ (3:13)

where J is a vector containing the current source values. Voltage sources can also be included in the
formulation by simple source transformation which requires moderate preprocessing. The nodal analysis
approach, therefore, can be applied to formulate equations for circuits consisting of

. Resistor

. Capacitor

. Inductor

. Voltage source (with preprocessing)

. Current source

. Voltage-controlled current source

Nodal analysis, however, when applied to an inductor, can cause numerical problems when the frequency
is low:

1
jvL

� �
(vb1)þ (�1)(ib1) ¼ 0

or

v ! 0,
1
jvL

! 1

3-6 Computer Aided Design and Design Automation

To sum up, the nodal analysis must be extended to process the following linear elements (without
proprocessing):

. Inductor

. Voltage source

. Current-controlled current source

. Current-controlled voltage source

. Voltage-controlled voltage source

3.1.4 Modified Nodal Analysis

A set of self-consistent modifications to the nodal analysis are proposed and the resultant formulation is
called the modified nodal analysis (MNA). The MNA resolves the limitations of the nodal analysis
method while preserving its advantages. In this section, we present the basic theory of MNA.
Divide all types of elements into three groups:

Group 1: Elements that satisfy

ib ¼ Ybvb

such as resistor, capacitor, and VCCS.
Group 2: Elements that satisfy

Ybvb þ Zbib ¼ Sb

such as voltage source, inductor, VCVS, CCVS, and CCCS.
Group 3: Current source only.
Apply the partitioning technique to Group 1 and Group 2 elements. We can write

[A1jA2]
i1

i2

" #
¼ 0) A1i1 þ A2i2 ¼ 0

v1

v2

" #
¼

AT
1

AT
2

" #
Vn) v1 ¼ AT

1Vn, v2 ¼ AT
2Vn

i1 ¼ Y1v1

Y2 � v2 þ Z2 � i2 ¼ S2

Eliminating v1, i1, and v2 from the preceding equations, we derive a system of linear equations with Vn

and i2 as unknowns:

A1Y1A
T
1Vn þ A2i2 ¼ 0 (3:14)

Y2A
T
2Vn þ Z2i2 ¼ S2 (3:15)

Casting them in matrix form gives

A1Y1AT
1 A2

Y2AT
2 Z2

" #
Vn

i2

� �
¼ 0

S2

� �
(3:16)

Numerical Analysis Methods 3-7

Finally, we apply the partitioning technique to include the current source (Group 3):

A1Y1AT
1 A2

Y2AT
2 Z2

" #
Vn

i2

� �
¼ �AJJ

S2

� �
(3:17)

or

Yn � x ¼ Jn (3:18)

where
Yn is the node admittance matrix
Jn is the source vector
x is the unknown vector

Implementing Equation 3.18 by matrix multiplication is difficult. Stamping methods have been
developed to stamp in the entries of Yn, Jn element by element. It is a very efficient way to implement
Equation 3.18 into a network analysis program.

3.1.5 Nodal Formulation by Stamps

In this section, we developed the stamping rules for Group 1 and Group 3 elements only. Given a circuit
consisting of Group 1 and Group 3 elements only:
We write the nodal equations at nodes 1, 2, and 3 (Figure 3.7):

�I þ jvC(V1 � V3)þ 1 R1(V1 � V3) ¼ 0= (node 1)

g(V1 � V3)þ 1 R2(V2 � V3) ¼ 0= (node 2)

I þ jvC(V3 � V1)þ 1
R(V3 � V1)

� g(V1 � V3)þ 1
R2(V3 � V2)

¼ 0 (node 3)

Cast them in matrix form:

jvC þ 1=R1 0 �jvC � 1=R1

g 1=R2 �1=R2 � g

�jvC � 1=R1 � g �1=R2 jvC þ 1=R1 þ 1=R2 þ g

2
64

3
75

V1

V2

V3

2
64

3
75 ¼

I

0

�I

2
64

3
75

2

R1

21

R2
C

3

g (V1–V3)
I

FIGURE 3.7 Network used to illustrate nodal formulation by stamps.

3-8 Computer Aided Design and Design Automation

Note that for the left-hand side (LHS), we can write

1=R1 0 �1=R1

0 0 0

�1=R1 0 1=R1

2
64

3
75þ

jvC 0 �jvC

0 0 0

�jvC 0 jvC

2
64

3
75þ

0 0 0

g 0 �g

�g 0 g

2
64

3
75þ

0 0 0

0 1=R2 �1=R2

0 �1=R2 1=R2

2
64

3
75

Therefore, the sampling rule for a resistor is

Yn(i, i) ¼ Yn(i,i)þ 1
R

Yn(j, j) ¼ Yn(j, j)þ 1
R

Yn(i, j) ¼ Yn(i, j)� 1
R

Yn(j, i) ¼ Yn(j, i)� 1
R

If node i is grounded, the corresponding row and column can be eliminated from the node admittance
matrix. We then obtained only

Yn(j, j) ¼ Yn(j, j)þ 1
R

Similar stamping rules can be derived for a capacitor and a VCCS. The stamping rule for a current source
J, flowing from i to j is

Jn(i) ¼ Jn(i)� J

Jn(j) ¼ Jn(j)þ J

3.1.6 Modified Nodal Formulation by Stamps

Given a circuit including Group 2 elements only:
Let us first define auxiliary branch current unknowns iv, iL, and ib for each type of element in Group 2.

From nodal analysis, we obtain the following nodal equations (Figure 3.8):

iv þ iL ¼ 0 (node 1)

β (V1–V2)iβ

iL

iv R

L

1 2 3

E +

–

+
–

FIGURE 3.8 Network used to illustrate modified nodal formulation by stamps.

Numerical Analysis Methods 3-9

�iL þ 1
R(V2 � V4)

¼ 0 (node 2)

ib ¼ 0 (node 3)

�iv þ 1
R(V4 � V2)

� ib ¼ 0 (node 4)

For each auxiliary unknown, one auxiliary equation must be provided.

V1 � V4 ¼ E

V1 � V2 ¼ jvLiL
V3 � V4 ¼ b(V1 � V2)

Cast these equations in matrix form:

0 0 0 0 1 1 0

0 1=R 0 �1=R 0 �1 0

0 0 0 0 0 0 1

0 �1=R 0 1=R �1 0 �1

1 0 0 �1 0 0 0

1 �1 0 0 0 �jvL 0

�b b 1 �1 0 0 0

2
666666666664

3
777777777775

V1

V2

V3

V4

iv
iL
ib

2
666666666664

3
777777777775

¼

0

0

0

0

E

0

0

2
666666666664

3
777777777775

Hence, the following stamping rules are derived:
Voltage source:
LHS:

i j iv

i

j

iv

0 0 1

0 0 �1

1 �1 0

2
64

3
75

Right-hand side (RHS):

i
j
iv

0
0
E

2
4

3
5

Inductor:
LHS:

i j iL

i

j

iL

0 0 1

0 0 1

1 �1 �jvL

2
64

3
75

Note that the numerical problem associated with an inductor is avoided when v ! 0.

3-10 Computer Aided Design and Design Automation

VCVS (Figure 3.5):
LHS:

i j k l iv

i

j

iv

0 0 0 0 1

0 0 0 0 �1

1 �1 �m m 0

2
64

3
75

The stamping rule for a CCVS and a CCCS can be developed following the same arguments. For DC
analysis, set v¼ 0. In SPICE, the MNA is employed to formulate network equations. To probe a branch
current, a user needs to insert a zero value voltage source between the adjacent nodes. The solution iv is
then the branch current. The implementation of MNA can be summarized as follows:

1. Implement an input parser to read in a circuit description file. A ‘‘free’’ input format does not
restrict a user to follow column entry rules.

2. Build an internal node table which has a one-to-one relationship with user-defined nodes. Hence, a
user needs not number the network nodes consecutively.

3. Number the auxiliary nodes for Group 2 elements last. For Group 2 element, one extra node is
needed.

4. Solve the system of linear equations to find output voltages and currents.

3.2 Solution of Linear Algebraic Equations

The methods of solving a set of linear equations are basic to all computer-aided network analysis
problems. If the network is linear, the equations are linear. Nonlinear networks lead to a system of
nonlinear equations which can be linearized about some operating point. Transient analysis involves
solving these linearized equations at many iteration points. Frequency domain analysis (small-signal AC
analysis) requires the repeated solution of linear equations at specified frequencies.
The discussion in this section will be an introduction to the direct solution method based on LU

decomposition, a variant of Gaussian elimination. This method is frequently used because of its
efficiency, robustness, and ease of implementation. More advanced topics such as the general sparse
matrix techniques are not discussed.
Consider a set of n linear algebraic equations of the form:

Ax ¼ b (3:19)

where
A is an n3 n nonsingular real matrix
x and b are n-vectors

For the system to have a unique solution, A must be nonsingular (i.e., the determinant of A must not be
zero). Equation 3.19 can be solved efficiently by first factorizing A into a product of two matrices L and U,
which are respectively lower and upper triangular. This so-called LU decomposition method for solving a
system of linear equations is similar to the Gaussian elimination except b is not required in advance.
All operations performed on b using the Gaussian elimination are eliminated to save computation cost.
The procedures are expressed as follows:

1. Step 1: Factorization=decomposition
2. Step 2: Forward substitution
3. Step 3: Backward substitution

Numerical Analysis Methods 3-11

3.2.1 Factorization

We factor A into a product LU, where L is a lower triangular matrix and U is an upper triangular matrix:

A ¼ LU (3:20)

Either L or U can have a diagonal of ones. The factors of A, being upper and lower triangular, can be
stored in one matrix B, i.e., B¼ LþU� I. In practice, B is stored in place of A to save memory storage.
There are two widely used algorithms for factorization: Crout’s algorithm (setting the diagonal elements
of U to 1) [1] and Doolittle’s algorithm (setting the diagonal elements of L to 1) [3]. In the following, we
will use a 43 4 matrix to illustrate the direct finding of L and U by the Crout’s algorithm:

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

2
664

3
775

1 u12 u13 u14
0 1 u23 u24
0 0 1 u34
0 0 0 1

2
664

3
775 ¼

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

2
664

3
775

Multiplying the two matrices on the LHS of the preceding equations gives

l11 l11u12 l11u13 l11u14
l21 l21u12 þ l22 l21u13 þ l22u23 l21u14 þ l22u24
l31 l31u12 þ l32 l31u13 þ l32u23 þ l33 l31u14 þ l32u24 þ l33u34
l41 l41u12 þ l42 l41u13 þ l42u23 þ l43 l41u14 þ l42u24 þ l43u34 þ l44

2
664

3
775 ¼

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

2
664

3
775

The solution sequences, indicated by the superscripts, for solving the 16 unknowns (n¼ 4) are

l111 u512 u613 u714

l221 l822 u1123 u1224

l331 l932 l1333 u1534

l441 l1042 l1443 l1644

or
1st column: l11¼ a11, l21¼ a21, l31¼ a31, l41¼ a41
1st row: u12 ¼ a12

l11
, u13 ¼ a13

l11
, u14 ¼ a14

l11

2nd column: l22¼ a22� l21u12, l32¼ a32� l31u12, l42¼ a42� l41u12
2nd row: u23 ¼ a23�l21u13

l22
, u24 ¼ a24�l21u14

l22

3rd column: l33¼ a33� l13u13� l32u23, l43¼ a43� l41u13� l42u13
3rd row: u34 ¼ a34�l31u14�l32u24

l33

4th column: l44¼ a44� l41u14� l42u24� l43u34

Note that l11, l22, and l33 are elements by which we divide and they are called pivots. Division by a zero
pivot is not allowed. We now derive the Crout’s algorithm for LU decomposition based on the solution
procedures described previously:

1. lji¼ aji, j¼ 1, 2, . . . , n (1st column)
2. u1j¼ a1j=l11, j¼ 2, . . . , n (1st row)
3. At the kth step, for column k,

ljk ¼ ajk � lj1u1k � lj2u2k � � � � ¼ ajk �
Xk�1

m¼1

ljmumk, j ¼ k, . . . , n

3-12 Computer Aided Design and Design Automation

4. At the kth step, for row k,

ukj ¼ 1
lkk

� �
(akj � lk1u1j � lk2u2j � � � �) ¼ 1

lkk

� �
akj �

Xk�1

m¼1

lkmumj

 !
, j ¼ kþ 1, . . . , n

The algorithm can be summarized in a compact form:

1. Set k¼ 1
2. ljk ¼ ajk �

Pk�1
m¼1 ljmumk, j ¼ k, . . . , n

3. If k¼ n, stop

4. ukj ¼ 1
lkk

� 	
akj �

Pk�1
m¼1 lkmumj

� 	
, j ¼ kþ 1, . . . , n

5. k¼ kþ 1, go to step 2

3.2.2 Forward Substitution

Once A has been factored into L and U, the system of equations is written as follows:

LUx ¼ b

Define an auxiliary vector y, which can be solved by

L � y ¼ b (3:21)

Due to the special form of L, the auxiliary vector g can be solved very simply:

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

2
664

3
775

y1
y2
y3
y4

2
664

3
775 ¼

b1
b2
b3
b4

2
664

3
775

Starting from the first equation we write the solution as follows:

y1 ¼ b1
l11

y2 ¼ b2 � l21y1ð Þ
l22

y3 ¼ b3 � l31y1 � l32y2ð Þ
l33

y4 ¼ b4 � l41y1 � l42y2 � l43y3ð Þ
l44

and, in general

yi ¼
bi ¼

Pi�1
j¼1 lijyi

� 	

lii
, i ¼ 1, . . . , n

This is called the forward substitution process.

Numerical Analysis Methods 3-13

3.2.3 Backward Substitution

Once y has been solved, we can proceed to solve for the unknown x by

Ux ¼ y (3:22)

Again, due to the special form of U, the unknown vector x can be solved very simply:

1 u12 u13 u14
0 1 u23 u24
0 0 1 u34
0 0 0 1

2
664

3
775

x1
x2
x3
x4

2
664

3
775 ¼

y1
y2
y3
y4

2
664

3
775

Starting from the first equation, we write the solution as follows:

x4 ¼ y4
x3 ¼ y3 � u34x4
x2 ¼ y2 � u23x3 � u24x4
x1 ¼ y1 � u12x2 � u13x3 � u14x4

and, in general,

xi ¼ yi �
Xn
j¼iþ1

uijxj, i ¼ n, n� 1, . . . , 1

This is called the backward substitution process.

3.2.4 Pivoting

If in the process of factorization the pivot (lkk) is zero, it is then necessary to interchange rows and
possibly columns to put a nonzero entry in the pivot position so that the factorization can proceed. This
is known as pivoting.
If all¼ 0

1. Need to find another row i which has ail 6¼ 0. This can always be done. Otherwise, all entries of
column 1 are zero and hence, det jAj ¼ 0. The solution process should then be aborted.

2. Interchange row i and row 1. Note that this must be done for both A and b.

If lkk¼ 0

1. Find another row r(r¼ kþ 1, . . . , n), which has

lrk ¼ ark �
Xk�1

m¼1

lrmumk 6¼ 0

2. Interchange row r and row k in A and b.

Pivoting is also carried out for numerical stability (i.e., minimize round-off error). For example, one
would search for the entry with the maximum absolute value of lrR in columns below the diagonal and
perform row interchange to put that element on the diagonal. This is called partial pivoting. Complete

3-14 Computer Aided Design and Design Automation

pivoting involves searching for the element with the maximum absolute value in the unfactorized part of
the matrix and moving that particular element to the diagonal position by performing both row and
column interchanges. Complete pivoting is more complicated to program than partial pivoting. Partial
pivoting is used more often.

3.2.5 Computation Cost of LU Factorization

In this section, we derive the multiplication=division count for the LU decomposition process. As a
variation, we derive the computation cost for the Doolittle’s algorithm (setting the diagonal elements
of L to 1):

1 0 0 0
l21 1 0 0
l31 l32 1 0
l41 l42 l43 1

2
664

3
775

u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

2
664

3
775 ¼

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

2
664

3
775

LHS after multiplication:

u11 u12 u13 u14
l21u11 l21u12 þ u22 l21u13 þ u23 l21u14 þ u24
l31u11 l31u12 þ l32u22 l31u13 þ l32u23 þ u33 l31u14 þ l32u24 þ u34
l41u11 l41u12 þ l42u22 l41u13 þ l42u23 þ l43u33 l41u14 þ l42u24 þ l43u34 þ u44

2
664

3
775

Column 1: (l21, l31, l41)u11
Column 2: (l21, l31, l41)u12 þ (l32, l42)u22
Column 3: (l21, l31, l41)u13 þ (l32, l42)u23 þ l43u33
Column 4: (l21, l31, l41)u14 þ (l32, l42)u24 þ l43u34

(3:23)

Let the symbol h�i denote the number of nonzero elements of a matrix or vector. Or

. hUi: number of nonzeros of U

. hLi: number of nonzeros of L

. hAii: number of nonzeros in row i of matrix A

. hA�ji: number of nonzeros in column j of matrix A

From Equation 3.23, the total number of nonzero multiplications and divisions for LU factorization is
given by

hL�1i � 1ð Þ hU1�ið Þ þ hL�2i � 1ð Þ hU2�ið Þ þ hL�3i � 1ð Þ hU3�ið Þ (3:24)

Let a be the total number of multiplications and divisions. Express Equation 3.24 as a summation:

a ¼
Xn

k¼1

hL�ki � 1ð Þ hUk�ið Þ (3:25)

or for n¼ 4,

a ¼ 3� 4þ 2� 3þ 1� 2

Numerical Analysis Methods 3-15

If L and U are full, Equation 3.25 can be simplified as follows:

a ¼
Xn

k¼1

(n� k)(n� kþ 1)

¼
Xn

k¼1

(n2 þ k2 � 2knþ n� k)

¼ n3 þ
Xn

k¼1

k2 � 2n� n(nþ 1)
2

þ n2 � n(nþ 1)
2

¼ n(nþ 1)(2nþ 1)
6

� n(nþ 1)
2

¼ n3 � n
3

(3:26)

The total number of mul=div for forward substitution is equal to the total number of nonzeros for L or
hLi. The total number of mul=div for backward substitution is equal to the total number of nonzeros for
U for hUi. Let b be the mul=div count for the forward and backward substitutions,

b ¼ hLi þ hUi

It follows that

b ¼ n2 (3:27)

If L and U are full, combining Equations 3.26 and 3.27, we obtain the computation cost of solving a
system of linear algebraic equations using direct LU decomposition:

Total ¼ aþ b

Total ¼ aþ b ¼ n3

3
þ n2 � n

3

(3:28)

References

1. Hachtel et al., The sparse tableau approach to network analysis and design, IEEE Trans. Circuit
Theory, CT-18: 101–113, January 1971.

2. L. W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits, Memo No. ERL-
M520, Electronic Research Laboratory, University of California, Berkeley, CA, May 1975.

3. C. W. Ho et al., The modified nodal approach to network analysis, IEEE Trans. Circuits Syst., CAS-22:
504–509, June 1975.

4. J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, Van Nostrand Reinhold,
New York, 1983.

5. K. S. Kundert, Advances in CAD for VLSI: Circuit Analysis, Simulation and Design, Vol. 3, Part 1,
Chapter 6, North-Holland, Amsterdam, the Netherlands, 1986.

3-16 Computer Aided Design and Design Automation

4
Design by Optimization

Sachin S. Sapatnekar
University of Minnesota

4.1 Introduction .. 4-1
4.2 Optimization Algorithms ... 4-2

Nonlinear Optimization Problems . Basic Definitions .

Constrained Optimization Methods . Multicriterion
Optimization and Pareto Criticality

4.3 Transistor Sizing Problem for CMOS Digital Circuits ... 4-10
Problem Description . Delay Modeling . Area Model .

Sensitivity-Based TILOS Algorithm . Transistor Sizing Using
the Method of Feasible Directions . Lagrangian Multiplier
Approaches . Two-Step Optimization . Convex
Programming-Based Approach . Statistical Optimization

4.4 Analog Design Centering Problem...................................... 4-19
Problem Description . Simplicial Approximation Method .

Ellipsoidal Method . Convexity-Based Approaches .

Concluding Remarks

References .. 4-24

4.1 Introduction

In many integrated circuit (IC) design situations, a designer must make complex trade-offs between
conflicting behavioral requirements, dealing with functions that are often nonlinear. The number of
parameters involved in the design process may be large, necessitating the use of algorithms that provide
qualitatively good solutions in a computationally efficient manner.
The theory and utilization of optimization algorithms in computer-aided design (CAD) of ICs are

illustrated here. The form of a general nonlinear optimization problem is first presented, and some of the
commonly used methods for optimization are overviewed. It is frequently said that setting up an
optimization problem is an art, while (arguably) solving it is an exact science. To provide a flavor for
both of these aspects, case studies on the following specific design problems are examined:

. Transistor sizing: The delay of a digital circuit can be tuned by adjusting the sizes of transistors
within it. By increasing the sizes of a few selected transistors from the minimum size, significant
improvements in performance are achievable. However, one must take care to ensure that the area
overhead incurred in increasing these sizes is not excessive. The area-delay trade-off here is the
transistor size optimization problem. We address the solution of this problem under deterministic
and statistical delay models.

. Analog design centering: The values of design parameters of an analog circuit are liable to change
due to manufacturing variations. This contributes to a deviation in the behavior of the circuit from
the norm, and may lead to dysfunctional circuits that violate the performance parameters that they

4-1

were designed for. The problem of design centering attempts to ensure that under these variations,
the probability of a circuit satisfying its performance specifications is maximized by placing the
circuit in the center of its feasible region.

4.2 Optimization Algorithms

4.2.1 Nonlinear Optimization Problems

The standard form of a constrained nonlinear optimization problem is

minimize f (x):Rn ! R

subject to g(x) � 0

g:Rn ! Rm, x 2 Rn

(4:1)

representing the minimization of a function f of n variables under constraints specified by inequalities
determined by functions g¼ [g1 � � � gm]T. f and gi are, in general, nonlinear functions, so that the linear
programming problem is a special case of the above. The parameters x may, for example, represent
circuit parameters, and f(x) and gi(x) may correspond to circuit performance functions. Note that ‘‘�’’

inequalities can be handled under this paradigm by multiplying each side by �1, and equalities by
representing them as a pair of inequalities. The maximization of an objective function function f(x) can
be achieved by minimizing �f(x).
The set F ¼ {x j g(x)� 0} that satisfies the constraints on the nonlinear optimization problem is

known as the feasible set, or the feasible region. If F is empty (nonempty), then the optimization is said
to be unconstrained (constrained).
Several mathematical programming techniques can be used to solve the optimization problem above;

some of these are outlined here. For further details, the reader is referred to a standard text on
optimization, such as [1]. Another excellent source for optimization techniques and their applications
to IC design is a survey paper by Brayton et al. [2].
The above formulation may not directly be applicable to real-life design problems, where, often,

multiple conflicting objectives must be optimized. In such a case, one frequently uses techniques that
map on the problem to the form in Equation 4.1 (see Section 4.2.4).

4.2.2 Basic Definitions

In any discussion on optimization, it is virtually essential to understand the idea of a convex function and
a convex set, since these have special properties, and it is desirable to formulate problems as convex
programming problems, wherever it is possible to do so without an undue loss in modeling accuracy.
(Unfortunately, it is not always possible to do so!)

Definition 4.1: A set C in Rn is said to be a convex set if, for every x1, x2 2 C, and every real number
a, 0�a� 1, the point ax1þ (1�a)x2 2 C.

This definition can be interpreted geometrically as stating that a set is convex if, given two points in the
set, every point on the line segment joining the two points is also a member of the set. Examples of
convex and nonconvex sets are shown in Figure 4.1.
Two examples of convex sets that are referred to later are the following geometric bodies:

1. An ellipsoid E(x, B, r) centered at point x is given by the following equation:

4-2 Computer Aided Design and Design Automation

yj(y � x)TB(y � x) � r2
� �

: (4:2)

If B is a scalar multiple of the unit matrix, then the
ellipsoid is called a hypersphere.

2. A (convex) polytope is defined as an intersection of
half-spaces, and is given by the following equation:

P ¼ {xjAx � b},A 2 Rm�n, b 2 Rm, (4:3)

corresponding to a set ofm inequalities ai
T x� bi, ai 2 Rn.

Definition 4.2: The convex hull of m points, x1, . . . ,
xm 2 Rn, denoted co {x1, . . . , xm}, is defined as the set of
points y 2 Rn such that

y ¼
Xm
i¼1

aixi; ai � 0 8 i,
Xm
i¼0

ai ¼ 1: (4:4)

The convex hull is the smallest convex set that contains the m points. An example of the convex hull of
five points in the plane is shown by the shaded region in Figure 4.2. If the set of points xi is of finite
cardinality (i.e., m is finite), then the convex hull is a polytope. Hence, a polytope is also often described
as the convex hull of its vertices.

Definition 4.3: A function f defined on a convex set V is said to be a convex function if, for every
x1, x2 2 V, and every a, 0�a� 1,

f [ax1 þ (1� a)x2] � af (x1)þ (1� a)f (x2): (4:5)

f is said to be strictly convex if the inequality in Equation 4.5 is strict for 0<a< 1.

Convex set Nonconvex set

x1

x1

x2

x2

FIGURE 4.1 Convex sets.

x1

x2
x3

x5

x4

FIGURE 4.2 Convex hull of five points.

Design by Optimization 4-3

Geometrically, a function is convex if the line joining two points on its graph is always above the graph.
Examples of convex and nonconvex functions on Rn are shown in Figure 4.3.

Definition 4.4: A function g defined on a convex set V is said to be a concave function if the
function f¼�g is convex. The function g is strictly concave if �g is strictly convex.

Definition 4.5: The convex programming problem is stated as follows:

minimize f (x) (4:6)

such that x 2 S (4:7)

where f is a convex function and S is a convex set. This problem has the property that any local minimum
of f over S is a global minimum. An excellent reference on convex programming is [3].

Definition 4.6: A posynomial is a function h of a positive variable x 2 Rn that has the form

h(x) ¼
X
j

gj
Yn
i¼1

x
aij

i (4:8)

where the exponents aij 2 R and the coefficients gj> 0.

For example, the function 3:7x1:41 x
ffiffi
3

p
2 þ 1:8x�1

1 x2:33 is a posynomial in the variables x1, x2, and x3.
Roughly speaking, a posynomial is a function that is similar to a polynomial, except that the coeffcients gj
must be positive, and an exponent aij could be any real number, and not necessarily a positive integer,
unlike a polynomial. A posynomial has the useful property that it can be mapped onto a convex function
through an elementary variable transformation, (xi)¼ (ezi). Such functional forms are useful since in the
case of an optimization problem where the objective function and the constraints are posynomial, the
problem can easily be mapped onto a convex programming problem.
The family of posynomials is expanded to the superset of generalized posynomials in Ref. [4], and

these functions can also be mapped to convex functions under the above transform.

Convex function Concave function Neither convex
nor concave

FIGURE 4.3 Convex functions.

4-4 Computer Aided Design and Design Automation

4.2.3 Constrained Optimization Methods

Most problems in IC design involve the minimization or maximization of a cost function subject to
certain constraints. In this section, a few prominent techniques for constrained optimization are
presented. The reader is referred to [1] for details on unconstrained optimization.

4.2.3.1 Linear Programming

Linear programming is a special case of nonlinear optimization, and is the convex programming problem
where the objective and constraints are all linear functions. The problem is stated as

minimize cT x

subject to Ax � b

where c, x 2 Rn, b 2 Rm, A 2 Rm�n

(4:9)

It can be shown that any solution to a linear program must necessarily occur at a vertex of the
constraining polytope. The most commonly used technique for solution of linear programs, the simplex
method [1], is based on this principle. The computational complexity of this method can show an
exponential behavior for pathological cases, but for most practical problems, it has been observed to
grow linearly with the number of variables and sublinearly with the number of constraints. Algorithms
with polynomial time worst-case complexity do exist; these include Karmarkar’s method and the
Shor–Khachiyan ellipsoidal method. The computational complexity of the latter, however, is often seen
to be impractical from a practical standpoint.
Some examples of CAD problems that are posed as linear programs include placement, gate sizing,

clock skew optimization, layout compaction, etc. In several cases, the structure of the problem can be
exploited to arrive at graph-based solutions, for example, in layout compaction.

4.2.3.2 Lagrange Multiplier Methods

These methods are closely related to the first-order Kuhn–Tucker necessary conditions on optimality,
which state that given an optimization problem of the form in Equation 4.1, if f and g are differentiable
at x*, then there is a vector l 2 Rm, (l)i� 0, such that

rf (x*)þ lTrg(x*) ¼ 0 (4:10)

lTg(x*) ¼ 0 (4:11)

These correspond tomþ 1 equations inmþ 1 variables; the solution to these provides the solution to the
optimization problem. The variables l are known as the Lagrange multipliers.
Note that since gi(x*)� 0, and because of the nonnegativity constraint on the Lagrange multipliers, l,

it follows from Equation 4.11 that (l)i¼ 0 for inactive constraints (constraints with gi(x)< 0).

4.2.3.3 Penalty Function Methods

These methods convert the constrained optimization problem in Equation 4.1 into an equivalent
unconstrained optimization problem, since such problems are easier to solve than constrained
problems, as

minimize h(x) ¼ f (x)þ c � P(x) (4:12)

where
P(x): Rn ! R is known as a penalty function
c is a constant

Design by Optimization 4-5

The value of P(x) is zero within the feasible region, and positive outside the region, with the value
becoming larger as one moves farther from the feasible region; one possible choice when the gi(x)’s are
continuous is given by

P(x) ¼
Xm
i¼1

max(0,� gi(x)) (4:13)

For large c, it is clear that the minimum point of Equation 4.12 will be in a region where P is small. Thus,
as c is increased, it is expected that the corresponding solution point will approach the feasible region and
minimize f. As c ! 1, the solution of the penalty function method converges to a solution of the
constrained optimization problem.
In practice, if one were to begin with a high value of c, one may not have very good convergence

properties. The value of c is increased in each iteration until c is high and the solution converges.

4.2.3.4 Method of Feasible Directions

The method of feasible directions is an optimization algorithm that improves the objective function
without violating the constraints. Given a point x, a direction d is feasible if there is a step size �a> 0 such
that xþa � d 2 F 8 0�a� �a, where F is the feasible region. More informally, this means that one
can take a step of size up to �a along the direction d without leaving the feasible region. The method
of feasible direction attempts to choose a value of a in a feasible direction d such that the objective
function f is minimized along the direction, and a is such that xþa � d is feasible.
One common technique that uses the method of feasible directions is as follows. A feasible direction at

x is found by solving the following linear program:

minimize e

subject to hrf (x) � di � e (4:14)

hrgi(x) � di � e (4:15)

and normalization requirements on d

where the second set of constraints are chosen for all gi��b, where b serves to incorporate the effects of
near-active constraints to avoid the phenomenon of jamming (also known as zigzagging) [1]. The value
of b is brought closer to 0 as the optimization progresses. One common method that is used as a
normalization requirement is to set dTd¼ 1. This constraint is nonlinear and nonconvex, and is not
added to the linear program as an additional constraint; rather, it is exercised by normalizing the
direction d after the linear program has been solved. An appropriate step size in this direction is then
chosen by solving a one-dimensional optimization problem.
Feasible direction methods are popular in finding engineering solutions because the value of x at each

iteration is feasible, and the algorithm can be stopped at any time without waiting for the algorithm to
converge, and the best solution found so far can be used.

4.2.3.5 Vaidya’s Convex Programming Algorithm

As mentioned earlier, if the objective function and all constraints in Equation 4.1 are convex, the problem
is a convex programming problem, and any local minimum is a global minimum. The first large-scale
practical implementation of this algorithm is described in Ref. [5].
Initially, a polytope P 2 Rn that contains the optimal solution, xopt, is chosen. The objective of the

algorithm is to start with a large polytope, and in each iteration, to shrink its volume while keeping
the optimal solution, xopt, within the polytope, until the polytope becomes sufficiently small. The
polytope P may, for example, be initially selected to be an n-dimensional box described by the set

4-6 Computer Aided Design and Design Automation

{xjxmin � xi � xmax} (4:16)

where xmin and xmax are the minimum and maximum values of each variable, respectively. The algorithm
proceeds iteratively as follows:

Step 1. A center xc deep in the interior of the polytope P is found.

Step 2. An oracle is invoked to determine whether the center xc lies within the feasible region F . This
may be done by verifying that all of the constraints of the optimization problem are met at xc.

If the point xc lies outside F , it is possible to find a separating hyperplane passing through xc that
divides P into two parts, such that F lies entirely in the part satisfying the constraint

cTx � b (4:17)

where c¼�[rgp(x)]
T is the negative of the gradient of a violated constraint, gp, and b¼ cTxc. The

separating hyperplane above corresponds to the tangent plane to the violated constraint.
If the point xc lies within the feasible region F , then there exists a hyperplane (Equation 4.17) that

divides the polytope into two parts such that xopt is contained in one of them, with

c ¼ �[rf (x)]T (4:18)

being the negative of the gradient of the objective function, and b being defined as b¼ cTxc once again.

Step 3. In either case, Equation 4.17 is added to the current polytope to give a new polytope that has
roughly half the original volume.

Step 4. Go to Step 1; the process is repeated until the polytope is sufficiently small.

Example 4.1

The algorithm is illustrated by using it to solve the following problem:

minimize f (x1, x2) such that (x1, x2) 2 S (4:19)

where S is a convex set and f is a convex function. The shaded region in Figure 4.4a is the set S, and the
dotted lines show the level curves of f. The point xopt is the solution to this problem.

1. The expected solution region is bounded by a rectangle, as shown in Figure 4.4a.
2. The center, xc, of this rectangle is found.
3. The oracle is invoked to determine whether or not xc lies within the feasible region. In this case, it

can be seen that xc lies outside the feasible region. Hence, the gradient of the constraint function
is used to construct a hyperplane through xc, such that the polytope is divided into two parts of
roughly equal volume, one of which contains the solution xopt. This is illustrated in Figure 4.4b,
where the shaded region corresponds to the updated polytope.

4. The process is repeated on the new smaller polytope. Its center lies inside the feasible region;
hence, the gradient of the objective function is used to generate a hyperplane that further shrinks
the size of the polytope, as shown in Figure 4.4c.

5. The result of another iteration is illustrated in Figure 4.4d. The process continues until the
polytope has been shrunk sufficiently.

Design by Optimization 4-7

4.2.3.6 Other Methods

The compact nature of this book makes it infeasible to enumerate or describe all of the methods that are
used for nonlinear optimization. Several other methods, such as Newton’s and modified Newton=quasi-
Newton methods, conjugate gradient methods, etc., are often useful in engineering optimization. For
these and more, the reader is referred to a standard text on optimization, such as [1].

4.2.4 Multicriterion Optimization and Pareto Criticality

Most IC design problems involve trade-offs between multiple objectives. In cases where one objective can
be singled out as the most important one and a reasonable constraint set can be defined in terms of the
other objectives, the optimization problem can be stated using the formulation in Equation 4.1. This is
convenient since techniques for the solution of a problem in this form have been extensively studied, and
a wide variety of optimization algorithms are available.
Let f be a vector of design objectives that is a function of the design variables x, where

f(x): Rn ! Rm ¼ (f1(x), f2(x), . . . , fm(x)) (4:20)

It is extremely unlikely in a real application that all of the fi’s will be optimal at the same point, and hence
one must trade off the values of the fi’s in a search for the best design point.

In this context, we note that at a point x, we are interested in taking a step d in a direction d, kdk¼ 1,
so that

fi(x þ d � d) � fi(x) 8 1 � i � m (4:21)

A Pareto critical point is defined as a point x where no such small step of size less than d exists in any
direction. If a point is Pareto critical for any step size from the point x, then x is a Pareto point. The
notion of a Pareto critical point is, therefore, similar to that of a local minimum, and that of a Pareto
point to a global minimum. In computational optimization, one is concerned with the problem of finding
a local minimum since, except in special cases, it is the best that one can be guaranteed of finding without

(d)(c)

(b)(a)

S

xopt

xc

f Decreasing

FIGURE 4.4 Example illustrating the convex programming algorithm. (From Sapatnekar, S. S., Rao, V. B., Vaidya,
P. M., and Kang, S. M., IEEE Trans. Comput. Aided Des., 12, 1621, 1993. With permission.)

4-8 Computer Aided Design and Design Automation

an exhaustive search. If the set of all Pareto critical points is Pc, and the set of Pareto points is P, then
clearly P � Pc. In general, there could be an infinite number of Pareto points, but the best circuit design
must necessarily occur at a Pareto point x 2 P.
In Figure 4.5, the level curves of two objective functions are plotted in R2. f1 is nonlinear and has a

minimum at x*. f2 is linear and decreases as both x1 and x2 decrease. The Pareto critical set, Pc, is given by
the dashed curve. At few of the points, the unit normal to the level lines of f1 and f2, i.e., the negative
gradients of f1 and f2, is shown. From the figure, it can be seen that if the unit normals at point x are not
equal and opposite, then the unit normals will have a common downhill direction allowing a simultan-
eous decrease in f1 and f2, and hence, x would not be a Pareto critical point. Therefore, a Pareto critical
point is one where the gradients of f1 and f2 are opposite in direction, i.e., lr f1¼�r f2, where l is some
scale factor.
In higher dimensions, a Pareto critical point is characterized by the existence of a set of weights, wi> 0

8 1� i�m, such that

Xm
i¼1

wirfi ¼ 0: (4:22)

Some of the common methods that are used for multicriterion optimization are discussed below.

4.2.4.1 Weighted Sums Optimization

The multiple objectives f1(x), . . . , fm(x) are combined as

F(x) ¼
Xm
i¼1

wifi(x) (4:23)

where wi> 0 8 i¼ 1, . . . , m, and the function F(x) is minimized.

Downhill
for f2

Downhill
for f1

Pareto critical set, Pc

P1

p*

P2

Level lines
of f1

Level lines
of f2

FIGURE 4.5 Exact conflict at a Pareto critical point. (From Brayton, R.K., Hachtel, G.D., and Sangiovanni-
Vincentelli, A.L., Proc. IEEE, 69, 1334, 1981. With permission.)

Design by Optimization 4-9

At any local minimum point of F(x), the relation in Equation 4.22 is seen to be valid, and hence, x 2 Pc.
In general, P 6¼ Pc, but it can be shown that when each fi is a convex function, then P¼Pc; if so, it can
also be shown that all Pareto points can be obtained by optimizing the function F in Equation 4.23.
However, for nonconvex functions, there are points x 2 P that cannot be obtained by the weighted sum
optimization since Equation 4.22 is only a necessary condition for the minimum of F. A characterization
of the Pareto points that can be obtained by this technique is provided in Ref. [2].
In practice, the wi’s must be chosen to reflect the magnitudes of the fi’s. For example, if one of the

objectives is a voltage quantity whose typical value is a few volts, and another is a capacitor value that is
typically a few picofarads, the weight corresponding to the capacitor value would be roughly 1012 times
that for the voltage, in order to ensure that each objective has a reasonable contribution to the objective
function value. The designer may further weigh the relative importance of each objective in choosing the
wi’s. This objective may be combined with additional constraints to give a formulation of the type in
Equation 4.1.

4.2.4.2 Minmax Optimization

The following objective function is used for Equation 4.1

minimize F(x) ¼ max
1�i�m

wifi(x) (4:24)

where the weights wi> 0 are chosen as in the case of weighted sums optimization.
The above equation can equivalently be written as the following constrained optimization problem:

minimize r

subject to wifi(x) � r (4:25)

Minimizing the objective function described by Equation 4.24 with different sets of wi values can be used
to obtain all Pareto points [2].
Since this method can, unlike the weighted-sums optimization method, be used to find all Pareto

critical points, it would seem to be a more natural setting for obtaining Pareto points than the weighted
sum minimization. However, when the fi’s are convex, the weighted sums approach is preferred since it is
an unconstrained minimization, and is computationally easier than a constrained optimization. It must
be noted that when the fi’s are not all convex, the minmax objective function is nonconvex, and finding
all local minima is a nontrivial process for any method.

4.3 Transistor Sizing Problem for CMOS Digital Circuits

4.3.1 Problem Description

Circuit delays in ICs often must be reduced to obtain faster response times. A typical CMOS digital IC
consists of multiple stages of combinational logic blocks that lie between latches that are clocked by
system clock signals. For such a circuit, delay reduction must ensure that valid signals are produced at
each output latch of a combinational block, before any transition in the signal clocking the latch. In other
words, the worst-case input–output delay of each combinational stage must be restricted to be below a
certain specification.

Given the circuit topology, the delay of a combinational circuit can be controlled by varying the sizes of
transistors in the circuit. Here, the size of a transistor is measured in terms of its channel width, since the
channel lengths of MOS transistors in a digital circuit are generally uniform. In coarse terms, the circuit
delay can usually be reduced by increasing the sizes of certain transistors in the circuit. Hence, making

4-10 Computer Aided Design and Design Automation

the circuit faster usually entails the penalty of increased circuit area. The area-delay trade-off involved
here is, in essence, the problem of transistor size optimization.
Three formal statements of the problem are stated below:

Minimize Area subject to Delay � Tspec (4:26)

Minimize Delay subject to Area � Aspec (4:27)

Minimize Area � [Delay]c (4:28)

where c is a constant. Of all of these, the first form is perhaps the most useful practical form, since a
designer’s objective is typically to meet a timing constraint dictated by a system clock.
Depending on the type of analysis, the delay computation may be either deterministic or statistical [6].

In the former case, the problem reduces to a conventional nonlinear optimization problem. In the latter
case, the optimization is statistical, though it can be transformed into a deterministic problem.

4.3.2 Delay Modeling

We examine the delay modeling procedure used in TILOS (Timed Logic Synthesizer) [7] at the
transistor, gate, and circuit levels. Many transistor sizing algorithms use minor variations on this theme,
although some usemore exact models. The inherent trade-off here is between obtaining a provably optimal
solution under inexact models, versus being uncertain about optimality under more correct models.

4.3.2.1 Transistor Level Model

A MOS transistor is modeled as a voltage-controlled switch with an on-resistance, Ron, between drain
and source, and three grounded capacitances, Cd, Cs, and Cg, at the drain, source, and gate terminals,
respectively, as shown earlier in Figure 4.6. The behaviors of the resistance and capacitances associated
with a MOS transistor of channel width x are modeled as

Ron / 1=x (4:29)

Cd,Cs,Cg / x: (4:30)

4.3.2.2 Gate Level Model

At the gate level, delays are calculated in the following manner. For each transistor in a pull-up or pull-down
network of a complexCMOS gate, the largest resistive path from the transistor to the gate output is computed,

as well as the largest resistive path from the transistor to a
supply rail. Thus, for each transistor, the network is trans-
formed into an RC line, and its Elmore time constant [8] is
computed and is taken to be the gate delay.
While finding the Elmore delay, the capacitances that lie

between the switching transistor and the supply rail are
assumed to be at the voltage level of the supply rail at the
time of the switching transition, and do not contribute to
the Elmore delay. For example, in Figure 4.7, the capaci-
tance at node n1 is ignored while computing the Elmore
delay, the expression for which is

(R1 þ R2)C2 þ (R1 þ R2 þ R3)C3: (4:31)

Cg

Cd

Cs

FIGURE 4.6 RC transistor model.

Design by Optimization 4-11

Each Ri is inversely proportional to the corresponding transistor size, xi, and each Ci is some constant
(for wire capacitance) plus a term proportional to the width of each transistor whose gate, drain, or
source is connected to node i. Thus, Equation 4.31 can be rewritten as

(A=x1 þ A=x2)(Bx2 þ Cx3 þ D)þ (A=x1 þ A=x2 þ A=x3)(Bx3 þ E),

which is a posynomial function (see Section 4.2.2) of x1, x2, and x3. More accurate modeling techniques,
using generalized posynomials, are described in Ref. [4].

4.3.2.3 Circuit Level Model

At the circuit level, the program evaluation and review technique (PERT), which will be described
shortly, is used to find the circuit delay. The procedure is best illustrated by means of a simple example.
Consider the circuit in Figure 4.8, where each box represents a gate, and the number within the box

External load
capacitance

CL C3

C2

C1, VC1(0) = 0

(b)(a)

“1”

“1” X3

X2

X1

n3

n2

n1 n1

n2

n3

R1

R2

R3

FIGURE 4.7 (a) Sample pull-down network and (b) its RC representation. (From Fishburn, J. and Dunlop, A.,
Proceedings of the IEEE International Conference on Computer-Aided Design, 1985, pp. 326–328. With permission.)

F H

A
1

1

E
1

1
C
1

1

G
2

2D
2

B
3

3

3

4

6

9
5

FIGURE 4.8 PERT.

4-12 Computer Aided Design and Design Automation

represents its delay. We assume that the worst-case arrival time for a transition at any primary input, i.e.,
at the inputs to boxes A, B, C, and D, is 0.
A component is said to be ready for processing when the signal arrival time information is available for

all of its inputs. Initially, since signal arrival times are known only at the primary inputs, only those
components that are fed solely by primary inputs are ready for processing. These are placed in a queue
and are scheduled for processing. In the iterative process, the component at the head of the queue is
scheduled for processing. Each processing step consists of

. Finding the latest arriving input to the component, which triggers the output transition. This
involves finding the maximum of all worst-case arrival times of inputs to the component.

. Adding the delay of the component to the latest arriving input time, to obtain the worst-case
transition time at the output.

. Checking all of the components that the current component fans out to, to find out whether they
are ready for processing. If so, the component is added to the tail of the queue.

The iterations end when the queue is empty. In the example, the algorithm is executed as follows:

Step 1. Initially, Queue¼ {A,B,C,D}.

Step 2. Schedule A; DelayA¼ 0þ 1¼ 1. Queue¼ {B,C,D}.

Step 3. Schedule B; DelayB¼ 0þ 3¼ 3. Queue¼ {C,D}.

Step 4. Schedule C; DelayC¼ 0þ 1¼ 1. Queue¼ {D,E}. (E is added to the queue.)

Step 5. Schedule D; DelayD¼ (0þ 2)¼ 2. Queue¼ {E}.

Step 6. Schedule E; DelayE¼ (max(3,1)þ 1)¼ 4. Queue¼ {F,G}.

Step 7. Schedule F; DelayF¼ (max(4,2)þ 1)¼ 5. Queue¼ {G}.

Step 8. Schedule G; DelayG¼ (max(4,1)þ 2)¼ 6. Queue¼ {H}.

Step 9. Schedule H; DelayH¼ (max(6,5)þ 3)¼ 9. Queue¼ {}. The algorithm terminates.

The worst-case delays at the output of each component are shown in Figure 4.8. The critical path, defined
as the path between an input and an output with the maximum delay, can now easily be found by
successively tracing back, beginning from the primary output with the latest transition time, and walking
back along the latest arriving fan-in of the current gate, until a primary input is reached. In the example,
the critical path from the input to the output is B-E-G-H.
In the case of CMOS circuits, the rise and fall delay transitions are calculated separately. For inverting

CMOS gates, the latest arriving input rise (fall) transition triggers off a fall (rise) transition at the output.
This can easily be incorporated into the PERT method described above, by maintaining two numbers,
tr and tf, for each gate, corresponding to the worst-case rise (high transition) and fall (low transition)
delays from a primary input. To obtain the value of tf at an output, the largest value of tr at an input node
is added to the worst-case fall transition time of the component; the computation of tr is analogous. For
noninverting gates, tr and tf are obtained by adding the rise (fall) transition time to the worst-case input
rise (fall) transition time.
Since each gate delay is a posynomial, and the circuit delay found by the PERT is a sum of gate delays,

the circuit delay is also a posynomial function of the transistor sizes. In general, the path delay can be
written as

Xn
i,j¼1

aij
xi
xj

þ
Xn
i¼1

bi
xi
þ K: (4:32)

Design by Optimization 4-13

In contrast to deterministic timing, statistical timing analysis techniques model gate delays as statistical
functions of the underlying process parameter variations. Instead of propagating delays as fixed numbers,
they propagate the probability density functions (PDFs) of delays. Techniques based on Gaussian or non-
Gaussian delays, under linear or nonlinear models, with and without correlation, have been presented in
the literature [9–12].

4.3.3 Area Model

The exact area of a circuit cannot easily be represented as a function of transistor sizes. This is
unfortunate, since a closed functional form facilitates the application of optimization techniques. As an
approximation, the following formula is used by many transistor sizing algorithms, to estimate the active
circuit area:

Area ¼
Xn
i¼1

xi (4:33)

where
xi is the size of the ith transistor
n is the number of transistors in the circuit

In other words, the area is approximated as the sum of the sizes of transistors in the circuit that, from the
definition Equation 4.8, is clearly a posynomial function of the xi’s.

4.3.4 Sensitivity-Based TILOS Algorithm

4.3.4.1 Steps in the Algorithm

The algorithm that was implemented in TILOS [7] was the first to recognize the fact that the area
and delay can be represented as posynomial functions of the transistor sizes. The algorithm proceeds as
follows.
An initial solution is assumed where all transistors are at the minimum allowable size. In each

iteration, a static timing analysis is performed on the circuit, as explained in Section 4.3.2, to determine
the critical path for the circuit.
Let N be the primary output node on the critical path. The algorithm then walks backward along the

critical path, starting from N. Whenever an output node of a gate, Gatei, is visited, TILOS examines the
largest resistive path between VDD (ground) and the output node if Gatei’s tr (tf) causes the timing failure
at N. This includes

. Critical transistor, i.e., the transistor whose gate terminal is on the critical path. In Figure 4.7, X2 is
the critical transistor.

. Supporting transistors, i.e., transistors along the largest resistive path from the critical transistor to
the power supply (VDD or ground). In Figure 4.7, X1 is a supporting transistor.

. Blocking transistors, i.e., transistors along the highest resistance path from the critical transistor to
the logic gate output. In Figure 4.7, X3 is a blocking transistor.

TILOS finds the sensitivity, which is the reduction in circuit delay per increment of transistor size, for
each critical, blocking, and supporting transistors. (The procedure of sensitivity computation is treated in
greater detail shortly.) The size of the transistor with the greatest sensitivity is increased by multiplying it
by a constant, BUMPSIZE, a user-settable parameter that defaults to 1.5. The above process is repeated
until all constraints are met, implying that a solution is found, or the minimum delay state has been

4-14 Computer Aided Design and Design Automation

passed, and any increase in transistor sizes would make it
slower instead of faster, in which case TILOS cannot find
a solution.
Note that since in each iteration, exactly one transistor

size is changed, the timing analysis method can employ
incremental simulation techniques to update delay
information from the previous iteration. This substan-
tially reduces the amount of time spent in critical path
detection.

4.3.4.2 Sensitivity Computation

Figure 4.9 illustrates a configuration in which the critical
path extends back along the gate of the upper transistor,
which is the critical transistor. The sensitivity for this
transistor is calculated as follows: set all transistor sizes,
except x, to the size of the critical transistor. R is the total
resistance of an RC chain driving the gate and C is
the total capacitance of an RC chain being driven by the
configuration. The total delay, D(x), of the critical path is

D(x) ¼ K þ RCux þ RuC
x

(4:34)

where
Ru and Cu are the resistance and capacitance of a unit-sized transistor, respectively
K is a constant that depends on the resistance of the bottom transistor, the capacitance in the driving
RC chain, and the resistance in the driven RC chain

The sensitivity, D0(x), is then

D0(x) ¼ RCu � RuC
x2

: (4:35)

The sensitivities of supporting transistors and blocking transistors can similarly be calculated.
Note that increasing the size of a transistor with negative sensitivity only means that the delay along

the current critical path can be reduced by changing the size of this transistor, and does not necessarily
mean that the circuit delay can be reduced; the circuit delay is the maximum of all path delays in the
circuit, and a change in the size of this transistor could increase the delay along some other path, making
a new path critical. This is the rationale behind increasing the size of the most sensitive transistor by only
a small factor.
From an optimization viewpoint, the procedure of bumping up the size of the most sensitive transistor

could be looked upon in the following way. Let the ith transistor (out of n total transistors) be the one with
the maximum sensitivity. Define ei2 Rn as (ei)j¼ 0 if i 6¼ j and (ei)j¼ 1 if i¼ j. In each iteration, the TILOS
optimization procedure works in the n-dimensional space of the transistor sizes, chooses ei as the search
direction, and attempts to find the solution to the problem by taking a small step along that direction.

4.3.5 Transistor Sizing Using the Method of Feasible Directions

Shyu et al. proposed a two-stage optimization approach to solve the transistor sizing problem. The delay
estimation algorithm is identical to that used in TILOS.

R C

“1”

FIGURE 4.9 Sensitivity calculation in TILOS.
(From Fishburn, J. and Dunlop, A., Proceedings of
the IEEE International Conference on Computer-
AidedDesign, 1985, pp. 326–328.With permission.)

Design by Optimization 4-15

The algorithm can be summarized in the following pseudocode:

Use TILOS to size the entire circuit;
While (TRUE) {

Select G1, ..., Gk, the k most critical paths,
and X¼{xi}, the set of design parameters
Solve the optimization problem

minimize
X

xi2X xi

such that Gi(X) � T 8 i ¼ 1, . . . , k

and xi � minsize 8 xi 2 X:

If all constraints are satisfied, exit }

In the first stage, the TILOS heuristic described in Section 4.3.4 is used to generate an initial solution.
The heuristic finds a solution that satisfies the constraints, and only the sized-up transistors are used as
design parameters. Although TILOS is not guaranteed to find an optimal solution, it can serve as an
initial guess solution for an iterative technique.
In the second stage of the optimization process, the problem is converted into a mathematical

optimization problem, and is solved by a method of feasible directions (MFD) algorithm described in
Section 4.2.3, using the feasible solution generated in the first stage as an initial guess. To reduce the
computation, a sequence of problems with a smaller number of design parameters is solved.
At first, the transistors on the worst-delay paths (usually more than one) are selected as design

parameters. If, with the selected transistors, the optimizer fails to meet the delay constraints, and some
new paths become the worst-delay paths, the algorithm augments the design parameters with the
transistors on those paths, and restarts the process. However, while this procedure reduces the run
time of the algorithm, one faces the risk of finding a suboptimal solution since only a subset of the design
parameters is used in each step.
The MFD optimization method proceeds by finding a search direction d, a vector in the n-dimensional

space of the design parameters, based on the gradients of the cost function and some of the constraint
functions. Once the search direction has been computed, a step along this direction is taken, so that the
decrease in the cost and constraint functions is large enough. The computation stops when the length of
this step is sufficiently small.
Since this algorithm has the feature that once the feasible region (the set of transistor sizes where all

delay constraints are satisfied) is entered, all subsequent improvements will remain feasible, and the
algorithm can be terminated at any time with a feasible solution.

4.3.5.1 Practical Implementational Aspects

4.3.5.1.1 Generalized Gradient

For convergence, the MFD requires that the objective and constraint functions be continuously differ-
entiable. However, since the circuit delay is defined as the maximum of all path delays, the delay
constraint functions are usually not differentiable. To illustrate that the maximum of two continuously
differentiable functions, g1(x) and g2(x), need not be differentiable, consider the example in Figure 4.10.
The maximum function, shown by the bold lines, is nondifferentiable at x0.

To cope with the nondifferentiability of the constraint functions, a modification of the MFD is used,
which employs the concept of the generalized gradient. The idea is to use a convex combination of the
gradients of the active, or nearly active, constraints near a discontinuity.

4-16 Computer Aided Design and Design Automation

4.3.5.1.2 Scaling

It is important to scale the gradients of the cost and
path delay functions since the use of their unscaled
values may produce poor descent search directions
due to the large difference in magnitude of the gradi-
ents of the constraint and objective functions. When a
gradient has a magnitude that is much smaller than
other gradients, it dominates the search direction. In
such a case, the descent direction is unjustly biased
away from the other constraints or the cost function.

4.3.6 Lagrangian Multiplier Approaches

As can be seen from the approaches studied so far, the
problem of transistor sizing can be formulated as a
constrained nonlinear programming problem. Hence,
the method of Lagrangian multipliers, described in
Section 4.2.3, is applicable.

An early approach by Marple [13] begins with a prespecified layout, and performs the optimization
using an area model for that layout. While such an approach has the disadvantage that it may not result
in the minimal area over all layouts, it still maintains the feature that the area and delay constraints are
posynomials. Apart from the delay constraints, there also exist some area constraints, modeled by
constraint graphs that are commonly used in layout compaction. These constraints maintain the
minimum spacing between objects in the final layout, as specified by design rules.
The delay of the circuit is modeled by a delay graph, D (V, E) where V is the set of nodes (gates) in D,

and E is the set of arcs (connections among gates) in D. This is the same graph on which the PERT
analysis is to be carried out. Letmi represent the worst-case delay at the output of gate i, from the primary
inputs. Then for each gate, the delay constraint is expressed as

mi þ dj � mj, (4:36)

where gate i 2 fan-in (gate j), and dj is the delay of gate j. Thus, the number of delay constraints is
reduced from a number that could, in the worst case, be exponential in j V j, to one that is linear in j E j,
using j V j additional variables.
More recent work [14] recognizes that many of the Lagrange multipliers can be removed to build a

relaxed problem, and uses Lagrangian relaxation on the dual to obtain a very fast optimal solution.

4.3.7 Two-Step Optimization

Since the number of variables in the transistor sizing problem, which equals the number of transistors in
a combinational segment, is typically too large for most optimization algorithms to handle efficiently,
many algorithms choose a simpler route by performing the optimization in two steps. The most
successful of these methods is given in Ref. [15], which goes alternately through a D-phase and a
W-phase; one of these creates delay budgets for each gate by solving a flow problem, and the other
assigns transistor sizes based on these budgets.

4.3.8 Convex Programming-Based Approach

The chief shortcoming of most of the approaches above is that the simplifying assumptions that are made
to make the optimization problem more tractable may lead to a suboptimal solution. The algorithm in
iCONTRAST solves the underlying optimization problem exactly.

x0

g1(x) g2(x)

FIGURE 4.10 Nondifferentiability of the max
function.

Design by Optimization 4-17

The objective of the algorithm is to solve the transistor sizing problem in Equation 4.28, where both
the area and the delay are posynomial functions of the vector x of transistor sizes. The procedure
described below may easily be extended to solve the formulations in Equations 4.29 and 4.30 as well;
however, these formulations are not as useful to the designer. The variable transformation, (xi)¼ (ezi),
maps the problem in Equation 4.28 to

minimize Area(z) ¼
Xn
i¼1

ezi

subject to D(z) � Tspec:

(4:37)

The delay of a circuit is defined to be the maximum of the delays of all paths in the circuit. Hence, it can
be formulated as the maximum of posynomial functions of x. This is mapped by the above transform-
ation onto a function D(z) that is a maximum of convex functions; a maximum of convex functions is
also a convex function. The area function is also a posynomial in x, and is transformed into a convex
function by the same mapping. Therefore, the optimization problem defined in Equation 4.28 is mapped
to a convex programming problem, i.e., a problem of minimizing a convex function over a convex
constraint set. Due to the unimodal property of convex functions over convex sets, any local minimum of
Equation 4.28 is also a global minimum.
Vaidya’s convex programming method described in Section 4.2.3 is then used to find the unique global

minimum of the optimization problem.

4.3.8.1 Gradient Calculations

In an iteration of Vaidya’s convex programming algorithm, when the center zc of a polytope lies within
the feasible region S, the gradient of the area function is required to generate the new hyperplane passing
through the center. The gradient of the area function (Equation 4.37) is given by

rArea(z) ¼ [ez1 , ez2 , . . . , ezn]: (4:38)

In the case when the center zc lies outside the feasible region S, the gradient of the critical path delay
function Dcritpath (zc) is required to generate the new hyperplane that is to be added. Note that transistors
in the circuit can contribute to the kth component of the gradient of the delay function in either of
two ways:

1. If the kth transistor is a critical, supporting, or blocking transistor (as defined in Section 4.3.4)
2. If the kth transistor is a capacitive load for some critical transistor

Transistors that satisfy neither of these two requirements have no contribution to the gradient of the
delay function.

4.3.9 Statistical Optimization

In the presence of statistical variations, it is important to perform timing optimization based on statistical
static timing analysis. An obvious way to increase the timing yield of a digital circuit is to pad the
specifications to make the circuit robust to variations, i.e., choose a delay specification of the circuit that is
tighter than the required delay. This new specification must be appropriately selected to avoid large area
or power overheads due to excessively conservative padding.
Early work in Ref. [9] proposes formulation of statistical objective and timing constraints, and solves the

resulting nonlinear optimization formulation, but this is highly computational. Other approaches have
extended TILOS heuristic to optimize mþ 3s, where m is the mean of the delay PDF and s its standard
deviation, but while these methods work reasonably in practice, they have no theoretical backing.

4-18 Computer Aided Design and Design Automation

More formal optimization approaches have also been used. The work in Ref. [16] presents approaches
to optimize the statistical power of the circuit, subject to timing yield constraints under convex
formulation of the problem as a second-order conic program. The work in Ref. [17] proposes a gate
sizing technique based on robust optimization theory: robust constraints are added to the original
constraints set by modeling the intrachip random process parameter variations as Gaussian variables,
contained in a constant probability density uncertainty ellipsoid, centered at the nominal values.

4.4 Analog Design Centering Problem

4.4.1 Problem Description

While manufacturing an analog circuit, it is inevitable that process variations will cause design para-
meters, such as component values, to waver from their nominal values. As a result, the manufactured
analog circuit may no longer meet some behavioral specifications, such as requirements on the delay,
gain, and bandwidth, that it has been designed to satisfy. The procedure of design centering attempts to
select the nominal values of design parameters to move the circuit to the center of the feasible region.
The values of n design parameters may be ordered as an n-tuple that represents a point in Rn. A point

is feasible if the corresponding values for the design parameters satisfy the behavioral specifications on
the circuit. The feasible region (or the region of acceptability), Rf � Rn, is defined as the set of all design
points for which the circuit satisfies all behavioral specifications.
The random variations in the values of the design parameters are modeled by a PDF, F(z): Rn !

[0, 1], with a mean corresponding to the nominal value of the design parameters. The yield of the circuit,
Y, as a function of the mean, x, is given by

Y(x) ¼
ð

Rf

Fx(z)dz: (4:39)

The design center is the point x at which the yield, Y(x), is maximized. There have traditionally been two
approaches to solving this problem: one based on geometrical methods and another based on statistical
sampling. In addition, several methods that hybridize these approaches also exist. We now provide an
exposition of geometrical approaches to the optimization problem of design centering.
A common assumption made by geometrical design centering algorithms is that Rf is a convex-

bounded body. Geometrical algorithms recognize that the evaluation of the integral (Equation 4.39) is
computationally difficult, and generally proceed as follows: the feasible region in the space of design
parameters, i.e., the region where the behavioral specifications are satisfied, is approximated by a known
geometrical body, such as a polytope or an ellipsoid. The center of this body is then approximated, and is
taken to be the design center.

4.4.2 Simplicial Approximation Method

4.4.2.1 Outline of the Method

The simplicial approximation method [18] is a method for approximating a feasible region by a polytope
and finding its center. This method proceeds in the following steps:

1. Determine a set of m� nþ 1 points on the boundary of Rf.
2. Find the convex hull (see Section 4.2.2) of these points and use this polyhedron as the initial

approximation to Rf. In the two-dimensional example in Figure 4.11a, the points 1, 2, and 3 are
chosen in Step 1, and their convex hull is the triangle with vertices 1, 2, and 3. Set k¼ 0.

Design by Optimization 4-19

3. Inscribe the largest n-dimensional hypersphere in this approximating polyhedron and take its
center as the first estimate of the design center. This process involves the solution of a linear
program. In Figure 4.11a, this is the hypersphere C 0.

4. Find the midpoint of the largest face of the polyhedron, i.e., the face in which the largest n�
1-dimensional hypersphere can be inscribed. In Figure 4.11a, the largest face is 2–3, the face in
which the largest one-dimensional hypersphere can be inscribed.

5. Find a new boundary point on Rf by searching along the outward normal of the largest face found
in Step 4 extending from the midpoint of this face. This is carried out by performing a line search.
In Figure 4.11a, point 4 is thus identified.

6. Inflate the polyhedron by forming the convex hull of all previous points, plus the new point
generated in Step 5. This corresponds to the quadrilateral 1, 2, 3, and 4 in Figure 4.11a.

7. Find the center of the largest hypersphere inscribed in the new polyhedron found in Step 6. This
involves the solution of a linear program. Set k¼ kþ 1, and go to Step 4. In Figure 4.11a, this is the
circle C1.

Further iterations are shown in Figure 4.11b. The process is terminated when the sequence of radii of the
inscribed hypersphere converges.

4.4.2.2 Inscribing the Largest Hypersphere in a Polytope

Given a polytope specified by Equation 4.3, if the ai’s are chosen to be unit vectors, then the distance of a
point x from each hyperplane of the polytope is given by r ¼ aTi x� bi.
The center x and radius r of the largest hypersphere that can be inscribed within the polytope P are

then given by the solution of the following linear program:

minimize r

subject to aTi x � r � bi
(4:40)

Since the number of unknowns of this linear program is typically less than the number of constraints, it is
more desirable to solve its dual [1]. A similar technique can be used to inscribe the largest hypersphere in
a face of the polytope.
This method has also been generalized for the inscription of maximal norm bodies, to handle joint

PDFs with (nearly) convex level contours.

2

1

3
(a)

4

C1C0

2

1

3

4

6

5
7

C1C0 C2 C4

C3

(b)

FIGURE 4.11 Simplicial approximation method. (From Director, S.W. and Hachtel, G.D., IEEE Trans. Circuits
Syst., CAS-24, 363, 1977. With permission.)

4-20 Computer Aided Design and Design Automation

4.4.2.3 Elongated Feasible Regions

If the design centering procedure outlined earlier
is applied to a rectangular feasible region, the
best possible results may not be obtained by
inscribing a hypersphere. For elongated feasible
regions, it is more appropriate to determine the
design center by inscribing an ellipsoid rather
than a hypersphere. Simplicial approximation
handles this problem by scaling the axes so that
the lower and upper bounds for each parameter
differ by the same magnitude, and one may
inscribe the largest ellipsoid by inscribing the
largest hypersphere in a transformed polytope.
This procedure succeeds in factoring in reason-
ably the fact that feasible regions may be elong-
ated; however, it considers only a limited set of
ellipsoids, which have their axes aligned with the
coordinate axis, as candidates for inscription
within the polytope.

4.4.3 Ellipsoidal Method

This method [19] is based on principles similar to those used by the Shor–Khachiyan ellipsoidal
algorithm for linear programming. This algorithm attempts to approximate the feasible region by an
ellipsoid, and takes the center of the approximating ellipsoid as the design center. It proceeds by
generating a sequence of ellipsoids, each smaller than the last, until the procedure converges. Like
other methods, this procedure assumes that an initial feasible point is provided by the designer. The
steps involved in the procedure are as follows (Figure 4.12):

1. Begin with an ellipsoid, E0, that is large enough to contain the desired solution. Set j¼ 0.
2. From the center of the current ellipsoid, choose a search direction, and perform a binary search to

identify a boundary point along that direction. One convenient set of search directions are the
parameter directions, searching along the ith, i¼ 1, 2, . . . , n in a cycle, and repeating the cycle,
provided the current ellipsoid center is feasible. If not, a linear search is conducted along a line
from the current center to the given feasible point.

3. A supporting hyperplane [1] at the boundary point can be used to generate a smaller ellipsoid,
Ejþ1, that is guaranteed to contain the feasible region Rf, if Rf is convex. The equation of Ejþ1 is
provided by an update procedure.

4. Increment j, and go to Step 1 unless the convergence criterion is met. The convergence criterion is
triggered when the volume is reduced by a given factor, e. Upon convergence, the center of the
ellipsoid is taken to be the design center.

4.4.4 Convexity-Based Approaches

4.4.4.1 Introduction

This section describes the approach in Ref. [20]. Here, the feasible region is first approximated by a
polytope in the first phase. Next, two geometrical approaches to find the design center are proposed. In
the first, the properties of polytopes are utilized to inscribe the largest ellipsoid within the approximating
polytope. The second method proceeds by formulating the design centering problem as a convex

Current ellipsoid

New ellipsoid

Feasible
region

Cut aTx = b

FIGURE 4.12 Ellipsoidal method. (From Abdel-Malek,
H.L. and Hassan, A.-K.S.O., IEEE Trans. Comput. Aided
Des., 10, 1006, 1991. With permission.)

Design by Optimization 4-21

programming problem, assuming that the variations in the design parameters are modeled by Gaussian
probability distributions, and uses Vaidya’s convex programming algorithm described in Section 4.2.3 to
find the solution.

4.4.4.2 Feasible Region Approximation

The feasible region, Rf � Rn, is approximated by a polytope given by Equation 4.3 in this step. The
algorithm begins with an initial feasible point, z0 2 Rf. An n-dimensional box, namely, {z 2 Rn j
zmin� zi� zmax}, containing Rf is chosen as the initial polytope P0. In each iteration, n orthogonal
search directions, d1, d2, . . . , dn are chosen (possible search directions include the n coordinate direc-
tions). A binary search is conducted from z0 to identify a boundary point zbi of Rf, for each direction di. If
zbi is relatively deep in the interior of P, then the tangent plane to Rf at zbi is added to the set of
constraining hyperplanes in Equation 4.3. A similar procedure is carried out along the direction �di.
Once all of the hyperplanes have been generated, the approximate center of the new polytope is
calculated. Then z0 is reset to be this center, and the above process is repeated.

Therefore, unlike simplicial approximation that tries to expand the polytope outward, this method
starts with a large polytope and attempts to add constraints to shrink it inward. The result of polytope
approximation on an ellipsoidal feasible region is illustrated in Figure 4.13.

4.4.4.3 Algorithm I: Inscribing the Largest Hessian Ellipsoid

For a polytope given by Equation 4.3, the log-barrier function is defined as

F(z) ¼ �
Xm
i¼1

loge(a
T
i z� bi): (4:41)

The Hessian ellipsoid centered at a point x in the polytope P is defined as the ellipsoid E(x,H(x),1) (see
Equation 4.2), where H(xc) is the Hessian [1] of the log-barrier function above, and is given by

5

5

4.8

4.8

4.6

4.6

4.4

4.4

4.2

4.2

4

4

3.8

3.8

3.6

3.6

3.4

3.4

3.2

3.2
3

3

FIGURE 4.13 Polytope approximation for the convexity-based methods. (From Saptnekar, S.S., Vaidya, P.M. and
Kang, S.M., IEEE Trans. Comput. Aided Des., 13, 1536, 1994. With permission.)

4-22 Computer Aided Design and Design Automation

H(z) ¼ r2F(z) ¼
Xm
i¼1

aiaTi
(aTi z� bi)

2 : (4:42)

This is known to be a good approximation to the polytope locally around x.
Hence, the goal is to find the largest ellipsoid in the class E(x, H(x),r) that can be inscribed in the

polytope, and its center xc. The point xc will be taken to be the computed design center. An iterative
process is used to find this ellipsoid. In each iteration, the Hessian at the current point xk is calculated,
and the largest ellipsoid E(x, H(xk),r) is inscribed in the polytope. The inscription of this ellipsoid is
equivalent to inscribing a hypersphere in a transformed polytope. The process of inscribing a hyper-
sphere in a polytope is explained in Section 4.4.2.

4.4.4.4 Algorithm II: Convex Programming Approach

When the PDFs that represent variations in the design parameters are Gaussian in nature, the design
centering problem can be posed as a convex programming problem.
The joint Gaussian PDF of n independent random variables z¼ (z1, . . . , zn) with mean x¼ (x1, . . . , xn)

and variance s¼ (s1, . . . , sn) is given by

Fx(z) ¼ 1

(2p)n=2s1s2 � � �sn

exp
Xi¼n

i¼0

� (zi � xi)
2

2s2
i

" #
(4:43)

This is known to be a log-concave function of x and z. Also, note that arbitrary covariance matrices
can be handled, since a symmetric matrix may be converted into a diagonal form by a simple linear
(orthogonal) transformation. The design centering problem is now formulated as

maximize Y(x) ¼
ð
P

Fx(z)dz

such that x 2 P:
(4:44)

where P is the polytope approximation to the feasible region Rf. It is a known fact that the integral of a
log-concave function over a convex region is also a log-concave function. Thus, the yield function Y(x) is
log-concave, and the above problem reduces to a problem of maximizing a log-concave function over a
convex set. Hence, this can be transformed into a convex programming problem. The convex program-
ming algorithm in Section 4.2.3 is then applied to solve the optimization problem.

4.4.5 Concluding Remarks

The above list of algorithms is by no means exhaustive, but provides a general flavor for how optimiza-
tion methods are used in geometrical design centering. The reader is referred to [21–24] for further
information about statistical design. In conclusion, it is appropriate to list a few drawbacks associated
with geometrical methods:

Limitations of the approximating bodies: In the case of ellipsoidal approximation, certain convex bodies
cannot be approximated accurately, because an ellipsoid is symmetric about any hyperplane passing
through its center, and is inherently incapable of producing a good approximation to a body that has a
less symmetric structure. A polytope can provide a better approximation to a convex body than an
ellipsoid since any convex body can be thought of as a polytope with an infinite number of faces.
However, unlike the ellipsoidal case, calculating the exact center of a polytope is computationally difficult
and one must resort to approximations.

Design by Optimization 4-23

Statistical effects are ignored: Methods such as simplicial approximation, ellipsoidal approximation, and
Algorithm I of the convexity-based methods essentially approximate the feasible region by means of an
ellipsoid, and take the center of that ellipsoid to be the design center, regardless of the probability
distributions that define variations in the design parameters. However, the design center could be highly
dependent on the exact probability distributions of the variables, and would change according to these
distributions.

Nonconvexities: Real feasible regions are seldom convex. While in many cases, they are nearly convex,
there are documented cases where the feasible region is not very well behaved. In a large number of cases
of good designs, since the joint PDF of the statistical variables decays quite rapidly from the design center,
a convex approximation does not adversely affect the result. However, if the nominal design has a very
poor yield, a convex approximation will prove to be inadequate.

The curse of dimensionality: Geometrical methods suffer from the so-called curse of dimensionality,
whereby the computational complexity of the algorithm increases greatly with the number of variables.
However, as noted in Ref. [25], for local circuit blocks within a die, performance variations in digital
MOS circuits depend on only four independent statistical variables. Moreover, for this class of circuits,
the circuit performance can be modeled with reasonable accuracy by linear functions. For such circuits,
the deterministic (i.e., nonstatistical) algorithm in Ref. [25] is of manageable complexity.

References

1. D. G. Luenberger, Linear and Nonlinear Programming, 2nd edn. Reading, MA: Addison-Wesley, 1984.
2. R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli, A survey of optimization techniques

for integrated-circuit design, Proceedings of the IEEE, 69: 1334–1362, October 1981.
3. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge University Press,

2004.
4. K. Kasamsetty, M. Ketkar, and S. S. Sapatnekar, A new class of convex functions for delay modeling

and their application to the transistor sizing problem, IEEE Transactions on Computer-Aided Design,
19: 779–788, July 2000.

5. S. S. Sapatnekar, V. B. Rao, P. M. Vaidya, and S. M. Kang, An exact solution to the transistor sizing
problem for CMOS circuits using convex optimization, IEEE Transactions on Computer-Aided
Design, 12: 1621–1634, November 1993.

6. S. S. Sapatnekar, Timing, Boston, MA: Springer, 2004.
7. J. Fishburn and A. Dunlop, TILOS: A posynomial programming approach to transistor sizing, in

Proceedings of the IEEE International Conference on Computer-Aided Design, Santa Clara, CA,
pp. 326–328, 1985.

8. J. Rubenstein, P. Penfield, and M. A. Horowitz, Signal delay in RC tree networks, IEEE Transactions
on Computer-Aided Design, CAD-2: 202–211, July 1983.

9. E. Jacobs and M. Berkelaar, Gate sizing using a statistical delay model, in Design, Automation, and
Test in Europe, Paris, France, pp. 283–290, 2000.

10. H. Chang and S. S. Sapatnekar, Statistical timing analysis considering spatial correlations using a
single PERT-like traversal, in Proceedings of the IEEE International Conference on Computer-Aided
Design, San Jose, CA, pp. 621–625, 2003.

11. Y. Zhan, A. J. Strojwas, X. Li, L. T. Pileggi, D. Newmark, and M. Sharma, Correlation-aware statistical
timing analysis with non-Gaussian delay distributions, in Proceedings of the ACM=IEEE Design
Automation Conference, Anaheim, CA, pp. 77–82, 2005.

12. J. Singh and S. S. Sapatnekar, Statistical timing analysis with correlated non-Gaussian parameters
using independent component analysis, in Proceedings of the ACM=IEEE Design Automation Con-
ference, San Francisco, CA, pp. 155–160, 2006.

4-24 Computer Aided Design and Design Automation

13. D. Marple, Performance optimization of digital VLSI circuits, Technical Report No. CSL-TR-86-308,
Stanford University, Stansford, CA, October 1986.

14. C.-P. Chen, C. C.-N. Chu, and M. D.-F. Wong, Fast and exact simultaneous gate and wire sizing by
Lagrangian relaxation, IEEE Transactions on Computer-Aided Design, 18: 1014–1025, July 1999.

15. V. Sundararajan, S. S. Sapatnekar, and K. K. Parhi, Fast and exact transistor sizing based on iterative
relaxation, IEEE Transactions on Computer-Aided Design, 21: 568–581, May 2002.

16. M. Mani, A. Devgan, and M. Orshansky, An efficient algorithm for statistical power under timing
yield constraints, in Proceedings of the ACM=IEEE Design Automation Conference, Anaheim, CA,
pp. 309–314, 2005.

17. J. Singh, V. Nookala, Z.-Q. Luo, and S. Sapatnekar, Robust gate sizing by geometric programming, in
Proceedings of the ACM=IEEE Design Automation Conference, Anaheim, CA, pp. 315–320, 2005.

18. S. W. Director and G. D. Hachtel, The simplicial approximation approach to design centering,
IEEE Transactions on Circuits and Systems, CAS-24 (7): 363–372, 1977.

19. H. L. Abdel-Malek and A.-K. S. O. Hassan, The ellipsoidal technique for design centering and region
approximation, IEEE Transactions on Computer-Aided Design, 10: 1006–1014, August 1991.

20. S. S. Sapatnekar, P. M. Vaidya, and S. M. Kang, Convexity-based algorithms for design centering,
IEEE Transactions on Computer-Aided Design, 13: 1536–1549, December 1994.

21. S. W. Director, P. Feldmann, and K. Krishna, Statistical integrated circuit design, IEEE Journal of
Solid-State Circuits, 28: 193–202, March 1993.

22. M. D. Meehan and J. Purviance, Yield and Reliability in Microwave Circuit and System Design,
Boston, MA: Artech House, 1993.

23. S. W. Director, W. Maly, and A. J. Strojwas, VLSI Design for Manufacturing: Yield Enhancement,
Boston, MA: Kluwer Academic, 1990.

24. R. Spence and R. S. Soin, Tolerance Design of Integrated Circuits, Reading, MA: Addison-Wesley,
1988.

25. D. E. Hocevar, P. F. Cox, and P. Yang, Parametric yield optimization for MOS circuit blocks,
IEEE Transactions on Computer-Aided Design, 7: 645–658, June 1988.

Design by Optimization 4-25

5
Statistical Design

Optimization

Maciej A. Styblinski
Texas A&M University

5.1 Introduction .. 5-1
5.2 Problems and Methodologies of Statistical

Circuit Design... 5-1
5.3 Underlying Concepts and Techniques.................................. 5-2

Circuit Variables, Parameters, and Performances .

Statistical Modeling of Circuit (Simulator) Variables .

Acceptability Regions . Methods of Acceptability Region
Approximation . Manufacturing (Parametric) Yield

5.4 Statistical Methods of Yield Optimization 5-12
Large-Sample vs. Small-Sample Methods . Methods Using
Standard Deterministic Optimization Algorithms . Large-Sample
Heuristic Methods for Discrete Circuits . Large-Sample,
Derivative-Based Methods for Discrete Circuits . Large-Sample,
Derivative-Based Method for Integrated Circuits . Small-Sample
Stochastic Approximation-Based Methods . Small-Sample
Stochastic Approximation Methods for Integrated Circuits .

Case Study: Process Optimization for Manufacturing Yield
Enhancement . Generalized Formulation of Yield, Variability,
and Taguchi Circuit Optimization Problems

5.5 Conclusion... 5-30
References .. 5-31

5.1 Introduction

Manufacturing process variations and environmental effects (such as temperature) result in the vari-
ations of the values of circuit elements and parameters. Statistical methods of circuit design optimization
take those variations into account and apply statistical (or statistical=deterministic) optimization tech-
niques to obtain an ‘‘optimal’’ design. Statistical design optimization belongs to a general area of
statistical circuit design.

5.2 Problems and Methodologies of Statistical Circuit Design

A broad class of problems exists in this area: statistical analysis involves studying the effects of element
variations on circuit performance. It applies statistical techniques, such as Monte Carlo simulation [34]
and the variance propagation method [39], to estimate variability of performances. Design centering
attempts to find a center of the acceptability region [12] such that manufacturing yield is maximized.

5-1

Direct methods of yield optimization use yield as the objective function and utilize various statistical
(or mixed statistical=deterministic) algorithms to find the yield maximum in the space of designable
circuit=process parameters. Design centering and tolerance assignment (used mostly for discrete circuits)
attempt to find the design center, with simultaneous optimal assignment of circuit element tolerances,
minimizing some suitable cost function and providing 100% yield (worst-case design) [4,6]. To solve this
problem, mostly deterministic algorithms of nonlinear programming are used. Worst-case design is often
too pessimistic and too conservative, leading to substantial overdesign. This fact motivates the use of
statistical techniques, which provide a much more realistic estimation of the actual performance
variations and lead to superior designs. Stringent requirements of the contemporary very large scale
integration (VLSI) design prompted a renewed interest in the practical application of these techniques.
The most significant philosophy introduced recently in this area is statistical Design for Quality (DFQ).
It was stimulated by the practical appeal of the DFQ methodologies introduced by Taguchi [30],
oriented toward ‘‘on-target’’ design with performance variability minimization. In what follows,
mostly the techniques of manufacturing yield optimization and their design for quality generalization
are discussed.

5.3 Underlying Concepts and Techniques

5.3.1 Circuit Variables, Parameters, and Performances

5.3.1.1 Designable Parameters

Designable parameters, represented by the n-dimensional vector* x¼ (x1, . . . , xn), are used by circuit
designers as ‘‘decision’’ variables during circuit design and optimization. Typical examples are nominal
values of passive elements, nominal MOS transistor mask dimensions, process control parameters, etc.

5.3.1.2 Random Variables

The t-dimensional vector of random variables (or ‘‘noise’’ parameters in Taguchi’s terminology [30]) is
denoted as u¼ (u1, . . . , ut). It represents statistical R, L, C element variations, disturbances or variations of
manufacturing process parameters, variations of device model parameters such as tox (oxide thickness),
VTH (threshold voltage), and environmental effects such as temperature, supply voltage, etc. Usually, u
represents principal random variables, selected to be statistically independent and such that all other
random parameters can be related to them through some statistical models. Probability density function
(p.d.f.) of u parameters will be denoted as fu(u).

5.3.1.3 Circuit (Simulator) Variables

These variables represent parameters and variables used in circuit, process, or system simulators such as
SPICE. They are represented as the c-dimensional vector e¼ (e1, . . . , ec). Specific examples of e variables
are: R, L, C elements, gate widths Wj and lengths Lj of MOS transistors, device model parameters, or, if a
process simulator is used, process-related control, and physical and random parameters available to the
user. The e vector contains only those variables that are directly related to the x and u vectors.y This
relationship is, in general, expressed as

e ¼ e(x, u) (5:1)

The p.d.f. of u is transformed into fe(e) the p.d.f. of e. This p.d.f. can be singular, i.e., defined in a certain
subspace of the e-space (see examples below). Moreover, it can be very complicated, with highly non-
linear statistical dependencies between different parameters, so it is very difficult to represent it directly as

* Vectors are denoted by lowercase letters subscripts or superscripts.
y This means that, e.g., some SPICE parameters will always be fixed.

5-2 Computer Aided Design and Design Automation

a p.d.f. of e. In the majority of cases, the analytic form of fe(e) is not known. For that reason, techniques of
statistical modeling are used (see the next section).

5.3.1.4 Circuit Performances

The vector of circuit performance function (or simply performances) is defined as the m-dimensional
vector y¼ (y1, . . . , ym). Its elements can be gain, bandwidth, slew rate, signal delay, and circuit response
for a single frequency or time, etc. Each of the performances yj is a function of the vector of circuit
elements e: yj¼ yj(e)¼ yj(e(x, u)). These transformations are most often not directly known in analytical
form and a circuit simulator (such as SPICE) must be used to find the values of yj’s corresponding to the
given values of x and u. The overall simulator time required for the determination of all the performances
y can be substantial for large circuits. This is the major limiting factor for the practical application of
statistical circuit design techniques. To circumvent this problem, new statistical macromodeling tech-
niques are being introduced [31] (see example in Section 5.4.9).

5.3.2 Statistical Modeling of Circuit (Simulator) Variables

Statistical modeling is the process of finding a suitable transformation e¼ e(x, u), such that given the
distribution of u, the distribution of e can be generated. The transformation e¼ e(x, u) can be described
by closed form analytical formulas or by a computer algorithm.
For discrete active RLC circuits (e.g., such as a common emitter amplifier), vector e is composed

of two parts: the first part contains the actual values of statistically perturbed RLC elements: i.e.,
ei¼ xiþ ui for those elements. In this formula, u represents absolute element spreads and its expected
(average) value, E{u}¼ 0 and xi is the nominal value of ei, often selected as the expected value of ei. This
implies that the variance of ei, var{ei}¼ var{ui}; E{ei}¼ xi and the distribution of ei is the same as that of
ui, with the expected value shifted by xi. Alternatively, if ui represents relative element spreads, ei¼ xi
(1þ ui), where E{ui}¼ 0. Therefore, E{ei}¼ xi; var {ei}¼ xi

2 var{ui}, i.e., the standard deviations sei and
sui are related: sei¼ xi sui, or sei=E{ei}¼sei=xi¼sui. This means that with fixed sui, the relative
standard deviation of ei is constant, as it is often the case in practice, where standard deviations of
RLC elements are described in percents of
the element nominal values. Both forms of ei
indicate that each ei is directly associated with
its corresponding ui and xi, and that there is
one-to-one mapping between ei and ui. These
dependencies are important, since many of the
yield optimization algorithms were developed
assuming that ei¼ xiþ ui. A typical p.d.f. for
discrete elements is shown in Figure 5.1,
before ‘‘binning’’ into different categories
(the whole curve) and after binning into
�1%, �5%, and �10% resistors (the shaded
and white areas: e.g., the �10% resistors will
have the distribution characterized by the
external shaded areas, with a �5% ‘‘hole’’ in
the middle).
Usually, passive discrete elements are statis-

tically independent* as shown in Figure 5.2.

R

+3σ

+10%–10%

εR εR

–3σ

±5%

p.
d.

f.

Ro

±1%

FIGURE 5.1 Typical probability density function (p.d.f.) of
a discrete resistor before and after ‘‘binning.’’

* But, for instance, if RL (RC) is a loss resistance of an inductor L (capacitor C) then L and RL (C and RC) are correlated.

Statistical Design Optimization 5-3

The cross-section shown is often called a level set, a norm body [12], or a tolerance body. It is defined as a
set of element values for which the element p.d.f. is larger than a prescribed value.
This value is selected such that the probability of the element values falling into the tolerance body is

equal to e.g., 95%, (i.e., the tolerance body represents 95% of the entire element population). Alterna-
tively, the tolerance body can be represented as a (hyper-) box shown in the figure, with the sides equal to
2ei (2eRi

in the figure), called the tolerance region and denoted by Re. Figure 5.2 also shows that the
dependence ei¼ xiþ ui is equivalent in this case to Ri¼RNOM,iþDRi, where xi¼RNOM,i; u¼DRi).

The second part of e is composed of the parameters representing active device (e.g., BJT, MOS) model
parameters. They are usually strongly correlated within each device model (same applies to ICs), but
typically, no correlations occur between device model parameters of different devices. Each of the device
model parameters ed is related through a specific model ed¼ ed(x, u) to the vector u parameters,*
representing principal random variables, which are themselves often some device model parameters
(such as oxide thickness tox of MOS transistors), and=or are some dummy random variables. For example,
in the BJT empirical statistical model introduced in [3], the base transient time Tn is modeled as follows:

ed ¼ ed(xd, u1, u2) ¼ Tn(b,Xr5) ¼ aþ bffiffiffi
b

p
� �

(1þ cXr5) (5:2)

i.e., it is the function of the current gain u1¼b (the principal random variable, affecting the majority of
the BJT model parameters) and u2¼Xr5 (a dummy random variable, uniformly distributed in the
interval [�1, 1] independent of b and having no physical meaning); a, b, and c are empirically selected
constants (Figure 5.3b).

Rε-Approximate to the
tolerance region

Ro
1

R1

R2

Ro
2

εR2

εR2

εR1
εR1

FIGURE 5.2 Level set (cross section) of a p.d.f. function for two discrete resistors after manufacturing.

* Observe that these models are parameterized by x: e.g., the MOS transistor model parameters ei will also depend on the
device length L and width W.

Mismatch

Line of perfect
tracking

BJTs

h21e=β

(b)

Tn

R1

R2

(a)

FIGURE 5.3 Dependencies between passive IC elements and between device model parameters: (a) linear, between
two resistors R1 and R2 and (b) nonlinear, between the base transit time Tn and the current gain h21e¼b for bipolar
junction transistors.

5-4 Computer Aided Design and Design Automation

In the discrete circuit case, each designable parameter xi has a random variable ui added to it (i.e., x and
u in the same space in which the p.d.f. fe(e)¼ fu(xþ u) is defined.

For integrated circuits, the passive elements (R’s, C’s), active dimensions (such as Ws and Ls for MOS
transistors), and other transistor model parameters are strongly correlated (see Figure 5.3a). Because of
this, the distribution of u parameters is limited to a certain subspace of the entire e-space, i.e., fe(e(x, 0)) is
singular, and the formula ei¼ xiþ ui does not hold. As an example, consider a subset of all e parameters
representing the gate lengths x1¼ L1, x2¼ L2 (designable parameters) of two MOS transistors T1, T2 and
an independent designable parameter x3þ Ibias, representing the transistor bias current. Assume also (as
is frequently the case) that u � DL, the technological gate length reduction (a common random
parameter) changes the same way for T1 and T2, i.e., there is ideal matching of DL � DL1¼DL2,* i.e.,
e1þ x1þ uþ L1�DL, e2þ x2þ uþ L2�DL, e3þ x3þ Ibias. The only random variable in this model is
DL, as shown in Figure 5.4. The p.d.f. fe(e) is in this case defined only in the one-dimensional subspace of
the e-space (i.e., all the realization of the vector e are located on the thick line in Figure 5.4). The major
consequence of this difference is that, in general, many yield optimization algorithms developed for
discrete circuits (i.e., using the explicit assumption that (ei¼ eiþDi), cannot be used for IC design.

Statistical modeling for ICs is concerned with representing global variations and parameter mis-
matchesy occurring between different devices on the same chip. In the last example, mismatch can be
modeled by two additional independent local mismatch variables eL1, eL2, representing small random
local deviations of DL1 and DL2 from the ideal value DL, i.e., e1þ x1þ uþ eiþ L1�DL� eL1, e2þ x2þ
uþ eiþ L2�DL� eL2. With this model, DL represents a global or common factor, affecting both channel
lengths, and eL1, eL2, represented specific (local) variations. The model just presented is a simple (simple,
one-factor) case of the Factor Analysis (FA) [20] model of correlations between e1 and e2.

In [8], FA analysis, together with Principal Component Analysis (PCA)z and nonlinear regression were
used for the determination of linear and nonlinear statistical models for CMOS transistor parameters.
The following common factors F1, . . . , F8 were identified: tox (oxide thickness common to n- and p-type

(e1, e2)
Subspace

e2 = L2 – ΔL

x2 = L2

x1 = L1

x3 = Ibias

e3 = Ibias

e1= L1– ΔL

FIGURE 5.4 Singular distribution fe(e1, e2, e3) in three-dimensional e-space, represented by the thick line in the
(e1, e2)-subspace (plane). This is due to the perfect matching of DL � DL1 � DL2 values.

* Such a model is commonly used for digital ICs [9], since it is of sufficient accuracy for digital applications.
y Element mismatches are very important for analog ICs.
z Principal component analysis involves coordinate rotation and leads to uncorrelated principal components.

Statistical Design Optimization 5-5

transistors) NSUB,n, NSUB,p (n- and p-type substrate doping), DLn, DLp (length reduction), DWn, DWp

(width reduction—for narrow transistors only), and XJp (p-type junction depth). These variables were
causing about 96% of the total variability of all parameters. All the other CMOS transistor model
parameters were related to the F1, . . . , F8 factors through quadratic (or linear in simplified models)
regression formulas. The resulting models were able to represent—with a high level of accuracy—the
strong nonlinear statistical dependencies existing between some model parameters.
The major theoretical and empirical findings in mismatch modeling are the device area (or length) and

distance dependencies of the mismatch level (see [23], where references to other authors can be found).
For example, the variance of the difference e1� e2 between two MOS transistor model parameters e1, e2 is
modeled as [3,9]

var(e1 � e2) ¼
ap

2W1L1
þ ap
2W2L2

þ s2pd
2
12 (5:3)

where
W1, L1, W2, and L2 are widths and lengths of the two transistors
d12 is the distance between the transistor centers
ap and sp are empirical coefficients adjusted individually for each model parameter

Using this model together with PCA, and introducing other concepts, two quite sophisticated linear
statistical models in the form ei¼ e(xi, u, Wi, Li, d) were proposed in [23]. They include the transistor
separation distance information, collected into the vector d in two different forms. The models,
constructed from on-chip measured data, were used for practical yield optimization. u parameters
were divided into two groups: a group of correlated random variables responsible for the common
part of each parameter variance and correlations between model parameters of each individual transistor,
and the second group of local (mismatched related) random variables, responsible for mismatches
between different transistors. Additional dependencies, related to transistor spacing and device area
related coefficients, maintain proper mismatch dependencies.

5.3.3 Acceptability Regions

The acceptability region Ay is defined as a region in the space of performance parameters y (y-space), for
which all inequality and equality constraints imposed on y are fulfilled. In the majority of cases, Ay is a
hyperbox, i.e., all the constraints are of the form: SLj � yj� SUj ; j¼ 1, . . . ,m, where SLj and SUj are the
(designer defined) lower and upper bounds imposed on yj, called also designer’s specifications. More
complicated specifications, involving some relations between yi parameters, or SLj and SUj bounds can
also be defined.
For the simplest case of the y-space box-constraints, the acceptability region A in the e-space is defined

as such a set of e vectors in the c-dimensional space, for which all inequalities SLj � yj(e)� SUj , j¼ 1, . . . ,m,
are fulfilled. Illustration of this definition is shown in Figure 5.5. It can be interpreted as the mapping of
the acceptability region Ay from the y-space into the e-space. Acceptability regions A can be very
complicated: they can be nonconvex and can contain internal infeasible regions (or ‘‘holes’’), as shown
in Figure 5.6 for a simple active RC filter [25].
For discrete circuits, A is normally represented in the e-space, due to the simple relationship ei¼ xiþ ui

(or ei¼ xi(1þ ui)), between ei, xi, and ui. For integrated circuits, e is related to x and u through the
statistical model, x and u are in different spaces (or subspaces), the dimension of u is lower than the
dimension e, and the p.d.f. fe(e) is singular and usually unknown in analytic form. For these reasons, it is
more convenient to represent A in the joint (x, u)-space, as shown in Figure 5.7. For a fixed x, A can be
defined in the u-space and labeled as Au (x), since it is parameterized by the actual values of x, as shown
in Figure 5.7. The shape and location of Au (x) change with x, as shown. For a fixed x, Au (x) is defined as

5-6 Computer Aided Design and Design Automation

e2 unacceptable

e1 unacceptableSU(ω)

SL(ω)

y(ω, e2)

y(ω, e1)

e1

e2e2

ω

e1

A

FIGURE 5.5 Illustration of the mapping of the SL(v), SU(v) constraints imposed on y(v, e) into the e-space of
circuit parameters.

(c)

R1

R2

K

B

C
K

M

9.71

0.9758 1.03

10.37 D

R1

R2

KB

C10.5

9.74 C
9.54 10.29

R1

C1

K

B
C

C

10.78

8.32

0.08474 0.1174

M

R1

K

B

C

C C2

10.4

9.78
0.09694 0.1019

M

M

(a)

C2 = 0.1

C1 = 0.1

R1 = 10 R2 = 10

Ra = 1
Rb = 1.98

A = 50,000

V1 V2

++ +

––

–

(b)

20 log | f |
50

40

10

20

30

M

N

O
K

L

A
B D

E
ω1 ω5ω4ω3ω2

C

0.4 0.6 0.8 1.61 1.2 1.4

SL(ω)

SU(ω)

ω rd
s]]

FIGURE 5.6 (a) Sallen–Key active filter, (b) lower and upper bounds imposed in the filter frequency response, and
(c) two-dimensional cross sections of the acceptability region A. Capital letters in (b) and (c) indicate the corres-
pondence of constraints to the boundaries of A.

Statistical Design Optimization 5-7

such a region in the t-dimensional u space, for which all the inequalities SLj � yj(e(x, u))� SUj ; j¼ 1, . . . ,m,
are fulfilled.
In order to recognize if a given point e(x, u) in the circuit parameter space belongs to A [or Au (x)], an

indicator function f(�) is introduced:

f e(x, u)ð Þ ¼ 1 if e(x, u) belongs to A (a successful, or ‘‘pass point’’)
0 otherwise (a ‘‘fall point’’)

�
(5:4)

A complementary indicator function fF(e(x, u))¼f(e(x, u))� 1 is equal to 1 if e(x, u) does not belong to
A and 0 otherwise. Both indicator functions will be used in what follows.

5.3.4 Methods of Acceptability Region Approximation

Except for some simple cases, the acceptability region A in the e (or the joint (x, u))-space is unknown
and it is impossible to fully define it. For yield optimization and other statistical design tasks and implicit
or explicit knowledge of A and=or its boundary is required. If only the points belonging to A are stored,
this can be considered a point-based ‘‘approximation’’ to A. Some of the point-based methods are Monte
Carlo-based design centering, centers of gravity method, point-based simplicial approximation and yield
evaluation (see below), ‘‘parametric sampling-based’’ yield optimization [36], yield optimization with
‘‘reusable’’ points [39], and others.

The acceptability segment-based method of the A-region approximation was called in [27] a one-
dimensional orthogonal search (ODOS) technique leading to several yield optimization methods [25,46].
Its basic principle is shown in Figure 5.8b, where line segments passing through the points ei randomly
sampled in the e-space and parallel to the coordinate axes, are used for the approximation of A. ODOS is
very efficient for large linear circuits, since the intersections with A can be directly found from analytical
formulas. The two-dimensional cross-sections of A, shown in Figure 5.6, were obtained using
this approach. The surface integral-based yield and yield gradient estimation and optimization method
proposed in [13] also use the segment approximation to the boundary of A. A variant of this method
is segment approximation in one direction, as shown in Figure 5.8c. This method was then extended
to plane and hyperplane approximation to A in [42] (Figure 5.8d). In another approach, called
‘‘radial exploration of space’’ in [54], the segments approximating A are in radial directions, as shown
in Figure 5.8e.

A(X3)

A(X1)

A(X2)

X2X1 X3 X

A

θ1

θ2

θ2

θ1

Hyperplane

(a)

(b)

FIGURE 5.7 Acceptability region for integrate circuits: (a) in the joint (x, u)-space and (b) in the u-space,
parameterized by different values of x. The hyperplanes shown represent t-dimensional subspaces of u parameters.

5-8 Computer Aided Design and Design Automation

The techniques just described rely on the fact that ‘‘segment’’ yields (calculated in the e subspace) can
be, for some special cases [27,54], calculated more efficiently than using a standard Monte Carlo method.
This leads to higher efficiency and accuracy of yield estimation, in comparison to the point-based yield
estimation.
The simplicial approximation proposed in [10] (described in more detail in Section 4.4), is based on

approximating the boundary of A in the e-space, by a polyhedron, i.e., by the union of those partitions
of a set of c-dimensional hyperplanes which lie inside of the boundary of A or on it. The boundary of

(a)

(c)

(b)

(d)

e1

A

e3

e2

x1
1 x2

1 x3
1

Plane

e1

e2

A

e2

e1

Aei

e1

e3

e2

(e)

(g)

(f)

(h)

e1

e2

e3
e2

e1

A

Cutting plane

Tolerance
region

e1

e2

X1

X2 A

e2

e1

A
X0

FIGURE 5.8 Various methods of acceptability region approximation: (a) ‘‘point-based’’ simplicial approximation
to the A-region, (b) segment approximation to A in all directions along ei axes, (c) segment approximation to A in one
direction, (d) (hyper)-plane approximation A, (e) segment approximation to A in radial directions, (f) simplicial
approximation to A in two dimensions, (g) simplicial approximation to A in three dimensions, and (h) cutting-plane
approximation to A. Note: All A-regions are shown in e-space, for the discrete case, i.e., for e¼ xþ u.

Statistical Design Optimization 5-9

A-region is assumed to be convex (see Figure 5.8f and g). The approximating polyhedron is a convex hull
of points. Simplicial approximation is obtained by locating points on the boundary of A, by a systematic
expansion of the polyhedron. The search for next vertex is always performed in the direction passing
through the center of the largest face of the polyhedron already existing. In the MC-oriented ‘‘point-
based’’ version of the method [11] (see Figure 5.8a), subsequent simplicial approximations Ãi to A are not
based on the points located on the boundary of A (which is computationally expensive) but on the points
ei belonging to A already generated during the MC simulation; after each new point is generated, it is
checked if ei belongs to Ãi�1, (where Ãi�1 is the latest simplicial approximation to A); if yes, the sampled
point is considered successful without performing the circuit analysis; if ei does not belong to Ãi�1 and
the circuit analysis reveals that ei belongs to A, the polyhedron is expanded to include this point. Several
versions of this general approach, leading to the substantial reduction of the computational effort of yield
estimation, are described in the original article.
The method of ‘‘cuts’’ proposed in [5], creates a ‘‘cutting-plane’’ approximation to A in the corners of

the tolerance region Re assumed to be a hypercube, as shown in Figure 5.8h. The method was combined
with discretization of the p.d.f. fe(e) and multidimensional quadratic approximation to circuit constraints,
leading to simplified yield and yield derivative formulas and yield optimization for arbitrary statistical
distributors [1].

5.3.5 Manufacturing (Parametric) Yield

Manufacturing yield is defined as the percentage of the total number of products manufactured that fulfill
both functional and parametric performance requirements.* Functional circuit performance is the circuit
ability to perform desired functions. Catastrophic (or ‘‘hard’’) circuit failures (such as shorts or open
circuit faults caused, e.g., by particular wafer contamination) will completely eliminate some of the circuit
functions, thus decreasing the part of the overall yield called functional yield. Parametric circuit
performance is a measure of circuit quality and is represented by measurable performance functions
such as gain, delay, bandwidth, etc., constituting the y-parameter vector. The part of yield related to
parametric circuit performance is called parametric yield and is the only type of yield considered in what
follows. The actual manufacturing yield is smaller than the parametric yield, since it is equal to the
product of the functional or parametric yield [12]. In general, parametric yield is used during circuit
electrical design, while functional yield is used during circuit layout design.y Both are used to predict and
optimize yield during circuit design.
Parametric yield, therefore, is equal to the percentage of circuits that fulfill all parametric requirements,

i.e., it is equal to the probability that e belongs to the acceptability region A. So, it can be calculated as the
integral of the p.d.f. of e, fe(e) over A, for a given vector of designable parameters x. Since e¼ e(x, u) is a
function of x, then e, fe(e)¼ fe(e, x) (e.g., E{e} and var{e} can be both functions of x). Therefore,z

Y(x) ¼ P e 2 Af g ¼
ð

A

fe(e, x)de ¼
ð

Rc

f(e)fe(e, x)de ¼ Ee f(e)f g (5:5)

where
P{�} denotes probability
f(e) is the indicator function (Equation 5.4)
Ee{�} is expectation with respect to the random variable e

* For more detailed yield definitions involving different types of yield, e.g., design yield, wafer yield, probe yield, processing
yield, etc., see [12].

y Layout design (i.e., transistor spacing, location, size) has also influence on parameter variations and mismatch, as discussed
in Section 5.3.

z Multiple integration performed below is over the acceptability region A, or over the entire c-dimensional space Rc of real
numbers. e means ‘‘belongs to.’’

5-10 Computer Aided Design and Design Automation

The above formula is useful if fe(e, x) is a nonsingular p.d.f., which is usually the case for discrete circuits,
for which ei¼ xiþ ui, (or ei¼ xi (1þ ui)). In a general case, however (e.g., for integrated circuits), the
p.d.f. fe(e, x) is not known, since it has to be obtained from a complicated transformation e¼ e (x, u),
given the p.d.f. fu(u) of u. Therefore, it is more convenient to integrate directly in the u-space. Since
parametric yield is also the probability that u belongs to Au(x) (the acceptability region in the u-space for
any fixed x), yield becomes

Y(x) ¼ P u 2 Au(x)f g ¼
ð

Au(x)

fu(u)du

¼
ð

Rt

f e(x, u)ð Þfu(u)du ¼ Eu f e(x, u)ð Þf g (5:6)

Equation 5.6 is general, and is valid for both discrete and integrated circuits. An unbiased estimator of
Eu{r(e(x, u))}þEu{r(u)} (for fixed x), is the arithmetic mean, based on N points ui, sample in u-space
with the p.d.f. fu(u), for which the function f(ui) is calculated (this involves circuit analyses). Thus, the
yield estimator Ŷ is expressed as

Ŷ ¼ 1
N

XN
i¼1

f ui
� � ¼ Ns

N
(5:7)

where NS is the number of successful trials, i.e., the number of circuits for which u 2 Au (x) (all circuit
constraints are fulfilled). Integral of Equation 5.6 is normally calculated using Monte Carlo (MC)
simulations [34] and Equation 5.7. The MC method is also used to determine statistical parameters of
the p.d.f. fy(y) of y¼ y(x, u). In order to sample the u parameters with p.d.f. fu(u), special numerical
procedures, called random number generators, are used. The basic MC algorithm is as follows:

1. Set i¼ 0, NS¼ 0 (i is the current index of a sampled point and NS is the total number of successful
trials).

2. Substitute i¼ iþ 1, generate the ith realization of u : ui¼ (ui1, . . . , u
i
t), with the p.d.f. fu(u).

3. Calculate the ith realization of yi¼ (yi1, . . . , y
i
m)¼ y(x, ui), with the aid of an appropriate circuit

analysis program, and store the results.
4. Check if all circuit constraints are fulfilled, i.e., if SL� yi� SU; if yes, set NS¼NSþ 1.
5. If i 6¼ N, go to (2); otherwise, find the yield estimator Ŷ ¼NS=N. If needed, find also some statistical

characteristics of y-parameters (e.g., create histograms of y, find statistical moments of y, etc.).

To generate ui’s with the p.d.f. fu(u), the uniformly distributed random numbers are generated first and
then transformed to fu(u). The most typical random number generator (r.n.g.), generating a sequence of
pseudorandom, uniformly distributed integers uk in the interval [0, M] (M is an integer), is a multiplica-
tive r.n.g., using the formula [34]: ukþ1¼ cuk (mod M) where c is an integer constant and uk (mod M)
denotes a remainder from dividing uk by M. The initial value u0 of uk is called the ‘‘seed’’ of the r.n.g.,
and, together with c, should usually be chosen very carefully, to provide good quality of the random
sequence generated. Several other r.n.g.s are used in practice [34]. The rk numbers in the [0, 1) interval
are obtained from rk¼ uk=M. Distributions other than uniform are obtained through different trans-
formations of the uniformly distributed random numbers, such as the inverse of the cumulative
distribution function [34]. To generate correlated normal variables u¼ (u1, . . . , un), with a given covar-
iance matrix Ku, the transformation u¼CZ is used, where Z¼ (z1, z2, . . . , zn) is the vector of independent
normal variables with E{zi}¼ 0, var{zi}¼ 1, i¼ 1, . . . , n, and C is a matrix obtained from the so-called

Statistical Design Optimization 5-11

Cholesky decomposition of the covariance matrix Ku such that Ku¼CCt where t denotes transposition.
C is usually lower or upper triangular and can be easily constructed from a given matrix Ku [34].

The yield estimator Ŷ is a random variable, since performing different, independent MC simulations,
one can expect different values of Ŷ ¼NS=N. As a measure of Ŷ variations, variance or standard deviation
of Ŷ can be used. It can be shown [7] that the standard deviation of Ŷ , is equal to sŶ ¼Y(1�Y)=N, i.e., it
is proportional to 1=

ffiffiffiffi
N

p
Hence, to decrease the error of Ŷ 10 times, the number of samples has to be

increased 100 times. This is a major drawback of the MC method. However, the accuracy of the MC
method (measured by sŶ) is independent of the dimensionality of the u-space, which is usually a
drawback of other methods of yield estimation. One of the methods of variance reduction of the Ŷ
estimator is importance sampling [7,34,39]. Assume that instead of sampling u with the p.d.f. fu(u), some
other p.d.f. gu(u) is used. Then,

Y ¼
ð

R0

f e(u)½ � fu(u)
gu(u)

gu(u) du � E f e(u)½ � fu(u)
gu(u)

� �
(5:8)

where gu(u) 6¼ 0 if f(u)¼ 1. Yield Y can now be estimated as

~Y ¼ 1
N

XN
i¼1

f e(ui)
	
 fu(ui)

gu(ui)
(5:9)

sampling N points ui with the p.d.f. gu(u). The variance of this estimator is var {~Y}¼E{[f(u)=gu(u)�
Y]2}=N. If it is possible to choose gu(u) such that it mimics (or is similar to) f(u)fu(u)=Y, the variability of
[f(u)fu(u)=gu(u)�Y] is reduced, and thus the variance of Ŷ . This can be accomplished if some
approximation to f(u) i.e., to the acceptability region A is known. Some possibilities of using importance
sampling techniques were studied, e.g., in [16]. One of such methods, called parametric sampling was
used in [36], and other variants of important sampling were used in [2,40] for yield optimization. There
are several other methods of variance reduction, such as the method of control variates, correlated
sampling, stratified sampling, antithetic variates, and others [7,34,39]. Some of them have been used for
statistical circuit design [7,39].

5.4 Statistical Methods of Yield Optimization

The objective of the yield optimization is to find a vector of designable parameters x¼ xopt, such that
Y(xopt) is maximized. This is illustrated in Figure 5.9 for the case of discrete circuits where e1¼ x1þ u1,
e2¼ x2þ u2.* Figure 5.9a corresponds to low initial yield proportional to the weighted (by the p.d.f. fe(e))
area (hypervolume, in general), represented by the dark shaded part of the tolerance body shown. Figure
5.9b corresponds to optimized yield, obtained by shifting the nominal point (x1, x2) to the vicinity of the
geometric center of the acceptability region A. Because of this geometric property, approximate yield
maximization can often be accomplished using methods called deterministic or geometrical design
centering. They solve the yield maximization problem indirectly (since yield is not the objective function
optimized), using a geometrical concept of maximizing the distance from xopt to the boundary of A. The
best known method of this class [10,12] inscribes the largest hypersphere (or other norm-body) into the
simplicial approximation to the boundary of A, shown in Figure 5.8g. This approach is described in more
detail in Section 4.4, together with other geometrical design centering methods.
A class of methods known as ‘‘performance-space oriented design centering methods’’ is also available.

These methods attempt to maximize the scaled distances of the performances yj from the lower SLj

* Alternatively, the model ei¼ xi(1þ ui) can be used, in which case the size of the tolerance body (see Section 5.3) will
increase proportionally to xi.

5-12 Computer Aided Design and Design Automation

and=or upper SUj specifications, leading to approximate design centering. Some of these methods are also
used for variability minimization and performance tuning, which are the most important tenets of design
for quality [30], to be briefly discussed later in this section.
The major feature of statistical yield optimization methods, referred to as statistical design centering, is

statistical sampling in either u-space only or in both u and x spaces. Sampling can be also combined with
some geometrical approximation to the A-region, such as the segment, or radial-segment approximation.
In dealing with various statistical methods of yield optimization, the type of the transformation e¼ e(x, u)

from the u-space to the circuit-parameter space e, has to be considered. The early, mostly heuristic yield
optimizationmethodswere based on the simple additivemodel ei¼ xiþ ui, valid for discrete circuits. Because
of that, the majority of these methods cannot be used for IC or manufacturing process optimization, where
u and x in different spaces, or subspaces, and the distribution of u is defined over some subspace of
the e-space, i.e., it is singular.
The type of the statistical yield optimization algorithm to be used in practice strongly depends on the

type of the circuit to be considered and the information available, namely: whether the transformation
e¼ e(x, u) is a simple one: ei¼ xiþ ui (or ei¼ xi(1þ ui))(for discrete circuits) or general: e¼ e(x, u) (for
ICs); whether the values of gj(x, u) for given x and u only or also the derivatives of yj with respect to xk
and=or us are available from the circuit simulator; whether some approximation ~y(x, u) to y(x, u) is
available—either with respect to (w.r.t.) u only (for a fixed x), or w.r.t. both x and u; whether the
analytical form of fu(u) is known and fu(u) is differentiable w.r.t. u, or only samples ui of u are given
(obtained from a numerical algorithm or from measurements), so, analytical forms of fu(u) and its
derivatives w.r.t. u are not known.
Different combinations of the cases listed above require different optimization algorithms. The more

general a given algorithm is, the largest number of cases it is able to cover, but simultaneously it can
be less efficient than specialized algorithms covering only selected cases. An ideal algorithm would be the
one that is least restrictive and could use the minimum necessary information, i.e., it could handle
the most difficult case characterized by the general transformation e¼ e(x, u), with the values of y¼ y(x, u)
only available (generated from a circuit simulator) but without derivatives, no approximation to
y(x, u) available, and unknown analytic form of fu(u) (only the samples of u given). Moreover, under
these circumstances such an algorithm should be reasonably efficient even for large problems, and with the
presence of some additional information, should become more efficient. The selected yield optimization
algorithms discussed below fulfill the criteria of the algorithm ‘‘optimality’’ to a quite different level of
satisfaction. It has to be stressed that due to different assumptions made during the development of
different algorithms and the statistical nature of the results, an entirely fair evaluation of the actual
algorithm efficiency is very difficult, and is limited to some specific cases only. Therefore, in what follows,
no algorithm comparison is attempted.

e1
X1

X2

e2

(a) (b)

e2

e1

X2,opt

X1,opt

AA

FIGURE 5.9 Interpretation of yield maximization for discrete circuits: (a) initial (low) yield and (b) optimized yield.

Statistical Design Optimization 5-13

5.4.1 Large-Sample vs. Small-Sample Methods

Yield optimization is concerned with the maximization of the regression function Y(x)¼Eu{f(x, u)} with
respect to (w.r.t.) x (see Equation 5.6). In solving general problems of this type, f(�) is replaced by an
arbitrary function w(�). Large-sample methods of optimizing Eu{w(x, u)} calculate the expectation
(average) of w (and=or its gradient) w.r.t. u for each x0, x1, x2, . . . from a large number of ui samples.
Therefore, the averages used in a specific optimization procedure are relatively accurate, following to take
relatively large steps xkþ1� xk. On the other hand, small-sample methods use just a few (very often just
one) samples of w(x, ui) for any given point x, and make relatively small steps in the x-space, but they
utilize also a special averaging procedure, which calculates the average of w or its gradient over a certain
number of steps. So, in this case, the averaging in u-space and progression in the x-space are combined,
while in the large-sample methods they are separated. Both techniques have proven convergence under
certain (different) conditions. The majority of yield optimization methods belong to the large-sample
category (but some can be modified to use a small number of samples per iteration). A class of small-
sample yield optimization methods was proposed in [50] and is based on the well-known techniques of
stochastic approximation [34], to be discussed later in this section.

5.4.2 Methods Using Standard Deterministic Optimization Algorithms

Themost natural method of yield optimization would be to estimate the yields Y(x0), Y(x1), . . . from a large
number of samples (as described in the previous section) for each x0, x1, . . . of the sequence {xk} generated
by a standard, nonderivative deterministic search algorithm, such as the simplex method of Nelder
and Mead, Powell, or other algorithms discussed in [14]. This is very appealing, since most of the
conditions for algorithm’s ‘‘optimality’’ are fulfilled: it would work for any e¼ e(x, u) and only the values
of y¼ y(x, u) and the samples of u would be required. However, if no approximation to y¼ y(x, u) was
available, the method would require tens of thousands of circuit analyses, which would be prohibitively
expensive. Moreover, if the number of samples per iteration was reduced to increase efficiency, the
optimizer would be receiving a highly noise-corrupted information leading to poor algorithm convergence
or divergence, since standard optimization algorithms work poorly with noisy data (special algorithms,
able to work under uncertainly—such as stochastic approximation algorithms—have to be used).
If some approximating functions ŷ¼ ŷ(xk, u) are available separately for each xk, a large number of MC

analyses can be cheaply performed, reducing the statistical error. In practice, such an approach is most
often too expensive, due to the high cost of obtaining the approximating formulas, if the number of
important u parameters is large. The approximating functions ŷj(x, u) for each yj can be also created in the
joint (x, u) space [56,61]. In [45], an efficient new approximating methodology was created, highly
accurate for a relatively large range of the xi values. However, also in this case the dimension of the
joint space (x, u) cannot be too large, since the cost of obtaining the approximating functions ŷj(x, u) for
becomes itself prohibitively high. Because of these difficulties, several dedicated yield optimization
methods have been developed, for which the use of function approximation is not required. Some of
these methods are described in what follows.

5.4.3 Large-Sample Heuristic Methods for Discrete Circuits

These methods have been developed mostly for discrete circuits, for which ei¼ xiþ ui. Only y
i¼ y(xþ ui)

function values are required, for the sample ui obtained in an arbitrary way. Approximation in the
e-space can be constructed to increase efficiency, but for discrete circuits the number of u parameters can
be large (proportional to the number of active devices, since no correlations between different devices
exist), so the use of approximation is most often not practical. The most typical representative of this
class is the centers of gravity method [39]. The method is based on a simple observation that if �xS is the
center of gravity of ‘‘pass’’ points (as shown in Figure 5.10), defined as �xS¼ (x1A þ x2A þ � � � þ xNA

A)=NA,

5-14 Computer Aided Design and Design Automation

where NA is the number of points xiA falling into the
A-region, then a step from x to �xS will improve yield.
In [37], also the center of gravity of the ‘‘fail’’ points
�xF ¼ (x1F þ x2F þ � � � þ xNF

F)=NF was defined, and the
direction of yield increase taken as going from �xF
through �xA, as shown in Figure 5.11. Moving in this
direction with the step-size equal to m(�xS� �xF), where
m� 0.2� 2 (often taken as m¼ 1) leads to a sequence
of optimization steps, which is stopped if �xS � �xFk k is
less than a predefined small constant. This is based
on the property (proved for a class of p.d.f.s in [43]
that, under some conditions, at the yield maximum
�xS � �xFk k ¼ 0 (and �xS� �xF¼ x̂ where x̂ is the point
of the yield maximum). It was also shown in [43] that
for the normal p.d.f. fu(u) with zero correlations and

all standard deviations sui
¼su, i¼ 1, . . . , t, equal, the ‘‘centers of gravity’’ direction coincides with the

yield gradient direction. However, with correlations and sui
s not equal, the two directions can be quite

different. Various schemes, aimed at the reduction of the total required number of analyses were
developed based on the concepts of ‘‘reusable’’ points [39].

In [18,19] the original centers of gravity method was significantly improved, introducing a concept of
‘‘Gaussian adaptation’’ of the covariance matrix of the sampled points of ui, such that they (temporarily)
adopt to the shape of the acceptability region, leading to higher (optimal) efficiently of the algorithm. The
method was successfully used on large industrial design examples, involving as many as 130 designable
parameters, not only for yield optimization, but also for standard function minimization.
The methods of ‘‘radial exploration of space’’ [54] (see Figure 5.8e) and one-dimensional orthogonal

searches (ODOS) [26,27] (see Figure 5.8b and c) discussed in Section 5.3 in the context of Acceptability
Region approximation, have also been developed into yield optimization methods: in the ‘‘radial
exploration’’ case the asymmetry vectors were introduced, generating a direction of yield increase, and
in the ODOS case using a Gauss–Seidel optimization method. Both techniques were especially efficient for
linear circuits due to a high efficiency of performing circuit analyses in radial and orthogonal directions.

e1

A

X2

e2

X1

X

Xi
F

Xi
A

XS

FIGURE 5.10 Interpretation of the original centers
of gravity method.

e2

“Fail”

“Center of gravity”
of “pass” points

“Center of gravity”
of “fail” points e1

A

Direction of yield
increase

MoveX

“Pass”

FIGURE 5.11 Interpretation of the modified centers of gravity method.

Statistical Design Optimization 5-15

5.4.4 Large-Sample, Derivative-Based Methods for Discrete Circuits

For discrete circuits, the relation ei¼ xiþ ui holds for a part of the entire e vector, so, xi and ui are in
the same space. Moreover, the p.d.f. fu(u) is most often known. Let x denote the vector of expectations
x � Eu{e(x, u)}, and fe(e, x) is the p.d.f. fu(u) transformed to the e-space (i.e., of the same shape as fu(u),
but shifted by x). Then, from Equation 5.5, differentiating w.r.t. xi, one obtains

@Y(x)
@xi

¼
ð

Rn

f(e)
@fe(e, x)
@xi

fe(e, x)
fe(e, x)

de ¼ Ee f(e)
@lnfe(e, x)

@xi

� �
(5:10)

where the equivalence [@fe(e, x)=fe(e, x)]=@xi � @ ln fe(e, x)=@xi was used. Therefore, yield derivatives w.r.t.
xi can be calculated as the average of the expression in the braces of Equation 5.10, calculated from the
same ui samples as those used for yield estimation, provided that the p.d.f. fe(e, x) is differentiable w.r.t x
(e.g., the normal or log-normal p.d.f.s are differentiable, but the uniform p.d.f is not). Notice that instead
of sampling with the p.d.f. fe(e, x), some other (better) p.d.f. ge(e, x) can be used as in the importance
sampling yield estimation (see Equation 5.8). Then,

@Y(x)
@xi

¼ Ee f(e)
@fe(e, x)

@xi

fe(e, x)
ge(e, x)

� �� �
(5:11)

where sampling is performed with the p.d.f. ge(e, x) 6¼ 0. This technique was used in [2,36,51] (to be
discussed next). Consider the multivariate normal p.d.f., with the positive definite covariance matrix K:

fe(e) ¼ 1

(2p)t=2
ffiffiffiffiffiffiffiffi
det K

p exp � 1
2
(e� x)tK�1(e� x)

� �
(5:12)

where e� x � u (discrete circuits), and det K is the determinant of K. Then, it can be shown that the yield
gradient rxY(x) is expressed by

rxY(x) ¼ E f(e)K�1(e� x)
 � ¼ Y(x)K�1(�xS � x) (5:13)

where �xS is the center of gravity of ‘‘pass’’ points. If yield Y(x) is a continuously differentiable function of x,
then the necessary condition for the yield maximum is rxy(x̂)¼ 0, which combined with Equation 5.13
means that the stationery point x̂ for the yield function (the yield maximum if Y(x) is also concave) is
x̂¼ �xS, the center of gravity of the pass points. This result justifies (under the assumptions stated
previously) the centers of gravity method of yield optimization (since its objective is to make x̂¼ �xS� �xF).

For K¼ diag{se1
2, . . . ,set

2}, i.e., with zero correlations, the yield gradient w.r.t. x is expressed as

rxY(x) ¼ Ee f(e)
u1
s2
u1

, � � � , ut
s2
ut

" #t()
(5:14)

where seu � sei was used instead of sei. It can be readily shown that for all sui
¼ � � � ¼sut

¼su equal, the
yield gradient direction coincides with the center-of-gravity direction [43] (Figure 5.12).
Since all higher-order derivatives of the normal p.d.f. exist, all higher order yield derivatives can also

be estimated from the same sampled points ui, as those used for yield estimation. The yield gradient can
also be calculated from the ‘‘fail’’ points simply using the fF(�)¼f(�)�1 indicator function in all
the expressions above. Then, the two resulting estimators can be combined as one joint average, as it
was done in the �xS, �xF-based centers of gravity method. Actually, there exists an optimal weighted
combination of the two estimators for any given problem, resulting in the minimum variability of the

5-16 Computer Aided Design and Design Automation

gradient, but it is difficult to precisely determine in practice. A general rule is that at the beginning of
optimization, when x is far away from x̂ (the optimal point), the yield gradient estimator based on the
‘‘pass’’ points should be more heavily weighted; the opposite is true at the end of optimization, when the
‘‘fail’’ points carry more precise gradient information. An interpretation of the yield gradient formula
Equation 5.14 is shown in Figure 5.12, for the case where su1

¼su2
¼ 1.

In the majority of practical applications of large-sample derivative methods, it was assumed that fe(e)
was normal. A typical iteration step is made in the gradient direction:

xkþ1 ¼ xk þ akrxY(x
k) (5:15)

where ak is most often selected empirically, since yield maximization along the gradient direction is too
expensive, unless some approximating functions ŷ¼ ŷ(xþ u) are used (normally, this is not the case for
the class of methods discussed). Since the number of points ui sampled for each xk, is large, the main
difference between various published algorithms is how to most efficiently use the information already
available. The three methods to be discussed introduced almost at the same time [2,36,51]), utilize for
that purpose some form of importance sampling, discussed in Section 5.3.
In [36], a ‘‘parametric sampling’’ technique was proposed, in which the ui points were sampled with

the p.d.f. ge(e, x) in a broader range than for the original p.d.f. (i.e., all the sui
’s were artificially increased).

All points sampled were stored in a database, and the gradient-direction steps made according to
Equation 5.15. The importance sampling-based gradient formula (Equation 5.11) was used in subsequent
iterations within the currently available database. Then, a new set of points was generated and the whole
process repeated.
The methods developed in [2,51] were also based on the importance sampling concept, but instead

of using the gradient steps as in Equation 5.15, the yield gradient and Hessian* matrices were calculated

e1

A

X2

e2

X1

θ2

θ1
θ3

θ4

θ5

θ6

[Δ

x Y(x)]pass

FIGURE 5.12 Interpretation of the yield gradient formula for normal p.d.f., with no correlations and su1¼su2¼ 1.
For the ‘‘pass’’ points (black dots) [rxY(x)]pass� (u3þ u4þ u5þ u6)=4; for the ‘‘fail’’ points (white dots) [rxY(x)]fail
(�u1� u2)=2. The two estimators can be combined together (equal weighting assumed): rxY(x)¼�u1� u2þ u3þ
u4þ u5þ u6)=6. It is clearly seen that the two yield gradient estimators coincide with the center of gravity of the
‘‘pass’’ and ‘‘fail’’ points, respectively.

* Matrix of second derivatives.

Statistical Design Optimization 5-17

and updated within a given database. Then, a more efficient Newton’s direction was taken in [51] or a
specially derived and efficient ‘‘yield prediction formula’’ used in [2]. In order to deal with the singularity
or nonpositive definiteness of the Hessian matrix (which is quite possible due to the randomness of data
and the behavior of Y(x) itself), suitable Hessian corrections were implemented using different kinds of
the Hessian matrix decomposition (Cholesky-type in [51] and eigenvalue decomposition in [2]).
As it was the case for the heuristic methods, the methods just discussed are relatively intensive to the

dimensionality of x and u spaces.
For the uniform p.d.f., centered at e¼ x (Figure 5.13) and defined within a hyperbox xi� ei� ei� xiþ e,

i¼ 1, . . . , t, where ei are element tolerances (see Figure 5.2), the yield gradient formula (Equation 5.10)
cannot be used, since the uniform p.d.f. is nondifferentiable w.r.t. xi. It can be shown [26,42,43] that
yield can be calculated by sampling in the (t� 1)-dimensional subspace of the e-space, represented by
et�1þ (e1, . . . , ei�1, eiþ1, . . . , et) and analytical integration in the one-dimensional subspace ei as shown in
Figure 5.13. Using this approach, it can be further proved [43] that the yield derivatives w.r.t. xi are
expressed by

@Y(x)
@xi

¼ 1
2ei

Yþ
i � Y�

i

� �
(5:16)

where Yi
þ, Yi

� are ‘‘yields’’ calculated on the faces of the t� 1 tolerance hyperbox Re, corresponding to
xiþ ei and xi� ei, respectively. Calculation of these ‘‘yields’’ is very expensive, so in [43]* different
algorithms improving efficiency were proposed. In [53], an approximate method using efficient three-
level orthogonal array (OA) sampling on the faces of Re was proposed, in which (due to specific
properties of OAs) the same sample points were utilized on different faces (actually one-third of all
sampled points were available for a single face). This has lead to substantial computational savings and
faster convergence.

et–1 (subspace)

xi

xt–1

ei

A

εi εi

Y –
i Y +

Rε

e(1)
n–1

e(k)
t–1

i

FIGURE 5.13 Yield and yield derivative estimation for uniform distribution. Yþ and Y� denote symbolically the
‘‘yields’’ calculated on the (t� 1)-dimensional faces of the tolerance hypercube Re. The et�1

(k) points are sampled in
the (t� 1)-dimensional subspaces of et�1 parameters, with the uniform p.d.f. fet�1(et�1).

* In [43], general formulas for gradient calculation for truncated p.d.f.s were derived.

5-18 Computer Aided Design and Design Automation

5.4.5 Large-Sample, Derivative-Based Method for Integrated Circuits

In this case, which is typical of IC yield optimization, yield gradient calculations cannot be performed in
the e-space, as was the case for discrete circuits. In general, yield gradient could be calculated by
differentiating the f(e(x, u)) � f(x, u) term in the u-space-based yield formula (Equation 5.6), derived
for the general case, where the general transformation e¼ e(x, u) is used. Differentiation of f(x, u) is,
however, not possible in the traditional sense, since f(x, u) is a nondifferentiable unit step function
determined over the acceptability region A. One possible solution was proposed in [15]. In what follows,
a related, but more general method proposed in [13] is discussed.
It was first shown in [13] that yield can be evaluated as a surface-integral rather than the volume-

integral (as it is normally done using the MC method). To understand this, observe that yield can be
evaluated by sampling in the t� 1 subspace of the t-dimensional u-subspace, as shown in Figure 5.14,
evaluating ‘‘local yields’’ along the lines parallel to the ui axis, and averaging all the local yields.* Each
‘‘local yield’’ can be evaluated using the values of the cumulative (conditional) distribution functiony

along each parallel, at the points of its intersection with the boundary of the acceptability region A. This
process is equivalent to calculating the surface integral over the value of the cumulative density function
calculated (with appropriate signs) on the boundary of the acceptability region.
The next step in [13] was to differentiate the ‘‘surface-integral’’ based yield formula w.r.t. xi, leading to

the following yield gradient formula:

rY(x) ¼ Eut�1

X
k

fui u(k)i

h i
� rxya(x, u)
@ya(x, u)=@uij j

����
x,ut�1,u

(k)
i

()
(5:17)

Where summation is over all intersection points ui
(k) of the parallel shown in Figure 5.14 with the

boundary of Au(x); ya is that specific performance function yj(x, u) which, out of all the other perform-
ances, actually determines the boundary of the acceptability region at the u(k)i intersection point.z The
gradient rxya(x, u), and the derivative @ya(x, u)=@ui have to be calculated for every fixed sampled point

θi

θi
(1) θi

(2) θi
(4)θi

(3)

θt–1 (subspace)

A(x)

Sampled point

FIGURE 5.14 Interpretation of ‘‘local yield’’ calculation along a parallel.

* Identical technique was used in the previous section [42,43] to derive the yield derivative formula (Equation 5.16) (see
Figure 5.13).

y If ui’s are independent, it is the marginal p.d.f. of ui, as it was assumed in [13].
z At this point, a specific equation ya(x, ut–1, 1

(k)
i ¼ Sa (where Saþ SLa or Saþ SUa or are lower and upper bounds on ya,

respectively) must be solved to find u(k)i .

Statistical Design Optimization 5-19

(x, ut�1), at each intersecting point u(k)i shown in Figure 5.14. Observe that the derivative calculations in
Equation 5.17 can (and often will have to) be performed in two steps: since ya(x, u)¼ ya(e(x, u)) so,
@ya=@xp¼Ss(@ya=@es)(@es=@xp), and @ya=@ui¼Ss(@ya=@es)(@es=@ui), where the derivatives appearing in
the first parentheses of both formulas are calculated using a circuit simulator and those in the second
parentheses from a given statistical model e¼ e(x, u).
In the practical implementation presented in [13], random points ur are sampled in the u-space, in the

same way as shown in Figure 5.8b but replacing e by u, then searches for the intersections u(k)i are
performed in all axis directions, the formula in the braces of Equation 5.17 is calculated for each
intersection, and averaged out over all outcomes. Searches along the parallel lines in all directions are
performed to increase the accuracy of the yield gradient estimator. Observe that this technique requires
tens of thousands of circuit analyses to iteratively find the intersection points u(k)i , plus additional
analyses (if needed) for the calculation of the gradient and the derivatives in Equation 5.17. This problem
has been circumvented in [13] by constructing approximating functions ŷ¼ ŷ(x, u) w.r.t. u for each x,
together with approximating functions for all the derivatives.* Due to a high level of statistical accuracy
obtained in evaluating both yield and its gradients, an efficient, gradient-based deterministic optimization
algorithm, based on sequential quadratic programming was used, requiring a small number of iterations
(from 5 to 11 for the examples discussed in [13]). The gradient rxya(x, u) was either directly obtained
from circuit simulator, or (if not available) using (improved) finite difference estimators. The method
showed to be quit efficient for a moderate size of the u-space (10–12 parameters).
The resulting yield optimization method is independent of the form of e¼ e(x, u) the derivatives of yj

w.r.t. both xk and us are required and the analytical form of fu(u) and its cumulative function distribution
must be known. The method cannot practically work without constructing the approximating functions
~y¼ y(x, u) (approximating function in the joint space (x, u) could also be used, if available).

5.4.6 Small-Sample Stochastic Approximation-Based Methods

Standard methods of nonlinear programming perform poorly in solving problems with statistical errors
in calculating the objective functions (i.e., yield) and its derivatives.y One of the methods dedicated to the
solution of such problems is the stochastic approximation (SA) approach [33] developed for solving the
regression equations, and then adopted to the unconstrained and constrained optimization by several
authors. These methods are aimed to the unconstrained and (maximum) of a function corrupted by noise
(a regression function). The SA methods were first applied to yield optimization and statistical design
centering in [49,50]. The theory of SA methods is well established, so its application to yield optimization
offers the theoretical background missing, e.g., in the heuristic methods of Section 5.3. As compared to
the large-sample methods, the SA algorithms to be discussed use a few (or just one) randomly sampled
points per iteration, which is compensated for by a large number of iterations exhibiting a trend toward
the solution. The method tends to bring large initial improvements with a small number of circuit
analyses, efficiently utilizing the high content of the deterministic information present at the beginning
of optimization.
In 1951, in their pioneering work, Robins and Monro [33] proposed a scheme for finding a root of a

regression function, which they named the stochastic approximation procedure. The problem was to find
a zero of a function, whose ‘‘noise corrupted’’ values could be observed only, namely G(x)¼ g(x)þ u(x)
where g(x) (unknown) function of x, u is a random variable, such that E{u}¼ 0 and var{u}� L<1.
Therefore, a zero of the regression function g(x)þ E{G(x)}¼ 0 was to be found. The SA algorithm
proposed in [33] works as follows: given a point x(k), set the next point as x(kþ1)¼ x(k)� akG[x(k)].

* Low-degree polynomials were used with very few terms, generated from a stepwise regression algorithm.
y This was the reason a high level of accuracy was required while calculating both yield and its derivatives using the method
described in the previous section (and consistency between the yield and gradient estimators), otherwise, the deterministic
optimization algorithm would often diverge, as observed in [13].

5-20 Computer Aided Design and Design Automation

The sequence of {x(k)} points converges to the solution x̂ under some conditions (one of them is,
for instance, that ak can change according to the harmonic sequence 1, 12 ,

1
3 ,

1
4 , . . .

 �
). Assuming that

G(x) � jk is a ‘‘noise corrupted’’ observation of the gradient of a regression function f(x)¼Eu{w(x, u)},
the algorithm can be used to find a stationary point (e.g., a maximum) of f(x), since this is equivalent to
finding x̂ such the E{G(x̂)}¼E{j(x̂)}¼rxY(x̂)¼ 0. For yield optimization f(x) � Y(x)¼E{f(x, u)}. This
simplest scheme that can be used, if the yield gradient estimator is available is

xkþ1 ¼ xk þ tkj
k (5:18)

where jk þ drxY(xk) is an estimate of the yield gradient, based on one (or more) point ui sampled
with the p.d.f. fu(u) and tk> 0 is the step length coefficient selected such that the sequence: {tk} ! 0,
and

P1
k¼0 tk ¼ 1,

P1
k¼0 t

2
k < 1 (e.g., the harmonic series 1, 12 ,

1
3 , . . .

 �
fulfills these conditions).

For the convergence with probability 1, it is also required that the conditional expectation E{jkjx1,
x2, . . . , xk}¼rY(xk). The algorithm of Equation 5.18 is similar to the steepest ascent algorithms of
nonlinear programming, so, it will be slowly convergent for ill-conditioned problems. A faster algorithm
was introduced in [35] and used for yield optimization in [49,50]. It is based on the following iterations:

xkþ1 ¼ xk þ tkd
k (5:19)

dk ¼ (1� rk)d
k�1 þ rkj

k, 0 < rk < 1 (5:20)

where jk is a (one- or more-point) estimator of rxY(x
k) and {tk} ! 0, {rk} ! 0 are nonnegative

coefficients. d(k) is a convex combination of the previous (old) direction dk�1 and the new gradient
estimate jk, so the algorithm is an analog of a more efficient, conjugate gradient method. Equation 5.2
provides gradient averaging. The rk coefficient controls the ‘‘memory’’ or ‘‘inertia’’ of the search
direction dk, as shown in Figure 5.15. If rk is small, the ‘‘inertia’’ of the algorithm is large, i.e., the
algorithm tends to follow the previous gradient directions. For convergence with probability 1, the
same conditions must hold as those for Equation 5.18.
The coefficients tk and rk automatically determined based on some heuristic statistical algorithms

proposed in [35]. Several other enhancements were used to speed up the convergence of the algorithm,
especially in its much refined version proposed in [35]. For solving the optimization problems, the one-or
two-point yield gradient estimator is found from Equation 5.10 in general, and from Equation 5.13 or
5.14 for the normal p.d.f.

New search
direction

(New one-point
gradient estimator)

e2

e1

dk–1 (Previous search direction)
ρk < 1

dk

ξk

Small ρk—large “inertia”
ρk ≈1—no “inertia” (very “noisy” algo behavior)

FIGURE 5.15 Illustration of the gradient averaging equation.

Statistical Design Optimization 5-21

Example 5.1

A simple two-dimensional case is considered in order to illustrate the algorithm properties. The
acceptability region (for a voltage divider) [49] is defined in the two-dimensional space (e1, e2) by the
inequalities:

0:45 � e2
e1 þ e2

� 0:55 0 � e1 � 1:2 0 � e2 � 1:3 (5:21)

where ei¼ xiþ ui and the p.d.f. of ui is normal with E{u1}¼ E{u2}¼ 0 and Cov{u1, u2}¼ 0 (no correlations).
A typical algorithm trajectory is shown in Figure 5.16. The one-sample yield gradient formula

(Equation 5.14) was used. The initial yield was low (7.4%). Very few (25–30) iterations (equal to the
number of circuit analyses) were required to bring the minimal point close to the final solution. This is
due to the fact that at the beginning of optimization, there is a high content of deterministic gradient
information available even from a few sampled points, so the algorithm progress is fast. Close to the
solution, however, the yield gradient estimator is very noisy, and the algorithm has to filter out the
directional information out of noise, which takes the majority of the remaining iterations. After the total
of 168 circuit analyses, the yield increases to 85.6%. Other starting points resulted in a similar algorithm
behavior. It is also observed that the yield optimum is ‘‘flat’’ in the diagonal direction, reflected in
random nominal point movement in this direction (iterations 30–43).

Example 5.2

Parametric yield for the Sallen–Key active filter of Figure 5.6a (often used in practice as a test circuit) with
the specifications on its frequency response shown in Figure 5.6b was optimized (recall that the shape of
the acceptability region for this case was very complicated, containing internal nonfeasible regions

1.4

1.3

1.0

1.1

1.2

1.21.11.00.9
0.9

1 5

7
4

10

12

15
161820

127 30

2636

4043

FIGURE 5.16 Typical trajectory of the stochastic approximation algorithm (Example 5.1).

5-22 Computer Aided Design and Design Automation

[‘‘holes’’]). All R, C variables were assumed designable. The relative standard deviations were assumed
equal to 1% for each element, the p.d.f. was normal with 0.7 correlation coefficient between the like
elements (R’s or C’s) and zero correlations between different elements. The initial yield was 6.61%. Using
the SA algorithm as in the previous example, 50 iterations (equal to the number of circuit analyses)
brought yield to 46.2%; the next 50 iterations to 60%, while the remaining 132 iterations increased yield
to only 60.4% (again the initial convergence was very fast). The algorithm compared favorably with the
Hessian matrix-based, large-sample method discussed previously [51], which required about 400 circuit
analyses to obtain the same yield level, and whose initial convergence was also much slower. It has to be
stressed, however, that the results obtained are statistical in nature and it is difficult to draw strong
general conclusions. One observation (confirmed also by other authors) is that the SA-type algorithms
provide, in general, fast initial convergence into the neighborhood of the optimal solution, as it was
shown in the examples just investigated.

5.4.7 Small-Sample Stochastic Approximation Methods
for Integrated Circuits

The methods of yield gradient estimation for discrete circuits cannot be used for ICs because of the form
of the e¼ e(x, u) transformation, as discussed at the beginning of Section 5.4. Previously in this section, a
complicated algorithm was described for gradient estimation and yield optimization in such situations. In
this section, a simple method based on random perturbations in x-space, proposed in [47,48], is
described. It is useful in its own merit, but especially in those cases, where the conditions for the
application of the yield gradient formula (Equation 5.17) are hard to meet, namely: the cost of
constructing the approximating functions ŷ¼ ŷ(x, u) for fixed x is high and calculating the gradient of
y w.r.t. x is also expensive (which is the case, e.g., if the number of important x and u parameters is large),
and the analytical form of fu(u) is not available (as it is required in Equation 5.17).

The method applications go beyond yield optimization: a general problem is to find a minimum of a
general regression function f(x)¼Eu{w(x, u)}, using the SA method, in the case where the gradient
estimator of f(x) is not directly available. Several methods have been proposed to estimate the gradient
indirectly, all based on adding some extra perturbations to x parameters. Depending on their nature, size,
and the way the perturbations are changed during the optimization process, different interpretations
result, and different problems can be solved. In the simplest case, some extra deterministic perturbations
(usually double-sided) are added individually to each xk (one-at-a-time), while random sampling is
performed in the u-space, and the estimator of the derivative of f(x) w.r.t. xk is estimated from the
difference formula ĵk ¼ d@f(x)=@xk ¼ (1=N)

PN
i¼1 w x þ akek, ui1

� �� w x � akek, ui2
� �	

= 2akð Þ �
, where

ak> 0 is the size of the perturbation step and ek is the unit vector along the ek coordinates axis. Usually,
ui1 � u12 to reduce the variance of the estimator. Normally, N¼ 1. Other approaches use random direction
derivative estimation by sampling points randomly on: a unit sphere of radius a [34], randomly at the
vertices of a hypercube in the x-space [38], or at the points generated by orthogonal arrays [53],
commonly used in the design of experiments. Yet another approach, dealing with nondifferentiable
p.d.f.s was proposed in [55]. In what follows, the random perturbation approach resulting in convolution
function smoothing is described for a more general case, where a global rather than a local minimum of
f(x) is to be found.
The multi-extremal regression function f(x) defined previously, can be considered a superposition of

an uni-extremal function (i.e., having just one minimum) and other multi-extremal functions that add
some deterministic ‘‘noise’’ to the uni-extremal function (which itself has also some ‘‘statistical noise’’—
due to u—superimposed on it). The objective of convolution smoothing can be visualized as ‘‘filtering
out’’ but types of noise and performing minimization on the ‘‘smoothed’’ uni-extremal function (or on a
family of these functions), in order to reach the global minimum. Since the minimum of the smoothed
uni-extremal function does not, in general, coincide with the global function minimum, a sequence of
minimization runs is required with the amount of smoothing eventually reduced to zero in the

Statistical Design Optimization 5-23

neighborhood of the global minimum. The smoothing process is performed by averaging f(x) over some
region of the n-dimensional parameter space x using a proper weighting (or smoothing) function ĥ(x),
defined below. Let the n-dimensional vector h denote a vector of random perturbations; it is added to x to
create the convolution function [34]:

~f (x,b) ¼
ð

Rn

ĥ(h,b)f (x � h)dh

¼
ð

Rn

ĥ(x � h,b)f (h)dh ¼ Eh f (x � h)f g (5:22)

where f̂ (x,b) is the smoothed approximation to the original multi-extremal function f(x), and the
kernel function ĥ(h, b) is the p.d.f. used to sample h. Note that f(x, b) can be interpreted as an averaged
version of f(x) weighted by ĥ(h, b). Parameter b controls the dispersion of ĥ, i.e., the degree of f(x)
smoothing (e.g., b can control the standard deviations of h1 . . .hn). Eh {f(x�h)} is the expectation with
respect to the random variable h. Therefore, an unbiased estimator f̂ (x,b) of f̂ (x,b) is the average:
f̂ (x,b) ¼ (1=N)

PN
i�1 f x � hið Þ, where h is sampled with the p.d.f. ĥ (h�b). The kernel function ĥ(h, b)

should have certain properties discussed in [34], fulfilled by several p.d.f.s, e.g., the Gaussian and
uniform. For the function f(x)¼ x4� 16x2þ 5x, which has two distinct minima, smoothed functionals,
obtained using Equation 5.22, are plotted in Figure 5.17 for different values of b ! 0, for (a) Gaussian
and (b) uniform kernels. As seen, smoothing is able to eliminate the local minima of ~f (x, b) if b is
sufficiently large. If b ! 0, then ~f (x, b) ! f(x).
The objective now is to solve the following optimization problem: minimize the smoothed functional

~f (x, b) with b ! 0 as x ! x̂, where x̂ is the global minimum of the original function f(x). The modified
optimization problem can be written as minimize ~f (x, b) w.r.t. x, with b ! 0 as x ! x̂. Differentiating
Equation 5.22 and using variable substitution, the gradient formula is obtained:

rx
~f (x,b) ¼

ð

Rn

rhĥ(h,b)f (x � h)dh ¼ 1
b

ð

Rn

rhh(h)f (x � bh)dh, (5:23)

where ĥ(�) is as defined previously, and h(y) is a normalized version of ĥ(y) (obtained if b¼ 1). For
normalized multinormal p.d.f. with zero correlations, the gradient of ~f (x, b) is

100.0

50.0

0.0

–50.0

–100.0

3.02.0

1.0

1.6

0.6

(a)

β = 0.0

–5.00 –2.50 0.00 2.50 5.00

1.0

2.0

3.0
4.0

5.0

(b)

β = 0.001

–5.00 –2.50 0.00 2.50 5.00

100.0

50.0

0.0

–50.0

–100.0

FIGURE 5.17 Smoothed functional f(x, b) for different b’s using (a) Gaussian kernel and (b) uniform kernel.

5-24 Computer Aided Design and Design Automation

rx
~f (x,b) ¼ �1

b

ð

Rn

hf (x � bh)h(h)dh ¼ �1
b

Eh hf (x � bh)f g

¼ �1
b

Eh,u hw(x � bh, u)f g (5:24)

where sampling is performed in x-space with the p.d.f. h(h), and in u-space with the p.d.f. fu(u); Eh,u
denotes expectation w.r.t. both h and u, and it was taken into account for f(x) is a noise corrupted version
of w(x, u) i.e., f(x)¼Eu{w(x, u)}. The unbiased single-sided gradient estimator is therefore

r̂x
~f (x,b) ¼ �1

b

1
N

XN
i¼1

hiw(x � bhi, ui) (5:25)

In practice, a double-sided estimator [34] of smaller variance is used

r̂x
~f (x,b) ¼ 1

2b
1
N

XN
i¼1

hi w(x þ bhi, ui2)
	

: (5:26)

Normally, N¼ 1 for best overall efficiency. Statistical properties of these two estimators (such as their
variability) were studied in [52]. To reduce variability, the same ui1 ¼ ui2 are usually used in Equation 5.26
for positive and negative bhi perturbations. For yield optimization, w(�) is simply replaced by the
indicator function f(�). For multi-extremal problems, b values should be originally relatively large and
then systematically reduced to some small number rather than to zero. For single-extremal problems
(this might be the case for yield optimization) it is often sufficient to perform just a single optimization
with a relatively small value of b, as it was done in the examples to follow.

5.4.8 Case Study: Process Optimization for Manufacturing
Yield Enhancement

The object of the work presented in [48] was to investigate how to modify the MOS control process
parameters together with a simultaneous adjustment of transistor widths and lengths to maximize
parametric yield.* To make it possible, both process=device simulators (such as FABRICS, SUPREM,
PISCES, etc.) and a circuit simulator must be used. In what follows FABRICS [12,22,24] is used as a
process=device simulator. IC technological process parameters are statistical in nature, but variations of
some of the parameters (e.g., times of operations, implant doses, etc.) might have small relative
variations, and some parameters are common to several transistors on the chip. Because of that, the
transformation e¼ e (x, u) (where u are now process related random variables), is such that standard
methods of yield optimization developed for discrete circuits cannot be used. Let Z1¼ z1þ j1 be the
process control parameters (doses, times, temperatures), where j1 are random parameter variations, and
z1 are deterministic designable parameters. Let Z2¼ z2þ j2 be the designable layout dimensions, where z2
are designable and j2 are random variations (common to several transistors on a chip). P¼ pþc are
process physical parameters (random, nondesignable) such as diffusivities, impurity concentrations, etc.
(as above, p is the nominal value and c is random). All random perturbations are collected into the vector
of random parameters u, called also the vector of process disturbances: u¼ (j1, j2, c). The vector of
designable parameters x¼ (z1, z2) is composed of the process z1 and layout z2 designable parameters.
Therefore, x and u are in different spaces (subspaces). There are also other difficulties: the analytical form
of the p.d.f. of u is most often not known, since u parameters are hierarchically generated from a

* This might be important, e.g., for the process refinement and IC cell redesign.

Statistical Design Optimization 5-25

numerical procedure [12], the derivatives of the performances y w.r.t. x and u are not known from
FABRICS and can only be estimated by finite differences, and the u and x spaces are very large (see
below). So, creating approximation and=or finding derivatives using finite differences is expensive.
Because of these difficulties, the smoothed-functional approach discussed in this section will be used,
as shown in the following example.

Example 5.3

The objective is to maximize parametric yield for the NMOS NAND gate shown in Figure 5.18 [48], by
automated adjustment of process and layout parameters. Specifications are: V0¼ Vout (t¼ 0)� 0.7 V, Vout
(t1¼ 50 ns)> 6.14 V, circuit area� 2500 mm2. There are 45 designable parameters: all 39 technological
process parameters, 6 transistor dimensions, and about 40 noise parameters, so it is a large problem
suitable for the use of the SA-based random perturbation method described above.
The initial yield was Y¼ 20%. After the first optimization using the method of random perturbations

with 2% relative perturbations of each of the designable parameters involving the total of 110
FABRICS=SPICE analyses, yield increased to 100% and the nominal area decreased to 2138 mm2. Then,
specs were tightened to Vout (t2¼ 28 ns)> 6.14 V with the same constraints on V0 and area, causing yield
to drop to 10.1%. After 60 FABRICS=SPICE analyses, using the perturbation method, yield increased to:
Y¼ 92% and area¼ 2188 mm2. These much-improved results produced the nominal circuit responses
shown in Figure 5.19. Several technological process parameters were changed during optimization in
the range between 0.1% and 17%: times of oxidation, annealing, drive-in, partial pressure of oxygen, and
others, while the transistor dimensions changed in the range between 0.8% and 6.3%. The cost of
obtaining these results was quite reasonable: the total of 170 FABRICS=SPICE analyses, despite the large
number of optimized and noise parameters. Other examples are discussed in [48].

5.4.9 Generalized Formulation of Yield, Variability, and Taguchi Circuit
Optimization Problems

Parametric yield is not the only criterion that should be considered during statistical circuit design.
Equally, and often more important is minimization of performance variability caused by various
manufacturing and environmental disturbances. Variability minimization has been an important issue
in circuit design for many years [17] (see [17] for earlier reference). It leads (indirectly) to parametric
yield improvement. Circuits characterized by low performance variability are regarded as high quality
products. Most recently, variability minimization has been reintroduced into practical industrial design

M1

M2

M3 5 pF
0 V

1 kΩ

1 kΩ

+ 6 V

VGG = 14.5 V

VDD = 6.5 V

Vout

Vin

CL
+

+

–

–

+

–

FIGURE 5.18 NMOS NAND gate of Example 5.3.

5-26 Computer Aided Design and Design Automation

due to the work of Taguchi [30]. He has successfully popularized the notion of ‘‘Off-Line Quality
Control’’ through an intensive practical implementation of his strategy of designing products with low
performance variability, tuned to the ‘‘target’’ values STj of the performance functions yj.
In what follows, a generalized approach proposed in [44] is discussed, in which a broad range

of various problems, including yield optimization and Taguchi’s variability minimization as special
cases can be solved, using the SA approach and the general gradient formulas developed previously in
this section.
It is convenient to introduce the M-dimensional vector g(e) of scaled constraints, composed of the

vectors gL(e), and gU(e), defined as

gLk (e) ¼
STk � yk(e)

STk � SLk
, k ¼ 1, . . . , ML (5:27)

gUt (e) ¼
yt(e)� STt
SUt � STt

, t ¼ 1, . . . , MU (5:28)

where e¼ e(x, u), M¼MLþMU� 2 m (note that in general M� 2 m, since some of the lower or upper
specs might not be defined). These constraints are linear functions of yi(�); they have important
properties: gL¼ gU¼ 0 if y¼ ST, gL¼ 1 if y¼ SL, and gU¼ 1 if y¼ SU. For SL< y< SU and y 6¼ ST, either
gL or gU is greater than zero, but never both.

For any ‘‘good’’ design, we would like to make each of the normalized constraints introduced
previously equal to zero, which might not be possible due to various existing design trade-offs. Therefore,
this is a typical example of a multiobjective optimization problem. The proposed scaling helps to
compare various trade-off situations. The Taguchi ‘‘on-target’’ design with variability minimization is
formulated as follows (for a single performance function y(e))

Vin

Vout

[V] (c)

(b)

(a)(d)

(A)

(B)

V0

V0
(A),(B)

0
0 10 20 30 40 50 60

Time (ns)

6

3

5

4

2

1

FIGURE 5.19 Nominal transient responses for Example 5.3: (a) initial, (b) after first optimization, and (c) after
tightening the specs and second optimization.

Statistical Design Optimization 5-27

minimize MTAG(x)f ¼ Eu y e(x,u)ð Þ � ST
	
2n o

¼ var y(x)f g þ �y(x)� ST
	
2o

(5:29)

where
�y(x) is the mean (average) value of y (w.r.t u)
MTAG is called the ‘‘loss’’ function (in actual implementations Taguchi uses related but different
performance statistics)

Generalization of Equation 5.29 to several objectives can be done in many different ways. One possible
approach is to introduce u(e)¼maxs¼ 1, . . . ,M{gs(e)} and define the generalized loss function (GLF) as

MGLF(x) ¼ Eu u e(x, u)ð Þ½ �2 �
(5:30)

This generalization is meaningful, since u(e)¼maxs¼ 1,K,M{gs(e)} is a scalar, and for the proposed scaling
either u(�)> 0, or it is equal to zero if all the performances assume their target values STi . Since Equations
5.27 and 5.28 are less or equal to 1 any time STi � yi (e)� SUi , then e¼ e(x, u) belongs to A (the
acceptability region in the e-space), if u(e)< 1. Let us use the complementary indicator function fF[u
(e)]¼ 1, if u(e)	 1, i.e., e =2 A (or u =2 Au(x)) (failure) and equal to zero otherwise. Maximization of the
parametric yield Y(x) is equivalent to the minimization of the probability of failures F(x)¼ 1�Y(x),
which can be formulated as the following minimization process, w.r.t. x:

minimize F(x)f ¼ P u=2Au(x)f g

¼
ð

Rt

fF u(x, u)ð Þfu(u)du ¼ Eu fF u(x, u)ð Þ½ �
9=
; (5:31)

The scalar ‘‘step’’ function fF(�) (where the argument is also scalar function u(e)¼maxs¼ 1,K,M{gs(e)})
can now be generalized into a scalar weight function w(�), in the same spirit as in the Zadeh fuzzy set
theory [62,63]. For further generalization, the original p.d.f. fu(u) used in Equation 5.31 is parameterized,
multiplying u by the smoothing parameters b to control the dispersion of e, which leads to the following
optimization problem, utilizing a generalized measure Mw(x,b)

minimize Mw(x,b) ¼ Eu w u e(x,bu)ð Þ½ �f gf g (5:32)

where u(e(x, bu))¼maxs¼ 1, . . . ,M{gs(e(x, bu))}. If 0�w(�)� 1, Mw(�) corresponds to the probability
measure of fuzzy event introduced by Zadeh [63]. The choice of w(�) and b leads to different optimization
problems and different algorithms for yield=variability optimization. The standard yield optimization
problem results if w(a)¼fF(a) and b¼ 1 [Equation 5.31] (Figure 5.20a). Yield can be also approxi-
mately optimized indirectly, using a ‘‘smoothed’’ (e.g., sigmoidal) membership function w(a) (Figure
5.20e). For variability minimization, we have a whole family of possible approaches: (1) The generalized
Taguchi approach with w(a)¼a2 (see Equation 5.30) and b¼ 1 (see Figure 5.20c). (2) If w(a)¼a and
b¼ 1 is kept constant, we obtain a statistical mini–max problem, since the expected value of the max
function is used; this formulation will also lead to performance variability reduction. (3) If w(a) is
piecewise constant (Figure 5.20d), the approach is equivalent to the income index maximization with
separate quality classes, introduced in [28], and successfully used there for the increase of the percentage
of circuits belonging to the best classes (i.e., those characterized by small values of u(e)); this approach
also reduces variability of circuit performance functions. For all the cases, optimization is performed
using the proposed SA approach. The smoothed functional gradient formulas (Equation 5.25 and 5.26)

5-28 Computer Aided Design and Design Automation

have to be used, in general, since the ‘‘discrete-circuit’’ type gradient formulas are valid only for a limited
number of situations.

Example 5.4: Performance Variability Minimization for a MOSFET-C Filter

The objective of this example [31] was to reduce performance variability and to tune to target values the
performances of the MOSFET-C filter in Figure 5.21. The MOSFETS are used in groups composed of four

(a) (b) (c)

(d) (e) (f)

1

1

Pass Fail

0 α

w(α)

1 ααi

w(α) α

1

1

Pass Fail

α

w(α)
1

1

Pass Fail

α

w(α) = α2

1 1

1

Pass Fail

α

w(α)
1

1

Pass
Fail

0 α

w(α)

FIGURE 5.20 Various cases of the weight function w(a).

vc1

vc2

vc2

vc1

vc1

vc1

vc2

vc1

vc2

vc2

vc1

vc2 vc2

vc1

vc2

vc2

vc1

vc2

vc1

vc2

vc1

vc1

vc2 vc1

vi

voc

c

c

c

+

–

+

–

+

–

FIGURE 5.21 MOSFET-C bandpass filter optimized in Example 5.4.

Statistical Design Optimization 5-29

transistors implementing equivalent resistors with improved linearity. Design specifications are f0, the
center frequency, with the SL, ST, SU values specified as {45, 50, 55} kHz; H0, the voltage gain at f0, with the
specs {15, 20, 25} dB; and Q, the pole quality factor, with the specs {8, 10, 12}. The Taguchi-like ‘‘on-target’’
design and tuning was performed by minimizing the generalized measure Equation 5.32 with w(x)¼ x2,
using the SA approach with convolution smoothing, since the designable and random parameters are in
different (sub)spaces. The circuit has the total number of 90 transistors so its direct optimization using
transistor-level simulation would be too costly. Therefore, in [31] the operational amplifiers (op-amps)
shown in Figure 5.21 were modeled by a statistical macromodel, representing the most relevant op-amp
characteristics: DC gain A0, output resistance R0, and the �20 dB=dec frequency roll-off. Transistor model
parameters were characterized by a statistical model developed in [8], based on six common factors (see
Section 5.3): tox (oxide thickness), DLn, DLp (length reduction), NSUB,n, NSUB,p (substrate doping), and xjp
(junction depth). All other transistor model parameters were calculated from the six common factors
using second-order regression formulas developed in [8]. The major difficulty was to create statistical
models of the op-amp macromodel parameters A0, R0, and f3dB as the functions of the six common
factors listed previously. A special extraction procedure (similar in principle to the model of factor
analysis [20]) was developed and the relevant models created. Perfect matching between the transistor
model parameter of the 22 transistors of each of the op-amps was assumed for simplicity* (correlational
dependencies between individual parameters for individual transistors were maintained using the
statistical mode of [8], described earlier). Moreover, perfect matching between the three macromodels
(for the three op-amps) was also assumed. Mismatches between the threshold voltages and Kp (gain)
coefficients of all the transistors in Figure 5.21 were taken into account, introducing 48 additional noise
parameters. So, including the 6 global noise parameters discussed previously, the overall number of u
parameters was 54. Moreover, it was found that even if a large number of noise parameters had small
individual effect, their total contributions was significant, so, no meaningful reduction of the dimension
of the u-space was justified. Because of that, it was difficult to use approximating models in the u-space,
and even more difficult in the joint (x, u) space of 7þ 54¼ 61 parameters. Therefore, no approximation
was used.
The Monte Carlo studies showed that the proposed statistical macromodel provided quite reasonably

statistical accuracy for f0 (<1% errors for both the mean and the standard deviation), and<9.5% errors for
both, H0 and Q. The macromodel-based analysis was about 30 times faster than using the full device-level
SPICE analysis. Twenty-five designable parameters were selected, including transistor channel length of
the ‘‘resistor-simulating transistors,’’ four capacitors, and one of the gate voltages. Due to the designable
parameter tracking for transistor quadruples, the actual vector of optimized parameters was reduced to 7:
x¼ (VGs, C1, C2, L2, L3, L4, L5), where VGs denotes the gate voltage, and Ci, Lj are capacitor and channel length
values, respectively. The original yield was 43.5% and relative standard deviations for H0, f0, and Q were
reduced to 3.98%, 7.24%, and 22.06%, respectively, and all nominal values were close to their target values.
After SA optimization with convolution smoothing involving 5% perturbations for each of the x param-
eters, and the total of about 240 circuit analyses, yield increased to 85.0%, andH0, f0, andQ relative standard
deviations were reduced to 3.87%, 6.35%, and 13.91%, respectively. Therefore, the largest variability
reduction (for Q) was about 37%, with simultaneous significant yield increase.
The preceding example demonstrates a typical approach that has to be taken in the case of large

analog circuits: the circuit has to be (hierarchically) macromodeled firsty and suitable statistical macro-
models have to be created, including mismatch modeling.

5.5 Conclusion

Several different techniques of statistical yield optimization were presented. Other approaches to yield
estimation and optimization can be found, e.g., in [21] (process optimization), and in [15,57,59,60,61].
It was also shown that yield, variability minimization, Toguchi design, and other approaches can be
generalized into one methodology called design for qualityz (DFQ). DFQ is a quickly growing area [30],

* A more sophisticated model, taking the mismatches into account, was later proposed in [32].
y Behavioral models can also be used.
z Other approaches to yield generalization=Design for Quality were presented in [13,28,58].

5-30 Computer Aided Design and Design Automation

where the major objective is not to maximize the parametric yield as the only design criterion (yield is
often only vaguely defined), but to minimize the performance variability around the designer specified
target performance values. This has been a subject of research for many years using a sensitivity-based
approach, and most recently, using the Taguchi methodology, based on some of the techniques of
Design of Experiments rather than on the use of sensitivities. To increase the efficiency of the (mostly
manual) Taguchi techniques [30], some automated methods started to appear, such as the generalized
methodology described previously, or the automated approach based on capability indices Cp=Cpk (used
extensively in process quality control) proposed in [41].
Statistical design optimization is still an active research area, but several mature techniques have been

already developed and practically applied to sophisticated industrial IC design. This is of great import-
ance to the overall manufacturing cost reduction, circuit quality improvement, and shortening of the
overall IC design cycle.

References

1. H. L. Abdel-Malek and J. W. Bandler, Yield optimization for arbitrary statistical distributions:
Part I—Theory, IEEE Trans. Circuits Syst., CAS-27(4): 245–253, April 1980.

2. K. J. Antreich and R. K. Koblitz, Design centering by yield prediction, IEEE Trans. Circuits Syst.,
CAS-29: 88–95, February 1982.

3. P. Balaban and J. J. Golembeski, Statistical analysis for practical circuit design, IEEE Trans. Circuits
Syst., CAS-22(2): 100–108, February 1975.

4. J. W. Bandler, Optimization of design tolerance using nonlinear programming, J. Optimization
Theory Appl., 14: 99, 1974; also in Proceedings of the Princeton Conference on Information Science
and Systems, p. 655, Princeton, NJ, February 1972.

5. J. W. Bandler and H. L. Abdel-Malek, Optical centering, tolerancing and yield determination via
updated approximations and cuts, IEEE Trans. Circuits Syst., CAS-25: 853–871, 1978.

6. J. W. Bandler, P. C. Liu, and H. Tromp, A nonlinear programming approach to optimal design
centering, tolerancing and tuning, IEEE Trans. Circuits Syst., CAS-23: 155, March 1976.

7. P. W. Becker and F. Jensen, Design of Systems and Circuits for Maximum Reliability or Maximum
Production Yield, New York: McGraw-Hill, 1977.

8. J. Chen and M. A. Styblinski, A systematic approach of statistical modeling and its application to
CMOS circuits, in Proceedings of the IEEE International Symposium on Circuits and Systems ’93,
pp. 1805–1808, Chicago, IL, May 1993.

9. P. Cox, P. Yang, S. S. Mahant-Shetti, and P. Chatterjee, Statistical modeling for efficient parametric
yield estimation of MOS VLSI circuits, IEEE Trans. Electron Devices, ED-32: 471–478, February
1985.

10. S. W. Director and G. D. Hatchel, The simplicial approximation to design centering, IEEE Trans.
Circuits Syst., CAS-24(7): 363–372, July 1977.

11. S. W. Director and G. D. Hatchel, A point basis for statistical design, in Proceedings of the IEEE
International Symposium on Circuits and Systems, New York, 1978.

12. S. W. Director, W. Maly, and A. J. Strojwas, VLSI Design for Manufacturing: Yield Enhancement,
Boston, MA: Kluwer Academic, 1990.

13. P. Feldman and S. W. Director, Integrated circuit quality optimization using surface integrals, IEEE
Trans. Comput. Aided Des., 12(12): 1868–1879, December 1993.

14. P. H. Gill, W. Murray, and M. H. Wright, Practical Optimizations, San Diego, CA: Academic Press,
1981.

15. D. E. Hocevar, P. F. Cox, and P. Yang, Parametric yield optimization for MOS circuit blocks, IEEE
Trans. Comput. Aided Des., 7(6): 645–658, June 1988.

16. D. E. Hocevar, M. R. Lightner, and T. N. Trick, A study of variance reduction techniques of
estimating circuit yields, IEEE Trans. Comput. Aided Des., CAD-2(3): 180–192, July 1983.

Statistical Design Optimization 5-31

17. A. Ilumoka, N. Maratos, and R. Spence, Variability reduction: Statistically based algorithms for
reduction of performance variability of electrical circuits, IEEE Proc., 129, Part G(4): 169–180,
August 1982.

18. G. Kjellstrom and L. Taxen, Stochastic optimization in system design, IEEE Trans. Circuits Syst.,
CAS-28: 702–715, July 1981.

19. G. Kjellstrom, L. Taxen, and P. O. Lindberg, Discrete optimization of digital filter using Gaussian
adaptation and quadratic function minimization, IEEE Trans. Circuits Syst., CAS-34(10): 1238–1242,
October 1987.

20. D. N. Lawley and A. E. Maxwell, Factor Analysis as a Statistical Method, New York: Elsevier, 1971.
21. K. K. Low and S. W. Director, An efficient methodology for building macromodels of IC fabrication

processes, IEEE Trans. Comput. Aided Des., 8(12): 1299–1313, December 1989.
22. W. Maly and A. J. Strojwas, Statistical simulation of IC manufacturing process, IEEE Trans. Comput.

Aided Des., Vol. CAD-1: 120–131, July 1982.
23. C. Michael and M. Ismail, Statistical Modeling for Computer-Aided Design of MOS VLSI Circuits,

Boston, MA: Kluwer Academic, 1993.
24. S. R. Nassif, A. J. Strojwas, and S.W. Director, FABRICS II, IEEE Trans. Comput. Aided Des., CAD-3:

40–46, January 1984.
25. J. Ogrodzki, L. Opalski, and M. A. Styblinksi, Acceptability regions for a class of linear networks,

in Proceedings of the IEEE International Symposium on Circuits and Systems, Houston, TX, pp. 187–190,
May 1980.

26. J. Ogrodzki and M. A. Styblinski, Optimal tolerancing, centering and yield optimization by one-
dimensional orthogonal search (ODOS) technique, in Proceedings of the European Conference on
Circuit Theory and Design (ECCTD), Vol. 2, pp. 480–485, Warsaw, Poland, September 1980.

27. L. Opalski, M. A. Styblinski, and J. Ogrodzki, An orthogonal search approximation to acceptability
regions and its application to tolerance problems, in Proceedings of the Conference on SPACECAD,
Bologna, Italy, September 1979.

28. L. J. Opalski and M. A. Styblinski, Generalization of yield optimization problem: Maximum income
approach, IEEE Trans. Comput. Aided Des. ICAS, CAD-5(2): 346–360, April 1986.

29. M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, Matching properties of MOS transistors,
IEEE J. Solid State Circuits, 24: 1334–1362, October 1989.

30. M. S. Phadke, Quality Engineering Using Robust Design, Englewood Cliff, NJ: Prentice Hall, 1989.
31. M. Qu and M. A. Styblinski, Hierarchical approach to statistical performance improvement of CMOS

analog circuits, in SRC TECHCON’93, Atlanta, GA, pp. 1809–1812, September 1993.
32. M. Qu and M. A. Styblinski, Statistical characterization and modeling of analog functional blocks, in

Proceedings of the IEEE International Symposium on Circuits and Systems, London, May–June 1994.
33. H. Robins and S. Monro, A stochastic approximation method, Annal. Math. Stat., 22: 400–407, 1951.
34. R. Y. Rubinstein, Simulation and the Monte Carlo Method, New York: John Wiley & Sons, 1981.
35. A. Ruszczynski and W. Syski, Stochastic approximation algorithm with gradient averaging for

constrained problems, IEEE Trans. Autom. Control, AC28: 1097–1105, December 1983.
36. K. Singhal and J. F. Pinel, Statistical design centering and tolerancing using parametric sampling,

IEEE Trans. Circuits Syst., CAS-28: 692–702, July 1981.
37. R. S. Soin and R. Spence, Statistical exploration approach to design centering, in Proc. Inst. Elect.

Eng., 127, Part G: 260–263, 1980.
38. J. C. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient

approximation, IEEE Trans. Autom. Control, 37(3): 332–341, 1992.
39. R. Spence and R. S. Soin, Tolerance Design of Electronic Circuits, Electronic Systems Engineering

Series, Reading, MA: Addison-Wesley, 1988.
40. W. Strasz and M. A. Styblinski, A second derivative Monte Carlo optimization of the production

yield, in Proceedings of the European Conference on Circuit Theory and Design, Vol. 2, pp. 121–131,
Warsaw, Poland, September 1980.

5-32 Computer Aided Design and Design Automation

41. M. A. Styblinski and S. A. Aftab, IC variability minimization using a new Cp and Cpk based
variability=performance measure, in Proceedings of the IEEE International Symposium on Circuits
and Systems, London, May–June 149–152, 1994.

42. M. A. Styblinski, Estimation of yield and its derivatives by Monte Carlo sampling and numerical
integration in orthogonal subspaces, in Proceedings of the European Conference on Circuit Theory
and Design (ECCTD), Vol. 2, pp. 474–479, Warsaw, Poland, September 1980.

43. M. A. Styblinski, Problems of yield gradient estimation for truncated probability density functions,
IEEE Trans. Comput. Aided Des. ICAS, CAD-5(1): 30–38, January 1986 (special issue on statistical
design of VLSI circuits).

44. M. A. Styblinski, Generalized formulation of yield, variability, minimax and Taguchi circuit opti-
mization problems, Microelectron Reliability, 34(1): 31–37, 1994.

45. M. A. Styblinski and S. A. Aftab, Combination of interpolation and self organizing approximation
techniques—A new approach to circuit performance modeling, IEEE Trans. Comput. Aided Des.,
12(11): 1775–1785, November 1993.

46. M. A. Styblinski, J. Ogrodzki, L. Opalski, and W. Strasz, New methods of yield estimation and
optimization and their application to practical problems (invited paper), in Proceedings of the
International Symposium on Circuits and Systems, Chicago, IL, 1981.

47. M. A. Styblinski and L. J. Opalski, A random perturbation method for IC yield optimization with
deterministic process parameters, in Proceedings of the IEEE International Symposium on Circuits
and Systems, pp. 977–980, Montreal, Canada, May 7–10, 1984.

48. M. A. Styblinski and L. J. Opalski, Algorithms and software tools for IC yield optimization based on
fundamental fabrication parameters, IEEE Trans. Comput. Aided Des. ICAS, CAD-5(1): 79–89,
January 1986 (special issue on statistical design of VLSI circuits).

49. M. A. Styblinski and A. Ruszczynski, Stochastic approximation approach to production yield
optimizaion, in Proceedings of the 25th Midwest Symposium on Circuits and Systems, Houghton,
MI, August 30–31, 1982.

50. M. A. Styblinski and A. Ruszczynski, Stochastic approximation approach to statistical circuit design,
Electron Lett., 19(8): 300–302, April 14, 1983.

51. M. A. Styblinski and W. Strasz, A second derivative Monte Carlo optimization of the production
yield, in Proceedings of the European Conference on Circuit Theory and Design (ECCTD’80), Vol. 2,
pp. 121–131, Warsaw, Poland, September 1980.

52. M. A. Styblinski and T.-S. Tang, Experiments in nonconvex optimization: Stochastic approximation
with function smoothing and simulated annealing, Neural Networks J., 3(4): 467–483, 1990.

53. M. A. Styblinski and J. C. Zhang, Orthogonal array approach to gradient based yield optimization, in
Proceedings of the International Symposium on Circuits and Systems, pp. 424–427, New Orleans, LA,
May 1990.

54. K. S. Tahim and R. Spence, A radial exploration algorithm for the statistical analysis of linear circuits,
IEEE Trans. Circuits Syst., CAS-27(5): 421–425, May 1980.

55. T.-S. Tang and M. A. Styblinski, Yield optimization for non-differentiable density functions using
convolution techniques, IEEE Trans. Comput. Aided Des. IC Syst., 7(10): 1053–1067, 1988.

56. W. J. Welch, T.-K. Yu, S. M. Kang, and J. Sacks, Computer experiments for quality control by
parameter design, J. Qual. Technol., 22(1): 15–22, January 1990.

57. P. Yang, D. E. Hocevar, P. F. Cox, C. Machala, and P. K. Chatterjee, An integrated and efficient
approach for MOS VLSI statistical circuit design, IEEE Trans. Comput. Aided Des. VLSI Circuits
Syst., CAD-5: 5–14, January 1986.

58. D. L. Young, J. Teplik, H. D. Weed, N. T. Tracht, and A. R. Alvarez, Application of statistical design
and response surface methods to computer-aided VLSI device design II: Desirability functions and
Taguchi methods, IEEE Trans. Comput. Aided Des., 10(1): 103–115, January 1991.

Statistical Design Optimization 5-33

59. T. K. Yu, S. M. Kang, I. N. Hajj, and T. N. Trick, Statistical performance modeling and parametric
yield estimation of MOS VLSI, IEEE Trans. Comput. Aided Des. VLSI Circuits Syst., CAD-6(6):
1013–1022, November 1987.

60. T. K. Yu, S. M. Kang, I. N. Hajj, and T. N. Trick, iEDISON: An interactive statistical design tool for
MOS VLSI circuits, in IEEE International Conference on Computer-Aided Design (ICCAD-88),
pp. 20–23, Santa Clara, CA, November 7–10, 1988.

61. T. K. Yu, S. M. Kang, J. Sacks, and W. J. Welch, Parametric yield optimization of MOS integrated
circuits by statistical modeling of circuit performances, Technical Report No. 27, Department of
Statistics, University of Illinois, Champaign, IL, July 1989.

62. L. A. Zadeh, Fuzzy sets, Info. Control, 8: 338–353, 1965.
63. L. A. Zadeh, Probability measures of fuzzy events, J. Math. Anal. Appl., 23: 421–427, 1968.

5-34 Computer Aided Design and Design Automation

6
Physical Design

Automation*

Naveed A. Sherwani
Intel Corporation

6.1 Introduction.. 6-1
6.2 Very Large-Scale Integration Design Cycle 6-2
6.3 Physical Design Cycle... 6-4
6.4 Design Styles... 6-6
6.5 Partitioning ... 6-9

Classification of Partitioning Algorithms . Kernighan–Lin
Partitioning Algorithm

6.6 Other Partitioning Algorithms ... 6-12
6.7 Placement .. 6-12

Classification of Placement Algorithms . Simulated Annealing
Placement Algorithm . Other Placement Algorithms

6.8 Routing... 6-15
6.9 Classification of Global Routing Algorithms 6-16
6.10 Classification of Detailed Routing Algorithms 6-16

Lee’s Algorithm for Global Routing . Greedy Channel
Router for Detailed Routing . Other Routing Algorithms

6.11 Compaction... 6-21
Classification of Compaction Algorithms . Shadow-Propagation
Algorithm for Compaction . Other Compaction Algorithms

6.12 Summary.. 6-23
References .. 6-24

6.1 Introduction

In the last three decades integrated circuit (IC) fabrication technology has evolved from integration of a
few transistors in small-scale integration (SSI) to integration of several million transistors in very large-
scale integration (VLSI). This phenomenal progress has been made possible by automating the process of
design and fabrication of VLSI chips.
Integrated circuits consist of a number of electronic components, built by layering several different

materials in a well-defined fashion on a silicon base called a wafer. The designer of an IC transforms a
circuit description into a geometric description, which is known as a layout. A layout consists of a set of
planar geometric shapes in several layers. The layout is then checked to ensure that it meets all the design

* The material presented in this chapter was adapted from the author’s book Algorithms for VLSI Physical Design
Automation, Boston: Kluwer Academic, 1993, with editorial changes for clarity and continuity. Copyright permission
has been obtained from Kluwer Academic Publishers.

6-1

requirements. The result is a set of design files in a particular unambiguous representation, known as an
intermediate form, which describes the layout. The design files are then converted into pattern generator
files, which are used to produce patterns called masks by an optical pattern generator. During fabrication,
these masks are used to pattern a silicon wafer using a sequence of photolithographic steps. The
component formation requires very exacting details about geometric patterns and separation between
them. The process of converting the specifications of an electrical circuit into a layout is called the
physical design. It is an extremely tedious and error-prone process because of the tight tolerance
requirements and the minuteness of the individual components. Currently, the smallest geometric feature
of a component can be as small as 0.35 mm (1 mm¼ 1.03 10�6 m). However, it is expected that the
feature size can be reduced to 0.1 mm within 5 years. This small feature size allows fabrication of as many
as 4.5 million transistors on a 253 25 mm maximum size chip. Due to the large number of components
and the exacting details required by the fabrication process, the physical design is not practical without
the help of computers. As a result, almost all phases of physical design extensively use computer-aided
design (CAD) tools and many phases have already been partially or fully automated. This automation of
the physical design process has increased the level of integration, reduced the turnaround time, and
enhanced chip performance.
VLSI physical design automation is essentially the study of algorithms related to the physical design

process. The objective is to study optimal arrangements of devices on a plane (or in a three-dimensional
space) and efficient interconnection schemes between these devices to obtain the desired functionality.
Because space on a wafer is very expensive real estate, algorithms must use the space very efficiently to
lower costs and improve yield. In addition, the arrangement of devices plays a key role in determining the
performance of a chip. Algorithms for physical design must also ensure that all the rules required by the
fabrication are observed and that the layout is within the tolerance limits of the fabrication process.
Finally, algorithms must be efficient and should be able to handle very large designs. Efficient algorithms
not only lead to fast turnaround time, but also permit designers to iteratively improve the layouts.
With the reduction in the smallest feature size and increase in the clock frequency, the effect of

electrical parameters on physical design will play a more dominant role in the design and development of
new algorithms.
In this section, we present an overview of the fundamental concepts of VLSI physical design

automation. Different design styles are discussed in Section 6.4. Section 6.2 discusses the design cycle
of a VLSI circuit. In Section 6.3 different steps of the physical design cycle are discussed. The rest of the
sections discuss each step of the physical design cycle.

6.2 Very Large-Scale Integration Design Cycle

Starting with a formal specification, the VLSI design cycle follows a series of steps and eventually
produces a packaged chip. A flow chart representing a typical design cycle is shown in Figure 6.1.

1. System specification: The specifications of the system to be designed are exactly specified here. This
necessitates creating a high-level representation of the system. The factors to be considered in this
process include performance, functionality, and the physical dimensions. The choice of fabrication
technology and design techniques are also considered. The end results are specifications for the
size, speed, power, and functionality of the VLSI system to be designed.

2. Functional design: In this step, behavioral aspects of the system are considered. The outcome is
usually a timing diagram or other relationships between subunits. This information is used to
improve the overall design process and to reduce the complexity of the subsequent phases.

3. Logic design: In this step, the functional design is converted into a logical design, typically
represented by Boolean expressions. These expressions are minimized to achieve the smallest
logic design which conforms to the functional design. This logic design of the system is simulated
and tested to verify its correctness.

6-2 Computer Aided Design and Design Automation

4. Circuit design: Here, the Boolean expressions are converted into a circuit representation by taking
into consideration the speed and power requirements of the original design. The electrical behavior
of the various components are also considered in this phase. The circuit design is usually expressed
in a detailed circuit diagram.

5. Physical design: In this step, the circuit representation of each component is converted into a
geometric representation. This representation is in fact a set of geometric patterns which
perform the intended logic function of the corresponding component. Connections between
different components are also expressed as geometric patterns. As stated earlier, this geometric
representation of a circuit is called a layout. The exact details of the layout also depend on
design rules, which are guidelines based on the limitations of the fabrication process and the

Fabrication

X = (AB*CD)+(A+D)+(A(B+C))
Y = (A(B+C)+AC+D+A(BC+D))

System specification

Functional design

Logic design

Circuit design

Physical design

Packaging

FIGURE 6.1 Design process steps.

Physical Design Automation 6-3

electrical properties of the fabrication materials. Physical design is a very complex process;
therefore, it is usually broken down into various substeps in order to handle the complexity of
the problem. In fact, physical design is arguably the most time-consuming step in the VLSI
design cycle.

6. Design verification: In this step, the layout is verified to ensure that the layout meets the system
specifications and the fabrication requirements. Design verification consists of design rule checking
(DRC) and circuit extraction. DRC is a process which verifies that all geometric patterns meet the
design rules imposed by the fabrication process. After checking the layout for design rule violations
and removing them, the functionality of the layout is verified by circuit extraction. This is a reverse
engineering process and generates the circuit representation from the layout. This reverse engi-
neered circuit representation can then be compared to the original circuit representation to verify
the correctness of the layout.

7. Fabrication: After verification, the layout is ready for fabrication. The fabrication process consists
of several steps: preparation of wafer, deposition, and diffusion of various materials on the wafer
according to the layout description. A typical wafer is 10 cm in diameter and can be used to
produce between 12 and 30 chips. Before the chip is mass produced, a prototype is made and
tested.

8. Packaging, testing, and debugging: In this step, the chip is fabricated and diced in a fabrication
facility. Each chip is then packaged and tested to ensure that it meets all the design specifications
and that it functions properly. Chips used in printed circuit boards (PCBs) are packaged in a dual-
in-line package (DIP) or pin grid array (PGA). Chips which are to be used in a multichip module
(MCM) are not packaged because MCMs use bare or naked chips.

The VLSI design cycle is iterative in nature, both within a step and between steps. The representation is
iteratively improved to meet system specifications. For example, a layout is iteratively improved so that it
meets the timing specifications of the system. Another example may be detection of design rule violations
during design verification. If such violations are detected, the physical design step needs to be repeated to
correct the error. The objective of VLSI CAD tools is to minimize the number of iterations and thus
reduce the time-to-market.

6.3 Physical Design Cycle

Physical design cycle converts a circuit diagram into a layout. This is accomplished in several steps such
as partitioning, floorplanning, placement, routing, and compaction, as shown in Figure 6.2.

1. Partitioning: The complex task of chip layout is divided into several smaller tasks. A chip may
contain several million transistors. Layout of the entire circuit cannot be handled due to the
limitation of memory space as well as computation power available. Therefore, it is normally
partitioned by grouping the components into blocks (subcircuits=modules). The actual partitioning
process considers many factors such as size of the blocks, number of blocks, and number of
interconnections between the blocks. The output of partitioning is a set of blocks along with the
interconnections required between blocks. The set of interconnections required is referred to as a
netlist. Figure 6.2a shows that the input circuit has been partitioned into three blocks. In large
circuits the partitioning process is hierarchical and at the topmost level a chip may have between 5
and 25 blocks. Each module is then partitioned recursively into smaller blocks.

2. Placement: In this step, good layout alternatives are selected for each block, as well as the entire
chip. The area of each block can be calculated after partitioning and is based approximately on the
number and the type of components in that block. The actual rectangular shape of the block, which
is determined by the aspect ratio may, however, be varied within a prespecified range. Floor-
planning is a critical step, as it sets up the groundwork for a good layout. However, it is

6-4 Computer Aided Design and Design Automation

computationally quite hard. Very often the task of floorplan layout is done by a design engineer,
rather than by a CAD tool. This is sometimes necessary as the major components of an IC are
often intended for specific locations on the chip. The placement process determines the exact
positions of the blocks on the chip, so as to find a minimum area arrangement for the blocks that
allows completion of interconnections between the blocks. Placement is typically done in two
phases. In the first phase an initial placement is created. In the second phase the initial placement is
evaluated and iterative improvements are made until the layout has minimum area and conforms
to design specifications. Figure 6.2b shows that three blocks have been placed. It should be noted
that some space between the blocks is intentionally left empty to allow interconnections between
blocks. Placement may lead to unroutable design, i.e., routing may not be possible in the space
provided. Thus, another iteration of placement is necessary. To limit the number of iterations of
the placement algorithm, an estimate of the required routing space is used during the placement

(d)

(c)

(b)

(a)

Circuit design

Physical design

Partitioning

Compaction

Fabrication

Floorplanning
and

placement

Routing

Cutline 1

Cutline 2

FIGURE 6.2 Physical design cycle.

Physical Design Automation 6-5

phase. A good routing and circuit performance heavily depend on a good placement algorithm.
This is due to the fact that once the position of each block is fixed, very little can be done to
improve the routing and the overall circuit performance.

3. Routing: In this step, the objective is to complete the interconnections between blocks according to
the specified netlist. First, the space not occupied by the blocks (called the routing space) is
partitioned into rectangular regions called channels and switchboxes. The goal of a router is to
complete all circuit connections using the shortest possible wire length and using only the channels
and switchboxes. This is usually done in two phases, referred to as the global routing and detailed
routing phases. In global routing, connections are completed between the proper blocks of the
circuit disregarding the exact geometric details of each wire and pin. For each wire, the global
router finds a list of channels which are to be used as a passageway for that wire. In other words,
global routing specifies the ‘‘loose route’’ of a wire through different regions in the routing space.
Global routing is followed by detailed routing, which completes point-to-point connections
between pins on the blocks. Loose routing is converted into exact routing by specifying geometric
information such as width of wires and their layer assignments. Detailed routing includes channel
routing and switchbox routing. Routing is a very well-studied problem and several hundred articles
have been published about all its aspects. Because almost all problems in routing are computa-
tionally hard, the researchers have focused on heuristic algorithms. As a result, experimental
evaluation has become an integral part of all algorithms and several benchmarks have been
standardized. Due to the nature of the routing algorithms, complete routing of all the connections
cannot be guaranteed in many cases. As a result, a technique called rip-up and reroute is used,
which basically removes troublesome connections and reroutes them in a different order. The
routing phase of Figure 6.2c shows that all the interconnections between three blocks have
been routed.

4. Compaction: In this step, the layout is compressed in all directions such that the total area is
reduced. By making the chip smaller, wire lengths are reduced, which in turn reduces the signal
delay between components of the circuit. At the same time, a smaller area may imply more chips
can be produced on a wafer, which in turn reduces the cost of manufacturing. However, the
expense of computing time mandates the extensive compaction is used only when large quan-
tities of ICs are produced. Compaction must ensure that no rules regarding the design and
fabrication process are violated during the process. The final diagram in Figure 6.2d shows the
compacted layout.

Physical design, like VLSI design, is iterative in nature, and many steps such as global routing and
channel routing are repeated several times to obtain a better layout. In addition, the quality of results
obtained in a step depends on the quality of solutions obtained in earlier steps. For example, a poor
quality placement cannot be ‘‘cured’’ by high quality routing. As a result, earlier steps have more
influence on the overall quality of the solution. In this sense partitioning, floorplanning, and placement
problems play a more important role in determining the area and chip performance, as compared to
routing and compaction. Because placement may produce an ‘‘unroutable’’ layout, the chip might need
to be replaced or repartitioned before another routing is attempted. In general, the whole design cycle
may be repeated several times to accomplish the design objectives. The complexity of each step varies
depending on the design constraints as well as the design style used.

6.4 Design Styles

Even after decomposing physical design into several conceptually easier steps, it has been shown that
each step is computationally very hard. Market requirements demand a quick time-to-market and high
yield. As a result, restricted models and design styles are used in order to reduce the complexity of

6-6 Computer Aided Design and Design Automation

physical design. This practice began in the late 1960s and led to the development of several restricted
design styles [8].
The most general form of layout is called the full-custom design style, in which the circuit is

partitioned into a collection of subcircuits according to some criteria such as functionality of each
subcircuit. In this design style, each subcircuit is called a functional block or simply a block. The full-
custom design style allows functional blocks to be of any size. Figure 6.3 shows an example of very simple
circuit with few blocks. Internal routing in each block is not shown for the sake of clarity. Blocks can be
placed at any location on the chip surface without restriction. In other words, this style is characterized by
the absence of any constraints on the physical design process. This design style allows for very compact
designs. However, the process of automating a full-custom design style has a much higher complexity
than other restricted models. For this reason, it is used only when final design must have a minimum area
and designing time is less of a factor. The automation process for a full-custom layout is still a topic of
intensive research. Some phases of physical design of a full-custom chip may be done manually to
optimize the layout. Layout compaction is a very important aspect in full-custom. The rectangular solid
boxes around the boundary of the circuit are called I–O pads. Pads are used to complete interconnections
between chips or interconnections between chip and the board. The space not occupied by blocks is used
for routing of interconnecting wires. Initially all the blocks are placed within the chip area, with the
objective of minimizing the total area. However, enough space must be left between the blocks to
complete the routing. Usually several metal layers are used for routing interconnections. Currently,
two metal layers are common for routing and the three-metal layer process is gaining acceptance, as the
fabrication costs become more feasible. The routing area needed between the blocks becomes increasingly
smaller as more routing layers are used. This is because some routing is done on top of the transistors in
the additional metal layers. If all the routing can be done on top of the transistors, the total chip area is
determined by the area of the transistors.

Pad Metal 1 Metal 2Via

Data path
PLA I/O

ROM/RAM

A/D converter
Random logic

FIGURE 6.3 Full-custom structure.

Physical Design Automation 6-7

In a hierarchical design of circuit each block in full-custom design may be very complex and may
consist of several subblocks, which in turn may be designed using the full-custom design style or other
design styles. It is easy to see that because any block is allowed to be placed anywhere on the chip, the
problem of optimizing area and interconnection of wires becomes difficult. Full-custom design is very
time consuming; thus, the method is inappropriate for very large circuits, unless performance is of
utmost importance. Full-custom is usually used for the layout of microprocessors.
A more restricted design style is called the standard cell design style. The design process in standard

cell design style is simpler than a full-custom design style. Standard cell methodology considers the layout
to consist of rectangular cells of the same height. Initially, a circuit is partitioned into several smaller
blocks, each of which is equivalent to some predefined subcircuit (cell). The functionality and the
electrical characteristics of each predefined cell are tested, analyzed, and specified. A collection of these
cells is called a cell library, usually consisting of 200–400 cells. Terminals on cells may be located either
on the boundary or in the center of the cells. Cells are placed in rows and the space between two rows is
called a channel. These channels are used to perform interconnections between cells. If two cells to be
interconnected lie in the same row or in adjacent rows, then the channel between the rows is used for
interconnection. However, if two cells to be connected lie in two nonadjacent rows, then their intercon-
nection wire passes through the empty space between any two cells, or feedthrough.
Standard cell design is well suited for moderate-size circuits and medium production volumes.

Physical design using standard cells is simpler as compared to full-custom and efficient using modern
design tools. The standard cell design style is also widely used to implement the ‘‘random logic’’ of the
full-custom design, as shown in Figure 6.3. While standard cell designs are developed more quickly, a
substantial initial investment is needed in the development of the cell library, which may consist of
several hundred cells. Each cell in the cell library is ‘‘handcrafted’’ and requires a highly skilled design
engineer. Each type of cell must be created with several transistor sizes. Each cell must then be tested by
simulation and its performance must be characterized. A standard cell design usually takes more area
than a full-custom or a handcrafted design. However, as more metal layers become available for routing,
the difference in area between the two design styles will gradually be reduced.
The gate array design style is a simplified version of the standard cell design style. Unlike the cells in

standard cell designs, all the cells in gate array are identical. The entire wafer is prefabricated with an
array of identical gates or cells. These cells are separated by both vertical and horizontal spaces called
vertical and horizontal channels. The circuit design is modified such that it can be partitioned into a
number of identical blocks. Each block must be logically equivalent to a cell on the gate array. The name
‘‘gate array’’ signifies the fact that each cell may simply be a gate, such as a three-input NAND gate. Each
block in the design is mapped or placed onto a prefabricated cell on the wafer during the partitioning=
placement phase, which is reduced to a block-to-cell assignment problem. The number of partitioned
blocks must be less than or equal to that of the total number of cells on the wafer. Once the circuit is
partitioned into identical blocks, the task is to make the interconnections between the prefabricated cells
on the wafer using horizontal and vertical channels to form the actual circuit. The uncommitted gate
array is taken into the fabrication facility and routing layers are fabricated on top of the wafer. The
completed wafer is also called a customized wafer.
This simplicity of gate array design is gained at the cost of rigidity imposed upon the circuit both by

the technology and the prefabricated wafers. The advantage of gate arrays is that the steps involved for
creating any prefabricated wafer are the same, and only the last few steps in the fabrication process
actually depend on the application for which the design will be used. Hence, gate arrays are cheaper and
easier to produce than full-custom or standard cell. Similar to standard cell design, gate array is also a
nonhierarchical structure. The gate array architecture is the most restricted form of layout. This also
means it is the simplest for algorithms to work with. For example, the task of routing in gate array is to
determine if a given placement is routable. The routability problem is conceptually simpler as compared
to the routing problem in standard cell and full-custom design styles.

6-8 Computer Aided Design and Design Automation

The choice of design style for a particular circuit depends on many factors such as functionality of the
chip, time-to-market, and the volume of chips to be manufactured. Full-custom is typically reserved for
high-performance, high-volume chips, while standard cells are used for moderate performance, where
the cost of full-custom cannot be justified. Gate arrays are typically used for low-performance, low-cost
applications. A design style may be applicable to the entire chip or a block of the chip.
Irrespective of the choice of the design style, all steps of the physical design cycle need to be carried

out. However, the complexity, the effectiveness, and the algorithms used differ considerably depending
on the design style. The following sections discuss algorithms for different phases of the physical
design cycle.

6.5 Partitioning

As stated earlier, the basic purpose of partitioning is to simplify the overall design process. The circuit is
decomposed into several subcircuits to make the design process manageable. This section considers the
partitioning phase of the physical design cycle, study constraints, and objective functions for this problem
and presents efficient algorithms.
Given a circuit, the partitioning problem is to decompose it into several subcircuits subject to

constraints while optimizing a given objective function. The constraints for the partitioning problem
include area constraints and terminal constraints. Area constraints are user specified for design opti-
mization and terminal count depends on the area and aspect ratio of the block. In particular, the terminal
count for a partition is given by the ratio of the perimeter of the partition to the terminal pitch. The
minimum spacing between two adjacent terminals is called terminal pitch and is determined by the
design rules. The objective functions for a partitioning problem include the minimization of the number
of nets that cross the partition boundaries, and the minimization of the maximum number of times a
path crosses the partition boundaries. The constraints and the objective functions used in the partitioning
problem vary depending upon the partitioning level and the design style used. The actual objective
function and constraints chosen for the partitioning problem may also depend on the specific problem.
The number of nets that connect a partition to other partitions cannot be greater than the terminal count
of the partition. In addition, the number of nets cut by partitioning should be minimized to simplify the
routing task. The minimization of the number of nets cut by partitioning is one of the most important
objectives in partitioning.
A disadvantage of the partitioning process is that it may degrade the performance of the final design.

During partitioning, critical components should be assigned to the same partition. If such an assignment
is not possible, then appropriate timing constraints must be generated to keep the two critical compon-
ents close together. Usually, several components, forming a critical path, determine the chip perform-
ance. If each component is assigned to a different partition, the critical path may be too long. Minimizing
the length of critical paths improves system performance.
After a chip has been partitioned, each of the subcircuits must be placed on a fixed plane and the nets

between all the partitions must be interconnected. The placement of the subcircuits is done by the
placement algorithms and the nets are routed by using routing algorithms.

6.5.1 Classification of Partitioning Algorithms

The partitioning algorithms also may be classified based on the nature of the algorithms, of which two
types exist: deterministic algorithms and probabilistic algorithms. Deterministic algorithms produce
repeatable or deterministic solutions. For example, an algorithm which makes use of deterministic
functions will always generate the same solution for a given problem. On the other hand, the probabilistic
algorithms are capable for producing a different solution for the same problem each time they are used,
as they make use of some random functions.

Physical Design Automation 6-9

The partitioning algorithms also may be classified on the basis of the process used for partitioning.
Thus, we have group migration algorithms, simulated annealing and evolution-based algorithms, and
other partitioning algorithms.
The group migration algorithms [9,17] start with some partitions, usually generated randomly, and

then move components between partitions to improve the partitioning. The group migration algorithms
are quite efficient. However, the number of partitions must be specified, which is usually not known when
the partitioning process starts. In addition, the partitioning of an entire system is a multilevel operation,
and the evaluation of the partitions obtained by the partitioning depends on the final integration of
partitions at all levels, from the basic subcircuits to the whole system. An algorithm used to find a
minimum cut at one level may sacrifice the quality of cuts for the following levels. The group migration
method is a deterministic method that is often trapped at a local optimum and cannot proceed further.
The simulated annealing=evolution algorithms [3,10,18,26] carry out the partitioning process by using

a cost function, which classifies any feasible solution, and a set of moves, which allows movement from
solution to solution. Unlike deterministic algorithms, these algorithms accept moves which may
adversely affect the solution. The algorithm starts with a random solution and as it progresses, the
proportion of adverse moves decreases. These degenerate moves act as a safeguard against entrapment in
local minima. These algorithms are computationally intensive as compared to group migration and
other methods.
Among all the partitioning algorithms, the group migration and simulated annealing=evolution have

been the most successful heuristics for partitioning problems. The group migration and simulated
annealing=evolution methods are most widely used, and extensive research has been carried out in
these two types of algorithms.

6.5.2 Kernighan–Lin Partitioning Algorithm

The Kernighan–Lin (K–L) algorithm is a bisectioning algorithm. It starts by initially partitioning the
graph G¼ (V, E) into two subsets of equal size. Vertex pairs are exchanged across the bisection if the
exchange improves the cutsize. The preceding procedure is carried out iteratively until no further
improvement can be achieved.
The basic idea of the K–L algorithm is illustrated with the help of an example before presenting the

algorithm formally. Consider the example given in Figure 6.4a. The initial partitions are

A ¼ 1,2,3,4f g
B ¼ 5,6,7,8f g

(b)(a)

1 1

2
2

3

3

44

5

5

6 6

7

7

8

8

FIGURE 6.4 Graph bisected by K–L algorithm: (a) initial bisections and (b) final bisections.

6-10 Computer Aided Design and Design Automation

Notice that the initial cutsize is 9. The next step of the K–L algorithm is to choose a pair of vertices whose
exchange results in the largest decrease of the cutsize or results in the smallest increase, if no decrease is
possible. The decrease of the cutsize is computed using gain values D(i) of vertices vi. The gain of a vertex
vi is defined as

D ið Þ ¼ inedge ið Þ � outedge ið Þ

where
inedge(i) is the number of edges of vertex i that do not cross the bisection boundary
outedge(i) is the number of edges that cross the boundary

The amount by which the cutsize decreases, if vertex vi changes over to the other partition, is represented
by D(i). If vi and vj are exchanged, the decrease of the cutsize is D(i)þD(j). In the example given in
Figure 6.4, a suitable vertex pair is (3, 5), which decreases the cutsize by 3. A tentative exchange of this
pair is made. These two vertices are then locked. This lock on the vertices prohibits them from taking part
in any further tentative exchanges. The preceding procedure is applied to the new partitions, which gives
a second vertex pair of (4, 6). This procedure is continued until all the vertices are locked. During this
process, a log of all tentative exchanges and the resulting cutsizes is stored. Table 6.1 shows the log of
vertex exchanges for the given example. Note that the partial sum of cutsize decrease g(i) over the
exchanges of first i vertex pairs is given in the table; e.g., g(1)¼ 3 and g(2)¼ 8. The value of k for which g
(k) gives the maximum value of all g(i) is determined from the table. In this example k¼ 2 and g(2)¼ 8 is
the maximum partial sum. The first k pairs of vertices are actually exchanged. In the example the first two
vertex pairs (3, 5) and (4, 6) are actually exchanged, resulting in the bisection shown in Figure 6.4b. This
completes an iteration and a new iteration starts. However, if no decrease of cutsize is possible during an
iteration, the algorithm stops. Figure 6.5 presents the formal description of the K–L algorithm.
The procedure INITIALIZE finds initial bisections, and initializes the parameters in the algorithm. The

procedure IMPROVE tests if any improvement has been made during the last iteration, while the
procedure UNLOCK checks if any vertex is unlocked. Each vertex has a state of either locked or unlocked.
Only those vertices whose status is unlocked are candidates for the next tentative exchanges. The
procedure TENT-EXCHGE tentatively exchanges a pair of vertices. The procedure LOCK locks the
vertex pair, while the procedure LOG stores the log table. The procedure ACTUAL-EXCHGE determines
the maximum partial sum of g(i), selects the vertex pairs to be exchanged, and fulfills the actual exchange
of these vertex pairs.
The time complexity of the K–L algorithm is O(n3). The K–L algorithm is, however, quite robust. It

can accommodate additional constraints, such as a group of vertices requiring to be in a specified
partition. This feature is very important in layout because some blocks of the circuit are to be kept
together due to the functionality. For example, it is important to keep all components of an adder
together. However, the K–L algorithm has several disadvantages. For example, the algorithm is not
applicable for hypergraphs, it cannot handle arbitrarily weighted graphs and the partition sizes must be
specified before partitioning. Finally, the complexity of the algorithm is considered too high even for
moderate-size problems.

TABLE 6.1 Log of the Vertex Exchanges

i Vertex Pair g(i)
Pi

j¼1 g(i) Cutsize

0 — — — 9

1 (3, 5) 3 3 6

2 (4, 6) 5 8 1

3 (1, 7) �6 2 7

4 (2, 8) �2 0 9

Physical Design Automation 6-11

6.6 Other Partitioning Algorithms

In order to overcome the disadvantages of the K–L algorithm, several extensions of the K–L algorithm
such as the Fiduccia–Mattheyses algorithm, the Goldberg and Burstein algorithm, the component
replication algorithm, and the ratio cut algorithm were developed. In the class of probabilistic and
iterative algorithms simulated annealing and evolution-based algorithms have been developed for
partitioning. For details on these partitioning algorithms, refer to Chapter 4 of [29].

6.7 Placement

The placement phase follows the partitioning phase of the physical design cycle. After the circuit has been
partitioned, the area occupied by each block (subcircuit) can be calculated and the number of terminals
(pins) required by each block is known. Partitioning also generates the netlist which specifies the
connections between the blocks. The layout is completed by arranging the blocks on the layout surface
and interconnecting their pins according to the netlist. The arrangement of blocks is done in the
placement phase, while interconnection is completed in the routing phase. In the placement phase,
blocks are assigned a specific shape and are positioned on a layout surface in such a fashion that no two
blocks overlap and enough space is left on the layout surface to complete the interconnections between
the blocks. The blocks are positioned so as to minimize the total area of the layout. In addition, the
locations of pins on each block are also determined.
The input to the placement phase is a set of blocks, the number of terminals for each block, and the

netlist. If the layout of the circuit within a block has been completed, then the dimensions of the block are
also known. The blocks for which the dimensions are known are called fixed blocks and the blocks for
which dimensions are yet to be determined are called flexible blocks. Thus, during the placement phase,
we need to determine an appropriate shape for each block (if shape is not known), the location of each
block on the layout surface, and determine the locations of pins on the boundary of the blocks. The

Algorithm KL

Begin
 INITIALIZE();
 while (IMPROVE (table) = TRUE) do
 (* if an improvement has been made during last iteration,
 the process is carried out again.*)
 while (UNLOCK(A) = TRUE) do
 (* if there exists any unlocked vertex in A,
 more tentative exchanges are carried out.*)
 for (each a A) do
 if (a = unlocked) then
 for (each b B) do
 if (b = unlocked) then
 if (Dmax < D(a) + D(b)) then
 Dmax = D(a) + D(b);
 amax = a;
 bmax = b;
 TENT-EXCHGE(amax, bmax);
 LOCK(amax, bmax);
 LOG(table);
 Dmax = –∞;
 ACTUAL-EXCHGE(table);
End;

FIGURE 6.5 Algorithm K–L.

6-12 Computer Aided Design and Design Automation

problem of assigning locations to the fixed blocks on a layout surface is called the placement problem. If
some or all of the blocks are flexible, the problem is called the floorplanning problem. Hence, the
placement problem is a restricted version of the floorplanning problem. The terminology is slightly
confusing as floorplanning problems are placement problems as well, but these terminologies have been
widely used and accepted. It is desirable that the pin locations are identified at the same time the block
locations are fixed. However, due to the complexity of the placement problem, the problem of identifying
the pin locations for the blocks is solved after the locations of all the blocks are known. This process of
identifying pin locations is called pin assignment.
The placement phase is crucial in the overall physical design cycle because an ill-placed layout cannot

be improved by high-quality routing. In other words, the overall quality of the layout in terms of area
and performance is mainly determined in the placement phase.

6.7.1 Classification of Placement Algorithms

The placement algorithms can be classified on the basis of the input to the algorithms, the nature of
output generated by the algorithms, and the process used by the algorithms.
Depending on the input, the placement algorithms can be classified into two major groups: construct-

ive placement and iterative improvement methods. The input to the constructive placement algorithms
consists of a set of blocks along with the netlist. The algorithm finds the locations of blocks. On the other
hand, iterative improvement algorithms start with an initial placement. These algorithms modify the
initial placement in search of a better placement. These algorithms are typically used in an iterative
manner until no improvement is possible.
The nature of output produced by an algorithm is another way of classifying the placement algorithms.

Some algorithms generate the same solution when presented with the same problem, i.e., the solution
produced is repeatable. These algorithms are called deterministic placement algorithms. Algorithms that
function on the basis of fixed connectivity rules (or formulas) or determine the placement by solving
simultaneous equations are deterministic and always produce the same result for a particular placement
problem. Some algorithms, on the other hand, work by randomly examining configurations and may
produce a different result each time they are presented with the same problem. Such algorithms are called
probabilistic placement algorithms.
The classification based on the process used by the placement algorithms is perhaps the best way

of classifying these algorithms. Two important classes of algorithms come under this classification:
simulation-based algorithms and partitioning-based algorithms. Simulation-based algorithms simulate
some natural phenomenon while partitioning-based algorithms use partitioning for generating the
placement. The algorithms which use clustering and other approaches are classified under ‘‘other’’
placement algorithms.

6.7.2 Simulated Annealing Placement Algorithm

Simulated annealing is one of the most well-developed methods available [2,10–12,16,19,23,25–28].
The simulated annealing technique has been successfully used in many phases of VLSI physical design,
e.g., circuit partitioning. A detailed description of the application of this method to partitioning may be
found in Chapter 4 of [29]. Simulated annealing is used in placement as an iterative improvement
algorithm. Given a placement configuration, a change to that configuration is made by moving a
component or interchanging locations of two components. In the case of the simple pairwise interchange
algorithm, it is possible that an achieved configuration has a cost higher than that of the optimum, but no
interchange can cause a further cost reduction. In such a situation, the algorithm is trapped at a local
optimum, and cannot proceed further. Actually, this happens quite often when this algorithm is used in
real-life examples. Simulated annealing avoids getting stuck at a local optimum by occasionally accepting
moves that result in a cost increase.

Physical Design Automation 6-13

In simulated annealing, all moves that result in a decrease in cost are accepted. Moves that result in an
increase in cost are accepted with a probability that decreases over the iterations. The analogy to the
actual annealing process is heightened with the use of a parameter called temperature T. This parameter
controls the probability of accepting moves that result in an increased cost. Additional moves are
accepted at higher values of temperature than at lower values. The acceptance probability can be given
by eDC=T, where DC is the increase in cost. The algorithm starts with a very high value of temperature,
which gradually decreases so that moves that increase cost have a lower probability of being accepted.
Finally, the temperature reduces to a very low value which causes only moves that reduce cost to be
accepted. In this way the algorithm converges to an optimal or near-optimal configuration.

In each stage, the configuration is shuffled randomly to obtain a new configuration. This random
shuffling could be achieved by displacing a block to a random location, an interchange of two blocks, or
any other move that can change the wire length. After the shuffle, the change in cost is evaluated. If a
decrease in cost occurs, the configuration is accepted; otherwise, the new configuration is accepted with
a probability that depends on the temperature. The temperature is then lowered using some function
which, for example, could be exponential in nature. The process is stopped when the temperature has
dropped to a certain level. The outline of the simulated annealing algorithm is shown in Figure 6.6.
The parameters and functions used in a simulated annealing algorithm determine the quality of the

placement produced. These parameters and functions include the cooling schedule consisting of initial
temperature (init_temp), final temperature (final_temp), and the function used for changing the tempera-
ture (SCHEDULE), inner_loop_criterion, which is the number of trials at each temperature, the process
used for shuffling a configuration (PERTURB), acceptance probability (F), and the cost function (COST).
A good choice of these parameters and functions can result in a good placement in a relatively short time.

6.7.3 Other Placement Algorithms

Several other algorithms which simulate naturally occurring processes have been developed for routing.
The simulated evolution algorithm is analogous to the natural process of mutation of species as they
evolve to better adapt to their environment. The force directed placement explores the similarity between
the placement problem and the classical mechanics problem of a system of bodies attached to springs.
The partitioning-based placement techniques include Breuer’s algorithm and the terminal propagation
algorithm. Several other algorithms, such as the cluster growth algorithm, the quadratic assignment
algorithm, the resistive network optimization algorithm, and the branch and bound algorithm, also exist.
For more details on these algorithms, refer to Chapter 5 of [29].

Algorithm Simulated Annealing

Begin
 temp = INIT-TEMP;
 place = INIT-PLACEMENT;
 while (temp > FINAL-TEMP) do
 while (inner_loop_criterion = FALSE) do
 new_ place = PERTURB (place);
 ΔC = COST(new_ place) - COST (place);
 if (ΔC < 0) then
 place = new_ place;
 else if (RANDOM(0,1) > e T then
 place = new_place;
 temp = SCHEDULE(temp);
End;

Δc

FIGURE 6.6 Algorithm simulated annealing.

6-14 Computer Aided Design and Design Automation

6.8 Routing

The exact locations of circuit blocks and pins are determined in the placement phase. A netlist is also
generated which specifies the required interconnections. Space not occupied by the blocks can be viewed
as a collection of regions. These regions are used for routing and are called routing regions. The process
of finding the geometric layouts of all the nets is called routing. Each routing region has a capacity, which
is the maximum number of nets that can pass through that region. The capacity of a region is a function
of the design rules and dimensions of the routing regions and wires. Nets must be routed within the
routing regions and must not violate the capacity of any routing region. In addition, nets must not
short circuit; that is, nets must not intersect each other. The objective of routing is dependent on the
nature of the chip. For general-purpose chips, it is sufficient to minimize the total wire length. For high-
performance chips, total wire length may not be a major concern. Instead, we may want to minimize the
longest wire to minimize the delay in the wire and therefore maximize its performance. Usually routing
involves special treatment of such nets as clock nets, power, and ground nets. In fact, these nets are
routed separately by special routers.
Channels and switchboxes are the two types of routing regions. A switchbox is a rectangular area

bounded on all sides. A channel is a rectangular area bounded on two opposite sides by the blocks. The
capacity of a channel is a function of the number of layers (l), height (h) of the channel, wire width (w),
and wire separation (s); i.e., capacity¼ (l3 h)=(wþ s). For example, if for channel C (Figure 6.7), l¼ 2,
h¼ 18l, w¼ 3l, s¼ 3l, then the capacity is (23 18)=(3þ 3)¼ 6.
A VLSI chip may contain several million transistors. As a result, tens of thousands of nets must be

routed to complete the layout. In addition, several hundred routes are possible for each net. This makes
the routing problem computationally hard. In fact, even when the routing problem is restricted to
channels, it cannot be solved in polynomial time; i.e., the channel routing problem is NP-complete [30].
Therefore, routing traditionally is divided into two phases. The first phase is called global routing and
generates a ‘‘loose’’ route for each net. In fact, it assigns a list of routing regions to each net without
specifying the actual geometric layout of wires. The second phase, which is called detailed routing, finds
the actual geometric layout of each net within the assigned routing regions (Figure 6.8b). Unlike global
routing, which considers the entire layout, a detailed router considers just one region at a time. The exact
layout is produced for each wire segment assigned to a region, and vias are inserted to complete the
layout. Detailed routing includes channel routing and switchbox routing. Another approach to routing is
called area routing, which is a single-phase routing technique. However, this technique is computation-
ally infeasible for general VLSI circuits and is typically used for specialized problems.

Channel C

Block

Switchbox

Terminals

FIGURE 6.7 Layout of circuit blocks and pins after placement.

Physical Design Automation 6-15

6.9 Classification of Global Routing Algorithms

Two approaches solve the global routing problem: the sequential and the concurrent:

1. Sequential approach: As the name suggests, nets are routed one by one. However, once a net has
been routed it may block other nets which are yet to be routed. As a result, this approach is very
sensitive to the order in which the nets are considered for routing. Usually, the nets are sequenced
according to their criticality, perimeter of the bounding rectangle, and the number of terminals.
The criticality of a net is determined by the importance of the net.

2. Concurrent approach: This approach avoids the ordering problem by considering routing of all the
nets simultaneously. The concurrent approach is computationally hard and no efficient polynomial
algorithms are known, even for two-terminal nets. As a result, integer programming methods have
been suggested. The corresponding integer program is usually too large to be employed efficiently.
Hence, hierarchical methods that work from the top down are employed to partition the problem
into smaller subproblems, which can be solved by integer programming.

6.10 Classification of Detailed Routing Algorithms

Many ways are possible for classifying the detailed routing algorithms. The algorithms could be classified
on the basis of the routing models used. Some routing algorithms use grid-based models, while some
other algorithms use the gridless model. The gridless model is more practical as all the wires in a design
do not have the same width. Another possible classification scheme could be to classify the algorithms
based on the strategy they use. Thus, we could have greedy routers or hierarchical routers to name two.
We classify the algorithms based on the number of layers used for routing. Single-layer routing problems
frequently appear as subproblems in other routing problems which deal with more than one layer. Two-
layer routing problems have been thoroughly investigated because until recently, due to limitations of the
fabrications process, only two metal layers were allowed for routing. A third metal layer is now allowed,
thanks to improvements in the fabrication process, but it is expensive compared to the two-layer metal
process. Several multilayer routing algorithms also were developed recently, which can be used for
routing MCMs, which have up to 32 layers.

6.10.1 Lee’s Algorithm for Global Routing

This algorithm, which was developed by Lee in 1961 [20], is the most widely used algorithm for finding a
path between any two vertices on a planar rectangular grid. The key to the popularity of Lee’s maze
router is its simplicity and its guarantee of finding on optimal solution, if one exists.
The exploration phase of Lee’s algorithm is an improved version of the breadth-first search. The search

can be visualized as a wave propagating from the source. The source is labeled ‘‘0’’ and the wavefront

(a) (b)

FIGURE 6.8 (a) Global routing and (b) detailed routing.

6-16 Computer Aided Design and Design Automation

propagates to all the unblocked vertices adjacent to the source. Every unblocked vertex adjacent to the
source is marked with a label ‘‘1.’’ Then, every unblocked vertex adjacent to vertices with a label ‘‘1’’ is
marked with a label ‘‘2,’’ and so on. This process continues until the target vertex is reached or no further
expansion of the wave can be carried out. An example of the algorithm is shown in Figure 6.9. Due to the
breadth-first nature of the search, Lee’s maze router is guaranteed to find a path between the source and
the target, if one exists. In addition, it is guaranteed to be the shortest path between the vertices.
The input to Lee’s algorithm is an array B, the source, s, and target, t, vertex. B[v] denotes if a vertex v

is blocked or unblocked. The algorithm uses an array, L, where L[v] denotes the distance from the source
to the vertex v. This array will be used in the procedure RETRACE that retraces the vertices to form a
path, P, which is the output of Lee’s algorithm. Two linked lists, plist (propagation list) and nlist
(neighbor list), are used to keep track of the vertices on the wavefront and their neighbor vertices,
respectively. These two lists are always retrieved from tail to head. We also assume that the neighbors of a
vertex are visited in counterclockwise order, that is, top, left, bottom, and then right.
The formal description of Lee’s algorithm appears in Figure 6.10. The time and space complexity of

Lee’s algorithm is O(h3w) for a grid of dimension h3w.
Lee’s routing algorithm requires a large amount of storage space and its performance degrades rapidly

when the size of the grid increases. Numerous attempts have been made to modify the algorithm to
improve its performance and reduce its memory requirements.
Lee’s algorithm requires up to kþ 1 bits per vertex, where k bits are used to label the vertex during the

exploration phase and an additional bit is needed to indicate whether the vertex is blocked. For an h3w
grid, k¼ log2(h3w). Aker [1] noticed that in the retrace phase of Lee’s algorithm, only two types of
neighbors of a vertex need to be distinguished; vertices toward the target and vertices toward the source.
This information can be coded in a single bit for each vertex. The vertices in wavefront, L, are always
adjacent to the vertices in wavefront L� 1 and Lþ 1. Thus, during wave propagation, instead of using a
sequence 1, 2, 3, . . . , the wavefronts are labeled by a sequence such as 0, 0, 1, 1, 0, 0, The predecessor
of any wavefront is labeled differently from its successor. Thus, each scanned vertex is either labeled ‘‘0’’
or ‘‘1.’’ Besides these two states, additional states (‘‘block’’ and ‘‘unblocked’’) are needed for each vertex.
These four states of each vertex can be represented by using exactly 2 bits, regardless of the problem size.

4

3 2 3

3 2 3

4 5 6 7 8 9

93 4

4

5 4 5 6 7 8 9

3 4

5 6 7 8

2

1 s 1

1 2

2 1 2

6 7 8 9

9

9 T

8 9

5 6 7 8 9

6 7 8 9

6

7

FIGURE 6.9 Net routed by Lee’s algorithm.

Physical Design Automation 6-17

Compared with Acker’s scheme, Lee’s algorithm requires at least 12 bits per vertex for a grid size of
20003 2000.
It is important to note that Acker’s coding scheme only reduces the memory requirement per vertex. It

inherits the search space of Lee’s original routing algorithm, which is O(h3w) in the worst case.

6.10.2 Greedy Channel Router for Detailed Routing

Assigning the complete trunk of a net or a two-terminal net segment of a multiterminal net severely
restricts LEA and dogleg routers. Optimal channel routing can be obtained if for each column it can be
guaranteed that only one horizontal track per net exists. Based on this observation, one approach to
reduce channel height could be to route nets column by column trying to join split horizontal tracks (if
any) that belong to the same net as much as possible.
Based on the preceding observation and approach, Rivest and Fiduccia [24] developed the greedy

channel router. This makes fewer assumptions than LEA and dogleg routers. The algorithm starts from
the leftmost column and places all the net segments of a column before proceeding to the next right
column. In each column the router assigns net segments to tracks in a greedy manner. However, unlike
the dogleg router, the greedy router allows the doglegs in any column of the channel, not necessarily
where the terminal of the doglegged net occurs.
Given a channel routing problem with m columns, the algorithm uses several steps while routing a

column. In the first step the algorithm connects any terminal to the trunk segment of the corresponding
net. This connection is completed by using the first empty track, or the track that already contains the
net. In other words, minimum vertical segment is used to connect a trunk to a terminal. For example, net
1 in Figure 6.11a in column 3 is connected to the same net. The second step attempts to collapse any split
nets (horizontal segments of the same net present on two different tracks) using a vertical segment as
shown in Figure 6.11b. A split net will occur when two terminals of the same net are located on different

Algorithm Lee-Router (B, s, t, P)

Input: B, s, t
Output: P

Begin
 plist = s;
 nlist = φ;
 temp = 1;
 path_exists = FALSE;
 while plist ≠ φ do
 for each vertex vi in plist do
 for each vertex vj neighboring vi do
 if B[vj] = UNBLOCKED then
 L[vj] = temp;
 INSERT (vj, nlist);
 if vj = t then
 path_exists = TRUE;
 exit while;
 temp = temp + 1;
 plist = nlist;
 nlist = φ;
 if path_exists = TRUE then RETRACE (L, P);
 else path does not exist;
End;

FIGURE 6.10 Lee’s routing algorithm.

6-18 Computer Aided Design and Design Automation

sides of the channel and cannot be connected immediately
because of existing vertical constraints. This step also brings
a terminal connection to the correct track if it has stopped
on an earlier track. If two sets of split nets overlap, the
second step will only be able to collapse one of them.
In the third step, the algorithm tries to reduce the range

or the distance between two tracks of the same net. This
direction is accomplished by using a dogleg, as shown in
Figure 6.12a and b. The fourth step attempts to move
the nets closer to the boundary which contains the next
terminal of that net. If the next terminal of a net being
considered is on the top (bottom) boundary of the channel,
then the algorithm tries to move the net to the upper (lower)

track. In case no track is available, the algorithm adds extra tracks and the terminal is connected to this
new track. After all five steps have been completed, the trunks of each net are extended to the next
column and the steps are repeated. A detailed description of the greedy channel routing algorithm is
shown in Figure 6.13.
The greedy router sometimes gives solutions which contain an excessive number of vias and doglegs. It

does, however, have the capability of providing a solution even in the presence of cyclic vertical
constraints. The greedy router is more flexible in the placement of doglegs due to fewer assumptions
about the topology of the connections. An example routed by the greedy channel router is shown in
Figure 6.14.

6.10.3 Other Routing Algorithms

Soukup proposed an algorithm that basically cuts down the search time of Lee’s algorithm by exploring
in the direction toward the target, without changing the direction until it reaches the target or an obstacle.
An alternative approach to improve upon the speed was suggested by Hadlock. One class of algorithm is
called the line-probe algorithms. The basic idea of the line-probe algorithms is to reduce the memory
requirement by using line segments instead of grid notes in the search. Several algorithms based on
Steiner trees have been developed. The main advantage of these algorithms is that they can be used
for routing multiterminal nets. For further details on these global routing algorithms, refer to Chapter 6
of [29].
Extensive research has been carried out in the area of detailed routing and several algorithms exist for

channel and switchbox routing. There are LEA-based algorithms which use a reserved layer model and
do not allow any vertical constraints or doglegs. The YACR2 algorithm can handle vertical constraint

Split net
(a)

1

1

2

2

4

3
Collapsed net

(b)

1

1

2

2 4

3

FIGURE 6.11 (a) Split net and (b) collapsed split net.

Split net(a)

1

1

2

2

(b)

1

1

2

2

FIGURE 6.12 (a) Reducing the distance
between split nets and (b) its result.

Physical Design Automation 6-19

violations. The net merge channel router works for two-layer channel routing problems and it exploits
the graph theoretic structure of channel routing problems. Glitter is an algorithm for gridless channel
routing and can handle nets of varying widths. The hierarchical channel router divides the channel
routing problem into smaller problems, each of which is solved in order to generate the complete routing
for the nets in the channel. Several algorithms such as the extended net merge channel routing algorithm,
HVH routing from the HV solution, and the hybrid HVH–VHV channel routing algorithm exist for the
three-layer channel routing problem. For further details on these detailed routing algorithms, refer to
Chapter 7 of [29].

Algorithm Greedy-Channel-Router (N)

Input: N

Begin
 d = DENSITY (N);
 (* calculate the lower bound of channel density *)
 insert d tracks to channel;
 for i = 1 to m do
 T1 = GET-EMPTY-TRACK;
 if T1 = 0 then
 ADD-TRACK(T1);
 ADD-TRACK(T 2);
 else
 T 2 = GET-EMPTY-TRACK;
 if T 2 = 0 then
 ADD-TRACK(T 2);
 CONNECT(Ti,T1);
 CONNECT(Bi,T2);
 join split nets as much as possible;
 bring split nets closer by jogging;
 bring nets closer to either top or bottom boundary;
 while split nets exists do
 increase number of column by 1;
 join split nets as much as possible;
End;

FIGURE 6.13 Algorithm greedy channel router.

11

11

1 000

00000000

40 00 0 03

444

4

2 33

33

2

22 5

55

FIGURE 6.14 Channel routed using a greedy router.

6-20 Computer Aided Design and Design Automation

6.11 Compaction

After completion of detailed routing, the layout is functionally complete. At this stage, the layout is ready
to be used to fabricate a chip. However, due to nonoptimality of placement and routing algorithms, some
vacant space is present in the layout. In order to minimize the cost, improve performance, and yield,
layouts are reduced in size by removing the vacant space without altering the functionality of the layout.
This operation of layout area minimization is called layout compaction.
The compaction problem is simplified by using symbols to represent primitive circuit features, such as

transistors and wires. The representation of layout using symbols is called a symbolic layout. Special
languages [4,21,22] and special graphic editors [13,14] are available to describe symbolic layouts. To
produce the actual masks, the symbolic layouts are translated into actual geometric features. Although a
feature can have any geometric shape, in practice only rectangular shapes are considered.
The goal of compaction is to minimize the total layout area without violating any design rules. The

area can be minimized in three ways:

1. By reducing the space between features: This can be performed by bringing the features as close to
each other as possible. However, the spacing design rules must be met while moving features closer
to each other.

2. By reducing the size of each feature: The size rule must be met while resizing the features.
3. By reshaping the features: Electrical characteristics must be preserved while reshaping the feature.

Compaction is a very complex phase in the physical design cycle. It requires understanding many details
of the fabrication process such as the design rules. Compaction is critical for full-custom layouts,
especially for high-performance designs.

6.11.1 Classification of Compaction Algorithms

Compaction algorithms can be classified in two ways. The first classification scheme is based on the
direction of movements of the components (features): one-dimensional (1-D) and two-dimensional
(2-D). In 1-D compaction components are moved only in x- or the y-direction. As a result, either the
x- or the y-coordinate of the components is changed due to the compaction. If the compaction is done
along the x-direction, then it is called x-compaction. Similarly, if the compaction is done along the
y-direction, then it is called y-compaction. In 2-D compaction the components can be moved in both
the x- and y-directions simultaneously. As a result, in 2-D compaction both x- and y-coordinates of the
components are changed at the same time in order to minimize the layout area.
The second approach to classify the compaction algorithms is based on the technique for computing

the minimum distance between features. In this approach, we have two methods: constraint graph-based
compaction and virtual grid-based compaction. In the constraint graph method, the connections and
separations rules are described using linear inequalities which can be modeled using a weighted directed
graph (constraint graph). This constraint graph is used to compute the new positions for the compon-
ents. On the other hand, the virtual grid method assumes the layout is to be drawn on a grid. Each
component is considered attached to a grid line. The compaction operation compresses the grid along
with all components placed on it, keeping the grid lines straight along the way. The minimum distance
between two adjacent grid lines depends on the components on these grid lines. The advantage of the
virtual grid method is that the algorithms are simple and can be easily implemented. However, the virtual
grid method does not produce compact layouts as does the constraint graph method.
In addition, compaction algorithms can be classified on the basis of the hierarchy of the circuit.

If compaction is applied to different levels of the layout, it is called hierarchical compaction. Any of the
above-mentioned methods can be extended to hierarchical compaction. A variety of hierarchical
compaction algorithms have been proposed for both constraint graph and virtual grid methods.
Some compaction algorithms actually ‘‘flatten the layout’’ by removing all hierarchy and then

Physical Design Automation 6-21

perform compaction. In this case it may not be possible to reconstruct the hierarchy, which may
be undesirable.

6.11.2 Shadow-Propagation Algorithm for Compaction

A widely used and one of the best known techniques for generating a constraint graph is the shadow-
propagation used in the CABBAGE system [15]. The ‘‘shadow’’ of a feature is propagated along the
direction of compaction. The shadow is caused by shining an imaginary light from behind the feature
under consideration (see Figure 6.15). Usually the shadow of the feature is extended on both sides of the
features in order to account for diagonal constraints. This leads to greater than minimal Euclidean
spacings because an enlarged rectangle is used to account for corner interactions. (See shadow of feature
in Figure 6.15.)
When the shadow is obstructed by another feature, an edge is added to the graph between the vertices

corresponding to the propagating feature and the obstructing feature. The obstructed part of the shadow
is then removed from the front and no longer propagated. The process is continued until all of the
shadow has been obstructed. This process is repeated for each feature in the layout. The algorithm
shadow-propagation, given in Figure 6.16, presents an overview of the algorithm for x-compaction of a
single feature from left to right.

The shadow-propagation routine accepts the list
of components (Comp_list), which is sorted on the
x-coordinates of the left corner of the components
and the component (component) for which the
constraints are to be generated. The procedure,
INITIALIZE-SCANLINE, computes the total length
of the interval in which the shadow is to be generated.
This length includes the design rule separation dis-
tance. The y-coordinate of the top and the bottom of
this interval are stored in the global variables, top and
bottom, respectively. The procedure, GET-NXT-
COMP, returns the next component (curr_comp)
from Comp_list. This component is then removed

A

B

C

D

E

F

G

H

FIGURE 6.15 Example of shadow propagation.

Algorithm Shadow-Propagation (Comp_list, component)

Input: Comp_list, component

Begin
 INITIALIZE-SCANLINE (component);
 = φ;
 while ((LENGTH-SCANLINE() < (top – bottom))
 and (Comp_list ≠ φ))
 curr_comp = GET-NXT-COMP (Comp_list);
 Ii = LEFT-EDGE (curr_comp);
 if (IN-RANGE (Ii, top, bottom))
 I΄= UNION (Ii,);
 if(I΄ ≠)
 ADD-CONSTRAINT (component, curr_comp);
 I = UNION(Ii,);
End;

FIGURE 6.16 Shadow-propagation algorithm.

6-22 Computer Aided Design and Design Automation

from the list. Procedure LEFT-EDGE returns the vertical interval of component, curr_comp. If this
interval is within the top and bottom then curr_comp may have a constraint with component. This check
is performed by the procedure IN-RANGE. If the interval for curr_component lies within top and bottom
and if this interval is not already contained within one of the intervals in the interval set, (, then the
component lies in the shadow of component, and hence a constraint must be generated. Each interval
represents the edge at which the shadow is blocked by a component. The constraint is added to the
constraint graph by the procedure ADD-CONSTRAINT. The procedure UNION inserts the interval
corresponding to curr_comp in the interval set at the appropriate position. This process is carried out
until the interval set completely covers the interval from top to bottom or no more components are in
Comp_list. Figure 6.17a shows the layout of components. The constraint for component A with other
components is being generated. Figure 6.17b shows the intervals in the interval set as the shadow is
propagated. From Figure 6.17b it is clear that the constraints will be generated between components A
and components B, C, and D in that order. As component F lies outside the interval defined by top and
bottom it is not considered for constraint generation. The interval generated by component E lies within
one of the intervals in the interval set. Hence, no constraint is generated between components A and E.

6.11.3 Other Compaction Algorithms

Several algorithms such as constraint graph-based compaction algorithms, scanline algorithm, and grid-
based compaction algorithms exist for the 1-D compaction problem. An algorithm based on a simulation
of the zone-refining process also was developed. This compactor is considered a 112-D compactor, as the
key idea is to provide enough lateral movements to blocks during compaction to resolve interferences.
For further details on these algorithms, refer to Chapter 10 of [29].

6.12 Summary

The sheer size of the VLSI circuit, the complexity of the overall design process, the desired performance
of the circuit, and the cost of designing a chip dictate that the whole design process must be automated.
Also, the design process must be divided into different stages because of the complexity of the entire
process. Physical design is one of the steps in the VLSI design cycle. In this step each component of a
circuit is converted into a set of geometric patterns which achieves the functionality of the component.

A

B

C

D E

F

Bottom Bottom

Top Top

B B B

D

C C

1 2 3

(a) (b)

B

C

D,E

4

FIGURE 6.17 Interval generation for shadow propagation. (a) The layout of components and (b) the intervals in
the interval set.

Physical Design Automation 6-23

The physical design step can be divided further into several substeps. All the substeps of the physical
design step are interrelated. Efficient and effective algorithms are required to solve different problems in
each of the substeps. Despite significant research efforts in this field, the CAD tools still lag behind the
technological advances in fabrication. This calls for the development of efficient algorithms for physical
design automation.

References

1. S. B. Aker, A modification of Lee’s path connection algorithm, IEEE Trans. Electron. Comput.,
EC-16(1): 97–98, February 1967.

2. P. Bannerjee and M. Jones, A parallel simulated annealing algorithm for standard cell placement on a
hypercube computer, Proceedings of the IEEE International Conference on Computer Design, IEEE
Computer Society Press, Los Alamitos, CA, 1986, p. 34.

3. A. Chatterjee and R. Hartley, A new simultaneous circuit partitioning and chip placement approach
based on simulated annealing, Proceedings of the 27th ACM=IEEE Design Automation Conference,
IEEE Computer Society Press, Orlando, FL, June 24–28, 1990, pp. 36–39.

4. P. A. Eichenberger, Fast symbolic layout translation for custom VLSI integrated circuits, PhD thesis,
Stanford University, Stanford, CA, 1986.

5. A. El Gamal et al., An architecture for electrically configurable gate arrays, IEEE J. Solid-State
Circuits, 24(2): 394–398, April 1989.

6. H. Hseih et al., A 9000-gate user-programmable gate array, Proceedings of the IEEE 1988 Custom
Integrated Circuits Conference, May 1988, pp. 15.3.1–15.3.7.

7. S. C. Wong et al., A 5000-gate CMOS EPLD with multiple logic and interconnect arrays, Proceedings
of the IEEE 1988 Custom Integrated Circuits Conference, May 1989, pp. 5.8.1–5.8.4.

8. M. Feuer, VLSI design automation: An introduction, Proc. IEEE, 71(1): 1–9, January 1983.
9. C. M. Fiduccia and R. M. Mattheyses, A linear-time heuristics for improving network partitions,

Proceedings of the 19th Design Automation Conference, Las Vegas, NV, 1982, pp. 175–181.
10. J. Greene and K. Supowit, Simulated annealing without rejected moves, Proceedings of the

International Conference on Computer Design, IEEE Computer Society Press, Los Alamitos, CA,
October 1984, pp. 658–663.

11. L. K. Grover, Standard cell placement using simulated sintering, Proceedings of the 24th ACM=IEEE
Design Automation Conference, IEEE Computer Society Press, Miami Beach, FL, June 28–July 1,
1987, pp. 56–59.

12. B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res., 13(2): 311–329, May 1988.
13. D. D. Hill, ICON: A toll for design at schematic, virtual-grid and layout levels, IEEE Des. Test, 1(4):

53–61, 1984.
14. M. Y. Hsueh, Symbolic layout and compaction of integrated circuits, Technical Report No. UCB=ERL

M79=80, Electronics Research Laboratory, University of California, Berkeley, CA, 1979.
15. M. Y. Hsueh and D. O. Pederson, Computer-aided layout of LSI circuit building-blocks, PhD thesis,

University of California, Berkeley, CA, December 1979.
16. M. D. Huang, F. Romeo, and A. Sangiovanni-Vincentelli, An efficient general cooling schedule for

simulated annealing, Proceedings of the IEEE International Conference on Computer-Aided Design,
IEEE Computer Society Press, Los Alamitos, CA, 1986, pp. 381–384.

17. W. Kernighan and S. Lin, An efficient heuristic procedure for partitioning graphs, Bell Syst. Tech. J.,
49: 291–307, 1970.

18. S. Kirkpatrick, G. D. Gellat, and M. P. Vecchi, Optimization by simulated annealing, Science, 220:
671–680, May 1983.

19. J. Lam and J. Delosme, Performance of a new annealing schedule, Proceedings of the 25th ACM=IEEE
Conference on Design Automation, DAC’88, Anaheim, CA, June 12–15, 1988, pp. 306–311.

6-24 Computer Aided Design and Design Automation

20. C. Y. Lee, An algorithm for path connections and its applications, IRE Trans. Electron. Comput.,
EC-10: 346–365, 1961.

21. T. M. Lin and C. A. Mead, Signal delay in general RC networks, IEEE Trans. CAD, CAD-3(4):
331–349, October 1984.

22. J. M. Da Mata, Allenda: A procedural language for the hierarchical specification of VLSI layout,
Proceedings of the 22nd ACM=IEEE Conference on Design Automation, DAC’85, ACM Press,
Las Vegas, NV, 1985, pp. 183–189.

23. T. Ohtsuke, Partitioning, Assignment and Placement, Amsterdam, the Netherlands: North-Holland,
1986.

24. R. Rivest and C. Fiduccia, A greedy channel router, Proceedings of the 19th ACM=IEEE Design
Automation Conference, Las Vegas, NV, 1982, pp. 418–424.

25. F. Romeo and A. Sangiovanni-Vincentelli, Convergence and finite time behavior of simulated
annealing, Proceedings of the 24th Conference on Decision Control, Ft. Lauderdale, FL, December
1985, pp. 761–767.

26. F. Romeo, A. S. Vincentelli, and C. Sechen, Research on simulated annealing at Berkeley, Proceedings
of the IEEE International Conference on Computer-Aided Design, IEEE Computer Society Press,
Los Alamitos, CA, 1984, pp. 652–657.

27. C. Sechen and K. W. Lee, An improved simulated annealing algorithm for row-based placement,
Proceedings of the IEEE International Conference on Computer-Aided Design, IEEE Computer Society
Press, Los Alamitos, CA, 1987, pp. 478–481.

28. C. Sechen and A. Sagiovanni-Vincentelli, The timber wolf placement and routing package,
IEEE J. Solid-State Circuits, SC-20: 510–522, 1985.

29. N. Sherwani, Algorithms for VLSI Physical Design Automation, Boston: Kluwer Academic, 1993.
30. T. G. Szymanski, Dogleg channel routing is NP-Complete, IEEE Trans. Comput. Aided Des., CAD-4:

31–41, January 1985.

Physical Design Automation 6-25

7
Design Automation

Technology

Allen M. Dewey*
Duke University

7.1 Introduction .. 7-1
7.2 Design Entry ... 7-3
7.3 Conceptual Design... 7-6

Design Planning . Decision Assistance . Exploring
Alternative Designs . Applications

7.4 Synthesis... 7-14
7.5 Verification.. 7-16

Timing Analysis . Simulation . Emulation

7.6 Test.. 7-21
Fault Modeling . Fault Testing

7.7 Frameworks... 7-27
7.8 Summary.. 7-29
References .. 7-29

7.1 Introduction

The field of design automation technology, also commonly called computer-aided design (CAD) or
computer-aided engineering (CAE), involves developing computer programs to conduct portions of
product design and manufacturing on behalf of the designer. Competitive pressures to produce in less
time and use fewer resources, new generations of products having improved function and perform-
ance are motivating the growing importance of design automation. The increasing complexities of
microelectronic technology, shown in Figure 7.1, illustrate the importance of relegating portions
of product development to computer automation [1,3]. Advances in microelectronic technology
enable over 1 million devices to be manufactured on an integrated circuit substrate smaller in size
than a postage stamp, yet the ability to exploit this capability remains a challenge. Manual design
techniques are unable to keep pace with product design cycle demands and are being replaced by
automated design techniques [2,4].
Figure 7.2 summarizes the historical development of design automation technology and computer

programs. Design automation programs are also called ‘‘applications’’ or ‘‘tools.’’ Design automation
efforts started in the early 1960s as academic research projects and captive industrial programs, focusing
on individual tools for physical and logical design. Later developments extended logic simulation to more
detailed circuit and device simulation and more abstract functional simulation. Starting in the mid to the

* Allen M. Dewey passed away before the publication of this edition.

7-1

late 1970s, new areas of test and synthesis emerged and commercial design automation products appeared.
Today, the electronic design automation industry is an international business with a well-established and
expanding technical base [5]. The electronic design automation technology base will be examined by
presenting an overview of the following topical areas:

. Design entry

. Conceptual design

. Synthesis

. Verification

. Testing

. Frameworks

De
vic

es
 p

er
 in

te
gr

at
ed

 ci
rc

ui
t

Clocking
frequency

100 MHz
 16 MHz
 8 MHz
 4 MHz
 1 MHz

1 M

16 M

64 K

4 K

256

16

1960 1970 1980 1990

SSI

MSI

LSI
VLSI

LSI - Large-scale integration
SSI - Small-scale integration MSI - Medium scale integration

VLSI - Very large scale integration

FIGURE 7.1 Complexity of microelectronic technology.

1960 1970 1980 1990

Design
automation

IC
technology

Methodology

Layout Circuit and device
simulation

Logic
synthesis

High-level
synthesis

Logic
simulation

Timing
analysis

Functional
simulation

Standard
parts

Standard
cell

Full
custom

Gate
array

Test

Bipolar
L =~ 10 µ

NMOS
L =~ 5 µ

CMOS
L =~ 2 µ

BiCMOS
L < 1 µ

FIGURE 7.2 Development of design automation technology.

7-2 Computer Aided Design and Design Automation

7.2 Design Entry

Design entry, also called design capture, is the process of communicating with a design automation
system. Design entry involves describing a system design to a design automation system, invoking
applications to analyze and=or modify the system design, and querying the results. In short, design
entry is how an engineer ‘‘talks’’ to a design automation application and=or system.

Any sort of communication is composed of two elements: language and mechanism. Language
provides common semantics; mechanism provides a means by which to convey the common semantics.
For example, two people communicate via a language such as English, French, or German, and a
mechanism, such as a telephone, electronic mail, or facsimile transmission. For design, a digital system
can be described in many ways, involving different perspectives or abstractions. An abstraction is a model
for defining the behavior or semantics of a digital system, i.e., how the outputs respond to the inputs.
Figure 7.3 illustrates several popular levels of abstractions and the trends toward higher levels of design
entry abstraction to address greater levels of complexity [10,12].
The physical level of abstraction involves geometric information that defines electrical devices and

their interconnection. Geometric information includes the shaped objects and where objects are placed
relative to each other. For example, Figure 7.4 shows the geometric shapes defining a simple comple-
mentary metal–oxide semiconductor (CMOS) inverter. The shapes denote different materials, such as
aluminum and polysilicon, and connections, called contacts or vias.
The design entry mechanism for physical information involves textual and graphic techniques. With

textual techniques, geometric shape and placement are described via an artwork description language,
such as Caltech Intermediate Form or Electronic Design Intermediate Form. With graphical techniques,
geometric shape and placement are described by drawing the objects on a display terminal [13].
The electrical level abstracts geometric information into corresponding electrical devices, such as

capacitors, transistors, and resistors. For example, Figure 7.5 shows the electrical symbols denoting a
CMOS inverter. Electrical information includes the device behavior in terms of terminal or pin current
and voltage relationships. Device behavior also may be defined in terms of manufacturing parameters,
such as resistances or chemical compositions.
The logical level abstracts electrical information into corresponding logical elements, such as and

gates, or gates, and inverters. Logical information includes truth table and=or characteristic switching
algebra equations and active level designations. For example, Figure 7.6 shows the logical symbol for a
CMOS inverter. Notice how the amount of information decreases as the level of abstraction increases.

1 M

1970s

1980s

1990s

100 K

10 K

1 K

GatesTime
Specification

Architectural

Functional

Logical

Electrical

Physical

FIGURE 7.3 Design automation abstractions.

Design Automation Technology 7-3

Design entry mechanisms for electrical and logical abstractions are commonly collectively called
schematic capture techniques. Schematic capture defines hierarchical structures, commonly called netlists,
of components. A designer creates instances of components supplied from a library of predefined
components and connects component pins or ports via wires [9,11].
The functional level abstracts logical elements into corresponding computational units, such as

registers, multiplexers, and arithmetic logic units (ALUs). The architectural level abstracts functional

FIGURE 7.4 Physical information.

FIGURE 7.5 Electrical information.

FIGURE 7.6 Logical information.

7-4 Computer Aided Design and Design Automation

information into computational algorithms or paradigms. Some examples of common computational
paradigms are

. State diagrams

. Petri nets

. Control=data flow graphs

. Function tables

. Spreadsheets

. Binary decision diagrams

These higher levels of abstraction support a more expressive ‘‘higher bandwidth’’ communication
interface between an engineer and design automation programs. An engineer can focus his or her
creative, cognitive skills on concept and behavior, rather than the complexities of detailed implementa-
tion. Associated design entry mechanisms typically use hardware description languages with a combin-
ation of textual and graphic techniques [6].
Figure 7.7 shows a simple state diagram. The state diagram defines three states, denoted by circles.

State-to-state transitions are denoted by labeled arcs; state transitions depend on the present state and the
input X. The output, Z, per state is given within each state. Because the output is dependent on only the
present state, the digital system is classified as aMoore finite state machine. If the output is dependent on
the present state and input, then the digital system is classified as a Mealy finite state machine. The state
table corresponding to the state diagram in Figure 7.7 is given in Table 7.1. A hardware description
language model written in VHDL of the Moore finite state machine is given in Figure 7.8. The VHDL
model, called a design entity, uses a ‘‘date flow’’ description style to describe the state machine [7,8]. The

Block diagram

State diagram

CLK

X Z

X = 0

X = 0,1 X = 1

X = 1

X = 0

A
Z = 0

B
Z = 0

C
Z = 1

System

FIGURE 7.7 State diagram.

TABLE 7.1 State Table

Present State

Next State

OutputX¼ 0 X¼ 1

A A B 0

B C B 0

C A A 1

Design Automation Technology 7-5

entity statement defines the interface, i.e., the ports. The ports include two input signals, X and CLK, and
an output signal, Z. The ports are of type BIT, which specifies that the signals may only carry the values
‘‘0’’ or ‘‘1.’’ The architecture statement defines the I–O transform via two concurrent signal assignment
statements. The internal signal STATE holds the finite state information and is driven by a guarded,
conditional concurrent signal assignment statement that executes when the associated block expression
(CLK¼ ‘‘1’’ and not CLK’STABLE) is true, which is only on the rising edge of the signal CLK. STABLE is
a predefined attribute of the signal CLK; CLK’STABLE is true if CLK has not changed value. Thus, if not
CLK’STABLE is true, meaning that CLK has just changed value, and CLK¼ ‘‘1’’, then a rising transition
has occurred on CLK. The output signal Z is driven by a nonguarded, selected concurrent signal
assignment statement that executes anytime STATE changes value.

7.3 Conceptual Design

Figure 7.9 shows that the conceptual design task generally follows the design entry task. Conceptual design
addresses the initial decision-making process by assisting the designer to conduct initial feasibility studies,
determine promising design alternatives, and obtain preliminary indication of estimated performance [16].
During early stages of the electronic design process, one typically makes a number of high-level

decisions that can have a significant impact on the outcome of a design. For example, consider the early
decisions usually made when designing a memory subsystem. The designer must choose a configuration
(e.g., 31, 34, 38, etc.), memory technology (e.g., static RAM, dynamic RAM, mask programmable
ROM, etc.), package style (e.g., dual-in-line, chip carrier, pin grid array, etc.), and so on. Taken
collectively, these decisions may be referred to as the design plan. The design plan then guides the
ensuing, more detailed design process, acting as a high-level road map.
In general, many different plans may result in designs that satisfy the same set of functional

specifications, but have varying trade-offs in terms of performances, such as area or power dissipation.
For example, Figure 7.10 shows relative area and speed performance trade-offs for six combinational
multiplier designs. Figure 7.10 shows the typical trend that increasing speed implies increasing area.

entity MOORE_MACHINE is
 port (X, CLK: in BIT; Z: out BIT);
end MOORE_MACINE;
architecture FSM of MOORE_MACHINE is
 type STATE_TYPE is (A, B, C);
 signal STATE: STATE_TYPE: = A;
begin
 NEXT_STATE:
 block (CLK = ‘1’ and not CLK’STABLE)
 begin
 STATE <= guarded B when (STATE = A and X = ‘1’) else
 C when (STATE = B and X = ‘0’) else
 A when (STATE = C) else
 STATE;
 end block NEXT_STATE;

 with STATE select
 Z <= ‘0’ when A,
 ‘0’ when B,
 ‘1’ when C;
end FSM;

FIGURE 7.8 VHDL model.

7-6 Computer Aided Design and Design Automation

More importantly, the chart indicates how various multiplier designs relate to each other and which
designs present the best area=speed trade-offs for a particular application.
Given this large set of possible design plans to consider, it is easy to imagine getting hopelessly lost in

analyzing the various design plans and keeping track of the trade-offs and decision interdependencies.
Choosing the most appropriate design plan is important because it is usually not economically feasible to
choose an alternative plan and repeat the detailed design process if the final design does not meet the
desired specifications. To aid the designer during the early stages of the design process in maximizing his
or her chances that certain high-level decisions will result in a design that meets the desired specifica-
tions, conceptual design tools assist the designer in analyzing possible ramifications of high-level design
decisions before actually undertaking the detailed design and fabrication process.
During conceptual design, the engineer has a global view of the design process in considering the key

decisions associated with each lower level of abstraction. Thus, the engineer can undertake a breadth-first
design methodology. Costly errors can be avoided by investing time at the outset in thoroughly thinking
through a particular plan, the result being a more complete and credible specification that better guides
the ensuing actions. In addition, the unnecessary use of detailed design CAD tools is minimized because
conceptual design acts as a ‘‘coarse filter’’ eliminating infeasible design plans.

Design entry

Conceptual design

FIGURE 7.9 Design process.

Booth encoding
Iterative array
Ripple adder

Booth encoding
Iterative array

Lookahead adder

No encoding
Wallace array
Ripple adder

No encoding
Wallace array

Lookahead adder

No encoding
Iterative array

Lookahead adder
No encoding

Iterative array
Ripple adder

Ar
ea

Speed

FIGURE 7.10 Performance trade-offs.

Design Automation Technology 7-7

7.3.1 Design Planning

To discuss conceptual design, it is convenient to introduce the following terms:

. Design issue—Pertinent aspect of a design for which a decision must be made.

. Design option—Possible choice that can be made for a design issue.

. Design decision—Particular option chosen for a design issue.

. Design plan—Set of design decisions that identifies a high-level approach for implementing the
design.

Conceptual design begins with the identification of the set of relevant design issues that must be
considered before detailed design begins. For example, for the design of an analog amplifier, the design
issues include selection of a type of amplifier (e.g., current, voltage, etc.), selection of a class of
operation (e.g., A, B, AB, etc.), selection of a biasing scheme, etc. For the design of a digital signal
processing filter, the design issues include selection of an algorithm (e.g., infinite impulse response or
finite impulse response), selection of an architecture (e.g., direct, cascade, parallel, etc.), selection of a
multiplier logic design, etc. Having identified the relevant design issues, conceptual design proceeds to
develop a design plan in the step-by-step fashion outlined in Figure 7.11. For each design issue, the
various associated options are examined, and the most appropriate option is selected. To make this
selection, the designer chooses some method of discrimination and may need expert advice about the
possible options or may desire a prediction about the effect a particular option has on performance.
Such a conceptual design approach implies several important features, which are considered in more
detail next.
Designers often structure design issues in a hierarchical fashion to control the complexity of the

conceptual design process. Complex design issues are decomposed into sets of design subissues or
subplans [22]. For example, an expanded, hierarchical listing of candidate design issues for digital signal
processing filters is given next [14,20]:

1. Selection of a filter algorithm
2. Selection of a polynominal approximation technique
3. Selection of a filter architecture

a. Selection of a filter structure
b. Selection of a pipelining strategy

4. Selection of a logic design
a. Selection of a multiplier logic design
b. Selection of an encoding technique

1. Select design issue
2. Present viable design options
3. Comparatively analyze design options
 Request assistance
 a. Select discrimination factor
 b. Consider advice and/or prediction
4. Select best design option
5. Add design option to plan

FIGURE 7.11 Constructing a design plan.

7-8 Computer Aided Design and Design Automation

c. Selection of an array design
d. Selection of a final adder design
e. Selection of an adder design style

5. Selection of a fabrication technology
6. Selection of a layout design style

The selection of a multiplier logic design can be decomposed into three design subissues: selection of an
encoding technique, selection of a combinational array design, and selection of a final adder design.
Notice that many details about digital filter design are not listed because conceptual design is typically not
concerned with every design issue required to eventually fully design and fabricate the initial specifica-
tion. Hierarchical design issues provide for a more intuitive representation of the conceptual design
process, enabling the designer to better comprehend the overall magnitude and composition of the design
domain.
Each design issue has associated commonly used options or selections. For example, the possible

digital filter polynomial approximation techniques are

1. Equiripple
2. Frequency sampling
3. Windowing
4. Beta
5. Elliptic
6. Butterworth
7. Chebyshev

During conceptual design, the order in which the designer examines the various issues may not be
completely arbitrary because the options available for a design issue may depend on which options were
chosen for other design issues. Hence, a partial ordering may be imposed on addressing design issues. As
an example, equiripple, frequency sampling, windowing, and beta digital filter approximations apply only
to the finite impulse response algorithm, while elliptic, Butterworth, and Chebyshev digital filter
approximations apply only to the infinite impulse response algorithm. Hence, the polynomial approxi-
mation technique depends on the choice of the filter algorithm and thus, the choice of a filter algorithm
must precede the choice of a polynomial approximation technique. Similarly, if the designer chooses a
bipolar logic family, then the Manchester carry adder logic design is not a viable option because this
option requires pass transistor technology that exists only in MOS-related logic families. Hence, the
adder’s logic design depends on the choice of the logic family and thus, the choice of a logic family must
precede the choice of a logic design style.
Conceptual design supports such ordering of design issues via ordering constraints, enforcing that the

more pervasive design issues be addressed first [23]. In specifying the interdependencies between design
issues, as many or as few ordering constraints may be imposed as is warranted by the particular design
domain. At one extreme, a strict sequential ordering of design issues may be required. At the other
extreme, no ordering may occur, signifying that the design issues have no interdependencies and that
each issue may be examined independently of the others. Partial orderings may also occur in which some
design issues typically arise that may be examined and some design issues that may not be examined,
owing to interdependencies. Hence, ordering constraints provide a general mechanism within the
conceptual design methodology for encoding various design strategies, such as top-down, bottom-up,
or meet-in-the-middle.
In addition to interdependencies between design issues (ordering constraints), there may be interde-

pendencies between options. For the digital adder design example, in which the designer investigates the
logic design style issue, only the options that are consistent with the selected logic family option are
viable. Interdependencies between design options are supported via consistency constraints. Using

Design Automation Technology 7-9

consistency constraints, a system planner helps to determine, for a particular design issue, which options
are consistent with earlier decisions. The designer is not presented with an option (step 2 in Figure 7.11)
that is inconsistent with his or her earlier decisions. As such, the designer is prevented from developing
an incorrect or inconsistent plan.

7.3.2 Decision Assistance

It may be the situation for complex conceptual designs that the designer consults an expert on a
particular issue. The expert offers assistance in understanding the relative advantages and disadvantages
of the available options in order to select the most appropriate option(s). Two general forms of assistance,
advice and prediction, are available.
Advice describes the qualitative advantages and=or disadvantages that should be considered before

accepting or rejecting a design option. On the other hand, prediction describes the quantitative advan-
tages and=or disadvantages. Prediction is a valuable tool for reaching down through several levels of the
design hierarchy to obtain quantitative insights into the implications of high-level design decisions. Such
advice is given in lieu of the more expensive route of actually executing the detailed design process in
order to determine the effects of a decision on design performance. While the predicted performance is
only an approximation, it is often sufficient to allow the designer to choose a particular option, or at least
to rule out an option.
Different types of prediction techniques are summarized in the taxonomy presented in Figure 7.12.

Heuristic models use general guidelines or empirical studies to model the design process [15]. Analytical
models employ a more rigorous, mathematical approach to model the design process. Some such models
may be based on probability theory, e.g., wirability theory, and capture the particulars of a design activity in
a set of random variables [17,18], while other analytical models may be based on graph and information
theory, e.g., very large scale integration (VLSI) complexity theory [19,24,25]. Finally, simulation models
include the judicious partial execution of a design activity on critical portions of the design. The use of
previous designs serves to capture the experience or ‘‘corporate history’’ factor used by an expert designer
in attempting to predict the performance of a new function based on previous similar designs.
As an example, Figure 7.13 shows how performance estimates for digital filters can be obtained in a

hierarchical, incremental fashion, employing a variety of prediction models that cooperate to yield the

Initial
specification

Final
implementation

Heuristic
models

Analytical
models

Simulation
models

General
guidelines

Empirical
studies

Use of previous
designs

Partial execution
of design process

Probability
theory

Graph and information
theory

Design
process

FIGURE 7.12 Types of prediction techniques.

7-10 Computer Aided Design and Design Automation

desired results. The prediction task is performed by incrementally translating the initial specifications
into a series of complexity measures. Each succeeding complexity measure is a refinement of the
performance estimate, starting with a performance estimate in terms of the filter order and ending
with the performance estimate in terms of the physical units of area, speed, and power dissipation. Each
prediction model draws its required input information from higher-level prediction models, the initial
functional specifications, and the applicable decisions from the conceptual plan. Incrementally generating
a prediction allows the flexibility to use different types of prediction techniques as the situation warrants
to model the implications of different parts of the design plan.
The starting point in the prediction methodology is the initial functional specifications. For digital

filters, functional specifications are usually given in terms of the desired frequency response, involving the
following:

. Frequency bands of importance

. Widths of the transition bands between the desired frequency bands

. Levels of amplification or attenuation per frequency band

. Allowable tolerance or deviation from the specified levels of amplification and=or attenuation

An extensive set of prediction models has been developed for predicting the performance of linear, shift-
invariant digital filters having the general I–O behavior given by the difference equation

y(n) ¼
XN

k¼1

ak(n� k)þ
XM

k¼0

bkx(n� k) (7:1)

The variables x(n) and y(n) denote the values of signals x(t) and y(t) at time tn. As an example of an
algorithm-level prediction model, the order of a low-pass filter using the equiripple polynomial approxi-
mation technique is given by the empirical model shown in Equation 7.2 [21].

N �

(
5:309� 10�3(log10 d1)

2 þ 0:07114 log10 d1 � 0:4761
� �

log10 d2

þ [�2:66� 10�3 log10 d
2
1

� �� 0:5941 log10 d1 � 0:4278]

)

DF
� 0:51244(log10 d1 � log10 d2)þ 11:01217
� �

DF þ 1

(7:2)

 Algorithm
 Polynomial
 approximation
 technique

Models

Models

Models

Algorithm
(order)

Architecture
(computational units)

Logic
(gates)

Physical
(area, speed, power dissipation)

 Structure
 Pipelining

 Multiplier logic design
 Adder logic design
 Word size

 Layout design style
 Fabrication technology Models

FIGURE 7.13 Hierarchical structure of filter performance prediction.

Design Automation Technology 7-11

where N is the filter order, d1 is the passband tolerance, d2 is the stopband tolerance, and DF is the width
of the transition band. As another example of an algorithm prediction model, the order of a low-pass
filter using the elliptic polynomial approximation technique is given by

N ¼
C(a)C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p� �

C(b)C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p� �

a ¼ vp

vs

b ¼
ffiffiffiffiffi
d1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� d1d2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� d22

q
(1� d1)

(7:3)

where vp is the cutoff frequency or the high end of the passband, vs is the start or low end of the
stopband, and C(�) denotes the complete elliptic integral of the first kind.
As an example of a logic level prediction model, filter word size can be estimated to be the maximum

of the required data word size and coefficient word size. Equation 7.4 estimates the data word size
(dataws), i.e., number of bits required to represent the filter input data samples to ensure an adequate
signal:noise ratio:

dataws ¼ SNRq � 4

6

	

(7:4)

where [�] denotes the ‘‘smallest integer not less than’’ and SNRq denotes the root mean square signal:
quantization noise ratio in decibels. Equation 7.5 estimates the coefficient word size (coeffws), i.e., number
of bits required to represent the filter coefficients to ensure that finite precision coefficient quantization
and arithmetic round-off errors do not appreciably deteriorate filter frequency response:

coeffws ¼ log2
vs þ vp

vs � vp

� �
þ log2

1
min (d1, d2)

� �
� 1
2
log2

vS

vs � vp

� �
þ 3

	

(7:5)

where vS denotes the sampling frequency.

7.3.3 Exploring Alternative Designs

After analyzing the viable options, the final steps in Figure 7.11 involve making the design decision.
Sometimes designers want to delay making a decision during a conceptual design session until other
aspects of the design can be explored. If more than one option for a particular design issue looks equally
viable, then the designer may elect to consider all of the viable options. For example, returning to digital
filters, the designer may wish to investigate the implications of using both the lookahead carry and block
lookahead carry logic design styles for the adder. Later in the conceptual design session, when the
competing adder design plans have been more fully developed and their relative merits more clearly
understood, the designer may have the information necessary to select one logic design style over the other.
Such an approach is often referred to as ‘‘nonlinear planning’’ or adopting a ‘‘least-commitment strategy.’’
Multiple, alternative plans support delaying design decisions. New plans are created each time more

than one option is chosen for a design issue. For example, if the designer wishes to investigate both adder
logic designs, then the planner records the decision by generating two plans. One design plan uses the
lookahead carry adder logic design, and the other plan uses the block lookahead carry logic design.
Having generated alternative plans, the designer can then further develop each plan independently by
requesting that the planner switch the focus of the conceptual design session between the competing

7-12 Computer Aided Design and Design Automation

plans. It should be noted that a consequence of creating alternative plans is that the conceptual design
process may not always yield one plan. Rather, the conceptual design process may yield multiple plans
that appear roughly equally promising. The conceptual design methodology is not intended to always
possess the ability to definitively differentiate between alternative plans due to the general nature of the
plans or the approximate nature of the predictions. In cases in which the conceptual design process yields
more than one candidate plan, the designer could invoke more detailed synthesis and analysis design
automation tools to further investigate and resolve the plans.
In a lengthy conceptual design session, a designer may want to reconsider and possibly change an

earlier decision; this situation is supported via backtracking. When the designer requests a reconsider-
ation of an earlier decision for a particular design issue, the planner must back up the state of the
conceptual design session and reactivate the associated viable options. The designer may then reexamine
the options and possibly select a different option. The backtracking process also involves checking the rest
of the plan to see if any of the designer’s other, earlier decisions might be affected by the new decision. If
any other design decisions depend on the decision that the designer wants to change, then these decisions
must be similarly undone. In this manner only the appropriate part of the conceptual design session is
backed up; the decisions that are not dependent on the desired change are left unaffected.

7.3.4 Applications

Conceptual design involves well-defined, algorithmic-based knowledge and ill-defined, heuristic-based
knowledge. For instance, maintaining alternative plans involves primarily algorithmic-based knowledge.
For each plan, the available design issues are determined in accordance with the ordering constraints. For
each available design issue, the viable options are determined in accordance with the decisions made thus
far and the consistency constraints. As the conceptual design session progresses, new design decisions are
recorded, or possibly, previous design decisions are changed.
In contrast, providing advice involves primarily heuristic-based knowledge. Based on the state of the

plan, the appropriate piece of advice or prediction model is identified, guidance is formulated, and the
results are supplied to the designer. Advice and predictions serve as knowledge sources working to solve
the conceptual design ‘‘problem.’’ The knowledge sources opportunistically invoke themselves to address
an applicable portion of the advice or prediction request, taking their input from the system plan(s), and
posting their results back to the system plan(s) in an attempt to refine and develop a conceptual design.
Domain-dependent information concerning design issues, options, trade-offs, and interdependencies

is typically specified as part of the knowledge acquisition process involved in initially constructing a
system planner, and is separate from domain-independent information to facilitate creating planners for
different design tasks and moving existing planners to new design tasks. If alternative plans are developed
during conceptual design, multiple versions of the domain-dependent information are correspondingly
created. Each version of the domain-dependent information, also called contexts, worlds, or belief spaces,
contains a plan’s state information, such as which design issues have been addressed, which options have
been chosen, and which advice has been given. When a designer changes the focus of the conceptual
design session between alternative plans, a context switch is performed between the associated versions of
the domain-dependent information. An analogous situation is an operating system that allows multiple
jobs. Each time the computer switches to a new job, the state of the current job must be saved, and the
state of the new job must be restored.
Clearly, for complex design domains, the amount of domain-dependent information can be sizable. To

limit the search time required to find applicable options or appropriate advice, the domain-dependent
information can be segmented or partitioned by design issue. Such an organization allows for dynam-
ically limiting the portion of information searched. For instance, in searching for appropriate advice, only
the advice that is associated with the current design issue is made accessible. Thus, any search is confined
to the advice associated with the current design issue; a search is never executed over the entire domain-
dependent information.

Design Automation Technology 7-13

Conceptual design is an emerging area of design automation that demonstrates the potential for
significantly improving our design capability. Conceptual design involves studying a design process,
modeling the process as a hierarchy of design issues, delineating the options, and identifying the associated
interdependencies and discriminating characteristics. A conceptual design plan realizes the initial specifi-
cations by delineating the important design decisions. Such a methodology emphasizes spending more time
at the initial stage of the design process in obtaining a more credible system specification. In addition to
beginning an expensive design process with a careful definition of what is required of the design, conceptual
design emphasizes the need for a general plan for how to realize the design.
Associated applications play a supporting role of managing and presenting the large and complex

amount of information typically involved in conceptual design to assist the designer in making the
decisions that constitute the conceptual design plan. Plans are developed incrementally and interactively.
In a breadth-first fashion, conceptual design guides the designer through a myriad of alternative plans,
allowing the designer to explore differences and seek optimal solutions. The advantage of conceptual
design is that expensive design resources are not wasted in trying plans that eventually prove unsatis-
factory. Applications also provide performance estimation, which can be useful in coordinating between
groups involved with a design. For example, an early estimate of chip area can be used to check with the
manufacturing group that the design will be within acceptable fabrication yield margins or will adhere to
any packaging or printed circuit board size restrictions. An early estimate of chip performance also can
be used to coordinate with marketing and management in projecting potential applications, probable
costs, and future business.

7.4 Synthesis

Figure 7.14 shows that the synthesis task generally follows the conceptual design task. The designer
describes the desired system via design entry, generates a conceptual plan of major design decisions,
and then invokes synthesis design automation programs to assist in generating the required imple-
mentation [32].
Synthesis translates or transforms a design at one level of abstraction to another, more detailed level of

abstraction. The more detailed level of abstraction may be only an intermediate step in the entire design
process or it may be the final implementation. Synthesis programs that yield a final implementation are
sometimes called ‘‘silicon compliers’’ because the programs generate sufficient detail to proceed directly
to silicon fabrication [26,29].
Similar to design abstractions, synthesis techni-

ques can be hierarchically categorized, as shown in
Figure 7.15. The higher levels of synthesis offer the
advantage of less complexity, but also the disadvan-
tage of less control over the final implementation.
Algorithmic synthesis also called ‘‘behavioral syn-

thesis,’’ addresses ‘‘multicycle’’ behavior, which means
behavior that spans more than one control step. A
control step equates to a clock cycle of a synchronous,
sequential digital system, i.e., a state in a finite state
machine controller or a microprogram step in a micro-
programmed controller. Algorithmic synthesis typically
accepts sequential design descriptions using a proced-
ural or imperative modeling style. Such descriptions
define the I–O transform, but provide little information
about the parallelism of the implementation [28,30].
Partitioning decomposes the design description into

smaller behaviors. Partitioning is an example of a

Design entry

Conceptual design

Synthesis

FIGURE 7.14 The design process.

7-14 Computer Aided Design and Design Automation

high-level transformation that modifies the initial sequential design description to optimize a hardware
implementation. High-level transformations include several common software programming complier
optimizations, such as loop unrolling, subprogram in-line expansion, constant propagation, and com-
mon subexpression elimination.
Resource allocation associates behaviors with hardware computational units and scheduling deter-

mines the order in which behaviors execute. Behaviors that are mutually exclusive can potentially share
computational resources. Allocation is performed using a variety of graphic clique covering or node
coloring algorithms. Allocation and scheduling are interdependent and different synthesis strategies
perform allocation and scheduling in different ways. Sometimes scheduling is performed first, followed
by allocation; sometimes allocation is performed first, followed by scheduling; and sometimes allocation
and scheduling are interleaved.
Scheduling assigns computational units to control steps, thereby determining which behaviors execute

in which clock cycles. At one extreme, all computational units can be assigned to a single control step,
exploiting maximum concurrency. At the other extreme, computational units can be assigned to
individual control steps, exploiting maximum sequentiality. Figure 7.16 illustrates two possible schedules

Partitioning
Resource allocation

Scheduling

Register inferencing
Register allocation

Finite state machine synthesis

Logic optimization
Redundancy removal
Technology mapping

De
cr

ea
sin

g c
on

tro
l

In
cr

ea
sin

g d
et

ail

Algorithmic

Register transfer

Logic

FIGURE 7.15 Taxonomy of synthesis techniques.

Control step

Pipelining

Chaining

–>

–>+

* *

+

+ +

–

–

– –

FIGURE 7.16 Scheduling.

Design Automation Technology 7-15

of the same behavior. Pipelining schedules an operation across multiple control steps, whereas chaining
combines multiple operations within a single control step.
Several popular scheduling algorithms are

. As soon as possible (ASAP)

. As late as possible (ALAP)

. List scheduling

. Force directed scheduling

. Control step splitting=merging

ASAP and ALAP scheduling algorithms order the computational units based on data dependencies.
List scheduling is based on ASAP and ALAP scheduling, but can consider additional global con-
straints, such as a maximum number of control steps. Force-directed scheduling computes the
probabilities of computational units being assigned to control steps and attempts to evenly distribute
computation activity among all control steps. Control step splitting scheduling starts with all
computational units assigned to one control step and generates a schedule by splitting the computa-
tional units into multiple control steps. Control step merging scheduling starts with all computational
units assigned to individual control steps and generates a schedule by merging or combining units and
steps [28,31].
Register transfer synthesis takes as input the results of algorithmic behavior and addresses ‘‘per-

cycle’’ behavior, which means the behavior during one clock cycle. Register transfer synthesis selects
logic to realize the hardware computational units generated during algorithmic synthesis, such as
realizing an addition operation with a carry-save adder or realizing addition and subtraction oper-
ations with an ALU. Data that must be retained across multiple clock cycles are identified and
registers are allocated to hold these data. Finally, state machine synthesis involves classical state
minimization and state assignment techniques. State minimization seeks to eliminate redundant or
equivalent states and state assignment assigns binary encodings for states to minimize combinational
logic [27,33].

Logic synthesis optimizes the logic generated by
register transfer synthesis and maps the minimized
logic operations onto physical gates supported by the
target fabrication technology. Technology mapping
considers the foundry cell library and associated elec-
trical restrictions, such as fanin=fanout limitations.

7.5 Verification

Figure 7.17 shows that the verification task generally
follows the synthesis task. The verification task checks
the correctness of the function and performance of a
design to ensure that an intermediate or final imple-
mentation faithfully realizes the initial, desired specifi-
cation.
Several common types of verification are

. Timing analysis

. Simulation

. Emulation

. Formal verification

These types of verification are examined in more detail
in the following sections [42].

Design entry

Conceptual design

Synthesis

Verification

FIGURE 7.17 Design process.

7-16 Computer Aided Design and Design Automation

7.5.1 Timing Analysis

As the name implies, timing analysis checks that the overall design satisfies operating speed requirements
and individual signals within design satisfy transition requirements. Common signal transition require-
ments, also called timing hazards, include rise and fall times, propagation delays, clock times, race
conditions, glitch detection, and setup and hold times. Set and hold timing checks are illustrated in Figure
7.18. For synchronous sequential digital systems, memory devices (level-sensitive latches or edge-
sensitive flip-flops) require that the data and control signals obey setup and hold timings to ensure
correct operation, i.e., that the memory device correctly and reliably stores the desired data. The control
signal is typically a clock signal and Figure 7.18 assumes that a control signal transition, rising or falling,
triggers activation of the memory device. The data signal carrying the information to be stored in the
memory device must be stable for a period equal to the setup time prior to the control signal transition to
ensure the correct value is sensed by the memory device. Also, the data signal must be stable for a period
equal to the hold time after the control signal transition to ensure the memory device has enough time to
store the sensed value.
Another class of timing transition requirements, commonly called ‘‘signal integrity checks,’’ include

reflections, cross talk, ground bounce, and electromagnetic interference. Signal integrity checks are
typically required for high-speed designs operating at clock frequencies above 75 MHz. At such high
frequencies, the transmission line behavior of wires must be analyzed. A wire must be properly
terminated, i.e., connected, to a port having an impedance matching the wire characteristic impedance
to prevent signal reflections. Signal reflections are portions of an emanating signal that ‘‘bound back’’
from the destination to the source. Signal reflections reduce the power of the emanating signal and can
damage the source. Cross talk refers to unwanted reactive coupling between physically adjacent signals,
providing a connection between signals that are supposed to be electrically isolated. Cross talk causes
information carried on a signal to interfere or corrupt information carried on a neighboring signal.
Ground bounce is another signal integrity problem. Because all conductive material has finite impedance,
a ground signal network does not in practice offer the same electrical potential throughout an entire
design. These potential differences are usually negligible because the distributive impedance of the
ground signal network is small compared to other finite component impedances. However, when
many signals switch value simultaneously, a substantial current can flow through the ground signal
network. High intermittent currents yield proportionately high intermittent potential drops, i.e., ground
bounces, which can cause unwanted circuit behavior. Finally, electromagnetic interference refers to signal
harmonics radiating from design components and interconnects. This harmonic radiation may interfere
with other electronic equipment or may exceed applicable environmental safety regulatory limits [38].
Timing analysis can be done dynamically or statically. Dynamic timing analysis exercises the design

via simulation or emulation for a period of time with a set of input stimuli and records the timing

Control signal

Data signal

Setup time Hold time

FIGURE 7.18 Signal transition requirements.

Design Automation Technology 7-17

behavior. Dynamic timing analysis generally requires simulating many input test vectors to extensively
exercise the design to ensure that signal paths are sufficiently identified and characterized. Static timing
analysis does not exercise the design via simulation or emulation. Rather, static analysis records timing
behavior based on the timing behavior (e.g., propagation delay) of the design components and their
interconnection. With static timing analysis, the complexity of the verification task is partitioned into
separate functional and performance checks.
Static timing analysis techniques are primarily block oriented or path oriented. Block-oriented timing

analysis generates design input, also called primary input, to design output, also called primary output,
propagation delays by analyzing the design, ‘‘stage-by-stage’’ and summing up the individual stage
delays. All devices driven by primary inputs constitute stage 1, all devices driven by the outputs of
stage 1 constitute stage 2, and so on. Starting with the first stage, all devices associated with a stage are
annotated with worst-case delays. A worst-case delay is the propagation delay of the device plus the delay
of the last input to arrive at the device, i.e., the signal path with the longest delay leading up to the device
inputs. For example, the device labeled ‘‘H’’ in stage 3 in Figure 7.19 is annotated with the worst-case
delay of 13, representing the device propagation delay of 4 and the delay of the last input to arrive
through devices ‘‘B’’ and ‘‘C’’ of 9 [39]. When the devices associated with the last stage, i.e., the devices
driving the primary outputs, are processed, the accumulated worst-case delays record the longest delay
from primary inputs to primary outputs, also called the critical paths. The critical path for each primary
output is highlighted in Figure 7.19.
Path-oriented timing analysis generates primary input to primary output propagation delays by

traversing all possible signal paths one at a time. Thus, finding the critical path via path-oriented timing
analysis is equivalent to finding the longest path through a directed acyclic graph, where devices are
graph vertices and interconnections are graph edges [41].
A limitation of static timing analysis concerns detecting false violations or false paths. False violations

are signal timing conditions that may occur due to the static structure of the design, but do not occur due
to the dynamic nature of the design’s response to actual input stimuli.

Stages

Primary
inputs

5 + 4 = 9 5 + 4 + 2 = 11

5 + 4 + 2 + 1 =12

5 + 4 + 4 + 1 =14

Primary
outputs

B D

5 + 4 + 4 =135 + 1 = 6

1

5

A
1

B
5

C
4

D
3

E
1

H
4

G
1

F
2

I
1

J
2

B C

B E

B C F

B C G

JB C H

IB C F

B C H

FIGURE 7.19 Block-oriented static timing analysis.

7-18 Computer Aided Design and Design Automation

To account for realistic variances in component timing due to manufacturing tolerances, aging, or
environmental effects, timing analysis often provides stochastic or statistical checking capabilities.
Statistical timing analysis uses random number generators based on empirically observed probabilistic
distributions to determine component timing behavior. Thus, statistical timing analysis describes design
performance and the likelihood of the design performance.

7.5.2 Simulation

Simulation exercises a design over a period of time by applying a series of input stimuli and generating
the associated output responses. The general event-driven, or schedule-driven, stimulation algorithm is
diagrammed in Figure 7.20. An event is a change in signal value. Simulation starts by initializing the
design; initial values are assigned to all signals. Initial values include starting values and pending values
which constitute future events. Simulation time is advanced to the next pending event(s), signals are
updated and sensitized models are evaluated. Sensitized models refer to models having outputs depen-
dent on the updated signals [35,40]. The process of evaluating the sensitized model yields new, potentially
different values for signals, i.e., a new set of pending events. These new events are added to the list of
pending events, time is advanced to the next pending event(s), and the simulation algorithm repeats.
Each pass through the loop of evaluating sensitized models at a particular time step is called a simulation
cycle (see Figure 7.20). Simulation ends when the design yields no further activity, i.e., no more pending
events exist to process.
Logic simulation is a computational intensive task for large, complex designs. Prior to committing to

manufacturing, processor designers often simulate bringing up or ‘‘booting’’ the operating system. Such
simulation tasks require sizable simulation computational resources. As an example, consider simulating
1s of a 200K gate, 20 MHz processor design. Assuming that on average only 10% of the total 200K gates
are active or sensitized on each processor clock cycle, Equation 7.6 shows that simulating 1 s of actual
processor time equates to 400 billion events.

400 B events ¼ (20 M clock cycles)(200K gates)(10% activity)

140 h ¼ (400 B events)
50 instructions

event

� �
50 M instruction

s

� �
(7:6)

Assuming that on average a simulation program executes 50 computer instructions per event on a
computer capable of processing 50 million instructions per second, Equation 7.6 also shows that

Initialize design

Advance time to next event

More events?Stop

Yes
No

Update signals

Evaluate all sensitized models

Update pending
events

Generate new
signal values

FIGURE 7.20 General event-driven simulation algorithm.

Design Automation Technology 7-19

processing 400 billion events requires 140 h or just short of 6 days. This simple example demonstrates the
sizable computational properties of simulation. Figure 7.21 shows how simulation computation scales
with design complexity.
To address the growing computational demands of simulation, several simulation acceleration tech-

niques have been introduced. Schedule or event-driven simulation (explained previously) can be accel-
erated by removing layers of interpretation and running simulation as a native executable image; such an
approach is called complied, scheduled-driven simulation. Schedule-driven simulation can be accelerated
also by using more efficient event management schemes. In a conventional, central event management
scheme all events are logged into a time-ordered list. As simulation time advances, pending events
become actual events and the corresponding sensitized devices are executed to compute the response
events. One the other hand, in a dataflow event management scheme events are ‘‘self-empowered,’’ active
agents that flow through networks and trigger device evaluations without registering with a central time-
order list and dispatcher [37].
Instead of evaluating a device in a stimulus–response manner, cycle-driven simulation avoids the

overhead of event queue processing by evaluating all devices at regular intervals of time. Cycle-driven
simulation is efficient when a design exhibits a high degree of concurrency, i.e., a large percentage of the
devices are active per simulation cycle. Based on the staging of devices, the devices are ranked-ordered to
determine the order in which they are evaluated at each time step to ensure the correct causal behavior
yielding the proper ordering of events. For functional verification, logic devices are often assigned zero-
delay and memory devices are assigned unit-delay. Thus, any number of stages of logic devices may
execute between system clock periods.
Another simulation acceleration technique is message-driven simulation, also called parallel or dis-

tributed simulation. Device execution is divided among several processors, and the device simulations
communicate event activity via messages. Messages are communicated using a conservative or an
optimistic strategy. Optimistic message passing strategies, such as time warp and lazy cancellation,
make assumptions about future event activity to advance local device simulation. If the assumptions
are correct, the processors operate more independently and better exploit parallel computation. However,
if the assumptions are incorrect, then local device simulations may be forced to ‘‘roll back’’ to synchron-
ize local device simulations [34,36].

Integrated
circuit

Integrated
circuit set

System
hardware

System
hardware/
software

Sy
ste

m
 si

m
ul

at
io

n
tim

e (
s)

100 K

10 K

1 K

100

10

1

0.1

FIGURE 7.21 Simulation requirements.

7-20 Computer Aided Design and Design Automation

Schedule-driven, cycle-driven, and message-driven simulation are software-based simulation acceler-
ation techniques. Simulation also can be accelerated by relegating certain simulation activities to
dedicated hardware. For example, hardware modelers can be attached to simulators to accelerate the
activity of device evaluation. As the name implies, hardware modeling uses actual hardware devices
instead of software models to obtain stimulus–response information. In a typical scenario, the hardware
modeler receives input stimuli from the software simulator. The hardware modeler then exercises the
device and sends the output response back to the software simulator. Using actual hardware devices
reduces the expense of generating and maintaining software models and provides an environment to
support application software development. However, the hardware device must exist, which means
hardware modeling has limited use in the initial stages of design in which hardware implementations
are not available. Also, it is sometimes difficult for a slave hardware modeler to preserve accurate real-
time device operating response characteristics within a master non-real-time software simulation envir-
onment. For example, some hardware devices may not be able to retain state information between
invocations, so the hardware modeler must save the history of previous inputs and reapply them to bring
the hardware device to the correct state in order to apply a new input.
Another technique for addressing the growing computational demands of simulation is via simulation

engines. A simulation engine can be viewed as an extension of the simulation acceleration techniques of
hardware modeling. With a hardware modeler, the simulation algorithm executes in software, and
component evaluation executes in dedicated hardware. With a simulation engine, the simulation
algorithm and component evaluation execute in dedicated hardware. Simulation engines are typically
two to three orders of magnitude faster than software simulation [43].

7.5.3 Emulation

Emulation, also called ‘‘computer-aided prototyping,’’ verifies a design by realizing the design in ‘‘pre-
production’’ hardware and exercising the hardware. The term preproduction hardware means nonopti-
mized hardware providing the correct functional behavior, but not necessarily the correct performance.
That is, emulation hardware may be slower, require more area, or dissipate more power than production
hardware. Presently, preproduction hardware commonly involves some form of programmable logic
devices, typically field-programmable gate arrays. Programmable logic devices provide generic combin-
ational and sequential digital system logic that can be programmed to realize a wide variety of designs
[44].
Emulation begins by partitioning the design; each design segment is realized by a programmable logic

device. The design segments are then interconnected to realize a preproduction implementation and
exercised with a series of input test vectors.
Emulation offers the advantage of providing prototype hardware early in the design cycle to check for

errors or inconsistencies in initial functional specifications. Problems can be isolated and design
modifications can be accommodated easily by reprogramming the logic devices. Emulation can support
functional verification at a computational rate much greater than conventional simulation. However,
emulation does not generally support performance verification because, as explained previously, proto-
type hardware typically does not operate at production clock rates.

7.6 Test

Figure 7.22 shows that the test task generally follows the verification task. Although the verification and
test tasks both seek to check for correct function and performance, verification focuses on a model of the
design before manufacturing, whereas test focuses on the actual hardware after manufacturing. Thus, the
primary objective of test is to detect a faulty device by applying input test stimuli and observing expected
results [47,53].

Design Automation Technology 7-21

The test task is difficult because designs are growing in complexity; more components provide more
opportunity for manufacturing defects. Test is also challenged by new microelectronic fabrication
processes having new failure modes which again provides more opportunity for manufacturing defects.
New microelectronic fabrication processes also offer higher levels of integration with fewer access points
to probe internal electrical nodes. To illustrate the growing demands of test, Table 7.2 shows the general
proportional relationship between manufacturing defects and required fault coverage, i.e., quality of
testing. Figure 7.23 shows the escalating costs of testing equipment.
Testing involves three general testing techniques or strategies: functional, parametric, and fault.

Functional testing checks that the hardware device realizes the correct I–O digital system behavior.
Parametric testing checks that the hardware device realizes the correct performance specifications, such
as speed or power dissipation, and electrical specifications, such as voltage polarities and current
sinking=sourcing limitation. Finally, fault testing checks for manufacturing defects or ‘‘faults.’’

Design entry

Conceptual design

Synthesis

VerificationTest

FIGURE 7.22 Design process.

TABLE 7.2 Fault Coverage and Defect Rate

Defect Rate

Microelectronic
Fabrication Process

70% Fault
Coverage

90% Fault
Coverage

99% Fault
Coverage

2 mm

90% yield 3% 1% 0.1%

1.5 mm

50% yield 19% 7% 0.7%

1 mm

10% yield 50% 21% 2%

7-22 Computer Aided Design and Design Automation

7.6.1 Fault Modeling

A fault is a manufacturing or aging defect that causes a device to operative incorrectly or to fail. A sample
listing of common integrated circuit physical faults is given next:

. Wiring faults

. Dielectric faults

. Threshold faults

. Soft faults

Wiring faults are unwanted opens and shorts. Two wires or networks that should be electrically connected
but are not constitute an open. Two wires or networks that should not be electrically connected but
are constitute a short. Wiring faults can be caused by manufacturing defects such as metallization or
etching problems, or aging defects, such as corrosion or electromigration. Dielectric faults are electrical
isolation defects that can be caused by masking defects, material impurities or imperfections, and
electrostatic discharge. Threshold faults occur when the turn-on and turn-off voltage potentials of
electrical devices exceed allowed ranges. The faulty devices cannot be properly operated, which results
in component failure. Soft faults occur when radiation exposure temporarily changes electrical charge
distributions. Such changes can alter circuit voltage potentials, which can, in turn, change logical values,
also called ‘‘dropping bits.’’ Radiation effects are called ‘‘soft’’ faults because the hardware is not
permanently damaged [54].
To simplify the task of fault testing, the physical faults described above are translated into logical faults.

Typically, a single logical fault covers several physical faults. A popular logical fault model is the single
stuck line fault model. The single stuck line fault model considers faults where any single signal line or
wire is permanently set to a logic 0, ‘‘stuck-at-0,’’ or a logic 1, ‘‘stuck-at-1.’’ These signal or interconnect
faults are assumed to be time invariant.
Building on the single stuck line fault model, the multiple stuck line fault model considers multiple

signal wire stuck-at-0=stuck-at-1 faults. The multiple stuck line fault model is more expressive and can
cover more physical faults than the single stuck line model. However, fault testing for the multiple stuck
line fault model is more difficult because of the exponential growth in the possible combinations of
multiple signal faults.
Stuck fault models do not address all physical faults because not all physical faults result in signal lines

permanently set to low or high voltages, i.e., stuck-at-0 or stuck-at-1 logic faults. Thus, other fault models

Te
ste

r c
os

ts

1974 1979 1983 1986 1990 1992

$5 M

$3.5 M

$3 M

$1.5 M

$500 K

$200 K

FIGURE 7.23 Integrated circuit tester equipment cost.

Design Automation Technology 7-23

have been developed to address specific failure mechanisms. For example, the bridging fault model
addresses electrical shorts that cause unwanted coupling or spurious feedback loops. As another example,
the pattern-sensitive fault model addresses wiring and dielectric faults that yield unwanted interference
between physically adjacent signals. Pattern-sensitive faults are generally most prevalent in high-density
memories incorporating low signal:noise ratios and can be difficult to detect because they are often data-
pattern and data-rate dependent. In other words, the part fails only under certain combinations of input
stimuli and only under certain operating conditions.

7.6.2 Fault Testing

Having identified and categorized the physical faults that may cause device malfunction or failure and
determined how the physical faults relate to logical faults, the next task is to develop tests to detect these
faults. When the tests are generated by a computer program, this activity is called ‘‘automatic test
program generation.’’ Examples of fault testing techniques are listed next:

. Stuck-at techniques

. Scan techniques

. Signature techniques

. Ad hoc techniques

. Coding techniques

. Electrical monitoring techniques

The following paragraphs review these testing strategies.
Basic stuck-at techniques generate input stimuli for fault testing combinational digital systems. Three

of the most popular stuck-at fault testing techniques are the D algorithm, the path-oriented decision-
making (Podem) algorithm, and the fan algorithm. These algorithms first identify a circuit fault (e.g.,
stuck-at-0 or stuck-at-1) and then try to generate an input stimulus that detects the fault and makes the
fault visible as an output. Detecting a fault is often called ‘‘fault sensitization’’ and making a fault visible is
often called ‘‘fault propagation.’’ To illustrate this process, consider the simple combinational design in
Figure 7.24 [46,49,50]. The design is defective because a manufacturing defect has caused the output of
the and gate to be permanently tied to ground, i.e., stuck-at-0, using a positive logic convention. To
sensitize the fault, the inputs A and B should both be set to 1, which should force the and gate output to a
1 for a good circuit. To propagate the fault, the inputs C and D should both be set to 0, which will force
the xor gate output to 1, again for a good circuit. Thus, if A¼ 1, B¼ 1, C¼ 0, and D¼ 0 in Figure 7.24,
then a good circuit would yield a 1, but the defective circuit yields a 0 which detects the stuck-at-0 fault at
the and gate output.
Sequential automatic test program generation is a more difficult task than combinational automatic

test program generation because exercising or sensitizing a particular circuit path to detect the presence
of a possible manufacturing fault may require a
sequence of input test vectors. One technique for
testing sequential digital systems is called scan fault
testing. Scan fault testing is called a ‘‘design-for-
testability’’ technique because it modifies or con-
strains the design in a manner that facilitates fault
testing. Scan techniques impose a logic design dis-
cipline that all state registers be connected in one or
more chains to form ‘‘scan rings,’’ as shown in
Figure 7.25 [48]. During normal device operation,
the scan rings are disabled and the registers serve as
conventional memory (state) storage elements. Dur-
ing test operation, the scan rings are enabled and

A
B

C
D

ZStuck-at-0 fault

FIGURE 7.24 Combinational logic stuck-at fault
testing.

7-24 Computer Aided Design and Design Automation

stimulus test vectors are shifted into the memory elements to set the state of the digital system. The digital
system is exercised for one clock cycle and then the results are shifted out of the scan ring to record
the response.
The principal advantage of scan design-for-testability is that the scan ring decouples stages of

combinational logic, thereby transforming a sequential design into effectively a combinational design
and correspondingly a difficult sequential test task into a simpler combinational test task. However, fault
tests must still be generated for the combinational logic, and shifting in stimuli and shifting out response
requires time. Also, scan paths require additional hardware resources that can impose a performance
(speed) penalty. To address these limitations, ‘‘partial’’ scan techniques have been developed that offer a
compromise between testability and performance. Instead of connecting every register into scan chains,
Figure 7.26 shows that a partial scan selectively connects a subset of registers into scan chains. Registers
in critical performance circuit paths are typically excluded and registers providing control and observa-
baility to portions of the design are typically included. Similar to full scan test operation, stimulus test
vectors are shifted into the memory elements to set the state of the digital system. Then, a partial scan
test exercises the digital system for multiple clock cycles (two clock cycles for the partial scan shown in
Figure 7.26), and then the results are shifted out of the scan ring to record the response.

Operation mode

Test mode

Registers

Combinational
logic

Combinational
logic

Registers

Combinational
logic

Combinational
logic

FIGURE 7.25 Scan-based design-for-testability.

Test mode

Registers

Combinational
logic

Combinational
logic

FIGURE 7.26 Partial scan-based design-for-testability.

Design Automation Technology 7-25

A variation of partial scan design-for-testability, called ‘‘boundary scan,’’ has been defined for testing
integrated circuits on printed circuit boards. Printed circuit board manufacturing developments, such as
fine-lead components, surface mount assembly, and multichip modules, yield high-density boards with
fewer access points to probe individual pins. Such printed circuit boards are difficult to test. As the name
implies, boundary scan imposes a design discipline on printed circuit board components, typically
integrated circuits, such that the I–O pins on the integrated circuits can be connected into scan chains.
Figure 7.27 shows that each integrated circuit configured for boundary scan contains scan registers
between the I–O pins and the core logic to enable the printed circuit board test bus to control and observe
the behavior of individual integrated circuits [51].
Another design-for-testability technique is signature analysis, also called ‘‘built-in-self-test.’’ Signature

testing techniques use additional logic, typically linear feedback shift registers, to automatically generate
pseudorandom test vectors. The output responses are compressed into a single vector and compared to a
known good vector. If the output response vector does not exactly match the known good vector, then
the design is considered faulty. Matching the output response vector and a known good vector does not
guarantee correct hardware; however, if enough pseudorandom test vectors are exercised, then the
chances are acceptably small of obtaining a false positive result. Signature analysis is often used to test
memories [45].
Ad hoc testing techniques selectively insert test hardware and access points into a design to improve

observability and controllability. Typical candidates for additional access points include storage elements
(set and reset controls), major system communication buses, and feedback loops. Ad hoc testing
techniques, also called behavioral testing techniques, can avoid the performance penalty of more
structured, logical fault testing techniques, such as scan testing, and more closely mimics the actions of
an expert test engineer. However, the number of access points is often restricted by integrated circuit or
printed circuit board I–O pin limitations.
Coding test techniques encode signal information so that errors can be detected and possibly

corrected. Although often implemented in software, coding techniques can also be implemented in
hardware. For example, a simple coding technique called ‘‘parity checking’’ is often implemented in
hardware. Parity checking adds an extra bit to multibit data. The parity bit is set such that the total
number of logic 1’s in the multibit data and parity bit is either an even number (even parity) or an odd
number (odd parity). An error has occurred if an even parity encoded signal contains an odd number of
logic 1’s or an odd parity encoded signal contains an even number of logic 1’s. Coding techniques are
used extensively to detect and correct transmission errors on system buses and networks, storage errors
in system memory, and computational errors in processors [52].
Finally, the electrical monitoring testing technique, also called current=voltage testing, relies on the

simple observation that an out-of-range current or voltage often indicates a defective or bad part.
Possibly a short or open is present, causing a particular I–O signal to have the wrong voltage or current.

Integrated circuit Integrated circuit

Printed circuit board

Core logic Core logic

FIGURE 7.27 Boundary scan.

7-26 Computer Aided Design and Design Automation

Current testing (Iddq testing) is particularly useful for digital systems using CMOS integrated circuit
technology. Normally, CMOS circuits yield very low static or quiescent currents. However, physical
faults, such as gate oxide defects, can increase static current by several orders of magnitude. Such a
substantial change in static current is straightforward to detect. The principal advantages of current
testing are that the tests are simple and the fault models address detailed transistor-level defects.
However, current testing requires that enough time be allotted between input stimuli to allow the circuit
to reach a static state, which slows down testing and causes problems with circuits that cannot be tested at
scaled clock rates.

7.7 Frameworks

The previous sections discussed various types of design automation programs ranging from initial design
entry tasks to final manufacturing test tasks. As the number and sophistication of design automation
programs increases, the systems aspects of how the tools should be integrated with each other and
underlying computing platforms become increasingly important. The first commercial design automa-
tion system product offerings in the 1970s consisted primarily of design automation programs and an
associated computing platform ‘‘bundled’’ together in turnkey systems. These initial product offerings
offered little flexibility to ‘‘mix-and-match’’ design automation programs and computing products from
different source to take advantage of state-of-the-art capabilities and construct a design automation
system tailored to particular end-user requirements. In response to these limitations, vendor offerings in
the 1980s started to address open systems. Vendors ‘‘unbundled’’ software and hardware and introduced
interoperability mechanisms to enable a design automation program to execute on different vendor
systems. The interoperability mechanisms are collectively called ‘‘frameworks’’ [56].

Frameworks support design automation systems potentially involving many users, application pro-
grams, and host computing environments or platforms. Frameworks manage the complexities of a
complete design methodology by coordinating and conducting the logistics of design automation
programs and design data. Supporting the entire design cycle, also called ‘‘concurrent engineering,’’
improves productivity by globally optimizing the utilization of resources and the minimization of design
errors and associated costs.
A general definition of a framework is given next:

A CAD framework is a software infrastructure that provides a common operating environment for
CAD tools. A framework should enable users to launch and manage tools; create, organize, and
manage data; graphically view the entire design process; and perform design management tasks
such as configuration and version management. Among the key elements of a CAD framework are
platform-independent graphics and user interfaces, inter-tool communications, and design data
and process management services. (CAD Framework Initiative, CFI)*

Figure 7.28 illustrates that a framework is essentially a domain-specific (i.e., electronic systems) layer of
operating system software that facilitates ‘‘plug-compatible’’ design automation programs. Framework
services are specific to electronic systems design and are mapped into the more generic services provided
by general-purpose computing platforms [55].
User interface services provide a common and consistent ‘‘look-and-feel’’ to application programs.

User interface services include support for consistent information display styles using menus and=or
windows. These services also include support for consistent command styles using programming
function keys and=or mouse buttons. Application program services provide support for program inter-
active=batch invocation and normal=abnormal termination. Application services also provide support for

* CAD Framework Initiative is a consortium of companies established to define and promote industry standards for design
automation system interoperability.

Design Automation Technology 7-27

program-to-program communication and process management. Process management implements a
design methodology that defines application-to-application and application-to-data dependencies. Pro-
cess management describes a general sequencing of design automation programs and provisions for
iterations. In other words, process management ensures a designer is working with the right tool at the
right time with the right data.
Finally, a framework provides design data services to support access, storage, configuration, and

integrity operations. Figure 7.29 shows relationships among relational, network, and object-oriented
data management schemes. Due to the comparatively large size of design data and the length of design
operations, framework data services are evolving toward object-oriented paradigms [57–59].
Object-oriented paradigms match data structures and operations with design automation objects and

tasks, respectively. Figure 7.30 shows that hardware devices, components, and products become natural
choices for software ‘‘objects.’’

User interface services

Design data services

Application program services

Operating system

Hardware resources

Framework

Computing
platform

Application
program

Application
program

Application
program

FIGURE 7.28 Framework architecture.

Object-oriented

Network

Relational

Ap
pl

ica
tio

n
pr

og
ra

m
 co

m
pl

ex
ity

Application data complexity

FIGURE 7.29 Data management technology.

7-28 Computer Aided Design and Design Automation

The hierarchical relationships between hardware units become natural choices for software ‘‘inherit-
ance.’’ Finally, design automation tasks and subtask that operate on hardware units, such as display or
simulate, become natural choices for software ‘‘methods.’’

7.8 Summary

Design automation technology offers the potential of serving as a powerful fulcrum in leveraging the
skills of a designer against the growing demands of electronic system design and manufacturing. Design
automation programs help to relieve the designer of the burden of tedious, repetitive tasks that can be
labor intensive and error prone.
Design automation technology can be broken down into several topical areas, such as design entry,

conceptual design, synthesis, verification, testing, and frameworks. Each topical area has developed an
extensive body of knowledge and experience.
Design entry defines a desire specification. Conceptual design refines the specification into a design

plan. Synthesis refines the design plan into an implementation. Verification checks that the implemen-
tation faithfully realizes the desired specification. Testing checks that the manufactured part performs
functionally and parametrically correctly. Finally, frameworks enable individual design automation
programs to operate collectively and cohesively within a larger computing system environment.

References

1. D. Barbe, Ed. Very Large Scale Integration (VLSI)—Fundamentals and Applications, New York:
Springer-Verlag, 1980.

2. T. Dillinger, VLSI Engineering, Englewood Cliffs, NJ: Prentice-Hall, 1988.
3. E. Hollis, Design of VLSI Gate Array Integrated Circuits, Englewood Cliffs, NJ: Prentice Hall, 1987.
4. S. Sapiro, Handbook of Design Automation, Englewood Cliffs, NJ: Prentice Hall, 1986.
5. S. Trimberger, An Introduction to CAD for VLSI, San Jose, CA: Domancloud Publishers, 1990.
6. G. Birtwistle and P. Subrahmanyan, VLSI Specification, Verification, and Synthesis, Boston, MA:

Kluwer Academic, 1988.
7. A. Dewey, VHSIC hardware description language development program, Proc. Design Autom. Conf.,

June 1983.
8. A. Dewey, VHDL: Towards a unified view of design, IEEE Design Test Comput., June 1992.

Product P1

Component C1

Component C2

Subcomponent S2Subcomponent S2

SubComponent S1SubComponent S1

Component C1 Component C2

Object

Inheritance

FIGURE 7.30 Object-oriented modeling.

Design Automation Technology 7-29

9. J. Douglas-Young, Complete Guide to Reading Schematic Diagrams, Englewood Cliffs, NJ: Prentice
Hall, 1988.

10. C. Liu, Elements of Discrete Mathematics, New York: McGraw-Hill, 1985.
11. M. Pechet, Ed., Handbook of Electrical Package Design, New York: Marcel Dekker, 1991.
12. J. Peterson, Petri Net Theory and Modeling of Systems, Englewood Cliffs, NJ: Prentice Hall, 1981.
13. B. Spinks, Introduction to Integrated Circuit Layout, Englewood Cliffs, NJ: Prentice Hall, 1985.
14. N. Bose, Digital Filters: Theory and Applications, New York: North-Holland, 1985.
15. X. Chen and M. Bushnell, A module area estimator for VLSI layout, Proc. Design Autom. Conf.,

June 1988.
16. A. Dewey, Principles of VLSI Systems Planning: A Framework for Conceptual Design, Boston: Kluwer

Academic, 1990.
17. W. Donath, Wiring space estimation for rectangular gate arrays, Proc. Int. Conf. VLSI, 1981.
18. W. Heller, Wirability—Designing wiring space for chips and chip packages, IEEE Design Test

Comput., Aug. 1984.
19. C. Leiserson, Area-efficient VLSI computation, PhD dissertation, Pittsburgh, Carnegie Mellon

University, 1981.
20. A. Oppenheim and R. Schafer, Digital Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1975.
21. L. Rabiner, O. Hermann, and D. Chan, Practical design rules for optimum finite impulse response

low-pass digital filters, Bell Syst. Tech. J., July–Aug. 1973.
22. E. Sacerdoti, Planning in a hierarchy of abstraction spaces, Artif. Intell., Sept. 1974.
23. M. Stefik, Planning with constraints, Artif. Intell., Feb. 1980.
24. C. Thompson, Area-time complexity for VLSI, Proc. Caltech Conf. VLSI, Jan. 1979.
25. L. Valiant, Universality considerations in VLSI circuits, IEEE Trans. Comput., Feb. 1981.
26. R. Ayres, VLSI: Silicon Compilation and the Art of Automatic Microchip Design, Englewood Cliffs,

NJ: Prentice Hall, 1983.
27. R. Brayton et al., Logic Minimization Algorithms for VLSI Synthesis, Boston, MA: Kluwer

Academic, 1992.
28. R. Camposano and W. Wolfe, High-Level VLSI Synthesis, Boston, MA: Kluwer Academic, 1991.
29. D. Gajski, Ed., Silicon Compilation, Reading, MA: Addison-Wesley, 1988.
30. D. Gajski et al., High-Level Synthesis—Introduction to Chip and System Design, Boston, MA: Kluwer

Academic, 1992.
31. P. Paulin and J. Knight, Force-directed scheduling for the behavioral synthesis of ASIC’s, IEEE

Design Test Comput., Oct. 1989.
32. B. Preas, M. Lorenzetti, and B. Ackland, Eds., Physical Design Automation of VLSI Systems, New

York: Benjamin Cummings, 1988.
33. T. Sasao, Ed., Logic Synthesis and Optimization, Boston, MA: Kluwer Academic, 1993.
34. R. Bryant, Simulation on distributed systems, Proc. Int. Conf. Distributed Systems, 1979.
35. J. Butler, Ed., Multiple-Valued Logic in VLSI Design, New York: IEEE Computer Society Press, 1991.
36. K. Chandy and J. Misra, Asynchronous distributed simulation via a sequence of parallel computa-

tions, Commun. ACM, April 1981.
37. W. Hahn and K. Fischer, High performance computing for digital design simulation, VLSI85,

Amsterdam: Elsevier, 1985.
38. R. McHaney, Computer Simulation: A Practical Perspective, New York: Academic Press, 1991.
39. T. McWilliams and L. Widdoes, SCALD—Structured computer aided logic design, Proc. Design

Autom. Conf., June 1978.
40. U. Pooch, Discrete Event Simulation: A Practical Approach, Boca Raton, FL: CRC Press, 1993.
41. T. Sasiki, et al., Hierarchical design and verification for large digital systems, Proc. Design Autom.

Conf., June 1978.
42. J. Sifakis, Ed., Automatic Verification Methods for Finite State Systems, New York: Springer-Verlag,

1990.

7-30 Computer Aided Design and Design Automation

43. S. Takasaki, F. Hirose, and A. Yamada, Logic simulation engines in Japan, IEEE Design Test Comput.,
Oct. 1989.

44. S. Walters, Computer-aided prototyping for ASIC-based synthesis, IEEE Design Test Comput.,
June 1991.

45. V. Agrawal, C. Kime, and S. Saluja, A tutorial on built-in self test, IEEE Design Test Comput.,
June 1993.

46. M. Breuer and A. Friedman, Diagnosis and Reliable Design of Digital Systems, New York: Computer
Science Press, 1976.

47. A. Buckroyd, Computer Integrated Testing, New York: John Wiley & Sons, 1989.
48. E. Eichelberger and T. Williams, A logic design structure for LSI testability, Proc. Design Autom.

Conf., June 1977.
49. H. Fujiwara and T. Shimono, On the acceleration of test generation algorithms, IEEE Trans.

Comput., Dec. 1983.
50. P. Goel, An implicit enumeration algorithm to generalize tests for combinational logic circuits, IEEE

Trans. Comput., March 1981.
51. K. Parker, The impact of boundary scan on board test, IEEE Design Test Comput., Aug. 1989.
52. W. Peterson and E. Weldon, Error-Correcting Codes, Cambridge, MA: MIT Press, 1972.
53. M. Weyerer and G. Goldemund, Testability of Electronic Circuits, Englewood Cliffs, NJ: Prentice

Hall, 1992.
54. G. Zobrist, VLSI Fault Modeling and Testing Technologies, New York: Ablex Publishing, 1993.
55. T. Barnes, Electronic CAD Frameworks, Boston, MA: Kluwer Academic, 1992.
56. D. Bedworth, M. Henderson, and P. Wolfe, Computer-Integrated Design and Manufacturing,

New York: McGraw-Hill, 1991.
57. R. Gupta and E. Horowitz, Eds., Object-Oriented Databases with Applications to CASE Networks, and

VLSI CAD, Englewood Cliffs, NJ: Prentice Hall, 1990.
58. W. Kim, Object-Oriented Concepts, Databases, and Applications, Reading, MA: Addison-Wesley,

1989.
59. E. Nahouranii and F. Petry, Eds., Object-Oriented Databases, Los Alamitos, CA: IEEE Computer

Society Press, 1991.

Design Automation Technology 7-31

8
Computer-Aided

Analysis

J. Gregory Rollins
Technology Modeling Associates, Inc.

Peter Bendix
Technology Modeling Associates, Inc.

8.1 Circuit Simulation Using SPICE and SUPREM 8-1
Introduction . DC (Steady-State) Analysis . AC Analysis .

Transient Analysis . Process and Device Simulation . Process
Simulation . Device Simulation

Appendix A... 8-20
Circuit Analysis Software . Process and Device Simulators

References .. 8-20
8.2 Parameter Extraction for Analog Circuit Simulation...... 8-21

Introduction . MOS DC Models . BSIM Extraction Strategy
in Detail . Bipolar DC Model . MOS and Bipolar
Capacitance Models . Bipolar High-Frequency Model .

Miscellaneous Topics

References .. 8-45

8.1 Circuit Simulation Using SPICE and SUPREM

8.1.1 Introduction

Computer-aided simulation is a powerful aid during the design or analysis of electronic circuits and
semiconductor devices. The first part of this chapter focuses on analog circuit simulation. The second
part covers simulations of semiconductor processing and devices. While the main emphasis is on analog
circuits, the same simulation techniques may, of course, be applied to digital circuits (which are, after all,
composed of analog circuits). The main limitation will be the size of these circuits because the techniques
presented here provide a very detailed analysis of the circuit in question and, therefore, would be too
costly in terms of computer resources to analyze a large digital system.
The most widely known and used circuit simulation program is SPICE (simulation program with

integrated circuit emphasis). This program was first written at the University of California at Berkeley by
Laurence Nagel in 1975. Research in the area of circuit simulation is California at many universities and
industrial sites. Commercial versions of SPICE or related programs are available on a wide variety of
computing platforms, from small personal computers to large mainframes. A list of some commercial
simulator vendors can be found in the Appendix A.
It is possible to simulate virtually any type of circuit using a program like SPICE. The programs have

built-in elements for resistors, capacitors, inductors, dependent and independent voltage and current
sources, diodes, MOSFETs, JFETs, bipolar junction transistors (BJTs), transmission lines, transformers,
and even transformers with saturating cores in some versions. Found in commercial versions are
libraries of standard components which have all necessary parameters prefitted to typical specifications.

8-1

These libraries include items such as discrete transistors, op-amps, phase-locked loops, voltage regulators,
logic integrated circuits (ICs) and saturating transformer cores.
Computer-aided circuit simulation is now considered an essential step in the design of ICs, because

without simulation the number of ‘‘trial runs’’ necessary to produce a working IC would greatly increase
the cost of the IC. Simulation provides other advantages, however:

. Ability to measure ‘‘inaccessible’’ voltages and currents. Because a mathematical model is used all
voltages and currents are available. No loading problems are associated with placing a voltmeter or
oscilloscope in the middle of the circuit, with measuring difficult one-shot wave forms, or probing a
microscopic die.

. Mathematically ideal elements are available. Creating an ideal voltage or current source is trivial
with a simulator, but impossible in the laboratory. In addition, all component values are exact and
no parasitic elements exist.

. It is easy to change the values of components or the configuration of the circuit. Unsoldering leads
or redesigning IC masks are unnecessary.

Unfortunately, computer-aided simulation has its own problems:

. Real circuits are distributed systems, not the ‘‘lumped elements models’’ which are assumed by
simulators. Real circuits, therefore, have resistive, capacitive, and inductive parasitic elements
present besides the intended components. In high-speed circuits these parasitic elements are
often the dominant performance-limiting elements in the circuit, and must be painstakingly
modeled.

. Suitable predefined numerical modes have not yet been developed for certain types of devices or
electrical phenomena. The software user may be required, therefore, to create his or her own
models which are available in the simulator. (An example is the solid-state thyristor which may be
created from a NPN and PNP bipolar transistor.)

. Numerical methods used may place constraints on the form of the model equations used.

The following sections consider the three primary simulation modes: DC, AC, and transient analysis. In
each section an overview is given of the numerical techniques used. Some examples are then given,
followed by a brief discussion of common pitfalls.

8.1.2 DC (Steady-State) Analysis

DC analysis calculates the state of a circuit with fixed (nontime varying) inputs after an infinite period of
time. DC analysis is useful to determine the operating point (Q-point) of a circuit, power consumption,
regulation and output voltage of power supplies, transfer functions, noise margin and fan-out in logic
gates, and many other types of analysis. In addition, DC analysis is used to find the starting point for AC
and transient analysis. To perform the analysis the simulator performs the following steps:

1. All capacitors are removed from the circuit (replaced with opens).
2. All inductors are replaced with shorts.
3. Modified nodal analysis is used to construct the nonlinear circuit equations. This results in one

equation for each circuit node plus one equation for each voltage source. Modified nodal analysis is
used rather than standard nodal analysis because an ideal voltage source or inductance cannot be
represented using normal nodal analysis. To represent the voltage sources, loop equations (one for
each voltage source or inductor), are included as well as the standard node equations. The node
voltages and voltage source currents, then, represent the quantities which are solved for. These
form a vector x. The circuit equations can also be represented as a vector F(x)¼ 0.

4. Because the equations are nonlinear, Newton’s method (or a variant thereof) is used to solve the
equations. Newton’s method is given by the following equations:

8-2 Computer Aided Design and Design Automation

J ¼ @F
@x

����
xi

xiþ1 ¼ xi � J�1 � F(xi)

Here, if xi is an estimate of the solution, xiþ1 is a better estimate. The equations are used iteratively, and
hopefully the vector x converges to the correct solution. The square matrix J of partial derivatives is called
the Jacobian of the system. Most of the work in calculating the solution is involved in calculating J and its
inverse J�1. It may take as many a 100 iterations for the process to converge to a solution. Parameters
control this process in most simulation programs (see the .OPTIONS statement in SPICE). For example,
the maximum number of iterations allowed and error limits which must be satisfied before the process is
considered to be converged, but normally the default limits are appropriate.

Example 8.1: Simulation Voltage Regulator

We shall now consider simulation of the type 723 voltage regulator IC, shown in Figure 8.1. We wish to
simulate the IC and calculate the sensitivity of the output IV characteristic and verify that the output
current follows a ‘‘fold-back’’ type characteristic under overload conditions.
The IC itself contains a voltage reference source and operational amplifier. Simple models for these

elements are used here rather than representing them in their full form, using transistors to illustrate
model development. The use of simplified models can also greatly reduce the simulation effort. (For
example, the simple op-amp used here requires only eight nodes and ten components, yet realizes
many advanced features.)
Note in Figure 8.1 that the numbers next to the wires represent the circuit nodes. These numbers are

used to describe the circuit to the simulator. In most SPICE-type simulators the nodes are represented by
numbers, with the ground node being node zero. Referring to Figure 8.2, the 723 regulator and its
internal op-amp are represented by subcircuits. Each subcircuit has its own set of nodes and compon-
ents. Subcircuits are useful for encapsulating sections of a circuit or when a certain section needs to be
used repeatedly.

R7
270 10

9

2

VIN+–

+–

+–3

00k
Rdif2

00k
Rdif1

4
8

8

GDIF

1C-723

GCM

IE6
Rcm

8
6
D1

D2
2

1

1

Op-amp

1
R1

.01F
01

E1 7

1000

5

R4

7

6

Q1

Q2
4
5

1

4 Q4
R1 Q3

2.2K5 11 2
3k
R3

R2
110

2

.075
R4
6
R5
510

R6
510

VOUT

VPP

.

FIGURE 8.1 Regulator circuit to be used for DC analysis, created using PSPICE.

Computer-Aided Analysis 8-3

The following properties are modeled in the op-amp:

1. Common mode gain
2. Differential mode gain
3. Input impedance
4. Output impedance
5. Dominant pole
6. Output voltage clipping

The input terminals of the op-amp connect to a ‘‘T’’ resistance network, which sets the common and
differential mode input resistance. Therefore, the common mode resistance is RCMþ RDIF¼ 1.1E6 and
the differential mode resistance is RDIF1þ RDIF2¼ 2.0E5.

Dependent current sources are used to create the main gain elements. Because these sources force
current into a 1�V resistor, the voltage gain is Gm*R at low frequency. In the differential mode, this
gives (GDIF*R1¼ 100). In the common mode, this gives (GCM*R1*(RCM=(RDIF1þ RCM¼ 0.0909). The
two diodes D1 and D2 implement clipping by preventing the voltage at node 6 from exceeding VCC or
going below VEE. The diodes are made ‘‘ideal’’ by reducing the ideality factor n. Note that the diode
current is Id¼ Is[exp(Vd=(nVt))� 1], where Vt is the thermal voltage (0.026 V). Thus, reducing n makes the
diode turn on at a lower voltage.
A single pole is created by placing a capacitor (C1) in parallel with resistor R1. The pole frequency is

therefore given by 1.0=2 * p * R1 * C1). Finally, the output is driven by the voltage-controlled voltage
source E1 (which has a voltage gain of unity), through the output resistor R4. The output resistance of
the op-amp is therefore equal to R4.

Regulator circuit.
Complete circuit
Load source
vout 6 0
Power input
vpp 1 0 11
x1 1 0 4 5 6 7 8 9 10 ic723
Series Pass transistors
q3 1 4 11 mq3
q4 1 11 2 mq4
r1 4 11 2.2k
r2 5 2 110
r3 5 0 3k
r4 2 6 0.075
r5 6 8 510
r6 8 0 510
r7 9 10 270
Control cards
.op
.model mq3 npn(is = 1e–9 bf = 30
+ br = 5 ikf = 50m)
model mq4 npn(is = 1e–6 bf = 30
+ br = 5 ikf = 10)
.dc vout 1 5.5 .01
.plot dc i(vout)
.probe

.subckt ic723 1 2 4 5 6 7 8 9 10
Type 723 voltage regulator
x1 1 2 10 8 7 opamp
Internal voltage reference
vr 9 2 2.5
q1 3 7 4 mm
q2 7 5 6 mm
.model mm npn (is = 1e–12 bf = 100)
+br = 5
.ends ic723
*Ideal opamp with limiting
.subckt opamp 1 2 3 4 5
* vcc vee +in –in out
rdif1 3 8 le5
rdif2 4 8 le5
rcm 8 0 le6
Common mode gain
gcm 6 0 8 0 le–1
Differential mode gain
gdif 6 0 4 3 1 00
r1 6 0 1
Single pole response
c1 6 0 .01
d1 6 1 ideal
d2 2 6 ideal
e1 7 0 6 0 1
rout 5 7 le3
.model ideal d (is = le–6 n = .01)
.ends opamp

FIGURE 8.2 SPICE input listing of regulator circuit shown in Figure 8.1.

8-4 Computer Aided Design and Design Automation

To observe the output voltage as a function of resistance, the regulator is loaded with a voltage
source (VOUT) and the voltage source is swept from 0.05 to 6.0 V. A plot of output voltage vs. resistance
can then be obtained by plotting VOUT vs. VOUT=I(VOUT) (using PROBE in this case; see Figure 8.3). Note
that for this circuit, even though a current source would seem a more natural choice, a voltage source
must be used as a load rather than a current source because the output characteristic curve is multi-
valued in current. If a current source were used it would not be possible to easily simulate the entire
curve. Of course, many other interesting quantities can be plotted; for example, the power dissipated in
the pass transistor can be approximated by plotting IC(Q3)*VC(Q3).
Several restrictions exist as to what constitutes a valid circuit, and in most cases the simulators will

complain if the restrictions are violated:

1. All nodes must have a DC path to ground.
2. Voltage sources must not be connected in a loop.
3. Current sources may not be connected in series.
4. Each node must be connected to at least two elements.

For these simulations, PSPICE was used running on an IBM PC. The simulation took <1 min of CPU time.

Pitfalls. Many SPICE users forget that the first line in the input file is used as the title. Therefore, if the
first line of the file is a circuit component, the component name will be used as the title and the
component will not be included in the circuit. Convergence problems are sometimes experience if
‘‘difficult’’ bias conditions are created. An example of such a condition is if a diode is placed in the
circuit backwards, resulting in a large forward bias voltage, SPICE will have trouble resolving the current.
Another difficult case is if a current source were used instead of a voltage to bias the output in the
previous example. If the user then tried to increase the output current above 10 A, SPICE would not be
able to converge because the regulator will not allow such a large current.

8.1.3 AC Analysis

AC analysis uses phasor analysis to calculate the frequency response of a circuit. The analysis is useful
for calculating the gain, 3 dB frequency input and output impedance, and noise of a circuit as a function
of frequency, bias conditions, temperature, etc.

Power

Iout Vout

Vout/i (vout)
100 m 300 m 1.0 103.0

1 20

10

0

–10

2 120 W

80 W

40 W

0 W
 >>

vouti (vout) ic(q4)*vc(q4)21

FIGURE 8.3 Output characteristics of regulator circuit using PSPICE.

Computer-Aided Analysis 8-5

8.1.3.1 Numerical Method

1. DC solution is performed to calculate the Q-point for the circuit.
2. Linearized circuit is constructed at the Q-point. To do this, all nonlinear elements are replaced by

their linearized equivalents. For example, a nonlinear current source I ¼ aV2
1 þ bV3

2 would be
replaced by a linear voltage controlled current source I ¼ V1(2aV1q)þ V2(3bV2

2q).
3. All inductors and capacitors are replaced by complex impedances, and conductances evaluated at

the frequency of interest.
4. Nodal analysis is now used to reduce the circuit to a linear algebraic complex matrix. The AC node

voltages may now be found by applying an excitation vector (which represents the independent
voltage and current sources) and using Gaussian elimination (with complex arithmetic) to
calculate the node voltages.

AC analysis does have limitations and the following types of nonlinear or large signal problems cannot be
modeled:

1. Distortion due to nonlinearities such as clipping, etc.
2. Slew rate-limiting effects
3. Analog mixers
4. Oscillators

Noise analysis is performed by including noise sources in the models. Typical noise sources include
thermal noise in resistors I2n ¼ 4kTD f =R, and shot I2n ¼ 2qIdDf , and flicker noise in semiconductor
devices. Here, T is temperature in Kelvin, k is Boltzmann’s constant, and Df is the bandwidth of the
circuit. These noise sources are inserted as independent current sources, Inj(f) into the AC model. The
resulting current due to the noise source is then calculated at a user-specified summation node(s) by
multiplying by the gain function between the noise source and the summation node Ajs(f). This
procedure is repeated for each noise source, and then the contributions at the reference node are root
mean squared (RMS) summed to give the total noise at the reference node. The equivalent input noise is
then easily calculated from the transfer function between the circuit input and the reference node Ais (f).
The equation describing the input noise is therefore:

Ii ¼ 1
Ais(f)

ffiX
j

[Ajs(f)Inj(f)]
2

s

Example 8.2: Cascode Amplifier with Macro Models

Here, we find the gain, bandwidth, input impedance, and output noise of a cascode amplifier. The circuit
for the amplifier is shown in Figure 8.5. The circuit is assumed to be fabricated in a monolithic IC process,
so it will be necessary to consider some of the parasitics of the IC process. A cross-section of a typical IC
bipolar transistor is shown in Figure 8.4 along with some of the parasitic elements. These parasitic
elements are easily included in the amplifier by creating a ‘‘macro model’’ for each transistor. The macro
model is then implemented in SPICE form using subcircuits.
The PSPICE circuit simulator allows the user to define parameters which are passed into the

subcircuits. This capability is very useful in this case because the resistor model will vary, depending
on the value of the resistor. It if is assumed for a certain resistor type that the width w (measured
perpendicular to current flow) of the resistor is fixed, e.g., to the minimum line width of the process, then
the resistance must be proportional to the length (l) of the resistor (R / l=w). The parasitic capacitance of
the resistor, on the other hand, is proportional to the junction area of the resistor, and therefore to the
value of the resistance as well (C / lw / R). Using parameterized subcircuits these relations are easily
implemented, and one subcircuit can be used to represent many different resistors (see Figure 8.6). Here,

8-6 Computer Aided Design and Design Automation

we represent the capacitance using two diodes one at each end of the resistor. This was done because
the resistor junction capacitance is voltage dependent.
The input to the circuit is a voltage source (VIN), applied differentially to the amplifier. The output will

be taken differentially across the collectors of the two upper transistors at nodes 2 and 3. The input
impedance of the amplifier can be calculated as VIN=I(VIN) or because VIN¼ 1.0 just as 1=I(VIN). These
quantities are shown plotted using PROBE in Figure 8.7. It can be seen that the gain of the amplifier falls
off at high frequency as expected. The input impedance also drops because parasitic capacitances shunt
the input.
It is also requested in Figure 8.6 that noise analysis be performed at every 20th frequency point. A

portion of the noise printout is shown in Figure 8.8. It can be seen that the simulator calculates the noise
contributions of each component in the circuit at the specified frequencies and displays them. The total
noise at the specified summing node (differentially across nodes 2 and 3) in this case is also calculated as
well as the equivalent noise referenced back to the input. This example took <1 min on an IBM PC.

Pitfalls.Many novice users will forget that AC analysis is a linear analysis. They will, for example, apply a
1 V signal to an amplifier with 5 V power supplies and a gain of 1000 and be surprised when SPICE tells
them that the output voltage is 1000 V. Of course, the voltage generated in a simple amplifier must be less

C B E

RBE RB
RE

RCE RCDBC

DSU

RSU

FIGURE 8.4 BJT cross-section with macro model elements.

6.3 k
R21

6.3 k
R31

3.7 k
R32

SU
VSU

VIN

VCC
1

3.7 k
R22

3300
X7

1000
X2

6700
X8

1000
X1

1.7 k
X11

X9

X10

X6
X5

X3

X4

X12

4 5

6 32

11

10

9

8.3 k

7

50

8

100

+–

+–

+–

FIGURE 8.5 Cascode amplifier for AC analysis, created using PSPICE.

Computer-Aided Analysis 8-7

Cascode amp with macro models.
*P type substrate is node 100
vcc 1 0 10
vsu 100 0 0
vin 7 8 ac 1
x1 1 2 100 icr PARAMS: val = 1k
x2 1 3 100 icr PARAMS: val = 1k
x3 2 6 4 100 tran
x4 3 6 5 100 tran
x5 4 7 11 100 tran
x6 5 8 11 100 tran
cascode base bias divider
x7 1 6 100 icr PARAMS: val = 3.3k
x8 6 0 100 icr PARAMS: val = 6.7k
input bias dividers
r21 1 7 6.3k
r22 7 0 3.7k
r31 1 8 6.3k
r32 8 0 3.7k
Current Source
x9 11 10 9 100 tran
x10 9 0 100 icr PARAMS: val = 100
x11 9 0 100 icr PARAMS: val = 100
x12 1 10 100 icr PARAMS: val = 8.3k
x13 10 0 100 icr PARAMS: val = 1.7k
.op
.noise v(2,3) vin 8
.ac dec 8 le6 le10
.probe

.subckt tran 1 2 3 4 PARAMS: val = 1
q1 5 2 3 mq{val}
rc 1 5 20/{val}
dbc 2 5 mdbc {val}
dsc 4 5 mdcs {val}
.model mq npn (is = le–15 bf = 100 br = 5
+ vaf = 30 var = 10 ikf = 5e–3 ikr = le–4
+ re = 5 rb = 100 rc = 50 cje = .1p cjc = .05p
+ tf = 100p tr = 1n)
.model mdbc d (is = 1e–16 cjo = .05p)
.model mdcs d (is = 1e–16 cjo = .01p)
+ rs = 1000)
.ends tran

.subckt icr 1 2 3 PARAMS: val = 1000
rr 1 2 {val}
d1 3 1 md {val/1000}
d2 3 1 md {val/1000}
.model md d (is = le–16 cjo = 10f rs = ik)
.ends icr

FIGURE 8.6 SPICE input listing for cascode amplifier of Figure 8.5.

30 V

20 V

10 V

Gain

Zin

1.0 K

0.5 K

1 2

0 V
1.0 MHz 10 MHz 100 MHz 1.0 GHz 10 GHz

Frequency

0
>>

1/IM (VIN) VM (2, 3)1 2

FIGURE 8.7 Gain and input impedance of cascode amplifier.

8-8 Computer Aided Design and Design Automation

than the power supply voltage, but to examine such clipping effects, transient analysis must be used.
Likewise, selection of a proper Q-point is important. If the amplifier is biased in a saturated portion of its
response and AC analysis is performed, the gain reported will be much smaller than the actual large
signal gain.

8.1.4 Transient Analysis

Transient analysis is the most powerful analysis capability of a simulator because the transient response is
so hard to calculate analytically. Transient analysis can be used for many types of analysis, such as
switching speed, distortion, basic operation of certain circuits like switching power supplies. Transient
analysis is also the most CPU intensive and can require 100 or 1000 times the CPU time as a DC or AC
analysis.

8.1.4.1 Numerical Method

In a transient analysis time is discretized into intervals called time steps. Typically, the time steps are of
unequal length, with the smallest steps being taken during portions of the analysis when the circuit
voltages and currents are changing most rapidly. The capacitors and inductors in the circuit are then
replaced by voltage and current sources based on the following procedure.
The current in a capacitor is given by Ic¼CdVc=dt. The time derivative can be approximated by a

difference equation.

Ikc þ Ik�1
c ¼ 2C

Vk
c � Vk�1

c

tk � tk�1

**** NOISE ANALYSIS TEMPERATURE = 27.000 DEG C
 FREQUENCY = 1.000E+09 HZ

**** DIODE SQUARED NOISE VOLTAGES (SQ V/HZ)

 x1.d1 x1.d2 x2.d1 x2.d2 x3.dsc x4.dsc
RS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.098E–21 6.098E–21
ID 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.746E–24 2.746E–24
FN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
TOTAL 0.000E+00 0.000E+00 0.000E+00 0.000E+00 6.1000E–21 6.100E–21

**** TRANSISTOR SQUARED NOISE VOLTAGES (SQ V/HZ)

 x3.q1 x4.q1 x5.q1 x6.q1 x7.q1
RB 1.519E–19 1.519E–19 1.522E–16 1.522E–16 0.000E+00
RC 3.185E–20 3.185E–20 7.277E–20 7.277E–20 0.000E+00
RE 8.056E–21 8.056E–21 7.418E–18 7.418E–18 0.000E+00
IB 2.190E–18 2.190E–18 3.390E–18 3.390E–18 0.000E+00
IC 8.543E–17 8.543E–17 1.611E–16 1.611E–16 0.000E+00
FN 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
TOTAL 8.782E–17 8.782E–17 3.242E–16 3.242E–19 0.000E+00

****TOTAL OUTPUT NOISE VOLTAGE = 8.554E–16 SQ V/HZ
 = 2.925E–08 V/RT HZ
 TRANSFER FUNCTION VALUE:
 V(2,3)/vin = 9.582E+00
 EQUIVALENT INPUT NOISE AT vin = 3.052E–09 V/RT HZ

FIGURE 8.8 Noise analysis results for cascode amplifier.

Computer-Aided Analysis 8-9

In this equation, the superscript k represents the number of the time step. Here, k is the time step we are
presently solving for and (k� 1) is the previous time step. This equation can be solved to give the
capacitor current at the present time step.

Ikc ¼ Vk
c (2C=Dt)� Vk�1

c (2C=Dt)� Ik�1
c

Here Dt¼ tk� tk�1, or the length of the time step. As time steps are advanced, Vk�1
c ! Vk

c ; I
k�1
c ! Ikc .

Note that the second two terms on the right hand side of the above equation are dependent only on the
capacitor voltage and current from the previous time step, and are therefore fixed constants as far as
the present step is concerned. The first term is effectively a conductance (g¼ 2C=Dt) multiplied by the
capacitor voltage, and the second two terms could be represented by an independent current source.
The entire transient model for the capacitor therefore consists of a conductance in parallel with two
current sources (the numerical values of these are, of course, different at each time step). Once the
capacitors and inductors have been replaced as indicated, the normal method of DC analysis is used. One
complete DC analysis must be performed for each time point. This is the reason that transient analysis is
so CPU intensive. The method outlined here is the trapezoidal time integration method and is used as the
default in SPICE.

Example 8.3: Phase-Locked Loop Circuit

Figure 8.9 shows the phase-locked loop (PLL) circuit. The first analysis considers only the analog
multiplier portion (also called a phase detector). The second analysis demonstrates the operation of
the entire PLL. For the first analyses we wish to show that the analog multiplier does indeed multiply its
input voltages. To do this, sinusoidal signals of 0.5 V amplitude are applied to the inputs, one at 2 MHz
and the second at 3 MHz. The analysis is performed in the time domain and a Fourier analysis is used to
analyze the output. Because the circuit functions as a multiplier, the output should be

Vout ¼ AVa sin (2e6pt)Vb sin (3e6pt) ¼ AVaVb[cos (1e6pt)� cos(5e6pt)]

The 1 and 5 MHz components are of primary interest. Feedthrough of the original signal will also
occur, which will give 2 and 3 MHz components in the output. Other forms of nonlinear distortion will

M1 M12 M13

M4M2M3 M5

M6 M7

M8 M9M10 M11

8

9
2

6

1

3

4

5

6

7

11 12

10

7

MULTIPLIER

2

67

3
3

2

22

10

33

8

8

8

81

M11

M1

M4

M2
M3

M5

M6 M7M8 M9

M10
D1
D3

.5P
5P 7P

Cpad 1
Cpad 2

Istart

D2
D4

C1

Vcc

R1

7

VCO

VCO

100K
Rfil

R2
70k
70k

03n
Cfil

–+

FIGURE 8.9 Phase-locked loop circuit for transient analysis, created with PSPICE.

8-10 Computer Aided Design and Design Automation

give components at higher frequencies. The SPICE input deck is shown in Figure 8.10. The output of the
Fourier analysis is shown in Figure 8.11. It can be seen that the components at 1 and 5 MHz dominate
and are a factor of 3 larger than the next largest component. The phase of the 1 and 5 MHz component
is also offset by approximately 908 from the input (at 08), as expected.
Simulation of the entire PLL will now be performed. The SPICE input deck is own in Figure 8.12.

The phase detector and voltage-controlled oscillator are modeled in separate subcircuits. The phase

Analog Multiplier Circuit.

Vcc 1 0 10.0
Rbias 1 2 800k
x1 1 9 3 4 5 6 2 10 mult
rdum 9 0 1meg

rin1 4 7 10k
vbias 7 0 2
vin 3 4 sin(0.5 2meg 0 0)

rin2 5 8 10k
vbias2 8 0 5.0
vin2 5 6 sin(0.5 3meg 0 0)

.tran 5n 3u 0 5n

.four 1meg 20 v(10)

.op

.probe

.options defl = 4u defas = 200p
defad = 200p

.subckt mult 1 2 3 4 5 6 7 8
* Pwr Iout In1 In2 Pin1 Pin2 Ibias
Vout
load resistor
m1 1 1 8 0 nmos w = 30u 1 = 4u
Upper diff pairs
m2 9 5 11 0 nmos w = 60u 1= 4u
m3 8 6 11 0 nmos w = 60u 1= 4u
m4 8 5 12 0 nmos w = 60u 1= 4u
m5 9 6 12 0 nmos w = 60u 1= 4u
Lower diff pairs
m6 11 3 10 0 nmos w = 60u 1= 4u
m7 12 4 10 0 nmos w = 60u 1= 4u
Drive Current Mirror
m8 7 7 0 0 nmos w = 60u 1= 4u
m9 5 7 0 0 nmos w = 60u 1= 4u
m10 10 7 0 0 nmos w = 60u 1= 4u
m11 6 7 0 0 nmos w = 60u 1= 4u
Output current Mirror
m12 9 9 1 1 pmos w = 60u 1= 4u
m13 2 9 1 1 pmos w = 60u 1= 4u

.model nmos nmos (level = 2 tox = 5e–8
+ nsub = 2e 15 tpg = 1 vto = .9 uo = 450
+ ucrit = 8e4 uexp = .15 cgso = 5.2e–10
+ cgdo = 5.2e–10)
.model pmos pmos (level = 2 tox = 5e–8
+ nsub = 2e 15 tpg = –1 vto = –.9 uo = 200
+ ucrit = 8e4 uexp = .15 cgso = 5.2e–10
+ cgdo = 5.2e–10)
.ends mult

FIGURE 8.10 SPICE input file for analog multiplier portion of PLL.

FOURIER COMPONENTS OF TRANSIENT RESPONSE V(10)

DC COMPONENT = 8.125452E+00

 NO FREQ FOURIER NORMALIZED PHASE NORMALIZED
 HZ COMP. COMP. (DEG) PHASE (DEG)
 1 1.000E+06 9.230E–02 1.000E+00 8.973E+01 0.000E+00
 2 2.000E+06 6.462E–03 7.002E–02 –1.339E+01 –1.031E+02
 3 3.000E+06 3.207E–02 3.474E–01 6.515E+01 –2.458E+01
 4 4.000E+06 1.097E–02 1.189E–01 –1.604E+02 –2.501E+02
 5 5.000E+06 8.229E–02 8.916E–01 –1.074E+02 –1.971E+02
 6 6.000E+06 1.550E–02 1.680E–01 –1.683E+02 –2.580E+02
 7 7.000E+06 3.695E–02 4.004E–01 7.984E+01 –9.886E+00
 8 8.000E+06 7.943E–03 8.606E–02 1.302E+02 4.044E+00
 9 9.000E+06 1.962E–02 2.126E–01 –1.149E+02 –2.046E+02

FIGURE 8.11 Results of transient and Fourier analyses of analog multiplier.

Computer-Aided Analysis 8-11

detector, or multiplier, subcircuit is the same as that of Figure 8.10 and is omitted from Figure 8.12 for
brevity. Examine the VCO subcircuit and note the PULSE-type current source ISTART connected across
the capacitor. The source gives a current pulse 0.3E-6 s wide at the start of the simulation to start the VCO
running. To start a transient simulation SPICE first computes a DC operating point (to find the initial
voltages Vk�1

c on the capacitors). As this DC point is a valid, although not necessarily stable, solution, an
oscillator will remain at this point indefinitely unless some perturbation is applied to start the oscillations.
Remember, this is an ideal mathematical model and no noise sources or asymmetries exist that would
start a real oscillator—it must be done manually. The capacitor C1 would have to be placed off-chip, and
bond pad capacitance (CPAD1 and CPAD2) have been included at the capacitor nodes. Including the
pad capacitances is very important if a small capacitor C1 is used for high-frequency operation.
In this example, the PLL is to be used as a FM detector circuit and the FM signal is applied to the

input using a single frequency FM voltage source. The carrier frequency is 600 kHz and the modulation
frequency is 60 kHz. Figure 8.13 shows the input voltage and the output voltage of the PLL at the VCO
output and at the phase detector output. It can be seen that after a brief starting transient, the PLL
locks onto the input signal and that the phase detector output has a strong 60 kHz component.
This example took 251 s on a Sun SPARC-2 workstation (3046 time steps, with an average of 5 N
iterations per time step).

Pitfalls. Occasionally, SPICE will fail and give the message ‘‘Timestep too small in transient analysis,’’
which means that the process of Newton iterations at certain time steps could not be made to converge.
One of the most common causes of this is the specification of a capacitor with a value that is much too
large, for example, specifying a 1 F capacitor instead of a 1 pF capacitor (an easy mistake to make by not
adding the ‘‘p’’ in the value specification). Unfortunately, we usually have no way to tell which capacitor
is at fault from the type of failure generated other than to manually search the input deck.

Phase locked loop circuit.
Vcc 1 0 10.0
Rbias 1 2 800k
rin 1 4 5 100k
vbias 5 0 2
Rfil 6 7 100k
Cfil 6 0 .03n
x1 1 6 3 4 18 19 2 10 mult
r1 8 18 70k
r2 9 19 70k
vsens 7 17 0
x2 1 8 9 17 vco
vin 3 4 sffm(0 1 600k 2 60k)
.tran .05u 60u
.probe
.options acct defl = 4u defas = 200p
+ defad = 200p

.subckt vco 1 22 33 10
* Pwr out1 out2 Ict1

* P current mirror
m1 2 8 1 1 pmos w = 10u 1 = 4u
m2 8 8 1 1 pmos w = 10u 1 = 4u
m3 3 8 1 1 pmos w = 10u 1 = 4u

*Oscillator
m4 3 2 7 0 nmos w = 10u 1 = 4u
m5 2 3 6 0 nmos w = 10u 1 = 4u

*N current mirror
m6 6 10 0 0 nmos w = 20u 1 = 4u
m7 8 10 0 0 nmos w = 4u 1 = 4u
m8 10 10 0 0 nmos w = 20u 1 = 4u
m9 7 10 0 0 nmos w = 20u 1 = 4u

*source follower buffers
m10 13 33 0 nmos w = 80u 1 = 4u
m11 1 2 22 0 nmos w = 80u 1 = 4u

Frequency setting capacitor
c1 6 7 7pf
cpad6 6 0.5pf
cpad7 7 0.5pf

Diode swing limiters
d1 1 5 md
d2 1 4 md
d3 5 2 md
d4 4 3 md
Pulse to start VCO
istart 6 0 pulse (0 400u. 1us.01us
+.01us .3us 100)

FIGURE 8.12 SPICE input listing for phase-locked loop circuit.

8-12 Computer Aided Design and Design Automation

Other transient failures are caused by MOSFET models. Some models contain discontinuous capaci-
tances (with respect to voltage) and others do not conserve charge. These models can vary from version
to version so it is best check the user’s guide.

8.1.5 Process and Device Simulation

Process and device simulation are the steps that precede analog circuit simulation in the overall
simulation flow (see Figure 8.14). The simulators are also different in that they are not measurement
driven as are analog circuit simulators. The input to a process simulator is the sequence of process steps
performed (times, temperatures, gas concentrations) as well as the mask dimensions. The output from
the process simulator is a detailed description of the solid-state device (doping profiles, oxide thickness,
junction depths, etc.). This input to the device simulator is the detailed description generated by the
process simulator (or via measurement). The output of the device simulator is the electrical character-
istics of the device (I–V curves, capacitances, switching transient curves).

1.2 V

1.3 V

1.1 V
3.0 V

10 µs 20 µs 30 µs 40 µs 50 µs 60 µs
-3.0 V

0 s

0 V

V(17)

Time

Input signal

Oscillator output

Loop filter output

V(3, 4)- 1.2 V(8, 9)+1.2

FIGURE 8.13 Transient analysis results of PLL circuit, created using PSPICE.

Process
simulation

Device
simulation

Circuit
simulation

Parameter
extraction

Masks

Process
flow

Logic
simulation

Netlist
extraction

FIGURE 8.14 Data flow for complete process-device-circuit modeling.

Computer-Aided Analysis 8-13

Process and device simulation are becoming increasingly important and widely used during the IC
design process. A number of reasons exist for this:

. As device dimensions shrink, second-order effects can become dominant. Modeling of these effects
is difficult using analytical models.

. Computers have greatly improved, allowing time-consuming calculations to be performed in a
reasonable amount of time.

. Simulation allows access to impossible to measure physical characteristics.

. Analytic models are not available for certain devices, for example, thyristors, heterojunction
devices, and IGBTS.

. Analytic models have not been developed for certain physical phenomena, for example, single
event upset, hot electron aging effects, latchup, and snap-back.

. Simulation runs can be used to replace split lot runs. As the cost of fabricate test devices increases,
this advantage becomes more important.

. Simulation can be used to help device, process, and circuit designers understand how their devices
and process work.

Clearly, process and device simulation is a topic which can be been the topic of entire texts. The following
sections attempt to provide an introduction to this type of simulation, give several examples showing
what the simulations can accomplish, and provide references to additional sources of information.

8.1.6 Process Simulation

IC processing involves a number of steps which are designed to deposit (deposition, ion implantation),
remove (etching), redistribute (diffusion), or transform (oxidation) the material of which the IC is made.
Most process simulation work has been in the areas of diffusion, oxidation, and ion implantation;
however, programs are available that can simulate the exposure and development of photo-resist, the
associated optical systems, as well as gas and liquid phase deposition and etch.
A number of programs are available (either from universities or commercial vendors) which can

model silicon processing. The best known program is SUPREM-IV, which was developed at Stanford
University (Stanford, CA). SUPREM-IV is capable of simulating oxidation, diffusion, and ion implant-
ation, and has simple models for deposition and etch. In the following section a very brief discussion of
the governing equations used in SUPREM will be given along with the results of an example simulation
showing the power of the simulator.

8.1.6.1 Diffusion

The main equation governing the movement of electrically charged impurities (acceptors in this case) in
the crystal is the diffusion equation:

@C
@t

¼ r � DrC � DqCa

kT
E

� �

Here
C is the concentration (#=cm3) of impurities
Ca is the number of electrically active impurities (#=cm3)
q is the electron charge
k is Boltzmann’s constant
T is temperature in Kelvin
D is the diffusion constant
E is the built-in electric field.

8-14 Computer Aided Design and Design Automation

The built-in electric field E in (V=cm) can be found from

E ¼ � kT
q

1
n
rn

In this equation, n is the electron concentration (#=cm3), which in turn can be calculated from the
number of electrically active impurities (Ca). The diffusion constant (D) is dependent on many factors.
In silicon the following expression is commonly used:

D ¼ FIV Dx þ Dþ
ni
n
þ D�

n
ni
þ D¼

n
ni

� �2
 !

The four D components represent the different possible charges states for the impurity: (x) neutral, (þ)
positive, (�) negative, (¼) doubly negatively charged. ni is the intrinsic carrier concentration, which
depends only on temperature. Each D component is in turn given by an expression of the type

D ¼ A exp � B
kT

� �

Here, A and B are experimentally determined constants, different for each type of impurity (x,þg,�, ¼).
B is the activation energy for the process. This expression derives from the Maxwellian distribution of
particle energies and will be seen many times in process simulation. It is easily seen that the diffusion
process is strongly influenced by temperature. The term FIV is an enhancement factor which is dependent
on the concentration of interstitials and vacancies within the crystal lattice (an interstitial is an extra silicon
atom which is not located on a regular lattice site; a vacancy is a missing silicon atom which results in an
empty lattice site) FIV / CIþCV. The concentration of vacancies, CV, and interstitials, CI, are in turn
determined by their own diffusion equation:

@Cv

@t
¼ þr � DV � rCV � Rþ G

In this equation, DV is another diffusion constant of the form A exp(�B=kT). R and G represent the
recombination and generation of vacancies and interstitials. Note that an interstitial and a vacancy may
recombine and in the process destroy each other, or an interstitial and a vacancy pair may be
simultaneously generated by knocking a silicon atom off its lattice site. Recombination can occur
anywhere in the device via a bulk recombination process R¼A(CVC1)exp(�b=kT). Generation occurs
where there is damage to the crystal structure, in particular at interfaces where oxide is being grown or in
regions where ion implantation has occurred, as the high-energy ions can knock silicon atoms off their
lattice sites.

8.1.6.2 Oxidation

Oxidation is a process whereby silicon reacts with oxygen (or with water) to form new silicon dioxide.
Conservation of the oxidant requires the following equation:

dy
dt

¼ F
N

Here
F is the flux of oxidant (#=cm2=s)
N is the number of oxidant atoms required to make up a cubic centimeter of oxide
dy=dt is the velocity with which the Si–SiO2, interface moves into the silicon.

Computer-Aided Analysis 8-15

In general, the greater the concentration of oxidant (C0), the faster the growth of the oxide and the greater
the flux of oxidant needed at the Si–SiO2, interface. Thus, F¼ ksC0.

The flux of oxidant into the oxide from the gaseous environment is given by

F ¼ h(HPox � C0)

Here
H is a constant
P is the partial pressure of oxygen in the gas
C0 is the concentration of oxidant in the oxide at the surface
h is of the form A exp(�B=kT).

Finally, the moment of the oxidant within the already existing oxide is governed by diffusion: F¼D0rC
When all these equations are combined, it is found that (in the one-dimensional case) oxides grow
linearly dy=dt / t when the oxide is thin and the oxidant can move easily through the existing oxide. As
the oxide grows thicker dy=dt / ffiffi

t
p

because the movement of the oxidant through the existing oxide
becomes the rate-limiting step.
Modeling two-dimensional oxidation is a challenging task. The newly created oxide must ‘‘flow’’

away from the interface where it is being generated. This flow of oxide is similar to the flow of a very thick
or viscous liquid and can be modeled by a creeping flow equation:

r2V / rP

r � V ¼ 0

V is the velocity at which the oxide is moving and P is the hydrostatic pressure. The second equation
results from the incompressibility of the oxide. The varying pressure P within the oxide leads to
mechanical stress, and the oxidant diffusion constant D0 and the oxide growth rate constant ks are
both dependent on this stress. The oxidant flow and the oxide flow are therefore coupled because the
oxide flow depends on the rate at which oxide is generated at the interface and the rate at which the new
oxide is generated depends on the availability of oxidant, which is controlled by the mechanical stress.

8.1.6.3 Ion Implantation

Ion implantation is normally modeled in one of two ways. The first involves tables of moments of the
final distribution of the ions that are typically generated by experiment. These tables are dependent on
the energy and the type of ion being implanted. The second method involves Monte Carlo simulation
of the implantation process. In Monte Carlo simulation, the trajectories of individual ions are followed as
they interact with (bounce off) the silicon atoms in the lattice. The trajectories of the ions, and the
recoiling Si atoms (which can strike more Si atoms) are followed until all come to rest within the lattice.
Typically several thousand trajectories are simulated (each will be different due to the random probabil-
ities used in the Monte Carlo method) to build up the final distribution of implanted ions. Monte Carlo
has advantages in that the damage to the lattice can be calculated during the implant process. This
damage creates interstitials and vacancies that affect impurity diffusion, as was seen earlier. Monte Carlo
can also model channeling, which is a process whereby the trajectories of the ions align with the crystal
planes, resulting in greater penetration of the ion than in a simple amorphous target. Monte Carlo has the
disadvantage of being CPU intensive.
Process simulation is always done in the transient mode using time steps as was done with transient

circuit simulation. Because partial differential equations are involved, rather than ordinary differential
equations, spatial discretization is needed as well. To numerically solve the problem, the
differential equations are discretized on a grid. Either rectangular or triangular grids in one, two, or

8-16 Computer Aided Design and Design Automation

three dimensions are commonly used. This discretization process results in the conversion of the
partial differential equations into a set of nonlinear algebraic equations. The nonlinear equations are
then solved using a Newton method in a way very similar to the method used for the circuit equations
in SPICE.

Example 8.4: NMOS Transistor

In this example, the process steps used to fabricate a typical NMOS transistor will be simulated using
SUPREM-4. These steps are

1. Grow initial oxide (30 min at 1000 K).
2. Deposit nitride layer (a nitride layer will prevent oxidation of the underlying silicon).
3. Etch holes in nitride layer.
4. Implant Pþ channel stop (boron dose¼ 5e12, energy¼ 50 keV).
5. Grow the field oxide (180 min at 1000 K wet O2).
6. Remove all nitride.
7. Perform P channel implant (boron dose¼ 1e11, energy¼ 40 keV).
8. Deposit and etch polysilicon for gate.
9. Oxidize the polysilicon (30 min at 1000 K, dry O2).
10. Implant the light doped drain (arsenic dose¼ 5e13 energy¼ 50 keV).
11. Deposit sidewall space oxide.
12. Implant source and drain (arsenic, dose¼ 1e15, energy¼ 200 keV).
13. Deposit oxide layer and etch contact holes.
14. Deposit and etch metal.

The top 4 mm of the completed structure, as generated by SUPREM-4, is shown in Figure 8.15. The actual
simulation structure used is 200 mm deep to allow correct modeling of the diffusion of the vacancies
and interstitials. The gate is at the center of the device. Notice how the edges of the gate have lifted up
due to the diffusion of oxidant under the edges of the polysilicon (the polysilicon, as deposited in step 8,
is flat). The dashed contours show the concentration of dopants in both the oxide and silicon layers. The
short dashes indicate N-type material, while the longer dashes indicate P-type material. This entire
simulation requires about 30 min on a Sun SPARC-2 workstation.

Silicon Polysilicon Oxide Aluminum

2.00
2.00

0.00

0.00

–2.00

–2.00

–4.00

Di
sta

nc
e (

µm
)

Distance (µm)
4.00

FIGURE 8.15 Complete NMOS transistor cross section generated by process simulation, created with TMA
SUPREM-4.

Computer-Aided Analysis 8-17

8.1.7 Device Simulation

Device simulation uses a different approach from that of conventional lumped circuit models to determine
the electrical device characteristics. Whereas with analytic or empirical models all characteristics are
determined by fitting a set of adjustable parameters to measured data, device simulators determine the
electrical behavior by numerically solving the underlying set of differential equations. The first of these
equations is the Poisson equation, which describes the electrostatic potential within the device.

r � e � rC ¼ q N�
a � Nþ

d � pþ n� Qf
� �

Nd and Na are the concentration of donors and acceptors, i.e., the N- and P-type dopants. Qf is the
concentration of fixed charge due, for example, to traps or interface charge. The electron and hole
concentrations are given by n and p, respectively, and C is the electrostatic potential.

A set of continuity equations describes the conservation of electrons and holes:

@n
@t

¼ 1
q
r � Jn � Rþ G

� �

@p
@t

¼ � 1
q
r � Jp � Rþ G

� �

In these equations, R and G describe the recombination and generation rates for the electrons and holes.
The recombination process is influenced by factors such as the number of electrons and holes present as
well as the doping and temperature. The generation rate is also dependent upon the carrier concentra-
tions, but is most strongly influenced by the electric field, with increasing electric fields giving larger
generation rates. Because this generation process is included, device simulators are capable of modeling
the breakdown of devices at high voltage. Jn and Jp are the electron and hole current densities (in amperes
per square centimeter). These current densities are given by another set of equations:

Jn ¼ qm �nrCþ kTn

q
rn

� �

Jp ¼ qm �prC� kTp

q
rp

� �

In this equation, k is Boltzmann’s constant, m is the carrier mobility, which is actually a complex function
of the doping, n, p, electric field, temperature, and other factors. In silicon the electron mobility will range
between 50 and 1000 and the hole mobility will normally be a factor of 2 smaller. In other semicon-
ductors such as gallium arsenide the electron mobility can be as high as 5000. Tn and Tp are the electron
and hole mean temperatures, which describe the average carrier energy. In many models these default to
the device temperature (300 K). In the first term the current is proportional to the electric field (rC),
and this term represents the drift of carriers with the electric field. In the second term the current is
proportional to the gradient of the carrier concentration (rn), so this term represents the diffusion of
carriers from regions of high concentration to those of low concentration. The model is therefore called
the drift-diffusion model.
In devices in which self-heating effects are important, a lattice heat equation can also be solved to give

the internal device temperature:

s(T)
@T
@t

¼ H þr � l(T) � rT

H ¼ �(Jn þ Jp) � rCþ HR

8-18 Computer Aided Design and Design Automation

where H is the heat generation term, which includes resistive (Joule) heating as well as recombination
heating, HR. The terms s(T), l(T) represent the specific heat and the thermal conductivity of the material
(both temperature dependent). Inclusion of the heat equation is essential in many power device
problems.
As with process simulation partial differential equations are involved, therefore, a spatial discretization

is required. As with circuit simulation problems, various types of analysis are available:

. Steady-state (DC), used to calculate characteristic curves of MOSFETs, BJTs diodes, etc.

. AC analysis, used to calculate capacitances, Y-parameters, small signal gains, and S-parameters

. Transient analysis, used for calculation of switching and large signal behavior, and special types of
analysis such as radiation effects

Example 8.5: NMOS IV Curves

The structure generated in the previous SUPREM-IV simulation is now passed into the device simulator
and bias voltages are applied to the gate and drain. Models were included which account for Auger and
Shockley Reed Hall recombination, doping and electric field-dependent mobility, and impact ionization.
The set of drain characteristics obtained is shown in Figure 8.16. Observe how the curves bend upward
at high Vds as the device breaks down. The Vgs¼ 1 curve has a negative slope at Id¼ 1.5e-4 A as the
device enters snap-back. It is possible to model this type of behavior because impact ionization is
included in the model.
Figure 8.17 shows the internal behavior of the device with Vgs¼ 3 V and Id¼ 3e-4 A. The filled

contours indicate impact ionization, with the highest rate being near the edge of the drain right beneath
the gate. This is to be expected because this is the region in which the electric field is largest due to the
drain depletion region. The dark lines indicate current flow from the source to the drain. Some current
also flows from the drain to the substrate. This substrate current consists of holes generated by the
impact ionization. The triangular grid used in the simulation can be seen in the source, drain, and gate
electrodes. A similar grid was used in the oxide and silicon regions.

0.0 2.0 4.0 6.0 8.0 10.0 12.0
Vds (V)

0.00

1.00

2.00

3.00

I d
(A

/µ
)×

10
t–

4

Vgs = 3

Vgs =2

Vgs = 1

FIGURE 8.16 Id vs. Vds curves generated by device simulation, created with TMA MEDICI.

Computer-Aided Analysis 8-19

Appendix A

A.1 Circuit Analysis Software

SPICE2, SPICE3: University of California, Berkeley, CA
PSPICE: MicroSim Corporation, Irvine, CA (used in this chapter)
HSPICE: Meta Software, Campbell, CA
IsSPICE: Intusoft, San Pedro, CA
SPECTRE: Cadence Design Systems, San Jose, CA
SABRE: Analogy, Beaverton, OR

A.2 Process and Device Simulators

SUPREM-4, PISCES: Stanford University, Palo Alto, CA
MINIMOS: Technical University, Vienna, Austria
SUPREM-4, MEDICI, DAVINCI: Technology Modeling Associates, Palo Alto, CA (used in this
chapter)
SEMICAD: Dawn Technologies, Sunnyvale, CA

References

1. P. Antognetti and G. Massobrio, Semiconductor Device Modeling with SPICE, New York: McGraw-
Hill, 1988.

2. P. W. Tuinenga, SPICE, A Guide to Circuit Simulation and Analysis Using PSPICE, Englewood Cliffs,
NJ: Prentice Hall, 1988.

3. J. A. Connelly and P. Choi, Macromodeling with SPICE, Englewood Cliffs, NJ: Prentice Hall, 1992.
4. S. Selberherr, Analysis and Simulation of Semiconductor Devices, Berlin: Springer-Verlag, 1984.
5. R. Dutton and Z. Yu, Technology CAD, Computer Simulation of IC Process and Devices, Boston:

Kluwer Academic, 1993.

Distance (µm)

Di
sta

nc
e (

µm
)

4.002.00

2.00

0.00

0.00

3.00

1.00

–2.00

–2.00

–1.00

–4.00

FIGURE 8.17 Internal behavior of MOSFET under bias, created with TMA MEDICI.

8-20 Computer Aided Design and Design Automation

8.2 Parameter Extraction for Analog Circuit Simulation

Peter Bendix

8.2.1 Introduction

8.2.1.1 Definition of Device Modeling

We use various terms such as device characterization, parameter extraction, optimization, and model
fitting to address an important engineering task. In all of these, we start with a mathematical model that
describes the transistor behavior. The model has a number of parameters that are varied or adjusted to
match the I–V (current–voltage) characteristics of a particular transistor or set of transistors. The act of
determining the appropriate set of model parameters is what we call device modeling. We then use the
model with the particular set of parameters that represent our transistors in a circuit simulator such as
SPICE* to simulate how circuits with our kinds of transistors will behave. Usually, the models are
supplied by the circuit simulator we chose. Occasionally, we may want to modify these models or
construct our own models. In this case we need access to the circuit simulator model subroutines as
well as the program that performs the device characterization.
Most people believe the preceding description covers device modeling. However, we feel this is a

very narrow definition. One can obtain much more information by characterizing a semiconductor
process than just providing models for circuit simulation. If the characterization is done correctly, it
can provide detailed information about the fabrication process. This type of information is useful for
process architects as an aid in developing future processes. In addition, the wealth of information from
the parameters obtained can be used by process and product engineers to monitor wafers routinely.
This provides much more information than what is usually obtained by doing a few crude electrical tests
for process monitoring. Finally, circuit designers can use device characterization as a means of optimizing
a circuit for maximum performance. Therefore, instead of just being a tool used by specialized device
physicists, device characterization is a tool for process architects, process and product engineers, and
circuit designers. It is a tool that can and should be used by most people concerned with semiconductor
manufacture and design.

8.2.1.2 Steps Involved in Device Characterization

Device characterization begins with a test chip. Without the proper test chip structures, proper device
modeling cannot be done from measured data. A good test chip for MOS technology would include
transistors of varying geometries, gate oxide capacitance structures, junction diode capacitance struc-
tures, and overlap capacitance structures. This would be a minimal test chip. Additional structures might
include ring oscillators and other circuits for checking the AC performance of the models obtained. It is
very important that the transistors be well designed and their geometries be chosen appropriate for the
technology as well as the desired device model. For bipolar technology modeling, the layout of structures
used to get S-parameter measurements is very critical. Although a complete test chip description is beyond
the scope of this book, be aware that even perfect device models cannot correct for a poor test chip.
Next, we need data that represent the behavior of a transistor or set of transistors of different sizes.

These data can come from direct measurement or they can be produced by a device simulator such as
PISCES.y Typically, one does voltage sweeps on various nodes of the transistor and measures the output
current at some or all of these nodes. For example, in an MOS transistor, one might sweep the gate
voltage and measure the resulting drain current, holding the drain and bulk voltages fixed. The
equipment used to do DC device characterization measurements is usually a DC parametric tester.

* SPICE is a circuit simulation program from the Department of Electrical Engineering and Computer Science at the
University of California, Berkeley.

y PISCES is a process simulation program from the Department of Electrical Engineering at Stanford University,
Stanford, CA.

Computer-Aided Analysis 8-21

This equipment usually has a set of SMUs (source=measure units) that can force voltage and measure
current, or force current and measure voltage. The measuring equipment can be manually run or
controlled by a computer. In either case the measured data must be put onto a hard disk.
For oxide capacitors, junction diodes, and overlap capacitors, a capacitance or inductance, capacitance,

resistance (LCR) meter is used to do the measurements. For junction capacitance models, a junction
diode (source to bulk, for example) has a reverse bias sweep done and the capacitance is measured at each
bias point. For oxide and overlap capacitances, only a single capacitance measurement at one bias voltage
is required.
In a more automated environment, switching matrices, semiautomated probers, and temperature-

controlled chucks are added. The same equipment is used for bipolar devices. In addition, network
analyzers are often used for S-parameter characterization to obtain the related AC transit time param-
eters of bipolar transistors. A typical collection of measuring equipment might look like Figure 8.18.
It is also possible to use a device simulator like PISCES, or a combination of a process simulator like

SUPREM-IV* coupled to a device simulator, to provide the simulated results. The process recipe steps are
fed into SUPREM-IV, which produces a device structure and associated profiles of all dopants; this
information is then fed into the device simulator along with a description of voltage sweeps to be applied
to various device electrodes. The output of the device simulator is a set of IV characteristics which closely
represent what would have been measured on a real device. The benefits of using simulation over
measurement are that no expensive measurement equipment or fabricated wafers are necessary. This
can be very helpful when trying to predict the device characteristics of a new fabrication process before
any wafers have been produced.
Once the measured (or simulated) data are available, parameter extraction software is used to find the

best set of model parameter values to fit the data. This can be done by extraction, optimization, or a
combination of the two. Extraction is simpler and quicker, but not as accurate as optimization. In
extraction simplifying assumptions are made about the model equations and parameter values are
extracted using slope and intercept techniques, for example. In optimization general least-squares
curve fitting routines are employed to vary a set or subset of parameters to fit the measured data.
Extraction and optimization are covered in more detail in the following sections.

PC/Unix
workstation

Capacitance
meter

Wafer
prober

Switching
matrix

Network
analyzer

RS232 to
IEEE-488
interface

DC parametric
tester

FIGURE 8.18 Typical hardware measuring equipment for device characterization.

* SUPREM-IV is a process simulation program from the Department of Electrical Engineering at Stanford University,
Stanford, CA.

8-22 Computer Aided Design and Design Automation

8.2.1.3 Least-Squares Curve Fitting (Analytical)

We begin this section by showing how to do least-squares curve fitting by analytical solutions, using a
simple example to illustrate the method. We then discuss least-squares curve fitting using numerical
solutions in the next section. We can only find analytical solutions to simple problems. The more
complex ones must rely on numerical techniques.
Assume a collection of measured data, m1, . . . , mn. For simplicity, let these measured data values be

functions of a single variable, v, which was varied from v1 through vn, measuring each mi data point at
each variable value vi, i running from 1 to n. For example, the mi data points might be drain current of an
MOS transistor, and the vi might be the corresponding values of gate voltage. Assume that we have a
model for calculating simulated values of the measured data points, and let these simulated values be
denoted by s1, . . . , sn. We define the least-squares, root mean square (RMS) error as

Errorrms ¼
Pn
i¼1

{weighti(si �mi)}
2

Pn
i¼1

{weightimi}
2

2
664

3
775

1=2

(8:1)

where a weighting term is included for each data point. The goal is to have the simulated data match the
measured data as closely as possible, which means we want to minimize the RMS error. Actually, what we
have called RMS error is really the relative RMS error, but the two terms are used synonymously. There is
another way of expressing the error, called the absolute RMS error, defined as follows:

Errorrms ¼
Pn
i¼1

{weighti(si �mi)}
2

Pn
i¼1

{weighti mmin}
2

2
664

3
775

1=2

(8:2)

where we have used the term mmin in the denominator to represent some minimum value of the
measured data. The absolute RMS error is usually used when the measured values approach zero
to avoid problems with small or zero denominators in Equation 8.1. For everything that follows,
we consider only the relative RMS error. The best result is obtained by combining the relative
RMS formula with the absolute RMS formula by taking the maximum of the denominator from Equation
8.1 or 8.2.
We have a simple expression for calculating the simulated data points, si, in terms of the input variable,

v, and a number of model parameters, p1, . . . , pm. That is,

si ¼ f (vi, p1, . . . , pm) (8:3)

where f is some function. Minimizing the RMS error function is equivalent to minimizing its square.
Also, we can ignore the term in the denominator of Equation 8.1 as concerns minimizing, because it is a
normalization term. In this spirit, we can define a new error term,

Error ¼ (Errorrms)
2
Xn
i¼1

{weightimi}
2

" #
(8:4)

and claim that minimizing Error is equivalent to minimizing Errorrms. To minimize Error, we set all
partial derivatives of it with respect to each model parameter equal to zero; that is, write

Computer-Aided Analysis 8-23

@(Error)
@pj

¼ 0 for j ¼ 1, . . . ,m (8:5)

Then, solve the preceding equations for the value of pj.

Least-squares curve fitting. Analytic example:Write a simple expression for the drain current of an MOS
transistor in the linear region in terms of a single variable, the gate voltage, Vgs, and also in terms of two
model parameters, b and Vth;

Ids ¼ b(Vgs � Vth)Vds (8:6)

We denote the measured drain current by Imeas. In terms of our previous notation, we have the following
substitutions:

s ! Ids
v ! Vgs

p1 ! b

p2 ! Vth

We have two conditions to satisfy for minimizing the error:

@(Error)
@b

¼ 0 (8:7)

@(Error)
@Vth

¼ 0 (8:8)

Equations 8.7 and 8.8 imply, respectively,

Xn
i¼1

[b(Vgsi � Vth)Vds � Imeasi](Vgsi � Vth) ¼ 0 (8:9)

Xn
i¼1

[b(Vgsi � Vth)Vds � Imeasi] ¼ 0 (8:10)

Solving Equations 8.9 and 8.10 is straightforward but tedious. The result is

Vth ¼ [Term1Term2 � Term3Term4]
[nTerm1 � Term2Term4]

(8:11)

b ¼ 1
Vds

� �
[nTerm1 � Term2Term4]

nTerm3 � Term2
2

� 	 (8:12)

where n is the number of data points that i is summed over, and

Term1 ¼
Xn
i¼1

Vgsi Imeasi (8:13)

8-24 Computer Aided Design and Design Automation

Term2 ¼
Xn
i¼1

Vgsi (8:14)

Term3 ¼
Xn
i¼1

V2
gsi

(8:15)

and

Term4 ¼
Xn
i¼1

Imeasi (8:16)

Thus, analytical solutions can become quite messy, even for the simplest model expressions. In fact, it is
usually not possible to solve the system of equations analytically for more complicated models. Then, we
must rely on numerical solutions.
One further word of caution is required. One may try comparing analytical solutions to those obtained

by numerical techniques. They almost always will not match. The reason is that the weighting functions
used to calculate Errorrms are different for the two cases. In order to compare the two techniques, one
must know the exact algorithm that the numerical least-squares curve fitting routine is using and be able
to match the weighting functions. Often weighting is implicit in the numerical least-squares curve fitting
algorithm that is not explicitly obvious.

8.2.1.4 Least-Squares Curve Fitting (Numerical)

For almost all practical applications we are forced to do least-squares curve fitting numerically,
because the analytic solutions as previously discussed are not obtainable in closed form. What we are
calling least-squares curve fitting is more generally known as nonlinear optimization. Many fine
references on this topic are available. We highlight only the main features here, and paraphrase parts
of [2] in what follows.
Basically, we want to solve the optimization problem whose goal is to minimize the function F(x)

where F is some arbitrary function of the vector x. If extra conditions exist on the components of x, we
are then solving a constrained, nonlinear optimization problem. When using least-squares fitting for
model parameter optimization, we usually constrain the range of the fitting parameters. This type of
constraint is a very simple one and is a special case of what is called nonlinear constrained optimization.
This or the unconstrained approach are the types normally used for model parameter optimization.
For simplicity, let F be a function of a single variable, x, instead of the vector, x. We state without proof

that a necessary condition for a minimum of F(x) to exist is that

F0 ¼ @F
@x

¼ 0 (8:17)

This means we solve the minimization problem if we can solve for the zeroes of F0. This is exactly what
we did when we went through the least-squares analytical method.
One numerical approach to solving for the zeroes of a function, f, is Newton’s method. This is an

iterative method in which we write

xkþ1 ¼ xk � f (xk)
f 0(xk)

(8:18)

Steepest descents method. Next consider the more general case in which F is now a function of many
variables, x; i.e., F is multivariate. We want to consider numerical techniques for finding the minimum of

Computer-Aided Analysis 8-25

F by iteration. We also would like to take iteration steps that decrease the value of F at each step. This
imposes what is called a descent condition:

F(xkþ1) < F(xk) (8:19)

where k is the iteration number. Solving the minimization problem amounts to choosing a search
direction for the vector x such that at each iteration F decreases until some convergence criterion is
satisfied with xk as the solution. Let us write F as a Taylor series expanded around the point x, with p a
vector of unit length and h a scalar

F(x þ hp) ¼ F(x)þ hgT(x)pþ 1
2
h2pTG(x)pþ � � � (8:20)

where in Equation 8.20, g(x) is the gradient (first derivative in the p direction) of F(x) and G(x) is the
curvature (second derivative in the p direction) of F(x). The uppercase ‘‘T’’ means matrix transpose.
We want to choose a direction and step length for the next iteration in which

xkþ1 ¼ xk þ hkpk (8:21)

where in Equation 8.21, p is a unit vector in the search direction and h is the step size. In the method of
steepest descents we set

pk ¼ �g(xk) (8:22)

That is, the method of steepest descents chooses the search direction to be opposite the first derivative in
the direction xk.

Newton’s method. Themethod of steepest descents is a first derivativemethod. Newton’smethod is a second
derivative method (this is not to be confused with the simple Newton’s method discussed previously).
Referring to Equation 8.20, the Newton direction of search is defined to be the vector p, which satisfies

G(xk)pk ¼ �g(xk) (8:23)

Finding pk from the preceding equation involves calculating second derivatives to compute G.

Gauss–Newton method. We want to modify Newton’s method so that second derivative calculations are
avoided. To do this, consider the so-called least-squares problem in which F can be written as

F(x) ¼
X

[fi(x)]
2 (8:24)

In this special case, we can write

g(x) ¼ JT(x)f (x) (8:25)

G(x) ¼ JT(x)J(x)þ Q(x) (8:26)

where J is the Jacobian of f and

Q(x) ¼
X

fi(x)Gi(x) (8:27)

where Gi is the so-called Hessian of f. Substituting Equations 8.25 and 8.26 into Equation 8.23 gives

JT(xk)J(xk)þ Qk
� 	

pk ¼ �JT(xk)f (xk) (8:28)

8-26 Computer Aided Design and Design Automation

If we throw away the Q term, Equation 8.28 becomes

JT(xk)J(xk)
� 	

pk ¼ �JT(xk)f (xk) (8:29)

a condition for finding the search direction, pk, which does not involve second derivatives. Solving
Equation 8.29 is tantamount to solving the linear least-squares problem of minimizing

F(x) ¼
X

[ji(xk)pk þ fi(xk)]
2 (8:30)

When the search direction, pk, is found from Equation 8.29, we call this the Gauss–Newton method.

Levenberg–Marquardt algorithm. Both the method of steepest descents and the Gauss–Newton method
have advantages and disadvantages. Briefly stated, the method of steepest descents will move toward the
correct solution very quickly, but due to the large steps it takes, it can jump past the solution and not
converge. The Gauss–Newton method, however, moves more slowly toward the correct solution, but
because it tends to take smaller steps, it will converge better as its approaches the solution. The
Levenberg–Marquardt algorithm was designed to combine the benefits of both the steepest descents
and Gauss–Newton methods.
The Levenberg–Marquardt search direction is found by solving

JT(xk)J(xk)þ lkI
� 	

pk ¼ �JT(xk)f (xk) (8:31)

where lk is a nonnegative scalar and I is the identity matrix. Note that Equation 8.31 becomes Equation
8.29 when lk is zero, so that the Levenberg–Marquardt search direction becomes the Gauss–Newton in
this case; as lk ! 1, pk becomes parallel to �J T(xk) f(xk), which is just �g(xk), the direction of steepest
descents. Generally speaking, in the Levenberg–Marquardt algorithm the value of lk is varied continu-
ously, starting with a value near the steepest descents direction (large lk) and moving toward smaller
values of lk as the solution is approached.

8.2.1.5 Extraction (as Opposed to Optimization)

The terms ‘‘extraction’’ and ‘‘optimization’’ are, unfortunately, used interchangeably in the semicon-
ductor industry; however, strictly speaking, they are not the same. By optimization, we mean using
generalized least-squares curve fitting methods such as the Levenberg–Marquardt algorithm to find a set
of model parameters. By extraction, we mean any technique that does not use general least-squares fitting
methods. This is a somewhat loose interpretation of the term extraction, but perhaps the following
discussion will justify it.
Suppose we have measured the drain current of an MOS transistor in the linear region at zero back-

bias (the bulk node bias) and we want to find the threshold voltage by extraction (as opposed to
optimization). We could plot the drain current vs. gate voltage, draw a tangent line at the point where
the slope of Ids is a maximum, and find the Vgs axis intercept of this tangent line. This would give us a
crude value of the threshold voltage, Vth (neglecting terms such as Vds=2). This would be a graphic
extraction technique; it would not involve using least-squares optimization.
We could also apply the preceding graphic technique in an equivalent algorithmic way, without

drawing any graphs. Let us write a linear region equation for the drain current

Ids ¼ b(Vgs � Vth)Vds[1þ Ke�a(Vgs�Vth)] (8:32)

In Equation 8.32, the exponential term is the subthreshold contribution to the drain current; it becomes
negligible for Vgs >> Vth. To find the value of Vgs where the maximum slope occurs, we set the derivative
of Ids with respect to Vgs equal to zero and solve for Vgs. The solution is

Computer-Aided Analysis 8-27

Vgs(maximum slope) ¼ Vth þ 1þ K
2aK

 �
(8:33)

where in obtaining Equation 8.33 we used the approximation

e�a(Vgs�Vth) ffi 1� a(Vgs � Vth) (8:34)

If we rewrite (8.33) for Vth in terms of Vgs (maximum slope) we have

Vth ¼ Vgs maximum slopeð Þ � 1þ K
2aK

 �
(8:35)

Therefore, the approach is to use a measurement search routine that seeks the maximum slope, DIds=DVgs,
where the D is calculated as numerical derivatives, and having found Vgs (maximum slope) through
measurement, use Equation 8.35 to calculate Vth from Vgs (maximum slope).
We could continue by including the effects of mobility degradation, modifying Equation 8.32 to

Ids ¼ b

1þ u(Vgs � Vth)

 �
(Vgs � Vth)Vds[1þ Ke�a(Vgs�Vth)] (8:36)

where we have now included the effects of mobility degradation with the u term. The extraction analysis
can be done again by including this term, with a somewhat different solution obtained using suitable
approximations.
The main point is that we write the equations we want and then solve them by whatever approxima-

tions we choose, as long as these approximations allow us to get the extracted results in closed form. This
is parameter extraction.

8.2.1.6 Extraction vs. Optimization

Extraction has the advantage of being much faster than optimization, but it is not always as accurate. It is
also much harder to supply extraction routines for models that are being developed. Each time you make
a change in the model, you must make suitable changes in the corresponding extraction routine. For
optimization, however, no changes are necessary other than the change in the model itself, because least-
squares curve fitting routines are completely general. Also, if anything goes wrong in the extraction
algorithm (and no access to the source code is available), almost nothing can be done to correct the
problem. With optimization, one can always change the range of data, weighting, upper and lower
bounds, etc. A least-squares curve fitting program can be steered toward a correct solution.

Novices at device characterization find least-squares curve fitting somewhat frustrating because a
certain amount of user intervention and intuition is necessary to obtain the correct results. These
beginners prefer extraction methods because they do not have to do anything. However, after being
burned by extraction routines that do not work, a more experienced user will usually prefer the flexibility,
control, and accuracy that optimization provides.
Commercial software is available that provides both extraction and optimization together. The idea

here is to first use extraction techniques to make reasonable initial guesses and then use these results as a
starting point for optimization, because optimization can give very poor results if poor initial guesses for
the parameters are used. Nothing is wrong with using extraction techniques to provide initial guesses
for optimization, but for an experienced user this is rarely necessary, assuming that the least-squares
curve fitting routine is robust (converges well) and the experienced user has some knowledge of
the process under characterization. Software that relies heavily on extraction may do so because of the
nonrobustness of its optimizer.

8-28 Computer Aided Design and Design Automation

These comments apply when an experienced user is doing optimization locally, not globally. For
global optimization (a technique we do not recommend), the previous comparisons between extraction
and optimization are not valid. The following section containsmore detail about local vs. global optimization.

8.2.1.7 Strategies: General Discussion

Themost naive way of using an optimization would be to take all the measured data for all devices, put them
into one big file, and fit to all these data with all model parameters simultaneously. Even for a very high
quality, robust optimization program the chances of this method converging are slight. Even if the program
does converge, it is almost certain that the values of the parameters will be very unphysical. This kind of
approach is an extreme case of global optimization. We call any optimization technique that tries to fit with
parameters to data outside their region of applicability a global approach. That is, if we try to fit to saturation
region data with linear region parameters such as threshold voltage, mobility, etc., we are using a global
approach. In general, we advise avoiding global approaches, although in the strategies described later,
sometimes the rules are bent a little.
Our recommended approach is to fit subsets of relevant parameters to corresponding subsets of

relevant data in a way that makes physical sense. For example, in the MOS level 3 model, VT0 is defined
as the threshold voltage of a long, wide transistor at zero back-bias. It does not make sense to use this
parameter to fit to a short channel transistor, or to fit at nonzero back-bias values, or to fit to anywhere
outside the linear region. In addition, subsets of parameters should be obtained in the proper order so
that those obtained at a later step do not affect those obtained at earlier steps. That is, we would not
obtain saturation region parameters before we have obtained linear region parameters because the values
of the linear region parameters would influence the saturation region fits; we should have to go back and
reoptimize on the saturation region parameters after obtaining the linear region parameters. Finally,
never use optimization to obtain a parameter value when the parameter can be measured directly. For
example, the MOS oxide thickness, TOX, is a model parameter, but we would never use optimization to
find it. Always measure its value directly on a large oxide capacitor provided on the test chip. The
recommended procedure for proper device characterization follows:

1. Have all the appropriate structures necessary on your test chip. Without this, the job cannot be
performed properly.

2. Always measure whatever parameters are directly measurable. Never use optimization for these.
3. Fit the subset of parameters to corresponding subsets of data, and do so in physically meaningful ways.
4. Fit the parameters in the proper order so that those obtained later do not affect those obtained

previously. If this is not possible, iteration may be necessary.

Naturally, a good strategy cannot be mounted if one is not intimately familiar with the model used. There
is no substitute for learning as much about the model as possible. Without this knowledge, one must rely
on strategies provided by software vendors, and these vary widely in quality.
Finally, no one can provide a completely general strategy applicable to all models and all process

technologies. At some point the strategy must be tailored to suit the available technology and circuit
performance requirements. This not only requires familiarity with the available device models, but also
information from the circuit designers and process architects.

8.2.2 MOS DC Models

8.2.2.1 Available MOS Models

A number of MOS models have been provided over time with the original circuit simulation program,
SPICE. In addition, some commercially available circuit simulation programs have introduced their own
proprietary models, most notably HSPICE.* This section concentrates on the standard MOS models

* HSPICE is a commercially available, SPICE-like circuit simulation from Meta Software, Campbell, CA.

Computer-Aided Analysis 8-29

provided by UC Berkeley’s SPICE, not only because they have become the standard models used by all
circuit simulation programs, but also because the proprietary models provided by commercial vendors
are not well documented and no source code is available for these models to investigate them thoroughly.

MOS levels 1, 2, and 3. Originally, SPICE came with three MOS models known as level 1, level 2, and
level 3. The level 1 MOS model is a very crude first-order model that is rarely used. The level 2 and level 3
MOS models are extensions of the level 1 model and have been used extensively in the past and present
[11]. These two models contain about 15 DC parameters each and are usually considered useful for
digital circuit simulation down to 1 mm channel length technologies. They can fit the drain current for
wide transistors of varying length with reasonable accuracy (about 5% RMS error), but have very little
advanced fitting capability for analog application. They have only one parameter for fitting the subthres-
hold region, and no parameters for fitting the derivative of drain current with respect to drain voltage,
Gds (usually considered critical for analog applications). They also have no ability to vary the mobility
degradation with back-bias, so the fits to Ids in the saturation region at back-bias are not very good.
Finally, these models do not interpolate well over device geometry, e.g., if a fit is made to a wide-long
device and a wide-short device, and then one observes how the models track for lengths between
these two extremes, they usually do not perform well. For narrow devices, they can be quite poor as
well. Level 3 has very little practical advantage over level 2, although the level 2 model is proclaimed to be
more physically based, whereas the level 3 model is called semiempirical. If only one can be used, perhaps
levels 3 is slightly better because it runs somewhat faster and does not have quite such an annoying kink
in the transition region from linear to saturation as does level 2.

Berkeley short-channel IGFET model (BSIM). To overcome the many shortcomings of level 2 and level 3,
the BSIM and BSIM2 models were introduced. The most fundamental difference between these and the
level 2 and 3 models is that BSIM and BSIM2 use a different approach to incorporating the geometry
dependence [3,6]. In levels 2 and 3, the geometry dependence is built directly into the model equations.
In BSIM and BSIM2, each parameter (except for a very few) is written as a sum of three terms:

Parameter ¼ Par0 þ ParL
Leff

þ ParW
Weff

(8:37)

where
Par0 is the zero-order term
ParL accounts for the length dependence of the parameter
ParW accounts for the width dependence
Leff and Weff are the effective channel width and length, respectively

This approach has a large influence on the device characterization strategy, as discussed later. Because of
this tripling of the number of parameters and for other reasons as well, the BSIM model has about 54 DC
parameters and the BSIM2 model has over 100.
The original goal of the BSIM model was to fit better than the level 2 and 3 models for submicron

channel lengths, over a wider range of geometries, in the subthreshold region, and for nonzero back-bias.
Without question, BSIM can fit individual devices better than level 2 and level 3. It also fits the
subthreshold region better and it fits better for nonzero back-biases. However, its greatest shortcoming
is its inability to fit over a large geometry variation. This occurs because Equation 8.37 is a truncated
Taylor series in 1=Leff and 1=Weff terms, and in order to fit better over varying geometries, higher power
terms in 1=Leff and 1=Weff are needed. In addition, no provision was put into the BSIM model for fitting
Gds, so its usefulness for analog applications is questionable. Many of the BSIM model parameters are
unphysical, so it is very hard to understand the significance of these model parameters. This has
profound implications for generating skew models (fast and slow models to represent the process
corners) and for incorporating temperature dependence. Another flaw of the BSIM model is its wild

8-30 Computer Aided Design and Design Automation

behavior for certain values of the model parameters. If model parameters are not specified for level 2 or 3,
they will default to values that will at least force the model to behave well. For BSIM, not specifying
certain model parameters, setting them to zero, or various combinations of values can cause the model to
become very ill-behaved.

BSIM2. The BSIM2 model was developed to address the shortcomings of the BSIM model. This was
basically an extension of the BSIM model, removing certain parameters that had very little effect, fixing
fundamental problems such as currents varying the wrong way as a function of certain parameters,
adding more unphysical fitting parameters, and adding parameters to allow fitting Gds. BSIM2 does fit
better than BSIM, but with more than twice as many parameters as BSIM, it should. However, it does not
address the crucial problem of fitting large geometry variations. Its major strengths over BSIM are fitting
the subthreshold region better, and fitting Gds better. Most of the other shortcomings of BSIM are also
present in BSIM2, and the large number of parameters in BSIM2 makes it a real chore to use in device
characterization.

BSIM3. Realizing the shortcomings of BSIM2, UC Berkeley recently introduced the BSIM3 model. This is
an unfortunate choice of name because it implies BSIM3 is related to BSIM and BSIM2. In reality, BSIM3
is an entirely new model that in some sense is related more to levels 2 and 3 than BSIM or BSIM2. The
BSIM3 model abandons the length and width dependence approach of BSIM and BSIM2, preferring to go
back to incorporating the geometry dependence directly into the model equations, as do levels 2 and 3. In
addition, BSIM3 is a more physically based model, with about 30 fitting parameters (the model has many
more parameters, but the majority of these can be left untouched for fitting), making it more manageable,
and it has abundant parameters for fitting Gds, making it a strong candidate for analog applications.

It is an evolving model, so perhaps it is unfair to criticize it at this early stage. Its greatest shortcoming is,
again, the inability to fit well over a wide range of geometries. It is hoped that future modifications will
address this problem. In all fairness, however, it is a large order to ask a model to be physically based, have
not toomany parameters, be well behaved for all default values of the parameters, fit well over temperature,
fitGds, fit over a wide range of geometries, and still fit individual geometries as well as amodel with over 100
parameters, such as BSIM2. Some of these features were compromised in developing BSIM3.

Proprietary models. A number of other models are available from commercial circuit simulator vendors,
the literature, etc. Some circuit simulators also offer the ability to add a researcher’s own models. In
general, we caution against using proprietary models, especially those which are supplied without source
code and complete documentation. Without an intimate knowledge of the model equations, it is very
difficult to develop a good device characterization strategy. Also, incorporating such models into device
characterization software is almost impossible. To circumvent this problem, many characterization
programs have the ability to call the entire circuit simulator as a subroutine in order to exercise the
proprietary model subroutines. This can slow program execution by a factor of 20 or more, seriously
impacting the time required to characterize a technology. Also, if proprietary models are used without
source code, the circuit simulator results can never be checked against another circuit simulator.
Therefore, we want to stress the importance of using standard models. If these do not meet the individual
requirements, the next best approach is to incorporate a proprietary model whose source code one has
access to. This requires being able to add the individual model not only to circuit simulators, but also to
device characterization programs; it can become a very large task.

8.2.2.2 MOS Level 3 Extraction Strategy in Detail

The strategy discussed here is one that we consider to be a good one, in the spirit of our earlier comments.
Note, however, that this is not the only possible strategy for the level 3 model. The idea here is to illustrate
basic concepts so that this strategy can be refined to meet particular individual requirements.
In order to do a DC characterization, the minimum requirement is one each of the wide-long, wide-

short, and narrow-long devices. We list the steps of the procedure and then discuss them in more detail.

Computer-Aided Analysis 8-31

Step 1. Fit the wide-long device in the linear region at zero back-bias, at Vgs values above the subthres-
hold region, with parameters VT0 (threshold voltage), U0 (mobility), and THETA (mobility
degradation with Vgs).

Step 2. Fit the wide-short device in the linear region at zero back-bias, atVgs values above the subthreshold
region, with parameters VT0, LD (length encroachment), and THETA. When finished with this
step, replace VT0 and THETA with the values from step 1, but keep the value of LD.

Step 3. Fit the narrow-long device in the linear region at zero back-bias, atVgs values above the subthreshold
region, with parameters VT0, DW (width encroachment), and THETA. When finished with this
step, replace VT0 and THETA with the values from step 1, but keep the value of DW.

Step 4. Fit the wide-short device in the linear region at zero back-bias, at Vgs values above the
subthreshold region, with parameters RS and RD (source and drain series resistance).

Step 5. Fit the wide-long device in the linear region at all back-biases, at Vgs values above the subthres-
hold region, with parameter NSUB (channel doping affects long channel variation of threshold
voltage back-bias).

Step 6. Fit the wide-short device in the linear region at all back-biases, at Vgs values above the
subthreshold region, with parameter XJ (erroneously called the junction depth; affects short-
channel variation of threshold voltage with back-bias).

Step 7. Fit the narrow-long device in the linear region at zero back-bias, at Vgs values above the
subthreshold region, with parameter DELTA (narrow channel correction to threshold voltage).

Step 8. Fit the wide-short device in the saturation region at zero back-bias (or all back-biases) with
parameters VMAX (velocity saturation), KAPPA (saturation region slope fitting parameter), and
ETA (Vds dependence of threshold voltage).

Step 9. Fit the wide-short device in the subthreshold region at whatever back-bias and drain voltage is
appropriate (usually zero back-bias and low Vds) with parameter NFS (subthreshold slope fitting
parameter). One may need to fit with VT0 also and then VT0 is replaced after this step with the
value of VT0 obtained from step 1.

This completes the DC characterization steps for theMOS level 3model. One would then go on to do the
junction and overlap capacitance terms (discussed later). Note that this model has no parameters for fitting
over temperature, although temperature dependence is built into the model that the user cannot control.
In Step 1, VT0, U0, and THETA are defined in the model for a wide-long device at zero back-bias.

They are zero-order fundamental parameters without any short or narrow channel corrections. We
therefore fit them to a wide-long device. It is absolutely necessary that such a device be on the test chip.
Without it, one cannot obtain these parameters properly. The subthreshold region must be avoided also
because these parameters do not control the model behavior in subthreshold.
In Step 2, we use LD to fit the slope of the linear region curve, holding U0 fixed from step 1. We also fit

with VT0 and THETA because without them the fitting will not work. However, we want only the value
of LD that fits the slope, so we throw away VT0 and THETA, replacing them with the values from step 1.
Step 3 is the same as step 2, except that we are getting the width encroachment instead of the length.
In Step 1, the value of THETA that fits the high Vgs portion of the wide-long device linear region curve

was found. Because the channel length of a long transistor is very large, the source and drain series
resistances have almost no effect here, but for a short-channel device, the series resistance will also affect
the high Vgs portion of the linear region curve. Therefore, in step 4 we fix THETA from step 1 and use RS
and RD to fit the wide-short device in the linear region, high Vgs portion of the curve.
In Step 5, we fit with NSUB to get the variation of threshold voltage with back-bias. We will get better

results if we restrict ourselves to lower values of Vgs (but still above subthreshold) because no mobility

8-32 Computer Aided Design and Design Automation

degradation adjustment exists with back-bias, and therefore the fit may not be very good at higher Vgs

values for the nonzero back bias curves.
Step 6 is just like step 5, except we are fitting the short-channel device. Some people think that the

value of XJ should be the true junction depth. This is not true. The parameter XJ is loosely related to the
junction depth, but XJ is really the short-channel correction to NSUB. Do not be surprised if XJ is not
equal to the true junction depth.
Step 7 uses DELTA to make the narrow channel correction to the threshold voltage. This step is quite

straightforward.
Step 8 is the only step that fits in the saturation region. The use of parameters VMAX and KAPPA is

obvious, but one may question using ETA to fit in the saturation region. The parameter ETA adjusts the
threshold voltage with respect to Vds, and as such one could argue that ETA should be used to fit
measurements of Ids sweeping Vgs and stepping Vds to high values. In doing so, one will corrupt the fit in
the saturation region, and usually we want to fit the saturation region better at the expense of the linear
region.
Step 9 uses NFS to fit the slope of the log(Ids) vs. Vgs curve. Often, the value of VT0 obtained from step 1

will prevent one from obtaining a good fit in the subthreshold region. If this happens, try fitting with VT0
and NFS, but replacing the final value of VT0 with that from step 1 at the end, keeping only NFS from
this final step.
The preceding steps illustrate the concepts of fitting relevant subsets of parameters to relevant

subsets of data to obtain physical values of the parameters, as well as fitting parameters in the proper
order so that those obtained in the later steps will affect those obtained in earlier steps minimally. Please
refer to Figures 8.19 and 8.20 for how the resulting fits typically appear (all graphs showing levels fits
are provided by the device modeling software package Aurora, from Technology Modeling Associates,
Inc., Palo Alto, CA).
An experienced person may notice that we have neglected some parameters. For example, we did not

use parameters KP and GAMMA. This means KP will be calculated from U0, and GAMMA will be
calculated from NSUB. In a sense U0 and NSUB are more fundamental parameters than KP and
GAMMA. For example, KP depends on U0 and TOX; GAMMA depends on NSUB and TOX. If one
is trying to obtain skew models, it is much more advantageous to analyze statistical distributions of

Vbs = 0, –2.5, –5 V
Vds = 0.1 V

W/L = 40/1.2 µm

Tox = 250 A

0.00 1.00 2.00 3.00 5.004.00
Vgs (V)

0.00

2.00

4.00

6.00

8.00

I ds
 (A

)×
10

–4

FIGURE 8.19 Typical MOS level 3 linear region measured and simulated plots at various Vbs values for a wide-
short device.

Computer-Aided Analysis 8-33

parameters that depend on a single effect than those that depend on multiple effects. KP will depend on
mobility and oxide thickness; U0 is therefore a more fundamental parameter. We also did not obtain
parameter PHI, so it will be calculated from NSUB. The level 3 model is very insensitive to PHI, so using
it for curve fitting is pointless. This illustrates the importance of being very familiar with the model
equations. The kind of judgments described here cannot be made without such knowledge.

Test chip warnings. The following hints will greatly assist in properly performing device characterization:

1. Include a wide-long device; without this, the results will not be physically correct.
2. All MOS transistors with the same width should be drawn with their sources and drains identical.

No difference should be seen in the number of source=drain contacts, contact spacing, source=drain
contact overlap, poly gate to contact spacing, etc. In Figure 8.21, c is the contact size, cs is the contact
space, cov is the contact overlap of diffusion, and c2p is the contact to poly spacing. All these
dimensions should be identical for devices of different L but identicalW. If not, extracting the series
resistance will become more difficult.

0.00 1.00 2.00 3.00 4.00 5.00
Vds (V)

0.00

0.20

0.40

0.60

0.80

1.00
I ds

 (A
)×

10
–2

W/L = 40/1.2 µm
Vbs =0, –5 V
Vgs =2, 3, 4, 5 V
Tox =250 A

FIGURE 8.20 Typical MOS level 3 saturation region measured and simulated plots at various Vgs and Vbs values for
a wide-short device.

cov

c2p
cs

c

W

L

FIGURE 8.21 Mask layers showing dimensions that should be identical for all MOS devices of the same width.

8-34 Computer Aided Design and Design Automation

3. Draw devices in pairs. That is, if the wide-long device is W=L¼ 20=20, make the wide-short device
the same width as the wide-long device; e.g., make the short device 20=1, not 19=1. If the narrow-
long device is 2=20, make the narrow-short device of the same width; i.e., make it 2=1, not 3=1, and
similarly for the lengths. (Make the wide-short and the narrow-short devices have the same
length.)

4. Draw structures for measuring the junction capacitances and overlap capacitances. These are
discussed later in Section 8.2.5.

8.2.3 BSIM Extraction Strategy in Detail

All MOS model strategies have basic features in common; namely, fit the linear region at zero back-bias
to get the basic zero-order parameters, fit the linear region at nonzero back-bias, fit the saturation region
at zero back-bias, fit the saturation region at nonzero back-bias, and then fit the subthreshold region. It is
possible to extend the type of strategy we covered for level 3 to the BSIM model, but that is not the way
BSIM was intended to be used.
The triplet sets of parameters for incorporating geometry dependence into the BSIM model, Equation

8.37, allow an alternate strategy. We obtain sets of parameters without geometry dependence by fitting to
individual devices without using the ParL and ParW terms. We do this for each device size individually.
This produces sets of parameters relevant to each individual device. So, for device number 1 of width
W(1) and length L(1) we would have a value for the parameter VFB which we will call VFB(1); for device
number n of width W(n) and length L(n) we will have VFB(n). To get the Par0, ParL and ParW terms, we
fit to the parameters themselves, rather than the measured data. That is, to get VFB0, VFBL, and VFBW,
we fit to the ‘‘data points’’ VFB(1), . . . ,VFB(n) with parameters VFB0, VFBL, and VFBW using Equation
8.37, where Leff and Weff are different for each index, 1 through n.

Note that as L andW become very large, the parameters must approach Par0. This suggests that we use
the parameter values for the wide-long device as the Par0 terms and only fit the other geometry sizes to
get the ParW and ParL terms. For example, if we have obtained VFB(1) for our first device which is our
wide-long device, we would set VFB0¼VFB(1), and then fit to VFB(2), . . . ,VFB(n) with parameters
VFBL and VFBW, and similarly for all the other triplets of parameters. In order to use a general least-
squares optimization program in this way the software must be capable of specifying parameters as
targets, as well as measured data points.
We now list a basic strategy for the BSIM model:

Step 1. Fit the wide-long device in the linear region at zero back-bias, at Vgs values above the
subthreshold region, with parameters VFB (flatband voltage), MUZ (mobility), and U0 (mobil-
ity degradation), with DL (length encroachment) and DW (width encroachment) set to zero.

Step 2. Fit the wide-short device in the linear region at zero back-bias, at Vgs values above the
subthreshold region, with parameters VFB, U0, and DL.

Step 3. Fit the narrow-long device in the linear region at zero back-bias, at Vgs values above
the subthreshold region, with parameters VFB, U0, and DW.

Step 4. Refit the wide-long device in the linear region at zero back-bias, at Vgs values above the
subthreshold region, with parameters VFB, MUZ, and U0, now that DL and DW are known.

Step 5. Fit the wide-short device in the linear region at zero back-bias, at Vgs values above the
subthreshold region, with parameters VFB, RS, and RD. When finished, replace the value of
VFB with the value found in step 4.

Step 6. Fit the wide-long device in the linear region at all back-biases, at Vgs values above the subthres-
hold region, with parameters K1 (first-order body effect), K2 (second-order body effect), U0, and
X2U0 (Vbs dependence of U0).

Computer-Aided Analysis 8-35

Step 7. Fit the wide-long device in the saturation region at zero back-bias with parameters U0, ETA
(Vds dependence of threshold voltage), MUS (mobility in saturation), U1 (Vds dependence of
mobility), and X3MS (Vds dependence cf MUS).

Step 8. Fit the wide-long device in the saturation region at all back-biases with parameter X2MS
(Vbs dependence of MUS).

Step 9. Fit the wide-long device in the subthreshold region at zero back-bias and low Vds value with
parameter N0; then fit the subthreshold region nonzero back-bias low Vds data with parameter
NB; and finally fit the subthreshold region data at higher Vds values with parameter ND. Or, fit
all the subthreshold data simultaneously with parameters N0, NB, and ND.

Repeat steps 6 through 10 for all the other geometries, with the result of sets of geometry-independent
parameters for each different size device. Then follow the procedure described previously for obtaining
the geometry-dependent terms Par0, ParL, and ParW.

In the preceding strategy, we have omitted various parameters either because they have minimal
effect or because they have the wrong effect and were modified in the BSIM2 model. Because of the
higher complexity of the BSIM model over the level 3 model, many more strategies are possible than
the one just listed. One may be able to find variations of the above strategy that suit the individual
technology better. Whatever modifications are made, the general spirit of the above strategy probably will
remain.
Some prefer to use a more global approach with BSIM, fitting to measured data with ParL and ParW

terms directly. Although this is certainly possible, it is definitely not a recommended approach. It
represents the worst form of blind curve fitting, with no regard for physical correctness or understanding.
The BSIM model was originally developed with the idea of obtaining the model parameters via extraction
as opposed to optimization. In fact, UC Berkeley provides software for obtaining BSIM parameters using
extraction algorithms, with no optimization at all. As stated previously, this has the advantage of being
relatively fast and easy. Unfortunately, it does not always work. One of the major drawbacks of the BSIM
model is that certain values of the parameters can cause the model to produce negative values of Gds in
saturation. This is highly undesirable, not only from a modeling standpoint, but also because of the
convergence problems it can cause in circuit simulators. If an extraction strategy is used that does not
guarantee nonnegative Gds, very little can be done to fix the problem when Gds becomes negative. Of
course, the extraction algorithms can be modified, but this is difficult and time consuming. With
optimization strategies, one can weight the fitting for Gds more heavily and thus force the model to
produce nonnegative Gds. We, therefore, do not favor extraction strategies for BSIM, or anything else. As
with most things in life, minimal effort provides minimal rewards.

8.2.3.1 BSIM2 Extraction Strategy

We do not cover the BSIM2 strategy in complete detail because it is very similar to the BSIM strategy,
except more parameters are involved. The major difference in the two models is the inclusion of extra
terms in BSIM2 for fitting Gds (refer to Figure 8.22, which shows how badly BSIM typically fits 1=Gds vs.
Vds). Basically, the BSIM2 strategy follows the BSIM strategy for the extraction of parameters not related
to Gds. Once these have been obtained, the last part of the strategy includes steps for fitting to Gds with
parameters that account for channel length modulation (CLM) and hot electron effects. The way this
proceeds in BSIM2 is to fit Ids first, and then parameters MU2, MU3, and MU4 are used to fit to 1=Gds vs.
Vds curves for families of Vds and Vbs. This can be a very time-consuming and frustrating experience,
because fitting to 1=Gds is quite difficult. Also, the equations describing how Gds is modeled with MU2,
MU3, and MU4 are very unphysical and the interplay between the parameters makes fitting awkward.
The reader is referred to Figure 8.23, which shows how BSIM2 typically fits 1=Gds vs. Vds. BSIM2 is
certainly better than BSIM, but it has its own problems fitting 1=Gds.

8-36 Computer Aided Design and Design Automation

8.2.3.2 BSIM3 Comments

The BSIM3 model is very new and will undoubtedly change in the future [5]. We will not list a BSIM3
strategy here, but focus instead on the features of the model that make it appealing for analog modeling.
BSIM3 has terms for fitting Gds that relate to CLM, drain-induced barrier lowering (DIBL), and hot

electron effects. They are incorporated completely differently from the Gds fitting parameters of BSIM2.

1.00 2.00 3.00 4.00

0.25

0.50

0.75

1.00

1.25

1/G
ds

 (M
ho

s)
×1

0–4

W/L = 40/1.2 µm
Vbs = 0 V
Vgs = 2, 3, 4, 5 V
Tox = 250 A

Vds (V)

FIGURE 8.22 Typical BSIM 1=Gds vs.Vds measured and simulated plots at variousVgs values for a wide-short device.

W/L = 40/1.2 µm

Vgs = 2, 3, 4, 5 V
Tox = 250 A

1/
G d

s (
M

ho
s)

×1
0–4

1.25

1.75

0.25

0.50

1.00

1.00 2.00 3.00 4.00
Vds (V)

Vbs = 0 V

FIGURE 8.23 Typical BSIM2 1=Gds vs. Vds measured and simulated plots at various Vgs values for a wide-short
device.

Computer-Aided Analysis 8-37

In BSIM3, these parameters enter through a generalized Early voltage relation, with the drain current in
saturation written as

Ids ¼ Id sat 1þ (Vds � Vd sat)
VA

 �
(8:38)

where V* is a generalized early voltage made up of three terms as

1
VA

¼ 1
VACLM

þ 1
VADIBL

þ 1
VAHCE

(8:39)

with the terms in Equation 8.39 representing generalized early voltages for CLM, DIBL, and hot carrier
effects (HCE). This formulation is more physically appealing than the one used in BSIM2, making it
easier to fit 1=Gds vs. Vds. curves with BSIM2. Figures 8.24 and 8.25 show how BSIM3 typically fits Ids vs.
Vds and 1=Gds vs. Vds.

Most of the model parameters for BSIM3 have physical significance so they are obtained in the spirit of
the parameters for the level 2 and 3 models. The incorporation of temperature dependence is also easier
in BSIM3 because the parameters are more physical. All this, coupled with the fact that about 30
parameters exists for BSIM3 as compared to over 100 for BSIM2, makes BSIM3 a logical choice for
analog design. However, BSIM3 is evolving, and shortcomings to the model may still exist that may be
corrected in later revisions.

8.2.3.3 Which MOS Model to Use?

Many MOS models are available in circuit simulators, and the novice is bewildered as to which model is
appropriate. No single answer exists, but some questions must be asked before making a choice:

1. What kind of technology am I characterizing?
2. How accurate a model do I need?

0.00
0.00

1.00 2.00

0.40

3.00 4.00 5.00
Vds (V)

I ds
 (A

)×
10

–2

0.20

0.60

0.80

1.00

1.20
W/L = 40/1.2 µm
Vbs = 0 V
Vgs = 2, 3, 4, 5 V
Tox = 250 A

FIGURE 8.24 Typical BSIM3 saturation region measured and simulated plots at various Vgs values for a wide-short
device.

8-38 Computer Aided Design and Design Automation

3. Do I want to understand the technology?
4. How important are the skew model files (fast and slow parameter files)?
5. How experienced am I? Do I have the expertise to handle a more complicated model?
6. How much time can I spend doing device characterization?
7. Do I need to use this model in more than one circuit simulator?
8. Is the subthreshold region important?
9. Is fitting Gds important?

Let us approach each question with regard to the models available. If the technology is not submicron,
perhaps a simpler model such as level 3 is capable of doing everything needed. If the technology is deep
submicron, then use a more complicated model such as BSIM, BSIM2, or BSIM3. If high accuracy is
required, then the best choice is BSIM3, mainly because it is more physical than all the other models and
is capable of fitting better.
For a good physical understanding of the process being characterized, BSIM and BSIM2 are not good

choices. These are the least physically based of all the models. The level 2 and 3 models have good
physical interpretation for most of the parameters, although they are relatively simple models. BSIM3 is
also more physically based, with many more parameters than level 2 or 3, so it is probably the best choice.
If meaningful skew models need to be generated, then BSIM and BSIM2 are very difficult to use, again,

because of their unphysical parameter sets. Usually, the simplest physically based model is the best for
skew model generation. A more complicated physically based model such as BSIM3 may also be difficult
to use for skew model generation.
If the user is inexperienced, none of the BSIM models should be used until the user’s expertise

improves. Our device is to practice using simpler models before tackling the harder ones.
If time is critical, the simpler models will definitely be much faster for use in characterization. The

more complicated models require more measurements over wider ranges of voltages as well as wider
ranges of geometries. This, coupled with the larger number of parameters, means they will take some
time with which to work. The BSIM2 model will take longer than all the rest, especially if the Gds fitting
parameters are to be used.

W/L = 40/1.2 µm

Vgs = 2, 3, 4, 5 V
Tox = 250 A

1/
G d

s (
M

ho
s)

×1
0–4

1.50

1.00

0.50

1.00 2.00 3.00 4.00
Vds (V)

Vbs = 0 V

FIGURE 8.25 Typical BSIM3 1=Gds vs. Vds measured and simulated plots at various Vgs values for a wide-short device.

Computer-Aided Analysis 8-39

The characterization results may need to be used in more than one circuit simulator. For example, if a
foundry must supply models to various customers, they may be using different circuit simulators. In this
case, proprietary models applicable to a single circuit simulator should not be used. Also, circuit designers
may want to check the circuit simulation results on more than one circuit simulator. It is better to use
standard Berkeley models (level 2, level 3, BSIM, BSIM2, and BSIM3) in such cases.
If the subthreshold region is important, then level 2 or level 3 cannot be used, and probably not even

BSIM. BSIM2 or BSIM3 must be used instead. These two models have enough parameters for fitting the
subthreshold region.
If fitting Gds is important, BSIM2 and BSIM3 are, again, the only choices. None of the other models

have enough parameters for fitting Gds.
Finally, if a very unusual technology is to be characterized, none of the standard models may be

appropriate. In this case commercially available specialized models or the user’s own models must be
used. This will be a large task, so the goals must justify the effort.

8.2.4 Bipolar DC Model

The standard bipolar model used by all circuit simulators is the Gummel–Poon model, often called the
BJT (bipolar junction transistor) model [4]. Most circuit simulator vendors have added various extra
parameters to this model, which we will not discuss, but they all have the basic parameters introduced by
the original UC Berkeley SPICE model.
We now list a basic strategy for the BJT model:

Step 1. Fit a Gummel plot (log(IC) and log(IB) vs. VBE) for the IC curve in the straight line portion of
the curve (low to middle VBE values) with parameters IS and NF. Note that it is best if the
Gummel plots are done with VCB¼ 0.

Step 2. Fit plots of IC vs. VCE, stepping IB, in the high VCE region of the curves with parameters VAF,
BF, and IKF.

Step 3. Fit plots of IC vs. VCE, stepping IB, in the low VCE region of the curves with parameter RC.

Step 4. Fit a Gummel plot for the IB curve for VBE values in the mid- to high-range with parameter BF.

Step 5. Fit a Gummel plot for the IB curve for low VBE values with parameters ISE and NE.

Step 6. Try to obtain parameter RE by direct measurement or by simulation using a device simulator
such as PISCES. It is also best if RB can be obtained as a function of current by measurement on
special structures, or by simulation. One may also obtain RB by S-parameter measurements
(discussed later). Failing this, RB may be obtained by fitting to the Gummel plot for the IB curve
for VBE values in the mid- to high-range with parameters RB, RBM, and IRB. This is a difficult
step to perform with an optimization program.

Step 7. Fit a Gummel plot for the IC curve for high VBE values with parameter IKF.

Step 8. At this point, all the DC parameters have been obtained for the device in the forward direction.
Next, obtain the reverse direction data by interchanging the emitter and collector to get the
reverse Gummel and IC vs. VCE data.

Repeat Step 2 on the reverse data to get VAR, BR, IKR.
Repeat Step 4 on the reverse data to get BR.
Repeat Step 5 on the reverse data to get ISC, NC.
Repeat Step 7 on the reverse data to get IKR.

Fitting the reverse direction parameters is very frustrating because the BJT model is very poor in the
reverse direction. After seeing how poor the fits can be, one may decide to obtain only a few of the reverse
parameters.

8-40 Computer Aided Design and Design Automation

8.2.5 MOS and Bipolar Capacitance Models

8.2.5.1 MOS Junction Capacitance Model

The MOS junction capacitance model accounts for bottom wall (area component) and sidewall (periph-
ery component) effects. The total junction capacitance is written as a sum of the two terms

CJ(total) ¼ A(CJ)

1þ [(VR=PB)]MJ þ
P(CJSW)

1þ [(VR=PB)]MJSW (8:40)

where
A is the area
P is the periphery of the junction diode capacitor
VR is the reverse bias (a positive number) across the device

The parameters of this model are CJ, CJSW, PB, MJ, and MJSW.
It is very easy to find parameter values for this model. Typically, one designs special large junction

diodes on the test chip, large enough so that the capacitances being measured are many tens of
picofarads. This means the diodes have typical dimensions of hundreds of microns. Two junction diodes
are needed—one with a large area:periphery ratio, and another with a small area:periphery ratio. This is
usually done by drawing a rectangular device for the large area:periphery ratio, and a multifingered
device for the small area:periphery ratio (see Figure 8.26).
The strategy for this model consists of a single step, fitting to all the data simultaneously with all the

parameters. Sometimes it is helpful to fix PB to some nominal value such as 0.7 or 0.8, rather than
optimize on PB, because the model is not very sensitive to PB.

8.2.5.2 BJT Junction Capacitance Model

The BJT model is identical to the MOS, except it uses only the bottom wall (area term), not the sidewall.
Three sets of BJT junction diodes need to be characterized: emitter–base, collector–base, and collector–
substrate. Each of these has three model parameters to fit. For example, for the emitter–base junction
diode, the parameters are CJE, VJE, and MJE (CJE corresponds to CJ, VJE to PB, and MJE to MJ of the
MOS model). Similarly, for the collector–base junction diode, we have CJC, VJC, and MJC. Finally, for
the collector–substrate junction diode, we have CJS, VJS, and MJS.

Well

Diffusion

Contacts

FIGURE 8.26 Mask layers showing the periphery multifingered junction diode structure.

Computer-Aided Analysis 8-41

These parameters are all fit in a single strategy step on the relevant data. Again, it is best if large test
structures can be drawn rather than the values measured directly on transistor, because the transistor
junction diodes have such small areas that the measurements are prone to accuracy problems.

8.2.5.3 MOS Overlap Capacitance Model

In addition to the junction capacitance model, the MOS models include terms for the overlap or Miller
capacitance. This represents the capacitance associated with the poly gate overlap over the source and
drain regions. As for the junction diodes, special test chip structures are necessary for obtaining the
overlap capacitance terms CGS0, CGD0, and CGB0. These structures usually consist of large, multi-
fingered devices that look just like the junction capacitance periphery diodes, except that where the
junction diodes are diffusion over well structures, the overlap capacitors are poly over diffusion.

8.2.6 Bipolar High-Frequency Model

The SPICE BJT model has five parameters for describing the high-frequency behavior of bipolar devices.
These are parameters TF, XTF, ITF, VTF, and PTF, all of which are associated with the base transit time, or
equivalently, the cutoff frequency. Parameter TF is the forward transit time, XTF and ITF modify TF as a
function ofVBE (or IC), andVTFmodifies TF as function ofVBE (or IC), andVTFmodifies TF as a function
ofVCB. Parameter PTF represents the excess phase at the cutoff frequency. The expression used by SPICE for
the transit time is

tf ¼ TF 1þ XTF
IF

IFþ ITF

� 2
" #

e[VBC={(1:44(VTF))}] (8:41)

where

IF ¼ IS[e{(q)(Vbe)}={(NF)(k)(T)} � 1] (8:42)

SPICE uses the transit time to calculate the diffusion capacitance of the emitter–base junction in forward bias.
Obtaining the bipolar high frequency parameters is very complicated, time consuming, and difficult.

It also requires very expensive measuring equipment, including a network analyzer for measuring
S-parameters, and a quality high-frequency wafer prober with high-frequency probes. Having measured
the S-parameters, after suitable data manipulation and optimization it is possible to find the high-
frequency SPICE parameters.
It is beyond the scope of this book to cover high-frequency bipolar theory completely. We will,

however, list the basic steps involved in obtaining the high frequency bipolar transit time parameters:

Step 1. Measure the S-parameters over an appropriate frequency range to go beyond the cutoff
frequency, fT. Do these measurements over a large range of IC values and stepping over families
of VCB values as well. Be sure to include VCB¼ 0 in these data. Be sure that the network
analyzer being used is well calibrated. These measurements can be done in either common
emitter or common collector mode. Each has advantages and disadvantages.

Step 2. De-embed the S-parameter measurements by measurements dummy pad structures that dupli-
cate the layout of the bipolar transistors, including pads and interconnect, but with no devices.
The de-embedding procedure subtracts the effects of the pads and interconnects from the actual
devices. This step is very important if reliable data are desired [10].

Step 3. Calculate the current gain, b from the S-parameter data. From plots of b vs. frequency, find the
cutoff frequency, fT. Also calculate parameter PTF directly from these data.

Step 4. Calculate tf from fT by removing the effect of RE, RC, and the junction capacitances. This
produces tables of tf vs. IC, or equivalently, tf vs. VBE, over families of VCB.

Step 5. Optimize on tf vs. VBE data over families of VCB with parameters TF, XTF, ITF, and VTF.

8-42 Computer Aided Design and Design Automation

Note that many of the preceding steps are done automatically by some commercial device modeling
programs.
It is very important to have well-designed and appropriate test structures for measuring S-parameters.

The pad layout and spacing is very critical because of the special size and shape of the high-frequency
probes (see Figure 8.27). The test chip structures must be layed out separately for common emitter and
common collector modes if measurements are necessary for both these modes.
It is also possible to use the S-parameter measurements to obtain the base resistance as a function of

collector current. From this information one can optimize to obtain parameters RB, RBM, and IRB.
However, the base resistance obtained from S-parameters is not a true DC base resistance, and the model
is expecting DC values of base resistance.

8.2.7 Miscellaneous Topics

8.2.7.1 Skew Parameter Files

This chapter discusses obtaining model parameters for a single wafer, usually one that has been chosen to
represent a typical wafer for the technology being characterized. The parameter values obtained from this
wafer correspond to a typical case. Circuit designers also want to simulate circuits with parameter values
representing the extremes of process variation, the so-called fast and slow corners, or skew parameter
files. These represent the best and worst case of the process variation over time.
Skew parameter values are obtained usually by tracking a few key parameters, measuring many wafers

over a long period of time. The standard deviation of these key parameters is found and added to or
subtracted from the typical parameter values to obtain the skew models. This method is extremely crude
and will not normally produce a realistic skew model. It will almost always overestimate the process
spread, because the various model parameters are not independent—they are correlated.
Obtaining realistic skew parameter values, taking into account all the subtle correlations between

parameters, is more difficult. In fact, skew model generation is often more an art than a science. Many
attempts have been made to utilize techniques from a branch of statistics called multivariate analysis [1].
In this approach, principal component or factor analysis is used to find parameters that are linear
combinations of the original parameters. Only the first few of these new parameters will be kept; the
others will be discarded because they have less significance. This new set will have fewer parameters than
the original set and therefore will be more manageable in terms of finding their skews. The user
sometimes must make many choices in the way the common factors are utilized, resulting in different
users obtaining different results.
Unfortunately, a great deal of physical intuition is often required to use this approach effectively. To

date, we have only seen it applied to the simpler MOS models such as level 3. It is not known if this is a
viable approach for a much more complicated model such as BSIM2 [7].

ProbeProbe

FIGURE 8.27 Typical bipolar transistor test chip layout for measuring S-parameters with high-frequency probes.
This shows the common emitter configuration.

Computer-Aided Analysis 8-43

8.2.7.2 Macro Modeling

Sometimes, a device is designed and manufactured that cannot be modeled by a single transistor model.
In such cases, one may try to simulate the behavior of a single device by using many basic device elements
together, representing the final device. For example, a single real bipolar device might be modeled using a
combination of several ideal bipolar devices, diodes, resistors, and capacitors. This would be a macro
model representing the real bipolar device.
Macro modeling usually uses least-squares optimization techniques. One chooses model para-

meter values to represent the ideal devices in the technology, and then optimizes on geometry size,
capacitance size, resistance size, etc., to obtain the final macro model. This is similar to the optimization
techniques used to find model parameters for a standard model, but in this case we are calling on
an entire circuit simulator rather than a model subroutine to provide the output characteristics of our
macro model.
Obviously, macro modeling can be very computation intensive. A complex macro model can take a

very long time to optimize. Also, it may be impractical to use a macro model for every real device in the
circuit. For example, if the circuit in question has 100,000 real transistors and each of these is being
represented by a macro model with 10 components, the number of circuit nodes introduced by the macro
model (>103 10,000) might be prohibitive in terms of simulation time. Nevertheless, for critical
components, macro modeling can provide tremendous insight.

8.2.7.3 Modeling in a TCAD Environment

Programs that do optimization are part of a larger set of software that is sometimes called TCAD
(technology computer-aided design). Typically, TCAD encompasses software for process simulation
(doping distributions), device simulation (electrical characteristics), device modeling, and circuit simu-
lation. Other elements of TCAD can include lithography simulation, interconnect modeling (capacitance,
resistance, and inductance), etc.
In the past, each of the software components of TCAD were used as stand-alone programs, with

very little communication between the components. The trend now is to incorporate all these pieces
into a complete environment that allows them to communicate with each other seamlessly, efficiently,
and graphically, so that the user is not burdened with keeping track of file names, data, etc. In
such a system, one can easily set up split lots and simulate from process steps up through circuit
simulation. One will also be able to close the loop, feeding circuit simulation results back to the process
steps and run optimization on an entire process to obtain optimal circuit performance characteristics
(see Figure 8.28).
The future of device modeling will surely be pushed in this direction. Device modeling tools will be

used not only separately, but within a total TCAD environment, intimately connected with process,
device, interconnect, and circuit simulation tools.

Optimizer Circuit
simulator

Device
simuator

Process
simulator

Circuit
netlist

FIGURE 8.28 Block diagram of a TCAD system.

8-44 Computer Aided Design and Design Automation

References

1. W. R. Dillon and M. Goldstein, Multivariate Analysis Methods and Applications, New York:
John Wiley & Sons, 1984.

2. P. E. Gill, W. Murray, and M. Wright, Practical Optimization, Orlando, FL: Academic Press, 1981.
3. J. S. Duster, J.-C. Jeng, P. K. Ko, and C. Hu, User’s guide for BSIM2 parameter extraction

program and the SPICE3 with BSIM implementation, Electronic Research Laboratory, Berkeley,
CA: University of California, 1988.

4. I. Getreu, Modeling the Bipolar Transistor, Beaverton, OR: Tektronix, 1976.
5. J.-H. Huang, Z. H. Liu, M.-C. Jeng, P. K. Ko, and C. Hu, BSIM3 manual, Berkeley, CA: University of

California, 1993.
6. M.-C. Jeng, P. M. Lee, M. M. Kuo, P. K. Ko, and C. Hu, Theory, algorithms, and user’s guide

for BSIM and SCALP, Version 2.0, Electronic Research Laboratory, Berkeley, CA: University of
California, 1987.

7. J. A. Power, A. Mathewson, and W. A. Lane, An approach for relating model parameter variabilities
to process fluctuations, Proc. IEEE Int. Conf. Microelectronic Test Struct., vol. 6, Mar. Barcelona,
Spain, 1993.

8. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C,
Cambridge, U.K.: Cambridge University Press, 1988.

9. B. J. Sheu, D. L. Scharfetter, P. K. Ko, and M.-C. Jeng, BSIM: Berkeley Short-Channel IGFET Model
for MOS Transistors, IEEE J. Solid-State Circuits, SC-22(4), Aug. 1987.

10. P. J. van Wijnen, On the Characterization and Optimization of High-Speed Silicon Bipolar Tran-
sistors, Beaverton, OR: Cascade Microtech, Inc., 1991.

11. A. Vladimirescu and S. Liu, The simulation of MOS integrated circuits using SPICE2, memorandum
no. UCB=ERL M80=7, Berkeley, CA: University of California, 1980.

Other recommended publications which are useful in device characterization are

L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits, memorandum
no. ERL-M520, Berkeley, CA: University of California, 1975.

G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE, New York: McGraw-Hill,
1993.

Computer-Aided Analysis 8-45

9
Analog Circuit

Simulation

J. Gregory Rollins
Technical Modeling Associates, Inc.

9.1 Introduction.. 9-1
9.2 Purpose of Simulation .. 9-1
9.3 Netlists.. 9-2
9.4 Formulation of the Circuit Equations................................. 9-3
9.5 Modified Nodal Analysis ... 9-4
9.6 Active Device Models ... 9-5
9.7 Types of Analysis... 9-7

DC (Steady-State) Analysis . AC Analysis . Transient Analysis

9.8 Verilog-A ... 9-13
9.9 Fast Simulation Methods ... 9-18
9.10 Commercially Available Simulators 9-19
References .. 9-19

9.1 Introduction

Analog circuit simulation usually means simulation of analog circuits or very detailed simulation of
digital circuits. The most widely known and used circuit simulation program is SPICE (simulation
program with integrated circuit emphasis) of which it is estimated that there are over 100,000 copies in
use. SPICE was first written at the University of California at Berkeley in 1975, and was based on the
combined work of many researchers over a number of years. Research in the area of circuit simulation
continues at many universities and industrial sites. Commercial versions of SPICE or related programs
are available on a wide variety of computing platforms, from small personal computers to large
mainframes. A list of some commercial simulator vendors can be found in the Appendix. The focus of
this chapter is the simulators and the theory behind them. Examples are also given to illustrate their use.

9.2 Purpose of Simulation

Computer-aided simulation is a powerful aid for the design or analysis of VLSI circuits. Here, the main
emphasis will be on analog circuits; however, the same simulation techniques may be applied to digital
circuits, which are composed of analog circuits. The main limitation will be the size of these circuits
because the techniques presented here provide a very detailed analysis of the circuit in question and,
therefore, would be too costly in terms of computer resources to analyze a large digital system. However,
some of the techniques used to analyze digital systems (like iterated timing analysis or relaxation
methods) are closely related to the methods used in SPICE.

9-1

It is possible to simulate almost any type of circuit SPICE. The programs have built-in elements for
resistors, capacitors, inductors, dependent and independent voltage and current sources, diodes,
MOSFETs, JFETs, BJTs, transmission lines, and transformers. Commercial versions have libraries of
standard components, which have all necessary parameters prefitted to typical specifications. These
libraries include items such as discrete transistors, op-amps, phase-locked loops, voltage regulators, logic
integrated circuits, and saturating transformer cores. Versions are also available that allow the inclusion
of digital models (mixed-mode simulation) or behavioral models that allow the easy modeling of
mathematical equations and relations.
Computer-aided circuit simulation is now considered an essential step in the design of modern

integrated circuits. Without simulation, the number of ‘‘trial runs’’ necessary to produce a working IC
would greatly increase the cost of the IC and the critical time-to-market. Simulation provides other
advantages, including

. The ability to measure ‘‘inaccessible’’ voltages and currents that are buried inside a tiny chip or
inside a single transistor.

. No loading problems are associated with placing a voltmeter or oscilloscope in the middle of the
circuit, measuring difficult one-shot waveforms or probing a microscopic die.

. Mathematically ideal elements are available. Creating an ideal voltage or current source is trivial
with a simulator, but impossible in the laboratory. In addition, all component values are exact and
no parasitic elements exist.

. It is easy to change the values of components or the configuration of the circuit.

Unfortunately, computer-aided simulation has it own set of problems, including

. Real circuits are distributed systems, not the ‘‘lumped element models’’ which are assumed by
simulators. Real circuits, therefore, have resistive, capacitive, and inductive parasitic elements present
in addition to the intended components. In high-speed circuits, these parasitic elements can be the
dominant performance-limiting elements in the circuit, and they must be painstakingly modeled.

. Suitable predefined numerical models have not yet been developed for certain types of devices or
electrical phenomena. The software user may be required, therefore, to create his or her own
models out of other models that are available in the simulator. (An example is the solid-state
thyristor, which may be created from an npn and pnp bipolar transistor.)

. The numerical methods used may place constraints on the form of the model equations used. In
addition, convergence difficulties can arise, making the simulators difficult to use.

. There are small errors associated with the solution of the equations and other errors in fitting the
nonlinear models to the transistors that make up the circuit.

9.3 Netlists

Before simulating, a circuit must be coded into a netlist. Figure 9.1 shows the circuit for a simple
differential pair. Circuit nodes are formed wherever two or more elements meet. This particular circuit
has seven nodes, which are numbered 0–6. The ground or datum node is traditionally numbered as zero.
The circuit elements (or branches) connect the nodes.
The netlist provides a description of the topography of a circuit and is simply a list of the branches

(or elements) that make up the circuit. Typically, the elements may be entered in any order and each has
a unique name, a list of nodes, and either a value or model identifier. For the differential amplifier of
Figure 9.1, the netlist is shown in Figure 9.2.
The first line gives the title of the circuit (and is required in many simulators). The next three lines define

the three voltage sources. The letter V at the beginning tells SPICE that this is a voltage source element.
The list of nodes (two in this case) is next followed by the value in volts. The syntax for the resistor is
similar to that of the voltage source; the starting letter R in the names of the resistors tells SPICE that these

9-2 Computer Aided Design and Design Automation

are resistors. SPICE also understands that the
abbreviation ‘‘k’’ after a value means 1000. For
the two transistors Q1 and Q2, the starting letter
Q indicates a bipolar transistor. Q1 and Q2 each
have three nodes and in SPICE, the convention
for their ordering is collector, base, and emitter.
So, for Q1, the collector is connected to node 3, the
base to node 4, and the emitter to node 2. The
final entry ‘‘m2n2222’’ is a reference to the model
for the bipolar transistor (note that both Q1 and
Q2 reference the same model). The ‘‘.model’’
statement at the end of the listing defines this
model. The model type is npn (for an npn
bipolar junction transistor), and a list of ‘‘para-
meter¼ value’’ entries follow. These entries
define the numerical values of constants in the
mathematical models which are used for the

bipolar transistor. (Models will be discussed later in more detail.) Most commercial circuit simulation
packages come with ‘‘schematic capture’’ software that allows the user to draw the circuit by placing and
connecting the elements with the mouse.

9.4 Formulation of the Circuit Equations

In SPICE, the circuits are represented by a system of ordinary differential equations. These equations are then
solved using several different numerical techniques. The equations are constructed using Kirchhoff’s voltage
and current laws (KVL andKCL). The first systemof equations pertains to the currents flowing into each node.
One equation is written for each node in the circuit (except for the ground node), so the following equation
is really a system of N equations for the N nodes in the circuit. The subscript i denotes the node index.

0 ¼ Fi(V) ¼ Gi(V)þ @Qi(V)
@t

þWi(t) (9:1)

where
V is an N-dimensional vector that represents the voltages at the nodes
Q is another vector which represents the electrical charge (in Coulombs) at each node
The term W represents any independent current sources that may be attached to the nodes and has
units of amperes

The function G(V) represents the currents that flow into the nodes as a result of the voltages V

R1 1k

1k1k

2 VV1
2 V

5
6

V2

0

5 V

V3
+

–

+

–

+

–

0

1

Q1
2

R3R2

3
4

Q2

0 0

FIGURE 9.1 Circuit for differential pair.

Differential pair circuit
V1 4 0 2V
V2 5 0 2V
V3 1 0 5V
R1 2 0 1k
R2 3 1 1K
R3 6 1 1K
Q1 3 4 2 m2n2222
Q2 6 5 2 mq2n2222
.model m2n2222 NPN IS = 1e-12 BF = 100 BR = 5 TF = 100pS

FIGURE 9.2 Netlist for differential pair.

Analog Circuit Simulation 9-3

If the equations are formulated properly, a
system of N equations in N unknown results.
For example, for the circuit of Figure 9.3 which

has two nodes, we need to write two equations.
At node 1:

0 ¼ (V1 � V2)=R1 þ d(C1V1)
dt

þ I1 (9:2)

We can identify G(V) as (V1�V2)=R, the term Q
(V) is C1V1 and W(t) is simply I1. Likewise at
node 2:

0 ¼ (V2 � V1)=R1 þ V2=R2 þ gmV1 (9:3)

In this example, G and Q are simple linear terms; however, in general, they can be nonlinear functions
of the voltage vector V.

9.5 Modified Nodal Analysis

Normal nodal analysis that uses only KCL cannot be used to represent ideal voltage sources or inductors.
This is so because the branch current in these elements cannot be expressed as a function of the branch
voltage. To resolve this problem, KVL is used to write a loop equation around each inductor or voltage
source. Consider Figure 9.4 for an example of this procedure. The unknowns to be solved for are the
voltage V1 at node 1, V2 the voltage at node 2, V3 the voltage at node 3, the current flowing through
voltage source V1 which we shall call Ix, and the current flowing in the inductor L1 which we shall call I1
The system of equations is

0 ¼ V1=R1 þ Ix
0 ¼ V2=R2 � Iz þ Il
0 ¼ V3=R3 � Il
0 ¼ V1 � Vx þ V2

0 ¼ V2 þ d(L1I1)
dt

� V3

(9:4)

The use of modified nodal analysis does have the disadvantage of requiring that an additional equation be
included for each inductor or voltage source, but has the advantage that ideal voltage sources can be used.

0

C1 R2

R1

I1

gmV1

0 00

FIGURE 9.3 Example circuit for nodal analysis.

0

R2

+ –

R3R1

1
2 3

L1
Vx

0 0

FIGURE 9.4 Circuit for modified nodal analysis.

9-4 Computer Aided Design and Design Automation

The total number of equations to be solved is
therefore the number of nodes plus the number
of voltages sources and inductors.

9.6 Active Device Models

VLSI circuits contain active devices like transistors
or diodes, which act as amplifiers. These devices
are normally described by a complicated set of
nonlinear equations. We shall consider a simple
model for the bipolar transistor—the Ebers–Moll
model. This model is one of the first developed,
and while it is too simple for practical application,
it is useful for discussion.
A schematic of the Ebers–Moll model is shown

in Figure 9.5. The model contains three nonlinear
voltage-dependent current sources Ic, Ibf, and Ibr and two nonlinear capacitances Cbe and Cbc. The current
flowing in the three current sources are given by the following equations:

Ic ¼ Is(exp (Vbe=Vt))� exp (Vce=Vt) (9:5)

Ibf ¼ Is
Bf

(exp (Vbe=Vt)� 1) (9:6)

Ibr ¼ Is
Br

(exp (Vbc=Vt)� 1) (9:7)

The voltages Vbe and Vbc are the voltages between base and emitter and the base and collector,
respectively. Is, Bf, and Br are three user-defined parameters that govern the DC operation of the BJT.
Vt is the ‘‘thermal voltage’’ or kT=q, which has the numerical value of approximately 0.26 V at room
temperature. Observe that in the normal forward active mode, where Vbe> 0 and Vce< 0, Ibr and the
second term in Ic vanish and the current gain of the BJT, which is defined as Ic=Ib becomes numerically
equal to Bf. Likewise, in the reverse mode where Vce> 0 and Vbe< 0, the reverse gain (Ie=Ib) is equal to Br.

The two capacitances in Figure 9.5 contribute charge to the emitter, base, and collector, and this charge
is given by the following equations:

Qbe ¼ tf Is(expVbe=Vt � 1)þ Cje

ðVbe

0

(1� V=Vje)
�me (9:8)

Qbc ¼ trIs(expVbc=Vt � 1)þ Cjc

ðVbc

0

(1� V=Vjc)
�mc (9:9)

Qbe contributes positive charge to the base and negative charge to the emitter. Qbc contributes
positive charge to the base and negative charge to the collector. The first term in each charge expression
is due to charge injected into the base from the emitter forQbe and from the collector into the base forQbc.
Observe that the exponential terms in the charge terms are identical to the term in Ic. This is so because the
injected charge is proportional to the current flowing into the transistor. The terms tf and tr are the forward
and reverse transit times, respectively, and correspond to the amount of time it takes the electrons
(or holes) to cross the base. The second term in the charge expression (the term with the integral)

Cbe

Cbe

E

C
Ic

Ibf

B

Ibr

+

–

+

–

–+

FIGURE 9.5 Ebers–Moll model for the bipolar
transistor.

Analog Circuit Simulation 9-5

corresponds to the charge in the depletion region of the base–emitter junction for Qbe and in the base–
collector junction for Qbc. Recall that the depletion width in a pn junction is a function of the applied
voltage. The terms Vje and Vjc are the ‘‘built-in’’ potentials with units of volts for the base–emitter and
base–collector junctions. The terms mc and me are the grading coefficients for the two junctions and are
related to how rapidly the material changes from n-type to p-type across the junction.
This ‘‘simple’’ model has eleven constants Is, Bf, Br, Cje, Cjc, Me, Mc, Vje, Vjc, Tf, and Tr that must be

specified by the user. Typically, these constants would be extracted from measured I–V and C–V data
taken from real transistors using a fitting or optimization procedure (typically a nonlinear least-squares
fitting method is needed). The Ebers–Moll model has a number of shortcomings that are addressed in
newer models like Gummel–Poon, Mextram, and VBIC. The Gummel–Poon model has over 40
parameters that must be adjusted to get a good fit to data in all regions of operation.
Models for MOS devices are even more complicated than the bipolar models. Modeling the MOSFET

is more difficult than the bipolar transistor because it is often necessary to use a different equation for
each of the four regions of operation (off, subthreshold, linear, and saturation) and the drain current and
capacitance are functions of three voltages (Vds, Vbs, and Vgs) rather than just two (Vbe and Vce) as in the
case of the BJT. If a Newton–Raphson solver is to be used, the I–V characteristics and capacitances must
be continuous and it is best if their first derivatives are continuous as well. Furthermore, MOS models
contain the width (W) and length (L) of the MOSFET channel as parameters; and for the best utility the
model should remain accurate for many values of W and L. This property is referred to as ‘‘scalability.’’
Over the years, literally hundreds of different MOS models have been developed. However, for modern

VLSI devices, only three or four are commonly used today. These are the SPICE Level-3 MOS model, the
HSPICE Level-28 model (which is a proprietary model developed by Meta Software), the public domain
BSIM3 model developed at UC, Berkeley, and MOS9 developed at Phillips. These models are supported
by many of the ‘‘silicon foundries,’’ that is, parameters for the models are provided to chip designers by
the foundries. BSIM3 has been observed to provide a good fit to measured data and its I–V curves to be
smooth and continuous (thereby resulting in good simulator convergence). The main drawback of
BSIM3 is that it has over 100 parameters which are related in intricate ways, making extraction of the
parameter set a difficult process.
A process known as ‘‘binning’’ is used to provide greater accuracy. When binning is used, a different

set of model parameters is used for each range of the channel length and width (L andW). An example of
this is shown in Figure 9.6. For a given type of MOSFET, 12 complete sets of model parameters are
extracted and each is valid for a given range. For example, in Figure 9.6, the set represented by the

number ‘‘11’’ would only be valid for channel lengths
between 0.8 and 2.0 mm and for channel widths between
0.5 and 0.8 mm. Thus, for a typical BSIM3 model with
about 60 parameters, 123 60¼ 720 parameters would
need to be extracted in all and this just for one type of
device.
Many commercial simulators contain other types of

models besides the traditional R, L, C, MOS, and BJT
devices. Some simulators contain ‘‘behavioral’’ models
which are useful for systems design or integration tasks;
examples of these are integrators, multipliers, summation,
and Laplace operator blocks. Some simulators are pro-
vided with libraries of prefitted models for commercially
available operational amplifiers, logic chips, and discrete
devices. Some programs allow ‘‘mixed-mode’’ simulation,
which is a combination of logic simulation (which nor-
mally allows only a few discrete voltage states) and analog
circuit simulation.

0.3

0.5

0.5 0.8
Length (L)

2.0 10

0.8

W

2.0

10
1 2 3 4

5 6 7 8

9 10 11 12

FIGURE 9.6 Binning of MOS parameters.

9-6 Computer Aided Design and Design Automation

9.7 Types of Analysis

For analog circuits, three methods of analysis are commonly used: DC, AC, and transient analysis. DC
analysis is used to examine the steady-state operation of a circuit; that is, what the circuit voltages
and currents would be if all inputs were held constant for an infinite time. AC analysis (or sinusoidal
steady state) examines circuit performance in the frequency domain using phasor analysis. Transient
analysis is performed in the time domain and is the most powerful and computationally intensive of the
three. For special applications, other methods of analysis are available such as the harmonic-balance
method, which is useful for detailed analysis of nonlinear effects in circuits excited by purely periodic
signals (like mixers and RF amplifiers).

9.7.1 DC (Steady-State) Analysis

DC analysis calculates the steady-state response of a circuit (with all inductors shorted and capacitors
removed). DC analysis is used to determine the operating point (Q-point) of a circuit, power
consumption, regulation and output voltage of power supplies, transfer functions, noise margin and
fanout in logic gates, and many other types of analysis. In addition, a DC solution must be calculated to
find the starting point for AC and transient analysis.
To calculate the DC solution, we need to solve Kirchhoff’s equations formulated earlier. Unfortunately,

since the circuit elements will be nonlinear in most cases, a system of transcendental equations will
normally result and it is impossible to solve this system analytically. The method that has met with the
most success is Newton’s method or one of its derivatives.

9.7.1.1 Newton’s Method

Newton’s method is actually quite simple. We need is to solve the system of equations F(X)¼ 0 for X,
where both F and X are vectors of dimension N. (F is the system of equations from modified nodal
analysis, and X is the vector of voltages and current that we are solving for.) Newton’s method states that
given an initial guess for Xi, we can obtain a better guess Xiþ1 from the equation:

Xiþ1 ¼ Xi � [J(Xi)]�1F(Xi) (9:10)

Note that all terms on the right side of the equation are functions only of the vector Xi. The term J(X) is a
N3N square matrix of partial derivatives of F, called the Jacobian. Each term in J is given by

Ji,j ¼ @Fi(X)
@Xj

(9:11)

We assemble the Jacobian matrix for the circuit at the same time that we assemble the circuit equations.
Analytic derivatives are used in most simulators.
The �1 in Equation 9.10 indicates that we need to invert the Jacobian matrix before multiplying by

the vector F. Of course, we do not need to actually invert J to solve the problem; we only need to solve the
linear problem F¼YJ for the vector Y and then calculate Xiþ1¼Xi�Y. A direct method such as the LU
decomposition is usually employed to solve the linear system.
For the small circuit of Figure 9.3, analyzed in steady state (without the capacitor), the Jacobian

entries are

J1,1 ¼ 1=R1 J1,2 ¼ �1=R1

J2,1 ¼ 1=R1 þ gm J2,2 ¼ 1=R1 þ 1=R2
(9:12)

Analog Circuit Simulation 9-7

For a passive circuit (i.e., a circuit without gain), the Jacobian will be symmetric and for any row, the
diagonal entry will be greater than the sum of all the other entries.
Newton’s method converges quadratically, provided that the initial guess Xi is sufficiently close to the

true solution. Quadratically implies that if the distance between Xi and the true solution is d, then the
distance between Xiþ1 and the true solution will be d2. Of course, we are assuming that d is small to start
with. Still, programs like SPICE may require 50 or more iterations to achieve convergence. The reason for
this is that, often times, the initial guess is poor and quadratic convergence is not obtained until the last
few iterations. There are additional complications like the fact that the model equations can become
invalid for certain voltages. For example, the BJT model will ‘‘explode’’ if a junction is forward-biased by
more than 1 V or so since: exp(1=Vt)¼ 5e16. Special limiting or damping methods must be used to keep
the voltages and currents to within reasonable limits.

9.7.1.2 Example Simulation

Most circuit simulators allow the user to ramp one or more voltage sources and plot the voltage at any
node or the current in certain branches. Returning to the differential pair of Figure 9.1, we can perform a
DC analysis by simply adding a .dc statement (see Figure 9.7). A plot of the differential output voltage
(between the two collectors) and the voltage at the two emitters is shown in Figure 9.8. Observe that the
output voltage is zero when the differential pair is ‘‘balanced’’ with 2.0 V on both inputs. The output
saturates at both high and low values for V1, illustrating the nonlinear nature of the analysis. This
simulation was run using the PSPICE package from MicroSim Corporation. The simulation run is a few
seconds on a 486 type PC.

9.7.2 AC Analysis

AC analysis is performed in the frequency
domain under the assumption that all signals
are represented as a DC component Vdc plus a
small sinusoidal component Vac

V ¼ Vdc þ Vac exp (jvt) (9:13)

where
j ¼ ffiffiffiffiffiffiffi�1

p
v is the radial frequency (2pf)
Vac is a complex number

Stead state analysis of differential pair.
V1 4 0 2V
V2 5 0 2V
V3 1 0 5V
R1 2 0 1k
R2 3 1 1K
R3 6 1 1K
Q1 3 4 2 m2n2222
Q2 6 5 2 m2n2222
.model m2n2222 NPN IS = 1e-12 BF = 100 BR = 5 TF = 100pS
.dc V1 1.0 3.0 0.01

FIGURE 9.7 Input file for DC sweep of V1.

Output

Emitters

6.0 V

1.0 V
0 V 2.0 V 4.0 V

V (6) V (2)

FIGURE 9.8 Output from DC analysis.

9-8 Computer Aided Design and Design Automation

Expanding Equation 9.1 about the DC bias point Vdc (also referred to as the Q point), we obtain

F(V) ¼ F(Vdc)þWdc þWac þ @G(Vdc)
@Vdc

Vac þ @

@t
@Q(Vdc)
@Vdc

� �
Vac þ aV2

acL (9:14)

The series has an infinite number of terms; however, we assume that if Vac is sufficiently small, all terms
above first order can be neglected. The first two terms on the right-hand side are the DC solution
and, when taken together, yield zero. The third term Wac is the vector of independent AC sources which
drive the circuit. The partial derivative in the fourth term is the Jacobian element, and the derivative of Q
in parentheses is the capacitance at the node. When we substitute the exponential into Equation 9.14,
each term will have an exponential term that can be canceled. The result of all these simplifications is the
familiar result:

0 ¼ Wac þ JVac þ jvCVac (9:15)

This equation contains only linear terms which are equal to the partial derivatives of the original problem
evaluated at the Q point. Therefore, before we can solve the AC problem, we must calculate the DC bias
point. Rearranging terms slightly, we obtain

Vac ¼ �(J þ jvC)�1Wac (9:16)

The solution at a given frequency can be obtained from a single matrix inversion. The matrix, however, is
complex but normally the complex terms share a sparsity pattern similar to the real terms. It is normally
possible (in FORTRAN and Cþþ) to create a suitable linear solver by taking the linear solver which is used
to calculate the DC solution and substituting ‘‘complex’’ variables for ‘‘real’’ variables. Since there is no
nonlinear iteration, there are no convergence problems and AC analysis is straightforward and foolproof.
The same type of analysis can be applied to the equations for modified nodal analysis. The unknowns

will of course be currents and the driving sources voltage sources.

Iac ¼ �(J þ jvL)�1Eac (9:17)

The only things that must be remembered with AC analysis are

1. AC solution is sensitive to the Q point, so if an amplifier is biased near its saturated DC output
level, the AC gain will be smaller than if the amplifier were biased near the center of its range.

2. This is a linear analysis and therefore ‘‘clipping’’ and slew rate effects are not modeled. For
example, if a 1 V AC signal is applied to the input of a small signal amplifier with a gain of
100 and a power supply voltage of 5 V, AC analysis will predict an output voltage of 100 V. This is
of course impossible since the output voltage cannot exceed the power supply voltage of 5 V. If you
want to include these effects, use transient analysis.

9.7.2.1 AC Analysis Example

In the following example, we will analyze the differential pair using AC analysis to determine its
frequency response. To perform this analysis in SPICE, we need to only specify which sources are the
AC-driving sources (by adding the magnitude of the AC signal at the end) and specify the frequency
range on the .AC statement (see Figure 9.9). SPICE lets the user specify the range as linear or ‘‘decade,’’
indicating that we desire a logarithmic frequency scale. The first number is the number of frequency
points per decade. The second number is the starting frequency, and the third number is the ending
frequency.

Analog Circuit Simulation 9-9

Figure 9.10 shows the results of the analysis. The gain begins to roll off at about 30 MHz due to the
parasitic capacitances within the transistor models. The input impedance (which is plotted in kV) begins
to roll off at a much lower frequency. The reduction in input impedance is due to the increasing current
that flows in the base–emitter capacitance as the current increases. SPICE does not have a method of
calculating input impedance, so we have calculated it as Z¼Vin=I(Vin), where Vin¼ 1.0, using the
postprocessing capability of PSPICE. This analysis took about 2 s on a 486-type PC.

9.7.2.2 Noise Analysis

Noise is a problem primarily in circuits that are designed for the amplification of small signals like the RF
and IF amplifiers of a receiver. Noise is the result of random fluctuations in the currents which flow in the
circuit and is generated in every circuit element. In circuit simulation, noise analysis, is an extension of
AC analysis. During noise analysis, it is assumed that every circuit element contributes some small noise
component either as a voltage Vn in series with the element or as a current In across the element. Since
the noise sources are small in comparison to the DC signal levels, AC small signal analysis is an
applicable analysis method.
Different models have been developed for the noise sources. In a resistor, thermal noise is the most

important component. Thermal noise is due to the random motion of the electrons:

I2n ¼ 4kTDf
R

(9:18)

where
T is the temperature
k is Boltzman’s constant
Df is the bandwidth of the circuit

In a semiconductor diode, shot noise is import-
ant. Shot noise is related to the probability that
an electron will surmount the semiconductor
barrier energy and be transported across the
junction:

I2n ¼ 2qIdDf (9:19)

Other types of noise occur in diodes and
transistors; examples are flicker and popcorn
noise. Noise sources, in general, are frequency-
dependent.

AC analysis of differential pair.
V1 4 0 2V AC 1
V2 5 0 2V
V3 1 0 5V
R1 2 0 1k
R2 3 1 1K
R3 6 1 1K
Q1 3 4 2 m2n2222
Q2 6 5 2 m2n2222
.model m2n2222 NPN IS = 1e-12 BF = 100 BR = 5 TF = 100pS
.AC DEC 10 1e3 1e9

FIGURE 9.9 Input file for AC analysis.

Input
impedence

Gain
15

0
1.0 kHz 1.0 MHz

Frequency
1.0 GHz

V (6) .001/I (v1)

FIGURE 9.10 Gain and input impedance calculated by
AC analysis.

9-10 Computer Aided Design and Design Automation

Noise signals will be amplified or attenuated
as they pass through different circuits. Nor-
mally, noise is referenced to some output
point called the ‘‘summing node.’’ This would
normally be the output of the amplifier
where we would actually measure the noise.
We can call the gain between the summing
node and the current flowing in an element
j in the circuit Aj(f). Here, f is the analysis
frequency since the gain will normally be
frequency dependent.
Noise signals are random and uncorrelated

to each other so their magnitudes must be
root-mean-squared summed rather than simply
summed. Summing all noise sources in a circuit
yields:

In(f) ¼
ffiX
j

A2
j (f)I

2
j (f)

s
(9:20)

It is also common to reference noise back to the amplifier input and this is easily calculated by dividing
the preceding expression by the amplifier gain. Specifying noise analysis in SPICE is simple. All the user
needs to do is add a statement specifying the summing node and the input source. SPICE then calculates
the noise at each as a function of frequency

:noise v([6]) V1 (9:21)

See Figure 9.11 for example output. Many circuit simulators will also list the noise contributions of each
element as part of the output. This is particularly helpful in locating the source of noise problems.

9.7.3 Transient Analysis

Transient analysis is the most powerful analysis capability because the transient response of a circuit is
so difficult to calculate analytically. Transient analysis can be used for many types of analysis, such as
switching speed, distortion, and checking the operation of circuits such as logic gates, oscillators, phase-
locked loops, or switching power supplies. Transient analysis is also the most CPU intensive and can
require 100 or 1000 times the CPU time of DC or AC analysis.

9.7.3.1 Numerical Method

In transient analysis, time is discretized into intervals called time steps. Typically, the time steps are of
unequal length, with the smallest steps being taken during intervals where the circuit voltages and
currents are changing most rapidly. The following procedure is used to discretize the time-dependent
terms in Equation 9.1.
Time derivatives are replaced by difference operators, the simplest of which is the forward difference

operator:

dQ(tk)
dt

¼ Q(tkþ1)� Q(tk)
h

(9:22)

Output noise

Input noise

20 nV

0 V
1.0 kHz 1.0 MHz

Frequency
1.0 GHz

V(INOISE) V(ONOISE)

FIGURE 9.11 Noise referenced to output and input.

Analog Circuit Simulation 9-11

where h is the time step given by h¼ tkþ1� tk. We can easily solve for the charge Q(tkþ1) at the next
time point:

Q(tkþ1) ¼ Q(tk)� h(Gi(V(tk))þWi(tk)) (9:23)

using only values from past time points. This means that it would be possible to solve the system
simply by plugging in the updated values for V each time. This can be done without any matrix assembly
or inversion and is very nice. (Note for simple linear capacitors, V¼Q=C at each node, so it is easy to get
V back from Q.) However, this approach is undesirable for circuit simulation for two reasons: (1) The
charge Q, which is a ‘‘state variable’’ of the system, is not a convenient choice since some nodes may
not have capacitors (or inductors) attached, in which case they will not have Q values and (2) It turns
out that forward (or explicit) time discretization methods like this one are unstable for ‘‘stiff’’ systems,
and most circuit problems result in ‘‘stiff systems.’’ The term ‘‘stiff system’’ refers to a system that has
greatly varying time constants.
To overcome the stiffness problem, we must use implicit time discretization methods which, in

essence, mean that the G and W terms in the above equations must be evaluated at tkþ1. Since G is
nonlinear, we will need to use Newton’s method once again.

The most popular implicit method is the trapezoidal method. The trapezoidal method has the
advantage of requiring information only from one past time point and, furthermore, has the smallest
error of any method requiring one past time point. The trapezoidal method states that if I is the current
in a capacitor, then

I(tkþ1) ¼ dQ
dt

¼ 2
Q(V(tkþ1))� Q(V(tk))

h
� I(tk) (9:24)

Therefore, we need to only substitute Equation 9.24 into Equation 9.1 to solve the transient problem.
Observe that we are solving for the voltages V(tkþ1), and all terms involving tk are constant and will
not be included in the Jacobian matrix. An equivalent electrical model for the capacitor is shown in
Figure 9.12. Therefore, the solution of the transient problem is in effect a series of DC solutions where the
values of some of the elements depend on voltages from the previous time points.
All modern circuit simulators feature automatic time step control. This feature selects small time steps

during intervals where changes occur rapidly and large time steps in intervals where there is little change.
The most commonly used method of time step selection is based on the local truncation error (LTE) for
each time step. For the trapezoidal rule, the LTE is given by

e ¼ h3

12
d3x
dt3

(j) (9:25)

and represents the maximum error introduced by the trap-
ezoidal method at each time step. If the error (e) is larger
than some preset value, the step size is reduced. If the error
is smaller, then the step size is increased. In addition, most
simulators select time points so that they coincide with the
edges of pulse-type waveforms.

9.7.3.2 Transient Analysis Examples

As a simple example, we return to the differential pair and
apply a sine wave differentially to the input. The amplitude
(2 V p-p) is selected to drive the amplifier into saturation.

Ic΄

2+C+Vc΄/dt

dt/(2+C)
+
–

+
–

FIGURE 9.12 Electrical model for a capaci-
tor; the two current sources are independent
sources. The prime (0) indicates values from a
preceding time point.

9-12 Computer Aided Design and Design Automation

In addition, we make the frequency (50 MHz) high enough to see phase shift effects. The output signal is
therefore clipped due to the nonlinearities and shifted in phase due to the capacitive elements in
the transistor models (see Figure 9.13). The first cycle shows extra distortion since it takes time for the
‘‘zero-state’’ response to die out. This simulation, using PSPICE, runs in about one second on a 486-type
computer.

9.8 Verilog-A

Verilog-A is a new language designed for simulation of analog circuits at various levels. Mathematical
equations can be entered directly as well as normal SPICE-type circuit elements.
Groups of equations and elements can be combined into reusable ‘‘modules’’ that are similar to subcircuits.

Special functions are also provided for converting analog signals into digital equivalents, and vice versa.
Systems-type elements such as Laplace operators, integrators, and differentiators are also provided. This
makes it possible to perform new types of modeling that were not possible in simulators like SPICE:

. Equations can be used to construct new models for electrical devices (for example, the Ebers–Moll
model described earlier could be easily implemented).

. Behavioral models for complex circuits like op-amps, comparators, phase detectors, etc. can be
constructed. These models can capture the key behavior of a circuit and yet be simulated in a small
fraction of the time it takes to simulate at the circuit level.

. Special interface elements make it possible to connect an analog block to a digital simulator,
making mixed-mode simulation possible. Verilog-A is related to and compatible with the popular
Verilog-D modeling language for digital circuits.

As an example, consider a phase-locked loop circuit which is designed as an 50X frequency multiplier.
A block diagram for the PLL is shown in Figure 9.14 and the Verilog-A input listing is shown in
Figures 9.15 and 9.16.

3.0 V

–2.0 V
0 s 20 ns

Time
40 ns 60 ns

V(6,3) V(4,5)

FIGURE 9.13 Transient response V(6,3) of differential amplifier to sinusoidal input at V(4,5).

Vref Vdif

Vref Vdiv

Vcnt
OUTPhase

detector
Loop
filter

Divider

VCO

FIGURE 9.14 Block diagram of phase-locked loop.

Analog Circuit Simulation 9-13

Simulation of this system at the circuit level is very time consuming due to the extreme difference in
frequencies. The phase detector operates at a low frequency of 1.0 MHz, while the VCO operates at close
to 50 MHz. However, we need to simulate enough complete cycles at the phase detector output to verify
that the circuit correctly locks onto the reference signal.
The circuit is broken up into five blocks or modules: the ‘‘top module,’’ VCO, divider, phase detector,

and loop filter. The VCO has a simple linear dependence of frequency on the VCO input voltage and
produces a sinusoidal output voltage. The VCO frequency is calculated by the simple expression
freq¼ centerþ gain* (Vin�Vmin). Center and gain are parameters which can be passed in when the
VCO is created within the top module by the special syntax ‘‘#(.gain(2e7),.center(3e7)’’
in the top module. If the parameters are not specified when the module is created, then the default values
specified within the module are used instead. The special V() operator is used to obtain the voltage at a
node (in this case V(in) and V(Vdd)). The sinusoidal output is created using the SIN and IDT
operators. SIN calculates the sine of its argument. Idt calculates the integral of its argument with respect to
time. The amplitude of the output is taken from the Vdd input, thus making it easy to integrate the VCO
block with others. Given that Vdd¼ 5 V, gain¼ 2e7 Hz=V, center¼ 3e7 Hz, and in¼ 1.8, the final
expression for the VCO output is

Vout ¼ 2:5þ 2:5 sin 3e7þ 2e7
ð
2p(Vin � 1:8)dt

� �
(9:26)

The phase detector functions as a charge pump which drives current into or out of the loop filter,
depending on the phase difference between its two inputs. The @cross(V1,dir) function becomes

‘include “electrical.h”
‘timescale 100ns/10ns

module top; // Top level Module
 electrical Vdd, Vref, Vdif, Vcnt, Vout, Vdiv;
 pd #(.gain(15u), .rout (2e6), dir(–l)) p1(Vdif, Vdiv, Vref, Vdd);
 filter f1 (Vdif, Vcnt);
 vco #(.gain(2e7), .center(3e7)) v1 (Vout, Vcntm Vdd);
 divide #(.count(50)) d1 (Vdiv, Vout, Vdd);
 analog begin
 V(Vdd) <+ 5.0;
 V(Vref) <+ 2.5+2.5*sin(6.238*1e6*$realtime);
 end
endmodule

module pd (out, vco, ref, vdd); //Phase detector Module.
 inout out, vco, ref, vdd;
 electrical out,vco, ref, vdd;
 parameter real gain = 15u, rout = 5e6; // gain & output impedance
 parameter integer dir = 1; // 1,–1 pos or neg edge trigger
 integer state;
 analog begin
 @ (cross((V(ref) – V(vdd)/2),dir)) state = state – 1;
 @ (cross((V(vco) – V(vdd)/2),dir)) state = state + 1;
 if (state > 1) state = 1;
 if (state < –1) state = –1;
 if (state ! = 0) I(out) <+ transition (state * gain, 0, 0, 0);
 I(out) <+ V(out)/rout;
 end
endmodule

FIGURE 9.15 Part one of Verilog-A listing for PLL.

9-14 Computer Aided Design and Design Automation

true whenever signal V1 crosses zero in the direction specified by dir. This either increments or
decrements the variable STATE. The ‘‘transition’’ function is used to convert the STATE signal, which
is essentially digital and changes abruptly into a smoothly changing analog signal which can be applied
to the rest of the circuit. The ‘‘<þ’’ (or contribution) operator adds the current specified by the
equation on the right to the node on the left. Therefore, the phase detector block forces current into the
output node whenever the VCO signal leads the reference signal and forcing current out of the output
node whenever the reference leads the VCO signal. The phase detector also has an output resistance
which is specified by parameter ROUT.
The loop filter is a simple SPICE subcircuit composed of two resistors and one capacitor. Of course,

this subcircuit could contain other types of elements as well and can even contain other Verilog-A
modules. The divider block simply counts zero crossings and, when the count reaches the preset
divisor, the output of the divider is toggled from 0 to 1, or vice versa. The transition function is used to
ensure that a smooth, continuous analog output is generated by the divider.
This PLL was simulated using AMS from Antrim Design Systems. The results of the simulations are

shown in Figure 9.17. The top of Figure 9.17 shows the output from the loop filter (Vcnt). After a few
cycles, the PLL has locked onto the reference signal. The DC value of the loop filter output is

module divide (out, in, vdd); // Divider module....
 inout out, in;
 electrical out, in;
 parameter real count = 4; // divide by this.
 integer n, state;
 analog begin

 @(cross((V(in) – V(vdd)/2.0),1)) n = n + 1;
 if (n >= count/2) begin
 if (state == 0) state = 1;
 else state = 0;
 n = 0;
 end
 V(out) <+ transition(state*5, 0, 0, 0);
 end
endmodule

module vco (vout, vin, vdd); // VCO module
 inout vin, vout, vdd;
 electrical vin, vout, vdd;
 parameter real gain = 5e6, center = 40e6, vmin = 1.8;
 real freq, vinp;
 analog begin
 vinp = V(vin);
 if (vinp < vm) vinp = vmin;
 freq = center + gain* (vinp-vmin);
 V(vout) <+ V(vdd)/2.0*sin(6.28318531*idt(freq,0)) + V(vdd)/2.0;
 end
endmodule

‘language SPICE
.SUBCKT filter Vin Vout
Rf2 Vin Vout 100
Rfilter Vin VC2 200000
C1 VC2 0 58p
C2 Vin 0 5p
.ends
‘endlanguage

FIGURE 9.16 Part two of Verilog-A PLL listing.

Analog Circuit Simulation 9-15

approximately 2.8 V. Referring back to the VCO model, this gives an output frequency of 2e7*
(2.8� 1.8)þ 3e7¼ 50 MHz, which is as expected. The lower portion of Figure 9.17 shows the divider
output (Vdiv) and the reference signal (Vref). It can be seen that the two signals are locked in phase.
Figure 9.18 shows the VCO output and the divider output. As expected, the VCO frequency is 50 times
the divider frequency.
The behavioral models used in this example are extremely simple ones. Typically, more complex

models must be used to accurately simulate the operation of an actual PLL. A better model might
include effects such as the nonlinear dependence of the VCO frequency on the input voltage, the
effects on signals introduced through power supply lines, delays in the divider and phase detector, and
finite signal rise and fall times. These models can be built up from measurements, or transistor-level
simulation of the underlying blocks (a process known as characterization). Of course, during the
simulation, any of the behavioral blocks could be replaced by detailed transistor-level models or
complex Verilog-D digital models.
Another Verilog-A example is shown in Figure 9.19. Here, the Ebers–Moll model developed earlier is

implemented as a module. This module can then be used in a circuit in the same way as the normal built-
in models. Verilog-A takes care of calculating all the derivatives needed to form the Jacobian matrix. The
‘‘parameter’’ entries can be used in the same way as the parameters on a SPICE.MODEL statement.
Observe the special ‘‘ddt’’ operator. This operator is used to take the time derivative of its argument.
In this case, the time derivative of the charge (a current) is calculated and summed in with the other DC
components. The ‘‘$limexp’’ operation is a special limited exponential operator designed to give better
convergence when modeling pn junctions. Of course, this module could be expanded and additional
features could be added.

–2 V
–1 V

0 V
1 V
2 V
3 V
4 V
5 V
6 V
7 V

0.0 V
0.5 V

1.0 V

1.5 V

2.0 V

2.5 V

3.0 V

0

FIGURE 9.17 Loop filter output (top) Vref and divider output (bottom) from PLL simulation.

9-16 Computer Aided Design and Design Automation

0.0 V

2.0 V
2.5 V

1.5 V
1.0 V
0.5 V

3.0 V
3.5 V
4.0 V
4.5 V
0.0 V
0.5 V
1.0 V
1.5 V
2.0 V
2.5 V
3.0 V
3.5 V
4.0 V
4.5 V

0

FIGURE 9.18 VCO output and divider output from PLL simulation.

module mybjt (C,B,E);
 inout C,B,E;
 electrical C,B,E;
 parameter real is = le–16, bf = 100, br = 10, tf = 1n, tr = l0n, cje = 1p cjc = lp,
 vje = 0.75, vjc = 0.75, mje = 0.33 mjc = 0.33;
 real ibc, ibe, qbc, qbe, vbe, vbc, cc, cb, x, y;
 analog begin
 vbe = V(B,E);
 vbc = V(B,C);
 ibe = is*($limexp(vbe/$vt)–1);
 ibc = is*($limexp(vbc/$vt)–1);
 cb = ibe/bf + ibc/br;
 cc = ibe – ibc – ibc/br
 if(vbe < 0) begin
 x = 1–vbe/vje;
 y = exp(–mje*ln(x));
 qbe = vje*cje*(1–x*y)/(l.0–mje)+tf*ibe;
 end
 else qbe = cje*(vbe*+0.5*mje*vbe*vbe/vje) + tf*ibe;
 if(vbc < 0) begin
 x = 1 –vbc/vjc;
 y = exp(–mjc*ln(x));
 qbc = vjc*cjc*(l–x*y)/(1.0–mjc) + tr*ibc;
 end
 else qbc = cjc*(vbc+0.5*mjc*vbc*vbc/vjc) + tr*ibc;
 ibe = ddt(qbe);
 ibc = ddt(qbc);
 I(C,E) <+ cc – ibc;
 I(B,E) <+ cb + ibe + ibc;
 end
endmodule

FIGURE 9.19 Verilog-A implementation of the Ebers–Moll model.

Analog Circuit Simulation 9-17

9.9 Fast Simulation Methods

As circuits get larger, simulation times become larger. In addition, as integrated circuit feature sizes
shrink, second-order effects become more important and many circuit designers would like to be able to
simulate large digital systems at the transistor level (requiring 10,000 to 100,000 nodes). Numerical
studies in early versions of SPICE showed that the linear solution time could be reduced to 26% for
relatively small circuits with careful coding. The remainder is used during the assembly of the matrix,
primarily for model evaluation. The same studies found that the CPU time for the matrix solution was
proportional to n1.24, where n is the number of nodes. The matrix assembly time on the other hand
should increase linearly with node count. Circuits have since grown much bigger, but the models
(particularly for MOS devices) have also become more complicated.
Matrix assembly time can be reduced by a number of methods. One method is to simplify the models;

however, accuracy will be lost as well. A better way is to precompute the charge and current character-
istics for the complicated models and store them into tables. During simulation, the actual current and
charges can be found from table lookup and interpolation, which can be done quickly and efficiently.
However, there are some problems:

1. To assure convergence of Newton’s method, both the charge and current functions and their
derivatives must be continuous. This rules out most simple interpolation schemes and means that
something like a cubic spline must be used.

2. The tables can become large. A MOS device has four terminals, which means that all tables will be
functions of three independent variables. In addition, the MOSFET requires four separate tables
(Id, Qg, Qd, Qb). If we are lucky, we can account for simple parameteric variations (like channel
width) by a simple multiplying factor. However, if there are more complex dependencies as is the
case with channel length, oxide thickness, temperature, or device type, we will need one complete
set of tables for each device.

If the voltages applied to an element do not change from the past iteration to the present iteration, then
there is no need to recompute the element currents, charges, and their derivatives. This method is
referred to as taking advantage of latency and can result in large CPU time savings in logic circuits,
particularly if coupled with a method that only refractors part of the Jacobian matrix. The tricky part
is knowing when the changes in voltage can be ignored. Consider, for example, the input to a high-gain
op-amp, here ignoring a microvolt change at the input could result in a large error at the output. Use of
sophisticated latency-determining methods could also cut into the savings.
Another set of methods are the waveform relaxation techniques which increase efficiency by tempo-

rarily ignoring couplings between nodes. The simplest version of the method is as follows. Consider a
circuit with n nodes which requires m time points for its solution. The circuit can be represented by the
vector equation:

Fi(V(t))þ dQi(V(t))
dt

¼ 0 (9:27)

Using trapezoidal time integration gives a new function:

Wi(V(k)) ¼ Fi(V(k))þ Fi(V(k� 1))þ 2[Qi(V(k))� Qi(V(k� 1))]=dt ¼ 0 (9:28)

We need to find the V(k) that makes W zero for all k time points at all i nodes. The normal method
solves for all n nodes simultaneously at each time point before advancing k. Waveform relaxation solves
for all m time points at a single node (calculates the waveform at that node) before advancing to the
next node. An outer loop is used to assure that all the individual nodal waveforms are consistent with
each other.

9-18 Computer Aided Design and Design Automation

Waveform relaxation is extremely efficient as long as the number of outer loops is small. The number
of iterations will be small if the equations are solved in the correct order; that is, starting on nodes which
are signal sources and following the direction of signal propagation through the circuit. This way, the
waveform at node iþ 1 will depend strongly on the waveform at node i, but the waveform at node i will
depend weakly on the signal at node iþ 1. The method is particularly effective if signal propagation is
unidirectional, as is sometimes the case in logic circuits. During practical implementation, the total
simulation interval is divided into several subintervals and the subintervals are solved sequentially. This
reduces the total number of time points which must be stored. Variants of the method solve small
numbers of tightly coupled nodes as a group; such a group might include all the nodes in a TTL gate or in
a small feedback loop. Large feedback loops can be handled by making the simulation time for each
subinterval less than the time required for a signal to propagate around the loop.
The efficiency of this method can be further improved using different time steps at different nodes,

yielding a multirate method. This way, during a given interval, small time steps are used at active nodes
while large steps are used at inactive nodes (taking advantage of latency).

9.10 Commercially Available Simulators

The simulations in this chapter were performed with the evaluation version of PSPICE from Microsim
and AMS from Antrim design systems. The following vendors market circuit simulation software. The
different programs have strengths in different areas and most vendors allow you to try their software
in-house for an ‘‘evaluation period’’ before you buy.

References

On general circuit simulation:

1. J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, Van Nostrand Reinhold,
New York, 1983.

2. A. E. Ruehli, Ed., Circuit Analysis, Simulation and Design, Part 1, Elsevier Science, B.V. North
Holland, 1981.

3. L. Nagel, SPICE2: A computer program to simulate semiconductor circuits, PhD thesis, University of
California, Berkeley, CA, 1975.

4. K. Kundert, The Designers Guide to SPICE and SPECTRE, Kluwer Academic, Boston, MA, 1995.
5. P. W. Tuinenga, SPICE, A Guide to Circuit Simulation and Analysis Using PSPICE, Prentice Hall,

Englewood Cliffs, NJ, 1988.
6. J. A. Connelley and P. Choi, Macromodeling with SPICE, Prentice Hall, Engelwood Cliffs, NJ, 1992.
7. P. Gray and R. Meyer, Analysis and Design of Analog Integrated Circuits, Wiley, New York, 1977.
8. A. Vladimiresch, The SPICE Book, Wiley, New York, 1994.

SPICE2-SPICE3 University of California, Berkeley, CA
AMS Antrim Design Systems, Scotts Valley, CA, www.antrim.com
PSPICE Orcad Corporation, Irvine, CA, www.orcad.com
HSPICE Avant! Corporation, Fremont, CA, www.avanticorp.com
ISPICE Intusoft, SanPedro, CA, www.intusoft.com
SABER Analogy, Beaverton, OR, www.analogy.com
SPECTRE Cadence Design Systems, San Jose, CA, www.cadence.com
TIMEMILL Synopsys Corporation, Sunnyvale, CA, www.synopsys.com
ACCUSIM II Mentor Graphics, Wilsonville, OR, www.mentorg.com

Analog Circuit Simulation 9-19

On modern techniques:

9. A. E. Ruehli, Ed., Circuit Analysis, Simulation and Design, Part 2, Elsevier Science, B.V. North
Holland, 1981.

On device models:

10. P. Antognetti and G. Massobrio, Semiconductor Modeling with SPICE2, 2nd edn., McGraw-Hill,
New York, 1993.

11. D. Foty, MOSFET Modeling with SPICE, Prentice Hall, Englewood Cliffs, NJ, 1997.
12. BSIM3 Users Guide, www-device.EECS.Berkeley.EDU=�bsim3.
13. MOS-9 models, www-us2.semiconductors.philips.com=Philils_Models.

On Verilog-A

14. D. Fitzpatrick, Analog Behavior Modeling with the Verilog-A Language, Kluwer Academic, Boston,
MA, 1997.

9-20 Computer Aided Design and Design Automation

II
Design
Automation
Wai-Kai Chen
University of Illinois at Chicago

10 Internet-Based Microelectronic Design Automation Framework
Moon-Jung Chung and Heechul Kim .. 10-1
Introduction . Functional Requirements of Framework . IMEDA System . Formal
Representation of Design Process . Execution Environment of the Framework .

Implementation . Conclusion . References

11 System-Level Design Alice C. Parker, Yosef Tirat-Gefen,
and Suhrid A. Wadekar .. 11-1
Introduction . System Specification . System Partitioning . Scheduling and Allocating
Tasks to Processing Modules . Allocating and Scheduling Storage Modules .

Selecting Implementation and Packaging Styles for System Modules . Interconnection
Strategy . Word-Length Determination . Predicting System Characteristics . Survey
of Research in System Design . References

12 Performance Modeling and Analysis Using VHDL and SystemC
Robert H. Klenke, Jonathan A. Andrews, and James H. Aylor .. 12-1
Introduction . ADEPT Design Environment . Simple Example of an ADEPT
Performance Model . Mixed-Level Modeling . Performance and Mixed-Level
Modeling Using SystemC . Conclusions . References

13 Embedded Computing Systems and Hardware=Software Codesign
Wayne Wolf ... 13-1
Introduction . Uses of Microprocessors . Embedded System Architectures .

Hardware=Software Codesign .

14 Design Automation Technology Roadmap Donald R. Cottrell 14-1
Introduction . Design Automation: Historical Perspective . The Future . Summary .

References

II-1

10
Internet-Based

Microelectronic Design
Automation
Framework

Moon-Jung Chung
Michigan State University

Heechul Kim
Hankuk University of Foreign Studies

10.1 Introduction .. 10-1
10.2 Functional Requirements of Framework.......................... 10-3

Building Blocks of Process . Functional Requirements
of Workflow Management . Process Specification .

Execution Environment . Literature Surveys

10.3 IMEDA System .. 10-9
10.4 Formal Representation of Design Process 10-12

Process Flow Graph . Process Grammars

10.5 Execution Environment of the Framework 10-16
Cockpit Program . Manager Programs .

Execution Example . Scheduling

10.6 Implementation.. 10-23
System Cockpit . External Tools . Communications Model .

User Interface

10.7 Conclusion... 10-30
References .. 10-30

10.1 Introduction

As the complexity of VLSI systems continues to increase, the microelectronic industry must possess an
ability to reconfigure design and manufacturing resources and integrate design activities so that it can
quickly adapt to the market changes and new technology. Gaining this ability imposes a twofold
challenge: (1) to coordinate design activities that are geographically separated and (2) to represent an
immense amount of knowledge from various disciplines in a unified format. The Internet can provide the
catalyst by abridging many design activities with the resources around the world not only to exchange
information but also to communicate ideas and methodologies.
In this chapter, we present a collaborative engineering framework that coordinates distributed design

activities through the Internet. Engineers can represent, exchange, and access the design knowledge and
carry out design activities. The crux of the framework is the formal representation of process flow using
the process grammar, which provides the theoretical foundation for representation, abstraction, manipu-
lation, and execution of design processes. The abstraction of process representation provides mechanisms
to represent hierarchical decomposition and alternative methods, which enable designers to manipulate

10-1

the process flow diagram and select the best method. In the framework, the process information is
layered into separate specification and execution levels so that designers can capture processes and
execute them dynamically. As the framework is being executed, a designer can be informed of the current
status of design such as updating and tracing design changes and be able to handling exception. The
framework can improve design productivity by accessing, reusing, and revising the previous process for a
similar. The cockpit of our framework interfaces with engineers to perform design tasks and to negotiate
design trade-off. The framework has the capability to launch whiteboards that enable the engineers in a
distributed environment to view the common process flows and data and to concurrently execute
dynamic activities such as process refinement, selection of alternative process, and design reviews. The
proposed framework has a provision for various browsers where the tasks and data used in one activity
can be organized and retrieved later for other activities.
One of the predominant challenges for microelectronic design is to handle the increased complexity of

VLSI systems. At the turn of the century, it is expected that there will be 100 million transistors in a single
chip with 0.1 mm features, which will require an even shorter design time (Spiller and Newton, 1997).
This increase of chip complexity has given impetus to trends such as system on a chip, embedded system,
and hardware=software codesign. To cope with this challenge, industry uses custom-off-the-shelf (COTS)
components, relies on design reuse, and practices outsourcing design. In addition, design is highly
modularized and carried out by many specialized teams in a geographically distributed environment.
Multifacets of design and manufacturing, such as manufacturability and low power, should be considered
at the early stage of design. It is a major challenge to coordinate these design activities (Fairbairn, 1994).
The difficulties are caused by due to the interdependencies among the activities, the delay in obtaining
distant information, the inability to respond to errors and changes quickly, and general lack of commu-
nications. At the same time, the industry must contend with decreased expenditures on manufacturing
facilities while maintaining rapid responses to market and technology changes.
To meet this challenge, the U.S. government has launched several programs. The Rapid Prototyping of

Application Specific Signal Processor (RASSP)Programwas initiated by theDepartment ofDefense to bring
about the timely design and manufacturing of signal processors. One of the main goals of the RASSP
program was to provide an effective design environment to achieve a four-time improvement in the
development cycle of digital systems (Chung et al., 1996). DARPA also initiated a program to develop
and demonstrate key software elements for Integrated Product and Process Development (IPPD) and agile
manufacturing applications.One of the foci of the earlier programwas the development of infrastructure for
distributed design and manufacturing. Recently, the program is continued to Rapid Design Exploration &
Optimization (RaDEO) to support research, development, and demonstration of enabling technologies,
tools, and infrastructure for the next generation of design environments for complex electromechanical
systems. The design environment of RaDEO is planned to provide cognitive support to engineers by vastly
improving their ability to explore, generate, track, store, and analyze design alternatives (Lyons, 1997).
The new information technologies, such as the Internet and mobile computing, are changing the way

we communicate and conduct business. More and more design centers use PCs, and link them on the
Internet=intranet. The web-based communication allows people to collaborate across space and time,
between humans, humans and computers, and computers in a shared virtual world (Berners-Lee et al.,
1994). This emerging technology holds the key to enhance design and manufacturing activities. The
Internet can be used as the medium of a virtual environment where concepts and methodologies can be
discussed, accessed, and improved by the participating engineers. Through the medium, resources and
activities can be reorganized, reconfigured, and integrated by the participating organizations. This new
paradigm certainly impacts the traditional means for designing and manufacturing a complex product.
Using Java, programs can be implemented in a platform-independent way so that they can be executed in
any machine with a Web browser. Common Object Request Broker Architecture (CORBA) (Yang and
Duddy, 1996) provides distributed services for tools to communicate through the Internet (Vogel and
Duddy). Designers may be able to execute remote tools through the Internet and see the visualization of
design data (Erkes et al., 1996; Chan et al., 1998; Chung and Kwon, 1998).

10-2 Computer Aided Design and Design Automation

Even though the potential impact of this technology will be great on computer aided design, Electronic
Design Automation (EDA) industry has been slow in adapting this new technology (Spiller and Newton,
1997). Until recently, EDA frameworks used to be a collection of point tools. These complete suites of
tools are integrated tightly by the framework using their proprietary technology. These frameworks have
been suitable enough to carry out a routine task where the process of design is fixed. However, new tools
appear constantly. To mix and match various tools outside of a particular framework is very difficult.
Moreover, tools, expertise, and materials for design and manufacturing of a single system are dispersed
geographically. Now we have reached the stage where a single tool or framework is not sufficient enough
to handle the increasing complexity of a chip and emerging new technology. A new framework is
necessary which is open and scalable. It must support collaborative design activities so that designers
can add new tools to the framework, and interface them with other CAD systems. There are two key
functions of the framework: (1) managing the process and (2) maintaining the relationship among many
design representations. For design data management, refer to Katz et al. (1987). In this chapter, we will
focus on the process management aspect.
To cope with the complex process of VLSI system design, we need a higher level of viewing of a

complete process, i.e., the abstraction of process by hiding all details that need not to be considered for
the purpose at hand. As pointed out in National Institute of Standards and Technology reports (Schlenoff
et al., 1996; Knutilla et al., 1998), a ‘‘unified process specification language’’ should have the following
major requirements: abstraction, alternative task, complex groups of tasks, and complex sequences.
In this chapter, we first review the functional requirements of the process management in VLSI system

design. We then present the Internet-based Microelectronic Design Automation (IMEDA) System.
IMEDA is a web-based collaborative engineering framework where engineers can represent, exchange,
and access design knowledge and perform the design activities through the Internet. The crux of the
framework is a formal representation of process flow using process grammar. Similar to the language
grammar, production rules of the process grammar map tasks into admissible process flows (Baldwin and
Chung, 1995a). The production rules allow a complex activity to be represented more concisely with a
small number of high-level tasks. The process grammar provides the theoretical foundation for repre-
sentation, abstraction, manipulation, and execution of design and manufacturing processes. It facilitates
the communication at an appropriate level of complexity. The abstraction mechanism provides a natural
way of browsing the process repository and facilitates process reuse and improvement. The strong
theoretical foundation of our approach allows users to analyze and predict the behavior of a particular
process. The cockpit of our framework interfaces with engineers to perform design tasks and to negotiate
design trade-off. The framework guides the designer in selecting tools and design methodologies, and it
generates process configurations that provide optimal solutions with a given set of constraints. The just-
in-time binding and the location transparency of tools maximize the utilization of company resources.
The framework is equipped with whiteboards so that engineers in a distributed environment can view the
common process flows and data and concurrently execute dynamic activities such as process refinement,
selection of alternative processes, and design reviews. With the grammar, the framework gracefully
handles exceptions and alternative productions. A layered approach is used to separate the specification
of design process and execution parameters. One of the main advantages of this separation is freeing
designers from the overspecification and graceful exception handling. The framework, implemented
using Java, is open and extensible. New process, tools, and user-defined process knowledge and
constraints can be added easily.

10.2 Functional Requirements of Framework

Design methodology is defined as a collection of principles and procedures employed in the design
of engineering systems. Baldwin and Chung (1995a) define design methodology management as selecting
and executing methodologies so that the input specifications are transformed into desired output
specifications. Kleinfeldth et al. (1994) state that ‘‘design methodology management provides for the

Internet-Based Microelectronic Design Automation Framework 10-3

definition, presentation, execution, and control of designmethodology in a flexible, configuredway.’’Given
a methodology, we can select a process or processes for that particular methodology.
Each design activity, whether big or small, can be treated as a task. A complex design task is

hierarchically decomposed into simpler subtasks, and each subtask in turn may be further decomposed.
Each task can be considered as a transformation from input specification to output specification. The
term workflow is used to represent the details of a process including its structure in terms of all the
required tasks and their interdependencies. Some process may be ill-structured, and capturing it as a
workflow may not be easy. Exceptions, conditional executions, and human involvement during the
process make it difficult to model the process as a workflow.
There can be many different tools or alternative processes to accomplish a task. Thus, a design process

requires design decisions such as selecting tools and processes as well as selecting appropriate design
parameters. At a very high level of design, the input specifications and constraints are very general and
may even be ill-structured. As we continue to decompose and perform the tasks based on design
decisions, the output specifications are refined and the constraints on each task become more restrictive.
When the output of a task does not meet certain requirements or constraints, a new process, tools, or
parameters must be selected. Therefore, the design process is typically iterative and based on previous
design experience. Design process is also a collaborative process, involving many different engineering
activities and requiring the coordination among engineers, their activities, and the design results.
Until recently, it was the designer’s responsibility to determine which tools to use and in what order to

use them. However, managing the design process itself has become difficult, since each tool has its own
capabilities and limitations. Moreover, new tools are developed and new processes are introduced
continually. The situation is further aggravated because of incompatible assumptions and data formats
between tools. To manage the process, we need a framework to monitor the process, carry out design
tasks, support cooperative teamwork, and maintain the relationship among many design representations
(Katz et al., 1987; Chiueh and Katz, 1990). The framework must support concurrent engineering
activities by integrating various CAD tools and process and component libraries into a seamless
environment. Figure 10.1 shows the RASSP enterprise system architecture (Welsh et al., 1995). It
integrates tools, tool frameworks, and data management functions into an enterprise environment. The
key functionality of the RASSP system is managing the RASSP design methodology by ‘‘process
automation’’, that is, controlling CAD program execution through workflow.

10.2.1 Building Blocks of Process

The lowest level of a building block of a design process is a tool. A tool is an unbreakable unit of a CAD
program. It usually performs a specific task by transforming given input specifications into output
specifications. A task is defined as design activities that include information about what tools to use and
how to use them. It can be decomposed into smaller subtasks. The simplest form of the task, called an
atomic task, is the one that cannot be decomposed into subtasks. In essence, an atomic task is defined as an
encapsulated tool. A task is called logical if it is not atomic. A workflow of a logical task describes the details
of how the task is decomposed into subtasks, and the data and control dependencies such as the
relationship between design data used in the subtasks. For a given task, there can be several workflows,
each of which denotes a possible way of accomplishing the task. Amethodology is a collection of workflow
supported together with information on which workflow should be selected in a particular instance.

10.2.2 Functional Requirements of Workflow Management

To be effective, a framework must integrate many design automation tools and allow the designer to
specify acceptable methodologies and tools together with information such as when and how they may be
used. Such a framework must not only guide the designer in selecting tools and design methodologies,
but also aid the designer in constructing a workflow that is suitable to complete the design under given

10-4 Computer Aided Design and Design Automation

constraints. The constructed workflow should guarantee that required steps are not skipped; built-in
design checks are incorporated into the workflow. The framework must also keep the relationships
between various design representations, maintain the consistency between designs and support coopera-
tive teamwork, and allow the designer to interact with the system to adjust design parameters or to
modify the previous design process. The framework must be extendible to accommodate rapidly
changing technologies and emerging new tools. Such a framework can facilitate developing new hardware
systems as well as redesigning a system from a previous design.
During a design process, a particular methodology or workflow selected by a designer must be based

on available tools, resources (computing and human), and design data. For example, a company may
impose a rule that if input is a VHDL behavioral description, then designers should use Model
Technology’s VHDL simulator, but if the input is Verlig, they must use ViewLogic simulator. Or, if a
component uses Xilinx, then all other components must also use Xilinx. Methodology must be driven by
local expertise and individual preference, which in turn, are based on the designer’s experience.

The process management should not constrain the designer. Instead, it must free designers from
routine tasks, and guide the execution of workflow. User interaction and a designer’s freedom are
especially important when exceptions are encountered during the execution of flows, or when designers
are going to modify the workflow locally. The system must support such activities through ‘‘controlled
interactions’’ with designers.

Process management can be divided into two parts:

. Formal specification of supported methodologies and tools that must show the tasks and data
involved in a workflow and their relationships

. Execution environment that helps designers to construct workflow and execute them

OSF/Motif

DM 2.0 object management framework

Design
methodology

manager
T
o
o
l

1

T
o
o
l

N

C
O
L
L
A
B.

E
N
G
I
N
E

E-mail,

Mfg.
Interface

Comm.
Services

RASSP reuse
data management
system (RRDM)

DM 2.0

manager

Product
meta data

User
meta data

Workflow
meta data

Other
meta data

Bulk product
data

Library
data

Browse,

etc.

Project
builder

Sub-framework
tools (i.e., Falcon)

FIGURE 10.1 RASSP enterprise system architecture.

Internet-Based Microelectronic Design Automation Framework 10-5

10.2.3 Process Specification

Methodology management must provide facilities to specify design processes. Specification of processes
involves tasks and their structures (i.e., workflow). The task involved and the flow of process, that is the
way the process can be accomplished in terms of its subtasks, must be defined. Processes must be
encapsulated and presented to designers in a usable way. Designers want an environment to guide them
in building a workflow and to help them execute it during the design process. Designers must be able to
browse related processes, and compare, analyze, and modify them.

10.2.3.1 Tasks

Designers should be able to define the tasks that can be logical or atomic, organize the defined tasks,
and retrieve them. Task abstraction refers to using and viewing a task for specific purposes and
ignoring the irrelevant aspects of the task. In general, object-oriented approaches are used for this
purpose. Abstraction of the task may be accomplished by defining tasks in terms of ‘‘the operations the
task is performing’’ without detailing the operations themselves. Abstraction of tasks allows users to
clearly see the behavior of them and use them without knowing the details of their internal imple-
mentations. Using the generalization–specialization (GS) hierarchy (Chung and Kim, 1990), similar
tasks can be grouped together. In the hierarchy, a node in the lower level inherits its attributes from its
predecessors. By inheriting the behavior of a task, the program can be shared, and by inheriting the
representation of a task (in terms of its flow), the structure (workflow) can be shared. The Process
Handbook (Malone et al., in press) embodies concepts of specialization and decomposition to represent
processes.
There are various approaches associated with binding a specific tool to an atomic task. A tool can be

bound to a task statically at the compile time, or dynamically at the run time based on available resources
and constraints. When a new tool is installed, designers should be able to modify the existing bindings.
The simplest approach is to modify the source code or write a script file and recompile the system. The
ideal case is plug and play, meaning that CAD vendors address the need of tool interoperability, e.g., the
Tool Encapsulation Specification (TES) proposed by CFI (1995).

10.2.3.2 Workflow

To define a workflow, we must specify the tasks involved in the workflow, data, and their relationship.
A set of workflows defined by methodology developers enforces the user to follow the flows imposed by
the company or group. Flows may also serve to guide users in developing their own flows. Designers
would retrieve the cataloged flows, modify them, and use them for their own purposes based on the
guidelines imposed by the developer. It is necessary to generate legal flows. A blackboard approach was
used in (Lander et al., 1996) to generate a particular flow suitable for a given task. In Nelsis (ten Bosch
et al., 1991), branches of a flow are explicitly represented using ‘‘or’’ nodes and ‘‘merge’’ nodes. A task
can be accomplished in various ways. It is necessary to represent alternative methodologies for the task
succinctly so that designers can access alternative methodologies and select the best one based on what-if
analysis. IDEF3.X (IDEF) is used to graphically model workflow in RASSP environment. Figure 10.2
shows an example of workflow using IDEF3.X. A node denotes a task. It has inputs, outputs, mecha-
nisms, and conditions. IDEF definition has been around for 20 years mainly to capture flat modeling such
as a shop floor process. IDEF specification, however, requires complete information such as control
mechanisms and scheduling at the specification time, making the captured process difficult to under-
stand. In IDEF, ‘‘or’’ nodes are used to represent the alternative paths. It does not have an explicit
mechanism to represent alternative workflow. IDEF is ideal only for documenting the current practice
and not suitable for executing iterative process which is determined during the execution of the process.
Perhaps, the most important aspect missing from most process management systems is the abstraction
mechanism (Schlenoff et al., 1996).

10-6 Computer Aided Design and Design Automation

10.2.4 Execution Environment

The execution environment provides dynamic execution of tasks and tools and binds data to tools, either
manually or automatically. Few frameworks separate the execution environment from the specification of
design process. There are several modes in which a task can be executed (Kleinfeldth et al., 1994): manual
mode, manual execution of flow, automatic flow execution, and automatic flow generation. In manual
flow execution, the environment executes a task in the context of a flow. In an automatic flow execution
environment, tasks are executed based on the order specified on the flow graph. In automatic flow
generation, the framework generates workflow dynamically and executes them without the guidance of
designers. Many frameworks use blackboard or knowledge-based approaches to generate workflow.
However, it is important for designers to be able to analyze the workflow created and share it with
others. That is, repeatability and predictability are important factors if frameworks support dynamic
creation of workflow.
Each task may be associated with pre and postconditions. Before a task is executed, the precondition of

the task is evaluated. If the condition is not satisfied, the framework either waits until the condition is
met, or aborts the task and selects another alternative. After the task is executed, its postcondition is
evaluated to determine if the result meets the exit criteria. If the evaluation is unsatisfactory, another
alternative should be tried.
When a task is complex involving many subtasks and each subtask in turn has many alternatives,

generating a workflow for the task that would successfully accomplish the task is not easy. If the first try
of an alternative is not successful, another alternative should be tried. In some cases, backtrack occurs
which nullifies all the executions of previous workflow.

10.2.5 Literature Surveys

Many systems have been proposed to generate design process (Knapp and Parker, 1991) and manage
workflow (Dellen et al., 1997; Lavana et al., 1997; Schurmann and Altmeyer, 1997; Sutton and Director,

C: Updated * Lessons
learned

C: Defined * Wiring
rules

2.2.3.2.1
Perform wirewrap place,

route, and electrical analysis
1

Generated *
Wirewrap netlist

Generated * Mechanical
analysis of backplane

M: Qualified * Subsystem
design engineer

And

Generated * Wire
connection list

2.2.3.3.3 Generate wirewrap
backplane manufacturing tools

M: Released * WISDOM M: Qualified * Backplane
design engineer

Generated * Hand
wire report

Generated * Wirewrap
test file

Generated * Wirewrap
tooling fileGenerated * Wire

connection list

M: Qualified * Backplane
design engineer

M: Released
* Wisdom

M: Qualified * Digital
module design

Generated * Wiring
density plots

Generated * Wire
connection list

C: Releases * LMS
library

FIGURE 10.2 Workflow example using IDEF definition.

Internet-Based Microelectronic Design Automation Framework 10-7

1998). Many of them use the Web technology to coordinate various activities in business (Andreoli,
1998), manufacturing (Berners-Lee et al., 1994; Cutkosy et al., 1996; Erkes et al., 1996), and microelec-
tronic design (Rastogi et al., 1993; Chan et al., 1998). WELD (Chan et al., 1998) is a network infrastruc-
ture for a distributed design system that offers users the ability to create a customizable and adaptable
virtual design system that can couple tools, libraries, design, and validation services. It provides support
not only for designing but also for manufacturing, consulting, component acquisition, and product
distribution, encompassing the developments of companies, universities, and individuals throughout the
world. Lavana et al. (1997) proposed an Internet-based collaborative design. They use Petri nets as a
modeling tool for describing and executing workflow. User teams, at different sites, control the workflow
execution by selection of its path. Minerva II (Sutton and Director, 1998) is a software tool that provides
design process management capabilities serving multiple designers working with multiple CAD frame-
works. The proposed system generates design plan and realizes unified design process management
across multiple CAD frameworks and potentially across multiple design disciplines. ExPro (Rastogi et al.,
1993) is an expert-system-based process management system for the semiconductor design process.
There are several systems that automatically determine what tools to execute. OASIS (1992) uses

Unix make file style to describe a set of rules for controlling individual design steps. The Design
Planning Engine of the ADAM system (Knapp and Parker, 1986, 1991) produces a plan graph using a
forward chaining approach. Acceptable methodologies are specified by listing preconditions and post-
conditions for each tool in a lisp-like language. Estimation programs are used to guide the chaining.
Ulysses (Bushnell and Director, 1986) and Cadweld (Daniel and Director, 1991) are blackboard systems
used to control design processes. A knowledge source, which encapsulates each tool, views the informa-
tion on the blackboard and determines when the tool would be appropriate. The task management is
integrated into the CAD framework and Task Model is interpreted by a blackboard architecture instead
of a fixed inference mechanism. Minerva (Jacome and Director, 1992) and the OCT task manager
(Chiueh and Katz, 1990) use hierarchical strategies for planning the design process. Hierarchical
planning strategies take advantage of knowledge about how to perform abstract tasks which involve
several subtasks.
To represent design process and workflow, many languages and schema have been proposed. NELSIS

(ten Bosch et al., 1991) framework is based on a central, object-oriented database and on a flow
management. It uses a dataflow graph as Flow Model and provides the hierarchical definition and
execution of design flow. PLAYOUT (Schurmann and Altmeyer, 1997) framework is based on separate
Task and Flow Models which are highly interrelated among themselves and the Product Model. In
Barthelmann (1996), graph grammar is proposed in defining the task of software process management.
Westfechtel (1996) proposed ‘‘process-net’’ to generate the process flow dynamically. However, in many
of these systems, the relationship between task and data is not explicitly represented. Therefore,
representing the case in which a task generates more than one datum and each of them goes to a
different task is not easy. In Schurmann and Altmeyer (1997), Task Model (describing the I=O behavior
of design tools) is used as a link between the Product Model and the Flow Model. The proposed system
integrates data and process management to provide traceability. Many systems use IDEF to represent a
process (Chung et al., 1996; Stavas et al.; IDEF). IDEF specification, however, requires complete
information such as control mechanisms and scheduling at the specification time, making the captured
process difficult to understand.
Although there are many other systems that address the problem of managing process, most proposed

system use either a rule-based approach or a hard-coded process flow. They frequently require source
code modification for any change in process. Moreover, they do not have mathematical formalism.
Without the formalism, it is difficult to handle the iterative nature of the engineering process and to
simulate the causal effects of any changes in parameters and resources. Consequently, coordinating
the dynamic nature of processes is not well supported in most systems. It is difficult to analyze the
rationale how an output is generated and where a failure has occurred. They also lack a systematic way
of generating all permissible process flows at any level of abstraction while providing means to hide

10-8 Computer Aided Design and Design Automation

the details of the flow when they are not needed. Most systems have the tendency to overspecify the
flow information, requiring complete details of a process flow before executing the process. In most
real situations, the complete flow information may not be known after the process has been executed:
they are limited in their ability to address the underlying problem of process flexibility. They are rather
rigid and not centered on users, and do not handle exceptions gracefully. Thus, the major functions
for the collaborative framework such as adding new tools and sharing and improving the process
flow cannot be realized. Most of them are weak in at least one of the following criteria suggested
by NIST (Schlenoff et al., 1996): process abstraction, alternative tasks, complex groups of tasks, and
complex sequences.

10.3 IMEDA System

The Internet-based Microelectronic Design Automation (IMEDA) System is a general management
framework for performing various tasks in design and manufacturing of complex microelectronic
systems. It provides a means to integrate many specialized tools such as CAD and analysis packages,
and allows the designer to specify acceptable methodologies and tools together with information such as
when and how they may be used. IMEDA is a collaborative engineering framework that coordinates
design activities distributed geographically. The framework facilitates the flow of multimedia data sets
representing design process, production, and management information among the organizational units
of a virtual enterprise. IMEDA uses process grammar (Baldwin and Chung, 1995a) to represent the
dynamic behavior of the design and manufacturing process. In a sense, IMEDA is similar to agent-based
approach such as Redux (Petrie, 1996). Redux, however, does not provide process abstraction mechanism
or facility to display the process flow explicitly.
The major functionality of the framework includes

. Formal representation of the design process using the process grammar that captures a complex
sequence of activities of microelectronic design

. Execution environment that selects a process, elaborates the process, invokes tools, pre- and
postevaluates the productions if the results meet the criterion, and notifies designers

. User interface that allows designers to interact with the framework, guides the design process, and
edits the process and productions

. Tool integration and communication mechanism using Internet Socket and HTTP

. Access control that provides a mechanism to secure the activity and notification and approval that
provide the mechanisms to disperse design changes to, and responses from, subscribers

IMEDA is a distributed framework design knowledge, including process information, manager
programs, etc., are maintained in a distributed fashion by local servers. Figure 10.3 illustrates how
IMEDA links tools and sites for distributed design activities. The main components of IMEDA are

. System Cockpit: It controls all interactions between the user and the system and between the
system components. The cockpit will be implemented as a Java applet and may be executable on
any platform for which a Java-enabled browser is available. It keeps track of the current design
status and informs the user of possible actions. It allows users to collaboratively create and edit
process flows, production libraries, and design data.

. Manager Programs: These encapsulate design knowledge. Using preevaluation functions, man-
agers estimate the possibility of success for each alternative. They invoke tools and call postevalua-
tion functions to determine if a tool’s output meets the specified requirements. The interface
servers allow cockpits and other Java-coded programs to view and manipulate production, task and
design data libraries. Manager programs must be maintained by tool integrators to reflect site-
specific information such as company design practices and different ways of installing tools.

Internet-Based Microelectronic Design Automation Framework 10-9

. Browsers: The task browser organizes the tasks in a GS hierarchy and contains all the productions
available for each task. The data-specification browser organizes the data-specifications in a GS
hierarchy and contains all the children.

. External Tools: These programs are the objects invoked by the framework during DM activities.
Each atomic task in a process flow is bound to an external tool. External tools are written typically
by the domain experts.

. Site Proxy Server: Any physical site that will host external tools must have a site proxy server
running. These servers provide an interface between the cockpit and the external tools. The site
server receives requests from system cockpits, and invokes the appropriate tool. Following the tool
completion, the site server notifies the requesting cockpit, returning results, etc.

. CGI Servers and Java Servlets: The system cockpit may also access modules and services provided
by CGI servers or the more recently introduced Java servlets. Currently, the system integrates
modules of this type as direct components of the system (as opposed to external tools that may vary
with the flow).

. Database Servers: Access to component data is a very important function. Using an API called
JDBC, the framework can directly access virtually any commercially available database server
remotely.

. Whiteboard: The shared cockpit or ‘‘whiteboard’’ is a communication medium to share infor-
mation among users in a distributed environment. It allows designers to interact with the system
and guides the design process collaboratively. Designers will be able to examine design results
and current process flows, post messages, and carry out design activities both concurrently and
collaboratively. Three types of whiteboards are the process board, the chat board, and the
freeform drawing board. Their functionality includes (1) process board to the common process
flow graph indicating the current task being executed and the intermediate results arrived at
before the current task; (2) drawing board to load visual design data, and to design and simulate
process; and (3) chat board to allow participants to communicate with each other via text-based
dialog box.

IMEDA uses a methodology specification based on a process flow graphs and process grammars
(Baldwin and Chung, 1995). Process grammars are the means for transforming high-level process flow
graphs into progressively more detailed graphs by applying a set of substitution rules, called productions,

Local site file system

External
tools

www server
at GM

www server
MSU

CGI
server

JAVA
servelet

JDBC

Internet

External
tools

Site proxy
servers

Site proxy
servers

Site proxy
servers

CORBA compliant
distributed services

Database
servers

Remote
system
cockpit

Remote
system
cockpit

Local site file system

FIGURE 10.3 Architecture of IMEDA.

10-10 Computer Aided Design and Design Automation

to nodes that represent logical tasks. It provides not only the process aspect of design activities but also a
mechanism to coordinate them. The formalism in process grammar facilitates abstraction mechanisms to
represent hierarchical decomposition and alternative methods, which enable designers to manipulate the
process flow diagram and select the best method. The formalism provides the theoretical foundations for
the development of IMEDA.
IMEDA contains the database of admissible flows, called process specifications. With the initial task,

constraints, and execution environment parameters, including personal profile, IMEDA guides designers
in constructing process flow graphs in a top-down manner by applying productions. It also provides
designers with the ability to discover process configurations that provide optimal solutions. It maintains
consistency among designs and allows the designer to interact with the system and adjust design
parameters, or modify the previous design process. As the framework is being executed, a designer can
be informed of the current status of design such as updating and tracing design changes and be able to
handling exception.
Real-world processes are typically very complex by their very nature; IMEDA provides designers the

ability to analyze, organize, and optimize processes in a way never before possible. More importantly, the
framework can improve design productivity by accessing, reusing, and revising the previous process for a
similar design.
The unique features of our framework include

Process Abstraction=Modeling: Process grammars provide abstraction mechanism for modeling admis-
sible process flows. The abstraction mechanism allows a complex activity to be represented more concisely
with a small number of higher-level tasks, providing a natural way of browsing the process repository. The
strong theoretical foundation of our approach allows users to analyze and predict the behavior of a
particular process. With the grammar, the process flow gracefully handles exceptions and alternative
productions. When a task has alternative productions, backtracking occurs to select other productions.

Separation of Process Specification and Execution Environment: Execution environment information
such as complex control parameters and constraints is hidden from the process specification. The
information of these two layers is merely linked together to show the current task being executed on a
process flow. The represented process flow can be executed in both automatic and manual modes. In the
automatic mode, the framework executes all possible combinations to find a solution. In the manual
mode, users can explore design space.

Communication and Collaboration: To promote real-time collaboration among participants, the
framework is equipped with the whiteboard, a communication medium to share information. Users
can browse related processes, compare them with other processes, analyze, and simulate them. Locally
managed process flows and productions can be integrated by the framework in the central server. The
framework manages the production rules governing the higher level tasks, while lower level tasks and
their productions are managed by local servers. This permits the framework to be effective in orches-
trating a large-scale activity.

Efficient Search of Design Process and Solution: IMEDA is able to select the best process and generate a
process plan, or select a production dynamically and create a process flow. The process grammar easily
captures design alternatives. The execution environment selects and executes the best one. If the selected
process does not meet the requirement, then the framework backtracks and selects another alternative.
This backtrack occurs recursively until a solution is found. If you allow a designer to select the best
solution among many feasible ones, the framework may generate many multiple versions of the solution.

Process Simulation: The quality of a product depends on the tools (maturity, speed, and special strength
of the tool), process (or workflow selected), and design data (selected from the reuse library). Our
framework predicts the quality of results (product) and assesses the risk and reliability. This information
can be used to select the best process=workflow suitable for a project.

Internet-Based Microelectronic Design Automation Framework 10-11

Parallel Execution of Several Processes and Multiple Versions: To reduce the design time and risk, it is
necessary to execute independent tasks in parallel whenever they are available. Sometimes, it is necessary
to investigate several alternatives simultaneously to reduce the design time and risk. Or the designer may
want to execute multiple versions with different design parameters. The key issue in this case is
scheduling the tasks to optimize the resource requirements.

Life Cycle Support of Process Management: The process can be regarded as a product. A process (such
as airplane designing or shipbuilding) may last many years. During this time, it may be necessary for the
process itself to be modified because of new tools and technologies. Life cycle support includes updating
the process dynamically, and testing=validating the design process, version history and configuration
management of the design process. Tests and validations of the design processes, the simulation of
processes, and impact analysis are necessary tools.

10.4 Formal Representation of Design Process*

IMEDA uses a methodology specification based on a process flow graphs and process grammars
(Baldwin and Chung, 1995). The grammar is an extension of graph grammar originally proposed by
Ehrig (1979) and has been applied to interconnection network (Derk and DeBrunner, 1998) and software
engineering (Heiman et al., 1997).

10.4.1 Process Flow Graph

A process flow graph depicts tasks, data, and the relationships among them, describing the sequence of
tasks for an activity. Three basic symbols are used to represent a process flow graph. Oval nodes represent
logical tasks, two-concentric oval nodes represent atomic tasks, rectangular nodes represent data
specifications and diamond nodes represent selectors. A task that can be decomposed into subtasks is
called logical. Logical task nodes represent abstract tasks that could be done with several different tools or
tool combinations. A task that cannot be decomposed is atomic. An atomic task node, commonly called a
tool invocation, represents a run of an application program.
A selector is a task node that selects data or parameter. Data specifications are design data, where the

output specification produced by a task can be consumed by another task as an input specification. Each
data specification node, identified by a rectangle, is labeled with a data specification type. Using the
graphical elements of the flow graph, engineers can create a process flow in a top-down fashion. These
elements can be combined into a process flow graph using directed arcs. The result is a bipartite acyclic
directed graph that identifies clearly the task and data flow relationships among the tasks in a design
activity. The set of edges indicates those data specifications used and produced by each task. Each
specification must have at most one incoming edge. Data specifications with no incoming edges are
inputs of the design exercise. T(G), S(G), and E(G) are the sets of task nodes, specification nodes, and
edges of graph G, respectively. Figure 10.4 shows a process flow graph that describes a possible rapid
prototyping design process, in which a state diagram is transformed into a field-programmable gate array
(FPGA) configuration file.
The various specification types form a class hierarchy where each child is a specialization of the parent.

There may be several incompatible children. For example, VHDL and Verilog descriptions are both
children of simulation models. We utilize these specification types to avoid data format incompatibilities
between tools (Figure 10.5a). Process flow graphs can describe design processes to varying levels of detail.
A graph containing many logical nodes abstractly describes what should be done without describing how

* Materials in this section are excerpted from Baldwin, R. and Chung, M.J., IEEE Comput., February, 54, 1995a. With
permission.

10-12 Computer Aided Design and Design Automation

it should be done (i.e., specifying which tools to use). Conversely, a graph in which all task nodes are
atomic completely describes a methodology.
In our prototype, we use the following definitions: In(N) is the set of input nodes of node N: In

(N)¼ {M j (M,N) 2 E}. Out(N) is the set of output nodes of node N: Out(N)¼ {M j (N,M) 2 E}. I(G) is
the set of input specifications of graph G: {N 2 S(G) j In(N)¼Ø}.

10.4.2 Process Grammars

The designer specifies the overall objectives with the initial graph that lists available input specifications,
desired output specifications, and the logical tasks to be performed. By means of process grammars,
logical task nodes are replaced by the flows of detailed subtasks and intermediate specifications. The
output specification nodes are also replaced by nodes that may have a child specification type.

Logic
synthesis

One-hot
encoder

(tool)

MAP2LCA
(tool)

Mapped
netlist

Place and route
constraints

Logic cell
definition

FPGA
place and rounter

Place and route
report

Place and route
logic cell definitions

Configuration file
generation

FPGA
configuration

file

FPGA (field-programmable gate array)
Nonterminal task
Terminal task (tool invocation)
Data specification node

MAP2LCA, XNFMAP FPGA design tools by Xilinx

Cross-reference
file

XNFMAP
(tool)

Netlist

State
diagram

State
table

FIGURE 10.4 Sample process flow graph in which a state diagram is transformed into a field-programmable gate
array configuration file.

Internet-Based Microelectronic Design Automation Framework 10-13

The productions in a graph grammar permit the replacement of one subgraph by another. A
production in a design process grammar can be expressed formally as a tuple P¼ (GLHS, GRHS, sin,
sout), where GLHS and GRHS are process flow graphs for the left side and the right side of the production,
respectively, such that (1) GLHS has one logical task node representing the task to be replaced, (2) sin is a
mapping from the input specifications I(GLHS) to I(GRHS), indicating the relationship between two input
specifications (each input specification of I(GRHS) is a subtype of I(GLHS)), and (3) sout is a mapping from
the output specifications of GLHS to output specifications of GRHS indicating the correspondence between
them (each output specification must be mapped to a specification with the same type or a subtype).
Figure 10.5 illustrates productions for two tasks, simulate and FPGA partitioning. The mappings are
indicated by the numbers beside the specification nodes. Alternative productions may be necessary to
handle different input specification types (as in Figure 10.5a), or because they represent different
processes—separated by the word ‘‘or’’—for performing the abstract task (as in Figure 10.5b).

Let A be the logical task node in GLHS and A0 be a logical task node in the original process flow graph G
such that A has the same task label as A0. The production rule P can be applied to A0, which means that A0

can be replaced with GRHS only if each input and output specifications of A0 matches to input and output
specifications of GLHS, respectively. If there are several production rules with the same left side flow
graph, it implies that there are alternative production rules for the logical task. Formally, the production
matches A0 if

VHDL
description

VHDL
description

Verilog
description

1 11 1

VerSim
(tool)

Simulate

Production simulate 2

Netlist

Place and route
constraints

Cross-reference
file

Cross-reference
file

1

Verilog
description

Simulate VHDLSim
(tool)

(a)

(b)

Production simulate 1

Production partition 1 Production partition 2

32

MAP2LCA
(tool)

Place and route
constraints

Logic cell
definitions

Place and route
constraints

Cross-reference
file

FPGA
partitioning

FPGA
partitioner

(tool)
XNFMAP

(tool)

Netlist 1

4

3

4
Cross-reference

file
Mapped
netlist - or -

2
Netlist 1

3

42

Logic cell
definitions

1,2,3,4 numbers indicate mapping.
 A specification node with a
 1 beside it maps (corresponds)
 to other nodes with a 1, and so forth.

FIGURE 10.5 Graph production from a design process grammar. Two simulation alternatives based on input
format are portrayed in (a); two partition alternatives representing different processes for an abstract task are
portrayed in (b).

10-14 Computer Aided Design and Design Automation

1. A0 has the same task label as A.
2. There is a mapping rin, from In(A) to In(A0), indicating how the inputs should be mapped. For all

nodes N 2 In(A), rin(N) should have the same type as N or a subtype.
3. There is a mapping, rout, from Out(A0) to Out(A), indicating how the outputs should be mapped.

For all nodes N 2 Out(A0), rout(N) should have the same type as N or a subtype.

The mappings are used to determine how edges that connected the replaced subgraph to the remainder
should be redirected to nodes in the new subgraph. Once a match is found in graph G, the production is
applied as follows:

1. Insert GRHS� I(GRHS) into G. The inputs of the replaced tasks are not replaced.
2. For every N in I(GRHS) and edge (N,M) in GRHS, add edge (rin[sin(N)],M) to G. That is to connect

the inputs of A0 to the new task nodes that will use them.
3. For every N in Out(A0) and edge (N,M) in G, replace edge (N,M) with edge (sout[rout(N)],M). That

is to connect the new output nodes to the tasks that will use them.
4. Remove A0 and Out(A0) from G, along with all edges incident on them.

Figure 10.6 illustrates a derivation in which the FPGA partitioning task is planned, using a production
from Figure 10.5b.
The process grammar provides mechanism of specifying alternative methods for a logical task. A high-

level flow graph can then be decomposed into detailed flow graphs by applying production rules to a
logical task. A production rule is a substitution that permits the replacement of a logical task node with a
flow graph that represents a possible way of performing the task. The concept of applying productions to

Netlist
FPGA

partitioning

Place and route
constraints

Logic cell
definitions

Cross-reference
file

Place and route
constraints

Logic cell
definitions

Cross-reference
file

Mapped
netlist

Netlist XNFMAP
(tool)

MAP2LCA
(tool)

FPGA
place and

route

Placed and routed
logic cell

definitions

Place and
route
report

FPGA
configuration

file
Configuration
 file generation

Configuration
 file generation

Place and routed
logic cell

definitions
Place and route

report

FPGA
place and

route

FPGA
configuration

file

FIGURE 10.6 Sample graph derivation. Nodes in the outlined region, left, are replaced with nodes in the outlined
region, right, according to production partition 1 in Figure 10.5.

Internet-Based Microelectronic Design Automation Framework 10-15

logical tasks is somewhat analogous to the idea of productions in traditional (i.e., nongraph) grammars.
In this sense, logical tasks correspond to logical symbols in grammar, and atomic tasks correspond to
terminal symbols.

10.5 Execution Environment of the Framework

Figure 10.7 illustrates the architecture of our proposed system, which applies the theory developed in the
previous section. Decisions to select or invoke tools are split between the designers and a set of manager
programs, where manager programs are making the routine decisions and the designers make decisions
that requires higher-level thinking. A program called Cockpit coordinates the interaction among
manager programs and the designers. Tool sets and methodology preferences will differ among sites
and over time. Therefore, our assumption is that each unit designates a person (or group) to act as system
integrator, who writes and maintains the tool-dependent code in the system. We provide the tool-
independent code and template to simplify the task of writing tool-dependent code.

10.5.1 Cockpit Program

The designer interacts with Cockpit, a program which keeps track of the current process flow graph and
informs the designer of possible actions such as productions that could be applied or tasks that could be
executed. Cockpit contains no task-specific knowledge; its information about the design process comes
entirely from a file of graph productions. When new tools are acquired or new design processes are
developed, the system integrator modifies this file by adding, deleting, and editing productions.
To assist the designer in choosing an appropriate action, Cockpit interacts with several manager

programs which encapsulate design knowledge. There are two types of manager programs: task managers
and production managers. Task managers invoke tools and determine which productions to execute for

Cockpit

Prod 1 (rating = 90)
Prod 2 (rating = 70)

Productions

Prod 1
Prod 2

Manager C (written by vendor)

Manager C (written by vendor)
Manager A (written by local

 expert)

Start graph

Input specification

Output specification
Constraints

Tool # 3

Execute_task() {
};
Execute_prod() {
};
Pre-eval() {
};
Handle_query() {
};

Tool # 2

Tool # 1

FIGURE 10.7 Proposed system based on Cockpit.

10-16 Computer Aided Design and Design Automation

logical task nodes. Production managers provide ratings for the productions and schedule the execution
of tasks on the right-hand side of the production. Managers communicate with each other using
messages issued by Cockpit.
Our prototype system operates as follows. Cockpit reads the initial process flow graph from an

input file generated by using a text editor. Cockpit then iteratively identifies when productions can
be applied to logical task nodes and requests that the production managers assign the ratings to
indicate how appropriate the productions are for those tasks. The process flow graph and the ratings
of possible production applications are displayed for the designer, who directs Cockpit through a
graphical user interface to apply a production or execute a task at any time. When asked to execute
a task, Cockpit sends a message to a task manager. For an atomic task node, the task manager simply
invokes the corresponding tool. For a logical task, the task manager must choose one or more produc-
tions, as identified by a Cockpit. The Cockpit applies the production and requests that the production
manager executes it.

10.5.2 Manager Programs

Manager programs must be maintained by system integrators to reflect site-specific information, such as
company design practices and tool installation methods. Typically, a manager program has its own
thread. A Cockpit may have several manager programs, and therefore multithreads. We define a
communication protocol between Cockpit and manager programs and provide templates for manager
programs. The manager programs provide five operations: preevaluation, tool invocation, logical task
execution, production execution, and query handling. Each operation described below corresponds to a
Cþþ or Java function in the templates, which system integrators can customize as needed.

Preevaluation: Production managers assign ratings to help designers and task managers select the most
appropriate productions. The rating indicates the likelihood of success from applying this production.
The strategies used by the system integrator provide most of the code to handle the rating. In some cases,
it may be sufficient to assign ratings statically, based on the success of past productions. These static
ratings can be adjusted downward when the production has already been tried unsuccessfully on this task
node (which could be determined using the query mechanism). Alternatively, the ratings may be an
arbitrarily complex function of parameters obtained through the query mechanism or by examining the
input files. Sophisticated manager programs may continuously gather and analyze process metrics that
indicate those conditions leading to success, adjust adjusting ratings accordingly.

Tool Invocation: Atomic task mangers must invoke the corresponding software tool when requested by
Cockpit, then determine whether the tool completed successfully. In many cases, information may be
predetermined and entered in a standard template, which uses the tool’s result status to determine
success. In other cases, the manager must determine tool parameters using task-specific knowledge or
determine success by checking task-specific constraints. Either situation would require further customi-
zation of the manager program.

Logical Task Execution: Logical task managers for logical tasks must select productions to execute the
logical task. Cockpit informs the task manager of available productions and their ratings. The task
manager can either direct Cockpit to apply and execute one or more productions, or it can decide that
none of the productions is worthwhile and report failure. The task manager can also request that the
productions be reevaluated when new information has been generated that might influence the ratings,
such as a production’s failure. If a production succeeds, the task manager checks any constraints; if they
are satisfied, it reports success.

Production Execution: Production managers execute each task on the right-hand side of the production
at the appropriate time and possibly check constraints. If one of the tasks fails or a constraint is violated,
backtracking can occur. The production manager can use task-specific knowledge to determine which

Internet-Based Microelectronic Design Automation Framework 10-17

tasks to repeat. If the production manager cannot handle the failure itself, it reports the failure to Cockpit,
and the managers of higher level tasks and productions attempt to handle it.

Query Handling: Both production and task managers participate in the query mechanism. A production
manager can send queries to its parent (the task manager for the logical task being performed) or to one
of its children (a task manager of a subtask). Similarly, a task manager can send a query to its parent
production manager or to one of its children (a production manager of the production it executed).
The manager templates define C functions, which take string arguments, for sending these queries.
System integrators call these functions but do not need to modify them. The manager templates also
contain functions which are modified by system integrators for responding to queries. Common queries
can be handled by template code; for example, a production manager can frequently ask its parent
whether the production has already been attempted for that task and whether it succeeded. The
manager template handles any unrecognized query from a child manager by forwarding it to the parent
manager. Code must be added to handle queries for task-specific information such as the estimated
circuit area or latency.

10.5.3 Execution Example

Now we describe a synthesis scenario that illustrates our prototype architecture in use. In this scenario,
the objective is to design a controller from a state diagram, which will ultimately be done following the
process flow graph in Figure 10.4. There are performance and cost constraints on the design, and the
requirement to produce a prototype quickly. The productions used are intended to be representative but
not unique. For simplicity, we assume that a single designer is performing the design with, therefore, only
one Cockpit.
The start graph for this scenario contains only the primary task, chip synthesis, and specification nodes

for its inputs and outputs (like the graph in the left in Figure 10.8). Cockpit tells us that the production of
Figure 10.8 can be applied. We ask Cockpit to apply it. The chip synthesis node is then replaced by nodes
for state encoding, logic synthesis, and physical synthesis, along with intermediate specification nodes.

State
encoding

State
diagram

State
diagram

Chip
synthesis

Physical
synthesis

Netlist

Chip
description

Chip
description

1

2

Logic
synthesis

State
table

1

2

FIGURE 10.8 Productions for chip synthesis.

10-18 Computer Aided Design and Design Automation

Next, we want to plan the physical synthesis task. Tasks can be planned in an order other than they are to
be performed. Cockpit determines that any of the productions shown in Figure 10.9 may be applied, then
queries each production’s task manager program asking it to rate the production’s appropriateness in the
current situation. Based on the need to implement the design quickly, the productions for standard cell
synthesis and full custom synthesis are rated low while the production for FPGA synthesis is rated high.
Ratings are displayed to help us decide.
When we plan the state encoding task, Cockpit finds two productions: one to use the tool Minbits

encoder and the other to use the tool One-hot encoder. One-hot encoder works well for FPGAs, while
Minbits encoder works better for other technologies. To assign proper ratings to these productions, their
production managers must find out which implementation technology will be used. First, they send a
query to their parent manager, the state encoding task manager. This manager forwards the message to
its parent, the chip synthesis production manager. In turn, this manager forwards the query to the
physical synthesis task manager for an answer. All messages are routed by Cockpit, which is aware of the
entire task hierarchy. This sequence of actions is illustrated in Figure 10.10.
After further planning and tool invocations, a netlist is produced for our controller. The next step is

the FPGA synthesis task. We apply the production in Figure 10.11 and proceed to the FPGA partitioning
task. The knowledge to automate this task has already been encoded into the requisite manager
programs, so we direct Cockpit to execute the FPGA partitioning task. It finds the two productions
illustrated in Figure 10.5b and requests their ratings, Next, Cockpit sends an execute message, along with
the ratings, to the FPGA partitioning task manager. This manager’s strategy is to always execute the
highest-rated production, which in this case is production Partition 1. (Other task managers might have
asked that both productions be executed or, if neither were promising, immediately reported failure.)
This sequence of actions is shown in Figure 10.12.
Because the Partition 1 manager used an as-soon-as-possible task scheduling strategy, it asks Cockpit

to execute XNFMAP immediately. The other subtask, MAP2LCA, is executed when XNFMAP complete
successfully. After both tasks complete successfully, Cockpit reports success to the FPGA partitioning
task manager. This action sequence is illustrated in Figure 10.13.

10.5.4 Scheduling

In this section, we describe a detailed description and discussion of auto-mode scheduling, including the
implementation of the linear scheduler. The ability to search through the configuration space of a design
process for a design configuration that meets user-specified constraints is important. For example,

Netlist

Physical
synthesis

FPGA
synthesis

FPGA
configuration

file

Standard
cell

synthesis

Chip
mask

Chip
description

Chip
mask

Full
custom

synthesis

Netlist Netlist Netlist 111

- or -

22 2 2

- or -

1

FIGURE 10.9 Productions for physical synthesis.

Internet-Based Microelectronic Design Automation Framework 10-19

assume that a user has defined a process for designing a digital filter with several different alternative
ways of performing logical tasks such as ‘‘FPGA Partitioning’’ and ‘‘Select the Filter Architecture.’’ One
constraint that an engineer may wish to place on the design might be: ‘‘Find a process configuration that
produces a filter that has maximum delay at most 10 ns.’’ Given such a constraint, the framework must
search through the configuration space of the filter design process, looking for a sequence of valid atomic
tasks that produces a filter with ‘‘maximum delay at most 10 ns.’’We call the framework component that

Cockpit One-hot encoder manager

Chip synthesis manager

1

2

3

4

5

6

7

8

Partition 1 (production manager)

1. Cockpit sends
 preevaluation message.

3. Cockpit routes query
 to chip synthesis manager.

5. Cockpit routes query to
 physical synthesis
 manager.
6. Physical synthesis
 manager replies.

7. Cockpit routes reply
 to original requestor.

8. Manager returns
 rating.

4. Chip synthesis manager
 forward query to manager
 of physical synthesis task.

2. Manager sends queries
 about implementation
 technology.

FIGURE 10.10 Sequence of actions for query handling.

Netlist
1

1

2

FPGA
partitioning

FPGA
place and route

FPGA
synthesis

FPGA
configuration

file
Place and route

report
Place and route

logic cell definitions

Configuration file
generation

FPGA
configuration

file

2

Netlist Place and route
constraints

Logic cell
definition

Cross-reference
file

FIGURE 10.11 Production for field-programmable gate array.

10-20 Computer Aided Design and Design Automation

Cockpit
1

FPGA partitioning (task manager)

Partition 1 (production manager)

1. Designer asks that FPGA
 partitioning be done in automatic
 mode.

2. Cockpit determines what
 alternative will work and gets rating
 for each (message sequence not
 shown), then sends execute message
 to task manger.

3. Task manger chooses one and then
 sends message to Cockpit, requesting
 that production be applied and executed.

4. Cockpit applies production and sends
 execution message to production’s
 manager program.

5. Manager reports production success.

6. Cockpit reports production success.

7. Manager reports task success.

8. Cockpit reports task success.

2

3

4

5

6

7

8

FIGURE 10.12 Sequence of action during automatic task execution.

MAP2LCA (tool)

MAP2LCA (task manager)

XNFMAP (task manager)

Partition 1 (production manager)
Cockpit

1
2
3
4
5
6
7
8
9

10
11
12

A

B

BA XNFMAP (tool)

1. Cockpit applies production and
 sends execution message to
 production’s manager program.

4. Task manager executes XNFMAP tool
 and checks results.

 8. Cockpit sends execute message.

 9. Task manger executes MAP2LCA
 tool and checks result.

10. Manager reports success.

11. Cockpit reports subtask success.

12. Manager reports production success.

2. Manager requests execution of
 first subtask.

5. Manager reports success.

6. Cockpit repots subtask success.

7. Manager requests execution of second
 subtask.

3. Cockpit sends execute message.

FIGURE 10.13 Sequence of actions during automatic production execution.

Internet-Based Microelectronic Design Automation Framework 10-21

performs this search a scheduler. There are, of course, many different ways of searching through the
design process configuration space. In general, a successful scheduler will provide the following func-
tionality:

. Completeness (Identification of Successful Configurations): Given a particular configuration of a
process, the correct scheduler will be able to conclusively determine whether the configuration
meets user-specified constraints. The scheduler must guarantee that before reporting failure, all
possible process configurations have been considered, and if there is a successful configuration, the
algorithm must find it.

. Reasonable Performance: The configuration space of a process grows exponentially (in the
number of tasks). Ideally, a scheduler will be able to search the configuration space using an
algorithm that requires less than exponential time.

The Linear Scheduling Algorithm is very simple yet complete and meets most of the above criteria.
In this algorithm, for each process flow graph (corresponding to an initial process flow graph or a
production), it has a scheduler. Each scheduler is a separate thread with a Task Schedule List (TSL)
representing the order in which tasks are to be executed. The tasks in a scheduler’s TSL are called its
children tasks. A scheduler also has a task pointer to indicate the child task being executed in the TSL.
The algorithm is recursive such that with each new instantiation of a production of a given task, a new
scheduler is created to manage the flow graph representing the production selected. A liner scheduler
creates a TSL by performing a topological sort of the initial process flow graph and executes its children
tasks in order. If a child task is atomic, the scheduler executes the task without creating a new scheduler;
otherwise, it selects a new alternative, creates a new child scheduler to manage the selected alternative,
and waits for a signal from the child scheduler indicating success or failure. When a child task execution
is successful, the scheduler increments the task pointer in its TSL and proceeds to execute the next task.
If a scheduler reaches the end of its TSL, it signals success to its own parent, and awaits signals from
its parent if it should terminate itself (all successful) or rollback (try another to find new configurations).
If a child task fails, the scheduler tries another alternative for the task. If there is no alternatives left, it
rolls back (by decrementing the task pointer) until it finds a logical task that has another alternative to
try. If a scheduler rolls back to the beginning of the TSL and cannot find an alternative, then its flow has
failed. In this case, it signals a failure to its parent and terminates itself.
In the linear scheduling algorithm, each scheduler can send or receive any of five signals: PROCEED,

ROLLBACK, CHILD-SUCCESS, CHILD-FAILURE, and DIE. These signals comprise scheduler-to-
scheduler communication, including self-signaling. Each of the five signals is discussed below.

. PROCEED: This signal tells the scheduler to execute the next task in the TSL. It can be self-sent or
received from a parent scheduler. For example, a scheduler increments its task pointer and sends
itself a PROCEED signal when a child task succeeds, whereas it sends a PROCEED signal to its
children to start its execution.

. ROLLBACK: This is signaled when a task execution has failed. This signal may be self-sent or
received from a parent scheduler. Scheduler self-signals ROLLBACK whenever a child task fails. A
Rollback can result in either trying the next alternative of a logical task, or decrementing the task
pointer and trying the previous task in the TSL. If rollback results in decrementing the task pointer
to point to a child task node which has received a success-signal, the parent scheduler will send a
rollback signal to that child task scheduler.

. CHILD-SUCCESS: A child scheduler sends a CHILD-SUCCESS to its parent scheduler if it has
successfully completed the execution of all of the tasks in its TSL. After sending the child-success
signal, the scheduler remains active, listening for possible rollback signals from the parent. After
receiving a child-success signal, parent schedulers self-send a proceed signal.

. CHILD-FAILURE: A child-failure signal is sent from a child scheduler to its parent in
the event that the child’s managed flow fails. After sending a child-failure signal, children

10-22 Computer Aided Design and Design Automation

schedulers terminate. Upon receiving child-failure signals, parent scheduler self-send a rollback
signal.

. DIE: This signal may be either self-sent, or sent from parent schedulers to their children
schedulers.

10.6 Implementation

In this section, a high level description of the major components of IMEDA and their organization and
functionality will be presented. Detailed explanations of the key concepts involved in the architecture of
the Process Management Framework will also be discussed, including external tool integration, the tool
invocation process, the Java File System, and state properties.

10.6.1 System Cockpit

The System Cockpit, as its name suggests, is shown in Figure 10.14 where nearly all user interaction with
the framework takes place. It is here that users create, modify, save, load, and simulate process flow
graphs representing design processes. This system component has been implemented as a Java applet.
As such, it is possible to run the cockpit in any Java-enabled Web browser such as Netscape’s Navigator

FIGURE 10.14 System Cockpit window.

Internet-Based Microelectronic Design Automation Framework 10-23

or Microsoft’s Internet Explorer. It is also possible to run the cockpit in some Java-enabled operating
systems such as IBM’s OS=2.

Each cockpit component also has the following components:

. Root Flow: Every cockpit has a Root Flow. The Root Flow is the flow currently being edited in the
Cockpit’s Flow Edit Panel. Notice that the Root Flow may change as a result of applying a
production to a flow graph, in which case the Root Flow becomes a derivation of itself.

. Flow Edit Panel: The Flow Edit Panel is the interactive Graphical User Interface for creating and
editing process flow graphs. This component also acts as a display for animating process simula-
tions performed by various schedulers such as the manual or auto-mode linear scheduler.

. Class Directory: The Cockpit has two Class Directories: Task Directory and the Specification
Directory. These directories provide the ‘‘browser’’ capabilities of the framework, allowing users to
create reusable general-to-specific hierarchies of task classes. Class Directories are implemented
using a tree structure.

. Production Database: The Production Database acts as a warehouse for logical task productions.
These productions document the alternative methods available for completing a logical task. Each
Production Database has a list of Productions. The Production Database is implemented as a tree-
like structure, with Productions being on the root trunk, and Alternatives being leaves.

. Browser: Browsers provide the tree-like graphical user interface for users to edit both Class
Directories and Databases. There are three Browsers: Database Browser for accessing the Produc-
tion Database, Directory Browser for accessing the Task Directory, and Directory Browser for
accessing the Spec Browser. Both Database Browsers and Directory Browsers inherit properties
from object Browser, and offer the user nearly identical editing environments and visual repre-
sentations. This deliberate consolidation of Browser interfaces allowed us to provide designers with
an interface that was consistent and easier to learn.

. Menu: A user typically performs and accesses most of the system’s key function from the Cockpit’s
Menu.

. Scheduler: The Cockpit has one or more schedulers. Schedulers are responsible for searching the
configuration space of a design process for configurations that meet user specified design con-
straints. The Scheduler animates its process simulations by displaying them in the Flow Edit Panel
of the Cockpit.

10.6.2 External Tools

External Tools are the concrete entities to which atomic tasks from a production flow are bound. When a
flow task object is expanded in the Cockpit Applet (during process simulation), the corresponding
external tool is invoked. The external tool uses a series of inputs and produces a series of outputs
(contained in files). These inputs and outputs are similarly bound to specifications in a production flow.
Outputs from one tool are typically used as inputs for another. IMEDA can handle the transfer of input
and output files between remote sites. The site proxy servers, in conjunction with a remote file server
(also running at each site) automatically handle the transfer of files from one system to another. External
tools may be implemented using any language, and on any platform that has the capability of running a
site server. While performing benchmark tests of IMEDA, we used external tools written in C, Fortran,
Perl, csh (a Unix shell script), Java applications, and Mathematica scripts.

10.6.2.1 External Tool Integration

One of the primary functionality of IMEDA is the integration of user-defined external tools into an
abstract process flow. IMEDA then uses these tools both in simulating the process flow to find a flow
configuration that meets specific constraints, and in managing selected flow configurations during actual
design execution.

10-24 Computer Aided Design and Design Automation

There are two steps to integrating tools with a process flow defined in IMEDA: association and
execution. Association involves ‘‘linking’’ or ‘‘binding’’ an abstract flow item (e.g., an atomic task) to
an external tool. Execution describes the various steps that IMEDA takes to actually invoke the external
tool and process the results.

10.6.2.2 Binding Tools

External tools may be bound to three types of flow objects: atomic tasks, selectors, and multiple version
selectors. Binding an external tool to a flow object is a simple and straightforward job, involving simply
defining certain properties in the flow object.
The following properties must be defined in an object that is to be bound to an external tool:

. SITE: Due to the fact that IMEDA can execute tools on remote systems, it is necessary to specify
the site where the tool is located on. Typically, a default SITE will be specified in the system
defaults, and making it unnecessary to define the site property unless the default is to be overriden.
Note that the actual site ID specified by the SITE property must refer to a site that is running a site
proxy server listening on that ID. See the ‘‘Executing External Tools’’ section below for more
details.

. CMDLINE: The CMDLINE property specifies the command to be executed at the specified remote
site. The CMDLINE property should include any switches or arguments that will always be sent to
the external tool. Basically, the CMDLINE argument should be in the same format that would be
used if the command were executed from a shell=DOS prompt.

. WORKDIR: The working directory of the tool is specified by the WORKDIR property. This is the
directory in which IMEDA will actually execute the external tool, create temporary files, etc. This
property is also quite often defined in the global system defaults, and thus may not necessarily have
to be defined for every tool.

. WRAPPERPATH: The JDK 1.0.2 does not allow Java applications to execute a tool in an arbitrary
directory. To handle remote tool execution, a wrapper is provided. It is a ‘‘go-between’’ program
that would simply change directories and then execute the external tool. This program can be as
simple as a DOS=NT batch file, a shell script, or a perl program. The external tool is wrapped in this
simple script, and executed. Since IMEDA can execute tools at remote and heterogeneous sites, it
was very difficult to create a single wrapper that would work on all platforms (WIN32, Unix, etc.).
Therefor, the wrapper program may be specified for each tool, defined as global default, or a
combination of the two.

Once the properties above have been defined for a flow object, the object is said to be ‘‘bound’’ to an
external tool. If no site, directory, or filename is specified for the outputs of the flow object, IMEDA
automatically creates unique file names, and stores the files in the working directory of the tool on the site
that the tool was run. If a tool uses as inputs data items that are not specified by any other task, then the
data items must be bound to static files on some site.

10.6.2.3 Executing External Tools

Once flow objects have been bound to the appropriate external tools, IMEDA can be used to perform
process simulation or process management. IMEDA actually has several ‘‘layers’’ that lie between the
Cockpit (a Java applet) and the external tool that is bound to a flow being viewed by a user in the Cockpit.
A description of each of IMEDA components for tool invocations is listed below:

. Tool Proxy: The tool proxy component acts as a liaison between flow objects defined in Cockpits
and the site proxy server. All communication is done transparently through the communication
server utilizing TCP=IP sockets. The tool proxy ‘‘packages’’ information from Cockpit objects
(atomic tasks, selectors, etc.) into string messages that the proxy server will recognize. It also listens

Internet-Based Microelectronic Design Automation Framework 10-25

for and processes messages from the proxy server (through the communications server) and relays
the information back to the Cockpit object that instantiated the tool proxy originally.

. Communications Server: Due to various security restrictions in the 1.0.2 version of Sun Micro-
system’s Java Development Kit (JDK), it is impossible to create TCP=IP socket connections
between a Java applet and any IP address other than the address from which the applet was
loaded. Therefore, it was necessary to create a ‘‘relay server’’ in order to allow cockpit applets to
communicate with remote site proxy servers. The sole purpose of the communications server is to
receive messages from one source and then to rebroadcast them to all parties that are connected
and listening on the same channel.

. Site Proxy Server: Site proxy servers are responsible for receiving and processing invocation
requests from tool proxies. When an invocation request is received, the site proxy server checks
to see that the request is formatted correctly, starts a tool monitor to manage the external tool
invocation, and returns the exit status of the external tool after it has completed.

. Tool Monitors: When the site proxy server receives an invocation request and invokes an external
tool, it may take a significant amount of time for the tool to complete. If the proxy server had to
delay the handling of other requests while waiting for each external tool to complete, IMEDA
would become very inefficient. For this reason, the proxy server spawns a tool monitor for each
external tool that is to be executed. The tool monitor runs as a separate thread, waiting on the tool,
storing its stdout and stderr, and moving any input or output files that need moving to their
appropriate site locations, and notifying the calling site proxy server when the tool has completed.
This allows the site proxy server to continue receiving and processing invocation requests in a
timely manner.

. Tool Wrapper: Tool wrapper changes directories into the specified WORKDIR, and then executes
the CMDLINE.

. External Tool: External tools are the actual executable programs that run during a tool invocation.
There is very little restriction on the nature of the external tools.

10.6.3 Communications Model

The Communications Model of IMEDA is perhaps the most complex portion of the system in some
respects. This is where truly distributed communications come into play. One system component is
communicating with another via network messages rather than function calls.
The heart of the communications model is the Communications Server. This server is implemented as

a broadcast server. All incoming messages to the server are simply broadcast to all other connected
parties. FlowObjects communicate with the Communications Server via ToolProxys. A ToolProxy allows
a FlowObject to abstract all network communications and focus on the functionality of invoking tasks. A
ToolProxy takes care of constructing a network message to invoke an external tool. That message is then
sent to the Communications Server via a Communications Client. The Communication Client takes care
of the low-level socket based communication complexities. Finally, the Communications Client sends the
message to the Communications Server, which broadcasts the message to all connected clients. The client
for which the message was intended (typically a site proxy server) decodes the message and, depending
on its type, creates either a ToolMonitor (for an Invocation Message) or an External Redraw Monitor (for
a Redraw Request).
The site proxy server creates these monitors to track the execution of external programs, rather than

monitoring them itself. In this way, the proxy server can focus on its primary job—receiving and
decoding network messages. When the monitors invoke an external tool, they must do so within a
wrapper. Once the monitors have observed the termination of an external program, they gather any
output on stdout or stderr and return these along with the exit code of the program to the site proxy
server. The proxy server returns the results to the Communications Server, then the Communications
Client, then the ToolProxy, and finally to the original calling FlowObject.

10-26 Computer Aided Design and Design Automation

10.6.4 User Interface

The Cockpit provides both the user interface and core functionality of IMEDA. While multiple users may
use different instances of the Cockpit simultaneously, there is currently no provision for direct collab-
oration between multiple users. Developing efficient means of real-time interaction between IMEDA
users is one of the major thrusts of the next development cycle.
Currently the GUI of the Cockpit provides the following functionalities:

. Flow Editing: Users may create and edit process flows using the flow editor module of the Cockpit.
The flow editor provides the user with a simple graphical interface that allows the use of a template
of tools for ‘‘drawing’’ a flow. Flows can be optimally organized via services provided by a remote
Layout Server written in Perl.

. Production Library Maintenance: The Cockpit provides functionality for user maintenance of
collections of logical task productions, called libraries. Users may organize productions, modify
input=output sets, or create=edit individual productions using flow editors.

. Class Library Maintenance: Users are provided with libraries of task and specification classes that
are organized into a GS hierarchy. Users can instantiate a class into an actual task, specification,
selector, or database when creating a flow by simply dragging the appropriate class from a class
browser and dropping it onto a flow editor’s canvas. The Cockpit provides the user with a simple
tree structure interface to facilitate the creation and maintenance of class libraries.

. Process Simulation: Processes may be simulated using the Cockpit. The Cockpit provides the user
with several scheduler modules that determine how the process configuration space will be
explored. The schedulers control the execution of external tools (through the appropriate site
proxy servers) and simulation display (flow animation for user monitoring of simulation progress).
There are multiple schedulers for the user to choose from when simulating a process, including the
manual scheduler, comprehensive linear scheduler, etc.

. Process Archival: The Cockpit allows processes to be archived on a remote server using the Java
File System (JFS). The Cockpit is enabled by a JFS client interface to connect to a remote JFS
server where process files are saved and loaded. While the JFS has its clear advantages, it
is also awkward to not allow users to save process files, libraries, etc. on their local systems.
Until version 1.1 of the Java Development Kit, local storage by a Java applet was simply not
an option—the browser JVM definition did not allow access to most local resources. With
version 1.1 of the JDK, however, comes the ability to electronically sign an applet. Once this has
been done, users can grant privileged resource access to specific applets after a signature has
been verified.

10.6.4.1 Design Flow Graph Properties

Initially, a flow graph created by a user using GUI is not associated with any system-specific information.
For example, when a designer creates an atomic task node in a flow graph, there is initially no association
with any external tool. The framework must provide a mechanism for users to bind flow graph entities to
the external tools or activities that they represent.
We have used the concept of properties to allow users to bind flow graph objects to external entities. In

an attempt to maintain flexibility, properties have been implemented in a very generic fashion. Users can
define any number of properties for flow object. There are a number of key properties that the framework
recognizes for each type of flow object. The user defines these properties to communicate needed
configuration data to the framework.

A property consists of a property label and property contents. The label identifies the property, and
consists of an alphanumeric string with no white space. The content of a property is any string. Currently
users define properties using a freeform text input dialog, with each line defining a property. The first word
on a line represents the property label, and the remainder of the line constitutes the property contents.

Internet-Based Microelectronic Design Automation Framework 10-27

10.6.4.2 Property Inheritance

To further extend the flexibility of flow object properties, the framework requires that each flow object be
associated with a flow object class. Classes allow designers to define properties that are common to all flow
objects that inherit from that flow object class. Furthermore, classes are organized into a general-to-
specific hierarchy, with children classes inheriting properties from parent classes.

Therefore, the properties of a particular class consist of any properties defined locally for that object, in
addition to properties defined in the object’s inherited class hierarchy. If a property is defined in both the
flow object and one of its parent classes, the property definition in the flow object takes precedence. If a
property is defined in more than one class in a class hierarchy, the ‘‘youngest’’ class (e.g., the child in a
parent–child relationship) takes precedence.
Classes are defined in the Class Browsers of IMEDA. Designers that have identified a clear general-to-

specific hierarchy of flow object classes can quickly create design flow graphs by dragging and dropping
from class browsers onto flow design canvases. The user would then need only to overload those
properties in the flow objects that are different from their respective parent classes (Figure 10.15).
For example, consider a class hierarchy of classes that all invoke the same external sort tool, but pass

different flags to the tool, based on the context. It is likely that all of these tools will have properties in
common, such as a common working directory and tool site. By defining these common properties in a
common ancestor of all of the classes, such as Search, it is unnecessary to redefine the properties in the
children classes.
Of course, children classes can define new properties that are not contained in the parent classes,

and may also overload property definitions provided by ancestors. Following these rules, class Insertion
would have the following properties defined: WORKDIR, SITE, WRAPPERPATH, and CMDLINE
(Figure 10.16).

10.6.4.3 Macro Substitution

While performing benchmarks on IMEDA, one cumbersome aspect of the framework that users often
pointed out was the need to reenter properties for tasks or specifications if, for example, a tool name or
working directory changed. Finding every property that needed to be changed was a tedious job, and
prone to errors.
In an attempt to deal with this problem, we came up with the idea of property macros. That is, a

property macro is any macro that is not a key system macro. A macro is a textual substitution rule that

FIGURE 10.15 Task browser.

10-28 Computer Aided Design and Design Automation

can be created by users. By using macros in the property databases of flow objects, design flows can be
made more flexible and more amiable to future changes.
As an example, consider a design flow that contains many atomic tasks bound to an external tool. Our

previous example using searches is one possible scenario. On one system, the path to the external tool
may be ‘‘=opt=bin=sort,’’ while on another system the path is ‘‘=user=keyesdav=public=bin=sort.’’ Making
the flow object properties flexible is easy if a property macro named SORTPATH is defined in an
ancestor of all affected flow objects (Figure 10.17). Children flow objects can then use that macro in place
of a static path when specifying the flow object properties. As a further example, consider a modification
to the previous ‘‘Search task hierarchy’’ where we define a macro SORTPATH in the Search class, and
then use that macro in subsequent children classes, such as the Insertion class.
In the highlighted portion of the Property Database text area, a macro called ‘‘SORTPATH’’ is defined.

In subsequent class’ Property Databases, this macro can be used in place of a static path. This makes it
easy to change the path for all tools that use the SORTPATH property macro—just the property database
dialog where SORTPATH is originally defined needs to be modified (Figure 10.18).

10.6.4.4 Key Framework Properties

In our current implementation of IMEDA, there are a number of key properties defined. These properties
allow users to communicate needed information to the framework in a flexible fashion. Most importantly,

FIGURE 10.16 Property window and property inheritance.

FIGURE 10.17 Macro definition.

Internet-Based Microelectronic Design Automation Framework 10-29

it allows system architects to define or modify system properties quickly. This is an important benefit when
working with evolving software such as IMEDA.

10.7 Conclusion

Managing the design process is the key factor to improve the productivity in the microelectronic
industry. We have presented an Internet-based Microelectronic Design Automation (IMEDA) frame-
work to manage the design process. IMEDA uses a powerful formalism, called design process grammars,
for representing design processes. We have also proposed an execution environment that utilizes this
formalism to assist designers in selecting and executing appropriate design processes. The proposed
approach is applicable not only in rapid prototyping but also in any environment where a design is
carried out hierarchically and many alternative processes are possible.
The primary advantages of our system are

. Formalism: A strong theoretical foundation enables us to analyze how our system will operate with
different methodologies.

. Parallelism: In addition to performing independent tasks within a methodology in parallel, our
system also allows multiple methodologies to be executed in parallel.

. Extensibility: New tools can be integrated easily by adding productions and manager programs.

. Flexibility:Many different control strategies can be used. They can even be mixed within the same
design exercise.

The prototype of IMEDA is implemented using Java. We are currently integrating more tools into our
prototype system and developing manager program templates that implement more sophisticated
algorithms for preevaluation, logical task execution, and query handling. Our system will become more
useful as CAD vendors to adapt open software systems and allow greater tool interoperability.

References

Andreoli, J.-M., Pacull, F., and Pareschi, R., XPECT: A framework for electronic commerce, IEEE Internet
Comput., 1(4): 40–48, 1998.

Baldwin, R. and Chung, M.J., A formal approach to mangaging design processes, IEEE Comput., 28:
54–63, February 1995a.

Baldwin, R. and Chung, M.J., Managing engineering data for complex products, Res. Eng. Des., 7:
215–231, 1995b.

FIGURE 10.18 Macro substitution.

10-30 Computer Aided Design and Design Automation

Barthelmann, K., Process specification and verification, Lect. Notes Comput. Sci., 1073, 225–239,
1996.

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H.F., and Secret, A., The World-Wide Web, Commn.
ACM, 37(8): 76–82, 1994.

Bushnell, M.L. and Director, S.W., VLSI CAD tool integration using the Ulysses environment,
23rd ACM=IEEE Design Automation Conference, Las Vegas, NV, pp. 55–61, 1986.

Casotto, A., Newton, A.R., and Sangiovanni-Vincentelli, A., Design management based on design traces,
27th ACM=IEEE Design Automation Conference, Orlando, FL, pp. 136–141, 1990.

CFI, Tool Encapsulation Specification, Draft Standard, Version 2.0, released by the CFI TES Working
Group, 1995.

Chan, F.L., Spiller, M.D., and Newton, A.R., WELD—An environment for web-based electronic design,
35th ACM=IEEE Design Automation Conference, ACM Press, San Francisco, CA, pp. 146–151,
June 1998.

Chiueh, T.F. and Katz, R.H., A history model for managing the VLSI design process, International
Conference on Computer-Aided Design, Santa Clara, CA, pp. 358–361, 1990.

Chung, M.J. and Kim, S., An object-oriented VHDL environment, Proceedings of the 27th ACM=IEEE
Design Automation Conference, Orlando, FL, June 24–28, IEEE Computer Society Press, pp. 431–
436, 1990.

Chung, M.J. and Kim, S., Configuration management and version control in an object-oriented VHDL
environment, International Conference on Computer-Aided Design ’91, Santa Clara, CA,
pp. 258–261, 1991.

Chung, M.J. and Kwon, P., A web-based framework for design and manufacturing a mechanical
system, 1998 ASME Design Engineering Technical Conference (DETC) and Computer Engineering
Conference, Atlanta, GA, September 1998, paper number DAC-5599.

Chung, M.J., Charmichael, L., and Dukes, M., Managing a RASSP design process, Comp. Ind., 30: 49–61,
1996.

Cutkosy, M.R., Tenenbaum, J.M., and Glicksman, J., Madefast: Collaborative engineering over the
Internet, Commn. ACM, 39(9): 78–87, 1996.

Daniel, J. and Director, S.W., An object oriented approach to CAD tool control, IEEE Trans. Comput.
Aided Des., 10: 698–713, June 1991.

Dellen, B., Maurer, F., and Pews, G., Knowledge-based techniques to increase the flexibility of workflow
management, Data and Knowledge Engineering, North-Holland Publishing Company, North-
Holland, The Netherlands, 1997.

Derk, M.D. and DeBrunner, L.S., Reconfiguartion for fault tolerance using graph grammar, ACM Trans.
Comput. Syst., 16(1): 41–54, February 1998.

Di Janni, A., A monitor for complex CAD systems, 23rd Design Automation Conference, Las Vegas, NV,
pp. 145–151, 1986.

Ehrig, H., Introduction to the algebraic theory of graph grammars, 1st Workshop on Graph Grammars
and Their Applications to Computer Science and Biology, Springer, LNCS, pp. 1–69, 1979.

Erkes, J.W., Kenny, K.B., Lewis, J.W., Sarachan, B.D., Sobololewski, M.W., and Sum, R.N., Implementing
shared manufacturing services on the World-Wide Web, Commn. ACM, 39(2): 34–45, 1996.

Fairbairn, D.G., 1994 keynote address, 31st Design Automation Conference, San Diego, CA, pp. xvi–xvii,
1994.

Hardwick, M., Spooner, D.L., Rando, T., and Morris, K.C., Sharing manufacturing information in virtual
enterprises, Commn. ACM, 39(2): 46–54, 1996.

Hawker, S., SEMATECH Computer Integrated Manufacturing (CIM) Framework Architecture Concepts,
Principles, and Guidelines, Version 0.7.

Heiman, P. et al., Graph-based software process management, Int. J. Software Eng. Knowledge Eng., 7(4):
1–24, December 1997.

Internet-Based Microelectronic Design Automation Framework 10-31

Hines, K. and Borriello, G., A geographically distributed framework for embedded system design and
validation, 35th Annual Design Automation Conference, ACM Press, San Francisco, CA, pp. 140–
145, June 1998.

Hsu, M. and Kleissner, C., Objectflow: Towards a process management infrastructure, Distributed
Parallel Databases, 4: 169–194, 1996.

IDEF, http:==www.idef.com.
Jacome, M.F. and Director, S.W., Design process management for CAD frameworks, 29th Design

Automation Conference, Anaheim, CA, pp. 500–505, 1992.
Jacome, M.F. and Director, S.W., A formal basis for design process planning and management, IEEE

Trans. Comput. Aided Des. Integrated Circuits Syst., 15(10): 1197–1211, October 1996.
Katz, R.H., Bhateja, R., E-Li Chang, E., Gedye, D., and Trijanto, V., Design version management,

IEEE Des. Test, 4(1): 12–22, February 1987.
Kleinfeldth, S., Guiney, M., Miller, J.K., and Barnes, M., Design methodology management, Proc. IEEE,

82(2): 231–250, February 1994.
Knapp, D. and Parker, A., The ADAM design planning engine, IEEE Trans. Comput. Aided Des.

Integrated Circuits Syst., 10(7): 829–846, July 1991.
Knapp, D.W. and Parker, A.C., A design utility manager: The ADAM planning engine, 23rd ACM=IEEE

Design Automation Conference, Las Vegas, NV, pp. 48–54, 1986.
Knutilla, A., Schlenoff, C., Ray, S., Polyak, S.T., Tate, A., Chiun Cheah, S., and Anderson, R.C., Process

specification language: An analysis of existing representations, NISTIR 6160, National Institute of
Standards and Technology, Gaithersburg, MD, 1998.

Kocourek, C., An architecture for process modeling and execution support, Comput. Aided Syst.
Theory—EUROCAST, Springer Berlin=Heidelberg, 1030: 199–216, 1995a.

Kocourek, C., Planning and execution support for design process, IEEE International Symposium and
Workshop on Systems Engineering of Computer Based System Proceedings, 1995b.

Lander, S.E., Staley, S.M., and Corkill, D.D., Designing integrated engineering environments:
Blackboard-based integration of design and analysis tools, Concurrent Engineering, 4(1): 59–71,
1996.

Lavana, H., Khetawat, A., Brglez, F., and Kozminski, K., Executable workflows: A paradigm for
collaborative design on the Internet, 34th ACM=IEEE Design Automation Conference, ACM
Press, Anaheim Convention Center, Anaheim, CA, pp. 553–558, June 9–13, 1997.

Lyons, K., RaDEO Project Overview, http:==www.cs.utah.edu=projects=alpha1=arpa=mind=index.html,
1997.

Malone, T.W., Crowston, K., and Herman, G.A. (Eds.), The MIT Process Handbook, MIT Press,
Cambridge, MA, 2003.

OASIS, OASIS Users Guide and Reference Manual, MCNC, Research Triangle Park, NC, 1992.
Petrie, C.J., Agent based engineering, the Web, and intelligence, Proceedings of IEEE Expert, pp. 24–29,

December 1996.
Rastogi, P., Koziki, M., and Golshani, F., ExPro: An expert system based process management system,

IEEE Trans. Semiconductor Manuf., 6(3): 207–218, 1993.
Schlenoff, C., Knutilla, A., and Ray, S., Unified process specification language: Requirements for

modeling process, NISTIR 5910, National Institute of Standards and Technology, Gaithersburg,
MD, 1996.

Schurmann, B. and Altmeyer, J., Modeling design tasks and tools—The link between product and flow
model, Proceedings of the 34th ACM=IEEE Design Automation Conference, Anaheim, CA, pp. 564–
569, June 1997.

Spiller, M.D. and Newton, A.R., EDA and network, International Conference on Computer-Aided Design,
San Jose, CA, pp. 470–475, 1997.

10-32 Computer Aided Design and Design Automation

Stavas, J., Wedgwood, J., Forte, M., Selvidge, W., Tuck, M.C., Bard, A., and Finnie, E., Workflow
modeling for implementing complex, CAD-based, design methodologies, Proceedings of the
Mentor Graphics Users Group International Conference, 1996.

Sutton, P.R. and Director, S.W., A description language for design process management, 33rd ACM=IEEE
Design Automation Conference, Las Vegas, NV, pp. 175–180, June 1996.

Sutton, P.R. and Director, S.W., Framework encapsulations: A new approach to CAD tool interoper-
ability, 35th ACM=IEEE Design Automation Conference, San Francisco, CA, pp. 134–139, June
15–19, 1998.

ten Bosch, K.O., Bingley, P., and Van der Wolf, P., Design flow management in the NELSIS CAD
framework, Proceedings of the 28th Design Automation Conference, San Francisco, CA,
pp. 711–716, 1991.

Toye, G., Cutkosky, M.R., Leifer, L.J., Tenenbaum, J.M., and Glicksman, J., SHARE: A methodology and
environment for collaborative product development, Proceedings of the 2nd Workshop Enabling
Technology: Infrastructure Collaborative Enterprises, Los Alamitos, CA, IEEE Computer Society
Press, pp. 33–47, 1993.

Vogel, A. and Duddy, K., Java Programming with CORBA, Third Edition, Wiley Computer Publishing,
New York, 2001.

Welsh, J., Kalathil, B., Chanda, B., Tuck, M.C., Selvidge, W., Finnie, E., and Bard, A., Integrated process
control and data management in RASSP enterprise system, Proceedings of 1995 RASSP Conference,
Second Annual RASSP Conference, Crystal City, VA, July 24–28, 1995.

Westfechtel, B., Integrated product and process management for engineering design applications,
Integrated Comput. Aided Eng., 3(1): 20–35, 1996.

Yang, Z. and Duddy, K., CORBA: A platform for distributed object computing, ACM Oper. Syst. Rev.,
30(2): 4–31, 1996.

Internet-Based Microelectronic Design Automation Framework 10-33

11
System-Level Design

Alice C. Parker
University of Southern California

Yosef Tirat-Gefen
University of Southern California

Suhrid A. Wadekar
University of Southern California

11.1 Introduction.. 11-1
Design Philosophies and System-Level Design .

System Design Space

11.2 System Specification.. 11-3
11.3 System Partitioning... 11-5

Constructive Partitioning Techniques . Iterative
Partitioning Techniques

11.4 Scheduling and Allocating Tasks
to Processing Modules ... 11-7

11.5 Allocating and Scheduling Storage Modules................. 11-8
11.6 Selecting Implementation and Packaging Styles

for System Modules .. 11-9
11.7 Interconnection Strategy.. 11-9
11.8 Word-Length Determination.. 11-10
11.9 Predicting System Characteristics.................................. 11-10
11.10 Survey of Research in System Design........................... 11-10

System Specification . Partitioning . Nonpipelined
Design . Macropipelined Design . Genetic Algorithms .

Imprecise Computation . Probabilistic Models
and Stochastic Simulation . Performance Bounds Theory
and Prediction . Word-Length Selection . Embedded
Systems . System on Chip and Network on Chip

References .. 11-16

11.1 Introduction

A system is a collection of interdependent operational components that together accomplish a complex
task. Examples of systems range from cellular phones to camcorders to satellites. Projections point to a
continuous increase in the complexity of systems in the coming years.
The term system, when used in the digital design domain, connotesmany different entities. A system can

consist of a processor, memory, and input=output, all on a single integrated circuit (IC), or can consist of
a network of processors, geographically distributed, all performing a specific application. There can be a
single clock, with modules communicating synchronously and multiple clocks with asynchronous com-
munication or entirely asynchronous operation. The design can be general purpose, or specific to a given
application, i.e., application-specific. The above variations together constitute the system style. System style
selection is determined to a great extent by the physical technologies used, the environment in which the
system operates, designer experience, and corporate culture, and is not automated to any great extent.
System-level design covers a wide range of design activities and design situations. It includes the more

specific activity system engineering, which involves the requirements, development, test planning,

11-1

subsystem interfacing, and end-to-end analysis of systems. System-level design is sometimes called
system architecting, a term used widely in the aerospace industry.
General-purpose system-level design involves the design of programmable digital systems including the

basic modules containing storage, processors, input=output, and system controllers. At the system level,
the design activities include determining the following:

. Power budget (the amount of power allocated to each module in the system)

. Cost and performance budget allocated to each module in the system

. Interconnection strategy

. Selection of commercial off-the-shelf (COTS) modules

. Packaging of each module

. Overall packaging strategy

. Number of processors, storage units, and input=output interfaces required

. Overall characteristics of each processor, storage unit, and I=O interface

For example, memory system design focuses on the number of memory modules required, how they are
organized, and the capacity of each module. A specific system-level decision in this domain can be how to
partition the memory between the processor chip and the off-chip memory. At a higher level, a similar
decision might involve configuration of the complete storage hierarchy, including memory, disk drives,
and archival storage.
For each general-purpose system designed, many more systems are designed to perform specific

applications. Application-specific system design involves the same activities as described above, but can
involve many more decisions, since there are usually more custom logic modules involved. Specifications
for application-specific systems contain not only requirements on general capabilities, but also contain
the functionality required in terms of specific tasks to be executed. Major application-specific system-
level design activities include not only the above general-purpose system design activities, but also the
following activities:

. Partitioning an application into multiple functional modules

. Scheduling the application tasks on shared functional modules

. Allocating functional modules to perform the application tasks

. Allocating and scheduling storage modules to contain blocks of data as they are processed

. Determining the implementation styles of functional modules

. Determining the word lengths of data necessary to achieve a given accuracy of computation

. Predicting resulting system characteristics once the system design is complete

Each of the system design tasks given in the two lists above will be described in detail below. Since the
majority of system design activities are application-specific, this section will focus on system-level design
of application-specific systems. Related activities, hardware–software codesign, verification, and simula-
tion are covered in other sections.

11.1.1 Design Philosophies and System-Level Design

Many design tools have been constructed with a top-down design philosophy. Top-down design repre-
sents a design process whereby the design becomes increasingly detailed until final implementation is
complete. Considerable prediction of resulting system characteristics is required to make the higher-level
decisions with some degree of success.
Bottom-up design, on the other hand, relies on designing a set of primitive elements, and then forming

more complex modules from those elements. Ultimately, the modules are assembled into a system. At
each stage of the design process, there is complete knowledge of the parameters of the lower-level
elements. However, the lower-level elements may be inappropriate for the tasks at hand.

11-2 Computer Aided Design and Design Automation

System designers in industry describe the design process as being much less organized and con-
siderably more complex than the top-down and bottom-up philosophies suggest. There is a mixture of
top-down and bottom-up activities with major bottlenecks of the system receiving detailed design
consideration while other parts of the system still exist only as abstract specifications. For this reason,
the system-level design activities we present in detail here support such a complex design situation.
Modules, elements, and components used to design at the system level might exist, or might only exist as
abstract estimates along with requirements. The system can be designed after all modules have been
designed and manufactured, prior to any detailed design, or with a mixture of existing and new modules.

11.1.2 System Design Space

System design, like data path design, is quite straightforward as long as the constraints are not too severe.
However, most designs must solve harder problems than problems solved by existing systems. Designers
must race to produce working systems faster than competitors, systems that are also less expensive. More
variations in design are possible than ever before and such variations require a large design space to be
explored. The dimensions of the design space (its axes) are system properties such as cost, power, design
time, and performance. The design space contains a population of designs, each of which possesses
different values of these system properties. There are literally millions of system designs for a given
specification, each of which exhibits different cost, performance, power consumption, and design
time. Straightforward solutions that do not attempt to optimize system properties are easy to obtain,
but may be inferior to designs that are produced by system-level design tools and have undergone many
iterations of design. The complexity of system design is not because system design is an inherently
difficult activity, but because so many variations in design are possible and time does not permit
exploration of all of them.

11.2 System Specification

Complete system specifications contain a wide range of information, including

. Constraints on the system power, performance, cost, weight, size, and delivery time

. Required functionality of the system components

. Any required information about the system structure

. Required communication between system components

. Flow of data between components

. Flow of control in the system

. Specification of input precision and desired output precision

Most systems specifications that are reasonably complete exist first in a natural language. However,
natural language interfaces are not currently available with commercial system-level design tools.
More conventional system specification methods used to drive system-level design tools include formal

languages, graphs, and a mixture of the two. Each of the formal system specification methods described
here contains some of the information found in a complete specification, i.e., most specification methods
are incomplete. The designer can provide the remaining information necessary for full system design
interactively, can be entered later in the design process, or can be provided in other forms at the same
time the specification is processed. The required design activities determine the specification method
used for a given system design task.
There are no widely adopted formal languages for system-level hardware design although System-Level

Design Language (SLDL) was developed by an industry group. Hardware descriptive languages such as
VHSIC Verilog Hardware Descriptive Language (VHDL) [1] and Verilog [2] are used to describe the
functionality of modules in an application-specific system. High-level synthesis tools can then synthesize

System-Level Design 11-3

such descriptions to produce register-transfer designs. Extensions of VHDL and Verilog have been
proposed to encompass more system-level design properties. Apart from system constraints, VHDL
specifications can form complete system descriptions. However, the level of detail required in VHDL and
to some extent in Verilog requires the designer to make some implementation decisions. In addition,
some information that is explicit in more abstract specifications such as the flow of control between tasks
is implicit in HDLs.
Graphical tools have been used for a number of years to describe system behavior and structure. Block

diagrams are often used to describe system structure. Block diagrams assume that tasks have already been
assigned to basic blocks and their configuration in the system has been specified. Block diagrams
generally cannot represent the flow of data or control, or design constraints. The processor memory
switch (PMS) notation invented by Bell and Newell was an early attempt to formalize the use of block
diagrams for system specification [3].

Petri nets have been used for many years to describe system behavior using a token-flow model. A
token-flow model represents the flow of control with tokens, which flow from one activity of the system
to another. Many tokens can be active in a given model concurrently, representing asynchronous activity
and parallelism, important in many system designs. Timed Petri nets have been used to model system
performance, but Petri nets cannot easily be used to model other system constraints, system behavior, or
any structural information.
State diagrams and graphical tools such as State charts [4] provide alternative methods for describing

systems. Such tools provide mechanisms to describe the flow of control, but do not describe system
constraints, system structure, data flow, or functionality.

Task-flow graphs, an outgrowth from the control=data-flow graphs (CDFG) used in high-level syn-
thesis are often used for system specification. These graphs describe the flow of control and data between
tasks. When used in a hierarchical fashion, task nodes in the task-flow graph can contain detailed
functional information about each task, often in the form of a CDFG. Task-flow graphs contain no
mechanisms for describing system constraints or system structure.
Spec charts [5] incorporate VHDL descriptions into state-chart-like notation, overcoming the lack of

functional information found in state charts.
Figure 11.1 illustrates the use of block diagrams, Petri nets, task-flow graphs, and spec charts.

Processor Memory

Input/output

(a) (b)

Token Transition

Place

Main

BusyGo

Image data Reset System_off

System_on
Quantize

(c) (d)

Ready

Error codeCompress

FIGURE 11.1 Use of (a) block diagrams, (b) Petri nets, (c) task-flow graphs, and (d) spec charts, shown in
simplified form.

11-4 Computer Aided Design and Design Automation

11.3 System Partitioning

Most systems are too large to fit on a single substrate. If the complexity of the system tasks and the
capacities of the system modules are of the same order, then partitioning is not required. All other
systems must be partitioned so that they fit into the allowed dies, packages, boards, multichip modules
(MCMs), and cases. Partitioning determines the functions, tasks, or operations in each partition of a
system. Each partition can represent a substrate, package, MCM, or larger component. Partitioning is
performed with respect to a number of goals, including minimizing cost, design time or power, or
maximizing performance. Any of these goals can be reformulated as specific constraints such as meeting
given power requirements.
When systems are partitioned, resulting communication delays must be taken into account, affecting

performance. Limitations on interconnection size must be taken into account, affecting performance as
well. Pin and interconnection limitations force the multiplexing of inputs and outputs, reducing
performance and sometimes affecting cost. Power consumption must also be taken into account.
Power balancing between partitions and total power consumption might both be considerations. To
meet market windows, system partitions can facilitate the use of COTS, programmable components, or
easily fabricated components such as gate arrays. To meet cost constraints, functions that are found in the
same partition might share partition resources. Such functions or tasks cannot execute concurrently,
affecting performance.
Partitioning is widely used at the logic level as well as on physical designs. In these cases, much more

information is known about the design properties and the interconnection structure has been deter-
mined. System partitioning is performed when information about properties of the specific components
might be uncertain, and the interconnection structure undetermined. For these reasons, techniques used
at lower levels must be modified to include predictions of design properties not yet known and prediction
of the possible interconnection structure as a result of the partitioning.
The exact partitioning method used depends on the type of specification available. If detailed CDFG or

HDL specifications are used, the partitioning method might be concerned with which register-transfer
functions (e.g., add, multiply, and shift) are found in each partition. If the specification primitives are
tasks, as in a task-flow graph specification, then the tasks must be assigned to partitions. Generally, the
more detailed the specification, the larger the size of the partitioning problem. Powerful partitioning
methods can be applied to problems of small size (n< 100). Weaker methods such as incremental
improvement must be used when the problem size is larger.
Partitioning methods can be based on constructive partitioning or iterative improvement. Constructive

partitioning involves taking an unpartitioned design and assigning operations or tasks to partitions. Basic
constructive partitioning methods include bin packing using a first-fit decreasing heuristic, clustering
operations into partitions by assigning nearest neighbors to the same partition until the partition is full,
random placement into partitions, and integer programming approaches.

11.3.1 Constructive Partitioning Techniques

Bin packing involves creating a number of bins equal in number to the number of partitions desired and
equal in size to the size of partitions desired. One common approach involves the following steps: the
tasks or operations are sorted by size. The largest task in the list is placed in the first bin, and then the
next largest is placed in the first bin, if it will fit, or else into the second bin. Each task is placed into
the first bin in which it will fit, until all tasks have been placed in bins. More bins are added if necessary.
This simple heuristic is useful to create an initial set of partitions to be improved iteratively later.
Clustering is a more powerful method to create partitions. Here is a simple clustering heuristic. Each

task is ranked by the extent of ‘‘connections’’ to other tasks either owing to control flow, data flow, or
physical position limitations. The most connected task is placed in the first partition and then the tasks
connected to it are placed in the same partition, in the order of the strength of their connections to the

System-Level Design 11-5

first task. Once the partition is full, the task with the most total connections remaining outside a partition
is placed in a new partition, and other tasks are placed there in the order of their connections to the first
task. This heuristic continues until all tasks are placed.
Random partitioning places tasks into partitions in a greedy fashion until the partitions are full. Some

randomization of the choice of tasks is useful in producing a family of systems, each member of which is
partitioned randomly. This family of systems can be used successfully in iterative improvement tech-
niques for partitioning, as described later in this section.
The most powerful technique for constructive partitioning is mathematical programming. Integer and

mixed integer-linear programming (MILP) techniques have been used frequently in the past for
partitioning. Such powerful techniques are computationally very expensive and are successful only
when the number of objects to be partitioned is small. The basic idea behind integer programming
used for partitioning is the following: an integer, TP(i, j), is used to represent the assignment of tasks
to partitions. When TP¼ 1, task i is assigned to partition j. For each task in this problem, there would be
an equation

XPartition total

j¼1

TP(i, j) ¼ 1 (11:1)

This equation states that each task must be assigned to one and only one partition. There would be many
constraints of this type in the integer program, some of which were inequalities. There would be one
function representing cost, performance, or other design property to be optimized. The simultaneous
solution of all constraints, given some minimization or maximization goal, would yield the optimal
partitioning.
Apart from the computational complexity of this technique, the formulation of the mathematical

programming constraints is tedious and error prone if performed manually. The most important
advantage of mathematical programming formulations is the discipline it imposes on the CAD pro-
grammer in formulating an exact definition of the CAD problem to be solved. Such problem formula-
tions can prove useful when applied in a more practical environment, as described in Section 11.3.2.

11.3.2 Iterative Partitioning Techniques

Of the many iterative partitioning techniques available, two have been applied most successfully at the
system level. These are min-cut partitioning, first proposed by Kernigan and Lin, and genetic algorithms.
Min-cut partitioning involves exchanging tasks or operations between partitions to minimize the total

amount of ‘‘interconnections’’ cut. The interconnections can be computed as the sum of data flowing
between partitions, or as the sum of an estimate of the actual interconnections that will be required in the
system. The advantage of summing the data flowing is that it provides a quick computation, since the
numbers are contained in the task-flow graph. Better partitions can be obtained if the required physical
interconnections are taken into account since they are related more directly to cost and performance than
is the amount of data flowing. If a partial structure exists for the design, predicting the unknown
interconnections allows partitioning to be performed on a mixed design, one that contains existing
parts as well as parts under design.
Genetic algorithms, highly popular for many engineering optimization problems, are especially suited

to the partitioning problem. The problem formulation is similar in some ways to mathematical pro-
gramming formulations. A simple genetic algorithm for partitioning is described here. In this example, a
chromosome represents each partitioned system design, and each chromosome contains genes, repre-
senting information about the system. A particular gene TP(i, j) might represent the fact that task i is
contained in partition j when it is equal to 1, and is set to 0 otherwise. A family of designs created by
some constructive partitioning technique then undergoes mutation and crossover as new designs evolve.

11-6 Computer Aided Design and Design Automation

A fitness function is used to check the quality of the design and the evolution is halted when the design is
considered fit or when no improvement has occurred after some time. In the case of partitioning, the
fitness function might include the estimated volume of interconnections, the predicted cost or perform-
ance of the system, or other system properties.
The reader might note some similarity between the mathematical programming formulation of the

partitioning problem presented here and the genetic algorithm formulation. This similarity allows the
CAD developer to create a mathematical programming model of the problem to be solved, find optimal
solutions to small problems, and then create a genetic algorithm version. The genetic algorithm version
can be checked against the optimal solutions found by the mathematical program. However, genetic
algorithms can take into account many more details than can mathematical program formulations, can
handle nonlinear relationships better, and can even handle stochastic parameters.*
Partitioning is most valuable when there is a mismatch between the sizes of system tasks and the

capacities of system modules. When the system tasks and system modules are more closely matched, then
the system design can proceed directly to scheduling and allocating tasks to processing modules.

11.4 Scheduling and Allocating Tasks to Processing Modules

Scheduling and allocating tasks to processing modules involves the determination of how many process-
ing modules are required, which modules execute which tasks, and the order in which the tasks are
processed by the system. In the special case where only a single task is processed by each module, the
scheduling becomes trivial. Otherwise, if the tasks share modules, the order in which the tasks are
processed by the modules can affect system performance or cost. If the tasks are ordered inappropriately,
some tasks might wait too long for input data, and performance might be affected. Alternatively, to meet
performance constraints, additional modules must be added to perform more tasks in parallel, increasing
system cost.
A variety of modules might be available to carry out each task, with differing cost and performance

parameters. As each task is allocated to a module, that module is selected from a set of modules available
to execute the task. This is analogous to the task module selection, which occurs as part of high-level
synthesis. For the system design problem considered here, the modules can be general-purpose proces-
sors, special-purpose processors (e.g., signal-processing processors), or special-purpose hardware. If all
(or most) modules used are general purpose, the systems synthesized are known as heterogeneous
application-specific multiprocessors.

A variety of techniques can be used for scheduling and allocation of system tasks to modules. Just as
with partitioning, these techniques can be constructive or iterative. Constructive scheduling techniques
for system tasks include greedy techniques such as ASAP (as soon as possible) and ALAP (as late as
possible). In ASAP scheduling, the tasks are scheduled as early as possible on a free processing module.
The tasks scheduled first are the ones with the longest paths from their outputs to final system outputs or
system completion. Such techniques, with variations, can be used to provide starting populations of
system designs to be further improved iteratively. The use of such greedy techniques for system synthesis
differs from the conventional use in high-level synthesis, where the system is assumed to be synchronous,
with tasks scheduled into time steps. System task scheduling assumes no central clock, and tasks take a
wide range of time to complete. Some tasks could even complete stochastically, with completion time
being a random variable. Other tasks could complete basic calculations in a set time, but could perform a
finer grain (more accurate) of computations if more time were available. A simple task-flow graph is
shown in Figure 11.2, along with a Gantt chart illustrating the ASAP scheduling of tasks onto two
processors. Note that two lengthy tasks are performed in parallel with three shorter tasks and that no two
tasks take the same amount of time.

* Stochastic parameters represent values that are uncertain. There is a finite probability of a parameter taking a specific value
that varies with time, but that probability is less than 1, in general.

System-Level Design 11-7

Similar to partitioning, scheduling, allocation, and module selection, can be performed using math-
ematical programming. In this case, since the scheduling is asynchronous, time becomes a linear rather
than integer quantity. Therefore, MILP is employed to model system-level scheduling and allocation.
A typical MILP timing constraint is the following:

TOA(i)þ Cdelay � TIR(j) (11:2)

where
TOA(i) is the time the output is available from task i
Cdelay is the communication delay
TIR(j) is the time the input is required by task j

Unfortunately, the actual constraints used in scheduling and allocation are mostly more complex than
this, because the design choices have yet to be made. Here is another example:

TOA(i) � TIR(i)þ
X
k

Pdelay(k) * M(i, k)
� �

(11:3)

This constraint states that the time an output from task i is available is greater than or equal to the time
necessary inputs are received by task i, and a processing delay Pdelay has occurred. M(i, k) indicates that
task i is allocated to module k. Pdelay can take on a range of values, depending on which of the k modules
is being used to implement task i. The summation is actually a linearized select function that picks the
value of Pdelay to use depending on which value of M(i, k) is set to 1.
As with partitioning, mathematical programming for scheduling and allocation is computationally

intensive, and impractical for all but the smallest designs, but it does provide a baseline model of design
that can be incorporated into other tools.
The most frequent technique used for iterative improvement in scheduling and allocation at the system

level is a genetic algorithm. The genes can be used to represent task allocation and scheduling.
To represent asynchronous scheduling accurately, time is generally represented as a linear quantity in
such genes rather than an integer quantity.

11.5 Allocating and Scheduling Storage Modules

In digital systems, all data require some form of temporary or permanent storage. If the storage is shared
by several data sets, the use of the storage by each data set must be scheduled. The importance of this task
in system design has been overlooked in the past, but has now become an important system-level task.

T1

T2

T3

T4

T2

T5 T6 T7

T1
Processor 1

Processor 2

Time

(b) Gantt chart showing schedule

T3 T4

T7

(a) Task-flow graph

T6

T5

FIGURE 11.2 Example of task-flow graph and schedule.

11-8 Computer Aided Design and Design Automation

Modern digital systems usually contain some multimedia tasks and data. The storage requirements for
multimedia tasks sometimes result in systems where processing costs are dwarfed by storage costs,
particularly caching costs. For such systems, storage must be scheduled and allocated either during or
after task scheduling and allocation. If storage is scheduled and allocated concurrently with task
scheduling and allocation, the total system costs are easier to determine and functional module sharing
can be increased if necessary to control total costs. Alternatively, if storage allocation and scheduling are
performed after task scheduling and allocation, then both programs are simpler, but the result may not be
as close to optimal.
Techniques similar to those used for task scheduling and allocation can be used for storage scheduling

and allocation.

11.6 Selecting Implementation and Packaging
Styles for System Modules

Packaging styles can range from single-chip dual-in-line packages (DIPs) to MCMs, boards, racks, and
cases. Implementation styles include general-purpose processor, special-purpose programmable proces-
sor (e.g., signal processor), COTS modules, field programmable gate arrays (FPGAs), gate array, standard
cell, and custom ICs. System cost, performance, power, and design time constraints determine selection
of implementation and packaging styles for many system designs. Tight performance constraints favor
custom ICs, packaged in MCMs. Tight cost constraints favor off-the-shelf processors and gate array
implementations, with small substrates and inexpensive packaging. Tight power constraints favor custom
circuits. Tight design time constraints favor COTS modules and FPGAs. If a single design property has
high priority, the designer can select the appropriate implementation style and packaging technology. If,
however, design time is crucial, but the system to be designed must process video signals in real time,
then trade-offs in packaging and implementation style must be made. The optimality of system cost and
power consumption might be sacrificed: the entire design might be built with FPGAs, with much parallel
processing and at great cost and large size. Because time-to-market is so important, early market entry
systems may sacrifice the optimality of many system parameters initially, and then improve them in the
next version of the product.
Selection of implementation styles and packaging can be accomplished by adding some design

parameters to the scheduling and allocation program, if that program is not already computationally
intensive. The parameters added would include a variable indicating that a particular

. Functional module was assigned a certain implementation style

. Storage module was assigned a certain implementation style

. Functional module was assigned a certain packaging style

. Storage module was assigned a certain packaging style

Some economy of processing could be obtained if certain implementation styles precluded certain
packaging styles.

11.7 Interconnection Strategy

Modules in a digital system are usually interconnected in some carefully architected, consistent manner.
If point-to-point interconnections are used, they are used throughout the system, or in a subsystem. In
the same manner, buses are not broken arbitrarily to insert point-to-point connections or rings. For this
reason, digital system design programs usually assume an interconnection style and determine the system
performance relative to that style. The most common interconnection styles are bus, point-to-point,
and ring.

System-Level Design 11-9

11.8 Word-Length Determination

Functional specifications for system tasks are frequently detailed enough to contain the algorithm to be
implemented. To determine the implementation costs of each system task, knowledge of the word widths
to be used is important as system cost varies almost quadratically with word width.
Tools to automatically select task word width are currently experimental, but the potential for future

commercial tools exists.
In typical hardware implementations of an arithmetic-intensive algorithm, designers must determine

the word lengths of resources such as adders, multipliers, and registers. Wadekar and Parker [6] in a
recent publication, present algorithm-level optimization techniques to select distinct word lengths for
each computation. These techniques meet the desired accuracy and minimize the design cost for the
given performance constraints. The cost reduction is possible by avoiding unnecessary bit-level compu-
tations that do not contribute significantly to the accuracy of the final results. At the algorithm level,
determining the necessary and sufficient precision of an individual computation is a difficult task since
the precision of various predecessor=successor operations can be traded off to achieve the same desired
precision in the final result. This is achieved using a mathematical model [7] and a genetic selection
mechanism [6]. There is a distinct advantage to word-length optimization at the algorithmic level. The
optimized operation word lengths can be used to guide high-level synthesis or designers to achieve an
efficient utilization of resources of distinct word lengths and costs. Specifically, only a few resources of
larger word lengths and high cost may be needed for operations requiring high precision to meet the final
accuracy requirement. Other relatively low-precision operations may be executed by resources of smaller
word lengths. If there is no timing conflict, a large word-length resource can also execute a small word-
length operation, thus improving the overall resource utilization further. These high-level design
decisions cannot be made without the knowledge of word lengths prior to synthesis.

11.9 Predicting System Characteristics

In system-level design, early prediction gives designers the freedom to make numerous high-level choices
(such as die size, package type, and latency of the pipeline) with confidence that the final implementation
will meet power and energy as well as cost and performance constraints. These predictions can guide
power budgeting and subsequent synthesis of various system components, which is critical in synthe-
sizing systems that have low power dissipation, or long battery life. The use by synthesis programs of
performance and cost lower bounds allows smaller solution spaces to be searched, which leads to faster
computation of the optimal solution.
System cost, performance, power consumption, and design time can be computed if the properties

of each system module are known. System design using existing modules requires little prediction.
If system design is performed prior to design of any of the contained system modules, however,
their properties must be predicted or estimated. Owing to the complexities of prediction techniques,
describing these techniques is a subject worthy of an entire chapter. A brief survey of related readings is
found in Section 11.10.
The register-transfer and subsequent lower-level power prediction techniques such as gate- and

transistor-level techniques are essential for validation before fabricating the circuit. However, these
techniques are less efficient for system-level design as a design must be generated before prediction
can be done.

11.10 Survey of Research in System Design

Many researchers have investigated the problem of system design, dating back to the early 1970s.
This section highlights work that is distinctive, along with tutorial articles covering relevant topics.

11-10 Computer Aided Design and Design Automation

Much good research is not referenced here, and the reader is reminded that the field is dynamic, with
new techniques and tools appearing almost daily.
Issues in top-down versus bottom-up design approaches were highlighted in the design experiment

reported by Gupta et al. [8].

11.10.1 System Specification

System specification has received little attention historically except in the specific area of software
specifications. Several researchers have proposed natural language interfaces capable of processing system
specifications and creating internal representations of the systems that are considerably more structured.
Of note is the work by Granacki [9] and Cyre [10]. One noteworthy approach is the design specification
language (DSL), found in the design analysis and synthesis environment [11]. One of the few books on
the subject concerns the design of embedded systems—systems with hardware and software designed for
a particular application set [12]. In one particular effort, Petri nets were used to specify the interface
requirements in a system of communicating modules, which were then synthesized [13]. The SIERA
system designed by Srivastava, Richards, and Broderson [14] supports specification, simulation, and
interactive design of systems.
The Rugby model [15] represents hardware=software systems and the design process, using four

dimensions to represent designs: time, computation, communication, and data. da Silva [16] describes
the system data structure (SDS), used for internal representation of systems. da Silva also presents an
external language for system descriptions called OSCAR. SDS is general and comprehensive, covering
behavior and structure. OSCAR is a visual interface to SDS with a formal semantics and syntax based on
a visual coordination language paradigm. It is used to capture the behavior and the coordination aspects
of concurrent and communicating processes.
SystemC [17] provides hardware-oriented constructs as a class library implemented in standard Cþþ.

Although the use of SystemC is claimed to span design and verification from concept to implementation
in hardware and software, the constructs provided are somewhat of lower level than most of the system
design activities described in this chapter. Extensions to VHDL and Verilog also support some system
design activities at the lower levels of system design.

11.10.2 Partitioning

Partitioning research covers a wide range of system design situations. Many early partitioning techniques
dealt with assigning register-level operations to partitions. APARTY, a partitioner designed by Lagnese
and Thomas, partitions CDFG designs for single-chip implementation to obtain efficient layouts [18].
Vahid [19] performed a detailed survey of techniques for assigning operations to partitions. CHOP
assigns CDFG operations to partitions for multichip design of synchronous, common clocked systems
[20]. Vahid and Gajski developed an early partitioner, SpecPart, which assigns processes to partitions
[21]. Chen and Parker reported on a process-to-partition technique called ProPart [22].

11.10.3 Nonpipelined Design

Although research on system design spans more than two decades, most of the earlier works focus on
single aspects of design-like task assignment, and not on the entire design problem. We cite some
representative works here. These include graph theoretical approaches to task assignment [23,24],
analytical modeling approaches for task assignment [25], and probabilistic modeling approaches for
task partitioning [26,27], scheduling [28], and synthesis [29]. Two publications of note cover application
of heuristics to system design [30,31].
Other publications of note include mathematical programming formulations for task partitioning [32]

and communication channel assignment [33]. Early efforts include those done by soviet researchers since

System-Level Design 11-11

the beginning of the 1970s such as Linsky and Kornev [34] and others, where each model only included a
subset of the entire synthesis problem. Chu et al. [35] published one of the first MILP models for
a subproblem of system-level design, scheduling. The program Synthesis of Systems (SOS) including a
compiler for MILP models [36,37] was developed, based on a comprehensive MILP model for system
synthesis. SOS takes a description of a system described using a task-flow graph, a processor library, and
some cost and performance constraints, and generates an MILP model to be optimized by an MILP
solver. The SOS tool generates MILP models for the design of nonperiodic (nonpipelined) heterogeneous
multiprocessors. The models share a common structure, which is an extension of the previous work by
Hafer and Parker for high-level synthesis of digital systems [38].
Performance bounds of solutions found by algorithms or heuristics for system-level design are

proposed in many papers, including the landmark papers by Fernandez and Bussel [39], Garey and
Graham [40], and more recent publications [41].
The work of Gupta et al. [8] reported the successful use of system-level design tools in the development

of an application-specific heterogeneous multiprocessor (ASHM) for image processing. Gupta and
Zorian [42] describe the design of systems using cores, silicon cells with at least 5000 gates. The same
issue of IEEE Design and Test of Computers contains a number of useful articles on the design of
embedded core-based systems. Li and Wolf [43] report on a model of hierarchical memory and a
multiprocessor synthesis algorithm, which takes into account the hierarchical memory structure.
A major project, RASSP, is a rapid-prototyping approach whose development is funded by the US

Department of Defense [44]. RASSP addresses the integrated design of hardware and software for signal-
processing applications.
An early work on board-level design, MICON, is of particular interest [45]. Other research results

solving similar problems with more degrees of design freedom include the research by Chen [46] and
Heo [47]. GARDEN, written by Heo, finds the design with the shortest estimated time-to-market that
meets cost and performance constraints.
All the MILP synthesis works cited up to this point address only the nonperiodic case.
Synthesis of ASHMs is a major activity in the general area of system synthesis. One of the most

significant system-level design efforts is Lee’s Ptolemy project at the University of California, Berkeley.
Representative publications include papers by Lee and Bier describing a simulation environment for
signal processing [48] and the paper by Kalavede et al. in 1995 [49]. Another prominent effort is the
SpecSyn project of Gajski et al. [50] which is a system-level design methodology and framework.

11.10.4 Macropipelined Design

Macropipelined (periodic) multiprocessors execute tasks in a pipelined fashion, with tasks executing
concurrently on different sets of data. Most research work on design of macropipelined multiprocessors
has been restricted to homogeneous multiprocessors having negligible communication costs. This survey
divides the previous contributions according to the execution mode: preemptive or nonpreemptive.

11.10.4.1 Nonpreemptive Mode

The nonpreemptive mode of execution assumes that each task is executed without interruption. It is used
quite often in low-cost implementations. Much research has been performed on system scheduling for
the nonpreemptive mode. A method to compute the minimum possible value for the initiation interval
for a task-flow graph given an unlimited number of processors and no communication costs was found
by Renfors and Neuvo [51].
Wang and Hu [52] use heuristics for the allocation and full static scheduling (meaning that each task

is executed on the same processor for all iterations) of generalized perfect-rate task-flow graphs
on homogeneous multiprocessors. Wang and Hu apply planning, an artificial intelligence method,
to the task scheduling problem. The processor allocation problem is solved using a conflict-graph
approach.

11-12 Computer Aided Design and Design Automation

Gelabert and Barnwell [53] developed an optimal method to design macropipelined homogeneous
multiprocessors using cyclic-static scheduling, where the task-to-processor mapping is not time-invariant
as in the full static case, but is periodic, i.e., the tasks are successively executed by all processors. Gelabert
and Barnwell assume that the delays for intraprocessor and interprocessor communications are the same,
which is an idealistic scenario. Their approach is able to find an optimal implementation (minimal
iteration interval) in exponential time in the worst case.
Tirat-Gefen [54], in his doctoral thesis, extended the SOS MILP model to solve for optimal macro-

pipelined ASHMs. He also proposed an ILP model allowing simultaneous optimal retiming and
processor=module selection in high- and system-level synthesis [55].
Verhauger [56] addresses the problem of periodic multidimensional scheduling. His thesis uses an ILP

model to handle the design of homogeneous multiprocessors without communication costs implement-
ing data-flow programs with nested loops. His work evaluates the complexity of the scheduling and
allocation problems for the multidimensional case, which were both found to be NP-complete. Verhau-
ger proposes a set of heuristics to handle both problems.
Passos et al. [57] evaluate the use of multidimensional retiming for synchronous data-flow graphs.

However, their formalism can only be applied to homogeneous multiprocessors without communication
costs.

11.10.4.2 Preemptive Mode of Execution

Peng and Shin [58] address the optimal static allocation of periodic tasks with precedence constraints and
preemption on a homogeneous multiprocessor. Their approach has an exponential time complexity.
Ramamritham [59] developed a heuristic method that has a more reasonable computational cost. Rate-
monotonic scheduling (RMS) is a commonly used method for allocating periodic real-time tasks in
distributed systems [60]. The same method can be used in homogeneous multiprocessors.

11.10.5 Genetic Algorithms

Genetic algorithms are becoming an important tool for solving the highly nonlinear problems related to
system-level synthesis. The use of genetic algorithms in optimization is well discussed by Michalewicz
[61] where formulations for problems such as bin packing, processor scheduling, traveling salesman, and
system partitioning are outlined.
Research works involving the use of genetic algorithms to system-level synthesis problems are starting

to be published, as for example, the results of

. Hou et al. [62]—scheduling of tasks in a homogeneous multiprocessor without communication
costs

. Wang et al. [63]—scheduling of tasks in heterogeneous multiprocessors with communication costs,
but not allowing cost versus performance trade-off, i.e., all processors have the same cost

. Ravikumar and Gupta [64]—mapping of tasks into a reconfigurable homogeneous array processor
without communication costs

. Tirat-Gefen and Parker [65]—a genetic algorithm for design of ASHMs with nonnegligible
communications costs specified by a nonperiodic task-flow graph representing both control and
data flow

. Tirat-Gefen [54]—introduced a full-set of genetic algorithms for system-level design of ASHMs
incorporating new design features such as imprecise computation and probabilistic design

11.10.6 Imprecise Computation

The main results in imprecise computation theory are due to Liu et al. [66] who developed polynomial
time algorithms for optimal scheduling of preemptive tasks on homogeneous multiprocessors without

System-Level Design 11-13

communications costs. Ho et al. [67] proposed an approach to minimize the total error, where the error
of a task being imprecisely executed is proportional to the amount of time that its optional part was not
allowed to execute, i.e., the time still needed for its full completion. Polynomial time-optimal algorithms
were derived for some instances of the problem [66].
Tirat-Gefen et al. [68] presented in 1997 a new approach for ASHM design that allows trade-offs

between cost, performance, and data-quality through incorporation of imprecise computation into the
system-level design cycle.

11.10.7 Probabilistic Models and Stochastic Simulation

Many probabilistic models for solving different subproblems in digital design have been proposed
recently. The problem of task and data-transfer scheduling on a multiprocessor when some tasks (data
transfers) have nondeterministic execution times (communication times) can be modeled by PERT
networks, which were introduced by Malcolm et al. [69] along with the critical path method (CPM)
analysis methodology.
A survey on PERT networks and their generalization to conditional PERT networks is done by

Elmaghraby [70]. In system-level design, the completion time of a PERT network corresponds to the
system latency, whose cumulative distribution function (cdf) is a nonlinear function of the probability
density distributions of the computation times of the tasks and the communication times of the data
transfers in the task-flow graph.
The exact computation of the cdf of the completion time is computationally expensive for large PERT

networks, therefore it is important to find approaches that approximate the value of the expected time of
the completion time and its cdf. One of the first of these approaches was due to Fulkerson [71], who
derived an algorithm in 1962 to find a tight estimate (lower bound) of the expected value of the
completion time. Robillard and Trahan [72] proposed a different method using the characteristic
function of the completion time in approximating the cdf of the completion time.
Mehrotra et al. [73] proposed a heuristic for estimating the moments of the probabilistic distribution

of the system latency tc. Kulkarni and Adlakha [74] developed an approach based on Markov processes
for the same problem. Hagstrom [75] introduced an exact solution for the problem when the random
variables modeling the computation and communication times are finite discrete random variables.
Kamburowski [76] developed a tight upper bound on the expected completion time of a PERT network.
An approach using random graphs to model distributed computations was introduced by Indurkhya

et al. [26], whose theoretical results were improved by Nicol [27]. Purushotaman and Subrahmanyam
[77] proposed formal methods applied to concurrent systems with a probabilistic behavior. An example
of modeling using queueing networks instead of PERT networks is given by Thomasian and Bay [78].
Estimating errors owing to the use of PERT assumptions in scheduling problems is discussed by
Lukaszewicz [79].
Tirat-Gefen developed a set of genetic algorithms using stratified stochastic sampling allowing

simultaneous probabilistic optimization of the scheduling and allocation of tasks and communications
on ASHM with nonnegligible communication costs [54].

11.10.8 Performance Bounds Theory and Prediction

Sastry [80] developed a stochastic approach for estimation of wireability (routability) for gate arrays.
Kurdahi [81] created a discrete probabilistic model for area estimation of VLSI chips designed according
to a standard cell methodology. Küçükçakar [82] introduced a method for partitioning of behavioral
specifications onto multiple VLSI chips using probabilistic area=performance predictors integrated into a
package called BEST (behavioral estimation). BEST provides a range of prediction techniques that can be
applied at the algorithm level and includes references to prior research. These predictors provide
information required by Tirat-Gefen’s system-level probabilistic optimization methods [54].

11-14 Computer Aided Design and Design Automation

Lower bounds on the performance and execution time of task-flow graphs mapped to a set of available
processors and communication links were developed by Liu and Liu [83] for the case of heterogeneous
processors, but no communication costs and by Hwang et al. [84] for homogeneous processors with
communication costs. Tight lower bounds on the number of processors and execution time for the case
of homogeneous processors in the presence of communication costs were developed by Al-Mouhamed
[85]. Yen and Wolf [86] provide a technique for performance estimation for real-time distributed
systems.
At the system and register-transfer level, estimating power consumption by the interconnect is

important [87]. Wadekar et al. [88] reported ‘‘Freedom,’’ a tool to estimate system energy and power
that accounts for functional-resource, register, multiplexer, memory, input=output pads, and intercon-
nect power. This tool employs a statistical estimation technique to associate low-level, technology-
dependent, physical, and electrical parameters with expected circuit resources and interconnect. At the
system level, Freedom generates predictions with high accuracy by deriving an accurate model of the load
capacitance for the given target technology—a task reported as critical in high-level power prediction by
Brand and Visweswariah [89]. Methods to estimate power consumption prior to high-level synthesis
were also investigated by Mehra and Rabaey [90]. Liu and Svensson [91] reported a technique to estimate
power consumption in CMOS VLSI chips. The reader is referred to an example of a publication that
reports power prediction and optimization techniques at the register-transfer level [92].

11.10.9 Word-Length Selection

Many researchers studied word-length optimization techniques at the register-transfer level. A few
example publications are cited here. These techniques can be classified as statistical techniques applied
to digital filters [93], simulated annealing-based optimization of filters [94], and simulation-based
optimization of filters, digital communication, and signal-processing systems [95]. Sung and Kum
reported a simulation-based word-length optimization technique for fixed-point digital signal-processing
systems [96]. The objective of these particular architecture-level techniques is to minimize the number of
bits in the design that is related to, but not the same as the overall hardware cost.

11.10.10 Embedded Systems

Embedded systems are becoming ubiquitous. The main factor differentiating embedded systems from
other electronic systems is the focus of attention on the application rather than on the system as a
computing engine. Typically, the I=O in an embedded system is to end users, sensors, and actuators.
Sensors provide information on environmental conditions, for example, and actuators control the
mechanical portion of the system. In an autonomous vehicle, an embedded system inputs the vehicle’s
GPS location via a sensor, and outputs control information to actuators that control the acceleration,
braking, and steering. Embedded systems are typically real-time systems, falling into the classes hard real-
time systems, where failure is catastrophic, and soft real-time systems, where failure is not catastrophic.
In an embedded system, there is typically at least one general-purpose processor or microcontroller,

and one or more coprocessors that are COTS chips, DSPs, FPGAs, or custom VLSI chips. The main tasks
to be performed for embedded systems are partitioning into hardware=software tasks, assigning tasks to
processors, scheduling the tasks, and simulation.

11.10.11 System on Chip and Network on Chip

The level of integration of microelectronics has allowed entire systems to be fabricated on a single IC. The
physical design of on-chip processing elements called cores can be obtained from vendors. Thus, along
with the traditional system design issues, there are issues of intellectual property (IP) for such cores.

System-Level Design 11-15

System on Chip (SoC) tend to be used for embedded systems, where hardware=software codesign is a
major activity.
Researchers and organizations are also examining the connection of large quantities of cores on a

single chip, and proposing to interconnect the cores with various types of interconnection networks.
Benini and DeMicheli [97] proposed the use of packet switched on-chip networks, and there has been
much publication activity in this area since. Raghavan proposed a hierarchical, heterogeneous approach,
and described an alternative network architecture with torus topology and token ring protocol [98].

References

1. IEEE Standard VHDL Language Reference Manual, IEEE Std. 1076, IEEE Press, New York, 1987.
2. Bhasker, J., A Verilog HDL Primer, Star Galaxy Press, Allentown, PA, 1997.
3. Bell, G. and Newell, A., Computer Structures: Readings and Examples, McGraw-Hill, New York, 1971.
4. Harel, D., Statecharts: A visual formalism for complex systems, Science of Computer Programming, 8,

231–274, 1987.
5. Vahid, F., Narayan, S., and Gajski, D.D., SpecCharts: A VHDL front-end for embedded systems,

IEEE Transactions on CAD, 14, 694, 1995.
6. Wadekar, S.A. and Parker, A.C., Accuracy sensitive word-length selection for algorithm optimiza-

tion, in Proceedings of the International Conference on Circuit Design [ICCD], 1998, 54.
7. Wadekar, S.A. and Parker, A.C., Algorithm-level verification of arithmetic-intensive application-

specific hardware designs for computation accuracy, in Digest Third International High-Level Design
Validation and Test Workshop, 1998.

8. Gupta, P., Chen, C.T., DeSouza-Batista, J.C., and Parker, A.C., Experience with image compression
chip design using unified system construction tools, in Proceedings of the 31st Design Automation
Conference, 1994.

9. Granacki, J. and Parker, A.C., PHRAN—Span: A natural language interface for system specifications,
in Proceedings of the 24th Design Automation Conference, 1987, 416.

10. Cyre, W.R., Armstrong, J.R., and Honcharik, A.J., Generating simulation models from natural
language specifications, Simulation, 65, 239, 1995.

11. Tanir, O. and Agarwal, V.K., A specification-driven architectural design environment, Computer, 6,
26–35, 1995.

12. Gajski, D.D., Vahid, F., Narayan, S., and Gong, J., Specification and Design of Embedded Systems,
Prentice Hall, Englewood Cliffs, NJ, 1994.

13. de Jong, G. and Lin, B., A communicating Petri net model for the design of concurrent asynchronous
modules, ACM=IEEE Design Automation Conference, June 1994.

14. Srivastava, M.B., Richards, B.C., and Broderson, R.W., System-level hardware module generation,
IEEE Transactions on Very Large-Scale Integration [VLSI] Systems, 3, 20, 1995.

15. Jantsch, A., Kumar, S., and Hemani, A., The RUGBY model: A conceptual frame for the study of
modeling, analysis and synthesis concepts of electronic systems, in Proceedings of the Conference on
Design, Automation and Test in Europe, Munich, Germany, 1999, 72–78.

16. da Silva, D., Jr., A comprehensive framework for the specification of hardware=software systems,
PhD dissertation, Department of Electrical Engineering, University of Southern California, Los
Angeles, CA, December 2001.

17. Grötker, T., Liao, S., Martin, G., and Swan, S., System Design with SystemC, Kluwer Academic,
Boston, MA, 2002.

18. Lagnese, E. and Thomas, D., Architectural partitioning for system level synthesis of integrated
circuits, IEEE Transactions on Computer-Aided Design, 1991.

19. Vahid, F., A survey of behavioral-level partitioning systems, Technical Report TR ICS 91–71,
University of California, Irvine, 1991.

11-16 Computer Aided Design and Design Automation

20. Kucukcakar, K. and Parker, A.C., Chop: A constraint-driven system-level partitioner, in Proceedings
of the 28th Design Automation Conference, 1991, 514.

21. Vahid, F. and Gajski, D.D., Specification partitioning for system design, in Proceedings of the 29th
Design Automation Conference, 1992.

22. Parker, A.C., Chen, C.-T., and Gupta, P., Unified system construction, in Proceedings of the SASIMI
Conference, 1993.

23. Bokhari, S.H., Assignment problems in parallel and distributed computing, Kluwer Academic
Publishers, Dordrecht, 1987.

24. Stone, H.S. and Bokhari, S.H., Control of distributed processes, Computer, 11, 97, 1978.
25. Haddad, E.K., Optimal load allocation for parallel and distributed processing, Technical Report

TR 89–12, Department of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA, April 1989.

26. Indurkhya, B., Stone, H.S., and Cheng, L.X., Optimal partitioning of randomly generated distributed
programs, IEEE Transactions on Software Engineering, SE-12, 483, 1986.

27. Nicol, D.M., Optimal partitioning of random programs across two processors, IEEE Transactions on
Software Engineering, 15, 134, 1989.

28. Lee, C.Y., Hwang, J.J., Chow, Y.C., and Anger, F.D., Multiprocessor scheduling with interprocessor
communication delays, Operations Research Letters, 7, 141, 1988.

29. Tirat-Gefen, Y.G., Silva, D.C., and Parker, A.C., Incorporating imprecise computation into system-
level design of application-specific heterogeneous multiprocessors, in Proceedings of the 34th Design
Automation Conference, 1997.

30. DeSouza-Batista, J.C. and Parker, A.C., Optimal synthesis of application-specific heterogeneous
pipelined multiprocessors, in Proceedings of the International Conference on Application-Specific
Array Processors, 1994.

31. Mehrotra, R. and Talukdar, S.N., Scheduling of tasks for distributed processors, Technical Report
DRC-18-68-84, Design Research Center, Carnegie-Mellon University, Pittsburgh, PA, December
1984.

32. Agrawal, R. and Jagadish, H.V., Partitioning techniques for large-grained parallelism, IEEE Trans-
actions on Computers, 37, 1627, 1988.

33. Barthou, D., Gasperoni, F., and Schwiegelshon, U., Allocating communication channels to parallel
tasks, Environments and Tools for Parallel Scientific Computing, Elsevier Science Publishers B.V.,
Amsterdam, 1993, 275.

34. Linsky, V.S. and Kornev, M.D., Construction of optimum schedules for parallel processors, Engin-
eering Cybernetics, 10, 506, 1972.

35. Chu, W.W., Hollaway, L.J., and Efe, K., Task allocation in distributed data processing, Computer, 13,
57, 1980.

36. Prakash, S. and Parker, A.C., SOS: Synthesis of application-specific heterogeneous multiprocessor
systems, Journal of Parallel and Distributed Computing, 16, 338, 1992.

37. Prakash, S., Synthesis of application-specific multiprocessor systems, PhD thesis, Department of
Electrical Engineering and Systems, University of Southern California, Los Angeles, CA, January
1994.

38. Hafer, L. and Parker, A., Automated synthesis of digital hardware, IEEE Transactions on Computers,
C-31, 93, 1981.

39. Fernandez, E.B. and Bussel, B., Bounds on the number of processors and time for multiprocessor
optimal schedules, IEEE Transactions on Computers, C-22, 745, 1975.

40. Garey, M.R. and Graham, R.L., Bounds for multiprocessor scheduling with resource constraints,
SIAM Journal of Computing, 4, 187, 1975.

41. Jaffe, J.M., Bounds on the scheduling of typed task systems, SIAM Journal of Computing, 9, 541, 1991.
42. Gupta, R. and Zorian, Y., Introducing core-based system design, IEEE Design and Test of Computers,

October–December 15, 1997.

System-Level Design 11-17

43. Li, Y. and Wolf, W., A task-level hierarchical memory model for system synthesis of multiprocessors,
in Proceedings of the Design Automation Conference, 1997, 153.

44. IEEEDesign and Test, Vol. 13, No. 3, Fall 1996, published by IEEEComputer Society,Washington, DC.
45. W. Birmingham and D. Siewiorek, MICON: A single board computer synthesis tool, in Proceedings

of the 21st Design Automation Conference, 1984.
46. Chen, C-T., System-level design techniques and tools for synthesis of application-specific digital

systems, PhD thesis, Department of Electrical Engineering and Systems, University of Southern
California, Los Angeles, CA, January 1994.

47. Heo, D.H., Ravikumar, C.P., and Parker, A., Rapid synthesis of multi-chip systems, in Proceedings of
the 10th International Conference on VLSI Design, 1997, 62.

48. Lee, E.A. and Bier, J.C., Architectures for statically scheduled dataflow, Journal of Parallel and
Distributed Computing, 10, 333–348, 1990.

49. Kalavede, A., Pino, J.L., and Lee, E.A., Managing complexity in heterogeneous system specification,
simulation and synthesis, Proceedings of the International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 1995.

50. Gajski, D.D., Vahid, F., and Narayan, S., A design methodology for system-specification refinement,
in Proceedings of the European Design Automation Conference, 1994, 458.

51. Renfors, M. and Neuvo, Y., The maximum sampling rate of digital filters under hardware speed
constraints, IEEE Transactions on Circuits and Systems, CAS-28, 196, 1981.

52. Wang, D.J. and Hu, Y.H., Multiprocessor implementation of real-time DSP algorithms, IEEE
Transactions on Very Large-Scale Integration (VLSI) Systems, 3, 393, 1995.

53. Gelabert, P.R. and Barnwell, T.P., Optimal automatic periodic multiprocessor scheduler for fully
specified flow graphs, IEEE Transactions on Signal Processing, 41, 858, 1993.

54. Tirat-Gefen, Y.G., Theory and practice in system-level of application-specific heterogeneous multi-
processors, PhD dissertation, Department of Electrical and Computer Engineering, University of
Southern California, Los Angeles, CA, 1997.

55. CasteloVide-e-Souza, Y.G., Potkonjak, M. and Parker, A.C., Optimal ILP-based approach for
throughput optimization using algorithm=architecture matching and retiming, Proceedings of the
32nd Design Automation Conference, June 1995.

56. Verhauger, W.F., Multidimensional periodic scheduling, PhD thesis, Eindhoven University of
Technology, Holland, 1995.

57. Passos, N.L., Sha, E.H., and Bass S.C., Optimizing DSP flow-graphs via schedule-based multidimen-
sional retiming, IEEE Transaction on Signal Processing, 44, 150, 1996.

58. Peng, D.T. and Shin, K.G., Static allocation of periodic tasks with precedence constraints in
distributed real-time systems, in Proceedings of the 9th International Conference of Distributed
Computing, 1989, 190.

59. Ramamritham, K., Allocation and scheduling of precedence-related periodic tasks, IEEE Transac-
tions on Parallel and Distributed Systems, 6, 1995.

60. Ramamritham, K., Stankovic, J.A., and Shiah, P.F., Efficient scheduling algorithms for real-time
multiprocessors systems, IEEE Transaction on Parallel and Distributed Systems, 1, 184, 1990.

61. Michalewicz, Z., Genetic AlgorithmsþData Structures¼Evolution Programs, Springer, Berlin,
1994.

62. Hou, E.S.H, Ansari, N., and Ren, H., A Genetic algorithm for multiprocessor scheduling, IEEE
Transactions on Parallel and Distributed Systems, 5, 113, 1994.

63. Wang, L., Siegel, H.J., and Roychowdhury, V.P., A genetic-algorithm-based approach for task
matching and scheduling in heterogeneous computing environments, in Proceedings of the Hetero-
geneous Computing Workshop, International Parallel Processing Symposium, 1996, 72.

64. Ravikumar, C.P. and Gupta, A., Genetic algorithm for mapping tasks onto a reconfigurable parallel
processor, IEEE Proceedings in Computing Digital Technology, 142, 81, 1995.

11-18 Computer Aided Design and Design Automation

65. Tirat-Gefen, Y.G. and Parker, A.C., MEGA: An approach to system-level design of application-
specific heterogeneous multiprocessors, in Proceedings of the Heterogeneous Computing Workshop,
International Parallel Processing Symposium, 1996, 105.

66. Liu, J.W.S., Lin, K.-J., Shih, W.-K., Yu, A.C.-S., Chung, J.-Y., and Zhao, W., Algorithms for
scheduling imprecise computations, IEEE Computer, 24, 58, 1991.

67. Ho, K., Leung, J.Y-T., and Wei, W-D., Minimizing maximum weighted error for imprecise compu-
tation tasks, Technical Report UNL-CSE-92-017, Department of Computer Science and Engineering,
University of Nebraska, Lincoln, 1992.

68. Tirat-Gefen, Y.G., Silva, D.C., and Parker, A.C., Incorporating imprecise computation into system-
level design of application-specific heterogeneous multiprocessors, in Proceedings of the 34th Design
Automation Conference, 1997.

69. Malcolm, D.G., Roseboom, J.H., Clark, C.E., and Fazar, W., Application of a technique for research
and development program evaluation, Operations Research, 7, 646, 1959.

70. Elmaghraby, S.E., The theory of networks and management science: Part II,Management Science, 17,
B.54, 1970.

71. Fulkerson, D.R., Expected critical path lengths in pert networks, Operations Research, 10, 808, 1962.
72. Robillard, P. and Trahan, M., The completion time of PERT networks, Operations Research, 25,

15, 1977.
73. Mehrotra, K., Chai, J., and Pillutla, S., A study of approximating the moments of the job completion

time in PERT networks, Technical Report, School of Computer and Information Science, Syracuse
University, New York, 1991.

74. Kulkarni, V.G. and Adlakha, V.G., Markov and Markov-regenerative pert networks, Operations
Research, 34, 769, 1986.

75. Hagstrom, J.N., Computing the probability distribution of project duration in a PERT network,
Networks, 20, 231, 1990.

76. Kamburowski, J., An upper bound on the expected completion time of PERT networks, European
Journal of Operational Research, 21, 206, 1985.

77. Purushothaman, S. and Subrahmanyam, P.A., Reasoning about probabilistic behavior in concurrent
systems, IEEE Transactions on Software Engineering, SE-13, 740, 1987.

78. Thomasian, A., Analytic queueing network models for parallel processing of task systems, IEEE
Transactions on Computers, C-35, 1045, 1986.

79. Lukaszewicz, J., On the estimation of errors introduced by standard assumptions concerning the
distribution of activity duration in PERT calculations, Operations Research, 13, 326, 1965.

80. Sastry, S. and Parker, A.C., Stochastic models for wireability analysis of gate arrays, IEEE Transac-
tions on Computer-Aided Design, CAD-5, 1986.

81. Kurdahi, F.J., Techniques for area estimation of VLSI layouts, IEEE Transaction on Computer-Aided
Design, 8, 81, 1989.

82. Küçükçakar, K. and Parker, A.C., A methodology and design tools to support system-level VLSI
design, IEEE Transactions on Very Large-Scale Integration [VLSI] Systems, 3, 355, 1995.

83. Liu, J.W.S. and Liu, C.L., Performance analysis of multiprocessor systems containing functionally
dedicated processors, Acta Informatica 10, 95, 1978.

84. Hwang, J.J., Chow, Y.C., Ahnger, F.D., and Lee, C.Y., Scheduling precedence graphs in systems with
interprocessor communication times, SIAM Journal of Computing, 18, 244, 1989.

85. Mouhamed, M., Lower bound on the number of processors and time for scheduling precedence
graphs with communication costs, IEEE Transactions on Software Engineering, 16, 1990.

86. Yen, T.-Y. and Wolf, W., Performance estimation for real-time embedded systems, in Proceedings of
the International Conference on Computer Design, 1995, 64.

87. Landman, P.E. and Rabaey, J.M., Activity-sensitive architectural power analysis, IEEE Transactions
on CAD, 15, 571, 1996.

System-Level Design 11-19

88. Wadekar, S.A., Parker, A.C., and Ravikumar, C.P., FREEDOM: Statistical behavioral estimation of
system energy and power, in Proceedings of the Eleventh International Conference on VLSI Design,
1998, 30.

89. Brand, D. and C. Visweswariah, Inaccuracies in power estimation during logic synthesis, in Proceed-
ings of the European Design Automation Conference (EURO-DAC), 1996, 388.

90. Mehra, R. and Rabaey, J., Behavioral level power estimation and exploration, in Proceedings of the
First International Workshop on Low Power Design, 1994, 197.

91. Liu, D. and Svensson, C., Power consumption estimation in CMOS VLSI chips, IEEE Journal of
Solid-State Circuits, 29, 663, 1994.

92. Landman, P.E. and Rabaey, J.M., Activity-sensitive architectural power analysis, IEEE Transactions
on Computer-Aided Design, 15, 571, 1996.

93. Zeng, B. and Neuvo, Y., Analysis of floating point roundoff errors using dummy multiplier coeffi-
cient sensitivities, IEEE Transactions on Circuits and Systems, 38, 590, 1991.

94. Catthoor, F., Vandewalle, J., and De Mann, H., Simulated annealing based optimization of coefficient
and data word lengths in digital filters, International Journal of Circuit Theory Applications, 16, 371,
1988.

95. Grzeszczak, A., Mandal, M.K., Panchanathan, S., and Yeap, T., VLSI implementation of discrete
wavelet transform, IEEE Transactions on VLSI Systems, 4, 421, 1996.

96. Sung, W. and Kum, Ki-II., Simulation-based word-length optimization method for fixed-point digital
signal processing systems, IEEE Transactions on Signal Processing, 43, 3087, 1995.

97. Benini, L. and De Micheli, G., Networks on chip: A new paradigm for systems on chip design, in
Proceedings of the Conference on Design, Automation and Test in Europe, 2002, 418–419.

98. Raghavan, D., Extending the design space for networks on chip, MS thesis, Department of Electrical
Engineering, University of Southern California, Los Angeles, CA, May 2004.

11-20 Computer Aided Design and Design Automation

12
Performance Modeling

and Analysis Using
VHDL and SystemC

Robert H. Klenke
Virginia Commonwealth University

Jonathan A. Andrews
Virginia Commonwealth University

James H. Aylor
University of Virginia

12.1 Introduction .. 12-1
Multilevel Modeling

12.2 ADEPT Design Environment ... 12-9
Token Implementation . ADEPT Handshaking and Token
Passing Mechanism . Module Categories . ADEPTs

12.3 Simple Example of an ADEPT
Performance Model... 12-18
Three-Computer System . Simulation Results

12.4 Mixed-Level Modeling.. 12-23
Mixed-Level Modeling Taxonomy . Interface for
Mixed-Level Modeling with FSMD Components .

Interface for Mixed-Level Modeling with Complex
Sequential Components

12.5 Performance and Mixed-Level Modeling
Using SystemC ... 12-42
SystemC Background . SystemC Performance Models .

Processor Model . Channels . Shared Bus Model .

Fully Connected Model . Crossbar Model . SystemC
Performance Modeling Examples . Mixed-Level Processor
Model . Mixed-Level Examples . Random Data Generation .

Mixed-Level Example Summary

12.6 Conclusions... 12-64
References .. 12-64

12.1 Introduction

It has been noted by the digital design community that the greatest potential for additional cost and
iteration cycle time savings is through improvements in tools and techniques that support the early stages
of the design process [1]. As shown in Figure 12.1, decisions made during the initial phases of a product’s
development cycle determine up to 80% of its total cost. The result is that accurate, fast analysis tools
must be available to the designer at the early stages of the design process to help make these decisions.
Design alternatives must be effectively evaluated at this level with respect to multiple metrics, such as
performance, dependability, and testability. This analysis capability will allow a larger portion of the
design space to be explored yielding higher quality as well as lower cost designs.

12-1

In 1979, Hill and vanCleemput [2] of the SABLE environment identified three or four stages or phases
of design, and noted that each traditionally uses their own simulator. While the languages used have
changed and some of the phases can be simulated together these phases still exist in most industry design
flows: first an initial high-level simulation, then an intermediate level roughly at the instruction set
simulation level, and then a gate-level phase. The authors add a potential fourth stage to deal with custom
integrated circuit (IC) simulation. While acknowledging the potential for more efficient simulation at a
given level due to potential optimization, they point out five key disadvantages to having different
simulators and languages for the various levels. They are

1. Design effort is multiplied by the necessity of learning several simulator systems and recoding a
design in each.

2. Possibility of error is increased as more human manipulation enters the system.
3. Each simulator operates at just one level of abstraction. Because it is impossible to simulate an

entire computer at a low level of abstraction, only small fragments can be simulated at any one
time.

4. Each fragment needs to be driven by a supply of realistic data and its output needs to be
interpreted. Often, writing the software to serve these needs is more effortful than developing
the design itself.

5. As the design becomes increasingly fragmented to simulate, it becomes difficult for any designer to
see how his own particular piece fits into the overall function of the system.

While SABLE was developed almost three decades ago, it is worth noting that today designers are still
struggling to address the same basic issues expressed above. Much of the industry has at least two or three
design phases requiring separate models and simulators, which still results in a multiplication of design
effort. This multiplication of design effort still increases the possibility of error due to inherently fallible
human manipulation. While it may not be impossible to simulate an entire computer at one low level of
abstraction, it is still impractical and inefficient. Thus, designs are often still fragmented for development
and simulation, these fragments still need realistic data, and generating it is still time-consuming.
Designers working on a fragment often have difficulty seeing how his or her piece fits into overall
function, and this often leads to differing assumptions between fragments and expensive design revision.
There are a number of current tools and techniques that support analysis of these metrics at the system

level to varying degrees. A major problem with these tools is that they are not integrated into the
engineering design environment in which the system will ultimately be implemented. This problem leads

Time Concept Design
engineering

Testing Process
planning

Production

20

40

60

80

100

Cost committed

Cost incurred

To
ta

l s
ys

te
m

 co
st

(%
)

Phases of the product development cycle

FIGURE 12.1 Product costs over the development cycle.

12-2 Computer Aided Design and Design Automation

to a major disconnect in the design process. Once the system-level model is developed and analyzed, the
resulting high-level design is specified on paper and thrown ‘‘over the wall’’ for implementation by
the engineering design team, as illustrated in Figure 12.2. As a result, the engineering design team has to
often interpret this specification to implement the system, which often leads to design errors. It also has
to develop their own initial ‘‘high-level’’ model from which to begin the design process in a top-down
manner. Additionally, there is no automated mechanism by which feedback on design assumptions and
estimations can be provided to the system design team by the engineering design team.
For systems that contain significant portions of both application-specific hardware and software

executing on embedded processors, design alternatives for competing system architectures and hard-
ware=software (HW=SW) partitioning strategies must be effectively and efficiently evaluated using high-
level performance models. Additionally, the selected hardware and software system architecture must
be refined in an integrated manner from the high-level models to an actual implementation to
avoid implementation mistakes and the associated high redesign costs. Unfortunately, most existing
design environments lack the ability to model and design a system’s hardware and software in the same
environment. A similar wall to that between the system design environment and the engineering
design environment exists between the hardware and the software design environments. This results
in a design path as shown in Figure 12.3, where the hardware and software design process begins with
a common system requirement and specification, but proceeds through a separate and isolated design
process until final system integration. At this point, assumptions on both sides may prove to be
drastically wrong resulting in incorrect system function and poor system performance.

System
requirements

System
architecture

and
partitioning
(high-level)

System design environment

Software
design

System
architecture

and
partitioning
(low-level)

Hardware
design

Engineering design environment

Written system
analysis and

specifications

“The wall”

FIGURE 12.2 Disconnect between system-level design environments and engineering design environments.

System concepts/requirements
 analysis

Hardware requirements
analysis

Software requirements
analysis

Hardware
design and test

Software
design and test

System integration

FIGURE 12.3 Current hardware=software system development methodology.

Performance Modeling and Analysis Using VHDL and SystemC 12-3

A unified, cooperative approach in which the hardware and software options can be considered
together is required to increase the quality and decrease the design time for complex HW=SW systems.
This approach is called hardware=software codesign, or simply codesign [3–5]. Codesign leads to more
efficient implementations and improves overall system performance, reliability, and cost-effectiveness
[5]. Also, because decisions regarding the implementation of functionality in software can impact
hardware design (and vice versa), problems can be detected and changes made earlier in the development
process [6].
Codesign can especially benefit the design of embedded systems [7], which contain hardware and

software tailored for a particular application. As the complexity of these systems increases, the issue of
providing design approaches that scale up to more complicated systems becomes of greater concern.
A detailed description of a system can approach the complexity of the system itself [8], and the amount of
detail present can make analysis intractable. Therefore, decomposition techniques and abstractions are
necessary to manage this complexity.
What is needed is a design environment in which the capability for performance modeling of HW=SW

systems at a high level of abstraction is fully integrated into the engineering design environment.
To completely eliminate the ‘‘over the wall’’ problem and the resulting model discontinuity, this
environment must support the incremental refinement of the abstract system-level performance model
into an implementation-level model. Using this environment, a design methodology based on incremen-
tal refinement can be developed.
The design methodology illustrated in Figure 12.4 was proposed by Lockheed Martin Advanced

Technology Laboratory as a new way to design systems [9]. This methodology uses the level of the
risk of not meeting the design specifications as the metric for driving the design process. In this spiral-
based design methodology, there are two iteration cycles. The major cycles (or spirals), denoted as
Cycle 1, Cycle 2, . . . , Cycle N in the figure, correspond to the design iterations where major architectural
changes are made in response to some specification metrics and the system as a whole is refined and
more design detail is added to the model. Consistent with the new paradigm of system design, these
iterations will actually produce virtual or simulation-based prototypes. A virtual prototype is simply a
simulatable model of the system with stimuli described at a given level of design detail or design
abstraction that describes the system’s operation. Novel to this approach are the mini spirals. The
mini spiral cycles, denoted by the levels on the figure labeled Systems, Architecture, and Detailed
design, correspond to the refinement of only those portions of the design that are deemed to be
‘‘high risk.’’ High risk is obviously defined by the designer but is most often the situation where if one

FIGURE 12.4 RDEIM.

12-4 Computer Aided Design and Design Automation

or more of these components fail to meet their individual specifications, the system will fail to meet its
specifications. The way to minimize the risk is to refine these components to possibly make an
implementation so that the actual performance is known. Unlike the major cycles where the entire
design is refined, the key to the mini spirals is the fact that only the critical portions of design are refined.
For obvious reasons, the resulting models have been denoted as ‘‘Risk Driven Expanding Information
Models’’ (RDEIMs).

The key to being able to implement this design approach is to be able to evaluate the overall design
with portions of the system having been refined to a detailed level, while the rest of the system model
remains at the abstract level. For example, in the first major cycle of Figure 12.4 the element with the
highest relative risk is fully implemented (detailed design level) while the other elements are described at
more abstract levels (system level or architectural level). If the simulation of the model shown in the first
major cycle detects that the overall system will not meet its performance requirements, then the ‘‘high
risk’’ processing element could be replaced by two similar elements operating in parallel. This result is
shown in the second major cycle and at this point, another element of the system may become the new
‘‘bottleneck,’’ i.e., the highest relative risk, and it will be refined in a similar manner.

Implied in the RDEIM approach is a solution to the ‘‘over the wall’’ problem including hardware=
software codesign. The proposed solution is to fully integrate performance modeling into the design
process.
Obviously, one of the major capabilities necessary to implement a top-down design methodology such

as the RDEIM is the ability to cosimulate system models which contain some components that are
modeled at an abstract performance level (uninterpreted models) and some that are modeled at a detailed
behavioral level (interpreted models). This capability to model and cosimulate uninterpreted models and
interpreted models is called mixed-level modeling (sometimes referred to as hybrid modeling). Mixed-
level modeling requires the development of interfaces that can resolve the differences between uninter-
preted models that, by design, do not contain a representation of all of the data or timing information of
the final implementation, and interpreted models which require most, or possibly all, data values and
timing relationships to be specified. Techniques for systematic development of these mixed-level mod-
eling interfaces and resolution of these differences in abstraction is the focus of some of the latest work in
mixed-level modeling.
In addition to the problem of mixed-level modeling interfaces, another issue that may have to be

solved is that of different modeling languages being used at different levels of design abstraction. While
VHDL, and to some extent various extensions to Verilog, can be used to model at the system level, many
designers constructing these types of models prefer to use a language with a more programming
language-like syntax. As a result of this and other factors, the SystemC language [10] was developed.
SystemC is a library extension to Cþþ that builds key concepts from existing hardware description
languages (HDLs)—primarily a timing model that allows simulation of concurrent events—into an
intrinsically object oriented HDL. Its use of objects, pointers, and other standard Cþþ items makes it
a versatile language. Particularly the ability to describe and use complex data types, and the concepts of
interfaces and channels make it much more intuitive for describing abstract behaviors than existing
HDLs such as VHDL or Verilog. Since SystemC is Cþþ, existing C or Cþþ code that models behavior
can be imported with little or no modification.

12.1.1 Multilevel Modeling

The need for multilevel modeling was recognized almost three decades ago. Multilevel modeling implies
that representations at different levels of detail coexist within a model [8,11,12]. Until the early 1990s, the
term multilevel modeling was used for integrating behavioral or functional models with lower level
models. The objective was to provide a continuous design path from functional models down to
implementation. This objective was achieved and the VLSI industry utilizes it today. An example is the
tool called Droid, developed by Texas Instruments [13].

Performance Modeling and Analysis Using VHDL and SystemC 12-5

The mixed-level modeling approach, as described in this chapter, is a specific type of multilevel
modeling which integrates performance and behavioral models. Thus, only related research on multilevel
modeling systems that spans both the performance and the functional=behavioral domains will be
described.
Although behavioral or functional modeling is typically well understood by the design community,

performance modeling is a foreign topic to most designers. Performance modeling, also called uninter-
preted modeling, is utilized in the very early stages of the design process in evaluating such metrics as
throughput and utilization. Performance models are also used to identify bottlenecks within a system and
are often associated with the job of a system engineer. The term ‘‘uninterpreted modeling’’ reflects the
view that performance models lack value-oriented data and functional (input=output) transformations.
However, in some instances, this information is necessary to allow adequate analysis to be performed.
A variety of techniques have been employed for performance modeling. The most common techniques

are Petri nets [14–16] and queuing models [17,18]. A combination of these techniques, such as a mixture
of Petri nets and queuing models [19], has been utilized to provide more powerful modeling capabilities.
All of these models have mathematical foundations. However, models of complex systems constructed
using these approaches can quickly become unwieldy and difficult to analyze.
Examples of a Petri net and a queuing model are shown in Figure 12.5. A queuing model consists of

queues and servers. Jobs (or customers) arrive at a specific arrival rate and are placed in a queue for
service. These jobs are removed from the queue to be processed by a server at a particular service rate.
Typically, the arrival and service rates are expressed using probability distributions. There is a queuing
discipline, such as first-come-first-serve, which determines the order in which jobs are to be serviced.
Once they are serviced, the jobs depart and arrive at another queue or simply leave the system. The
number of jobs in the queues represents the model’s state. Queueing models have been used successfully
for modeling many complex systems. However, one of the major disadvantages of queuing models is
their inability to model synchronization between processes.
As a system modeling paradigm, Petri nets overcome this disadvantage of queuing models. Petri nets

consist of places, transitions, arcs, and a marking. The places are equivalent to conditions and hold
tokens, which represent information. Thus, the presence of a token in the place of a Petri net corresponds
to a particular condition being true. Transitions are associated with events, and the ‘‘firing’’ of a
transition indicates that some event has occurred. A marking consists of a particular placement of tokens
within the places of a Petri net and represents the state of the net. When a transition fires, tokens are
removed from the input places and are added to the output places, changing the marking (the state) of
the net and allowing the dynamic behavior of a Petri net to be modeled.
Petri nets can be used for performance analysis by associating a time with the transitions. Timed and

stochastic Petri nets contain deterministic and probabilistic delays, respectively. Normally, these Petri
nets are uninterpreted, since no interpretation (values or value transformations) are associated with the
tokens or transitions. However, values or value transformations can be associated with the various
elements of Petri net models as described below.

(a)

Tokens

Input
places

Transition

Output
place

(b)

Queue Server

Job
departure

Job
arrival

FIGURE 12.5 (a) Petri net and (b) queuing model.

12-6 Computer Aided Design and Design Automation

Petri nets that have values associated with tokens are known as colored Petri nets (CPNs). In the
colored Petri nets, each token has an attached ‘‘color,’’ indicating the identity of the token. The net is
similar to the basic definition of the Petri net except that a functional dependency is specified between the
color of the token and the transition firing action. In addition, the color of the token produced by a
transition may be different from the color of the tokens on the input places. Colored Petri nets have an
increased ability to efficiently model real systems with small nets which are equivalent to much larger
plain Petri nets due to their increased descriptive powers.
Numerous multilevel modeling systems exist based on these two performance modeling techniques.

Architecture Design and Assessment System (ADAS) is a set of tools specifically targeted for high-
level design [20]. ADAS models both hardware and software using directed graphs based on timed
Petri nets. The flow of information is quantified by identifying discrete units of information called
tokens. ADAS supports two levels of modeling. The more abstract level is a dataflow description and
is used for performance estimation. The less abstract level is defined as a behavioral level but still
uses tokens which carry data structures with them. The functionality is embedded into the models
using C or Ada programs. The capability of generating high-level VHDL models from the C or Ada
models is provided. These high-level VHDL models can be further refined and developed in a VHDL
environment but the refined models cannot be integrated back into the ADAS performance model. The
flow of information in these high-level VHDL models is still represented by tokens. Therefore,
implementation-level components cannot be integrated into an ADAS performance model. Another
limitation is that all input values to the behavioral node must be contained within the token data
structure.
Scientific and engineering software (SES)=Workbench is a design specification modeling and simula-

tion tool [21]. It is used to construct and evaluate proposed system designs and to analyze their
performance. A graphical interface is used to create a structural model which is then converted into a
specific simulatable description (SES=sim). SES=Workbench enables the transition across domains of
interpretation by using a user node, in which C-language and SES=sim statements can be executed.
Therefore, SES=Workbench has similar limitations to ADAS; the inability to simulate a multilevel model
when input values of behavioral nodes are not fully specified and the inadequacy of simulating
components described as implementation-level HDLs (the capability of integrating VHDL models has
been introduced later in the next paragraph). In addition, multiple simulation languages (both SES=sim
and C) are required for multilevel models.
The Reveal interactor is a tool developed by Redwood Design Automation [22]. A model constructed

in Reveal is aimed at the functional verification of RTL VHDL and Verilog descriptions and, therefore,
does not include a separate transaction-based performance modeling capability. However, Reveal can
work in conjunction with SES=Workbench. By mixing models created in Reveal and SES=Workbench, a
multilevel modeling capability exists. Again, these multilevel models are very limited due to the fact that
all the required information at the lower level part of the model must be available within the higher level
model.
Integrated Design Automation System (IDAS) is a multilevel design environment which allows for

rapid prototyping of systems [23]. Although the behavioral specifications need to be expressed as Ada, C,
or FORTRAN programs, IDAS provides the capability of automatically translating VHDL description to
Ada. However, the user cannot create abstract models in which certain behavior is unspecified. Also, it
does not support classical performance models (such as queuing models and Petri nets) and forces the
user to specify a behavioral description very early in the design process.
Transcend claims to integrate multilevel descriptions into a single environment [24,25]. In the more

abstract level, T-flow models are used, in which tokens are used to represent flow of data. The capability
of integrating VHDL submodels into a T-flow model is provided. However, interfacing between the
two models requires a ‘‘Cþþ like’’ language, which map variables to=from VHDL signals, resulting in
a heterogeneous simulation environment. Although their approach is geared toward the same objective
as mixed-level modeling, the T-flow model must also include all the necessary data to activate the

Performance Modeling and Analysis Using VHDL and SystemC 12-7

VHDL submodels. Therefore, the upper-level model cannot be ‘‘too abstract’’ and must include lower
level details.
Methodology for integrated design and simulation (MIDAS) supports the design of distributed

systems via iterative refinement of partially implemented performance specification (PIPS) models
[26]. A PIPS model is a partially implemented design where some components exist as simulation
models and others as operational subsystems (i.e., implemented components). Although they use the
term ‘‘hybrid model’’ in this context it refers to a different type of modeling. MIDAS is an ‘‘integrated
approach to software design’’ [26]. It supports the performance evaluation of software being executed on
a given machine. It does not allow the integration of components expressed in an HDL into the model.
The Ptolemy project is an academic research effort being conducted at the University of California at

Berkeley [27,28]. Ptolemy, a comprehensive system prototyping tool, is actually constructed of multiple
domains. Most domains are geared toward functional verification and have no notion of time. Each
domain is used for modeling a different type of system. They also vary in the modeling level (level of
abstraction). Ptolemy provides limited capability of mixing domains within one design. The execution of
a transition across domains is accomplished with a ‘‘wormhole.’’ A wormhole is the mechanism for
supporting the simulation of heterogeneous models. Thus, a multilevel modeling and analysis capability
is provided. There are two major limitations to this approach compared with the mixed-level modeling
approach being described. The first one is the heterogeneity—several description languages. Therefore,
translation between simulators is required. The second one is that the interface between domains only
translates data. Therefore, all the information required by the receiving domain must be generated by the
transmitting domain.
Honeywell Technology Center (HTC) conducted a research effort that specifically addressed the

mixed-level modeling problem [29]. This research had its basis in the UVa mixed-level modeling effort.
The investigators at HTC developed a performance modeling library (PML) [30,31] and added a partial
mixed-level modeling capability to this environment. The PML is used for performance models at a
relatively low level of abstraction. Therefore, it assumes that all the information required by the
interpreted element is provided by the performance model. In addition, their interface between uninter-
preted and interpreted domains allows for bidirectional data flow.
Transaction-level modeling is a model paradigm that combines key concepts from interface-based

design [32] with the system-level modeling to develop a refineable model of the system as a whole.
Essentially, the system as a whole is represented with the model of computation done in components
separated as much as possible from the model of communication between components.
As explained by Cai and Gajski [33],

In a transaction-level model (TLM), the details of communication among computation compon-
ents are separated from the details of computational components. Communication is modeled by
channels, while transaction requests take place by calling interface functions of these channel
models. Unnecessary details of communication and computation are hidden in a TLM and may be
added later. TLMs speed up simulation and allow exploring and validating design alternatives at
the higher level of abstraction.

There are a number of advantages to such an approach. Of course you get the advantages of a system-
level model, but the separation of the modeling of the communication from the modeling of the
computation also has a number of advantages. The primary advantage is that it allows the designer to
focus on one aspect of the design at a time. The separation limits the complexity that the designer must
contend with just as encapsulation and abstraction of component behaviors do. This also allows the
designer to develop or refine the communication model of the system in the same way that they would do
for the computation model.
To summarize, numerous multilevel modeling efforts exist. However, they are being developed, not

addressing the issue of lack of information at the transition between levels of abstraction. The solution of

12-8 Computer Aided Design and Design Automation

this problem is essential for true stepwise refinement of the performance models to behavioral models. In
addition, integration of performance modeling level and behavioral modeling level was mostly performed
by mixing different simulation environments, which results in heterogeneous modeling approach.

12.2 ADEPT Design Environment

A unified end-to-end design environment based solely on VHDL that allows designers to model systems
from the abstract level to the gate level as described above has been developed. This environment
supports the development of system-level models of digital systems that can be analyzed for multiple
metrics like performance and dependability, and can then be used as a starting point for the actual
implementation. A tool called Advanced design environment prototype tool (ADEPT) has been devel-
oped to implement this environment. ADEPT actually supports both system-level performance and
dependability analysis in a common design environment using a collection of predefined library
elements. ADEPT also includes the capability to simulate both system- and implementation-level
(behavioral) models in a common simulation environment. This capability allows the stepwise refine-
ment of system-level models into implementation-level models.
Two approaches to creating a unified design environment are possible. An evolutionary solution is to

provide an environment that ‘‘translates’’ data from different models at various points in the design
process and creates interfaces for the noncommunicating software tools used to develop these models.
With this approach, users must be familiar with several modeling languages and tools. Also, analysis of
design alternatives is difficult and is likely to be limited by design time constraints.
A revolutionary approach, the one being developed in ADEPT, is to use a single modeling language

and mathematical foundation. This approach uses a common modeling language and simulation
environment which decreases the need for translators and multiple models, reducing inconsistencies
and the probability of errors in translation. Finally, the existence of a mathematical foundation provides
an environment for complex system analysis using analytical approaches.
Simulators for hardware description languages accurately and conveniently represent the physical

implementation of digital systems at the circuit, logic, register-transfer, and algorithmic levels. By adding
a system-level modeling capability based on extended Petri nets and queuing models to the hardware
description language, a single design environment can be used from concept to implementation. The
environment would also allow for the mixed simulation of both uninterpreted (performance) models and
interpreted (behavioral) models because of the use of a common modeling language. Although it would
be possible to develop the high-level performance model and the detailed behavioral model in two
different modeling languages and then develop some sort of ‘‘translator’’ or foreign language interface to
hook them together, a better approach is to use a single modeling language for both models. A single
modeling language that spans numerous design phases is much easier to use, encouraging more design
analysis and consequently better designs.
ADEPT implements an end-to-end unified design environment based upon the use of the VHSIC

hardware description language (VHDL), IEEE Std. 1076 [34]. VHDL is a natural choice for this single
modeling language in that it has high-level language constructs, but unlike other programming lan-
guages, it has a built-in timing and concurrency model. VHDL does have some disadvantages in terms of
simulation execution time, but techniques have been developed to help address this problem [35].
ADEPT supports the integrated performance and dependability analysis of system-level models and

includes the capability to simulate both uninterpreted and interpreted models through mixed-level
modeling. ADEPT also has a mathematical basis in Petri nets thus providing the capability for analysis
through simulation or analytical approaches [36].
In the ADEPT environment, a systemmodel is constructed by interconnecting a collection of predefined

elements called ADEPT modules. The modules model the information flow, both data and control,
through a system. Each ADEPT module has a VHDL behavioral description and a corresponding
mathematical description in the form of a CPN based on Jensen’s CPN model [37]. The modules

Performance Modeling and Analysis Using VHDL and SystemC 12-9

communicate by exchanging tokens, which represent the presence of information, using a fully interlocked,
four-state handshaking protocol [38]. The basic ADEPT modules are intended to be building blocks from
which useful modeling functionality can be constructed. In addition, custommodules can be developed by
the user if required and incorporated into a system model as long as the handshaking protocol is adhered
to. Finally, some libraries of application-specific, high-level modeling modules such as Multiprocessor
Communications Network Modeling Library [39] have been developed and included in ADEPT.
The following sections discuss the VHDL implementation of the token data type and transfer

mechanism used in ADEPT, and the modules provided in the standard ADEPT modeling library.

12.2.1 Token Implementation

The modules defined in this chapter have been implemented in VHDL, and use a modified version of
the token passing mechanism defined by Hady [38]. Signals used to transport tokens must be of the type
token, which has been defined as a record with two fields. The first field, labeled STATUS, is used to
implement the token passing mechanism. The second field, labeled COLOR, is an array of integers that is
used to hold user-defined color information in the model. The ADEPT allow the user to select from a
predefined number of color field options. The tools then automatically link in the proper VHDL design
library so that the VHDL descriptions of the primitive modules operate on the defined color field. The
default structure of the data-type token used in the examples discussed in this document is shown in
Figure 12.6.
There are two types of outputs and two types of inputs in the basic ADEPT modules. Independent

outputs are connected to control inputs, and the resulting connection is referred to as a control-type
signal. Dependent outputs are connected to data inputs, and the resulting connection is referred to as a
data-type signal. To make the descriptions more intuitive, outputs are often referred to as the ‘‘source
side’’ of a signal, and inputs are referred to as the ‘‘sink side’’ of a signal.

type handshake is (removed, acked, released, present);

type token_fields is (status,

tag1, tag2, tag3, tag4, tag5,

tag6, tag7, tag8, tag9, tag10,

tag11, tag12, tag13, tag14, tag15,

boole1, boole2, boole3,

fault, module_info,

index, act_time, color);

type color_type is array (token_fields range tag1 to act_time) of integer;

type token is

record

status : handshake;

color : color_type;

end record;

type op_fields is (add, sub, mul, div);

type cmp_fields is (lt, le, gt, ge, eq, ne);

type tkf_array is array (1 to 25) of token_fields;-- used in file_read

type token_vector is array (integer range <>) of token;

-- resolution function for token

function protocol (input : token_vector) return token;

subtype token_res is protocol token;

FIGURE 12.6 Token type definition.

12-10 Computer Aided Design and Design Automation

Tokens on independent outputs may be written over by the next token, so the ‘‘writing’’ process is
independent of the previous value on the signal. In contrast, new tokens may not be placed on dependent
outputs until the previous token has been removed, so the ‘‘writing’’ process is dependent on the previous
value on the signal. Data-type signals use the four-step handshaking process to ensure that tokens do not
get overwritten, but no handshaking occurs on control-type signals.

The STATUS field of a token signal can take on four values. Signals connecting independent outputs to
control inputs (control-type signals) make use of only two of the four values. Independent outputs place a
value PRESENT on the status field to indicate that a token is present. Since control inputs only copy the
token but do not remove it, the independent output only needs to change the value of the status field to
RELEASED to indicate that the token is no longer present on the signal, and the control input can no
longer consider the signal to contain valid information. The signals connecting dependent outputs to data
inputs (data-type signals) need all four values (representing a fully interlocked handshaking scheme) to
ensure that a dependent output does not overwrite a token before the data input to which it is connected
has read and removed it. This distinction is important since a token on control-type signals represents
the presence or absence of a condition in the network while tokens on data-type signals, in contrast,
represent information or data that cannot be lost or overwritten. In addition, fanout is not permitted on
dependent outputs and is permitted on independent outputs.
The signals used in the implementation are of type token. The token passing mechanism for data-

type signals is implemented by defining a VHDL bus resolution function. This function is called each
time a signal associated with a dependent output and a data input changes value. The function
essentially looks at the value of the STATUS field at the ports associated with the signal and decides
the final value of the signal. At the beginning of simulation the STATUS field is initialized to
REMOVED. This value on a signal corresponds to an idle link in the nets defined by Dennis [40].
This state of a signal indicates that a signal is free and a request token may be placed on it. Upon seeing
the REMOVED value, the requesting module may set the value of the signal to PRESENT. This
operation corresponds to the ready signal in Dennis’ definition. The requested module acknowledges
a ready signal (PRESENT) by setting the signal value to ACKED, after the requested operation has been
completed. Upon sensing the value of ACKED on the signal, the requesting module sets the value of
the signal to RELEASED, which in turn causes the requested module to place the value of REMOVED
on the signal. This action concludes one request=acknowledge cycle, and the next request=acknowledge
cycle may begin.
In terms of Petri Nets, the models described here can be described as one-safe Petri nets since, at any

given time, no place in the net can contain more than one token. The correspondence between the signal
values and transitions in a Petri net may be defined, in general, in the following manner:

1. PRESENT. A token arrives at the input place of a transition.
2. ACKED. The output place of a transition is empty.
3. RELEASED. The transition has fired.
4. REMOVED. The token has been transferred from the input place to the output place.

The modules to be described in this chapter may be defined in terms of Petri nets. As an example, a Petri
net description of the Wye module is shown in Figure 12.7.
The function of the Wye module is to copy the input token to both outputs. The input token is not

acknowledged until both output tokens have been acknowledged. In the Petri net of Figure 12.7, the ‘‘r’’
and ‘‘a’’ labels correspond to ‘‘ready’’ and ‘‘acknowledge,’’ respectively. When a token arrives at the place
labeled ‘‘0r,’’ the top transition is enabled and a token is placed in the ‘‘1r,’’ ‘‘2r,’’ and center places.
The first two places correspond to a token being placed on the module outputs. Once the output tokens
are acknowledged (corresponding to tokens arriving at the ‘‘1a’’ and ‘‘2a’’ places), the lower transition is
enabled and a token is placed in ‘‘0a,’’ corresponding to the input token being acknowledged.
The module is then ready for the next input token. Note that since this module does not manipulate
the color fields, no color notation appears on the net.

Performance Modeling and Analysis Using VHDL and SystemC 12-11

The specific CPN description used is based on the work of Jensen [37]. The complete CPN descriptions
of each of the ADEPT building blocks can be found in Ref. [41].

12.2.2 ADEPT Handshaking and Token Passing Mechanism

Recall that the ADEPT standard token has a status field which can take on four values: PRESENT,
ACKED, RELEASED, and REMOVED. These values reflect which stage of the token passing protocol is
currently in progress. Several examples will now be presented to show how the handshaking and token
passing occurs between ADEPT modules. Figure 12.8 illustrates the handshaking process between a
Source module connected to a Sink module.
Figure 12.8a describes the ‘‘simplified’’ event sequence. Here, we can think of the four-step handshak-

ing as consisting of simply a forward propagation of the token and a backward propagation of the token
acknowledgment. Thinking of the handshaking in this simplified manner, Table A in Figure 12.8 shows
the simplified event sequence and times. At time 0 ns, the Source module places a token on A,
corresponding to Event 1. The token is immediately acknowledged by the Sink module, corresponding

library uvalib;

XXX
out_2 2

1WYE2

in_1

out_1

use uvalib.uva.all;
use uvalib.rng.all;

entity wye2 is
port (in_1 : inout token;

 out_1 : inout token;
 out_2 : inout token);

end wye2;

architecture ar_wye2 of wye2 is
begin
pr_wye2 : process (in_1, out_1, out_2)
begin

if token_present (in_1)
and token_removed (out_1)
and token_removed (out_2) then
out_1 <= in_1;
out_2 <= in_1;

end if;

if token_acked (out_1) and token_acked (out_2) then
ack_token (in_1);
release_token (out_1);
release_token (out_2);

end if;

if token_released (in_1) then
remove_token (in_1);

end if;
end process pr_wye2;

end ar_wye2;

in_1_r

out_1_a out_2_a

out_1_r out_2_r

in_1_a

t1

p

t2

FIGURE 12.7 Wye module ADEPT symbol, its behavioral VHDL description, and its CPN representation.

12-12 Computer Aided Design and Design Automation

to Event 2. Since the Source module has a step generic of 5 ns, and there is no other delay along the path
to the Sink, the next token will be output by the Source module at time 5 ns.
Figure 12.8b details the entire handshaking process. Table B in Figure 12.8 lists the detailed event

sequence for this example. Since handshaking occurs in zero simulation time, the events are listed by
delta cycles within each simulation time. The function of delta cycles in VHDL is to provide a means for
ordering and synchronizing events (such as handshaking) which occur in zero time. The actual event
sequence for this example consists of four steps, as shown in Figure 12.8b. Event 1 is repeated at time
5 ns, which starts the handshaking process over again.

Source

Step: 5 ns
mod_type: 1

SOA

Sink

SIA

A

1

2

Time between new tokens on A = step + path delay = 5 ns
(a)

TABLE A Simplified Event Sequence

Event Time (ns) Description

1 0 Source module places token on signal A
2 0 Sink module acknowledges token on A
1 5 Source module places next token on signal A

Source

Step: 5 ns
mod_type: 1

SOA

(b)

Sink

SIA

A

3

2

1

4

TABLE B Detailed Event Sequence

Event Time (ns) Delta Description Resolved Signal A

1 0 1 Source module places token on A PRESENT
2 0 2 Sink module acknowledges token on A ACKED
3 0 3 Source module release token on A RELEASED
4 0 4 Sink module removes token on A REMOVED
1 5 1 Source module places token on A PRESENT

FIGURE 12.8 Two module handshaking examples.

Performance Modeling and Analysis Using VHDL and SystemC 12-13

12.2.2.1 Three-Module Example

To illustrate how tokens are passed through intermediate modules, a three-module example will now be
examined. Consider the case where a Fixed Delay module is placed between a Source and Sink. This
situation is illustrated in Figure 12.9.
Figure 12.9a shows the simplified event sequence, where we can think of the four-step handshaking as

consisting of simply a forward propagation of the token and a backward propagation of the token
acknowledgment. Table A in Figure 12.9 lists this simplified event sequence. Notice that since now there
is a path delay from the Source to the Sink, the time between new tokens from the Source is stepþ
path_delay¼ 5þ 5¼ 10 ns. At time 0 ns, the Source module places the first token on Signal A (Event 1).
This token is read by the Delay module and placed on Signal B after a delay of 5 ns (Event 2). The Sink
module then immediately acknowledges the token on Signal B (Event 3). The Delay module then passes

(a)

Source

Step: 5 ns
mod_type: 1

SOA

Sink

SIA

Fixed_delay

Delay: 5 ns

XXX

A B

1 2

34

TABLE A Simplified Event Sequence

Event
Time
(ns) Description

1 0 Source module places token on signal A
2 5 Delay module places token on signal B
3 5 Sink module acknowledges token on signal B
4 5 Delay module acknowledges token on signal A
1 10 Source module places next token on signal A

Source

Step: 5 ns
mod_type: 1

SOA

Sink

SIA

Fixed_delay

Delay: 5 ns

XXX

A B

7

1

4

2

3

6

5

8
(b)

TABLE B Detailed Event Sequence

Event
Time
(ns) Delta Description

Resolved
Signal A

Resolved
Signal B

1 0 1 Source module places token on A PRESENT REMOVED
2 5 1 Delay module places token on B — PRESENT
3 5 2 Sink module acknowledges token on B — ACKED
4 5 3 Delay module releases token on B — RELEASED
5 Delay module acknowledges token on A ACKED —
6 5 4 Sink module removes token on B — REMOVED
7 Source module relases token on A RELEASED —
8 5 5 Delay module removes token on A REMOVED —
1 10 1 Source module places token on A PRESENT —

FIGURE 12.9 Three-module handshaking examples.

12-14 Computer Aided Design and Design Automation

this acknowledgment back through to Signal A (Event 4). At time 10 ns, the Source module places the
next token on Signal A, starting the process over again.
Figure 12.9b shows the detailed event sequence for this example. Since there are two signals, there are

a total of eight detailed events. Table B in Figure 12.9 lists the detailed event sequence for this example.
Again since the handshaking occurs in zero simulation time, the events are listed by delta cycles within
each simulation time. Table B lists the resolved values on both Signal A and Signal B, where a value of ‘‘—’’

indicates no change in value. Notice that the sequence of events on each signal proceeds in this order:
place the token (PRESENT) by the ‘‘source side,’’ acknowledge the token (ACKED) by the ‘‘sink side,’’
release the token (RELEASED) by the ‘‘source side,’’ and finally remove the token (REMOVED) by the
‘‘sink side.’’ The important concept to note in this example is the ordering of events. Notice that the Delay
module releases the token on its output (Event 4) before it acknowledges the token on its input (Event 5),
even though the two events occur in the same simulation time. These actions trigger the Sink module to
then remove the token on Signal B (Event 6) and the Source module to release the token on Signal A (Event
7), both in the next delta cycle. Thus Signal B is ready for another token (removed) a full delta cycle before
Signal A is ready.

12.2.2.2 Token Passing Example

To illustrate how tokens propagate in a larger system, consider the model shown in Figure 12.10. This
figure shows the simplified event sequence, where again we can think of the four-step handshaking as
consisting of simply a forward propagation of the token and a backward propagation of the token
acknowledgment. In this system, the Source module provides tokens to the Sequence A (SA) module
(Event 1), who first passes them to the Sequence B (SB) module (Event 2). The SB module first passes the
token to the Fixed Delay A (FDA) module (Event 3), who passes it to the Sink A (SIA) module after a
delay of 5 ns (Event 4). The SIA module then immediately acknowledges the token (Event 5), which
causes the FDA module to pass the acknowledgment back to the SB module (Event 6). At this point
the SB module places a copy of the token on its second output (Event 7), where it is passed through the

Source

Step: 1 ns

SOA

Sequence2

SB

Sink

Sib

Union

UA
RC
Release?: true

RCA

Terminator

Stop_after : 10

TA

Sequence2

SA

Fixed_delay

Delay : 1 ns

FDA

1

20
19

14

2 13 12
7

3

6

4

5

9, 16

10, 17

8, 15

11, 18

SIA

Sink

A
F

B E

C D

HG

I

FIGURE 12.10 Token passing example showing simplified event sequence.

Performance Modeling and Analysis Using VHDL and SystemC 12-15

Union A and onto its output (Event 8). The Read Color A module then places the token on its out_1
output (Event 9) and simultaneously places the token on its independent output. The Sink B module then
acknowledges the token on Signal H (Event 10). Upon seeing this acknowledgment, the Read Color A
module releases the token on its independent output since the Read Color module has no ‘‘memory’’ (the
release? generic equals true). The acknowledgment is then propagated back to the SB module (Events 11
and 12). At this point, the SB module acknowledges its input token (Event 13), freeing the SA module to
place a token on its second output (Event 14). This token is then passed through the Union A, Read
Color A, and Sink module (Events 15 and 16) and the acknowledgment is returned (Events 17–19). The
SA module can then acknowledge the token on its input (Event 20), allowing the Source module to
generate the next token 5 ns (step) later.

If we examine the activity on Signal I (the independent output of the Read Color A module), we see
that it goes present after Event 8, released after Event 10, present after Event 15, and released again after
Event 17. Consider the operation of the Terminator module attached to this signal. Since the Terminator
module halts simulation after the number of active events specified by the stop_after generic, if we were to
simulate this example, the simulation would halt after Event 15 (the second active event).

12.2.3 Module Categories

The ADEPT primitive modules may be divided into six categories: control modules, color modules, delay
modules, fault modules, miscellaneous parts modules, and mixed-level modules.
As the name implies, the control modules are used to control the flow of tokens through the model. As

such, the control modules form the major portion of the performance model. The control modules
operate only on the STATUS field of a signal and do not alter the color of a token on a signal. Further, no
elapsed simulation time results from the activation of the control modules since they do not have any
delay associated with them. There are several control modules whose names end in a numeral, such as
‘‘union2.’’ These modules are part of a family of modules that have the same function, but differ in the
number of inputs or outputs that they possess. For example, there are eight ‘‘union’’ modules, ‘‘union2,’’
‘‘union3,’’ ‘‘union4,’’ . . . , ‘‘union8.’’ With the exception of the Switch, Queue, and logical modules, the
control modules have been adapted from those proposed by Dennis [40].
The control modules described above process colored tokens but do not alter the color fields of the

tokens passing through them. Manipulation of the color field of a token is reserved to the color modules.
These color modules permit various operations on the color fields such as allowing the user to read and
write the color fields of the tokens. The color modules also permit the user to compare the color
information carried by the tokens and to control the flow of the tokens based on the result of the
comparisons. The use of these color modules enables high-level modeling of systems at different levels of
detail. These modules permit the designer to add more detail or information to the model by placing and
manipulating information placed on the color fields of tokens flowing through the model. The color fields
of these tokens can be set and read by these modules to represent such things as destination or source
node addresses, data length, data type (e.g., ‘‘digital’’ or ‘‘analog’’), or any type of such information that
the designer feels is important to the design.
The delay modules facilitate the description of data path delays at the conceptual or block level of a

design. As an example, the Fixed Delay module, or the FD module, may be used in conjunction with the
control modules to model the delay in the control structure of a design which is independent on the type
or size of an operation being performed. In contrast, the Data-Dependent Delay module may be used to
model processes in which the time to complete a particular operation is dependent on the amount or type
of data being processed. The input to the Data-Dependent Delay module is contained on one of the color
fields of the incoming token.
The fault modules are used to represent the presence of faults and errors in a system model. The

modules allow the user to model fault injection, fault=error detection, and error correction processes.
The miscellaneous parts category contains modules that perform ‘‘convenience’’ functions in ADEPT.

12-16 Computer Aided Design and Design Automation

Examples include the Collector, Terminator, and Monitor modules. The Collector module is used to
write input activation times to a file, and the Terminator module is used to halt simulation after a
specified number of events have occurred. The Monitor module is a data-collection device that can be
connected across other modules to gather statistical information during a VHDL simulation.
The mixed-level modules support mixed-level modeling in the ADEPT environment by defining the

interfaces around the interpreted and uninterpreted components in a system model. The functions of
these modules and their use in creating mixed-level models are described in more detail in Sections 12.4.2
and 12.4.3.
The complete functionality of each primitive module is defined and the generics associated with each

of the modules are described in the ADEPT Library Reference Manual [42]. The standard ADEPT
module symbol convention is also explained in more detail in the ADEPT Library Reference Manual.
In addition to the primitive modules, there are libraries of more complex modules included in ADEPT.

In general, these libraries contain modules for modeling systems in a specific applications area. These
libraries are also discussed in more detail in the ADEPT Library Reference Manual.

12.2.4 ADEPTs

The ADEPT system is currently available on Sun platforms using Mentor Graphics’ Design Architect as
the front end schematic capture system, or on Windows PCs using OrCAD’s Capture as the front end
schematic capture system. The overall architecture of the ADEPT system is shown in Figure 12.11.
The schematic front end is used to graphically construct the system model from a library of ADEPT

module symbols. Once the schematic of the model has been constructed, the schematic capture system’s
netlist generation capability is used to generate an electronic design interchange format (EDIF) 2.0.0
netlist of the model. Once the EDIF netlist of the model is generated, the ADEPT software is used to
translate the model into a structural VHDL description consisting of interconnections of ADEPT

AM: ADEPT module
PN: Petri net
CPN: Colored Petri net

Schematic
capture

AM
symbol
library

Translator from
EDIF to VHDL

Translator from
EDIF to Petri net

VHDL
simulator

Simulation-based performance and
dependability evaluation

AM–CPN
description

AM–VHDL
library

PN reduction and
translation to

Markov models

Analytical dependability
evaluation

Markov model
solver

Markov
model

Mentor Graphics’ Design Architect
or
OrCAD’s Capture

Text-based and
graphical

postprocessing tools

EDIF 2.0.0

EDIF netlister

Structural VHDL

FIGURE 12.11 ADEPT design flow.

Performance Modeling and Analysis Using VHDL and SystemC 12-17

modules. The user can then simulate the structural VHDL that is generated using the compiled VHDL
behavioral descriptions of the ADEPT modules to obtain performance and dependability measures.
In addition to VHDL simulation, a path exists that allows the CPN description of the system model to

be constructed from the CPN descriptions of the ADEPT modules. This CPN description can then be
translated into a Markov model using well-known techniques and then solved using commercial tools to
obtain reliability, availability, and safety information.

12.3 Simple Example of an ADEPT Performance Model

This section presents a simple example of the usage of the primitive building blocks for performance
modeling. The example is a three-computer system wherein the three-computers share a common bus.
The example also presents simulation results and system performance evaluations.

12.3.1 Three-Computer System

This section discusses a simple example to illustrate how the modules discussed previously may be
interconnected to model and evaluate the performance of a complete system. The system to be modeled
consists of three computers communicating over a common bus, as shown in Figure 12.12. Each block
representing a computer can be thought to contain its own processor, memory, and peripheral devices.
The actual ADEPT schematic for the three-computer system is shown in Figure 12.13.
Computer C1 contains some sensors and preprocessing capabilities. It collects data from the

environment, converts it into a more compact form and then sends it to computer C2 via the bus.
The computer C2 further processes the data and passes it to computer C3 where the data are
appropriately utilized. It is assumed that data are transferred in packets and each packet of data is of
varying length. In the example described here, computers C1 and C2 receive packets whose sizes are
uniformly distributed between 0 and 100. The packet size of computer C3 is uniformly distributed
between 0 and 500. The external environment in this example is modeled by a Source module in C1
and a Sink module in C3.
C1 has an output queue, C2 has both an input queue and an output queue, while C3 has one input

queue. All queues in this example are assumed to be of length 8. If the input queues of C2 or C3 are full
the corresponding Q_free signal is released (value¼RELEASED). This interconnection prevents the

Computer 1 Computer 2 Computer 3

Processor Processor Processor

Bus

Q1 Q2 Q3 Q4
Q2_free Q4_free

to_C2 from_C1 to_C3 from_C2

FIGURE 12.12 Three-computer system.

12-18 Computer Aided Design and Design Automation

computer writing into the corresponding queue from placing data on the bus when the queue is full. This
technique not only prevents the bus from being unnecessarily held up but also eliminates the possibility
of a deadlock.
The ADEPT model of Computer 1 (C1) is shown in Figure 12.14. The Source A (SOA) module along

with the Sequence A (SA), Set_Color A (SCA) and Random A (RA) modules generate tokens whose
tag1 field is set according to a distribution which is representative of the varying data sizes that C1
receives. The Data-Dependent Delay A (DDA) models the processing time of C1 which is directly
proportional to the packet size. The unit_step delay for the DDA module is passed down as a generic
d1*1 ns. As soon as a token, representing one packet of data, appears at the output of the DDA module,
the Sequence B (SB), Set_Color B (SCB), and Random B (RB) modules together set the tag1 field of the
token to represent the packet size after processing. The Constant A (COA) and Set_Color C (SCC)
modules set the tag2 field of the token to 2. This coloring indicates to the bus arbitration unit that the
token is to be transferred to C2. The token is then placed in the output Queue (Q1) of C1 and the
token is acknowledged. This acknowledge signal is passed back to the Source A module which then
produces the next token. The Fixed Delay (FDA and FDB) modules represent the read and write times
associated with the Queue. The Switch A (SWA) element is controlled by the Q_free signal from C2
and prevents a token from the output queue of C1 from being placed on the bus if the incoming Q_free
signal is inactive.
Figure 12.15 shows the ADEPT model of Computer 2 (C2). When a token arrives at the data input of

C2 the token is placed at the input of the Queue (Q2). The control output of the Queue becomes the
Q2_Free output of C2. The remaining modules perform the same function as in C1 except that the tag2
field of the tokens output by C2 is set to 3 which indicates to the bus arbitration unit that the token is to
be sent to C3. The DDA module represents the relative processing speed of Computer C2. The unit_step
delay for the DDA module is passed down as a generic d2*1 ns.
The modules defining Computer 3 (C3) are shown in Figure 12.16. A token arriving at the input is

placed in the queue. The DDA element reads one token at a time and provides the delay associated with

Three computer system model

Computer 1 Computer 2 Computer 3

Q2_out_c2 Q4_out_c3C1

C1_out

C2_out C2_in

C3_in

SYSBUS

Monitor

1 2

MON1

Monitor module
collects system

performance data
during simulation

SBA
from C2

M: 1
 J

N: 1
 J

to C2
to C3from C1

C2 C3
d1: 1 ns d2: 1 ns d3: 1 ns
OUT_1 OUT_2 IN_2 IN_3

Q2_IN_C1 Q2_OUT_C2 Q4_IN_C2 Q4_OUT_C3

FIGURE 12.13 Three-computer system ADEPT schematic.

Performance Modeling and Analysis Using VHDL and SystemC 12-19

the processing time of C3 before the Sink A (SIA) module removes the token. The unit_step delay for the
DDA module is passed down as a generic d3*1 ns.
The bus is shown in Figure 12.17. Arbitration is provided to ensure that both C1 and C2 do not write

onto the bus at the same time. The Arbiter A (AA) element provides the required arbitration. Since
the output of C2 is connected to the IN_1(1) input of the AA element, it has a higher priority over C1.
The Union A (UA) element passes a token present at either of its inputs to its output. The output of the
UA element is connected to the Data-Dependent Delay A (DDA) element, which models the packet
transfer delay associated with moving packets over the bus. The delay through the bus is dependent on
the size of the packet of information being transferred (size stored on the tag1 field). Note that in this
analysis, the bus delay was set to 0. The independent output of the Read_Color A(RCA) element is
connected to the control input of the Decider A (DA) module. The base of the DA element is set to 2.
Since the tag2 field of the token is set to 2 or 3 depending on whether it originated from C1 or C2, the first
output of the Decider A module is connected to C2 and the second output is connected to C3. This
technique ensures that the tokens are passed on to the correct destination, C2 or C3.

Assign random
tag1 field

to represent
data length

Sent to
Computer 2

Three computer system
Computer 1 model

SEQUENCE2

DA
TA

_D
EL

AY
SE

Q
UE

N
CE

2
SO

UR
CE

rand RB
Field: tag1

CONSTANT

Source: tag1

Dest: tag1

Source: tag 2

Dest: tag2

SCB SCC

SB

1

2

Dist: unitUniform (0.0, 508.0)

SC_0 SC_D COA

FI
XE

D_
DE

LA
Y

FI
XE

D_
DE

LA
Y

SW
IT

CH

02_IN_C1

OUT_1

De
lay

: 1
0 n

s
Le

ng
th

: 8
De

lay
:10

 n
s

Q
UE

UE
_M

O
D1

pa
ss

_c
on

d.
: 1

SW
A

FD
B

01
FD

A

St
ep

:
0 n

s
Ti

m
eb

as
e:

 0
 n

s

1 2

SA
SD

A

Threshold: 0.0

Field: tag1
Dist: unitUniform (0, 0, 100, 0)

RArand

un
it_

ste
p:

 (d
1)

Fi
eld

: t
ag

1

DD
A

Threshold: 0.0

SC
_D So

ur
ce

:
 ta

g1

De
st:

ta

g1

SC
A

 t1–t5: 0 0 0 2 0
 t6–t10: 0 0 0 0 0
t11–t15: 0 0 0 0 0
 b1–b3: false
 false
 false

FIGURE 12.14 ADEPT model of Computer 1.

12-20 Computer Aided Design and Design Automation

12.3.2 Simulation Results

This section presents simulation results that illustrate the queuing model capabilities of the ADEPT
system. The model enables the study of the overall speed of the system in terms of the number of packets
of information transferred in a given time. It also allows the study of the average number of tokens
present in each queue during simulation, and the effect of varying system parameters on the number of
items in the queues and overall throughput of the system. The generic unit_step delay of the DD elements
(d1, d2, and d3) associated with the three computers is representative of the processing speed of the
computers. The optimal relative speeds of the computers may also be deduced by simulation of this
model. Figure 12.18 shows graphs of the number of items in each queue versus simulation time. These
graphs were generated using the BAARS postsimulation analysis tool. The upper graph shows the queue
lengths when d1, d2, and d3 was set to 5, 5, and 2 ns. The lower graph shows the queue lengths when d1,
d2, and d3 was set to 5, 4, and 1 ns. In the first case, because the processing time of Computer 3 was so
much longer than Computer 1 or 2, the queue in Computer 3 became full at�4000 ns of simulation time.
The filling of the queue in Computer 3 delayed items coming out of Computers 1 and 2 thus causing their
queues to also become full. In the second case, the processing time ratios were such that Computer 3
could keep up with the incoming tokens and the queues never got completely full.

SEQUENCE2

rand RA
DA

TA
_D

EL
AY

FI
XE

D_
DE

LA
Y

CONSTANT

un
it_

ste
p:

 (d
2)

Fi
eld

: t
ag

 1

Q2_OUT _C2

FI
XE

D_
DE

LA
Y Q

UE
UE

_M
O

D1

DD
A

IN_2

De
lay

: 1
0 n

s
Le

ng
th

: 8

D2

De
lay

: 1
0 n

s

FD
B

SA
Assign random

tag1 field to
represent data length

Field: tag1
Dist: intUniform
 (0.0, 508.0)

Threshold: 0.0
1

2

SC_D
Source: tag1

Dest: tag 1

SCA

QUEUE_MOD1

Length: 8

D3

Send to
Computer 3

SC
B

SU
A

pa
ss

_c
on

d:
 1

De
st:

 ta
g2

So
ur

ce
: t

ag
2 SC

_D
SW

IT
CH

04_IN_C2

t1–t5:
t6–t10:

t11–t15:
b1–b3:

0 3 0 0 0
0 0 0 0 0
0 0 0 0 0
false
false
false

COA

FD
C

De
lay

: 2
0 n

s

FI
XE

D_
DE

LA
Y

OUT_2

Three computer system
Computer 2 model

FD
A

FIGURE 12.15 ADEPT model of Computer 2.

Performance Modeling and Analysis Using VHDL and SystemC 12-21

Table 12.1 summarizes the effect of relative speeds of the computers on the number of packets
transferred. Since the size of the packets received by C3 is uniformly distributed between 0 and 500
while the size of the packets received by C1 and C2 is uniformly distributed between 0 and 100, it is
intuitively obvious that the overall throughput of the system is largely determined by the speed of
Computer C3. The results do indicate this behavior. For example, when the relative instruction execution
times for C1, C2, and C3 are 5, 5, and 2, respectively, a total of 197 packets are transferred. By increasing
the instruction execution time of C2 by one time unit and decreasing the instruction execution time of C3
by one time unit, it is seen that a total of 321 packets are transferred, an increase of slightly over 60%.
This example has illustrated the use of the various ADEPT modules to model a complete system. Note

how the interconnections between modules describing a component of the system are similar to a
flow chart describing the behavior of the component. This example also demonstrated that complex
systems at varying levels of abstraction and interpretation can easily be modeled using the VHDL-based
ADEPTs.

Three computer system
computer 3 modelQ4_OUT_C3

FIXED_DELAY
QUEUE_MOD1

IN_3

Collects system
 output times

and stops
simulation

COLLECTOR

TERMINATOR

stop_after: 50

Filename:
times1.dat
rec? false

CA TA

SIA
RC

DDAFDB
Q4

FDA

FIXED_DELAY DATA_DELAY
RCA

SINK

release? trueLength: 8
Delay: 10 ns Delay: 10 ns

unit_step: (d3)

Field: tag1

FIGURE 12.16 ADEPT model of Computer 3.

Three computer system
bus model

ARBITER2 UNION2 DATA_DELAY DECIDER
to C2

to C3

Address stored
on token tag2

ARA
UNA

DDA
RCA

DA

RC
From C2 1

2
2

2

11

In_2 Out_2 In_2

In_1 Out_1 In_1

Out_1

Unit_step: 0 ns

Release? false

Field: tag2

Base: 2 2

1

Field: tag1From C1

FIGURE 12.17 ADEPT model of system bus.

12-22 Computer Aided Design and Design Automation

12.4 Mixed-Level Modeling

As described earlier, performance (uninterpreted) modeling has been previously used primarily by
systems engineers when performing design analysis at the early stages of the design process. Although
most of the design detail is not included in these models since this detail does not yet exist, techniques
such as token coloring can be used to include that design detail that is necessary for an accurate model.

0.0 5,000.0 10,000.0 15,000.0 20,000.0
Time (ns)

–2.0

0.0

2.0

4.0

6.0

Q
ue

ue
 le

ng
th

 (t
ok

en
s)

Performance metrics
C3_Q4
C2_Q3
C2_Q2
C1_Q1

0.0 5,000.0 10,000.0 15,000.0 20,000.0
Time (ns)

–2.0

0.0

2.0

4.0

6.0

8.0

Q
ue

ue
 le

ng
th

 (t
ok

en
s)

Performance metrics
C1_Q1
C3_Q4
C2_Q3
C2_Q2

FIGURE 12.18 Queue lengths versus simulation time for various processing delay times.

TABLE 12.1 System Throughput versus Computer Delay Times

C1
Delay (ns)

C2
Delay (ns)

C3
Delay (ns)

Packets per 100,000
Time Units (ns)

8 8 3 131

9 10 2 194

5 5 2 197

3 5 2 197

2 2 2 197

5 6 1 321

5 4 1 322

4 3 1 384

3 2 1 385

2 2 1 386

Performance Modeling and Analysis Using VHDL and SystemC 12-23

However, most of the detail, especially very low-level information such as word widths and bit encoding,
are not present. In fact, many additional design decisions must be made before an actual implementation
could ever be constructed. In performance models constructed in ADEPT, abstract tokens are used to
represent this information (data and control) and its flow in the system. An illustration of such a
performance model with its analysis was given the three-computer system described in Section 12.3.1. In
contrast, behavioral (interpreted) models can be thought of as including much more design detail often to
the point that an implementation could be constructed. Therefore, data values and system timing are
available and variables typically take on integer, real, or bit values. For example, a synthesizable model of
a carry-lookahead adder would be one extreme of a behavioral model.
It should be obvious that the two examples described above are extremes of the two types of models.

Extensive design detail can be housed in the tokens of a performance model and information in a
behavioral model can be encapsulated in a very abstract type. However, there is always a difference in the
abstraction level of the two modeling types. Therefore, to develop a model that can include both
performance and behavioral models, interfaces between the different levels of design abstraction, called
mixed-level interfaces, must be included in the overall model to resolve differences between these two
modeling domains.
The mixed-level interface is divided into two primary parts which function together; the part that

handles the transition from the uninterpreted domain to the interpreted domain (U=I) and the part
that handles the transition from the interpreted domain to the uninterpreted domain (I=U). The general
structure of a mixed-level model is shown in Figure 12.19.
In addition to the tokens-to-values (U=I) and values-to-tokens (I=U) conversion processes, the mixed-

level interface must resolve the differences in design detail that naturally exist at the interface between
uninterpreted and interpreted elements. These differences in detail appear as differences in data
and timing abstraction across the interface. The differences in timing abstraction across the interface
arise because the components at different levels model timing events at different granularities. For
example, the passing of a token that represents a packet of data being transferred across a network in

OR
Entity....
.....
Architecture....
 Process (clock)
......
A ≤ B after 5 ns
.....

U1 U2

U3

I4

U5

U6

Delay read decider
color

U = Uninterpreted
 I = Interpreted

U/I I/U

FIGURE 12.19 General structure of a mixed-level model.

12-24 Computer Aided Design and Design Automation

a performance model may correspond to hundreds or thousands of bus cycles for a model at the
behavioral level.
The differences in data abstraction across the interface are due to the fact that typically, performance

models do not include full functional details whereas behavioral models require full functional data
(in terms of values on their inputs) to be present before they will execute correctly. For example, a
performance level modeling token arriving at the inputs to the mixed-level interface for a behavioral
floating point coprocessor model may contain information about the operation the token represents, but
may not contain the data upon which the operation is to take place. In this case, the mixed-level interface
must generate the data required by the behavioral model and do it in a way that a meaningful
performance metric, such as best- or worst-case delays, is obtained.

12.4.1 Mixed-Level Modeling Taxonomy

The functions that the mixed-level interface must perform and the most efficient structure of the
interface are affected by several attributes of the system being modeled and the model itself. To partition
the mixed-level modeling space and better define the specific solutions, a taxonomy of mixed-level model
classes has been developed [43]. The classes of mixed-level modeling are defined by those model
attributes which fundamentally alter the development and the implementation of the mixed-level
interface. The mixed-level modeling space is partitioned according to three major characteristics:

1. Evaluation objective of the mixed-level model
2. Timing mechanism of the uninterpreted model
3. Nature of the interpreted element

For a given mixed-level model, these three characteristics can be viewed as attributes of the mixed-level
model and the analysis effort. Figure 12.20 summarizes the taxonomy of mixed-level models.

Mixed-level modeling objectives. The structure and the functionality of the mixed-level interface are
strongly influenced by the objective that the analysis of the mixed-level model will be targeted toward.
For the purposes of this work, these objectives were broken down into two major categories:

1. Performance analysis and timing verification. To analyze the performance of the system (as defined
previously) and verify that the specific components under consideration meet system timing
constraints. Note that other metrics, such as power consumption, could be analyzed using
mixed-level models, but these were outside the scope of this classification.

2. Functional verification. To verify that the function (input-to-output value transformation) of the
interpreted component is correct within the context of the system model.

Mixed-level models

SynchronousTiming
mechanism:

Interpreted
element

Objective

Combinational

Performance
analysis

Functional
verification

Sequential
data flow

Sequential
control

Asynchronous

FIGURE 12.20 Mixed-level modeling categories.

Performance Modeling and Analysis Using VHDL and SystemC 12-25

Timing mechanisms. Typically, performance (uninterpreted) models are asynchronous in nature and the
flow of tokens depends on the handshaking protocol. However, in modeling a system that is globally
synchronous (all elements are synchronized to a global clock) a mechanism to synchronize the flow of
tokens across the model can be introduced. This synchronization of the performance model will require
different mixed-level modeling approaches. Thus the two types of system models that affect the mixed-
level interface are

1. Asynchronous models. Tokens on independent signal paths within the system model move
asynchronously with respect to each other and arrive at the interface at different times.

2. Synchronous models. The flow of tokens in the system model is synchronized by some global
mechanism and they arrive at the interface at the same time, according to that mechanism.

Interpreted component. The mixed-level modeling technique strongly depends upon the type of
the interpreted component that is introduced into the performance model. It is natural to partition
interpreted models into those that model combinational elements and sequential elements. Techniques
for constructing mixed-level interfaces for models of combinational interpreted elements have
been developed previously [44]. In the combinational element case, the techniques for resolving the
timing across the interface were more straightforward because of the asynchronous nature of the
combinational elements, and the data-abstraction problem was solved using a methodology similar to
the one presented here. However, using sequential interpreted elements in mixed-level models requires
more complex interfaces to solve the synchronization problem and different specific techniques for
solving the data-abstraction problem. Further research into the problem of mixed-level modeling with
sequential elements suggested that interpreted components be broken down into three classifications as
described below:

1. Combinational elements. Unclocked (with no states) elements
2. Sequential control elements (SCEs). Clocked elements (with states) that are used for controlling

data flow, e.g., a control unit or a controller
3. Sequential data flow elements (SDEs). Elements that include datapath elements and clocked

elements that control the data flow, e.g., control unit and datapath

The major reason for partitioning the sequential elements into SDEs and SCEs is based on the timing
attributes of these elements. In a SCE control input values are read every cycle and control output values
(that control a datapath) are generated every cycle. In contrast, SDEs have data inputs and may have
some control inputs but the output data are usually generated several clock cycles later. This difference in
the timing attributes will dictate a different technique for mixed-level modeling. Because the solution
for the timing and data-abstraction problem for SDEs is more complex, and the solution for SCEs can be
derived from the solution for SDEs, developing a solution for SDEs was the focus of this work.

12.4.2 Interface for Mixed-Level Modeling with FSMD Components

This section describes the interface structure and operation for sequential interpreted elements that can
be described as finite state machines with datapaths (FSMDs) [45]. They consist of a finite state machine
(FSM) used as a control unit, and a datapath, as shown in Figure 12.21. System models are quite often
naturally partitioned to blocks which adhere to the FSMD structure. Each of these FSMDs processes the
data and have some processing delays associated with them. These FSMDs indicate the completion of a
processing task to the rest of the system either by asserting a set of control outputs or by the appearance
of valid data on their outputs. This characteristic of being able to determine when the data-processing
task of the FSMD is completed is a key property in the methodology of constructing mixed-level models
with FSMD interpreted components.
The functions performed by the U=I operator include placing the proper values on the inputs to the

FSMD interpreted model, and generating a clock signal for the FSMD interpreted model. The required

12-26 Computer Aided Design and Design Automation

values to be placed on the inputs to the FSMD interpreted model are either contained on the incoming
token’s information, or ‘‘color’’ fields, are supplied by the modeler via some outside source, or are derived
using the techniques described in Section 12.4.2.1. The clock signal is either generated locally if the
system-level model is globally asynchronous, or converted from the global clock into the proper format if
the system-level model is globally synchronous. The functions performed by the I=U operator include
releasing the tokens back into the performance model at the appropriate time and, if required, coloring
them with new values according to the output signals of the interpreted element. The structure of these
two parts of the mixed-level interface is shown in Figure 12.22. The U=I operator is composed of the
following blocks: a Driver, an Activator, and a Clock_Generator. The I=U operator is composed of
an Output_Condition_Detector, a Colorer, and a Sequential_Releaser.
In the U=I operator, the Activator is used to detect the arrival of a new token (packet of data) to the

interpreted element, inform the Driver of a new token arrival, and to drive control input=s of the

Datapath

Datapath inputs

Datapath outputs

Output
function

Next-state
function

State reg.

Control unit

Control inputs

Control outputs

Status

Datapath
control

FIGURE 12.21 Generic FSMD block diagram.

Driver

Clock_
generator

Activator

Read_
Color

Set
color

Colorer

Output_
Condition_
Detector

Sequential_
Releaser

U/I operator I/U operatorInterpreted element
(FSMD)

Datapath
inputs

Datapath
outputs

Control
outputs

Control
inputs

Tokens
from U
domain

Tokens
to U

domain

FIGURE 12.22 Mixed-level element structure.

Performance Modeling and Analysis Using VHDL and SystemC 12-27

interpreted element. The Activator’s output is also connected to the I=U operator for use in gathering
information on the delay through the interpreted element. The Driver reads information from the token’s
color fields and drives the proper input signals to the interpreted element according to predefined
assignment properties. The Clock_Generator generates the clock signal according to the overall type of
system-level model, either synchronous or asynchronous.
In the I=U operator, the Output_Condition_Detector detects the completion of the interpreted element

data-processing operation, as discussed earlier, by comparing the element’s outputs to predefined
properties. The Colorer samples the datapath outputs and maps them to color fields according to
predefined binding properties. The Sequential_Releaser, which ‘‘holds’’ the original token, releases it
back to the uninterpreted model upon receiving the signal from the Output_Condition_Detector. The
information carried by the token is then updated by the Colorer and the token flows back to the
uninterpreted part of the model.
Given this structure, the operation of the mixed-level model can be described using the general

example in Figure 12.22. Upon arrival of a new token to the mixed-level interface (U=I operator), the
Read_Color module triggers the Activator component and passes the token to the Sequential_Releaser,
where it is stored until the interpreted component is finished with its operation. Once triggered by the
Read_Color module, the Activator notifies the Driver to start the data-conversion operation on a
new packet of data. In the case of a globally asynchronous system-level model, the Activator will
notify the Clock_Generator to start generating a clock signal. Since the interpreted element is a
sequential machine, the Driver may need to drive sequences of values onto the inputs of the interpreted
element. This sequence of values is supplied to the interpreted element, while the original token is
held by the Sequential_Releaser. This token is released back to the uninterpreted model only when
the Output_Condition_Detector indicates the completion of the interpreted element operation. The
Output_Condition_Detector is parameterized to recognize the completion of data processing by the
particular FSMD interpreted component. Once the Output_Condition_Detector recognizes the comple-
tion of data processing, it signals the Sequential_Releaser to release the token into the performance
model. Once the token is released, it passes through the Colorer which maps the output data of the
interpreted element onto color fields of the token. The new color information on the token may be used
by the uninterpreted model for such things as delays through other parts of the model or for routing
decisions.

12.4.2.1 Finding Values for the ‘‘Unknown Inputs’’ in an FSMD-Based
Mixed-Level Model

As described previously, because of the abstract nature of a performance model, it may not be possible to
derive values for all of the inputs to the interpreted component from the data present in the performance
model. Typically, the more abstract the performance model (i.e., the earlier in the design cycle), the
higher the percentage of input values that will be unknown. In some cases, particularly during the very
early stages of the design process, it is possible that the abstract performance model will not provide
any information to the interpreted element, other than the fact that new data has arrived. In this case, the
data-abstraction gap will be large. This section describes an analytical technique developed to determine
values for these ‘‘unknown inputs’’ such that a meaningful performance metric—best- or worst-case
delay—can be derived from the mixed-level model.
If some (or all) inputs are not known from the performance model, some criteria for deriving the

values on the unknown inputs must be made. Choosing a criterion is based on the objective of the mixed-
level model. For the objective of timing verification, delays (number of clock cycles) through the
interpreted element are of interest. The most common criterion in such cases is the worst-case processing
delay. In some cases, best-case delay may be desired. If the number of unknown inputs is small, an
exhaustive search for worst=best case may be practical. Therefore, it is desirable to minimize the number
of unknown inputs which can affect the delay through the interpreted element. The methods for
achieving this objective are described conceptually in Section 12.4.2.1.1. By utilizing these methods,

12-28 Computer Aided Design and Design Automation

the number of unknown inputs is likely to be reduced but unknown inputs will not be eliminated
completely. In this case, the performance metrics of best- and worst-case delay can be provided by a
‘‘traversal’’ of the state graph of the SDE component. Section 12.4.2.1.2 describes the traversal method
developed for determining the delays through a sequential element.
Note that in the algorithms described below, the function of the SDE component is represented by the

state transition graph (STG) or state table. These two representations are essentially equivalent and are
easily generated from a behavioral VHDL description of the SDE, either by hand, or using some of the
automated techniques that have been developed for formal verification.

12.4.2.1.1 Reducing the Number of Unknown Inputs

Although it is not essential, reducing the number of unknown inputs can simplify the simulation of a
mixed-level model significantly. Since the FSMD elements being considered have output signals that can
be monitored to determine the completion of data processing as discussed previously, other outputs may
not be significant for performance analysis. Therefore, the ‘‘nonsignificant’’ (insignificant) outputs can be
considered as ‘‘don’t cares.’’ By determining which inputs do not affect the values on the significant
outputs, it is possible to minimize the number of unknown delay affecting inputs (DAIs).
The major steps in the DAI detection algorithm are as follows:

Step 1. Select the ‘‘insignificant’’ outputs (in terms of temporal performance).
Step 2. In the state transition graph (STG) of the machine, replace all values for these outputs with

a ‘‘don’t-care’’ to generate the modified state machine.
Step 3. Minimize the modified state machine and generate the corresponding state table.
Step 4. Find the inputs which do not alter the flow in the modified state machine by detecting

identical columns in the state table, and combining them by implicit input enumeration.

This method is best illustrated by an example. Consider the state machine which is represented by the
STG shown in Figure 12.23. This simple example is a state machine with two inputs, X1 and X2, and two
outputs, Y1 and Y2. This machine cannot be reduced, i.e., it is a minimal state machine. Assume that this
machine is the control unit of an FSMD block and that the control output Y1 is the output which
indicates the completion of the ‘‘data processing’’ when its value is 1. Thus, output Y2 is an ‘‘insignificant
output’’ in terms of delay in accordance with Step 1. Therefore, a ‘‘don’t-care’’ value is assigned to Y2 as
per Step 2. The modified STG is shown in Figure 12.24. As per Step 3, the modified STG is then reduced.
In this example, states A, C, and E are equivalent (can be replaced by a single state, K) and the minimal

A

B C

D

E

10/01
11/00

0–/10 1–/01

1–/00 10/00
11/01

01/00

00/01

1–/00

01/00 00/01

0–/0–

01/01
00/00

FIGURE 12.23 STG of a two-inputs two-outputs state machine.

Performance Modeling and Analysis Using VHDL and SystemC 12-29

machine consists of three states, K, B, and D. This minimal machine is described by the state table
shown in Table 12.2.
All possible input combinations appear explicitly in Table 12.2. However, it can be seen that the first

two columns of the table are identical (i.e., the same next state and output value for all possible present
states). Similarly, the last two columns of the table are identical. Therefore, in accordance with Step 4,
these columns can be combined yielding the reduced state table shown in Table 12.3.
The reduced state table reveals that the minimal machine does not depend on the value of input X2.

Therefore, the conclusion is that input X2 is not a DAI. This result implies that by knowing only the value
of input X1, the number of clock cycles (transitions in the original STG) required to reach the condition
that output Y1¼ 1 can be determined regardless of the values of X2. This is the case for any given initial
state. It is important to emphasize that the paths in the original STG and their lengths are those which
must be considered during the traversal process and that the modified state machine is used only for the
purpose of detecting non-DAIs. The machine which is actually being traversed during the mixed-level
simulation is the original state machine with all its functionality.

A

B C

D

E

10/0–
11/0–

0–/1– 1–/0–

1–/0– 10/0–
11/0–

01/0–

00/0–

1–/0–

01/0– 00/0–

0–/0–

01/0–

00/0–

FIGURE 12.24 STG with ‘‘significant’’ output values only.

TABLE 12.2 Next State and Output Y1 of the Minimal
Machine

PS\X1X2 00 01 10 11

K¼ (ACE) K, 0 K, 0 B, 0 B, 0

B K, 0 K, 0 D, 0 D, 0

D K, 1 K, 1 D, 0 D, 0

TABLE 12.3 Minimal Machine with Implicit Input
Enumeration

PS\X1X2 0� 1�
K¼ (ACE) K, 0 B, 0

B K, 0 D, 0

D K, 1 D, 0

12-30 Computer Aided Design and Design Automation

To demonstrate the meaning of an input which is not a DAI, consider the original state machine
represented by the graph in Figure 12.23 and assume that the initial state is A. Consider, for example, one
possible sequence of values on input X1 to be 0, 1, 0, 0, 1, 1, 0. By applying this input sequence, the
sequence of values on output Y1 is 0, 0, 0, 0, 0, 0, 1, regardless of the values applied to input X2. Therefore,
two input sequences which differ only in the values of the non-DAI input X2 will produce the same
sequence of values on the ‘‘significant’’ output Y1. For example, the sequence X1X2¼ 00, 10, 00, 01, 10,
10, 01 will drive the machine from state A to E, B, C, E, B, D, and back to A, and the sequence of values
on output Y1 will be as above. Another input sequence, X1X2¼ 01, 11, 01, 00, 11, 11, 00, in which the
values of X1 are identical to the previous sequence, will drive the machine from state A to C, B, E, C, B, D,
and back to A, while the sequence of values on output Y1 is identical to the previous case. Therefore, the
two input sequences will drive the machine via different states but will produce an identical sequence
of values on the ‘‘significant’’ output (which also implies that the two paths in the STG have an
equal length).

12.4.2.1.2 Traversing the STG for Best and Worst Delays

After extracting all possibilities for minimizing the number of unknown inputs, a method for determin-
ing values for those unknown inputs which are DAIs is required. The method developed for mixed-level
modeling is based on the traversal of the original STG of the sequential interpreted element. As explained
earlier, some combination of output values may signify the completion of processing the data. The search
algorithm will look for a minimum or maximum number of state transitions (clock cycles) between the
starting state of the machine and the state (Moore machine) or transition (state and input combination—
Mealy machine), which generates the output values which signify the completion of data processing.
Once this path is found, the input values for the unknown DAIs that will cause the SDE to follow this
state transition path will be read from the STG and applied to the interpreted component in the
simulation to generate the required best- or worst-case delay. Since the state machine is represented by
the STG, this search is equivalent to finding the longest or shortest path between two nodes in a directed
graph (digraph).
The search for the shortest path utilizes a well-known algorithm. Search algorithms exist for both

single-source shortest path and all-pairs shortest path. One of the first and most commonly used
algorithms is Dijkstra’s algorithm [46], which finds the shortest path from a specified node to any
other node in the graph. The search for all-pairs shortest path is also a well-investigated problem. One
such algorithm by Floyd [47] is based on work by Warshall [48]. Its computation complexity is O(n3)
when n is the number of nodes in the graph, which makes it quite practical for moderate-sized graphs.
The implementation of this algorithm is based on Boolean matrix multiplication and the actual
realization of all-pairs shortest paths can be stored in an n3 n matrix. Utilizing this algorithm required
some enhancements to make it applicable to mixed-level modeling. For example, if some of the inputs to
the interpreted element are known (from the performance model), then the path should include
transitions that include these known input values.
In contrast, the search for the longest path is a more complex task. It is an NP-complete problem that

has not attracted significant attention. Since most digraphs contain cycles, the cycles need to be handled
during the search to prevent a path from containing an infinite number of cycles. One possible restriction
that makes sense for many state machines that might be used in mixed-level modeling is to construct a
path that will not include a node more than once. Given a digraph G(V, E) that consists of a set of vertices
(or nodes) V¼ {v1, v2, . . . } and a set of edges (or arcs) E¼ {e1, e2, . . . }, a simple path between two vertices
vinit and vfin is a sequence of alternating vertices and edges P¼ vinit, en, vm, enþ1, vmþ1, enþ2, . . . , vfin in
which each vertex does not appear more than once. Although an arbitrary choice was made to implement
the search allowing each vertex to appear in the path only once, the same algorithm could be easily
modified to allow the appearance of each vertex a maximum of N times.
Given an initial node and a final node, the search algorithm developed for this application starts from

the initial node and adds nodes to the path in a depth-first-search (DFS) fashion, until the final node is

Performance Modeling and Analysis Using VHDL and SystemC 12-31

reached. At this point, the algorithm backtracks and continues looking for a longer path. However, since
the digraph may be cyclic, the algorithm must avoid the possibility of increasing the path due to a
repeated cycle, which may produce an infinite path.
The underlying approach for avoiding repeated cycles in the algorithm dynamically eliminates the

cycles while searching for the longest simple path. Let u be the node that the algorithm just added to
the path. All the in-arcs to node u can be eliminated from the digraph at this stage of the path
construction. The justification for this dynamic modification of the graph is that, while continuing in
this path, the simple path cannot include u again. While searching forward, more nodes are being added
to the path and more arcs can be removed temporarily from the graph. At this stage, two things may
happen (1) either the last node being added to the path is the final node or (2) the last node has no out-
arcs in the dynamically modified graph. These two cases are treated in the same way except that in the
first case the new path is checked to see if it is longer than the longest one found so far. If it is, the longest
path is updated. However, in both cases the algorithm needs to backtrack.
Backtracking is performed by removing the last node from the path, hence decreasing the path length

by one. During the process of backtracking, the in-arcs to a node being removed from the path must be
returned to the current set of arcs. This process will enable the algorithm to add this node when
constructing a new path. At the same time, whenever a node is removed from the path, the arc that
was used to reach that node is marked in the dynamic graph. This process will eliminate the possibility
that the algorithm repeats a path that was already traversed. Therefore, by dynamically eliminating and
returning arcs from=to the graph, a cyclic digraph can be treated as if it does not contain cycles. The
process of reconnecting nodes, i.e., arcs being returned to the dynamic graph, requires that the original
graph be maintained. A more detailed description of this search algorithm can be found in Ref. [49].
The restriction that a longest path does not include any node in the graph more than once may not be

appropriate for all cases. In some mixed-level modeling cases, a more realistic restriction might be that
the longest path does not include any transition (arc) more than once. A longest-path with no repeated
arcs may include a node multiple times as long as it is reached via different arcs. In the case of more than
one transition that meets the condition on the output combination, a search for the longest path should
check all paths between the initial state and all of these transitions. However, such a path should include
any of these transitions only once, and it should be the last one in the path.
Performing a search with the restriction that no arc is contained in the path more than once requires

maintaining information on arcs being added or removed from the path. Maintaining this information
during the search makes the algorithm and its implementation much more complicated relative to the
search for the longest path with no repeated nodes. Therefore, a novel approach to this problem was
developed. The approach used is to map the problem to the problem of searching for the longest path
with no repeated nodes. This mapping can be accomplished by transforming the digraph to a new
digraph, to be referred to as the transformed digraph (or Tdigraph). Given a digraph, G(V, E), which
consists of a set of nodes V¼ {v1, v2, . . . , vk} and a set of arcs E¼ {e1, e2, . . . , el} the transformation tmaps
G(V, E) into a Tdigraph TG(N, A), where N is its set of nodes and A its set of arcs. The transformation is
defined as t(G(V, E))¼TG(N, A), and contains the following steps:

Step 1. 8(ei 2 E) generate a node ni 2 N.
Step 2. 8(v 2 V) and 8 ep 2 dvin,eq 2 dvout

� �
generate an arc a 2 A such that a: np ! nq.

The first step is used to create a node in the Tdigraph for each arc in the original digraph. This one-to-
one mapping defines the set of nodes in the Tdigraph to be N¼ {n1, n2, . . . , nl}, which has the same
number of elements found in the set E.
The second step creates the set of arcs, A¼ {a1, a2, . . . , au}, in the Tdigraph. For each node in the

original digraph and for each combination of in-arcs and out-arcs to=from this node, an arc in
the Tdigraph is created. For example, given a node v with one in-arc ei and one out-arc ej, ei is mapped
to a node ni, ej is mapped to a node nj, and an arc from ni to nj is created. In Step 2 of the transformation
process, it is guaranteed that all possible connections in the original digraph are preserved as transitions

12-32 Computer Aided Design and Design Automation

between nodes in the Tdigraph. As a result of this transformation, the restriction on not visiting an arc
more than once in the original digraph is equivalent to not visiting a node more than once in the
Tdigraph. Therefore, by using this transformation, the problem of searching for the longest path with no
repeated arcs in the original digraph is mapped to a search for the longest path with no repeated nodes in
the Tdigraph. The algorithm described above can then be used to search the Tdigraph.
This transformation is best illustrated by a simple example. Consider the digraph shown in Figure

12.25a. The arcs in this digraph are labeled by numbers 0–6. The first step of the transformation is to
create a node for each arc in the original digraph. Therefore, there will be seven nodes, labeled 0–6, in the
Tdigraph as shown in Figure 12.25b. The next step is to create the arcs in the Tdigraph. As an illustration
of this step, consider node C in the original digraph. Arc ‘‘2’’ is an in-arc to node C while arcs ‘‘3’’ and
‘‘4’’ are out-arcs from node C. Applying Step 2 results in an arc from node ‘‘2’’ to node ‘‘3’’ and a second
arc from node ‘‘2’’ to node ‘‘4’’ in the Tdigraph. Considering node B in the original digraph, the Tdigraph
will include an arc from node ‘‘1’’ to node ‘‘2’’ and an arc from node ‘‘5’’ to node ‘‘2.’’ This process is
repeated for all the nodes in the original digraph until the Tdigraph, as shown in Figure 12.25b, is formed.
A search algorithm can now be executed to find the longest path with no repeated nodes.
A mixed-level modeling methodology, which is composed of all the methods described above, has been

integrated into the ADEPT environment. The steps for minimizing the unknown inputs can be
performed prior to simulating the mixed-level model. On the other hand, the search for longest=shortest
possible delay must be performed during the simulation itself. This requirement arises because each
token may carry different information which may alter the known input values and, therefore, alter the
search of the STG. The STG traversal process has been integrated into the ADEPT modeling environ-
ment using the following steps: (1) when a token arrives to the mixed-level interface, the simulation is
halted and the search for minimum=maximum number of transitions is performed and (2) upon
completion of the search, the simulation continues while applying the sequence of inputs found in the
search operation. The transfer of information between the VHDL simulator and the search program,
which is implemented in C is done by using the simulator’s VHDL=C interface. A component called the
Stream_Generator has been created that implements the STG search process via this interface.
Since mixed-level models are part of the design process and are constructed by refining a performance

model, it is likely that many tokens will carry identical relevant information. This information may be
used for selective application of the STG search algorithm, hence increasing the efficiency of the mixed-
level model simulation. For example, if several tokens carry exactly the same information (and assuming
the same initial state of the FSM), the search is performed only once, and the results can be used for the
following identical tokens.

A

B

C

D

E

0

1

23 4

5 6

0

1 2 3

4

5
6

(a) (b)

FIGURE 12.25 Transformation of a digraph.

Performance Modeling and Analysis Using VHDL and SystemC 12-33

12.4.2.2 Example of Mixed-Level Modeling with an FSMD Component

This section presents an example of the construction of a mixed-level model with an FSMD interpreted
component. The example is based on the performance model of an execution unit of a particular
processor. This execution unit is composed of an integer unit (IU), a floating-point unit (FPU), and a
load-store unit (LSU). These units operate independently although they receive instructions from the
same queue (buffer of instructions). If the FPU is busy processing one instruction and the following
instruction requires the FPU, it is buffered, waiting for the FPU to be free again. Meanwhile, instructions
which require the IU can be consumed and processed by IU at an independent rate. Both the FPU and
the IU have the capability of buffering only one instruction. Therefore, if two or more consecutive
instructions are waiting for the same unit, the other units cannot receive new instructions (since the
second instruction is held in the main queue). One practical performance metric that can be obtained
from this model is the time required for the execution unit to process a given sequence of instructions.
Because the FPU was identified as the most complex and time critical portion of the design, a

behavioral description of a potential implementation of it was developed. At this point, a mixed-level
model, in which the behavioral description of the FPU is introduced into the performance model, was
constructed using the interface described above. The mixed-level model is shown in Figure 12.26. The
mixed-level interface is constructed around the interpreted block which is the behavioral description of
the FPU. This FPU is an FSMD type of element, and the interpreted model consists of a clock cycle-
accurate VHDL behavioral description of this component. The inputs to the FPU include the operation
to be performed (Add, Sub, Comp, Mul, MulAdd, and Div), the precision of the operation (single or
double), and some additional control information. The number of clock cycles required to complete any
instruction depends on these inputs.
Figure 12.27 shows the execution unit performance derived from the mixed-level model for three

different instruction traces. In this case, only 40% of the inputs have values that are supplied by the
abstract performance model, the remainder of the values for the inputs are derived using the techniques
described in Section 12.4.2.1. The performance value is normalized by defining unity to be the amount of
time required to process a trace according to the initial uninterpreted performance model. In this
example, the benefit of the simulation results of the mixed-level model is clear. It provides performance
bounds in terms of best- and worst-case delays, for the given implementation of the FPU.

12.4.3 Interface for Mixed-Level Modeling with Complex
Sequential Components

A methodology and components for constructing a mixed-level interface involving general sequential
interpreted components that can be described as FSMDs was detailed in the previous section. However,
many useful mixed-level models can be constructed that include sequential interpreted components that
are too complex to be represented as FSMDs, such as microprocessors, complex coprocessors, network
interfaces, etc. In these cases, a more ‘‘programmable’’ mixed-level interface that is able to deal with the
additional complexity in the timing abstraction problem was needed. This section describes the ‘‘watch-
and-react’’ interface that was created to be a generalized, flexible interface between these complex
sequential interpreted components and performance models.
The two main elements in the watch-and-react interface are the Trigger and the Driver. Figure 12.28

illustrates how the Trigger and Driver are used in a mixed-level interface. Both elements have ports that
can connect to signals in the interpreted components of a model. Collectively, these ports are referred to
as the probe. The primary job of the Trigger is to detect events on the signals attached to its probe, while
the primary job of the Driver is to force values onto the signals attached to its probe. The Driver decodes
information carried in tokens to determine what values to force onto signals in the interpreted model
(the U=I interface) and the Trigger encodes information about events in the interpreted model onto
tokens in the performance model (the I=U interface).

12-34 Computer Aided Design and Design Automation

FP
U-

H
yb

rid
 el

em
en

t

IU

St
re

am
_g

en
er

at
or

Di
n_

std
_u

lo
gi

c(
0.M

–1
)

Se
ar

ch
_a

nd
_d

riv
e

Ac
t_

tim
e

FI
XE

D_
DE

LA
Y

1 2
FI

XE
D_

DE
LA

Y

De
lay

 30
 n

s

De
lay

 15
0 n

s

N
o_

in
t_

di
v_

de
lay

In
t_

di
v_

de
lay

AR
BI

TE
R2

Ar
b_

IU

In
_2

In
_1

O
ut

_2

O
ut

_1
1

SOURCE

Step 10 ns
Time base 0 ns

Inst_sourceSWITCH

SW_Inst
Pass_cond. 0

FILE _READ

File name1.
Tags2 read dat

Fiename 2.
Inst dat

Read_inst_seq

QUEUE_MOD0
Length.5

Inst_buffer

RC

Re
lea

se
? t

ru
e

Re
ad

_i
ns

t

Fi
led

 T
ag

1

Fi
led

 T
ag

1

DE
CI

DE
R

DE
CI

DE
R

Ba
se

.
1

Ba
se

.
2

21

1 2

De
cid

e_
in

st
1

De
cid

e_
in

st
2

BU
FF

ER

bu
ff_

IU

BU
FF

ER

bu
ff_

fp
u

BU
FF

ER

bu
ff_

LS
U

M
O

N
IT

O
R

M
.1 J

N
.1 J

M
on

 1

2
1

FI
XE

D_
DE

LA
Y

LS
U

De
lay

. 2
0 n

s

LS
U_

de
lay

Sink1

SINK

Write_delay

10 ns Delay

FIXED_DELAY

Result_bulf

5 length.
QUEUE_MOD0

In
_1

In
_2

In
_3UN

IO
N

3

O
ut

_1

Un
i3

1 2 3
321

1 2 3

in
_1

in
_2 in

_3

ou
t_

2

ou
t_

3

ou
t_

1

AR
BI

TE
R3

ar
b3

1 2

1 2
2

In
_1

In
_2

O
ut

_1

on
_o

n_
IU

UN
IO

N
2

SE
Q

UE
N

CE
 2

Se
q_

IU

DE
CI

DE
R

Fi
led

.

Ba
se

.bo
ol

e 1

1

Th
re

sh
ol

d.
0.9

ra
nd

ra
nd

_o
pe

rIU
fil

ed
.b

oo
le1

di
st.

In
itU

ni
fo

rm
(0

 0,
1 0

)

de
cid

e_
op

er
IU

1 2

RC

Re
lea

se
? t

ru
e

rc
 1

Se
qA

ct
iva

to
r

St
ar

t_
ac

t
in

_c
1

Ac
t_

tim
e

Ac
tio

n

Sy
nc

Cl
kG

en

Cl
oc

k
St

ar
t

Lo
w_

t.m
e.5

 n
s

H
ig

h_
t.m

e.5
 n

sRe
se

t

Sy
nc

_c
lk

_p
ul

se

St
ar

t_
ac

t_
bi

t

rs
t_

bi
t

clk
_b

it

Tr
ig

In
_1

O
ut

_1

Re
lea

se
r

Se
qR

el

Co
nd

Dt
ct

r
M

:1
in

sig
(1

.M
)

re
l

Co
nd

s:
De

te
ct

tri
g_

bi
t

0 1 2 3 4

N
o

Dp
Co

d0
Dp

Co
d1

Dp
Co

d2
Db

lP
rcfp

uI
bl

oc
k cn

t 1
cn

t 2
do

ne
clk

fp
u_

sm

01
01

01
10

10
10

01
01

01

clk
 in

_b
it

sta
rt_

ac
t_

bi
t

M
:5

M
:5 U_std_Ulogic

Do
ut

_s
td

_u
lo

gi
c(

0.5
0)

clk
ou

t_
bi

t

D
riv

er
bi

t
M

:2
ou

ts
(1

.M
)

Sr
c_

fld
:2

dr
iv_

kn
ow

n

in
_c

 1
O

ut
_b

oo
l(0

.2)

0
0

1
1 2 3 4

FI
G
U
R
E
12

.2
6

M
ix
ed
-l
ev
el
m
od

el
w
it
h
th
e
FP

U
be
ha
vi
or
al
de
sc
ri
pt
io
n.

Performance Modeling and Analysis Using VHDL and SystemC 12-35

The Trigger and Driver were designed to be as generic as possible. A command language was designed
that specifies how the Trigger and Driver should behave to allow users to easily customize the behavior of
the Trigger and Driver elements without having to modify their VHDL implementation. This command
language is interpreted by the Trigger and Driver during simulation. Because the language is interpreted,
changes can be made to the Trigger and Driver programs without having to recompile the model, thus
minimizing the time required to make changes to the mixed-level model.
The schematic symbol for the Trigger is shown in Figure 12.29. The primary job of the Trigger is

to detect events in the interpreted model. The probe on the Trigger is a bus of std_logic signals
probe_size bits wide, where probe_size is a generic on the symbol. There is one token output
called out_event_token and one token output called out_color_token. Tokens generated by
the Trigger when events are detected are placed on the out_event_token port. The condition
number (an integer) of the event that caused the token to be generated is placed on the condition

1 2 3
Instruction trace number

0.0

2.0

4.0

6.0

N
or

m
ali

ze
d

pe
rfo

rm
an

ce

Performance comparison
40% known inputs

Upper bound
Lower bound
Uninterpreted model

FIGURE 12.27 Performance comparison of the execution unit for three instruction traces.

Uninterpreted
componentTrigger

Driver

Driver program

Interpreted
component

clk

Trigger program

Mixed-level interface

TokensStd_logic

FIGURE 12.28 Watch-and-react mixed-level interface.

12-36 Computer Aided Design and Design Automation

tag field, which is specified as a generic on the symbol. Also, each time a signal changes on the probe,
the color of the token on the out_color_token port changes appropriately regardless of whether
an event was detected or not. The probe value is placed on the probe_value tag field of the
out_color_token port. The sync port is used to synchronize the actions of the Trigger element
with the Driver element as explained below.
The name of the file containing the Trigger’s program is specified by the filename generic on the

symbol. The delay_unit generic on the symbol is a multiple that is used to resolve the actual length of
an arbitrary number of delay units specified by some of the interface language statements.
The schematic symbol for the Driver element is shown in Figure 12.30. The primary job of the

Driver is to create events in the interpreted model by driving values on its probe. These values come from
either the command program, or from the values of tag fields on the input tokens to the Driver. The
probe on the Driver is a bus of std_logic signals probe_size bits wide, where the probe_size is a
generic on the symbol. There is one token input called in_event_token, one token input called
in_color_token, and a special input for a std_logic type clock signal called clk. The clk input
allows Driver to synchronize its actions with an external interpreted clock source. The sync port is used
to synchronize the actions of the Driver element with the Trigger element. The filename and
delay_unit generic on the symbol function the same as for the Trigger.

I$ IN

IN

OUT

OUT

sync

Trigger
out_event_token

condition : tag 1

probe_value : tag 1

probe (probe_size-1:0)

out_colour_token

file name : no name

probe_size : 4

delay_unit : 1 ns

FIGURE 12.29 Schematic symbol for the Trigger.

OUT

sync

Driver

I$

IN
clk

IN
in_event_token

condition : tag1

probe_value : tag1

probe(probe_size–1:0)
in_event_token

file name : no name
probe_size : 4
delay_unit : 1 ns

IN OUT

FIGURE 12.30 Schematic symbol for the Driver.

Performance Modeling and Analysis Using VHDL and SystemC 12-37

As discussed previously, a command language was developed to allow the user to program the actions
of the Trigger and Driver. This command language is read by the Trigger and Driver at the beginning of
the simulation. Constructs are available within the command language to allow waiting on events
of various signals and driving values or series of values on various signals, either asynchronously,
or synchronous with a specified clock signal. In addition, several looping and go-to constructs are
available to implement complex behaviors more easily. A summary of the syntax of the command
language constructs is shown in Table 12.4.

12.4.3.1 Example of Mixed-Level Modeling with a Complex Sequential Element

This section presents an example which demonstrates how the Trigger and Driver elements can be used
to interface an interpreted model of a complex sequential component with an uninterpreted model.
In this example, the interpreted model is a microprocessor-based controller and the uninterpreted model
is that of a motor control system including a motor controller and a motor. The motor controller
periodically asserts the microcontroller’s interrupt line. The microcontroller reacts by reading the
motor’s current speed from a sensor register on the motor controller, calculating the new control
information, and writing the control information to the motor controller.
The microcontroller system consists of interpreted models of eight-bit, RISC-like microprocessor,

RAM, memory controller, I=O controller, and clock. The memory controller handles read and write
requests issued by the processor to the RAM, while the I=O controller handles read and write request
issued by the processor to an I=O device. In the system model, the I=O device is the uninterpreted model
of a motor controller. A schematic of the model is shown in Figure 12.31.
Three Triggers and two Drivers are used to construct the mixed-level interface for the control system

model. One of the Triggers is used to detect when the I=O controller is doing a read or write. The other
two Triggers are used to collect auxiliary information about the operation, such as the address on the
address bus and data on the data bus. One of the Drivers is used to create a microcontroller interrupt and
the other Driver is used to force data onto the data bus when the processor reads from the speed sensor
register on the motor controller.
The interrupt Driver’s program is listed in Figure 12.32. The program begins by forcing the interrupt

line to ‘‘Z’’ and then waiting for a token from the uninterpreted model of the motor controller to arrive.
Once a token arrives, the program forces the interrupt line high for 10 clock cycles. This condition is
accomplished by using a for-next statement with a wait_on_rclk as the loop body. After 10 clock
cycles, the program jumps to line 10 where the cycle begins again.
The data Driver’s program is listed in Figure 12.33. The program begins by also waiting for a token

from the uninterpreted model of the motor controller to arrive. If the value on the condition tag field of
the token is 1, then ‘‘ZZZZZZZZ’’ is forced onto the data bus. If the condition tag field value is 3, then the
value on the probe_value tag field of the in_color_token input is forced on the data bus. This
process is repeated for every token that arrives.
The I=O Trigger’s program is listed in Figure 12.34. This Trigger waits until there is a change on the

probe. Once there is a change, the program checks to see if the I=O device is being unselected, written
to, or read from. If one of the when statements matches the probe value, then its corresponding output
statement is executed. An output of 1 corresponds to the I=O device not being selected. An output
of 2 corresponds to the processor writing control information to the motor controller. An output of
3 corresponds to the processor reading the motor’s speed from the sensor register on the motor
controller.
Figure 12.35 shows the results from the mixed-level model as a plot of the sensor output and the

processor’s control response. Some random error was introduced to the sensor’s output to reflect
variations in the motor’s load as well as sensor noise. The target speed for the system was 63 ticks
per sample time (a measure of the motor’s RPM). The system oscillates slightly around the target value
because of the randomness introduced into the system.

12-38 Computer Aided Design and Design Automation

TABLE 12.4 Trigger and Driver Command Programming Language Constructs

Command Element Meaning

–<comment> Both Comment—no action

alert_user Both Print message in simulation window

delay_for<T> Both Delay for<T> time units where the time unit is
specified as a generic on the module’s symbol

end Both End the command program

for<N> Both Iterate N times over the sequence of statement in the
loop body

<loop body>

next

goto<L> Both Go to line<L> in the command program

output_sync Both Generate a token on the sync output of the module

wait_on_sync Both Wait for an occurrence of a token on the sync port of
the module

case_probe_is Trigger Conditionally execute some sequence of statements
depending on the STD_LOGIC value of the probe
signal

when<STD_LOGIC_VAL>

<sequence of statements>

when . . .

end_case

output<INTEGER_VAL> after<T> Trigger Generate a token on the Trigger’s output with the
value of<INTEGER_VAL> on the tag field
specified by the generic on the symbol
after<T> time units

trigger Trigger Must appear as the first statement in the Trigger’s
command program

wait_on<STD_LOGIC_VAL> Trigger Wait until the probe signal takes on the specified
STD_LOGIC value

wait_on_probe Trigger Wait until there is ANY event on the probe signal

case_token_is Driver Conditionally execute some sequence of statements
depending on the integer value of the input token’s
tag field specified by the generic on the symbol

when<INTEGER_VAL>

<sequence of statements>

when . . .

end_case

driver Driver Must appear as the first statement in the Driver’s
command program

dynamic_output_after<T> Driver Force the value from the specified tag field of the
input token onto the probe after<T> time units

output<STD_LOGIC_VAL> after<T> Driver Force the specified STD_LOGIC value onto the
probe signal after<T> time units

wait_on<INTEGER_VAL> Driver Wait until a token with the given integer value on the
tag field specified by the generic on the symbol
arrives on the in_event_token signal

wait_on_fclk Driver Wait until the falling edge of the clock occurs

wait_on_rclk Driver Wait until the rising edge of the clock occurs

wait_on_token Driver Wait until a token arrives on the in_event_token
signal

Performance Modeling and Analysis Using VHDL and SystemC 12-39

M
ix

ed
-le

ve
l i

nt
er

fa
ce

FIXED_DELAY

5 uc delay

C62g

C61 6

SC_0

2
O

PE
RA

TO
R_

I

1

I$
44

Fi
eld

. t
ag

4
op

. a
dd

W
YE

2
1

RC

I$
38

I$
39

W
YE

2
JU

N
CT

IO
N

2

I$
36

BU
FF

ER

BU
FF

ERI$
91

8

I$
91

9
I$

90
9

I$
91

0

de
lay

 15
 n

s
de

st
. t

ag
4

so
ur

ce
 . t

ag
2

SC
_0

FI
XE

D_
DE

LA
Y

Ro
ut

er
_2

RO
UT

ER
_2

I$
90

6

I$
90

7

I$
90

5

I$
11

21

I$
29

6

I$
93

ta
g1

ta
g1

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0

0
0

0
0

3
0

0
0

0
0

0
0

0
0

0

21
UN

IO
N

2
RC

fa
lse

 re
lea

se
?

in
_1

in
_2

ou
t_

1

so
ur

ce
fa

lse

tl1
–t

l5
tl6

–t
l1

0
tl1

1–
tl1

5

tl1
–t

l5
tl6

–t
l1

0
tl1

1–
tl1

5

bl
1.

bl
2.

bl
3.

fa
lse

fa
lsefa
lse

bl
1.

bl
2.

bl
3.

fa
lse

fa
lse

de
st

ta
g1

ta
g1

so
ur

ce
de

st I$
90

8

co
n_

co
l_

ou
t

co
n_

co
l_

ou
t

co
n_

co
l_

in

co
n_

co
l_

in

CO
N

ST
_C

O
LO

R

CO
N

ST
_C

O
LO

R

I$
90

4
I$

90
3

de
st.

 ta
g3

SC
_0 so

ur
ce

 ta
g2

fie
ld

 t
ag

1

ba
se

0
 1

G

Y1Y0

ba
se

0.
 2

 Y
0

fie
ld

. t
ag

1
Y1

G

in
_1

in
_2

ou
t_

2

1 2

1 2

th
ro

sh
ol

d
00

fie
ld

.ta
g4

di
st.

 In
it

Un
ifo

rm
(–

8 0
.70

)

ra
nd

I$
3J

ou
t_

2

ou
t_

1

in
_1

Re
lea

se
 ?

fa
lse

2
I$

1

ou
t_

1

in
_1

ou
t_

2

Log 2 deal.

Log 1 cource

35
ve

e8
M

ec
ha

ni
ca

l s
ys

te
m

FI
G
U
R
E
12

.3
1

Sc
he
m
at
ic
of

co
nt
ro
ls
ys
te
m

m
od

el
.

12-40 Computer Aided Design and Design Automation

driver
10 output Z after 0
20 wait_on_token
30 output 1 after 0
40 for 10
50 wait_on_rclk
60 next
70 goto 10
80 end

FIGURE 12.32 Interrupt Driver’s pro-
gram for the control system.

driver
10 wait_on_token
20 case_token_is
30 when 1
40 -- sensor not selected
50 output ZZZZZZZZ after 0
60 when 3
70 -- sensor selected for reading
80 dynamic_output_after 0
90 end_case
100 goto 10
110 end

FIGURE 12.33 Data Driver’s program for the control
system.

trigger
10 wait_on_probe
20 case_probe_is
30 when 111
40 -- sensor not selected
50 output 1 after 0
60 when 001
70 -- sensor selected for writing
80 output 2 after 0
90 when 010
100 -- sensor selected for reading
110 output 3 after 0
120 end_case
130 goto 10
140 end

FIGURE 12.34 I=O Trigger’s program for the control system.

0.0 100,000.0 200,000.0 300,000.0
Time (ns)

0.0

20.0

40.0

60.0

80.0

Sensor output
CPU response

Sp
ee

d
(ti

ck
s)

FIGURE 12.35 Sensor and processor outputs for the control system.

Performance Modeling and Analysis Using VHDL and SystemC 12-41

12.5 Performance and Mixed-Level Modeling Using SystemC

This section describes a performance-modeling environment capable of mixed-level modeling that is
based on the SystemC language [50]. The environment is intended to model the system at the Processor
Memory Switch level much like the Honeywell PML environment described earlier. The goal of this work
was to show how SystemC could be used to construct a mixed-level modeling capability.
In the SystemC-based PBMT (Performance-Based Modeling Tool), the user begins by describing the

functions executed by the system as a task graph. A task graph is a representation of the flow of execution
through an application. The nodes in a task graph represent computational tasks, and the edges in a task
graph represent the flow of control, or the actual transfer of data, between tasks. An example of a
task graph for a simple application is shown in Figure 12.36. Note that the topology shown in the figure,
the example application has the opportunity for some tasks, such as Task 2, Task 3, and Task 4, to be
executed in parallel if the system architecture upon which the application is to be executed, allows for it.
Once the task graph model is constructed, the user then selects a system architecture on which

the application will execute. The system architecture is specified by the number of processors in the
architecture, and an interconnect topology used to provide communications between them. The available
interconnect topologies include a bus (a single shared communications resource), a crossbar switch
(a partially shared communications resource), or fully connected (a completely nonshared communica-
tion resource). Note that in this high-level architecture model, what actually constitutes a processor in the
system is not specified. That is, a processor is simply modeled as a computational resource and may in
implementation be a general-purpose processor (of any clock speed), a special purpose processor like a
DSP, or custom hardware for a specific task.
Once the system architecture is specified, all that remains is for the user to specify upon which

processor each of the tasks is to execute and what the total execution time for that task on the specific
processor will be. This delay value may be either fixed, or dependent on the amount of data that is passed
into the task by the previous task in the graph. Once this task-to-processor mapping and delay
specification is done, the complete SystemC model is constructed and simulated using either the
reference simulator, included as part of the SystemC distribution available in Ref. [10], or the commercial
Mentor Graphics ModelSim simulator which includes the capability to cosimulate SystemC models along
with Verilog or VHDL models.
Figure 12.37 shows the results of executing the task graph of Figure 12.36 on three different system

architectures. All of the architectures utilize a single shared bus for communications. The first result is
for an architecture with only a single processor. In this case, the obvious result is that all of the tasks
execute in sequence on the single processor and the run time is simply the sum of the individual task
execution times. The second result is for a three-processor architecture. In this case, after Task 1

Task 2

Task 3

Task 4

Task 1

Task 7

Task 5

Task 6 Task 8

FIGURE 12.36 Example task graph.

12-42 Computer Aided Design and Design Automation

completes, some latency can be seen before Tasks 3 and 4 begin execution. This accounts for the
communication time required to send data from the processor that executed Task 1 to the processors
that are executing Tasks 3 and 4. In addition, the graph shows that Task 4 begins execution after Task 3
because of the contention for the single shared bus communications resource. Likewise, the latency
between the end of execution for Tasks 5–7, and the start of execution for Task 8 accounts for the time
required to communicate Tasks 6 and 7’s results back to the single processor that is schedule to execute

0

0

0

10

10

20

20

Time (μs)

Time (μs)

Time (μs)

Re
so

ur
ce

s
Re

so
ur

ce
s

Re
so

ur
ce

s
10050

P1 T1 T4 T2 T5 T6 T7 T8T3

P1

P2

P3

P1 T1 T2

P2 T3

T4

T7

P3

P4

T6

T5

T4 T7

T1 T2

T3 T6

T5 T8

T8

Architecture 1
 Single processor
Single shared bus
Total latency: 62 μs

Architecture 2
 Three processor
Single shared bus
Total latency: 23.5 μs

Architecture3
 Four processor
Single shared bus
Total latency: 24 μs

FIGURE 12.37 Parallel example shared bus timelines.

Performance Modeling and Analysis Using VHDL and SystemC 12-43

Task 8. The overall run time for this configuration is much less than the first example because the
inherent parallelism in the application is being exploited by the selected architecture. Finally, the third
result is for a four-processor architecture. In this simulation, Tasks 1 and 8 are allocated to the fourth
processor, separate from the other Tasks 2–7. This results in additional communications time being
required using the single bus to transfer all of the data from, and back to, that extra processor. Thus, as
can be seen from the graph this architecture actually takes longer than the three processor architecture to
execute the application.

12.5.1 SystemC Background

This section describes some of the basic concepts of SystemC and how it is used to model systems at a
high level. SystemC is a library extension to Cþþ. Essentially, SystemC uses a set of classes and
predefined functions to build a new ‘‘language’’ on top of Cþþ. The basic unit of a SystemC model is
the SC_MODULE class. The SC_MODULE is roughly equivalent to an entity in VHDL. It can have input,
output, and bidirectional ports. However, it is a Cþþ class and as such it can, and does, have member
functions. Any member function that is declared as public can be accessed just like the member function
of any other class. Every SC_MODULE must have at least one public member function, its constructor. In
the constructor the module is given a SystemC name, and declares if it has any processes, and does
anything else necessary to get the model ready for simulation. There are two types of processes in
SystemC, the SC_THREAD and the SC_METHOD. The behavior of a process must first be declared as a
member function, then that member function can be declared to be either an SC_THREAD or an
SC_METHOD in the constructor. The primary differences are how they behave when they reach the
end of their definition, and when the scheduler activates them.
An SC_THREAD will terminate, and never be activated again, if it reaches the end of its description.

Typically SC_THREADs are infinite loops with one or more wait statements to break the execution, and
wait on some signal change or other event. An SC_METHOD will be activated any time something it is
sensitive to changes, and will run once through to the end of its description. If something an
SC_METHOD is sensitive to changes again, it will run again. SC_THREADs do have the ability to use a
form of the wait command that is not available to SC_METHODs. They may use a wait command with no
parameters which will cause them to be reactivated and continue execution with the line after the wait
statement when something in their sensitivity list has an event.
As indicated by the discussion of processes, SystemC uses an event-driven simulationmethodology. The

library provides basic signal classes that have a notify-update sequence much like VHDL. As mentioned in
the Transaction Level Modeling discussion above, SystemC has a concept of channels. A channel is
generally some means of moving information. The basic signal classes provided are base channels. A
designer could potentially design some new base channel type that has the same interfaces as the existing
base channels. However, building a new base channel is rather involved since its implementation must
interact directly with the scheduler to implement the notify=update semantics of a signal. Additionally,
such a user-designed base channel would still only have a basic interface, and could not have any internal
processes, thus would not provide significant abstraction leveraging for the amount of time required
to design it. Instead designers should use what is called a hierarchical channel for most modeling needs.
A hierarchical channel is a channel that is made up of a number of elements of base classes. A hierarchical
channel can have any number of ports, or methods. The methods that a module could use to access the
channel, and convey information through it, are called interface methods. For a module to be able to access
an interface method the channel needs to have a defined interface that it inherits. The sc_interface
class is used as a base class to define such an interface. The file in Figure 12.40 shows one such interface
class. Once an interface class has been defined and inherited by the channel, then anymodule with a port of
that type can be bound to the channel’s interface. In addition to the base channel classes, the SystemC
library provides an event object that can be waited upon using the same syntax as a wait for a signal change
event. For more details on the syntax, classes, and functions of SystemC the reader may refer to Ref. [10].

12-44 Computer Aided Design and Design Automation

At the time of this writing, there are several options for simulating SystemC models. The two most
robust SystemC simulators are the reference simulator, available with the SystemC distribution, and the
ModelSim simulator as mentioned above. Because of some internal implementation details which
differ between the two simulators, there are minor code differences required in the performance models
between the two simulators. The differences and the techniques for enabling the models to be compiled
and run in either simulators are described in the sections below.

12.5.2 SystemC Performance Models

The performance models described herein take advantage of the Cþþ foundations of SystemC to
provide a highly parameterizable simulation environment that loads most of the parameters at run
time. Figure 12.38 shows the class definition for the top level of the simulation model, and the relevant
comments. The top-level entity makes use of a pointer to an object of type SIM, declared in the header
file generic.h, to allow the constructor arguments to be read in from the top_config.txt file rather than
statically specified in the source code. When the simulation is loaded the SystemC constructor
(SC_CTOR in the code) will be called. The constructor will create a streambuf object, a number of
processors variable, a connection type variable, as well as a pointer variable to point to an object of type
SIM. It will then open the top_config.txt file and associate it with the streambuf variable. Then it will
read an unsigned value into the number of processors variable, then read an unsigned value into the
connection type variable. Once those values are read in then the constructor uses the ‘‘new’’ command to
instantiate a new object of type SIM. The ‘‘new’’ command allows passing variable constructor argu-
ments to the objects constructor, so the new SIM object’s constructor builds the object with the value
of num_processors processors, and the value of connect_type interconnect number. If the
number of processors or interconnect type was specified via a template argument, or a fixed constructor

#ifndef MY_MAIN
#define MY_MAIN

#include <systemc.h>
#include "generic.h"

SC_MODULE(main_sim)
{

SIM *simulation;

SC_CTOR(main_sim)
{

ifstream topFile;
unsigned num_processors;
//1 to 9, could be to 10^13 or memory constraints except for modelsim

namebinding
unsigned connect_type; //1,2,3 are valid
topFile.open("top_config.txt");//this doesn't do error check!
topFile>>num_processors;
//get info from file & set num_processors,connect_type
topFile>>connect_type;// read in the interconnect type to use
simulation = new SIM("simulation",num_processors,connect_type);
// systemC name,number of processor ,connection class

};

};
#endif

FIGURE 12.38 Top-level class definition.

Performance Modeling and Analysis Using VHDL and SystemC 12-45

value (e.g., ‘‘simulation¼new SIM(‘‘it,9,1);’’) in the source code then the simulation would
have to be recompiled every time something was changed.
Notice that all the implementation details of the SystemCmodules are declared in header files. This is the

recommended way of describing models to compile the SystemC code for the ModelSim simulator. The
included guards are also a must for any SC_MODULE definitions to ensure they are not included multiple
times by the ModelSim SystemC compiler, SCCOM. The actual Cþþ file that is compiled to generate the
simulation models is shown in Figure 12.39. The SC_MODULE_EXPORT(module_class_name) is
the function used to create the ModelSim model for the specified entity. The MTI_SYSTEMC compiler
definition is defined specifically for compilation using SCCOM, and allows having a single set of code for
both the ModelSim and reference simulator. Any ModelSim specific code can be placed inside a #ifdef
MTI_SYSTEMC compiler directive statement so that the compiler only uses it when compiling for
ModelSim. The #else statement prevents the ModelSim compiler from trying to compile the reference
simulator-specific portions, and the #endif closes out the if-else statement.

The generic.h header file defines the class SIM. It makes use of the shared base class my_basic_rw_
port to declare a pointer that will allow assignment of an instantiation of any of the three channel
types developed for the environment. The my_basic_rw_port base class definition is shown in
Figure 12.40. Notice the use of the keyword virtual. Since the method is declared as virtual, all

#include <systemc.h>
#include "generic_main.h"
#ifdef MTI_SYSTEMC
SC_MODULE_EXPORT(main_sim);
#else
//for OSCI reference simulator
int sc_main(int ac, char *av[])
{
 main_sim my_sim("my_sim");
 sc_start(500, SC_NS);
 sc_close_vcd_trace_file(main_trace);
 return 0;
};
#endif

FIGURE 12.39 Top-level Cþþ file.

#ifndef INTERFACE_TYPE
#define INTERFACE_TYPE
include <systemc.h>
/* this header describes the interface type...*/

class my_basic_rw_port
 : public virtual sc_interface
{
public:
 // basic read/write interface
 //virtual bool read(int address, int data) = 0; //not used anymore!
 virtual bool read(int address, int source_address, int data,

 int dest_task) = 0;
 virtual bool write(const int source, int address, int data,

 int dest_task) = 0;
 virtual bool non_blk_write(const int dest_address, int source,

 int data, int dest_task)=0;
}; // end class
#endif

FIGURE 12.40 ‘‘interface_type.h.’’

12-46 Computer Aided Design and Design Automation

classes that inherit from this class must either provide, or inherit, an implementation for the read,
write, and non_blk_write methods. This common interface is also what allows the type compati-
bility for pointer assignment used in the generic.h file. This is described in more detail in Section 12.5.4.

12.5.3 Processor Model

The processor model has a fairly simple structure. There are three methods in this model, the con-
structor, and two member functions. The first member function describes the performance only behavior
of the processor, the second describes the mixed-level behavior. The mixed-level functionality will be
described in detail in Section 12.5.9.
In addition to those methods, the processor model has a number of objects that are members of the

class. It has three integer variables for passing command arguments to the interface methods, a pointer
for a command_in object that opens the command file and parses the model execution commands for
the processor model, a command_type object that is used to return the commands from the com-
mand_in object, a signal of enumerated type action_type to display the current action, an unsigned
signal to display the current task number, and a pointer for a refined computation model. Figure 12.41
graphically shows the objects in the processor model. On the far right is the IO port. It is mapped to the
interconnect interface. Next on the right are the three integer variables used to pass information to
the interconnect calls. Below the variables are boxes representing the two signals that allow the state of
the processor to be viewed in the ModelSim waveform window. Then to the left there are the perform-
ance and mixed-level descriptions. One of these member functions will be turned into an SC_THREAD
and will control the model’s behavior during simulation. On the top labeled as refined model, is an
outlined box representing the pointer to a refined model object. Below is a storage location (labeled
command) that the command_in object will return values in. In the bottom left is a dashed box
representing a pointer to a command_in object. In the top left is a box representing the constructor. The
IO port and constructor are both on the edge of the processor model because they are the only ones that
interact with other objects in the simulation.
The constructor receives a processor number, and creates a command_in object with the appropriate

processor number for the processor the current instance represents. The command_in object creates a
string with the proper processor number in the middle, and uses it to open the processor’s command file.
It is called by the active behavior to read in the next command once the previous one has executed. Its
primary function is to remove command parsing from the processor model. Having it as a separate object
makes changing how the commands for the processor are read in or generated a simple matter of
including a different implementation of the object. Once the command_in object is created and
initialized, the processor model constructor then instantiates either the performance only or mixed-
level implementation, and opens its log file. It does this by registering the proper member function with

int
cmd_in

Refined model

IO port

Performance

Mixed level

Command

Constructor

Signals

FIGURE 12.41 Graphical representation of processor model.

Performance Modeling and Analysis Using VHDL and SystemC 12-47

the simulation kernel as an SC_THREAD. During simulation the processor model essentially reads in a
command from a file, then uses a case statement to perform whatever command was read in and repeats
until it reaches a done command, an end of file, or some command it does not recognize. Figure 12.42
shows the framework of the main processor loop.
Notice in the source code that the processor has a port of the same type as the base type for the

interconnect channels my_basic_rw_ port. This port is bound to the interface of the channel object.
If the command read in from the command file is a send or receive command, then the processor uses the
port as a pointer to the interface to the channel object and accesses the appropriate interface method to
perform the send or receive operation. In the models here the thread in the processor model actually
executes all the code in the blocking send and receive methods, so the processor model is incapable of
doing anything else until the blocking io function returns.

12.5.4 Channels

The channels used in these models are considered hierarchical channels. They are not any of the
predefined SystemC primitive channel types, they are composed of multiple objects, and they contain
a number of threads. To allow for a variable number of processors to connect via the channels they have
only an interface and no ports. In SystemC, all ports must be bound to something, be it another port, an
interface, or a signal. Interfaces however may exist even if nothing is bound to them. So for maximum

void tlm_behav()
{

int temp2;
double temp_time;
while(1)
{

cmd_input->get_command(&this_command);
switch (this_command.command)
{
case 1://ie send

{...
break;}

case 2: //ie receive
{...

break;};
case 0: //ie compute

{...
break;};

case 3: //non_blocking_send
{...

break;};
case 4: //io done

{...
break;};

case 5: //loop/branch
{...

break;};
default: //idle the processor

{...
break;};

};//end of switch
wait(SC_ZERO_TIME); //to break things up in the text output...
};//end of infinite while loop

};

FIGURE 12.42 Main processor loop.

12-48 Computer Aided Design and Design Automation

flexibility, channels should provide an interface, and any connected modules should have a port of the
type of the interface and have that port bound to the interface on the channel.
Since multiple ports can be bound to a single interface, the channel object can have any number of

processors bound to it. However, the crossbar and fully connected channels’ behavior is determined in
part by the number of processors present, so all channels are passed a constructor argument that tells
them how many processors are present in the simulation. The channel models are the most extensive
models since their behavior is an abstract representation of all of the characteristics of an interconnect
topology. They model the arbitration, data transfer, and blocking=nonblocking characteristics of the
interconnect without restricting the designer to a particular implementation. Since nonblocking sends are
allowed they also implicitly model a sending queue.
All the channel models are based on the comm_medium class. The comm_medium class provides a

logical connection between processors, with signals for the source processor number, the destination
processor number, and transaction type, as well as blocking and nonblocking read and write methods,
and an arbitration thread. In addition, the comm_medium class provides two threads to allow for
nonblocking reads and writes. Figure 12.43 shows the members of the comm_medium class. The four
signals shown in the top left are signals to show the current state of the logical connection in the
waveform window. To the right are the two wait queues, one for write request, and one for read request.
New transaction requests received via the interface methods are placed into these queues. The Boolean
no_match variable maintains whether there is currently a match between read operations and received
data, the integers below it are used to store the values of the current processor for the sender and receiver,
and to store the location in the queue of the current send request being executed, and the current receive
request being executed. Below the integers is a dummy variable whose sole purpose is to fix an existing
bug in the implementation of the SystemC simulator. In the bottom left of the figure are the member
functions of the object. The functions all the way to the left are the functions intended to be accessed by
other objects, the remaining four are intended for internal use only, though they are declared as public
and thus visible to other objects. The functions with a star after them are registered with the simulation
scheduler as SC_THREADs. The top two events in the bottom right of the figure are used by the read and
write methods to notify the arbitrator process that there may be new pairs of requests that could be
activated to communicate. The event in the very bottom is used to coordinate the execution of two
threads when they communicate. In the top right of the figure are two transaction pointers. These

Signals Wait queues

Writers

Readers

Dummy variable

Events

Event pointers

Transaction pointers

Write_side

Read_side

Integers

Boolean no_match

read
write
 arbitrator*
 check_for_read_write_pairs
non_blocking_read
non_blocking_write
 write_thread*
 read_thread*
SC_CTOR

New reader

New writer

Start threads

Connection

Shared medium

FIGURE 12.43 Graphical representation of ‘‘comm_medium’’ class.

Performance Modeling and Analysis Using VHDL and SystemC 12-49

pointers are used by the arbitrator to keep track of which two transactions it is dealing with. The event
pointers in the bottom center of the figure are also used by the arbitrator. When the arbitrator has
selected two transaction requests to communicate it does not actually handle the communication. There
is a write thread, and read thread that execute the transact() code in each of the two transaction
objects. For any blocking transaction objects the calling processor’s thread is suspended in the interface
call waiting on the transaction to notify it that the transaction is complete. Any nonblocking transaction
objects have already had their calling thread return to the processor model code. The arbitrator has no
need to check for any potential request pairs until after the two threads have completed their transaction.
These two pointers are set to allow the arbitrator to suspend until both threads have completed, rather
than wasting simulation resources polling to see if they are done.
While support exists in the comm_medium object for nonblocking reads, the channels do not have

methods to give access to that functionality to the processor models. This was done on purpose to
avoid having to check data dependencies before beginning a computation. This also keeps the
simulation simple, and more efficient in terms of simulation time. The functionality was built into the
comm_medium object because it was easy to do and makes adding nonblocking reads at some future
point much easier. The arbitration scheme provided is a longest waiting first scheme. As soon as at least
one transaction pair, a matching send and receive, is present the pair with the largest sum of positions in
the wait queues is selected to transact next. The crossbar channel uses a variant of the comm_medium
class. In the crossbar variant there are pointers to the transaction wait queues which allow a single set of
queues to be used by all of the logical channels.
The comm_medium class also makes use of the class transaction_wait_queue, which is a

specialized linked list to allow for a large number of waiting transactions without allocating a fixed large
amount of memory. The elements of the linked list are of the class transaction_element, which contains
all the essential information about a transaction request. The only item of importance from the linked list
is the class that actually holds the transaction information. This transaction_element class
contains all of the information about the transaction request. Figure 12.44 graphically depicts the key
elements of the transaction_element class.

The integers in the bottom center contain the source processor number, the destination processor
number, the destination task’s id number, and the size, in nanoseconds, associated with the transaction.
The Boolean variables in the top right tell whether the transaction element is a write or read,
and whether it is blocking or not. The handshakes object in the upper middle is a set of four events
that are used by the transact method to logically ‘‘perform’’ the transaction. The complement pointer
below the handshakes is a pointer to a transaction_element object. To communicate two
transaction_element objects must be paired up the channel’s arbitrator process. It does this
pairing by setting a read and a write’s compliment pointer to each other. The activate_me event in
the top left is used by the arbitrator to activate the thread executing the element’s side of a transaction.

activate_me

im_done

Handshakes write_n_r
Blocking

Integers

sc_events Bool

Complement

Source
Destination
dest_task
Size

transact()
set_compliment(*)
blocking_write()
blocking_read()
non_blocking_write()
non_blocking_read()

Constructor
(three parameter

versions)

FIGURE 12.44 Graphical representation of ‘‘transaction_element’’ class.

12-50 Computer Aided Design and Design Automation

While the im_done event is used to notify the arbitrator, and in the case of a blocking transaction
the requesting processor’s thread, that the transaction is complete. The constructor for this object
depicted in the bottom left has three different implementations with different parameter lists, the
first constructor implementation that sets all of the transaction values is the one used in the current
version of the models. The others were left to maintain backward compatibility with previous versions,
and may be useful for future versions. The purpose of the methods displayed in the bottom left of the
figure are self-explanatory. The transact method is what controls the actual behavior of a transac-
tion pair once it has been scheduled. The nondebugging parts are repeated below in Figure 12.45. The
blocking and nonblocking versions of the read and write routines are the same in this version of
the models.
The nondebugging versions of the blocking read and write methods are shown in Figure 12.46. These

methods show how the four-way handshaking is implemented. The use of a full four-way handshaking in
the channel model is somewhat arbitrary, but it makes incremental refinement of the channel easier.

void transact() //method for creating thread to call (blocking read
or write)

{
wait(activate_me); //wait for arbitration process to activate me
if (blocking)
{

if (write_n_r) //then it's a blocking write
blocking_write(); //call the blocking write routine

else //it's a blocking read
blocking_read(); //call the blocking read routine

}
else
{

if (write_n_r) //then it's a non-blocking write
non_blocking_write(); //call the non-blocking write routine

else //it's a non-blocking read
non_blocking_read(); //call the non-blocking read routine

};
im_done.notify(SC_ZERO_TIME);
return;

};

FIGURE 12.45 Transaction_element transact() method.

void blocking_write()
{

compliment->handshakes.start_write.notify(SC_ZERO_TIME);
wait(handshakes.start_ack);
compliment->handshakes.write_done.notify(SC_ZERO_TIME);
wait(handshakes.done_ack);

};

void blocking_read()
{

wait(handshakes.start_write);

compliment->handshakes.start_ack.notify(size,SC_NS);//SC_ZERO_TIME);
wait(handshakes.write_done);
compliment->handshakes.done_ack.notify(SC_ZERO_TIME);

};

FIGURE 12.46 Transaction_element write and read methods.

Performance Modeling and Analysis Using VHDL and SystemC 12-51

However, with the abstract behavior described here a single line for the write method and two for the
read method would be sufficient. Figure 12.47 shows how the methods could be implemented in this way.
All of the channel models also read in parameter information from the channel_param.txt file located

in the directory that the simulation is running in. This file contains two lines. The first line is the bus
speed in megabytes per second. The second line is the fixed communication overhead per communica-
tion transaction. In the top-level channel models the data size parameter passed to read interface method
is run through a data_to_delay function that return the delay in nanoseconds that the communi-
cation should take based on the specified bandwidth and communication overhead.

12.5.5 Shared Bus Model

The shared bus architecture consists of a single logical communication medium, which is an object of
class comm_medium. The behavior is encapsulated in the shared_bus_io class. This class
inherits the virtual interface functions from the my_basic_rw_port class, and must provide an
implementation for them. The implementation for these functions is shown in Figure 12.48. The

void blocking_write()
{

wait(handshakes.start_ack);
};

void blocking_read()
{

compliment->handshakes.start_ack.notify(size,SC_NS);//SC_ZERO_TIME);
wait (size,SC_NS)

};

FIGURE 12.47 Alternative write and read methods.

inline bool read(int dest_address, int source_address, int data_size, int
dest_task)

//blocking read function with writer's address
//read function takes data to be size of data transmission

{
int temp_size;
temp_size = data_to_delay(data_size);
shared_bus.read(dest_address, source_address, temp_size, dest_task);
return 1;

};
inline bool write(const int dest_address, int source, int data,

 int dest_task)
//blocking write function here

{
shared_bus.write(dest_address, source, data, dest_task);
return 1;

};
inline bool non_blk_write(const int dest_address, int source, int data,

 int dest_task)
//non-blocking write function here
{

shared_bus.non_blocking_write(dest_address,source,data,dest_task);
return 1;

};

FIGURE 12.48 Implementation of inherited virtual interface functions.

12-52 Computer Aided Design and Design Automation

functions essentially map the interface functions to the methods of the comm_medium object.
The data_to_delay function takes the data_size passed to the read method, and calculates the
required transaction time in nanoseconds based on the bandwidth, and then adds the fixed communi-
cation overhead that the channel’s constructor reads in from the channel parameter file.

12.5.6 Fully Connected Model

The fully connected architecture is built around the same comm_medium object as the Shared Bus
model. The fully connected architecture creates a comm_array object which contains all the logical
connections, and copies the addresses of the comm_medium objects into a two-dimensional array that it
uses to map a processor’s request to the overall communication architecture to the appropriate logical
connection. The fully connected architecture passes the number of processors to the comm_array
object which then instantiates the number of comm_medium objects needed to provide a dedicated
shared bus between each pair of processors in the simulation.

12.5.7 Crossbar Model

The crossbar architecture is similar to the fully connected architecture except that it only requires four
cross_comm_medium objects since with nine processors only four concurrent connections are
allowed. As mentioned earlier, it uses its own version of the basic comm_medium object. This is
necessary because the logical connections in the crossbar are not associated with any particular processor,
and the communication requests are not associated with any of the logical connections. Just to clarify in
the fully connected architecture there is a logical connection between every processor modeled by a
comm_medium object. The fully connected architecture model simple directed the requests it received to
the correct logical connection. In the fully connected architecture there is only one connection that all
requests are intended for, but in the crossbar the number of logical connections is equal to the number of
processors divided by two, and every request could potentially communicate over any of them.

12.5.8 SystemC Performance Modeling Examples

This section contains a number of examples of performance models constructed using the SystemC
modeling modules described above. The examples are presented as a demonstration that the models
execute correctly and also that they demonstrate performance of the system they are intended to model.
The first example is a trivial example with a set of four tasks all executing on one processor. Since data
communication inside a processor is assumed to take no time, the description should take simulation
time equal to the sum of the computation time of all the tasks. The second example is the same four tasks
allocated to two processors such that each task must send the data over the communication channel to
the next task. This second example should take longer, with three 100 byte sends being sent over the
communication channel. The third example is the same task graph description with varying bus
parameters. The fourth and fifth examples have bus contention, to show that contention is handled
properly. Each example lists the simulated latency, and a timeline showing the simulation results.

12.5.8.1 Single Processor

Figure 12.49 shows the simple sequential task graph for the first example. Here all the tasks are allocated
to Processor 0. Each task has a compute value of 10 ms, and each edge has a data value of 100 bytes. Since
communication within a processor is assumed to take no time, the latency for this description should be
the sum of the compute times, which is 40 ms.

In addition to the processing timeline shown previously, the models generate a text output stream that
describes the actions each module is taking at a given simulation time. The text output for this simulation

Performance Modeling and Analysis Using VHDL and SystemC 12-53

is shown below. Note that the final task is completed at 40 ms of simulation time
which is exactly as expected.

shared bus architecture
0 s proc#0 Task number 1 Computing for 10000 ns
0 ms proc#0 Task number 2 Computing for 10000 ns
20 ms proc#0 Task number 3 Computing for 10000 ns
30 ms proc#0 Task number 4 Computing for 10000 ns
40 ms proc#0 done!
sim done!?

12.5.8.2 Dual Processor

The task graph for the second example is shown in Figure 12.50. The graph also
shows the allocation of the tasks to two processors. Notice that the sequential
tasks are on different processors so the data must be transferred across the
communication channels before the computations can begin. Here the commu-
nication channel’s bandwidth determines how long a communication transac-

tion should take to complete. The length of time is the data size in bytes divided by the bandwidth in
megabytes per second. The communication channel can also take into account communication overhead,
in nanoseconds, if it is specified. The channel bandwidth and communication overhead are read in from
a file. If this file is not present or an item is missing it will take on its default value. The value specified for
this example is 100 Mbyte=s for bandwidth and 5 ns for channel overhead.
Since all the communication is of the same size, the expected latency for this example can be

determined using the following equation:

Computation timeþ numtrans *
Data size (byte)

Bandwidth (Mbyte=s)
þ Communication overhead (ns)

� �

which, for this example, evaluates as follows:

40 msþ 3 *
100 byte

10 Mbyte=s
þ 5 ns

� �
¼ 40 msþ 300

100 * 106
sþ 15 ns ¼ 40 msþ 300

100
msþ 15 ns

Thus the expected latency is 40 ms for computation plus 3 ms for the
actual data transmission, plus 15 ns for communication overhead. That
gives a total latency of 43,015 ns. The timeline output for this simulation
is shown in Figure 12.51. Note that the final task, Task 4, completes at
43 ms on the graph.

12.5.8.3 Parallel Communications Example

The next example shows the effect of various communications topologies
on an application with requirements for simultaneous communications.
The task graph for this example is shown in Figure 12.52. Each task
(called nodes in this graph) computes for a fixed period of time and then
sends data to a second task causing it to begin execution. The tasks are
allocated to processors such that after completion of the first set of tasks,
all processors attempt to send data to another processor. Because the first
tasks all have the same execution time, all the communications become
ready to begin at the same time. Thus, if an architecture has parallel

Task 1

Task 2

Task 3

Task 4

FIGURE 12.49 Single
processor example task
graph.

Task 1 PE0

Task 2 PE1

Task 3 PE0

Task 4 PE1

FIGURE 12.50 Dual proces-
sor example task graph.

12-54 Computer Aided Design and Design Automation

communication paths, this will result in a decrease in the total application run time. The four start tasks
(nodes) in this example all compute for 10 ms, then attempt to do a nonblocking send of size 100 byte to a
task allocated to another processor. They then move on to start the read required to begin their next task.
For all of the results discussed below, the channel parameters are set to a bus bandwidth of 1 Mbyte=s

and a communication overhead of 0 ns.

12.5.8.3.1 Shared Bus Simulation Results

The first set of results is for a system with a single shared bus. On this system Tasks 0–3 all execute
in parallel on the four processors. At this point there will be four-way contention for the single system bus.
The communications operations will be assigned priority on a first-come-first-serve basis. In the current
implementation of SystemC, the task that will get first priority to communicate its data cannot be
determined ahead of time, however the tasks will all run in the same order every time the simulation is run.
With a shared bus architecture, the latency is 100 ms for all processors to compute in parallel plus

4*(data size=bandwidth)*1000 (ns), or 400 ms, for each of the four sends to occur in series, plus 100 ms for
the last receiver to compute after completing their receive. Thus the overall latency should be 600 ms.

0 10 20 30 40 50
Time (μs)

P0

P1

T1

T2

T3

T4

Re
so

ur
ce

s

FIGURE 12.51 Dual processor example timeline.

PE0 PE1 PE2 PE3

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

FIGURE 12.52 Bus contention example task graph.

Performance Modeling and Analysis Using VHDL and SystemC 12-55

The timeline for this example is shown in Figure 12.53. The timeline shows all the tasks beginning
their blocking read then having to wait for the arbitrator to select them to communicate across the bus.
Once the individual communications have taken place, the destination task, Tasks 4–7, execute. The
timeline correctly shows the last task completing execution at 600 ms.

12.5.8.3.2 Fully Connected Simulation Results

In the fully connected architecture there is a dedicated communications channel between each pair of
processors. However, in this architecture, it was decided to model a system where a processor cannot
both send and receive a message from the same processor at the same time. Because of the connectivity of
the task graph for this application, after the first set of tasks execute in parallel, each processor needs to
send and receive a message before it can execute the next task. For example, Processor 0 cannot send to
Processor 3 and receive from Processor 3 at the same time. Rather it must do one, then the other. Thus,
for this example, each channel in the fully connected architecture is effectively a half duplex connection.
During execution the run time is 100 ms for all processors to compute the first four tasks in parallel

plus 100 ms for the first set of sends, plus 100 ms for the second set of sends—during which the tasks
started by the first set of sends also execute, then finally 100 ms for the last two tasks to compute in
parallel. Thus the overall latency for the fully connected architecture should be 400 ms. The timeline for
this example is shown in Figure 12.54.

12.5.8.3.3 Crossbar Simulation Results

As mentioned above, the crossbar architecture behaves like a fully connected architecture where the
maximum number of connections is limited to the number of processors divided by two. Thus for this
four processor example, the crossbar architecture will only allow two communications at a time. This
characteristic means that for this example, the crossbar architecture will have the same latency as the fully
connected architecture for this example. This result is shown in Figure 12.55.

12.5.8.4 Second Contention Example

This second example expands on the previous example by showing a slightly different set of contention
conditions. In the first example, the communication requirements specified by the task graph required

0 50 100 150 200 250 300
Time (μs)

350 400 450 500 550 600

P0 T0

T1

T2

T3

T4

T5

 T6

T7

P1

P2

P3

Re
so

ur
ce

s

FIGURE 12.53 Shared bus contention example timeline.

12-56 Computer Aided Design and Design Automation

the processors to send and receive data from the same processor. This effectively allowed for only
two active communication transactions on the fully connected architecture. In this example, as
shown in Figure 12.56, the processors will be sending and receiving data from different processors
during the communications portion of the application. This set of communication requirements will
allow all of the available communication channels to be used concurrently with the fully connected
architecture.
Figure 12.57 shows the results for this example for the shared bus, fully connected, and crossbar

architectures. Note that in this example, in the fully connected architecture, all of the communication
operations occur in parallel which allows the entire application to execute in 300 ms.

0 50 100 150 200 250 300 350 400
Time (μs)

P0 T0 T4

T5

T6

T7P3 T3

P2 T2

Re
so

ur
ce

s P1 T1

FIGURE 12.54 Fully connected contention example timeline.

0 50 100 150 200 250 300 350 400
Time (μs)

P0 T0 T4

T5

T6

T7P3 T3

P2 T2

Re
so

ur
ce

s P1 T1

FIGURE 12.55 Crossbar contention example timeline.

Performance Modeling and Analysis Using VHDL and SystemC 12-57

12.5.9 Mixed-Level Processor Model

Although simplistic in nature, the above examples show that the SystemC-based performance modeling
methodology can be used to model the execution of different applications on various system architec-
tures. In addition to this capability, as mentioned earlier, the SystemC module for the processor has the

PE0 PE1 PE2 PE3

Node 0 Node 1 Node 2 Node 3

Node 4 Node 5 Node 6 Node 7

FIGURE 12.56 Second contention example task graph.

(a)

Re
so

ur
ce

s

0 50 100 150 200 250 300
Time (μs)

P0 T0 T4

T5

T6

T7T3P3

T2P2

P1 T1

Re
so

ur
ce

s

(b)

0 50 100 150 200 250 300 350 400 450 500
Time (μs)

P0 T0 T4

T5P1 T1

P2 T2 T6

P3 T3 T7

(c)

0 50 100 150 200 250 300 350 400 450 500 550 600
Time (μs)

P0 T0 T4

T5

T6

T1P1

P2 T2

T7T3P3

Re
so

ur
ce

s

FIGURE 12.57 Second contention example timelines: (a) shared bus, (b) fully connected, and (c) crossbar.

12-58 Computer Aided Design and Design Automation

ability to replace the performance only computation delay with a refined computation model that is
described in VHDL or Verilog. This mixed-level modeling capability allows the model to be refined to a
lower level in a step-wise fashion.
The replacement of an abstract processor model with a refined (RTL or gate-level model) is accomplished

by using theModelSim SC_FORIEGN_MODULE syntax. The SC_FORIEGN_MODULE provided byModel-
Sim allows a non-SystemC model that has been compiled for ModelSim to be instantiated by a SystemC
model. Incidentally, it also allows an already compiled SystemC module to be loaded in the same manner.
The processor model opens its processor command file and looks at the first line during the execution

of its constructor. If the first line is ‘‘mixed’’ then the processor model knows that it should run as a
mixed-level model with a refined computation model. If the model is to be a mixed-level one, the
constructor of the processor model will then look for a mixed_processor.txt text file that specifies
the ModelSim path for the refined computation model to use. The relevant part of the constructor that
instantiates the refined model is shown in Figure 12.58.
The refined_computation object is the one that opens the mixed_processorX.txt file, where X is

the processor number. Once this file is opened, the constructor uses the path contained within it to open
the refined model object. In this example, it instantiates an object of class rng_comp_tb that is shown
in Figure 12.59.
This class is essentially a wrapper for the actual precompiled model VHDL or Verilog model. This

class=module definition would map to a VHDL entity definition like the one shown in Figure 12.60. Note
that this entity corresponds to what is effectively a test bench for the refined model.

cmd_input = new command_in(proc_num);
string_temp.assign(cmd_input->get_proc_type());
if(/*1st_line*/string_temp=="mixed")
{

SC_THREAD(mixed_behav);
//only make the relevant behavior a thread!
hardware_compute=new

refined_computation("name",proc_num);
//may need to add an argument this class...

}

FIGURE 12.58 Refined computation part of processor model constructor.

class rng_comp_tb : public sc_foreign_module
{
public:
 sc_in<sc_logic> start;
 sc_out<sc_logic> done;

 rng_comp_tb(sc_module_name nm, const char* hdl_name)
 : sc_foreign_module(nm, hdl_name),
 start("start"),
 done("done")

{
 //cout<<"Building hardware model\n";
};

 ~rng_comp_tb()
 {}

};

FIGURE 12.59 Code for ‘‘rng_comp_tb’’ class.

Performance Modeling and Analysis Using VHDL and SystemC 12-59

The intent for this interface is for it to be easy to integrate into
an existing test bench for the refined model of computation. The
start and done signals are active high. So when the start goes high
to a logical ‘‘1,’’ the refined model should start a ‘‘computation.’’
This computation is effectively the test bench applying a set of
predefined stimulus waveforms to the refined model. As
described below, these stimulus waveforms can be derived for
the specific refined model in a number of different ways depend-
ing on the objectives for the mixed-level model.

When the refined model has finished its ‘‘computation’’ it should raise the done signal. Both signals
should be low at the start of the simulation. When the processor model puts the start signal high, the
refined model begins its computation. The presumption is that the refined model is something like a test
bench, with a model of the actual hardware, or some other more detailed model, instantiated inside of it.
The refined model presents any required data to the detailed model, and watches for whatever condition
indicates that it has completed the computation. Once the computation is completed, it raises the done
signal telling the abstract processor model it is done. The processor model will then lower the start signal,
and the refined model will respond by lowering the done signal. Figure 12.61 shows the basic timing
diagram for the interface.
Figure 12.62 shows the portion of the processor model that raises and lowers the start signal and waits

for the done signal. This code is located in the refined_computation object. The refined_
computation object is instantiated by the processor model’s constructor when it reads in from the
command file and determines that it should be a mixed-level model.

ENTITY rng_comp_tb IS
port(
 start : in std_logic;
 done : out std_logic
);

END rng_comp_tb;

FIGURE 12.60 Sample VHDL refined
computation entity declaration.

Start

Done

1

2

3

4

1 at least 1 delta cycle, preferably not more
2, 3, 4 not specified, preferably 1 delta cycle

FIGURE 12.61 Refined computation model interface-timing diagram.

bool start_compute()
{/* basic algorithm is:

send start signal
wait for done signal
return
*/

#ifdef MTI_SYSTEMC
temp= true; //'1';
start = temp;
while (done != temp) //ie while done != 1

wait(done.value_changed_event());//wait until event and
loop..

temp = false;
start = temp;

#endif
return 0;

};

FIGURE 12.62 SystemC start=done interface code.

12-60 Computer Aided Design and Design Automation

Figure 12.63 shows a portion of sample VHDL test bench that implements the refined computation
model’s side of the start=done interface. The start signal from the start=done interface activates the
process. The process uses the go signal to cause the test bench to perform a computation, and the test
bench raises the tb_done signal when it is finished with a single computation.

12.5.10 Mixed-Level Examples

The following examples are mixed-level examples where the computation part of the processor is
modeled in more detail. Since the rest of the simulation is at a more abstract level and does not have
all of the stimuli needed for the refined model, the stimuli need to be created in some way. The following
examples focus mainly on different ways of generating the data that the various refined models need to
function.

12.5.10.1 Fixed Cycle Length

The first example is one where an abstract processor is replaced with a random number generator. The
model for the random number generator is an RTL discrete digital model of a random number generator
described in Ref. [51]. The model attempts to describe a number of elements that are extremely sensitive
to initial conditions, and thus in reality exhibit more random behavior than can be modeled with a solely
digital model. As it is, the model always generates the same nonrepeating sequence of values. For this
example, the existing test bench was modified to put the generator through its reset cycle, then through a
single random number generation. The only inputs to the refined model are a set of control signals and a
clock. When the processor, that it is the refined computation model for, gets a compute command; it will
send the start signal to the test bench, which will then go through the reset and generate phases, and
signal back with the done signal once a number has been generated. In this particular example the
internal signals continue to oscillate between compute commands. Since this model takes a fixed number
of cycles using the refined model, and the values generated are not passed elsewhere, this example is less
efficient and no more accurate than putting in the actual compute time for the abstract compute
command.

12.5.10.2 Variable Cycle Length

The rest of the mixed-level examples presented use an RTL booth multiplier model. The booth multiplier
takes a variable number of cycles to complete the binary multiplication. The number of cycles required
depends on the numbers being multiplied. The inputs to the model are the two numbers to be multiplied,
and a clock, the outputs are the result and a control signal indicating that the multiplication is complete.

-- Process to respond to start and create go and done. JA

CompBench: PROCESS (start, tb_done)
Begin

if (start='1') then
if ((tb_done'event) AND (tb_done='1')) then

go <= '0';
done <= '1';

ELSE
go <= '1';
done <= '0';

end if;
end if;

End process CompBench;

FIGURE 12.63 Sample VHDL start=done interface code.

Performance Modeling and Analysis Using VHDL and SystemC 12-61

There is a slight propagation delay for the result to appear on the output after the done signal appears. If
the input clock continues to cycle after the multiplication is complete, then the result will become invalid
after a clock cycle. Thus the test bench allows a half cycle to elapse before considering the computation
done. Note that the effect of this refined model is that the computational delay is dependent on the data
being applied to it for the computation. This delay mechanism is a more accurate representation of how a
refined model would be used in, and add additional accuracy to, a system-level performance model.
However, as discussed in the section above on VHDL-based mixed-level modeling, the important
question is how to generate the data that is input to the refined model in such a way as to accurately
represent the performance of the refined component in the real system. Typically, this can be done by
either presenting the refined model with random data to develop a statistical representation of average
system performance, or presenting the refined model with predefined data. This data can be generated by
the designer to represent typical system performance, or to exercise the best-, or worst-case delay
scenarios.

12.5.11 Random Data Generation

In this example, the booth multiplier is presented with two random numbers generated by two other
entities instantiated in the test bench. Since random number generation is not present in standard VHDL
library, ModelSim’s mixed language ability is utilized to allow a SystemC random number generator
module to be used. The SystemC module uses the Cþþ rand() function to generate a pseudo random
number, which is passed back to the VHDL test bench. Since the VHDL test bench is instantiated by the
SystemC performance simulation, this is in fact a SystemC–VHDL–SystemC hierarchy. ModelSim’s
mixed language interface allows the designer to use whatever language is best suited for the task at hand.
Here the random number must be passed back to the VHDL test bench as an sc_logic vector, which is
automatically translated into a VHDL std_logic_vector by the simulator. Since both numbers are
pseudorandom, the computer will take a variable amount of time to complete. Although it is possible that
the use of the rand() function will result in repeating sequence of numbers, most simulations will not
run long enough for this to be noticeable. If a more random distribution, or a particular type of
distribution is desired, a specialized random number generator package can be used in the model.
Since most of the computations at the system level, will consist of multiple operations, to make this
example more typical, a means of generating a set multiple numbers to be multiplied was needed. While
it is possible to generate a fixed size data set this example goes just a little farther and generates a
pseudorandom size data set of pseudorandom numbers. The generation of the random size of the data set
is done using the same SystemC module that generates the random data itself. A few changes to the test
bench needed to be made so that it did not send the done signal back until all of the multiplications were
completed. Figure 12.64 shows two waveforms from two different mixed-level simulations, each with two
different size sets of random numbers multiplied together.

12.5.11.1 Data Set from File

As described above, when a sample set of data that exercises a specific scenario for the refined model is
available, it can be advantageous to use it rather than generating a new set that may or may not be close to
the actual data. Using this predefined sample data set ensures accurate performance for that data set, and
removes any guesswork as to what a realistic data set might be. Since VHDL has standard file access
capabilities that are easy to use, the test bench for this example reads the values directly from the input
file, and does not send the done signal until it reaches the end of file. Unfortunately, the current
implementation ModelSim used for this example did not allow passing generic information across the
language boundary, thus specification of the file to use had to be done in the VHDL code. An extension
to this approach would be to read the filename to use from a configuration file similar to what is done to
specify the refined model to use in the SystemC performance code. Figure 12.65 shows the waveform of
the mixed-level model simulation where the data for the refined component were read in from a file.

12-62 Computer Aided Design and Design Automation

12.5.12 Mixed-Level Example Summary

Mixed-level modeling techniques in SystemC-based performance models have been demonstrated. These
examples utilized simple pseudorandom data generation, variable size pseudorandom data set generation,
reading a data set from single file, and reading multiple data sets from multiple files. Multiple variations
and combinations of the above approaches can be used to generate stimuli for a wide variety of refined
computation models. Anything from randomly selecting a file from which to read a data set, to using
a file to parameterize random data generation is possible depending on whether realistic data are
available and on the simulation objective. It is clear to see, in any case, that including refined behavioral

FIGURE 12.64 First- and second-random data set waveforms.

FIGURE 12.65 Data from file example waveform.

Performance Modeling and Analysis Using VHDL and SystemC 12-63

RTL or gate-level components in a performance model in SystemC is fairly easily done and can
increase the overall accuracy of the performance model, just as was possible in the VHDL-based
performance model.

12.6 Conclusions

Integration of performance modeling into the design process such that it can actually drive the
refinement of the design into an implementation has clear advantages in terms of design time and
quality. The capability to cosimulate detailed behavioral models and abstract system-level models is vital
to the development of a design environment that fully integrates performance modeling into the design
process. One methodology and implementation for cosimulating behavioral models of individual com-
ponents with an abstract performance model of the entire system was presented. This environment
results in models that can provide estimates of the performance bounds of a system that converge as the
refinement of the overall model increases.
This chapter has only scratched the surface on the possible improvements that performance- or

system-level modeling can have on the rapid design of complex VLSI systems. As more and more
functionality can be incorporated into the embedded VLSI systems and these systems find their way into
safety-critical applications, measures of dependability such as reliability and safety at the system-level are
becoming of great interest. Tools and techniques are being developed that can use the performance model
from which to derive the desired dependability measures. In addition, behavioral fault simulation and
testability analysis are finding their way into the early phases of the design process. In summary, the more
attributes of the final implementation that can be determined from the early and often incomplete model,
the better the resulting design and shorter the design cycle.

References

1. ASIC and EDA Magazine, January 1993, Reed Business Information, a division of Reed Elsevier Inc.,
New York, 1993.

2. D. Hill and W. vanCleemput, SABLE: A tool for generating structured, multi-level simulations,
Proceedings of the 16th ACM=IEEE Design Automation Conference, San Diego, CA, June 25–27, 1979,
pp. 272–279.

3. D.W. Franke and M.K. Purvis, Hardware=software codesign: A perspective, Proceedings of the
13th International Conference on Software Engineering, Austin, TX, May 13–17, 1991, pp. 344–352.

4. D.W. Franke and M.K. Purvis, Design automation technology for codesign: Status and directions,
International Symposium on Circuits and Systems, San Diego, CA, 1992, pp. 2669–2671.

5. G.A. Frank, D.L. Franke, and W.F. Ingogly, An architecture design and assessment system,
VLSI Design, 6(8): 30–50, August 1985.

6. C. Terry, Concurrent hardware and software design benefits embedded systems, EDN, 148–154,
July 1990.

7. S. Napper, Embedded-system design plays catch-up, IEEE Computer, 31(8): 118–120, August 1998.
8. F.W. Zurcher and B. Randell, Iterative multi-level modeling—A methodology for computer system

design, Proceedings of IFIP Congress ’68, Edinburgh, UK, August 5–10, 1968, pp. 867–871.
9. Martin Marietta Laboratories, RASSP First Annual Interim Technical Report (CDRL A002),

Moorestown, NJ, October 31, 1994.
10. Open SystemC Initiative Website, www.systemC.org.
11. P.A. Wilsey and S. Dasgupta, A formal model of computer architectures for digital system design

environments, IEEE Transaction on Computer-Aided Design, 9(5): 473–486, May 1990.
12. C.A. Giumale and H.J. Kahn, Information models of VHDL, Proceedings of the 32nd Design

Automation Conference, San Francisco, CA, 1995, pp. 678–683.

12-64 Computer Aided Design and Design Automation

13. P. Kollaritsch, S. Lusky, D. Matzke, D. Smith, and P. Stanford, A unified design representation can
work, Proceedings of the 26th Design Automation Conference, ACM Press, Las Vegas, NV, June 25–
29, 1989, pp. 811–813.

14. J. Peterson, Petri nets, Computing Surveys, 9(3): 223–252, September 1997.
15. M.K. Molloy, Performance analysis using stochastic petri nets, IEEE Transactions on Computers,

C-31(9): 913–917, September 1982.
16. M.A. Holliday and M.K. Vernon, A generalized timed petri net for performance analysis,

IEEE Transactions on Software Engineering, SE-13(12): 1297–1310, December 1987.
17. L. Kleinrock, Queuing Systems, Vol. 1: Theory, Wiley, New York, 1975.
18. G.S. Graham, Queuing network models of computer system performance, Computing Surveys, 10(3):

219–224, September 1978.
19. G. Balbo, S.C. Bruell, and S. Ghanta, Combining queuing networks and generalized stochastic petri

nets for solutions of complex models of system behavior, IEEE Transactions on Computers, 37(10):
1251–1268, October 1988.

20. G. Frank, Software=hardware codesign of real-time systems with ADAS, Electronic Engineering,
95–102, March 1990.

21. SES=Workbench User’s Manual, Release 2.0, Scientific and Engineering Software Inc., Austin, TX,
January 1991.

22. L. Maliniak, ESDA boosts productivity for high-level design, Electronic Design, 41: 125–128, May 27,
1993.

23. Integrated Design Automation System (IDAS), JRS Research Laboratories Inc., Orange, CA, 1988.
24. Application Note for TRANSCEND=VANTAGE Optium Cosimulation, TD Technologies,

pp. 1–33, 1993.
25. Application Note for TRANSCEND Structural Ethernet Simulation, TD Technologies, August 1993,

pp. 1–13.
26. R. Bargodia and C. Shen, MIDAS: Integrated design and simulation of distributed systems,

IEEE Transactions on Software Engineering, 17(10): 1042–1058, October 1991.
27. E. Lee et al., Mini Almagest, Department of Electrical Engineering and Computer Science, University

of California, Berkeley, CA, April 1994.
28. E.A. Lee and D.G. Messerschmitt, Synchronous data flow, Proceedings of the IEEE, 75(9): 1235–1245,

September 1987.
29. VHDL Hybrid Models Requirements, Honeywell Technology Center, Version 1.0, December

27, 1994.
30. Honeywell Technology Center, VHDL Performance Modeling Interoperability Guideline, Version

Draft, August 1994.
31. F. Rose, T. Steeves, and T. Carpenter, VHDL performance models, Proceedings of the 1st Annual

RASSP Conference, Arlington, VA, August 1994, pp. 60–70.
32. J.A. Rowsen and A. Sangiovanni-Vincentelli, Interface-based design, Proceedings of the 34th

ACM=IEEE Design Automation Conference (DAC-97), ACM Press, Anaheim Convention Center,
Anaheim, CA, June 9–13, 1997, pp. 178–183.

33. L. Cai and D. Gajski, Transaction level modeling: An overview, Proceedings of CODESþ ISSS’03,
2003, pp. 19–24.

34. IEEE, IEEE Standard VHDL Language Reference Manual, IEEE Std. 1076–1993, New York, NY,
June 6, 1994.

35. A.P. Voss, R.H. Klenke, and J.H. Aylor, The analysis of modeling styles for system level
VHDL simulations, Proceedings of the VHDL International Users Forum, IEEE Computer Society,
Washington, DC, Fall 1995, pp. 1.7–1.13.

36. J.H. Aylor, R. Waxman, B.W. Johnson, and R.D. Williams, The integration of performance and
functional modeling in VHDL, in Performance and Fault Modeling with VHDL, J.M. Schoen (Ed.),
Prentice-Hall, Englewood Cliffs, NJ, 1992, pp. 22–145.

Performance Modeling and Analysis Using VHDL and SystemC 12-65

37. K. Jensen, Colored petri nets: A high level language for system design and analysis, in High-Level
Petri Nets: Theory and Application, K. Jensen and G. Rozenberg (Eds.), Springer, Berlin, Germany,
1991, pp. 44–119.

38. F.T. Hady, A methodology for the uninterpreted modeling of digital systems in VHDL, MSc thesis,
Department of Electrical Engineering, University of Virginia, Charlottesville, VA, January 1989.

39. A.P. Voss, Analysis and enhancements of the ADEPT environment, MSc thesis, Department of
Electrical Engineering, University of Virginia, May 1996.

40. J.B. Dennis, Modular, asynchronous control structures for a high performance processor, Record of
the Project MAC Conference on Concurrent Systems and Parallel Computation, SECTION: Asyn-
chronous Modular Systems, Association for Computing Machinery, ACM Press, New York, 1970,
pp. 55–80.

41. G. Swaminathan, R. Rao, J. Aylor, and B. Johnson, Colored petri net descriptions for the
UVa primitive modules, CSIS Technical Report No. 920922.0, University of Virginia, Charlottes-
ville, VA, September 1992.

42. ADEPT Library Reference Manual, CSIS Technical Report No. 960625.0, University of Virginia,
Charlottesville, VA, June 6, 1996.

43. M. Meyassed, R. McGraw, J. Aylor, R. Klenke, R. Williams, F. Rose, and J. Shackleton, A framework
for the development of hybrid models, Proceedings of the 2nd Annual RASSP Conference, Arlington,
VA, July 1995, pp. 147–154.

44. R.A. MacDonald, R. Williams, and J. Aylor, An approach to unified performance and func-
tional modeling of complex systems, IASTED Conference on Modeling and Simulation, Pittsburg,
PA, April 1995.

45. D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: Introduction to Chip and System Design,
Kluwer Academic, Dordrecht, the Netherlands, 1992.

46. E.W. Dijkstra, A note on two problems in connection with graphs, Numerische Mathematik, 1:
269–271, 1959.

47. R. Floyd, Algorithm 97 (shortest path), Communications of the ACM, 5(6): 345, 1962.
48. S. Warshall, A theorem on Boolean matrices, Journal of the ACM, 9(1): 11–12, 1962.
49. M. Meyassed, System-level design: Hybrid modeling with sequential interpreted elements,

PhD dissertation, Department of Electrical Engineering, University of Virginia, Charlottesville,
VA, January 1997.

50. J.J. Hein, J.H. Aylor, and R.H. Klenke, A performance-based design tool for hardware=software
systems, Proceedings of the IEEE Workshop on Rapid System Prototyping, San Diego, CA, June 2003.

51. S.T. Mitchum and R.H. Klenke, Design and fabrication of a digitally synthesized, digitally controlled,
ring oscillator, Proceedings of the IASTED Circuits Signals and Systems Conference, Marina Del Rey,
CA, October 24–26, 2005.

12-66 Computer Aided Design and Design Automation

13
Embedded Computing
Systems andHardware=

Software Codesign

Wayne Wolf
Princeton University

13.1 Introduction .. 13-1
13.2 Uses of Microprocessors .. 13-1
13.3 Embedded System Architectures.. 13-3
13.4 Hardware=Software Codesign ... 13-6

Models . Cosimulation . Performance Analysis .

Hardware=Software Cosynthesis . Design Methodologies

13.1 Introduction

This chapter describes embedded computing systems that make use of microprocessors to implement
part of the system’s function. It also describes hardware=software codesign, which is the process of
designing embedded systems while simultaneously considering the design of its hardware and software
elements.

13.2 Uses of Microprocessors

An embedded computing system (or more simply an embedded system) is any system which uses a
programmable processor but itself is not a general-purpose computer. Thus, a personal computer is not
an embedded computing system (though PCs are often used as platforms for building embedded
systems), but a telephone or automobile which includes a CPU is an embedded system. Embedded
systems may offer some amount of user programmability—3Com’s PalmPilot, for example, allows users
to write and download programs even though it is not a general-purpose computer—but embedded
systems generally run limited sets of programs. The fact that we know the software that we will run on the
hardware allows us to optimize both the software and hardware in ways that are not possible in general-
purpose computing systems.
Microprocessors are generally categorized by their word size, since word size is associated both with

maximum program size and data resolution. Commercial microprocessors come in many sizes; the term
microcontroller is used to denote a microprocessor which comes with some basic on-chip peripheral
devices, such as serial input=output (I=O) ports. Four-bit microcontrollers are extremely simple but
capable of some basic functions. Eight-bit microcontrollers are workhorse low-end microprocessors.

13-1

Sixteen- and 32-bit microprocessors provide significantly more functionality. A 16=32-bit microprocessor
may be in the same architectural family as the CPUs used in computer workstations, but microprocessors
destined for embedded computing often do not provide memory management hardware. A digital signal
processor (DSP) is a microprocessor tuned for signal processing applications. DSPs are often Harvard
architectures, meaning that they provide separate data and program memories; Harvard architectures
provide higher performance for DSP applications. DSPs may provide integer or floating-point arithmetic.
Microprocessors are used in an incredible variety of products. Furthermore, many products contain

multiple microprocessors. Four- and eight-bit microprocessors are often used in appliances: for example,
a thermostat may use a microcontroller to provide timed control of room temperature. Automatic
cameras often use several eight-bit microprocessors, each responsible for a different aspect of the
camera’s functionality: exposure, shutter control, etc. High-end microprocessors are used in laser and
ink-jet printers to control the rendering of the page. Many printers use two or three microprocessors to
handle generation of pixels, control of the print engine, and so forth. Modern automobiles may use close
to 100 microprocessors, and even inexpensive automobiles generally contain several. High-end micro-
processors are used to control the engine’s ignition system—automobiles use sophisticated control
algorithms to simultaneously achieve low emissions, high fuel economy, and good performance. Low-
end microcontrollers are used in a number of places in the automobile to increase functionality: for
example, four-bit microcontrollers are often used to sense whether seat belts are fastened and turn on the
seat belt light when necessary.
Microprocessors may replace analog components to provide similar functions, or they may add totally

new functionality to a system. They are used in several different ways in embedded systems. One broad
application category is signal conditioning, in which the microprocessor or DSP performs some filtering
or control function on a digitized input. The conditioned signal may be sent to some other micropro-
cessor for final use. Signal conditioning allows systems to use less-expensive sensors with the application
of a relatively inexpensive microprocessor. Beyond signal conditioning, microprocessors may be used for
more sophisticated control applications. For example, microprocessors are often used in telephone
systems to control signaling functions, such as determining what action to take based on the reception
of dial tones, etc. Microprocessors may implement user interfaces; this requires sensing when buttons,
knobs, etc. are used, taking appropriate actions, and updating displays. Finally, microprocessors may
perform data processing, such as managing the calendar in a personal digital assistant.
There are several reasons why microprocessors make good design components in such a wide variety

of application areas. First, digital systems often provide more complex functionality than can be created
using analog components. A good example is the user interface of a home audio=video system, which
provides more information and is easier use than older, non-microprocessor-controlled systems. Micro-
processors also allow related products much more cost-effectively. An entire product family, including
models at various price and feature points, can be built around a single microprocessor-based platform.
The platform includes both hardware components common to all the family members and software
running on the microprocessor to provide functionality. Software elements can easily be turned on or off
in various family members. Economies of scale often mean that it is cheaper to put the same hardware in
both expensive and cheap models and to turn off features in the inexpensive models rather than to try to
optimize the hardware and software configurations of each model separately. Microprocessors also allow
design changes to be made much more quickly. Many changes may be possible simply by reprogram-
ming; other features may be made possible by adding memory or other simple hardware changes along
with some additional programming. Finally, microprocessors aid in concurrent engineering. After some
initial design decisions have been made, hardware and software can be designed in parallel, reducing total
design time.
While embedded computing systems traditionally have been fabricated at the board level out of

multiple chips, embedded computing systems will play an increasing role in integrated circuit design
as well. As VLSI technology moves toward the ability to fabricate chips with billions of transistors,
integrated circuits will increasingly incorporate one or several microprocessors executing embedded

13-2 Computer Aided Design and Design Automation

software. Using microprocessors as components in integrated circuits increases design productivity, since
CPUs can be used as large components which implement a significant part of the system functionality.
Single-chip embedded systems can provide much higher performance than board-level equivalents, since
chip-to-chip delays are eliminated.

13.3 Embedded System Architectures

Although embedded computing spans a wide range of application areas, from automotive to medical,
there are some common principles of design for embedded systems. The application-specific embed-
ded software runs on a hardware platform. An example hardware platform is shown in Figure 13.1.
It contains a microprocessor, memory, and I=O devices. When designing on a general-purpose
system such as a PC, the hardware platform would be predetermined, but in hardware=software
codesign the software and hardware can be designed together to better meet cost and performance
requirements.
Depending on the application, various combinations of criteria may be important goals for the system

design. Two typical criteria are speed and manufacturing cost. The speed at which computations are made
often contributes to the general usability of the system, just as in general-purpose computing. However,
performance is also often associated with the satisfaction of deadlines—times at which computations must
be completed to ensure the proper operation of the system. If failure to meet a deadline causes a major
error, it is termed a hard deadline. And missed deadlines, which result in tolerable but unsatisfactory
degradations, are called soft deadlines. Hard deadlines are often (though not always) associated with safety-
critical systems. Designing for deadlines is one of the most challenging tasks in embedded system design.
Manufacturing cost is often an important criteria for embedded systems. Although the hardware com-
ponents ultimately determinemanufacturing cost, software plays an important role as well. First, the size of
the program determines the amount of memory required, and memory is often a significant component of
the total component cost. Furthermore, the improper design of software can cause one to require higher-
performance, more-expensive hardware components than are really necessary. Efficient utilization of
hardware resources requires careful software design. Power consumption is becoming an increasingly
important design metric. Power is certainly important in battery-operated devices, but it can be important
in wall socket-powered systems as well—lower power consumption means smaller, less-expensive power
supplies and cooling and may result in environmental
ratings that are advantageous in the marketplace. Once
again, power consumption is ultimately determined by the
hardware, but software plays a significant role in power
characteristics. For example, more efficient use of on-chip
caches can reduce the need for off-chip memory access,
which consumes much more power than on-chip cache
references.
Figure 13.1 shows the hardware architecture of a basic

microprocessor system. The system includes the CPU,
memory, and some I=O devices, all connected by a bus.
This system may consist of multiple chips for high-
end microprocessors or a single-chip microcontroller.
Typical I=O devices include analog=digital (ADC) and
digital=analog (DAC) converters, serial and parallel
communication devices, network and bus interfaces,
buttons and switches, and various types of display devices.
This configuration is a complete, basic, embedded
computing hardware platform on which application soft-
ware can execute.

M
em

or
y

CPU
I/O

device
2

I/O
device

1

Bus

FIGURE 13.1 Hardware structure of a micro-
processor system.

Embedded Computing Systems and Hardware=Software Codesign 13-3

The embedded application software includes components for managing I=O devices and for perform-
ing the core computational tasks. The basic software techniques for communicating with I=O devices are
polling and interrupt-driven. In a polled system, the program checks each device’s status register to
determine if it is ready to perform I=O. Polling allows the CPU to determine the order in which I=O
operations are completed, which may be important for ensuring that certain device requests are satisfied
at the proper rate. However, polling also means that a device may not be serviced in time if the CPU’s
program does not check it frequently enough. Interrupt-driven I=O allows a device to change the flow of
control on the CPU and call a device driver to handle the pending I=O operation. An interrupt system
may provide both prioritized interrupts to allow some devices to take precedence over others and
vectored interrupts to allow devices to specify which driver should handle their request.
Device drivers, whether polled or interrupt-driven, will typically perform basic device-specific func-

tions and hand-off data to the core routines for processing. Those routines may perform relatively simple
tasks, such as transducing data from one device to another, or may perform more sophisticated
algorithms such as control. Those core routines often will initiate output operations based on their
computations on the input operations.
Input and output may occur either periodically or aperiodically. Sampled data is a common example of

periodic I=O, while user interfaces provide a common source of aperiodic I=O events. The nature of the
I=O transactions affects both the device drivers and the core computational code. Code which operates on
periodic data is generally driven by a timer which initiates the code at the start of the period. Periodic
operations are often characterized by their periods and the deadline for each period. Aperiodic I=O may
be detected either by an interrupt or by polling the devices. Aperiodic operations may have deadlines,
which are generally measured from the initiating I=O event. Periodic operations can often be thought of
as being executed within an infinite loop. Aperiodic operations tend to use more event-driven code, in
which various sections of the program are exercised by different aperiodic events, since there is often
more than one aperiodic event which can occur.
Embedded computing systems exhibit a great deal of parallelism which can be used to speed up

computation. As a result, they often use multiple microprocessors which communicate with each other to
perform the required function. In addition to microprocessors, application-specific ICs (ASICs) may be
added to accelerate certain critical functions. CPUs and ASICs in general are called processing elements
(PEs). An example multiprocessor system built from several PEs along with I=O devices and memory is
shown in Figure 13.2.

I/O
device

CPU 1 CPU 2
 To

deviceASIC 2

ASIC 1

M
em

or
y

Bus

Serial
link

FIGURE 13.2 Heterogeneous embedded multiprocessor.

13-4 Computer Aided Design and Design Automation

The choice of several small microprocessors or ASICs rather than one large CPU is primarily
determined by cost. Microprocessor cost is a nonlinear function of performance, even within a micro-
processor family. Vendors generally supply several versions of a microprocessor which run at different
clock rates; chips which run at varying speeds are a natural consequence of the variations in the VLSI
manufacturing process. The slowest microprocessors are significantly less expensive than the fastest ones,
and the cost increment is larger at the high end of the speed range than at the low end. As a result, it is
often cheaper to use several smaller microprocessors to implement a function.
When several microprocessors work together in a system, they may communicate with each other in

several different ways. If slow data rates are sufficient, serial data links are commonly used for their low
hardware cost. The I2C bus is a well-known example of a serial bus used to build multi-microprocessor
embedded systems; the CAN bus is widely used in automobiles. High-speed serial links can achieve
moderately high performance and are often used to link multiple DSPs in high-speed signal processing
systems. Parallel data links provide the highest performance thanks to their sheer data width. High-speed
busses such as PCI can be used to link several processors.
The software for an embedded multiprocessing system is often built around processes. A process, as in

a general-purpose computing system, is an instantiation of a program with its own state. Since problems
complex enough to require multiprocessors often run sophisticated algorithms and I=O systems, dividing
the system into processes helps manage design complexity. A real-time operating system (RTOS) is an
operating system specifically designed for embedded, and specifically real-time applications. The RTOS
manages the processes and device drivers in the system, determining when each executes on the CPU.
This function is termed scheduling. The partitioning of the software between application code which
executes core algorithms and an RTOS which schedules the times to which those core algorithms are
executed is a fundamental design principle in computing systems in general and is especially important
for real-time operation.
There are a number of techniques which can be used to schedule processes in an embedded system—

that is, to determine which process runs next on a particular CPU. Most RTOSs use process priorities in
some form to determine the schedule. A process may be in any one of three states: currently executing
(there can obviously be only one executing process on each CPU), ready to execute, or waiting. A process
may not be able to execute until, for example, its data has arrived. Once its data arrives, it moves from
waiting to ready. The scheduler chooses among the ready processes to determine which process runs
next. In general, the RTOS’s scheduler chooses the highest-priority ready process to run next; variations
between scheduling methods depend in large part on the ways in which priorities are determined. Unlike
general-purpose operating systems, RTOSs generally allow a process to run until it is preempted by a
higher-priority process. General-purpose operating systems often perform time-slicing operations to
maintain fair access of all the users on the system, but time-slicing does not allow the control required for
meeting deadlines.
A fundamental result in real-time scheduling is known as rate-monotonic scheduling. This technique

schedules a set of processes which run independently on a single CPU. Each process has its own period,
with the deadline happening at the end of each period. There can be arbitrary relationships between the
periods of the processes. It is assumed that data does not in general arrive at the beginning of the period,
so there are no assumptions about when a process goes from waiting to ready within a period. This
scheduling policy uses static priorities—the priorities for the processes are assigned before execution
begins and do not change. It can be shown that the optimal priority assignment is based on period—the
shorter the period, the higher the priority. This priority assignment ensures that all processes will meet
their deadlines on every period. It can also be shown that at most, 69% of the CPU is used by this
scheduling policy. The remaining cycles are spent waiting for activities to happen—since data arrival
times are not known, it is not possible to utilize 100% of the CPU cycles.
Another well-known, real-time scheduling technique is earliest deadline first (EDF). This is a

dynamic priority scheme—process priorities change during execution. EDF sets priorities based on the
impending deadlines, with the process whose deadline is closest in the future having the highest priority.

Embedded Computing Systems and Hardware=Software Codesign 13-5

Clearly, the rate of change of process priorities
depends on the periods and deadlines. EDF can be
shown to be able to utilize 100% of the CPU, but it
does not guarantee that all deadlines will be met.
Since priorities are dynamic, it is not possible in gen-
eral to analyze whether the system will be overloaded
at some point.
Processes may be specified with data dependencies,

as shown in Figure 13.3, to create a task graph. An arc
in the data dependency graph specifies that one
process feeds data to another. The sink process cannot
become ready until all the source processes have deliv-
ered their data. Processes which have no data depend-
ency path between them are in separate tasks. Each
task can run at its own rate. Data dependencies allow

schedulers to make more efficient use of CPU resources. Since the source and sink processes of a data
dependency cannot execute simultaneously, we can use that information to eliminate some combinations
of processes which may want to run at the same time. Narrowing the scope of process conflicts allows us
to more accurately predict how the CPU will be used.
A real-time operating system is often designed to have a small memory footprint, since embedded

systems are more cost-sensitive than general-purpose computers. RTOSs are also designed to be more
responsive in two different ways. First, they allow greater control over the order of execution of processes,
which is critical for ensuring that deadlines are met. Second, they are designed to have lower context-
switching overhead, since that overhead eats into the time available for meeting deadlines. The kernel
of an RTOS is the basic set of functions that is always resident in memory. A basic RTOS may have an
extremely small kernel of only a few hundred instructions. Such microkernels often provide only basic
context-switching and scheduling facilities. More complex RTOSs may provide high-end operating
system functions such as file systems and network support; many high-end RTOSs are POSIX (a Unix
standard) compliant. While running such a high-end operating system requires more hardware
resources, the extra features are useful in a number of situations. For example, a controller for a machine
on a manufacturing line may use a network interface to talk to other machines on the factory floor or
the factory coordination unit; it may also use the file system to access a database for the manufacturing
process.

13.4 Hardware=Software Codesign

Hardware=software codesign refers to any methodology which takes into account both hardware and
software during the design of an embedded computing system. When the hardware and software are
designed together, the designer has more opportunities to optimize the system by making trade-offs
between the hardware and software components. Good system designers intuitively perform codesign,
but codesign methods are increasingly being embodied in computer-aided design (CAD) tools. We will
discuss several aspects of codesign and codesign tools, including models of the design, cosimulation,
performance analysis, and various methods for architectural cosynthesis. We will conclude with a look at
design methodologies that make use of these phases of codesign.

13.4.1 Models

In designing embedded computing systems, we make use of several different types of models at different
points in the design process. We need to model basic functionality. We must also capture nonfunctional
requirements: speed, weight, power consumption, manufacturing cost, etc.

P1

P2

P3

P4 P5

Task 1 Task 2

FIGURE 13.3 Task graph with two tasks and data
dependencies between processes.

13-6 Computer Aided Design and Design Automation

In the earliest stages of design, the task graph is an important modeling tool. The task graph does not
capture all aspects of functionality, but it does describe the various rates at which computations must be
performed and the expected degrees of parallelism available. This level of detail is often enough to make
some important architectural decisions. A useful adjunct to the task graph are the technology description
tables, which describe how processes can be implemented on the available components. One of the
technology description tables describes basic properties of the processing elements, such as cost and basic
power dissipation. A separate table describes how the processes may be implemented on the components,
giving execution time (and perhaps other function-specific parameters like precise power consumption)
on a processing element of that type. The technology description is more complex when ASICs can be
used as processing elements, since many different ASICs at differing price=performance points can be
designed for a given functionality, but the basic data still applies.
A more detailed description is given by either high-level language code (C, etc.) for software or

hardware description language code (VHDL, Verilog, etc.) for software components. These should not be
viewed as specifications—they are, in fact, quite detailed implementations. However, they do provide a
level of abstraction above assembly language and gates and so can be valuable for analyzing performance,
size, etc. The control-data flow graph (CDFG) is a typical representation of a high-level language: a
flowchart-like structure describes the program’s control, while data flow graphs describe the behavior
within expressions and basic blocks.

13.4.2 Cosimulation

Simulation is an important tool for design verification. The simulation of a complete embedded system
entails modeling both the underlying hardware platform and the software executing on the CPUs. Some
of the hardware must be simulated at a very fine level of detail—for example, busses and I=O devices may
require gate-level simulation. On the other hand, the software can and should be executed at a higher
level of abstraction. While it would be possible to simulate software execution by running a gate-level
simulation of the CPU and modeling the program as residing in the memory of the simulated CPU, this
would be unacceptably slow.
We can gain significant performance advantages by running different parts of the simulation at

different levels of detail: elements of the hardware can be simulated in great detail, while software
execution can be modeled much more directly. Basic functionality aspects of a high-level language
program can be simulated by compiling the software on the computer on which the simulation executes,
allowing those parts of the program to run at the native computer speed. Aspects of the program which
deal with the hardware platform must interface to the section of the simulator which deals with the
hardware. Those sections of the program are replaced by stubs which interface to the simulator. This style
of simulation is a multirate simulation system, since the hardware and software simulation sections run at
different rates: a single instruction in the software simulation will correspond to several clock cycles in the
hardware simulation. The main jobs of the simulator are to keep the various sections of the simulation
synchronized and to manage communication between the hardware and software components of the
simulation.

13.4.3 Performance Analysis

Since performance is an important design goal in most embedded systems, both for overall throughput
and for meeting deadlines, the analysis of the system to determine its speed of operation is an important
element of any codesign methodology. System performance—the time it takes to execute a particular
aspect of the system’s functionality—clearly depends both on the software being executed and the
underlying hardware platform. While simulation is an important tool for performance analysis, it is
not sufficient, since simulation does not determine the worst-case delays. Since the execution times of
most programs are data-dependent, it is necessary to give the simulation of the program the proper set

Embedded Computing Systems and Hardware=Software Codesign 13-7

of inputs to observe worst-case delay. The number of possible input combinations makes it unlikely
that one will find those worst-case inputs without the sort of analysis that is at the heart of performance
analysis.
In general, performance analysis must be done at several different levels of abstraction. Given a single

program, one can place an upper bound on the worst-case execution time of the program. However, since
many embedded systems consist of multiple processes and device drivers, it is necessary to analyze how
these programs interact with each other, a phase which makes use of the results of single-program
performance analysis.
Determining the worst-case execution time of a single program can be broken into two subproblems:

determining the longest execution path through the program and determining the execution time of that
program. Since there is at least a rough correlation between the number of operations and the actual
execution time, we can determine the longest execution path without detailed knowledge of the
instructions being executed—the longest path depends primarily on the structure of conditionals and
loops. One way to find the longest path through the program is to model the program as a control-flow
graph and use network flow algorithms to solve the resulting system.
Once the longest path has been found, we need to look at the instructions executed along that path to

determine the actual execution time. A simple model of the processor would assume that each instruction
has a fixed execution time, independent of other factors such as the data values being operated on,
surrounding instructions, or the path of execution. In fact, such simple models do not give adequate
results for modern high-speed microprocessors. One problem is that in pipelined processors, the
execution time of an instruction may depend on the sequence of instructions executed before it. An
even greater cause of performance variations is caching, since the same instruction sequence can have
variable execution times, depending on whether the code is in the cache. Since cache miss penalties are
often 5X or 10X, the cost of mischaracterizing cache performance is significant. Assuming that the cache
is never present gives a conservative estimate of worst-case execution time, but one that is so over-
conservative that it distorts the entire design. Since the performance penalty for ignoring the cache is so
large, it results in using a much faster, more expensive processor than is really necessary. The effects of
caching can be taken into account during the path analysis of the program—path analysis can determine
bound how often an instruction present in the cache.
There are two major effects which must be taken into account when analyzing multiple-process

systems. The first is the effect of scheduling multiple processes and device drivers on a single CPU.
This analysis is performed by a scheduling algorithm, which determines bounds on when programs can
execute. Ratemonotonic analysis is the simplest form of scheduling analysis—the utilization factor given
by ratemonotonic analysis tells one an upper limit on the amount of active CPU time. However, if data
dependencies between processes are known, or some knowledge of the arrival times of data is known,
then a more accurate performance estimate can be computed. If the system includes multiple processing
elements, more sophisticated scheduling algorithms must be used, since the data arrival time for a
process on one processing element may be determined by the time at which that datum is computed on
another processing element.
The second effect which must be taken into account is interactions between processes in the cache.

When several programs on a CPU share a cache, or when several processing elements share a second-
level cache, the cache state depends on the behavior of all the programs. For example, when one process is
suspended by the operating system and another process starts running, that process may knock the first
program out of the cache. When the first process resumes execution, it will initially run more slowly, an
effect which cannot be taken into account by analyzing the programs independently. This analysis clearly
depends in part on the system schedule, since the interactions between processes depends on the order in
which the processes execute. But the system scheduling analysis must also keep track of the cache state—
which parts of which programs are in the cache at the start of execution of each process. Good accuracy
can be obtained with a simple model which assumes that a program is either in the cache or out of it,

13-8 Computer Aided Design and Design Automation

without considering individual instructions; higher accuracy comes from breaking a process into several
subprocesses for analysis, each of which can have its own cache state.

13.4.4 Hardware=Software Cosynthesis

Hardware=software cosynthesis tries to simultaneously design the hardware and software for an embed-
ded computing system, given design requirements such as performance as well as a description of the
functionality. Cosynthesis generally concentrates on architectural design rather than detailed component
design—it concentrates on determining such major factors as the number and types of processing
elements required and the ways in which software processes interact.
Themost basic style of cosynthesis is known as hardware=software partitioning. As shown in Figure 13.4,

this algorithm maps the given functionality onto a template architecture consisting of a CPU and one or
more ASICs communicating via the microprocessor bus. The functionality is usually specified as a single
program. The partitioning algorithm breaks that program into pieces and allocates pieces either to the
CPU or ASICs for execution. Hardware=software partitioning assumes that total system performance is
dominated by a relatively small part of the application, so that implementing a small fraction of
the application in the ASIC leads to large performance gains. Less performance-critical sections of the
application are relegated to the CPU.
The first problem to be solved is how to break the application program into pieces; common

techniques include determining where I=O operations occur and concentrating on the basic blocks of
inner loops. Once the application code is partitioned, various allocations of those components must be
evaluated. Given an allocation of program components to the CPU or ASICs, performance analysis
techniques can be used to determine the total system performance; performance analysis should take into
account the time required to transfer necessary data into the ASIC and to extract the results of the
computation from the ASIC. Since the total number of allocations is large, heuristics must be used to
search the design space. In addition, the cost of the implementation must be determined. Since
the CPU’s cost is known in advance, that cost is determined by the ASIC cost, which varies as to the
amount of hardware required to implement the desired
function. High-level synthesis can be used to estimate
both the performance and hardware cost of an ASIC
which will be synthesized from a portion of the appli-
cation program.
Basic, cosynthesis heuristics start from extreme

initial solutions: We can either put all program com-
ponents into the CPU, creating an implementation
which is minimal cost but probably does not meet
performance requirements, or put all program elem-
ents in the ASIC, which gives a maximal-perform-
ance, maximal-expense implementation. Given this
initial solution, heuristics select which program com-
ponent to move to the other side of the partition to
either reduce hardware cost or increase performance,
as desired. More sophisticated heuristics try to con-
struct a solution by estimating how critical a com-
ponent will be to overall system performance and
choosing a CPU or ASIC implementation accord-
ingly. Iterative improvement strategies may move
components across the partition boundary to improve
the design.

M
em

or
y

CPU

P1 P3 P4 P2

I/O
device

ASIC

Software
implementation

Hardware
implementation

FIGURE 13.4 Hardware=software partitioning.

Embedded Computing Systems and Hardware=Software Codesign 13-9

However, many embedded systems do not strictly follow the one CPU, one bus, n ASIC architectural
template. These more general architectures are known as distributed embedded systems. Techniques for
designing distributed embedded systems rest on the foundations of hardware=software partitioning, but
they are generally more complicated, since there are more free variables. For example, since the number
and types of CPUs is not known in advance, the cosynthesis algorithm must select them. If the number of
busses or other communication links is not known in advance, those must be selected as well. Unfor-
tunately, these decisions are all closely related. For example, the number of CPUs and ASICs required
depends on the system schedule. The system schedule, in turn, depends on the execution time of each of
the components on the available hardware elements. But those execution times depend on the processing
elements available, which is what we are trying to determine in the first place. Cosynthesis algorithms
generally try to fix several designs and vary only one or a few, then check the results of a design decision
on the other parameters. For example, the algorithm may fix the hardware architecture and try to move
processes to other processing elements to make more efficient use of the available hardware. Given that
new configuration of processes, it may then try to reduce the cost of the hardware by eliminating unused
processing elements or replacing a faster, more expensive processing element with a slower, cheaper one.
Since the memory hierarchy is a significant contributor to overall system performance, the design of

the caching system is an important aspect of distributed system cosynthesis. In a board-level system with
existing microprocessors, the sizes of second-level caches is under designer control, even if the first-level
cache is incorporated on the microprocessor and therefore fixed in size. In a single-chip embedded
system, the designer has control over the sizes of all the caches. Cosynthesis can determine hardware
elements such as the placement of caches in the hardware architecture and the size of each cache. It can
also determine software attributes such as the placement of each program in the cache. The placement of
a program in the cache is determined by the addresses used by the program—by relocating the program,
the cache behavior of the program can be changed. Memory system design requires calculating the cache
state when constructing the system schedule and using the cache state as one of the factors to determine
how to modify the design.

13.4.5 Design Methodologies

A codesign methodology tries to take into account aspects of hardware and software during all phases of
design. At some point in the design process, the hardware and software components are well-specified
and can be designed relatively independently. But it is important to consider the characteristics of both
the hardware and software components early in design. It is also important to properly test the system
once the hardware and software components are assembled into a complete system.
Cosynthesis can be used as a design planning tool, even if it is not used to generate a complete system

architectural design. Because cosynthesis can evaluate a large number of designs very quickly, it can
determine the feasibility of a proposed system much faster than a human designer. This allows the
designer to experiment with what-if scenarios, such as adding new features or speculating on the effects
of lower component costs in the future. Many cosynthesis algorithms can be applied without having a
complete program to use as a specification. If the system can be specified to the level of processes with
some estimate of the computation time required for each process, then useful information about
architectural feasibility can be generated by cosynthesis.
Cosimulation plays a major role once subsystem designs are available. It does not have to wait until all

components are complete, since stubs may be created to provide minimal functionality for incomplete
components. The ability to simulate the software before completing the hardware is a major boon to
software development and can substantially reduce development time.

13-10 Computer Aided Design and Design Automation

14
Design Automation

Technology Roadmap

Donald R. Cottrell
Silicon Integration Initiative, Inc.

14.1 Introduction .. 14-1
14.2 Design Automation: Historical Perspective..................... 14-3

The 1960s: The Beginnings of Design Automation .

The 1970s: The Awaking of Verification . The 1980s:
Birth of the Industry . The 1990s: The Age of Integration

14.3 The Future... 14-27
International Technology Roadmap for Semiconductors .

EDA Impact

14.4 Summary.. 14-38
References .. 14-38

14.1 Introduction

No invention in the modern age has been as pervasive as the semiconductor and nothing has been more
important to its technological advancement than has electronic design automation (EDA). EDA began in
the 1960s both for the design of electronic computers and because of them. It was the advent of the
computer that made possible the development of specialized programs that perform the complex
management, design, and analysis operations associated with electronics and electronic systems. At the
same time, it was the design, management, and manufacture of the thousands (now tens of millions) of
devices that make up a single electronic assembly that made EDA an absolute requirement to fuel the
semiconductor progression. Today, EDA programs are used in electronic packages for all business
markets from computers to games, telephones to aerospace guidance systems, and toasters to auto-
mobiles. Across these markets, EDA supports many different package types such as integrated circuit
(IC) chips, multichip modules (MCMs), printed circuit boards (PCBs), and entire electronic system
assemblies.
No electronic circuit package is as challenging to EDA as the IC. The growth in complexity of ICs has

placed tremendous demands on EDA. Mainstream EDA applications such as simulation, layout, and test
generation have had to improve their speed and capacity characteristics with this ever-increasing growth
in the number of circuits to be processed. New types of design and analysis applications, new methodo-
logies, and new design rules have been necessary to keep pace. Yet, even with the technological
breakthroughs that have been made in EDA across the past four decades, it is still having difficulty
keeping up with the breakthroughs being made in the semiconductor technology progression that it fuels.
Decrease in size and spacing of features on the chip is causing the number of design elements per chip to
increase at a tremendous rate. The decrease in feature size and spacing coupled with the increase in
operating frequency is causing additional levels of complexity to be approximated in the models used by
design and analysis programs.

14-1

In the period from 1970 to the present semiconductor advances such as the following have had a
great impact on EDA technology (Figure 14.1):

. IC integration has grown from tens of transistors on a chip, to beyond tens of millions.

. Feature size on production ICs has shrunk from 10 mm to 90 nm and smaller.

. On-chip clock frequency has increased from a few megahertz to many gigahertz.

Playing an essential part in the advancement of EDA have been advances in computer architectures
that run the EDA applications. These advances have included the following:

Microprocessor frequency progression

1

10

100

1,000

10,000

1970 1974 1978 1982 1986 1990 1994 1998 2002
Year

Cl
oc

k (
M

H
z)

8080

8086 80286
80386

68030 68040
80486

PPC 601

Ultra1 P6

PII
Alpha 21264

8008

8085

68000
68020

Athlon
P III

PIV

Microprocessor transistor count progression

1

10

100

1,000

10,000

100,000

1970 1974 1978 1982 1986 1990 1994 1998 2002
Year

Tr
an

sis
to

rs
 (t

ho
us

an
ds

)

4004
8080

8086

80286
80386

68040
68060 PPC 601

Ultra1 P6
PPC 620 PII

Alpha 21264

8008
8085

68000
68020

Athlon
P III

PIV

68030

68060

PPC 620

80486

FIGURE 14.1 Microprocessor development.

14-2 Computer Aided Design and Design Automation

. Computer CPU speed: from less than a million instructions per second (MIPS) of shared main-
frame to hundreds of MIPS on a dedicated workstation

. Computer memory: from <32 KB to >500 GB

. Data archive: from voluminous reels of (rather) slow-speed tape to virtually limitless amounts of
high-speed electronic storage

However, these major improvements in computing power alone would not have been sufficient to
meet the EDA needs of semiconductor advancement. Major advances have also been made to funda-
mental EDA algorithms, and entirely new design techniques and design paradigms have been invented
and developed to support semiconductor advancement. This chapter will trace the more notable
advancements made in EDA across its history for electronics design and discuss important semicon-
ductor technology trends predicted across the next decade along and the impact they will have on EDA
for the future. It is important to understand these trends and projections, because if the EDA systems
cannot keep pace with the semiconductor projections, then these projections cannot be realized.
Although it may be possible to build foundries that can manufacture ultradeep submicron wafers and
even to acquire the billions of dollars of capital required for each, without the necessary EDA support
these factories will never be fully utilized. SEMATECH reports that chip design productivity has
increased at a compounded rate somewhere between 21% and 30%, while Moore’s Law predicts the
number of transistors on a chip to increase at a compound rate of 56%. This means that at some time,
bringing online new foundries that can produce smaller, denser chips may reach a point of diminishing
returns, because the ability to design and yield chips with that many transistors may not be possible.

14.2 Design Automation: Historical Perspective

14.2.1 The 1960s: The Beginnings of Design Automation

Early entries into design automation were made in the areas of design (description) records, PCB wiring,
and manufacturing test generation. A commercial EDA industry did not exist and developments were
made within companies with the need, such as IBM [1] and Bell Labs, on mainframe computers such as
the IBM 7090. The 7090 had addressable 36-bit words and a limit of 32,000 words of main storage
(magnetic cores). This was far less than the typical 256þ MB of RAM on the average notebook PC, and
certainly no match for a high-function workstation with gigabytes of main store. Though computer
limitations continue to be an on-going challenge for EDA development, the limitation of the computers
of the 1960s was particularly acute.
In retrospect, the limitation of computers in the 1960s was a blessing for the development of design

automation. Because of these limitations, design automation developers were forced to invent highly
creative algorithms that operated on very compact data structures. Many of the fundamental concepts
developed during this period are still in use within commercial EDA systems today. Some notable
advances during this period were

. Fundamental ‘‘stuck-at’’ model for manufacturing test and a formal algebra for the generation of
tests and diagnosis of faults

. Parallel fault simulation, which provided simulation of many fault conditions in parallel with the
good-machine (nonfaulty circuit) to reduce fault-simulation run times

. Three-valued algebra for simulation which yields accurate results using simple delay models, even
in the presence of race conditions within the design.

. Development of fundamental algorithms for the placement and wiring of components

. Checking of designs against prescribed electrical design requirements (rules)

Also, there was development of fundamental heuristics for placement and wire routing, and for divide-
and-conquer concepts supporting both. One such concept was the hierarchical division of a wiring image

Design Automation Technology Roadmap 14-3

into cells, globally routing between cells, and then performing detailed routing within cells, possibly
subdividing them further. Many of these fundamental concepts are still applied today, although the
complexities of physical design (PD) of today’s large-scale integration (LSI) are vastly more complex.
The 1960s represented the awakening of design automation and provided the proof of its value and

need for electronics design. It would not be until the end of this decade when the explosion of the number
of circuits designed on a chip would occur and the term LSI would be coined. EDA development in the
1960s was primarily focused on printed circuit assemblies, but the fundamental concepts developed for
design entry, test generation, and PD provided the basics for EDA in the LSI era.

14.2.1.1 Design Entry

Before the use of computers in electronics design, the design schematic was a hard-copy drawing. This
drawing was a draftsman’s rendering of the notes and sketches provided by the circuit designer. The
drawings provided the basis for manufacturing and repair operations in the field. As automation
developed, it became desirable to store these drawings on storage media usable by computers so that
the creation of input to the automated processes could, itself, be automated. So, the need to record the
design of electronic products and assemblies in computers was recognized in the late 1950s and early
1960s. In the early days of design automation, the electronics designer would develop the design using
paper and pencil and then transcribe it to a form suitable for keyed entry to a computer. Once keyed into
the computer, the design could be rendered in a number of different formats to support the manufac-
turing and field operations. It was soon recognized that these computerized representations of the circuit
design drawing could also drive design processes such as the routing of printed circuit traces or the
generation of manufacturing test patterns. Finally, from there, it was but a short step to the use of
computers to generate data in the form required to drive automated manufacturing and test equipment.
Early design entry methods involved the keying of the design description onto punch cards that were

read into the computer and saved on a persistent storage device. This became known as the design’s
database, and is the start of the design automation system. From the database, schematic diagrams and
logic diagrams were rendered for use in engineering, manufacturing, and field support. This was typically
a two-step process, whereby the designer drew the schematic by hand and then submitted it to another
for conversion to the transcription records, keypunch, and entry to the computer. Once in the computer,
the formal automated drawings were generated, printed, and returned to the designer. Although this
process seems archaic by today’s standards, it did result in a permanent record of the design in computer
readable format. This could be used for many forms of records management, engineering change history,
and as input to design, analysis, and manufacturing automation that would soon follow.
With the introduction of the alphanumeric terminal, the keypunch was replaced as the window into

the computer. With this, new design description languages were developed, and the role of the tran-
scription operator began to move back to the designer. Although these description languages still
represented the design at the device or gate level, they were free format and keyword oriented and
design engineers were willing to use them. The design engineer now had the tools to enter design
descriptions directly into the computer thus eliminating the inherent inefficiencies of the ‘‘middleman.’’
Thus, a paradigm shift began to evolve in the method by which design was entered to the EDA system.
Introduction of the direct access storage devices (disks) in the late 1960s also improved the entry process
as well as the entire design system by providing online, high-speed direct access to the entire design or
any portion of it. This was also important to the acceptance of design entry by the designer as the task
was still viewed as a necessary overhead rather than a natural part of the design task. It was necessary to
get access to the other evolving design automation tools, but typically, the real design thought process
took place with pencil and paper techniques. Therefore, any change that made the entry process faster
and easier was eagerly accepted.
The next shift occurred in the later part of the 1970s with the introduction of graphics terminals. With

these, the designer could enter design into the database in schematic form. This form of design entry was
a novelty at first, but not a clear performance improvement. In fact, until the introduction of the

14-4 Computer Aided Design and Design Automation

workstation with dedicated graphics support, graphic entry was detrimental to design productivity in
many cases. Negative effects such as less than effective transaction speed, time lost in making the
schematic esthetically pleasing and the low level of detail all added to less than obvious advances. In
contrast, use of the graphics display to view the design and make design changes proved extremely
effective and was a great improvement over the red-lined hard-copy prints. For this reason, use of
computer graphics represented a major advance and this style of design entry took off with the
introduction of the workstation in the 1980s. In fact, the graphic editor’s glitz and capability was often
a major selling point in the decision to use one EDA system over another. Further, to be considered a
commercially viable system, graphics entry was required. Nevertheless, as the density of ICs grew,
graphics entry of schematics would begin to yield to the productivity advantages of (alphanumeric)
description languages. As EDA design and analysis tool technology advanced, entry of design at the
register-transfer level (RTL) would become commonplace and today the design engineer is able to
represent his design ideas at many levels of abstraction and throughout the design process. System-
level and RTL design languages have been introduced and the designer is able to verify design intent
much earlier in the design cycle.
By the 1990s and after the introduction of synthesis automation, design entry using RTL descriptions

was the generally accepted approach for entry of design, although schematic entry remained the accepted
method for PCB design and many elements of custom ICs. There is no doubt that the introduction of
graphics into the design automation system represents a major advance and a major paradigm shift. The
use of graphics to visualize design details, wiring congestion, and timing diagrams is of major import-
ance. The use of graphics to perform edit functions is standard operating procedure.
Large system design, often, entails control circuitry, dataflow, and functional modules. Classically,

these systems span across several chips and boards and employ several styles of entry for the different
physical packages. These may include

. Schematics—graphic

. RTL and behavioral level languages—alphanumeric

. Timing diagrams—graphic

. State diagrams—alphanumeric

. Flowcharts—graphic

Today, these entry techniques can be found in different EDA tools and each is particularly effective for
different types of design problems. Schematics are effective for the design of ‘‘glue’’ logic that intercon-
nects functional design elements such as modules on a PCB and for custom IC circuitry. Behavioral
languages are useful for system-level design, and particularly effective for dataflow behavior. Timing
diagrams lend themselves well to describe the functional operations of ‘‘black-box’’ components at their
I=Os without needing to describe their internal circuitry. State diagrams are a convenient way to express
the logical operation of combinational circuits. Flowcharts are effective for describing the operations of
control logic, much like use of flowcharts for specification of software program flow. With technology
advances, the IC is engulfing more and more of the entire system and all of these forms of design
description may be prevalent on a single chip. It is even expected that the design of ‘‘black-box’’ functions
will be available from multiple sources to be embedded onto the chip similar to the use of modules on a
PCB. Thus, it is likely that future EDA systems will support a mixture of design description forms to
allow the designer to represent sections of the design in a manner most effective to each. After all, design
is described in many forms by the designer outside the design system.

14.2.1.2 Test Generation

Testing of manufactured electronic subassemblies entails the use of special test hardware that can provide
stimulus (test signals) to selected (input) pins of the part under test and measure for specified responses
on selected (output) pins. If the measured response matches the specified response, then the part under
test has passed that test successfully. If some other response is measured, then the part has failed that test

Design Automation Technology Roadmap 14-5

and the presence of a defect is indicated. Manufacturing test is the successive application test patterns
that cause somemeasurable point on the part under test to be sensitized to the presence of a manufacturing
defect. That is, some measurable point on the part under test will result in a certain value if the fault
is present and a different one if no fault were present. The collection of test patterns causes all (or almost all)
possible manufacturing failures to render a different output response than would the nondefective part.
For static DC testers, each stimulus is applied and after the part under test settles to a steady state, the
specified outputs are measured and compared with the expected results for a nondefective part.

To bound the test generation problem, a model was developed to represent possible defects at the
abstract gate level. This model characterizes the effects of defects as stuck-at values. This model is
fundamental to most of the development in test generation and is still in use today. It characterizes
defects as causing either a stuck-at-one or a stuck-at-zero condition at pins on a logic gate. It assumes
hard faults (i.e., if present, a fault remains throughout the test) and that only one fault occurs at a time.
Thus, this model became known as the single stuck-at fault model. Stuck-at fault testing assumes that the
symptom of any manufacturing defect can be characterized by the presence of a stuck-at fault some place
within the circuit and that it can be observed at some point on the unit under test. By testing for the
presence of all possible stuck-at faults that can occur, all possible manufacturing hard-defects in the logic
devices can thus be tested.
The stuck-at fault models for NAND and NOR gates are shown in Figure 14.2. For the NAND gate, the

presence of an input stuck-at-one defect can be sensitized (made detectable) at the gate’s output pin by
setting the good-machine state for that input to 0, and setting the other input values to 1. If a zero is
observed at the gate’s output node, then a fault (stuck-at-one) on the input pin set to 0 is detected.
A stuck-at-zero condition on any specific input to the NAND gate is not distinguishable from a stuck-
at-zero on any other input to the gate, thus is not part of the model. However, a stuck-at-one is modeled
for the gate’s output to account for such a fault or a stuck-at-one fault on the gate’s output circuitry.
Similarly, a stuck-at-zero is modeled on the gate’s output.
The fault model for the NOR gate is similar except that here input faults are modeled as stuck-at-zero,

as the stuck-at-one defect cannot be isolated to a particular input.
Later in time, additional development would attack defects not detectable with this stuck-at fault

model; for example, bridging faults where nodes are shorted together, and delay faults where the output
response does not occur within the required time. The stuck-at fault model cannot detect these fault types
and they became important as the development of CMOS progressed. Significant work was performed in
both these areas beginning in the 1970s, but it did not have the impact on test generation development
that the stuck-at fault model did.

The creation of the fault model was very important to
test generation as it established a realistic set of objectives
to be met by automated test set generation that could be
achieved in a realistic amount of computational time. A
formal algebra was developed by Roth [2] called the
D-ALG that formalized an approach to test generation
and fault diagnosis.
The test generation program could choose a fault based

on the instances of gates within the design and the fault
models for the gates. It could then trace back from that
fault to the input pins of the design and, using the D-ALG
calculus, it could find a set of input states that would
sensitize the fault. Then, it could trace forward from that
fault to the design’s output pins, sensitizing the path (caus-
ing the good-machine value to be the opposite of the stuck-
at fault value along that path) to at least one observable
pin (Figure 14.3).

Stuck at 1

Stuck at 0

Stuck at 0

Stuck at 1

Stuck at 1

Stuck at 0 Stuck at 1
Stuck at 0

Stuck at 0
Stuck at 1

NAND

NOR

FIGURE 14.2 Stuck-at fault models.

14-6 Computer Aided Design and Design Automation

The use of functional patterns as the test patterns in lieu of heuristic stuck-at test generation was
another approach for manufacturing test. However, this required an extreme number of tests to be
applied and provided no measurable objective to be met (i.e., 100% of all possible stuck-at faults) thus,
depended on the experience and skill of the designer to create quality tests. The use of fault models and
automatic test generation produced a minimum set of tests and greatly reduced intensive manual labor.
The exhaustive method to assure coverage of all the possible detectable defects would be to apply all

possible input states to the design under test and compare the measured output states with the simulated
good-machine states. For a design with n input pins, however, this may theoretically require the
simulation of 2n input patterns for combinatorial logic and at least 2nþm for sequential logic (where m
is the number of independent storage elements). For even a relatively small number of input pins, this
amount of simulation would not be possible even on today’s computers, and the time to apply this
number of patterns at the tester would be grossly prohibitive.
The amount of time that a part resides on the tester is critical in the semiconductor business, as it

impacts a number of parts that can be produced in a given amount of time and the capital cost for testers.
Thus, the number of test patterns that need to be applied at the tester should be kept to a minimum. Early
work in test generation attacked this problem in two ways. First, when a test pattern was generated for a
specific fault, it was simulated against all possible faults one at a time. In many cases, the application of a
test pattern that is targeted for one specific fault will also detect several other faults at the same time. The
presence of a specific fault may be detectable on one output pin, for example, but at the same time
additional faults may be observable at the other output pins. The use of fault simulation (discussed in
Section 14.2.1.3) detected these cases and provided a mechanism to mark as tested those faults that were
‘‘accidentally’’ covered. This meant that the test generation algorithm did not have to generate a specific
test for those faults. Second, schemes were developed to merge test patterns together into a smaller test
pattern set to minimize the number of patterns required for detection of all faults. This is possible when
two adjacent test patterns require the application of specific values on different input pins, each allowing
all the other input pins to be at a do not-care state. In these cases, the multiple test patterns can be merged
into one. With successive analysis in this way, all pairs of test patterns (pattern n with nþ 1, or the
merger of m and mþ 1 with pattern mþ 2) are analyzed and merged into a reduced set of patterns.
Sequential design elements severely complicate test generation, as they require the analysis of previous

states and the application of sequences of patterns. Early work in test generation broke feedback nets,
inserted a lumped delay on them, and analyzed the design as a combinatorial problem using a Huffman
model. Later work attempted to identify the sequential elements within the design using sophisticated
topological analysis and then used a Huffman model to analyze each unique element. State tables for each

D

0
1NAND

1
DNAND

D

0
1NAND

D
1NAND

D

D
NAND

D = 1 (good machine)/0 (faulty machine)
D = 0 (good machine)/1 (faulty machine)–

Where:

D

1
NAND

DNAND
D–

D– D–

D–

D–

–

–

D

FIGURE 14.3 D-ALG calculus.

Design Automation Technology Roadmap 14-7

unique sequential element were generated and saved for later use as lookup tables in the test generation
process. The use of three-value simulation within the analysis reduced the analysis time as well as
guaranteed that the results were always accurate. Huffman analysis required 2x simulations (where x is
the number of feedback nets) to determine if critical hazards existed in the sequential elements. Using
three-valued simulation [3] (all value transitions go through an X state), this was reduced to a maximum
of 2x simulations.
This lumped delay model did not account for the distribution of delays in the actual design, thus it

often caused pessimistic results. Often simulated results yielded do not-know (X-state) conditions when a
more accurate model could yield a known state. This made it difficult to generate patterns that would
detect all faults in the model. As the level of integration increased, the problems associated with
automatic test generation for arbitrary sequential circuits became unwieldy. This necessitated that the
designer be called back into the problem of test generation most often to develop tests that would detect
those that were missed by the test generation program. New approaches that ranged from random
pattern generation to advanced algorithms and heuristics, which use a combination of different
approaches, were developed. However, by the mid-1970s the need to design-for-test was becoming
evident to many companies.
During the mid-1970s the concept of scan design such as IBM’s Level Sensitive Scan Design (LSSD),

was developed [4]. Scan design provides the ability to externally control and observe internal state
variables of the design. This is accomplished by the use of special scan latches into the design at the points
to be controlled and observed. These latches are controllable and can accept one of the two different data
inputs depending on an external control setting. One of these data inputs is the node within the IC to be
controlled=observed and the other is used as the test input. These latches are connected into a shift
register chain that has its stage-0 test input and stage-n output connected to externally accessible pins on
the IC. Under normal conditions, signals from within the design are passed through individual latches via
the data input=output. Under test conditions, test vectors can be scanned, under clock control, onto the
scan register’s externally accessible input pin and into the scan latches via their test data input. Once
scanned into the register, the test vector is applied to the internal nodes. Similarly, internal state values
within the design are captured in individual scan latches and scanned through the register out to its
observable output pin.
The development of scan design was important for two reasons. First, LSSD allowed for external

control and observability of all sequential elements within the design. With specific design-for-test rules,
this reduced the problem of test generation to one of a set of combinatorial circuits. Rigid design rules
such as the following assure this, and checking programs and scan chain generation algorithms were
implemented to assure that they were adhered to before entering test generation:

. All internal storage elements implemented in hazard-free polarity-hold latches

. Absence of any global feedback loops

. Latches may not be controlled by the same clock that controls the latches feeding them

. Externally accessible clocks control all shift register latches

Second, scan design allowed for external control and observability at otherwise nonprobable points
between modules on an MCM or PCB. During the 1980s an industry standard was developed, called
Boundary Scan (IEEE 1149.1 Joint Test Action Group) [5], which uses scan design techniques to provide
control and observability for all chip or module I=Os from pins of their next level package (MCM or
PCD, respectively).
Scan design requires additional real estate in the IC design and has a level of performance overhead.

However, with the achievable transistor density levels on today’s ICs and the test and diagnosis benefits
accrued, these penalties are easily justified in all but the most performance critical designs (Figure 14.4).
During the 1980s, IC density allowed for the design of built-in self-test (BIST) circuitry on the chip

itself. Operating at hardware speed, it became feasible to generate complete exhaustive tests and large
numbers of random tests never possible with software and stored program testers. BISTs are generated

14-8 Computer Aided Design and Design Automation

on the tester by the device under test, reducing the management of data transfer from design to
manufacturing. A binary counter is used or linear feedback shift registers (LFSR) are used to generate
the patterns for exhaustive or random tests, respectively. In the latter case, a pseudorandom bit sequence
is formed by the exclusive-OR of the bits on the LFSR and this result is then fed back into the LFSR input.
Thus, a pseudorandom bit sequence whose sequence length is based on the number of LFSR stages and
the initial LFSR state can be generated. The design can be simulated to determine the good-machine state
conditions for the generated test patterns, and these simulated results are compared with the actual
device-under-test results observed at the tester.
BIST techniques have become common for the test of on-chip RAM and ROS. BIST is also used for

logic sections of chips either with fault-simulated weighted random test patterns or good machine-
simulated exhaustive patterns. In the latter case, logic is partitioned into electrically isolated regions with
a smaller number of inputs to reduce the number of test patterns. Partitioning of the design reduces the
number of exhaustive tests from 2n (where n is the total number of inputs) to

Xm
i¼1

2n
i

where
m is the number of partitions
ni (ni< n) is the number of inputs on each logic partition

Since the use of BIST implies an extremely large number of tests, the simulated data transfer and test
measurement time is reduced greatly by the use of a compressed signature to represent the expected and
actual test results. Thus, only a comparison of the simulated signatures for each BIST region needs to be
made with the signatures derived by the on-chip hardware, rather than the results of each individual test
pattern. This is accomplished by feeding the output bit sequence to a single input serial input LFSR after
exclusive-OR with the pseudorandom pattern generated by that LFSR. In this way, a unique pattern can
be observed for a sequence of test results, which is a function of the good-machine response and a
pseudorandom number (Figure 14.5).
Today, testing of ICs typically consists of combinations of different test strategies. These may include

stored program stuck-at fault tests, BIST, delay (or at-speed) test (testing for signal arrival times in
addition to state), and IDDQ tests (direct drain quiescent current testing checks for CMOS defects that
cause excessive current leakage). The latter two test techniques are used to detect defect conditions not
identified by stuck-at fault tests such as shorts (bridging faults) between signal nets or gate oxide defects

Scan-in Scan-out Scan-out

Combinational
logic

Combinational
logic

Scan register

Sc
an

re
gi

ste
r

FIGURE 14.4 Scan design.

Design Automation Technology Roadmap 14-9

that cause incorrect device operation and parametric variability resulting from process variations in the
wafer foundry. However, the stuck-at fault model and scan techniques have been and will continue to be
fundamental ingredients for the manufacturing test recipe.

14.2.1.3 Fault Simulation

Fault simulation is used to predict the state of a design at observable points when in the presence of a
defect. This is used for manufacturing test and for field diagnostic pattern generation. Early work in fault
simulation relied on the stuck-at fault model and performed successive simulations of the design with
each single fault independent of any other fault; thus, a single stuck-at fault model was assumed. Because
even these early designs consisted of thousands of faults, it was too time consuming to simulate each fault
serially and it was necessary to create high-speed fault simulation algorithms.
For manufacturing test, fault simulation took advantage of three-valued zero-delay simulation. The

simulation model of the design was levelized and compiled into an executable program. Levelization
assured that driver gates were simulated before the gates receiving the signals; thus, allowing a state
resolution in a single simulation pass. Feedback loops were cut and the X-transition of three-valued
simulation resolved race conditions. The inherent instruction set of the host computer (e.g., AND, OR,
and XOR.) allowed the use of a minimum set of instructions to simulate a gate’s function.

The parallel-fault simulation algorithm that allowed many faults to be simulated in parallel was
developed during the 1960s. Using the 32-bit word length of the IBM 7090 computer architecture, for
example, simulation of 31 faults in a single pass (using the last bit for the good-machine) was possible.
For each gate in the design, two host machine words were assigned to represent its good-machine state
and the state for 31 single stuck-at faults. The first bit position of the first word was set to 1 or 0
representing the good-machine state for the node, and each of the successive bit position was set to the
1=0 state that would occur if the simulated faults were present (each bit-position representing a
single fault). The corresponding bit position in the second word was set to 0 if it was a known state

Circuit under test

C

D

C

D

C

D

C

D
Latch

R

Latch

R

Latch

R

Latch

R

XOR

C

D

C

D

C

D

C

D

Latch

R

Latch

R

Latch

R

Latch

R

XOR

XOR

LFSR LFSR

Pseudorandom pattern

Signature

FIGURE 14.5 BIST logic.

14-10 Computer Aided Design and Design Automation

and one if it was an X-state. The entire fault list was divided into n partitions of 31 faults and each
partition was then simulated against all input patterns. In this way, the run time for simulation is a
function of

Xn¼F=31

i¼1
Patterns

where F is the total number of single stuck-at faults in the design.
Specific faults are injected within the word representing their location within the design by the

insertion of a mask that is AND’d or OR’d at the appropriate word. For stuck-at-one conditions
the mask contains a 1-bit in the position representing the fault (and 0-bit at the others) and it is OR’d
to the gate’s memory location. For stuck-at-zero faults the mask contains a 0-bit at the positions
representing the fault (and 1-bit at the others) and it is AND’d with the gate’s memory location.

As the level of integration increased, so did the number of faults. The simulation speed improvement
realized from parallel-fault simulation was limited to the number of faults simulated in parallel and
because of the algorithm overhead, it did not scale with the increase in faults.
Deductive-fault simulation was developed early in the 1970s and required only one simulation pass per

test pattern. This is accomplished by simulating only the good-machine behavior and using deductive
techniques to determine each fault that is detectable along the simulated paths. Note here that fault
detection became the principal goal and fault isolation (for repair purposes) was ignored, as by now
the challenge was to isolate from a wafer bad chips that were not repairable. Because lists of faults
detectable at every point along the simulated path need to be kept, this algorithm requires extensive
memory, far more than the parallel-fault simulation one. However, with increasing memory on host
computers and the inherent increase in fault simulation speed, this technique won the favor of many
fault simulators.
Concurrent-fault simulation refined the deductive algorithm by recognizing the fact that paths in the

design quickly become insensitive to the presence of most faults, particularly after some initial set of test
patterns is simulated (an observation made in the 1970s was that a high percentage of faults is detected in
a low percentage of the initial test patterns, even if these patterns are randomly generated). The
concurrent-fault simulation algorithm simulates the good machine and concurrently simulates a number
of faulty machines. Once it is determined that a particular faulty machine state is the same as the good-
machine one, simulation for that fault ceases. Since on logic paths most faults will become insensitive
rather close to the point where the fault is located, the amount of simulation for these faulty machines
was kept small. This algorithm required even more memory, particularly for the early test patterns;
however, host machine architectures of the late 1970s were supporting, what then appeared as, massive
amounts of addressable memory.
With the introduction of scan design in which all sequential elements are controllable from the tester,

the simulated problem is reduced to that of a combinatorial circuit whose state is deterministic based on
any single test pattern, and is not dependent on previous patterns or states. Parallel-pattern fault
simulation was developed in the late 1970s to take advantage of this, by simulating multiple test patterns
in parallel against a single fault. A performance advantage is achieved because compiled simulation could
again be utilized as opposed to the more costly event-based approach. In addition, because faults not
detected by the initial test patterns are typically only detectable by a few patterns and for these a
sensitized path often disappears within a close proximity to the fault’s location, simulation of many
patterns does not require a complete pass across the design.
Because of the increasing number of devices on chips, the test generation and fault simulation problem

continued to face severe challenges. With the evolution of BIST however, the use of fault simulation was
relaxed. With BIST, only the good-machine behavior needs to be simulated and compared with the actual
results at the tester.

Design Automation Technology Roadmap 14-11

14.2.1.4 Physical Design

As with test generation, PD has evolved from early work on PCBs. PD automation programs place
devices and generate the physical interconnect routing for the nets that connect them into logic paths
assuring that electrical and physical constraints are met. The challenge for PD has become ever greater
since its early development for PCBs where the goal was simply to place components and route nets
typically looking for the shortest path. Any nets that could not be auto-routed were routed (embedded)
manually, or as a last resort with nonprinted (yellow) wires. As the problem moved on to the ICs, the
ability to use nonprinted wires to finish routing was no more. Now, all interconnects had to be printed
circuits and anything less than a 100% solution is unacceptable. Further, as the IC densities increased, so
did the number of nets which necessitated the invention of smarter wiring programs and heuristics. Even
a small number of incomplete (overflow) routes became too complex of a task for manual solutions.
As IC device sizes shrank and the gate delays decreased, the delay caused by interconnect wiring also

became an important factor for a valid solution. No longer was any wiring solution a correct solution.
Complexity increased by the need to find wiring solutions that fall within acceptable timing limits. Thus,
the wiring lengths and thickness needed to be considered. As IC features become packed closer together
cross-coupled capacitance (cross talk) effects between them is also an important consideration and for
the future, wiring considerations will expand into a three-dimensional space. PD solutions must consider
these complex factors and still achieve a 100% solution that meets the designer-specified timing for IC
designs that contain hundreds of millions of nets.
Because of these increasing demands on the PD, major paradigm changes have taken place in the

design methodology. In the early days, there was a clear separation of logic design and PD. The logic
designer was responsible for creating a netlist that correctly represented the logic behavior desired.
Timing was a function of the drive capability of the driving circuit and the number of receivers. Different
power levels for drivers could be chosen by the logic designer to match the timing requirements based on
the driven circuits. The delay imposed by the time-of-flight along interconnects and owing to the
parasitics on the interconnect was insignificant. Therefore, the logic designer could hand off the PD to
another, more adept at using the PD programs and manually embedding overflow wires. As the
semiconductor technology progressed, however, there needed to be more interactions between the
logic designer and the physical designer, as the interconnect delays became a more dominant factor
across signal paths. The logic designer had to give certain timing constraints to the physical designer and
if these could not be met, the design was often passed back to the logic designer. The logic designer, in
turn, then had to choose different driver gates or a different logical architecture to meet his design
specification. In many cases, the pair had to become a team or there was a merger of the two previously
distinct operations into one ‘‘IC designer.’’
This same progression of merging logic design and PD into one operational responsibility has also

begun at the EDA system architecture level. In the 1960s and 1970s, front-end (design) programs were
separate from back-end (physical) programs. Most often they were developed by different EDA devel-
opment teams and designs were transferred between them by means of data files. Beginning in the 1980s,
the data transferred between the front-end programs and the back-end ones included specific design
constraints that must be met by the PD programs—the most common being a specific amount of allowed
delay across an interconnect or signal path. Moreover, as the number of constraints that must be met by
the PD programs increases so does the challenge to achieve a 100% solution. Nonetheless, many of the
fundamental wiring heuristics and algorithms used by PD today spawned from work done in the
1960s for PCBs.
Early placement algorithms were developed to minimize the total length of the interconnect wiring

using Steiner trees and Manhattan wiring graphs. In addition, during these early years, algorithms were
developed to analyze wiring congestion that would occur as a result of placement choices and minimize it
to give routing a chance to succeed. Later work in the 1960s led to algorithms that performed a
hierarchical division of the wiring image and performed global wiring between these subdivisions

14-12 Computer Aided Design and Design Automation

(then called cells) before routing within the cells [6]. This divide-and-conquer approach simplified the
problem and led to quicker and more complete results. Min-cut placement algorithms often used today
are a derivative of this divide-and-conquer approach. The image is divided into partitions and the
placements of these partitions are swapped to minimize interconnect length between them and possible
wiring congestion. Once a global solution for the cells is found, placement is performed within them
using the same objectives. Many current placement algorithms are based on these early techniques,
although they now need to consider more physical and electrical constraints.
Development of new and more efficient routing algorithms progressed. The Lee algorithm [7] finds a

solution by emitting a ‘‘wave’’ from both the source and target points to be wired. This wave is actually an
ordered identification of available channel positions—where the available positions adjacent to the source
or destination are numbered 1, and the available positions adjacent to them are numbered 2, etc.
Successive moves and sequential identification is made (out in all directions as would a wave) until
the source and destination moves meet (the waves collide). Then a backtrace is performed from the
intersecting position in reverse sequential order along the numbered track positions back to the source
and destination. At points where a choice is available (i.e., there are two adjacent points with the same
order number), the one which does not require a change in direction is chosen.
The Hightower line-probe technique [8], also developed during this period and speeded up routing, by

use of emanating lines rather than waves. This algorithm emanated a line from both the source and
destination points, toward each other. When either line encounters an obstacle, then another line is
emanated from a point just missing the edge of the obstacle on the original line at a right angle to the
original line, and toward the target or source. Thus, the process is much like walking blindly in an
orthogonal line toward the target and changing direction only after bumping into a wall. This process
continues until the lines intersect at which time the path is complete.
In today’s ICs, the challenge of completed wiring that meets all constraints is of crucial importance.

Unlike test generation, which can be considered successful when a very high percentage of the faults are
detected by the test patterns, 100% complete is the only acceptable answer for PD. Further, all of the
interconnects must fall within the required electrical and physical constraints. Nothing <100% is
acceptable! Today these constraints include timing, power consumption, noise, and yield and this list
will become more complex as IC feature sizes and spacing are reduced further.

14.2.2 The 1970s: The Awaking of Verification

Before the introduction of large-scale integrated (LSI) circuits in the 1970s, it was common practice to
build prototype hardware to verify the design correctness. PCB packages containing discrete components,
single gates, and small-scale integrated modules facilitated engineering rework of real hardware within
the verification cycle. Prototype PCBs were built and engineering used test stimulus drivers and
oscilloscopes to determine whether the correct output conditions resulted from input stimuli. As design
errors were detected, they were repaired on the PCB prototype, validated, and recorded for later
engineering into the production version of the design. Use of the wrong logic function within the
design could easily be repaired by replacing components in error with the correct ones. Incorrect
connections could easily be repaired by cutting a printed circuit and replacing it with a discrete wire.
Thus, design verification (DV) was a sort of trial-and-error process using real hardware.

The introduction of LSI circuits drastically changed the DV paradigm. Although the use of software
simulation to verify system design correctness began during the 1960s, it was not until the advent of the
LSI circuits that this concept became widely accepted. With large-scale integration, it became impossible
to use prototype hardware or to repair a faulty design after it was manufactured. The 1970s are best
represented by a quantum leap into verification before manufacture through the use of software
modeling (simulation). This represented a major paradigm shift in electronics design and was a difficult
change for some to accept. DV on hardware prototypes resulted in a tangible result that could be touched
and held. It was a convenient tangible, which could be shown by management to represent real progress.

Design Automation Technology Roadmap 14-13

Completed DV against a software model did not produce the same level of touch and feel. Further, since
the use of computer models was a relatively new concept, it met with the distrust of many. However, the
introduction of LSI circuits demanded this change and today, software DV is a commonplace practice
used in all levels of electronic components, subassemblies, and systems.
Early simulators simulated gate-level models of the design with two-valued (1 and 0) simulation. Since

gates had nearly equal delays and the interconnect delay was insignificant by comparison, the use of a
unit of delay for each gate with no delay assigned to interconnects was common. Later simulators
exploited the use of three-valued simulation (1, 0, and unknown) to resolve race conditions and identify
oscillations within the design more quickly. With the emergence of LSI circuits, however, these simple
models had to become more complex and, additionally, simulators had to become more flexible and
faster—much faster. In the first half of the 1970s, important advances were made to DV simulators
that included

. Use of abstract (with respect to the gate-level) models to improve simulation performance and
enable verification throughout the design cycle (not just at the end)

. More accurate representations of gate and interconnect delays to enhance the simulated accuracy

In the latter half of the decade, significant contributions were made to facilitate separation of function
verification from timing verification and formal approaches for verification. However, simulation
remains a fundamental DV tool and the challenge to make simulators faster and more flexible continues
even today.

14.2.2.1 Simulation

Though widely used for DV, simulation has a couple of inherent problems. First, unlike test generation or
PD, there is no precise measure of completeness. Test generation has the stuck-at fault model and PD has
a finite list of nets that must be routed. However, there is no equivalent metric to determine when
verification of the design is complete, or when enough simulation is done. During the 1970s research
began to develop a metric for verification completeness, but to this day none has been generally accepted.
Use is made of minimum criteria such as all nets must switch in both directions, and statistical models
using random patterns. Recent work in formal verification is applying algorithmic approaches to validate
coverage of paths and branches within the model. However, the generally accepted goal is to ‘‘do more.’’
Second, it is a hard and time-consuming task to create effective simulation vectors to verify a complex

design. DV simulators typically support a rich high-level language for the stimulus generation, but still
require the thought, experience, and ingenuity of the DV engineer to develop and debug these programs.
Therefore, it is desirable to simulate the portion of the design being verified in as much of the total system
environment as possible and have the simulation create functional stimulus for the portion to be verified.
Finally, it is tedious to validate the simulated results for correctness, making it desirable to simulate the

full system environment where it is easier to validate results. Ideally, the owner of an application-specific
integrated circuit (ASIC) chip being designed for a computer could simulate that chip within a model of
all of the computer’s hardware, the microcode, the operating system, and use example software programs
as the ultimate simulation experiment. To even approach this goal, however, simulator technology must
continuously strive for rapid and more rapid techniques.
Early DV simulators often used compiled models (where the design is represented directly as a

computer program), but this technique gave way to interpretative event-driven simulation. Compiled
simulators have the advantage of higher speeds because host machine instructions are compiled in-line to
represent the design to be verified and are directly executed with minimum simulator overhead. Event-
based simulators require additional overhead to manage the simulation operations, but provide a level of
flexibility and generality not possible with the compiled model. This flexibility was necessary to provide
for simulation of timing characteristics as well as function, and to handle general sequential designs.
Therefore, this approach was generally adopted for DV simulators.

14-14 Computer Aided Design and Design Automation

14.2.2.1.1 Event-Based Simulation

There are four main concepts to an event-based simulator:

. Netlist, which provides the list of blocks (gates at first, but any complex function later), connections
between blocks, and delay characteristics of the blocks.

. Event time queues, which are lists of events that need to be executed (blocks that need to be
simulated) at specific points in (simulation) time. Event queues contain two types of events—
update and calculate. Update-events change the specified node to the specified value, then schedule
calculate-events for the blocks driven from that node. Calculate-events call the simulation behavior
for the specified block and, on return from the behavior routine, schedule update-events to change
the states on the output nodes to the new values at the appropriate (simulation) time

. Block Simulation Behavior (the instructions that will compute that block’s output(s) states when
there is a change to its input(s) state—possibly also scheduling some portion of the block’s behavior
to be simulated at a later time).

. Value list—the current state of each node in the design.

Simulation begins by scheduling update-events in appropriate time queues for the pattern sequence to
be simulated. After the update-events are stored, the first-time event queue is traversed and, one-by-one,
each update-event in the queue is executed. Update-events update the node in the value list and, if the
value new value is different from the current value (originally set to unknown), schedule calculate-events
for blocks driven from the updated node. These calculate-events are saved back in time queues based on
delay specifications for later execution—which will be discussed later. After all update-events are
executed and removed from the queue, the simulator selects calculate-events in the queue sequentially,
interprets its function, and passes control to the appropriate block simulation behavior for calculation.
The execution of a calculate-event causes simulation of a block to take place. This is accomplished by

passing control to the simulation behavior of the block with pointers to the current state-values on its
inputs (in the value list). When complete, the simulation routine of the block will pass control back to
the simulator with the new state condition for its output(s). The simulator then schedules the block
output(s) value update by placing an update-event for it in the appropriate time queue. The decision
of which time queue the update-events are scheduled within is based on what the delay value is for
the block.
Once all calculate-events are executed and removed from the queue, the cycle begins again at the next

time queue and the process of executing update-events followed by calculate-events for the current time
queue repeats. This cycle repeats until there are no more events or until some specified maximum
simulation time. To keep update-events separated from calculate-events within the linked-list queues, it is
common to add update-events at the top of the linked-list and calculate-events at the bottom, updating
the chain-links accordingly.
Because it is not possible to predetermine how many events will reside in a queue at any time, it is

common to create these as linked lists of dynamically allocated memory. Additionally, time queues are
linked since the required number of time queues cannot be determined in advance and similar to events,
new time queues can be inserted into that chained list as required (Figure 14.6).
A number of techniques have been developed to make queue management fast and efficient as they are

the heart of the simulator. Because of its generality, the event-based algorithm was the clear choice for
DV. One advantage of event-based simulation over the compiled approach is that it easily supports the
simulation of delay. Delays can be simulated for blocks and nets and even early simulators typically
supported a very complete delay model, even before sophisticated delay calculators were available to take
advantage of it.
Treatment of delay has had to evolve and expand since the beginnings of software DV. Unit delay was

the first model used—where each gate in the design is assigned one unit of delay and interconnect delays
are zero. This was a crude approximation, but allowed for high-speed simulations because of the

Design Automation Technology Roadmap 14-15

simplifying assumptions and it worked reasonably well. As the IC evolved, however, the unit delay model
was replaced by a lumped delay model in which, each gate could be assigned a unique value for delay—
actually, a rise-delay and a fall-delay. This was assigned by the technologist based on some average load
assumption. At this time, also, the beginnings of development of delay calculators began. These early
calculators used simple equations, adding the number of gates driven by the gate being calculated, and
then adding the additional delay to the intrinsic delay values of that gate. As interconnect wiring became
a factor in the timing of the circuit the pin-to-pin delay came into use. Though delay values used for
simulation in the 1970s was crude by today’s norm, the delay model Figure 14.7 was rich and supported
specification and simulation for

. Intrinsic block delay (Tblock)—the time required for the block output to change state relative to the
time that a controlling input to that block changed state

. Interconnect delay (Tint)—the time required for a specific receiver pin in a net to change state
relative to the time that the driver pin changed state

. Input–output delay (Tio)—the time required for a specific block output to change state relative to
the time the state changed on a specific input to that block

Today’s ICs, however, require delay calculation based on very accurate distributed RC models for
interconnects, as these delays have become more significant with respect to gate delays. Future ICs will
require even more precise modeling for delays, as will be discussed later in this chapter, and consider
inductance (L) in addition to the RC parasitics. Additionally, transmission line models will be necessary
for the analysis of certain critical global interconnects. However, the delay model defined in the
early years of DV and the capabilities of the event-based simulation algorithm stand ready to meet this
challenge.

Next time queue
Last time queue

First event
Last event

Next time queue
Previous time queue

First event
Last event

0
Previous time queue

First event
Last event

New
update-
events

added at
start of

list

Update

Update

Update

Update

Update

Update

Update

Update

Update

UpdateUpdate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

Calculate

T0

Tn

Tm

New timing queues
inserted as neededNew calculate-events

added at end of list

FIGURE 14.6 Event queues.

14-16 Computer Aided Design and Design Automation

Another significant advantage of the event-based simulation is that it easily supports simulation of
blocks in the netlist at different levels of abstraction. Recall that one of the fundamental components of
event simulation is the block simulation behavior. A calculation-event for a block passes control to the
subroutine that simulates the behavior using the block’s input states. For gate-level simulation, these
behavior subroutines are quite simple—AND, OR, NAND, and NOR. However, since the behavior is
actually a software program, it can be arbitrarily complex as well. Realizing this, early work took place to
develop description languages that could be coded by designers and compiled into block simulation
behaviors to represent arbitrary sections of a design as a single (netlist) block. For example, a block
simulation behavior might look like the following:

FUNCTION (CNOR);
=* Complimentary output NOR function with 3 inputs. Input delay¼2,

intrinsic delay for true output¼10, intrinsic delay for complement
output¼12*=

INPUT (a,b,c); =*Declare for inputs a,b,c*=
OUTPUT (x,y);
DECLARE input1, input2, input3; =*Declare storage for inputs*=
DECLARE out, cout; =*Declare storage for outputs*=

GET a,input1, b,input2, c,input3;

DELAY 2, Entry1;
Entry1: out¼input1jinput2jinput3;
cout¼:out;
DELAY 10, (x¼out); =*Schedule this update-event for 10 time units

later *=
DELAY 12 (y¼cout); =*Schedule this update-event for 12 time units

later *=
END Entry1;

ENDCNOR;

The sophisticated use of these behavioral commands supported the direct representation not only for
simple gates, but also for complex functions such as registers, MUXs, RAM, and ROS. In doing so,
simulation performance was improved because what was treated before as a complex interconnection of
gates could now be simulated as a single block.

Tblock
Tint1

Tint2

Tio1

Tio2

FIGURE 14.7 Simulation delay types.

Design Automation Technology Roadmap 14-17

By generalizing the simulator system, block simulation routines could be loaded from a library at
simulation run time only when required (by the use of a block with that function in the netlist),
and dynamically linked with the simulator control program. This meant that the block simulation
behaviors could be developed by anyone, compiled independently from the simulator, stored in a library
of simulation behavioral models, and used as needed by a simulation program. This is common
practice in DV simulators today, but this concept in the early 1970s represented a significant break-
through and supported a major paradigm shift in design—namely, the concept of top-down design
and verification.

With top-down design, the designer no longer had to design the gate-level netlist before verification
could take place. High-level (abstract) models could be written to represent the behavior of sections of the
design not yet complete in detail, and they could be used in conjunction with gate-level descriptions of
the completed parts to perform full system verification. Now, simulation performance could be improved
by use of abstracted high-speed behavior models in place of detailed gate-level descriptions for portions
of the overall design. Now, concurrent design and verification could take place across design teams. Now,
there was a formal method to support design reuse of system elements without the need to expose
internal design details for reusable elements. In the extreme case, the system designer could write a single
functional model for the entire system and verify it with simulation. The design could then be partitioned
into subsystem elements and each could be described with an abstract behavioral model before being
handed off for detailed design. During the detailed design phase, individual designers could verify their
subsystem in the full system context even before the other subsystems were completed. Also, the
behavioral model concept was particularly valuable for generation of the functional patterns to be
simulated as they could now be generated by the simulation of the other system components. Thus,
verification of the design no longer had to wait until the end, it could now be a continuous process
throughout the design.
Throughout the period, improvements were made to DV simulators to improve performance and in

the formulation and capability of behavioral description languages. In addition, designers found increas-
ingly novel ways to use behavioral models to describe full systems containing nondigital system elements
and peripherals such as I=O devices. Late in the 1970s and during the 1980s two important formal
languages for describing system behavior were developed:

. VHDL [9] (very high-speed integrated circuit [VHSIC] high-level description language), sponsored
by DARPA

. Verilog [10], a commercially developed RTL description language

These two languages are now accepted industry-standard design description languages.

14.2.2.1.2 Compiled Simulation

Synchronous design such as that used for scan-based design which emerged in the 1970s provides for a
clean separation of timing verification and functional verification of combinatorial circuits. Because of
this, the use of compiled simulation returned for high-speed verification for designs meeting constraints.
A simulation technique called cycle simulation that was developed yielded a major performance
advantage over event-based simulation. Cycle-simulation treats the combinational sections of a scan-
based design as compiled zero-delay models moving data between them at clock-cycle boundaries. The
simulator executes each combinatorial section at each simulated cycle by passing control to the compiled
routine for it along with its input states. The resulting state values at the outputs of these sections are
assumed to be correctly captured in their respective latch positions. That is, the clock circuitry and path
delays are assumed correct, and are not simulated during this phase of verification. The (latched) output
values are used as the input states to the combinatorial sections they drive at the next cycle, and the
process repeats for each simulated cycle. Each simulation pass across the compiled models represents one
cycle of the design’s system clock, starting with an input state and resulting in an output state. To assure
that only one pass is required, the gates or RTL statements for the combinational sections are levelized

14-18 Computer Aided Design and Design Automation

before compilation into the host-machine instructions. This assures that value updates occur before
calculations and only one pass across a section of the model is required to achieve the correct state
response at the outputs.
Simulation performance was greatly improved with cycle simulation because of the compiled model

and because the clock circuitry did not have to be simulated repeatably with each simulated-machine
cycle. Cycle simulation did not replace event simulation even for constrained synchronous designs as the
clock circuitry needs to be verified; however, it proved to be effective for many large systems and these
early developments provided the foundations for modern compiled simulators used today.

14.2.2.1.3 Hardware Simulators

During the 1980s, research and development took place on custom hardware simulators and accelerators.
Special-purpose hardware-simulators use massively parallel instruction processors with much custom-
ized instruction sets to simulate gates. These provide simulation speeds that are orders of magnitude
faster than the software simulation on general-purpose computers. However, they are expensive to build,
lack the flexibility of software simulators, and the hardware technology they are built in soon becomes
outdated (although general parallel architectures may allow the incremental addition of additional
processors). Hardware accelerators use custom hardware to simulate portions of design in conjunction
with the software simulator. These are more flexible, but still have the inherent problems that their big
brothers have. Nonetheless, use of custom hardware to tackle the simulation performance demands has
gained acceptance in many companies and they are commercially available today using both gate-level
and hardware description language (HDL) design descriptions.

14.2.2.2 Timing Analysis

The practice of divide and conquer in DV started in the 1970s with the introduction of the behavioral
model. Another divide-and-conquer style born in the 1970s, which achieved wide popularity in the
1990s, is to separate verification of the design’s function from its timing. With the invention of scan
design, it became possible to verify logic as a combinational circuit using high-speed compiled cycle
simulators. Development of path tracing algorithms to verify timing resulted in a technique to verify
timing without simulation; thus providing a complete solution which is not dependent on completeness
of any input stimulus as required by simulation. For this reason alone, this technique coined static timing
analysis (STA) was a major contribution to EDA—one that became key to the notion of ‘‘signoff’’ to the
wafer foundry.
STA is used to analyze projected versus required timing along signal paths from primary inputs to

latches, latches to latches, latches to primary outputs, and primary inputs to primary outputs. This is
done without the use of simulation, but by summing the min–max delays along each path. At each gate,
the STA program computes the min–max time in which that gate will change in state based on the min–
max arrival times of its input signals. STA tools do not simulate the gate function, they only add its
contribution to the path delay, although the choice of using rise or fall times for the gate is based on
whether it has a complementary output, or not. Because the circuitry between the latches is combin-
ational, only one pass needs to be made across the design. The addition can be based on the minimum
rise or fall delay for gates or both, providing a min–max analysis. The designer specifies the required
arrival times for paths at the latches or primary outputs, and the STA program compares these with the
actual arrival times. The difference between the required arrival and the actual arrival is defined as slack.
The STA tool computes the slack at the termination of each path, sorts them numerically, and provides a
report. The designer then verifies the design correctness by analysis of all negative slacks.
Engineering judgment is applied during the analysis, including the elimination of false-path conditions.

A false-path is a signal transition that will never occur in the real operation of the design. Since the STA
tool does not simulate the behavior of the circuit, it cannot automatically eliminate all false-paths.
Through knowledge of the signal polarity, STA can eliminate false-paths caused by the fan-out and
reconvergence of certain signals. However, other forms of false-paths are only identifiable by the designer.

Design Automation Technology Roadmap 14-19

14.2.2.3 Formal Verification

Development of formal methods to verify the equivalence of two different representations of a design
began during the 1970s. Boolean verification analyzes a circuit against a known good reference and
provides a mathematical proof of equivalence. An RTL model, for example, of the reference circuit is
verified using standard simulation techniques. The Boolean verification program then compiles the
known-good reference design into a canonical NAND–NOR equivalent circuit. This equivalent circuit
is compared with the gate-level hardware design using sophisticated theorem provers to determine
equivalence. To reduce processing times, formal verification tools may preprocess the two circuits to
create an overlapping set of smaller logic cones to be analyzed. These cones are simply the set of logic
traversed by backtracing across the circuit from an output node (latch positions or primary outputs) to
the controlling input nodes (latch positions or primary inputs). User controls specify the nodes that are
supposed to be logically equivalent between the two circuits.
Early work in this field explored the use of test generation algorithms to prove equivalence. Two

cones to be compared can be represented as Fcone1¼ f(a, b, c, X, Y, Z, . . .) and Fcone2¼ f(d, e, f, . . . , X0,Y0,
Z0, . . .). Fcone1 and Fcone2 are user defined output nodes to be compared for equivalence. The terms a, b, c
and d, e, f represent the set of input nodes for the function and X, Y, Z are the computational subfunctions.
User inputs define the equivalence between a, b, c and d, e, f. If Fcone1 and Fcone2 are functionally equivalent,
then the value ofGmust be 0 for all possible input states. If the two cones are equivalent then, use of D-ALG
test generation techniques for G¼ Fcone1 XOR Fcone2 will be unable to derive a test for the stuck-at-zero
fault on the output of G. Similarly, the use of random pattern generation and simulation can be applied to
prove equivalence between cones by observing the value of G for all input states.
Research during the 1980s provided improvements in Boolean equivalence checking techniques and

models (such as binary decision diagrams), and modern Boolean equivalence checking programs may
employ a number of mathematical and simulation algorithms to optimize the overall processing.
However, Boolean equivalence checking methods require the existence of a reference design against
which equivalence is proved. This implies there must be a complete validation of the reference design
against the design specification. Validating the reference design has typically been a job for simulation
and, thus, is vulnerable to the problems of assuring coverage and completeness of the simulation
experiment. Consequently, formal methods to validate the correctness of functional-level models have
become an important topic in EDA research. Modern design validation tools use a combination of
techniques to validate the correctness of a design model. These typically include techniques used in
software development to measure completeness of simulation test cases such as

. Checking for coverage of all instructions (in the model)

. Checking to assure that all possible branch conditions (in the model) were exercised

They may also provide more formal approaches to validation such as

. Checking (the model) against designer-asserted conditions (or constraints) that must be met

. Techniques that construct a proof that the intended functions are realized by the design

These concepts and techniques continue to be the subject of research and will gain more importance as
the size of IC designs stretches the limits of simulation-based techniques.

14.2.2.4 Verification Methodologies

With the use of structured design techniques, the design to be verified (Figure 14.8) can be treated as a set
of combinational designs. With the arsenal of verification concepts that began to emerge during this
period, the user had many verification advantages not previously available. Without structured design,
delay simulation of the entire design was required. Use of functional models intermixed with gate-level
descriptions of subsections of the design provided major improvements, but was still very costly and time
consuming. Further, to be safe, the practical designer would always attempt to delay simulate the entire
design at the gate level.

14-20 Computer Aided Design and Design Automation

With structured design techniques, the designer could do the massive simulations at the RTL focusing
of the logic function only, regardless of the timing. Cycle simulation improved the simulation perform-
ance by 1 to 2 orders of magnitude by eliminating repetitive simulations of the clock circuitry and use of
compiled (or table lookup) simulation. For some, the use of massively parallel hardware simulators
offered even greater simulation speeds—the equivalent of hundreds of millions events per second.
Verification of the logic function of the gate-level design could be accomplished by formally proving
its equivalence with the simulated RTL model. STA provided the basis to verify the timing of all data
paths in a rigorous and methodical manner. Functional and timing verification of the clock circuitry
could be accomplished with the standard delay-simulation techniques using event simulation. Collect-
ively, these tools and techniques provided major design productivity improvements. However, the IC
area and performance overhead required for these structured design approaches limited the number of
designs taking advantage of them. During the 1980s as the commercial EDA business developed, these
new verification tools and techniques remained as in-house tools in a few companies. Commercial
availability did not emerge until the 1990s when the densities and complexities of ICs began to demand
the change.

14.2.3 The 1980s: Birth of the Industry

Up to the 1980s design automation was, for the most part, developed in-house by a small number of large
companies for their own proprietary use. Almost all EDA tools operated against large mainframe
computers using company-specific interfaces. High-level description languages were unique and most
often proprietary, technology rule formats were proprietary, and user interfaces were unique. As
semiconductor foundries made their manufacturing lines available for customer-specific chip designs;
however, the need for access to EDA tools grew. With the expansion of the ASIC, the need for
commercially available EDA tools exploded. Suddenly, a number of commercial EDA companies
began to emerge and electronics design companies had the choice of developing tools in-house or

Mixed-level
event

simulation

Gate-level
event

simulation

Gate-level
design

RTL-model
design

Sim
vectors

Event
trace

Event
trace

Compare

RTL
cycle

simulation

Boolean
compare

Gate-level
design

RTL-model
design

Timing
analysis

Gate-level
event

simulation
of clock
circuit

Sim
vectors

Conventional verification Structured design verification

FIGURE 14.8 Verification methodology.

Design Automation Technology Roadmap 14-21

purchasing them from a variety of vendors. The EDA challenge now often became that of integrating
tools from multiple suppliers into a homogeneous system. Therefore, one major paradigm shift of the
1980s was the beginnings of EDA standards to provide the means to transfer designs from one EDA
design system to another or from a design system to manufacturing. VHDL and Verilog matured to
become IEEE industry-standard HDLs. Electronic data interchange format (EDIF) [11] was developed as
an industry standard for the exchange of netlist and GDSII (developed in the 1970s at Calma) became a
standard interface for transferring mask pattern data. (In 2003, SEMI introduced a new mask pattern
exchange standard, OASIS, that compacts mask pattern data to one-tenth or less of the bytes used
by GDSII.)
A second paradigm shift of the 1980s was the introduction of the interactive workstation as the

platform for EDA tools and systems. Although some may view it as a step backward, the ‘‘arcade’’
graphics capabilities of this new hardware and its scalability caught the attention of design managers and
made it a clear choice over the mainframe wherever possible. For a time, it appeared that many of the
advances made in alphanumeric HDLs were about to yield to the pizzazz of graphical schematic editors.
Nevertheless, although the graphics pizzazz may have dictated the purchase of one solution over another,
the dedicated processing, and the ability to incrementally add compute power made the move from the
mainframe to the workstation inevitable. Early commercial EDA entries such as from Daisy (Logician)
and Valid (SCALD) were developed on custom hardware using commercial microprocessors from Intel
and Motorola. This soon gave way, however, to commercially available workstations using RISC-based
microprocessors, and UNIX became the de facto operating system standard. During the period, there
was a rush of redevelopment of many of the fundamental algorithms for EDA onto the workstation.
However, with the development of commercial products and with the new power of high-function
graphics, these applications were vastly improved along the way. Experience and new learning stream-
lined many of the fundamental algorithms. The high-function graphic display provided the basis
for enhanced user interfaces to the applications and high-performance high-memory workstations
allowed application speeds to compete with the mainframe. The commercial ASIC business provided
focus on the need for technology libraries from multiple manufacturers. Finally, there was significant
exploration into custom EDA hardware such as hardware simulators and accelerators and parallel
processing techniques.
From an IC design perspective however, the major paradigm shift of the 1980s was synthesis. With the

introduction of synthesis, automation could be used to reduce an HDL description of the design to
the final hardware representation. This provided major productivity improvements for ASIC design, as
chip designers could work at the HDL level and use automation to create the details. Also, there was
a much higher probability that the synthesis-generated design would be correct than for manually
created schematics. The transgression from the early days of IC design to the 1980s is similar to what
occurred earlier in software. Early computer programming was done at the machine language level.
This could provide optimum program performance and efficiency, but at the maximum labor cost.
Programming in machine instructions proved too inefficient for the vast majority of software programs,
thus the advent of assembly languages. Assembly language programming offers a productivity advantage
over machine instructions because the assembler abstracts up several of the complexities of machine
language. Thus, the software designer works with less complexity, using the assembler to add the
necessary details and build the final machine instructions. The introduction of functional-level
program languages (such as FORTRAN then, and Cþþ now) provided even more productivity
improvements by providing a set of programming statements for functions that would otherwise
require many machine or assembler instructions to implement. Thus, the level at which the
programmer could now work was even higher, allowing him=her to construct programs with far
fewer statements. The analog in IC design is the progression of transistor-level design (machine
level), to gate-level design (assembler level), to HDL-based design. Synthesis provided the basis
for HDL-based design and its inherent productivity improvements, and major changes to IC
design methodologies.

14-22 Computer Aided Design and Design Automation

14.2.3.1 Synthesis

Fundamentally, synthesis is a three-step process:

. Compile an HDL description of a design into an equivalent NAND–NOR description

. Optimize the NAND–NOR description based on design targets

. Map the resulting NAND–NOR description to the technology building blocks (cells) supported for
the wafer foundry (process) to be used

Although work on synthesis techniques has occurred on and off since the beginnings of design
automation and back to Transistor–Transistor Logic (TTL)-based designs, it was not until gate array
style ICs reached a significant density threshold that it found production use. In the late 1970s and 1980s,
considerable research and development in industry and universities took place on the high-speed
algorithms and heuristics for synthesis. In the early 1980s, IBM exploited the use of synthesis on the
ICs used in the 3090 and AS400 computers. These computers used chips that were designed from
qualified sets of predesigned functions interconnected by personalized wiring. These functions (now
called cells) represented the basic building blocks for each specific IC family. The computers used a high
number of uniquely personalized chip designs so it was advantageous to design at the HDL level and use
automation to compile to the equivalent cell-level detail. The result was significant improvements to the
overall design productivity.
Today, synthesis is a fundamental cornerstone of the design methodology (Figure 14.9) for ASICs

supporting both VHDL and Verilog as the standard input. As the complexities of IC design have
increased, so have the challenges for synthesis. Early synthesis had relatively few constraints to be
observed in its optimization phase. Based on user controls, the design was optimized for minimum
area, minimum fan-out (minimum power), or maximum fan-out (maximum performance). This was
accomplished by applying a series of logic reduction algorithms (transforms) that provide different types
of reduction and refinement [12]. Cell behavior could also be represented in primitive-logic equivalent
form and a topological analysis could find matches between the design gate patterns and equivalent cells.

Conventional design Structured design

RTL-model
design

Mixed-level
event

simulation

Sim
vectors

Synthesis

Gate-level
event

simulation

Event
trace

Compare

Event
trace

Gate-level
event

simulation
of clock
circuit

Synthesis

Timing
analysis

RTL
cycle

simulation

RTL-model
design

Sim
vectors

FIGURE 14.9 Synthesis methodology.

Design Automation Technology Roadmap 14-23

The mapping phase would then select the appropriate cells based on function and simple electrical and
physical parameters for each cell in the library such as drive strength and area. Previously, synthesis was
not overly concerned with signal delays in the generated design nor for other electrical constraints that
the design may be required to meet. As IC feature sizes decreased, however, these constraints became
critical in synthesis and automation became required to consider them in its solution.
The design input to modern synthesis tools is not the functional HDL design alone, but now includes

constraints such as the maximum allowed delay along a path between two points in the design. This
complicates the synthesis decision process as it must now generate a solution that meets the required
function with a set of cells and interconnections that will fall within the required timing constraints.
Therefore, additional trade-offs must be made between the optimization and mapping phases, and the
effects of interconnection penalty need to be considered. Additionally, synthesis must now have tech-
nology characteristics available to it such as delay for cells and wiring. To determine this delay it is
necessary to understand the total load seen by a driver cell as a result of the input capacitance of the cells
it drives and the RC parasitics on the interconnect wiring. However, the actual wiring of the completed
IC is not yet available (since routing has not taken place) and estimates for interconnect parasitics must
be made. These are often based on wire load models that are created from empirical analysis of other chip
designs in the technology. These wire load models are tables that provide an estimate of interconnect
length and parasitic values based on the fan-out and net density.
As interconnect delay became a more dominant portion of path delay it became necessary to refine the

wire load estimations based on more than total net count for the chip. More and more passes through the
synthesis-layout design loop became necessary to find a final solution that achieved the required path
delays. The need for a new design tool in the flow became apparent as this estimation of interconnect
delay was too coarse. The reason is that different regions on a typical chip have different levels of real
estate (block and net) congestion. This means that wire load estimates differ across different regions on
the chip because the average amount of wiring length for a net with a given pin count differs with the
region. Conversely, the actual placement of cells on the chip effect the congestion and therefore, the
resulting wire load models. Consequently, a new tool, called floor planning, was inserted in the flow
between synthesis and layout.

14.2.3.2 Floor Planning

The purpose of floor planning is to provide a high-level plan for the placement of functions on the chip,
which is used to both refine the synthesis delay estimations and direct the final layout. In effect, it inserts
the designer into the synthesis-layout loop by providing a number of automation and analysis functions
used to effectively partition and place functional elements on the chip. As time progressed, the number of
analysis and checking functions integrated into the floor planner grew to a point where today, it is more
generally thought of as design planning [13]. The initial purpose of the floor planner was to provide the
ability to partition the chip design functions and develop a placement of these partitions that optimized
the wiring between them. Optimization of the partitioning and placement may be based on factors such
as minimum wiring or minimum timing across a signal path. A typical scenario for the use of a design
planner is as follows:

. Run synthesis on the RTL description and map to the cell level.

. Run the design planner against the cell-level design with constraints such as path delays and net
priorities.
. Partition and floor plan the design, either automatically or manually, with the design planner.
. Create wire load models based on the congestion within the physical partitions and empirical

data.
. Rerun synthesis to optimize the design at the cell level using the partitioning, global route, and wire

load model data.

14-24 Computer Aided Design and Design Automation

User-directed graphics and autoplacement-wiring software algorithms are used to place the partitions
and route the interpartition (global) nets. One key to the planner is the tight coupling of partitioning and
routing capability with electrical analysis tools such as power analysis, delay calculation, and timing
analysis. Checking of the validity of a design change (such as placement) can be made immediately on
that portion of the design that changed. Another key is that it needs to be reasonably tightly connected to
synthesis, as it is typical to pass through the synthesis-planner-synthesis loop a number of times before
reaching a successful plan for the final layout tools.
After a pass in the floor planner, more knowledge is available to synthesis. With this new knowledge,

the optimization and mapping phases can be rerun against the previous results to produce a refined
solution. The important piece of knowledge now available is the gate density within different functions in
the design (or regions on the chip). With this, the synthesis tool can be selective about which wire load
table to use and develop a more accurate estimate of the delay resulting from a specific solution choice.
Floor planning has been a significant enhancement to the design process. In addition to floor planning,

modern design planners include support for clock tree, design power, bus design, I=O assignment, and a
wealth of electrical analysis tools. As will be discussed later, semiconductor technology trends will place
even more importance on the design planner and dictate an ever-tightening integration between it with
both synthesis and PD. Today, synthesis, design planning, and layout are three discrete steps in the
typical design flow. Communication between these steps is accomplished by file-based interchange of the
design data and constraints. As designs become more dense and with the growing complexities of
electrical analysis required, it will become necessary to integrate these three steps into one tight process
as are the functions within the modern design planners.

14.2.4 The 1990s: The Age of Integration

Before EDA tools were commercially available, software architecture standards could be established to
assure smooth integration of the tools into complex EDA systems supporting the entire design flow.
Choice of languages, database and file exchange formats, host hardware and operating systems, and user
interface conventions could be made solely by the developing company. Moreover, the need for
comprehensive EDA systems supporting the entire flow through design and manufacturing release in a
managed process is of paramount importance. Design of ICs with hundreds of thousands of gates
(growing to hundreds of millions) across a design team requires gigabytes of data contained within
thousands of files. All these data must be managed and controlled to assure its correctness and
consistency with other design components. Design steps must be carried out and completed in a
methodical manner to assure correctness of the design before release to manufacturing. The EDA system
that encompasses all of this must be efficient, effective, and manageable. This was always a challenge for
EDA system integrators, but the use of EDA tools from multiple external vendors compounded the
problem. EDA vendors may develop their tools to different user interfaces, database and file formats,
computer hardware, and operating systems. In turn, it is the EDA system integrator who must find a way
to connect them in a homogeneous flow that is manageable, yet provides the necessary design efficiency
across the tools. By the late 1980s it was said that the cost to integrate an EDA tool into the in-house
environment was often over twice that of the tool itself. Consequently, the CAD Framework Initiative
(CFI) was formed whose charter was to establish software standards for critical interfaces necessary for
EDA tool integration. Thus began the era of the EDA Framework.
The EDA Framework [14] is a layer of software function between the EDA tool and the

operating system, database, or user. For this software layer CFI defined a set of functional elements,
each of which had a standard interface and provided a unique function in support of communication
between different tools. The goal was to provide EDA system integrators with the ability to choose
EDA tools from different vendors and be able to plug them into a homogeneous system to provide
an effective system operation across the entire design flow. The framework components included

Design Automation Technology Roadmap 14-25

. Design information access—a formal description of design elements and a standard set of software
functions to access each, called an application program interface (API)

. Design data management—a model and API to provide applications the means to manage
concurrent access and configuration of design data

. Intertool communication (ITC)—an API to communicate control information between applica-
tions and a standard set of controls (called messages)

. Tool encapsulation specification (TES)—a standard for specifying the necessary information
elements required to integrate a tool into a system such as input files and output files

. Extension language (EL)—specification of a high-level language that can be used external to the
EDA tools to access information about the design and perform operations on it

. Session management—a standard interface used by EDA tools to initiate and terminate their
operation and report errata

. Methodology management—APIs used by tools so that they could be integrated into software
systems to aid the design methodology management

. User interface—a set of APIs to provide consistency in the graphical user interface (GUI)
across tools

Each of these functional areas needs to be considered for integration of EDA tools and to provide
interoperability between them. In its first release, CFI published specifications for design representation
(DR) and access, ITC, TES, and EL. Additionally, the use of MOTIF and X-Windows as specified as the
GUI toolkit. However, for many practical, business, and human nature reasons, these standards did not
achieve widespread adoption across the commercial EDA industry and the ‘‘plug-and-play’’motto of CFI
was not realized. However, the early work at CFI did serve to formalize the science of integration and
communication, and a number of the information models developed for the necessary components are
used today, but often, slightly modified and within a proprietary interface.
As learned, it was not only expensive to change EDA tools to use a different internal interface or data

structures, but it was also not considered good business to allow tools to be integrated into commercial
system offerings from competitors. For a period, several framework offerings became available, but these
quickly became the product end in themselves rather than a means to an end. These products were
marketed as a means to bring outside EDA tools into the environment, but few vendors modified their
tools to support this by adopting the CFI specifications. Instead, to meet the need for tool integration, the
commercial industry focused on data flow only and chose an approach that provides communication
between tools by standard data file formats and sequential data translation. Consequently, EDA flows of
the 1990s were typically a disparate set of heterogeneous tools stitched together by the industry-standard
data files. These files are created from one tool and translated by another tool (within the design flow) to
its internal data structures. Many of these formats evolved from proprietary formats developed within
commercial companies that were later transferred or licensed for use across the industry. Common EDA
file formats that evolved were

. Electronic data interchange format (EDIF)—netlist exchange (EIA ! IEC)

. Physical data exchange format (PDEF)—floor plan exchange (Synopsys ! IEEE)

. Standard delay file (SDF)—delay data exchange (Cadence Design Systems ! IEEE)

. Standard parasitic exchange file (SPEF)—parasitic data exchange (Cadence Design Systems !
IEEE)

. Library exchange file (LEF)—physical characteristics information for a circuit family (Cadence!
OpenEDA)

. Data exchange format (DEF)—physical data exchange (Cadence ! OpenEDA)

. Library data format (.lib)—ASIC cell characterization (Synopsys)

. ASIC library format (ALF)—ASIC cell characterization (Open Verilog International)

. VISIC high-level design language (VHDL)—behavioral design description language (IEEE)

. Verilog—RTL design description language (Cadence Design Systems ! IEEE)

14-26 Computer Aided Design and Design Automation

These ‘‘standard’’ formats have provided the desired engineering and business autonomy necessary to
get adoption and their use across the industry has improved the ability to integrate tools into systems
drastically compared with the 1980s. It has proved to be an effective method for the design of today’s
commodity ICs above 0.25 mm. However, the inherent ambiguities, translation requirements, rapidly
increasing file sizes (owing to increasing IC density), and the fundamental nonincremental sequential
nature of design flows based on them will soon give way to IC technology advances.

14.3 The Future

It may be said that the semiconductor industry is the most predictable industry on earth. Whether it was
an astute prediction or the cause, the prediction of Gordon Moore (now known as Moore’s Law) has held
steadily over the past two decades. Every 18 months, the number of transistors or bits on an IC doubles.
To accomplish this, feature sizes are shrinking, spacing between features is shrinking, and chip die sizes
are increasing. In addition, the fundamental physics that govern the electrical properties of these devices
and between them has been documented in electrical engineering textbooks for some time. However,
there are points within this progression where paradigm shifts occur in the elemental assumptions and
models required to characterize these circuits, and where fundamental EDA design and analysis must
change. Earlier, we discussed paradigm shifts in DV because of the inability to repair. We also discussed
shifts resulting from the number of elements in a design versus the necessary tool performance and
designer productivity. Through the past three decades, we have seen shifts in test, verification, design
abstraction, and design methodologies. When the 0.25 mm node was passed, another paradigm shift
was required. Feature packing, decreased rise times, increased clock frequencies, increased die sizes,
and the explosion of the number of switching transistors are all interacting to place new demands of
models, tools, and EDA systems. After that and including the present, new challenges came about in
design tools, rules, systems, and schools for problematic areas of delay, signal integrity, power, test,
and manufacturability.

14.3.1 International Technology Roadmap for Semiconductors

SEMATECH periodically publishes a report called the International Technology Roadmap for Semi-
conductors [15] (ITRS). This report is jointly sponsored by the European Semiconductor Industry
Association, Japan Electronics and Information Technology Industries Association, Korea Semi-
conductor Industry Association, Taiwan Semiconductor Industry Association, and the Semiconductor
Industry Association. The objective of the ITRS ‘‘is to ensure advancements in the performance of
integrated circuits.’’ Thus ITRS characterizes planned semiconductor directions and advances across
the next decade and the necessary technology advancements in areas including

. Design and test

. Process integration devices and structures

. Front-end (manufacturing) processes

. Lithography

. Interconnect

. Factory integration

. Assembly and packaging

. Environment, safety, and health

. Defect reduction

. Metrology

. Modeling and simulation

ITRS provides a wealth of information on the semiconductor future as well as the problematic areas
that will arise and areas where inventive new technology will be required. Some relevant ITRS-projected

Design Automation Technology Roadmap 14-27

semiconductor advancements for MPU=ASIC ICs are shown in Table 14.1 and compared with previous
ITRS numbers for year 2001. The reader is encouraged to study the technology characteristics in the
ITRS, as the following is just a summary of certain points for the purpose of illustration.
To understand some of the implications of the ITRS data, it is convenient to review the effects of

scaling on a number of electrical parameters [16]. Gate delay is a function of the gate capacitance and
transistor resistance. The gate capacitance (C¼ k«oA=Tgox) is a function of the gate area (A), and
the gate-oxide thickness (Tgox). Assuming ideal scaling (all features scale down in direct proportion to
the change in transistor size), gate capacitance scales in direct proportion to transistor-size scaling
(DSize) since

DCgate / DWgateDLgate
� �

=DTgox

therefore

DCgate / DSize

The transistor resistance (Rtr) is proportional to supply voltage and inversely proportional to current
both of which scale down proportionally, so the Rtr is constant. Thus, the gate delay (Dgate) decreases in
direct proportion to DSize since

Dgate ¼ RtrCgate,

therefore

DDgate / 1*DSize ¼ DSize

Thus, gate delays scale down in proportion to feature size. However, the effects of interconnect delay
must be considered to understand the impact of scaling on timing. For Rint<Rtr interconnect effects have
little affect on signal path timing. As Rint increases, however, delay analysis must also take into account
the interconnect parasitics.
Interconnect delay is a function of the RC-time constant, which is a result of resistance and distributed

capacitance of the interconnect. Assuming ideal scaling, the interconnects’ cross-sectional area scales in
direct proportion to DSize.
Interconnect resistance is proportional to the length and inversely proportional to the cross-sectional

area of the interconnect. Since

Rint / Lint= WintHintð Þ,

TABLE 14.1 2004 ITRS Microprocessor Roadmap

Characteristic 2001 2004 2007 2010 2013 2016

Transistor gate length (nm) 90 53 35 25 18 13

Chip size (mm2) 310 310 310 310 310 310

Million transistors=mm2 0.89 1.78 3.57 7.14 14.27 28.54

Million transistors=chip 276 553 1106 2212 4424 8848

Wire pitch (nm), metal 350 210 152 104 76 54

Clock frequency (GHz) (on-chip) 1.684 4.171 9.285 15.079 22.980 39.683

Supply voltage (V) (low power) 1.1 0.9 0.8 0.7 0.6 0.5

Maximum power (W) (high-performance) 130 158 189 198 198 198

14-28 Computer Aided Design and Design Automation

therefore

DRint / Lint=DSize
2

where, Lint, Hint, and Wint are the length, height, and width of the interconnect, respectively.
The self-capacitance (Cself¼ k«oA=t) of the interconnect is proportional to its plate area (A¼Wint Lint)

and inversely proportional to dielectric layer thickness (t). Assuming ideal scaling for t,

DCself / DLintDSize=DSize

therefore

DCself / DLint

The resulting interconnect RC constant, therefore, scales as

DRintDCself / DLint=DSize
2

� �
DLintð Þ ¼ DL2int=DSize

2

For local nets the interconnect length (Lint) scales with DSize thus, the RC constant remains relatively
constant

D RintCselfð Þlocal/ DL2int=DSize
2 ¼ DSize2=DSize2 ¼ 1

Local interconnect delay does not scale down in proportion to gate delay on successive technology
generations. Therefore, its relative impact on the overall timing across a signal path is increasing in
importance.
For global nets, the interconnect length does not scale down with the feature size. Here, the die size

(Sdie) is the more predominant determinant. Therefore, the RC constant for global nets scales as

D RintCselfð Þgobal/ DL2int=DSize
2 ¼ 1=DSize2

Global interconnect delay increases in indirect proportion to gate delay for successive technology
generations. Thus, global interconnect routing and delay analysis has become a critically important
area for EDA.
For complete analysis on interconnect delay, the cross-coupling effect of closely spaced features on the

chip must also be considered. Capacitance results whenever two conducting bodies are charged to
different electric potentials and may be viewed as the reluctance of voltage to build or decay quickly in
response to injected power. The self-capacitance between the interconnect surfaces and ground is only
a part of the overall capacitance to be considered. Another important consideration is the mutual
capacitance between interconnects in close proximity. To get an accurate measure of the total capacitance
along any interconnect it is necessary to consider all conducting bodies within a sufficiently close
proximity. This includes not only the ground plane, but also adjacent interconnects as there is a
mutual capacitance between these. This mutual capacitance is a function of interconnect sidewall area,
the distance between it and adjacent interconnects, and the dielectric constant of the dielectric
separating them.
Figure 14.10 depicts three equally spaced adjacent interconnect wires on a signal plane. An approxi-

mate formula for the capacitance [17] of the center wire is

C ¼ self -capacitanceþmutual capacitance ¼ Cint-ground þ 2Cm

Design Automation Technology Roadmap 14-29

The mutual capacitance is a function of the plate area along the sides of the interconnects and the spacing
between them and may be simply approximated as

Cm ¼ keoLintHint=Sint

where Sint is the distance between the interconnects.
Therefore (for a constant k-value), the change in mutual capacitance as a function of ideal scaling

is given by

DCm(Local) / DSize2=DSize ¼ DSize and DCm(Global) / DSize=DSize ¼ 1

Thus, mutual capacitance for local interconnects scales with feature size, while for global interconnects, it
does not. Because of increased frequencies, electrical cross talk effects between interconnects must be
considered. Further, mutual capacitance between only adjacent interconnects may not be complete. Full
analysis may require consideration of all interconnects within a sphere around the interconnect being
analyzed or even on wiring layers above or below.
Noise is the introduction of unwanted voltage onto a signal line, and is proportional to mutual

capacitance between them and inversely proportional to the rate at which the voltage potential between
them changes. Therefore, because the full effect of mutual capacitance is also a function of the voltage
potential between interconnects (Miller effect) analysis of the simultaneous signal transitions on each
becomes an important consideration for delay. Mutual capacitance injects current into adjacent (victim)
signal lines proportional to the rate of change in voltage on the exciting (aggressor) signal line. The
amount of induced current can be approximated by the following equation [18]:

ImC ¼ Cm dVaggressor=dt
� �

The amount of noise induced onto the victim net is proportional to the resistance on the victim net and
the mutual capacitance, and inversely proportional to the rise time (tr) of the aggressor waveform:

VmC ¼ ImZvictim ¼ Cm DVaggressor=tr
� �

Rvictim

Noise can increase or even decrease [19] the signal delay on the victim net. Voltage glitches induced
can also give rise to faulty operation in the design (e.g., if the glitch is of sufficient amplitude and duration
to cause a latch to go to an unwanted logic state.

Cint-ground

tox

Hint

sint

Cm

sint

Wint

Cm

Lint

FIGURE 14.10 Mutual capacitance.

14-30 Computer Aided Design and Design Automation

Inductance can also cause noise when large current changes occur in very short times according
to the following relationship:

VL ¼ L(dl=dt)

Sudden changes in large amounts of current can be seen on the power grid resulting from a large number
of circuits switching at the same time. The inductance in the power grid and this large current draw over
short periods of time (di=dt) results in a self-induced electromagnetic force whose voltage is equal to
Ldi=dt. This induced voltage causes the power supply level to drop, resulting in a voltage glitch that is
proportional to the switching speed, the number of switching circuits, and the effective inductance in the
power grid.

14.3.2 EDA Impact

Scaling effects have impact on EDA beyond delay and timing, and the list of DFx (design-for-x) topics is
increasing beyond design-for-test and design-for-timing (closure). Scaling down Vdd decreases power for
a transistor, but the massive scaling up of total transistors on the IC dictates extensive analysis of high
currents and leakage (design for power). Lithographic limitations (discussed later) now require consid-
eration of diffraction physics (design for manufacturability [DFM]). Further, while the design complex-
ities owing to electrical effects such as these are increasing, the number of circuits on the IC continues to
increase. The fundamental challenge for EDA is more analysis on many more circuit elements with no
negative effect on design cycle times.

14.3.2.1 EDA System Integration

It is now necessary to use EDA applications with increased accuracy and scope for electrical analysis to
assure that designs will meet intended specifications and to integrate EDA design flows in ways that
contain design cycle times. EDA systems must now take a data-centric view of the design process as
opposed to the tool-centric view of the past. Data must be organized and presented in ways that allow
EDA to exploit: abstraction and hierarchy, shared access by design tools, incremental processes (whereby
only portions of a design that have changes need be reanalyzed), and concurrent execution of design and
analysis tools within the design flow.
EDA systems have evolved or are evolving toward integration and database technology that meets the

above requirements to one degree or another. EDA systems have evolved from vendor-specific sets of
design and analysis applications supporting data exchange between custom, often proprietary, file
formats to systems that support interchange between vendors through industry-standard files. Over
the past decade they have moved toward systems of applications communicating through vendor-specific
integrated database technology supporting intersystem exchange via the same industry-standard files.
Because of the increasing need for new and additional EDA applications companies performing IC
design continue to require the ability to use EDA applications from many vendors and develop flows that
provide efficient and complete intervendor integration. With increasing feature counts and complexities
for successive technology generations, this dictates the need to reduce the overhead and possible data loss
caused by file-based interchange (Figure 14.11). In 2000, a multicompany effort under Si2 was initiated
to develop an industry-open data model that could be used by commercial EDA companies and for
university research and (EDA customer) proprietary EDA development. This effort resulted in the
publication of an EDA data model specification, which includes an application program software
interface, and development of a production-quality reference database that is compliant with that
specification. Collectively, this specification and database is called OpenAccess (see www.si2.org) and
was made available to the industry in 2003 on a royalty-free basis. OpenAccess has an excellent chance
of being the foundation on which the next point of EDA systems’ evolution will be founded. At that

Design Automation Technology Roadmap 14-31

point, highly efficient EDA flows will be built using EDA tools from multiple sources and integrated
around a single database meeting the fundamental requirements mentioned above.

14.3.2.2 Delay

Simplifying assumptions and models for delay have provided the foundation for high-speed event-driven
delay simulation since its initial use in the 1970s. More accurate waveform simulation such as that
provided by SPICE implementations has played a crucial role in the characterization of IC devices during
over three decades and continues to do so. SPICE-level simulations are important for characterization
and qualification of ASIC cells and custom macros of all levels of complexity. However, the run times
required for this level of device modeling are too large to support its use across the entire ICs. SPICE is
often used to analyze the most critical signal paths, but SPICE-level simulation on circuits with hundreds
of millions of transistors is not practical today. Consequently, simulation and STA at the abstracted gate-
level, or higher, is essential for IC timing analysis. However, simplifying models used to characterize delay
for discrete-event simulation and STA have become more complex as feature sizes on ICs have shrunk,
and the importance of interconnect resistance and cross talk increased. In the future, these models will
need to improve even more (Figure 14.12).
When ICs were considerably >1 mm, gate delay was the predominant factor in determination of

timing. Very early simulation of TTL used a simple model which assigned a fixed unit of delay to each
gate and assumed no delay across the interconnects. Timing was based only on the number of gates
through which a signal traversed along its path. As LSI advanced delay was based on a foundry-specified
gate delay value (actually a rise delay and a fall delay) that was adjusted based on the capacitive load of

Tool 1

Time

Tool 2

Tool 1

Tool 1

Tool 1 Tool 1

Tool 1

Tool 2

Tool 3

Tool 4

Engine A Engine B

Tool 4

Tool 3
Tool 5

Tool 5

Tool 6

Tool 7

DB2DB1

e.g., EDIF e.g., SDF

Standard
file 1

Standard
file 1

Standard
file 1

Standard
file 2

Standard
file 2

Standard
file 1

FIGURE 14.11 EDA system architecture progression.

14-32 Computer Aided Design and Design Automation

the gates it fanned out to (receiver gates). At integration levels above 1 mm, the load seen by a gate was
dominated by the capacitance of its receivers, so this delay model was sufficiently accurate. As feature
sizes crossed below 1 mm, however, the parasitic resistance and capacitance along the interconnects
became a significant factor. More precise modeling of the total load effect on gate delay and interconnect
delay had to be taken into account. By 0.5 mm the delay attributed to global nets almost equaled that of
gates, and by 0.35 mm the delay attributed to short nets equaled the gate delay.
Today, a number of models are used to represent the distributed parasitics along interconnects using

lumped-form equations. The well-known p-model, for example, is a popular method to model these
distributed RCs. Different degrees of accuracy can be obtained by adding more sections to the equivalent-
lumped RC model for interconnect.
As the importance of timing-driven design tools grows, integration of multiply sourced design tools

into an EDA flow becomes problematic. As more EDA vendors use custom built-in models for
computation of gate and interconnect delays, the calculated values may differ across different design
tools. This results in difficult and time-consuming analysis on the designers’ part to correlate the different
results. In mid-1994, an industry effort began to develop an open architecture supporting common delay-
calculation engines [20]. The goal of this effort was to provide a standard language usable by ASIC
suppliers to specify the delay calculation models and equations (or table lookups) for their technology
families. In this way, the complexities of deciding appropriate models to be used to characterize circuit
delay and the resulting calculation expressions could be placed in the hands of the semiconductor
supplier rather than across the EDA vendors. These models could then be compiled into a form that
could be directly used by any EDA application requiring delay calculation and in a way that would
protect the intellectual property contained within them. By allowing the semiconductor supplier to
provide a single software engine for the calculation of delay, all applications in the design flow could
provide consistency in the computed results. The Delay Calculation Language (DCL) technology,
originally developed by IBM Corporation, was contributed to industry as the basis for this. Today,

C

Rtr

Rtr

Rtr

Rtr

CLtot

CL1

CL2

CL1

CL2

CL1

CL2

Distributed C

Distributed RC

Transmission line

FIGURE 14.12 Delay models.

Design Automation Technology Roadmap 14-33

DCL has been extended to cover power calculation in addition to delay and it has been ratified by the
IEEE as an open industry standard (Delay and Power Calculation System [DPCS], IEEE 1481–1999). For
a number of technical and business reasons, adoption of this standard has failed to take hold. Although
release and adoption of the Synopsys.lib format, used to provide technology parameters used by delay
calculation in a standard form, greatly improved this situation, problems with accuracy and consistency
of delay calculation remain. To that end, a renewed interest in developing an industry-wide solution
came about in 2005 and the Open Modelling Coalition (OMC) has been formed under Si2 to readdress
the challenge with industry partners.
At 0.25 mm, cross talk noise resulting from mutual capacitance between signal lines begins to have a

significant effect on delay. At this technology generation, it became necessary to consider effects of
mutual capacitance between interconnects. Today, sophisticated extraction tools must analyze the
proximity of features (including wires, vias, and pads) and properties of dielectrics between them. In
addition, EDA design and analysis applications must account for mutual parasitics and cross talk. This is
an important element of layout, parasitic extraction, delay calculation, and timing analysis. Further, the
development of wafer fabrication techniques such as dielectric air gaps to reduce effective k-values will
bring further challenges to EDA.
With future technology generations, more sophisticated models that consider inductance may also

become necessary. Distributed RC models used to characterize delay are very accurate approximations so
long as the rise time (tr) of the signals is much larger than the time-of-flight (tof) across the interconnect
wire. As the transistor size scales down, so do the signal rise times. As tr approaches tof, transmission line
analysis may be necessary to accurately model timing. Between these points is a gray area where
transmission line analysis may be necessary depending on the criticality of the timing across a particular
path. Published papers [21,22] address the question of where this level of analysis is important and the
design rules to be considered for time-critical global lines. For future EDA systems, this means more
complexities in the design and analysis of circuits. Extraction tools will then need to derive inductance of
interconnects so that the effects of the magnetic fields surrounding these lines can be factored into the
delay calculations. Effects of mutual inductance also becomes important, particularly along the power
lines which will drive large amounts of current in very short times (e¼ L di=dt). Design planners and
routers will need to be aware of these effects when designing global nets and power bus structures.

14.3.2.3 Test

Manufacturing test of ICs today is becoming a heuristic process involving a number of different strategies
in combination to assure coverage and maximize generation costs and throughput at the tester. Today, IC
test employs the use of one or more of the following approaches:

. Static stuck-at fault test using stored program testers: The test patterns may be derived algorith-
mically or from random patterns and the test is based on final steady-state conditions independent
of arrival times. The goal of stuck-at fault test is to achieve 100% detection of all stuck-at faults
(except for redundancies and certain untestable design situations that can result from the design).
Algorithmic test generation for all faults in general sequential circuits is often not possible, but test
generation for combinational circuits is. Therefore the use of design-for-test strategies (such as scan
design) is becoming more accepted.

. Delay (at-speed) test: Patterns for delay testing may be algorithmically generated or functional
patterns derived from DV. The tester measures output pins for the logic state at the specified time
after the test pattern is applied.

. BIST: BISTs are generated at the tester by the device under test and output values are captured in
scan latches for comparison with simulated good-machine responses. BISTs tests may be exhaust-
ive or random patterns and the expected responses are determined by simulation. BIST requires
special circuitry on the device-under-test (LFSR and scan latches) for pattern generation and result

14-34 Computer Aided Design and Design Automation

capture. To improve tester times, output responses are typically compressed into a signature
and comparison of captured results and simulated results is made only at the end of sequences
of tests.

. Quiescent current test (IDDQ): IDDQ measures quiescent current draw (current required to keep
transistors at their present state) on the power bus. This form of testing can detect faults not
observable by stuck-at fault tests (such as bridging faults) that may cause incorrect system
operation.

Complicated semiconductor trends that will affect manufacturing test in the future are the speed at
which these future chips operate and the quiescent current required for the large density of transistors on
the IC. To perform delay test, for example, the tester must operate at speeds of the device-under-test.
That is, if a signal is to be measured at a time n after the application of the test pattern, then the tester
must be able to cycle in n units of time. It is possible that the hardware costs required to build testers that
operate at frequencies above future IC trends will be prohibitive. IDDQ tests are a very effective means to
quickly identify faulty chips as only a small number of patterns are required. Further, these tests find
faults not otherwise detected by stuck-at fault test. Electric current measurement techniques are far more
precise than voltage measurements. However, the amount of quiescent current draw required for the
millions of transistors in future ICs may make it impossible to detect the small amount of excess current
resulting from small numbers of faulty transistors. New inventions and techniques may be introduced
into the test menu. However, at present it appears that in the future manufacturing test must rely on
static stuck-at fault tests and BIST. Therefore, it is expected that more and more application of scan
design will be prevalent in future ICs.

14.3.2.4 Design Productivity

The ITRS points out that future ICs will contain hundreds of millions of transistors. Even with the
application of the aforementioned architectural features and new and enhanced EDA tools, it is unclear
that design productivity (number of good circuits designed per person year) will be able to keep pace with
semiconductor technology capability. Designing and managing anything containing over 100,000,000
subelements is almost unthinkable. Doing it right and within the typical 18-month product cycles of
today seems impossible. Yet, if this is not accomplished, semiconductor foundries may run at less than
full production, and the possibility of obtaining returns against the exorbitant capital expenditures
required for new foundries will be low. Ultimately, this could negate the predictions in the ITRS.
Over the history of IC design, a number of paradigm shifts enhanced designer productivity, the most

notable being high-level design languages and synthesis. Use of design rules such as LSSD to constrain
the problem has also represented productivity advances. Algorithm advances and faster processing
computers will necessarily play a crucial role, as the design cycle time is a function of computer resources
required. Many of the EDA application algorithms, however, are not linear with respect to design size
and processing times can increase as an exponential function of transistors. Therefore exploitation of
hierarchy, abstraction, shared, incremental, and concurrent EDA system architectures will play an
important role to overall productivity. Even with all of this, there is a major concern that industry will
not be able to design a sufficient number of good circuits fast enough. Consequently, there is a major
push in the semiconductor industry toward design reuse. There is a major activity in the EDA industry
(Virtual Sockets Interface Alliance [VSIA] www.vsia.org) to define the necessary standards, formats, and
test rules to make design reuse a reality with ICs.
Design reuse is not new to electronic design or EDA. Early TTL modules were an example of reuse, as

are standard cell ASICs and PCB-level MSI modules. With each, the design of the component is done
once, then qualified, then reused repeatedly in application-specific designs. Reuse is also common where
portions of a previous design are carried forward to a new system or technology node, and where a
common logical function used multiple times across the system. However, the ability to embed

Design Automation Technology Roadmap 14-35

semiconductor designs qualified for one process into chips manufactured on another, or for which the
logical design was developed by one company to be used by another one results in new and unique
challenges. This is the challenge that the VSIA is addressing.
The VSIA has defined the following three different types of reusable property for ICs:

1. Hard macros: These functions have been designed and verified, and have a completed layout. They
are characterized by being a technology-fixed design and a mapping of manufacturing processes is
required to retarget them to another fabrication line. The most likely business model for hard
macros is that they will be available from the semiconductor vendor for use in application-specific
designs being committed to that supplier’s fabrication line. In other words, hard macros will most
likely not be generally portable across foundries except in cases where special business partnerships
are established. The complexities of plugging a mask-level design for one process into another
process line are a gating factor for further exploitation at present.

2. Firm macros: These can be characterized as reusable parts that have designed down to the cell level
through partitioning and floor planning. These are more flexible than hard macros since they are
not process dependent and can be retargeted to other technology families for manufacture.

3. Soft macros: These are truly portable design descriptions, but are only completed down through
the logical design level. No technology mapping or PD is available.

To achieve reuse at the IC level, it will be necessary to define or otherwise establish a number of
standard interfaces for design data. The reason for this is that it will be necessary to integrate design data
from other sources into the design and EDA system being used to develop the IC. VSIA was established
to determine where standard interfaces or data formats are necessary and choose the right standard. For
soft macros these interfaces will need to include behavioral descriptions, simulation models, and timing
models. For firm macros the scope will additionally include cell libraries, floor plan information, and
global wiring information. For hard macros GDSII may be supplied.
To reuse designs that were developed elsewhere (hereafter called intellectual property [IP] blocks), the

first essential requirement is that the functional and electrical characteristics of the available IP blocks be
available. Since internal construction of firm and hard IP may be highly sensitive and proprietary, it will
become more important to describe the functional and timing characteristics at the I=Os. This will drive
the need for high-level description methods such as use of VHDL behavioral models, DCL, I=O Buffer
Information Specification (IBIS) models, and dynamic timing diagrams. Further, the need to test these
embedded IP blocks will mandate more use of scan-based test techniques such as Joint Test Action
Group (JTAG) boundary scan. Standard methods such as these for encapsulating IP blocks will be of
paramount importance for broad use across many designs and design systems.
There are risks, however, and reuse of IP will not cover all design needs. Grand schemes for reusable

software yielded less than desired results. Extra effort to generalize the IP block design points for broad
use, and describe its characteristics in standard formats is compounded by the ability to identify an IP
block that fits a particular design need. The design and characterization of reusable IP will need to be
robust in timing, power, reliability, and noise in addition to function and cost. Further, the broad
distribution of IP information may conflict with business objectives. Moreover, even if broadly successful,
use of reusable IP will not negate the fundamental need for major EDA advances in the areas described.
First, tools are needed to design the IP. Second, tools are needed to design the millions of circuits that will
interconnect IP. Finally, tools and systems will require major advances to accurately design and analyze
the electrical interactions between, over, and under IP and application-specific design elements on the IC.
Standards are essential, but they are not by themselves sufficient for success. Tools, rules, and systems will
be the foundation for future IC design as they have been over the past. Nevertheless, the potential rewards
are substantial and there is an absence of any other clear EDA paradigm shift. Consequently, new
standards will emerge for design and design systems, and new methods for characterization, distribution,
and lookup of IP will become necessary.

14-36 Computer Aided Design and Design Automation

14.3.2.5 DFM

14.3.2.5.1 Lithography

Because of the physical properties of diffraction, as printed features shrink, the ability to print them with
the required degree of fidelity becomes a challenge for mask making. The scaling effects for lithographic
resolution can be generally viewed using the Rayleigh equation for a point light source:

Smallest resolvable feature ¼ K(l=NA)

Here
Value of K is a function of the photoresist process used
l is the wavelength of the coherent light source used for the exposure
NA is the numerical aperture of the lens system

As feature shrink continues, the ITRS projects that designwafer foundry lithographic systemswill keep pace
by moving to light sources of smaller wavelength, photoresist systems with lower values for K, and
immersion lithography. (Immersion lithography increases the maximum achievable numerical aperture
(NA¼ I sin a) beyond that in air (in air, the refractive index (I)¼ 1, thus NAmax¼ 1), because of higher
refractive indices for water and other fluids). However, the physics of light diffraction is now affecting the
design of photomasks, and thiswill dramatically increase in importancewith future technology generations.
Without attempting to discuss the physics behind them, two complications need to be accounted for in

the design of a mask. First, the intensity of the light source passing through the mask and onto the
photoresist is nonlinear. That is, the intensity at the edges of small features is less than that in the center.
Thus, edges of small features do not print with fidelity. To compensate for this, for example on the
corners of lines (which will expose as rounded edges) and line ends (which will be rounded and short), a
series of reticle (mask) enhancement techniques are used. These techniques add subresolution features to
the pattern data. Some examples are the addition of serifs on corners and hammerheads on line ends to
extend as well as square them.
The second complication is the interference of diffracted light between adjacent features. That is, the

light used to expose densely packed features may interfere with the exposure of other features in close
proximity. This may be corrected for by phase-shift mask techniques or be accounted for by adjusting
feature placement (spreading densely packed areas and using scatter bars to fill sparsely packed areas)
and biasing feature widths to adjust for the interference.
Though these corrections are necessary for two distinct physical properties, they are generally collect-

ively performed by optical proximity correction (OPC) programs. OPC in today’s design systems is
generally performed a step after the design is complete and ready for tape-out. The desired design pattern
data is topographically analyzed by OPC against a set of rules or models that determine if and what
corrections need to be made in the mask pattern to assure wafer fidelity. These corrections result in the
incorporation of additional features to be cut into the mask such as serifs, hammerheads, and scatter bars.
With successive technology generations, the number of OPCs for a mask set will increase and cause

mask pattern data to increase beyond that of Moore’s Law for features. This, in turn, causes increased
time (and resulting costs) in capital-intensive mask manufacturing. Therefore, future design systems will
need to consider lithography limitations early in the design process (synthesis and PD) rather than at the
end, and new OPC methods to optimize the mask pattern volume will be required.

14.3.2.5.2 Yield

Traditionally, wafer yield has been viewed as the responsibility of the wafer foundry alone. Hard defects
caused by random particles or incorrect process settings are under control of the foundry manager and
defects in feature parametrics were sufficiently bounded by design rules to be insignificant. As features
shrink, small variations in print fidelity or process parameters have an increasingly important impact on

Design Automation Technology Roadmap 14-37

feature parasitics and this can be a significant factor in the yield of properly operating chips. Tradition-
ally, parasitic extraction performed on the PD-generated geometry was sufficient to analyze a parasitic
effect on, for example, timing. In future, because of lithography limitations, the analysis of parasitics may
require extraction based on the simulated geometries that are projected to print on the wafer. Tradition-
ally, EDA design applications can operate within the specific bounds of the design rules to yield good
design. Future design applications may require that statistical analysis of their decisions be performed to
account for intrachip parametric variations and to provide a design known to be good within a certain
degree of probability. The topic of yield will become an important aspect of the next EDA paradigm shift.
Future design system flows will require a closer linkage between the classical EDA flow and Techno-

logy Computer Aided Design (TCAD) systems and mask making. In addition, the need for rich models
that can be used to accurately predict the impacts of design choices on the results of foundry and mask
manufacturing processes will become important. New design tools such as Statistical Static Timing
Analysis (SSTA) have become available and are a topic of much discussion. How to incorporate the
effects of variability on yield in, for example PD and synthesis will be a topic for future research. High-
speed lithographic simulation, capable of full chip analysis, will be an important field for EDA R&D.
Finally, database and integration technology to support this increased level of collaboration between IC
designers, mask manufacturers, and the fabricating engineers will be critical.

14.4 Summary

Over the past four decades, EDA has become a critical science for electronics design. Where it may have
begun as a productivity enhancement, it is now a fundamental requirement for the design and manu-
facture of electronic components and products. The criticality of EDA for semiconductors is the focus of
much attention because of the expanding semiconductor advancements. Fundamental approaches in test,
simulation, and PD are being constantly emphasized by these semiconductor advancements. New EDA
disciplines are opening up. Fundamental electrical models are becoming more important and at the same
time, more complex. New problems in design and IC failure modes will surely surface.
The next decade of EDA will prove to be as challenging and exciting as its past!

References

1. Case, P.W., Correia, M., Gianopulos, W., Heller, W.R., Ofek, H., Raymond, T.C., Simel, R.L.,
and Stieglitz, C.B., Design automation in IBM, IBM Journal of Research and Development, 25(5):
631, 1981.

2. Roth, J.P., Diagnosis of automata failures: A calculus and a method, IBM Journal of Research and
Development, 10: 278, 1966.

3. Eichelberger, E.B., Hazard detection in combinational and sequential switching circuits, IBM Journal
of Research and Development, 9: 90, 1965.

4. Eichelberger, E.B. and Williams, T.W., A logic design structure for LSI testability, Proceedings of
the 14th Design Automation Conference, New Orleans, LA, pp. 462–468, June 1977.

5. IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE,
Washington, 1990.

6. Hitchcock, R.B., Cellular wiring and the cellular modeling technique, Proceedings of the 6th Annual
Design Automation Conference, ACM, New York, pp. 25–41, 1969.

7. Lee, C.Y., An algorithm for path connection and its applications, IRE Transactions on Electronic
Computers, 10(1): 364–365, 1961.

8. Hightower, D.W., The interconnection problem: A tutorial, Proceedings of the 10th Annual Design
Automation Workshop, IEEE Press Piscataway, NJ, pp. 1–21, 1973.

9. 1076-1993 IEEE Standard VHDL Language Reference Manual, IEEE, Washington, 1993.

14-38 Computer Aided Design and Design Automation

10. 1364-2005 IEEE Standard Hardware Description Language Based on the Verilog1 Hardware Descrip-
tion Language, IEEE, Washington, 2006.

11. Electronic Industry Associates, Electronic Design Interchange Format (EDIF), IHS, www.globalihs.com.
12. Stok, L., Kung, D.S., Brand, D., Drumm, A.D., Sullivan, A.J., Reddy, L.N., Heiter, N., et al.,

BooleDozer: Logic synthesis for ASICs, IBM Journal of Research and Development, 40(4): 407, 1996.
13. Sayah, J.Y., Gupta, R., Sherlekar, D.D., Honsinger, P.S., Apte, J.M., Bollinger, S.W., Chen, H.H., et al.,

Design planning for high-performance ASICs, IBM Journal of Research and Development, 40(4): 431,
1996.

14. Barnes, T.J., Harrison, D., Newton, R.A., and Spickelmier, R.L., Electronic CAD Frameworks, Kluwer
Academic, Dordrecht, the Netherlands, Chapter 10, 1992.

15. Semiconductor Industry Association, International Technology Roadmap for Semiconductors, Tech-
nology Needs, 2001 Edition, www.sematech.org.

16. Bakoglu, H.B., Circuits, Interconnections, and Packaging for VLSI, Addison-Wesley, Reading, MA,
Chapters 1–7, 1990.

17. Goel, A.K., High-Speed VLSI Interconnections, Modeling, Analysis & Simulation, Wiley, New York,
Chapter 2, 1994.

18. Johnson, H.W. and Graham, M., High-Speed Digital Design, A Handbook of Black Magic, Prentice-
Hall PTR, New York, Chapter 1, 1993.

19. Pandini, D., Scandolaro, P., and Guardiani, C., Network reduction for crosstalk analysis in deep
submicron technologies, ACM=IEEE International Workshop on Timing Issues in the Specification
and Synthesis of Digital Systems, Austin, TX, pp. 280, December 1997.

20. Cottrell, D.R., Delay calculation standard and deep submicron design, Integrated Systems Design,
July 1996.

21. Fisher, P.D., Clock cycle estimates for future microprocessor generations, IEEE 1997 ISIS: Inter-
national Conference on Innovative Systems in Silicon, Austin, TX, pp. 61–71, October 1997.

22. Deutsh, A., Kopcsay, G.V., Restle, P., Katopis, G., Becker,W.D., Smith, H., Coteus, P.W., et al., When are
transmission-line effects important for on-chip interconnections,Electronic Components andTechnology
Conference, San Jose, CA, pp. 704, 1997.

Design Automation Technology Roadmap 14-39

Index

A

Advanced design environment
prototype tool (ADEPT)

design flow, 12-17
EDIF netlist, 12-17–12-18
handshaking and token passing

mechanism
event sequence, 12-13
status field, 12-12–12-13
three-module, 12-14–12-15
token propagation,

12-15–12-16
interpreted and uninterpreted

models, 12-9
module categories,

12-16–12-17
revolutionary approach, 12-9
simulation results,

12-21–12-23
three-computer system model

Data-Dependent Delay A
(DDA) element, 12-20

Fixed Delay modules, 12-19
interconnection, 12-18
unit_step delay, 12-20

token implementation
CPN representation,

12-11–12-12
definition, 12-10
Petri net, 12-11
STATUS field, 12-11

VHDL behavioral description,
12-9–12-10

Analog circuit (AC) simulation
active device models, 9-5–9-6
analysis

frequency response, 9-9–9-10

gain and input impedances,
9-10

noise, 9-10–9-11
bipolar

DC models, 8-40
high-frequency model,

8-42–8-43
BSIM extraction strategy

channel length modulation
(CLM), 8-36

drain-induced barrier
lowering (DIBL),
8-37–8-38

MOS models, 8-38–8-40
steps, 8-35–8-36
wide-short device, 8-36–8-37
zero-order parameters, 8-35

circuit equations, 9-3–9-4
commercial simulators, 9-19
DC (steady-state) analysis

Newton’s method, 9-7–9-8
simulation, 9-8

device modeling and
characterization,
8-21–8-22

extraction
drain current, 8-27–8-28
linear region equation, 8-27
vs. optimization, 8-28–8-29

fast simulation methods,
9-18–9-19

least-squares curve fitting
analytical solutions,

8-23–8-25
Gauss–Newton method,

8-26–8-27
MOS transistor, 8-24

numerical techniques,
8-25–8-27

root mean square (RMS)
error, 8-23

steepest descents method,
8-25–8-26

macro modeling, 8-44
modified nodal analysis, 9-4–9-5
MOS and bipolar capacitance

models
BJT model, 8-41–8-42
junction diode capacitor,

8-41
overlap, 8-42

MOS DC models
BSIM model, 8-30–8-31
extraction strategy,

8-31–8-35
SPICE, 8-29–8-30

netlists, 9-2–9-3
purpose, 9-1–9-2
skew parameter files, 8-43
strategies, 8-29
TCAD environment, 8-44
transient analysis

differential amplifier,
9-12–9-13

numerical method, 9-11–9-12
Verilog-A, 9-13–9-17

Analog design centering problem
convexity approaches

convex programming, 4-23
feasible region, 4-22
largest Hessian ellipsoid,

4-22–4-23
log-barrier function, 4-22
steps, 4-21–4-22

IN-1

ellipsoidal method, 4-21
problem description, 4-19
simplicial approximation

method
design, 4-20
elongated feasible regions,

4-21
hypersphere, in polytope,

4-20
steps, 4-19–4-20

Application-specific heterogeneous
multiprocessor (ASHM),
11-12

Application-specific integrated
circuit (ASIC) chip, 14-14

B

Berkeley short-channel IGFET
model (BSIM)

channel length modulation
(CLM), 8-36

drain-induced barrier lowering
(DIBL), 8-37–8-38

MOS DC model, 8-30–8-31
MOS models, 8-38–8-40
proprietary models, 8-31
steps, 8-35–8-36
wide-short device, 8-36–8-37
zero-order parameters, 8-35

Bipolar junction transistor (BJT)
model, 8-40

C

Circuit performance modeling
applications

clock distribution circuit,
1-15

predicted vs. simulated
values, 1-16

central composite design,
1-8–1-9

circuit parameters
model-building procedures,

1-4–1-5
nominal component, 1-3
statistically varying

component, 1-4
digital circuits vs. analog

circuits, 1-2
factorial experimental design

advantages, 1-8
pictorial representation, 1-6

resolution designs, 1-7–1-8
two-factor interaction effect,

1-6–1-7
group method of data handling

(GMDH), 1-14–1-15
input–output relationships, 1-3
Latin hypercube sampling (LHS)

method, 1-9–1-11
least-square fitting method

basis functions, 1-12
coefficient of determination,

1-12–1-13
definition, 1-11

maximally flat quadratic
interpolation (MFQI)
method, 1-14–1-15

stochastic performance
modeling, 1-14

Taguchi’s orthogonal arrays
method, 1-9

variable screening method,
1-13–1-14

CMOS digital circuits
area model, 4-14
convex programming approach

gradient calculations, 4-18
posynomial functions,

4-17–4-18
suboptimal solution, 4-17

delay modeling
circuit technique, 4-12–4-14
gate level, 4-11–4-12
transistor, 4-11

feasible direction method
delay estimation algorithm,

4-15–4-16
generalized gradient, 4-16
method of feasible directions

(MFD) algorithm,
4-15–4-16

scaling, 4-17
Lagrangian multipliers method,

4-17
problem description, 4-10–4-11
sensitivity-based TILOS

algorithm
algorithm steps, 4-14–4-15
sensitivity calculation, 4-15

statistical variations, 4-18–4-19
two-step optimization, 4-17

Cockpit program
Applet, 10-24
core functionality, 10-27
execute message, 10-19

graphical user interface, 10-17
Java file system (JFS), 10-27
Minbits encoder, 10-19
multithreads, 10-17
physical synthesis, 10-19
productions and ratings, 10-17
query handling, 10-20
reports subtask success, 10-21
root flow, 10-24
system windows, 10-23
task-specific knowledge, 10-16
tool invocation, 10-17
whiteboard, 10-10

Commercial off-the-shelf (COTS)
modules, 11-2

Compacted modified nodal analysis
matrix (CMNAM),
2-14–2-15

Compiled simulation, EDA,
14-18–14-19

Complementary metal-oxide
semiconductor (CMOS)
inverter, 7-3

Computer aided design (CAD)
conceptual design

applications, 7-13–7-14
coarse filter, 7-6
decision assistance,

7-10–7-12
design planning, 7-8–7-10
least-commitment strategy,

7-12–7-13
memory technology, 7-6
performance trade-offs, 7-7

design entry
computational algorithms,

7-4–7-5
graphic and electrical devices,

7-3
language and mechanism,

7-3
Moore finite state machine,

7-5
physical and logical

information, 7-3
schematic capture, 7-4
state diagram, 7-5
VHDL model, 7-5–7-6

dynamic timing analysis,
7-17–7-18

electrical monitoring techniques,
7-26–7-27

event-driven stimulation,
7-19–7-20

IN-2 Index

fault modeling test
ad hoc techniques, 7-26
advantages, 7-25
boundary scan, 7-26
coding techniques, 7-26–7-27
integrated circuit, 7-23
sequential automatic

program, 7-24–7-25
single stuck line model,

7-23–7-24
strategies, 7-24
stuck-at techniques, 7-24

filter performance prediction,
7-10–7-11

frameworks
data management, 7-28
definition, 7-27
object-oriented paradigms,

7-28–7-29
process management, 7-28
user interface services,

7-27–7-28
integrated circuit, 7-22–7-23
message-driven stimulation,

7-20
signal transition requirements,

7-17
signature techniques, 7-26
simulation engines, 7-21
static timing analysis, 7-18–7-19
synthesis techniques

design process, 7-14–7-15
pipelining schedules, 7-16
silicon compliers, 7-14
taxonomy, 7-15

test design process, 7-21–7-22
verification

emulation, 7-21
simulation, 7-19–7-21
synthesis task, 7-16
timing analysis, 7-17–7-19

Computer-aided engineering (CAE),
see Computer aided
design (CAD)

Control=data-flow graphs
(CDFG), 11-4

Circuit simulation
AC analysis

cascode amplifier, 8-6–8-9
macro model elements,

8-6–8-7
numerical method, 8-6
phasor analysis, 8-5
PSPICE, 8-7

bipolar junction transistors
(BJTs), 8-1

DC (steady-state) analysis
Newton’s method, 8-2–8-3
SPICE, 8-4–8-5
steps, 8-2–8-3
voltage regulator, 8-3–8-5

device simulation
conventional lumped models,

8-18
lattice heat equation,

8-18–8-19
MOSFET, 8-20
SUPREM-IV curves, 8-19

distributed systems, 8-2
IC design process, 8-13–8-14
logic integrated circuits (ICs), 8-2
process simulation

diffusion, 8-14–8-15
ion implantation, 8-16–8-17
NMOS transistor, 8-17
oxidation, 8-15–8-16

software, 8-20
transient analysis

analog multiplier, 8-12
MOSFET models, 8-13
numerical method, 8-9–8-10
phase-locked loop (PLL)

circuit, 8-10–8-13
Crout’s algorithm, 3-12–3-13

D

Delay calculation language (DCL)
technology, 14-33

Delay modeling
circuit diagram, 4-12
gate delays, 4-14
posynomial function, 4-13
program evaluation and review

technique (PERT), 4-12
steps, 4-13

Design for manufacturability (DFM)
lithography, 14-37
wafer yield, 14-37–14-38

Design rule checking (DRC), 6-4
Design verification (DV) simulators,

14-13–14-19
DFM, see Design for

manufacturability (DFM)
Digital signal processor (DSP), 13-2
Discrete circuits

derivative-based method
Hessian matrix, 5-17–5-18

orthogonal array (OA)
sampling, 5-18

parametric sampling
technique, 5-17

sampling yield estimation,
5-16

yield gradient, 5-16–5-17
heuristic method

centers of gravity method,
5-14–5-15

Gaussian adaptation, 5-15
stochastic approximation (SA)

approach, 5-20–5-23
Doolittle’s algorithm

computation cost, 3-15–3-16
matrix factorization, 3-12

E

Ebers–Moll model, 9-5–9-6
EDA, see Electronic design

automation (EDA)
Electronic design automation (EDA)

EDA impact
delay models, 14-32–14-34
design for manufacturability

(DFM), 14-37–14-38
design productivity,

14-35–14-36
system integration,

architecture progression,
14-31–14-32

IC test, 14-34–14-35
historical perspective

design entry, 14-4–14-5
fault simulation,

14-10–14-11
formal verification, 14-20
fundamental concept,

14-3–14-4
hard-copy drawing, 14-4

industry birth developed
floor planning, 14-24–14-25
integration age, 14-25–14-27
synthesis, 14-21–14-23

integration age, 14-25–14-27
microprocessor development,

14-2
physical design, 14-12–14-13
register-transfer level (RTL),

14-5
test generation

built-in self-test (BIST),
14-8–14-10

Index IN-3

D-ALG calculus, 14-6–14-7
pseudorandom number, 14-9
scan design, 14-8–14-9
stuck-at fault models, 14-6

timing analysis, 14-19
verification

methodologies, 14-20–14-21
printed circuit boards

(PCBs), 14-13
simulation, 14-14–14-19

Electronic design interchange
format (EDIF) netlist,
12-17

Elmore time constant, 4-11
Embedded computing systems

core computational tasks, 13-4
CPU resources, 13-6
data dependencies, 13-6
hardware architecture, 13-3
hardware=software codesign

cosimulation, 13-7
cosynthesis, 13-9–13-10
design methodology, 13-10
models, 13-6–13-7
performance analysis,

13-7–13-9
heterogeneous, 13-4
interrupt-driven, 13-4
microprocessors

analog components, 13-2
digital signal processor

(DSP), 13-2
peripheral devices, 13-1
VLSI technology, 13-2–13-3

nonlinear function, 13-5
processing elements (PEs), 13-4
real-time operating system

(RTOS), 13-5–13-6
scheduling technique, 13-6
soft deadlines, 13-3

Equation formulation method
Kirchhoff’s law

branch currents and
characteristics, 3-1–3-2

reduced incidence matrix, 3-2
reference convention, 3-2
voltage around loop, 3-3

modified nodal analysis, 3-7–3-8
nodal analysis, 3-4–3-7
sparse tableau method, 3-4
stamping methods

modified nodal formulation,
3-9–3-11

nodal formulation, 3-8–3-9

voltage-controlled current
source (VCCS), 3-4

Event-based simulation, EDA
system behavior languages,

14-18
simulation delay model,

14-16–14-17
simulator concept, 14-15
time queues, 14-15–14-16

F

Fast simulation methods
linear solution time reduction,

9-18
matrix assembly time reduction

simplify method, 9-18
waveform relaxation method,

9-18–9-19
Fault modeling test, CAD

ad hoc techniques, 7-26
advantages, 7-25
boundary scan, 7-26
coding techniques, 7-26–7-27
integrated circuit, 7-23
sequential automatic program,

7-24–7-25
single stuck line model,

7-23–7-24
strategies, 7-24
stuck-at techniques, 7-24

G

Gaussian elimination, 2-10
Geometrical methods,

disadvantages,
4-23–4-24

Group method of data handling
(GMDH), 1-14–1-15

H

Hardware simulators, EDA, 14-19
Hardware=software codesign

cosimulation, 13-7
cosynthesis, 13-9–13-10
design methodology, 13-10
models, 13-6–13-7
performance analysis

cache state, 13-8–13-9
embedded systems, 13-7
multiple-process systems,

13-8

I

IMEDA implementation and
execution environment

chip synthesis node, 10-18
Cockpit program

graphical user interface,
10-17

task-specific knowledge,
10-16

communications model, 10-26
external tools

actual design execution,
10-24

association and execution,
10-25

Cockpit Applet, 10-24
Java Development Kit

(JDK), 10-26
manager programs

backtracking, 10-17
circuit area or latency, 10-18
production execution, 10-17
query handling, 10-18

one-hot encoder, 10-19
scheduling

automatic task execution,
10-21

filter design process, 10-20
linear scheduler, 10-19
linear scheduling algorithm,

10-22
rollback signal, 10-23

system Cockpit
components, 10-24
Java-enabled Web browser,

10-23
Integrated circuits (IC)

chip reusable property, 14-36
derivative-based method,

5-19–5-20
stochastic approximation

(SA) method
convolution function

smoothing, 5-23–5-25
gradient estimation, 5-23

International Technology Roadmap
for Semiconductors
(ITRS), 14-27–14-31

interconnect delay, resistance,
14-28

mutual capacitance, 14-30
semiconductor advancements,

14-27–14-28

IN-4 Index

Internet-based microelectronic
design automation
(IMEDA) system

agent-based approach, 10-9
components, 10-9–10-10
electronic design automation

(EDA), 10-3
execution environment

Cockpit program,
10-16–10-17

execution example,
10-18–10-19

manager program,
10-17–10-18

scheduling, 10-19–10-23
features, 10-11–10-12
flow graph

bipartite acyclic directed
graph, 10-12

field-programmable gate
array configuration file,
10-13

tool invocation, 10-12
framework functional

requirements
building blocks, 10-4
design methodology, 10-3
execution environment, 10-7
literature surveys, 10-7–10-9
process automation, 10-4
process specification,

10-6–10-7
workflow management,

10-4–10-5
grammars

child specification type, 10-13
sample graph derivation,

10-15
simulation and partition

alternatives, 10-14
implementation

communications model,
10-26

external tools, 10-24–10-26
system Cockpit, 10-23–10-24
user interface, 10-27–10-30

microelectronic industry, 10-1
process specifications, 10-11
rapid design exploration and

optimization (RaDEO),
10-2

real-world processes, 10-11
unified process specification

language, 10-3

J

Java Development Kit (JDK),
10-26–10-27

K

Kernighan–Lin (K–L)
algorithm, 6-12
graph bisections, 6-10
locked=unlocked vertices,

6-11–6-12
vertex exchanges, 6-11

L

Latin hypercube sampling (LHS)
method, 1-9–1-11

Least-square fitting method
basis functions, 1-12
coefficient of determination,

1-12–1-13
definition, 1-11

Lee’s algorithm, 6-16–6-18
Levenberg–Marquardt algorithm,

8-27
Linear equations, decompositon

methods
backward substitution, 3-14
forward substitution, 3-13
matrix factorization

computation cost,
3-15–3-16

Crout’s algorithm, 3-12–3-13
Doolittle’s algorithm, 3-12

pivoting, 3-14–3-15

M

Maximally flat quadratic
interpolation (MFQI)
method, 1-15

Microprocessors
analog components, 13-2
digital signal processor

(DSP), 13-2
peripheral devices,

13-1
VLSI technology, 13-2–13-3

Mixed integer-linear programming
(MILP), 11-6

Model-building procedures,
1-4–1-5

MOSFET model, 9-6
MOS models

bipolar capacitance models
BJT model, 8-41–8-42
junction diode capacitor,

8-41
overlap, 8-42

DC analysis
Berkeley short-channel

IGFET model (BSIM),
8-30–8-31

extraction strategy,
8-31–8-35

SPICE, 8-29–8-30
Multichip modules (MCMs), 11-5
Multi-level modeling approach

advantages, 12-8
architecture design and

assessment system
(ADAS), 12-7

behavioral and performance
models, 12-6

functional models, 12-5
heterogeneous, 12-8–12-9
interpretation, 12-6
Petri nets, 12-6–12-7
Ptolemy project, 12-8
SystemC language

background, 12-44–12-45
Cþþ foundations,

12-45–12-47
channels, 12-48–12-52
crossbar contention,

12-56–12-58
crossbar model, 12-53
dual processor, 12-54
fixed cycle length,

12-61
fully connected architecture,

12-53
mixed-level processor model,

12-58–12-61
parallel communications,

12-54–12-56
performance-based modeling

tool (PBMT), 12-42
performance model,

12-63–12-64
processor model,

12-47–12-48
random data generation,

12-62–12-63
shared bus architecture,

12-52–12-53
single processor,

12-53–12-54

Index IN-5

system architecture,
12-42–12-43

task graph model,
12-42–12-44

variable cycle length,
12-61–12-62

transaction-level model
(TLM), 12-8

VHDL models, 12-7–12-8

O

OPC, see Optical proximity
correction

Operational amplifiers (op-amps)
characteristics, 2-14
compacted MNA matrix

(CMNAM), 2-14–2-15
components

norator, 2-13
nullator, 2-12–2-13
nullor, 2-13

definition, 2-12
gyrator circuit, 2-15

Optical proximity correction (OPC)
programs, 14-37

Optimization algorithms
constrained methods

direction method, 4-6
Lagrange multiplier, 4-5
linear programming, 4-5
others, 4-8
penalty function method,

4-5–4-6
Vaidya’s convex

programming, 4-6–4-8
definitions

concave function, 4-4
convex function,

4-3–4-4
convex hull, 4-3
convex programming

problem, 4-4
convex set, 4-2–4-3
posynomial function, 4-4

multicriterion
design, 4-9
formulation, 4-8
minmax function, 4-10
Pareto critical point,

4-8–4-9
weighted sum function,

4-9–4-10
nonlinear problem, 4-2

P

PCBs, see Printed circuit boards
(PCBs)

PD, see Physical design
Performance modeling and analysis

ADEPT design environment
design flow, 12-17
EDIF netlist, 12-17–12-18
handshaking and token

passing mechanism,
12-12–12-16

interpreted and
uninterpreted models,
12-9

module categories,
12-16–12-17

revolutionary approach, 12-9
token implementation,

12-10–12-12
VHDL behavioral

description, 12-9–12-10
design methodology, 12-4
disadvantages, 12-2
embedded systems, 12-4
engineering=system-level design

environments, 12-3
hardware=software system,

12-3–12-4
interfaces, 12-5
mixed-level modeling

behavioral models, 12-25
characteristics, 12-25
complex sequential

components,
12-34–12-41

FSMD components,
12-26–12-34

interpreted and
uninterpreted models,
12-23–12-24

structure, 12-24
taxonomy, 12-25–12-26

multi-level modeling approach
advantages, 12-8
architecture design and

assessment system
(ADAS), 12-7

behavioral and performance
models, 12-6

functional models, 12-5
heterogeneous, 12-8–12-9
interpretation, 12-6
Petri nets, 12-6–12-7

Ptolemy project, 12-8
transaction-level model

(TLM), 12-8
VHDL models, 12-7–12-8

product’s development cycle,
12-1–12-2

queue lengths vs. simulation
time, 12-23

risk driven expanding
information models
(RDEIMs), 12-4–12-5

SystemC language
background, 12-44–12-45
Cþþ foundations,

12-45–12-47
channels, 12-48–12-52
crossbar contention,

12-56–12-58
crossbar model, 12-53
dual processor, 12-54
fixed cycle length, 12-61
fully connected architecture,

12-53
mixed-level processor model,

12-58–12-61
parallel communications,

12-54–12-56
performance-based modeling

tool (PBMT), 12-42
performance model,

12-63–12-64
processor model,

12-47–12-48
random data generation,

12-62–12-63
shared bus architecture,

12-52–12-53
single processor,

12-53–12-54
system architecture,

12-42–12-43
task graph model,

12-42–12-44
variable cycle length,

12-61–12-62
three-computer system

ADEPT model, 12-19–12-20
Data-Dependent Delay A

(DDA) element,
12-20

Fixed Delay (FDA and FDB)
modules, 12-19

interconnection, 12-18

IN-6 Index

simulation results,
12-21–12-23

unit step delay, 12-20
Phase-locked loop circuit (PLL)

analog and mixed signal
simulator model (AMS),
9-15–9-17

detector, 9-14–9-15
Ebers–Moll model, 9-16–9-17
loop filter, 9-15
VCO, 9-14

Physical design (PD), 14-12–14-13
Physical design automation

circuit blocks and pins, 6-15
compaction

classification, 6-21–6-22
fabrication process, 6-21
others, 6-23
shadow-propagation

algorithm, 6-22–6-23
cycles

compaction, 6-6
partitioning process, 6-4
placement, 6-4–6-6
routing algorithms, 6-6

design styles
cell library, 6-8
full-custom structure,

6-6–6-7
gate array, 6-8
I–O pads, 6-7
nonhierarchical structure,

6-8–6-9
standard cells, 6-8

detailed routing algorithms
greedy channel router,

6-18–6-19
Lee’s algorithm, 6-16–6-18
other algorithms, 6-18–6-19

global routing algorithms, 6-16
partitioning process

classification, 6-9–6-10
disadvantages, 6-9
Kernighan–Lin (K–L)

algorithm, 6-10–6-12
placement phase

annealing algorithm,
6-13–6-14

classification, 6-13
flexible blocks, 6-12–6-13
techniques, 6-14

routing regions, 6-15–6-16
very large-scale integration

(VLSI) design cycle

circuit design, 6-3
design verification and

fabrication, 6-4
functional and logic design,

6-2
packaging, testing, and

debugging, 6-4
physical design, 6-3–6-4
processing steps, 6-3
system specification, 6-2

Printed circuit boards (PCBs), 14-5,
14-12

Probability density function (p.d.f)
circuit simulator variables,

5-2–5-3
discrete resistor, 5-3–5-4
manufacturing yield, 5-10–5-12
yield gradient formula, 5-17

Program evaluation and review
technique (PERT),
4-12–4-14

R

Rapid prototyping of application
specific signal processor
(RASSP), 10-2

Real-time operating system (RTOS),
13-5–13-6

Register-transfer level (RTL), 14-5
Response surface model (RSM),

1-4–1-5
Routing algorithms

Acker’s scheme, 6-18
circuit blocks, 6-15
greedy channel router,

6-18–6-19
grid-based models, 6-16
LEA and YACR2, 6-19–6-20
Lee’s algorithm, 6-16–6-18
sequential and concurrent

approach, 6-16
split nets, 6-19
VLSI chip, 6-15

RTL, see Register-transfer level

S

Short-circuit admittance
parameters, 2-9

Simulation program with integrated
circuit emphasis (SPICE),
see Computer aided
design (CAD)

Sparse tableau method
equation formulation method,

3-4
symbolic analysis techniques, 2-3

Statistical design optimization
acceptability region

approximation
active RC filter, 5-6–5-7
c-dimensional hyperplanes,

5-9
cutting-plane methods, 5-10
definition, 5-6
e-space, 5-6–5-7
indicator function, 5-8
integrated circuits, 5-6, 5-8
point-based methods,

5-8–5-9
circuit performance, 5-3
circuit (simulator) variables

CMOS transistor parameters,
5-5–5-6

discrete active RLC circuits,
5-3

discrete resistor, 5-3–5-4
level set, 5-4
passive IC elements and

device model parameters,
5-4–5-5

u parameters, 5-6
three-dimensional e-space,

5-5
designable parameters, 5-2
manufacturing (parametric)

yield
definition, 5-10
Monte Carlo algorithm,

5-11–5-12
performances, functional vs.

parametric circuits, 5-10
variance reduction methods,

5-12
problems and methodologies,

5-1–5-2
random and circuit variables,

5-2–5-3
yield optimization

case study, 5-25–5-26
circuit-parameter space e,

5-13
derivative-based methods,

5-16–5-18
discrete circuit, 5-12–5-13
enhancement, process

optimization, 5-25–5-26

Index IN-7

heuristic method, 5-14–5-15
integrated circuits, 5-19–5-20
large-sample vs. small

sample, 5-14
objective, 5-12
performance-space oriented

design centering
methods, 5-12–5-13

standard deterministic
algorithms, 5-14

stochastic approximation
(SA) approach, 5-20–5-25

variability and Taguchi
circuit optimization
problems, 5-26–5-29

Stochastic performance modeling,
1-14

SUPREM, see Computer aided
design (CAD)

Symbolic analysis techniques
applications

circuit operation, 2-18
circuit response

optimization, 2-16
circuit sizing, 2-17
in education, 2-18
fault diagnosis of analog

circuits, 2-17–2-18
frequency response

evaluation, 2-16
parameter extraction in

device modeling, 2-17
sensitivity analysis, 2-17
statistical analysis method,

2-17
common analysis methods

hybrid analysis, 2-3
modified nodal analysis

(MNA), 2-3–2-4
sparse tableau analysis, 2-3

determinant-based solution
method

Cramer’s rule, 2-7
two-port circuit

representation, 2-8
operational amplifiers (op-amps)

characteristics, 2-14
compacted MNA matrix

(CMNAM), 2-14–2-15
components, 2-12–2-13
definition, 2-12
gyrator circuit, 2-15

parameter reduction solution
method

two-port terminated circuit,
2-10–2-11

variable suppression,
2-9–2-10

software packages
add-on packages (toolboxes),

2-19
symbolic simulation

programs, 2-18
symbolic transfer function, 2-2

Symbolic transfer function, 2-2
SystemC language

background, 12-44–12-45
Cþþ foundations

class definition, 12-45–12-46
interface_type.hfile,

12-46–12-47
ModelSim compiler, 12-46
top config.txt file, 12-45

channels
channel_param.txt file,

12-51–12-52
comm_medium class, 12-49
data_to_delay function,

12-52
graphical representation,

12-49–12-50
hierarchical models,

12-48–12-49
im_done event, 12-51
processor models, 12-50
transaction_element object,

12-50–12-51
transact() method, 12-51

crossbar contention,
12-56–12-58

crossbar model, 12-53
dual processor, 12-54
fixed cycle length, 12-61
fully connected architecture,

12-53
mixed-level processor model

computation model,
12-60

gate-level model (RTL),
12-58–12-59

interface code, 12-60–12-61
refined_computation object,

12-59
rng_comp_tb class,

12-59–12-60
parallel communications

fully connected and crossbar
simulation, 12-56

shared bus architecture,
12-55–12-56

task graph, 12-54–12-55
performance-based modeling

tool (PBMT), 12-42
performance model,

12-63–12-64
processor model, 12-47–12-48
random data generation,

12-62–12-63
shared bus architecture,

12-52–12-53
single processor, 12-53–12-54
system architecture,

12-42–12-43
task graph model, 12-42–12-44
variable cycle length,

12-61–12-62
System-level design

characteristics, 11-10
design space, 11-3
Gantt chart, 11-7–11-8
integrated circuit (IC), 11-1
interconnection strategy, 11-9
packaging styles, 11-9
partitioning methods

constructive technique,
11-5–11-6

iterative technique,
11-6–11-7

multichip modules
(MCMs), 11-5

philosophies, 11-2–11-3
processing modules, 11-7–11-8
research survey

ASHM image processing,
11-12

critical path method
(CPM), 11-14

embedded systems, 11-15
genetic algorithms, 11-13
imprecise computation,

11-13–11-14
macropipelined design, 11-12
network chip, 11-15
nonpipelined design,

11-11–11-12
partitioning, 11-11
performance bounds theory,

11-14–11-15
proabilistic models, 11-14
rate-monotonic scheduling

(RMS), 11-13
specification, 11-11

IN-8 Index

stochastic simulation, 11-14
system data structure (SDS),

11-11
word-length selection, 11-15

specification, 11-3–11-4
storage modules, 11-8–11-9
word-length determination,

11-10

T

Taguchi’s orthogonal arrays
method, 1-9

TCAD, see Technology Computer
Aided Design

Technology Computer Aided
Design (TCAD) systems,
14-38

Two-factor interaction effect,
1-6–1-7

Two-port admittance matrix, 2-9

U

User interface
design flow graph properties,

10-27
Java file system (JFS), 10-27
key framework properties,

10-29–10-30
macro substitution

children flow objects, 10-29
property inheritance, 10-28
property macros, 10-28
property window and

property inheritance,
10-29

V

Vaidya’s convex programming
algorithm

algorithmic process, 4-7
objective, 4-6–4-7
pictorial representation, 4-8

Variable screening method,
1-13–1-14

Variable suppression, 2-9; see also
Gaussian elimination

Verilog-A
equations and elements,

9-13
phase-locked loop circuit (PLL)

analog and mixed signal
simulator model (AMS),
9-15–9-17

detector, 9-14–9-15
Ebers–Moll model,

9-16–9-17
loop filter, 9-15
VCO, 9-14

Verilog hardware descriptive
language (VHDL), 11-3

ADEPT design environment,
12-9–12-10

description and simulation,
12-17

multi-level modeling,
12-7–12-8

Y

Yield optimization statistical
methods

case study, 5-25–5-26

circuit-parameter space e,
5-13

discrete circuits
derivative-based method,

5-16–5-18
heuristic method,

5-14–5-15
stochastic approximation

(SA) approach,
5-20–5-23

enhancement, process
optimization, 5-25–5-26

heuristic method, 5-14–5-15
integrated circuits

derivative-based method,
5-19–5-20

stochastic approximation
(SA) method,
5-23–5-25

large-sample vs. small sample,
5-14

objective, 5-12
performance-space oriented

design centering
methods, 5-12–5-13

standard deterministic
algorithms, 5-14

stochastic approximation (SA)
approach, 5-20–5-25

variability and Taguchi circuit
optimization

generalized loss function
(GLF), 5-28

variability minimization,
5-26–5-27

weight function (wa),
5-28–5-29

Index IN-9

	Contents
	Preface
	Editor-in-Chief
	Contirbutors
	Section I: Computer Aided Design and Optimization
	Chapter 1. Modeling of Circuit Performances
	Chapter 2. Symbolic Analysis Methods
	Chapter 3. Numerical Analysis Methods
	Chapter 4. Design by Optimization
	Chapter 5. Statistical Design Optimization
	Chapter 6. Physical Design Automation*
	Chapter 7. Design Automation Technology
	Chapter 8. Computer-Aided Analysis
	Chapter 9. Analog Circuit Simulation

	Section II: Design Automation
	Chapter 10. Internet-Based Microelectronic Design Automation Framework
	Chapter 11. System-Level Design
	Chapter 12. Performance Modeling and Analysis Using VHDL and SystemC
	Chapter 13. Embedded Computing Systems and Hardware/Software Codesign
	Chapter 14. Design Automation Technology Roadmap

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

