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Preface

The present volume is devoted to the second edition of the international Work-
shop on Internet and Network Economics (WINE), an interdisciplinary confer-
ence intending to provide a forum for researchers as well as practitioners to
exchange innovative ideas and to be aware of each other’s efforts and results.
This second edition of the conference (WINE 2006) was hosted by the Research
Academic Computer Technology Institute, at the University of Patras, December
15–17, 2006.

The volume contains all contributed papers presented at WINE 2006 (ordered
according to the Scientific Program of the workshop), together with the distin-
guished invited lectures of Abraham Neyman (Hebrew University of Jerusalem,
Israel), Mihalis Yannakakis (Columbia University, USA) and Xiaotie Deng (City
University of Hong Kong, Hong Kong, SAR, China). This year WINE was un-
der the auspices of the European Association for Theoretical Computer Science
(EATCS).

In response to the Call for Papers, the Program Committee received 79 sub-
missions. Among the submissions, there were 15 papers with at least one coau-
thor that was also a PC member of WINE 2006. For these PC–coauthored papers,
an independent subcommittee (Marios Mavronicolas Chair, Elias Koutsoupias,
Eva Tardos) made the judgement, and eventually seven papers were proposed for
inclusion in the scientific program. For the remaining 64 (non–PC–coauthored)
papers, the PC of WINE 2006 conducted a thorough evaluation and electronic
discussion, and eventually selected 25 papers for inclusion in the scientific pro-
gram.

We wish to thank the creators of the EasyChair System, a free conference
management system provided and supported by the group of Professor Voronkov,
which significantly assisted the work of the Program Committee. Finally, we
wish to thank the Research Academic Computer Technology Institute for kindly
offering its facilities and human resources for the successful organization of WINE
2006.

December 2006 Paul Spirakis (Program and Organizing Chair)
Marios Mavronicolas (Program Co–chair)

Spyros Kontogiannis (Organizing Co–chair)



Organization

WINE 2006 was organized by the Research Academic Computer Technology
Institute, University of Patras, Greece, in cooperation with EATCS.

Program Committee

Xi Chen Tsinghua University, China
Xiaotie Deng City University of Hong Kong, Hong Kong,

SAR China
Daniel Grosu Wayne State University, USA
Kamal Jain Microsoft Research, USA
Ehud Kalai Northwestern University, USA
Ming-Yang Kao Northwestern University, USA
Spyros Kontogiannis University of Ioannina, Greece
Elias Koutsoupias University of Athens, Greece
Vangelis Markakis University of Toronto, Canada
Marios Mavronicolas University of Cyprus, Cyprus (Co–chair)
Igal Milchtaich Bar-Ilan University, Israel
Dov Monderer Technion, Israel
Burkhard Monien University of Paderborn, Germany
Christos Papadimitriou University of California at Berkeley, USA
Maria Serna Universitat Politecnica de Catalunya, Spain
Paul Spirakis Computer Technology Institute, Greece (chair)
Eva Tardos Cornell University, USA
Vijay Vazirani Georgia Institute of Technology, USA

Steering Committee

Xiaotie Deng City University of Hong Kong, Hong Kong,
SAR China

Ehud Kalai Northwestern University, USA
Christos Papadimitriou University of California at Berkeley, USA
Paul Spirakis Computer Technology Institute, Greece
Yinyu Ye Stanford University, USA

Organizing Committee

Paul Spirakis Computer Technology Institute, Greece (chair)
Spyros Kontogiannis Computer Technology Institute, Greece (Co–chair)



VIII Organization

Panagiota Panagopoulou Computer Technology Institute, Greece
Rozina Efstathiadou Computer Technology Institute, Greece
Aggeliki Stamatopoulou Computer Technology Institute, Greece
Lena Gourdoupi Computer Technology Institute, Greece

External Reviewers

Babarro, Joaquim
Bleischwitz, Yvonne
Bu, Tianming
Busch, Costas
Carroll, Thomas E.
Chakrabarty, Deeparnab
Daskalakis, Constantinos
Devanur, Nikhil
Dobzinski, Shahar
Dumrauf, Dominic
Elkind, Edith
Feldmann, Rainer
Gairing, Martin

Georgiou, Chryssis
Gkantsidis, Christos
Goldberg, Paul
Golovin, Daniel
Hegde, Rajneesh
Jiang, Min
Kolliopoulos, Stavros
Lavi, Ron
Mehta, Aranyak
Mirrokni, Vahab
Mu’alem, Ahuva
Pai, Mallesh
Philippou, Anna

Qi, Qi
Sami, Rahul
Schoppmann, Florian
Sun, Wei
Tiemann, Karsten
Tscheuschner, Tobias
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Recent Developments in Learning and

Competition with Finite Automata
(Extended Abstract)

Abraham Neyman

Institute of Mathematics and Center for the Study of Rationality,
The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel

aneyman@math.huji.ac.il

www.ratio.huji.ac.il/neyman

Consider a repeated two-person game. The question is how much smarter should
a player be to effectively predict the moves of the other player. The answer de-
pends on the formal definition of effective prediction, the number of actions each
player has in the stage game, as well as on the measure of smartness. Effec-
tive prediction means that, no matter what the stage-game payoff function, the
player can play (with high probability) a best reply in most stages. Neyman and
Spencer [4] provide a complete asymptotic solution when smartness is measured
by the size of the automata that implement the strategies.

Let G = 〈I, J, g〉 be a two-person zero-sum game; I and J are the set of actions
of player 1 and player 2 respectively, and g : I × J → R is the payoff function to
player 1. Consider the repeated two-person zero-sum game G(k, m) where player
1’s possible strategies are those implementable by an automaton with k states
and player 2’s possible strategies are those implementable by an automaton with
m states. We say that player 2 can effectively predict the moves of player 1 if for
every reaction function r : I → J player 2 has a strategy (in G(k, m)) such that
for every strategy of player 1 the expected empirical distribution of the action
pairs (i, j) is essentially supported on the set of action pairs of the form (i, r(i)).
A recent result of Neyman and Spencer characterizes the asymptotic relation of
m = mk and k so that player 2 can effectively predict the moves of player 1.
This asymptotic relation is: lim inf log mk

k , as k goes to infinity, is at least the
minimum of log |I| and log |J |. It follows that the value of G(k, mk) converges
to maxi∈I minj∈J g(i, j) as k → ∞ and lim infk→∞ log mk

k ≥ min(log |I|, log |J |).
An open problem (see [2]) is the quantification of the feasible “level of pre-

diction” when the limit of log mk

k equals θ and 0 < θ < min(log |I|, log |J |). For
example, do the values of G(k, mk) converge as k → ∞ and limk→∞ log mk

k = θ,
and, for those values of θ for which the limit exists, what is the limit of the
values as a function of the stage game G and θ? It is known that the value of
G(k, mk) converges, as mk ≥ k → ∞ and log mk

k → 0, to the value of the stage
game [1].

The level of prediction, where player 1 is either (an uncertain periodic) nature
or a player that does not observe the moves of player 2, has a complete asymptotic
characterization [3]. The value of the two-person zero-sum repeated game, where

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 1–2, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 A. Neyman

player 1’s possible strategies are those implementable by oblivious automata of
size k and player 2’s possible strategies are those implementable by automata of
size m, converges, as k goes to infinity and log m

k goes to θ ≥ 0, to a limit v(θ). The
limit v(θ) is characterized by the data of the stage game G = 〈I, J, g〉. It equals
the maxmin of EQg(i, j) where the max is over all mixed stage actions p and the
min is over all distributions Q on action pairs with marginal p on I, denoted QI ,
and H(QI) + H(QJ) − H(Q) ≤ θ, where H is the entropy function. This result
remains intact when player 2’s possible strategies are those implementable by
automata with time-dependent mixed actions and mixed transitions.

Another question is how long it takes the smarter player to effectively pre-
dict the moves of the other player. We study this question by analyzing the
T -stage repeated game GT (k, m) where player 1’s (respectively, player 2’s) possi-
ble strategies are those implementable by an automaton with k (respectively, m)
states. It is known that when player 2 is “supersmart” (m = ∞) and T � k log k,
player 2 can effectively predict the moves of player 1 [5]. Formally, the values of
the two-person zero-sum games GTk(k,∞) converge to maxi∈I minj∈J g(i, j) as
k → ∞ and lim supk→∞

k log k
Tk

= 0. It is conjectured in [2] that the values of the
two-person zero-sum games GTk(k,∞) converge to the value of the stage game
G as k → ∞ and lim supk→∞

k log k
Tk

= ∞.
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Dynamic Mechanism Design�

Davide Bilò1, Luciano Gualà1, and Guido Proietti1,2

1 Dipartimento di Informatica, Università di L’Aquila, Italy
2 Istituto di Analisi dei Sistemi ed Informatica, CNR, Roma, Italy

{davide.bilo, guala, proietti}@di.univaq.it

Abstract. In this paper we address the question of designing truthful
mechanisms for solving optimization problems on dynamic graphs. More
precisely, we are given a graph G of n nodes, and we assume that each
edge of G is owned by a selfish agent. The strategy of an agent consists
in revealing to the system the cost for using its edge, but this cost is not
constant and can change over time. Additionally, edges can enter into
and exit from G. Among the various possible assumptions which can be
made to model how these edge-cost modifications take place, we focus on
two settings: (i) the dynamic, in which modifications are unpredictable
and time-independent, and for a given optimization problem on G,
the mechanism has to maintain efficiently the output specification and
the payment scheme for the agents; (ii) the time-sequenced, in which
modifications happens at fixed time steps, and the mechanism has to
minimize an objective function which takes into consideration both
the quality and the set-up cost of a new solution. In both settings, we
investigate the existence of exact and approximate truthful mechanisms.
In particular, for the dynamic setting, we analyze the minimum spanning
tree problem, and we show that if edge costs can only decrease, then
there exists an efficient dynamic truthful mechanism for handling a
sequence of k edge-cost reductions having runtime O(h log n + k log4 n),
where h is the overall number of payment changes.

Keywords: Algorithmic Mechanism Design, On-line Problems, Dy-
namic Algorithms, Approximate Mechanisms.

1 Introduction

Algorithmic mechanism design (AMD) is concerned with the computational com-
plexity of implementing, in a centralized fashion, truthful mechanisms for solv-
ing optimization problems in multi-agents systems [13]. AMD is by now one of
the hottest topic in theoretical computer science, especially since of the game-
theoretic nature of Internet. As a result, many classic network optimization
problems have been resettled and solved under this new perspective [3,4,7,8,9].

� Work partially supported by the Research Project GRID.IT, funded by the Italian
Ministry of Education, University and Research.

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 3–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



4 D. Bilò, L. Gualà, and G. Proietti

Apparently, however, the canonical approach is that of dealing with these prob-
lems by means of one-shot mechanisms, whose natural computational counter-
part are static graph problems. This is in contrast with the intrinsic dynamicity
of Internet’s infrastructure, where links and node can rapidly appear, disappear,
or even change their characteristics. Thus, surprisingly enough, there is a lack
of modeling for those situations in which agents need to adapt their strategies
over time, according to sudden changes in their owned components. To the best
of our knowledge, the only effort towards this direction has been done in the
framework of the so-called on-line mechanism design (OMD) [6,14]. There, the
dynamic aspect resides in the fact that agents arrive and depart once over time,
and their strategy consist of a single announcement of a bidding value for a
time interval included between the arrival and the departing time. However, the
limitation of OMD is that agents are not allowed to play different strategies over
time, thus preventing to model those situations in which bidding values need to
be continuously adjusted.

In this paper, we aim exactly to fill this gap, by exploring the difficulties and
the potentialities emerging in this new challenging scenario. In doing that, we
combine some of the theoretical achievements of the AMD with techniques which
are proper of dynamic and on-line algorithms. The result of this activity is what
we call as dynamic mechanism design (DMD). As a paradigmatic framework, we
consider the situation in which each agent owns an edge of a given underlying
graph G of n nodes, and its strategy consists in revealing to the system the cost
(which can change over time) for using its edge. We focus on two main realistic
scenarios:

1. In the first scenario, we consider the case in which edge costs are subject
to sudden changes, due to boundary conditions alterations. In the extreme
case, an edge might become unavailable to the system, due to a failure for
instance. On the opposite side, some new edge might become available. All
these variations are presented on-line to the system, which is completely
unaware of possible future changes. Moreover, we will assume that each
agent is unaware about other agents’ types and strategies, and thus it can-
not observe the global status of the system.1 We feel that this is particu-
larly attractive in an Internet setting, where an agent may not even know
which other agents are participating to the mechanism. From an algorith-
mic point of view, this translates into a continuously evolving input graph,
over which a solution to a given optimization problem has to be main-
tained. In other words, we need to design a fully dynamic mechanism which
updates efficiently both the output specification and the corresponding pay-
ment scheme for the agents. In the rest of the paper, we will refer to this as
the dynamic scenario. What is interesting here is that while classic dynamic
graph algorithms can be used for the maintenance of the output specifi-
cation, as far as the payment scheme updating is concerned, this defines

1 Notice that the case in which an agent can observe the strategies of the other
agents transforms our problem into a repeated game, for which the existence of a
dominating strategy is unknown.



Dynamic Mechanism Design 5

novel dynamic graph problems, which would make no sense in a canonical
centralized framework. In this paper, as a starting point, we deal with a
basic graph problem that has served as a case study for several papers on
AMD, namely the minimum spanning tree (MST) problem. After observ-
ing that efficient dynamic MST algorithms in [10] can be turned into an
efficient dynamic mechanism for handling a sequence of k edge-cost mod-
ifications having runtime O(k n log4 n), we will show that for the case in
which edges can only become less expensive, then the mechanism runtime
drops to O(h log n + k log4 n), where h is the overall number of payment
changes. We emphasize that this edge-cost lowering scenario is interesting
because of the competitive nature of Internet.

2. In the second scenario, we consider the case in which the graph evolves in
a sequence of time steps, and every agent has a specific cost for using its
edge in each of these steps. Here, the time-depending modifications of the
graph suggest that the mechanism’s goal should now be the composition of
two objectives: maintaining a good (not necessarily optimal) solution at a
low (not necessarily minimal) cost of setting it up. Thus, on a sequence of
graph changes, the objective function is now given by the overall cost of the
sequence of solutions, plus the overall set-up cost. This approach is inspired
to that proposed in the past in [11] to model the fact that on an on-line
sequence of changes, it is important to take care of the modifications on
the structure of the solution, since radical alterations might be too oner-
ous in terms of set-up costs. In the rest of the paper, we will refer to this
as the time-sequenced scenario. Here, on a positive side, we will show that:
(i) if each set-up cost is upper bounded by the initial one and changes are
presented on-line to the system, then a ρ-approximate monotone algorithm
for a given optimization problem Π on G, translates into an approximate
truthful mechanism for Π which on a sequence of graph changes of size k
has an approximation ratio of max{k, ρ}; (ii) if the underlying graph opti-
mization problem is utilitarian and polynomial-time solvable, and changes
are presented off-line to the system, then there exists a VCG-like truthful
mechanism for solving optimally the sequence, which can be computed in
polynomial time by means of a dynamic programming technique. On the
other hand, on a negative side, we will show that even if graph changes
are presented off-line to the system and set-up costs are uniform, then any
truthful mechanism which solves the problem by means of a divide et impera
paradigm (as explained in more detail in Section 6) cannot achieve a better
than k approximation ratio.

The paper is organized as follows: in Section 2 we give preliminary definitions;
after, in Section 3 we present the dynamic mechanism for the MST problem,
while in Section 4 we define formally the time-sequenced model; finally, in the last
two sections we give, respectively, positive and negative results on the existence
of time-sequenced truthful mechanisms.
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2 Preliminaries

Let a communication network be modeled by a graph G = (V, E) with n
nodes and m edges. We will deal with the case in which each edge e ∈ E is
controlled by a selfish agent ae holding a private information te, namely the
true type of ae. Only agent ae knows te. Each agent has to declare a public
bid be to the mechanism. We will denote by t the vector of types, and by b
the vector of bids.

For a given optimization problem Π defined on G, let Sol(Π) denote the
corresponding set of feasible solutions. We will assume that Sol(Π) does not
depend on the agents’ types. For each x ∈ Sol(Π), an objective function is
defined, which depends on the agents’ types. A mechanism for Π is a pair M =
〈g(b), p(b)〉, where g(b) is an algorithm that, given the agents’ bids, computes
a solution for Π , and p(b) is a scheme which describes the payments provided
to the agents. For each solution x, ae incurs a cost νe(te, x) for participating
to x (also called valuation of ae w.r.t. x). Each agent tries to maximize its
utility, which is defined as the difference between the payment provided by the
mechanism and the cost incurred by the agent w.r.t. the computed solution. On
the other hand, the mechanism aims to compute a solution which minimizes the
objective function of Π w.r.t. to the agents’ types, but of course it does not
know t directly. In a truthful mechanism this tension between the agents and
the system is resolved, since each agent maximizes its utility when it declares its
type, regardless of what the other agents do.

Given a positive real function ε(n) of the input size n, an ε(n)-approximate
mechanism returns a solution whose measure comes within a factor ε(n) from the
optimum. A mechanism has a runtime of O(f(n)) if g(·) and p(·) are computable
in O(f(n)) time. Moreover, a mechanism design problem is called utilitarian if
the objective function of Π is equal to

∑
e∈E ν(te, x). For utilitarian problems,

there exists a well-known class of truthful mechanisms, i.e., the Vickrey-Clarke-
Groves (VCG) mechanisms.

In [2], Archer and Tardos have shown how to design truthful mechanisms for
another well-known class of mechanism design problems called one-parameter.
A problem is said one-parameter if (i) the true type of each agent ae can be
expressed as a single parameter te ∈ R, and (ii) each agent’s valuation has the
form νe(te, x) = te ωe(b), where ωe(b) is called the work curve for agent ae, i.e.,
the amount of work for ae depending on the output specified by the mechanism
algorithm, which in its turn is a function of the bid vector b. When, for each
agent ae, ωe(b) can be either 0 or 1, then the problem is also called binary
demand [12]. In [2] it is shown that for one-parameter problems, a sufficient
condition for truthfulness is given by a monotonicity property of the mechanism
algorithm. In particular, for a binary demand problem, such property reduces
to the following. Let b be the vector of bids of the agents, and let b−e denote
the vector of all bids besides be; the pair (b−e, be) will denote the vector b. If
we fix b−e, a monotone algorithm A defines a threshold value θe(b−e,A) such
that if ae bids no more than θe(b−e,A), then e will be selected, while if ae bids
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above θe(b−e,A), e will not be selected.2 Sometimes, we will write θe(b−e) when
the algorithm A is clear from the context. The results in [2] imply that the only
truthful mechanism for a binary demand problem using an algorithm A is the
one-parameter mechanism M = 〈A, pA(·)〉, where A is required to be monotone,
and the payment pAe (b) for each agent ae is defined as its threshold value if it
owns a selected edge, and 0 otherwise.

3 An Efficient Dynamic Mechanism for the MST
Problem

We start by addressing the problem of designing an efficient mechanism for
the fully dynamic MST problem. Since we assume that agents’ types change
over time, we allow the agents to declare a new bid to the mechanism at any
time. Recall that edge-cost changes are presented on-line to the system, which
is unaware of possible future changes, and that the agents do not know other
agents’ bids. The mechanism works as follows. At any time, whenever it receives
a new bid from an agent, it computes a new MST w.r.t. the new bid profile, and
it updates the payments exactly as the one-parameter mechanism for the MST
problem. Concerning the truthfulness of the mechanism, this follows from the
truthfulness of the one-parameter mechanism for the MST problem, and from
the fact that every agent is completely unaware of other agents’ bids.

On the other hand, concerning the time complexity, the mechanism has to
maintain: (i) an MST of G, and (ii) the corresponding payments. Moreover,
it has to support a payment query in O(1) time. To dynamically maintain an
MST, one can use the algorithm proposed in [10], which takes O(k log4 n) time
for processing k edge-cost updates (deletions of edges are simulated by setting to
+∞ the cost of an edge). Thus, it remains to manage the payment scheme. We
remind that for binary demand problems, the payment provided to ae is equal
to θe(b−e) if e is selected, and zero otherwise. This means it suffices to maintain
the threshold value θe(b−e) for each e belonging to the current solution. We
emphasize that the algorithm in [10] can be straightforwardly used to accomplish
such a task, and from this it follows that there exists a truthful mechanism for the
fully dynamic MST which runs in O(k n log4 n) time for processing k updates.
Improving this latter result is a challenging open problem. In the following, we
show that for the edge-cost decreasing case, in which edge costs are only allowed
to decrease, a significant improvement is possible. We argue this is not a very
special case, as it includes the well-known partially dynamic scenario, where only
edge insertions are allowed.

How to Maintain the Payments. Let G be a graph, and let T be an MST of
G. For each non-tree edge f = (u, v) ∈ E \E(T ), T (f) will denote the set of tree
edges belonging to the (unique) path in T between u and v. For each e ∈ E(T ),

2 As usual, we will assume that there always exists a feasible solution not containing
e, which implies that θe(b−e,A) is bounded.
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let CT (e) = {f ∈ E \ E(T ) | e ∈ T (f)}. We denote by swap(e) the cheapest
non-tree edge in CT (e).3 Note that θe(b−e) = bswap(e).

Clearly, if a tree edge decreases its cost, no payment changes. Consider now
the situation in which a non-tree edge f decreases its cost from bf to b′f . Denote
by T ′ the new MST, i.e., the MST computed w.r.t. the cost profile b′ = (b−f , b′f).
We have two cases:

Case 1: T ′ = T . Clearly, only the threshold of edges in T (f) may change, since
for each e′ /∈ T (f), no edge in CT (e′) has changed its cost. Moreover, the
threshold of e changes iff θe(b−e) > b′f , and in this case the new threshold
value becomes θe(b′−e) = b′f .

Case 2: T ′ �= T . Clearly T ′ = T \ {e} ∪ {f}. Moreover, the payment for ae

becomes 0, while that for af will be θf (b′−f) = be, since CT ′(f) ⊆ CT (e)∪{e}.

Lemma 1. For every e′ ∈ E(T ′) \ T ′(e), θe′(b′−e′) = θe′(b−e′).

Proof. The lemma trivially follows from the fact that for each e′ ∈ E(T ′)\T ′(e),
CT ′(e′) = CT (e′) and f /∈ CT (e′). 	


Lemma 2. The threshold of an edge e′ ∈ T ′(e) changes iff θe′(b−e′) > be. In
this case, θe′(b′−e′) = be.

Proof. Let e′ ∈ T ′(e) be such that θe′(b−e′) > be. Since e ∈ CT ′(e′), then
θe′(b′−e′) ≤ be. We have to show that �f ′ ∈ CT ′(e′) with bf ′ < be. For the sake
of contradiction, suppose that ∃f ′ ∈ CT ′(e′) such that bf ′ < be. Then, we show
T was not an MST by proving that f ′ ∈ CT (e). Suppose that f ′ /∈ CT (e); then
T (f ′) = T ′(f ′), which implies θe′(b−e′) < be.

It remains to show that if θe′(b−e′) ≤ be, then θe′(b′−e′) = θe′(b−e′). Notice
that if swap(e′) ∈ CT (e), then θe′(b−e′) ≥ be from the minimality of T , which
implies θe′ (b−e′) = be. Otherwise, swap(e′) ∈ CT ′(e′). In both cases θe′(b′−e′) ≤
θe′(b−e′). Moreover, since CT ′(e′) ⊆ CT (e′) ∪ CT (e) ∪ {e}, then

θe′(b′−e′) = min
f∈CT ′(e′)

{bf} ≥ min
f∈CT (e′)∪CT (e)∪{e}

{bf}

= min{bswap(e′), be} = θe′(b−e′). 	


Implementation. To update the payments, we use a top tree, a data structure
introduced by Alstrup et al. [1] to maintain information about paths in trees.
More precisely, a top tree represents an edge-weighted forest F with weight
function c(·). Some operations defined for top trees are:

– link((u, v), x), where u and v are in different trees. It links these trees by
adding the edge (u, v) of weight c(u, v) = x to F .

– cut(e). It removes the edge e from F .
– update(e, x), where e belongs to F . It sets the weight of e to x.
– max(u, v), where u and v are connected in F . It returns the edge with max-

imum weight among the edges on the path between u and v in F .
3 If there are more than one such cheapest edges, we pick one of them arbitrarily.
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In [1,5,15], it is shown how to implement a top tree (by using O(n) space) for
supporting each of the above operations in O(log n) time.

To our scopes, we use a top tree T as follows. T maintains the current MST
where the cost of each edge e ∈ E(T ) is θe(b−e). Concerning Case 1, we only
need to update the threshold of some edges in T (f). So, let f = (x, y) be the
edge which has decreased its cost. While c(e′) > b′f , where e′ =max(x, y), then
we (i) update the payment for ae′ to b′f , and (ii) perform update(e′, b′f ). For
what concerns Case 2, let e = (x, y) be the edge in T not in T ′. First, we update
the MST by performing cut(e) and link(f, be). Next, we update the payment
for ae (resp., af ) to 0 (resp., be). Finally, while c(e′) > be, where e′ =max(x, y),
then (i) we update the payment for ae′ to be, and (ii) we perform update(e′, be).

The above discussion yields the following:

Theorem 1. There exists a dynamic mechanism supporting a sequence of k
edge-cost decreasing operations in O(h log n+k log4 n) time, where h is the overall
number of payment changes. 	


4 Time-Sequenced Scenario: Problem Statement

Let G = (V, E) be a graph with a positive real weight w(e) associated with
each edge e ∈ E. Henceforth, unless stated otherwise, by Π we will denote a
communication network problem on (G, w), which asks for computing a subgraph
H ∈ Sol(Π) of G by minimizing an objective function φ(H, w) of the form

φ(H, w) =
∑

e∈E(H)

w(e) · μH(e),

where μH(e) depends only on the topology of H . Notice that this definition
embraces the quasi-totality of communication network problems, like the MST
problem, the shortest-paths tree problem, and so on.

Let k be a positive integer. We assume that the type of each agent ae is
te = 〈t1e, . . . , tke〉, while its bid is be = 〈b1

e, . . . , b
k
e〉. Intuitively, tie represents the

true cost incurred by ae for using its link e at time i. We will denote by ti ∈ R
m

the vector of agents’ types at time i, and by t the vector 〈t1, . . . , tk〉.
Given a communication network problem Π , we want to design a truthful

mechanism for the optimization problem that we will denote by Seq(Π). This
latter problem asks for computing a sequence H = 〈H1, . . . , Hk〉, where Hi ∈
Sol(Π), i = 1, . . . , k, by minimizing the following objective

Ψ(H, t) = Φ(H, t) + Γ (H),

where Φ(H, t) is a function measuring the quality of the solution H, and Γ (H)
is a function measuring the overall set-up cost. For a given sequence H, we will
naturally assume that the valuation of ae w.r.t. H is:

νe(H, te) =
k∑

i=1

νi
e(Hi, t

i
e), where νi

e(Hi, t
i
e) =

{
tie if e ∈ E(Hi);
0 otherwise.
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Depending on the cost model to be adopted, the functions Φ(·) and Γ (·) can
be defined accordingly. In this paper, we will consider the prominent additive
cost model, in which

Φ(H, t) =
k∑

i=1

φ(Hi, t
i), Γ (H) =

k∑

i=1

γ(i,H),

where

γ(i,H) =

⎧
⎪⎨

⎪⎩

γ1 ∈ R
+ if i = 1;

γi ∈ R
+ if Hi �= Hi−1,

0 otherwise.
i = 1, . . . , k;

For any 1 ≤ i ≤ j ≤ k, by [i, j] we will denote the interval {i, . . . , j}. We
will write [i, j) instead of [i, j − 1]. Given two intervals [i, j], [i′, j′], we write
[i, j] ≺ [i′, j′] if j < i′. An interval vector s = 〈I1, . . . , Ih〉 is a vector of pairwise
disjoint intervals whose union is {1, . . . , k}, and such that I1 ≺ · · · ≺ Ih. Given
an interval I, let bI be the vector defined as bI

e =
∑

i∈I bi
e, for each edge e ∈ E.

Moreover, we will denote by H∗
I an optimum solution for Π when the input is

(G, bI). Finally, given two sequences H = 〈H1, . . . , Hi〉,H′ = 〈H ′
1, . . . , H

′
j〉, by

H�H′ we denote the sequence 〈H1, . . . , Hi, H
′
1, . . . , H

′
j〉.

5 Time-Sequenced Mechanisms: Positive Results

In this section we first define the class of time-sequenced single-parameter (TSSP)
mechanisms, and we prove that any mechanism in this class is truthful for
Seq(Π). Moreover, for the case in which each set-up cost is upper bounded by γ1,
we show that there exists an on-line max{k, ρ}-approximate TSSP mechanism,
where ρ is the approximation ratio of a monotone algorithm for Π . Then, we
turn our attention to the special case in which Π is utilitarian and polynomial-
time solvable, and we show that if the graph changes are presented off-line to the
system, then there exists a VCG-like truthful mechanism for solving optimally
Seq(Π), which can be computed in polynomial time by means of a dynamic
programming technique.

5.1 On-Line Sequences with Bounded Set-Up Costs

From now on, by s̃ we will denote the interval vector 〈[1, 1], . . . , [k, k]〉.

Definition 1. Given a communication network problem Π, and a monotone
algorithm A for Π, a TSSP mechanism M(s) = 〈gs(b), p(b)〉 with interval vector
s = 〈I1, . . . , Ih〉 for Seq(Π) is defined as follows:

1. gs(·) returns a sequence H = H1 � · · · � Hh, in which

∀j = 1, . . . , h, Hj = 〈Ĥj , . . . , Ĥj〉 has size |Ij |,

where Ĥj is the solution returned by A with input (G, bIj );
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2. For each agent ae

pe(b) =
h∑

j=1

pAe
(
bIj

)
,

where pAe (bIj ) is the payment provided to ae by the one-parameter mechanism
〈A, pA(·)〉 for the problem Π when the input is (G, bIj ).

Notice that, by definition, M(s̃) is the only on-line TSSP mechanism.

Proposition 1. M(s) is a truthful mechanism for Seq(Π).

Proof. The mechanism breaks the problem in h instances (G, bI1 ), . . . , (G, bIh)
which are independent each other. Then it uses the one-parameter mechanism
〈A, pA(·)〉 for each of them in order to locally guarantee the truthfulness. 	


The main result of this section, whose proof is omitted due to lack of space, is
the following:

Theorem 2. Given a ρ-approximate monotone algorithm A for Π, the mecha-
nism M(s̃) applied to Seq(Π) with the assumption that each set-up cost is upper
bounded by γ1, has a performance guarantee of max{k, ρ}. 	


5.2 Off-Line Utilitarian Problems

In this section we show how to design an exact off-line mechanism when Π is
utilitarian. Before defining our mechanism, we show how to compute an optimal
sequence by using dynamic programming.

Let H∗ denote an optimal solution for Seq(Π), and let H∗
[1,i] be an optimal

solution for Seq(Π) when the input is restricted to the interval [1, i], i.e. we have
i time steps and the bid vector is 〈b1, . . . , bi〉. In order to lighten the notation, we
will write Ψ(H[1,i], b) instead of Ψ(H[1,i], 〈b1, . . . , bi〉), where H[1,i] is a solution
for Seq(Π) restricted to the interval [1, i]. Notice that H∗

[1,1] = 〈H∗
[1,1]〉, and

Ψ(H∗
[1,1], b) = φ(H∗

[1,1], b
1) + γ1. Moreover, H∗

[1,k] = H∗.
The dynamic programming algorithm computes H∗

[i,j], for every 1 ≤ i ≤ j ≤ k.
Next, starting from i = 1 to k, it computes H[1,i] = H[1,hi) � 〈H∗

[hi,i]
〉, with

hi = arg min
h=1,...,i

{
Ψ ′(b, h, i) := Ψ(H[1,h), b) + φ

(
H∗

[h,i], b
[h,i]

)
+ γh

}
,

where H[1,1) is the empty sequence, and Ψ(H[1,1), b) is assumed to be 0.
The following lemma, whose proof is omitted due to lack of space, holds:

Lemma 3. For any i = 1, . . . , k, the dynamic programming algorithm computes
a solution H[1,i] such that Ψ(H[1,i], b) = Ψ(H∗

[1,i], b). 	


We are now ready to define our VCG-like mechanism. Let Mvcg be a mechanism
defined as follows:



12 D. Bilò, L. Gualà, and G. Proietti

1. The algorithmic output specification selects an optimal sequence (w.r.t. the
bids b) H∗

G;
2. Let G−e = (V, E\{e}), and let H∗

G−e be an optimal solution (w.r.t. the bids
b) in G − e. Then, the payment function for ae is defined as

pe(b) = Ψ(H∗
G−e, b) − Ψ(H∗

G, b) + νe(H∗
G, be).

From the above discussion, it is easy to prove the following

Theorem 3. Let Π be utilitarian and solvable in polynomial time. Then, Mvcg

is an exact off-line truthful mechanism for Seq(Π) which can be computed in
polynomial time. 	


6 Time-Sequenced Mechanisms: Inapproximability
Results

In this section we consider a natural extension of TSSP mechanisms named adap-
tive TSSP mechanisms, and we prove a lower bound of k to the approximation
ratio that can be achieved by any truthful mechanism in this class.

Definition 2. Let δ be a function mapping bid vectors to interval vectors. An
adaptive time-sequenced single-parameter (ATSSP) mechanism Mδ for Π is the
mechanism which, for a given vector bid b, is defined exactly as M(δ(b)).

Lemma 4. Let ti be a type profile for Π, and let A be an optimal algorithm for
Π. Then, ∀η ∈ R

+, θi
e(η · ti−e) = η · θi

e(t
i
−e).

Proof. Observe that ∀H ∈ Sol(Π)

φ(H, η · ti) =
∑

e∈E(H)

η · tie μH(e) = η
∑

e∈E(H)

tie μH(e) = η · φ(H, ti).
	


Theorem 4. For any mapping function δ, for any optimal algorithm A for Π,
and for any c < k, there exists no c-approximate truthful ATSSP mechanism
using A for Seq(Π), even when set-up costs are uniform.

Proof. The proof is by contradiction. Let M = γ1 = · · · = γk. Let Mδ be a c-
approximate truthful ATSSP mechanism for Seq(Π). For the sake of clarity, we
denote by H(w) an optimum solution for Π with input (G, w). Let t1 = (t1−e, t

1
e),

with t1−e = 〈0, . . . , 0〉, and t2 = (t2−e, 0) be two type vectors for Π such that the
following three conditions hold:

(i) 2t1e < θ2
e , t1e > 0, where θ2

e = θe(t2−e);
(ii) φ(H(t2−e, +∞), (t2−e, +∞)) ≥ (k2 − 1)M ;
(iii) φ(H(t2−e, x), (t2−e, x)) does not depend on M , for any x < θ2

e not depending
on M .

Lemma 5. There always exist t1e and t2−e satisfying the above conditions.
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Proof. Let H ∈ Sol(Π) be such that E(H ′) �⊂ E(H), ∀H ′ ∈ Sol(Π). Let e be
an edge of H . Now for each e′ ∈ E(H) \ {e}, let t2e′ = 1

μH (e′) . Moreover, for each
e′ ∈ E \ E(H), let t2e′ be defined as follows

t2e′ = max
H′∈Sol(Π)

(k2 − 1)M
μH′(e′)

.

By construction, condition (ii) holds. For M large enough, it is easy to see that
θ2

e is at least (k2 − 1)M − |E(H)| > 0, from which (i) follows as well. Finally,
condition (iii) follows by observing that μH(e) does not depend on M . 	


Let t be the type profile defined as follows:

∀i = 1, . . . , k, ti =

{
t1 if i is odd;
t2 otherwise.

Lemma 6. For M large enough, δ(t) �= s̃.

Proof. The proof is by contradiction. Let H be the solution computed by the
mechanism corresponding to the interval vector s̃. Notice that Ψ(H, t) ≥ kM ,
since H(t1) �= H(t2). Consider now the solution H′ corresponding to the in-
terval vector 〈[1, k]〉. It is easy to see that for t1e small enough, Ψ(H′, t) =
M + φ

(
H

(
t[1,k]

)
, t[1,k]

)
≤ M + k φ(H(t2−e, t

1
e), (t

2
−e, t

1
e)). It follows that the ap-

proximation ratio achieved by the mechanism is at least

Ψ(H, t)
Ψ(H′, t)

≥ kM

M + k φ(H(t2−e, t
1
e), (t2−e, t

1
e))

,

which, from (iii), goes to k when M goes to +∞. This contradicts the fact that
Mδ is c-approximate. 	


Lemma 7. For M large enough, the utility of ae in the solution gδ(t)(t) com-
puted by the mechanism Mδ is less than

⌊
k
2

⌋
θ2

e.

Proof. Let δ(t) = 〈I1, . . . , Ih〉 be the interval vector computed by δ, and let H
be the corresponding solution. For each j = 1, . . . , h, let Ij = [xj , yj] be the j-th
interval, and let ηj be the number of occurrences of t2 in 〈txj , . . . , tyj 〉. Notice
that tIj = (ηj t2−e, (|Ij | − ηj) t1e). It is easy too see that (|Ij | − ηj) ≤ ηj + 1.
Moreover, notice that e belongs to H

(
tIj

)
iff ηj > 0. Indeed, whenever ηj > 0,

(ηj + 1) t1e < ηj θ2
e holds from (i), and from Lemma 4 this implies that e belongs

to H
(
tIj

)
. Finally, notice that whenever |Ij | > 1, ae incurs a cost of at least t1e.

Then, from Lemma 4, the payment provided to ae is
∑h

j=1 ηj θ2
e =

⌊
k
2

⌋
θ2

e ,
while concerning the cost incurred by ae, it is at least t1e > 0, since from Lemma 6
there must exist an index j∗ such that |Ij∗ | > 1. 	


Consider now the following new type profile t̂ which is equal to t except for t̂ie
that is set to +∞ for every odd i.
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Lemma 8. For M large enough, δ(t̂ ) = s̃.

Proof. For the sake of contradiction, assume that δ(t̂) �= s̃. Then, there must
exist an index j for which the solution H computed by the mechanism does not
change at time j. Hence, since either t̂je = +∞ or t̂j−1

e = +∞, from (ii) it must
be Ψ(H, t̂) ≥ k2M . Consider the solution H′ corresponding to the interval vector
s̃. Then, the approximation ratio achieved by the mechanism is at least

Ψ(H, t̂)
Ψ(H′, t̂)

≥ k2M

kM + k φ(H(t2), t2)
,

which, from (iii), goes to k when M goes to +∞. This contradicts the fact that
Mδ is c-approximate. 	


To conclude the proof, observe that when the type profile is t, ae has convenience
to bid be defined as

∀i = 1, . . . , k, bi
e =

{
t2e if i is even;
+∞ otherwise.

Indeed, in this case, from Lemma 8, its utility becomes equal to
⌊

k
2

⌋
θ2

e , which
is better than the utility it gets by bidding truthfully (see Lemma 7). 	


Notice that, since in the uniform set-up cost case each set-up cost is upper
bounded by γ1, and since M(s̃) belongs to the class ATSSP, then Theorem 4
implies that the upper bound in Theorem 2 is tight, when A is optimal (i.e.,
ρ = 1).
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Abstract. This paper investigates a new auction model in which bidders
have both copy and budget constraints. The new model has extensive and
interesting applications in auctions of online ad-words, software licenses,
etc. We consider the following problem: Suppose all the participators are
rational, how to allocate the objects at what price so as to guarantee
auctioneer’s high revenue, and how high it is.

We introduce a new kind of mechanisms called win-win mechanisms
and present the notion of unconditional competitive auctions. A notably
interesting property of win-win mechanisms is that each bidder’s self-
interested strategy brings better utility not only to himself but also to
the auctioneer. Then we present win-win mechanisms for multi-unit auc-
tions with copy and budget constraints. We prove that these auctions are
unconditional competitive under the situation of both limited and unlim-
ited supply.

1 Introduction

In recent years, great progresses have been made in electronic commerce, es-
pecially in internet auctions, to which various theoretical and practical studies
have been conducted. Besides governments use auctions to sell rights and assets,
such as Federal Communication Commission, a lot of companies also use internet
auctions to conduct business. There even exist some companies whose revenue
depends almost on certain types of auctions. Over 98% of Google’s revenue and
50% of Yahoo!’s revenue are derived from sales via keywords advertising auc-
tions [7].
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In this paper, we study a quite general yet very practical type of auctions,
where both budget and copy constraints are present. In our model, a single seller
sells multiple copies of a single kind of digital goods. During the process, each
buyer reports one private unit value he is willing to pay for the item, one private
number of copies he demands and one private budget that he is able to pay.
We investigate the model from the perspective of the seller, and our aim is to
present some auctions, whose performance can be theoretically guaranteed, that
maximize the seller’s revenue, with the basic assumption that buyers are rational
and want to maximize their preferences.

Different from traditional models which shield complex factors by making
certain assumptions, there are some additional considerations that distinguish
our model in terms of real life applicability:

1. Our model is especially suitable for digital goods, which can produce unlim-
ited copies with marginal cost zero, such as license sales, mp3 copies, online
advertisements, etc.

2. We consider both copy and budget constraints. We argue that under most
realistic circumstances, the demand of a buyer is limited. Redundant alloca-
tion will bring not profit, but resource waste. For example, issue 1000 copies
of software license to a company with only 100 computers is no doubt an
undesirable allocation result.

Besides studying the new auction model, this paper also has the following
contributions:

– We introduce a new kind of mechanisms called win-win mechanisms. As
we know, in two-sided markets the famous VCG mechanisms maximize the
buyers’ utilities and contrarily minimize the sellers’ revenue. Interestingly, in
our win-win mechanisms, each buyer’s self-interested strategy brings better
utility not only to himself but also to the seller.

– The concept of competitive ratio is first introduced by [9]. However, [9]’s
competitive ratio is only available to mechanisms with dominant strategy. We
generalize the concept to unconditional competitive ratio, which is applicable
to any mechanisms with equilibria.

– For the model with both limited and unlimited supply goods, we present two
win-win mechanisms with unconditional competitive ratio.

For the auctions with constraints, all the previous papers only considered
budget constraint. [4,12,14] studied the model of one item to sell under the
Bayesian-Nash budget constraint. In the last two years, [2] and [1] began to
study the model of multiple units, multiple bidders with budget constraint. Our
framework is inspired by the work of [8,1]. Specifically, [8] studies the auctions
with unlimited supply of digital goods. Each buyer in that model wants at most
one copy without any constraint. [1] studies the auctions with limited supply. But
the buyers have budget constraint and their demands are unlimited. Since our
model allows both unlimited and limited supply of goods and each buyer’s bid
consists of three parameters, clearly our model is substantially more complicated
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and general than these previous models. There are many unique properties of
our model requiring delicate mechanism designs and proofs. Indeed, our auction
is robust against bidders’ any strategic behavior.

The paper is organized as follows. In Section 2, we formally give the defini-
tions of the concepts and the model. Section 3 describes a win-win mechanism
for unlimited supply model with copy constraint. In Section 4, we prove the equi-
libria of it. Section 5 proves the unconditional competitive ratio of the auction.
In Section 6, we generalize the model to limited supply with copy and budget
constraint. Furthermore, we present another win-win mechanism for it with un-
conditional competitive ratio. Finally we conclude with Section 7. Details of all
the proofs can be found in the full version [3].

2 Preliminaries

2.1 Win-Win Mechanisms and Unconditional Competitive Ratio

Before giving its definition, it is necessary for us to introduce some basic knowl-
edge of mechanism design first. We follow the assumption in economics that all
agents are rational, i.e, each of them chooses its strategy to maximize its own
utility selfishly.

A standard model for mechanism design is as follows. Assume there are n
agents, each agent i has its private value ti (termed its true type) which is only
known to itself. Furthermore, each agent i is given a set of strategies Ai such
that agent i can perform any strategy ai ∈ Ai. For any input vector (a1, · · · , an),
the mechanism M(O, {P1, · · · ,Pn}) should provide an output function o =
O(a1, · · · , an) and a payment function pi = Pi(a1, · · · , an) to each agent. All the
output function and payment functions are open to all. In a specific mechanism,
if pi ≥ 0, agent i needs to pay pi, as often happens in auctions. If pi < 0, pi is
the money given to agent i. Without loss of generality, we will always assume
pi ≥ 0 for any i in the context of auctions in the paper.

For any output, each agent i’s preference is given by a valued function:
vi(ti,o), called its valuation. Then its (quasi linear) utility can be defined as
ui(ti,o) = vi(ti,o)−Pi(a1, · · · , an). Accordingly, the auctioneer’s revenue should
be

∑n
i=1 Pi(a1, · · · , an).

One of the most famous mechanisms is called Vickrey-Clarke-Groves (VCG)
mechanism by Vickrey [17], Clarke [6], and Groves [10]. Despite VCG mecha-
nism has the attractive virtue that it is incentive compatible, namely, each agent
maximizes its utility when it reports its true type, it also has several weak-
nesses, for instance, the revenue may be very low, even zero. Actually, for a
two-sided market in which a product with large, indivisible units is exchanged
for money, VCG mechanisms maximize the buyers’ payoff and contrarily min-
imize the sellers’ revenue [16,13], which results from the attractive dominant
strategy property.

In this paper, we develop a new kind of mechanisms called win-win mech-
anisms, in which each agent’s self-interested strategy brings better utility not
only to himself, but also to the auctioneer. The rigorous definition is as follows.
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Definition 2.1 (Win-Win Mechanisms). For any Nash equilibrium (a∗
1,

. . . , a∗
n) in the mechanism, the auctioneer’s revenue must be

n∑

i=1

Pi(a∗
1, · · · , a∗

n) ≥
n∑

i=1

Pi(t1, · · · , tn)

So under any equilibrium state of a win-win mechanism, the auctioneer’s revenue
must be at least as high as that when all the agents tell the truth.

In accord with the notion of win-win mechanisms, we generalize the concept
of competitive ratio first appeared in Goldberg et al.’s paper [9] as follows.

Definition 2.2 (Unconditional Competitive Ratio). An auction A has
some unconditional competitive ratio β, if for any set of rational bidders and
their private true value vector �,

RevenueA(�∗) ≥ F(�)
β

where �∗ is any Nash equilibrium in the auction, RevenueA represents the (ex-
pect) revenue of auction A and F(�) denotes the optimal single price revenue
that the auctioneer could have obtained if the true types of the bidders were
known in advance.

2.2 Auctions with Copy Constraint: Model and Notation

In the model, the auctioneer sells an idiosyncratic commodity with unlimited
copies to n buyers, denoted by i = 1, 2, . . . , n. Each buyer i has two kinds of
privately known information: ui ∈ R

+, ci ∈ N. ui represents the unit value
buyer i is willing to pay for the commodity, ci represents the number of copies
i demands.

Each buyer i simultaneously submits his bid, denoted by (ui, ci) to the auc-
tioneer. When receiving all the submitted bids, the auctioneer decides how many
copies each buyer will get and how much he should pay. Actually, it is the one-
round sealed-bid auction.

We use F represent the optimal revenue the auctioneer could get if the true
types of the bidders were known in advance, under the consideration that the
auctioneer can only set an identical unit price. Formally,

Definition 2.3. Given bids � = ((u1, c1), . . . , (un, cn)) sorted in decreasing or-
der according to the unit value,

F(�) = max
1≤k≤n

uk

∑

1≤i≤k

ci (2.1)

denotes the maximum single price revenue the auctioneer can achieve, and such
corresponding price uk is denoted by pF(�).

Furthermore, we use F (2)(�) represent the optimal single price revenue that
there are at least 2 winners. I.e.,
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F (2)(�) = max
2≤k≤n

uk

∑

1≤i≤k

ci

Definition 2.4 (Utility). Each buyer i’s utility for his allocation allocationi

and payment paymenti is defined as:

Ui = ui × min {ci, allocationi} − paymenti (2.2)

where ui, ci are bidder i’s true type and allocationi is the copies he gets corre-
sponding to his submitted bid.

In addition, for convenience and simplicity, we will use the following notations
in the entire paper.

Definition 2.5. Given bidders’ true type vector �,

B =
{
(ui, ci)|ui ≥ pF(�)

}
(2.3)

denotes the set of winners whose unit values are not lower than pF(�). And

α =
max{i|ui≥pF(�)}{ci}

∑
ui≥pF(�)

ci
(2.4)

denotes the ratio of maximum demanded copies among winners to the number
of demanded copies of all the winners in the single price optimal auction.

3 Algorithm: Random Partition with Revenue Share
Auction

In the following, based on the bidders’ input vector, we present a win-win auc-
tion with unconditional competitive ratio called Random Partition with Revenue
Share Auction to obtain the allocation and the payment. It is inspired by the
Cost Sharing Mechanism in [8]. But due to the differences of our model and
input vector, some properties of the Cost Sharing Mechanism are unavailable.
We shall develop a new and technically involved analysis for it.

Definition 3.1. Given bids � = ((u1, c1), . . . , (un, cn)) and R, find the smallest
p ∈ R

+ such that

p =
R

∑
ui≥p ci

such p is denoted by pR.

Obviously, such p can be found in O(n) time.

Lemma 3.2. Bidders will tell their true unit values in RevenueShareR

Auction.
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Auction 1. RevenueShareR Auction
1: Calculate pR.
2: For any winner i such that ui ≥ pR, sell ci copies to bidder i at unit price pR.
3: Other bidders lose.

The following auction is based on Auction 1.

Auction 2. Random Partition with Revenue Share Auction (RPRS)
1: Partition bids � uniformly at random into two bid sets S

′ and S
′′.

2: Compute F(S′) and F(S′′).
3: Run RevenueShareF(S′) on S

′′ and RevenueShareF(S′′) on S
′ respectively.

Theorem 3.3. Bidders will tell their true unit values in Random Partition with
Revenue Share Auction.

We have proved that bidders will tell their true unit values in RPRS Auction.
Then will they tell their true copies? Assume all bidders are rational, then they
will lie on copies as long as they can get more benefit. Suppose there are three
bidders in RPRS Auction and their true bids are (1,1),(1.1,1),(0.54,1). Now the
expect utility of the first bidder is 0.43. However, if he bids (1,2) instead of (1,1),
his expect utility will increase to 0.45. In the next section, we will further talk
about this issue.

4 Nash Equilibrium and Copy Bounds of RPRS Auction

Consider the counter example above which implies that in RPRS Auction a
bidder may have motivation to lie on the number of copies.

In that example, if the first bidder wants to obtain more profit, he has to
increase his input number of copies. Although this change results in waste of
copies, he may attain more profit as long as the new price is low enough.

We assume that bidders choose their input number of copies to maximize
their expect utility given the bids made by the other bidders. If there exists an
equilibrium, then in the equilibrium, each bidder has no reason to change his
bid, which motivates the following definition.

Definition 4.1. In RPRS Auction, a Nash equilibrium is a set of input param-
eters such that for any bidder i and his strategy c∗i in the equilibrium, there does
not exist c′i such that:

ui min {ci, allocation∗i }−p∗×allocation∗i < ui min
{
ci, allocation′i

}−p′×allocation′i

where ci is bidder i’s true copy demand, p∗ is the price under the equilibrium
while p′ is the unit price when i bids c′i. allocation∗i is the copies that i gets under
the equilibrium and allocation′i is the copies that i gets when he bids c′i.
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Lemma 4.2. In RevenueShareR Auction, a bidder will never tell a smaller
number of copies than his true copy demand.

Theorem 4.3. In RPRS, a bidder will never tell a smaller number of copies
than the true copies he demands.

Suppose bidders are sorted in decreasing order according to the unit value. �−i =(
(u1, c

′
1), . . . , (ui−1, c

′
i−1), (ui+1, c

′
i+1), . . . , (un, c′n)

)
denotes the set of all bidders

except i’s input vectors. �i = (ui, ci) is bidder i’s true type. In RevenueShareR

Auction, we use pR represent the price corresponding to the input vector
(�i,�−i). Now, suppose bidder i changes his copy demand to c′i and we use
p′R represent the new price. In order to increase his utility, bidder i may lie on
his copy demand. Then how large could bidder i lie on his copies? The following
will answer this question by giving the bounds.

Lemma 4.4. In RevenueShareR Auction, if bidder i wants to benefit from in-
creasing his copy demand, his cheating must make at least one loser after him
become a winner.

Assume C = {c′1, · · · , c′n} is the set of current copies of all bidders in the auction.
For any equilibrium in the equilibrium set, bidder i’s copy demand is denoted
by c∗i . From Lemma 4.4, if all bidders become winners, no one can benefit from
increasing copy demand, so we can get the upper bound of submitted copies for
RevenueShareR Auction: c∗i − ci ≤ R

un
− ∑n

j=1 c′j . Combined with lemma 4.2,
we have the following theorem:

Theorem 4.5. In RevenueShareR Auction, the copy bounds is as follows:

ci ≤ c∗i ≤ ci +
R

un
−

n∑

j=1

cj

In RPRS, first we partition the bids into two bid sets. Assume the optimal
revenue for the two bid sets is F ′ and F ′′ respectively, and the revenue for all
bids is F . Since F ′ ≤ F and F ′′ ≤ F , then we have the theorem:

Theorem 4.6. In RPRS Auction, the copy bounds in Nash equilibrium is:

ci ≤ c∗i ≤ F
un

5 Revenue Bounds of RPRS Auction

In this section, we focus on the auctioneer’s revenue. Here we will prove that
RPRS Auction is a win-win auction with unconditional competitive ratio. We
use the optimal single price auction as the benchmark to compute the revenue
bounds of RPRS Auction.

Theorem 5.1. RPRS Auction is a win-win auction.
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The following definition and lemmas are prepared for computing the competitive
ratio of RPRS Auction.

Definition 5.2. Given any set S = {e1, . . . , en} where ei ∈ R
+, partition S

uniformly at random into two sets S1 and S2 such that S1∩S2 = ∅ and S1∪S2 =
S. Let

g(S) = E

[

min

{
∑

i∈S1

ei,
∑

i∈S2

ei

}]

which is the expectation of the minimum sum between subset S1 and S2.

Lemma 5.3. ∀i, j, if S′ = (S\{ei, ej}) ∪ {ei + ei}, g(S′) ≤ g(S)

Lemma 5.4. Given any set S = {e1, . . . , en} where ei ∈ R
+ and |S| ≥ 2,

g(S)/
∑

j∈S ej ≥ (1 − α′)/4, where α′ = maxi{ei/
∑

j∈S ej}.
Theorem 5.5. Random Partition with Revenue Share auction is 4/(1−α) com-
petitive against α defined in definition 2.5 if there are at least two bidders win.

6 Limited Supply with Copy and Budget Constraints

The previous model only considers copy constraint. Since some bidders may
have limited purchasing power, such as in ad-words auction, here we present
another unconditional competitive auction for the model with copy and budget
constraints. Obviously, when budget tends to infinite, the model is the same
as that with copy constraint only. What’s more, in this section we talk about
limited supply instead of unlimited supply. In fact, unlimited supply is a special
case of limited supply. In limited model, if the supply exceeds bidders’ total
demands, then it is equivalent to the unlimited supply. So here we are talking
about a more general model.

Definition 6.1. Given bids � = ((u1, c1, b1), . . . , (un, cn, bn)), where ui repre-
sents the unit value buyer i is willing to pay for the commodity, ci represents
the number of copies i demands and bi represents i’s budget. If � is sorted in
decreasing order according to the unit value, then Fm represents the optimal
single price revenue subject to the constraint that there are at most m copies
sold. I.e.,

Fm(�) = max
p∈R+

⎧
⎨

⎩
p · min

⎧
⎨

⎩

∑

ui≥p

min
{

ci,
bi

p

}

, m

⎫
⎬

⎭

⎫
⎬

⎭
(6.1)

Definition 6.2. Given bids � = ((u1, c1, b1), . . . , (un, cn, bn)), R, and limited
supply m, find the largest integer k ∈ [1, m], such that

∑

ui≥R/k

min
{

ci,
bi

R/k

}

≥ k

Let pR,m = R
k .
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Auction 3. RevenueShareR,m Auction
1: Calculate pR,m.

2: Set r =
∑

ui≥pR,m
min

{
ci,

bi
pR,m

}
.

3: If r ≤ m, for any winner i such that ui ≥ pR,m, sell min
{

ci,
bi

pR,m

}
copies to i at

unit price pR,m;
If r > m, sell m units from r units randomly to the winners at unit price pR,m

under the constraint that any winner i should get at most min
{

ci,
bi

pR,m

}
copies.

4: Other bidders lose.

Obviously, RevenueShareR,m Auction sells no more than m units.

Lemma 6.3. Bidders will tell truth on unit value and budget in
RevenueShareR,m Auction.

Based on Auction 3, we get the following auction.

Auction 4. Random Partition with Revenue Share(m) Auction (RPRS(m))
1: Partition bids � uniformly at random into two bid sets S

′ and S
′′.

2: Compute F ′ = Fm
2

(S′) and F ′′ = Fm
2

(S′′).
3: Run RevenueShareF′, m

2
on S

′′ and RevenueShareF′′, m
2

on S
′ respectively.

Similarly, we get the following two theorems:

Theorem 6.4. In RPRS(m) Auction, bidders always tell their true types of unit
value and budget.

Theorem 6.5. RPRS(m) Auction is a win-win auction.

In this general model, we can still get the competitive ratio 4/(1− α), however,
the proof in the previous section can not apply to this model.

Theorem 6.6. RPRS(m) is 4/(1−α) competitive against α if there are at least
two bidders win.

7 Conclusion and Discussions

This paper investigates multi-unit auctions with copy and budget constraints.
We introduce a new kind of mechanisms called win-win mechanisms. Then we
design win-win mechanisms with the same unconditional competitive ratio of

4
1−α for both unlimited and limited supply goods. For any auction with dom-
inate strategy, possibly there exists an alternate win-win auction with better
competitive ratio. So it is worth trying to improve their competitive ratios by
designing performance guaranteed win-win auctions.
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It is worthy of emphasis that our novel win-win mechanisms shed light on the
following scenario. Sometimes, in order to maximize the revenue, the optimal
auction has to be executed inefficiently. I.e., the optimal solution of underlying
allocation and payment will have to be found in exponential time. When it hap-
pens, we can relax the auction as long as bidders’ strategic behaviors must also
lead to larger total revenue to the auctioneer. In other words, the auction makes
use of the bidders’ computational power to increase the auctioneer’s revenue.
This idea also has emerged in the mechanism design in [15].

Coincidentally, a new kind of mechanisms called output truthful mechanisms
is raised these days in [5,11]. In output truthful mechanisms, what concerns us is
whether the output under the equilibria in the mechanisms is the same as the re-
sult under the truthful input, while our win-win mechanisms are concerned about
whether the revenue under the equilibria in the mechanism is higher than the
revenue under the truthful input. Actually the motivation of both mechanisms
is to improve otherwise performances by relaxing the constraint of dominant
strategy.
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Abstract. We study the design of truthful auction mechanisms for
maximizing the seller’s profit. We focus on the case when the auction
mechanism does not have any knowledge of bidders’ valuations, especially
of their upper bound. For the Single-Item auction, we obtain an
“asymptotically” optimal scheme: for any k ∈ Z+ and ε > 0, we give
a randomized truthful auction that guarantees an expected profit of
Ω( OPT

ln OPT ln lnOPT ···(ln(k) OPT )1+ε ), where OPT is the maximum social

utility of the auction. Moreover, we show that no truthful auction can
guarantee an expected profit of Ω( OPT

ln OPT ln ln OPT ··· ln(k) OPT
).

In addition, we extend our results and techniques to Multi-units
auction, Unit-Demand auction, and Combinatorial auction.

1 Introduction

Auction has become an active area of research in Computer Science both for
its commercial applications in the rapid expanding space of Internet Economy
and for its algorithmic and game-theoretical appeals. A typical auction problem
consists of one or more sellers who have several items to sell and a collection
of bidders who want to buy what they would like to have with as little price
as possible. An auction mechanism then determines who gets which items and
at what price. As the participants (sellers and bidders) in an auction have their
own self-incentive and private information, an auction problem can be viewed
as a game among its participants.

The concept of truthful or incentive compatible mechanism captures the notion
of reasonable auctions — a reasonable auction should encourage its bidders
to show their true valuations. Truthfulness is a quite strong game-theoretical
requirement, stating that for each bidder, bidding his/her true valuation is
among the optimal strategies, no matter how other bidders behave. In another
word, in a truthful auction, the decision and pricing scheme are such that there
is no reason for any bidder to lie.
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1.1 Related Work and Motivations

Many auction problems have truthful mechanisms. An example is the famous
Vickrey-Clarke-Groves (VCG) mechanism that maximizes the social utility
[13,3,7]. However, in VCG, the maximization of the social utility might be
achieved at the expense of the seller’s profit — generally, the VCG scheme
provides no guarantee on the seller’s profit. A natural step is to design a truthful
auction mechanism that maximizes profits.

Assuming that the distribution of valuations are known or can be gathered by
some statistical means, VCG mechanism with a properly chosen reserved price
can obtain very tight bounds on the expected profits [12,11,10]. However, there
are reasons to consider profit-maximization auction without full knowledge of
the valuation distributions[5].

A possible scenario is that the range of bidders’ valuations is known. Given
an upper bound h on the valuations, truthful auction mechanisms have been
developed to achieve a profit of Ω

(
OPT
log h

)
, where OPT is the optimal social

utility of the auction [8,9].
In absence of any valuation information, Goldberg, Hartline, Wright in-

troduced a notion of competitive auctions in [6]. They proposed to measure
the quality of the profit-maximization scheme using a worst-case competitive
analysis against F (2), the optimal single-price auction that sells at least two
items. Since then, several truthful auction schemes with constant competitive
ratios have been developed [5,1,2].

Note that F (2) is a relatively lower bentchmark compared to OPT . In some
cases, one can not bound F (2) with OPT . In this paper, we compare the profit
directly with OPT .

1.2 Our Results

For auctions with a single item, we present a randomized truthful profit-
maximization scheme and prove that it is “asymptotically” optimal. In particu-
lar, for ∀k ∈ Z+, ε > 0, we give a randomized truthful auction that guarantees
an expected profit of Ω( OPT

ln OPT ln ln OPT ···(ln(k) OPT )1+ε ). Moreover, we show that

no truthful auction can always achieve a profit of Ω( OPT
ln OPT ln ln OPT ··· ln(k) OPT

).
Furthermore, we extend our technique for Single-Item auction to more

complex auction problems such as multi-units auction, AdWords auction (Unit-
Demand auction), and combinatorial auction. For multi-units and AdWords
auctions, both our upper and lower bounds can be generalized. All our schemes
also guarantee that the expected social utility are within a constant fraction of
the optimal social utility.

For the general combinatorial auction, we build a profit-oriented auction
scheme on the truthful approximation scheme of Dobzinski, Nisan, and Schapira
[4]. We can achieve a profit of Ω( OPT√

m ln OPT ln ln OPT ···(ln(k) OPT )1+ε ), where m

is the number of items. When the bidders’ utility functions are submodular, a
profit of Ω( OPT

(log m)2 ln OPT ln lnOPT ···(ln(k) OPT )1+ε ) can be obtained.
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2 Notations

We assume that there are n bidders, and a set M of distinct items, M =
{1, 2, · · · , m}. In addition, the seller has cj copies (cj may be +∞) of item
j ∈ M . A bundle of items can be specified as a vector (d1, d2, · · · , dm), where
0 ≤ dj ≤ cj , ∀j ∈ M , and we denote the collection of all the bundles with D.
Each bidder i has a private valuation function vi, which assigns a non-negative
value to each bundle of items.

Each bidder submits a bid bi = {bi(S), S ∈ D}. An auction mechanism
then outputs an allocation (S1, S2, · · · , Sn), where Si ∈ D, and a price
(p1, p2, · · · , pn). A feasible output of the mechanism must satisfy the following
two conditions:

– Limited Supply: For each item j ∈ M , there are at most cj copies in
(S1, S2, · · · , Sn).

– Individual Rationality: For each bidder i ∈ [n], pi ≤ bi(Si).

A deterministic mechanism is truthful if for each bidder, truth-telling is a
dominant strategy, which means that her utility is maximized when she bids
truthfully no matter how others bid. For randomized mechanisms, there are two
extensions of truthfulness, universally truthful and truthful in expectation. A
randomized mechanism is universally truthful if it is a distribution of truthful
deterministic mechanisms. Truthfulness in expectation means that the expected
utility of a bidder is maximized when bidding truthfully.

In this paper, we focus on several special cases.

1. Single-Item auction: M consists of a single item, possibly with multiple
copies. Each bidder would like to buy at most one copy.

2. Unit-Demand auction: multiple items, each item with one copy. Each bidder
would like to buy at most one item and is considering a number of different
options. In another words, each bidder only bids for Single-Item bundle.

3. Combinatorial auction: multiple items, each item with one copy. The bidder
bids for subsets of M .

3 Single-Item Auction

In this section, we focus on the Single-Item auction. We first consider the case
when there is one copy of the item, and give a profit-optimal truthful mechanism.
We then extend this result to the case of multiple copies.

3.1 Single-Copy Auction

Without loss of generality, we assume the bids are b1 ≥ b2 ≥ · · · ≥ 1. Let g(x) =

ln x + 1, and g̃(k)(x) =
k∏

i=1

g(i)(x), Recall that g(i)(x) = g(g(i−1)(x)), ∀i ≥ 2.
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Algorithm: SingleCopyAuction

INPUT: k ∈ Z+, ε > 0 and δ > 0.

1. If there is only one bidder, we set b2 = 1.
2. With probability 1− δ, we use the second price auction, that is, the

highest bidder wins the item at a price of the second highest price.
3. With probability δ, the seller chooses a reserved price r according to

the distribution with density:

fk,ε(x) =
ε

xg̃(k−1)( x
b2

)
(
g(k)( x

b2
)
)1+ε , x ∈ [b2, +∞)

Then if b1 ≥ r, the highest bidder wins the iterm with price r.
Otherwise, the item remains unsold.

It is well known that the second price auction is truthful. Because the highest
bidder is the only potential recipient of the item and the reserved price r is
chosen independently of her bid b1, the auction of step 3 is a distribution of
truthful mechanism. Thus, our acution scheme is universally truthful.

The algorithm above uses reserved price auction to guarantee the seller’s profit
while uses second price auction to enhance the social utility. The parameter δ
provides a tradeoff between these two objectives.

Theorem 1 (Profit Guarantee). Let E(R) be the expected profit of the
auction and E(SU) be its expected social utility. Let OPT denote the maximum
social utility. Then we have

E(R) = Ω

(
OPT

g̃(k−1)(OPT )
(
g(k)(OPT )

)1+ε

)

E(SU) ≥ (1 − δ)OPT

Proof: For simplicity, we give a proof for k = 1, ε = 1, and δ = 1
2 . The proof is

essentially the same for general k, ε, and δ.
In Single-Item auction, the optimal profit OPT is equal to the maximum bid

b1. So it is obvious that E(SU) ≥ 1
2OPT because with probability of 1/2, we

use the second price auction and get a social utility of OPT .
For the seller’s profit, we have:

E(R) =
1
2
b2 +

1
2

∫ b1

b2

xf(x)dx

=
1
2
b2 +

1
2

∫ b1

b2

1
(ln x

b2
+ 1)2

dx
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≥ 1
2
b2 +

1
2

b1 − b2

(ln b1
b2

+ 1)2

≥ b1

2(ln b1
b2

+ 1)2

≥ OPT

2(ln OPT + 1)2
�

We now prove that the bound in Theorem 1 is essentially tight. To show this,
we first give two technical lemmas.

Lemma 1. Let Φ be the distribution of a bid with Pr(b1 = 2j) = 1
2j+1 , j =

0, 1, 2, · · · . Then no truthful ( even in expectation) mechanism can extract
revenue greater than 1 on Φ.

Proof: The distribution we used here is a modified version of distribution used
in [12], and the proof is similar. �

Lemma 2. For a fixed k ∈ Z+,
∑

j≥0
1

g̃(k)(2j)
goes to infinity.

Proof: We show that for any i, there exists constant Ci and Ni > 0, such that
for any x ≥ Ni, we have g(i)(x) ≤ Ci ln(i) x. This is shown by induction on i.

For i = 1, g(x) = lnx + 1 ≤ 2 ln x, ∀x ≥ e.

g(i)(x) = g(i−1)(ln x + 1)

≤ g(i−1)(2 ln x) for x ≥ e

≤ Ci−1 lni−1(2 lnx) for 2 lnx ≥ Ni−1

≤ Ci ln(i)(x) exists Ci, and Ni

For a fixed k ∈ Z+, let C = c1c2 · · · ck and J be the smallest integer such
that J ∈ Z+, 2J > max{Ni : 1 ≤ i ≤ k}. Then we have g(i)(2j) ≤ Ci ln(i)(2j) ≤
Ci ln(i−1) j. So we have

∑
j≥0

1
g̃(k)(2j)

≥
J∑

j=0

1
g̃(k)(2j)

+
1
C

∑
j>J

1

j ln j · · · ln(k−1) j
= +∞. �

Theorem 2 (Impossibility Result). For any k ∈ Z+, there is no truthful
(even in expectation) mechanism with an expected profit of Ω( OPT

g̃(k)(OPT )
).

Proof: Assume there is a truthful auction, with an (expected) profit of
Ω

(
OPT

g̃(k)(OPT )

)
. That is to say, ∃c > 0, N > 0, s.t. E(R) ≥ c OPT

g̃(k)(OPT )
, when

OPT > N . Let J be the smallest integer such that 2J > N . Considering the bid
distribution Φ, we have
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E(R) ≥ c
∑
j≥J

1
2j+1

2j

g̃(k)(2j)

≥ c

2

∑
j≥J

1
g̃(k)(2j)

By lemma 2, E(R) goes to infinity, which contradicts with lemma 1. �

3.2 Multi-copy Auction

In a multi-copy auction, there is one item with c copies (c may be unbounded).
We give a similar mechanism as Single-Copy auction. Our analysis can be
extended to this case. Since there is no difference between the case c > n
(c = +∞) and the case c = n, we can assume that c ≤ n, and b1 ≥ b2 ≥ · · · ≥ bn.
We use the following auction scheme.

Algorithm: MultiCopyAuction

INPUT: k ∈ Z+, ε > 0, and δ > 0.

1. If c = n, we set bn+1 = 1.
2. With probability 1 − δ, we use the VCG mechanism: sell c items to

the c highest bidder at the price of the (c + 1)-th highest bidder.
3. With probability δ we sell the items to the highest c bidders with a

reserved price r chosen according to the distribution with density:

fk,ε(x) =
ε

xg̃(k−1)( x
bc+1

)
(
g(k)( x

bc+1
)
)1+ε , x ∈ [bc+1, +∞)

Similarly to the Single-Copy auction, we can obtain the following lower and
upper bounds on the expected profit for multi-copy auctions.

Theorem 3. Let OPT denote the optimal social utility and bmax be the highest

bid (By our assumption OPT =
c∑

j=1

bj and bmax = b1). Then we have:

E(R) = Ω

(
OPT

g̃(k−1)(bmax)
(
g(k)(bmax)

)1+ε

)

E(SU) ≥ (1 − δ)OPT

In addition, no truthful auction can obtain an expected profit of Ω
(

OPT
g̃(k)(bmax)

)
.

4 Unit-Demand Auction

We now consider the auction of multiple items, as in the keywords auction. Assume
there are n bidders (advertisers), and m slots on the web page to place advertise-
ments.The advertiser bids for each slot on thewebpage, and the search enginemust
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decide which m bidders win slots, as well as the order to place the advertisements
and the prices. We focus on the case when the search engine does not place two
identical advertisements on the same page, which is the so-called Unit-Demand
auction.

As each bidder i has a bid for each item j, we can express their valuations by
a matrix B = (bi(j)).

Algorithm: AdWordAuction

1. Choose a reserved price r according to the following distribution:
with a probability of 1 − δ, set r = 1; with a probability of δ, pick r
according to the distribution with density

ε

xg̃(k−1)(x)
(
g(k)(x)

)1+ε , x ∈ [1, +∞)

.
2. Compute prices p and allocation S by running VCG on input B

with reserved prices r = (r, · · · , r). The reserved price VCG works
as follows: add m virtual bidders with bid r = (r, · · · , r) into the
auction, then run VCG to determine the allocation and price of each
item. If an item is sold to a virtual bidder, then it is in fact unsold
in the original auction.

Recall the VCG scheme for Unit-Demand auction computes a maximum
weighted matching betwen bidders and items and allocates the items accordingly.
The price of each item is set to be the bidding price of its recipient minus the
difference of the total weights of this matching and of the maximum weighted
matching without this recipient. Clearly, VCG runs in polynomial time in the
number of bidders and items. Therefore, the algorithm above is a polynomial-
time auction scheme.

Theorem 4. The Unit-Demand auction is truthful and has an expected profit

of E(R) = Ω

(
OPT

g̃(k−1)(bmax)(g(k)(bmax))1+ε

)
, where bmax = maxi,j{bi(j)}. The

expected social utility E(SU) ≥ (1 − δ)OPT .

Proof: Again for simplicity, we prove the theorem for k = 1, ε = 1, and δ = 2
3 .

Let M be a maximum weighted matching between the n bidders and m items,
p1 ≥ p2 ≥ · · · ≥ pm be the prices of the items sold in M , and nx = argmaxj{pj ≥
x}. Using the similar technique in [8], we know that when the reserved price is
picked at x, there are nx items with prices higher than x sold in M , and at least
half of them can be sold by the reserved price auction. So we have:

E(R) =
1
3
m +

2
3

∫ +∞

1

nx

2
xf(x)dx

≥ 1
3
m +

1
3
(

m∑
i=1

∫ pi

pi+1

nx
1

(ln x + 1)2
dx)
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≥ 1
3
m +

1
3

1
(ln p1 + 1)2

m∑
i=1

i(pi − pi+1)

=
1
3
m +

1
3

1
(ln p1 + 1)2

(p1 + p2 + · · · + pm − m)

≥ OPT

3(ln bmax + 1)2

With a probability of 1/3, we use the VCG with a reserved price of 1 and can
obtain the optimal social utility OPT . So E(SU) ≥ 1

3OPT . �

5 Combinatorial Auction

We modify the algorithm in [4]. In step 3, they use a second-price auction for
M , the bundle of all items, with a reserved price p0, however, we use a randomly
chosen reserved price. To be self-contained, we include the basic steps of this
algorithm.

Algorithm: CombinatorialAuction

– Phase I: Partitioning the Bidders
1. Assign each bidder to exactly one of the following three sets: SEC-
PRICE with probability 1−ε, FIXED with probability ε

2 , and STAT
with probability ε

2 .
– Phase II: Gathering Statistics

2. Calculate the value of the optimal fractional solution in the
combinatorial auction with all m items, but only with the bidders in
STAT. Denote this value by OPT ∗

STAT .
– Phase III: A Second-Price Auction with reserved price.

3. Randomly pick a reserved price r according to the following density
function: fk,ε1(x) = ε1

xg̃(k−1)( x
p0

)
(

g(k)( x
p0

)
)1+ε1 , x ∈ [p0, +∞) where

p0 = OPT ∗
STAT .

– Phase IV: A Fixed-Price Auction
4. Let R = M, p = εOPT ∗

STAT /(8m).
5. For each bidder i ∈ FIXED, in some arbitrary order:
(a)Let Si be the demand of bidder i given the following prices: p for
each item in R, and +∞ for each item in M − R.
(b) Allocate Si to bidder i, and set his price to be p|Si|.
(c) Let R = R \ Si.

Theorem 5. In the general combinatorial auction,

E(R) = Ω

(
OPT

√
m(g̃(k−1)(OPT ))

(
g(k)(OPT )

)1+ε1

)
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When the bidders’ utility functions are submodular, we have

E(R) = Ω

(
OPT

(log m)2(g̃(k−1)(OPT ))
(
g(k)(OPT )

)1+ε1

)

Proof: The combinatorial auction can be formulated as a linear program. let
OPT ∗ be the optimal fractional solution. As mentioned in [4], there are two
cases:

– There is a bidder i such that vi(M) ≥ OPT∗√
m

. This is similar to the Single-

Copy auction. Let vmax = maxivi(M), then OPT ≥ vmax ≥ OPT∗√
m

≥ OPT√
m

.

E(R) = Ω

(
vmax

g̃(k−1)(vmax)
(
g(k)(vmax)

)1+ε1

)

= Ω

(
OPT

√
m(g̃(k−1)(OPT ))

(
g(k)(OPT )

)1+ε1

)

– For each bidder i, vi(M) ≥ OPT∗√
m

. As shown in [4], E(R) is Ω(OPT∗√
m

) Thus

the expected profit is Ω

(
OPT√

m(g̃(k−1)(OPT ))(g(k)(OPT ))1+ε1

)
.

The proof is similar for the case when the bidders’ utility functions are
submodular. �

6 Discussions and Future Work

In the scenario that an upper bound h of the valuations is given, we can give
a mechanism which improves the profit guarantee in [8,9] by a constant factor
log e. The algorithm is a VCG scheme with a reserved price, which is randomly
picked according to the density function f(x) = 1

x ln h , x ∈ [1, h]. This scheme
guarantees an expected profit of OPT

ln h , which is proved to be optimal in [12].
All the randomized VCG scheme with reserved price mentioned in our

algorithms can be translated into a Randomized-Fixed-Price Auction. The
fixed price is picked from the same distribution as that of the reserved price. Then
we sell items with the fixed price to the bidders in a random order. All the profit
guarantees and the proofs above still apply. Using this Randomized-Fixed-Price
scheme, we can extend our results to the online auctions[1].

The Unit-Demand auction is in fact a matching problem between bidders
and items. The maximum social utility are achieved by the maximum weighted
matching. A natural generalization of Unit-Demand auction is the following
multi-pattern auction: Given t1 groups of items, the bidders have their
valuations for all items. The auction mechanism then chooses one of the groups
and allocates its items to the bidders.

From the view of matching, the valuations define t1 sets of matching problems
between the bidders and items. The multi-pattern auction could be useful in
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Internet advertising. For example, the search engine can offer several kinds
of patterns for sponsored advertising, each with several slots to place the
advertisements. Each advertiser (bidder) could submit a bid for each slot in
every pattern.

Assuming that there are t1 groups and each group has t2 items, we can extend
our Unit-Demand auction scheme to obtain the following result.

Theorem 6. For any k ∈ Z+, ε > 0, there is a truthful auction scheme with an
expected profit of

E(R) = Ω

(
1
t

OPT

g̃(k−1)(bmax)
(
g(k)(bmax)

)1+ε

)

where bmax = maxi,j{bi(j)}, t = min{t1, t2}.
Open Problem: Can we improve the factor of 1

t in the bound?
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Abstract. In this work we study mechanisms with verification, as
introduced by Nisan and Ronen [STOC 1999], to solve problems involv-
ing selfish agents. We provide a technique for designing truthful mecha-
nisms with verification that optimally solve the underlying optimization
problem. Problems (optimally) solved with our technique belong to a
rich class that includes, as special cases, utilitarian problems and many
others considered in literature for so called one-parameter agents (e.g.,
the make-span). Our technique extends the one recently presented by
Auletta et al [ICALP 2006] as it works for any finite multi-dimensional
valuation domain. As special case we obtain an alternative technique
to optimally solve (though not in polynomial-time) Scheduling Unre-
lated Machines studied (and solved) by Nisan and Ronen. Interestingly
enough, our technique also solves the case of compound agents (i.e.,
agents declaring more than a value). As an application we provide the
first optimal truthful mechanism with verification for Scheduling Un-
related Machines in which every selfish agent controls more than one
(unrelated) machine. We also provide methods leading to approximate
solutions obtained with polynomial-time truthful mechanisms with veri-
fication. With such methods we obtain polynomial-time truthful mecha-
nisms with verification for smooth problems involving compound agents
composed by one-parameter valuations. Finally, we investigate the con-
struction of mechanisms (with verification) for infinite domains. We show
that existing techniques to obtain truthful mechanisms (for the case in
which verification is not allowed), dealing with infinite domains, could
completely annul advantages that verification implies.

1 Introduction

Many computer scientists look at the world from a new perspective: they
study problems assuming there are selfish entities working for their own inter-
ests rather than for community interests. This implies that one has to design
new algorithms that have to deal, not just with the combinatorial structure of
the problem, but also, and perhaps mainly, with private interests conflicting
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with the aim of optimizing. The new perspective is motivated by many real-
life situations. Consider, for example, computations over the Internet. They
often involve self-interested parties (selfish agents) which may manipulate the
system by misreporting a fundamental piece of information they hold (their
own type or valuation). The system runs some algorithm which, because of the
misreported information, is no longer guaranteed to return a “globally opti-
mal” solution (optimality is naturally expressed as a function of agents’ types)
[19]. Since agents can manipulate the algorithm by misreporting their types,
one augments algorithms with carefully designed payment functions which
make disadvantageous for an agent to do so. A mechanism consists of an al-
gorithm (also termed social choice function) and payment functions which as-
sociate a payment to every agent. Payments should guarantee that it is in the
agent’s interest to report her type correctly. A social choice function is im-
plementable if the utility that an agent derives from the chosen outcome and
from the payment she receives is maximum when this agent reports her type
correctly (see Sect. 1 for a formal definition of these concepts). When a social
choice function A is implementable we refer to the pair (A, P ) to as truthful
mechanism. The only known general technique for designing truthful mecha-
nisms is the classical Vickrey-Clarke-Groves (VCG) paradigm [25,12,9]. These
mechanisms suffer from two main limitations: (i) they can be used only for
a limited family of optimization functions (see e.g. [19]) and (ii) they require
the algorithm to compute exact solutions which, in many cases, is unfeasi-
ble if the mechanism has to run in polynomial time (see e.g. [20]). In their
seminal work, Nisan and Ronen [19] introduce a mechanism design approach
to computer science problems having non-utilitarian optimization functions,
and show that even exponential-time mechanisms cannot achieve optimal solu-
tions (in contrast with the unselfish counterpart where a (1+ε)-approximation
can be obtained in polynomial-time). An alternative to VCG mechanisms is
to restrict the domain of the agents (i.e., possible values they can report).
For example the so-called one-parameter agents have been studied in [18,2].
Unfortunately, these domains are rather limited: for instance, although they
can model scheduling problems on related machines [2], they cannot model
the unrelated case in [19], nor the case of agents owning more than one ma-
chine. A quite innovative mechanism design approach has been introduced
by Nisan and Ronen [19] in order to overcome the above mentioned difficul-
ties for their scheduling problem: the mechanism can observe the job release
time and provides payments after the solution has been implemented. These
mechanisms are called mechanisms with verification. More “classical” mecha-
nisms without verification award the payment associated to an agent uncondi-
tionally (i.e., without performing any kind of verification and solely based on
the agents reported types). There are several reasons for being interested in
mechanisms with verification. First of all, there are specific optimization prob-
lems for which verification allows to overcome certain impossibility results for
mechanisms without verification [19,4,5] (which holds also for one-parameter
agents). Moreover, mechanisms with verification are very natural and many
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real-life applications require and/or already implement this kind of approach:
reputation is used by the e-Bay system to measure credibility of sellers; ser-
vice providers offer connectivity to the Internet with the guarantee of a min-
imal rate. Finally, verification helps in designing truthful mechanisms.

Our contribution. In this work we prove the first general result on mechanisms
with verification and show that, for any finite domain, there is a mechanism
that optimizes any minimization (resp. maximization) function monotone non-
increasing (resp. non-decreasing) in the agents’ valuations. This result applies to
any finite domain and extend to a ”multidimensional scenario” called compound
agents (see Def. 6). We indeed provide a social choice function (i.e., an opti-
mization algorithm) which is implementable with verification on finite domains
and that maximizes any optimization function μ(·) which is monotone in the
agents valuations (i.e., μ(v1(X), . . . , vn(X)) is non-decreasing in each agent val-
uation vi(X)). With our “always implementable” social choice function we are
able to construct truthful mechanisms (with verification) optimizing the under-
lying optimization function (Cor. 1). Observe that VCG mechanisms [25,9,12]
can only deal with particular functions of this form called affine maximizers (ba-
sically, the case μ(v1(X), . . . , vm(X)) =

∑
i βivi(X), with constants βi defined

by the mechanisms). The Q||Cmax scheduling problem is an example of an opti-
mization problem involving a monotone non-increasing function (thus our result
applies to Q||Cmax) that is not an affine maximizer. Our result gives an alter-
native proof of the existence of an exact truthful mechanism with verification
for unrelated machines [19]. Interestingly enough, our results extend to the case
of compound agents (see Sec. 3). To the best of our knowledge, these are the
first results/techniques on mechanisms with verification for such “multidimen-
sional” scenario (it should be noticed that already the “one-dimensional” case
is a generalization of both one-parameter [2] and comparable types [5]). Such
results give us powerful tool to solve very general problems. Indeed, we present
the first truthful exact mechanism with verification for scheduling unrelated
machines when agents control more than one machine (thus generalizing the
“one machine per agent” scenario/results in [19]). These exact mechanisms (and
in general those obtained with our technique above) could not run in polyno-
mial time. We thus move our attention towards approximation polynomial-time
mechanisms, and investigate the implementation of classical approximation al-
gorithms. In particular we consider compound agents in which each “dimension”
is a one-parameter valuation. In this setting, we show that any approximation
algorithm for a smooth problem (Def. 8) can be transformed into a truthful
mechanism (with verification) for the problem. The resulting mechanism (essen-
tially) preserves the approximation ratio of the algorithm. In order to guarantee
a polynomial running time, we require a constant number of compound agents
with constant dimensions (Th. 6). The most relevant application is a polynomial-
time c(1 + ε)-approximation mechanism for scheduling related machines when
the agents control more than one machine (see Def. 9) (given a c-approximating
algorithm for the problem). To the best of our knowledge, no solution was known
for this natural extension of the problem studied in [2]. The assumption of finite
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domains deserves some more discussions. From a practical point of view, many
real-life applications involve agents with types from a finite and discrete domain
(e.g., when costs or execution times are expressed as multiples of a given mon-
etary or time unit, and an upper bound is known). From a theoretical point of
view, it is interesting to investigate how to use verification to overcome impossi-
bility results proved for infinite domains (with no verification allowed). The only
case in which the assumption of finite domains has been removed is for problems
involving one-parameter agents (see [11,4]). In Sec. 4 we study truthful mech-
anisms with verification for infinite domains. We show that known techniques,
developed for mechanisms with no verification, seem to “cancel” the advantages
given by the verification. Besides one-parameter agents, no result (neither pos-
itive nor negative) was known on the design of mechanism with verification for
infinite domains. We stress that for finite domain several impossibility results
for mechanisms without verification are known [2,7], some of them applying to
our optimization functions in the “multi-dimensional” scenario. This shows that
verification does help for finite domains. Due to lack of space we omit some
proofs. These proofs can be found in the full version of the paper [24].

Related Works. Affine maximizers (see above) can be implemented for quasi-
linear utility functions (i.e., payment received plus agent’s monetary valuation)
using the celebrated VCG mechanism [25,12,9]. Roberts [21] showed that VCG
mechanisms are essentially the only truthful mechanisms if no hypothesis is
made on the domains of the agents. Mechanisms for one-parameter agents have
been characterized in [18,2]. For one-parameter agent domain there exists truth-
ful mechanisms for scheduling to minimize the makespan [2,3,1] and for some
types of combinatorial auctions [15]. Lavi, Mu’alem and Nisan showed that a
weak monotonicity condition (W-MON) characterizes order-based domains with
range constraints [14]. Similar results hold for linear inequality constraints on
the domain [13] and, more in general, for convex domains [23] (each class ex-
tending the prior one and the result for one-parameter agents). These results
concern mechanisms which do not use verification and cannot be applied to our
case (indeed, one wishes to use mechanisms with verification to solve problems
which the other mechanisms cannot solve [19,4,5]). The study of social choice
functions implementable with verification was started by Nisan and Ronen [19],
who gave a truthful (1 + ε)-approximate mechanism for scheduling on (a con-
stant number) of unrelated machines to minimize the make-span. Similar results
have been obtained by Auletta et al [4] for scheduling on any number of related
machines. These results are based on a characterization of mechanisms with
verification [4] for one-parameter agents. Mechanisms with verification for one-
parameter agents also appear in [11] where the main contribution is in providing
payment schemes, computable in constant time, working with infinite domains.
These schemes have the advantage of not conditioning execution time and ap-
proximation ratio of mechanisms using them. As already mentioned, a recent
work [5] characterizes mechanisms with verification for a rich class of finite do-
mains. Afterwards, they extend their result to the class of one-parameter agents
providing different mechanisms for several scheduling problems. The work [8]
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presents a general technique for constructing polynomial-time approximation
mechanisms for utilitarian problems (those affine maximizers in which one seeks
to maximize the social welfare, i.e., sum of the valuation of the agents). The
technique they use is similar to the one we use to obtain truthful mechanisms
for multidimensional agents. Similar methods were already used in [5]. This
approach derives from [17], where agents’ types are even simpler than the one-
parameter case (this kind of agents are called KSM bidders). Polynomial-time
mechanisms which approximate the social welfare for certain auctions are given
in [10]. Mechanisms in [8,10] do not use verification, but all problems are utili-
tarian and solutions rely on VCG mechanisms.

Preliminaries. We have a finite set O = {X1, . . . , XK} of K possible alter-
native outcomes. We also have m selfish agents, each of them having a valu-
ation (or type) vi ∈ Di, with Di being the domain of agent i. Domains are
multi-dimensional in the sense of [6]: The domain of vi is Di ⊂ RK with the
kth coordinate of type vi being vi(Xk), this type’s utility for outcome Xk (i.e.,
vi = (vi(X1), . . . , vi(XK))).1 The valuation vi is known to agent i only. A social
choice function A : D → O maps the agents’ valuations into a particular outcome
A(v1, . . . , vm), where D = D1 × · · ·×Dm is the domain of function A. A mecha-
nism M = (A, P ) is a social choice function A augmented with a payment scheme
P = (P1, . . . , Pm), where each Pi is a function Pi : D → R. The mechanism elic-
its from each agent its valuation; an agent i can misreport her valuation to any
bi ∈ Di. The mechanism, on input the reported valuations b = (b1, . . . , bm), se-
lects outcome X as X = A(b) and assigns payment Pi(b) to agent i. The utility of
agent i, when receiving a payment Pi(b), with valuation vi is thus Pi(b)+vi(X).
This kind of utilities are commonly denoted to as quasi-linear utilities. We let
bi ∈ Di denote the valuation (or type) reported by agent i and by b−i the vec-
tor (b1, . . . , bi−1, bi+1, . . . , bm) of all valuations (or types) reported by the other
agents. We stress that both the outcome and the payments depend on the re-
ported valuations b = (b1, . . . , bm). In particular, given b−i, the reported type bi

determines the outcome Ab−i(bi) := A(b) and the payment Pi(b). For a vector
x = (x1, . . . , xm), we let x−i denote the vector (x1, . . . , xi−1, xi+1, . . . , xm) and
(y,x−i) the vector (x1, . . . , xi−1, y, xi+1, . . . , xm); similarly, D−i := D1 × · · · ×
Di−1 × Di+1 × · · · × Dm. A mechanism with verification can detect whether
bi �= vi if and only if vi(Ab−i(bi)) < bi(Ab−i(bi)); in this case, agent i will not
receive the associated payment. This verification model generalizes the concept
of verification introduced in [19].

Definition 1 ([19]). A social choice function A is implementable with verifi-
cation if there exists P = (P1, . . . , Pm) such that, for all i, all b−i ∈ D−i the
utility of agent i with type vi is maximized by reporting bi = vi.

1 An alternative, but completely equivalent, way to define these multidimensional
valuations is the following: Each valuation vi is a function vi : O → R representing a
monetary valuation vi(X) that agent i associates to outcome X ∈ O. This definition
has been used, for example, in [5].
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In this case, the pair (A, P ) is called a truthful mechanism with verification. A
different way to read Def. 1 is that there exists P = (P1, . . . , Pm) such that, for
all vi, bi ∈ Di and b−i ∈ D−i, the following inequality holds:

vi(Ab−i(vi)) + Pi(vi,b−i) ≥ vi(Ab−i(bi)) (1)

if vi(Ab−i(bi)) < bi(Ab−i(bi)), and the following inequality holds:

vi(Ab−i(vi)) + Pi(vi,b−i) ≥ vi(Ab−i(bi)) + Pi(bi,b−i) (2)

if vi(Ab−i(bi)) ≥ bi(Ab−i(bi)). We are interested in social choice functions which
are implementable with verification and that optimize some objective function
μ(·) which depends on the agent valuations v = (v1, . . . , vm). For maximization
(respectively, minimization) functions, we let optμ(v) be maxX∈O μ(X,v) (re-
spectively, minX∈O μ(X,v)). An outcome X ∈ O is an α-approximation of μ

for v ∈ D if max
{

μ(X,v)
optµ(v) ,

optµ(v)
μ(X,v)

}
≤ α. A social choice function A is α-

approximate for μ if, for every v ∈ D, A(v) is an α-approximation for μ and
v. We stress that, in this paper we consider social choice functions that are im-
plementable with verification and either optimize or α-approximate a function
μ. The approximation only refers to how good the selected outcome is and not
to the utilities of the agents (which are always maximized by reporting the true
valuation). Recall that we assume domains to have finite cardinality.
Truthful Mechanisms with Verification. For fixed i and b−i, Eq.s 1 and 2 give a
system of linear inequalities with unknowns P x := Pi(x,b−i), for x ∈ Di. This
system of inequalities is compactly encoded by the following graph.

Definition 2 (verification-graph). Let A be a social choice function. For ev-
ery i and b−i ∈ D−i, the verification-graph V(Ab−i) has a node for each type in
Di. The set of edges of V(Ab−i) is defined as follows. For every a, b ∈ Di add
an edge (a, b) whenever the solution Y = Ab−i(b) is such that a(Y ) ≥ b(Y ). The
weight of edge (a, b) (if any) is δ(a, b) := a(X) − a(Y ) where X = Ab−i(a).

The definition of the verification-graph is a modification of the graph introduced
in [16] (and after used by [5]) to study the case in which verification is not
allowed.

Theorem 1. A social choice function A is implementable with verification if
and only if, for all i and b−i ∈ D−i, the graph V(Ab−i) does not have negative
weight cycles.

The theorem follows from the observation that the system of linear inequalities
involving the payment functions is the linear programming dual of the shortest
path problem on the verification-graph. Therefore, a simple application of Farkas
lemma shows that the system of linear inequalities has solution if and only if
the verification-graph has no negative weight cycle. The same argument has
been used for the case in which verification is not allowed albeit of a different
graph (see [22,16,13]). Payments computation deserves a last remark. When
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verification is not allowed the graph is complete and, if the system is feasible,
one solution is to set each P x equal to the length of the shortest path from
an arbitrarily chosen root vertex. The fact that the graph is complete implies
that all P x assume a finite value. When verification is allowed the graph is not
complete and, possibly, the graph is not completely connected.2 Thus, setting
payments to shortest paths could lead to unbounded payments. However, it is
always possible to set unbounded payments to bounded payments satisfying
truthfulness conditions. Simple rules (on the existence of ingoing and outgoing
edges) ensure to bound payments preserving truthfulness. We remark that these
rules can be implemented in polynomial time.

2 MAXµ Social Choice Function

In this section we present our technique to obtain truthful mechanisms with
verification for any finite domain. We use next social choice function.

Definition 3 ([5]). Let μ(·) be any maximization function monotone non-de-
creasing in each of its arguments b1(X), . . . , bm(X), with X ∈ O and bi ∈ Di.
For any X1, . . . , X� ∈ O, let MAXμ be the social choice function that, on input
(b1, . . . , bm) ∈ D, returns the solution Xj of minimum index that maximizes the
value μ(b1(Xj), . . . , bm(Xj)).

Notice that MAXμ social choice function uses a precedence relation among out-
comes in O. Indeed, when more solutions lead to the same value of the objective
function μ, MAXμ always selects the “minimum” solution. Therefore, it holds
the following straightforward fact.

Fact 1. For any i and any b−i ∈ D−i, let a and b two valuations in Di and
denote X = MAXμ(a,b−i) and Y = MAXμ(b,b−i). If μ(a(X),b−i(X)) =
μ(b(Y ),b−i(Y )) then X = Y .

The MAXμ function can be also used to minimize a function μ which is non-
increasing in each of its arguments: in fact, given such a μ, simply running
MAX−μ one obtains the minimum of μ. As observed MAXμ social choice function
has been introduced in [5]. In that work it is shown that MAXμ function is
implementable with verification for comparable types.

Definition 4. Agent i’s domain Di is comparable if for any a, b ∈ D either
a ≤ b or b ≤ a (where a ≤ b means that for all X ∈ O, a(X) ≤ b(X)).

Theorem 2 ([5]). Let μ(·) be any maximization function monotone non-de-
creasing in each of its arguments b1(X), . . . , bm(X), with X ∈ O and bi ∈ Di.
MAXμ is implementable with verification for comparable types.

2 This is not the case for comparable types. Indeed, for comparable types, the graph
is always connected.
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Theorem above summarizes some of the results in [5] in a concise form. Its proof
essentially exploits monotonicity of MAXμ, monotonicity of μ and monotonicity
of comparable types. It turns out that, monotonicity of comparable types can
be overcome using properties of Vb−i(MAXμ), and thus MAXμ is always imple-
mentable with verification for any finite domain. Let us proceed more formally.
The main theorem of the section is the following:

Theorem 3. Let μ(·) be any maximization function monotone non-decreasing
in each of its arguments b1(X), . . . , bm(X), with X ∈ O and bi ∈ Di, then MAXμ

is implementable with verification.

Theorem above follows from the following observation: so that a cycle in
verification-graph exists then it has to involve valuations mapped by MAXμ

in the same outcome (thus obtaining a cycle of weight 0).
Notice that MAXμ always maximizes a monotone non-decreasing objective

function μ. In other words, a direct consequence of last theorem is the following.

Corollary 1. Let μ(·) be any monotone non-decreasing function in each of its
arguments b1(X), . . . , bm(X), with X ∈ O and bi ∈ Di. Then, there exists a
social choice function OPTμ which maximizes μ(·) and is implementable with
verification.

If the set O of outcomes is very large, then social choice function MAXμ could
not be efficiently computable. Our next result can be used to derive efficiently-
computable social choice functions which approximate the objective function by
restricting to a suitable subset of the possible outcomes.

Definition 5 ([5]). A set O′ ⊆ O is α-approximation preserving for μ if, for
every b ∈ D, the set O′ contains a solution X ′ which is an α-approximation of
μ for b.

Corollary 2. Let μ(·) be any optimization function to maximize. Assume μ(·)
is monotone non-decreasing in its arguments b1(X), . . . , bm(X), with X ∈ O and
bi ∈ Di. For any α-approximation preserving set O′ the social choice function
APXμ := MAX

X∈O′{X} is an α-approximation for μ and is implementable
with verification. Moreover, social choice function APXμ(b) can be computed in
time proportional to the time needed for computing values μ(X,b), for X ∈ O′.

Corollary above is implied by Theorem 3. Last results generalize results pre-
sented in [5]. Indeed, they show that the technique works for any valuation
domain and not just for comparable types. Moreover, these results lead to inter-
esting applications in studying (and solving) problems like Scheduling Unrelated
Machines. The valuations we are studying model well the case of scheduling un-
related machines (see [19]). Looking for mechanisms that are truthful but that
do not run in polynomial time, then Cor. 1 gives an alternative (to the one
proposed in [19]) technique to optimally solve the Q||Cmax problem on unre-
lated machines. Unfortunately, these mechanisms do not run in polynomial-time
(as in [19]) since, in the case of unrelated machines, the number of solutions to
examine are exponentially many.
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3 Compound Agents

In this section we show that our technique presented in Sec. 2 solves the problem
of designing truthful mechanisms with verification for what we call compound
agents.

Definition 6 (Compound types). The type v̄ = (v1, v2, . . . , vd) of a d-dimen-
sional compound agent has d components each of which is a single valuation. A
d-dimensional compound type set is simply the cross product of d type sets and
we will denote by Di = D1

i × . . .×Dd
i the type set of agent i. We call, an agent

with compound type set, compound agent.

A solution X ∈ O consists of d components (i.e., X = (X1, . . . , Xd)). The valua-
tion v̄ for a given solution X is a function of v1, v2, . . . , vd (e.g., v̄(X) = v1(X)+
. . .+ vd(X)). More specifically, given f : Rd → R, v̄(X) = f(v1(X), . . . , vd(X)).
We assume that the mechanism is able to verify each of the d coordinates inde-
pendently. This implies that if an agent is caught lying over one of the d compo-
nents (for example, the agent declared b1 as first component of its type instead of
v1 and the solution computed by the mechanism X is such that b1(X) > v1(X))
then the agent receives no payment.3 We stress that we do not require here that
valuation along one dimension is one-parameter, i.e., for all 1 ≤ i ≤ d, vi is
any valuation in a finite domain defined in Sec. 1. Using a technique similar
to the one used in Sec. 2 we are able to prove a theorem similar to Th. 3 for
objective functions of the form μ(b1

1(X), . . . , bd
1(X), . . . , b1

m(X), . . . , bd
m(X)) that

are monotone non-decreasing in any of its inputs.

Theorem 4. Let μ(·) be any maximization function monotone non-decreasing
in each of its arguments b1

1(X), . . . , bd
m(X), with X ∈ O and b̄i ∈ Di, then MAXμ

is implementable with verification.

Observe that Th. 4 applies also to the case in which each agent i has (potentially)
different dimension di. Indeed, slightly changing the definition of compound-
verification-graph (edges are added only between pairs of valuations of the same
dimension), the proof of theorem above still holds. Obviously, Cor.s 1 and 2
hold also for compound types. Last theorem gives a powerful method to solve
the following problem.

Definition 7 (Scheduling Unrelated Compound Machines). There are n
jobs that need to be allocated to M machines. Machines are owned by m ≤ M
agents. Each agent owns di machines, with

∑m
i=1 di = M . Agent i’s valuation v̄i

is the vector (v1
i , . . . , vdi

i ). Each vj
i is equal to the vector (v(X1), . . . , v(XMn))

3 One could also define mechanisms with verification for compound agents as mech-
anisms able to verify only the whole valuation. That is, an agent would be able to
cheat along as many coordinates as he wants in a way that the d-dimensional re-
ported valuation is undetectable for the mechanism. In this case, the approach of
Sec. 2 works: indeed we can consider these agents as ones defined in Sec. 1. But,
with such definition, the concept of truthful mechanism would be quite strange.
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for some v ∈ Dj
i where v(Xk) is the opposite of the completion time of the work

assigned to jth machine controlled by agent i by the solution Xk. The goal is to
minimize the completion time of the last assignment (the makespan).

Theorem 5. There exists an exact truthful mechanism with verification for the
problem Scheduling Unrelated Compound Machines.

The theorem above bases on the technique of Th. 4. The resulting mechanism
does not run in polynomial-time as the solutions to work on are in exponential
number (namely Mn).
Implementing Classical Algorithms for Compound One-Paramater Agents. Next
we will consider compound one-parameter agents, that is, compound agents in
which each coordinate is a one-parameter valuation (i.e., for agent i and solution
X , vi(X) = −ti ·wi(X) where ti is i’s type and wi(X) is the work assigned to i
by solution X). Observe that, for one-parameter agents any valuation (as defined
in Sec. 1) is in the form (−ti ·wi(X1), . . . ,−ti ·wi(XK)) given the type ti. Thus
any vector is just represented by the type ti.

We next introduce the class of smooth functions, for which there exists small
α-approximation preserving set of outcomes.

Definition 8. Fix ε > 0 and γ > 1. A function μ is (γ, ε)–smooth if, for
any pair of valuations b̄ and ˜̄b such that, for any 1 ≤ j ≤ d, bj

i ≥ b̃j
i ≥ γbj

i

for i = 1, 2, . . . , m, and for all possible outcomes X, it holds that μ(X, b̄) ≤
μ(X, ˜̄b) ≤ (1 + ε) · μ(X, b̄).

For smooth functions μ, on types we are studying, we can transform any
α-approximate polynomial-time algorithm A (which is not necessarily
implementable with verification) into a social choice function for a constant
number of d-dimensional agents which is computable in polynomial-time (with
d being constant), implementable with verification and α(1+ε)-approximates μ.

Theorem 6. Let A be a polynomial-time α-approximate algorithm for non-
decreasing (in each input) (γ, ε)-smooth objective function μ(·) to maximize. If
the problem involves compound one-parameter agents then, for any ε > 0, there
exists an α(1+ε)-approximate social choice function A� implementable with ver-
ification. If the number of d-dimensional agents is constant and d is constant,
A� can be computed in polynomial time.

The proof of Th. 6 bases on the technique given by Corollary 2 on compound
types. Moreover, it applies also to the case in which each agent i has (potentially)
different dimension di. In this more general case, the social choice function A�

runs in polynomial time if m is constant and
∑m

i=1 di = O(1). Next, we provide a
small but nice application of technique presented in Th. 6. We solve the following
problem.

Definition 9 (Scheduling Related Compound Machines). There are n
jobs that need to be allocated to M machines. Machines are owned by m ≤
M agents. Each agent owns di machines, with

∑m
i=1 di = M . Each agent i’s
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valuation v̄i is, for each machine j he controls, the opposite of the completion
time of the work assigned to machine j. That is, v̄i = (v1

i , . . . , vdi

i ) and vj
i (·) =

−tjwj(·). The goal is to minimize the completion time of the last assignment.

We present a polynomial-time truthful mechanism with verification for the prob-
lem above when M is constant.

Theorem 7. Let A be a c-approximating algorithm for the make-span problem.
There exists a truthful c(1+ε)-approximating mechanism with verification for the
Scheduling Related Compound Machines using algorithm A. When the number
of the machines is constant then the mechanism runs in polynomial time.

4 Mechanisms with Verification for Infinite Domains

It should be clear that verification helps in defining payments. In fact, mecha-
nism is able to fine some kind of (detectable) lie. As stated in Sec. 1, payment is
a function going from D to R. It is well known that, for mechanisms without ver-
ification, defining payments on O×D−i is completely equivalent to our payment
functions definition. This consideration leads to the classical technique used,
designing mechanisms without verification, for dealing with infinite domains:
the use of the so-called allocation graph (which we generalize to the verifica-
tion setting to as allocation-verification-graph). In this section we show that this
technique, in general, cancels advantages of verification and, thus, cannot be
used, at least tout-court, in the verification setting.

Definition 10 (allocation-verification-graph). Let A be a social choice
function. For every i and b−i ∈ D−i, the allocation-verification-graph G(Ab−i)
has a node for each outcome in O. The set of edges of G(Ab−i) is defined as fol-
lows. For every X, Y ∈ O add an edge (X, Y ) if there exists valuations a, b ∈ Di

such that Ab−i(a) = X, Ab−i(b) = Y and a(Y ) ≥ b(Y ) with X �= Y ∈ O.
The weight of edge (X, Y ) (if any) is δ(X, Y ) := infa∈RY

X
{a(X) − a(Y )}, where

RY
X = {a ∈ RX |∃b ∈ RY s.t. a(Y ) ≥ b(Y )} with RX = {a ∈ Di|Ab−i(a) = X}.

Definition 11. An outcome X ∈ O is fully reachable w.r.t. a social choice
function A, if for any i, any b−i and any X �= Y ∈ O there exist valuations
a, b ∈ Di such that Ab−i(a) = X and Ab−i(b) = Y with b(X) ≥ a(X).

Notice that, it is, in general, possible that a social choice function A admits fully
reachable outcomes. It is also possible that a social choice function has neutral
domains.

Definition 12. Agent i’s domain Di is neutral w.r.t. a social choice function A
if for all X, Y ∈ O s.t. (X, Y ) belongs to G(Ab−i) it holds that infa∈RY

X
{a(X)−

a(Y )} = infa∈RX{a(X)− a(Y )}.
Next theorem states that verification’s advantages are canceled (on allocation-
verification-graph) for some particular social choice functions.
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Theorem 8. Let A be a social choice function. If any outcome in O is fully
reachable w.r.t. A and any agent domain is neutral w.r.t. A then, using the
allocation-verification-graph, A is implementable with verification if and only if
A is implementable without verification.

Acknowledgements. We wish to thank Paolo Penna for helpful discussions.
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Abstract. Unlike standard congestion games, weighted congestion
games and congestion games with player-specific delay functions do not
necessarily possess pure Nash equilibria. It is known, however, that there
exist pure equilibria for both of these variants in the case of singleton
congestion games, i. e., if the players’ strategy spaces contain only sets
of cardinality one. In this paper, we investigate how far such a property
on the players’ strategy spaces guaranteeing the existence of pure equi-
libria can be extended. We show that both weighted and player-specific
congestion games admit pure equilibria in the case of matroid congestion
games, i. e., if the strategy space of each player consists of the bases of
a matroid on the set of resources. We also show that the matroid prop-
erty is the maximal property that guarantees pure equilibria without
taking into account how the strategy spaces of different players are in-
terweaved. In the case of player-specific congestion games, our analysis
of matroid games also yields a polynomial time algorithm for computing
pure equilibria.

1 Introduction

Congestion games are a natural model for resource allocation in large networks
like the Internet. It is assumed that n players share a set R of m resources.
Players are interested in subsets of resources. For example, the resources may
correspond to the edges of a graph, and each player may want to allocate a
spanning tree of this graph. The delay (cost, negative payoff) of a resource
depends on the number of players that allocate the resource, and the delay of a
set of allocated resources corresponds to the sum of the delays of the resources in
the set. A well known potential function argument of Rosenthal [11] shows that
congestion games always possess Nash equilibria1, i. e., allocations of resources
from which no player wants to deviate unilaterally.

The existence of Nash equilibria gives a natural solution concept for congestion
games. Unfortunately, this property does not hold anymore if we slightly extend
the class of considered games towards congestion games with player-specific delay
� This work was supported in part by the EU within the 6th Framework Programme

under contract 001907 (DELIS) and by DFG grant Vo889/2-1.
1 In this paper, the term Nash equilibrium always refers to a pure equilibrium.

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 50–61, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Pure Nash Equilibria in Player-Specific and Weighted Congestion Games 51

functions, i. e., a variant of congestion games in which different players might
have different delay functions, and weighted congestion games, i. e., a variant
of congestion games in which the delay of a resource depends on a weighted
number of players. For both of these classes one can easily construct examples
of games that do not possess Nash equilibria (cf. Fotakis et al. [4] in the case of
weighted network congestion games). In this paper, we study which conditions
on the strategy spaces of individual players guarantee the existence of Nash
equilibria. We only consider games with non-decreasing delay functions since
otherwise one can construct examples of weighted and player-specific singleton
congestion games, i. e., games in which the players’ strategy spaces contain only
sets of cardinality one, that do not possess Nash equilibria.

It is known, however, that there exist pure equilibria for both of these vari-
ants in the case of singleton congestion games with non-decreasing delay func-
tions [10,2]. We extend these results and show that both player-specific and
weighted congestion games admit pure equilibria in the case of matroid conges-
tion games, i. e., if the strategy space of each player consists of the bases of a
matroid on the set of resources. We also show that the matroid property is the
maximal condition on the players’ strategy spaces that guarantees Nash equi-
libria without taking into account how the strategy spaces of different players
are interweaved. In the case of player-specific matroid congestion games, our
analysis also yields a polynomial time algorithm for computing pure equilibria.
Let us remark that the best response dynamics may cycle for player-specific sin-
gleton congestion games [10]. For weighted matroid congestion games we do not
have an efficient algorithm for computing a Nash equilibrium, but we show that
players playing “lazy best responses” converge to a Nash equilibrium.

Related Work. Milchtaich [10] considers player-specific singleton congestion
games and shows that every such game possesses at least one Nash equilibrium.
Additionally, he shows that players iteratively playing best responses in such
games do not necessarily reach a Nash equilibrium, that is, the best response
dynamics may cycle. However, he implicitly describes an algorithm for comput-
ing an equilibrium. Our work generalizes Milchtaich’s analysis from singleton
congestion games towards matroid congestion games. Gairing et al. [6] consider
player-specific singleton congestion games with linear delay functions without
offsets and show that the best response dynamics of these games do not cy-
cle anymore. Milchtaich [10] also addresses the existence of Nash equilibria in
congestion games which are both player-specific and weighted. In this case, a
Nash equilibrium does not necessarily exist in singleton congestion games. How-
ever, Georgiou et al. [7] and Garing et al. [6] conjecture that these games pos-
sess Nash equilibria in the case of linear player-specific delay functions without
offsets.

Even-Dar et al. [2] consider a load balancing scenario with weighted jobs.
They show that in this scenario at least one Nash equilibrium always exists and
that players iteratively playing best responses converge to such an equilibrium.
A similar result can also be found in [10] and [3]. Our proof that every weighted
matroid congestion game possesses at least one Nash equilibrium reworks the
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proof in [2]. Even-Dar et al. [2] also consider the convergence time in the case
of unrelated, related, and identical machines, and different types of job weights.
They show that players do not necessarily converge quickly in any of these sce-
narios. Fotakis et al. [4] consider weighted network congestion games in which
the strategy space of each player corresponds to the set of all paths between
possibly different sources and sinks in a network. First they show that a Nash
equilibrium does not necessarily exist. However, they are able to show that in
the case of l-layered networks with delays equal to the congestion every weighted
network congestion game possesses at least one Nash equilibrium. This shows
that if we consider more than the combinatorial structure of the strategy spaces
of the players, then one can identify larger classes of weighted congestion games
possessing Nash equilibria.

It is interesting to relate the results about the existence of Nash equilibria in
player-specific and weighted matroid congestion games to our recent work about
the convergence time of standard congestion games: In [1] we characterize the
class of congestion games that admit polynomial time convergence to a Nash
equilibrium. Motivated by the fact that in singleton congestion games players
converge quickly [9], we show that if the strategy space of each player consists
of the bases of a matroid on the set of resources, then players iteratively playing
best responses reach a Nash equilibrium quickly. Furthermore, we show that the
matroid property is a necessary and sufficient condition on the players’ strategy
spaces for guaranteeing polynomial time convergence to a Nash equilibrium if
one does not take into account the global structure of the game.

Formal Definition of Congestion Games. A congestion game Γ is a tuple
(N ,R, (Σi)i∈N , (dr)r∈R) where N = {1, . . . , n} denotes the set of players, R =
{1, . . . , m} the set of resources, Σi ⊆ 2R the strategy space of player i, and
dr : N → N a delay function associated with resource r. We call a congestion
game symmetric if all players share the same set of strategies, otherwise we
call it asymmetric. We denote by S = (S1, . . . , Sn) the state of the game where
player i plays strategy Si ∈ Σi. Furthermore, we denote by S ⊕ S′

i the state
S′ = (S1, . . . , Si−1, S

′
i, Si+1, . . . , Sn), i. e., the state S except that player i plays

strategy S′
i instead of Si. For a state S, we define the congestion nr(S) on

resource r by nr(S) = |{i | r ∈ Si}|, that is, nr(S) is the number of players
sharing resource r in state S. Players act selfishly and like to play a strategy
Si ∈ Σi minimizing their individual delay. The delay δi(S) of player i in state S
is given by δi(S) =

∑
r∈Si

dr(nr(S)). Given a state S, we call a strategy S∗
i a best

response of player i to S if, for all S′
i ∈ Σi, δi(S⊕S∗

i ) ≤ δi(S⊕S′
i). Furthermore,

we call a state S a Nash equilibrium if no player can decrease her delay by
changing her strategy, i. e., for all i ∈ N and for all S′

i ∈ Σi, δi(S) ≤ δi(S ⊕ S′
i).

Rosenthal [11] shows that every congestion game possesses at least one Nash
equilibrium by considering the potential function φ : Σ1 × · · · × Σn → N with
φ(S) =

∑
r∈R

∑nr(S)
i=1 dr(i).

There are two well known extensions of congestion games, namely player-
specific congestion games and weighted congestion games. In a player-specific
congestion game every player i has its own delay function di

r : N → N for
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every resource r ∈ R. Given a state S, the delay of player i is defined as δi(S) =∑
r∈Si

di
r(nr(S)). In a weighted congestion game every player i ∈ N has a weight

ωi ∈ N. Given a state S, we define the congestion on resource r by nr(S) =∑
i:r∈Si

ωi, that is, nr(S) is the weight of all players sharing resource r in state S.

Matroids and Matroid Congestion Games. We now introduce matroid
congestion games. Before we give a formal definition of such games we shortly
introduce matroids. For a detailed discussion we refer the reader to [12].

Definition 1. A tuple M = (R, I) is a matroid if R = {1, . . . , m} is a finite set
of resources and I is a nonempty family of subsets of R such that, if I ∈ I and
J ⊆ I, then J ∈ I, and, if I, J ∈ I and |J | < |I|, then there exists an i ∈ I \ J
with J ∪ {i} ∈ I.

Let I ⊆ R. If I ∈ I, then we call I an independent set, otherwise we call it
dependent. It is well known that all maximal independent sets of I have the same
cardinality. The rank rk(M) of the matroid is the cardinality of the maximal
independent sets. A maximal independent set B is called a basis of M. In the
case of a weight function w : R → N, we call a matroid weighted, and seek to
find a basis of minimum weight, where the weight of an independent set I is
given by w(I) =

∑
r∈I w(r). It is well known that such a basis can be found by

a greedy algorithm. Now we are ready to define matroid congestion games.

Definition 2. We call a congestion game Γ = (N ,R, (Σi)i∈N , (dr)r∈R) a ma-
troid congestion game if for every player i ∈ N , Mi := (R, Ii) with Ii = {I ⊆
S | S ∈ Σi} is a matroid and Σi is the set of bases of Mi. Additionally, we
denote by rk(Γ ) = maxi∈N rk(Mi) the rank of a matroid congestion game Γ .

The obvious application of matroid congestion games are network design prob-
lems in which players compete for the edges of a graph in order to build a
spanning tree [13]. There are quite a few more interesting applications as even
simple matroid structures like uniform matroids, that are rather uninteresting
from an optimization point of view, lead to rich combinatorial structures when
various players with possibly different strategy spaces are involved. Illustrative
examples based on uniform matroids are market sharing games with uniform
market costs [8] and scheduling games in which each player has to injectively
allocate a given set of tasks (services) to a given set of machines (servers).

Let us remark that, in the case of matroid congestion games, the assumption
that all delays are positive is not a restriction. Since all strategies have the same
size, one can easily shift all delays by the same value in order to obtain positive
delays without changing the better and best response dynamics.

2 Player-Specific Matroid Congestion Games

In this section, we consider player-specific matroid congestion games with non-
decreasing player-specific delay functions and prove that every such game pos-
sesses at least one Nash equilibrium. Moreover, the proof we present implicitly
describes an efficient algorithm to compute an equilibrium.
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Theorem 3. Every player-specific matroid congestion game Γ with non-de-
creasing delay functions possesses at least one Nash equilibrium.

Proof. Recall that since the strategy space of player i corresponds to the set
of bases of a matroid Mi, all strategies of player i have the same size rk(Mi).
In the following, we represent a strategy of player i by rk (Mi) tokens that the
player places on the resources she allocates. Suppose that we reduce the number
of tokens of some of the players, that is, player i has ki ≤ rk(Mi) tokens that
she places on the resources of an independent set of cardinality ki. Observe that
the independent sets of cardinality ki form the bases of a matroid M′

i whose
independent sets correspond to those independent sets of Mi with cardinality
at most ki. Hence, a game in which some of the players have a reduced number
of tokens is also a matroid congestion game.

We prove the theorem by induction on the total number of tokens τ =∑
i∈N rk(Mi) that the players are allowed to place, that is, we prove the ex-

istence of Nash equilibria for a sequence of games Γ0, Γ1, . . . Γτ , where Γ�+1 is
obtained from Γ� by giving one more token to one of the players. Γ0 is the game
in which each player has only the empty strategy. Obviously, Γ0 has only one
state and this state is a Nash equilibrium.

As induction hypothesis assume that player i has placed ki ≥ 0 tokens, for
1 ≤ i ≤ n, and this placement corresponds to a Nash equilibrium of the player-
specific matroid congestion game Γ� = (N ,R, (Σki

i )i∈N , (di
r)i∈N ,r∈R) with � =

∑
i∈N ki, in which the set of strategies Σki

i coincides with the set of independent
sets of size ki of the matroid Mi.

Now assume that some player i0 has to place an additional token t0. We show
how to compute a Nash equilibrium for the game Γ�+1 obtained from a Nash
equilibrium of Γ� by changing i0’s strategy space to the set of independent sets
of size ki0 +1. Due to the greedy property of matroids, there exists a resource r0

such that placing the token t0 on r0 gives an independent set of size ki0 +1 with
minimum delay among all independent sets of the same size. Thus, assuming
that the tokens of the other players are fixed, an optimal strategy for player
i0 is to place t0 on r0 and leave all other tokens unchanged. However, as the
congestion on r0 is increased by one, other players might want to move their
tokens from r0 in order to obtain a better independent set. We now use matroid
properties to show that a Nash equilibrium of Γ�+1 can be reached with only
n · m · rk(Γ ) moves of tokens.

Lemma 4. Let M be a weighted matroid and Bopt be a basis of M with minimum
weight. If the weight of a single resource ropt ∈ Bopt is increased such that Bopt is
no longer of minimum weight, then, in order to obtain a minimum weight basis
again, it suffices to exchange ropt with a resource r∗ of minimum weight such that
Bopt ∪ {r∗} \ {ropt} is a basis.

Proof. In order to prove the lemma we use the following property of a matroid
M = (R, I). Let I, J ∈ I with |I| = |J | be independent sets. Consider the
bipartite graph G(IΔJ) = (V, E) with V = (I \ J) ∪ (J \ I) and E = {{i, j} |
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i ∈ I \ J, j ∈ J \ I : I ∪ {j} \ {i} ∈ I}. It is well known that G(IΔJ) contains a
perfect matching (cf. Lemma 39.12(a) from [12]).

Let B′
opt be a minimum weight basis w. r. t. the increased weight of ropt. Let

P be a perfect matching of the graph G(BoptΔB′
opt) and denote by e the edge

from P that contains ropt. For every edge {r, r′} ∈ P \{e}, it holds w(r) ≤ w(r′)
as, otherwise, if w(r) > w(r′), the basis Bopt ∪ {r′} \ {r} would have smaller
weight than Bopt.

Now denote by r′opt the resource that is matched with ropt, i. e., the resource
such that e = {ropt, r

′
opt} ∈ P . As w(r) ≤ w(r′) for every {r, r′} ∈ P \ {e}, the

weight of Bopt \ {ropt} is bounded from above by the weight of B′
opt \ {r′opt}.

By the definition of the matching P , Bopt ∪ {r′opt} \ {ropt} is a basis. By our
arguments above, the weight of this basis is bounded from above by the weight
of B′

opt . Hence, this basis is optimal w. r. t. the increased weight of ropt. 	


After placing token t0 of player i0 on resource r0, resource r0 has one additional
token in comparison to the initial Nash equilibrium S of the game Γ�. Since
we assume non-decreasing delay functions, only the players with a token on r0

might now have an incentive to change their strategies. Let i1 be one of these
players. It follows from Lemma 4 that i1 has a best response in which she moves
a token t1 from resource r0 to another resource that we call r1. Now r1 is the
only resource with one additional token in comparison to S. Suppose we have
not yet reached a Nash equilibrium. Only those players with a token on r1 might
have an incentive to change their strategies. Again applying Lemma 4, we can
identify a player i2 that has a best response in which she moves a token t2 from
r1 to a resource r2, which then is the only resource with one additional token.

The token migration process described above can be continued in the same
way until it reaches a Nash equilibrium of the game Γ�+1. The correctness of the
process is ensured by the following invariant.

Invariant 1. For every j ≥ 0, after player ij moves token tj onto resource rj ,

a) only players with a token on rj might violate the Nash equilibrium condition,
b) the Nash equilibrium condition of all players would be satisfied if one ignores

the additional token on rj, that is, if each player calculates the delay on rj

as if there would be one token less on this resource.

The invariant follows by induction on j: For player ij the invariant is satisfied as
this player plays a best response according to Lemma 4. Thus she satisfies the
Nash equilibrium condition even without virtually reducing the congestion on
rj . For all other players, the validity of the invariant for j follows directly from
the validity of the invariant for j − 1 as these players do not move their tokens.

Thus, in order to show the existence of a Nash equilibrium for Γ�+1, it suffices
to show that the token migration process is finite. Consider an arbitrary token
t of any player i. For a resource r, let Di(r) denote the delay of i on r if r has
one more token than in the initial state S. Observe, whenever t is moved by the
migration process from a resource r to a resource r′ then Di(r) > Di(r′). Hence,
the token t can visit each resource at most once during the token migration
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process. As there are at most n · rk(Γ ) tokens, the migration process terminates
after at most n · m · rk(Γ ) steps in a Nash equilibrium of Γ�+1. 	

The proof of Theorem 3 implicitly describes an efficient algorithm to compute a
Nash equilibrium with at most n2 · m · rk2(Γ ) moves of tokens.

Corollary 5. There exists a polynomial time algorithm to compute a Nash equi-
librium of a player-specific matroid congestion game with non-decreasing player-
specific delay functions.

3 Weighted Matroid Congestion Games

In this section we consider weighted matroid congestion games with non-decreas-
ing delay functions and show that every such game possesses at least one Nash
equilibrium. Moreover, we show that players find such an equilibrium if they
iteratively play “lazy best responses”. Formally, given a state S we call a best
response S∗

i of player i lazy if it can be decomposed into a sequence of strategies
Si = S0

i , S1
i , . . . , Sk

i = S∗
i with |Sj+1

i \ Sj
i | = 1 and γi(S ⊕ Sj+1

i ) < γi(S ⊕ Sj
i )

for 0 ≤ j < k. The existence of such a best response is guaranteed since given
a weighted matroid M = (R, I), a basis B ∈ I is an optimal basis of M if
and only if there exists no basis B∗ ∈ I with |B \ B∗| = 1 and w(B∗) < w(B)
(cf. Lemma 39.12(b) from [12]). In particular, a best response which exchanges
the least number of resources compared to the current strategy Si is a lazy best
response.

Theorem 6. Every weighted matroid congestion game Γ with non-decreasing
delay functions possesses at least one Nash equilibrium which is reached after a
finite number of lazy best responses.

Proof. Let S be a state of Γ . With each resource r, we associate a pair zr(S) =
(dr(nr(S)), nr(S)) consisting of the delay and the congestion of r in state S. For
two resources r and r′ and states S and S′, let zr(S) ≥ zr′(S′) iff dr(nr(S)) >
dr′(nr′(S′)) or dr(nr(S)) = dr′(nr′(S′)) and nr(S) ≥ nr′(S′). Let zr(S) > zr′(S′)
iff zr(S) ≥ zr′(S′) and zr(S) �= zr′(S′). Let z̄(S) denote a vector containing the
pairs zr(S) of all resources r ∈ R in non-increasing order, that is, z̄j(S) ≥
z̄j+1(S), where z̄j(S) denotes the j-th component of z̄, for 1 ≤ j < |R|.

We denote by ≤lex the lexicographic order among the vectors z̄(S), i. e.,
z̄(S1) ≤lex z̄(S2) if there exists an index l such that z̄k(S1) = z̄k(S2), for all k ≤ l,
and z̄l(S1) ≤ z̄l(S2). Additionally, we define z̄(S1) <lex z̄(S2) if z̄(S1) ≤lex z̄(S2)
and z̄(S1) �= z̄(S2).

Now given a state S, let player i play a lazy best response S∗
i . Since S∗

i is a
lazy best response, there exists a sequence of strategies Si = S0

i , . . . , Sk
i = S∗

i

such that, for every 0 ≤ j < k, |Sj+1
i \ Sj

i | = 1 and

γi(S) = γi(S ⊕ S0
i ) > γi(S ⊕ S1

i ) > . . . > γi(S ⊕ Sk
i ) = γi(S ⊕ S∗

i ) .

We claim that z̄(S ⊕ Sj+1
i ) <lex z̄(S ⊕ Sj

i ), for every 0 ≤ j < k. Let rj be the
unique resource in Sj

i that is not contained in Sj+1
i and let r∗j be the resource
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that is contained in Sj+1
i but not in Sj

i . Since the delay decreases strictly with
the exchange, we have

drj (nrj (S ⊕ Sj
i )) > dr∗

j
(nr∗

j
(S ⊕ Sj+1

i )) .

Additionally, since we assume non-decreasing delay functions,

drj (nrj (S ⊕ Sj
i )) ≥ drj (nrj (S ⊕ Sj+1

i )) = drj (nrj (S ⊕ Sj
i ) − ωi) .

Furthermore, nrj(S⊕Sj
i ) > nrj (S⊕Sj+1

i ). Combining these inequalities implies
zrj(S⊕Sj

i ) > zrj(S⊕Sj+1
i ) and zrj(S⊕Sj

i ) > zr∗
j
(S⊕Sj+1

i ). Combined with the
observation that zrj(S⊕Sj

i ) > zr∗
j
(S⊕Sj

i ), this yields z̄(S⊕Sj
i ) >lex z̄(S⊕Sj+1

i ),
that is, the lexicographic order decreases with every exchange and, hence, with
every lazy best response. This concludes the proof of the theorem. 	


In the full version of this paper we show that playing lazy best responses is a
necessary assumption in order to obtain convergence to a Nash equilibrium, that
is, we present a weighted matroid congestion game in which the best response
dynamic cycles if players are not restricted to lazy best responses. The delay
functions in this congestion game are non-decreasing but not strictly increasing.
We leave open the questions whether players playing arbitrary best responses
converge to a Nash equilibrium if each delay function is strictly increasing and
whether there is an efficient algorithm for computing a Nash equilibrium in
weighted matroid congestion games in general. To the best of our knowledge
the only positive result is known in the case of weighted singleton matroid con-
gestion games with identical resources, i. e., all resources have identical, non-
decreasing delay functions. In this case, Gairing et al. [5] show how to compute
a Nash equilibrium in polynomial time. If additionally the players are symmet-
ric, Even-Dar et al. [2] show that if one assigns the players in non-increasing
order of their weights to the resources, then the resulting assignment is a Nash
equilibrium.

Finally, we like to comment on the convergence time. Theorem 6 implies that
players iteratively playing lazy best responses reach a Nash equilibrium after at
most min

{
(
∑n

i=1 ωi)
m

,
(

m
rk(Γ )

)n
}

strategy changes. The first term is an upper
bound on the maximal number of different vectors z̄(S) and the second one
bounds the number of different states of a matroid congestion game. Even-Dar
et al. [2] establish an exponential lower bound in the case of weighted singleton
congestion games with symmetric players and identical resources. However, they
use exponentially large weights to show this. In the full version of this paper
we present an infinite family of weighted singleton congestion games possessing
superpolynomially long best response sequences although every player has either
weight one or two and all delays are polynomially bounded in the number of
players and resources. This immediately implies that players do not necessarily
reach a Nash equilibrium in pseudopolynomial time.
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4 Non-matroid Strategy Spaces

In this section, we show that the matroid property is the maximal property on
the individual players’ strategy spaces that guarantees the existence of Nash
equilibria in player-specific and weighted congestion games with non-decreasing
(player-specific) delay functions. For this, let Σ be a set system over a set R
of resources. We call Σ inclusion-free if for every X ∈ Σ, no proper superset
Y ⊃ X belongs to Σ. Moreover, we call Σ a non-matroid set system if the tuple
(R, {X ⊆ S | S ∈ Σ}) is not a matroid. In [1] we show that every inclusion-free,
non-matroid set system possesses the (1, 2)-exchange property. Here we need a
variant of this property with positive (instead of non-negative) delays.

Definition 7 ((1, 2)-exchange property). Let Σ be an inclusion-free set sys-
tem over a set of resources R. We say that Σ satisfies the (1, 2)-exchange prop-
erty if we can identify three distinct resources a, b, c ∈ R with the property that
for any given k ∈ N with k > |R|, we can choose a delay d(r) ∈ {1, k + |R|}
for every r ∈ R \ {a, b, c} such that for every choice of the delays of a, b,
and c with |R| ≤ d(a), d(b), d(c) ≤ k, the following property is satisfied: If
d(a) + |R| ≤ d(b) + d(c), then for every set S ∈ Σ with minimum delay, a ∈ S
and b, c /∈ S. If d(a) ≥ d(b)+d(c)+ |R|, then for every set S ∈ Σ with minimum
delay, a /∈ S and b, c ∈ S.

Lemma 8. Let Σ be an inclusion-free set system over a set of resources R.
Furthermore, let I = {X ⊆ S |S ∈ Σ}, and assume that (R, I) is not a matroid,
i. e., that Σ is not the set of bases of some matroid. Then Σ possesses the (1, 2)-
exchange property.

Proof. Since (R, I) is not a matroid, there exist two sets X, Y ∈ Σ and a resource
x ∈ X \ Y such that for every y ∈ Y \X , the set X \ {x} ∪ {y} is not contained
in Σ (cf. Theorem 39.6 from [12]).

Let X and Y be such sets and let x ∈ X be such a resource. Consider all
subsets Y ′ of the set X ∪Y \ {x} with Y ′ ∈ Σ. Every such set Y ′ can be written
as Y ′ = X \ {x = x1, . . . , xl} ∪ {y1, . . . , yl′} with xi ∈ X \ Y and yi ∈ Y \ X
and l + l′ > 2. This is true since l as well as l′ are both larger than 0 as Σ is
inclusion-free. Furthermore l and l′ cannot both equal 1 as otherwise we obtain
a contradiction to the choice of X, Y , and x. Among all these sets Y ′, let Ymin

denote one set for which l′ is minimal. Observe that we can replace Y by Ymin

without changing the aforementioned properties of X , Y , and x. Hence, in the
following, we assume that Y = Ymin, that is, we assume that Y \X = Y ′ \X for
all of the aforementioned sets Y ′.

We claim that we can always identify resources a, b, c ∈ X∪Y such that either
a ∈ X \Y and b, c ∈ Y \X or a ∈ Y \X and b, c ∈ X \Y with the property that
for every Z ⊆ X ∪ Y with Z ∈ Σ, if a �∈ Z, then b, c ∈ Z. In order to see this,
we distinguish between the cases l′ = 1 and l′ ≥ 2:

1. Let Y \ X = {y1} and hence X \ Y = {x = x1, . . . , xl} with l ≥ 2. Then we
set a = y1, b = x1, and c = x2. Consider a set Z ⊆ X ∪ Y with Z ∈ Σ and
a �∈ Z. Then Z = X since Σ is inclusion-free, and hence b, c ∈ Z.
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2. Let Y \X = {y1, . . . , yl′} with l′ ≥ 2. Then we set a = x, b = y1, and c = y2.
Consider a set Z ⊆ X ∪ Y with Z ∈ Σ and a �∈ Z. Since we assumed that
Y = Ymin, it must be b, c ∈ Z as otherwise Z \ X �= Y \ X .

Now we define delays for the resources in R\{a, b, c} such that the properties
in Definition 7 are satisfied. Let k ∈ N be chosen as in Definition 7, that is,
d(a), d(b), d(c) ∈ {|R|, . . . , k}. We set d(r) = k+ |R| for every resource r /∈ X∪Y
and d(r) = 1 for every resource r ∈ (X ∪ Y ) \ {a, b, c}. First of all, observe that
in the first case the delay of Y equals d(a) + |Y | − 1 < k + |R| and that in the
second case the delay of X equals d(a) + |X | − 1 < k + |R|. Hence, a set Z ∈ Σ
that contains a resource r /∈ X ∪ Y can never have minimum delay as its delay
is at least k + |R|. Thus, only sets Z ∈ Σ with Z ⊆ X ∪ Y can have minimum
delay. Since for such sets, a /∈ Z implies b, c ∈ Z, we know that every set with
minimum delay must contain a or it must contain b and c.

Consider the case d(a) + |R| ≤ d(b) + d(c) and assume for contradiction that
there exists an optimal set Z∗ with a /∈ Z∗. Due to the choice of a, b, and c, the set
Z∗ must then contain b and c. Hence d(Z∗) ≥ d(b)+d(c). Furthermore, again due
to the choice of a, b, and c, there exists a set Z ′ ⊆ X∪Y with a ∈ Z ′ and b, c /∈ Z ′.
The delay of Z ′ is d(Z ′) = d(a) + |Z ′| − 1 < d(a) + |R| ≤ d(b) + d(c) ≤ d(Z∗),
contradicting the assumption that Z∗ has minimum delay. Hence every optimal
set Z∗ must contain a. If Z∗ additionally contains b or c, then its delay is at least
d(a)+ |R| > d(Z ′). Hence, in the case d(a)+ |R| ≤ d(b)+ d(c) every optimal set
Z∗ contains a but it does not contain b and c.

Consider the case d(a) ≥ d(b) + d(c) + |R| and assume for contradiction
that there exists an optimal set Z∗ with b /∈ Z∗ or c /∈ Z∗. Then Z∗ must
contain a and hence its delay is at least d(a). Due to the choice of a, b, and
c, there exists a set Z ′ ⊆ X ∪ Y with a /∈ Z ′ and b, c ∈ Z ′. The delay of
Z ′ is d(Z ′) = d(b) + d(c) + |Z ′| − 2 < d(b) + d(c) + |R| ≤ d(a) ≤ d(Z∗),
contradicting the assumption that Z∗ has minimum delay. Hence every optimal
set Z∗ must contain b and c. If Z∗ additionally contains a, then its delay is at
least d(b) + d(c) + |R| > d(Z ′). Hence, in the case d(a) ≥ d(b)+ d(c) + |R| every
optimal set Z∗ contains b and c but it does not contain a. 	

Theorem 9. For every inclusion-free, non-matroid set system Σ over a set of
resources R there exists a weighted congestion game Γ with two players whose
strategy spaces are isomorphic to Σ that does not possess a Nash equilibrium.
The delay functions in Γ are positive and non-decreasing.

Proof. Given an inclusion-free, non-matroid set system we describe how to con-
struct a weighted congestion game with the properties stated in the theorem. We
will first describe how the strategy spaces are defined and then how the delay
functions are chosen.

Let Σ1 and Σ2 be two set systems over sets of resources R1 and R2, respec-
tively. In the following we assume that both sets are isomorphic to Σ and that Σi

is the strategy space of player i, for i = 1, 2. Due to the (1, 2)-exchange property
we can, for every player i, identify three distinct resources ai, bi, ci ∈ Ri with
the properties as in Definition 7. Since we have not made any assumption on
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the global structure of the resources, we can arbitrarily decide which resources
from R1 and R2 coincide. The resources Ri \ {ai, bi, ci} are exclusively used
by player i. Hence, we can assume that their delays are chosen such that the
(1, 2)-exchange property is satisfied. Thus, to simplify matters we can assume
that

Σ1 = {{a1}
︸︷︷︸

S1
1

, {b1, c1}
︸ ︷︷ ︸

S2
1

} and Σ2 = {{a2}
︸︷︷︸

S1
2

, {b2, c2}
︸ ︷︷ ︸

S2
2

} .

In the following, we assume that a1 = b2, b1 = a2 and c1 = c2. Thus we can
rewrite the strategy spaces as follows: Σ1 = {{x}, {y, z}} and Σ2 = {{y}, {x, z}}.

We set ω1 = 2 and ω2 = 1 and define the following non-decreasing delay
functions for the resources x, y and z, where m = |R|:

nr = 1 nr = 2 nr = 3
dx(nx) m 20 · m 21 · m
dy(ny) 5 · m 12 · m 15 · m
dz(nz) 3 · m 4 · m 10 · m

One can easily verify that |δi(S⊕S1
i )−δi(S⊕S2

i )| ≥ m, for i = 1, 2, regardless of
the choice of the other player. Hence, for every player, one of the inequalities in
Definition 7 is always satisfied. This game does not possess a Nash equilibrium
since player 1 prefers to play strategy S2

1 if player 2 plays strategy S1
2 , and S1

1 if
player 2 plays strategy S2

2 . Additionally, player 2 prefers to play strategy S2
2 if

player 1 plays strategy S2
1 , and S1

2 if player 1 plays strategy S1
1 . 	


Theorem 10. For every inclusion-free, non-matroid set system Σ over a set of
resources R there exists a player-specific congestion game Γ with two players
whose strategy spaces are isomorphic to Σ that does not possess a Nash equilib-
rium. The delay functions in Γ are positive and non-decreasing.

Proof. The proof is similar to the proof of Theorem 9. In particular, the construc-
tion of the strategy spaces of the players is identical. The player-specific delay
functions are obtained from the delay functions in the proof of Theorem 9 as
follows: For the first player d1

r(nr) = dr(nr + 1), for every resource r ∈ {x, y, z}
and every congestion nr ∈ {1, 2}. For the second player d2

r(1) = dr(1) and
d2

r(2) = dr(3), for every resource r ∈ {x, y, z}. 	

Summarizing, every inclusion-free non-matroid set system can be used to con-
struct a player-specific or weighted congestion game with positive delay functions
that does not posses a Nash equilibrium. Observe that this result also holds if
the system is not inclusion-free but the pruned set system, i. e., the set system
obtained after removing all supersets, is not the set of bases of a matroid because
supersets cannot occur in a Nash equilibrium in the case of positive delay func-
tions. Correspondingly, our results presented in Theorems 3 and 6 show that a
player-specific or weighted congestion game in which all players’ strategy spaces
correspond to the bases of a matroid after pruning the supersets possesses a
Nash equilibrium with respect to the pruned and, hence, also with respect to
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the original strategy spaces as supersets are weakly dominated by subsets in the
case of non-negative delay functions. Thus, the matroid property (applied to the
pruned strategy spaces) is necessary and sufficient to show the existence of Nash
equilibria.

Corollary 11. The matroid property is the maximal property on the pruned
strategy spaces of the individual players that guarantees the existence of Nash
equilibria in weighted and player-specific congestion games with non-negative,
non-decreasing delay functions.
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Abstract. Congestion games are a fundamental class of noncooperative
games possessing pure-strategy Nash equilibria. In the network version,
each player wants to route one unit of flow on a path from her origin to
her destination at minimum cost, and the cost of using an arc only de-
pends on the total number of players using that arc. A natural extension
is to allow for players sending different amounts of flow, which results
in so-called weighted congestion games. While examples have been ex-
hibited showing that pure-strategy Nash equilibria need not exist, we
prove that it actually is strongly NP-hard to determine whether a given
weighted network congestion game has a pure-strategy Nash equilibrium.
This is true regardless of whether flow is unsplittable (has to be routed
on a single path for each player) or not.

A related family of games are local-effect games, where the disutility
of a player taking a particular action depends on the number of players
taking the same action and on the number of players choosing related
actions. We show that the problem of deciding whether a bidirectional
local-effect game has a pure-strategy Nash equilibrium is NP-complete,
and that the problem of finding a pure-strategy Nash equilibrium in a
bidirectional local-effect game with linear local-effect functions (for which
the existence of a pure-strategy Nash equilibrium is guaranteed) is PLS-
complete. The latter proof uses a tight PLS-reduction, which implies the
existence of instances and initial states for which any sequence of selfish
improvement steps needs exponential time to reach a pure-strategy Nash
equilibrium.

1 Introduction

Game theory in general and the concept of Nash equilibrium in particular have
lately come under increased scrutiny by theoretical computer scientists. Com-
puting a mixed Nash equilibrium is a case in point. Goldberg and Papadim-
itriou (2006) showed only recently that finding a mixed Nash equilibrium in a
game of any constant number of players is reducible to solving a 4-player game.
Daskalakis, Goldberg, and Papadimitriou (2006) showed in turn that the latter
problem is PPAD-complete. Subsequently, Chen and Deng (2005) and Daskalakis
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and Papadimitriou (2005) proved that computing mixed Nash equilibria in games
with three players is PPAD-complete as well. Eventually, Chen and Deng (2006)
established the same result for the two-player case.

While Nash (1951) showed that mixed Nash equilibria do exist in any finite
noncooperative game, it is well known that pure-strategy Nash equilibria are in
general not guaranteed to exist. It is therefore natural to ask which games have
pure-strategy Nash equilibria and, if applicable, how difficult is it to find one. In
this article, we study these questions for certain classes of weighted congestion
and local-effect games.

Congestion games were introduced by Rosenthal (1973), who showed that
they are guaranteed to possess pure-strategy Nash equilibria. In a congestion
game, a player’s strategy consists of a subset of resources, and her disutility only
depends on the number of players choosing the same resources. An important
subclass of congestion games can be represented by means of networks. Each
player wants to route one unit of flow from her origin to her destination, at
minimal cost. The network arcs are the resources, and a player’s set of pure
strategies consists of the sets of arcs corresponding to paths connecting her
origin-destination pair. Fabrikant, Papadimitriou, and Talwar (2004) studied the
computational complexity of finding pure-strategy Nash equilibria in congestion
games. For symmetric network congestion games, where all players have the
same origin-destination pair, they presented a polynomial-time algorithm for
computing a pure-strategy Nash equilibrium. On the other hand, they proved
that this problem is PLS-complete for symmetric congestion games as well as
for asymmetric network congestion games. A simpler proof of the latter result
was given by Ackermann, Röglin, and Vöcking (2006a), who also showed that
this result still holds if the cost functions are affine-linear.

In (unweighted) network congestion games, each player routes exactly one
unit of flow along a single path. In weighted congestion games, players can have
different amounts of flow. Depending on whether players are allowed to split their
flows or not, a player’s strategy consists of a set of paths with corresponding
integer flow values between her origin-destination pair, or of a single path.

Fotakis, Kontogiannis, and Spirakis (2005) studied weighted network conges-
tion games with unsplittable flows. They constructed simple examples of sym-
metric instances that do not possess a pure-strategy Nash equilibrium. On the
other hand, they proved that for the special case of affine cost functions, a pure-
strategy Nash equilibrium is always guaranteed to exist. Awerbuch, Azar, and
Epstein (2005) derived a tight bound of (

√
5+3)/2 on the pure price of anarchy

for this special case. They also considered the case when the cost functions are
polynomials of fixed degree greater than 1. However, Goemans, Mirrokni, and
Vetta (2005) showed that a pure-strategy Nash equilibrium need not exist for in-
stances with cost functions that are polynomials of degree at most 2. Milchtaich
(1996) had earlier shown that weighted congestion games with player-specific
disutility functions on networks consisting of parallel arcs only do not always
have a pure-strategy Nash equilibrium.
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In this article, we show that the problem of deciding whether a weighted
network congestion game with simple, non-linear cost functions possesses a pure-
strategy Nash equilibrium is strongly NP-hard, regardless of whether we consider
splittable or unsplittable flows. In the unsplittable case, the problem remains NP-
hard even if all players have the same origin and the same destination. The same
is true for weighted congestion games with affine player-specific cost functions
in networks consisting of parallel arcs only.

Leyton-Brown and Tennenholtz (2003) introduced local-effect games as a tool
to model situations in which the use of one resource can affect the cost of other re-
sources. Local-effect games are in general not guaranteed to possess pure-strategy
Nash equilibria. However, Leyton-Brown and Tennenholtz showed that so-called
bidirectional local-effect games with linear local-effect functions belong to the
class of exact potential games, and therefore always have pure-strategy Nash
equilibria. The question of whether there exists a polynomial-time algorithm for
finding a pure-strategy Nash equilibrium for these games was left open.

We prove that computing a pure-strategy Nash equilibrium is PLS-complete.
Because the proof uses a tight PLS-reduction, our result implies the existence
of instances of these games that have exponentially long shortest improvement
paths. It also implicates that the problem of finding a pure-strategy Nash equi-
librium that is reachable from a given strategy state via selfish improvement
steps is PSPACE-hard. In addition, we show that, given an initial strategy pro-
file for a bidirectional local-effect game with linear local-effect functions and a
positive integer k (unarily encoded), it is NP-complete to decide whether there
is a sequence of at most k selfish steps that transforms the initial state into
a pure-strategy Nash equilibrium. We also prove that the problem of deciding
whether a bidirectional local-effect game with general, strictly increasing local-
effect functions has a pure-strategy Nash equilibrium is NP-complete.

For bidirectional local-effect games with linear local-effect functions (for which
a pure-strategy Nash equilibrium is guaranteed to exist), we also study the pure
price of stability w.r.t. the social objective that is given by the sum of the costs
of all players. In the case of linear cost functions, in which the worst-possible
ratio of the social cost of a pure-strategy Nash equilibrium to that of a social
optimum (i.e., the pure price of anarchy) is unbounded, we obtain a bound of 2
on the pure price of stability. Thus, there always exists a pure-strategy Nash
equilibrium whose cost is at most twice that of a socially optimal solution. For
the case of quadratic cost functions and linear local-effect functions we derive a
bound of 3 on the pure price of stability.

Before we present the details of our results on weighted congestion games and
local-effect games in Sections 2 and 3, respectively, let us end this introduction
by briefly discussing additional related work on the computational complexity of
pure-stratgey Nash equilibria. Gottlob, Greco, and Scarcello (2005) considered
restrictions of strategic games intended to capture certain aspects of bounded
rationality. Among other results, they proved that even in the setting where each
player’s payoff function depends on the actions of at most three other players
and where each player is allowed to play at most three actions, the problem
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of determining whether a strategic game has a pure-strategy Nash equilibrium
is NP-complete. This result was strengthened by Fischer, Holzer, and Katzen-
beisser (2006) who showed that this problem remains hard even if each player
has only two actions to choose from and her payoff depends on the actions of at
most two other players. Àlvarez, Gabarró, and Serna (2005) studied how various
representations of a strategic game influence the computational complexity of
deciding the existence of a pure-strategy Nash equilibrium. They showed that
this problem is NP-complete when the number of players is large and the num-
ber of strategies for each player is constant, while the problem is

∑p
2-complete

when the number of players is constant and the size of the sets of strategies
is exponential (with respect to the length of the strategies). Schoenebeck and
Vadhan (2006) analyzed the computational complexity of deciding whether a
pure-strategy Nash equilibrium exists in graph games and circuit games. Brandt,
Fischer, and Holzer (2006) studied the impact of various notions of symmetry in
strategic games on the computational complexity of finding pure-strategy Nash
equilibria. Expanding on a line of research started by Ieong et al. (2005), who
considered singleton congestion games, Ackermann, Röglin, and Vöcking (2006a)
proved that the lengths of all best-response sequences are polynomially bounded
in the number of players and resources in congestion games where the strategy
space of each player consists of the bases of a matroid over the set of resources.
This especially implies that pure-strategy Nash equilibria for congestion games
with the matroid property can be computed in polynomial time, even in the
case of player-specific costs (Ackermann, Röglin, and Vöcking 2006b). In the
latter paper, Ackermann et al. also showed the existence of pure-strategy Nash
equilibria in weighted congestion games with the same matroid property.

Due to space limitations, proofs are only sketched or omitted completely from
this extended abstract. Most details can be found in Dunkel (2005). A journal
version is forthcoming.

2 Weighted Congestion Games

An unweighted congestion game is a tuple 〈N, E, (Si)i∈N , (fe)e∈E〉, where N =
{1, 2, . . . , n} is the set of players, and E is a set of resources. For each player i ∈
N , her set Si of available strategies is a collection of subsets of the resources; that
is, Si ⊆ 2E. A cost function fe : N → R+ is associated with each resource e ∈ E.
Given a strategy profile s = (s1, s2, . . . , sn) ∈ S = S1 × S2 × · · · × Sn, the
cost (disutility) of player i is ci(s) =

∑
e∈si

fe

(
ne(s)

)
, where ne(s) denotes the

number of players using resource e in s. In other words, in a congestion game
each player chooses a subset of resources that are available to her, and the cost
to a player is the sum of the costs of the resources used by her, where the cost
of a resource only depends on the total number of players using this resource.

A network congestion game is a congestion game where the arcs of an under-
lying directed network represent the resources. Each player i ∈ N has an origin-
destination pair (ai, bi), where ai and bi are nodes of the network, and the set Si

of pure strategies available to player i is the set of directed (simple) paths from ai
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to bi. A symmetric network congestion game is also called a single-commodity
network congestion game because all players have the same origin-destination
pair.

In a weighted network congestion game 〈N, E, (wi)i∈N , (Si)i∈N , (fe)e∈E〉, each
player i ∈ N has a positive integer weight wi, which constitutes the amount of
flow that player i wants to ship from ai to bi. In the case of unsplittable flows, the
cost of player i adopting strategy si in a strategy profile s = (s1, s2, . . . , sn) ∈ S
is given by ci(s) =

∑
e∈si

fe

(
θe(s)

)
, where θe(s) =

∑
i:e∈si

wi denotes the total
flow on arc e in s. In integer-splittable network congestion games, a player with
weight greater than one can choose a subset of paths on which to route her flow
simultaneously; that is, player i’s strategy consists of the specification of the
ai-bi-paths used and the (integer) amounts of flow routed on them, which sum
up to wi.

In terms of the input size of a weighted network congestion game, we assume
that the cost functions are explicitly specified; that is, for each 0 ≤ x ≤ ∑

i∈N wi

and each arc e, the value fe(x) is given in binary encoding.
While every unweighted congestion game possesses a pure-strategy Nash equi-

librium (Rosenthal 1973), this is not true for weighted congestion games; see,
e.g., Fig. 1 in Fotakis, Kontogiannis, and Spirakis (2005). We can actually turn
their instance into a gadget to derive the following result.

Theorem 1. The problem of deciding whether a weighted symmetric network
congestion game with unsplittable flows possesses a pure-strategy Nash equilib-
rium is strongly NP-complete.

The proof is by a reduction from 3-Partition, and it is omitted from this
extended abstract. While the NP-hardness of the corresponding decision prob-
lem for weighted network congestion games with player-specific payoff functions
follows immediately, we can actually strengthen this result.

Theorem 2. The problem of deciding whether a weighted network congestion
game with parallel arcs and affine player-specific disutility functions possesses a
pure-strategy Nash equilibrium is strongly NP-complete.

For network congestion games with integer-splittable flows, we obtain the fol-
lowing result.

Theorem 3. The problem of deciding whether a weighted network congestion
game with integer-splittable flows possesses a pure-strategy Nash equilibrium is
strongly NP-hard. Hardness even holds if there is only one player with weight 2,
and all other players have unit weights.

Proof. Consider an instance of Monotone3Sat with set of variables X =
{x1, x2, . . . , xn} and set of clauses C = {c1, c2, . . . , cm}. We construct a game
that has one player px for every variable x ∈ X with weight wx = 1, ori-
gin x and destination x̄. Moreover, each clause c ∈ C gives rise to a player pc

with weight wc = 1, origin c, and destination c̄. There are three more play-
ers p1, p2, and p3 with weights w1 = 1, w2 = 2, w3 = 1 and origin-destination
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pairs (s, t1), (s, t2), (s, t3), respectively. For every variable x ∈ X there are two
disjoint paths P 1

x , P 0
x from x to x̄ in the network. Path P 0

x consists of 2 |{c ∈
C | x ∈ c}| + 1 arcs and P 1

x has 2 |{c ∈ C | x̄ ∈ c}| + 1 arcs with cost functions
as shown in Fig. 1. For each pair (c, c̄), we construct two disjoint paths P 1

c , P 0
c

from c to c̄. Path P 1
c consists of only two arcs. The paths P 0

c will have seven
arcs each and are constructed for c = cj in the order j = 1, 2, . . . , m as follows.
For a positive clause c = cj = (xj1 ∨ xj2 ∨ xj3) with j1 < j2 < j3, path P 0

c

starts with the arc connecting c to the first inner node v1 on path P 1
xj1

that
has only two incident arcs so far. The second arc is the unique arc (v1, v2) of
path P 1

xj1
that has v1 as its start vertex. The third arc connects v2 to the first

inner node v3 on path P 1
xj2

that has only two incident arcs so far. The fourth
arc is the only arc (v3, v4) on P 1

xj2
with start vertex v3. From v4, there is an

arc to the first inner node v5 on P 1
xj3

that has only two incident arcs so far,
followed by (v5, v6) of P 1

xj3
. The last arc of P 0

c connects v6 to c̄ (see Fig. 1). For
a negative clause c = cj = (x̄j1 ∨ x̄j2 ∨ x̄j3) we proceed in the same way, except
that we choose the inner nodes vi from the upper variable paths P 0

xj1
, P 0

xj2
, P 0

xj3
.

The strategy set of player px is {P 1
x , P 0

x}. We will interpret it as setting the
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m
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v3

v4
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Fig. 1. Part of the constructed network corresponding to a positive clause c1 = (x1 ∨
x2 ∨ x3). The notation a/b defines a cost per unit flow of value a for load 1 and b for
load 2. Arcs without specified values have zero cost.

variable x to true (false) if px sends her unit of flow over P 1
x (P 0

x ). Note that
player pc can only choose between the paths P 1

c and P 0
c . This is due to the order

in which the paths P 0
cj

are constructed. Depending on whether player pc sends
her unit of flow over path P 1

c or P 0
c , the clause c will be satisfied or not.

The second part of the network consists of all origin-destination pairs and
paths for players p1, p2, p3 (see Fig. 2). Player p1 can choose between paths U1 =
{(s, t2), (t2, t1)} and L1 = {(s, t1)}. Player p2 is the only player who can split her
flow; that is, she can route her two units either both over path U2 = {(s, t2)},
both over path L2 = {(s, t1), (t1, t2}, or one unit on the upper and the other unit
on the lower path; i.e., S2 = {L2, U2, LU2}. Finally, player p3 has three possible
paths to choose from. The upper path U3 shares an arc with each clause path P 1

c

and has some additional arcs to connect these. The paths M3 = {(s, t2), (t2, t3)}
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Fig. 2. Part of the constructed network that is used by players p1, p2, and p3. A single
number a on an arc defines a constant cost a per unit flow for this arc.

and L3 = {(s, t1), (t1, t2), (t2, t3)} have only arcs with the paths of p1 and p2 in
common. The cost functions are defined in Fig. 2.

Given a satisfying truth assignment, we define a strategy state s of the game by
setting the strategy of player px to be P 1

x for a true variable x, and P 0
x otherwise.

Each player pc plays P 1
c . Furthermore, s1 = L1, s2 = U2, and s3 = M3. It is

easy to show that no player can decrease her cost by unilaterally switching to
another strategy; i.e., the defined strategy configuration is a pure-strategy Nash
equilibrium.

For the other direction, we first observe that any pure-strategy Nash equi-
librium s of the game has the following properties: (a) player p3 does not use
path U3, (b) for the cost of player p3 we have c3(s) ≥ 8, and (c) each player pc

routes her unit flow over path P 1
c . Property (a) follows from the fact that the sub-

game shown in Fig. 3 with players p1 and p2 only does not have a pure-strategy
Nash equilibrium. Property (a) implies (b), and property (c) can be proved by
contradiction assuming (a) and (b). We claim that the truth assignment that

s
0/6/7/13

5/7/9/13

L

U

9,34

0,30

7,11

6,15 7,14

5,12

LL LU UU

4/8/12/13

t1

t2

Fig. 3. Sub-game with two players without pure-strategy Nash equilibrium (Papadim-
itriou 2003)

sets a variable x to true if the corresponding player uses P 1
x , and x to false oth-

erwise, satisfies all clauses. Suppose for a positive clause c = (x1 ∨ x2 ∨ x3) that
all variables are false; i.e., sxi = P 0

xi
for i = 1, 2, 3. By property (c), player pc

uses P 1
c . Because of (a), her current cost is cc(s) = 1

2 . Choosing path P 0
c instead

would decrease the cost to zero, which contradicts the assumption of s being a
Nash equilibrium. A similar argument holds for a negative clause. ��
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3 Local-Effect Games

A local-effect game is a tuple 〈N, A,F〉 where N = {1, 2, . . . , n} is the set of
players, A is a common set of actions (strategies) available to each player, and
F is a set of cost functions. For each pair of actions a, a′ ∈ A, the function Fa′,a :
Z+ → R+ expresses the impact of action a′ on the cost of action a, which depends
only on the number of players that choose action a′. For a, a′ ∈ A with a 
=
a′, Fa′,a is called a local-effect function, and it is assumed that Fa′,a(0) = 0.
Moreover, the local-effect function Fa′,a is either strictly increasing or identical
zero. If Fa′,a is not identical zero, then this is also the case for Fa,a′ . In other
words, if action a has an effect on action a′, then the converse is also true. For a
given strategy state s = (s1, s2, . . . , sn) ∈ An, na denotes the number of players
playing action a in s. The cost to a player i ∈ N for playing action si in strategy
state s is given by ci(s) = Fsi,si(nsi) +

∑
a∈A,a�=si

Fa,si(na). If the local-effect
functions Fa′,a are zero for all a 
= a′, the local-effect game is equivalent to a
symmetric network congestion game with only parallel arcs.

A local-effect game is called a bidirectional local-effect game if for all a, a′ ∈
A, a 
= a′, and for all x ∈ Z+, Fa′,a(x) = Fa,a′(x). Leyton-Brown and Ten-
nenholtz (2003) gave a characterization of local-effect games that have an exact
potential function and which are therefore guaranteed to possess pure-strategy
Nash equilibria. One of these subclasses are bidirectional local-effect games with
linear local-effect functions. However, without linear local-effect functions, de-
ciding the existence is hard.

3.1 Computational Complexity

Theorem 4. The problem of deciding whether a bidirectional local-effect game
has a pure-strategy Nash equilibrium is NP-complete.

The proof will be given in the full version of this paper. The next result implies
that computing a pure-strategy Nash equilibrium for a bidirectional local-effect
game with linear local-effect functions is as least as hard as finding a local opti-
mum for several combinatorial optimization problems with efficiently searchable
neighborhoods.

Theorem 5. The problem of computing a pure-strategy Nash equilibrium for a
bidirectional local-effect game with linear local-effect functions is PLS-complete.

Proof. We reduce from PosNae3Flip (Schäffer and Yannakakis 1991): Given
not-all-equal clauses with at most three literals, (x1, x2, x3) or (x1, x2), where xi

is either a variable or a constant (0 or 1), and a weight for each clause, find a truth
assignment such that the total weight of satisfied clauses cannot be improved by
flipping a single variable.

For simplicity, we assume that we are given an instance of PosNae3Flip with
set C = C2 ∪̇C3 of clauses containing two or three variables but no constants, a
positive integer weight wc for each clause c ∈ C, and set of variables {x1, . . . , xn}.
We construct a bidirectional local-effect game with linear local-effect functions
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as follows: There are n players with common action set A that contains two
actions ai and ai for each variable xi, i = 1, 2, . . . , n. Let M = 2n

∑
c∈C wc + 1.

For each action a ∈ A, Fa,a(x) = 0 if x ≤ 1, and Fa,a(x) = M otherwise. If
Ci = {c ∈ C | xi ∈ c} denotes the subset of clauses containing variable xi, the
local-effect functions are given for i, j ∈ {1, 2, . . . , n}, i 
= j, by

Fai,aj (x) = Fai,aj (x) =
(

2
∑

c∈C2∩Ci∩Cj

wc +
∑

c∈C3∩Ci∩Cj

wc

)

x .

However, the local-effect functions Fai,aj and Fai,aj are zero if there is no clause
containing both xi and xj . Furthermore, Fai,ai(x) = Fai,ai(x) = M x for all i ∈
{1, 2, . . . , n}. All local-effect functions not defined so far are identical zero. For
any solution s = (s1, s2, . . . , sn), si ∈ A, of the game, we define the corresponding
truth assignment to the variables xi of the PosNae3Flip instance by xi = 1 if
|{j | sj = ai}| ≥ 1, and xi = 0 otherwise.

Now we show that for any pure-strategy Nash equilibrium s = (s1, s2, . . . , sn)
of the game, the corresponding truth assignment is indeed a local optimum of the
PosNae3Flip instance. The proof is demonstrated only for the case of flipping
a positive variable xi = 1 to x′

i = 0. First, observe that for all i ∈ {1, 2, . . . , n}
∣
∣{j | sj = ai}

∣
∣ +

∣
∣{j | sj = ai}

∣
∣ = 1 , (1)

since otherwise, because of the choice of M , there is always a player who can
decrease her cost by choosing another action.

Let X and X ′ denote the truth assignments before and after flipping vari-
able xi. Let the set of clauses that contain variable xi and are satisfied by truth
assignment X , X ′ be CX

i , CX′
i , respectively. Further, let C

X\X′

i (CX′\X
i ) be the

set of clauses containing xi that are satisfied by truth assignment X (X ′), but
not by X ′ (X). Then the difference in the total weight of satisfied clauses by X ′

and X can be written as

ΔW =
∑

c∈C2∩C
X′\X
i

wc +
∑

c∈C3∩C
X′\X
i

wc −
∑

c∈C2∩C
X\X′
i

wc −
∑

c∈C3∩C
X\X′
i

wc . (2)

For a clause c = (xi, xj) ∈ C
X′\X
i , it follows because of xi = 1 that xj = 1. Then,

by definition of X and by (1), naj = 1 and naj
= 0. If c = (xi, xj) ∈ C

X\X′

i ,
we have xj = 0, naj = 0, and naj = 1. Similarly, for a three-variable clause

c = (xi, xj , xk) ∈ C
X′\X
i , xi = 1 implies xj = xk = 1, naj = nak

= 1, and

naj
= nak

= 0. If c = (xi, xj , xk) ∈ C
X\X′

i , then xj = xk = 0, naj = nak
= 0,

and naj
= nak

= 1. Thus we can rewrite (2) as

ΔW =
n∑

j=1,j�=i

[(
∑

c∈C2∩C
X′\X
i ∩Cj

wc

)

naj −
(

∑

c∈C2∩C
X\X′
i ∩Cj

wc

)

naj

]

+
1
2

n∑

j=1,j�=i

[(
∑

c∈C3∩C
X′\X
i ∩Cj

wc

)

naj −
(

∑

c∈C3∩C
X\X′
i ∩Cj

wc

)

naj

]

.

(3)
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By the above observations on the numbers naj and naj
we have

n∑

j=1,j�=i

∑

c∈C2∩C
X\X′
i ∩Cj

wcnaj = −
n∑

j=1,j�=i

∑

c∈C2∩C
X′\X
i ∩Cj

wcnaj
= 0 , (4)

n∑

j=1,j�=i

∑

c∈C3∩C
X\X′
i ∩Cj

wcnaj = −
n∑

j=1,j�=i

∑

c∈C3∩C
X′\X
i ∩Cj

wcnaj = 0 . (5)

Now consider clauses c = (xi, xj , xk) ∈ (C3 ∩ Ci) \ (CX\X′

i ∪ C
X′\X
i ). Since

the case of clause c not being satisfied by both X and X ′ cannot happen, we
have c ∈ CX

i ∩ CX′
i . Then, either xj = 1, xk = 0 or xj = 0, xk = 1, and

therefore naj = 1, nak
= 0 or naj = 0, nak

= 1. By (1), we have in both cases
naj + nak

= naj + nak
= 1; i.e., wc(naj + nak

) − wc(naj + nak
) = 0. Thus

n∑

j=1,j�=i

(
∑

c∈C3∩CX
i ∩CX′

i ∩Cj

wc

)

naj −
n∑

j=1,j�=i

( ∑

c∈C3∩CX
i ∩CX′

i ∩Cj

wc

)

naj = 0 .

(6)
Adding the terms in (4), (5), and (6) to (3), we obtain

ΔW =
n∑

j=1,j�=i

[(
∑

c∈C2∩Ci∩Cj

wc

)

naj −
(

∑

c∈C2∩Ci∩Cj

wc

)

naj

]

+
1
2

n∑

j=1,j�=i

[(
∑

c∈C3∩Ci∩Cj

wc

)

naj −
(

∑

c∈C3∩Ci∩Cj

wc

)

naj

]

≤ 0 .

Here, the last inequality follows from the fact that the player i with action si = ai

cannot decrease her cost by switching to action ai. The described construction
is indeed a PLS-reduction. ��
Since the reduction actually is a tight PLS-reduction, we obtain the following
results.

Corollary 6. There are instances of bidirectional local-effect games with linear
local-effect functions that have exponentially long shortest improvement paths.

Corollary 7. For a bidirectional local-effect game with linear local-effect func-
tions, the problem of finding a pure-strategy Nash equilibrium that is reachable
from a given strategy state via selfish improvement steps is PSPACE-complete.

The following result underlines that finding a pure Nash equilibrium for bidirec-
tional local-effect games with linear local-effect functions is indeed hard.

Theorem 8. Given an instance of a bidirectional local-effect games with linear
local-effect functions, a pure-strategy profile s0, and an integer k > 0 (unarily
encoded), it is NP-complete to decide whether there exists a sequence of at most k
selfish steps that transforms s0 to a pure-strategy Nash equilibrium.
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3.2 Pure Price of Stability for Bidirectional Local-Effect Games

We derive bounds on the pure-price of stability for games with linear local-effect
functions where the social objective is the sum of the costs of all players.

Theorem 9. The pure price of stability for bidirectional local-effect games with
only linear cost functions is bounded by 2.

The proof is based on a technique suggested by Anshelevich et al. (2004) using
the potential function introduced by Leyton-Brown and Tennenholtz (2003). By
the same technique, we can derive the following bound for the case of quadratic
cost-functions and linear local-effect functions.

Theorem 10. The pure price of stability for bidirectional local-effect games
with Fa,a(x) = ma x2 +qa x, qa ≥ 0 for all a ∈ A and linear local-effect functions
is bounded by 3.

References
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Strong and Correlated Strong Equilibria in

Monotone Congestion Games
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Abstract. The study of congestion games is central to the interplay
between computer science and game theory. However, most work in this
context does not deal with possible deviations by coalitions of players,
a significant issue one may wish to consider. In order to deal with this
issue we study the existence of strong and correlated strong equilibria
in monotone congestion games. Our study of strong equilibrium deals
with monotone-increasing congestion games, complementing the results
obtained by Holzman and Law-Yone on monotone-decreasing congestion
games. We then present a study of correlated-strong equilibrium for both
decreasing and increasing monotone congestion games.

Keywords: Congestion Games, Strong Equilibrium.

1 Introduction and Overview of Results

A congestion game (Rosenthal, [7]) is defined as follows: A finite set of players1,
N = {1, ..., n}; A finite non-empty set of facilities, M ; For each player i ∈ N
a non-empty set Ai ⊆ 2M , which is the set of actions available to player i (an
action is a subset of the facilities). We denote by A the set of all possible action
profiles (A =

∏

i∈N

Ai). With every facility m ∈ M and integer number 1 ≤ k ≤ n

a real number vm(k) is associated, having the following interpretation: vm(k) is
the utility to each user of m if the total number of users of m is k. Let a ∈ A; the
(|M | dimensional) congestion vector corresponding to a is σ(a) = (σm(a))m∈M

where σm(a) = |{i|m ∈ ai}|. The utility function of player i, ui : A → R is
defined as follows: ui(a) =

∑

m∈ai

vm(σm(a)). It is assumed that all players try to

maximize their utility. Therefore, equilibrium analysis is typically used for the
study of these settings.

Congestion games have become a central topic of study in the interplay be-
tween computer science and game theory (see e.g. [1,9,8,6]). Congestion games
possess some interesting properties. In particular, Rosenthal [7] showed that ev-
ery congestion game possesses a pure strategy Nash equilibrium. In this paper we
would like to explore the possibility of replacing Nash equilibrium with stronger
solution concepts.
1 We will use the terms player and agent interchangeably.
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One particular weakness of Nash equilibrium is its vulnerability to deviations
by coalitions of players. This issue is addressed in the solution concept known as
strong equilibrium (Aumann, [2]): Let us denote the projection of a ∈ A on the
set of players S ⊆ N (resp. on N\S) by aS (resp. by a−S). We say that a profile of
actions a∗ ∈ A is a strong equilibrium (SE) if for no non-empty coalition S ⊆ N
there is a choice of actions ai ∈ Ai, i ∈ S such that ∀i ∈ S ui(aS , a∗

−S) > ui(a∗).
Such profiles are indeed much more stable than simple Nash equilibria, and

therefore their existence is a very desirable property; however, simple examples
show that congestion games in general need not possess a strong equilibrium
(in fact, the well-known Prisoner’s Dilemma may be obtained as a congestion
game).

The above definition applies to the case where the players may use only pure
strategies. A natural extension of Aumann’s definition of strong equilibrium to
settings where mixed strategies are available is to apply the original definition
to the mixed extension of the original game. Formally, we say that a profile
of actions a∗ ∈ ∏

i∈N

Δ(Ai) is a mixed strong equilibrium (MSE) if for no non-

empty coalition S ⊆ N there is a choice of actions ai ∈ Δ(Ai), i ∈ S such that
∀i ∈ S Ui(aS , a∗

−S) > Ui(a∗). Here, by Δ(Ai) we mean the set of all probability
distributions overAi, and Ui denotes the expected utility of player i.

There are two important things to note when considering the definition of
MSE. First, notice that unlike the extension of Nash equilibrium to mixed strate-
gies, this definition yields a stronger solution concept even when applied to pure
strategy profiles; i.e., a pure profile of actions may be a strong equilibrium, but
not a mixed strong equilibrium. A second point to notice is that in the definition
of MSE we assume that the players cannot use correlated mixed strategies, i.e.
choose their actions using a joint probability distribution. However, in many set-
tings this assumption is too restrictive: if we assume that a coalition of players
has the means to choose a coordinated profile of actions, it is natural to assume
that they have means of communication that would also allow them to coor-
dinate their actions using joint coin flips. The above leads us to the following
definition: we say that a∗ ∈ Δ(A) is a correlated strong equilibrium (CSE) if for
no non-empty coalition S ⊆ N there is a choice of actions aS ∈ Δ(

∏

i∈S

Ai), such

that ∀i ∈ S Ui(aS , a∗
−S) > Ui(a∗). This definition is strictly stronger than the

previous one: every CSE is also an MSE, but not vice versa.2

The aim of this article is to explore the conditions for existence of strong and
correlated strong equilibria within two most interesting and central subclasses
of congestion games:

We call a congestion game monotone-increasing (or simply increasing) if ∀m ∈
M, 1 ≤ k < n vm(k) ≤ vm(k + 1). These games model settings where congestion

2 Notice that although we allow a∗ to be a correlated profile, CSE doesn’t extend the
notion of correlated Nash equilibrium [3] to the context of deviations by coalitions:
our solution concept is weaker, since we assume that the deviators cannot see the
”signals” that result from the current realization. However, in the scope of this
article, generalizing Aumann’s definition would yield the same results.
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has a positive effect on the players, e.g. settings in which the cost of using a
facility is shared between its users.

We call a congestion game monotone-decreasing (or simply decreasing) if ∀m ∈
M, 1 ≤ k < n vm(k) ≥ vm(k + 1). These games model settings where congestion
has a negative effect on the players, e.g. routing games, where cost represents
latency.

Ron Holzman and Nissan Law-Yone [5,4] explored the conditions for existence
of strong equilibria in monotone decreasing congestion games. They start by ob-
serving that a strong equilibrium always exists in the case where all strategies
are singletons. Following that, they explore the structural properties of the strat-
egy sets that are necessary and sufficient to guarantee the existence of strong
equilibria. These structural properties may, for example, refer to the underlying
graph structure in route selection games.

In this paper we first explore the conditions for existence of strong equilibria
in monotone increasing congestion games. Then, we extend the study of both the
decreasing and increasing settings to the solution concept of correlated strong
equilibrium. Our contributions can therefore be described by the following table:

Main results
Throughout this paper, when we refer to strong equilibrium, we present the

results of Holzman and Law-Yone [5] for the decreasing setting alongside our
results for the increasing setting. This is done for the sake of viewing the complete
picture and ease of comparing between the two settings.

In section 2 we explore the case of singleton strategies, i.e. resource selection
games where each player should choose a single resource from a set of resources
available to him. In the decreasing setting Holzman and Law-Yone observe that
every Nash equilibrium of the game is, in fact, a strong equilibrium. For the
increasing setting, we present an efficient algorithm for constructing a strong
equilibrium; however, unlike in the decreasing setting, we show that not every
Nash equilibrium of the game is strong.

In section 3 we develop a notation, congestion game forms, that allows us to
speak about the underlying structure of congestion games; using this notation
we will be able to formalize statements such as “a certain structural property is
necessary and sufficient for the existence of SE in all games with that underlying
structure”. We define two substructures, which we call d-bad configuration and
i-bad configuration and prove some simple properties of strategy spaces that
avoid bad configurations. These properties will serve as a technical tool in some
of our proofs.
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Section 4 explores the conditions for existence of strong equilibrium. In the
decreasing setting, [5] shows that a SE always exists if and only if d-bad config-
urations are avoided. In the increasing setting we show that a SE always exists
if and only if i-bad configurations are avoided, in which case the equilibrium can
be efficiently computed. As we will show, our results imply that avoiding i-bad
configurations makes the games essentially isomorphic to the case of singleton
strategies.

Section 5 deals with the concept of correlated strong equilibrium. We show
that a CSE might not be achievable even in simple (two players, two strategies)
examples of the decreasing setting. In the increasing setting, though, we show
that all our results regarding SE still hold with CSE, namely that a CSE always
exists if and only if i-bad configurations are avoided, in which case it can be
efficiently computed. Moreover, we show that in this case every SE of the game
is also a CSE (a claim which doesn’t hold if i-bad configurations are not avoided).

Together, our results provide full characterization for the connection between
the underlying game structure and the existence of SE and CSE for both the
decreasing and the increasing cases.

2 SE: The Case of Singleton Strategies

Here we investigate the case in which only singleton strategies are allowed, i.e.
resource selection games where each player should choose a facility from among
a set of facilities available to him.3

First, recall the result for the decreasing case:

Theorem 1. [5] Let G be a monotone decreasing congestion game in which all
strategies are singletons. Then G possesses a strong equilibrium; moreover, every
Nash equilibrium of G is SE.

We now address the existence of SE in monotone-increasing congestion games:

Theorem 2. Let G be a monotone increasing congestion game in which all
strategies are singletons. Then G possesses a strong equilibrium; moreover, a
SE can be efficiently computed.

Proof (sketch): Consider the following algorithm for computing a strong equi-
librium: at each step, we assign a facility to a non empty subset of the remaining
players, in the following way: for each facility m ∈ M , we compute vm(k), where
k is the maximal number of the remaining players that can choose {m} as their
strategy. We choose m for which such vm(k) is maximal, and assign {m} to all
the players that can choose it. We continue in the same fashion until all players
are assigned a facility.
3 In particular, this classical setting can model simple route selection games. In a

simple route selection game each player has to select a link for reaching from source
to target in a graph consisting of several parallel links. In general, each player may
have a different subset of the links that he may use.
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We claim that the resulting strategy profile is a SE. We prove by induction on
the steps of the algorithm, that no player can belong to a deviating coalition in
which his payoff strictly increases: in the first step of the algorithm, this is obvious
because each assigned player gets the highest possible payoff in the game (due to
monotonicity); at subsequent steps, we use the induction hypothesis and assume
that all players from the previous steps don’t belong to the deviating coalition,
i.e. all of them use the facilities they were assigned; but this means that the
game is effectively reduced to the remaining players and the remaining facilities,
so the same reasoning applies: due to monotonicity, each assigned player gets
the highest possible payoff in the (new) game. Regarding the complexity of the
algorithm, it is trivial to verify that the most straightforward implementation
runs in O(m2n2); it is also a simple exercise to construct an implementation that
runs in O(mn). �	
Unlike in the decreasing setting, not every Nash equilibrium (NE) of the decreas-
ing game is a SE. Consider, for example, an instance with two facilities {m1, m2}
and two players, where the cost of a facility is shared equally between its users.
The cost of m1 is 2, and the cost of m2 is 1. Both facilities are available to both
players. Then, the profile (m1, m1) is a NE, since each player cannot decrease
his cost of 1 by deviating alone; but it is not a SE, since if both players deviate
to m2, their cost decreases to 0.5.

We will now illustrate why our proof of Thm. 2 wouldn’t hold in the general
case (where the strategies don’t have to be singletons). The situation is best
illustrated by an example. Fig.1 presents a graph of an instance of a network

Fig. 1. SE doesn’t exist



Strong and Correlated Strong Equilibria in Monotone Congestion Games 79

design game in the increasing setting: there are two agents, who both need
to construct a path from s to t, using the edges available in the graph. The
construction cost of each edge (the number near the edge) is shared equally
between the agents. Each agent wants to minimize his construction cost; however,
agent 1 cannot use edge a, and agent 2 cannot use edge b.

Our algorithm assigns {c, d} to 1 and {c, d} to 2, with a payoff of 3 each. This
however is not an SE; in fact there is no SE in this game; to see this observe that
playing {c, b} is dominant for agent 1, and given that playing {a} is dominant for
agent 2, which leads to a payoff of (4,3.5), which is smaller than (3,3). Therefore,
a SE does not exist in this instance.

3 Congestion Game Forms, Bad Configurations and Tree
Representations

In this section we extend upon the definitions and notations introduced in [5]
in order to provide some basic tools that will be useful for our characterization
results.

A congestion game form is a tuple F = (M, N, A) where M is the set of
facilities, N = {1, ..., n} is the set of players, and A ⊆ 2M . A congestion game
G = (M, N, {Ai}, {vm(k)}) is said to be derived from F if A =

⋃

i∈N

Ai. Given a

congestion game form F , one can derive from it a whole family of (monotone,
increasing or decreasing) congestion games by assigning (monotone, increasing
or decreasing) utility levels to the facilities and assigning specific strategy sets to
the players. The congestion game form represents the underlying structure of the
strategy spaces; for example, in the network design setting, it is the game graph.
We say that a congestion game form F is strongly consistent if every monotone
congestion game derived from F possesses a SE (we will always specify which
setting, increasing or decreasing, is under discussion). We say that a congestion
game form F is strong-Nash equivalent if in every monotone congestion game
derived from F every NE is a SE. Similarly, we say that a congestion game form
F is correlated strongly consistent if every monotone congestion game derived
from F possesses a CSE; F is correlated-strong equivalent if in every monotone
congestion game derived from F every SE is a CSE.

In this terminology, the results of section 2 state: if F = (M, N, A) is a con-
gestion game form in the decreasing setting in which A contains only singletons,
then F is strong-Nash equivalent; if F = (M, N, A) is a congestion game form
in the increasing setting in which A contains only singletons, then F is strongly
consistent.

We are interested in a property of A which is both necessary and sufficient
for F to be strongly consistent.

Let A ⊆ 2M . A d-bad configuration in A is a tuple (x, y; X, Y, Z) where:

x, y ∈ M
X, Y, Z ∈ A
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and the following relations hold:

x ∈ X y /∈ X
x /∈ Y y ∈ Y
x ∈ Z y ∈ Z

Thus, two facilities x, y give rise to a d-bad configuration if there is a strategy
that uses both x and y, there is a strategy that uses x without y, and there is a
strategy that uses y without x. We call A ⊆ 2M d-good if it does not contain a
d-bad configuration.

An i-bad configuration in A is a tuple (x, y; X, Y, Z) where:

x, y ∈ M
X, Y, Z ∈ A

and the following relations hold:

x ∈ X y /∈ X
x /∈ Y
x ∈ Z y ∈ Z

Thus, two facilities x, y give rise to an i-bad configuration if there is a strategy
that uses both x and y, there is a strategy that uses x without y, and there is
a strategy that avoids x (with, or without using y). In Fig.1, for example, the
edges c, d give rise to a i-bad configuration. We call A ⊆ 2M i-good if it does not
contain an i-bad configuration. In particular, a d-bad configuration is an i-bad
configuration, so A is i-good implies that A is d-good.

By an M -tree, we shall mean the following:

– a tree with a root r
– a labeling of the nodes of the tree (except r) by elements of M ; not all

elements of M must appear, but each can appear at most once
– a designated subset D of the nodes, which contains all terminal nodes (and

possibly other nodes as well).

An example of an M -tree appears in Fig. 2.
Given an M -tree T , we associate with it a set A of strategies on M , as follows:

to each node in D there corresponds a strategy in A consisting of the labels which
appear on the path from r to that node. For instance, if T is the M -tree depicted
in Fig. 2, then A={{a, b}, {a, b, c}, {a, d}, {a, e, f}, {a, e, g}, {h}, {h, i}, {h, j, k}}.
If r ∈ D, it means that ∅ ∈ A. If A is obtained from T in this way, we say that
T is a tree-representation of A.

Lemma 1. [5] Let A be a nonempty set of strategies on M. Then A is d-good if
and only if it has a tree-representation.

Given a congestion game form F = (M, N, A), a tree representation of A gives
us a convenient method of reasoning about equilibria, since in this case any
congestion game derived from F is isomorphic to a tree-game: a game where
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Fig. 2. An M -tree. The labels appear to the left of the nodes; the nodes in D are
blackened.

given an M -tree, players must build a path from r to one of the nodes in D, and
the strategies of each player can be represented by the subset of D that he is
allowed to use.

Given a tree representation of A, a non-leaf node v is called split if v ∈ D or v
has more than one child (intuition: a path from r that reaches v has more than
one way to be extended to a path leading to a node in D). A tree representation
of A is called simple if no path from r to a node in D contains more than one
split node. The general case of a simple tree representation is depicted in Fig. 3.

We can now prove:

Lemma 2. Let A be a nonempty set of strategies on M. Then A is i-good if and
only if it has a simple tree-representation.

Fig. 3. The general case of a simple M -tree. The grayed node v can belong to D and
can be outside of D; The dots represent chains of nodes (could be empty), where no
intermediate node belongs to D.
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Proof: Suppose A has a simple tree representation, and suppose, for contradic-
tion, that A also has an i-bad configuration (x, y; X, Y, Z). Since x, y ∈ Z, both
x and y appear on the path from r to a node in D that corresponds to Z; also,
x must occur above y on this path, since a path that corresponds to X contains
x, but not y. This means that a split node v must exist between x and y on the
path of Z; but since the path corresponding to Y doesn’t include x, this means
another split node v′ must exist above x as well. So, the path of Z contains two
split nodes – contradiction.

Suppose now that A is i-good. Then, it is also d-good, so by Lemma 1 A has
a tree representation. Suppose, for contradiction, that this tree representation
is not simple; i.e. there exists a path (corresponding to some strategy Z in
A) with two split nodes, x and x′. W.l.o.g., suppose x′ is above x. Since x
is split, it has a child, y. Since x′ is split and is above x, there exists a path
(corresponding to some strategy Y ) that doesn’t contain x. Since x is split,
there exists a path (corresponding to some strategy X) that contains x, but not
y. Thus, (x, y; X, Y, Z) is an i-bad configuration – contradiction. �	

4 Structural Characterization of Existence of SE

Recall the following:

Theorem 3. [5] Consider the monotone decreasing setting, and let F be a con-
gestion game form with n ≥ 2. Then, F is strongly consistent if and only if A is
d-good.

We now show:

Theorem 4. Consider the monotone increasing setting, and let F = (M, N, A)
be a congestion game form, with n ≥ 2. Then, F is strongly consistent if and
only if A is i-good; moreover, if A is i-good, a SE can be efficiently computed.

Proof: Let F = (M, N, A) be a congestion game form, and suppose A is i-
good. As we know from Lemma 2, A has a simple tree representation. In the
general case, a simple M-tree has the form depicted in Fig. 3: a single chain
descending from r to a single split node v, from which descend several chains to
nodes in D. Each such chain (including the one from r to v) might be empty.
What it means in terms of strategies in A, is that: ∃C ⊆ M s.t. ∀S1 �= S2 ∈ A :
S1 ∩S2 = C; i.e. except one common subset of facilities that all players have to

choose, their allowed strategies are either equal or disjoint. We claim that this
case is strategically isomorphic to the case of singleton strategies. First, since all
users must choose all the facilities in C, these facilities don’t influence the game
and can be removed. Then, A becomes pair wise disjoint collection of subsets
of facilities; therefore, each such subset S ∈ A can be replaced by a single new
facility mS , with vmS (k) =

∑

m∈S

vm(k) for every k. Now, we have an equivalent

game with only singleton strategies allowed; as we know from Thm. 2, such game
has a strong equilibrium which can be efficiently computed.
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Now suppose F = (M, N, A) is a congestion game form where n ≥ 2 and
A contains an i-bad configuration (x, y; X, Y, Z). We must show that F is not
strongly consistent; i.e. there exists a monotone increasing congestion game G
derived from F which doesn’t possess a SE. To construct such game, we must
specify the exact strategy spaces A1, ..., An so that A =

⋃

i∈N

Ai, and specify

monotone increasing vm(k) for each m ∈ M . We can express A as a union of
four disjoint sets A = AX ∪ AY ∪ AZ ∪ A∅, where:

AX = {S ∈ A|S ∩ {x, y} = {x}},
AY = {S ∈ A|S ∩ {x, y} = {y}},
AZ = {S ∈ A|S ∩ {x, y} = {x, y}},
A∅ = {S ∈ A|S ∩ {x, y} = ∅}

From the i-bad configuration definition, we know that AX , AZ and AY ∪A∅ are
not empty (since X ∈ AX , Z ∈ AZ and Y ∈ AY ∪A∅). We consider two distinct
cases:

1. A∅ = ∅. In this case, G is specified as follows:

A1 = AX ∪ AZ , A2 = AY ∪ AZ , A3 = ... = An = AZ

vm (k) =

⎧
⎨

⎩

−3, m ∈ {x, y} , k < n
−1, m ∈ {x, y} , k = n
0, m /∈ {x, y}

Since both facilities x,y have negative utility no matter how many players choose
them, it is a strictly dominant strategy for players 1,2 to choose a subset that
contains only one facility among x,y. Therefore, in any NE of the game (pure or
mixed) player 1 will choose a strategy in AX and player 2 will choose a strategy
in AY , so both will gain -3. However, if both players deviate to a strategy in AZ ,
both will gain -2. Therefore, any NE of the game is not strong, i.e. SE does not
exist.

2. A∅ �= ∅. In this case, G is specified as follows:

A1 = AX ∪ AZ , A2 = AY ∪ AZ ∪ A∅, A3 = ... = An = A∅

vm (k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, m = x, k < 2
4, m = x, k ≥ 2
-5, m = y, k < 2
-1, m = y, k ≥ 2
0, m �= x, y

Since the facility y always yields a negative utility, it is strictly dominant for
player 1 to choose a strategy in AX . Therefore, in any NE player 2 will choose a
strategy in A∅; so, in any NE (pure or mixed) they will gain 2 and 0 respectively.
But then, if both players deviate to a strategy in AZ , they will gain 3; So in this
case too a SE does not exist, which completes our proof. �	
The above results suggest that in the monotone increasing setting there are (in
a sense) strictly less games which possess SE than in the monotone decreasing
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setting (unless we consider the symmetric case). In the setting where congestion
has a negative effect, the whole class of ”tree games” is guaranteed to have a SE;
in the increasing setting, where congestion has a positive effect on the players,
SE is guaranteed to exist only in a strict subset of the corresponding structures.
As shown in the proof of Thm. 4, this set of structures is strategically isomor-
phic to the singletons setting. This result is (perhaps) a bit surprising, since it
contradicts the intuition – the players ”help” each other instead of ”harming”
each other, but despite of that the setting is less stable, in the sense that there
are less strong equilibria. Nevertheless, as we will later see, the decreasing case
is not more stable than the increasing case when we consider CSE.

5 Structural Characterization of Existence of CSE

When we attempt to replace the notion of SE with the much stronger notion of
CSE, many of the previous results no longer hold. It is easy to see that in the
monotone decreasing setting even the following simple example with two players
in a symmetric singleton strategies game doesn’t possess a CSE. Consider two
facilities {m1, m2} with v1(m1) = −2, v2(m1) = −4, v1(m2) = −5, v2(m2) =
−10. Both facilities are available to both players. Here, playing m1 is a strictly
dominant strategy for both players; however, (m1, m1) is not a CSE, since a
deviation to the correlated profile { 1

2 (m1, m2), 1
2 (m2, m1)} strictly increases the

payoff of both players (each player will suffer a cost of 3.5 instead of a cost of
4). Therefore, a CSE doesn’t exist in this example (which is a variant of the
Prisoner’s Dilemma). In fact, we can generalize this example to the following
statement:

Proposition 1. Consider the monotone decreasing setting, and let F =
(M, N, A) be a congestion game form with n ≥ 2 and |A| ≥ 2. Then, F is
not correlated strongly consistent.

Proof (sketch): The proof is in the same spirit as the proof of Theorem 4. It
is therefore omitted due to lack of space.
In the increasing setting, however, we see that our results still hold; moreover,
we can prove the following strong claim:

Theorem 5. Consider the monotone increasing setting, and let F = (M, N, A)
be a congestion game form. Suppose A is i-good. Then F is correlated-strong
equivalent.

Proof: From our previous observations we know that if A is i-good, we can
assume w.l.o.g. that A has only singleton strategies. So we must show that
any SE of a monotone increasing congestion game where all strategies are sin-
gletons is also a CSE. Suppose, for contradiction, that a∗ ∈ A is a SE of a
monotone increasing congestion game with singleton strategies, and it is not
a CSE. Therefore, there exists a non-empty coalition S ⊆ N and a correlated
mixed strategy aS ∈ Δ(

∏

i∈S

Ai) such that ∀i ∈ S Ui(aS , a∗
−S) > Ui(a∗). Let
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i be a player in S with maximal utility in a∗: ∀j ∈ S ui(a∗) ≥ uj(a∗).
Since Ui(aS , a∗

−S) > Ui(a∗), there must be a realization bS ∈ ∏

j∈S

Aj of aS

such that ui(bS , a∗
−S) > ui(a∗). Since the game contains only singleton strate-

gies, ui(bS , a∗
−S) = vm(σm(bS , a∗

−S)) for a resource m such that bi = {m}.
Let T = {j ∈ S|bj = bi}. T is non-empty, since i ∈ T . From the definition
of T and since T ⊆ S it holds that σm(bS , a∗

−S) ≤ σm(bT , a∗
−T ); therefore,

since the game is monotone-increasing, ui(bT , a∗
−T ) ≥ ui(bS , a∗

−S) > ui(a∗).
Since ∀j ∈ T, uj(bT , a∗

−T ) = ui(bT , a∗
−T ), we have that ∀j ∈ T, uj(bT , a∗

−T ) =
ui(bT , a∗

−T ) ≥ ui(bS , a∗
−S) > ui(a∗) ≥ uj(a∗), which contradicts our assumption

that a∗ is a SE. �	
This brings us to the following result:

Theorem 6. Consider the monotone increasing setting, and let F = (M, N, A)
be a congestion game form, with n ≥ 2. Then, F is correlated strongly consistent
if and only if A is i-good; moreover, if A is i-good, a CSE can be efficiently
computed.

Proof: ⇐ Follows from Thms. 4 and 5.
⇒ The proof is similar to the proof of this direction in Thm. 4, observing that

the counter examples given there are solved via elimination of strictly dominated
strategies, and therefore don’t posses a CSE. �	
Notice that while the set of congestion game forms that are strongly consistent in
the increasing case is a strict subset of the set of congestion game forms that are
strongly consistent in the decreasing case, we get inclusion in the other direction
when considering correlated-strong consistency.

6 Further Work

One interesting question is whether further common restrictions, e.g. linearity, on
the utility functions may have significant effects on the existence of SE and CSE.
A related aspect has to do with restrictions on the utility functions to be only
positive or only negative. Our initial study suggests that using such assumptions
(in addition to monotonicity) one can slightly expand the set of situations where
SE and/or CSE exist, but only in a very esoteric manner. Other aspects of SE
and CSE, such as uniqueness and Pareto-optimality are also under consideration.
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Abstract. An open problem is presented regarding the existence of pure strat-
egy Nash equilibrium (PNE) in network congestion games with a finite number 
of non-identical players, in which the strategy set of each player is the collec-
tion of all paths in a given network that link the player’s origin and destination 
vertices, and congestion increases the costs of edges. A network congestion 
game in which the players differ only in their origin–destination pairs is a po-
tential game, which implies that, regardless of the exact functional form of the 
cost functions, it has a PNE. A PNE does not necessarily exist if (i) the depend-
ence of the cost of each edge on the number of users is player- as well as edge-
specific or (ii) the (possibly, edge-specific) cost is the same for all players but it 
is a function (not of the number but) of the total weight of the players using the 
edge, with each player i having a different weight wi. In a parallel two-terminal 
network, in which the origin and the destination are the only vertices different 
edges have in common, a PNE always exists even if the players differ in either 
their cost functions or weights, but not in both. However, for general two-
terminal networks this is not so. The problem is to characterize the class of all 
two-terminal network topologies for which the existence of a PNE is guaranteed 
even with player-specific costs, and the corresponding class for player-specific 
weights. Some progress in solving this problem is reported. 

Keywords: Congestion games, network topology, heterogeneous users, exis-
tence of equilibrium. 

1   Introduction 

1.1   Background 

The theoretical study of congestion in networks began in the 1950’s, at which time it 
was concerned mostly with transportation networks. The traffic flow was postulated 
to be at a so-called Wardrop equilibrium [30], in which the travel time on all used 
routes is equal, and less than or equal to that of a single vehicle on any unused route. 
An important milestone was the publication of Beckmann et al.’s book [3], which 
(under certain simplifying assumptions) presented the equilibrium as the optimal solu-
tion of a certain convex programming problem. In these authors’ setting, users are 
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nonatomic in the sense that the effect of any single user on the others is negligible. 
Congestion games with a finite number of players, each with a non-negligible effect 
on the others, were first presented by Rosenthal [24]. He constructed what is now 
called an exact potential function on the space of strategy profiles and showed that 
every maximum point of the potential is a pure strategy Nash equilibrium (PNE) in 
the game. This is because, whenever a single player changes strategy, the change in 
that player’s payoff is equal to the change in the potential function. Monderer and 
Shapley [19] showed that Rosenthal’s games are in fact the only finite games for 
which an exact potential exists. Thus, any (finite) potential game can be presented as 
a congestion game, in which there is a finite set of common facilities and the strategy 
space of each player consists of subsets of facilities. The payoff from using each facil-
ity j depends only on the number of players whose chosen subset includes j. A special 
case of this is a network congestion game, in which the facilities correspond to the 
edges of a graph; the strategy space of each player is the collection of all directed 
paths, or routes, connecting two distinguished vertices, the player’s origin and desti-
nation vertices; and the cost, or disutility, of using each edge is determined as a non-
decreasing function by the flow on the edge. In Rosenthal’s setting, players may differ 
only in their origin or destination vertices. If they are (i) differently effected by 
congestion, that is, have different cost functions, or (ii) have different weights, or 
congestion impacts, then the game is generally not a potential game and hence not a 
congestion game in Rosenthal’s sense. For example, with player-specific costs, best-
response cycles can occur if there are at least three players and at least three edges in 
the network [1,15]. Such cycles cannot occur in a potential game. Nevertheless, a 
network congestion game with either player-specific costs or weights, but not both, is 
guaranteed to have a PNE in the important special case of a parallel two-terminal 
network, i.e., one in which all players have the same origin–destination pair (in other 
words, a single-commodity network), which are the only vertices any two edges have 
in common [15]. In the case of player-specific weights, the result holds even if the 
weights are also edge-specific (“unrelated machines” [6]), and more generally, if the 
cost of each edge is an arbitrary nondecreasing function of the set of players using it 
[7]. A PNE does not necessarily exist, even in a parallel network, if the players have 
both player-specific costs and weights or if they are positively affected by congestion 
and the effects are player-specific [12,15,16].   

The topological restriction on the network cannot be dispensed with. Libman and 
Orda [14] (see also [8]) gave an example of a two-terminal network with six edges for 
which there is a network congestion game with two players, one with twice the weight 
of the other, which does not have a PNE. They raised as an interesting subject for fur-
ther research the problem of identifying non-parallel networks in which this is not 
possible, adding that series-parallel networks can be especially interesting. Konishi 
[11] gave an example of a different two-terminal network for which there is a three-
player network congestion game with player-specific costs that does not have a PNE. 
He noted the similarity between the topological conditions for the existence of PNE 
and those for the uniqueness of the equilibrium in network congestion games with a 
continuum of non-identical players. (For such nonatomic games, existence of 
equilibrium is not an issue, since it is guaranteed by very weak assumptions on the 
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cost functions [29].) Specifically, a parallel network is a sufficient condition in both 
cases.  

The equilibrium existence problem that these authors point to is the identification 
of all two-terminal networks with the topological existence property: for any 
nondecreasing cost functions, with player-specific costs or weights (but not both), at 
least one PNE exists. This problem is substantially different from that of identifying 
classes of cost functions for which a PNE exists for all network topologies. An exam-
ple of such a class is linear (more precisely, affine) functions. Regardless of the net-
work topology, if all the players have identical, linear cost functions, a PNE always 
exists even with player-specific weights [8]. A similar distinction between the influ-
ences of the network topology and of the functional form of the cost functions applies 
also to the properties of efficiency and uniqueness, which are described below. 

Efficiency of the equilibrium in a network congestion game has more than one pos-
sible meaning. It may refer to Pareto efficiency, that is, the impossibility of altering 
the players’ route choices in a way that benefits them all, or to some aggregate meas-
ure of performance, such as the total cost or the cost of the worst route. In the latter 
case, the ratio between the chosen measure of performance at the worst Nash equilib-
rium and that at the social optimum is called the coordination ratio [13]. In nonatomic 
network congestion games with identical players, this ratio can be arbitrarily large for 
general cost functions, but it is bounded for certain families of functions, e.g., linear 
ones [28]. The least upper bound, dubbed the price of anarchy [22], is virtually inde-
pendent of the network topology [25]. By contrast, the Pareto efficiency of the equi-
libria in nonatomic congestion games strongly depends on the topology. For a two-
terminal network G, the equilibria are always Pareto efficient if and only if G has 
linearly independent routes, meaning that each route has an edge that is not in any 
other route [18]. In a sense, equilibria that are not Pareto efficient may occur in only 
three known two-terminal “forbidden” networks, which are the minimal ones without 
linearly independent routes. These results hold both with identical players and with 
player-specific cost functions. 

For network congestion games with an arbitrary but finite number of players, who 
have identical cost functions but possibly different weights, the network topology is 
still irrelevant for the cost of anarchy if the players may split their flow among multi-
ple routes [26]. However, if the flow is unsplittable and only pure strategies are al-
lowed [27], the (so-called pure) cost of anarchy for linear cost functions apparently 
does depend on the network topology [2]. It also depends on whether or not the 
weights are player-specific [4]. (In the weighted case, the pure cost of anarchy only 
refers to games in which a PNE exists.) The topological conditions for Pareto effi-
ciency of the equilibrium in the unsplittable, pure-strategy case were found by 
Holzman and Law-yone [10]. These conditions are very similar to those applying to 
nonatomic network congestion games if the players are identical. However, if the 
players have different cost functions, there are virtually no topological conditions that 
guarantee Pareto efficiency: Pareto inefficient (and non-unique) equilibria occur in all 
two-terminal networks with at least two routes. 

The problem of the topological uniqueness of the equilibrium is relevant for nona-
tomic network congestion games in which different players may have different cost 
functions. (With identical players, the equilibrium is always essentially unique. With 
a finite number of non-identical players and unsplittable flow, it is virtually 
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impossible to guarantee uniqueness.) The class of all two-terminal networks for which 
uniqueness is guaranteed is defined by five simple kinds of networks, called the 
nearly parallel networks [17]. The complementary class of all two-terminal networks 
for which player-specific costs can result in multiple equilibria consists of all the net-
works in which one of four known “forbidden” networks is embedded. These results 
can be extended to network congestion games with finitely many players and split-
table flow [23].  

1.2   Results 

This paper presents some partial results pertaining to the equilibrium existence prob-
lem, which is to identify the topological conditions guaranteeing the existence of at 
least one PNE in every network congestion game with player-specific costs or 
weights. The class of two-terminal network topologies for which the existence of a 
PNE is guaranteed is extended in a nontrivial manner beyond parallel networks. On 
the other hand, several new topologies are presented for which a PNE does not always 
exist. These results narrow the search for the problem’s solution. 

2   The Model 

A two-terminal network (network, for short) G is defined in this work as a directed 
graph together with a distinguished pair of distinct vertices, the origin o and destina-
tion d, such that each vertex and each edge belong to at least one (directed) path r = 

e1 e2  em linking o and d. Such a path is called a route. By definition, the terminal 

vertex of each edge ej in a path except for the last one coincides with the initial vertex 
of the next edge, and all the vertices (and necessarily all the edges) are distinct [5]. 
This implies that loops are not allowed in G.1 However, multiple edges are allowed.   

For a given network G, a (finite) network congestion game is an n-player game, 
with n ≥ 1, in which the strategy set of each player is the route set R of G, which con-
sists of all the routes in the network. A strategy profile specifies a particular choice of 
route for each player. Players may differ from each other in their weight or cost func-
tions.2 The weight wi > 0 of a player i is a measure of i’s congestion impact. For an 
edge e in G, the total weight of the players whose routes include e, denoted by fe, is 
the flow (or load) on e. The flow affects the cost of traversing e, which, for each 
player i, is given by a nonnegative, nondecreasing cost function ci

e : [0, ∞) → [0, ∞). 
Thus, if the flow on e is fe, its cost for i is ci

e(fe). If the players have identical cost func-
tions, this notation may be simplified to ce(fe). If they all have the same weight, it may 
be assumed without loss of generality that the weight is 1. The cost of each route in 
the network for a player is the sum of the costs of its edges. The player’s payoff in the 
game is the negative of this cost.  
                                                           
1 Not allowing loops and other edges that do not belong to any route essentially involves no 

loss of generality, since such edges either cannot possibly be used or can only make a user’s 
way unnecessarily long. 

2 Multi-commodity networks, in which players may also have different origin–destination pairs, 
and hence different strategy sets, are not considered in this paper. 
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Fig. 1. Two-terminal networks with the topological existence property. In each network, the 
possible routes are the paths linking the origin o and destination d. Gray curves indicate op-
tional edges. The directions of all the edges are unambiguous, except of those joining u and v in 
(e), which are assumed to be directed from u to v. 

The following game theoretic terminology, which is not all standard, is used in this 
paper. A strategy profile is a pure-strategy Nash equilibrium (PNE) if none of the 
players can increase his payoff by unilaterally shifting to some other strategy. In other 
words, in a PNE each player plays a best response to the other players’ strategies. The 
superposition of a finite number m of games with the same set of players is the game 
in which each of these players has to choose a strategy in each of the m games and his 
payoff is the sum of those in the m games [20]. Thus, the games are played simulta-
neously, but independently. Clearly, a strategy profile in the superposition of m games 
is a PNE if and only if it induces a PNE in each of these games. Two games Γ and Γ′ 
with the same set of players and the same strategy set are similar if each player’s pay-
off function in Γ is obtained from that in Γ′ by adding to (or subtracting from) the lat-
ter a payoff function that depends only on the strategies of the other players. Similar-
ity implies that the gain or loss for a player from unilaterally shifting from one 
strategy to another is the same in both games. Hence, it also implies that the games 
are best-response equivalent, i.e., a player’s strategy is a best response to the others’ 
strategies in one game if and only if this is so in the other game. Therefore, similar 
games have identical sets of PNEs. 
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3   Existence of PNE 

If the players in a network congestion game differ in both their weights and cost func-
tions, a PNE does not necessarily exist even in the case of a parallel network (Fig. 
1(a)), which consists of one or more edges connected in parallel [15]. Therefore, for 
the notion of topological existence to be non-trivial, it is necessary to restrict attention 
to games in which players differ in only one of these respects. Doing so leads to the 
following positive result.   

 
Theorem 1 [15]. If G is a parallel network, then every network congestion game with 
player-specific costs or weights (but not both) has at least one PNE.  

 
For later reference, we note that this result can be slightly extended. Suppose that for 
each edge e there is pair of cost functions ce and de (not necessarily different from 
zero) such that, for all players i and x ≥ wi, 

ci
e(x) = ce(x) + de(x − wi) . (1) 

Because of the second term in (1), if the players have different weights, they differ 
also in their cost functions. That term represents the effect of the other players using 
edge e on i; unlike the first term, it does not involve self-effect. Theorem 1 remains 
true if games with cost functions as in (1) are allowed. Such games will be referred to 
as network congestion games with player-specific weights in the wide sense. The ex-
istence of a PNE in this case can be proved by using the following algorithm (called 
greedy best response [9]). Players enter the game one after the other, ordered accord-
ing to their weights from the highest to the lowest. Each player i chooses a route that 
is a best response to the route choices of the preceding players. It is not difficult to see 
that i’s route remains a best response also after each of the remaining players i′ enters 
the game, because wi′ ≤ wi and the cost functions are nondecreasing. Therefore, the 
players’ route choices constitute a PNE.  

This constructive proof is specific to parallel networks; it cannot be extended in a 
straightforward manner to other network topologies. The same is true for all the other 
known proofs of Theorem 1, both for the case of player-specific costs and for player-
specific weights [6,14,15]. In this respect, these proofs differ from that for the 
existence of PNE in network congestion games with identical players, for which the 
topology is irrelevant. Implicitly or explicitly, the latter proof uses the fact that every 
network congestion game Γ with identical players is similar (see the definition of 
similarity in Section 2) to some game Γ′ in which the players have identical payoff 
functions, i.e., their payoffs are always the same [19,21,24]. This argument does not 
extend to network congestion games with player-specific costs. Even for parallel net-
works, such games are generally not similar, or even best-response equivalent, to 
games with identical payoffs. Indeed, best-response cycles may occur [15].  

Nevertheless, Theorem 1 can be extended to other network topologies. An imme-
diate extension is to allow the connection of several parallel networks in series. In this 
case, by Theorem 1, the “restriction” of every network congestion game with player-
specific costs or weights to any of the constituent parallel networks has a PNE. As the 
following lemma shows, this implies that the game itself has a PNE, since it is the su-
perposition of these “restricted” games (see Section 2).  
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Lemma 1. If a network G can be obtained by connecting a finite number m of net-
works in series, then every network congestion game Γ is the superposition of m net-
work congestion games, each of which is obtained by considering the edges in only 
one constituent network. If each of these games has a PNE, then so does Γ. 

Proof. This follows immediately from the fact that each route in G is the concatena-
tion of m paths, each of which is a route in one constituent network, and conversely, 
every such concatenation constitutes a route in G, whose cost for each player is the 
sum of the costs of its m parts.            ■  

Less obviously, Theorem 1 can be extended to networks that are not even series-
parallel, such as the Wheatstone network (Fig. 1(e)). This extension is based on the fol-
lowing result. 

Lemma 2. For each of the networks G in Fig. 1 there is a parallel network G ̃ such 
that, for every network congestion game Γ for G with player-specific costs or 
player-specific weights in the wide sense, there is a network congestion game Γ̃ for G ̃ 
with the same property that is similar to Γ. 

Proof. Suppose, first, that G is as in Fig. 1(e). Let G̃ be the parallel network obtained 
from G by contracting e1 and e4, that is, replacing each of these edges and its two end 
vertices with a single vertex [5]. There is a natural one-to-one correspondence be-
tween the route sets of G and G ̃, which allows network congestion games for these 
two networks to be viewed as having the same strategy set. For a given network con-
gestion game Γ for G, with weights (wi) and cost functions (ci

e), let Γ̃ be the game for 
G ̃ with the same weights (wi) and the cost functions (c ̃ie) defined as follows: If e = e2, 
then c ̃ie(x) = ci 

e2
(x) − ci 

e1
(wi + w − x) + c for all i, where w = ∑i wi is the players’ total 

weight and c is an arbitrary large constant (which serves to make the cost nonnega-
tive). If e = e3, then c ̃ie(x) = ci 

e3
(x) − ci 

e4
(wi + w − x) + c. Finally, if e ≠ e2, e3, then c ̃ie(x) 

= ci
e(x) + c. If Γ is a game with player-specific costs but identical weights, then Γ̃ 

clearly has the same property. The same is true if Γ is a game with player-specific 
weights in the wide sense, since (1) implies that c ̃ i e2

(x), for example, can be written as 
c  

e2
(x) − d  

e1
(w − x) + c ⁄ 2 + d  

e2
(x − wi) − c  

e1
(w − (x − wi)) + c ⁄ 2.  

It remains to show that the games Γ and Γ̃ are similar. That is, for every choice of 
routes by the players and every player i, the difference between the cost in Γ and that 
in Γ̃ depends only on the routes of the other players. If i’s route does not include e2 or 
e3, this difference is  

c i 
e1

(wi + w′−i) + c i 
e4

(wi + w″−i) − c , (2) 

where w′−i is the total weight of the players other than i whose route does not include 
e2, and w″−i is the corresponding weight for e3. The same expression gives the differ-
ence between the costs in Γ and Γ̃ also if i’s route includes either e2 or e3. Thus, the 
difference is independent of i’s route, as had to be shown. 

The above argument can easily be adapted for each of the other networks in Fig. 1. 
For networks G as in Fig. 1(b) and (c), G ̃ is obtained by contracting only one edge. 
The network in (d) can be reduced to either of the previous two by moving one of the 
edges incident with the terminal vertices so that it becomes adjacent with the other 
such edge. Clearly, this rearrangement of edges does not affect the cost of any route. 
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Alternatively, the validity of the conclusion of the lemma for each of the other net-
works in Fig. 1 can easily be deduced from that for (e).         ■ 

The assertion of Lemma 2 cannot be strengthened to identity, or isomorphism, be-
tween Γ and Γ̃. If the costs in Γ are player-specific, it may be qualitatively different 
from all network congestion games with the same property for parallel networks. For 
example, whereas games of the latter kind are always sequentially solvable [16], there 
are examples showing that Γ does not necessarily have this property. However, for 
present purposes, similarity is more than sufficient, since it implies that every PNE in 
Γ̃ is also a PNE in Γ. By Theorem 1 and the remark following it, at least one such 
PNE exists. Together with Lemma 1, this gives the following.  

Theorem 2. If G is one of the networks in Fig. 1 or can be obtained by connecting 
several of these networks in series, then every network congestion game with player-
specific costs or weights (but not both) has a PNE. 

It is not known whether Theorem 2 can be extended to include also networks similar 
to those in Fig. 1(e) but with the reverse directions for some of the edges joining u 
and v. These networks and those in Fig. 1 are the directed versions of the nearly par-
allel networks [17], which are essentially the only two-terminal networks for which 
uniqueness of the equilibrium in nonatomic network congestion games with player-
specific costs is guaranteed. This adds weight to Konishi’s [11] observation that the 
conditions for topological existence (for a finite number of players with different cost 
functions) are similar to the conditions for topological uniqueness (for a continuum of 
such players). However, Theorem 2 leaves open the question of whether for every 
two-terminal network that is not nearly parallel there is a network congestion game 
with player-specific costs that does not have a PNE. Some results concerning this 
question are presented below.  

4   Non-existence of PNE 

The network in Fig. 2(d), which is obtained by connecting the Wheatstone network 
(Fig. 1(e)) in parallel with a single edge, differs substantially from the former in that 
network congestion games with player-specific costs or weights do not necessarily 
have a PNE. An example showing this for the case of different weights was given by 
Libman and Orda [14], and another one by Fotakis et al. [8]. These two examples are 
very similar to each other and to the next one; the different examples differ only in the 
cost functions. 

Example 1. Two players simultaneously choose routes in the network in Fig. 2(d). The 
players have different weights, w1 = 1 and w2 = 2, but the same cost functions, given by 
ce1

(x) = 4x + 16, ce2
(x) = 45, ce3

(x) = 48, ce4
(x) = x3 − 9x2 + 28x, ce5

(x) = 16x and ce6
(x) = 

65x. For player 2, using e5 is never optimal, since its cost is at least 32 whereas the dif-
ference between the costs of e2 and e1 is always less than that. Using e6 is also never op-
timal for 2, since its cost is at least 130, which is always greater than ce1 + ce3. This 
leaves player 2 with only two routes to choose from, and implies that 1 is the only 
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player who may use e5. The cost of that edge for player 1 is therefore 16, which is al-
ways less than the difference between the costs of e2 and e1, as well as the difference 
between the costs of e3 and e4. Therefore, using e2 or e3 is never optimal for player 1, 
which leaves him with only two possible routes, r1 = e6 and r2 = e1 e5 e4. If player 1’s 
route is r1 or r2, the best-response route for 2 is r3 = e1 e3 or r4 = e2 e4, respectively. 
However, if player 2 uses r3 or r4, the best response for 1 is r2 or r1, respectively. There-
fore, a PNE does not exist. Note that this would be true also if the constant functions ce2

 
and ce3

 were replaced by sufficiently slowly increasing linear ones. However, if (the 
nonlinear) ce4

 were replaced by a linear function, a PNE would exist [8]. 

Essentially the same example shows that, in the network in Fig. 2(d), existence of a 
PNE is not guaranteed also with player-specific costs. This network is simpler than 
(i.e., it is a subnetwork of) the one used in Konishi’s [11] example.  

Example 2. This example is similar to the previous one, expect that the players differ 
not in their weights, which are given by w1 = w2 = 1, but in their cost functions, which 
are derived from those in Example 1 in the following manner: For each edge e, c1

e(1) = 
ce(1), c2

e(1) = ce(2), and c1
e(2) = c2

e(2) = ce(3). Clearly, the two-player game thus de-
fined is identical to that in Example 1, and hence it does not have a PNE. 
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Fig. 2. Networks without the topological existence property. For each network, there is a net-
work congestion game with player-specific cost functions or weights that does not have a pure-
strategy Nash equilibrium. The edge joining u and v in (d) is directed from u to v. 
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Network congestion games without a PNE exist also for certain series-parallel net-
works. It is not known, however, whether these networks are the same for the cases of 
player-specific costs and player-specific weights. For the networks in Fig. 2(b) and 
(c), a PNE does not necessarily exist if the players have different cost functions. The 
next example concerns the former. 

Example 3. Three players, all with weight 1, simultaneously choose routes in the 
network in Fig. 2(b). The cost of each edge for each player is given in Table 1. Effec-
tively, each player has only one possible short route s (of length 1) and one long route 
l (of length 2). Player 1’s l shares an edge (e4) with 2’s l, and his s coincides with 3’s 
s. For player 1, the cost of s is less or greater than that of l if player 3 takes his l or s, 
respectively. Similarly, for player 2, s is preferable to l or the other way around if 
player 1 takes his l or s, respectively; and for 3, s is preferable to l or the other way 
around if player 2 takes his l or s, respectively. Clearly, this implies that a strategy 
profile in which everyone’s route is optimal does not exist. 

The network in the next example is not only series-parallel but is even (“extension-
parallel” [10], or) a network with linearly independent routes [18].  

Table 1. Cost functions for Example 3. For each player, the cost of each edge as a function of 
the flow on it is shown. Blank cells indicate prohibitively high costs. 

 e1 e2 e3 e4 e5 e6 
Player 1  3x  3x  5x 
Player 2 x   3x 6x  
Player 3 x  x   x ⁄ 3 + 2 

Example 4. Three players, with weights w1 = 1, w2 = 2 and w3 = 4, choose routes in 
the network in Fig. 2(a). The players’ identical cost functions are given in Table 2. 
For player 3, there are effectively only two possible routes, e2 e4 e6 and e7. If the 
player chooses the former, then (regardless of what 1 does) player 2’s best response is 
e5, to which 1’s best response is e1 e4 e6. It is then better for player 3 to switch from 
e2 e4 e6 (whose cost is 14) to e7. However, if he chooses e7, then (regardless of what 1 
does) player 2’s best response is e3 e6, to which 1’s best response is e5. It is then better 
for player 3 to switch from e7 to e2 e4 e6 (whose cost is 12½). This proves that a PNE 
does not exist. 

Table 2. Cost functions for Example 4. For each value of the flow on an edge, its cost (for all 
players) is shown. Blank cells indicate prohibitively high costs. 

Flow e1 e2 e3 e4 e5 e6 e7 
1 1 6 5 ⅛ 1 1 13 
2  6 5½ ¼ 10 2 13 
3  6 6 ⅜ 11 3 13 
4  6  ½  4 13 
5    3  5  
6      6  
7      7  
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These examples establish the possible non-existence of PNE also in many other 
networks, namely, those in which one or more of the four networks in Fig. 2 is em-
bedded. For example, adding edges to any of the four networks would not make any 
difference, since extra edges can be effectively eliminated by assigning a very high 
cost to them. “Embedding” is used here in a somewhat generic sense. There are at 
least two different meanings for this term that may be relevant in the present context 
[17,18]. Very roughly, they correspond to the notions of a minor and topological mi-
nor of a graph [5].    

Many two-terminal networks other than those mentioned above exist. Solving the 
equilibrium existence problem entails placing each of them either in the class of net-
works for which the existence of a PNE is guaranteed or in the class of those for which 
a network congestion game without a PNE exists. Whether this partition is the same for 
games with player-specific cost functions and for player-specific weights is not known.  
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Abstract. We study both the time constant for first-passage percolation, and
the Vickery-Clarke-Groves (VCG) payment for the shortest path, on a width-2
strip with random edge costs. These statistics attempt to describe two seemingly
unrelated phenomena, arising in physics and economics respectively: the first-
passage percolation time predicts how long it takes for a fluid to spread through
a random medium, while the VCG payment for the shortest path is the cost of
maximizing social welfare among selfish agents. However, our analyses of the
two are quite similar, and require solving (slightly different) recursive distribu-
tional equations. Using Harris chains, we can characterize distributions, not just
expectations.

1 Introduction

The general topic of this paper is the random structure produced when a fixed graph
is assigned edge costs independently at random. We will focus on a particular fixed
graph, the n-long width-2 strip (defined below), and study some aspects of a minimum-
cost path. In particular, we will consider the time constant for first-passage percolation,
and the Vickery-Clarke-Groves (VCG) payment. These statistics attempt to describe
two seemingly unrelated phenomena arising in physics and economics, respectively.
However, our analyses of the two are quite similar.

First-passage percolation: First-passage percolation is a model of the time it takes
a fluid to spread through a random medium [BH57, HW65, Kes87]. Mathematically, it
is described by the shortest edge-weighted paths from an origin to every other point in
a graph. For our purposes, the “time constant” is the limiting ratio of this length to the
unweighted shortest path length n, as n tends to infinity. Previous research has derived
upper and lower bounds for the time constant of first-passage percolation on the grid
[SW78, Jan81, AP02] and on the random graph Gn,p [HHM01]. For the easier case
of the width-2 strip, we provide a method of exactly calculating the time constant for
any discrete edge-length distribution; the method can also be used to provide arbitrarily
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good bounds for any well-behaved continuous distribution, as we illustrate for the uni-
form distribution on [0, 1]. Our method is similar in spirit to to the Objective Method (or
Local Weak Convergence) [Ald01, GNSar, AS04], and is also based on constructing a
certain recursive distributional equation. The model in the present paper is considerably
simpler due to the structure of the width-2 strip, which makes the underlying recursive
distributional equation simply a Markov chain.

Because it is a Markov chain, the analysis for discrete edge-length distributions is
straightforward: for a Bernoulli edge-length distribution Be(p) the incremental cost
γ(n) to go from stage n − 1 to n has a unique stationary distribution with a simple,
closed-form expression, and its expectation is the time constant in question. When
the edge-length distribution is continuous (uniform, for example), replacing it with a
rounded-down (respectively, rounded-up) discretized equivalent gives a lower (resp.,
upper) bound on the time constant, but no information about the incremental cost γ(n).
A subtly different approach gives stochastic lower and upper bound bounds on the in-
cremental cost, and, separately, an analysis via Harris chains shows it to have a unique
stationary distribution. The Harris-chain approach is well known in probability theory,
but is worthy of greater attention in tangential fields.

VCG Payment: The Vickery-Clarke-Groves (VCG) mechanism applies to a setting
in economics where each edge of a graph is controlled by a different selfish agent, and
each agent has some private value describing the cost of using her edge [Vic61, Cla71,
Gro73]. Anyone interested in buying a path in such a network is faced with the problem
that an agent will lie about her edge cost if such a lie will yield her a higher payment.
The VCG mechanism provides a solution to this problem in which payments to agents
are structured to yield a cheapest path (maximizing social welfare) and so that each
agent finds it in her best interest to reveal her true edge cost. The VCG mechanism was
first applied to the shortest-path problem explicitly in [NR99].

Unfortunately, the VCG mechanism may pay more than the cost of the shortest path,
and the overpayment can be large. The VCG overpayment can be large even in the case
where the second-best path has cost close to that of the best path. See [AT02] for a
detailed study of the worst-case behavior of the overpayment. Additional investigations
of shortest paths in this setting appear in [MPS03, ESS04, CR04, Elk05].

It is possible that the worst-case bounds on the cost of the VCG mechanism are
overly pessimistic. To investigate this, we compare the cost of the VCG mechanism with
the shortest-path cost in the average-case setting (for the width-2 strip with random edge
costs). Other average-case studies for completely different graphs appear in [MPS03,
CR04, KN05], and real-world measurements appear in [FPSS02].

Generalizations: We rely on no special properties of the uniform distribution; the
methods we use to analyze this edge-length distribution could equally well be applied
to any well-behaved, bounded distribution.

For the 2 × n strip, we show that it is not important whether edges parallel to the
long direction must be traversed left-to-right or whether they can be traversed in ei-
ther direction. Even for the 3 × n strip, however, the distinction is important. For any
fixed m ≥ 3, our methods apply to the m × n strip in the left-to-right model (with
more complicated recursive equations replacing (1) and (2)), but not to the undirected
model.
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2 The Model

Departing slightly from the usual convention, let [n] denote {0, 1, . . . , n − 1}. Define
the infinite width-2 strip to be the infinite graph whose vertex set is [2] × Z, and whose
edges join vertices at Hamming distance 1, i.e., edges join (j, i) and (j′, i′) where (|j−
j′|, |i − i′|) is either (0, 1) or (1, 0). The half-infinite strip is the subgraph induced by
[2] × Z

0,+, and an n-long strip is the (finite) subgraph induced by [2] × [n + 1].
Let each edge e have a non-negative real weight w(e). For each vertex v let P(v) be

the “shortest” (minimum-weight) path from (0, 0) to v, and let �(v) be the weight of this
path. We consider two models: the “general-path” (GP) model where PGP(v) may be
any path from (0, 0) to v, and the “left-right” (LR) model where PLR(v) is restricted to
be a left-to-right path. That is, PLR(v) is the shortest path to v which does not traverse
any edge from right to left, or, still more precisely, which contains no successive pair of
vertices (j, i), (j, i − 1).

Suppose that the edge weights are drawn independently from some given distribu-
tion, such as Be(p) (the Bernoulli distribution with parameter p, where X = 1 with
probability p and X = 0 w.p. 1 − p) or U [0, 1] (the uniform distribution over the in-
terval [0, 1]). Our first-passage percolation problem is simply to determine, for each of
three types of strips, for a given distribution, and under the general-path or left-right
model, the existence and value of the limiting time constant or “rate” of percolation,

lim
n→∞

E�(0, n)
n

.

We will also show that �(0, n)/n almost surely converges to this value, and that the
same statements hold for �(1, n), with the same rate. Note that for all our purposes it
suffices to determine path lengths up to an additive constant.

For convenience, for a ≤ b, define trunc(x; a, b) := max{min{x, b}, a}. Thus,
trunc(x; a, b) is the “truncation” of x to the interval [a, b]: x if a ≤ x ≤ b; a if x < a;
and b if x > b.

3 Shortest Paths

The following lemma shows that, up to an additive error of at most 2, distances to (0, n)
or to (1, n), under any of the three graph models and the two distance models, are all
equivalent.

Lemma 1. Let G denote the infinite width-2 strip with an arbitrary, fixed set of edge
weights in the range [0, 1] (resp., random i.i.d. non-negative weights with expectation
≤ 1). Let H be the half-infinite restriction of G, and, for any n ≥ 0, let K be the n-
long restriction. Then, for any j ∈ [2] and i ∈ [n + 1], the distances (resp., expected
distances) �LR(j, i) and �GP(j, i), measured in the three graphs G, H , and K , span a
range of at most 2.

Proof. We will argue only the case of fixed edge weights; the random case proceeds
identically. The cheapest GP path in G from (0, 0) to whichever of (0, i) and (1, i) is
cheaper is at most as expensive as any of the paths under consideration, because this
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Xi

Yi

Zi

Δ(i − 1) Δ(i)

0

Fig. 1. Moving from Δi−1 to Δi

path is the least constrained; denote this path PG
GP(i). Fixing j = 0 (the j = 1 case

is treated identically), the most constrained problem version is to find the cheapest LR
path in K from (0, 0) to (0, i); the resulting path PK

LR(0, i) is the most expensive one
under consideration. By the nature of the width-2 strip, the restriction of PG

GP(i) to K ,
unioned with the edges {(0, 0), (1, 0)} and {(1, i), (0, i)}, is or includes a LR path in
K from (0, 0) to (0, i). Thus �G

GP(i) ≤ �K
LR(0, i) ≤ �G

GP(i)+2, and all the other lengths
must also lie in this range. �

Because of Lemma 1, we will henceforth consider only LR paths, on the half-infinite
strip H , to points (0, n) and (1, n). For convenience, we will write �H

LR(1, i) simply as
�(1, i) and �H

LR(0, i) as �(0, i) or just �(i). Define

Δ(i) = �(1, i) − �(0, i).

For any i > 0, let Xi be the cost of the edge {(0, i − 1), (0, i)} and Yi the cost of
{(1, i − 1), (1, i)}, and for any i ≥ 0 let Zi be the cost of {(0, i), (1, i)}. (See Figure 1
for visual reference.)

Observe that for i > 0,

γ(i) := �(i) − �(i − 1) = min{Xi, Δ(i − 1) + Yi + Zi} (1)

Δ(i) = trunc(Δ(i − 1) + Yi − Xi; −Zi, Zi). (2)

Since Δ(i − 1) depends only on values of X , Y , and Z with indices i − 1 and smaller,
the four random variables Δ(i − 1), Xi, Yi, and Zi are mutually independent.

4 The Bernoulli Case

Suppose that all the random variables Xi, Yi, and Zi are i.i.d. with distribution Be(p),
i.e., each is 1 with probability p and 0 w.p. 1 − p.

A “stationary distribution” for equation (2) is a distribution for Δ(i − 1) giving rise
to Δ(i) with the same distribution (though typically not independent).

Lemma 2. When the edge weights are i.i.d. with distribution Be(p), 0 ≤ p < 1, Δ(i)
is a Markov chain on {−1, 0, 1} with a unique stationary distribution, namely Δ = 1
w.p. q; Δ = −1 w.p. q; and Δ = 0 w.p. 1 − 2q, where q = p2

1+3p2 .
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Proof. All values in question are integral, and each Δ(i) ≤ 1, since (1, i + 1) may at
worst be reached via (0, i + 1) at an additional cost of at most 1. Symmetrically, each
Δ(i) ≥ −1. By the independence of Δ(i − 1) from (Xi, Yi, Zi), Δ(i) is a Markov
chain on the state space {−1, 0, 1}.

By definition, the stationary distribution of the Markov chain is independent of its
initial state, so we may assume that Δ(0) = 0. In this case, the initial state is symmetric,
and so is the transition rule, so the distribution of Δ(i) is symmetric for every i.

From (2), if Zi = 0 (which occurs w.p. 1 − p) then Δ(i) = 0. Otherwise we have
the following table of possibilities, their probabilities (including the probability p that
Zi = 1, and defining q := P[Δ(i−1) = 1] = P[Δ(i−1) = −1]), and the corresponding
values of Δ(i):

Δ(i − 1) Xi Yi P Δ(i)
1 0 0 pq · (1 − p)2 1
1 0 1 pq · p(1 − p) 1
1 1 0 pq · p(1 − p) 0
1 1 1 pq · p2 1
0 0 0 p(1 − 2q) · (1 − p)2 0
0 0 1 p(1 − 2q) · p(1 − p) 1
0 1 0 p(1 − 2q) · p(1 − p) −1
0 1 1 p(1 − 2q) · p2 0

−1 0 0 pq · (1 − p)2 −1
−1 0 1 pq · p(1 − p) 0
−1 1 0 pq · p(1 − p) −1
−1 1 1 pq · p2 −1

If Δ(i − 1) = 1 and Δ(i) = 1 are both to have probability q, we must have

q = pq · (1 − p)2 + pq · p(1 − p) + pq · p2 + p(1 − 2q) · p(1 − p),

whose solution is q = p2/(1+3p2). Thus if Δ is to be stationary, we must have, for this
value of q, Δ = 1 w.p. q; by symmetry Δ = −1 w.p. q; and thus Δ = 0 w.p. 1 − 2q.

The Markov chain’s transition matrix, which corresponds to the table above (plus
the 12 omitted cases when Zi = 0), is easily seen to be ergodic and aperiodic as long
as 0 < p < 1, and thus has a unique stationary distribution. When p = 0, Δi = 0,
deterministically, for all i ≥ 0, which still happens to fit the same form. (When p = 1,
Δi = 1 deterministically: the sole exception.) �

Lemma 3. When the edge weights are i.i.d. random variables with distribution Be(p),
0 < p < 1, γ(i) = �(i) − �(i − 1) is a Markov chain on {−1, 0, 1} with a unique
stationary distribution: it is −1 w.p. p2(1−p)2/(3p2+1); 1 w.p. 2p2(1+p2)/(3p2+1);
and 0 with the remaining probability, giving E(γ(i)) = p2(1 + p)2/(3p2 + 1).

Proof. That γ(i) is a Markov chain, and is ergodic and aperiodic, follows as in the proof
of the preceding lemma. Since γ(i) depends on four independent random values all of
whose distributions are known, calculating it is straightforward. Instead of presenting
a table as above we divide it into a few cases. It is −1 iff Δ(i) = −1, Yi = 0, and
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Zi = 0 (the value of Xi is irrelevant), which occurs w.p. q(1 − p)2. It is 1 iff Xi = 1
and Δ(i) + Yi +Zi ≥ 1, the latter of which is satisfied if Δ(i) = −1 and Yi = Zi = 1,
if Δ(i) = 0 and (Yi, Zi) is anything but (0, 0), or if Δ(i) = 1, giving total probability
p

[
qp2 + (1 − 2q)(1 − (1 − p)2) + q

]
. The rest of the calculation is routine. �

Theorem 4. When the edge weights are i.i.d. Be(p) random variables, for any p with
0 < p < 1, we have limn→∞

E�(n)
n = limn→∞ Eγ(n) = p2(1 + p)2/(3p2 + 1), and

almost surely, limn→∞
�(n)

n exists and has the same value.

Proof. We have established that γ(i) is an ergodic Markov chain with the unique sta-
tionary distribution described in Lemma 3. The ergodicity implies that almost surely

lim
n→∞

�(n)
n

= lim
n→∞

∑

1≤i≤n

�(i) − �(i − 1)
n

= lim
n→∞

∑

1≤i≤n

γ(i)
n

= lim
n→∞ E(γ(n))

= p2(1 + p)2/(3p2 + 1).

Since the values γ(n) are bounded almost surely (in fact surely, by unity, in absolute
value), the almost sure convergence implies the convergence in expectation. �

5 Uniform Case: Expectation, Distribution, and Stationarity

What if Xi, Yi, and Zi have uniform distribution, U [0, 1]? As in the previous sections,
γ(i) and Δ(i) are again Markov chains, but now with continuous state space. To avoid
working with a continuous state space we will discretize it. First, for any (large) inte-
ger k, define Uk (resp., Uk) to be the uniform distribution on the set {0, 1/k, . . . , (k −
1)/k} (resp., {1/k, . . . , (k − 1)/k, 1}). Note that rounding a random variable X ∼
U [0, 1] down and up to multiples of 1/k gives variables X ∼ Uk and X ∼ Uk.

It is a simple observation that rounding all values X , Y and Z down or up gives (re-
spectively) lower and upper bounds on any length �(i). This allows bounds E�k(i) ≤
E�(i) ≤ E�k(i) to be computed much as in the Bernoulli case, via a finite Markov
chain. By analogy with Theorem 4 and its proof (see full paper for details of the ap-
proach summarized in this paragraph), the first-passage percolation time constant can
then be bounded by limn→∞ E[�k(n)/n] ≤ E[γ(n)] ≤ limn→∞ E[�k(n)/n]. How-
ever, it is not true, for example, that γ(i) ≥ �k(i)− �k(i− 1), and this natural approach
thus characterizes γ’s expectation but fails to say anything about its distribution. The
distribution of γ may be of interest in itself, and that of Δ (which is essentially equiv-
alent under (1)) is essential for computing quantities such as the expected VCG over-
payment in the uniform model (paralleling its computation in the Bernoulli model in
Section 6).

A different way of obtaining a finite Markov chain does provide us with random
variables Δ(n) ≤ Δ(n) ≤ Δ(n), where Δ(n) and Δ(n) are given by finite Markov
chains, allowing us to characterizes the distribution of Δ(n) and thereby giving access
to any quantity of interest. Conceptually this method is quite different from the “make
everything shorter / longer)” approach of the previous paragraph, but it is no harder: we
simply derive what we want from the recurrence (2).
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Letting W = Y − X , from (2),

Δ′ = trunc(Δ + (Y − X); −Z, Z)
= trunc(Δ + W ; −Z, Z)

≥ trunc(Δ + W ; −Z, Z),

where Z , Z , etc. are any lower and upper bounds on their respective quantities. Specif-
ically, taking Z , Z , and W to be the rounded-down and rounded-up discretizations of
the respective variables, for any Δ ≤ Δ, and for convenience defining ε = 1/k, we
have

Δ′ ≥ trunc(Δ + W ; −Z − ε, Z)
= W + trunc(Δ; −Z − W − ε, Z − W ).

Thus,

Δ′ := W + trunc(Δ; −Z − W − ε, Z − W ) (3)

ensures Δ′ ≥ Δ′, and is thus a recursive formula for lower bounds. Similarly,

Δ
′
:= W + ε + trunc(Δ; −Z − W − ε, Z − W ) (4)

defines a recursion for upper bounds. As initial conditions we set Δ(0) = −1 and
Δ(1) = 1 (deterministically), ensuring Δ(0) ≤ Δ(0) ≤ Δ(0), whereupon following
equation (3) to define Δ(n) = Δ′ from Δ(n − 1) = Δ and likewise for equation (4)
ensures that for all n, Δ(n) ≤ Δ(n) ≤ Δ(n). From (1), trivially,

γ(i) ≥ min{Xi, Δ(i − 1) + Y + Zi} (5)

γ(i) ≤ min{Xi, Δ(i − 1) + Y + Zi} (6)

Theorem 6 will show that γ(n) itself has a unique stationary distribution. Mean-
while, for any fixed k, the Markov chains for Δ(n) and Δ(n) are both well-behaved
finite Markov chains, with stationary distributions we will call Δ and Δ. Substituting Δ
and Δ into (5) and (6) defines corresponding random variables γ and γ, which are then
stochastic lower and upper bounds on γ(n). Distribution functions for γ and γ are plot-
ted in Figure 2. By construction, the two curves never cross; the bounds are sufficiently
good that they are largely visually indistinguishable. Of course, Eγ ≤ Eγ ≤ Eγ, and
with k = 150 we obtain 0.4215 < Eγ < 0.4292. Computational aspects are discussed
in the full paper.

This method allows us to get arbitrarily good estimates of the distribution of Δ(n),
for n large (and thus, by Theorem 6, of the stationary distribution of Δ). It suffices to
show that, for k large, the stationary random variables Δ and Δ are arbitrarily near to
one another: d(Δ, Δ) = O(1/k), where we define the distance between continuous
random variables X and Y as the area between their CDFs (cumulative density func-
tions). (For any coupling of two variables X and Y , E[|X − Y |] ≥ d(X, Y ), with an
optimal coupling giving equality.) Recall that ε = 1/k.
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Fig. 2. Distribution functions for the stationary distributions of γ and γ given by k = 150. For
any n > 10, the true incremental-length distribution γ(n) lies between the two (incidentally
proving that 0.4215 < Eγ < 0.4292).

Theorem 5. The stationary random variables Δ and Δ for equations (3) and (4) satisfy
d(Δ, Δ) = O(ε).

The proof is given in the full paper.
Arbitrarily good bounds on the stationary distribution of γ(n), for n large, follow as

a corollary. From (1), a random variable γ
i

:= min{Xi, Δ(i − 1)} provides a lower

bound γ
i
� γi. Similarly, an upper bound is given by γi := min{Xi, Δ(i − 1)} ≤

min{Xi + ε, Δ(i − 1)}. In the coupling, the random variables’ values always satisfy
0 ≤ γi − γ

i
≤ ε + (Δ(i − 1) − Δ(i − 1)). Taking expectations over the stationary

distributions we know to exist (these are finite-state Markov chains, with Δ, Δ, γ, and
γ all discrete random variables) gives d(γ, γ) = E(γ − γ) ≤ ε + E(Δ − Δ) = O(ε).

Finally, we show that Δ has a unique well-defined stationary distribution; from (1)
it is then immediate that γ does as well.

Theorem 6. The continuous Markov chain Δ(i) defined by (2) has a unique stationary
distribution.

Proof. Per the remarks after Definition 7, any recurrent Harris chain possesses a unique
stationary distribution, and Lemma 8 shows that Δ(i) is a recurrent Harris chain. �

Definition 7. A discrete time Markov chain Φ(t) with state space Ω is defined to be
a recurrent Harris chain if there exist two sets A, B ⊂ Ω satisfying the following
properties:

1. Φ(t) ∈ A infinitely often w.p. 1.
2. There exists a non-zero measure ν with support contained in B such that for every

x ∈ A and C ⊂ B, P(Φ(t + 1) ∈ C | Φ(t) = x) ≥ ν(C).
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(See [Dur96] Section 5.6 pages 325-326 for a Harris chain, and page 329 for recurrent
Harris.) It is known (see Durrett [Dur96]) that the recurrent Harris chain possesses a
unique stationary distribution. Our next goal is to show that our chain Δ(i) is indeed
recurrent Harris.

Lemma 8. Δ(i) is a recurrent Harris chain, with A = [−0.1, 1], B = [0, 0.4], and ν
the uniform probability distribution on B multiplied by 0.2.

Proof. To show that the chain is a recurrent Harris chain, we observe that when Δ(i) ∈
A, that is Δ(i) ≥ −0.1, if in addition Wi+1 ≥ 0.5 and Zi+1 ≤ 0.4, then Δ(i + 1) =
trunc(Δ(i) + Wi+1; −Zi+1, Zi+1) = Zi+1. Let Vi+1 = 1{Zi+1 ≤ 0.4}. Note that,
conditioned on Vi+1 = 1, Zi+1 is distributed uniformly on [0, 0.4]. Let p = P(Wi+1 ≥
0.5, Vi+1 = 1) = 0.2. Then for every C ⊂ B and x ∈ A we have

P(Δ(i + 1) ∈ C | Δ(i) = x)
≥ P(Wi+1 ≥ 0.5, Vi+1 = 1) · P(Zi+1 ∈ C | Wi+1 ≥ 0.5, Vi+1 = 1)
= pP(Zi+1 ∈ C | Vi+1 = 1) = pμ(C) = ν(C),

where μ is the uniform measure on B and we define ν by ν(C) = pμ(C). Therefore,
Δ(i) satisfies condition (2) of Definition 7. We now prove condition (1), that w.p. 1 the
set A is visited infinitely often. This is a simple corollary of the fact that if Zi ≤ 0.1
then Δ(i) = trunc(Δ(i − 1) + Wi; −Zi, Zi) ≥ −0.1, that is Δ(i) ∈ A. Clearly this
happens infinitely often w.p. 1. �

6 An Auction Model

Suppose that in the half-infinite width-2 strip, each edge is provided by an independent
agent who incurs a cost for supplying it (or for allowing us to drive over it, transmit
data over it, or whatever). In this setup, agents have an incentive to lie: their true cost is
not the cost they will sensibly tell us. A popular way to deal with potentially dishonest
agents is to assume that each agent will act independently to maximize her own utility,
and to design a mechanism where this behavior will result in every agent acting truth-
fully. The VCG mechanism finds an outcome that maximizes social welfare in a truthful
fashion. For buying an (s, t)-path, the VCG mechanism is the following: An “auction-
eer” finds a cheapest path, and, for each edge on that path, pays the corresponding agent
the difference between the cost of a cheapest path avoiding the edge and the cost of a
cheapest path if the edge cost were 0. (The mechanism is truthful because by inflating
her cost, an agent does not affect the amount she gets paid, until the point when she
inflates the price so much that her edge is no longer in a shortest path and she gets paid
nothing.)

Unfortunately, the VCG mechanism may result in the auctioneer paying much more
than the cost of the shortest path. The simplest example comes from a source and sink
connected by two parallel edges, one with cost 1 and the other with cost c > 1. The
shortest path is the edge with cost 1, and the payment made to it is c − 0 = c; the ratio
between this VCG cost and the simple shortest-path cost of 1 is unbounded if c is much
larger than 1. In fact, even in the case where the second-best path has cost close to that
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Xi

Yi

Zi

Ui

ViΔ Δ′

0 0

Fig. 3. The VCG cost at step i, working in from the left and the right, and assuming both sides
are in stationarity

of the best one, the VCG overpayment can be large; see [AT02] for a detailed study of
the worst-case behavior of this overpayment. An example from [AT02] consists of two
disjoint (s, t)-paths, with costs C and C(1 + ε), and with the cheaper path containing k
edges; the total payment is C(1 + kε).

It is natural to wonder how the cost of the VCG mechanism compares with the
shortest-path cost in the average-case setting. We will study the cost on the width-2
strip with random edge weights. (Average-case studies on other distributions of net-
works appear in [MPS03, CR04, KN05].)

Theorem 9. When the edge weights are i.i.d. Be(p) random variables, with 0 < p < 1,
the VCG path cost satisfies

lim
n→∞

1
n

E(�VCG(n)) =
p (2 + 5 p + 4 p2 + 8 p3 + 11 p4 − 3 p6 + p8)

(1 + 3 p2)2
. (7)

Proof. With reference to Figure 1, we compute the contribution of the ith triple of
edges (Xi, Yi, Zi) to the expected VCG cost. Let ω(n) be any function tending to infin-
ity much slower than n itself, i.e., with 1 � ω(n) � n. Note that any edge’s contribu-
tion to the VCG cost is at most 3: we can circumvent any horizontal edge with a “loop”
of 3 edges around it, each edge costing at most 1, and we can bypass any vertical edge
at worst by going one more step to the right and traversing the next vertical edge, for a
cost of at most 2. Thus the contribution of the first and last ω(n) edges to the limit is at
most 6ω(n)/n, which tends to 0.

Now, for any i, a shortest path between (0, 0) and (0, n) may be found by taking
the shortest paths from (0, 0) to both (0, i) and (1, i), and also the shortest paths from
(0, n) to both (0, i + 2) and (1, i + 2), and finding the cheapest total way of joining
one of the first paths to one of the second. The first two paths depend only on variables
with indices less than i, and without loss of generality (up to an additive constant) we
may consider their two costs to be 0 and Δ. Likewise, the second two paths depend
only on variables with indices i + 2 or more, and their costs may be given as 0 and Δ′.
For ω(n) < i < n − ω(n), Δ and Δ′ are independent random variables drawn from
a distribution asymptotically equal to the stationary distribution. Thus, with reference
to Figure 3, we consider the payments we must make for the edges Xi, Yi, and Zi,
when Δ and Δ′ are i.i.d. random variables drawn from the stationary distribution, and
Xi, Yi, Zi, Ui, and Vi are i.i.d. Be(p) random variables. Since, over all i, such groups
(Xi, Yi, Zi) cover each edge exactly once (except for the single edge Z0), the total of
the expected payments for one such group is precisely the limiting expectation called
for in (7).
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Fig. 4. VCG and usual shortest-path rates

This is a straightforward calculation. Dropping the subscripts for convenience, let
A = X + U be the cost of the path using X, U ; B = X + Z + V + Δ′ that of the path
using X, Z, V ; C = Δ + Y + V + Δ′ that using Y, V ; and D = Δ + Y + Z + U that
using Y, Z, U . If we break ties in favor of lower letters (A in favor of B in favor of C
in favor of D), the payment to X is

C(X) = 1{min(A, B) ≤ min(C, D)} · [min(C, D) − (min(A, B) − X)],

that is, it is 0 unless the edge X is used, and then it is the cost of the cheapest path
avoiding X less the cost of the cheapest path if X were 0, which in this case is the
cheapest path using X , minus X . Similarly, the payment to Y is

C(Y ) = 1{min(C, D) < min(A, B)} · [min(A, B) − (min(C, D) − Y )].

The payment to Z follows similarly, with slightly more complicated tie-breaking:

C(Z) = 1{(B < A) ∨ (B ≤ min(C, D))
∨ (D < min(A, B, C))} · [min(A, C) − (min(B, D) − Z)].

Where the stationary probabilities for Δ and Δ′ are written as PΔ(·), and the Bernoulli
probabilities as Be(1) = p and Be(0) = 1 − p, the expected total payments for X , Y ,
and Z is

∑

X,Y,Z,
U,V,Δ,Δ′

Be(X) Be(Y ) Be(Z) Be(U) Be(V )PΔ(Δ)PΔ(Δ′) · [C(X)+C(Y )+C(Z)],

the sum taken over the 2532 possible values of the variables. This is a small finite sum
of an explicit expression, and is calculated (by Mathematica) to be the value shown in
expression (7). �

A plot of the VCG cost rate limn→∞ E�VCG(n)/n, along with the corresponding
shortest-path cost rate, is given in Figure 4.
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Abstract. Könemann, Leonardi, and Schäfer [14] gave a 2-budget-bal-
anced and groupstrategyproof mechanism for Steiner forest cost-sharing
problems. We prove that this mechanism also achieves an O(log2 k)-
approximation of the social cost, where k is the number of players. As
a consequence, the KLS mechanism has the smallest-possible worst-case
efficiency loss, up to constant factors, among all O(1)-budget-balanced
Moulin mechanisms for such cost functions. We also extend our results
to a more general network design problem.

1 Introduction

We study the design and analysis of cost-sharing mechanisms for fundamental
network design problems. A cost-sharing mechanism is a protocol that collects
bids for a service or good from potential users (players), chooses a subset of
players to receive the service and a feasible way of servicing them, and determines
prices to charge the chosen players. The mechanism incurs a subset-dependent
cost C(S) defined by a known cost function C. In this paper, we are interested
in problems where players seek connectivity between a group of vertices, and
where the cost C(S) corresponds to the cost of providing such connectivity to
the players in the set S.

A cost-sharing mechanism can be viewed as an auction in which any number
of players can “win”, but in which the cost incurred by the auctioneer varies
with the set of winners. The canonical problem of auctioning off a single good
can be viewed as the special case in which the cost C(S) is 0 if |S| ≤ 1 and is
+∞ otherwise.

With more general cost functions, designing a mechanism requires choosing
between several desirable but incompatible properties. As is standard, we in-
sist on incentive-compatibility, meaning that players are motivated to bid their
true private value vi for receiving the service. We also require budget-balance,
meaning that the mechanism recovers the incurred cost with the prices charged
to the chosen players. Finally, we are interested in the social objective function
of efficiency. Efficiency states that a set S should be chosen that trades off the
cost C(S) incurred and the valuations of the players in S in an optimal way.
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Unfortunately, these three properties cannot be simultaneously achieved, even
in very simple settings [8,21].

This impossibility result motivated two distinct approaches to designing cost-
sharing mechanisms. The first approach, taken by VCG mechanisms (see
e.g. [17,19]), ignores budget-balance. These mechanisms are optimally efficient
and incentive compatible. They are typically not approximately budget-balanced
for any reasonable approximation factor (see e.g. [5]).

The second approach, adopted in this paper, is to insist on incentive-compat-
ibility and budget-balance, while regarding efficiency as a secondary objective.
Moulin [18] introduced a class of mechanisms of this type. Researchers have
developed approximately budget-balanced Moulin mechanisms for a number
of different combinatorial optimization problems, including fixed-tree multicast
[2,5,6]; submodular cost-sharing [18,19]; Steiner tree [11,12,13]; Steiner forest
[14,15]; facility location [16,20]; and rent-or-buy network design [9,20]. The ap-
proach of Moulin [18] is the only known general technique for designing budget-
balanced mechanisms with non-trivial costs.

Since Moulin mechanisms prioritize budget-balance over efficiency, nearly all
previous papers that design Moulin mechanisms do not address the efficiency
of the proposed mechanisms. Nevertheless, very recent work [23] shows that it
is possible to discuss and compare the efficiency of Moulin mechanisms. Specifi-
cally, Roughgarden and Sundararajan [23] measured efficiency via the social cost,
where the social cost of a set S is defined as the sum of the incurred service cost
and the excluded valuations: C(S) +

∑
i/∈S vi. This objective function is similar

to the “prize-collecting” objectives that are commonly studied in approximation
algorithms (see e.g. [7]). We call a mechanism α-approximate if it always outputs
a solution with social cost at most an α factor times that of an optimal solution.

Roughgarden and Sundararajan [23] developed a framework to quantify the
extent to which a Moulin mechanism minimizes the social cost. They applied
this framework in [22,23] to well-known mechanisms for submodular [19], facility
location [20], Steiner tree [11], and single-sink rent-or-buy [9] cost functions. In
particular, all of these mechanisms are both O(polylog(k))-approximate, where
k is the number of players, and are optimal (up to constant factors) among all
Moulin mechanisms for the corresponding sets of cost functions.

A consequence of the main result in [23] is that only β-budget-balanced Moulin
mechanisms can be β-approximate. The problem of designing Moulin mecha-
nisms with good (say, polylogarithmic) budget-balance is itself highly non-trivial,
and is provably impossible for several natural classes of cost functions [10]. Prior
work [22,23] resolved the approximate efficiency of all known Moulin mechanisms
with good budget-balance save one: the elegant 2-budget-balanced Moulin mech-
anism for Steiner forest cost-sharing problems due to Könemann, Leonardi, and
Schäfer [14]. We call this the KLS mechanism.

There are two reasons that analyzing the approximate efficiency of the KLS
mechanism is technically challenging. First, Steiner forest cost functions, de-
fined formally in Section 2, seem more complex than those treated in previ-
ous works [22,23]. Indeed, the problem of designing an O(1)-budget balanced
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Moulin mechanism for such functions was a well-known open question for sev-
eral years prior to the invention of the KLS mechanism. Second, the KLS mech-
anism itself possesses properties that make the analytic framework in [23] dif-
ficult to apply. In fact, prior to the present work, no non-trivial bound on the
approximate efficiency of the KLS mechanism was known even when the in-
put is restricted to Steiner tree cost functions. On the other hand, the Steiner
tree cost-sharing mechanism due to Jain and Vazirani [11] is known to be
O(log2 k)-approximate [23]. The analysis of the Jain-Vazirani mechanism does
not obviously carry over to the KLS mechanism (specialized to Steiner tree cost
functions) since the latter mechanism, intuitively, charges players higher prices
and therefore more aggressively discards them from the set S of winners. See
Section 3.1 for a more technical discussion of this point.

In this paper, we overcome these difficulties and prove a tight upper bound
on the approximate efficiency of the KLS mechanism. Specifically, in Section 3
we prove that the mechanism is O(log2 k)-approximate, where k is the num-
ber of players. Previous work [22] shows that, even for the special case of
Steiner tree cost functions, every O(1)-budget-balanced Moulin mechanism is
Ω(log2 k)-approximate. Thus the KLS mechanism has the smallest-possible
worst-case efficiency loss, up to constant factors, among all such mechanisms
for Steiner forest cost functions. We also extend our results to a more general
network design problem (Section 4).

2 Preliminaries

Cost-Sharing Mechanisms. We consider cost functions C that assign a cost C(S)
to every subset S of a universe U of players and are defined implicitly via in-
stances of network design problems. We also assume that every player i ∈ U has
a private, nonnegative valuation vi for service. A generalized Steiner tree (GST)
cost function is defined by a graph G = (V, E), where each edge e ∈ E possesses
a nonnegative cost ce, and by a set U of players, where each player i ∈ U is
identified with a subset Ai ⊆ V of vertices called terminals. For a subset S ⊆ U
of players, the cost C(S) is defined as the minimum cost of a subgraph of G
that, for each i ∈ S, connects all of the vertices in Ai. A Steiner forest (SF) cost
function is a special case of a GST function in which every group Ai contains
only two terminals, a source si and a sink ti.

A cost-sharing mechanism collects a nonnegative bid bi from each player i ∈
U , selects a set S ⊆ U of players, and charges every player i a price pi. The
mechanisms we consider also produce a feasible solution to the network design
problem induced by the served set S, which has cost C′(S) that in general is
larger than the optimal cost C(S). (Of course, evaluating C(S) exactly is NP-
hard.) We only allow mechanisms that are “individually rational” in the sense
that pi = 0 for players i /∈ S and pi ≤ bi for players i ∈ S. We also require that all
prices are nonnegative (“no positive transfers”). As is standard, we assume that
players have quasilinear utilities, meaning that each player i aims to maximize
ui(S, pi) = vixi − pi, where xi = 1 if i ∈ S and xi = 0 if i /∈ S.
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Our incentive-compatibility constraint is the well-known strategyproofness
condition, which intuitively requires that a player cannot gain from misreporting
its bid. Formally, a mechanism is strategyproof (SP) if for every player i, every bid
vector b with bi = vi, and every bid vector b′ with bj = b′j for all j �= i, ui(S, pi) ≥
ui(S′, p′i), where (S, p) and (S′, p′) denote the outputs of the mechanism for the
bid vectors b and b′, respectively.

For a parameter β ≥ 1, a mechanism is β-budget balanced if C(S)/β ≤∑
i∈S pi ≤ C(S) for every outcome (S, p) of the mechanism. For a mechanism

that outputs a feasible solution with cost C′(S) ≥ C(S), we require the stronger
condition that C′(S)/β ≤ ∑

i∈S pi ≤ C(S). In particular, this requirement im-
plies that the feasible solution produced by the mechanism has cost at most a β
factor times that of optimal.

As discussed in the Introduction, we measure efficiency using the objective of
social cost minimization. A cost-sharing mechanism is α-approximate if, assum-
ing truthful bids, it always produces a solution with social cost at most an α
factor times that of an optimal solution. Here, the social cost incurred by the
mechanism is defined as the service cost C′(S) of the feasible solution it produces
for the network design instance corresponding to S, plus the sum

∑
i/∈S vi of the

excluded valuations. Such a mechanism has two sources of inefficiency: first, it
might choose a suboptimal set S of players to serve; second, it might produce a
suboptimal solution to the network design instance induced by S.

Moulin Mechanisms and Cross-Monotonic Cost-Sharing Methods. Next we re-
view Moulin mechanisms, a class of cost-sharing mechanisms that, for many cost
functions, are SP, approximately budget-balanced, and approximately efficient.
Such mechanisms are based on cost sharing methods, defined next.

A cost-sharing method χ is a function that assigns a non-negative cost share
χ(i, S) for every subset S ⊆ U of players and every player i ∈ S. A cost-
sharing method is β-budget balanced for a cost function C and a parameter β ≥ 1
if it always recovers β fraction of the cost: C(S)/β ≤ ∑

i∈S χ(i, S) ≤ C(S).
We consider cost-sharing methods that, given a set S, produce both the cost
shares χ(i, S) for all i ∈ S and also a feasible solution for the network design
problem induced by S. As above, we use the stronger condition C′(S)/β ≤∑

i∈S χ(i, S) ≤ C(S) for such methods, where C′(S) is the cost of the produced
feasible solution. A cost-sharing method is cross-monotonic if adding players to
a set S only decreases the cost shares of players: for all S ⊆ X ⊆ U and i ∈ S,
χ(i, S) ≥ χ(i, X).

A cost-sharing method χ for C defines the following Moulin mechanism Mχ

for C. First, collect a bid bi for each player i. Initialize the set S to all of U and
invoke the cost-sharing method χ to define a feasible solution to the network
design problem induced by S and a price pi = χ(i, S) for each player i. If pi ≤ bi

for all i ∈ S, then halt, output the set S, the corresponding network design
solution, and charge prices p. If pi > bi for some player i ∈ S, then remove an
arbitrary such player from the set S and iterate. A Moulin mechanism based
on a cross-monotonic cost-sharing method thus simulates an iterative ascending
auction, with the method χ suggesting prices for the remaining players at each
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iteration. Note that if χ produces a feasible solution in polynomial time, then
so does Mχ. Also, Mχ clearly inherits the budget-balance factor of χ. Finally,
Moulin [18] proved the following.

Theorem 1 ([18]). If χ is a cross-monotonic cost-sharing method, then the
corresponding Moulin mechanism Mχ is strategyproof.

Theorem 1 reduces the problem of designing an SP3, β-budget-balanced mech-
anism to that of designing a cross-monotonic, β-budget-balanced cost-sharing
method.

Summability and Approximate Efficiency. Roughgarden and Sundararajan [23]
showed that the approximate efficiency of a Moulin mechanism is completely
controlled by its budget-balance and one additional parameter of its underlying
cost-sharing method. We define this parameter next.

Definition 1 ([23]). Let C and χ be a cost function and a cost-sharing method,
respectively, defined on a common universe U of players. The method χ is α-
summable for C if

|S|∑

�=1

χ(i�, S�) ≤ α · C(S)

for every ordering σ of U and every set S ⊆ U , where S� and i� denote the set of
the first � players of S and the �th player of S (with respect to σ), respectively.

We next summarize the main result in [23].

Theorem 2 ([23]). Let U be a universe of players and C a nondecreasing cost
function on U with C(∅) = 0. Let M be a Moulin mechanism for C with un-
derlying cost-sharing method χ. Let α ≥ 0 and β ≥ 1 be the smallest numbers
such that χ is α-summable and β-budget-balanced. Then the mechanism M is
(α + β)-approximate and no better than max{α, β}-approximate.

In particular, an O(1)-budget-balanced Moulin mechanism is Θ(α)-approximate
if and only if the underlying cost-sharing method is Θ(α)-summable.

The KLS Cost-Sharing Method. Könemann, Leonardi and Schäfer [14] devised
cross-monotonic, 2-budget-balanced cost-sharing methods for all Steiner forest
cost functions. The cost-sharing method is based on a variant of the primal-dual
method. By Theorem 1, this yields 2-budget-balanced and GSP mechanisms for
all such functions. Due to space constraints, we refer the reader to [14] for a
description of the KLS cost-sharing method; its details are important primarily
for Sections 3.3 and 4.

3 Moulin mechanisms satisfy a stronger notion of incentive compatibility called group-
strategyproofness (GSP), which is a form of collusion resistance. Almost all known
GSP cost-sharing mechanisms are Moulin mechanisms (see [10,18,19]).
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3 The Efficiency of the KLS Mechanism

We now analyze the efficiency of the KLS mechanism. Our main result is the
following.

Theorem 3. For every Steiner forest cost function with k players, the KLS
cost-sharing method is O(log2 k)-summable.

Since the KLS cost-sharing method is 2-budget-balanced, Theorems 2 and 3 im-
mediately give a guarantee on the approximate efficiency of the KLS mechanism.

Corollary 1. For every Steiner forest cost function with k players, the KLS
mechanism is O(log2 k)-approximate.

Since every O(1)-budget-balanced Moulin mechanism for Steiner tree cost func-
tions is Ω(log2 k)-approximate [22], the KLS mechanism is an optimal mecha-
nism of this type (up to constant factors).

3.1 Overview of the Proof of Theorem 3

This section provides an overview of our analysis. By the definition of summabil-
ity (Definition 1), proving Theorem 3 requires analyzing the following procedure.
Given an arbitrary Steiner forest instance and an arbitrary ordering of the play-
ers (source-sink pairs), we consider adding the players to the instance one-by-one,
according to the given ordering. Each time we add a new player, we recompute
the KLS cost shares using the KLS primal-dual algorithm and consider the cost
share of the most recently added player. The key question is: by how much can
the sum of these successive cost shares exceed the cost of servicing all of the
players?

Our analysis proceeds in two steps. The first step is motivated by the difficulty
in directly bounding the above successive cost shares in a general network. The
idea of this step is to replace the given network by a forest with cost at most
an O(log k) times that of an optimal Steiner forest. In addition, to facilitate our
charging argument in the second step, we require that each tree of this forest
be an ultrametric—i.e. all root-leaf paths have equal length. While this goal is
reminiscent of probabilistic tree embeddings (see e.g. [3,4]), we cannot apply such
an embedding as a black box. The reason is that our charging argument requires
structure beyond the low distortion guarantee—it also needs the distances in the
ultrametric to be tightly coupled with the dual growth process used to define
the KLS cost-shares.

In the second step, we demonstrate how to charge the k successive KLS cost
shares to the ultrametrics constructed in the first step. Loosely speaking, we
show how subtrees in each ultrametric correspond to active components during
the execution of the primal-dual algorithm that defines the KLS cost shares. Our
charging scheme charges each point of each ultrametric O(log k) times, proving
an O(log2 k) bound on the summability of the KLS cost-sharing method.
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While portions of this argument are similar to that used in [23] to upper bound
the summability of the Jain-Vazirani Steiner tree cost-sharing method [11], the
refined ultrametric structure and the charging argument in this paper are new.
One reason we require the ultrametric structure is that the primal-dual algorithm
underlying the KLS mechanism determines cost shares using fixed “death times”,
rather than via the component structure in the dual growth process. While
crucial for cross-monotonicity, this property can cause a terminal to accumulate
a cost share beyond the point at which it is connected to its mate, and it is
not obvious how to bound this additional accumulation. In fact, we can exhibit
an example with k players for which the summability of the KLS method is an
Ω(log k) factor times larger than that of the Jain-Vazirani method. Nonetheless,
we prove in this section that the KLS method is always O(log2 k)-summable,
matching the (tight) worst-case bound for the Jain-Vazirani method.

3.2 Building the Forest

In the first step of our proof of Theorem 3, we define a procedure with the
following properties. The procedure takes as input a Steiner forest instance
G = (V, E) with edge costs and an (adversarial) ordering σ of the source-sink
pairs (s1, t1), . . . , (sk, tk). It constructs a forest F , defined on the terminals, that
has cost O(log k) times that of a minimum-cost Steiner forest, as well as other
desirable structure. While the following description will be algorithmic, we em-
phasize that this construction is purely for the purposes of analyzing the summa-
bility of the KLS cost-sharing method.

Consider an optimal solution to the given Steiner forest instance. Our forest
F will have one tree for each connected component of this optimal solution.
We will construct these trees independently of each other, so we can restrict our
description to a single component T ∗ of the optimal Steiner forest. Let A∗ denote
the terminals spanned by T ∗. The vertex set of the tree T that we construct will
contain all the terminals in A∗ as well as some auxiliary vertices.

We now describe the construction of T . The ordering σ = (s1, t1), . . . , (sk, tk)
on source-sink pairs induces an ordering s1, t1, s2, t2, . . . , sk, tk on the terminals
and also an ordering of A∗. We construct T by adding terminals in A∗ to it
in this order. When a terminal is considered, we attach it to the existing tree
and endow it with a radius. The ball of a terminal x with radius r is defined
as the terminals of A∗ at distance at most r from x in the given graph G. We
begin with the first terminal (say x1) of A∗, which is given an infinite radius.
For technical reasons, we introduce an auxiliary root x0 and create an edge e0

between x0 and x1 of length Dmax, where Dmax is half the largest distance in
G between two terminals of A∗. We call this edge e0 the backbone edge.

Now consider some subsequent terminal x. Among all of the previously added
terminals whose ball contains x, we define the terminal y with the minimum
radius to be the parent of x and write p(x) = y. If y has finite radius—i.e., is
not the first terminal of A∗ with respect to σ—then we define x’s radius rx to
be half of its parent’s radius. Otherwise, we define the radius rx to be half of the
shortest-path distance between x and y in G. To attach x to the tree T , consider
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the path from y to x0 in T . We connect x to the point along this path at a
distance rx from y, possibly creating a new internal node. The backbone edge
and the definition of Dmax ensure that this is always possible. Call this point
v(x). The length of the edge between v(x) and x is defined to be rx. We assign
this new node v(x) a label with value y; this label plays a role in our subsequent
proofs.

We next prove several facts about this construction. We begin with an easy
lemma.

Lemma 1. The backbone edge e0 has length at most c(T ∗), where T ∗ is the
component of the optimal solution that spans A∗.

Using this lemma and arguments similar to those in [23] for a related tree con-
struction, we can bound the sum of edge costs in T ∗.

Lemma 2. The sum of the costs of the edges in T is O(log k) · c(T ∗).

We next study distances between terminals in the tree T . We begin by noting
that our construction does indeed produce an ultrametric.

Lemma 3. The tree T is an ultrametric, with all root-leaf paths having length
Dmax. Moreover, the leaves of T are in bijective correspondence with the termi-
nals A∗.

Lemma 3 follows from an easy induction. In particular, when a new terminal x
is added to the tree T , the distance from v(x) to x equals the distance from v(x)
to p(x).

For every two terminals x, y in A∗, let dT (x, y) and dG(x, y) denote the dis-
tances between x and y in the tree T and in the graph G, respectively. The next
lemma follows immediately from the construction.

Lemma 4. For every terminal x ∈ A∗ with parent p(x), dT (x, p(x)) = 2rx =
rp(x) ≥ dG(x, p(x)).

We next extend Lemma 4 to every pair x, y ∈ A∗ of terminals x, y. The idea is
to consider a walk Wxy between x and y in T and relate the length of this walk
to both dT (x, y) and dG(x, y).

Precisely, fix x, y ∈ A∗ and consider the (unique) path Pxy between x and y
in the tree T . The length of this path is dT (x, y). To construct the walk Wxy,
consider the sequence Sxy of vertices that the path Pxy visits; apart from x and
y, all of these are internal nodes of T . Obtain a sequence S′

xy of terminals from
Sxy by replacing the internal nodes of Sxy by their label values (terminals) and
then removing duplicates. Obtain the walk Wxy in T by visiting the terminal
nodes in S′

xy in order, along the unique paths in T that connect consecutive
nodes. The walk Wxy contains Pxy as a subgraph, and can be decomposed into
Pxy and a set of circuits, each of which starts and ends at an internal node of
Pxy, visiting the terminal node corresponding to the label of the internal node
along the way.

Let �xy denote the length of this walk. We prove the following three lemmas,
with the third an immediate consequence of the first two.
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Lemma 5. For every pair x, y ∈ A∗ of terminals in T , �x,y ≥ dG(x, y).

Lemma 6. For every pair x, y ∈ A∗ of terminals in T , dT (x, y) ≥ �x,y/5.

Lemma 7. For every pair x, y ∈ A∗ of terminals in T , dT (x, y) ≥ dG(x, y)/5.

Lemma 5 follows from Lemma 4 and the fact that consecutive nodes in S′
xy share

a parent-child relationship (details omitted). The idea of the proof of Lemma 6
is as follows. Consider one circuit of Wxy rooted at the internal point v(z) and
visiting the terminal p(z). The length of the circuit is at most 2rz, while the
length of the segment of Pxy immediately preceding v(z) is at least rz/2 (rz

minus the radius of any of z′s children). Therefore, we can charge the length of
every circuit to 4 times the section of Pxy that immediately precedes it in the
walk Wxy.

For technical reasons, we multiply all of the edge costs of T by 10, yielding
the tree T ′. The following is just a restatement of Lemmas 2, 3, and 7.

Lemma 8. T ′ satisfies the following properties:

(a) The cost of T ′ is O(log k) · c(T ∗).
(b) T ′ is an ultrametric, with the terminals of A∗ appearing only as leaves.
(c) For every pair x, y ∈ A∗ in T ′, dG(x, y) ≤ 1

2dT ′(x, y).

3.3 The Charging Argument

We are now ready to bound the summability of the KLS cost-share. Our charg-
ing argument will proceed independently for each ultrametric constructed in
Sections 3.2; for most of this section, we will fix one such ultrametric T , span-
ning a set A∗ of terminals.

Let x� and A� denote the �th terminal and the first � terminals of A∗, respec-
tively, with respect to the ordering induced by σ.

We aim to charge the KLS cost share χKLS(x�, A�) of a terminal x� ∈ A∗

to points of the tree T . (A technical detail: since matched pairs of terminals
appear consecutively in the ordering induced by σ, the set A� contains only
matched pairs of terminals, plus possibly an orphaned source si. In either case,
χKLS(x�, A�) denotes the KLS cost share assigned to the terminal x� in the
Steiner forest instance induced by all of the players with at least one terminal
in the set A�.)

The charging proceeds as follows. Let P� be the unique path in T from x�

to x0, and consider the primal-dual algorithm that assigns the KLS cost share
χKLS(x�, A�). At each moment in time τ up to the death time of x�, the termi-
nal’s cost share increases at a positive rate, equal to the inverse of the number of
active terminals in x�’s component at time τ . For each such time τ , we charge this
(marginal) increment in x�’s cost-share to the point g�(τ) which is at distance τ
from x� along the path P�.

Since every leaf-root path of T has length at least Dmax (Lemma 8(b))—half
of the largest distance between two terminals of A∗—and since Dmax is at least
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the death time of every terminal of A∗, this procedure fully charges the sum∑
� χKLS(x�, A�) of the KLS cost shares to T .
We now claim that for every point g of the tree T , the sum of the (marginal)

charges to g by the terminals of A∗ is only O(log k). Fix a point g of T . Only
terminals in the subtree of T rooted at g charge part of their cost share to g. By
the ultrametric property (Lemma 8(b)), all of these terminals are equidistant
from the point g in T ; let this common distance be τg. Such a terminal charges
part of its cost share to g if and only if its death time is at least τg; let B denote
these terminals.

Using Lemma 8(c) we now show that, for a terminal x� ∈ B, at time τg in the
run of the primal-dual algorithm that defines the KLS cost share χKLS(x�, A�),
the component containing x� also contains all of the terminals of B ∩ A�.

Lemma 9. If x, x′ ∈ B, then dG(x, x′) ≤ τg.

Lemma 10. Suppose x� ∈ B and x ∈ A� ∩ B. Then at time τg in the run
of the primal-dual algorithm that defines the KLS cost share χKLS(x�, A�), the
terminal x is active and lies in the same component as x�.

Since the KLS cost-sharing method splits the increase in value of an active
dual variable equally among the active terminals contained in the corresponding
component, Lemma 10 implies that the marginal charge to the point g by the
terminal x� ∈ B is at most 1/|B ∩ A�|. Summing over the contributions of the
terminals in B, we obtain the following.

Lemma 11. For every point g of T , the total marginal charge to g is at most
H|B|, where Hj =

∑
i≤j 1/i denotes the jth Harmonic number.

Theorem 3 now follows easily from Lemmas 8(a) and 11.

4 A Generalized Steiner Tree Mechanism

We now briefly consider an extension of the Steiner forest problem, deferring
a detailed discussion to the full version. We consider a problem in which each
player i controls a group Ai of terminals, and is interested in connecting all of
these terminals together. This problem is also called the generalized Steiner tree
(GST) problem [1]. Let k and n denote the number of terminal groups (players)
and terminals, respectively. The Steiner forest problem is the special case where
each group contains only two terminals.

Consider the following naive reduction to the Steiner forest problem. For each
group of terminals corresponding to a player, nominate one of these terminals
as a leader. Create terminal pairs by pairing each terminal in the group with
the leader. Invoke the KLS cost-sharing method on these terminal pairs, and
define the cost share of a player to be the sum of the cost shares assigned
to its corresponding terminal pairs. Cross-monotonicity and 2-budget-balance
are straightforward to establish, and Theorem 3 then implies that there is an
O(log2 n)-approximate Moulin mechanism for all GST cost functions.
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We can improve the above approximation factor by changing the way that
the KLS primal-dual algorithm splits the increase in active dual variables be-
tween the active terminals. Specifically, if we modify the algorithm to split each
such increase equally between the players that have at least one active termi-
nal in the corresponding dual variable, rather than equally among the terminals
themselves, then we obtain the following theorem.

Theorem 4. Every GST cost function with k players and n terminals admits
a 2-budget-balanced, O(log n log k)-approximate Moulin mechanism.

Using techniques from [22], we can show that the bound in Theorem 4 is the best
possible for a O(1)-budget-balanced Moulin mechanism for GST cost functions.
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Abstract. Media access protocols in wireless networks require each con-
tending node to wait for a backoff time chosen randomly from a fixed
range, before attempting to transmit on a shared channel. However,
nodes acting in their own selfish interest may not follow the protocol.
In this paper, we use a mechanism design approach to study how nodes
might be induced to adhere to the protocol. In particular, a static version
of the problem is modeled as a strategic game (the protocol) played by
non-cooperating, rational players (the nodes). We present a game which
exhibits a unique mixed-strategy Nash equilibrium that corresponds to
nodes choosing backoff times randomly from a given range of values, ac-
cording to any apriori given distribution. We extend this result to the
situation when each player can choose a backoff value from a different
range, provided there are at least two players choosing from the largest
range. In contrast, we show that if there are exactly two players with
different backoff ranges, then it becomes impossible to design a strategic
game with a unique such Nash equilibrium. Finally, we show an impossi-
bility result under certain natural limitations on the network authority.

1 Introduction

A number of recent papers have tried to address the problem of selfishness of
autonomous agents using the tools of algorithmic mechanism design. In this
paper we are interested in the media access problem in a wireless network. In
the IEEE 802.11 protocol, for instance, all nodes wishing to access a common
link must follow an algorithm whereby each one chooses a random backoff value
in a specified range. After waiting for the amount of time indicated by the backoff
value, the node attempts to transmit. The node with the smallest backoff value, if
it is unique, gains access to the medium. However, if two or more nodes attempt
to transmit at the same time, a collision results. In the event of a collision,
all colliding nodes double the range from which the backoff value was chosen,
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and retry. Nodes that did not collide keep the originally chosen backoff value,
appropriately decremented, for the next round. Since nodes in a wireless network
are autonomous agents, we cannot be sure that they will follow the protocol as
specified. In particular, some nodes may try to cheat by always choosing a small
backoff value, and getting an unfair share of access to the medium. If two or
more nodes cheat simultaneously in this manner, then repeated collisions among
cheating nodes may reduce the network throughput to zero, effectively making
the network inoperative.

The problem of enforcing cooperation in a network has been studied recently,
especially for network layer protocols [1]. Punishment-based approaches work
by trying to isolate the misbehaving node [2,3,4]. In contrast, incentive-based or
pricing-based approaches attempt to give some incentive to participating nodes
to cooperate with the protocol [5,6]. For the media access problem, Kyasanur
and Vaidya propose a modification to the 802.11 protocol, which supposes the
presence of some trusted nodes [7]. In the modified protocol, instead of the sender
choosing the backoff value, the receiver selects a random backoff value and sends
it to the sender.

Game theory provides useful tools to study the behavior of selfish agents [8].
The problem of media access in a wireless network has been modeled as a game
by Cagalj et.al. [9], where the authors show that non-cooperative behavior by
more than one cheater can lead to network collapse. The equilibria of a game
modeling an Aloha network with selfish users are analyzed by MacKenzie and
Wicker [10].

In this paper, we take a mechanism design approach to the problem. Our goal
is to construct a strategic game with actions and utility functions that automat-
ically induces honest (i.e. protocol-compliant) behavior among players that are
merely choosing actions selfishly to maximize their respective utility functions.
Since each player may have its own valuation of any given outcome, the utility
function will include not only the agent’s intrinsic valuation of the outcome, but
also an incentive or payment that the mechanism will pay to the player to elicit
honest play. Nisan and Ronen [11] introduced the term algorithmic mechanism
design for their framework of studying algorithms that assume that the par-
ticipants all act according to their own self-interest. Their model is specific to
optimization problems, and much of the work that followed (for example, [12])
has focused on the same class of problems, and the mechanisms designed are the
so-called VCG-mechanisms, in which truth-telling is shown to be a dominant
strategy for every player. In the wireless network setting, Anderegg and Eiden-
benz propose a routing protocol for ad hoc networks, called Ad hoc-VCG, which
implements a VCG mechanism that is guaranteed to find the minimum energy
path in the network [13]. As far as we know, there has been no work that uses
a mechanism design approach to the wireless media access problem.

The wireless media access problem, in its full generality, corresponds naturally
to a dynamic game since nodes can (and do) modify their actions in response to
the outcome of previous rounds. In this paper, we investigate games that try to
model a single round of the media access problem. To wit, we assume that the k
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nodes (the players) are competing for access to the shared wireless medium using
a backoff protocol where the jth node should choose a backoff value uniformly at
random from a range given [1, nj ] (the contention window). Our goal is to invent
utility functions such that there is a unique mixed strategy Nash equilibrium
which corresponds to each player faithfully following the protocol, viz. choosing
a backoff value uniformly at random. We stress here that it is not difficult to
construct a game with a mixed strategy Nash equilibrium that corresponds to
the uniform distribution (or indeed, any other distribution); the challenge lies in
ensuring that this equilibrium is unique and not just one among many possible
equilibria.

In fact, we consider a more general situation. Suppose that we are given an
apriori distribution profile α∗ that is desired, viz. we wish to invent a strategic
game that realizes exactly this distribution as its unique mixed-strategy Nash
equilibrium. We show that this is possible under certain circumstances: when the
players have the same number of actions, and also when players have different
numbers of actions but for the largest number of actions, there exist at least two
players with that many actions. On the negative side, we prove that if there are
exactly two players that have different number of actions, then constructing a
game that realizes a given, full-support profile as its unique Nash equilibrium,
is impossible.

2 Preliminaries

For any fixed positive integer m, let [1, m] denote the set of integers {1, 2, . . . , m}.
We shall be concerned with a two such sets that arise in our strategic games:

– A finite ordered set of k ≥ 2 players, P = [1, k].
– A finite set of nj ≥ 1 possible actions (or pure strategies), Aj = [1, nj], for

each player j ∈ P .

We use the terminology profile for an ordered tuple that is typically indexed by
an index set such as P . Following standard game-theoretic notation, an outcome
of the game is represented by an action profile, s = (ij)j∈P , with the interpre-
tation that every player j ∈ P performs the corresponding action ij ∈ Aj in the
outcome.

A utility function is a function u : Ak → IR that associates the real value u(s)
with the action profile s. A game specifies the utility function profile, (uj)j∈P

that is interpreted as follows: for any action profile s, the corresponding utility
profile for the players is simply (uj(s))j∈P . We assume rational players that play
independently (without any collusion) and seek to maximize their respective
utilities, i.e. all else being equal, a player will prefer an action a ∈ Aj over some
other action b ∈ Aj if the corresponding utility is strictly higher.

A mixed strategy αj for a player j ∈ P is a discrete probability distribu-
tion over its action set Aj . One interpretation of such a mixed strategy is that
the player chooses any action a ∈ A independently with probability αj(a). A



Mechanisms to Induce Random Choice 127

mixed-strategy Nash equilibrium is a special distribution profile, α∗ = (α∗
j )j∈P ,

with the property that a player cannot increase its (expected) utility by uni-
laterally changing its own distribution in the profile. A mixed-strategy Nash
equilibrium α∗ can also be characterized as follows: for every player j ∈ P , it
holds that any pair of distinct actions a, b ∈ Aj in the support of its distribution
α∗

j have exactly the same expected utility. This characterization is important and
will be used extensively in the discussion to follow.

We say that α = (α∗
j )j∈P is a full-support distribution profile if for every

player j ∈ P , the support of the distribution αj is the entire action set Aj ,
i.e. αj(i) > 0 for all j ∈ P, i ∈ Aj . In this paper, we are always interested in
full-support distribution profiles.

3 Designing Games with Identical Player Strategies

We first consider the situation where players have the same set of actions, A =
[1, n]. We will use the index set P = [1, k] for the players1 Suppose that we
have an apriori known full-support distribution profile α∗ = (α∗

j )j∈P . We are
interested in the following general question: is it possible to design a strategic
game among the players with a unique Nash equilibrium that is given by the
profile α∗? In what follows, we will construct such a game.

For ease of description, we will treat each of the index sets P and A as be-
ing circularly ordered, i.e. with player k + 1 being interpreted as player 1, with
action n + 1 being interpreted as action 1 etc. We design our game with the
following property: The utility function for player j ∈ P depends only on its
own actions and those of its predecessor, player j − 1. This property allows us
to present the game using an abbreviated version of the usual strategic form of
presentation.

In particular, we can represent the utility function uj for each player j ∈ P
as a two dimensional matrix Mj with n rows and n columns. The interpretation
of this matrix is as follows: Mj(a, b) is the value of the utility function uj when
applied to every action profile s in which player j − 1 performs action b and
player j performs action a. Thus, one thinks of the rows of Mj as being indexed
by the pure strategies of player j and the columns of Mj as being indexed by
the pure strategies of player j − 1.

It is convenient to describe the construction of any matrix Mj as being spread
over two steps. Let In be the identity matrix with n rows and columns. Consider
the following matrix, V , obtained from In by shifting down (circularly) the rows
of In:

Vn :=

⎡
⎢⎢⎣

0 . . . 0 1
1 . . . 0 0

. . .
0 . . . 1 0

⎤
⎥⎥⎦ (1)

1 In principle, players need not have exactly the same set of actions; what matters is
that they have the same number of possible actions.
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For every player j ∈ P , an intermediate matrix M̂j is defined as follows:

M̂j =
{

Vn if j = 1
In otherwise (2)

Now, let α∗ = (α∗
j )j∈P be the desired unique mixed strategy equilibrium

profile. Then, the utility matrix Mj for player j ∈ P is defined as follows. Recall
that the columns of Mj correspond to actions of the previous player j − 1 in the
circular ordering of P . For any pair of actions a, b ∈ A, we have

Mj(a, b) = M̂j(a, b)/α∗
j−1(b) (3)

In words, we obtain Mj from M̂j by scaling each entry by the reciprocal of
player (j − 1)’s column probability for that column. Note that the matrices are
well-defined since we have assumed that α∗ is a full-support distribution profile
for every player and therefore, the probability in the denominator of (3)’s right-
hand side is always non-zero. We will now establish that the game defined above
has a unique Nash equilibrium where player j chooses exactly the corresponding
desired mixed strategy α∗

j .
Consider any mixed strategy, α = (αj)j∈P , for the game. Under this mixed

strategy, player j’s expected payoff for an action a is easily shown via (3) to be:

U j
α(a) =

{
αk(a − 1)/α∗

k(a − 1) if j = 1
αj−1(a)/α∗

j−1(a) otherwise (4)

Specifically, for the case when α = α∗, the right hand side is identically equal to
1 for all actions of all the players thus establishing that every player has equal
payoffs for all its pure actions under distribution profile α∗. Thus, α∗ is indeed a
full support, mixed strategy Nash equilibrium for the game. It remains to show
that this equilibrium is unique. We start with a useful definition specific to our
game.

Definition 1. Let α = (αj)j∈P be a mixed strategy profile that differs from α∗.
We say that an action a is α-deficient for a given player j if αj(a)/α∗

j (a) < 1.

Lemma 1. Suppose that the profile α = (αj)j∈P is a mixed strategy Nash equi-
librium for the game. Then, the following implications hold:

1. If action a is α-deficient for player k, then α1(a + 1) = 0.
2. For 1 ≤ j < k, if action a is α-deficient for player j, then αj+1(a) = 0.

Proof. Let α be a Nash equilibrium for the game. To prove the first implication
(Lemma 1.1 above), assume that the antecedent is true. Both αk and α∗

k being
probability distributions,

∑
b∈A αk(b) = 1 =

∑
b∈A α∗

k(b) and from this it
follows that if αk(a)/α∗

k(a) < 1, then there must be another action b �= a for
which αk(b)/α∗

k(b) > 1.
Applying (4) above with j = 1, we conclude that under the mixed strategy α,

player 1 will have a strictly larger payoff for playing the pure strategy b + 1 as
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compared to playing the pure strategy a + 1. Consequently, action a + 1 cannot
be in the support of the claimed optimal strategy α1 for player 1, and hence,
α1(a + 1) = 0. An almost identical argument works for the second part of the
lemma except that we use (4) for the case when 1 < j ≤ k. �

Theorem 1. The game outlined above is a k-player, n-strategy game that has
the unique mixed strategy Nash equilibrium given by the full support distribution
profile (α∗

j )j∈P .

Proof. We have already shown that α∗ is a Nash equilibrium for the game. To
establish uniqueness, we will show that assuming a different equilibrium profile,
α �= α∗, yields a contradiction. Lemma 1 provides the intuition for this: it asserts
that if an action a is α-deficient for a player j then so is action a for player j +1,
except in the case when j = k and then it is action a + 1 that is α-deficient for
player 1.

More formally, let α �= α∗. Then there must be some player j for whom there
is an action a that is α-deficient. If player j is someone other than player k (i.e.
where 1 ≤ j < k), then Lemma 1.2 implies that αj+1(a) = 0. In fact, we can
apply Lemma 1.2 in succession (k − j) times to deduce that:

αj(a)/α∗
j (a) < 1 =⇒ αj+1(a) = 0

=⇒ αj+2(a) = 0
. . .

=⇒ αk(a) = 0

In other words, if α differs from α∗, then player k must have a α-deficient action.
Without loss of generality, there must be an action a that is α-deficient for

player k with the further property that action a + 1 is not α-deficient for player
k, i.e. with αk(a + 1)/α∗

k(a + 1) ≥ 1. Now, Lemma 1.1 applies, and we get
α1(a + 1) = 0. Thus, action (a + 1) is α-deficient for player 1 and by applying
Lemma 1.2 in succession (k − 1) times, we conclude that αk(a + 1) = 0. This
contradicts our earlier assertion that action a + 1 is not α-deficient for player k.
Thus, contrary to assumption, α cannot differ from α∗; the game exhibits the
unique Nash equilibrium profile α∗. �	
We note that Theorem 1 can be easily specialized to the case that is relevant for
the single round version of the medium access control problem, with all backoff
values in the range [1, n] and the desired distribution being the discrete uniform
distribution for all players.

4 Designing Games with Non-identical Player Strategies

In this section, we consider games where the players do not have the same number
of strategies available to them, but we still desire to achieve a target distribution
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profile with full-support component distributions. In this case, we first show that
it is impossible to design a game with this feature, when there are only two players.

We assume, in particular, that player 1 has the set of strategies A1 = [1, m]
and player 2 has the set of strategies A2 = [1, n] with m > n. As before, we are
given an apriori full-support distribution profile (α∗

1, α
∗
2).

Theorem 2. Given players 1, 2 and the full-support distribution profile (α∗
1, α

∗
2)

as described above, there is no 2-player strategic game which can realize the given
profile as its unique mixed-strategy Nash equilibrium.

Proof. Suppose, to the contrary, that such a game can be realized with utility
functions represented by the matrices M1 and M2 for players 1 and 2 respec-
tively. We will assume, as before, that the rows are indexed by the corresponding
player’s actions, i.e. that M1(a, b) (respectively, M2(b, a)) is the utility for player
1 (respectively, for player 2) when player 1’s action is a ∈ [1, m] and player 2’s
action is b ∈ [1, n]. Recall that m > n.

Since (α∗
1, α

∗
2) is a mixed-strategy Nash equilibrium for the game, and since

both the component distributions have full support, it follows that the expected
utility of any distinct pair of pure strategies for player 1 (using matrix M1) and
for player 2 (using matrix M2) are equal. More to the point, the distribution α∗

1

satisfies the system of equations:
m∑

j=1

qj [M2(1, j) − M2(i, j)] = 0 for 2 ≤ i ≤ n

m∑
j=1

qj = 1 (5)

and the distribution α∗
2 satisfies the system of equations:

n∑
i=1

pi[M1(1, i) − M1(j, i)] = 0 for 2 ≤ j ≤ m

n∑
i=1

pi = 1 (6)

Since the system of equations (5) has more variables than equations, it must
either have no solutions or an infinite number of solutions. We know that it
has at least one solution, viz. α∗

1. Hence, it must have infinitely many solutions
and by convexity, at least one of these solutions must be a distribution with
full support that differs from α∗

1. Let β be such a distribution. Then, it follows
that any strategy by player 2 would be a best response to player 1 adopting the
strategy β. Hence, α∗

2 is a best response to β. Similarly, since α∗
2 is a full support

distribution that satisfies the system of equations (6), we also conclude that any
strategy, including strategy β, would be a best response by player 1 to player 2
adopting strategy α∗

2.
Hence, the game has at least two mixed strategy Nash equilibria given by the

profiles (α∗
1, α

∗
2) and (β, α∗

2), a contradiction. �	
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We note that Theorem 2 implies that the result of Theorem 1 only works when
the target distribution profile has full support. We next show that under some
circumstances, for k ≥ 3 players, it is possible to create games that realize given
full-support distribution profiles as unique Nash equilibria. The first result, a
simple corollary of Theorem 1, is stated here without proof.

Theorem 3. Consider a set of players P that can be partitioned into subsets
P1, P2, . . . , Pm where |Pj | > 1 for all 1 ≤ j ≤ m. If the set of strategies for all
players in subset Pj is [1, nj], then for any given full-support, distribution profile
α∗, there exists a game whose unique Nash equilibrium is the profile α∗.

The conditions in the above theorem can be relaxed. We show that so long as
there are at least two players with the (same) largest number of strategies, we
can create a game corresponding to any apriori given, full-support distribution
profile α∗. Our basic idea is to create utility matrices so that player j’s utilities
depend on the actions chosen by player j − 1 and player k.

Consider the players arranged in non-decreasing order of the number of actions
available to them. Let nj be the number of actions available to player j. Then
nk−1 = nk; the last two players have the same number of actions. For the
remaining players, we will make the simplifying assumption that for all j ∈
[1, k−2], nj < nj+1. It will be obvious from the construction how this assumption
can be relaxed. The game itself is specified over two stages starting with unscaled
utility matrices which will subsequently be scaled appropriately in a second stage.
For convenience, we will assume that n0 = 0 henceforth.

In the first stage, we will represent the utilities for j as simple unscaled ma-
trices with player j’s actions represented by the rows. Recall that for any n ≥ 1,
In is the identity matrix with n rows and n columns. The matrices are described
below:

– Player 1’s utilities only depend on player k’s actions; the utility matrix (un-
scaled) is:

M̂1 = [Vn1 | 0]

where Vn1 is the identity matrix with its rows shifted down once (circularly).
The 0 sub-matrix corresponds to actions n1 + 1, . . . , nk of player k.

– Player k’s utilities only depend on player (k−1)’s actions; the utility matrix
(unscaled) is:

M̂k = Ink−1

Note that nk−1 = nk.
– For every other player j (hence, 2 ≤ j ≤ (k − 1)), the utilities depend both

on player k as well as the previous player (j − 1). We represent the utilities
as separate (nj ×nj−1) matrices for each of the actions 1, . . . , nk of player k.
The matrices are divided into three groups; each matrix has an upper sub-
matrix consisting of the first nj−1 rows and a lower sub-matrix consisting of
the remaining (nj − nj−1) rows:
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• For player k’s action a ∈ [1, nj−2] ∪ [nj + 1, nk], the matrix is:

M̂a
j =

⎡
⎢⎢⎣

Inj−1

0 0 . . . 1
. . .

0 0 . . . 1

⎤
⎥⎥⎦

Every row in the lower sub-matrix is identical, and equals [0, 0, . . . , 1],
the last row of the identity sub-matrix.

• For player k’s action a ∈ [nj−2 + 1, nj−1], the matrix is:

M̂a
j =

⎡
⎢⎢⎣

Inj−1

xj xj . . . 1 + xj

. . .
xj xj . . . 1 + xj

⎤
⎥⎥⎦

Every row in the lower sub-matrix is identical, and equals [xj , xj , . . . , 1+
xj ] for a value xj > 0 to be determined later.

• Let yj > 0 be a value to be determined. For action (nj−1 + i) of player
k, with i ∈ [1, nj − nj−1], the corresponding matrix is:

M̂
nj−1+i
j =

[
Inj−1

Ci,j

]

where Ci,j , the lower sub-matrix, has as its ith row, the row vector

[−(1 + yj), − (1 + yj), . . . , − (1 + yj), − yj],

and whose remaining rows are all identically equal to the row vector

[−yj, − yj , . . . , − yj , 1 − yj]

As before, we obtain the actual utility matrices by scaling the above matrix
entries by the reciprocals of the α∗-probabilities of the actions of the relevant
players that influence any given entry. Thus, for instance, the scaled matrix Ma

j

for any player j ∈ [2, k− 1], is obtained from the corresponding unscaled matrix
M̂a

j by multiplying each entry in column b by

1
α∗

j−1(b)α
∗
k(a)

and so on. The scaled utility matrices define our game. We first show that if xj

and yj are chosen so that

xj(nj−1 − nj−2) = yj(nj − nj−1) + 1 (7)

holds true, then the profile α∗ is indeed a Nash equilibrium for the game. Ac-
cordingly, fix a game with values of xj and yj that satisfy (7), e.g. we may
choose xj = 1 and yj = (nj−1 − nj−2 − 1)/(nj − nj−1).
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Now, if an equilibrium α that differs from α∗ is assumed, then we can show
first that some action for player k must be α-deficient. The intuition behind this
is that the upper submatrix (the identity) in every player j > 1’s utilities forces
this conclusion (akin to Lemma 1.2. Once we have established that some action
for player k must be α-deficient, we can now use the special properties of the
lower submatrices in the utility definitions to show a contradiction. We defer a
detailed proof of the following result to the full paper.

Theorem 4. Suppose we are given k players with action sets [1, nj] for every
player j such that n1 < n2 < . . . < nk−1 = nk. Then given any full support
distribution profile α∗ for this collection of players and actions, there is a game
whose unique Nash equilibrium is α∗.

It is easy to see that some simple modifications to the construction described in
this section can yield a game in which there could possibly be more than one
player with action set [1, nj] for any j, and for which an apriori given distribution
is the only possible Nash equilibrium.

5 Implementing the Mechanism

We briefly describe how the mechanism described in Section 3 can be used to
compute payments to participants to induce cooperation in the media access
protocol. Recall that actions belong to the set [1, n]. For any action profile s,
let min(s) denote the minimum among all actions in the profile. The profile s is
said to induce an collision if there are two or more players that have the same
action min(s) in the profile s.

There can be many possibilities for the natural valuation accorded by players
to an outcome of the game. We describe one possible simple valuation function
here. We assume that the valuation functions are symmetric, for example, all
players have the same natural valuation for getting access to the medium in a
particular time step. Specifically, we assume that every player p places a different
valuation on being able to transmit successfully at time slot i, on someone else
getting access to the medium, and the event of a collision. For an action profile
s = (i1, i2, . . . , ik),

vj(s) =

⎧
⎨
⎩

ti, if s does not induce a collision and ij = i = min(s)
d, if s does not induce a collision, and ij �= min(s)
e, if s induces a collision.

As noted above, many other valuation functions are possible. For instance, player
j may have different valuations for profiles that cause collisions in different time
steps. Every player tries to maximize its utility function as given by the utility
matrices presented in Section 3. The utility function corresponding to an action
profile s can be thought of as the sum of the natural valuation of the player for
that profile and the payment that would be made by the mechanism. Hence, the
payments made by the mechanism to a player pj for a profile s can be calculated
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as uj(s) − vj(s). If a fixed price is to be charged for participation in the media
access protocol, the payment can be implemented as a discount in this price.

The implementation described above assumes that the network authority is
able to assign a payment based on the action profile s, that is, it knows the
actions chosen by all players. However, in practice, the network authority can
at most expect to know the backoff value (i.e. strategy) chosen by the winning
player, or the fact that there was a collision. In particular, this implies that the
network authority cannot distinguish between any two profiles s and s′ such that
min(s) = min(s′) where both s and s′ induce collisions, and thus, the utilities
for the two different profiles to any particular player must be identical. Once
again, different players may earn different utilities for the same profile. With the
given constraints, it can shown quite easily that any such game has least one
pure strategy Nash equilibrium, viz. the action profile s′ = {1, 1, . . . , 1}. As a
result, we get:

Theorem 5. For k > 2 and n ≥ k, there is no k-player, n-action game where
ui(s) = ui(s′) for any two profiles s and s′ such that min(s) = min(s′), and
both s and s′ induce collisions, which can realize a given full-support distribution
profile α∗ as its unique mixed-strategy Nash equilibrium.

6 Discussion

In this paper, we have introduced the idea of mechanisms to induce random
choice, which can be used to ensure compliance with protocols in which inde-
pendent agents are to make random choices. Motivated by the wireless media
access problem, for any given full-support distribution profile, we defined a game
that has a unique mixed strategy Nash equilibrium realizing that profile, so long
as all players have the same number of strategies. We also showed that for more
than two players with different numbers of strategies, under certain conditions, it
is possible to design games realizing any fixed distribution profile. In contrast, we
showed that for two players with different numbers of strategies, it is impossible
to design a game with a unique mixed strategy Nash equilibrium corresponding
to any distribution profile.

In practice, wireless media access more closely resembles a dynamic game;
in the event of a collision, all colliding nodes double their values of contention
window, and retry. Nodes that did not collide keep the originally chosen backoff
value, appropriately decremented, for the next round. As a result of this, in any
given round, nodes not only have different contention window values, but the
backoff value is related to the history of previous rounds. Future work aims at
analyzing this in the context of dynamic mechanism design.
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Abstract. One of the most fundamental problems in mechanism design
is that of designing the auction that gives the optimal profit to the auc-
tioneer. For the case that the probability distributions on the valuations
of the bidders are known and independent, Myerson [15] reduces the
problem to that of maximizing the common welfare by considering the
virtual valuations in place of the bidders’ actual valuations. The Myer-
son auction maximizes the seller’s profit over the class of all mechanisms
that are truthful and individually rational for all the bidders; however,
the mechanism does not satisfy ex post individual rationality for the
seller. In other words, there are examples in which for certain sets of
bidder valuations, the mechanism incurs a loss.

We consider the problem of merging the worst case no-deficit (or
ex post seller individual rationality) condition with this average case
Bayesian expected profit maximization problem. When restricting our
attention to ex post incentive compatible mechanisms for this problem,
we find that the Myerson mechanism is the optimal no-deficit mechanism
for supermodular costs, that Myerson merged with a simple thresholding
mechanism is optimal for all-or-nothing costs, and that neither mech-
anism is optimal for general submodular costs. Addressing the compu-
tational side of the problem, we note that for supermodular costs the
Myerson mechanism is NP-hard to compute. Furthermore, we show that
for all-or-nothing costs the optimal thresholding mechanism is NP-hard
to compute. Finally, we consider relaxing the ex post incentive compati-
bility constraint and show that there is a Bayesian incentive compatible
mechanism that achieves the same expected profit as Myerson, but never
incurs a loss.

1 Introduction

Suppose a seller is able to provide a service at total cost C to any number of
users. Suppose further that the seller has done market research to determine the
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probability distribution from which the user valuations for receiving the service
are drawn. What selling mechanism should the seller then run to obtain the
highest possible profit? In a seminal paper [15], Myerson essentially answers this
question: If the seller aims to maximize their expected profit, they must first
compute each user’s virtual valuation, and then sell the item to all users with
non-negative virtual valuation if the sum of their virtual valuations is above the
cost C. The Myerson mechanism is optimal for expected revenue, in the class of
all mechanisms that induce the users to participate and reveal their preferences
truthfully. However, it turns out that in many natural scenarios, this mechanism
has a deficit on some possible instances of the users’ values. A seller that is averse
to such a loss might prefer a different mechanism.

We consider the general problem of Bayesian optimal mechanism design for
arbitrary single-parameter agent problems (see e.g., [12,2,1]) when the seller
requires the mechanism to never produce a deficit. Here, the seller must pay a
cost that is a function of the outcome that the seller chooses. A deficit would
arise if the total payments of the agents does not cover the cost of the outcome
produced. In a single-parameter agent problem each agent has a publicly known
partitioning of possible outcomes into two sets, the reject set and the accept
set. It is assumed that agent i has valuation zero for any outcome in the reject
set and private valuation vi for any outcome in the accept set. For auction-like
problems, agent i’s accept set is simply the set of allocations where agent i is
allocated their desired good (or service) and the reject set is the set of allocations
where i is not allocated their desired good. The truthtelling strategy for agent i
would be to report to the mechanism their true private valuation, vi.

We follow the standard economics approach to profit maximization and as-
sume that the agents’ private valuations come from a known probability distri-
bution. Our goal then is to design the seller optimal mechanism given knowledge
of this distribution. We assume that the agents valuations are independent but
not necessarily identically distributed.1

Motivating Problems
This paper considers a number of motivating problems, all of which fit in this
single-parameter agent framework. Consider the following examples:

Fixed cost excludible good. The seller must pay a fixed cost C if any items are
sold and zero otherwise. A motivating example of such a good is a digital good
with production cost C and zero marginal cost. This is a special case of the
general multicast pricing problem considered in [5,6,13].

Fixed cost non-excludible good. There is a fixed cost, C, for providing the good
or service to all users and no cost for serving nobody. However, the mechanism is
not allowed to serve some users and not others (i.e., the cost for such allocations
is infinite). We will sometimes refer to this as the all-or-none case. The classic
example of a fixed cost non-excludible good is the bridge building problem where
if the bridge is built then anyone can use it.

1 It is NP-hard to compute the optimal auction when valuations are correlated [16].
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Submodular costs. The additional (marginal) cost in providing the good to any
users is a decreasing function of the set of users already being provided. The ex-
cludible and non-excludible fixed cost problem and the multicast pricing problem
are special cases of the general submodular cost problem. Goods with concave
production costs or increasing returns to scale fall in this category.

Combinatorial auction (single-parameter). Each agent desires a subset of a set of
items. The cost function is such that allocations to agents with disjoint subsets
have cost zero and all other allocations have infinite cost. See e.g., [12,1].

Supermodular costs. The additional cost in providing the good to any users is
an increasing function of the set of users already being provided. The single-
parameter combinatorial auction problem is a special case of a supermodular
cost function.

Mechanism Design Solution Concepts
The fundamental difference between mechanism design and algorithm design is
that the inputs to a mechanism are the private values of selfish agents that will
attempt to submit bids that result in outcomes that maximize their own utility.
We adopt the following solution concepts.

Ex post incentive compatibility. Otherwise known as truthful or strategyproof
mechanisms, ex post incentive compatible mechanisms (via the revelation prin-
ciple) are such that each agent, independent of the acts of any other agent, has
a dominant strategy of stating their true valuation as their bid.

Bayesian incentive compatibility. Bayesian incentive compatible mechanisms are
those where each agent has an optimal strategy of bidding their true valuation
given that the other agents values come from a prior distribution and that all
other agents bid their true values. Note that such a truthtelling strategy may
not be optimal ex post, i.e., once the bids of other agents are known.

Overview of Results
The major focus of this paper, besides describing the Bayesian optimal no-deficit
mechanism, is to study the complexity of computing it. Myerson’s optimal mech-
anism solves the single-parameter agent optimal mechanism design problem for
any cost function given that the seller only wants to maximize their expected
profit and spurious deficits are acceptable. For submodular costs, via a general
algorithm due to Iwata et al. [10], it is possible to compute this optimal mecha-
nism. However, for the single parameter combinatorial auction (and, thus general
supermodular costs) this computational problem is NP-hard [12]. Of course the
usual questions arise here as to whether it is possible to approximate the op-
timal mechanism via a polynomial time computation. For this problem, it is
relatively easy to see that Myerson’s reduction from the efficient mechanism to
the optimal mechanism via virtual valuations respects approximations. Given
an incentive compatible mechanism that approximates efficiency, the Myerson
approach can be used to obtain an incentive compatible mechanism that gives
the same approximation factor against the optimal mechanism.
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For the problem of designing the ex post incentive compatible optimal no-
deficit mechanism we consider both the form that the optimal mechanism takes
as well as the problem of computing it. Like above, the answer to these ques-
tions depends on types of cost functions we are considering. We show that for
supermodular costs functions, the Myerson mechanism is indeed no-deficit. Of
course, by the above discussion such a mechanism is hard to compute. For the
submodular case, and even the special case of a fixed cost excludible good, we
show that Myerson is not no-deficit (Section 4). We then consider the most nat-
ural way to try to obtain a no-deficit mechanism that achieves good expected
profit: merging the Myerson mechanism which has optimal expected profit with
a thresholding mechanism, e.g. Moulin and Shenker’s [14] cost sharing mech-
anism, which has no-deficit. We show that even for the fixed cost excludible
good problem when bidders are independent and identically distributed, such a
mechanism is not optimal (Section 5). We further show the somewhat surpris-
ing result that even though in this case the problem is completely symmetrical,
the optimal deterministic no-deficit mechanism is not. None-the-less, as these
thresholding mechanisms are intuitively easy to understand, we ask two ques-
tions, first, when are thresholding mechanisms optimal, and second can we com-
pute them. We show that these mechanisms are indeed optimal for all-or-nothing
costs; yet computing the optimal thresholding mechanism on this special case is
NP-hard.

We then consider relaxing our solution concept from ex post incentive com-
patibility to Bayesian incentive compatibility. We show that while the ex post
incentive compatible payment rule of Myerson is not no-deficit on some realiza-
tions of the agents’ valuations, there is a Bayesian incentive compatible payment
rule for Myerson’s mechanism that obtains the same expected profit as the orig-
inal Myerson payment rule and guarantees that there is never a deficit. We leave
the problem of computing this payment rule as an open question.

Related Work

This work is based heavily on results of Myerson [15] on optimal mechanism de-
sign and generalizations observed by Bulow and Roberts [3]. Cornelli re-derives
these results for the special case of a fixed cost excludible good and considers the
related problem of designing optimal non-direct revelation mechanisms (where
the set of allowable bids is a subset of possible valuations of the bidders) [4].
Mehta and Vazirani [13] consider the related computational question of how to
compute the optimal “take it or leave it” offers for each agent prior to seeing
any bids, for the aforementioned multicast pricing special case of submodular
costs.

Another branch of related work is that of worst-case profit maximizing mech-
anism design. There is much work in this area. (See, for example, [9].) As an
example, for the trivial cost function, Goldberg et al. give an approximately op-
timal worst case auction [8,7]. Fiat et al. consider the fixed cost excludible good
problem and more general multicast pricing problem. They give approximately
optimal mechanisms under certain assumptions [6].
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2 Notation and Preliminaries

Let S = {1, . . . , n} denote a set of n agents. We represent the outcome of the
mechanism as an allocation A ⊂ S of accepted agents. We assume there is a
general cost function c(A) over allocations. As noted in the introduction, this
allows us to represent any (binary) single parameter agent problem.

A cost function is said to be submodular if for all allocations A1 and A2,
c(A1)+ c(A2) ≥ c(A1∪A2)+ c(A1∩A2). Likewise, it is said to be supermodular,
if for all allocations A1 and A2, c(A1) + c(A2) ≤ c(A1 ∪ A2) + c(A1 ∩ A2).

Each agent i has a valuation vi for being accepted. We assume that vi is drawn
independently from distribution Fi and corresponding density function fi. The
joint distribution, F, is the product F1 × · · · × Fn. Without loss of generality,
we assume that vi is in the range [0, h] for all i. We define the virtual valuation
of agent i to be φi(vi) = vi − 1−Fi(vi)

fi(vi)
. Where vi is implicit, we will refer to φi

as agent i’s virtual valuation. We restrict our attention to distributions Fi for
which φi is an increasing function of vi. This is implied by the monotone hazard
rate assumption which is standard in mechanism design.

Assume for mechanism M that the agents submit bids b = (b1, . . . , bn). We
denote the allocation served by M(b). When M is a randomized mechanism,
M(b) is a random variable. For valuations v and allocation A, we define the
surplus of this allocation to be Sv(A) =

∑
i∈A vi − c(A). The virtual surplus we

denote by Ŝv(A) = Sφ(v)(A) =
∑

i∈A φi(vi)− c(A). For ex post IC mechanisms,
we have b = v, so we sometimes use Ŝb to denote the virtual surplus.

Let pi(bi) denote the payment charged by mechanism M to agent i when he
bids bi. Define qi(bi) as the probability that agent i is allocated when bidding bi.
Notice that this payment and probability are dependent on the randomization in
the other bids, b−i, and the randomization in the mechanism, M. A mechanism
is incentive compatible if this agent’s utility is maximized when bidding their
true valuation. I.e., vi ∈ argmaxb[viqi(b−i, b) − pi(b−i, b)]. A mechanism is (ex
post) incentive compatible (IC) if this holds for all values of the other agents
bids, b−i, and Bayesian incentive compatible (BIC) if it holds when the other
agents bid their true values, so that b−i is drawn from the prior distribution
F−i = F1 × · · ·×Fi−1 ×Fi+1 × · · ·×Fn. It is well known [11] that the allocation
rule and the expected payment of each agent satisfies the following conditions2.

Lemma 1. For any ex post incentive compatible mechanism M, for b−i fixed,
qi(bi) is non-decreasing in bi, and pi(bi) = biqi(b) − ∫ b=bi

b=0 qi(b−i, b)db.

Lemma 2. For any Bayesian incentive compatible mechanism M, when b−i are
drawn from F−i then qi(bi) = Eb−iqi(b) is non-decreasing in bi, and pi(bi) =
biqi(bi) −

∫ b=bi

b=0 qi(b)db.

The above lemmas imply that for describing an incentive compatible mechanism,
it is sufficient to specify an allocation rule that is monotone in the bids of each
2 In general, the expressions for pi may contain a constant pi(0) term, but because we

are interested in profit maximization, we assume that this term is zero.
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agent. Notice that for a deterministic ex post IC mechanism, the price pi(bi) is
the minimum bid that i must bid in order to be served.

In addition to incentive compatibility, we also require our mechanisms to
satisfy the no-deficit condition defined below.

No-Deficit Condition. A mechanism M is said to satisfy the no-deficit condition
if and only if for all bid vectors b, the profit of the mechanism is non-negative:∑

i pi(b) − c(M(b)) ≥ 0.

3 The Myerson Mechanism

Notice that the Vickrey-Clarke-Groves (VCG) mechanism applied to our single
parameter setting is the mechanism that chooses the allocation that maximizes
the surplus (defined above). It is easy to see that this allocation rule is mono-
tone and thus there exist prices that incentivize agents to bid their true values.
Myerson reduced the problem of Bayesian profit maximization to that of maxi-
mizing surplus via the concept of virtual valuations. He shows that the Bayesian
optimal mechanism is the one that maximizes the virtual surplus. His theorem
generalizes directly to our single parameter agent setting as follows.

Lemma 3. [15] The expected profit of any truthful mechanism is exactly equal
to its expected virtual surplus.

Theorem 1. [15] Given agents with valuations drawn from distribution F =
F1 × · · · × Fn with each Fi satisfying the monotone hazard rate condition, the
ex post IC mechanism with the maximum expected profit selects the outcome to
maximize the virtual surplus, i.e., M(b) = argmaxA Ŝb(A). The expected profit
of this mechanism is given by EbŜb(M(b)).

One view of this theorem is that to maximize profit, first compute virtual val-
uations assuming that the agents bid their valuations, and then run the VCG
mechanism on these virtual valuations. Payments can be determined by the pay-
ments of VCG in this setting by applying each agent’s inverse virtual valuation
function to their VCG payment. We refer to the mechanism that maximizes the
virtual surplus as the Myerson mechanism.

3.1 The Discrete-Valued Case

Although all the definitions given above assume that the buyers’ bids are
continuous variables, it is easy to formulate similar expressions when bids are
discrete-valued. We give analogs for the discrete case below. These descriptions
are standard and we leave the proofs to the reader.

For the ith bidder, let xi,j denote the jth value that vi can take. Let the
corresponding probability be given by fi,j , and let Fi,j =

∑k=j
k=0 fi,k denote

the cumulative probability. The jth virtual valuation of bidder i is given by
φi,j = xi,j − 1−Fi,j

fi,j
(xi,j+1 − xi,j).
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The price pi(b) charged by an incentive compatible mechanism M, when bid-
der i reports bi = xi,j , is given by pi(b) = biqi(b)−∑k=j−1

k=0 qi(xi,k,b−i)(xi,k+1−
xi,k). The virtual surplus and the Myerson mechanism are defined as before.

3.2 Some Examples and the No-Deficit Constraint

Consider the following example. There are three bidders, each having a value
drawn uniformly from the interval [0, 1]. The cost of serving any non-empty
subset of them is C = 2. Then, the virtual valuation function of the ith bidder
is given by φi(vi) = 2vi − 1. Consider the case when all the three valuations
are 1. Then the total virtual valuation is 3. Therefore, the Myerson mechanism
serves all three of the bidders. The payment of bidder i is given by the minimum
virtual valuation at which bidder i gets served. This is C−∑

j�=i φj(vj) = 2−2 =
0. Therefore, the payment of bidder i is φi

−1(0) = 0.5. The revenue of the
mechanism at the bid vector (1, 1, 1) is therefore 1.5, whereas the cost of serving
the three bidders is 2. The mechanism incurs a loss.

A slightly different example shows that the ratio between the worst-case loss
of the Myerson mechanism and its expected profit can be unbounded. Consider
an example with n identically distributed bidders, each with bid distribution
uniform over [1, 2]. The cost of serving any subset of the bidders is C = 2n− 2.
The reader is encouraged to verify that the worst-case loss of the Extended
Myerson mechanism in this case is n− 2 (for the bid vector (2, · · · , 2)), whereas
the expected profit of the mechanism is less than 2.

4 The No-Deficit Constraint for Supermodular Functions

In this section we prove that the Myerson mechanism always satisfies the no-
deficit constraint if the cost function is supermodular. We start with a few prop-
erties of the Myerson mechanism that will be useful in our analysis.

4.1 Strong Monotonicity of Allocations in the Myerson Mechanism

We show that if any bidder served by Myerson unilaterally increases her bid,
then the allocation of the mechanism stays the same. Note that if a bidder being
served by the mechanism raises her bid, truthfulness (and thus, monotonicity)
implies that the bidder continues being served. The next lemma however says
something stronger—when the bidder raises her bid, no other bidder gets added
or removed from the set being served.

Lemma 4. Given any two bid vectors b and b′ with bj = bj
′ for all j �= i, and

bi < bi
′, if i ∈ Myerson(b), then Myerson(b′) = Myerson(b).

Proof. For an allocation A, let Δ(A) = Ŝb′(A) − Ŝb(A). Then, for any alloca-
tion A containing i, Δ(A) = bi

′ − bi > 0, whereas, for any other allocation,
Δ(A) = 0. If i ∈ Myerson(b), then Δ(Myerson(b)) ≥ Δ(A) for any allocation
A. Also, we have Ŝb(Myerson(b)) ≥ Ŝb(A) for all A, by definition. Therefore,
Ŝb′(Myerson(b′)) ≥ Ŝb′(A) for all A, and Myerson(b′) = Myerson(b). 	
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Corollary 1. The payment for bidder i given allocation A with i ∈ A and other
bids b−i is the minimum bid bi such that Myerson(b) = A.

Proof. Note that the payment for bidder i is less than the minimum bid bi with
Myerson(b) = A, because i ∈ A. Suppose the payment is pi(bi) = bi

′ with
bi

′ < bi. Then the allocation A2 = Myerson(bi
′,b−i) contains i. This contradicts

the lemma above, because when i increases her bid from bi
′ to bi, the allocation

changes from A2 to A �= A2. 	


4.2 Myerson Satisfies No-Deficit

Now we are ready to prove the main theorem of this section:

Theorem 2. Myerson satisfies no-deficit for supermodular costs.

Proof. Note that for all bid vectors b with Myerson(b) = A, and for all i ∈ A,
we have Ŝb(A) ≥ Ŝb(A \ {i}). Then by the definition of Ŝb(A) and using the
monotone hazard rate condition, we have bi ≥ φi(bi) ≥ c(A) − c(A \ {i}).

Now let mini(A) be the minimum bid bi of bidder i, with i ∈ A, such that for
some bid vector b−i, A is served, that is,

min
i

(A) = min{bi : ∃b−i with Myerson(bi,b−i) = A}.

Then Corollary 1 implies that the payment of bidder i at any vector b with
Myerson(b) = A is given by pi(b) ≥ mini(A), which is larger than c(A) − c(A \
{i}) by our observation above.

Now, taking a sum over all i, we get that the total payment collected is at
least

∑
i mini(A) ≥ ∑

i[c(A) − c(A \ {i})]. The net profit obtained is at least∑
i[c(A)−c(A\{i})]−c(A). Note that supermodularity implies c(A)−c(A\{i}) ≥

c(B) − c(B \ {i}), for any set B ⊂ A with i ∈ B. Without loss of generality, let
|A| = k and A = {1, . . . , k}. Then, the net profit is at least

∑

i
[c(A) − c(A \ {i})] − c(A) ≥

∑

i
[c({1, . . . , i}) − c({1, . . . , i − 1})] − c(A)

= c(A) − c(∅) − c(A) = 0.

	

4.3 Computation of the Optimal Mechanism

Next we consider the problem of computing the Myerson mechanism for super-
modular costs. In particular, we consider the problem of determining the winning
allocation, given the bid vector, bid distributions and the cost function. Super-
modularity of the cost function implies that in general the optimal allocation
is NP-hard to approximate better than an Ω(n1−ε) factor. However, in special
cases, given an approximate truthful mechanism for welfare mechanism for the
same cost function, we can design an approximate truthful mechanism for profit
maximization in the Bayesian setting. We obtain the following results.
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Theorem 3. Given a polynomial-time truthful deterministic mechanism M that
α-approximates the social optimum in a worst-case setting, there exists a
polynomial-time truthful mechanism M′ that α-approximates the expected profit
in a Bayesian setting.

Theorem 4. There exists a polynomial time mechanism that is truthful in ex-
pectation and obtains a (1 + ε)-approximation to the single-parameter combina-
torial auction in a Bayesian setting.3

We note that Theorem 4 is a non-trivial extension of Theorem 3 to auctions
satisfying truthfulness in expectation, as the inverse virtual valuation function
is not generally linear and thus it affects the expected utility of the agents. See
the full paper for details.

5 Submodular Costs, Threshold Mechanisms and
All-or-None Costs

In this section we consider submodular cost functions. As shown in Section 3.2,
in this case, the Myerson mechanism does not always satisfy the no-deficit con-
straint. Intuitively, when the Myerson mechanism serves a large set A of bidders,
the marginal cost of serving a bidder i ∈ A, and therefore the price charged to
i, is very small. A simple way of dealing with these low costs is to supplement
the Myerson mechanism with reserve prices or thresholds for each bidder, below
which the bidder is not served. Precisely, let τ denote a budget-balanced cost-
sharing method, and τi(A) denote the cost-share assigned to bidder i in coalition
A. Then, if a mechanism serves the set A only if the bids of all bidders in A
are above their respective thresholds, then the mechanism obtains prices at least
τi(A) from each bidder i ∈ A, and therefore, meets the cost of serving the set.
Furthermore, if the mechanism picks a set A with the maximum virtual surplus
over all sets satisfying the thresholds, then it also achieves good expected profit.
We call such a mechanism a threshold mechanism. Note that the price charged
to a bidder still depends on other bidders’ bids and not just the threshold (and
can therefore change as others’ bids change, even when the allocation stays the
same); the threshold only ensures that this price is never too low.

A natural question to ask is whether threshold mechanisms are optimal in the
class of all truthful mechanisms satisfying no-deficit. Unfortunately, this is not
the case, even when the cost function is symmetric and submodular, and all the
bids are identically distributed. See an example in the full paper for details.

Although threshold mechanisms are not optimal for arbitrary submodular
cost functions, we now show that they are indeed optimal for a special class
of cost functions, that we call all-or-none costs. An all-or-none cost function is
one in which the only allocations served are the empty allocation or the one
containing all bidders. That is, for all allocations A with A �= ∅ and A �= B, we
have c(A) = ∞.
3 This mechanism is based on a social welfare maximizing mechanism due to Archer

et al. [1] and assumes that multiple units of each item are available.
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Lemma 5. Let M be any truthful mechanism for an all-or-none cost function
c. Then, pi(b) is non-increasing in bids bj with j �= i.

Proof. Suppose that there are bidders i and j such that pi(b) not non-increasing
in bj . That is, there are bid vectors b and bids′ with bk

′ = bk for all k �= j and
bj

′ > bj, such that pi(b′) > pi(b). Note that M is truthful, and so pi does not
depend on bi. So we choose bi = bi

′ = pi(b
′)+pi(b)

2 . Now, i is served at b but
not at b′. However, since c is an all-or-none cost function, we have M(b) = S
(all bidders) and M(b′) = ∅. This means that the allocation given by M is not
a non-increasing function of bj. Lemma 1 then implies a contradiction to the
truthfulness of M. 	

Theorem 5. For any all-or-none cost function, there exists a threshold mecha-
nism that is optimal among the class of all truthful no-deficit mechanisms.

Proof. Let M be any optimal truthful mechanism satisfying no-deficit. We will
define a threshold mechanism M′ with profit at least as large as the profit of
M, thereby proving the theorem.

Let b̄ be the bid vector with b̄i = h, the highest bid, for every i. Let τi(S) =
pi(b̄) for all i. Then,

∑
i τi(S) =

∑
i pi(b̄) ≥ c(S), because M satisfies no-deficit.

Consider the threshold mechanism M′ given by thresholds τi.
For any bid vector b with M(b) = S, we must have Ŝb(S) > 0. Otherwise,

the mechanism M′′ given by M′′(b) = B if M(b) = S and Ŝb(S) > 0 achieves
a higher profit than M and also satisfies the no-deficit condition. Note also, that
for all b with M(b) = S and all i, we have bi ≥ pi(b) ≥ pi(b̄) = τi(S). Here the
second inequality follows from Lemma 5. These two conditions along with the
definition of M′ imply that M′(b) = S.

This means that for all b with M(b) = S, we have M′(b) = S. Furthermore,
for all b with M(b) = ∅, we have Ŝb(M′(b)) ≥ 0 = Ŝb(M(b)). Therefore, we
get Ŝb(M(b)) ≤ Ŝb(M′(b)), for all vectors b. Lemma 3 now implies that M′

has a larger expected profit than M. 	


5.1 The Hardness of Computing the Optimal Mechanism

Although threshold mechanisms are not always optimal, their simplicity is ap-
pealing and may make them practically useful. In this section we investigate
the complexity of computing the optimal threshold mechanism. In particular,
given bid distributions, and a cost function, we consider the decision problem of
determining whether there is a threshold mechanism with total expected profit
greater than some given value. Via a reduction from the knapsack problem, we
show that even for a very simple input, in which every bidder has only two
possible bids, and the cost function is an all-or-none function, it is NP-hard to
compute the optimal threshold mechanism (which is also the optimal mechanism
satisfying no-deficit in this case). See the full paper for details.

Theorem 6. Computing the optimal no-deficit mechanism is NP-hard.
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6 Bayesian Incentive Compatible Mechanisms

We now consider relaxing ex post incentive compatibility to consider Bayesian
incentive compatible (BIC) mechanisms. See the full paper for proofs of the
following results.

Theorem 7. The optimal BIC no-deficit mechanism gets the same expected
profit as Myerson.

The allocation procedure of this optimal BIC mechanism is precisely the allo-
cation procedure of Myerson; the payment rule, however, is different. A BIC
no-deficit payment rule can be derived by shifting payment from inputs where
there is a deficit to ones where their is a surplus. These shifts can be done based
on the joint density function, F, so as to keep the expected payment of an agent,
given their valuation, the same.

Although the proof of this theorem is constructive, it does not give a poly-
nomial time procedure for computing the prices in general. Interestingly, when
there are only two agents, there is a much simpler way of achieving optimality.

Lemma 6. The optimal BIC no-deficit mechanism for two agents is to charge
each agent the expected payment they must make conditioned on being allocated.

Unfortunately, as the next lemma shows, this simple technique does not extend
to more than two bidders.

Lemma 7. The BIC mechanism for three or more agents that charges each
agent the expected payment they must make conditioned on being allocated does
not always satisfy the no-deficit constraint.

Proof. Consider the following counter-example: there are three identical agents;
each (independently) has a value of 2 with probability 0.9 and 11 with probability
0.1. The corresponding virtual valuations are 1 and 11 respectively. The costs
of serving any one, any two, or all three of the agents are 10.99, 20 and 20
respectively. When all three bidders bid 11, Myerson serves all of them at a
price of 2 each, incurring a deficit of 14. When two of the bidders bid 11, they
are all served and each is charged a price equal to her bid. When only one bidder
bids 11, the bidder is served at a price of 11. The expected payment of a bidder
when bidding 11 can be computed to be 10.91. So when all the bidders bid 11,
their combined expected payments are sufficient to cover the total cost of 20.
On the other hand, the expected payment of a bidder on bidding 2 and losing is
0. Therefore, when the three bidders bid 11, 2, and 2, the sum of their expected
payments is 10.91 < 10.99, which is insufficient to cover the cost of serving the
highest bidder. 	


The counter-example in the above proof shows that other natural approaches
fail as well and implies that the proof of Theorem 7 is necessarily not simple.
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7 Conclusions

In this work we have explored the issue of merging the worst case no-deficit
condition with the average case Bayesian optimality objective. We have found
that for many interesting classes of problems it is not easy to describe the optimal
solution nor is there a known algorithm for computing it. Particular questions
of interest are:

1. Is there a concise description of the Bayesian optimal no-deficit ex post
incentive compatible mechanism? In particular this question is interesting
for submodular and general cost functions.

2. Is there a concise description of the payment rule of the Bayesian optimal no-
deficit Bayesian incentive compatible mechanism? (Recall that the allocation
rule is the same as Myerson’s.)

3. Is there an algorithm that computes the Bayesian optimal no-deficit Bayesian
incentive compatible mechanism for submodular costs? It is possible to com-
pute the allocation so the open question is to compute the payments.

4. The BIC no-deficit mechanism constructed in our proof of Theorem 7 is only
ex interim individually rational for the agents (i.e., they may have negative
utility). This is standard for no-deficit mechanism design in economics. It is
an open question as to whether there is a no-deficit mechanism that is also
ex post individually rational.
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Abstract. We study the problem of designing the hyperlink structure
between the web pages of a web site in order to maximize the revenue
generated from the traffic on the web site. We show this problem is equiv-
alent to the well-studied setting of infinite horizon discounted Markov
Decision Processes (MDPs). Thus existing results from that literature
imply the existence of polynomial-time algorithms for finding the op-
timal hyperlink structure, as well as a linear program to describe the
optimal structure. We use a similar linear program to address our prob-
lem (and, by extension all infinite horizon discounted MDPs) from the
perspective of cooperative game theory: if each web page is controlled
by an autonomous agent, is it possible to give the individuals and coali-
tions incentive to cooperate and build the optimal hyperlink design?
We study this question in the settings of transferrable utility (TU) and
non-transferrable utility (NTU) games. In the TU setting, we use linear
programming duality to show that the core of the game is non-empty and
that the optimal structure is in the core. For the NTU setting, we show
that if we allow “mixed” strategies, the core of the game is non-empty,
but there are examples that show that the core can be highly inefficient.

1 Introduction

As electronic commerce begins to dominate the business model of many compa-
nies, the design of an efficient and revenue-maximizing web site is of increasing
importance. A major component of web site design is the selection of the hy-
perlink structure among the web pages. A web designer can be likened to a city
planner, building hyperlink structure so as to steer traffic in a globally optimal
manner. One consideration, which is of particular importance for web sites whose
objective is to provide information for the users, is to facilitate the navigation
through the contents of the web site. The other consideration, in particular for
designing e-commerce web sites, is to present links on each page in order to
direct a surfer through a path of high revenue. The latter objective is the focus
of this paper.1

We provide a graph-theoretic model for this problem. Web pages generate
varying amounts of revenue, perhaps through advertisements or product sales.
1 As we will see in Section 5, our framework can be generalized to accommodate

content-related constraints as well.
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Additionally, web pages display hyperlinks to some other pages on the web site.
Each possible hyperlink has a transition probability representing the probability
that a surfer clicks on the hyperlink conditional on the other links on the page.
The web designer now must select a subgraph which maximizes the expected
revenue of a random walk. As we will show, the stated problem is in fact equiva-
lent to infinite horizon discounted Markov Decision Processes (MDPs) (see [7]).
Thus, the value iteration algorithm for MDPs [7] can be used to compute the
optimal hyperlink structure efficiently.

In this paper, we use a linear-programming formulation for MPDs to give
us insight into some game-theoretic aspects of the web design question (and of
MDPs in general). Often, in large companies like Amazon or MSN, web pages
are controlled by distinct (and sometimes even competing) profit centers, each
responsible for their own profit and loss (P&L) account. It is not reasonable to
assume that a particular profit center, or group of profit centers, will comply
with the optimal web design at its own expense. Rather, it is necessary to divide
the total revenue of the web site among the profit centers to ensure stability.
We formulate our concern as a transferrable utility game and use insights from
cooperative game theory and the LP formulation of the problem to compute
an allocation scheme in the core of the game. This implies that there is always
a way to divide revenue among profit centers such that the optimal web site
design is stable, i.e. each group of profit centers receives a total revenue at least
as large as the revenue they would be able to extract if they deviate as a coali-
tion. We further study the non-transferrable utility game which is more suitable
for situations where monetary transfer between agents managing different web
pages is not possible, i.e., when each web page receives precisely the revenue it
generates. We prove that in this case, if “mixed” strategies are allowed, the core
is non-empty, i.e. there is a web site design where no profit center (or group
of profit centers) can deviate and increase its revenue. However, the efficient
web site design need not be in the core of the game, and furthermore, we show
that there are examples where the revenue of the core is worse than the optimal
solution by an arbitrary factor.

Our work bears some similarity to the long-standing tradition of network
formation games in the economics literature (see [5] for a survey). This literature
takes the standpoint that social networks play a key role in many economic
settings, including labor markets [4], international free trade agreements [3], and
peering and transit relations on the Internet [1]. As such, much effort has been
invested in understanding economic incentives facing agents forming links in
these social networks. A variety of value functions have been proposed to describe
the effect of particular network structures on individuals, and our framework
can be adopted to study these settings as well. However, for many of them, the
computational questions remain open.

The rest of this paper is organized as follows. In Section 2, we define the
model and its relationship to MDPs. In Section 3, we present a linear-
programming formulation for describing the optimum (revenue-maximizing)
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web site design. In Section 4, we use the LP presented in Section 3 to discuss
game-theoretic problems and prove that the cores of both the transferrable util-
ity and non-transferrable utility games are non-empty. We conclude with the
discussion of a multitude of interesting generalizations and open questions in
Section 5.

2 Model

We model a web site as a directed graph G = (N, E). Each node i ∈ N is a
web page. We denote the number of nodes by n = |N |. An edge ij exists from
node i to node j if page i links to page j. We assume that this graph contains
no self-loop, i.e., a web page does not link to itself.

A web surfer is represented by a random walk on this graph. For each page
j, there is a probability pj that the surfer starts surfing from page j. For each
page i, set S ⊂ N \ {i} of other pages, and page j ∈ S, there is a probability
pij,S that a surfer on page i follows a hyperlink to page j, assuming that the
set of pages linked from page i is S. We assume that for all i and S ⊂ N \ {i},∑

j∈S pij,S ≤ 1 − δ for some positive constant δ > 0, i.e., in each step there is a
non-zero probability that the surfer exits the web site.

We define a revenue for a random walk on the web site. The simplest way to
do this is to assign a revenue rj to each page j (this would correspond to the
expected revenue that a surfer visiting page j would generate for the web site
owner, perhaps from the advertisement on the page or by buying a product on
the page), and define the expected revenue of a random walk as the sum, over
all j, of rj times the expected number of times that the random walk visits j. In
this paper, we consider a more general model where the revenues are assigned to
edges instead of vertices: for each hyperlink ij, there a value rij,S representing
the expected revenue generated for page j by a web surfer who has followed link
ij when the links on page i were S. The total revenue is defined as the sum,
over all edges ij in the graph, of rij,S times the expected number of times the
random walk traverses the edge ij. Notice that this is a strictly stronger model,
since setting rij,S = rj for all i and S would be equivalent to assigning revenues
to vertices (of course, we also need to add the value

∑
j pjrj for the revenue of

the first page the surfer visits). Assigning revenues to edges enables us to model
situations where the conversion rate of a user depends on the web page she
is coming from, and will be useful in modelling content-related constraints (as
discussed in Section 5). Note that we defined the total revenue by multiplying
rij,S ’s by the expected number of times the random walk takes the corresponding
edge, as opposed to the probability that the random walk takes this edge. This
means that if the random walk visits a vertex twice, it will benefit the web site
owner twice. This is a realistic assumption in many situations, e.g., where the
revenue is generated from “per-impression” advertisements. For a discussion of
alternative models, see Section 5.
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2.1 The Case of No Externalities

The above model is strong enough to model situations where the probability
that a surfer clicks on a link to page j placed on page i depends not only on i
and j, but also on the set of other links on the page i. In economic terminology,
this means that we can model externalities among the links placed on a page
i. An interesting and important special case is the case of no externalities. In
this case, each page has limited real-estate in which it can display links, and so
each node i can have out-degree at most ki (a parameter). For each i, j ∈ N ,
there is a probability pij that a surfer on page i follows a hyperlink to page j,
if such a link exists. We assume that for all i, and for any set S of ki pages,
the sum

∑
j∈S pij ≤ 1− δ, so these probabilities define a random walk with exit

probability at least δ in each step.2 See Section 5 for a discussion of other models
where instead of (or in addition to) the limit ki on the number of links, there is
a cost associated with placing each link.

2.2 Equivalence to Markov Decision Processes

A Markov Decision Process (MDP) is a common construct used to describe
scenarios with sequential decision-making processes. An MDP consists of a set
of states S, a set of actions A(s) for each state s ∈ S, and a revenue ra,s for each
action/state pair.

In each iteration of an MDP, the system is in a state s, and an action a ∈ A(s)
must be chosen. Actions induce a probability distribution over future states, and
revenue ra,s′ is interpreted as the revenue of taking action a given that the result-
ing state is s′. The goal is to chose an action for each state which maximizes the
total (expected) revenue of the system over time. In infinite horizon discounted
MDPs, the total revenue is calculated with respect to a discounting factor (λ),
i.e. the (expected) revenue r in the t’th iteration contributes λtr to the total
(expected) revenue.

That the model introduced above is equivalent to infinite horizon discounted
MPDs can be seen by equating the set of states S with the web pages N . The
actions A(i) for a web page i ∈ N are subsets S of other pages. By adding a
“terminal” web page and links from each page to the terminal page with appro-
priate probabilities, we can ensure that the sum of the probabilities of the links
leaving each page is precisely 1 − δ. Given this assumption, the induced proba-
bility distribution for taking the action S at state i of the MDP can be defined
as pij,S/(1 − δ). For action S ∈ A(i), a revenue of rij,S is generated given that
the action resulted in future state j. The discounting factor λ is equal to 1 − δ.

Due to the above equivalence, one can easily adapt known algorithms for
MDPs, such as the value iteration algorithm, to compute the optimal hyperlink
design efficiently. Furthermore, it can be easily seen that all of the results of this
paper can be applied to general infinite horizon discounted MDPs.
2 Strictly speaking, in this model there is still externality among the links, since placing

each link further limits the number of other links that can be placed on the page.
However, this is the only form of externality allowed in this case.
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3 Linear Programming Formulation

In this section, we present a linear program which describes the
revenue-maximizing hyperlink structure. For simplicity of presentation, we de-
scribe the program in the case of no externalities.

The optimization question facing a web designer in our setting is to find a
subgraph of the complete graph in which each node has degree at most ki and the
total revenue is maximized. This can be formulated as a mathematical program
as follows. Let xi be a variable representing the expected number of times a web
surfer encounters node i and yij be an indicator variable for the existence of
hyperlink ij. Thus, the expected number of times a web surfer traverses link ij
is simply xipijyij . Relaxing the integrality constraint on yij , the problem then
becomes

max
∑

i,j∈N

rij · (xipijyij) (1)

s.t. ∀ j ∈ N : xj ≤ pj +
∑

i∈N

xipijyij (2)

∀ i ∈ N :
∑

j∈N

yij ≤ ki (3)

∀ i, j ∈ N : 0 ≤ yij ≤ 1
∀ i ∈ N : xi ≥ 0.

Constraint 2 encodes the “conservation of flow”: the expected number of times
xj a surfer visits node j can not be more than the expected number of times
pj he starts surfing from j plus the expected number of times

∑
i∈N xipijyij

that he enters j from a neighboring node. Constraint 3 encodes the out-degree
constraint on a node i.

This mathematical program can be transformed to a linear program by per-
forming the change of variables zij = xiyij . This gives us the program

max
∑

i,j∈N

rijpijzij (4)

s.t. ∀ j ∈ N : xj ≤ pj +
∑

i∈N

pijzij

∀ i ∈ N :
∑

j∈N

zij ≤ kixi

∀ i, j ∈ N : zij ≤ xi

∀ i ∈ N : xi ≥ 0
∀ i, j ∈ N : zij ≥ 0

which is linear in the variables xi and zij . In the next section, we show how
to round an optimal fractional solution (xi, zij) to LP 4 to a solution in which
zij/xi ∈ {0, 1} for all i, j ∈ N . This shows that the above LP formulation exactly
captures the hyperlink design problem, a fact that will be used in the next section
to derive the game-theoretic results.
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3.1 Rounding Technique

Consider an optimal fractional solution to LP 4. For all i ∈ N such that xi > 0
and all j ∈ N , define yij = zij/xi. Notice if yij ∈ {0, 1} for all i, j ∈ N , then we
can use these yij to define a feasible hyperlink structure with optimal revenue.

Otherwise, let G = (N, E) be the graph where edge ij exists if yij > 0 and
has transitional probability pijyij . Consider an arbitrary node i0 ∈ N with at
least one fractional out-going edge, i.e. for at least one j, 0 < yi0j < 1. We “fix”
this node without sacrificing any of the total revenue.

Lemma 1. There is a graph G′ with total expected revenue equal to G in which
i0 has exactly ki0 integral out-links.

Proof. In order to prove this claim, we will write the fractional out-links of i0
in G as a convex combination of feasible integral out-links and show that one of
these corresponding graphs has revenue at least that of G.

As G is an optimal fractional graph, we may assume that
∑

j yi0j = ki0 .
Thus, the {yi0j} lie in the integral polytope described by

∑
j yi0j = ki0 and

0 ≤ yi0j ≤ 1. Let Fl ∈ {0, 1}|N | be the vertices of this polytope, and note that
each Fl has exactly ki0 non-zero coordinates. We represent the {yi0j} as a convex
combination of these vertices

∑
l λlFl where

∑
l λl = 1 and λ ≥ 0.

Consider the graph Gl = (N, El) where i0 only has links in Fl. In other words,
El = E−{yi0j}+{i0j : Fl(j) = 1}. Let R′

l be the expected revenue that a random
walk in Gl starting at i0 collects before returning to i0. Furthermore, let pl be
the probability that a random walk in Gl starting at i0 returns to i0. Note pl < 1
as there is an exit probability at each node. Thus, the total expected revenue Rl

of a random walk starting from i0 in Gl can be written as Rl = R′
l +plRl, and so

Rl =
R′

l

1 − pl
.

We would like to prove that for some l, the revenue Rl of Gl starting at i0 is at
least the revenue of G starting at i0 . We can write the revenue R of G starting
at i0 in terms of R′

l as follows: by linearity of expectation, the expected rev-
enue that a random walk in G starting at i0 collects before returning to i0 is
simply

∑
l λlR

′
l. Also, the probability of returning to i0 is

∑
l λlpl. Therefore,

R =
∑

l λlR
′
l +

∑
l λlplR, and so

R =
∑

l λlR
′
l

1 − ∑
l λlpl

.

Using the fact that
∑

l λl = 1, we can rewrite R as

R =
∑

l λlR
′
l∑

l λl(1 − pl)
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where we restrict the summation to the vertices Fl such that λl > 0. Using the
fact that (

∑
l al)/(

∑
l bl) ≤ maxl(al/bl) for any two sequences of positive reals

{al} and {bl}, we see for some l, the revenue of Gl starting at i0 is at least the
revenue of G starting at i0. Note that the revenue of a random walk starting
from a node j �= i0 is the same in G and Gl until it reaches i0 as we only changed
the out-going links of i0. Therefore, we can conclude that the total revenue of
Gl is at least that of G.

We can now proceed to “fix” iteratively all nodes i with fractional out-links to
get an integral graph G with optimal revenue.

3.2 General Externalities Between Links

We remark that all the results of this section can be extended to the general
case by using the following mathematical programming formulation. Let yi,S be
an indicator variable for the event that page i chooses to link to pages in S.
As before, xi represents the expected number of times a surfer visits page i. By
convention, we define pij,S = 0 for j �∈ S.

max
∑

i,j∈N,S⊆N

rij,S · (xipij,Syi,S) (5)

s.t. ∀ j ∈ N : xj ≤ pj +
∑

i∈N,S⊆N

xipij,Syi,S

∀ i ∈ N :
∑

j∈N,S⊆N

yi,S ≤ 1

∀ i, j ∈ N : 0 ≤ yi,S ≤ 1
∀ i ∈ N : xi ≥ 0.

4 The Cooperative Hyperlink Design Game

Cooperative game theory, defined by von Neumann and Mergenstern in 1944 [10],
studies games in which the primitives are actions taken by coalitions of players
(see [6] for background on cooperative game theory). The setting defined in
Section 2 can be interpreted as a cooperative game where the nodes of the graph
(i.e., the web pages) are the players. Thus, each web page is owned by a individual
self-motivated agent such as a profit center within a company. This individual
seeks hyperlinks that maximize his own revenue, but may cooperate with other
web page owners in doing so and thereby capitalize on the induced externalities
between web pages. For simplicity of presentation, we again describe our results
in the case of no externalities between links, although all our results extend
easily to the general case using program 5.

We consider both a transferrable and non-transferrable utility setting. In a
transferrable utility setting, the value generated by a coalition may be distributed
in an arbitrary manner among the members of the coalition whereas in our
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non-transferrable setting, each node in a coalition receives only the revenue it
generates3.

4.1 Cooperative Game with Transferrable Utility

In a transferrable utility game, the underlying assumption is that the revenue
generated by a coalition may be shared among its members in any manner. A
transferrable utility (TU) game is defined by a value function v which assigns
to every possible coalition of players the value they can achieve. In our setting,
the value v(S) of a subset S of nodes is the value of the corresponding linear
program 4 with variables restricted to the set S (i.e., the LP applied to the
subgraph induced by the nodes in S). A solution of the game is a set of payoffs
ξi, one for each player, such that

∑
i∈N ξi = v(N).

We would like to define a notion which describes the stable solutions of the
game. A standard such notion is that of the core, defined by Gillies, Shapley, and
Shubik in a series of papers in the 1950s and 1960s. A solution is in the core of a
coalitional game with transferrable utility if for all coalitions S,

∑
i∈S ξi ≥ v(S).

Thus, the core is described by a set of linear inequalities.

Definition 1. A set of payoffs ξi is in the core if
∑

i∈N ξi = v(N) and for all
S ⊂ N ,

∑
i∈S ξi ≥ v(S).

We prove that our game has a non-empty core. This claim can be proved using a
famous theorem of Bondareva [2] and Shapley [9] which characterizes the games
with non-empty cores. However, we provide a proof based on LP-duality to
establish our algorithmic result for computing a solution in the core.

In order to write the dual of linear program 4, we assign variables αj , βi, and
γij corresponding to the first, second, and third inequality, respectively. The dual
is then

min
∑

i∈N

αipi (6)

s.t. ∀ j ∈ N : αj − kjβj −
∑

i∈N

γij ≥ 0

∀ i, j ∈ N : − αjpij + βi + γij ≥ rijpij

∀ j ∈ N : αj ≥ 0
∀ i ∈ N : βi ≥ 0
∀ i, j ∈ N : γij ≥ 0.

We claim the payoffs ξi = αipi are in the core. Clearly
∑

i∈N ξi =
∑

i∈N αipi =
v(N) by LP-duality. Also by LP-duality, to prove for all S ⊂ N ,

∑
i∈S ξi ≥ v(S),

we only need to show that the optimal solution (αj , βi, γij) to LP 6 is a feasible
solution to LP 6 restricted to players in S. This follows easily as the inequalities
of LP 6 restricted to the players in S are a subset of those in LP 6.
3 The formal definition of non-transferrable games allows for more general payoff

vectors.
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We have thus proved that our game has a non-empty core, and we can find a
solution in this core in polynomial time.

4.2 Cooperative Game with Non-transferrable Utility

Transferrable utility games assume that the players are able to distribute the to-
tal utility in any manner. In many settings, such an assumption is unreasonable.
For example, in our setting, the performance of a profit center is often measured
in terms of the amount of revenue it generates for the company, and there is no
mechanism through which profit centers may share revenue prior to review. A
non-transferrable utility game generalizes transferable utility games by studying
situations such as these in which not all payoff vectors are feasible for a coalition.

A non-transferrable utility (NTU) game consists of a set N of players and
for each coalition S ⊆ N a set V(S) ⊂ 	|S| of feasible payoff vectors for that
coalition. The sets V(S) are assumed to satisfy some mild assumptions, namely:
1. V(S) is closed; 2. if v ∈ V(S), then for all v′ ∈ 	|S| with v′ ≤ v (coordinate-
wise), v′ ∈ V(S); and 3. the set of vectors in V(S) in which each player receives
at least the utility he can achieve individually is a nonempty, bounded set.
Intuitively, a solution to an NTU game with payoffs v ∈ V(N) is stable (in
the core) if no coalition S can withdraw and achieve a payoff vector v′ ∈ V(S)
such that each member of S improves his payoff. For notational convenience, we
will use v|S denote the vector in 	|S| whose coordinates are the coordinates of v
restricted to the players in S. A vector v ∈ V(N) is in the core of the NTU game
if there is no coalition S and vector v′ ∈ V(S) such that v′ > v|S (coordinate-
wise). The following result of Scarf [8] states a condition under which an NTU
game has a non-empty core.4 Let λS be a fractional partition λS of players, i.e.,
a set of coefficients 0 ≤ λS ≤ 1 of subsets of N such that for all players i,∑

S:i∈S λS = 1. An NTU game is called balanced if, for every fractional partition
λS , a vector v ∈ 	|N | must be in V(N) if v|S ∈ V(S) for all S with λS > 0.

Theorem 1. (Scarf) A cooperative game with non-transferrable utility has a
non-empty core if it is balanced.

In our setting, the set V(S) consists of the payoff vectors v where vi is (at most)
the revenue of i in some hyperlink structure on S. More formally, v ∈ V(S)
if and only if there is a (fractional) graph G on nodes S such that for each
player i ∈ S, vi is at most the expected revenue of i in G. Alternatively, we can
state this condition using program 1: v ∈ V(S) if and only if there is a feasible
solution (xi, yij) to program 1 such that for each player i ∈ S, vi is at most∑

j rji · (xjpjiyji) (the expected revenue of i). These sets V(S) clearly satisfy
the assumptions stated above, and so our game is an NTU game. Here, we use
Scarf’s theorem to prove the following statement.

Theorem 2. There is a fractional graph in the core of the web site game.
4 This is a generalization of the result of Bondareva [2] and Shapley [9] which states

a condition under which a TU game has a non-empty core.
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Proof. Consider any fractional partition λS and payoff vectors v(S) ∈ V(S). Let
v be the vector whose i’th coordinate is the minimum over all S containing i of
v(S)|i. We prove that there is a fraction graph G whose corresponding payoff
vector v′ satisfies v′ ≥ v (coordinate-wise) and thus the game is balanced. Our
theorem then follows from Scarf’s theorem.

Let (xi,S , zij,S) be a feasible solution to LP 4 on set S such that v(S) ≤∑
j∈S rjipjizji,S . Consider the solution (xi, zij) to LP 4 where xi =∑
S:i∈S λSxi,S and zij =

∑
S:i,j∈S λSzij,S . As (xi, zij) is a convex combination

of feasible solutions, it is also feasible and thus the corresponding graph G is a
feasible fractional graph. Furthermore, the revenue v′|i of a node i in G is at
least

∑
j∈N rjipjizji =

∑
S:i∈S λS

∑
j∈S rjipjizji,S ≥ minS v(S)|i ≥ v|i.

Fractional graphs can be thought of as the result of mixed strategies in link
selection. In other words, if we allow a node i to have fractional out-links of
total weight at most ki (or probabilistically select ki links according to their
fractional weight), then the core is non-empty. See section 5 for a discussion
regarding computational issues and “pure” strategies.

We end with a comment regarding the efficiency of the graphs in the core.
Whereas the efficient (that is, revenue-maximizing) graph is in the TU core, this
may not be the case for the NTU core. In fact, the solutions in the NTU core
may be arbitrarily inefficient. As an example, consider the game on three nodes
a, b, and c. Suppose pa = 1 so a surfer always enters the site at node a. The
revenue of any link entering node a is 1, b is 1, and c is R for an arbitrarily large
R. Each node is allowed (fractionally) one out-link. The transition probabilities
are pab = 1/2, pba = 1/2, pac = 1/2, and all other transition probabilities are 0.
It is easy to check that the only solutions in the NTU core of this game include
integrally the set of links {ab, ba}. However, the revenue of any such graph is
constant while the efficient graph {ba, ac} has arbitrarily large revenue.

5 Discussion

Our model and results are quite general and can be accommodated to handle
a large number of scenarios. We discuss some of them here, and mention a few
open questions.

Content-related restrictions. In many web sites, the link structure might be
subject to certain content-related restrictions. For example, perhaps MSNBC
is required to link to MSN search regardless of the transition probability. Our
setting is general enough to handle a wide variety of such restrictions by ap-
propriately setting certain pij,S to zero. In the above example, if a link ij is
required to appear, we can set the probability pi′j′,S to zero for all i′, j′, and
S where j �∈ S. Similarly, if a link ij is forbidden from appearing, we can force
our solution to obey this restriction by setting the probability pij,S of the link
to zero for all S.

Costly links. In our model, the optimal hyperlink structure of a web site de-
pends on the transition probabilities of a links which in turn depend on the set
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of other links on the page. In addition, one could imagine a model in which each
link ij incurs an associated cost cij . This situation can easily be handled in all
our results by appropriately adjusting the maximization objective.

Location-dependent probabilities. We can model situations where page i
has ki “slots” for placing links to other pages, and the probability that a link is
clicked also depends on the slot in which the link is placed.

Accounting for revisits. Our model thus far ignored the history of a surfer in
defining the transition probabilities. However, in some settings it is reasonable
to assume that a surfer is less likely to return to a page he has already visited,
especially in the recent past. The limiting case, when a surfer never returns to a
page he has already visited, is NP-hard as can be seen easily by a reduction from
the longest-path problem. Approximating this instance remains open, as does
the computability of very interesting special cases of limited memory or simple
history-dependent probability structures. In another model, we could assume
that the transition probabilities remain the same regardless of the history, but
the revenue structure changes, i.e., a surfer does not incur any extra revenue the
second time he visits a page.

Handling different demographics. It is commonly acknowledged that differ-
ent demographics have different surfing and purchasing patterns. A 21 year-old
computer scientist from Seattle is more likely to navigate to the automotive sec-
tion of Amazon.com than a 10 year-old school-girl from Wichita and is more
likely to more spend money there than a 46 year-old farmer from Boise. One
way to optimize a web site given such information is to dynamically update the
link structure for each demographic, and indeed some of the larger web sites are
starting to take this approach with a subset of their links. If dynamic links are an
option for a web site, our results apply trivially by solving the problem separately
for each demographic. However, static link structures are still the most prevalent
style, and computing an optimal static link structure given demographic data
and associated probabilities and revenues remains an interesting open problem.

The NTU game. As the proof of Scarf’s theorem uses an exponential-time
algorithm (or, alternatively, fixed-point theorems), our result regarding existence
of the core in the NTU game is non-constructive and we do not know how to
find a fractional graph in the core in polynomial time. Furthermore, we do not
know how to find an integral graph in the core or even prove that one always
exists (although we have not been able to find a counter-example). It might be
possible to prove existence of (and perhaps even compute) an integral graph
in the core using potential proofs similar to those for proving existence of pure
Nash equilibria in non-cooperative games.

The PageRank objective. One of the most commonly used systems for sort-
ing web pages in search engine results is PageRank. As search engines are
the single most essential portal to the web for most surfers, “search engine
optimization” (SEO, as the industry calls it) of a web site is crucial to its
success, so crucial that the commodity of PageRank sells for nearly $100 on
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eBay5. Informally, the PageRank of a web page is defined as the probability of
that page in the stationary distribution of a random walk on the web. Although
the internal hyperlink structure of a web site does not affect it’s average (over
all pages) PageRank, it does affect the maximum: to maximize the PageRank
over all pages of a page in the web site, all pages should link to the page with
highest entrance probability. This structure is trivial and unlikely to work given
the search engine industry’s spam detection efforts. However, one could try to
maximize this objective with certain restrictions on the hyperlink structure that
attempt to avoid detection like maximum in-degree. The NTU game also poses
an interesting question.

Acknowledgments. We would like to thank Gary Flake for asking the question
that motivated this work. We have benefitted from discussions with Christian
Borgs, Jennifer Chayes, Uri Feige, and Gary Flake.
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Abstract. There are many situations in which a customer’s proclivity to
buy the product of any firm depends not only on the classical attributes
of the product such as its price and quality, but also on who else is buying
the same product. We model these situations as games in which firms
compete for customers located in a “social network”. Nash Equilibrium
(NE) in pure strategies exist and are unique. Indeed there are closed-
form formulae for the NE in terms of the exogenous parameters of the
model, which enables us to compute NE in polynomial time.

An important structural feature of NE is that, if there are no a priori
biases between customers and firms, then there is a cut-off level above
which high cost firms are blockaded at an NE, while the rest compete
uniformly throughout the network.

We finally explore the relation between the connectivity of a customer
and the money firms spend on him. This relation becomes particularly
transparent when externalities are dominant: NE can be characterized in
terms of the invariant measures on the recurrent classes of the Markov
chain underlying the social network.

1 Introduction

Consider a situation in which firms compete for customers located in a “social
network”. Any customer i has, of course, a higher proclivity to buy from firm
α, if α lowers its price relative to those quoted by its rivals. But another, quite
independent, consideration also influences i’s decision. He is keen to conform to
his neighbors in the network. If the bulk of them purchase firm β’s product,
then he is tempted to do likewise, even though β may be charging a higher
price than α. Customer i’s behavior thus involves a delicate balance between
the “externality” exerted by his neighbors and the more classical constituents
of demand — the price and the intrinsic quality of the product itself. Such
externalities arise naturally in several contexts (see, e.g., [1],[5],[6],[3],[8],[7]).

The externality in demand clearly has significant impact on the strategic in-
teraction between the firms. Firm α may spend resources marketing its product
to i, not because α cares about i per se as a client, but because i enjoys the
position of a “hub” in the social network and so wields influence on other po-
tential clients that are of value to α. This in turn might instigate rival firms to
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spend further on i, since they wish to wean i away from an excessive tilt toward
α; causing α to increase its outlay on i even more, unleashing yet another round
of incremental expenditures on i.

The scenario invites us to model it as a non-cooperative game between the
firms1. We take our cue from [1],[5] which explore the optimal marketing strategy
of a single firm, based on the “network value” of the customers. Our innovation
is to introduce competition between several firms in this setting. The model
we present is more general than that of [1],[5], though inspired by it. As in
[1],[5], the social network, specifying the field of influence of each customer, is
taken to be exogenous. Rival firms choose how much money to spend on each
customer. For any profile of firms’ strategies, we show that the externality effect
stabilizes over the social network and leads to unambiguous customer-purchases.
A particular instance of our game arises when firms compete for advertisement
space on different web-pages in the Internet (see Section 2.1).

Our main interest is in understanding the structure of the Nash Equilibria
(NE) of the game between the firms. Will they end up as regional monopo-
lies, operating in separate parts of the network? Or will they compete fiercely
throughout? Which firms will enter the fray, and which will be blockaded? And
how will the money spent on a customer depend on his connectivity in the social
network?

For ease of presentation, the focus of this paper is on the quasi-linear2 case
(which includes the model in [1], by setting # firms = 1). We show that NE are
unique and can be computed in polynomial time via closed-form expressions in-
volving matrix inverses. It turns out that, provided that there are no a priori bi-
ases between firms and customers, any NE has a cut-off cost: all firms whose costs
are above the cut-off are blockaded, and the rest enter the fray. Moreover there is
no “regionalization” of firms in an NE: each active firm spends money on every
customer-node of the social network. The money spent on node i is related to the
connectivity of i, but the relation is somewhat subtle, though expressible in precise
algebraic form. When externalities are dominant, however, this relation becomes
more transparent: NE can be characterized in terms of the invariant measures on
the recurrent classes of the Markov chain underlying the social network (see Sec-
tion 4). In particular suppose that the graph representing the social network is
undirected and connected, all the neighbors of any customer-node exert equal in-
fluence on him, and each company values all the nodes equally. Then, at the NE,
the money spent by a company on a node is proportional to the degree of the node.

2 The Model

There is a finite set A of firms and I of customers. We shall define a strategic
game Γ among the firms. The customers themselves are non-strategic in our
model and described in behavioristic terms.
1 Customers are not strategic in our model. As in [1],[5], they are described in behav-

ioristic terms.
2 For generalizations to the non-linear case, see Section 4.
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Firm α ∈ A can spend mα
i dollars on customer i ∈ I by way of marketing its

product to him. This could represent the discounts or special warranties offered
by α to i (in effect lowering, for i, the fixed price that α has quoted for its
product), or free add-ons of supplementary products, or simply the money spent
on advertising to i, etc. The strategy set of firm α may thus be viewed as3 RI

+,
with elements mα ≡ (mα

i )i∈I .
Consider a profile of firms’ strategies m ≡ (mα)α∈A ∈ RI×A

+ . The proclivity
of customer i to buy from any particular firm α clearly depends on the profile
m, i.e., not just the expenditure of α but also that of its rivals. We denote this
proclivity by pα

i (m). One can think of pα
i (m) as the quantity of α’s product

purchased by i. Or, interpreting i to be a mass of customers such as those who
visit a web page i, one can think of pα

i (m) as the fraction of mass i that goes to
α (or, equivalently, as the probability of i going to α). In either setting, we take
pi(m) ≡ (pα

i (m))α∈A ∈ [0, 1]A. (When pα
i (m) is a quantity, there is a physical

upper bound on customer i’s capacity to consume which, w.l.o.g., is normalized
to be 1).

The benefit to any particular firm α from its clientele pα(m) ≡ (pα
i (m))i∈I is∑

i∈I u
α
i p

α
i (m) and the cost of its expenditures mα is

∑
i∈I c

α
i m

α
i .

Thus α’s payoff in the game is given by

Πα(m) =
∑

i∈I
uα

i p
α
i (m) −

∑

i∈I
cαi m

α
i

It remains to define the map from m to p(m).
Customer i’s proclivity pα

i to purchase from firm α is clearly positively corre-
lated with α’s expenditure mα

i on i, and negatively correlated with the expen-
ditures m−α

i ≡ (mβ
i )β∈I\{α}, of α’s rivals.

In addition we suppose that there is a positive externality exerted on i by the
choice of any neighbor j: increases in pα

j may boost pα
i . Negative cross-effects of

pβ
j on pα

i , for β �= α, can be incorporated under certain assumptions (which we
make precise in [2]), but here we suppose that they are absent.

By way of an example of such an externality, think of firms’ products as spe-
cialized software. Then if the users with whom i frequently interfaces (i.e., i’s
”neighbors”) have opted for α’s software, it will suit i to also purchase predomi-
nantly from α in order to more smoothly interact with them. Or else suppose the
firms are in an industry focused on some fashion product. Denote by i’s neigh-
bors the members of i’s peer group with whom i is eager to conform. Once again,
pα

i is positively correlated with pα
j where j is a neighbor of i. Another typical

instance comes from telephony: if most of the people, who i calls, subscribe to
service provider α and if α-to-α calls have superior connectivity compared with
α-to-β calls, then i may have incentive to subscribe to α even if α is costlier
than β.

To define the map from m to p(m), we must turn to the social network. It
is represented by a directed, weighted graph G = (I, E, w). The nodes of G are
3 Budget constraints on expenditures can be incorporated via cost functions (see

Section 4).
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identified with the set of customers I. Each directed edge (i, j) ∈ E ≡ I ×I has
weights (wα

ij)α∈A, where wα
ij ≥ 0 is a measure of the influence j has on i, with

regard to purchases from α. Precisely, if pα = (pα
j )j∈I denotes the proclivities

of purchases, then the externality impact of pα on i is
∑

j∈I w
α
ijp

α
j . We assume

that
∑

j∈I w
α
ij ≤ 1, for all i ∈ I and α ∈ A. (One may view (I, Eα, wα) as the

social network relevant for firm α, with Eα = {(i, j) ∈ E : wα
ij > 0}).

Let us now make explicit how firms’ expenditures, in conjunction with the
externality effect, determine purchases in the social network.

Fix a profile m ≡ (mβ)β∈A ≡ ((mβ
j )j∈I)β∈A of firms’ strategies.

For any firm α and customer i, let γα
i (mi) ∈ [0, 1] denote the proclivity with

which i is initially impelled to buy from firm α on account of the direct “mar-
keting impact”, where (recall) mi ≡ (mβ

i )β∈A gives the expenditures induced on
i by m.

Denoting (mβ
i )β∈A\{α} by m−α

i , it stands to reason that the impact
γα

i (mα
i ,m

−α
i ) be strictly increasing in mα

i for any fixed m−α
i . We assume this

and a little bit more: γα
i is also concave in mα

i for fixed m−α
i , reflecting the

diminishing returns to α of incremental dollars spent on i.
A canonical example we have in mind is γα

i (mi) = mα
i /mi where mi ≡

(
∑

β∈Im
β
i ) (with γα

i (0) ≡ 0). In short, i’s probability of purchase from different
firms is simply set proportional to the money they spend on him4.

Customer i weights the two factors (i.e., the externality impact and the mar-
keting impact) by θα

i and 1 − θα
i , where 0 ≤ θα

i < 1. Thus, given a strategy
profile m, the final steady-state proclivities of purchase p(m) ≡ (pα(m))α∈A ∈
[0, 1]I×A, where pα ≡ (pα

j (m))j∈I , must satisfy.

pα
i (m) = (1 − θα

i )γα
i (mi) + θα

i

∑

j∈I
wα

ijp
α
j (m) (1)

for all α ∈ A and i ∈ I.
Define the |I| × |I|-matrices: I ≡ identity, Θα ≡ the diagonal matrix with

Θα
ii = θα

i and Wα ≡ the matrix with entries wα
ij . Then equation (1) reads

pα(m) = (I −Θα)γα(m) +ΘαWαpα(m).

Since I −ΘαWα is invertible (its row sums being less than 1), we obtain

pα(m) = (I −ΘαWα)−1(I −Θα)γα(m).

This gives

Πα(m) = [uα]�(I −ΘαWα)−1(I −Θα)γα(m) − [cα]�mα (2)

4 More generally, γα
i (mi) = (mα

i /mi)(mi)
r where 0 ≤ r < 1. We may think of (mi)

r

as the “market penetration”, which rises with the total money spent. (If γα
i (mi) is

to be a probability, one must amend (mi)
r to max{(mr

i ), 1} or a suitably smoothed
version of this function.)
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where uα ≡ (uα
j )j∈I ∈ RI

+ and cα ≡ (cαj )j∈I ∈ RI
++ are column vectors and �

stands for the transpose operation. Denote

vα ≡ [uα]�(I −ΘαWα)−1(I −Θα) (3)

Then (2) may be rewritten:

Πα(m) =
∑

i∈I
(vα

i γ
α
i (mi) − cαi m

α
i ) (4)

Our key assumption on γα
i (mi) is that it depends only on the variables mα

i and
m −α

i ≡∑β∈A\{α}m
β
i , i.e., firm α is affected only by the aggregate5 expenditure

of its rivals.
Assume γα

i (mα
i ,m

−α
i ) is continuous; and, furthermore, increasing and differ-

entiable w.r.t. mα
i whenever mi ≡

∑
β∈Am

β
i = mα

i +m −α
i > 0. Let

φα
i (mα

i ,m
−α

i ) ≡ ∂

∂mα
i

γα
i (mα

i ,m
−α

i )

and next define
λα

i (rα
i ,mi) ≡ φα

i (rα
i mi, (1 − rα

i )mi)

(Thus rα
i ≡ mα

i /mi.) We suppose that

λα
i is strictly decreasing in rα

i and in mi (5)

for fixed mi and rα
i respectively. This condition reflects the diminishing returns

on incremental dollars spent by α; it also states that an incremental dollar of α
counts for less when α’s rivals have put in more money.

We also assume that

lim
δ→0

γα
i (δ, 0)
δ

= ∞. (6)

Note that both conditions (5) and (6) are satisfied by our canonical example and
its variants in footnote 4.

Finally we assume that for each customer there exist at least two firms that
value him:

∀i ∈ I, ∃α, α′ ∈ A such that : α �= α′ and uα
i > 0 and uα′

i > 0. (7)

This will create enough competition in an NE to ensure that positive money is
bid on each client, enabling us to steer clear of possible discontinuity6 of γα

i at 0.
5 Aggregation is a form of anonymity that is common to many markets. It says, in

essence, that if a firm pretends to be two entities and splits its expenditure between
them, this has no effect on other firms. This form of “anonymity toward numbers”
is tantamount to aggregation.

6 As occurs in our canonical example.
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2.1 An Example: Competition for Advertisement on the Web

Think of the web as a set I of pages, each of which corresponds to a distinct
node of a graph. A directed arc (i, j) means that there is a link from page j to
page i.

At the beginning of any period, two kind of “surfers” visit page i. There are
those who transit to i from other pages j in the web. Furthermore, there are
“fresh arrivals”, entering the web for the first time, via page i at rate ψi.

At the end of the period, a fraction (1 − θi) of the population on the page
i exits the web, while the remaining fraction θi continues surfing (where 0 ≤
θi < 1). The weight on (i, j), which we denote ωij , gives the probability that a
representative surfer, who is on page j and who continues surfing, moves on to
page i (or, alternatively, the fraction of surfers on page j who transit to page i).
Thus

∑
i∈I ωij = 1 for all j ∈ I.

Companies α ∈ A compete for advertisement on the web pages. If they spend
mi ≡ (mα

i )α∈A dollars to place their ads on page i, they get “visibility” (time,
space) on page i in proportion to the money spent. Thus the probability that a
surfer views company α’s ad on page i is mα

i /mi = γα
i (mα

i ,mi).
The payoff of a company is the aggregate “eyeballs” of its advertisement

obtained, in the long run (i.e., in the steady state).
To compute the payoff, let us first examine the population distribution of

surfers across nodes in the unique steady state of the system.
Denote by φi denote the arrival rate of surfers (of both kinds) to page i. Then,

in a steady state, we must have

φi = ψi +
∑

j∈I
ωijθjφj

for all i ∈ I. In matrix notation, this is

φ = ψ +ΩΘφ

where φ ≡ (φi)i∈I and ψ ≡ (ψi)i∈I are column vectors, Θ is the diagonal I × I
matrix with entries θii = θi, and Ω is the I × I matrix with entries ωij . Hence

φ = (I −ΩΘ)−1ψ

The total eyeballs (per period) obtained by company α is then
∑

i∈I
φiγ

α
i (m)

which fits the format of (4).
More generally, suppose surfers have bounded recall of length k. Then firm

α will only care about any surfer’s eyeballs in the last k periods prior to the
surfer’s exit. When k = 1, α’s payoff is

∑

i∈I
(1 − θi)φiγ

α
i (m)
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The expression for vα
i will become complicated when the recall k > 1 (more so,

if discounting of past memory is incorporated). But the payoffs in all these cases
still fit the format of (4).

Generalizing in a different direction, suppose that surfers at page i, who have
spent t periods in the web, exit at rate θt

i for t = 1, 2 . . .. Denote by Θt the
diagonal matrix whose iith entry is θt

i . Then φ = (I +ΩΘ1 +ΩΘ2ΩΘ1 + . . .)ψ,
which is well-defined provided we assume θt

i ≤ Δ < 1 for some Δ (for all t, i).
This retains the format of (4) though the expression for vα

i becomes even more
complicated. One could also incorporate bounded recall in this setting, without
departing from (4).

Notice that the “externality” in the above examples is reflected in the move-
ment of traffic across pages in the web. Also notice that the games derived are
anonymous i.e. vα

i = vi for all α. Such games will be singled out for special
attention later.

2.2 Uniqueness of Nash Equilibrium

Recall that a strategy profile m is called a Nash Equilibrium7 (NE) of the
game Γ if

Πα(m) ≥ Πα(m̃α,m−α) ∀ m̃α ∈ RI
+

for all α ∈ A (where m−α ≡ (mβ)β∈I\{α}).

Theorem 1. Under hypotheses (5), (6), (7), there exists a unique Nash Equi-
librium in the quasi-linear model.

Proof: See [2].

2.3 Characterization of Nash Equilibrium

Theorem 2. Consider our canonical case: γα
i (mi) = mα

i /mi (other closed-form
expressions for the γα

i will lead to analogous characterizations). Fix customer i
and rank all the firms in A ≡ {1, 2, . . . , n} in order of increasing κα

i ≡ cαi /v
α
i

(see (3) for the definition of vα
i ). For convenience denote this order κ1

i ≤ κ2
i ≤

. . . ≤ κn
i . Let

ki = max

{

l ∈ {2, . . . , n} : (l − 2)κl
i <

l−1∑

α=1

κα
i

}

(8)

In the unique NE, firms 1, . . . , ki will spend money on customer i as follows:

mα
i =

(
ki − 1
∑ki

β=1 κ
β
i

)(

1 − (ki − 1)κα
i

∑ki

β=1 κ
β
i

)

(9)

Firms ki + 1, . . . , n put no money on customer i.
7 Throughout we confine attention to “pure” strategies.
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Proof: See [2].

According to Theorem 2, companies α can be ranked, at each customer-node i,
according to their “effective costs” κα

i . The money mα
i , spent by α on i, is a

strictly decreasing function of κα
i upto some threshold, after which it becomes

zero.
Theorem 2 confirms the obvious intuition thatmα

i = 0 if vα
i = 0 (i.e., κα

i = ∞,
recalling that cαi > 0 by assumption). It also brings to light a different, and more
important, feature of NE. First recall that, by (3), vα

i may well be highly positive
even though the direct value uα

i of customer i to company α is zero. This is
because vα

i incorporates the network value of i, stemming from the possibility
that i may be exerting a big externality on other customers whom α does directly
value. Now, since κα

i falls with vα
i , (9) reveals that α may be spending a huge

mα
i on i even when uα

i is zero, purely on account of the network value of i.

2.4 Impact of the Social Network on Nash Equilibrium

To get a better feel for Theorem 2, it might help to consider some examples.
Suppose there are five customers {1, 2, . . . , 5} and four firms {α1, α2, β1, β2}.

The customers are arranged in a linear network, with i connected to i+1 via an
undirected (i.e., directed both ways) edge, for i = 1, 2, 3, 4. Suppose each node is
equally influenced by its neighbors in the purchase of any firm’s product. Thus
(wγ

11, w
γ
12, w

γ
13, w

γ
14, w

γ
15) = (0, 1, 0, 0, 0), (wγ

21, w
γ
22, w

γ
23, w

γ
24, w

γ
25) = (0.5, 0, 0.5,

0, 0) etc., for any company γ. Further suppose θγ
i = 0.1 and cγi = 1 for all γ

and i. Finally let uα1 = uα2 = (1, 1, 0, 0.1, 0.1) and uβ1 = uβ2 = (0.1, 0.1,
0, 1, 1). Formula (3) yields vα1 = vα2 = (0.950, 0.998, 0.055, 0.102, 0.095) and
vβ1 = vβ2 = (0.095, 0.102, 0.055, 0.998, 0.950) and hence κα1 = κα2 = (1.053,
1.002, 18.182, 9.779, 10.514) and κβ1 = κβ2 = (10.514, 9.779, 18.182, 1.002,
1.053). It follows from Theorem 2 that firms α1 and α2 will put no money on
customers 4, 5 and positive money on the rest; while firms β1 and β2 will put
no money on customers 1, 2 and positive money on the rest. In effect, there will
“regionalization” of customers into α-territory {1, 2, 3} and β-territory {3, 4, 5}.
The only overlap is customer 3, who is of zero direct value uγ

3 to all firms γ and
yet is being equally targeted by them, purely on account of his network value.

The situation dramatically changes when the game is anonymous i.e., vα
i = vi

and cαi = cα for all α and i. (The first identity holds in particular — see (3) —
when wα

ij = wij , θα
i = θi, and uα

i = ui, for all α, i and j, i.e., there are no a priori
biases between firms and customers.) Our analysis in Section 2.3 immediately
implies that we can rank the firms, independently of i, by their costs; say (after
relabeling)

c1 ≤ c2 ≤ . . . ≤ cn

At the Nash Equilibrium a subset of low-cost firms {1, . . . , k} will be active
(see (8), while all the higher-cost firms {k + 1, . . . , n} will be blockaded, where

k = max

⎧
⎨

⎩
l ∈ {2, . . . , n} : (l − 2)cl <

l−1∑

β=1

cβ

⎫
⎬

⎭
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Each active firm α ∈ {1, . . . , k} will spend an amount mα
i > 0 on all the nodes

i ∈ I that is proportional to vi. Indeed, by (9), we have

mα
i =

vi(k − 1)
∑k

β=1 c
β

(

1 − (k − 1)cα
∑k

β=1 c
β

)

which also shows that mα ≥ mβ if α < β, i.e., lower cost firms spend more
money than their higher-cost rivals. Finally, adding across α we obtain

mi =
vi(k − 1)
∑k

β=1 c
β

Thus there is no regionalization of customer territory at NE, with firms operating
in disjoint pieces of the social network. Instead, firms that are not blockaded,
compete uniformly throughout the social network.

3 When Externalities Become Dominant

3.1 A Markov Chain Perspective

It is often is too expensive for a firm α to provide meaningful subsidies mα
i to

each customer i. Indeed the marketing division of firm α is typically allocated
a fixed budget Mα and, if there is a large population of customers, then the
individual expenditures mα

i must perforce be small. In this event, customers’
behavior is predominantly driven by the externality effect of their neighbors. We
can capture the situation in our model by supposing that all the θα

i are close
to 1.

Thus we are led to inquire about the limit of the NE as the θα
i −→ 1 for all α

and i. (In this scenario we will also obtain a more transparent relation between
NE and the graphical structure of the social network.)

To this end — and even otherwise— it is useful to recast our model in prob-
abilistic terms. Assume, for simplicity, that

∑
j∈I w

α
ij = 1 for all i and α. Let

us consider a Markov chain with I as the state space and Wα as the transi-
tion matrix (i.e., wα

ij is the probability of going from i to j.). Let it denote the
(random) state of the chain at date t = 0, 1, 2, . . .. Suppose that, upon arrival
in state it, a choice Lt ∈ {Stop,Move} is made with Prob(Lt = Move) = θα

it
.

Let T be the first time Lt = Stop and consider the random variable γα
iT

(m).
If φα(i) denotes the conditional expectation E[γα

iT
(m)|i0 = i], then clearly the

I-dimensional vector φα, substituted for pα(m), satisfies equation (1). Since this
equation has a unique solution, it must be the case that pα(m) = φα.

Recall that each vector uα is positive, and so we may write uα = yαξα, where
yα > 0 is a scaler and ξα is a probability distribution on I. The weighted sum
[uα]�p(m) is then equal to yα

∑
i∈I ξ

α
i φ

α(i) which in turn can be expressed as
yαE[γα

iT
(m)], provided we assume that the probability distribution of the initial

state i0 is ξα. Therefore the vector vα/yα is just the probability distribution of
iT initializing the Markov chain at ξα.
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We want to analyze the asymptotics of vα as the θα
i converge to 1 (since the

unique NE of our games are determined by vα). Let us first consider the simple
case when θα

i = θα for all i. Then the random time T becomes independent of
the Markov chain and we get easily that prob(T = t) = (1 − θα)(θα)t.

Therefore
vα

i /y
α = prob(iT = i)

=
∑∞

t=0 prob(T = t)prob(it = i|T = t)
=
∑∞

t=0 prob(T = t)prob(it = i)
=
∑∞

t=0 prob(T = t)E[11i(it)]
= E[

∑∞
t=0(1 − θα)(θα)t11i(it)]

where 11i is the indicator function of i: 11i(j) = 0 if j �= i and 11i(i) = 1.
Recall that a sequence {at}t∈IN of real numbers is said to

i) Abel -converge to a if limθ→1

∑∞
t=0(1 − θ)(θ)tat = a.

ii) Cesaro-converge to a if limN→∞N−1
∑N−1

t=0 at = a.
The Frobenius theorem (see, e.g., line 11 on page 65 of [4]) states that a

Cesaro-convergent sequence is Abel-convergent to the same limit. So, to analyse
the limit behavior of vα

i , it is sufficient to consider the Cesaro-convergence of
{11i(it)}t∈IN .

The finite state-set I of our Markov chain can be partitioned into recurrent
classes Iα

1 , . . . , I
α
k(α) and a set of transient states Iα

0 . Each recurrent class Iα
s is

the support of a unique invariant probability measure μα
s .

If the Markov process starts within a recurrent class Iα
s (i.e., i0 ∈ Iα

s ), then the
ergodic theorem states that, for an arbitrary function f on I, N−1

∑N−1
t=0 f(it)

converges almost surely to Eμα
s
[f ].

If it starts at a transient state i ∈ Iα
0 , then we may define the first time τ that

it enters ∪s≥1I
α
s . Let S be the index of the recurrence class iτ belongs to. The

ergodic theorem also tells us in this case that N−1
∑N−1

t=0 f(it) converges almost
surely to the random variable Eμα

S
[f ].

Let us define μ̂α,i as the expectation E[μα
S ], if i ∈ Iα

0 and as μα
s if i ∈ Iα

s

(s ≥ 1). Then we clearly get E[N−1
∑N−1

t=0 f(it)|i0 = i] −→ Eμ̂α,i [f ]. Therefore,
denoting μ̂α ≡∑i∈I ξ

α
i μ̂

α,i, the Frobenius theorem implies

Theorem 3. As θα tends to 1, vα
i converges to yαEμ̂α [11i] = yαμ̂α

i .

Corollary 1. Suppose that the graph of the underlying social network is undi-
rected and connected. Further suppose

θα
i = θ, wik′ = wik and

∑

j∈I
wij = 1

for all α ∈ A, i ∈ I and k, k′ such that wik > 0 and wik′ > 0 (i.e., all the nodes
connected to i have the same influence on i). Finally suppose that uα

i is invariant
of i for all α (i.e., each company values all clients equally), w.lo.g. uα

i = 1/|I|
for all α and i. Then as θ tends to 1, the money spent at NE by a company on
any node is proportional to the degree8 of the node.
8 Recall that the degree of a node in an undirected graph is the number of edges

incident on it.
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To verify the corollary note that the invariant measure is (obviously) propor-
tional to the degree. By Theorem 3, vα

i = vi converges to the degree of i as θ
tends to 1. But, by Section 2.4, mα

i is proportional to vi.
Let us now deal with the general case where θα

i are not all the same. We will
analyze the situation where θα

i is a function of a parameter θ going to 1 with
the following hypotheses:

lim
θ→1

θα
i (θ) = 1, for all i (10)

θα
i (θ) < 1, for all i and θ < 1. (11)

0 < lim
θ→1

1 − θα
i (θ)

1 − θα
1 (θ)

= δα
i <∞ (12)

For simplicity, we will also assume that I = Iα
1 , i.e., there is just one recurrent

class comprising all the vertices.

Theorem 4. Under (10), (11), (12), vα
i converges to yα δα

i μα
i∑

j∈I δα
j μα

j
as θ tends

to 1.

Proof: See [2].

4 Generalizations

We have reported on some of the key results in [2]. But as shown in [2], much of
the analysis can be extended to the case when externalities, utilities and costs
are not necessarily linear but satisfy certain concavity/convexity conditions. In
particular it can be shown that, if externalities form a “contraction”, the strategic
game between the firms is well-defined. Furthermore, under standard convexity
hypothesis, NE continue to exist in pure strategies (see Theorem 1 of [2]). The
important fixed-budget case

Cα(m) =
{

0 if
∑

i∈I m
α
i ≤Mα

−∞ otherwise

is admitted by us, as Cα is convex. (One may imagine here that the marketing
division of each company α has been allocated a budget Mα to spend freely as
it likes.)

It is no longer true that NE are unique (see the simple example in [2]). But
if there is “enough competition” between firms, in the sense that each firm has
“sufficiently many” rivals whose characteristics are “nearby”, uniqueness of NE
is restored. Uniqueness also holds if firms’ valuations of clients are anonymous
(i.e., there are no a priori biases between firms and clients), no matter how
heterogenous the costs of the firms (for details see Section 5 of [2]).

Finally in [2], we also show that cross-effects (of pβ
j on pα

i ) can be incorporated,
under some constraints, in our model without endangering the existence of NE.
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Abstract. We consider a scenario of distributed service installation in privately
owned networks. Our model is a non-cooperative vertex cover game for k players.
Each player owns a set of edges in a graph G and strives to cover each edge by an
incident vertex. Vertices have costs and must be purchased to be available for the
cover. Vertex costs can be shared arbitrarily by players. Once a vertex is bought, it
can be used by any player to fulfill the covering requirement of her incident edges.
Despite its simplicity, the model exhibits a surprisingly rich set of properties.
We present a cumulative set of results including tight characterizations for prices
of anarchy and stability, NP-hardness of equilibrium existence, and polynomial
time solvability for important subclasses of the game. In addition, we consider
the task of finding approximate Nash equilibria purchasing an approximation to
the optimum social cost, in which each player can improve her contribution by
selfish defection only by at most a certain factor. A variation of the primal-dual
algorithm for minimum weighted vertex cover yields a guarantee of 2, which is
shown to be tight.

1 Introduction

In this paper we consider a simple model for service installation in networks, e.g. high-
way or communication networks like the internet. Many networks including the inter-
net are built and maintained by a number of different agents with relatively limited
goals whereas others are centrally planned and operated – e.g. the system of interstate
highways in some countries is centrally owned and planned whereas in other countries
certain roads are owned privately. In particular, we consider a simple model in which
network owners have to make a concrete investment to establish a service at a location
in the network. Network connections are owned by different players, and each player
strives to establish a service point at different locations along her connections. These
service points could be resting facilities at highways or caching, buffering, or amplifi-
cation technology in telecommunication networks. We investigate the question of how
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Large Information Spaces”.
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the quality and density of these service locations changes when networks are owned pri-
vately vs. owned by a central authority. A player owning a set of connections has an in-
centive to cover all her connections with service. The motivation for this might either be
economical or lawfully enforced. If at a location a service point is already established,
the incident connections are covered. This might alter the motivation for some players
to invest. Formally we model this interaction with a non-cooperative game, which we
call the vertex cover game and analyze using notions from algorithmic game theory.

Our game is similar in spirit to the one considered in [2] for network creation. We
assume that a number of k non-cooperative players have to create service points in
a network. The network is modeled as a graph G = (V, E), in which edges represent
roads or connections and vertices represent possible service point locations. Each player
i owns a subset Ei ⊆ E of edges and strives to establish a service point at at least
one endpoint of each edge in Ei, but with minimum investment. For establishing a
service point at a vertex v, a cost c(v) has to be paid, which can be shared among
different players. A strategy for a player is an assignment of payments to vertices in
V , and once a vertex is bought – that is, when a total amount of c(v) is offered by
the players for a vertex v, this vertex can be used by all players to cover any of their
incident edges – no matter whether they contribute to the cost or not. In this game both
the problem of finding the optimum strategy for a player and the problem of finding
a centralized optimum cover for all edges of all players are the classic optimization
problem of minimum weighted vertex cover.

We investigate our non-cooperative game in terms of stable solutions, which are the
pure strategy Nash equilibria of the game. We do not consider mixed strategy equi-
libria, because our environment requires a concrete investment rather a randomized
action, which would be the result of a mixed strategy. We consider the price of anar-
chy [14, 16], which measures the ratio of the cost of the worst Nash equilibrium over
the cost of a minimum cost cover satisfying all requirements of all players for a game.
In addition, we investigate the price of stability [1], which measures the best Nash equi-
librium in terms of the optimum cost instead of the worst equilibrium. As in general
both of these ratios are in Θ(k), we investigate the question how to derive cheap covers
and cost distributions that provide low incentives to selfishly defect. We present an effi-
cient algorithm with small constant approximation ratios and provide tightness results.
In addition, we show that determining existence of Nash equilibria in the vertex cover
game is NP-hard.

1.1 Related Work

The vertex cover problem is a classic optimization problem in graph theory and has been
studied for decades. Recently, distributed variants of the problem have attracted interest
in the area of algorithmic game theory. Specifically, a cooperative vertex cover game
was studied in a more general context by Immorlica et al. [11]. In this coalitional game,
each edge is an agent and each coalition of players is associated with a certain cost value
- the cost of a minimum cover. In [11] cross-monotonic cost sharing schemes were in-
vestigated. For each coalition of players covered they distribute the cost to players in
a way that every player is better off if the coalition expands. The authors showed that
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no more than O(n− 1
3 ) of the cost can be charged to the agents with a cross-monotonic

scheme.
Closely related to cooperative games is the study of cost sharing mechanisms. Here a

central authority distributes service to players and strives for their cooperation. Starting
with [6] cost sharing mechanisms have been considered for a game based on set cover.
Every player corresponds to a single item and has a private utility (i.e. a willingness
to pay) for being in the cover. The mechanism asks each player for her utility value.
Based on this information it tries to pick a subset of items to be covered, to find a
minimum cost cover for the subset and to distribute costs to covered item players such
that no coalition can be covered at a smaller cost. A strategyproof mechanism allows no
player to lower her cost by misreporting her utility value. The authors in [6] presented
strategyproof mechanisms for set cover and facility location games. For set cover games
[18, 15] recently considered different social desiderata like fairness aspects and model
formulations with items or sets being agents.

Cooperative games and the mechanism design framework are used to capture situa-
tions with selfish service receivers who can either cooperate to an offered cost sharing
or manipulate. Players may also be excluded from the game depending on their utility.
A major goal has been to derive good cost sharing schemes that guarantee truthful-
ness or budget balance. Our game, however, is strategic and non-cooperative in nature
and allows players a much richer set of actions. In our game each player is motivated
to participate in the game. We investigate distributed uncoordinated service installation
scenarios rather than a coordinated environment with a mechanism choosing customers,
providing service and charging costs. Our study is, however, related to these develop-
ments – especially the singleton games, which we study in Section 5.

Our analysis uses concepts developed for non-cooperative games in the area of
algorithmic game theory, in particular prices of anarchy and stability characterizing
worst- and best-case Nash equilibria. The price of anarchy has been studied in a large
and diverse number of games, e.g. in areas like routing and congestion [14, 17, 3],
network creation [2, 8], or wireless ad-hoc networks [7, 9]. The price of stability [1]
has been introduced more recently and studied for instance in network creation games
[1, 10] or linear congestion games [5]. Characterizing selfish improvement possibilities
and social cost of a strategy combination in terms of multiplicative factors has been
recently introduced in the study of network creation games [2, 10].

1.2 Outline and Contributions

We study our vertex cover game with respect to quality of pure strategy exact and ap-
proximate Nash equilibria. Throughout the paper we denote a feasible cover by C and
the centralized optimum cover by C∗. All proofs omitted in this extended abstract will
be given in the full version of this paper. Our contributions are as follows.

– Section 2 presents the model and some initial observations. In Section 3 we show
that the price of anarchy in the vertex cover game is k, even when the underlying
graph is a tree. There exist simple unweighted and weighted games for two players
without Nash equilibria. They can be used to prove that the price of stability can
be arbitrarily close to k − 1. Determining existence of Nash equilibria for a given
game is NP-hard, even for unweighted games or two players.
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– In Section 4 we study a two-parameter optimization problem: Find covers that are
cheap and allow low incentives for players to deviate. We formalize this notion as
(x, y)-approximate Nash equilibria and propose a simple algorithm that finds (2,2)-
approximate Nash equilibria for any vertex cover game. In addition to this algorith-
mic result, we show that in general there are games without a (x, y)-approximate
equilibrium for x < 2. Recent progress on the complexity status of the minimum
vertex cover problem can be used to reasonably conjecture that there can be no
polynomial time algorithm with a better guarantee for the approximation ratio y as
well. For planar games our argument extends to a lower bound of 1.5 on x, which
can be increased close to 2 by forcing y to be close to 1 indicating a Pareto rela-
tionship between the ratios.

– Finally, in Section 5 we present games for which the price of stability is 1. For the
class of singleton games, in which each player owns exactly one edge, we relate
the results to recent work on mechanism design and cooperative game theory. For
bipartite games, in which the graph is bipartite, our proof is based on the max-
flow/min-cut technique for vertex cover. This provides new game-theoretic inter-
pretations of classic results from graph theory and polynomial time algorithms to
calculate cheap Nash equilibria.

2 The Model and Basic Results

The vertex cover game for k players is defined as follows. In an undirected graph G =
(V, E) with n = |V | and m = |E| each player i owns a set Ei ⊆ E of edges. We
denote by G[Ei] the graph induced by the edges in Ei, and by V (G[Ei]) the set of
vertices of G[Ei]. Each player strives to establish service at least one endpoint of each
of her edge. For each vertex v there is a nonnegative cost c(v) for establishing service
at this vertex. A strategy for a player i is a function pi : V → IR+

0 specifying an offer
to costs of each vertex. The cost of a strategy pi for player i is the sum of all money
she offers to the vertices. Once the sum of offers of all players for vertex v exceeds its
cost it is considered bought. Bought vertices can be used by all players to cover their
incident edges. Each player strives to minimize her cost, but insists on covering her
edges. A payment scheme is a vector p = (p1, . . . , pk) specifying a strategy for each
player. A Nash equilibrium is a payment scheme such that no player i can unilaterally
improve her payments by changing her strategy and still cover all her edges in Ei.
A (x, y)-approximate Nash equilibrium is a payment scheme purchasing a cover C for
which every player can improve her cost at most by a factor of x by switching to another
strategy, and such that c(C) ≤ yc(C∗). We will refer to the factor y as the approximation
ratio, and we term x as the stability ratio. The definitions of the approximation ratio and
the stability ratio coincide for single-player games. Finally, we call a game unweighted
if all vertices have equal costs, and weighted otherwise. We refer to games with a planar
graph G as planar games.

The following observations can be used to simplify a game. Suppose an edge e is
not included in any of the players edge sets. This edge is not considered by any player
and has no influence on the game. Hence, in the following w.l.o.g. we will assume that
E =

⋃k
i=1 Ei.
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For a player i assume the graph G[Ei] induced by the players edge set Ei is not
connected. The player has to cover edges in each component and her optimum strategy
decomposes to cover both components independently at minimum cost. Hence, we can
form an equivalent game in which the edges for each of the ki components are owned
by different subplayer i1, . . . , iki . Then any approximate Nash equilibrium from this
equivalent game can be translated to the original game, and eventually the stability
ratio improves. Hence, for deriving approximate Nash equilibria we can assume that
the edges of each player form only a single connected component.

Suppose an edge e ∈ E is owned by a player i and a set of players J , i.e. e ∈
Ei ∩ (

⋂
j∈J Ej). This is equivalent to one parallel edge for each player. Now consider

a Nash equilibrium for an adjusted game in which there is only one edge e owned only
by player i. In this equilibrium a player j ∈ J has no better strategy to cover the edges
in Ej − e. However, e is covered as well, potentially by a different player. If e is added
to Ej again j has no incentive to deviate from her strategy as her covering requirement
only increases. The Nash equilibrium for the adjusted game yields a Nash equilibrium
in the original game. Hence, in the following we will assume that all edge sets Ei are
mutually disjoint.

3 Quality and Existence of Nash Equilibria

In this section we consider the quality of pure Nash equilibria and the hardness of
determining their existence. In general it is not possible to guarantee their existence,
they can be hard to find or expensive. At first observe that the price of anarchy in the
vertex cover game is k.

Theorem 1. The price of anarchy in the vertex cover game is exactly k.

Proof. Consider a star in which each vertex has cost 1 and each player owns a single
edge. The centralized optimum cover C∗ is the center vertex of cost 1. If each player
purchases the vertex of degree 1 incident to her edge, we get a Nash equilibrium of
cost k. Hence, the price of anarchy is at least k. On the other hand, k is a simple upper
bound. If there is a Nash equilibrium C with c(C) > kc(C∗), there is at least one player
i that pays more than c(C∗). She could unilaterally improve by purchasing C∗ all by
herself. ��
Note that the price of anarchy is k even for very simple games in which every player
owns only one edge and G is a tree. Hence, we will in the following consider existence
and quality of the best Nash equilibrium in a game.

Lemma 1. There are planar games for two players without Nash equilibria.

Proof. We consider the game for two players in Fig. 1(a) for an ε > 0. For this game we
examine four possible covers. A cover including all three vertices cannot be an equilib-
rium, because vertex u is not needed by any player to fulfill the covering requirement.
Hence, any player contributing to the cost of u could feasibly improve by removing
these payments. Suppose the cover representing an equilibrium includes v1 and v2. If
player 1 contributes to v1, she can remove these payments, because she only needs v2
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(a) (b)

Fig. 1. Games for two players without Nash equilibria. (a) weighted game; (b) unweighted game.
Edge type indicates player ownership. For the weighted game numbers at vertices indicate vertex
costs.

to cover her edge. With the symmetric statement for v2 we can see that in equilibrium
player 1 could not pay anything. Player 2, however, cannot purchase both v1 and v2,
because buying u offers a cheaper alternative to cover her edges. Finally, suppose u
and v1 are in the cover. In equilibrium player 1 will not pay anything for u. Player 2,
however, cannot purchase u completely, because v2 offers a cheaper alternative to cover
the edge (u, v2). With the symmetric observation for the cover of u and v2, we see that
there is no feasible cover that can be purchased by a Nash equilibrium. With similar
arguments we can prove that the game on K4 depicted in Fig. 1(b) has no pure Nash
equilibria. This proves the lemma. ��

Fig. 2. A game with k=8, for which the cost of any Nash equilibrium is close to (k − 1)c(C∗).
Numbering of edges indicates player ownership. Indicated vertices have cost ε′ � 1, vertices
without labels have cost 1.

Theorem 2. For any ε > 0 there is a weighted game in which the price of stability is
at least (k − 1)− ε. There is an unweighted game in which the price of stability is k+2

4 .

Proof. Consider a game as depicted in Fig. 2. The centralized optimum cover includes
the center vertex of the star and three vertices of the K4-gadget yielding a total cost of
1 + 3ε′. If the center vertex of the star is in the cover and we assume to have a Nash
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equilibrium, no player can contribute anything to vertices of the K4-gadget incident
to edges of player 1 and 2. For this network structure, however, it is easy to note that
players 1 and 2 cannot agree on a set of vertices covering their edges. Hence, to allow
for a Nash equilibrium, the star center must not be picked which in turn requires all
other adjacent star vertices to be in the cover. Under these conditions the best feasible
cover includes the vertex that connects K4 to the star yielding a cost of k − 1 + 3ε′.
Note that we can derive a Nash equilibrium purchasing this cover by assigning each
player to purchase a star vertex - including the vertex that also belongs to K4. Players
1 and 2 are assigned to purchase one of the additional K4 vertices, respectively. With
ε = 3ε′(k−2)

1+3ε′ the first part of the theorem follows. For the unweighted case we simply
consider the game graph with all vertex costs equal to 1. A similar analysis delivers the
stated bound and proves the second part of the theorem. ��
Theorem 3. It is NP-hard to determine whether (1) an unweighted vertex cover game
or (2) a weighted vertex cover game for 2 players has a pure strategy Nash equilibrium,
even if the graphs G[Ei] are forests.

4 Approximate Equilibria

In the previous section we saw that in general cheap pure Nash equilibria can be absent
from the game. Hence, we study existence and algorithmic computation of solutions to
a two-parameter optimization problem. Recall that (x, y)-approximate Nash equilibria
are payment schemes that allow each player to reduce her payments by at most a factor
of x and approximate c(C∗) to a factor of y.

Algorithm 1: (2,2)-approximate Nash equilibria
pi(v)← 0 for all players i and vertices v
γi(e)← 0 for all players i and edges e
while there is an uncovered edge e = (u, v) ∈ E do

Let i be the player owning edge e, and let γi(e)← min(c(u), c(v))
Increase payments: pi(u)← pi(u) + γi(e) and pi(v)← pi(v) + γi(e)
Add all purchased vertices to the cover
Reduce vertex costs: c(u)← c(u)− γi(e) and c(v)← c(v)− γi(e)

Theorem 4. Algorithm 1 returns a (2,2)-approximate Nash equilibrium in O(k(n+m))
time.

The algorithm is an adaption of the primal-dual algorithm for minimum vertex cover. It
is also used to show that any socially optimum cover C∗ can always be purchased by a
(2, 1)-approximate Nash equilibrium.

Theorem 5. For every game there is a (2,1)-approximate Nash equilibrium.

For lower bounds on the ratios we note that any algorithm to find a (x, y)-approximate
Nash equilibrium in the vertex cover game can be used as an approximation algorithm
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for minimum weighted vertex cover with approximation ratio min(x, y). The argument
follows simply by considering a game with one player. This observation can be com-
bined with recent conjectures on the complexity status of the minimum weighted vertex
cover problem [13]. It suggests that if P 	= NP and the unique games conjecture
holds, there is no polynomial time algorithm delivering (x, y)-approximate Nash equi-
libria with x < 2 − o(1) or y < 2 − o(1). This bound applies only to polynomial
time computability in general games. We now show that 2 is also a lower bound for the
stability ratio, in a stronger sense.

Theorem 6. For any x < 2 there is an unweighted game without (x, y)-approximate
Nash equilibria for any y ≥ 1.

Fig. 3. From left to right the edges owned by the players in the first, second, and third classes
of players for K8. The first and second class consist of four players each, the third class of two
players. Players in the first class own a single edge, while players in other classes own cycles of
length 4.

Proof. The proof follows with a game on K4g with g ∈ IN. We assume the vertices
are numbered v1 to v4g and distribute the edges of the game to 2g2 + g players in
g + 1 classes as follows. In the first class there are 2g players. Every player i from this
class owns only single edge (vi, v2g+i). Then, for each integer j ∈ [1, g − 1] there is
another class of 2g players. A player i in one of the classes owns a cycle of four edges
(vi, vi+j), (vi+j , v2g+i), (v2g+i, v2g+i+j) and (v2g+i+j , vi). Finally, there are g players
in the last class. Each player i in this class also owns a cycle of four edges (vi, vg+i),
(vg+i, v2g+i), (v2g+i, v3g+i) and (v3g+i, vi). See Fig. 3 for g = 2 and the distribution
of the 10 players into 3 classes on K8.

Any feasible vertex cover of a complete graph is composed of either all or all but
one vertices. For a cover of all 4g vertices we can simply drop the payments to one
vertex. This reduces the payment for at least one player. In addition, it increases the
cost of some of the deviations as the players must now purchase the uncovered vertex
in total. The stability ratio of the resulting payment scheme can only decrease. Hence,
the minimum stability ratio is obtained by purchasing 4g − 1 vertices.

So w.l.o.g. consider a cover of 4g − 1 vertices including all but vertex v4g . Note
that some player subgraphs do not include v4g , and there are only two types of player
subgraphs - a single edge or a cycle of length 4. First, consider a player subgraph that
consists of a single edge and both endvertices are covered. If the player contributes
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Fig. 4. Players that include v8 in their subtree. Numbering of players as described in the text.
Edge labels indicate player ownership.

to the cost of the incident vertices, she can drop the maximum of both contributions.
Thus, if she contributes more than 0 to at least one of the vertices, her incentive to
deviate is at least a factor of 2. Second, consider a player subgraph that consists of a
cycle of length four. Label the four included vertices along a Euclidean tour with u1,
u2, u3 and u4. Let the contributions of the player to uj be xj for j = 1, 2, 3, 4, resp. To
optimally deviate from a given payment scheme, the player picks one of the possible
minimum vertex covers {u1, u3} or {u2, u4} and removes all payments outside this
cover. A factor of r bounding her incentives to deviate must thus obey the inequalities∑4

j=1 xj ≤ r(x1 +x3) and
∑4

j=1 xj ≤ r(x2 +x4). In order to find the minimum r that
is achievable we assume each player contributes only to vertices inside her subgraph.
Summing the two inequalities yields (2− r)

∑4
j=1 xj ≤ ∑4

j=1 xj , so either her overall
contribution is 0 or r ≥ 2. Hence, to derive a payment scheme with stability ratio of
less than 2, all 4g − 1 vertices in the cover must be purchased by the 2g players whose
subgraph includes v4g .

For the rest of the proof we will concentrate on these 2g players. We will refer to
player i, if she includes vi in her subgraph, for i = 1, . . . , 2g − 1. All these players
own cycle subgraphs. The player that owns the edge (v2g, v4g) is labeled player 2g.
See Fig.4 for an example on K8. We denote the contribution of player i to vertex vj by
pij for all i = 1, . . . , 2g and j = 1, . . . , 4g − 1. Observe that for each player the set
{v2g, v4g} forms a feasible vertex cover. To achieve a stability ratio r, we must ensure
that each player can only reduce her payments by a factor of at most r when switching
to this cover. In the case of player 2g only {v2g} is needed, so we must ensure that she
can reduce her payments by at most r when dropping all payments but p2g,2g . As v4g is
not part of the purchased cover its cost of 1 must be purchased completely by a player
that strives to use it in a deviation. This yields the following set of 2g inequalities:∑4g−1

j=1 pij ≤ r(pi,2g + 1), for i = 1, . . . , 2g− 1 and
∑4g−1

j=1 p2g,j ≤ rp2g,2g . We again
strive to obtain the minimum ratio r that is possible. Note that in the minimum case no
vertex gets overpaid, i.e.

∑2g
i=1 pij = 1 for all j = 1, . . . , 4g − 1. Using this property

in the sum of all the inequalities gives
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4g − 1 =
4g−1∑

j=1

2g∑

i=1

pij ≤ r

(

2g − 1 +
2g∑

i=1

pi,2g

)

≤ 2gr,

which finally yields r ≥ 2 − 1
2g . This proves that in the presented game no (x, y)-

approximate Nash equilibrium with x < 2 − 1
2g exists. Thus, for every ε > 0 we

can pick g ≥ (2ε)−1, which then yields a game without (2 − ε, y)-approximate Nash
equilibria for any y ≥ 1. ��
It would be interesting to see, whether this lower bound is due to the integrality gap
of vertex cover. Such a relation exists for approximate budget balanced core solutions
in the cooperative game [12]. In a core solution each possible player coalition S con-
tributes less than the cost of a minimum vertex cover for S. In our game, however,
players make concrete strategic investments at the vertices, which alter the cost of the
minimum cover for other players. In particular, our result is mainly due to the fact that
the majority of players is sufficiently overcovered leaving only a small number of con-
tributing players. This makes a relation to the integrality gap seem more complicated to
establish.

Some classes of the vertex cover problem can be approximated to a better extent.
For example, there is a PTAS for the vertex cover problem on planar graphs [4]. It
is therefore natural to explore whether for planar games we can find covers with ap-
proximation and stability ratio arbitrarily close 1. The bad news is that in general there
are also limits to the existence of cheap approximate Nash equilibria even on planar
games. In particular, Theorem 6 provides a lower bound of 1.5 on the stability ratio
for unweighted planar games. For weighted planar games there is an additional Pareto
relationship between stability and approximation ratios that yields a stability ratio close
to 2 for socially near-optimal covers.

Corollary 1. There is a planar unweighted game without (x, y)-approximate Nash
equilibria for any x < 1.5 and y ≥ 1. For any y < 7

6 there is a planar weighted
game without (x, y)-approximate Nash equilibria for x < 2/(2y − 1).

The better an algorithm is required to be in terms of social cost, the more it allows for
selfish improvement by a factor close to 2. Note that all our lower bounds apply directly
to any algorithm with or without polynomial running time.

5 Games with Cheap Nash Equilibria

In this section we present two classes of games that have cheap Nash equilibria: single-
ton games, in which each player owns only a single edge, and bipartite games, in which
the graph is bipartite.

5.1 Singleton Games

An exchange-minimal vertex cover is a cover which cannot be improved by replacing a
single vertex in the cover by a subset of its neighbors.
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Lemma 2. In singleton games every exchange-minimal vertex cover for G allows a
distribution of vertex costs, such that no player can unilaterally improve her payments.

Proof. Suppose we are given an exchange-minimal cover C ⊂ V . For v ∈ C denote
the neighbors outside the cover by Nv(C) = {u ∈ V |(u, v) ∈ E, u 	∈ C}. Suppose
c(Nv(C)) < c(v); then we can form a new cheaper feasible cover C′ by replacing v
with Nv(C). This is a contradiction to C being exchange-minimal. Hence, for any v ∈ C
it follows that c(Nv(C)) ≥ c(v).

This property allows a very simple algorithm to construct a Nash equilibrium from a
given exchange-minimal cover C. First initialize all payments of all players to 0. Then
for each vertex v ∈ C iteratively consider all players owning an edge e = (u, v) with
u 	∈ C. For player i set her contribution to pi(v) = min(c(u), c(v)−∑

j�=i pj(v)). This
leaves her no chance for improvement. In addition, by the previous argument every
vertex v ∈ C gets paid for. ��
Clearly, the centralized optimum cover C∗ is an exchange-minimal cover, and hence
there is a Nash equilibrium as cheap as C∗. This proves that the price of stability
in singleton games is 1. It does not prove, however, that a (1, 2)-approximate Nash
equilibrium can be found in polynomial time, since a 2-approximation algorithm for
minimum vertex cover does not necessarily yield an exchange-minimal cover. We can
devise an algorithm that starts from such an approximate cover and performs exchange
operations to turn it into an exchange-minimal cover. In the weighted case, however,
the number of exchange operations is not necessarily polynomial, and our algorithm
could take exponential time. To circumvent this problem, we borrow a trick from An-
shelevich et al. [2]. In the proposed algorithm each exchange operation guarantees a
minimum improvement of the overall cost. The drawback is that we can only compute
(1 + ε, 2)-approximate Nash equilibria, for any constant ε.

Theorem 7. There is a polynomial time algorithm that finds (1 + ε, 2)-approximate
Nash equilibria for weighted singleton games and (1, 2)-approximate Nash equilibria
for unweighted singleton games.

Singleton games are similar in spirit to cooperative vertex cover games and mechanism
design, as we assume that each edge is a single player. It is known that the core of
the cooperative game contains only cost sharing functions that are at most 1/2 budget
balanced. Our result states that once players have an intrinsic motivation to participate
in the game and consider only selfish non-cooperative deviations, there is a cost-sharing
function to distribute the full costs of an optimum cover. In this interpretation our game
is close to a cooperative game that deals only with the global and singleton coalitions.
Furthermore, our game is strategic, i.e. it specifies exactly to which vertex a player pays
how much and in what way a player is motivated to reallocate her payments. This is a
feature that is not considered in the cooperative framework.

5.2 Bipartite Games

Lemma 3. In bipartite games there is an optimum vertex cover C∗ for G which allows
a distribution of vertex costs such that no player can unilaterally improve her payments.
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The proof relies on standard algorithmic techniques like maximum weight matching and
max-flow/min-cut calculations. This allows to construct Nash equilibria with optimum
social cost in polynomial time.

Theorem 8. The price of stability in bipartite games is 1. Nash equilibria purchasing
C∗ can be found in polynomial time.
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Abstract. We consider a communications network in which users trans-
mit beneficial information to each other at a cost. We pinpoint conditions
under which the induced cooperative game is supermodular (convex).
Our analysis is in a lattice-theoretic framework, which is at once simple
and able to encompass a wide variety of seemingly disparate models.
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1 Introduction

A cooperative game w : 2N → R (with w(φ) = 0) on the player set N describes
what each coalition can obtain by itself. The core C(w) is the set of all payoffs1

x ∈ RN such that
∑

i∈N xi = w(N) and
∑

i∈S xi ≥ w(S) for all S ⊂ N . In
short, the core consists of divisions of the maximal proceeds w(N) in the game
such that no coalition has incentive to break away and get more on its own.

On the other hand, the Shapley value Φ(w) ∈ RN defines a “fair” allocation
of w(N) among the players (see [6]) for details.

The problem is that often these two concepts are at odds with each other: the
Shapley value Φ(w) is not in the core C(w).

In a seminal paper [7], Shapley showed that if w is supermodular2 (i.e., w(S∪
T ) + w(S ∩ T ) ≥ w(S) + w(T ) for all S ⊂ N, T ⊂ N) then Φ(w) is not only
in C(w) but in fact is the “center of gravity” of C(w) (see [6] for the precise
details). In such games the plausibility of the Shapley value as a solution concept
is considerably bolstered because it is not only fair but also (coalitionally) stable.

In this paper we pinpoint conditions under which certain games of connec-
tivity are supermodular. Players in our model are located at the vertices of a

1 The component xi represents what player i gets.
2 Shapley called such games “convex” and pointed out that the “snowball effect”

i.e., w(T ∪ {i}) − w(T ) ≥ w(S ∪ {i}) − w(S) whenever S ⊂ T ⊂ N and i �∈ T ,
is equivalent to convexity. The snowball effect enables us to interpret supermodular
(convex) games as those that exhibit increasing returns to cooperation: the marginal
contribution of a player to a coalition goes up as the coalition is enhanced.
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communications network and can stand to gain a lot by sharing disparate bits
of information that they initially hold. Indeed information is more amenable to
sharing than standard commodities. Commodities are typically lost to the per-
son who gives them away. Information in contrast has “the quality of mercy”,
blessing him that gives and him that takes, since the giver retains all his informa-
tion even as he sends it out. Nevertheless it is not automatic that all information
will be shared. This is because, though costlessly duplicable, information may be
costly to transmit (e.g., on account of setup costs of links in the communications
network). Any coalition must do a careful cost-benefit analysis, choosing that
pattern of information transmission which minimizes the total net benefit to its
members.

It should be pointed out that our model is inspired by a multicast transmission
game presented in [5], though the focus there was on using the Shapley value (or
else the marginal cost rule) to define a mechanism that is group-strategyproof
and has other desirable properties. The approach in [2] and [1] is similar, in
that cost-sharing schemes (such as the Shapley value), are invoked to construct
non-cooperative games on networks. In contrast, we here analyze network games
from a purely cooperative point of view.

An important feature of our approach is that we formulate information in
terms of a lattice. This leads to a framework that is at once universal and sim-
ple. We can encompass a wide variety of seemingly different models, involving
unicast and multicast modes of transmission, setup and variable costs in the
communications network, and information that comes in various guises (from fi-
nite dimensional vectors, to partitions of a set, to layered encoding). The lattice
framework makes for a remarkably transparent analysis in all cases.

The paper is organized as follows. In Section 2 we present some motivating
examples, starting with the model in [5]. The abstract lattice-theoretic frame-
work is presented in in Section 3. In Section 4 we establish our main result which
states that games of connectivity are supermodular. Section 5 points out a mono-
tonicity property of optimal transmissions. Finally, in Section 6, we show how to
fit the examples into our lattice-theoretic framework; and we also examine the
tightness of our assumptions and indicate some generalizations of the model.

2 Examples

We present a series of examples of information transmission in a network, all of
which yield supermodular games, as we shall see in Sections 4 and 6.

2.1 Multicast Transmission

First let us recall the game presented in [5]. There is a finite tree Γ with a sender
δ located at its root and and a distinct receiver at each leaf (terminal vertex).
Any receiver α can get information from δ if α is connected to δ using the edges
of Γ . The tree Γ is viewed as a digital network which carries a public broadcast
by δ, and it is assumed that information flowing into any vertex of the tree can
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be costlessly duplicated and sent out (multicast) on any subset of the outgoing
edges. But the edges of Γ do have setup costs associated to them. Offsetting
these costs are benefits B(α) to α when he receives information from δ.

A cooperative game is induced on the player-set N of receivers in a natural
manner. Any coalition S ⊂ N can use an arbitrary subtree Γ ′ of Γ at the
cost C(Γ ′) of all the edges of Γ ′. The benefit S derives from Γ ′ is B(S, Γ ′) =∑

α B(α), where the summation runs over all α in S which are connected to δ
via Γ ′. Thus the “worth” w(S) of coalition S (i.e., the most S can guarantee
to itself) is obtained by maximizing the net benefit B(S, Γ ′) − C(Γ ′) over all
possible subtrees Γ ′.

There can be several senders located at different vertices of the tree, each
with its own distinctive information to transmit. Moreover not all senders need
be “dummies” as in [5]. Some of them could be bona fide players in the game
with the power to withhold their information. One could also imagine them to
have different transmission trees, possibly with significant overlap.

In spite of these complications, the game remains supermodular and so the
Shapley value continues to be centrally located in the core (but its computation
may no longer be as felicitous as in [5]).

2.2 Unicast Transmission

Imagine a set of users connected to each other through a hierarchical network
(as in telephony). Again suppose they are located on the leaves of a tree Γ with
other vertices acting as relays. But the communication is private rather than
public, and the users transmit information to each other on a one-to-one basis.

The user at leaf α can choose the amount of information ταβ ∈ [0, m], m > 0,
to be sent to β. The total benefit derived at β is

∑
α Bαβ(ταβ), where Bαβ is an

arbitrary non-decreasing function. As before, it costs to use the tree. Each edge
now has not only a setup cost, but also an arbitrary non-decreasing variable cost
for every α−to-β flow on it. (The variable costs here add across flows, but the
setup cost is invariant of them.)

This unicast scenario also gives rise to a cooperative game in an obvious way.
Any coalition S chooses τ = {ταβ : α ∈ S, β ∈ S}, and a subforest of Γ to carry
τ , so as to maximize the net benefit.

It turns out that this game is also supermodular.

2.3 Transmission of Layered Information

We turn to a situation where information is encoded or organized in layers (e.g.,
as in a video transport system, see [8]). To be precise, suppose layer Li consists
of “ information bricks” numbered by integers mi−1 + 1, mi−1 + 2, . . . , mi. The
bricks in L = ∪k

i=1Li are, however, distributed arbitrarily among the n players
located at the vertices of a communication tree Γ , with no duplication. So,
denoting by Σα the set of bricks held at vertex α, we have Σα ∩ Σβ = φ if
α �= β. Players wish to receive bricks in order to build a “knowledge pyramid”,
but they cannot construct layer Li unless all previous layers L1, L2, . . . , Li−1 are
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in place. Of course, since these bricks are not standard commodities but signify
information, no player loses any of his own bricks by sending them to others. The
player at vertex α may transmit any subset Qe ⊂ Σα on any edge e emanating
from α. Then for any edge e′ that follows from e, he can send Qe′ ⊂ Qe, and so
on. In short he can contemplate multicast transmission on Γ with α as the root.

There is a set-up cost for every edge e as earlier, and additional flow costs
Ce,α(x) for x ∈ Σα.

Benefits accrue as follows. Denoting by Qβα ⊂ Σβ the subset of bricks that α
receives from β, the benefit to α is fα(n), where

n = max{j : Li ⊂ Σα ∪ (∪βQβα)∀i ≤ j}

and f(n) is an arbitrary non-decreasing function.
The idea here, as was said, is that information is organized in pyramidical

form. Information of layer Li is not usable unless all layers L1, L2, . . . , Li are
complete.

The cooperative game, arising in this setup, is once again supermodular.

2.4 Transmission of Information Partitions

As before, Γ is a tree with players located at its vertices. Let Q = {1, 2, . . . , k}
be the set of states of nature, and let {Qα : α ∈ V } be a partition of Q. (Here V
denotes the set of vertices of Γ and Qα is understood to be the empty set if no
player is located at α.) Further let Pα be a partition of Qα. The interpretation is
that {Pα, Q\Qα} is the private information initially held by the player at vertex
α. Notice that private information is disjoint across players, i.e., each player is
in the dark about states that other players can distinguish.

For simplicity every player α has a state-contingent endowment
(a1(α), . . . , ak(α)) of a single non-tradeable resource (such as his skill), to be
used as input in his individual production. He must, of course, use the same in-
put in states that he cannot distinguish. But since expected profit of any player
depends on his state-contingent vector of inputs, there are inherent gains from
sharing information. The precise model is as follows.

Each player can transmit its information partition (or any coarsening thereof)
to other vertices prior to the production stage. If the player at vertex α winds
up with the partition P of Q, his profit (via production) is

max fα(x1, x2, . . . , xk)

Subject to: xi ≤ ai(α)
xi ≥ 0

and i ∼P j ⇒ xi = xj

where i ∼P j means that i and j are in the same cell of the partition P . We
assume that the production function fα is supermodular on Rk

+, i.e., (assuming
differentiability):

∂

∂xi

∂fα

∂xj
≥ 0
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for all i, j and α. In other words the inputs x1, x2, . . . , xk are weakly complemen-
tary: if α increases his input in some state, this does not diminish his marginal
productivity in any state.

When a coalition S forms, its members can transmit information to each other
through any subforest of Γ after paying the setup costs, and then they can pool
their profits.

This, too, induces a game that is supermodular.

2.5 General Network with Controlled Edges

Let G be an arbitrary undirected graph with edge set E and vertex set V . For
each vertex α ∈ V , let Γ (α) ⊂ G be a tree rooted at α on which α is constrained
to transmit its information. Further suppose that edges of G are subject to the
control of coalitions.

Thus when a coalition S forms, each α ∈ S has access to only those edges in
Γ (α) whose controllers are contained in S.

In this setup, players who are neither senders nor receivers of information, may
nevertheless have a vital role to play in the game on account of their control of
edges (such as cable operators or monopoly network providers).

All of our preceding examples can be embedded in this larger framework. The
games induced will still be supermodular.

3 The Abstract Model

We build an abstract lattice-theoretic model of information and its transmis-
sion, which unifies the above (and more) examples and makes for a particularly
transparent analysis.

3.1 The Communications Network

Let G = (V, E) be a graph where V is a finite set of vertices and E is a set of
undirected edges.

For every α ∈ V there is a tree Γ (α) ≡ (V (α), E(α)) ⊂ G, rooted at α, that
can be used by α to transmit its information to other vertices.

3.2 Information

Information is modeled as a lattice L with ≥ denoting the partial order and ∨,∧
the join and the meet operators3. We assume that 0 ≡ ∧{x : x ∈ L} exists in L
and that that ∧ distributes over ∨, i.e.,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

3 Recall (see e.g. [3]) that for and x and y in L, there exists a greatest lower bound
w.r.t. ≥ (denoted x ∧ y) and a least upper bound (denoted x ∨ y).
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for all x, y, z ∈ L. This property holds in a variety of contexts and is well-known
(see [3]).

The canonical examples we have in mind is that L is the power set of a finite
set with ≥ corresponding to the set-theoretic notion of ⊃; or that L is the set
of all partitions of a finite set with ≥ corresponding to refinement; or that L is
a closed interval of the real line with ≥ corresponding to the standard order; or
that L is the product lattice of finitely many such lattices. In all of these cases
0 exists in L and the distributive property holds.

Any vertex α ∈ V can transmit information from a sub-lattice L(α) of L.
A key assumption we make is that the information held at different vertices is
disjoint, i.e.,

x ∈ L(α), y ∈ L(β), α �= β ⇒ x ∧ y = 0

We also assume that each vertex can opt to send no information, i.e., 0 ∈ L(α)
for all α ∈ V .

3.3 Location of Players and Public Facilities

Let N = {1, 2, . . . , n} be the set of players. There is an additional dummy player,
labeled n+1, used to model public facilities available to all players in N . Denote
Ñ = N ∪ {n + 1}.

Each vertex is occupied by a player4 as specified by a location map

η : V → Ñ

where η(α) denotes the player (possibly, dummy) at vertex α. Let V (S) represent
the set of all the vertices occupied by players in S ∪ {n + 1} i.e.,

V (S) = {α ∈ V : η(α) ∈ S ∪ {n + 1}}

3.4 Control of Edges

Edges are controlled by coalitions of players in accordance with a control map

κ : E → 2N

where κ(e) denotes the coalition that controls5 the use of edge e. (If κ(e) = φ,
then e is accessible to everyone.)

3.5 The Transmission of Information

Each vertex α can transmit information x ∈ L(α) to other vertices on its tree
Γ (α) ≡ (V (α), E(α)). Concatenating across vertices, the total transmission may
be viewed as a map τ : E × V → L with the interpretation that τ(e, α) is the
4 The case where several players occupy a vertex is included in our set-up (see remark

3 in Section 6).
5 A natural case: if e = (α, β), then κ(e) = (η(α) ∪ η(β)) ∩ N .
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information transmitted by the vertex α on the edge e. Some natural conditions
must be imposed on this map τ . Any vertex α can send information only out of
L(α) i.e.,

τ(e, α) ∈ L(α) (1)

for all α ∈ V and e ∈ E(α). Moreover, no vertex α can send any (except null)
information on edges outside its tree i.e.,

τ(e, α) = 0 if e �∈ E(α) (2)

for all α ∈ V and e ∈ E. Finally, the join of all the information of α that flows
out of a vertex must be no more than the information of α that arrives at it,
i.e.,

τ(e, α) ≥ ∨{τ(e′, α) : e′ ∈ F (e, α)} (3)

for all α ∈ V and e ∈ E(α), where F (e, α) denotes the set of immediate offspring
edges of e in the tree Γ (α).

Let T denote the set of all possible transmissions, i.e.,

T = {τ : E × V → L : τ satisfies (1), (2) and (3)}

The set T itself forms a lattice under the natural definitions: τ ≥ τ ′ if τ(e, α) ≥
τ ′(e, α) for all e, α; (τ ∨ τ ′)(e, α) = τ(e, α) ∨ τ ′(e, α) for all e, α; (τ ∧ τ ′)(e, α) =
τ(e, α) ∧ τ ′(e, α) for all e, α.

For any coalition S ⊂ N , define the subset T (S) ⊂ T of transmissions feasible
for S as follows:

T (S) = {τ ∈ T : for any e and α, τ(e, α) > 0 ⇒ κ(e) ⊂ S and α ∈ S∪{n+1}}

In other words, only members of S or public vertices can transmit information
in T (S); and only the edges under the control of S may be used.

3.6 The Reception of Information

A transmission τ ∈ T induces a reception σ(τ, α) ∈ L at every vertex α ∈ V as
follows:

σ(τ, α) = (x∗(α)) ∨ (∨{τ(e(β, α), β) : β ∈ V \{α} and α ∈ Γ (β)})

where e(β, α) is the edge coming into α from β in Γ (β) and x∗(α) ≡ ∨{x : x ∈
L(α)}.

Here x∗(α) represents the maximum information in L(α). Since α can cost-
lessly receive its own information, and since information is valuable, we suppose
that α always “sends” x∗(α) to itself. The total reception at α is obtained by
joining x∗(α) with the bits of information τ(e(β, α), β) sent to α by other ver-
tices β.
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3.7 The Cost of a Transmission

The cost of transmitting information (originating at different vertices) on any
edge is given by6 ce : LV → R+, where ce((x(α))α∈V ) ≡ the cost of the flow
(x(α))α∈V on e. We postulate that ce is submodular on LV , i.e.,

ce(x ∨ y) + ce(x ∧ y) ≤ ce(x) + ce(y)

for all e ∈ E and x, y ∈ LV . Such costs can arise in several ways. For instance,
suppose there is a set-up cost f(e) for e, and a further set-up cost f(e, α) for
every vertex α that uses e, i.e.,

ce((x(α))α∈V ) =
{

0, if x(α) = 0 for all α
f(e) +

∑
x:x(α)>0 f(e, α), otherwise

It is evident that this cost function is submodular, and that it remains so
if we add variable costs

∑
α∈V gα(x(α)) provided each gα : L → R+ is itself

submodular (i.e., evinces economy of scale).
The cost of transmission τ ∈ T is the sum of the costs incurred on all the

edges, i.e.,
C(τ) =

∑

e∈E

ce((τ(e, α))α∈V )

It is easy to verify that C is submodular on T , i.e.,

C(τ) + C(τ ′) ≥ C(τ ∨ τ ′) + C(τ ∧ τ ′) (4)

3.8 The Benefit from a Transmission

For every vertex β ∈ V , there is a benefit function Bβ : L → R+, where Bβ(x)
represents the benefit to β from receiving information x ∈ L. We assume that
Bβ is supermodular and non-decreasing for all β ∈ V i.e.,

Bβ(x ∨ y) + Bβ(x ∧ y) ≥ Bβ(x) + Bβ(y)

and
x ≥ y ⇒ Bβ(x) ≥ Bβ(y)

The benefit to a coalition S ⊂ N from transmission τ ∈ T is given by

B(S, τ) =
∑

β∈V (S)

Bβ(σ(τ, β))

It is again easy to verify that B is supermodular on T (with S fixed). But the
supermodularity of B and the submodularity of C do not immediately lead to
the supermodularity of the game w defined in the next section.

6 Note that LV is a finite product of L with itself (V times) and is a product lattice.
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4 The Connectivity Game

We consider the cooperative game that arises from the communications network.
A non-empty coalition S ⊂ N can choose any τ ∈ T (S) to transmit information
between its members or to receive information from public vertices. The coalition
obtains total benefit B(S, τ) but at a cost C(τ). The maximum net benefit that
S can guarantee is therefore given by

w(S) = max
τ∈T (S)

B(S, τ) − C(τ)

(with w(φ) understood to be 0). We call w the connectivity game.
Recall that a game w : 2N → R is called supermodular (or, as in [7], convex)

if w is supermodular on the lattice 2N , i.e.,

w(S ∪ T ) + w(S ∩ T ) ≥ w(S) + w(T )

for all S ⊂ N and T ⊂ N . Our main result is:

Theorem 1. The connectivity game w is supermodular.

For the proof see [4].

5 The Growing Transmissions Property

It is worth noting that optimal transmissions grow with the coalitions in the
sense made precise by Theorem 2 below.

Theorem 2. Let S ⊂ T ⊂ N and let τ1 ∈ T (S) be an optimal transmission for
S. Then there exists an optimal transmission τ ∈ T (T ) for T such that τ ≥ τ1.

For the proof see [4].

6 Remarks

Remark 1 (Embedding the examples). We briefly indicate how to fit our
examples (from Section 2) into the abstract model.

For Section 2.1, take Γ (α) = Γ rooted at α, κ(e) = φ for all e, L(δ) = {0, 1},
L(α) = {0} for all α �= δ, L = the cross product of all these lattices, Bδ = 0,
Bα(0) = 0 and Bα(1) = B(α) for all α �= δ. Finally the cost of an edge is its
setup cost if there is a non-zero transmission on it and zero otherwise.

For Section 2.2, let L(α) = [0, m]V , each of whose elements specifies the in-
formation sent by α to all the other vertices. The lattice operations ∨ and ∧
are obtained by taking component-wise maximum and minimum. L as usual is
the cross product of all the L(α). The cost functions are obvious. The rest of
the construction is as before. (Notice that despite the fact that the components
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of the benefit and cost functions have no supermodularity or concavity assump-
tions on them, the benefit/cost functions are supermodular/submodular in our
lattice framework. This follows from the fact that they are additive over their
components and that super or sub-modularity is no constraint on a function of
one variable.)

For the example in Section 2.3, take L(α) to be the totally ordered set {0}∪Σα,
and L to be the cross product. We leave it to the reader to verify that the benefit
function is supermodular.

Finally, for the example in Section 2.4, take L(α) to be the lattice of all par-
titions of Q which are coarser than {Pα, Q\Qα}. The supermodularity of the
benefit functions follows from that of fα, α ∈ V .

Remark 2 (Acyclicity). Cycles in the transmissions network Γ (α) can cause
our result to breakdown. Consider the network in Figure 1 in which players 1, 2,
3, 4, each have access to the whole graph, with costs as shown and with ε < 1.

1+ε 1+ε

1+ε 1+ε

2

1

2 4

3

Fig. 1. Cycles in the communications network

Further suppose that 1, 2, 3 each derive benefit B > 2(1+ε) from being connected
to 4. Then it is clear that

w(2, 4) = B − 2
w(2, 3, 4) = 2B − 2(1 + ε)
w(1, 2, 4) = 2B − 2(1 + ε)

w(1, 2, 3, 4) = 3B − 3(1 + ε)

But then

w(1, 2, 3, 4) + w(2, 4) = 4B − 5 − 3ε ≤ 4B − 4 − 2ε = w(1, 2, 4) + w(2, 3, 4)

showing that w is not supermodular.

Remark 3 (Multiple players at a vertex). Our model allows for many
players to be located at the same vertex α. Indeed, by creating a new vertex for
each player present at α, and joining these with zero-cost edges to α, we create
an expanded graph which fits our model (see Figure 2).
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j

α

0 00

η(α) = {i, j, k}

i k

Fig. 2. Modeling multiple players at a vertex

Remark 4 (Control of vertices). Our model also permits coalitions to control
vertices by the graph expansion shown in Figure 3. Every edge incident at α is
intercepted with a zero-cost edge controlled by the coalition controlling α.

κ(  ) = κ(  ) = κ(   ) = κ(α) = {i, j, k} e         f          g        {i, j, k}

αα f
e

g

Fig. 3. Modeling control of vertices

Remark 5 (Veto players). A more general control of edges by veto play-
ers renders our results invalid. Consider a player set {1, 2, 3} and suppose that
there is common tree available to everyone, which consists of just one zero-cost
edge connecting player 1 to a public vertex. The edge can be sanctioned by
player 1 (the veto player), in conjunction with any player in {2, 3}. The only
benefit B is obtained by player 1 when he gets connected to the public ver-
tex. In this game w(1) = 0 and w(1, 2) = w(1, 3) = w(1, 2, 3) = B. Hence
w(1, 2, 3) + w(1) = B < 2B = w(1, 2) + w(1, 3), showing that w is not super-
modular.

Remark 6 (Dropping distributivity). In the special case where L is the cross
product of the lattices L(α) over α ∈ V , our results hold without postulating
that ∧ distributes over ∨. But in general distributivity is indispensable.
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Remark 7 (Enhancement of information). So far we have taken informa-
tion to be fixed a priori. But it could well happen that the information of an
agent gets enhanced by virtue of the information he receives from others. He
can turn around and send his enhanced information back to them, enhancing
theirs’, and so on. Even in this setting, under suitable hypotheses, the induced
cooperative game is well-defined (i.e., the enhancement sequence converges) and
is supermodular, as we shall show in a sequel paper.
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Abstract. Motivated by the dynamics of the ever-popular online movie
rental business, we study a range of assignment problems in rental mar-
kets. The assignment problems associated with rental markets possess a
rich mathematical structure and are closely related to many well-studied
one-sided matching problems. We formalize and characterize the assign-
ment problems in rental markets in terms of one-sided matching prob-
lems, and consider several solution concepts for these problems. In order
to evaluate and compare these solution concepts (and the corresponding
algorithms), we define some “value” functions to capture our objectives,
which include fairness, efficiency and social welfare. Then, we bound the
value of the output of these algorithms in terms of the chosen value
functions.

We also consider models of rental markets corresponding to static,
online, and dynamic customer valuations. We provide several constant-
factor approximation algorithms for the assignment problem, as well as
hardness of approximation results for the different models. Finally, we
describe some experiments with a discrete event simulator compare the
various algorithms in a practical setting, and present some interesting
experimental results.

1 Introduction

Online movie rental services such as Blockbuster.com, Netflix.com and Ama-
zon.co.uk are perhaps the most familiar instances of rental markets in the In-
ternet. The primary function of centralized rental markets such as these is to
repeatedly allocate a rental inventory in accordance with customer demand at
successive time instances. Customers return assigned items after some time steps
and a central authority reassigns the items to other customers. The basic model
behind these markets involves (partial) customer preferences over items, and the
rental service aims to satisfy these preferences within the constraints of available
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inventory. Other objectives include trying to maximize overall resource (inven-
tory) utilization and limiting (perceived) unfairness in the allocation process.

Given the collection of competing objectives, resource constraints and chal-
lenging business characteristics (popularity of movies tends to be highly
non-uniform and extremely short-lived; there is a deep catalog with very sparse
demand in the tail), it is natural that the allocation process involves complex
decisions. As we shall see, specific considerations involved in these tradeoffs are
to some extent captured by familiar matching problems from mathematical lit-
erature. Thus several natural questions of the following form arise: how well does
maximization of one objective (such as inventory utilization) serve another (such
as fairness)? How can one objective be generalized to include another? And when
one objective (such as fairness or popularity) does not have a unique maximum,
how do the different maxima compare under another objective? In this paper,
we consider a range of such issues, identify several interesting questions, and
(partly) answer many of them.

Formally speaking, a rental service repeatedly computes a matching between
the two sides of the market (i.e., customers and items), given the preference lists
of one (and only one) side of the market. This type of matching markets are
called one-sided matching markets as only one side of the market has preference
over the other side. This is contrast to two-sided matching markets in which both
sides of the market have preferences over the other side.

The preferences of customers are often ordinal in that they only explain the
relative ranking of the items for individual customers. As noted above, optimality
in allocation is not clearly defined as two matchings only based on the ordinal
preferences of customers may not be comparable. This nuance underlies several
notions of one-sided matching objectives studied in recent literature, such as
pareto-optimal matchings [1], fair matchings [15], rank-maximal matchings [11],
and so forth. In this context, we examine different measures that may be used
to choose between non-comparable matchings and analyze different one-sided
matching algorithms in terms of these measures.

Two leading criteria to measure the allocation performance of the rental ser-
vice are that of social welfare and the fairness of allocation. In this following, we
consider different algorithms for a single one-sided matching seeking a reasonable
social welfare and fairness and compare the value of the output of these algo-
rithms. For this purpose we require the measures of the value of the allocations,
which must be defined in respect to the preference lists of customers to cap-
ture the social welfare and the fairness of the output. Under different measurese,
we analyze the value of the output of different one-sided matchings for a single
assignment; and then extend the results to repeated matchings for the rental
market problem. Our metric to measure these matching algorithms is similar to
that of the competitive analysis. That is, we study the ratio of the value of the
matchings resulting from the one-sided matching algorithms over the value of
the optimal matching.
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1.1 One-Sided Matching Markets

Consider the following classical one-sided matching problem: we are given a set
A of m customers and a set B of n items with one copy1 for each j ∈ B. Each
customer i ∈ A has a preference list Li = (b1

i , . . . , b
�i

i ) over different items, where
�i = |Li| and bj

i ∈ B for all 1 ≤ j ≤ �i. In a matching, items are assigned to
customers so that each customer i gets at most one item and each item j is
assigned to at most one customer. Since the vertices of one (and only one) side
of the corresponding bipartite graph has a preference list, we call the matching
in this setting one-sided matching.

Roughly speaking, our goal is to assign the customers to items which are
among the top of their lists. More formally, let us consider associating a value
v(i, j) for assigning item j to customer i, and let our general goal be to find
one-sided matchings to maximize the total value of the assignments in terms of
the given valuations. We denote such valuations on the items to customers by v.

This valuation function, however, should have some desired properties. The
first natural property is that the function should be non-decreasing, i.e., v(i, b1

i )
≥ v(i, b2

i ) ≥ · · · ≥ v(i, b�i

i ) > 0 and v(i, j) = 0 for all other items j that are not on
the list Li, where equality only reflects ties among items. Secondly, the customers
tend to have stronger preference over the top choices in their preference list.
We can model this fact by considering the concave valuation functions, i.e.,
v(i, bj

i ) − v(i, bj+1
i ) ≥ v(i, bj+1

i ) − v(i, bj+2
i ), for 1 ≤ j < �i − 1. Moreover, in the

valuation function, we would not want to “favor” any customer too much. For
simplicity, let us say we would like to give the same value to the first choices
of all customers and the same value to the second choices of all customers and
so on. We call such functions satisfying the above conditions by the universal
ranking valuation functions.

In particular, we are interested in the following special universal ranking valu-
ation functions: for each customer i, the value of her jth-ranked item is (n−j+1)k

(i.e., v(i, bj
i ) = (n − j + 1)k), for all 1 ≤ i ≤ n, 1 ≤ j ≤ �i, and some fixed con-

stant k ≥ 0. We denote this valuation vector by xk. Note that when k = 0, this
valuation function models the cardinality of the matching (i.e., v(i, bj

i ) = 1).
In this paper, we consider and analyze several one-sided matching frameworks

that are listed below:

Maximum Weighted Matching. As described above, in the maximum wei-
ghted matching, we associate a valuation vector v to items and customers
and maximize the total value of the one-sided matching. The maximum
weighted matching associated with valuation vector v is denoted by
MaxWeightMatch(v).

Rank-Maximal Matching. The profile of a one-sided matching M is a vector,
where the jth element of the profile is the number of customers allocated
to their jth-ranked item by M . M is rank-maximal if it has the lexico-
graphically maximum profile. The rank-maximal matching M is denoted

1 Note that all our results in the paper apply to the multiple copies case.
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by RankMaxMatch. This solution concept for one-sided matching has been
suggested by Irving [12] and later explored by Irving et al. [11].

Weighted Rank-Maximal Matching. Given a valuation vector v, the wei-
ghted profile of a one-sided matching M for v is a vector, where the jth
element of the profile is the value of the jth largest value among the values
of the pairs of M . M is weighted rank-maximal for vector v if it has the lex-
icographically maximum weighted profile for the value vector v. A weighted
rank-maximal matching is denoted by WeightRankMaxMatch.

Fair Matching. A fair matching has the fewest number of unmatched cus-
tomers (i.e., it has maximum-cardinality), and subject to this, matches the
fewest number of customers to their nth-ranked item, and subject to this,
matches the fewest number of customers to their (n − 1)th-ranked item,
and so on. (This definition can be formalized in terms of lexicographically-
minimum reverse profiles, where we pad each customer’s preference list with
dummy items). The fair matching is denoted by FairMatch. Mehlhorn and
Michail [15] considered this solution concept for the one-sided matching prob-
lems.

Order-Based Matching. Consider an arbitrary ordering π : A → {1, . . . , m}
of customers, the order-based matching algorithm for the ordering π goes
over the list of customers according to π and for each customer i, it assigns
the first available item on i’s preference list to i. This algorithm is very sim-
ple and scalable to implement. Moreover, in order to achieve different goals
in the assignment, we could change the ordering of customers. For exam-
ple, in order to favor the new customers or the more profitable customers,
we can put them at the beginning of the ordering. A matching resulted
from the order-based matching algorithm for the ordering π is denoted by
OrderMatch(π).
Note that the ordering of customers may differ at different time steps and
may depend on the allocations of the previous time steps. For example, in
order to achieve some fairness properties, we can favor the customers who
did not get their first choices recently in the ordering and put them at the
beginning of the ordering.

Stable Matching. Stable matchings are the well-known solution concepts for
two-sided matching problems. In a two-sided matching problem, both sides
have preference lists over the elements of the other side. In order to extend
our setting from a one-sided matching to a two-sided matching problem, we
need to define a preference list over customers for each item. We define the
preference list for an item j by first listing the customers who have item
j as their first choice in an arbitrary order, then listing all customers who
have item j as their second choice, and so on. By defining these preference
lists for items, we can apply the stable matching algorithm on the two-sided
matching instance and output the resulting assignment. This matching is
denoted by StableMatch.

The above solutions are the main algorithms that we study in this paper.
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1.2 The Rental Market Problem

Rental markets seek to compute one-sided matching, of course, but they also
have a time dimension. Roughly speaking, rental markets are frameworks for
repeated one-sided matching. More formally, let us say that we are given a set
B of n items and a set A of m customers with preference lists Li over items. In
the rental market problem, we need to assign a matching of items to customers
at each discrete time step t = 1, 2, . . . , T , where T is the common deadline.
We assume that customers use the items for one time step and items can be
reused after that. Besides the requirements that at each time, one customer can
be assigned at most one item and one item can be assigned to at most one
customer, the other requirement in the rental market problem is that one item
can be assigned to one customer at most once.

We associate a value vt(i, j) for assigning item j to customer i at time step t.
Our goal in the rental market problem is to find a set of matchings for all time
steps to maximize the total value. We consider three different types of valuations:
the static, online and the dynamic valuations. Roughly speaking, in the static
valuation model, the value vt(i, j) is determined at the beginning t = 1, whereas
in the dynamic valuation model, vt(i, j) directly depends on the position of j on
i’s preference list at time step t (i.e., it may change according to the assignments
of previous steps). On the other hand, in the online valuation model, customers
can update their preference lists (add new items or remove available items). We
will elaborate the details of these models in Section 3.

1.3 Our Contribution

In this paper, we formalize the rental market problem as a repeated one-sided
matching problem. We propose some value functions to measure the performance
of the assignments in the rental market problem to capture the fairness and the
social value of the output of different algorithms. We analyze several one-sided
matching algorithms and give (almost) tight bounds on the performance in terms
of those value functions for a single one-sided matching problem. These bounds
are summarized in Table 1.

Then, we formalize the rental market in three models: The static valuation
setting, online valuation setting and the dynamic valuation setting. In the static
valuation setting, we show that there exists a 2-approximation algorithm by a
reduction from the problem to the weighted 3-dimensional matching problem.
As a hardness result, we prove the APX-hardness of the rental market problem.
For the online valuation model, we derive a 2-competitive online algorithm to
maximize the total value of the assignments. For the dynamic valuation model,
we observe that the problems are similar to general variants of the job shop
scheduling problems. As a result, we get a constant-factor approximation for the
problem of minimizing the number of time steps to satisfy all the demand where
at each step, we are allowed to assign one of the few top choices of each customer
to her. We also give a hardness result of approximation for this model.
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Finally, we give a description of our discrete event simulator for measuring
the performance of most of these algorithms on a sample data (and will report
some practical evaluations of our algorithms). We conclude the paper with some
directions and open problems in the last section.

1.4 Related Work

As mentioned earlier, stable matchings are extensively studied as a solution
concept for two-sided markets in which both sides of the market have prefer-
ences over the other side [5,7]. For one-sided matchings, Irving [12] introduced
the concept of the rank maximal matchings and observed that they can be
found by computing the maximum weighted matching in an edge-weighted bi-
partite graph where the edge weights are exponentially decreasing with respect
to the preferences. Irving et al. [11] derived an algorithm with the running time
O(nm2

√
m + n) for this problem. Mehlhorn and Michail [15] studied fair match-

ings and gave some efficient algorithms to find them. To the best of our knowl-
edge, none of the above work analyzed the value of these one-sided matching
algorithms for their worst-case performance. The only related paper in this re-
gard is by Abraham et al. [1] in which the authors studied the structure of
pareto-optimal solutions and pareto-optimality of some of the one-sided match-
ing algorithms.

1.5 Notations

Recall that for a given valuation vector v, MaxWeightMatch(v) denotes the one-
sided matching with the maximum value. If the value of all items in the preference
list is one, i.e., v(i, bj

i ) = 1 for all 1 ≤ i ≤ n and 1 ≤ j ≤ �i, the maximum-value
one-sided matching is indeed the maximum cardinality matching and denoted
by MaxCardMatch = MaxWeightMatch(1). In addition, the value of a one-sided
matching M for the valuation vector v is denoted by Val(M, v), and the cardi-
nality of a one-sided matching M is denoted by Card(M).

2 Single Matching Algorithms

To understand the performance of different one-sided matching algorithms in the
rental market problem, we need to define some universal objective functions to
evaluate these matching algorithms. In particular, we evaluate the performance
of a one-sided matching in terms of the value function over the pairs of customers
and items. As discussed in the Introduction, we are interested in the special
universal ranking valuation functions xk, for some fixed constant k ≥ 0, where
for each customer i, the value of its jth-ranked item is (n−j+1)k (i.e., v(i, bj

i ) =
(n − j + 1)k), for all 1 ≤ i ≤ n and 1 ≤ j ≤ �i.

In this section, we prove several bounds on the ratio of the value of our
proposed algorithms by the worst-case analysis. We summarize the results of
this section in Table 1.
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Table 1. The performance of one-sided matching algorithms

Approximation factor

Card Val(x) Val(x4) Val(xk)
Pareto-optimal Running time

MaxCardMatch 1∗ ε∗ ε∗ ε∗ Exist O(e
√

v) [9]

MaxWeightMatch(x) 0.5, 2
3 1∗ 0.2, 1 - Yes O(e

√
v log v) [4]

MaxWeightMatch(x4) 0.5, 4
7

n+1
4n , 1 1∗ - Yes O(e

√
v log v) [4]

MaxWeightMatch(xk′
) 0.5∗ n+1

4n , 1 0.1, 1 - Yes O(ek′√v log v) [15]

RankMaxMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(ev) [11]

WeightRankMaxMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(ev) [11]

FairMatch 1∗ n+1
2n

∗
- ε∗ Yes O(e

√
v log v) [15]

OrderMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Exist O(e + v)

StableMatch 0.5∗ 0.5∗ 0.5∗ 0.5∗ Yes O(e + v) [5]

Notes: (i) The star symbol (∗) implies that the ratio is (almost) tight.
(ii) Two numbers a, b implies the best known lower and upper bound.
(iii) “ε” means that the ratio can be arbitrarily close to zero.
(iv) In the running time, v = max{m, n} and e =

∑ m
i=1 �i.

2.1 Approximation Factor: Lower and Upper Bounds

Due to space limit, we leave the discussions of the tight bounds for cardinality of
the maximum weighted matching, order-based matching, stable matching, and
(weighted) rank-maximal matching to the full version. In the following discus-
sions, we consider the bounds for the fair and maximum weighted matching. To
prove our bounds, We first establish the following two lemmas.

Lemma 1. Let M be either a FairMatch or a MaxWeightMatch w.r.t valuation
function x, and |M | = �. For any w, where n − � + 1 ≤ w ≤ n, we have

|{(ai, bi) ∈ M | v(ai, bi) ≤ w}| ≤ w − n + �.

Basically, the lemma says that in the FairMatch or MaxWeightMatch M w.r.t
valuation function x, there is at most one edge with value smaller than or equal
to n − � + 1, at most two edges with value smaller than or equal to n − � + 2,
and so on.

For any constant k ≥ 1, we can show similarly the following result.

Lemma 2. For any constant k ≥ 1, let M be a MaxWeightMatch(xk) and |M | =
�. For any w, where n − � + 1 ≤ w ≤ n, we have

∣
∣{(ai, bi) ∈ M | v(ai, bi) ≤ wk}∣∣ ≤ w − n + �.

Note that any FairMatch first try to minimize the number of unmatched cus-
tomers, thus it’s essentially a MaxCardMatch. To compare the FairMatch with
MaxWeightMatch(xk), we will first give an example to show the upper bound
for any k ≥ 1, and then study the lower bound for the case of k = 1.
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Assume there are n customers (a1, . . . , an) and n items (b1, . . . , bn). Each
customer ai prefers items bi, bi+1, . . . , bn on her list. For i = 1, . . . , n−1, customer
ai puts bi the last choice and bi+1 the first choice on her list, respectively. All
other items on the list can be ranked arbitrarily. Thus, {(a1, b1), . . . , (an, bn)}
is a FairMatch with total value 1k + 2k + · · · + nk. The MaxWeightMatch is
{(a1, b2), . . . , (an−1, bn)} with total value (n − 1)nk. Note that when k = 1, the
ratio is n+1

2n−2 ; when k = 4, the ratio approaches to 1/5 when n goes to infinity;
and when n and k are sufficiently large, the ratio can be arbitrarily close to zero.

Now let’s consider the FairMatch and MaxWeightMatch(x). Assume M is
a MaxWeightMatch(x) and |M | = �. Note that Val(M) ≤ �n. Let M∗ be a
FairMatch. Since the FairMatch is also a MaxCardMatch, we know |M∗| ≥ �. Due
to Lemma 1, we know Val(M∗) ≥ ∑n

w=n−�+1 w. Thus,

Val(M∗)
Val(M)

≥ (n − � + 1) + · · · + n

� · n =
2n− � + 1

2n
≥ n + 1

2n

We conclude the above analysis as the following proposition.

Proposition 1. For the universal ranking valuation function x, we have

Val(FairMatch, x) ≥ n + 1
2n

· Val(MaxWeightMatch(x))

Finally, we give some bounds for the value of the maximum weighted matching
algorithms with valuation functions x and x4. We first consider the valuation
function x. Let M be a MaxWeightMatch(x) where |M | = �. Due to Lemma 1,
we know that Val

(
M, x4

) ≥ ∑n
w=n−�+1 w4. On the other hand, consider the

MaxWeightMatch(x4) M∗, note that Val(M∗, x) ≤ Val(M, x) ≤ �n, which im-
plies that Val

(
M∗, x4

) ≤ �n4. Thus,

Val
(
M, x4

)

Val
(
M∗, x4

) ≥
∑n

w=n−�+1 w4

� · n4

≥
∑n

w=1 w4

n · n4

=
1/30 · n(n + 1)(2n + 1)(3n2 + 3n − 1)

n · n4

≥ 1/5

Proposition 2. Val(MaxWeightMatch(x), x4) ≥ 1/5 · Val(MaxWeightMatch
(x4), x4).

On the other hand, Let M be a MaxWeightMatch(xk) where |M | = �, for any
constant k > 1. Due to Lemma 2, we know that Val

(
M, x4

) ≥ ∑n
w=n−�+1 w4.

Consider the MaxWeightMatch(x4) M∗, it is easy to see that |M∗| ≤ 2|M | = 2�,
which implies that Val

(
M∗, x4

) ≤ 2�n4. Thus,

Val
(
M, x4

)

Val
(
M∗, x4

) ≥
∑n

w=n−�+1 w4

2� · n4
≥ 1/10
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Proposition 3. Val
(
MaxWeightMatch(xk), x4

) ≥ 0.1 · Val (MaxWeightMatch

(x4), x4
)
, for any k > 1.

Consider another case: For any constant k ≥ 1, let M∗ be a MaxWeightMatch(xk)
where |M∗| = �. Due to Lemma 2, we know Val(M∗, x) ≥ ∑n

w=n−�+1 w. Let M
be a MaxWeightMatch(x). Again, note that |M | ≤ 2|M∗| = 2�, thus, Val(M, x) ≤
2�n. Therefore,

Val (M∗, x)
Val (M, x)

≥
∑n

w=n−�+1 w

2� · n =
�(2n− � + 1)

4� · n ≥ n + 1
4n

Proposition 4. For any k ≥ 1,

Val
(
MaxWeightMatch(xk), x

) ≥ n + 1
4n

· Val (MaxWeightMatch(x), x)

2.2 Pareto-optimality

We say an allocation of items to customers is Pareto-optimal if there is no other
allocation with some customers better and no one worse.

Proposition 5. There is a MaxCardMatch that is Pareto-optimal.

Proposition 6. For any universal ranking valuation function v,
MaxWeightMatch(v), RankMaxMatch, WeightRankMaxMatch, FairMatch,
OrderMatch, and StableMatch are Pareto-optimal.

Note that for the OrderMatch with ties, we can show similar to Proposition 5
that there exists a Pareto-optimal solution. But in general, the OrderMatch is
not Pareto-optimal. However, if it is not allowed to have ties, the OrderMatch
guarantees Pareto-optimal.

3 The Rental Market Problem

In this section, we study the rental market problem with a focus on static, online,
and dynamic valuations, respectively.

3.1 Static Valuation Model

In the following discussion, we study a static valuation model to evaluate the
performance of the rental market problem. In the static valuations model, at each
time t, t = 1, . . . , T , where T is the deadline that customers can get the items,
there is a valuation vt(i, j), which is determined at the beginning, associated with
the pair (i, j), for any (i, j) ∈ A×B, representing the valuation of the customer
i ∈ A for item j ∈ B at time step t. Our goal is to select one-sided matchings Mt

for each time t that maximizes
∑T

t=1

∑
e∈Mt

vt(e), given the condition that every
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pair is selected at most once, that is, each item can be assigned to each customer
at most once. We denote the rental market problem in the static valuation model
by StaticRentMark.

We reduce StaticRentMark problem with arbitrary valuation functions to the
weighted 3-dimensional matching problem (W3DM). This implies a local search
2-approximation algorithm for this problem. In an instance of W3DM, given a
subset D of triples in set X × Y × Z where X , Y , and Z are disjoint sets, and
a weight we for each triple of D, we need to find a set of triples C ⊆ D with
the maximum weight such that no two elements of C agree in any coordinate.
W3DM is APX-complete [13] and a local search two-approximation algorithm is
known for it [2].

Theorem 1. For any static valuation function v, there exists a 2-approximation
algorithm for the StaticRentMark problem.
Proof. Given an instance S(A, B; T, v) of the StaticRentMark problem, where T is
the deadline time and v is the valuation function, we construct an instance G(S)
of W3DM as follows: Let [T ] = {1, . . . , T}. Define X = (A × B), Y = (A × [T ])
and Z = (B × [T ]). For any triple e = ((i, j), (i′, t), (j′, t′)) ∈ X × Y × Z, define
the weight

we =
{

vt(i, j) if i = i′, j = j′, t = t′

0 otherwise

Now, it is easy to check that there exists a set of T one-sided matchings as the
solution to the instance S with the total value w, if and only if, there exists a
weighted 3-dimensional matching of weight w in the instance G(S). As a result,
we can use the local search two-approximation algorithm of Arkin and Hassin [2]
to achieve a two-approximation algorithm for StaticRentMark with any valuation
function. �

Next, we complement this result by showing that StaticRentMark with arbitrary
valuation functions is APX-Hard.

Theorem 2. The StaticRentMark problem is APX-hard.

3.2 Online Valuation Model

The 2-approximation algorithm for StaticRentMark above is based on a local
search algorithm and does not provide an online algorithm. In this section, we
consider a online valuation model in which customers can arbitrarily update
their preference lists (add new items or remove available items2) for every time
step, and at time t, we only know the preference lists and the corresponding
valuations till this time. We denote this problem by OnlineRentMark.

Similar to the above models, our goal in OnlineRentMark is to assign items to
customers at each time step to maximize the total value of assignments. In order
2 For a more general setting in which users can change their preferences arbitrarily,

we cannot hope to get any bounded competitive ratio.
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to evaluate the performance of the online the algorithm, we follow the approach
of the competitive analysis that compares the efficiency of the solution with a
global optimum (assuming the knowledge of the future in advance).

Before studying the online algorithm for OnlineRentMark, we need to specify
the valuation functions. In general, the valuations of customers over items de-
crease as time passes by. Therefore, it is reasonable to assume non-increasing
valuation functions, i.e., vt′(i, j) ≥ vt(i, j), for any 1 ≤ t′ < t ≤ T , when item j
is on customer i’s list at both time t′ and t.

A natural greedy strategy is that at each time t, we compute the current
maximum weighted matching in terms of the available pairs and valuations at
time t, and allocate the items to customers according to that matching. As the
following theorem shows, this greedy algorithm has a good competitive ratio.

Theorem 3. For any non-increasing valuation function v, the above greedy al-
gorithm gives a 2-competitive algorithm to the OnlineRentMark problem.
Proof. Let OPTt be the set of pairs selected by the optimal solution at time step
t, and ALGt be the set of pairs selected by the greedy online algorithm at time
t. Let

OPT ∗ =
T∑

t=1

∑

e∈OPTt

vt(e)

be the total value of the optimal offline solution, and

ALG∗ =
T∑

t=1

∑

e∈ALGt

vt(e)

be the total value of the greedy online algorithm. Let

Xt = OPTt ∩
(

t⋃

i=1

ALGi

)

.

That is, Xt is the set of selected pairs in the optimal solution at time t that appear
in the greedy online algorithm no later than time step t. Let Yt = OPTt − Xt.

For any e = (i, j) ∈ Xt, assume e ∈ ALGt′ , where t′ ∈ {1, . . . , t}. Note
that item j appears on customer i’s list at both time t′ and t. Due to the non-
increasing property, we have vt(e) ≤ vt′(e). Therefore,

T∑

t=1

∑

e∈Xt

vt(e) ≤
T∑

t=1

∑

e∈ALGt

vt(e) = ALG∗.

For the set Yt, note that all pairs in Yt are available in the greedy online
algorithm at time t. Thus, Yt is a feasible candidate set of the greedy algorithm.
Due to the maximum weighted matching strategy, we have

∑

e∈Yt

vt(e) ≤
∑

e∈ALGt

vt(e),
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for any t. Thus, we have

T∑

t=1

∑

e∈Yt

vt(e) ≤
T∑

t=1

∑

e∈ALGt

vt(e) = ALG∗.

Therefore,

OPT ∗ =
T∑

t=1

∑

e∈Xt

vt(e) +
T∑

t=1

∑

e∈Yt

vt(e) ≤ 2ALG∗,

which completes the proof of the theorem. �
Another advantage of the above greedy online algorithm is that it can be easily
modified by changing the one-sided matching algorithm at each time step to
get another competitive algorithm which may satisfy some extra desirable prop-
erties. We can combine the proofs of Section 2 and the above proof to bound
the efficiency of the assignments resulting from using one of the aforementioned
one-sided matching algorithms at each time step. For example, we could run a
stable matching algorithm to find an assignment at each time step. The result-
ing algorithm is thus a 1

4 -competitive online algorithm for any non-increasing
universal ranking valuation function.

3.3 Dynamic Valuation Model

A drawback of StaticRentMark and OnlineRentMark is that it ignores the effect
of allocations in the previous time steps on the valuations of later time steps
(OnlineRentMark essentially reflects the perspectives and changes of customers,
but not allocations). We illustrate this by the following example. Let the prefer-
ence list of customer i be (b1, b2, b3). If we assign items b1, b2, and b3 to customer
i at the first three time steps, respectively, we have assigned the first choice of i
to her every time step. In other words, the value of assigning b2 to i at time step
2 for customer i is larger if item b1 is assigned to i at time step 1. To capture
this aspect, we formalize the rental market problem with dynamic valuations,
denoted by DynamicRentMark, as follows: Let rt(i, j) be the jth-ranked item on
customer i’s preference list at time t. For every time step t, t = 1, . . . , T , the
value of assigning rt(i, j) to customer i at time t is g(i, j).

The main difference between DynamicRentMark and the other two models
is that the value of assigning an item in DynamicRentMark only depends on
the position of the item on the preference list of the customer at the time of
the assignment (that is, rt(i, j) is a dynamic function in terms of the previous
allocation), but in StaticRentMark and OnlineRentMark, the value depends on
the time step of the assignment and not directly on the position of the item at
the time of the assignment3.
3 A more general model is that of the combination of OnlineRentMark and

DynamicRentMark, where the value of assigning at item only depends on its cur-
rent position on the list and customers can update their preference lists. We do not
study this model in this paper.
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First, we observe that a special case of the DynamicRentMark problem is
the job-shop scheduling problem with unit-length jobs on parallel machines
(JobShopSch) [14,17,6,18]. In the JobShopSch problem, we have a set of m jobs
and n machines. Each machine can run at most one job at a time. Each job i
consists of ni operations oi

j . Each operation oj
i has a type tji and can only be

scheduled on machine with tji . We need to schedule the operations of each job in
the order (o1

i , o
2
i , . . . , o

ni

i ). There are two variations of this problem: In the min-
imization variant (MinJobShopSch [14]), we need to schedule all the operations
of all jobs in the minimum number of time steps, that is we need to minimize
the makespan of the schedule. In the maximization variant (MaxJobShopSch),
we want to maximize the number (or the total value) of the operations that are
scheduled before a deadline T . Constant-factor approximation algorithms are
known for MinJobShopSch [14], but no constant-factor approximation algorithm
is known for MaxJobShopSch.

JobShopSch is a special case of DynamicRentMark in which g(i, 1) = 1 and
g(i, j) = −M for any j > 1 and sufficiently large value M . Each machine cor-
responds to an item in DynamicRentMark. Jobs in JobShopSch correspond to
customers in DynamicRentMark and their operations correspond to the prefer-
ence list of customers. As a result, for this value function, the known results for
MinJobShopSch give a good approximation algorithm for the minimization ver-
sion of DynamicRentMark. Moreover, designing a constant-factor approximation
for the maximization version of DynamicRentMark will solve the open problem
of approximating MaxJobShopSch.

Here, we formalize a more general value function and prove similar results for
the DynamicRentMark problem. Consider the following dynamic value function:
Given any constant k ≥ 1, let g(i, j) = 1 for any j ≤ k and g(i, j) = −M for
any j > k and a sufficiently large value M . In other words, at each step, we
can assign only one of the first k choices of any customer to her. Our goal
is to minimize the number of time steps for assigning all the items to cus-
tomers (with the restriction of assigning only the first k choices). We call this
problem MinDynamicRentMark(k). The MinJobShopSch problem corresponds to
MinDynamicRentMark(1). We observe that the constant-factor approximation
for MinJobShopSch can be used to give a constant-factor approximation for
MinDynamicRentMark(k) for any k ≥ 1.

Corollary 1. For any constant k ≥ 1, there exists a polynomial-time constant-
factor approximation algorithm for MinDynamicRentMark(k) .

In the following, we give a hardness result for MinDynamicRentMark(2).

Theorem 4. It is NP-hard to approximate the MinDynamicRentMark(2) prob-
lem within a factor better than 1.2.

4 Practical Evaluation

In this section, we describe our discrete event simulator and report the perfor-
mance of different algorithms.
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4.1 Discrete Event Simulator

DVD rental businesses are more complicated than the theoretical models we have
analyzed here. For example, customers typically have a choice of subscription
plans, which determine, say, how many DVDs they can borrow at once and in
a given month. These plans have a big influence on the DVD return times -
i.e. the time between when a DVD is borrowed and returned. This complicates
matching decisions: should we allocate a DVD to a customer today, or wait until
tomorrow when we may be able to give them a better DVD?

In our theoretical models, there is a fixed collection of DVDs available for
rental. However, rental businesses have control over their inventory levels: if
there aren’t enough DVDs of a particular title, more can be purchased. Of course,
with this control comes the problem of determining optimum inventory levels,
which to some degree involves trading-off between customer satisfaction and
financial sustainability. Inventory levels must also take into account return times.
Customers with slower return times may keep a high-demand DVD for several
days beyond watching it. Knowing this, additional copies of the DVD must be
bought, even though only a fraction of the DVDs are actively being watched on
a given day.

These are just some of the complications dealt with by a real-world DVD
Rental business. We cannot hope to fully capture the underlying model and an-
alyze it theoretically. Instead, we have built a discrete event simulator to see the
effects of various subscription plans, matching algorithms, inventory planning
strategies and so on. The simulator can be seeded by real-world data, including
actual customer preference lists, distributions of return times and forecasts of de-
mand. This simulator is used by the DVD Rental business unit at Amazon.com.

4.2 Performance of Different Algorithms

The following table contains some sample results from our simulator. We con-
structed a small instance from real-world data containing 2000 customers (with
existing rental histories and preference lists), 150 DVD titles (5000 DVDs in
total) and two types of subscription plans (one with a maximum of 4 DVDs per
month, and at most 2 borrowed at any one time; the other with unlimited DVDs
per month, and at most 3 borrowed at any one time). Using forecast demand
data, we then ran the simulator for a (virtual) three-month period to test the
different matching algorithms.

The three objective functions are Val(x), Val(x4) and the total number of
skips. A skip occurs for each higher-ranked DVD a customer misses out on
when we perform a matching. If an eligible customer receives no DVD, a skip
is recorded for each DVD on his/her preference list. We report this value for
different matching algorithms as an alternative measure to compare the results.
Note that in Table 1, we report the worst case analysis for a single matching,
but in Table 2, we report the total value of matchings for several time steps.
As expected from the theoretical results in Table 1, the total value for different
algorithms are close to each other.
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Table 2. Simulation results

Total skips Val(x) Val(x4)

MaxWeightMatch(x) 12,522 1,137,456 3.7921e+012

MaxWeightMatch(x4) 12,962 1,137,555 3.7963e+012

RankMaxMatch 15,802 1,139,654 3.8078e+012

FairMatch 12,316 1,135,668 3.7861e+012

OrderMatch 17,059 1,141,082 3.8148e+012

StableMatch 25,788 1,139,025 3.8126e+012

Although these objective functions capture the social welfare, they do not
reveal the utility variability amongst the customers. Figure 1 shows the number
of skips experienced by the 50 customers with the most number of skips. It is
of interest to note that fair matching is substantially better for these customers.
This is achieved with very little loss in utility w.r.t. Val(x) and Val(x4).

Fig. 1. The worst customer experience in each scenario

5 Conclusions

In this paper, we studied different algorithms for the rental market problem,
defined universal measures to compare these algorithms, and analyzed them
theoretically and practically. An open problem of this paper is to design a
constant-factor approximation algorithm for the maximization version of
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DynamicRentMark. Such a constant-factor approximation algorithm also gives
a constant-factor approximation for MaxJobShopSch.

Designing algorithms with extra fairness properties is an interesting subject of
study. For example, we would like to minimize the maximum number of skips that
any customer observes. Dealing with strategic agents is another interesting topic.
This can be done by proving that for random preference lists, the probability
that a customer has incentive to lie tends to zero as the number of customers
approaches to ∞.
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Abstract. In this paper, we propose a new approach, copulas, to calcu-
lating the default-risk-adjusted duration and present value for a portfolio
of bonds vulnerable to default risk. A copula function is used to deter-
mine the default dependence structure and simulate correlated default
time from individual obligor’s default distribution. This approach is ver-
ified to be effective and applicable by a numerical example, in which
we demonstrate how to calculate the default-risk-adjusted duration and
present value for a given portfolio. In the process we take into account of
the settlement time when default happens, the choice of copula function
and the correlation between obligors, and make a sensitive analysis of
the influence of Kendall’s tau and copula functions on the default-risk-
adjusted duration and present value. Results show that the duration and
present value simulated from Gaussian copula fluctuates larger than that
from Clayton and Gumbel copulas when Kendall’s tau varies from zero
to one.

1 Introduction

Technically, duration is the weighted-average time to maturity taking the relative
present value of the cash flows as the weights. As such, a duration is thought of as
a measure of sensitivity of an asset’s value with respect to interest rate. Duration
is a fundamental tool for banks and other financial institutions to manage their
assets and liabilities.

Recently, there is a rapid growth in the market of defaultable corporate bonds,
especially low-grade junk bonds, which prompts the study of the influence of de-
fault risk on the duration of default-prone bonds. Among the literatures on this
topic, Jonkhart (1979) developed a formulation for the term structure of interest
rates considering the influence of default risk on the duration of bonds that are
not default-free. Bierwag and Kaufman (1988) obtained an expression for default-
adjusted duration for various patterns of expected defaults assuming a flat term
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structure. They showed that the timing of defaults, the size and pattern of the
cash flow recovered from default are critical in modelling default-risk-adjusted du-
ration. Also, Chance (1990) used a contingent claim approach to derive the du-
ration for zero-coupon bonds subject to default risk. His work assumed that de-
fault triggers an immediate lump sum settlement. Fooladi et. al(1997) introduced
risk aversion into Jonkhart’s (1979) model using a structure of certainty equiva-
lent (CE) factors, and derived a general default-adjusted duration model. Jacoby
(2003) removed three limitations of the model developed by Fooladi et. al(1997),
and obtained a model for the valuation of coupon-bearing corporate bonds. In his
model, he assumed that the defaultable bond is equivalent to a portfolio of a risk-
less coupon bond and a short position in a series of European options on the firm’s
value.

But all of the above models only considered a single bond. For a bank or
financial institution, they usually hold a portfolio of bonds or debts. To manage
the portfolio using duration immunization strategy, a simple hypothesis is that all
of the bonds or debts are independent. This assumption simplifies the calculation
of portfolio’s duration, but it is not consistent with the practice that the default
risk among obligors are intensively related to others, especially in a down market.
This dependence may be due to both of macroeconomic (the overall economy)
and microeconomic (sectorial and even firm-specific) aspects. Thus the default
dependence structure among obligors in a portfolio plays a crucial role in the
quantification of the portfolio’s duration, and the problem we care about is how
to calibrate the default dependence structure?

Many existing literatures use liner correlation coefficient to define the default
correlation. Lucas (1995) applied discrete event approach of liner correlation
coefficient to measure the correlation between defaults. But because of the in-
stinctive disadvantages of liner correlation coefficient, Lucas’ method hasn’t been
extensively applied in finance.

Recently, a statistical tool, copula function, which has the distinctive charm of
measuring dependence, has been gradually applied in finance. Some researchers
attempted to characterize the default dependence structure by copulas. Li (2000)
proposed to use Gaussian copula to capture the default dependence in the col-
lateral portfolio, and developed a method for the pricing of multi-name credit
derivatives. It may be considered as an extended version of the Credit Metrics
framework. Schönbucher and Schubert (2001) presented a method to incorpo-
rate dynamic default dependence in intensity-based default risk models. They
used a copula function to simulate default time combining with single obligor’s
intensity-based default model. Meneguzzo and Vecchiato (2004) adopted Li’s
method to price collateralized debt obligations and basket default swaps and
made a sensitive analysis.

In this paper we provide a method based on copulas to calculate the duration
and present value for a portfolio of bonds that are not default-free. Since the
default process is different from each other, we follow each obligor’s specifica-
tion to determine their default probability distributions, then combine them by
a copula function to obtain the joint default probability distribution. The cop-
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ulas will also be used to simulate the default time of each obligor. In existing
related literatures many researchers employ Gaussian copulas for its simplicity
in sampling. Here we will also use Clayton and Gumbel copulas because of their
properties of asymmetry and heavy tail which are more accordant with practice.

The rest of the paper is organized as follows. In next section, we offer a simple
review of copulas including three common-used copulas, and then in Section
3 we introduce the model for marginal default distribution developed by Li
(2000), based on which we propose the model for portfolio’s joint-default-risk-
adjusted duration and present value in Section 4. In the process we will consider
the practice of discrete credit spread. Section 5 offers a numerical example to
demonstrate the calculation of portfolio’s joint-default-risk-adjusted duration
and present value using three copulas and make sensitive analysis for different
Kendall’s taus. Section 6 concludes the paper and gives some suggestion for the
application.

2 Copulas

A copula is a function that combines marginal distributions into a joint distri-
bution. In what follows, we give the definition and some properties of copula
functions, and three common-used copulas. Readers can refer to Nelsen (1999)
for details.

2.1 Definition and Property

Definition 1. An n-dimensional copula is a function C : [0, 1]n → [0, 1], which
satisfies the following three properties:

(1) (Grounded) C(u1, · · · , un) = 0 if there is one coordinate ui = 0 for i =
1, 2, · · · , n;

2) C(1, · · · , 1, ui, 1, · · · , 1) = ui, ∀i = 1, · · · , n;
3) (Increasing) The C-volume of any box with vertices in [0, 1] is nonnegative.

The following Sklar theorem shows that a copula function is in fact the joint
distribution of n [0, 1]− uniform random variables.

Theorem 1. Let F be an n-dimensional distribution function with continuous
margins F1, ..., Fn, then there exists an n-dimensional copula function C satisfying

F (x1, ..., xn) = C(F1(x1), ..., F2(xn)). (1)

From Sklar theorem we see that, the joint distribution of multiple random vari-
ables can be represented by their marginal distributions and a copula function.
Or from another point of view, a copula function represents the joint distribution
function of n standard uniform random variables U1, U2, ..., Un:

C(u1, u2, ..., un) = Pr(U1 ≤ u1, U2 ≤ u2, ..., Un ≤ un).

This provides an easy approach to obtaining the multi-dimensional joint dis-
tribution and dependence structure when marginal distributions and a copula
function are given.
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2.2 Measure of Dependence

Copulas are intimately related to standard measures of dependence between a
pair of random variables X1 and X2 whose copula is C. Note that the traditional
Pearson correlation coefficient only captures the linear dependence and is not
invariant under non-linear strictly increasing transformations (see Embrechts
et al 1999), but the dependence characterized by copulas can overcome these
pitfalls. Here we only introduce Kendall’s tau since it is one of the most important
measures and will be used in this paper.

Definition 2. Kendall’s tau is the probability of concordance minus the proba-
bility of discordance, and can be expressed by copulas as follows

τ = 4
∫ ∫

[0,1]2
C(u1, u2)dC(u1, u2) − 1.

More properties of Kendall’s tau and other measures of dependence see Nelsen
(1999).

2.3 Three Common-Used Copulas

Here we only introduce three most common-used copulas which will be used in
our numerical example.

(1) Gaussian copula
The n-variate Gaussian (or normal) copula is defined as follows:

CGa(u1, ..., un) = ΦR(φ−1(u1), ..., φ−1(un)),

where, ΦR is the standardized n−variate normal distribution with correlation
matrix R, φ−1 is the inverse of standard univariate normal distribution φ.

(2) Clayton copula
With ψ(u) = u−α − 1, α > 0, being the generator, the n-variate Clayton

copula is given by:

CCl(u1, ..., un) = [
n∑

i=1

u−α
i − n+ 1]−1/α

(3) Gumbel copula
With ψ(t) = (− ln t)α, α ≥ 1, being the generator, the n-variate Gumbel

copula is given by:

CGu(u1, ..., un) = exp {−[(− lnu1)α + (− lnu2)α+, ...,+(− lnun)α]}

Clayton copula and Gumbel copula are Archimedean copulas, and have a lot
of good properties such as asymmetric density distributions, and hence will be
used in our numerical example.
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3 Modelling the Marginal Default Distribution

In the event of defaults, both of the timing and the amount of cash flow promised
by obligor will be changed significantly, thus the duration and immunization
strategy should be adjusted by default risk. In the process the default distribu-
tion of the specific obligor (or bond) plays an important role.

According to option pricing theory of Merton (1974), the value of a defaultable
bond can be regarded as a portfolio of risk-free asset and a put option. Thus
the default probability can be derived by Black-Scholes model. But this method
ignores the non-tradeable value of a firm. Fooladi et al (1997) and the extended
version of Jacoby (2003) indicated to calculate the expected cash flow at specific
default time from a default probability, and determine the certainty equivalent
by multiplying the expected cash flow with equivalent factor. Then the price of
a dafaultable bond and the default-risk-adjusted duration can be derived. But
both of the two articles did not interpret how to get the default probability.

On the other hand, in order to calculate the joint-default-risk-adjusted dura-
tion for a portfolio of defaultable bonds, the default dependence structure is of
utmost importance. Neither of the above two models can be directly applied to
multi-obligor case, while copulas can be employed.

Before we obtain the joint default probability distribution we first need to
model the single obligor default distribution. Just as Li (2000) we use a random
variable T to denote the time to default, or equivalently, the survival time of a
security. F (t) denotes the distribution of T , that is,

F (t) = Pr(T ≤ t), t ≥ 0.

Set
S(t)=̂1 − F (t) = Pr(T > t), t ≥ 0.

The function S(t) is called the survival function, which denotes the probability
that a security will survive t year(s). The probability density of F (t) is given by:

f(t) = F ′(t) = −S′(t)

From

Pr(x < T ≤ x+ �x|T > x) =
F (x+ �x) − F (x)

1 − F (x)
≈ f(x)�x

1 − F (x)

we can see that the function

h(x)=̂
f(x)

1 − F (x)
= −S

′(x)
S(x)

(2)

represents the instantaneous default probability for a security that has attained
age x. In this sense h(x) is called the hazard rate function.

From (2) we can express the survival function S(t) by hazard rate function
h(t) as follows:

S(t) = exp
{
−

∫ t

0

h(x)dx
}
. (3)
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Thus the modelling of survival function is transformed to the modelling of
hazard rate function. There are some other similar models for the default pro-
cess. Lando (1998) modelled the default process by a Cox process, in which the
hazard rate function h(x) is a stochastic process; while Duffie and Garleanu
(2001) applied a jump diffusion process to model the default risk, and h(x) is
dynamic.

There are three approaches to the modelling of hazard rate function h(x): 1)
Obtaining the historical default information directly from rating organizations;
2) Using Merton’s option pricing approach (see Geske (1977), Delianedis and
Geske (1998)); 3) Using the implicit approach implied from market observable
information, such as asset swap spreads and credit spread (see Li, 1998). The
former two approaches are seldom applied in practice because of their unsatisfac-
tory effect and complexity. Alternatively, we will use the third approach which
is common used to price credit derivatives or manage default risk. Specifically
we assume that the hazard rate function is given by:

h(t) =
St

1 −Rt
(4)

where St and Rt denote the credit spread and recovery rate at time t,
respectively.

From (4) we can see that it is easy to obtain the hazard rate function h(t) if
the credit spread St and recovery rate Rt are given. St can be acquired from the
bond price or credit default swap (CDS), while the recovery rate is determined
by the specific obligor in the industry. For simplicity, we always assume that the
recovery rate is constant in a period.

In general, we can not have observations of the hazard rate for all periods
of time but only for some time points. So in practice, for each obligor’s haz-
ard rate we always consider a stepwise constant function using the observed
values of hi(tj), where subscript i and j denote obligor and time point, re-
spectively. Then from (3) we can rewrite the continuous form of the de-
fault probability distribution FTi(t) for the time to default Ti of obligor i as
follows:

FTi(t) = 1 − exp

⎧⎨
⎩−

ki∑
j=1

hi(tj)�tj

⎫⎬
⎭ , i = 1, · · · , n, (5)

where, �tj = tj − tj−1 and ki = 1, if Ti ≤ t1; ki = 2, if t1 ≤ Ti ≤ t2,..., ki = N ,
if Ti ≥ tN−1.

After obtaining the marginal distribution, we can get the joint default distri-
bution from a given copula function C. Then we can simulate the correlated time
to default Ti from the joint distribution C(T1, T2, ..., Tn) and further to calculate
the joint-default-risk-adjusted duration and present value for a portfolio, which
is the task of our next section.
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4 Model and Algorithm for Joint-Default-Risk-Adjusted
Duration and Portfolio Value

In last section we have got the default distribution FTi(t) for each obligor i =
1, · · · , n by equation (5), now we will obtain the joint default distribution and
the correlated time to default.

From Sklar Theorem, if C is a copula function, then

F (T1, T2, ..., Tn) = C(F1(T1), F2(T2), ..., Fn(Tn)) (6)

is the joint default distribution of T1, T2, ..., Tn.
To simplify the simulation of Ti, we put

Y1 = F1(T1), Y2 = F2(T2) , ..., Yn = Fn(Tn),

then (6) becomes

F (F−1
1 (Y1), F−1

2 (Y2), ..., F−1
n (Yn)) = C(Y1, Y2, ..., Yn) (7)

Thus we can get the correlated time to default T1, T2, ..., Tn from the following
simulation:

1) Simulate Y1, Y2, ..., Yn from a given copula function C and (7);
2) Obtain T1, T2, ..., Tn from T1 = F−1

1 (Y1), T2 = F−1
2 (Y2), ..., Tn = F−1

n (Yn).

From the simulated time to default, we can calculate the joint-default-risk-
adjusted duration and present value for a portfolio as follows.

Suppose that a firm i has survived to present without default. The face value
of this firm’s debt is Ai, and the coupon rate is ri. The payment is made at
the end of each year, and the recovery rate is Ri. Once the debt defaults at
time Ti before maturity, there will be a payment Ri × Ai at some time Ti + S,
where S represents the number of years it takes to make final settlement for
default.

From the fair pricing theory, the present value of the bond is

Pi =
ki∑

j=1

Ai × ri
(1 + Ij)j

+
Ai ×Ri

(1 + ITi+S)Ti+S
, i = 1, · · · , n, (8)

where, ki = [Ti] is the integer part of survival time Ti, Ij is the annual risk-free
forward rate, measuring from time 0 to time j.

Employing the formula for duration calculation, we can obtain the duration
for bond i which defaults at time Ti

Di =
ki∑

j=1

j × Ai × ri
Pi(1 + Ij)j

+ (Ti + S) × Ai ×Ri

Pi(1 + ITi+S)Ti+S
, i = 1, · · · , n. (9)

Hence, the present value P and duration D for a portfolio can be easily ob-
tained:

D =
n∑

i=1

wiDi, P =
n∑

i=1

wiPi (10)

where, wi is the weight of bond i in the portfolio.
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Since the time to default T1, T2, ..., Tn is simulated from the joint distribution,
which characterize the default dependence structure, the portfolio duration ob-
tained from (10) is a joint-default-risk-adjusted duration. On the other hand, to
implement the immunization strategy accurately, portfolio’s present value also
needs to be adjusted as above, because default risk will affect the value of the
ingredient bonds.

5 Numerical Example

In this section, we give a numerical example to demonstrate the calculation of a
portfolio’s joint-default-risk-adjusted duration and present value by simulation.
We only consider a simple case of two bonds (or debts).

Suppose that each bond has a maturity of ten years and face value of 1. The
coupon rate and risk-free interest rate are both 10%. For simplicity, we assume
that both of the two obligors have a recovery rate of 0.3 and have the same credit
spread structure as presented in table 1.

Table 1. 3-, 5- 10-year credit spread for two obligors

obligor 1 obligor 2

3-year credit spread 450 450

5-year credit spread 500 500

10-year credit spread 600 600

Assume further that the two obligors haven’t experienced default up to now,
and all payments are delivered at the end of each year. Consider a portfolio
composed of the two bonds with an equal weight of 0.50. In practice, if an obligor
defaults, the settlement cannot be done immediately. Therefore, we consider
three circumstances of S = 1, 2, 3, which mean the recovery are made at the end
of the first, the second and the third year after the year of default. Thus we
do a little modification to the model for default-risk-adjusted duration Di and
present value Pi given in section 4:

Pi =
ki∑

j=1

Ai × ri
(1 + Ij)j

+
Ai ×Ri

(1 + I[Ti]+S)[Ti]+S
, i = 1, · · · , n, (11)

Di =
ki∑

j=1

j × Ai × ri
Pi(1 + Ij)j

+ ([Ti] + S) × Ai ×Ri

Pi(1 + I[Ti]+S)[Ti]+S
. (12)

From the given credit spread, recovery rate, equation (4) and (5), we can
obtain the default probability distribution FTi(t) for each obligor i, and then
simulate the time to default T1 and T2 from a copula function. Here we choose
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Gaussian copula, Clayton copula and Gumbel copula to meet our demand, and
select eleven values of Kendall’s tau from 0 to 1 with increments of 0.1 for the
correlation between the two obligors. We use Monte Carlo approach to simulate
10,000 times under different copula functions and different Kendall’s taus to
generate the time to default for two obligors, then calculate the joint-default-
risk-adjusted duration and present value from formulas (10), (11) and (12) under
different settlement time S. Results are reported in Table 2 and Table 3.

Table 2. Joint-default-risk-adjusted duration under different circumstances

Clayton copula Gumbel copula Gaussian copula

Kendall tau S = 0 S = 1 S = 2 S = 0 S = 1 S = 2 S = 0 S = 1 S = 2

0 4.8714 5.0741 5.2605 4.8714 5.0741 5.2605 4.8426 5.047 5.2346

0.1 4.8719 5.0745 5.2608 4.8696 5.0724 5.2589 4.8439 5.0482 5.2357

0.2 4.8713 5.0742 5.2610 4.8735 5.0761 5.2626 4.8472 5.051 5.2381

0.3 4.8763 5.0781 5.2636 4.8727 5.0749 5.2608 4.8513 5.0541 5.2401

0.4 4.8759 5.0775 5.263 4.8726 5.0745 5.2601 4.8635 5.0641 5.2480

0.5 4.8722 5.0741 5.2597 4.8734 5.0752 5.2607 4.8884 5.0839 5.2629

0.6 4.8733 5.0748 5.2599 4.8745 5.0759 5.2609 4.9217 5.1109 5.2838

0.7 4.8697 5.0717 5.2573 4.8722 5.0738 5.2591 4.9675 5.1495 5.3156

0.8 4.8689 5.0710 5.2568 4.8731 5.0747 5.2600 5.0149 5.1903 5.3505

0.9 4.8680 5.0702 5.2561 4.8713 5.0729 5.2582 5.0319 5.2035 5.3601

1.0 4.8699 5.0717 5.2570 4.8661 5.0685 5.2546 4.9557 5.1309 5.2892

From Table 2 we can see that the adjusted duration increases moderately when
the settlement is delayed, which is accordant with the intuition. The unadjusted
Macaulay duration in our example is 6.6291 which is larger than that adjusted by
default risk. When using Clayton and Gumbel copula, there is no evident trend
for adjusted duration as Kendall’s tau increases; but when using Gaussian copula
the adjusted duration increases as Kendall’s tau increases except that the two
obligors are perfectly correlated. Adjusted durations calculated from Clayton
and Gumbel copulas fluctuate little in each column when Kendall’s tau changes,
while durations calculated from Gaussian copula have a larger volatility as tau
varies. For example, the differences between the largest and smallest adjusted du-
rations in column 2 and column 5 are only 0.0083 and 0.0085, respectively, while
the difference between the largest and smallest durations in column 8 is 0.1892.

Table 3 indicates that the default-risk-adjusted portfolio value decrease when
the settlement is delayed, which is also consistent with our intuition. There are
some similar characteristics between Table 2 and Table 3. The values obtained
from Clayton and Gumbel copulas change irregularly and have little volatility
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Table 3. Joint-default-risk-adjusted portfolio value under different circumstances

Clayton copula Gumbel copula Gaussian copula

Kendall tau S = 0 S = 1 S = 2 S = 0 S = 1 S = 2 S = 0 S = 1 S = 2

0 0.7164 0.7074 0.6992 0.7164 0.7074 0.7074 0.7118 0.7026 0.6942

0.1 0.7165 0.7074 0.6992 0.7159 0.7069 0.7069 0.7121 0.7029 0.6945

0.2 0.7164 0.7073 0.6991 0.7167 0.7077 0.7077 0.7126 0.7034 0.6950

0.3 0.7169 0.7079 0.6997 0.7163 0.7072 0.7072 0.7127 0.7035 0.6952

0.4 0.7169 0.7078 0.6996 0.7162 0.7071 0.7071 0.7138 0.7047 0.6964

0.5 0.7163 0.7073 0.6990 0.7164 0.7074 0.7074 0.7160 0.7069 0.6986

0.6 0.7164 0.7074 0.6992 0.7166 0.7076 0.7076 0.7188 0.7098 0.7016

0.7 0.7159 0.7068 0.6986 0.7162 0.7072 0.7072 0.7225 0.7136 0.7056

0.8 0.7157 0.7067 0.6984 0.7163 0.7073 0.7073 0.7249 0.7161 0.7081

0.9 0.7156 0.7065 0.6983 0.7160 0.7070 0.7070 0.7196 0.7105 0.7023

1.0 0.7157 0.7067 0.6984 0.7153 0.7062 0.7062 0.6903 0.6800 0.6707

when Kendall’s tau changes, while values simulated from Gaussian copula in
each column increase when Kendall’s tau increases except for 0.9 and 1.

In summary, the settlement time, the recovery rate in event of default, the
correlation among obligors and the copula function are four main factors need
to be considered when calculating the duration and present value for a portfolio
of bonds vulnerable to default risk. In our another paper (Li and Chen, 2005) we
consider the effects of recovery rate on the price of Collateralized Debt Obligation
(CDO). The idea and method in that paper can also be applied here, but in this
paper we focus on the other three factors.

6 Conclusion

Ignoring default correlation among obligors when calculating the duration for a
portfolio of bonds vulnerable to default risk may lead to an inefficient immuniza-
tion strategy because there exists dependence among economic entities. But it is
more difficult to model the joint default distribution than for single default case.
In this paper, we employ copula functions to measure the default dependence
structure among obligors, and use Monte Carlo approach to determine the time
to default for each obligor in the portfolio, from which the joint-default-risk-
adjusted durations and present value of the portfolio are obtained.

A numerical example indicates the difference between the joint-default-risk-
adjusted duration and unadjusted duration. We take into consideration of the
effects of the delay of settlement in event of defaults on portfolio’s adjusted dura-
tion and present value. The choice of copula function is also crucial in simulation.
In our example, we use Gaussian, Clayton and Gumbel copulas to characterize the
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dependence structure between obligors. We also make a sensitive analysis under
different Kendall’s taus. Results show that durations and values simulated from
Gaussian copula fluctuate larger than that from Clayton and Gumbel copulas.

Our approach is applicable in monitoring default risk related to bank loans,
debts and other credit assets, since the data needed is easy to obtain. Results
can also be extended to gap management for financial institution’s assets and
liabilities. This method provides an attractive framework for risk managers to
use active strategies to manage portfolios vulnerable to default risk.
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Abstract. In this paper we investigate the structure of prices in approx-
imate solutions to the market equilibrium problem. The bounds achieved
allow a scaling approach for computing market equilibrium in the Fisher
model. Our algorithm computes an exact solution and improves the com-
plexity of previously known combinatorial algorithms for the problem. It
consists of a price roll-back step combined with the auction steps of [11].
Our approach also leads to an efficient polynomial time approximation
scheme. We also show a reduction from a flow problem to the market
equlibrium problem, illustrating its inherent complexity.

1 Introduction

We consider the market equilibrium problem with non-negative and linear utili-
ties. The combinatorial structure of the problem has become of interest recently
in the design of algorithms, though interest in the structure of this problem dates
back further. Arrow and Debreu [1] showed the existence of equilibrium prices
under weak assumptions, using a non-constructive argument. Arrow et al. [2],
showed that the set of equilibrium prices is convex if the utility functions satisfy
the weak gross substitutability (WGS) property.

Active interest in designing efficient algorithms to solve the market equilibirum
problem dates back to the works of Fisher [3] who designed a hydraulic appa-
ratus to compute market equilibrium. Eaves [8] formulated the market equilib-
rium problem with linear utilities as a linear complementarity problem and used
Lemke’s algorithm to solve it. Recently, polynomial-time algorithms have been
designed for a number of special cases using a variety of algorithmic techniques.

The techniques may be broadly classified into combinatorial techniques and
techniques using convex programming methods. The characterization of equili-
birum prices by Arrow et al. [2] leads to an ellipsoid method for computation
of market equilibrium in polynomial time (for WGS utilities). This approach
has been surveyed in a recent note by Codenotti et al. [4]. Algorithms utilizing
circumscribed and inscribed ellipsoids have been discussed in [16,17].

Another convex programming approach is to transform the market equilibirum
problem into a convex feasibility (or optimization) problem. This includes the
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works of of Eisenberg and Gale[10,9] who reduced the market equilibirum prob-
lem in the Fisher model with linear utilities into a convex optimization problem.
Similarly, the market equilibrium problem for the general Walrasian model with
linear utilities can be transformed into a convex feasibility problem [15,14,21].

The combinatorial techniques solve the problem for restricted cases and of-
ten give approximate solution to the problem. These may be classified into (a)
primal-dual techniques algorithms based on maximum flows [5,20,7] and (b) the
auction based approaches [11,12]. Devanur et al. [5] solve the market equilibirum
problem for the Fisher model with linear utilities using a primal-dual technique
based on maximum flows. Using this approach, an algorithm for approximate
market equilibirum for the Walrasian model with linear utilities was presented
in [13]. This algorithm was further improved in [6].

An efficient auction algorithm was designed to find approximate market equi-
librium in the Walrasian model with linear utilities [11]. The auction approach
is also applicable to separable gross substitute utilities in the Fisher model [12].

In this paper we study the structure of prices achieved via a typical approxi-
mation method. Realizing reasonable bounds on the difference between the ap-
proximate and optimal prices allows us to design an approximation scheme for
efficient computation of market equilibrium in the Fisher model with linear util-
ities. We give a definition of approximate market equilibrium and establish a
bound on the ratio of prices in approximate and exact equilibirum. We show
that 1

(1+ε)n p∗j ≤ pj ≤ (1 + ε)n−1p∗j where pj, p
∗
j are the prices of item j achieved

by the approximate and optimal schemes, respectively. Achieving these bounds
appears challenging enough itself and achieving similar bounds for the general
exchange model is more complicated due to a feedback effect of the error on the
prices on the endowment.

Using the price bounds, we devise a price-roll back mechanism and design
an algorithm, using the distributed auction mechanism [11,12], to give an ap-
proximation scheme for efficiently computing the market equilibrium. This al-
gorithm uses the auction approach to find an approximate solution. It then suc-
cessively improves the approximation by a price roll-back and uses the auction
approach again with a smaller bid increment (ε). This algorithm finds an (1+ ε)
approximate market equilibrium in O((n3m+n2m log M) log(1/ε)) steps, where
n and m are the number of buyers and items respectively and M(≤ evmaxamax/
eminvminamin) is a bound on the ratio of initial to final prices. Note that the
time complexity of our algorithm depends logarithmically on the approximation
factor ε. Since the equilibrium prices are rational numbers (assuming that the
input is rational), ε may be chosen sufficient small to give an exact market equi-
librium. This leads to an exact algorithm of complexity O((n3m+n2m log M)L)
(L is the bit complexity of the input data, the data being assumed to be ratio-
nal), which improves the current best complexity, O(n4) max-flow computation,
of the best known combinatorial algorithm ([5]) and matches the currently best
known complexity of O(n4L) [21], which uses an interior point approach.

We further improve on the auction mechanism by designing path-auction
mechanisms. In this mechanism, the amount of good j that a buyer bids for,



Price Roll-Backs and Path Auctions 227

is dependent on the re-allocation possible along a sequence of buyer-good pairs
(b1, g1, b2, g2 . . . bk, gk) where every even pair, (gi, bi+1) represents the return of
good i to buyer i+1 and the pair (bi, gi) represents the bid for good i by buyer i.
These path auctions are efficiently implemented using a variant of the dynamic
tree data structure of Sleater and Tarjan [18]. The data structure is modified to
handle multiplier flows. The path auctions are then carried out using multiplier
flows on dynamic trees. This leads to a time complexity of O((n3 +n2 log M)L).
In comparison to the best known algorithm in [21], which is based on interior
point methods and presumably requires careful handling of numerical preci-
sion, our algorithm is combinatorial in nature, has a natural economic interpre-
tation, improves the approximation in successive iterations and is O(n) times
faster.

Finally, we show a reduction from the maximum flow problem to the market
equilibrium problem (in the Fisher model with linear utilities). This throws some
light on the hardness of the market equilibrium problem.

The rest of the paper is organized as follows: In Section 2 we formally define
the market equilibrium problem considered by us. This is followed by a discussion
of approximate market equilibrium in Section 3. In this section, we establish the
bound on prices of approximate market equilibrium. In Section 4 we describe our
price-rollback scheme, outline the proof of its correctness and time complexity.
In section 5 we describe the algorithm based on the path-auction mechanism.
We show how to use multiplier flows and dynamic trees to achieve the improved
time bound. In Section 6 we present the reduction from the maximum flows to
the market equilibrium problem.

2 Market Model and Preliminaries

We now review the market model of Fisher [3] with linear utilities. Consider a mar-
ket consisting of a set B of n buyers and a set S of m divisible goods. Buyer i has
an amount of money equal to ei. The amount of good j available in the market is
aj . Assume that the utility of buyers on these goods is linear. Buyer i has a per-
unit utility of vij on good j. Assume that the buyers have no utility for money. The
buyers use their money to purchase the goods that maximize their utility.

Given prices p1, p2, . . . , pm of these m goods, the buyers use their money to
purchase goods that maximize their individual utilities. Thus a buyer i will
select a good j that maximizes vij/pj. Let xij represent the amount of good j
purchased by buyer i. We say that the pair (X, P ) forms a market equilibrium
if (a) the buyers have spent all their money; (b) there is neither a surplus or a
deficiency of any good; (c) all the buyers get items that maximize their utility
per unit money spent. The prices P are called market clearing prices and the
allocation X is called the equilibrium allocation.

The condition for market equilibrium can be mathematically represented as:

∀j :
n∑

i=1

xij = aj (1)
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∀i :
m∑

j=1

xijpj = ei (2)

xij > 0 ⇒ vij/pj ≥ vij/pk∀k (3)

where xij ≥ 0, pj ≥ 0. The equations (1) and (2) imply that all the goods are
sold and all the buyers have exhausted their budget. Equation (3) implies that
every buyer gets only those goods that maximize its total utility. It was shown
in [10] that the market equilibrium price for the above model is unique.

The market equilibrium problem can be formulated as a solution to a specific
primal-dual program (derived from a family of Linear Programs)[11,12]. The
equations corresponding to the ”restricted” dual program are given by:

∀i, j : αipj ≥ vij (4)

and the corresponding complementary slackness conditions are given by:

∀i, j : xij > 0 ⇒ αipj = vij (5)

where αi ≥ 0 are the dual variables.

Theorem 1. Any solution (X, P , α) with X ≥ 0, P ≥ 0 and α ≥ 0, satisfying
the conditions (1), (2), (4) and (5), constitutes a market equilibrium.

For the proof the reader is referred to [11,12]

3 Approximate Market Equilibrium

Define a solution (X, P , α) to be (1 + ε)-approximate market equilibrium if it
satisfies (1), (4) and the following “ε-relaxation” of the conditions (2) and (5):

∀i :
ei

1 + ε
≤ ∑m

j=1 xijpj ≤ ei (6)

∀i, j : xij > 0 ⇒ vij ≤ αipj ≤ (1 + ε)vij (7)

Theorem 2. Let P ∗ be the unique market equilibrium price. Let X∗ be corre-
sponding equilibrium allocation. Let (P , X, α) be a (1 + ε)-approximate market
equilibrium (satisfying (1), (4), (6) and (7)). Then, for all j the following must
be true:

p∗j
(1 + ε)n

≤ pj ≤ (1 + ε)n−1p∗j .

For the proof of the above theorem, we first construct a directed weighted bi-
partite graph (called the assignment graph Ga) with the set of buyers B and
the set of goods S as vertices on the two side. We use the market equilibrium
(X∗, P ∗) and the approximate market equilibrium (X, P ) to define the weight
on the edges of Ga. We then construct a reduced (weighted) directed acyclic
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subgraph Gr by successively removing cycles in Ga. We prove some properties
of the graph Gr and use these properties to prove Theorem 2.

Define:
γi =

ei∑m
j=1 xijpj

Since the solution (X, P ) satisfies (6), 1 ≤ γi ≤ 1+ε for all i. The weight function
wa : ((B × S) ∪ (S × B) → R+ of the graph Ga is defined as follows:

wa(i, j) = xijpjγi ∀(i, j) ∈ B × S

wa(j, i) = x∗
ijp

∗
j ∀(j, i) ∈ S × B

The edge e is present in the graph Ga iff w(e) > 0. Note that, with this con-
struction following is true:

∑

j∈S

wa(i, j) =
∑

j∈S

wa(j, i) = ei

Define the average price of an item j (p̂j) in the approximate market equilib-
rium as follows:

p̂j =
∑

i∈B wa(i, j)
aj

=
∑

i∈B

γixijpj

aj

Since 1 ≤ γi ≤ 1 + ε, and
∑n

i=1 xij = aj , we have:

pj ≤ p̂j ≤ (1 + ε)pj (8)

The reduced acyclic sub-graph Gr is constructed from Ga using a sequence of
“cycle removal” steps leading to graphs Ga ≡ G0, G1, G2, . . . Gk, Gk+1 ≡ Gr. At
step l, a cycle in the graph Gl−1 is located. Let el be the minimum weight edge
in this cycle. The graph Gl is obtained from Gl−1 by subtracting w(el) from
all edges in the cycle and removing the zero weight edges (including the edge
el). Every step removes at least one edge (el) of the graph Gl−1. Therefore, this
procedure is guaranteed to terminate giving an acyclic graph Gr. We now prove
some properties of Gr.

Lemma 1. No maximal path in Gr can start or end at a buyer vertex i ∈ B.

Lemma 2. If a maximal path in Gr starts at an item k ∈ S and ends at an
item k′ ∈ S then p∗k > p̂k and p∗k′ < p̂k′ .

Lemma 3. If an item k ∈ S is disconnected in Gr then p∗k = p̂k.

Lemma 4. If there is a path of length 2l from item k to item k′ in the graph
Ga then

pk′

pk
≤ (1 + ε)l p

∗
k′

p∗k
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Proof of Theorem 2. Consider any item j ∈ S. If j is disconnected in Gr,
then Lemma 3 gives p∗j = p̂j. Using (8) we get:

p∗j
1 + ε

≤ pj ≤ p∗j

If j is connected in Gr, then consider any maximal path in Gr containing j.
According to Lemma 1, this path must start at an item (say k) and end at an
item (say k′). Using Lemma 2 and (8) we get:

pk ≤ p̂k < p∗k (9)

p∗k′ < p̂k′ ≤ (1 + ε)pk′ (10)

The length of the path from k to j is bounded by 2(n− 1). Therefore, Lemma 4
can be used to get:

pj

pk
≤ (1 + ε)n−1

p∗j
p∗k

⇒ pj

p∗j
≤ (1 + ε)n−1 pk

p∗k

The above inequality alongwith with (9) gives:

pj ≤ (1 + ε)n−1p∗j

Similarly, there is a path from item j to item k′ of length at most 2(n − 1).
Again, using Lemma 4 we have:

pk′

p∗k′
≤ (1 + ε)n−1 pj

p∗j

Using (10) the above reduces to:

pj ≥ 1
(1 + ε)n

p∗j

This proves that for all items j ∈ S,

1
(1 + ε)n

p∗j ≤ pj ≤ (1 + ε)n−1p∗j

4 Successive Approximations by Price Rollback

We now describe the algorithm roll-back (shown in Figure 1), which provides
a polynomial method for solving the market equilibrium problem exactly (or
to within any specified accuracy). This algorithm relies on algorithm listed as
algorithm auction in Figure 2. This algorithm is a simplification of main in [12].
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algorithm roll-back
initialize
ε = ε0 = 1
call algorithm auction(ε)
while (ε > δ) do

∀j : pj ← pj/(1 + ε)2n

∀i, j : yij = yij + hij ;hij = 0;
ε← ε/2
∀i : ri = ei −

∑m
j=1 yijpj/(1 + ε)

call algorithm auction(ε)
end while

end algorithm roll-back

Fig. 1. The price rollback algorithm

The algorithm begins with ε = 1 and the initial solution as in [12]. It then
calls algorithm auction to get a 2-approximate market equilibrium. It then scales
down the prices by a factor (1 + ε)2n and reduces ε to half of its current value.
It then calls auction to with the new value of ε to give a (1 + ε)-approximate
market equilibrium. This process continues until ε is sufficiently small.

Lemma 5. For any 0 ≤ ε1 ≤ ε0, if the algorithm auction is called with ε = ε1
and an initial solution satisfying (1), (4), (7), (11) and (12)

∀i :
m∑

j=1

xijpj ≤ ei (11)

∀j : pj ≤ p∗j
(1 + ε)n+1

(12)

with ε = ε0, then it terminates with (1 + ε1)-approximate market equilibrium.

This leads to the following result.

Theorem 3. Iteration k of procedure roll-back finds a (1 + εk)-approximate
market equilibrium, where εk = ε0/2k.

To prove the complexity of the algorithm, we need to bound the time taken
by a call to algorithm auction. For this we recall the relevant portions of the
analysis in [11]. An item is sold at two prices and hij , yij respectively represent
the amounts of item j sold to buyer i at prices pj and pj/(1+ε). For a buyer i its
demand set is defined as Di = argmaxj vij/pj. Define D to be the set of demand
edges, X the set of assignment edges, Y a subset of the set of assignment edges
and Z a subset of Y as follows.

(i, j) ∈ D iff j ∈ Di

(j, i) ∈ X iff xij > 0
(j, i) ∈ Y iff yij > 0
(j, i) ∈ Z iff yij > 0 and j 
∈ Di
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procedure initialize
∀i,∀j : yij = 0; ∀i �= 1, ∀j : hij = 0
∀j : h1j = aj

∀j : α1j = (
∑

j ajv1j)/e1

∀j : pj = v1j/α1 ; ∀i : αi = maxjvij/pj

∀i �= 1 : ri = ei ; r1 = 0
end procedure initialize

algorithm auction(ε);
repeat

forall buyers i do
Di = arg maxj vij/pj

αi = maxj vij/pj

while ri > 0 do
pick j ∈ Di

if ∃k : ykj > 0
outbid(i, j, k)

else
raise price(j)
∀k : Dk = arg maxj vkj/pj; αk = maxj vkj/pj

endif
end while

end for
until

∑
i ri > ε(

∑
i ei)

end algorithm auction

procedure outbid(i, j, k)
if j �∈ Dk and i �= k then

t = min(ykj ,
ri
pj

)

hij = hij + t ; ykj = ykj − t
ri = ri − tpj

rk = rk + tpj/(1 + ε)
else

t = min( ε
(1+ε)

ykj ,
ri
pj

)

hkj = hkj + t/ε
ykj = ykj − t(1 + ε)/ε ; hij = hij + t
ri = ri − tpj

endif
end procedure
procedure raise price(j)

∀i : yij = hij ; hij = 0;
pj = (1 + ε)pj

end procedure raise price

Fig. 2. The basic auction mechanism

Define a directed bipartite graph G = (B, S, D∪Z) where B is the set of buyers,
S the set of goods.

Lemma 6. The graph G is acyclic.

The proof can be carried on same lines as [11].
Note that procedure outbid transfers the surplus (unspent money) from one

buyer to another only along paths in G. Moreover the surplus reduces by a factor
(1 + ε) every time it travels form one node to another in G. When outbid(i,
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j, k) is called either ri goes to zero or an edge from Y is removed (either yij

goes to zero or ykj goes to zero). Define a call to outbid as complete when an
edge in Y is removed and incomplete if ri goes to zero.

The steps performed by the algorithm auction are classified into three types
(a) price rise of an item; (b) complete call to outbid (ykj limits the bid); (c)
incomplete call (surplus ri goes to zero) to outbid and (d) computation of αi

and Di for all i. The time complexity of the algorithm can be bounded as follows:
steps of type (a) take O(n) time; there can be atmost n steps of type (b) for
every step of type (a). Using the directed acyclic graph argument of [11] it can
be shown that there can be atmost n2 steps of type (c) for every step of type
(a). Steps of type (d) can be naively implemented in O(nm) time and there can
be atmost one step of type (d) for every step of type (a).

This gives a time complexity of O((n2 + nm)W ) where W is the number of
steps of type (a) (i.e., the number of price rises).

We now bound W . Let emin = mini ei, e =
∑

i ei, vmin = mini,j:vij>0 vij ,
vmax = maxi,j vij , amax = maxj aj and amin = minj aj . The maximum and the
minimum price of any item is bounded, respectively, by e

amin
and (eminvmin)

(amaxvmax) .
Therefore, the number of price raise for any item in the first iteration is bounded
by O(log((evmaxamax)/(eminvminamin))). Using Theorem 2 and the fact that
prices are rolled back by factor (1 + εk)2n after iteration k and εk+1 = εk/2,
the number of price raises for any item in one call to algorithm auction at
iterations subsequent to the first, can be bounded by 7n. This gives a bound
of O(nm + m log((evmaxamax)/(eminvminamin)) log(1/δ)) for w. Therefore, we
have the following time complexity of algorithm roll-back.

Theorem 4. Algorithm roll-back terminates in
O(nm(n + m)(n + log((evmaxamax)/(eminvminamin))) log(1/δ)) steps.

A bound on 1/δ can be provided when the input is rational with numbers
bounded by M . By an analysis similar to that of Lemma 8 in [5], it can be
shown that price of an item j, pj is related to pk, price of k, in the connected
component of Go = (B, S, E) where E comprises edges (i, j) s.t. x∗

ij > 0 in the
equilibrium allocation. In fact pj = a

b pk where a and b are product of utility
values of length l when the items j and k are connected by a path of length 2l.
Thus 1/δ is bounded by nV n where V = maxij{vij}. We can thus obtain an
exact algorithm for the market clearing problem.

5 A Faster Algorithm Using Path-Auctions

The market equilibrium problem (for Fisher’s model with linear utilities) is strik-
ingly similar to the maximum flow problem and the auction algorithm described
in the previous section resembles the preflow push algorithms for the maximum
flow problem. The procedure outbid may be viewed as a step where the surplus
(excess flow) is transferred from one buyer (vertex) to another. However, there
are two key differences between the maximum flow algorithms and the auction
algorithm. Unlike the traditional flows, the surplus is not conserved; it decreases
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by a factor (1 + ε) when transferred from one vertex to another. Secondly, the
graph G on which the algorithm works changes dynamically, due to the changes
in demand sets and assignments.

Consider the graph G = (B, S, D∪Z). With each edge is associated a capacity
which represents the maximum amount of money that can be pushed along the
edge. For an edge in D there is no bound whereas for an edge (u, v) in Z the
capacity is bounded by yvu ∗ pu. Consider a path (u1, v1, u2, v2 . . . , uk, vk) in
G, beginning at a buyer u1 with positive surplus and ending at an item vk that
has no outgoing edges. Let the prices of these items be p1, p2, . . . , pk respectively.
Consider a bidding sequence where u1 outbids u2 on item v1, who inturn outbids
u3 on item v2, and so on, till uk−1 outbids uk on item vk−1. To acquire x units
of item v1, u1 needs xp1 amount of money. This releases p1x/(1 + ε) surplus for
u2, which if spent fully on acquiring v2, will generate a surplus of p1x/(1 + ε)2

at u3. If such a bidding is carried till the end of the path, the amount of surplus
generated at uk will be p1x/(1 + ε)k−1. Since vk has no outgoing edge, all the
buyers of vk have vk in their demand sets. If these buyers are outbid by uk then
they can reduce their allocations of item vk by a factor (1 + ε) and switch from
the lower price (pk/(1 + ε)) to the higher price (pk). Therefore the maximum
amount uk can bid on vk is given by ε

1+ε

∑
w∈B ywkpk. To model this, we add a

special vertex t (called the sink) to G. For every vertex v which does not have
an outgoing edge, we add an edge (v, t) of capacity ε

1+ε

∑
w∈B ywvpv.

Path auctions are defined by such sequences of bidding along paths in G. An
auction where bidding is done along paths in G such the surplus of all the nodes
except the first node remains unchanged, is called a path auction.

We define the capacity of an auction path as the maximum amount of money
that the first buyer can bid along the path, without changing the surplus of other
buyers or the price of any item on the path. For the path (u1, v1, . . . , uk, vk) the
capacity is equal to min(min1≤j≤k y(j+1)j(1+ ε)j−1pj , ε(1+ ε)k−2

∑
w∈B ywkpk).

In order to compute the path capacities and carry out bidding on paths ef-
ficiently, we use multiplier flows which are used to model the fact that the
surplus is not conserved as it traverses a path in the graph G. We then define
operations on dynamic trees [18] with multiplier flows. We use these operations
to efficiently implement the algorithm path auctions. We finally outline how the
dynamic trees may be modified to support multiplier flows efficiently.

Multiplier Flows
Given a directed graph G = (V, E) with edge capacities c : E → R+ and
multipliers η : E → R+. The multiplier of a path P = (e1, e2, . . . , ek) is defined
as η(P ) = Πk

i=1η(ei). A multiplier flow of value f through a directed path P
carries a flow of value Πk

j=iη(ej)f through the edge ei. Note that if the multiplier
η(ej) = 1 + ε, for all j then a multiplier flow of value f on the path P translates
into a flow of value (1 + ε)(k−j)f through the edge ej for all j ≤ k. We define
the multiplier capacity of the path P as min1≤i≤k c(ei)/η(ei, . . . ek). Note that
the capacity of an auction path is equal to the product of the multiplier of the
path and its multiplier capacity.
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Dynamic Trees, Multiplier Flows and Efficient Path-Auctions
An efficient data structure to maintain dynamic trees was proposed in [18]. This
data structure maintains a collection of vertex disjoint trees to efficiently (in
O(log n) amortized time) carry out operations of combining/splitting the trees
and updating capacity on paths from leaves to root of a tree. We adapt this data
structure for multiplier flows by defining operations on trees.

We need the following definitions:

link(u, v, c, η) : Join the tree rooted at u to the tree node v by adding the edge
(u, v) of capacity c and multiplier η.

cut(u, v) : Split the tree containing the (u, v) edge into two trees by removing
the edge.

parent(u) : Returns the parent of u in the tree (nil if u is a root node).
root(u) : Returns the root of tree containing the vertex u.
children(u) : Returns the set of children of node u.
capacity(u, v) : Returns the capacity of the edge (u, v).
multiplier(u) : Returns the multiplier of the path from u to root(u).
find-min(u) : Let V be the set of edges in the path from u to root(u). This

function returns arg minv∈V capacity(v, parent(v)) / multiplier(v).
update(u, x) : Let V be the set of edges in the path from u to root(u). This

function updates the capacities for all the edges in the path as ∀v ∈ V :
capacity(v, parent(v)) + = x multiplier(v)

The algorithm discovers a path from a vertex u with positive surplus (ru > 0)
to the sink t. It then finds out the maximum amount that may be bid along the
path using its multiplier capacity. After the bidding there are three possibilities
(as in algorithm auction) (a) price of last item needs to be raised; (b) ywv goes
to zero for some edge in the path, or (c) the surplus ru of vertex u goes to
zero. In case (c) the algorithm moves to another buyer with positive surplus. In
case (b) the corresponding edge is removed from the graph G and another path
from v to t is found. In case (a) the price of the item is raised and the required
data-structures and variables updated suitably. We now present the algorithm
in greater detail.

The algorithm first creates the graph G using the initial solution. The set D
is maintained in the graph by keeping a heap of items for all u ∈ B, sorted by
vuv/pv. The sets Z and Y are maintained by keeping two lists for each item
v ∈ S. We add a special vertex t called as the sink in the graph G. All the
vertices v ∈ S which do not have an outgoing edge (in Z) are implicitly assumed
to be connected to t. Initially all the trees are singleton vertices.

The algorithm picks a buyer vertex u with positive surplus and creates a path
from u to the sink t by linking the vertices using the edges in G. For every buyer
vertex in G, the demand set is well defined and hence there is always an outgoing
edge from the vertex. For an item vertex v in G either there is an outgoing edge
in Z or it is connected to t. Since the graph G is acyclic, a path to t can always
be discovered.

For the edges in D that get linked in the process, the capacity is set to M
and multiplier is set to 1. For the edges (v, u) in Z, the capacity is set to ŷuvpv
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and the multiplier is set to (1 + ε). For edges of the form (v, t) the capacity is
set to ε

1+ε

∑
u∈B ŷuvpv and the multiplier is set to 1. Note that the capacity of

auction path (u, . . . , t) is equal to multiplier(u) find min(u).
For an item v such that (v, t) ∈ G, define γv = (1 +

ε)capacity(v, t)/(ε
∑

u∈B ŷuvpv). For all other items v, define γv = 0. Now
define the assignments huv and yuv using the variables ĥuv and ŷuv and
the capacities of edges in trees as follows: if (v, u) ∈ Z is in a tree, then
yuv = capacity(v, u) else yuv = ŷuv(1 − γv). If (u, v) ∈ D is in a tree then
huv = (M − capacity(u, v))/pv + γvŷuv/(1 + ε) else huv = γvŷuv/(1 + ε).

With these definitions, it can be verified that the update step in the algo-
rithm is indeed equivalent to a path auction from buyer u on the path to t.
After the update step, the algorithm either raises the price of the last item in
the path, or cuts an edge from the tree or moves to another buyer with positive
surplus. In each of these cases, the variables and data structures are updated
suitably.

Efficient Implementation of Dynamic Trees
We next show how to modify the dynamic tree data structure of Sleater and
Tarjan [18] to implement the requirements of pushing multiplier flows.

The collection of auction paths form a collection of vertex-disjoint trees and
change over time. The dynamic tree data structure[18] applies in this context.
Each path is represented by binary trees. Each node, v, of the binary tree data
structure represents a sub-path P (v), i.e. a sequence of edges corresponding to
the edges stored at the leaves of the subtree rooted at v. At each node v we
maintain a variable corresponding to the minimum capacity of the flow path,
Min(v), a variable representing a composite multiplier for the path P termed
Mult(v), and updates which are applicable to each edge of the path P (v), UP (v).
The effective minimum capacity of the path corresponding to a node x in the tree
is obtained as EMin(x) = Min(x) − ∑

y∈Y UP (y) ∗ Mult(y)/Mult(x), where
Y is the set of nodes on the path from node (x) to the root. The second term
denote the effective update variable at node x. The minimum value at a node
v is effectively Min(v) = min(Min(u) − Up(v), (Min(w) − Up(w)) ∗ Mult(u)),
where u and w are the left and right children of the node v, respectively. Further,
Mult(v) = Mult(u) ∗ Mult(w).

If the tree data structure used is represented by splay trees [19], nodes along
the path from the root to a particular node, say v, in the tree are affected.
Let the path be P (v). To implement the changes along the path, say at a node
y ∈ P (v), the effective update variable is computed at each child for node y, say
w and z and UP (w), UP (z) computed at these nodes. UP (y) is set to zero.
This makes the value of the update variable zero along the path and path
changes can be now be made locally. Following [19], this results in an imple-
mentation of a sequence of k tree operation involving multiplier flows requiring
O(k log n) operations where n are the maximum number of nodes in the splay
trees.
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Complexity of Path-Auctions
To bound the complexity of the algorithm we carry out amortized analysis of
different operations. If W is the number of times prices are raised, then the
number of dynamic tree operations are bounded by O(nW ). Each of the dynamic
tree operation can be implemented in O(log n) amortized time. The time required
to update the data structures is O(n). This gives a overall time complexity of
O(nW log n).

If we use the roll-back mechanism, W is bounded by
O(nm + m log((evmaxamax)/(eminvminamin)) log(1/δ)), where 1/δ is bounded
by nV n and V = maxij{vij} Thus we have the following result.

Theorem 5. Using path-auctions the market equilibrium problem can be solved
exactly in O(n(nm + m log((evmaxamax)/(eminvminamin)) log(1/δ)) log n).

6 Reduction from Max-Flows

In order to show the inherent complexity of the market equilibrium problem,
we reduce the problem of maximum flows with vertex capacities to the market
equilibrium problem. Given a graph G = (V, E) with vertex capacities c : V →
R+, two special vertices s, t (called the source and the sink) and a flow value
f the problem is to decide if it is possible to route f units of flow from s to t
without sending a flow of value more than c(v) from any vertex v. This problem
can be reduced to the following market equilibrium.

For each vertex in V −{t} create a buyer in B and for each vertex in V −{s},
create an item in S. For every vertex j ∈ V − {s, t}, let ej = aj = c(j). Let
vij = 1 if (i, j) ∈ E and vij = 0 otherwise. Let vii = 1 for all i ∈ V −{s, t, }. Let
es = f and at = f . Note that the equilibrium prices are unique in the Fisher
model. Therefore, it is easy to verify that a flow f can be routed from s to t in
G iff all the equilibrium prices in the corresponding market equilibrium problem
are unity.
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Abstract. We study the structure of EG[2], the class of Eisenberg-Gale
markets with two agents. We prove that all markets in this class are
rational and they admit strongly polynomial algorithms whenever the
polytope containing the set of feasible utilities of the two agents can be
described via a combinatorial LP. This helps resolve positively the status
of two markets left as open problems by [JV]: the capacity allocation
market in a directed graph with two source-sink pairs and the network
coding market in a directed network with two sources.

Our algorithms for solving the corresponding nonlinear convex pro-
grams are fundamentally different from those obtained by [JV]; whereas
they use the primal-dual schema, we use a carefully constructed binary
search.

1 Introduction

The need for developing an algorithmic theory of market equilibria is by now
well established and much work has been done along these lines within algorith-
mic game theory over the last five years. Since one of the main motivations for
this work is new markets defined on the Internet which typically have massive
computational power available for running these markets in a centralized or dis-
tributed manner, this work should not only address traditional market models
studied within mathematical economics but also define new models. The latter
is a difficult task – the new models need to not only capture some of the idiosyn-
cracies of these markets in a simple manner but also be amenable to efficient
computation. Until we are in a position to produce such results, it is impor-
tant to define mathematical clean market models in order to grow our toolkit of
algorithms for computing equilibria efficiently.

An important step in this direction was recently taken by Jain and Vazirani
[JV] who defined the notion of Eisenberg-Gale markets. Eisenberg and Gale
[EG59] had given a remarkable convex program whose optimal solution gives
equilibrium allocations for the linear utilities case of Fisher’s market model; the
latter is considered one of the most fundamental market models in mathematical
economics.
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Equilibrium for an Eisenberg-Gale market is captured via a convex program
that has the same form as the Eisenberg-Gale program, i.e., it maximizes the
money weighted geometric mean of buyers’ utilities subject to linear packing con-
straints with the additional conditions of free disposal and utility homogeneity
(see Section 2 for definitions). [JV] studied the class of Eisenberg-Gale markets
from the five viewpoints of solvability via strongly polynomial algorithms, ra-
tionality, efficiency, fairness and competition monotonicity, and they found a
surprisingly rich structure. They also stated a host of open problems whose res-
olution should lead to a deeper understanding not only of these markets but also
of the issue of solvability of nonlinear convex programs via strongly polynomial
algorithms.

In this paper we investigate Eisenberg-Gale markets further and settle two
open problems of [JV]. A remarkable property of the Eisenberg-Gale program is
that, despite its being nonlinear, it always has a rational solution if all the input
parameters are rational. Therefore, the linear case of Fisher’s market model also
has this property. We will say that a market or a nonlinear program is rational
if it has this property and irrational otherwise.

Interestingly enough, rationality is not unique to the Eisenberg-Gale program.
[JV] showed that several natural markets in Kelly’s [Kel97] resource allocation
framework, which are also Eisenberg-Gale markets, are rational. Several other
such markets are irrational [GJTV05, JV] (see Section 1.1 for a detailed de-
scription). Two markets whose status was not known, and were left as open
problems by [JV], were: the capacity allocation market in a directed graph with
two source-sink pairs and the network coding market in a directed network with
two sources (see Section 2 for definitions). Among the markets characterized so
far, an important distinction between the rational and irrational markets was
that combinatorial problems underlying the former satisfied max-min theorems,
which were used critically to establish rationality, and those for the latter didn’t.

The two markets left open do not support max-min theorems. Surprisingly
enough, despite this, both of them turn out to be rational. More generally, in
this paper we show that all markets in EG[2], the class of Eisenberg-Gale mar-
kets with two agents, are rational. We also show that whenever the polytope
containing the set of feasible utilities of the two agents can be described via
a combinatorial LP, the market admits a strongly polynomial algorithm; both
markets described above admit such LP’s. In Section 1.1 we give an overview of
the structural and algorithmic ideas we use to prove these results.

1.1 A Comparison of Structural and Algorithmic Ideas

There is a fundamental difference between markets for which [JV] gave strongly
polynomial algorithms and the ones for which we do – combinatorial problems
underlying the former do support max-min thoerems whereas the latter don’t.
This difference manifests itself in the algorithmic ideas needed in the two cases
– whereas [JV] use the primal-dual schema and their algorithms can be viewed
as ascending price auctions, we use a carefully constructed binary search. The
algorithms of [JV] are combinatorial whereas ours are not, ours require a subrou-
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tine for solving combinatorial LP’s. The latter can be accomplished in strongly
polynomial time using Tardos’ algorithm [Tar86].

We start by giving a brief overview of the natural markets studied in [JV].
These markets belong to the resource allocation framework given by Kelly [Kel97]
for modeling and understanding TCP congestion control. Resources in these
markets are edge capacities and agents want to build combinatorial objects such
as source-sink flow paths or spanning trees or branchings, e.g., for establishing
TCP connections or broadcasting messages to all nodes in the network.

The following market, called the capacity allocation market, is of special signif-
icance within Kelly’s framework: Given a network (directed or undirected) with
edge capacities specified and a set of source-sink pairs, each with initial endow-
ment of money specified, find equilibrium flow and edge-prices. The equilibrium
must satisfy:

– Only saturated edges can have positive prices.
– All flows are sent along a minimum cost path from source to sink.
– The money of each source-sink pair is fully spent.

[JV] generalized the above market to the broadcasting setting where the agents
are nodes of the network with money and they want to buy (possibly fractional)
spanning trees (in the undirected case) or branchings (in the directed case). Once
again, the equilibrium prices must satisfy conditions similar to the ones given
above, that is, only saturated edges have prices, agents buy only the cheapest
trees or arborescence and money of each agent is fully spent.

Table 1 summarizes the results about equilibrium in the two capacity allo-
cation markets. We also record the complexity of the finding the minimum cut
separating the source-sink pairs in the setting.

Table 1. Table of Results about Rationality of Equilibrium in Capacity Allocation
markets. The table also notes the complexity of finding the min-cut separating the
source sink pairs from each other.

One Source
Multiple Sink

Two Source
Two Sink

Multiple Source
Multiple Sink

Directed Networks – Rational [JV]
– Polynomial Time

[FF56]

– Rational (This
paper)

– NP-hard
[GVY94]

– Irrational
[GJTV05]

– NP-hard
[DJP+94]

Undirected Networks – Rational [JV]
– Polynomial Time

[EFS56]

– Rational [JV]
– Polynomial Time

[Hu63]

– Irrational
[GJTV05]

– NP-hard
[DJP+94]
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Note that previous to this paper, each case of rational equilibrium also has
a polynomial time algorithm to find the minimum cut and the cases which are
NP-hard have irrational equilibrium. Also each polynomial time algorithm is
associated with a max-flow-min-cut result. Indeed [JV] use this duality crucially
in their proofs of rationality of equilibrium.

For the broadcasting capacity allocation markets, [JV] proved rationality for
the case of undirected networks with arbitrary agents and for directed networks
with two or less agents. Once again, the main tool used were duality results
about packing trees and arborescence by [NW61, Tut61] and [JV] respectively.

In fact, in the two source-sink case of the capacity allocation market, where
there is a gap between the max-flow and the min-cut, it was expected that the
equilibrium would be irrational.

In this paper, we prove that the two source-sink capacity allocation markets,
and in general any EG market with two agents including the network coding
market which generalizes the broadcasting capacity allocation market (see Sec-
tion 2), are rational. Our algorithm circumvents the lack of underlying max-min
theorems by using the more general LP-Duality Theorem itself; on the flip side,
our methods work only for the case of two agents.

Let M be a market in EG[2] and P be the polytope, in 2-dimensions, capturing
the set of feasible utilities of the two agents. For the rest of the section, consider
M to be the capacity allocation market described above with two source-sink
pairs. We consider a simple description of the set of facets of P using only
one parameter, α. Think of α as the slope of the line segment representing the
facet. As it will turn out, the issue of pricing edges of the network is equivalent
to pricing the facets of P which satisfy conditions similar to the ones for the
capacity allocation market (Details in Section 3 and the full paper [CDV]). We
show that for any instance of M, at most two (adjacent) facets of P need to be
assigned positive prices. Since P is a projection of the flow-polytope onto two
dimensions, it can be expected that the number of facets would not be too large.
For instance, in the case of undirected networks with two source-sink pairs, it
follows from a theorem of Hu [Hu63] that the number of facets is bounded by
3 (Note that this gives another algorithm for undirected two source-sink pairs).
However we show that in the case of directed networks, P can have exponentially
many facets ([CDV]). Thus simply enumerating over all the facets won’t give a
polynomial time algorithm. We get around this via binary search as follows.

Number the facets by increasing α values. In order to use binary search to
find the right facets, we establish a monotonicity between the number of the
required facets and the ratio of the money of the two agents. The next difficulty
is that we don’t know of any efficient procedures for counting the number of
facets or for finding the kth facet. Instead, we do a binary search on α rather
than on the order of the facets, to find the right facets. For this purpose, we
give an efficient procedure that given an α, gives the two (or one) facet in the
immediate neighborhood of α. We also show that the size of α, which is a real
number in general, is polynomially bounded in the capacity allocation market
case, and in general is polynomially bounded when the markets can be described
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via combinatorial LP’s (We refer the reader to Section 4 for more details). Thus
the binary search algorithm(which runs in time polynomial the size of α) runs
in polynomial time.

Finally, we translate prices on facets to prices on edges as follows. Correspond-
ing to each facet, we give an LP whose dual assigns weights to the edges of the
network. The price of each facet, multiplied by these dual variables, yields prices
of the edges. (Refer to the full paper [CDV] for details).

2 Definitions and Results

Jain and Vazirani [JV] define a class of abstract markets, called the Eisenberg-
Gale or EG Markets.

Definition 1. EG Markets. An EG Market M with the set of buyers (agents)
[n] is such that the set of feasible utilities of the buyers u ∈ Rn

+ for M is captured
by a polytope P defined by linear equations of the form

∀ j ∈ J,
∑

i∈[n]

aijui +
∑

k∈K

akjtk ≤ bj ,

∀i ∈ [n], k ∈ K, ui, tk ≥ 0,

such that it satisfies the following two conditions:

– Free disposal: if u is feasible, then so is any other u′ dominated by u.
– Utility Homogeneity: for all j ∈ J , if for some i ∈ [n], aij > 0 then bj = 0.

The auxiliary variables tk might be used for instance, to give a more efficient
representation of the feasible region, or as a means to provide semantics for the
market. For example, in the Fisher model of a market where there are buyers and
divisible goods, the auxiliary variables denote the amount of each good every
buyer gets.

An instance of M is given by the moneys m of the buyers. The equilibrium
utility allocation of an EG market is captured by the following convex program
similar to the one considered by Eisenberg and Gale [EG59] for the Fisher market
with linear utilities.

maximize
n∑

i=1

mi log ui

subject to ∀j ∈ J,
∑

i∈[n]

aijui +
∑

k∈K

akjtk ≤ bj ,

∀i ∈ [n], k ∈ K, ui, tk ≥ 0.

Remark: Since the equilibrium of an EG market is captured by a convex pro-
gram, the equilibrium always exists (even if the constraints are not finite). Given
proper separation oracles, the equilibrium could also be approximated to arbi-
trary small additive error via the ellipsoid method. Moreover, since the objective
function above is strictly concave, the equilibrium is unique.
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Agent preferences are traditionally represented by a utility function for goods.
However in some cases, like in the capacity allocation market described in Sec-
tion 1.1, it might be more convenient to simply represent the set of all feasible
utilities of agents, thus abstracting away the semantics of the market. In EG
Markets, the notion of a good being bought or sold has been subsumed by the
various constraints on the utilities of agents. As a result, these markets can be
manipulated and reasoned with in an abstract setting.The usefulness of such a
setting is demonstrated by the general nature of the result we obtain.

Since there are no goods in EG markets, each agent instead pays for the con-
straints influencing his utility. Thus, each constraint has a price. Interpreting the
prices as Lagrangian variables and applying the Karasch-Kuhn-Tucker (KKT)
conditions (KKT conditions provide a characterization of the optimum solution
in convex programs. See, for example, [BV04]) we get the following equivalent
definition of an equilibrium allocation in EG markets.

Definition 2. A feasible utility u is an equilibrium allocation if there exist wit-
ness t ∈ RK

+ and prices p ∈ RJ
+ such that

– ∀ i ∈ [n], mi = rate(i)ui, where rate(i) =
∑

j aijpj.
– ∀ j ∈ J, pj > 0 =⇒ ∑

i∈[n] aijui +
∑

k∈K akjtk = bj .

– ∀ t ∈ K, tk > 0 =⇒ ∑
k∈K akjpj = 0, and

∑
k∈K akjpj ≥ 0 otherwise.

In an equilibrium allocation, all money of each agent must be exhausted. This is
captured by the first requirement above. Moreover, if a constraint is priced, then
it must not be “under utilized” and the second requirement above implies this.

The third condition above is a technicality which arises due to the auxiliary
variables. Think of these variable as corresponding to dummy agents with no
money. The third condition above states that if an allocation gives any “utility”
to a dummy agent, the total price paid by him must be zero. In concrete instances
of markets, this condition normally translates to the premise that in equilibrium
an agent chooses the best bundle of goods. For example, in the Fisher market, the
third condition would imply that each buyer buys goods of maximum “bang-per-
buck”; in the capacity allocation market of Section 1.1, the condition corresponds
to the fact that each agent chooses the cheapest source-sink path.

We now give more examples of EG markets. We have already seen the Fisher
market with linear utilities and the capacity allocation market are examples.

Examples of EG Markets

1. Fisher markets with linear, Leontief and linear substitution utilities. The first
two are special cases of the last. A linear substitution utility is of the form

u(x) = min
k

∑

j

uk
j xj ,

where, xj is the amount of good j allocated to the buyer. A linear utility is
one of the form

∑
j ujxj . A Leontief utility is of the form u(x) = minj xj/aj .

2. The Network Coding Market. We are given a directed graph G = (V, E); E
is the set of resources, with capacities c : E → R+. The set V is partitioned
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into two sets, terminals and Steiner nodes, denoted T and R, respectively.
A set S ⊆ T is the set of sources with money mv, v ∈ S specified. Source
v broadcasts messages to all terminals at rate r by picking a generalized
branching rooted at v: a fractional subgraph of G specified via a function
b : E → R+ such that b(e) ≤ c(e) for all edges e and a flow of r units is
possible in the subgraph from v to every terminal u. Generalized branchings
rooted at vertices of S, b1, . . . , bk are said to form a feasible packing for G if

∀e ∈ E, b1(e) + . . . + bk(e) ≤ c(e).

Edge e is said to be saturated if this inequality holds with equality. Given
prices pe for e ∈ E, the price of generalized branching b is defined to be∑

e∈E b(e)pe.
The network coding market asks for a feasible packing of generalized

branchings and prices on edges such that
– The generalized branchings rooted at each source are cheapest possible.
– Only saturated edges have positive prices.
– The money of each source is fully used up.

We denote the class of EG markets with k buyers as EG[k]. Recall markets
having rational equilibrium allocations are called rational markets.We prove the
following theorem in Section 3.

Theorem 1. EG[2] markets are rational.

Note that the polytope of feasible utilities can be described by a linear program.
If this linear program is combinatorial1, then we call the EG market correspond-
ing to it a combinatorial market. In Section 4, we give a strongly polynomial
time algorithm to find the equilibrium prices for combinatorial EG[2] markets.

Theorem 2. If an EG[2] market is combinatorial, then the equilibrium prices
can be found in strongly polynomial time.

3 Rationality of EG[2] Markets

The main results of this section are that EG markets with 2 agents are rational.
Let the polytope of feasible utilities be

P = {x : Ax ≤ b, x ≥ 0} ,

with u1 = x1 and u2 = x2 being the utilities of agents 1 and 2 respectively and
the rest being auxiliary variables. Let c be a vector such that c1 = 1, c2 = α, and
ci = 0 otherwise. This is defined so that c ·x = u1 +αu2. Let L(α) = max{c ·x :
x ∈ P} = min{b·y : y ∈ D}, where D is the dual polytope {y : AT y ≥ c,y ≥ 0}.
In particular, L(0) = max{u1 : x ∈ P} and L(∞) = max{u2 : x ∈ P}.
1 An LP of the form max{cx : Ax ≤ b, x ≥ 0} is combinatorial if the entries in A have

binary encoding length polynomial in the dimension of A.
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Let the projection of P on (u1, u2) be

Pu = {(u1, u2) : u2 ≤ β0, u1 + αlu2 ≤ βl, 1 ≤ l ≤ m, u1 ≤ βm+1} .

Observe that βl = L(αl) for all 0 ≤ l ≤ m + 1 if we define α0 = ∞ and
αm+1 = 0. We may assume that we only consider facet inducing inequalities: for
all 1 ≤ l ≤ m, u1 + αlu2 = βl is a facet of Pu. Call it facet l. Without loss of
generality, assume that the αl’s and βl’s are strictly decreasing.

We assert that Pu defines the same market as P . Moreover, as mentioned in
Section 1.1, when we price the constraints (facets) in Pu, these prices can be
used to get the prices for constraints of P . Moreover if the prices of the facets
are rational, then so are the prices of constraints in P . For more details, refer
the full paper [CDV]. Thus in the remaining of the paper, we discuss methods
of pricing the facets.

In the remaining of the section we show that no matter what the moneys of the
two agents are, at most two facets need to be priced. Indeed these prices appear
as variables in simultaneous linear equations and thus are rational. Although
the number of facets in the projection Pu maybe exponential (in the full version
[CDV] we do give the construction of such an example), in Section 4, we show
how to find these prices in polynomial time.

Definition 3. Let (α0, α1, α2, · · · , αm, αm+1) with αl > αl+1 be the profile of
Pu which completely describes it.

Let the facets l and l + 1 intersect at the point (ul
1, u

l
2). Thus the endpoints of

facet l are (ul−1
1 , ul−1

2 ) and (ul
1, u

l
2). Associate subintervals of [0, 1] to the facets

as follows.

Definition 4

∀1 ≤ l ≤ m, Il :=

[
ul−1

1

βl
,
ul

1

βl

]
, Il,l+1 :=

[
ul

1

βl
,

ul
1

βl+1

]
.

I0,1 :=
[
0, 1 − α1β0

β1

]
.

The main idea is that if m1, m2 are the moneys of the two agents, then m1
m1+m2

falls in exactly one of the intervals Il or Il,l+1. In the first case, we price only the
facet l, while in the second we price only the facets l and l + 1. We now make
this precise in a series of lemmas.

Lemma 1. If m1
m1+m2

∈ Il, 1 ≤ l ≤ m, then pl = m1+m2
βl

(and 0 otherwise) is an
equilibrium price.

Proof. Its not too hard to check that the utilities u∗
1 := m1/pl and u∗

2 :=
m2/(αlpl) are equilibrium utilities and lie on facet l.

Lemma 2. If m1
m1+m2

∈ Il,l+1, 1 ≤ l ≤ m, then there exists an equilibrium price
with only pl+1 and pl having non-zero prices.

Proof. The equilibrium utility allocation is (ul
1, u

l
2). To show this, we want pl and

pl+1 that satisfy the following two equations. m1 = ul
1(pl + pl+1), and m2 =

ul
2(αlpl +αl+1pl+1). Note that this system of two equations in two unknowns has
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a unique solution since they are linearly independent and are positive exactly
when m1

m2
∈

[
ul
1

αlul
2
,

ul
1

αl+1ul
2

]
, which happens when m1

m1+m2
is in the interval Il,l+1.

I ≤ I ′ means interval I ends where I ′ begins. I < I ′ means interval I ends before
I ′ begins. I ≤ x means interval I ends before or at x. x ≤ I means interval I
starts after or at x. We note the following for future reference.

Observation 1
Il ≤ Il,l+1 ≤ Il+1.

Proof of Theorem 1. Proof follows from noting that the intervals Il, for 1 ≤
l ≤ m, and Il,l+1, for 0 ≤ l ≤ m, cover the entire unit interval (Observation 1).
Thus for any instance of moneys, the equilibrium prices are rational.

4 Algorithms for Combinatorial EG[2] Markets

4.1 Binary Search Algorithm

In this section we give a binary search algorithm for finding equilibrium prices. We
also give a strongly polynomial time algorithm for finding the equilibrium prices in
EG[2] markets that are combinatorial. The algorithm takes as input, the moneys
of the buyers, m1 and m2, a description of the polytope P , and two parameters, M
and ε such that we are guaranteed that M ≥ α1, and αl − αl+1 ≥ 2ε for all l.

We now describe the algorithm at a high level. The algorithm does a binary
search on α. First, it finds the facets adjacent to α, say l and l + 1 such that
α ∈ [αl, αl+1], and their endpoints. Now, it checks if the equilibrium can be
attained by pricing these two facets, using Lemmas 1 and 2. If yes, the algorithm
outputs those prices and halts. Otherwise, the monotonicity of the intervals
(Observation 1) allows us to restrict our attention to a smaller range. The rest
of the section describes how to implement Lines 2 and 3 in Algorithm 1. Let the
entries of the matrix A be A(i,j) = aij . Recall that P = {x : Ax ≤ b, x ≥ 0} and
D = {y : AT y ≥ c,y ≥ 0}. Also recall L(α) = max{c · x : x ∈ P} = min{b · y :
y ∈ D} Given any x ∈ P , define the polytope Q(x) as the set of all vectors
(y, α) that satisfy

∀i,
∑

j

aijyj ≤ ci, ∀j, yj ≥ 0.

∀i : xi > 0,
∑

j

aijyj = ci,

∀j :
∑

i

aijxi < bj , yj = 0.

Note that the first two constraints imply that y ∈ D. The last two constraints
imply that x and y satisfy the complementary slackness conditions. However,
in Q(x), α is treated as a variable. The algorithm to find the facets adjacent to
any given α makes use of the following Lemmas 3 and 4. The proofs are not too
hard and are omitted in the extended abstract for sake of brevity.
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input
:

m1, m2,P , M, ε.

U ←M ;
L← 0;
ρ← m1

m1+m2
;

repeat1

α← (U + L)/2;
Find l such that α ∈ [αl, αl+1];2

Find the endpoints of the facets l and l + 1 ;3

if ρ ∈ Il ∪ Il,l+1 ∪ Il+1 then
Assign prices to the facets l and l + 1 as in Lemmas 1 and 2, and halt;

end
else if ρ < Il then

L← αl;
end
else

U ← αl+1;
end

until U − L < ε ;

Algorithm 1. The Binary Search Algorithm

Lemma 3. Let x be any feasible extension of (ul
1, u

l
2), that is x∈P, x1 =ul

1 and
x2 =ul

2. Then αl =min{α : (y, α)∈Q(x)}, and αl+1 =max{α : (y, α)∈Q(x)}.
Lemma 4. L(α) = ul

1 + αul
2 if and only if α ∈ [αl, αl+1].

Now given α, one can find the facets adjacent to it, that is, l such that α ∈
[αl, αl+1]. First find x that maximizes cx = u1 +αu2 such that x ∈ P . Then find
αl = min{α : (y, α) ∈ Q(x)}, and αl+1 = max{α : (y, α) ∈ Q(x)}. We now give
a lemma that enables us to find the endpoints of a facet.

Lemma 5. L(αl + ε) = ul−1
1 + (αl + ε)ul−1

2 and L(αl − ε) = ul
1 + (αl − ε)ul

2.

Let T be the time required to optimize any linear objective function over the
polytopes P and Q(x). The following theorem characterizes the running time of
the algorithm.

Theorem 3. The running time of the algorithm is O
(
T log

(
M
ε

))
.

4.2 Combinatorial Markets

In this section, we show that for combinatorial EG[2] markets, the equilibrium
price can be found in strongly polynomial time. Let ν(·) denote the binary en-
coding length.

Lemma 6. ∀ l, ν(αl) = ν(A)O(1). That is, the size of the αl’s is polynomially
bounded in the size of the matrix entries.

Proof. Note that Q(x) is described by the aij ’s. Theorem follows from Lemma
3 and standard application of Cramer’s rule.
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Lemma 7. One can find M and ε such that log
(

M
ε

)
= ν(A)O(1).

Proof. Let c be the constant in the O(1) in Lemma 6. M can be chosen to be the
largest integer with a binary encoding length ν(A)c. Clearly α1 ≤ M . ε can then
be chosen to be 1/(2M). αl’s have their denominators at most M and hence
αl − αl+1 ≥ 1/M = 2ε.

Theorem 2 follows from this lemma and Theorem 3. As a corollary, we get that
there is a strongly polynomial time algorithm for the capacity allocation market
in directed graphs with two source-sink pairs and the network coding market in
a directed network with two sources.

5 Discussion

In this paper, we extend the study of Eisenberg-Gale markets defined by [JV]
and prove that EG[2] markets have rational equilibrium. Moreover, when the
polytope describing the feasible utilities is combinatorial, we provide a strongly
polynomial time algorithm to obtain the equilibrium allocation.

Our resolution of the open problems from [JV] raises some interesting ques-
tions. The restriction of Fisher’s linear utilities market to two agents is an EG[2]
market which does not admit a combinatorial LP; however it does admit a
strongly polynomial algorithm, since Deng, Papadimitriou and Safra [DPS02]
have shown that Fisher’s linear utilities market on a bounded number of agents
always has a strongly polynomial algorithm. Do all markets in EG[2] admit
strongly polynomial algorithms? Alternatively, can some evidence be given to
establish the contrary?

For EG[k] with k > 2, [GJTV05, JV] showed that the equilibrium can be
irrational, which implies that an exact strongly polynomial time algorithm for
finding equilibria is not expected. By definition, one can approximate the equilib-
ria up to an arbitrary additive error via the ellipsoid method. Is there a strongly
polynomial time algorithm which approximates the equilibria? Our method of
iterating over facets does not seem to generalize to higher k. A positive answer to
this question would probably involve designing new tools which could be useful
for solving convex programs as well.
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Abstract. We focus on the opportunity the Internet has provided for a
fully operational Economic Theory. We should review a few of the current
development of the algorithmic approach in its study and postulate on
the important issues that lie ahead of us.

The Internet has now secured its place as a major global platform for commerce,
with the help of great information and communication technology advances. Bill
Gates of Microsoft describes such a market as a friction-free Capitalism [1], cit-
ing the availability of the huge communication bandwidth provided by today’s
network that has significantly reduced the information barrier. In addition, elec-
tronic trading processes have made economic operations accessible automati-
cally at micro-level operations, and with significantly reduced transaction costs.
Program trading allows optimization techniques be applied in precision that
closely matches that of perfect rational decision makers. We are closer to the
Economists’ dream of a perfect market than ever before. The perfect market
would allow for a state of equilibrium where prices and allocations of commer-
cial products are determined in a way, dependent on the market model, such
that all goods are cleared and no individual would be better off changing to
another feasible state.

How to reach such an ideal state is another matter that has been a major
source of disagreement among economists. A tatonnement process was originally
proposed by Walras to allow a fictitious auctioneer to propose a sequence of vir-
tual prices until the price converges to an equilibrium. Technically, the idea can
actually be implemented by a continuously declared price during the pre-opening
period of a computerized trading system, such as Oskar Lange had advocated
since the dawn of the computer age [2]. Alternatively, Herbert Scarf developed
methodologies for the use of numeric algorithms to compute the equilibrium
price vector and commodity allocations in general equilibrium systems [3].

But there is a huge gap between an existential theorem for which a solution
can be found in a finite number of convergence steps and computationally feasible
solutions. In theoretical computer science, the latter is suggested to be charac-
terized by polynomial time algorithms to derive output from input data which
may be regarded as a rational computational resource bound in decision mak-
ing [4,5]. However, the pervasiveness of the negative results in the possibility of a
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polynomial time algorithm for general economic problems has brought in a sense
of frustration and may cast doubt on the methodology. Many of the solution con-
cepts in cooperative game theory are known to be hard to evaluate in general [6].
The existence of the core [7], a central solution concept in cooperative game the-
ory, as well as that of Walrasian equilibrium [8], depends on whether a linear
system has an integer solution, a condition that is in general NP-hard to decide.
General equilibrium price determination is difficult for many cases [9,10,11], even
though solvable in polynomial time for some limited utility functions [12,13,14].
Even arbitrage is proven, under various realistic constraints, to be hard to de-
termine [15]. Recently, computation of Nash equilibrium for a constant number
of players (all the way down to two players) is proven to be PPAD-complete
(equivalent to the computation of the fixed point problem) [16,17], where the
two player case was previously expected to be polynomially solvable. Though im-
mediate interests have been drawn to such astonishing results, gradually serious
doubt may edge in to question the usefulness of this new paradigm, borrowed
from computer science to study fundamental topics in Economics, previously
regarded as well solved in consensus of the community.

Under such circumstance, a major challenge that lies in front of our paradigm
is whether we can make useful contributions to Economics, both in theory and
in practice. In some sense, the complexity approach faces a situation similar to
the impossibility theorem of Kenneth Arrow which investigates the consistency
of axioms that govern the relationship of the collective decision of a group with
the free wills of its constituent individuals. Its impossibility in the unrestricted
domain without a dictator has since aroused intensive interests in the subject.
At the first sight, every effort trying to turn the impossible around seems quite
naive and stubborn minded. The simply stated and clearly proven theorem seems
to make it pale all arguments to mend the brutal truth by replacing domain con-
ditions or restricting decision making processes. To many, it spells the end to a
potential social choice theory. Surprisingly, further studies under the framework
set by Arrow have developed into the commonly referred to as Arrovian Social
Choice. A particularly prominent role is played by Amartya Sen, who carried
the approach of interpersonal comparisons of utility on to escape from the im-
possibility and to study collective choices based on real life necessities [18]. In
another direction, James Buchanan and Gordon Tullock studied the political
decision making process, in particular that of the US, as a market institution
involved with individuals’ valuation of public goods and their shares of the asso-
ciated costs [19]. In both cases, the advances in our knowledge of the relationship
of the public institutions and the individuals of the society have been guided in
clear comparison with the Arrow’s celebrated theorem.

In contrast, we are in a much better situation in regard to the use of the algo-
rithmic complexity in the classical model of Economics. The methodology does
not only result in negative conclusions, but it also brings in a rich class of method-
ologies such as randomized and approximate algorithms that have successfully
tackled computationally difficult problems. The positive results in algorithms
for problems in Economics are abundant. They encourage and foster positive
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interactions with Economics in complement to the role of negative complexity
results which point to the necessity of active effort to ensure the efficiency and
stability of economic systems, such is the case of E-commerce enabled through
the Internet. Setting it in a different aspect, the difficulty in deriving equilibrium
may delay the convergence toward equilibrium but at the same time it creates
more potential profitable opportunities for sophisticated profit seekers. Exactly
because of the computational difficulties, we would expect to see, or putting it
more proactively, we would advocate heavy involvement of computing resources
and efforts in the electronic economic systems. Finally, in new Economic activi-
ties seen in adword auctions, as well as in virtual Economics as of online games,
we encounter completely new economic environments, where computer science
has been making great contributions in creating new theories and in providing
new efficient protocols.

In this talk, I focus on a selection of topics in this exciting interaction that I
am most familiar with or have participated in. I shall also limit myself to issues
that are well formulated and fundamental. Current success and open problems
will be discussed but without detailed introduction of the mathematical and
computational complexity concepts. The readers not familiar with the jargons
would be referred to the relevant literatures. We shall start with Nash equilib-
rium for which the recent development has provided us a clear picture of the
computational complexity. Nash equilibrium is an example where we have seen
the most creative interaction of complexity theory and game theory, which can
well be described as “ Game World is Flat” [20]. Next, we discuss the price
equilibrium of market where there has been continuous progress in the past few
years in characterizing its computational complexity under different constraints.
Finally, we consider operational issues related to market processes, such as in-
centive compatibility and arbitrage.

1 The Power of PPAD on Nash Equilibrium

The computational complexity of non-cooperative game in bimatrix form has
been a long standing open problem known since Lemke-Howson’s algorithm was
first designed, which was shown to have a class of examples to require an ex-
ponential number of steps even for the best starting position by Rahul Savani
and Bernhard von Stengel [21]. In addition, Nash equilibrium with various re-
strictions, most noticeably the uniqueness of Nash equilibrium, are known to be
NP-hard previously due the wonderful work of Gilboa and Zemel [22]. The prob-
lem that stood open for a long time is the computational complexity of finding
a Nash equilibrium that is guaranteed by Nash’s original theorem.

The root of the solution was initiated in 1991 by Papadimitriou in his intro-
duction of the complexity class PPAD (polynomial parity argument, directed),
which turns out to be exactly the class for Nash equilibrium in bimatrix form as
revealed by a series of recent works, starting with the big breakthrough of the
four player case by Daskalakis, Goldberg, and Papadimitriou [16], and end with
the two player game PPAD-hard proof by Chen and Deng [17]. The result places
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PPAD at the center of the algorithmic study of the Nash equilibrium problem.
In addition, for games with a large number of players and a succinct represen-
tation, the same class PPAD fully characterizes their computational complexity,
as summarized in “Game World is Flat” by Daskalakis, Fabrikant and Papadim-
itriou [20].

The concept and techniques developed here turned out powerful enough to
move the frontier of another very important field, smoothed analysis, signifi-
cantly. Chen, Deng and Teng [23], with several other important new innovative
ideas, proved that Nash equlibrium has no polynomial smoothed algorithms un-
less PPAD is in RP, as a next significant result to complement the polynomial
time smoothed complexity of linear program (or zero sum games) by the pioneer
work of Spielman and Teng [24] in this field. The work is also extendable to
win-loss game with new ideas [25] built on a connection by Tim Abbott, Daniel
Kane, Paul Valiant [26]. The result can also be applied to derive similar results
for General equilibrium by Huang and Teng [27].

In comparison with other problems we are going to discuss here, PPAD pro-
vides Nash equilibrium with a clean complexity characterization. The clear next
frontier is whether there is a polynomial time approximation as we know no full
polynomial time approximation exists unless PPAD is in P [23]. In some sense,
the PPAD complete proof of 2NASH may not necessarily be a negative result as
games with many players are equivalent in complexity to games with two players.
This result itself invites further algorithmic studies in term of two player games.
Two results [28,29] in this promising direction have already appeared in the same
conference WINE 2006 with the first constant approximation-ratio algorithms
for two player Nash Equilibrium. They are only the beginning of the future ex-
plorations into the question whether a polynomial time approximation scheme
can be found for two player Nash equilibrium, though it is known not possible
to have a fully polynomial time approximation scheme. In addition, questions
also open up whether absolute constant approximation algorithms for 2NASH
would lead to approximation algorithms with more players for which the exact
solution is equivalent to, in a way similar to the MAX-SNP concept of equally
approximable algorithms? Finally, it also poses a challenge to the complexity
community to exactly characterize PPAD against other complexity classes.

There have been several important innovations in this series of work leading to
the proof of the PPAD characterization of two player Nash equilibrium [16,17,23].
The most non-intuitive one is the reliance on a new concept of the approximate
Nash equilibrium introduced in [16]. An interesting question is whether we can
derive a direct reduction for the exact Nash equilibrium? In addition, a tricky
methodology in the proofs is the definition and the use of discrete fixed points
in the proof. A discrete fixed point is defined on a set of vertices on a unit
cube [16] (or k + 1 point on a k-dimension unit cube [23]) satisfying a property
that all the function values are present on those vertices. Note that the range of
functions considered are {e1, e2, · · · , ek, − ∑k

i=1 ei}, where ei is the unit vector
in the positive direction of the i-th coordinate. In the reduction proof, however, a
restricted version was used. In [16,17], such a set of vertices on a unit cube allow
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for an averaging cube that sums up to zero of the functions values on its points.
In [23], the k + 1 vertices of the cube allow for an equiangular line segment that
averages to zero of the functions values on its points. Such a strange approach
simplifies the proofs significantly, and seems to be necessary for the proof of the
no FPTAS results in [23] though alternative approaches are possible for the exact
NASH results via a concept [30] of badness of cube-function pairs similar to that
of degree theory of Brouwer. It would be mathematically interesting to know
the structures of the set of fixed points that averaging to zero on a small cube
or an equiangular line segment. Finally, the encoding of Boolean variables using
Nash equilibrium probability values in paired strategies is the main idea that
made it possible to carry out the proof of PPAD-completeness of the two player
Nash equilibrium. Such encoding is still efficient with respect to polynomial
factor approximation [23] but seems not possible to extend further. It would
be interesting to develop encoding schemes for more players which parameterize
with respect to subpolynomial approximation factor schemes.

2 Is There a Central Complexity Theorem for General
Equilibrium?

Deng, Papadimitriou and Safra started the current effort, and explored several
aspects, of complexity issues of the general equilibrium pricing problem [9]. The
algorithmic issue of the standard continuous variable competitive general equi-
librium has since attracted a lot of efforts and works starting with the linear
utility case (for the Fisher model by Devanur, Papadimitriou, Saberi and Vazi-
rani [13], and for the Arrow Debreu model by Jain [14]). An excellent survey
conducted by Codenotti, Pemmaraju and Varadarajan made an exploration of
connections of the recent effort with previously mathematical works (e.g., that
of Nenakov and Primak [12]), cast in the context of algorithmic complexity [31],
and discussed some of the excellent works done upto then, as well as proposed
several interesting open problems. Since then, a brilliant discovery by Ye of a
link of a linear complementary relation to the solutions to an exchange market
equilibria with Leontief utilities, has allowed computational complexity results
known for various versions of Nash equilibrium extended to the computational
complexity results for general equilibrium pricing of continuous variables [10,11].
It also naturally extends the PPAD-hardness results for Nash equilibrium to the
exchange economy’s general equilibrium. The non-approximability results and
the negative smoothed complexity results can also be carried out through this
connection by a significant effort of Huang and Teng [27].

As the mathematical methodologies, and algorithms, for these two problems
are closedly related, it is reasonable to see related computational complexity
results. Unlike Nash equilibrium, however, there is a lack of a clear frontier
in the computational complexity of the general equilibrium pricing problem.
The positive results are much related to convex program formulations of the
linear utility function case [12,14], and its extensions (often related to Fisher
utility functions). On the other hand, the negative results are based on the
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connection with Nash equilibrium [10,11]. Between those two special forms of
utility functions, there are still many possibilities.

An obvious open problem in the computational complexity issue of the general
equilibrium problem is the possibility of a sharp result that separates polyno-
mial time solvability and otherwise (either by NP-completeness or by PPAD-
completeness). The most convincing positive result would be expected to match
up to the work of Arrow and Debreu in the existential theorems [32], and comple-
mented by a negative complexity result, most probably of PPAD-hardness, for
slightly more general utility functions. One immediate technical open question
is whether we would be able to explore the Uzawa’s solution of the fixed point
problem using Walrasian equilibrium [33] to a tighter PPAD-hardness result
than those already known.

Finally, other frontiers studied in [9] would be worthy of further explorations,
such as the complexity issues involved with integer variables and communication
complexity in the framework of the general equilibrium paradigm. In addition,
with the communication pattern well spelt out on the Internet, it would be
feasible to study, in greater depth than ever before, how would communication
protocols affect the equilibrium price process.

3 Market Forms and Efficiencies

Human commercial activities have shown a rich collection of different
institutions. Most of them operate, in theory, on three fundamental principles:
non-arbitrageness, competitive equilibrium, and incentive compatibility. The al-
gorithmic complexity paradigm is especially relevant at this operational level of
the market mechanisms. While equilibrium is discussed above, we should discuss
the remaining two related concepts, arbitrage (the possibility of making a risk-
less risk) and incentive compatibility (the truth telling properties of agents), in
the subsequent subsections.

3.1 Arbitrage and Time Factor in Market

Here we are interested to see how computational complexity varies in differ-
ent models of exchange markets, and how in reality the exchange markets have
evolved. In the simplest model of frictionless markets, an arbitrage opportunity
is a three way triangle that can be identified quickly. In a slightly more general
model where some currencies can only be changed in one way to another, arbi-
trage is equivalent to a negative cycle in a directed graph, which can be found,
e.g., by dynamic programming techniques, in polynomial time. In addition, such
approach remains polynomial even if some forms of friction are allowed.

In reality, however, friction does exist to the extent that the above dynamic
programming approach does not work any more. In fact, three particularly in-
teresting constraints are in existence of many exchange markets. We shall adopt
the foreign exchange market as an example for the sake of definiteness in ter-
minologies. Integrality is one of the most common constraints in that trading
volume is often based on lots of a fixed number of a currency or its round sum
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multiples as a unit. The bound constraint requires a maximum number of units
to be bought or sold in a certain price. One may have to pay more or sell for less
in the next levels of trading. Finally, the ask-bid spread constraint characterizes
the fact that the buying rate and the selling rate are usually different. Under
such a general model of frictional exchange market, it is computationally diffi-
cult, more specifically, NP-hard, to find arbitrage opportunity [15]. Even though
this may be counter-intuitive to what most would expect, one may relate the re-
sult to a barter market where merchants profited significantly so that commerce
could take off. Complexity in commercial activities may well be an important
factor in the evolution of commodity exchange markets.

Of course, an NP-hardness result may not rule out the possibility that difficult-
to-find arbitrage opportunities are insignificant. The hardness result would be
deemed useless in presence of such situation. One may argue against such a result
that there may exist insignificant arbitrage opportunities but it is not worthwhile
to exploit it by spending an enormous amount of computational resource to find
it. In this regard, complexity on approximability offers an answer to the proposal
of bounded rationality in computation. We would then be interested to determine
whether an approximation (within in a factor of (1 + ε) for some fixed constant
ε) to the optimal solution is not possible. Therefore, in order that a quest into
the arbitrage condition via computational complexity approach conform to the
principle of bounded rationality, the issue would be whether we are not able
to find a significant large arbitrage opportunities (inapproximability), or more
computational time would result in a better approximation (PTAS). This is
again NP-hard under the above general assumptions [15].

Still, the hard non-approximability result on arbitrage of in general exchange
markets may not necessarily imply that realistic frictional exchange markets are
full of arbitrage opportunities. Two models closely related to the current foreign
exchange markets do admit polynomial time algorithms for finding arbitrage op-
portunities: One is the star-shaped exchange market models, corresponding to
a major currency and others valuated against the major currency (a model of a
dominating currency such as in the case of dollar region or euro region.) Another
is a market with a constant number of currencies (but the number of ask/bid
rates on the market could be a non-constant). Though the special cases are quite
simple, they concur with the reality to some extent. Obviously, when the number
of currencies is bounded by a fixed constant, the computation of arbitrage be-
comes easier than the general case of an unbounded number of currencies. As a
matter of fact, we have a moderate number of currencies in the world. Therefore,
the complexity of arbitrage may not be as pessimistic as the hardness results
show. In addition, the number of currencies tends to be reduced gradually, as in
the creation of Euro. In corresponding to the star-shaped digraph, one may also
relate the central vertex to the role of money in a commodity market.

The lesson learnt through this study is that, different foreign exchange sys-
tems exhibit quite different computational complexities in locating an arbitrage
opportunity. They would definitely affect the time to restore to a non-arbitrage
state. Such operations issues would be interesting future works. The problem
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becomes much more involved when futures are introduced. The simple star graph
model becomes NP-hard in such case. We would be interested to identify sys-
tems that would be easy to located arbitrage in presence of a futures market
at exchange systems. Those results may shed new light on how monetary sys-
tem models were adopted and how they evolved in reality, and are of potential
applications in a merging world market.

3.2 Trading Systems and Auction Protocols

The most convincing study of the market process, both in theory and in reality,
is that of a single seller, with the second price auction, often referred to as the
Vickery auction, based on the concept of incentive compatibility: The highest
bidder wins, and pays the seller the price of the second highest bidder. Every
buyer would submit its own value of the goods as its bidding price with no regret,
as there is no possibility to gain in utility by changing the bid. This concept of
incentive compatibility first exemplified its usefulness in Vickery auction has be-
come the theoretical foundation of the mechanism design discipline in Economics
and Management science.

The market with many buyers and many sellers, often referred to as a double
auction market, has not been characterized as such. The most successful under-
standing of the double auction model, especially in a dynamic setting, according
to Friedman and Rust [34], is by experimental research scientists such as Vernon
Smith and Charles Plott, in that the price of goods and their allocations con-
verge to the competitive equilibrium almost universally in continuous auction
experimental settings. We have also seen a rich range of theoretical research ac-
tivities in understanding double auctions but they have not been able to draw as
clear a picture of the double auction market as has done by experimental stud-
ies. In some sense, there is a long overdue theory on continuous auction markets
that would explain reality without bending principles. The emergence of the E-
Commerce with the Internet technology over the last decade has created much
large double auction markets in a more diversified environment than ever before,
bringing in both opportunities for and extra complexities in their challenges to
theoretical studies. Such opportunities have already attracted much attention of
theoreticians in applying new ideas to the double auction market.

Competitive auction [35], is a particularly interesting approach that aims at
maximizing the returns of the seller while maintaining incentive compatibility
of the participants. The idea is to achieve a total revenue that is within a con-
stant factor of the optimum for the seller who knows all the private values of the
buyers on the goods. There is a technical requirement that the optimum is the
single price revenue under the condition that at least two buyers are allocated
with the item. The most attractive property is that the revenue is guaranteed to
be within a constant factor of that optimum no matter what the private values
of the buyers are. The solution is achieved with introduction of a randomized
protocol, with a distortion of the market condition: Buyers can be excluded
from allocation of the goods even if they bid higher than the trading price. Even
though such protocols are quite normal in other resource allocation problems
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studied in computer science, it is quite unusual in Economics. If it indeed gen-
erates more revenue for the seller in reality, there is no reason why the seller
would be deterred from applying such protocols, especially in an Internet envi-
ronment where few laws are available that are globally applicable. It therefore
poses a more general challenge to the trading process of the market: To what
extent the new approaches can be accepted in the market place? Clearly, if a
secondary market is available, a resale of the goods by some of the buyers to
those barred from obtaining the goods because of the procedural process would
affect the primary market behavior of the participants and would most probably
destroy the incentive compatibility property. On the other hand, especially in
markets of digital goods, there is a potential that resales could be blocked via
technological means. Therefore, there is a possibility that arbitrage arguments
for ordinary goods may not be applicable in such cases.

We may not end up with the randomized protocols proposed in the competi-
tive auction approach as in [35]. It needs verification in realistic environment. It
may not work well at all. Nevertheless, its challenge to the traditional auction
market assumptions and protocols may be much more important than its own
practicality. Efficiency and profitability have been the motivations in such newly
proposed pricing schemes and protocols, largely due to the monopolistic features
of many such markets. Indeed, for information goods and services, many different
pricing strategies have already appeared in the market, such as discriminative
pricing, fixed fees versus unit pricing, bundling pricing, etc. Huber [36] most suc-
cinctly summarizes those as “Information just doesn’t obey the ordinary laws
of economics...”. As it appears that none of the requirements in non-arbitrage,
incentive compatibility, competitive price equilibrium cannot be broken in infor-
mation goods pricing, what would we reliably hold as the fundamental principles
and the ultimate building blocks of those new markets?

4 Conclusions

The Internet provided a perfect opportunity for Economic Theories to be tested
and applied at a precision that has never been seen before. Algorithmic com-
plexity that developed in the context of Computer Science could play an very
important role in the operational issues we see at the micro-economic levels.
The negative results in complexity of the economic solutions may have their
constructive values, in addition to enrichment our knowledge, in encouraging
deeper effort in improving computational methods and computing resources. In
addition, a lot of computer science methodologies in dealing with hard problems
can also be applied in such situations.
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Abstract. A two-player game is sparse if most of its payoff entries are
zeros. We show that the problem of computing a Nash equilibrium re-
mains PPAD-hard to approximate in fully polynomial time for sparse
games. On the algorithmic side, we give a simple and polynomial-time
algorithm for finding exact Nash equilibria in a class of sparse win-lose
games.

1 Introduction

Motivated by the growing possibilities in both Internet applications and net-
work computations, Game Theory has attracted a great deal of attention from
Theoretical Computer Science community. Central to such game theoretical ap-
plications is the problem of computing a Nash equilibrium in a non-cooperative
game.

A series of significant progress on the complexity of this problem was initiated
by a recent work of Daskalakis, Goldberg, and Papadimitriou [1,2] who intro-
duced a reduction technique and showed that a Nash equilibrium in a four-player
game is hard to find, unless PPAD [3] is in P. Shortly afterward, this hardness
result was extended to three-player games [4,5]. Chen and Deng [6] finally settled
a long-term open problem, and proved that computing a Nash equilibrium in a
two-player game is PPAD-complete.

These breakthrough work left the problem of computing approximate Nash
equilibria with less than exponential accuracy as a central remaining open ques-
tion in the area of computing Nash equilibria. In a recent paper [7], we solved
this problem by showing that two-player games do not have a fully polynomial-
time approximation scheme unless PPAD is in P. Hence, it is unlikely that the
nO(log n/ε2)-time algorithm of Lipton, Markakis, and Mehta [8], the fastest algo-
rithm known today for approximating Nash equilibria, can be further improved
to poly(n, 1/ε). This result also implies that, unlike the simplex algorithm for
zero-sum two-player games [9], the smoothed complexity of the classical Lemke-
Howson algorithm for non-zero-sum two-player games is not polynomial, unless
PPAD ⊆ RP. Thus the average-case polynomial-time result of Barany, Vem-
pala, and Vetta [10] is not likely extendible to the smoothed model. Recently,
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Chen, Teng, and Valiant [11] extended this result and proved that win-lose two-
player games, in which the payoff entries are either 0 or 1, are PPAD-hard to
approximate in fully polynomial time.

A two-player game is specified by two m×n matrices A = (ai,j) and B = (bi,j).
They state the payoffs when the first player makes a choice of a row and the
second player makes a choice of a column. In general, each player can pick a
distribution over its choices in advance, and during the playing time, selects
a choice according to this distribution, simultaneously. The concept of a Nash
equilibrium captures the notion of rational play in such non-cooperative games.
It is rather a strong notion of rationality, stating the condition that neither player
can gain by changing its own distribution, when the opponent’s distribution is
revealed. Each two-player game has at least one Nash equilibrium [12].

In this paper, we consider sparse games in which most of the payoff entries
are zeros. Particularly, we focus on sparse two-player games in which each row
and column of the two payoff matrices has at most a constant number of non-
zero entries. We prove that a Nash equilibrium in such sparse games is equally
hard to compute and essentially equally hard to approximate as in general two-
player games. Our result shows that sparsity alone does not make game easier
to solve and that sparse two-player games do not have a fully polynomial-time
approximation scheme unless PPAD ⊆ P.

To establish our complexity result, we construct a set of new arithmetic and
logic gadgets, for the reduction from a discrete Brouwer’s fixed point problem
to an equilibrium computation problem. These new gadgets enable us to reduce
the degree of influence in the simulation of arithmetic and logic computations in
two-player games, resulting in hard sparse instances.

On the positive side, we give a polynomial-time algorithm for computing an
exact Nash equilibrium for a subclass of sparse win-lose games. Our algorithm
takes advantage of the 0-1 payoff structure and effectively reduces the compu-
tation of a Nash equilibrium of a two-player win-lose game to the computation
of an equilibrium in a smaller game. We were informed by the conference com-
mittee that Codenotti, Leoncini, and Resta [13] very recently and independently
obtained the same result for finding Nash equilibria in this subclass of sparse
win-lose games. As our algorithm appears to be simpler than theirs, we decide
to keep our algorithm and its analysis in this conference version.

2 Sparse Two-Player Games and Our Main Result

Definition 1 (Sparse Normalized Games). A bimatrix game G = (A,B) is
normalized if every entry of matrices A and B is between −1 and 1. A matrix
A is row (column ) sparse if there are at most 10 nonzero entries in every row
(column ). A is sparse if it is both row sparse and column sparse. A two-player
game G = (A,B) is sparse if both A and B are sparse.

We use P
n to denote the set of all probability vectors in R

n, i.e., non-negative
vectors whose entries sum to 1. Recall that an ε-approximate Nash equilibrium of
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game (A,B) is a pair (x∗ ∈ P
m,y∗ ∈ P

n ) such that, for all probability vectors
x ∈ P

m,y ∈ P
n,

(x∗)T Ay∗ ≥ xT Ay∗ − ε and (x∗)T By∗ ≥ (x∗)T By − ε.

Following [7], an ε-well-supported Nash equilibrium of game (A,B) is a pair
(x∗,y∗), such that for all i, j, 〈bi|x∗〉 > 〈bj |x∗〉 + ε ⇒ y∗

j = 0, and 〈ai|y∗〉 >

〈aj |y∗〉 + ε ⇒ x∗
j = 0, where ai and bi denote the ith row of A and the ith

column of B, respectively. Motivated by the next lemma proved in [7]. we define
the following search problem called Sparse Bimatrix.

Lemma 1 ([7]). In a normalized game (A,B), for every 0 ≤ ε ≤ 1, (1) every
ε-well-supported Nash equilibrium (x,y) is also an ε-approximate Nash equilib-
rium; (2) from every ε2/(8n)-approximate Nash equilibrium (u,v), one can find
in polynomial time an ε-well-supported Nash equilibrium (x,y).

Definition 2 (Sparse Bimatrix). The input instance is a bimatrix game G =
(A,B) which is both normalized and sparse. A and B are n × n matrices.

The output is an n−6-well-supported Nash equilibrium of game G.

Our main result is the following theorem.

Theorem 1 (Main). Problem Sparse Bimatrix is PPAD-complete.

Clearly, Sparse Bimatrix belongs to PPAD [6]. To prove its completeness, we
will reduce the PPAD-complete problem Brouwerf [7] to it, where f(n) = 3.
We also notice that, in contrast, a (10/n)-approximate Nash equilibrium of a
sparse normalized game can be found in polynomial time.

3 Review of the Reduction in [7]

In this section, we review the reduction in [7], from Brouwerf to the problem
of finding an n−6-well-supported Nash equilibrium in a normalized game.

Let U = (C, 03n) be an input instance of Brouwerf , where C is a boolean
circuit. Let m be the smallest integer such that 2m > Size [C] > n. Here we let
Size [C] denote the number of gates plus the number of input and output vari-
ables in C. In the reduction, we construct a game GU = (AU ,BU ) in polynomial
time, where AU and BU are N × N = 26m+1 = 2K matrices, satisfying

Property P1: |aU
i,j |, |bU

i,j | ≤ N3 for all i, j: 1 ≤ i, j ≤ N ;

Property P2: From every ε-well-supported Nash equilibrium of GU , where
ε = 2−18m = 1/K3, one can find a panchromatic simplex P of circuit C in
polynomial time.

Then we normalize GU to obtain GU = (AU ,BU ) by setting AU = AU/N3 and
BU = BU/N3. Property P2 implies that, from any 1/N6-well-supported Nash
equilibrium of GU , one can find a panchromatic simplex of circuit C efficiently.
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As a result, the problem of finding an n−6-well-supported Nash equilibrium in
a normalized bimatrix game is PPAD-hard.

The construction of GU starts with a zero-sum game G∗ = (A∗,B∗) called
Matching Pennies with payoff parameter M = 218m+1 = 2K3. A∗ is a K × K
block diagonal matrix, where each block is a 2× 2 matrix of all M ’s, and B∗ =
−A∗. Ultimately, we obtain GU by perturbing the payoff entries of G∗.

At a high level, we partition the rows of G∗ and hence of GU into K groups:
the ith group consists of rows 2i − 1, 2i. Every row group (2i − 1, 2i) is referred
as an arithmetic node v. Let VA denote the set of all such nodes ( |VA| = K ),
and CA denote the one-to-one correspondence from VA to {1, 2...K } such that
v corresponds to the CA(v)th row group, for all v ∈ VA. We also partition the
columns of G∗ into K groups: the jth group consists of columns 2j − 1, 2j, and
every group is referred as an internal node w. Let VI denote the set of internal
nodes and CI denote the one-to-one correspondence from VI to {1, 2...K }.

Let (x ∈ P
N ,y ∈ P

N) be a profile of mixed strategies. For each v ∈ VA, we
let x[v] = x2k−1 and xC [v] = x2k−1 + x2k denote the value and capacity of v in
(x,y), respectively, where k = CA(v). For each w ∈ VI , we let y[w] = y2t−1 and
yC [w] = y2t−1 + y2t denote the value and capacity of w in (x,y), respectively,
where t = CI(w). For x, y ∈ R and c ∈ R

+, by x = y ± c, we mean that y − c
≤ x ≤ y + c. All our perturbations of G∗ have the following nice property.

Lemma 2 ([7]). Let (A,B) be a game with 0 ≤ A−A∗,B−B∗ ≤ 1. For any
t ≤ 1, let (x,y) be a t-well-supported Nash equilibrium of (A,B), then it must
satisfy constraint P = [xC [v] = 1/K ± ε, yC [w] = 1/K ± ε, ∀ v ∈ VA, w ∈ VI ].

To construct GU , we transform the prototype game G∗ by adding “gadget”
games: we first build a collection of gadgets SU = {T1..., Tl } for some l < K.
Each T ∈ SU defines [7] an N × N “gadget” game (L[T ],R[T ] ). We then build
game GU by invoking function BuildGame on SU . BuildGame takes a collec-
tion S of gadgets and returns a bimatrix game (A,B) as

A = A∗ +
∑

T∈S L[T ] and B = B∗ +
∑

T∈S R[T ].

A gadget T is a 6-tuple (G, v1, v2, v, c, w). Here G is the type of the gadget
where G ∈ {Gζ , G×ζ , G=, G+, G−, G<, G∧, G∨, G¬ }. v1 ∈ VA ∪ {nil} and v2 ∈
VA ∪ {nil} are the first and second input nodes of T , respectively. v ∈ VA is the
output node, and w ∈ VI is the internal node. Parameter c ∈ R ∪ {nil} is only
used in Gζ and G×ζ gadgets: when G = Gζ , 0 ≤ c ≤ 1/K − ε; when G = G×ζ ,
0 ≤ c ≤ 1; otherwise, c = nil.

Every gadget T = (G, v1, v2, v, c, w) implements an arithmetic or logic con-
straint P [T ], which requires the values of nodes v, v1 and v2 to satisfy certain
functional relationship. All the nine types of constraints are listed in Figure 1.
Among the nine types of gadgets, G∧, G∨ and G¬ are logic gadgets. They are
used to simulate the logic gates in C. Associated with probability vectors (x,y),
the value of v ∈ VA represents boolean 1 (x[v] =B 1) if x[v] = xC [v]; it repre-
sents boolean 0 (x[v] =B 0) if x[v] = 0.
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G+: P [T ] = [ x[v] = min(x[v1] + x[v2], xC [v] ) ± ε ]

Gζ : P [T ] = [ x[v] = c ± ε ]

G×ζ : P [T ] = [ x[v] = min(cx[v1], xC [v] ) ± ε ]

G=: P [T ] = [ x[v] = min(x[v1], xC [v] ) ± ε ]

G<: P [T ] = [ x[v] =B 1 if x[v1] < x[v2] − ε; x[v] =B 0 if x[v1] > x[v2] + ε ]

G−: P [T ] = [ min(x[v1] − x[v2], xC [v]) − ε ≤ x[v] ≤ max(x[v1] − x[v2], 0) + ε ]

G¬: P [T ] = [ x[v] =B 0 if x[v1] =B 1; x[v] =B 1 if x[v1] =B 0 ]

G∨: P [T ] =

[
x[v] =B 1 if x[v1] =B 1 or x[v2] =B 1;

x[v] =B 0 if x[v1] =B 0 and x[v2] =B 0

]

G∧: P [T ] =

[
x[v] =B 0 if x[v1] =B 0 or x[v2] =B 0;

x[v] =B 1 if x[v1] =B 1 and x[v2] =B 1

]

Fig. 1. Constraint P [T ], where T = (G, v1, v2, v, c, w)

The collection SU we construct is valid, that is, for each pair T = (G, v1, v2,
v, w, c) and T ′ = (G′, v′1, v

′
2, v

′, c′, w′) in SU , v �= v′ and w �= w′. In [7], we prove
the following two lemmas for valid collections of gadgets.

Lemma 3 ([7]). Let S be a valid collection and G = (A,B) = BuildGame(S),
then we have 0 ≤ A − A∗,B − B∗ ≤ 1. So, by Lemma 2, each ε-well-supported
Nash equilibrium of G satisfies constraint P.

Lemma 4 ([7]). Let S be a valid collection of gadgets, and (x,y) be any ε-well-
supported Nash equilibrium of BuildGame(S), then for each T ∈ S, constraint
P [T ] as defined in Figure 1 is satisfied by (x,y).

Property P1 follows directly from Lemma 3. From Lemma 3 and 4, every ε-
well-supported Nash equilibrium of GU satisfies a set of |SU | + 1 constraints:
{P ,P [T1], ...,P [Tl]}, which can be used to prove Property P2.

4 The New Reduction

Although the prototype game G∗ is sparse ( for each row and column, there are
exactly two nonzero entries), GU constructed in [7] is not always sparse:

1. There are three types of “bad” gadgets used in the construction of GU : Gζ ,
G∧ and G∨. For every T = (G, v1, v2, v, c, w) ∈ SU with G ∈ {Gζ , G∧, G∨ },
every entry in the (2CI(w))th column of matrix R[T ] is non-zero [7]. As a
result, BU is not column sparse.

2. There exist some arithmetic nodes v ∈ VA which are used by more than 5
gadgets in SU as one of their input nodes. Suppose they are T1...Tk ∈ SU ,
then in both the (2CA(v) − 1)st and (2CA(v))th rows of

∑
1≤i≤k R[Ti], we

have 2k > 10 non-zero entries [7]. As a result, BU is not row sparse.
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In this section, we will reduce problem Brouwerf to Sparse Bimatrix. The
reduction is very similar to the one in [7]. We will develop new “gadget” games
to overcome the first obstacle above. Then we will perturb the prototype game
G∗ to build a sparse game HU which satisfies both Property P1 and P2. One
can normalize the sparse game HU to prove Theorem 1.

4.1 New Gadgets and Constraints

To build game HU , we transform the prototype game G∗ = (A∗,B∗) by adding
“gadget” games. We first build a collection T U = {T1, ..., Tl } of gadgets. For
every gadget T , we construct a “gadget” game (M[T ],N[T ]) according to Fig-
ure 2. Given any collection of gadgets T , one can construct a two-player game
(A,B) = BuildGame(T ) by setting

A = A∗ +
∑

T∈T M[T ] and B = B∗ +
∑

T∈T N[T ].

From T U , we obtain game HU = BuildGame(T U ).
Here a gadget is a 7-tuple T = (G, v1, v2, v3, v, c, w). v3 ∈ VA ∪ {nil} is the

auxiliary input node of T , while the meanings of all the other components are
the same as those in the previous reduction. In the new reduction, we have to-
tally eleven types of gadgets: G ∈ {G+, G−, G=, G<, G×ζ , G¬, G∗

ζ , G
∗
∧, G∗

∨, GH ,
GB= }. Similarly, every gadget T implements an arithmetic or logic constraint
R[T ], which requires the values of v1, v2, v3, v to satisfy certain functional rela-
tionship. Before describing constraints R[T ] for each type of gadgets, we claim
the following two lemmas, whose proofs are very similar to those of Lemma 3
and Lemma 4 in [7]. Here a collection T is valid if for every pair T = (G, v1,
v2, v3, v, c, w) and T ′ = (G′, v′1, v

′
2, v

′
3, v

′, c′, w′) in T , v �= v′ and w �= w′.

Lemma 5. Let T be a valid collection and (A,B) = BuildGame(T ), then we
have 0 ≤ A − A∗,B − B∗ ≤ 1. So from Lemma 2, every ε-well-supported Nash
equilibrium of (A,B) satisfies constraint P.

Lemma 6 (Gadget Constraints). Let T be a valid collection of gadgets, and
(x,y) be an ε-well-supported Nash equilibrium of BuildGame(T ), then for each
T ∈ T , constraint R[T ] is satisfied by (x,y).

By Lemma 5 and 6, every ε-well-supported Nash equilibrium (x,y) of game
BuildGame(T ) satisfies |T |+ 1 constraints: {P ,R[T ], T ∈ T }. Let T = (G, v1,
v2, v3, v, c, w) be a gadget in T , then R[T ] on (x,y) is described as follows:

– If type G ∈ {G×ζ , G=, G+, G−, G<, G¬ }, then v3 = nil. We have M[T ] =
L[T ′] and N[T ] = R[T ′], where T ′ = (G, v1, v2, v, c, w), and naturally, con-
straint R[T ] is the same as P [T ′].

– If G = GB=, then v1 ∈ VA and v2 = v3 = c = nil. (x,y) satisfies constraint
R[T ] = [ x[v] =B 1 if x[v1] =B 1; x[v] =B 0 if x[v1] =B 0 ].

– If G = G∗
ζ , then the auxiliary input node v3 ∈ VA, v1 = v2 = nil, and 0 ≤

c ≤ 1/K − ε. (x,y) satisfies R[T ] = [ x[v] = c ± 4ε if x[v3] = 1/(2K) ± ε ].
So, R[T ] is very close to constraint P [T ′], where T ′ = (Gζ , nil, nil, v, c, w),
when the value of the auxiliary input node v3 in (x,y) is close to 1/(2K).
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Construction of M[T ] and N[T ], where T = (G, v1, v2, v3, v, c, w)

Set M[T ] = (Mi,j) = N[T ] = (Ni,j) = 0

k = CA(v), k1 = CA(v1), k2 = CA(v2), k3 = CA(v3) and t = CI(w)

G+ : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k2−1,2t−1 = N2k−1,2t = 1

G− : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k2−1,2t = N2k−1,2t = 1

G= : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k−1,2t = 1

G< : M2k−1,2t = M2k,2t−1 = N2k1−1,2t−1 = N2k2−1,2t = 1

G×ζ : M2k−1,2t−1 = M2k,2t = N2k−1,2t = 1, N2k1−1,2t−1 = c

G¬ : M2k−1,2t = M2k,2t−1 = N2k1−1,2t−1 = N2k1,2t = 1

G∗
ζ : M2k−1,2t = M2k,2t−1 = 1, N2k−1,2t−1 = 1/2, N2k1−1,2t = Kc

G∗
∧ : M2k−1,2t−1 = M2k,2t = N2k3−1,2t = 1, N2k1−1,2t−1 = N2k2−1,2t−1 = 1/3

G∗
∨ : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k2−1,2t−1 = N2k3−1,2t = 1

GB= : M2k−1,2t−1 = M2k,2t = N2k1−1,2t−1 = N2k1,2t = 1

GH : M2k−1,2t = M2k,2t−1 = N2k−1,2t−1 = N2k,2t = 1

Fig. 2. Construction of “Gadget” Game (M[T ],N[T ])

– If G = G∗
∨, then v1, v2, v3 ∈ VA and c = nil. (x,y) satisfies constraint R[T ]

[

x[v3] =
1

2K
± ε =⇒

{
x[v] =B 1 if x[v1] =B 1 or x[v2] =B 1
x[v] =B 0 if x[v1] =B 0 and x[v2] =B 0

} ]

.

Similarly, if G = G∗
∧, then (x,y) must satisfy constraint R[T ]

[

x[v3] =
1

2K
± ε =⇒

{
x[v] =B 1 if x[v1] =B 1 and x[v2] =B 1
x[v] =B 0 if x[v1] =B 0 or x[v2] =B 0

} ]

.

Clearly, constraint R[T ] is the same as P [T ′] where T ′ = (G∨ or G∧, v1, v2,
v, c, w), when the value of v3 in (x,y) is close to 1/(2K).

– If type G = GH , then v1 = v2 = v3 = nil. (x,y) satisfies R[T ] = [ x[v] =
1/2K ± ε ]. We will use GH gadgets to “generate” auxiliary nodes for G∗

ζ ,
G∗

∧ and G∗
∨ gadgets to simulate the old Gζ , G∧ and G∨ gadgets used in [7].

We next show that, if a valid collection T also satisfies the following property,
then bimatrix game BuildGame(T ) must be sparse.

Definition 3. Collection T is said to be sparse if for every v∗ in VA, there exist
at most two gadgets T = (G, v1, v2, v3, v, c, w) ∈ T such that v∗ ∈ {v1, v2, v3 }.

Lemma 7. If T is both valid and sparse, then BuildGame(T ) is sparse.
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CopyA(T ; v; v1, v2, ..., vk)

1: pick unused nodes v′
1, v

′
2, ..., v

′
k−1 ∈ VA and w′, w′′, w1..., wk−1, w

′
1..., w

′
k−2 ∈ VI

2: Insert(T , (G=, v, nil, nil, v1, nil, w′)) and Insert(T , (G=, v, nil, nil, v′
1, nil, w′′))

3: for i from 1 to k − 1, Insert(T , (G=, v′
i, nil, nil, vi+1, nil, wi))

4: for i from 1 to k − 2, Insert(T , (G=, v′
i, nil, nil, v′

i+1, nil, w′
i))

Fig. 3. Function CopyA

Proof. For each T = (G, v1, v2, v3, v, c, w) ∈ T , (M[T ],N[T ]) satisfies:

Property 1. Let k = CA(v), t = CI(w) and ki = CA(vi) for every 1 ≤ i ≤ 3. In
matrices M[T ] = (Mi,j) and N[T ] = (Ni,j), only the following entries are possi-
bly nonzero: {M2k−1,2t−1, M2k−1,2t, M2k,2t−1, M2k,2t} and {N2l−1,2t−1, N2l−1,2t,

N2l,2t−1, N2l,2t, where l ∈ {k1, k2, k3, k}}, and all these entries are in [0, 1].

Property 1 follows directly from the construction of M[T ] and N[T ] in Figure 2.
Let (A = (ai,j),B = (bi,j)) = BuildGame(T ).

Let v be an arithmetic node in VA and k = CA(v). According to Property 1,
for any 1 ≤ j ≤ 2K, a2k,j �= a∗

2k,j implies that there exists a gadget T ∈ T
whose output node is v and internal node w satisfies j ∈ {2CI(w), 2CI(w) − 1}.
Since T is valid, there can be at most one gadget whose output node is v and
thus, there are at most two integers 1 ≤ j ≤ 2K such that a2k,j �= a∗

2k,j . On the
other hand, the (2k)th row of A∗ has exactly two nonzero entries. As a result,
the number of nonzero entries in the (2k)th row of A is at most four. The case
for the (2k − 1)st row can be proved similarly, and thus, A is row sparse. One
can prove similarly that both A and B are column sparse.

Let v be an arithmetic node in VA and k = CA(v). According to Property 1,
b2k,j �= b∗2k,j implies there exists a gadget T = (G, v1, v2, v3, v, c, w) ∈ T such
that v ∈ {v1, v2, v3, v} and j ∈ {2CI(w), 2CI(w)− 1}. Since T is both valid and
sparse, there can be at most three gadgets T = (G, v1, v2, v3, v, c, w) ∈ T such
that v ∈ {v1, v2, v3, v}, and at most six integers j such that b2k,j �= b∗2k,j . So the
number of nonzero entries in the (2k)th row of B is at most eight. The case for
the (2k − 1)st row can be proved similarly, and thus, B is row sparse.

4.2 The Copy Network

In this subsection, we build a network of gadgets which will be referred to as
a copy network. Let us define some notations that will be useful.

Let T be a valid collection of gadgets. An arithmetic node v ∈ VA (or an
internal node w ∈ VI ) is unused in T if none of the gadgets in T uses v (or w)
as its output node (or internal node). We use Unused[T ] to denote the number
of unused nodes v ∈ VA in T . Suppose T �∈ T is a gadget such that T ∪ {T }
is still valid. We use Insert(T , T ) to denote the insertion of gadget T into T .
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1: set T = ∅
2: for every gadget T = (G, v1, v2, v, c, w) ∈ SU constructed in [7] do

3: if G ∈ {G×ζ , G=, G+, G−, G<, G¬ } then

4: Insert(T , (G, v1, v2, nil, v, c, w))

5: else [ if G = Gζ (or G∧, G∨), we use G∗ to denote G∗
ζ (or G∗

∧, G∗
∨) ]

6: pick nodes v′ ∈ VA and w′ ∈ VI , which are unused in both SU and T
7: Insert(T , (GH , nil, nil, nil, v′, nil, w′)), Insert(T , (G∗, v1, v2, v

′, v, c, w))

Fig. 4. Step 1: from SU to T

1: set T U = T
2: for every v ∈ VA which is used by k > 2 gadgets in T U as their input nodes do

3: suppose these gadgets are T1, T2, ..., Tk ∈ T U

4: pick k nodes v1, v2, ..., vk ∈ VA which are unused in T U

5: for every 1 ≤ i ≤ k, replace the v in Ti ∈ T U by vi

6: if we intend to store a boolean value in v (which should be clear from [7] )

7: CopyB(T U ; v; v1, v2, ..., vk)

8: else

9: CopyA(T U ; v; v1, v2, ..., vk)

Fig. 5. Step 2: from T to T U

Let T be a valid collection with Unused[T ] ≥ 2k − 1, and k ≥ 3. Let v ∈
VA, and v1, v2, ..., vk ∈ VA be k unused nodes in T . We insert 2k − 1 gadgets
into T by invoking the function CopyA(T ; v; v1, v2, ..., vk) in Figure 3. We let
T ′ denote the collection T after executing CopyA(T ; v; v1, v2, ..., vk), then

Lemma 8. In every ε-well-supported Nash equilibrium (x,y) of bimatrix game
BuildGame(T ′), x[vi] = x[v] ± 3tε for all 1 ≤ t ≤ k.

Furthermore, by replacing every G= gadget in CopyA with a GB= gadget, we
immediately get a function CopyB(T ; v; v1, v2...vk) for inserting a boolean copy
network into T , such that

Lemma 9. In every ε-well-supported Nash equilibrium (x,y) of bimatrix game
BuildGame(T ′), if x[v] =B b where b ∈ {0, 1}, then x[vt] =B b, ∀ 1 ≤ t ≤ k.

4.3 Construction of T U and HU

Let U = (C, 03n) be an input instance of search problem Brouwerf , and SU

be the collection of gadgets constructed in [7]. We now convert it into a new
collection T U that is both valid and sparse, such that HU = BuildGame(T U )
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satisfies both Property P1 and P2. Notice that, since T U is valid and sparse,
game HU is sparse by Lemma 7. We build T U with a two-step construction:

Step 1 [Figure 4]. We build a collection T by replacing each Gζ , G∧ and G∨
gadget in SU with two gadgets: one GH gadget and one G∗

ζ , G
∗
∧ or G∗

∨ gadget.
Note that, every G∗

ζ , G
∗
∧ or G∗

∨ gadget in T has a “private” GH gadget.
Step 2 [Figure 5]. For every v ∈ VA which is used by k > 2 gadgets in T as
one of their input nodes, we pick k unused nodes v1, ..., vk in VA and insert a
copy network to connect v with v1, ..., vk. Then, each of the k gadgets gets one
node in {v1, v2, ..., vk} as its input node.

4.4 Correctness of the Reduction

The main item we need to check carefully is the number of nodes used in T U .
The number of nodes used in SU is O(Size [C]4) [7]. Thus the number of nodes
used in T is also O(Size [C]4). On the other hand, every T ∈ T can appear in
line 3 of Figure 5 for at most three times, since T only has three input nodes.
The number of nodes used in T U is still O(Size [C]4) � K. So we always have
Unused[T ] > 0 and Unused[T U ] > 0, during the construction of T and T U .

Because SU is valid, one can check that T U is both valid and sparse. As a
corollary of Lemma 5, HU satisfies Property P1. Following the line of proof
in [7], we can show that, with the same procedure used in [7], one can recover
a panchromatic simplex of C from every ε-well-supported Nash equilibrium of
two-player game HU . Therefore, HU also satisfies Property P2.

By Lemma 7, we know that game HU is sparse. Finally, we get a reduction
from problem Brouwerf to Sparse Bimatrix, and Theorem 1 is proven.

5 An Algorithm for Very Sparse Win-Lose Games

In this section, we describe an algorithm for finding exact Nash equilibria in a
class of very sparse win-lose games.

A bimatrix game G = (A,B) is a win-lose game if every entry of A and B
is either 0 or 1. A win-lose game G = (A,B) is very sparse if in each row of
A and each column of B, there are at most two non-zero entries. We use P to
denote the set of very sparse win-lose games. First we define a subclass Q of P .
Every game in Q has an exact Nash equilibrium that can be computed easily.

Definition 4. Let A be a {0, 1}-matrix. The row i of A is said to be dominated
if one of the following conditions is true: 1). all the entries in it are zero; 2).
only one entry ai,j = 1 is non-zero, and there exists another i′ �= i such that
ai′,j = 1. Similarly, the column j of matrix B is dominated if the row j of BT is
dominated. A bimatrix game G = (A,B) ∈ P belongs to Q if none of the rows
of A is dominated, and none of the columns of B is dominated.

For every game G = (A,B) ∈ Q where A and B are n × m matrices, we build
a pair of vectors (x∗ ∈ R

n,y∗ ∈ R
m) as follows: 1) For each 1 ≤ j ≤ m, if there
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SparseWinLose (G = (A,B) ∈ P )

1: if n = 1 or m = 1 then

2: output a Nash equilibrium of G
3: else if G ∈ Q then

4: output a Nash equilibrium of G using Lemma 10

5: else if the row i of A is dominated then

6: (x′,y′) = SparseWinLose (G′ ), G′ is obtained by deleting row i from G
7: output a Nash equilibrium of G using Lemma 11

8: else [ assume the column j of B is dominated ]

9: (x′,y′) = SparseWinLose (G′ ), G′ is obtained by deleting column j from G
10: output a Nash equilibrium of G using Lemma 12

Fig. 6. An Algorithm for Very Sparse Win-Lose Games

exists an 1 ≤ i ≤ n such that the row i of A has exactly one non-zero entry:
ai,j = 1, then y∗

j = 2, otherwise y∗
j = 1; 2) For each 1 ≤ i ≤ n, if there is an

1 ≤ j ≤ m such that the column j of matrix B has exactly one nonzero entry:
bi,j = 1, then x∗

i = 2, otherwise x∗
i = 1.

Lemma 10. For every G = (A,B) ∈ Q, let (x∗ ∈ R
n,y∗ ∈ R

m) be the pair of
vectors constructed above, then (x,y) is a Nash equilibrium of G where

xi = x∗
i

/ ∑

1≤k≤n

x∗
k and yj = y∗

j

/ ∑

1≤k≤m

y∗
k, ∀ 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Proof. From the definition of Q, one can check that, for every 1 ≤ i ≤ n and
1 ≤ j ≤ m, 〈Ai|y〉 = 2/

∑
1≤k≤m y∗

k and 〈x|Bj〉 = 2/
∑

1≤k≤n x∗
k, where Ai

denotes the ith row vector of matrix A, and Bj denotes the jth column vector
of B. This implies that (x,y) is an exact Nash equilibrium of game G.

Our algorithm is recursive. If the input game is small (n = 1 or m = 1) or
belongs to Q, then a Nash equilibrium can be found easily. Otherwise, we delete
one row or column from G, and obtain a smaller game G′. From every Nash
equilibrium (x′,y′) of the new game G′, one can “recover” a solution to the old
one quickly. The algorithm is supported by the following two lemmas. Here we
use G = (A,B) to denote a game in P , where A and B are n × m matrices.

Lemma 11. If the row k of A is dominated, letting (x′ ∈ P
n−1,y′ ∈ P

m) be an
exact Nash equilibrium of G′, where G′ is obtained by deleting row k from game
G, then (x,y) is a Nash equilibrium of G, where y = y′, xk = 0, xi = x′

i for all
1 ≤ i < k, and xi = x′

i−1 for all k < i ≤ n.

Lemma 12. If the column k of B is dominated, letting (x′ ∈ P
n,y′ ∈ P

m−1) be
a Nash equilibrium of G′, where G′ is obtained by deleting column k from game
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G, then (x,y) is a Nash equilibrium of G, where x = x′, yk = 0, yi = y′
i for all

1 ≤ i < k, and yi = y′
i−1 for all k < i ≤ m.
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Abstract. We introduce a new family of utility functions for exchange
markets. This family provides a natural and “continuous” hybridization
of the traditional linear and Leontief utilities and might be useful in
understanding the complexity of computing and approximating market
equilibria. Because this family of utility functions contains Leontief util-
ity functions as special cases, finding approximate Arrow-Debreu equi-
libria with hybrid linear-Leontief utilities is PPAD-hard in general. In
contrast, we show that, when the Leontief components are grouped, fi-
nite and well-conditioned, we can efficiently compute an approximate
Arrow-Debreu equilibrium.

1 Introduction

In recent years, the problem of computing market equilibria has attracted many
computer scientists. In an exchange market, there is a set of traders and each
trader comes with an initial endowment of commodities. They interact through
some exchange process in order to maximize their own utility functions. In the
state of an equilibrium, the traders can simply sell their initial endowments at
a determined market price and buy the commodities to maximize their utilities.
Then, the market will clear — the price is so wisely set that the supplies exactly
satisfy the demands. This price is called the equilibrium price.

Arrow-Debreu [1] proved the existence of equilibrium prices under a mild con-
dition. Since then, efficient algorithms have been developed for various settings.
Naturally, the complexity for finding an equilibrium price is determined not just
by the initial endowments, but also by traders’ utility functions.

1.1 From Linear to Leontief Utilities

Two popular families of utility functions are the linear and Leontief utilities.
Both utilities can be specified by an m × n demand matrix D = (di,j ), for m
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goods and n traders. If trader 1 ≤ j ≤ n receives a bundle of goods xj , then
its linear utility is uj(xj) =

∑
i xi,j/di,j , while its Leontief utility is uj(xj) =

mini(xi,j/di,j). Both linear and Leontief utility functions are members a large
family of utilities functions, referred to as CES utilities. The CES utility function
with parameter ρ ∈ (−∞, 1] − {0} is:

uρ
j (xj) =

(
∑

i

di,jx
ρ
i,j

)1/ρ

.

As ρ → −∞, CES utilities become the Leontief utilities. When ρ = 1, the utility
functions are linear functions.

Although the Leontief utility functions and linear utility functions look simi-
lar, the complexity for finding their market equilibria might be very different. A
market equilibrium with linear utilities can be approximated and computed in
polynomial time, thanks to a collection of great algorithmic works by Nenakhov
and Primak [16], Devanur et al. [10], Jain, Mahdian and Saberi [14], Garg and
Kapoor [11], Jain [13], and Ye [17].

However, approximating market equilibria with Leontief utilities has proven
to be hard, under some reasonable complexity assumptions. In particular, by
analyzing a reduction of Codenotti, Saberi, Varadarajan and Ye [5] from Nash
equilibria to market equilibria, Huang and Teng [12] showed that approximating
Leontief market equilibria is as hard as approximating Nash equilibria of gen-
eral two-player games. Thus, by a recent result of Chen, Deng, and Teng [3], it
is PPAD-hard to approximate a Leontief market equilibrium in fully polyno-
mial time. In fact, the smoothed complexity of finding a market equilibrium in
Leontief economies cannot be polynomial unless PPAD ⊂ RP.

1.2 Hybrid Linear-Leontief Utilities and Our Results

In this paper, we introduce a new family of utility functions and study the
computation and approximation of equilibria in exchange markets with these
utilities. Our work is partially motivated by the complexity discrepancy of lin-
ear and Leontief utilities. In our market model, each trader’s utility function is a
linear combination of a collection of Leontief utility functions. We parameterize
such a utility function by the maximum number of terms in its Leontief com-
ponents. If the number of terms in any of its Leontief components is at most k,
we refer to it as a k-wide linear-Leontief function. We further focus on grouped
hybridizations in which the commodities are divided into groups. Each trader’s
utility is the summation over the Leontief utilities of all groups. If each group
has at most k commodities, we refer to the hybrid functions as grouped k-wide
linear-Leontief functions.

Intuitively, the new utility function combines an “easy” linear function with
several “hard” Leontief utility functions. Clearly, a 1-wide linear-Leontief func-
tion is a linear function, and hence a market equilibrium with 1-wide linear-
Leontief functions can be found in polynomial time. On the other hand, market
equilibria with general hybrid linear-Leontief utilities are PPAD-hard to find.
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A market with grouped linear-Leontief utility functions can be viewed as a
linear combination of several Leontief markets, one for each group of commodi-
ties. In an equilibrium, the supplies exactly satisfy the demands for each group
of commodities. However, the trader can invest the surplus it earned from one
Leontief market to other Leontief markets.

We present two algorithmic results on the computation and approximation of
equilibria in markets with hybrid linear-Leontief utilities.

– We show that a Fisher equilibrium of an exchange market with n traders,
M commodities and hybrid linear-Leontief utility functions can be found in
O(

√
Mn(M + n)3L) time.

– We also show that, in the grouped hybridizations when the Leontief com-
ponent is well-conditioned, we can compute an approximate Arrow-Debreu
equilibrium in polynomial time either in M or n. (An interesting observa-
tion is that a recent result of Chen, Deng, and Teng [4] on sparse two-player
games implies that it is PPAD-hard to approximate Arrow-Debreu equi-
libria in an exchange market with 10-wide linear-Leontief utilities in fully
polynomial-time.)

In this paper, we only give formal definition for grouped linear-Leontief utility
functions. It is easy to extend the definition and the first algorithmic result to
hybrid ones.

1.3 Notations

We will use bold lower-case Roman letters such as x, a, bj to denote vectors.
Whenever a vector, say a ∈ R

n is present, its components will be denoted by
lower-case Roman letters with subscripts, such as a1, . . . , an. Matrices are de-
noted by bold upper-case Roman letters such as A and scalars are usually de-
noted by lower-case Roman letters.

We now enumerate some other notations that are used in this paper.

– R
m
+ : the set of m-dimensional vectors with non-negative real entries;

– P
n: the set of vectors x ∈ R

n
+ with

∑n
i=1 xi = 1;

– 〈a|b〉: the dot-product of two vectors in the same dimension;
– ‖x‖p: the p-norm of vector x, that is, (

∑ |xp
i |)1/p and ‖x‖∞ = maxi |xi|.

2 Grouped Linear-Leontief Markets

Assume there are n traders in the market, denoted by T = {1, 2, . . . , n}. The
market contains m groups of commodities, denoted by G = {G1, . . . , Gm}. Each
group Gj contains kj kinds of commodities.

The trader i’s initial endowment of goods is a collection of m vectors: {ei
j ∈

R
kj

+ | 1 ≤ j ≤ m}, where ei
j,k is the amount of good k in group j held by

trader i. For each group j, let the matrix Ej = (e1
j , . . . , e

n
j ) denote the traders’
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initial endowments in the groups. We assume that the amount of each commodity
is normalized to 1, i.e., 〈Ej|1〉 = 1, or equivalently,

n∑

i=1

ei
j,k = 1, ∀1 ≤ j ≤ m, 1 ≤ k ≤ kj .

Similar to the initial endowments, the allocation to trader i is a collection
of m vectors, denoted by xi = {xi

j ∈ R
kj

+ | 1 ≤ j ≤ m}. The trader i’s utility
function is characterized by a tuple {ai ∈ R

m
+ , {di

j ∈ R
kj

+ | 1 ≤ j ≤ m}}. Given

an allocation xi = {xi
j ∈ R

kj

+ | 1 ≤ j ≤ m}, trader i’s utility is defined as follows:

ui(xi) =
m∑

j=1

ai
jv

i
j , where vi

j = min

{
xi

j,k

di
j,k

∣
∣
∣ k = 1, 2, . . . , kj

}

In other words, trader i’s utility function is a linear combination of m Leontief
utility functions.

Locally, each group j is a Leontief economy. That is, every trader i demands
the goods in group j in proportion to the vector di

j . Therefore, we can introduce
the matrix Dj = (d1

j , . . . ,d
n
j ) to characterize the traders’ demands in group j.

Let vj = (v1
j , v2

j , . . . , vn
j )� be an n-dimensional column vector, which can be

viewed as an allocation of goods in group j. Then a feasible allocation vj of
goods in group j should satisfy Djvj ≤ 1. The allocation of the whole market
is denoted by v = {vj ∈ R

n
+ | 1 ≤ j ≤ m}.

Let D = (D1, . . . ,Dm), E = (E1, . . . ,Em) and A = (ai
j), then the market

can be denoted by a tuple M = (T,G,D,E,A). Now we define the exchange
equilibrium and approximate equilibrium in this market model.

Definition 1 (Exchange Equilibrium). An equilibrium is a pair (p,v),
where p = {pj ∈ R

kj

+ | 1 ≤ j ≤ m} is a collection of m price vectors and
v = {vj ∈ R

n
+ | 1 ≤ j ≤ m} is the allocation of the whole market, satisfying

that:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui =
m∑

j=1

ai
jv

i
j , ∀i = 1, . . . , n

ui = max{
m∑

j=1

ai
jz

i
j |

m∑

j=1

〈
pj |di

j

〉
zi

j ≤
m∑

j=1

〈
pj |ei

j

〉}, ∀i = 1, . . . , n

Djvj ≤ 1, ∀j = 1, . . . , m

Definition 2 (ε-approximate Equilibrium). An ε-equilibrium is a pair
(p,v), satisfying that:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ui =
m∑

j=1

ai
jv

i
j , ∀i = 1, . . . , n

ui ≥ (1 − ε)max{
m∑

j=1

ai
jz

i
j |

m∑

j=1

〈
pj |di

j

〉
zi

j ≤
m∑

j=1

〈
pj |ei

j

〉}, ∀i = 1, . . . , n

Djvj ≤ (1 + ε)1, ∀j = 1, . . . , m
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3 An Equivalent Equilibrium Condition

Next, we prove a necessary and sufficient condition of an equilibrium. This con-
dition will be useful in our equilibrium computation algorithms.

Theorem 1. A pair (p,v) is an equilibrium if and only if it satisfies that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Djvj ≤ 1, ∀j

ui =
m∑

j=1

ai
jv

i
j , ∀i

wi =
m∑

j=1

〈
pj |ei

j

〉
, ∀i

wia
i
j ≤ ui

〈
pj |di

j

〉
, ∀i, j

(1)

Proof. For each trader i, the pair (p,v) maximizes his utility if and only if

m∑

j=1

vi
j

〈
di

j |pj

〉 ≤
m∑

j=1

〈
ei

j|pj

〉
(2)

vi
j > 0 ⇒ ai

j/
〈
di

j |pj

〉 ≥ ai
k/
〈
di

k|pk

〉
(∀k) (3)

The first equation is the trader’s budget constraint, and the second equation
implies that the trader buys only those groups that maximizes his utility gained
per unit money spent on the groups.

Note that the equation (2) and (3) can be replaced equivalently by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ui =
m∑

j=1

ai
jv

i
j , wi =

m∑

j=1

〈
pj |ei

j

〉

ai
j〈

pj |di
j

〉 ≤ ui

wi
, ∀j

ai
j〈

pj |di
j

〉vi
j ≤ ui

wi
vi

j , ∀j

Therefore, (p,v) is an equilibrium if and only if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Djvj ≤ 1, ∀j

ui =
m∑

j=1

ai
jv

i
j , ∀i

wi =
m∑

j=1

〈
pj |ei

j

〉
, ∀i

wia
i
j ≤ ui

〈
pj |di

j

〉
, ∀i, j

wia
i
jv

i
j ≤ ui

〈
pj |di

j

〉
vi

j , ∀i, j

Now, it suffices to prove that the last equation can be derived from the other
four equations. By wia

i
j ≤ ui

〈
pj |di

j

〉
, we have
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wia
i
jv

i
j ≤ ui

〈
di

j |pj

〉
vi

j , ∀i, j

⇒ wi

m∑

j=1

ai
jv

i
j ≤ ui

m∑

j=1

〈
di

j |pj

〉
vi

j , ∀i

⇒ wi =
m∑

j=1

〈
ei

j|pj

〉 ≤
m∑

j=1

〈
di

j |pj

〉
vi

j , ∀i

⇒
n∑

i=1

m∑

j=1

〈
ei

j |pj

〉 ≤
n∑

i=1

m∑

j=1

〈
di

jv
i
j |pj

〉

⇒
m∑

j=1

〈1|pj〉 ≤
m∑

j=1

〈Djvj |pj〉

Since Djvj ≤ 1 for all j, we have
⎧
⎨

⎩

〈Djvj |pj〉 = 〈1|pj〉
wi =

m∑

j=1

〈
ei

j |pj

〉
=

m∑

j=1

〈
di

j |pj

〉
vi

j , ∀i

Again, by wia
i
j ≤ ui

〈
pj |di

j

〉
, we have

wia
i
jv

i
j ≤ ui

〈
di

j |pj

〉
vi

j , ∀i, j

⇒ wiui = wi

m∑

j=1

ai
jv

i
j ≤ ui

m∑

j=1

〈
di

j |pj

〉
vi

j = uiwi, ∀i

This forced that wia
i
jv

i
j = ui

〈
di

j |pj

〉
vi

j for all i, j. �

3.1 Solving the Fisher’s Model

The Fisher’s model is a special case of the Arrow-Debreu’s exchange market
model. In the Fisher’s model, the commodities are held by a seller initially. The
traders come to the market with the initial endowments of money, instead of the
endowments of commodities in the general setting. The traders buy goods from
the seller to maximize each’s utility, under the budget constraints. The market is
in an equilibrium if the supplies satisfy the demands. Usually, the computation
of equilibria in the Fisher’s setting is much easier than that in the general case.

Assume in the Fisher’s model, trader i has wi dollars initially. As shown
in [15], the equilibrium can be approximated by solving the following convex
programming problem:

max
n∑

i=1

wi log(ui)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

ui =
m∑

j=1

ai
jv

i
j , ∀i = 1, . . . , n

Djvj ≤ 1 , ∀j = 1, . . . , m
vj ≥ 0 , ∀j = 1, . . . , m

(4)

With the same argument as in Ye [17], we can prove that

Theorem 2 (Fisher’s Equilibrium). The Fisher’s model can be solved by the

interior-point algorithm in time O(
√

Mn(M + n)3L), where M =
m∑

j=1

kj is the

total number of commodities, n is the number of traders and L is the bit-length
of the input data. �
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4 An Approximation Algorithm

Since Leontief economy is a special case of the hybrid linear-Leontief economy,
the hardness results [5,8,12] in Leontief economy can be imported to our case.
For example, it is NP-hard to determine the existence of equilibria [5], and there
is no algorithm to compute the equilibrium in smoothed polynomial time, unless
PPAD ⊂ RP [12]. In this section, we propose an approximation algorithm for
the grouped linear-Leontief economy, running in

min

{

O
(
(τε)−M+mpoly(M, n)

)
, O

((
log(1/τ)

ε

)2mn

poly(M, n)

)}

time,

where M =
m∑

j=1

kj is the total number of commodities and τ = min
i,j,k

{ei
j,k,di

j,k}.

4.1 Intuition

Since the market can be viewed as a linear combination of several Leontief mar-
kets, we may expect that it can be reduced to a linear market when the equilib-
rium information of the sub-markets are given. We first discuss this intuition in
this subsection.

Assume the market is M = (T,G,D,E,A) and (p,v) is one of its equilibria.
In the following discussion, it is more convenient to replace pj by qjpj , where
qj ∈ R+ and ‖pj‖1 = 1 is a normalized vector in R

kj

+ . Thus the equilibrium
(p,v) is replaced by (q,p,v), where q ∈ R

m
+ .

We define a market M̂ with linear utilities as follows. The set of traders are
same as M. For each group Gj ∈ G, we introduce a commodity j to M̂. The
trader i’s initial endowment of commodity j is defined by êi

j =
〈
ei

j |pj

〉
and his

preference to commodity j is âi
j = ai

j/
〈
di

j |pj

〉
. The following lemma is obvious.

Lemma 1 (Market Reduction). Let x̂i
j = vi

j

〈
di

j |pj

〉
for all 1 ≤ i ≤ n and

1 ≤ j ≤ m, then (q, x̂) is an equilibrium for the linear market M̂. �

The above lemma shows that if we are so lucky that we know the internal price pj

of every group Gj , the hybrid market can be transformed to a linear market,
where every group Gj in the market M is replaced by a special commodity j

in M̂, which plays the role of currency of this group. The traders’ endowments
and preferences to this group are changed to the endowments and preferences to
this currency. M̂ can be viewed as the foreign currency exchange market. The
equilibrium price q of M̂ is the exchange rate between groups, which can be
computed in polynomial time, since the market M̂ is linear.

This fact leads to the following approximation heuristic. We exhaustively enu-
merate the internal prices of every group j in the simplex P

kj . With the collection
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of sampled internal prices p = {pj | 1 ≤ j ≤ m}, we transform the market M to
the linear market M̂. Then we compute the equilibrium price q and allocation x̂
in the market M̂. Let vi

j = x̂i
j/ 〈dj |pj〉 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. For every

group j, let vj = (v1
j , . . . , vn

j )�. Finally, we check that if Djvj ≤ 1 are approxi-
mately satisfied. If true, we have found an approximate equilibrium (q,p,v) for
the original market M.

Before we explicitly present the algorithm, we prepare two important tools in
the following two subsections.

4.2 Efficient Sampling Problem

Problem: Given ε > 0 and n vectors {xi ∈ P
k | i = 1, . . . , n}, called anchor

points, find a sampling set S ⊆ P
k such that for any p ∈ P

k, there exists a
sample point p̂ ∈ S satisfying 1 − ε ≤ 〈p|xi〉 / 〈p̂|xi〉 ≤ 1 + ε for any anchor
point xi, 1 ≤ i ≤ n. The set S is called the efficient sampling set of {xi} and ε.
Our goal is to minimize the size of S.

We give two constructions for set S.

Lemma 2. If τ = min
i,j

{xi,j} > 0, then we can construct an efficient sampling

set S of size O(
log(1/τ)

ε
)n.

Proof. For x1 and any p ∈ P
k, we have τ ≤ 〈p|x1〉 ≤ 1.

Define log(1/τ)/ log(1 + ε) ≈ log(1/τ)/ε planes:
{

a0 = τ, plane0 = {y | 〈y|x1〉 = a0};
ai = (1 + ε)ai−1, planei = {y | 〈y|x1〉 = ai}.

These planes cut P
k into O(log(1/τ)/ε) polytopes, denoted by P0, P1, . . ..

For x2, we similarly define O(log(1/τ)/ε) planes which cut each Pi into at
most O(log(1/τ)/ε) polytopes, denoted by Pi,0, Pi,1, . . ..

Repeat this process for n rounds, we divide simplex P
k to O(log(1/τ)/ε)n

polytopes. The sampling set S is constructed by picking an inner point from
each polytope. �

Lemma 3. If τ = min
i,j

{xi,j} > 0, then we can construct an efficient sampling

set S of size O((τε)1−k).

Proof. The sampling set S is constructed by meshing the simplex P
k, such that

for any p ∈ P
k, there exists a p̂ ∈ S satisfying ‖p− p̂‖∞ ≤ ετ . Obviously, S is

an efficient sampling set and is of size O((τε)1−k). �

In our algorithm, we are going to construct the efficient sampling set Sj for
{ei

j | i = 1, . . . , n} ∪ {di
j | i = 1, . . . , n} and ε. Let S be S1 × · · · × Sm. The time

complexity of the algorithm is dominated by the size of S.
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4.3 Convex Optimization Problem

Consider the equilibrium condition in Theorem 1. As in the above discussion,
an equilibrium (p,v) is replaced by a 3-tuple (q,p,v). We now introduce the
following optimization problem:

min θ
s.t. Djvj ≤ (1 + θ)1, ∀j

ui =
m∑

j=1

ai
jv

i
j , ∀i

wi =
m∑

j=1

qj

〈
pj |ei

j

〉
, ∀i

wia
i
j ≤ uiqj

〈
pj |di

j

〉
, ∀i, j

〈pj |1〉 = 1, q > 0, ∀j

(5)

The quantity θ can be viewed as the surplus of the demands. We can prove
that θ is always nonnegative for any feasible solution of problem (5). The proof
is omitted here since it is similar to the one in Ye [17].

Lemma 4. For any feasible solution (q,p,v) of (5), θ ≥ 0. Moreover, (q,p,v)
is an equilibrium if and only if θ = 0.

Assume we have guessed a set of internal prices p̂ = {p̂j | 1 ≤ j ≤ m}, then
problem (5) is reduced to the following convex optimization problem, denoted
by Opt(p̂):

min θ
s.t. Djvj ≤ (1 + θ)1, ∀j

ui =
m∑

j=1

ai
jv

i
j , ∀i

wi =
m∑

j=1

qj

〈
p̂j |ei

j

〉
, ∀i

wia
i
j ≤ uiqj

〈
p̂j |di

j

〉
, ∀i, j

q > 0, ∀j

(6)

Opt(p̂) can be solved in polynomial time [17]. Note that since p̂ may not be an
equilibrium internal prices, the optimum of Opt(p̂) may not be zero.

4.4 The Algorithm

Finally, our algorithm is described in Figure 1. Its correctness is guaranteed by
the following lemma. The lemma shows that there exists an internal price p̂ ∈ S
such that the solution of Opt(p̂) is an ε-approximate equilibrium, according to
Definition 2.

Lemma 5. Assume (q∗,p∗,v∗) is an equilibrium. If p̂ satisfies that

1 − ε ≤
〈
p∗

j |di
j

〉

〈
p̂j |di

j

〉 ≤ 1 + ε and 1 − ε ≤
〈
p∗

j |ei
j

〉

〈
p̂j |ei

j

〉 ≤ 1 + ε

for all i and j, then the optimum of the problem Opt(p̂) satisfies θ̂ ≤ 3ε.
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for each group Gj do

Construct the efficient sampling set Sj for

{ei
j | i = 1, . . . , n} ∪ {di

j | i = 1, . . . , n} and ε/3.

end

Let S = S1 × · · · × Sm.

for each p̂ ∈ S do

Solve the convex optimization problem Opt(p̂);

If the optimum θ̂ < ε, break the loop and output.

end

Fig. 1. An Approximation Algorithm

Proof. Since (q∗,p∗,v∗) is an equilibrium, it should satisfy that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Djv∗
j ≤ 1, ∀j

u∗
i =

m∑

j=1

ai
jv

i∗
j , ∀i

w∗
i =

m∑

j=1

q∗j
〈
p∗

j |ei
j

〉
, ∀i

λ∗
i = wi/ui, ∀i

λ∗
i = min{q∗j

〈
p∗

j |di
j

〉
/ai

j | 1 ≤ j ≤ m}, ∀i

We explicitly construct a feasible solution (q,v) of the problem (6) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

qj = q∗j , ∀j
λi = min{qj

〈
p̂j |di

j

〉
/ai

j | 1 ≤ j ≤ m}, ∀i

wi =
m∑

j=1

qj

〈
p̂j |ei

j

〉
, ∀i

ui = wi/λi, ∀i

vi
j = vi∗

j

ui

u∗
i

, ∀i, j

Since λi/λ∗
i ≥ 1 − ε and wi/w∗

i ≥ 1 + ε, we have

ui

u∗
i

=
wi

w∗
i

λ∗
i

λi
≤ 1 + ε

1 − ε
≤ 1 + 3ε

and thus, Djvj ≤ Djv∗
j (1 + 3ε) ≤ 1 + 3ε. Therefore, the optimum of (6) must

be less or equal to 3ε. �
The time complexity of our algorithm is |S|poly(M, n), where poly(M, n) is

spent on solving each optimization problem Opt(p̂) and M =
m∑

j=1

kj is the total

number of commodities. According to Lemma 2 and Lemma 3, the size of S is

min
{
O
(
(τε)−M+m

)
, O
(
(log(1/τ)/ε)2mn

)}
,

where τ = min
i,j,k

{ei
j,k,di

j,k}.
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5 Discussion

In this paper, we introduce a new family of utility functions — hybrid linear-
Leontief functions. We study the computation and approximation of exchange
equilibria in markets with grouped linear-Leontief utilities, which are special
cases of the hybrid ones. We show that equilibria in the Fisher’s model can
be found in polynomial time. We also develop an approximation algorithm for
approximating equilibria in the Arrow-Debreu’s exchange market model. The
time complexity of this approximation algorithm depends on the answer to the
efficient sampling problem, which is described in Section 4.2. At this moment,
it is exponential to either the number of commodities or the number of traders.
Any improvement to the sampling problem will improve the performance of our
approximation algorithm.

As a grouped hybrid market is a linear combination of Leontief economies,
given the fact that linear markets are easy to solve [16,13,17], we conjecture that
there exists an approximation algorithm that runs in polynomial time to the
number of groups and the number of traders, with an access to an oracle that
can compute equilibria in Leontief economies.

More generally, we can extend the concept of hybrid linear-Leontief utility
functions to hierarchical linear-Leontief utility functions. Such a function can
be specified by a tree whose internal vertices are either plus or max operators.
Each of its leaves is associated with one commodity. Given an allocation vector,
one can evaluate the utility function from bottom up. Clearly, we can use the
family of hierarchical utility functions to characterize more complicated market
behaviors. With the same technique used in Section 3.1, an equilibrium in the
Fisher’s setting can be computed efficiently. We hope that, the study to these
utilities will lead us to a better understanding of the complexity of computing
market equilibria.
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Abstract. We focus on the problem of computing an ε-Nash equilibrium
of a bimatrix game, when ε is an absolute constant. We present a simple
algorithm for computing a 3

4
-Nash equilibrium for any bimatrix game in

strongly polynomial time and we next show how to extend this algorithm
so as to obtain a (potentially stronger) parameterized approximation.
Namely, we present an algorithm that computes a 2+λ

4
-Nash equilibrium,

where λ is the minimum, among all Nash equilibria, expected payoff of
either player. The suggested algorithm runs in time polynomial in the
number of strategies available to the players.

1 Introduction

Motivation, Framework and Overview. Non-cooperative game theory has been
extensively used in understanding the phenomena observed when decision mak-
ers interact. A game consists of a set of players, and, for each player, a set of
strategies available to her as well as a payoff function mapping each strategy
profile (i.e. each combination of strategies, one for each player) to a real num-
ber that captures the preferences of the player over the possible outcomes of
the game. The most important solution concept in non-cooperative game the-
ory is the notion of Nash equilibrium [11]: it is a strategy profile such that no
player would have an incentive to unilaterally deviate from her strategy, i.e. no
player could increase her payoff by choosing another strategy while the rest of
the players persevered their strategies.

Despite the certain existence of such equilibria [11], the problem of finding any
Nash equilibrium even for games involving only two players has been recently
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proved to be complete in the PPAD (polynomial parity argument, directed ver-
sion) class, introduced by Papadimitriou [12]. This fact emerged the computation
of approximate Nash equilibria, also referred to as ε-Nash equilibria. An ε-Nash
equilibrium is a strategy profile such that no deviating player could achieve a
payoff higher than the one that the specific profile gives her, plus ε.

In this work, we focus on the problem of approximating Nash equilibria of 2-
player games. We propose simple and efficient algorithms for computing ε-Nash
equilibria of such games, for sufficiently small absolute constants ε.

Previous Work. Nash [11] introduced the concept of Nash equilibria in non-
cooperative games and proved that any game possesses at least one such equi-
librium; however, the computational complexity of finding a Nash equilibrium
used to be a wide open problem for several years. A well-known algorithm for
computing a Nash equilibrium of a game with 2 players is the Lemke-Howson
algorithm [9], however it has exponential worst-case running time in the num-
ber of available pure strategies. A simple Las Vegas algorithm for finding a Nash
equilibrium in 2-player random games was presented in [2]; this algorithm always
finds an equilibrium, and it runs in polynomial time with high probability.

Recently, Daskalakis, Goldberg and Papadimitriou [5] showed that the prob-
lem of computing a Nash equilibrium in a game with 4 or more players is PPAD-
complete; this result was later extended to games with 3 players [7]. Eventually,
Chen and Deng [3] proved that the problem is PPAD-complete for bimatrix
games in which each player has n available pure strategies.

In [10], following similar techniques as in [1], it was shown that, for any bima-
trix game and for any constant ε > 0, there exists an ε-Nash equilibrium with
only logarithmic support (in the number n of available pure strategies). This
result directly yields a quasi-polynomial (nO(ln n)) algorithm for computing such
an approximate equilibrium.

In [4] it was shown that the problem of computing a 1
nΘ(1) -Nash equilibrium is

PPAD-complete, and that bimatrix games are unlikely to have a fully polynomial
time approximation scheme (unless PPAD ⊆ P). However, it was conjectured that
it is unlikely that finding an ε-Nash equilibrium is PPAD-complete when ε is an
absolute constant.

Daskalakis, Mehta and Papadimitriou [6], independently to our work, show
how to compute an 1/2-Nash equilibrium of a bimatrix game.

Our Results. In this work, we deal with the problem of computing an ε-Nash
equilibrium of a bimatrix game, for some constant ε. We first present a simple
algorithm for computing a 3

4 -Nash equilibrium for any bimatrix game in strongly
polynomial time (Lemma 1).

Next we show how to extend this result so as to obtain a parameterized and
potentially stronger approximation. More specifically, we present an algorithm
that computes a 2+λ

4 -Nash equilibrium, where λ is the minimum, among all
Nash equilibria, expected payoff of either player (Theorem 3). The suggested
algorithm runs in time polynomial in the number of strategies available to the
players.
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Organization. In Section 2 we present the notation used throughout this paper,
together with the definitions of bimatrix games, Nash equilibria and approximate
Nash equilibria, and we formally state and discuss the results of [4] and [10] on
the problem of approximating Nash equilibria.

Our first algorithm for computing a 3
4 -Nash equilibrium is described in

Section 3, while in Section 4 we present an extension of this algorithm that
can give a stronger approximation. We conclude, in Section 5, with a discussion
of our results and suggestions for further research.

2 Background

2.1 Notation

For an integer n, let [n] = {1, 2, . . . , n}. For a n × 1 vector x we denote by
x1, x2, . . . xn the components of x and by xT the transpose of x. For an n × m
matrix A, we denote ai,j the element in the i-th row and j-th column of A. For an
n×m matrix A and a constant c ∈ IR, we denote cA the n×m matrix resulting
after multiplying each element of A by c. Let IPn be the set of all probability
vectors in n dimensions, i.e.

IPn ≡
{

x ∈ IRn :
n∑

i=1

xi = 1 and xi ≥ 0 for all i ∈ [n]

}
.

Denote IRn×m
[0:1] the set of all n × m matrices with real entries between 0 and 1,

i.e.
IRn×m

[0:1] ≡ {
A ∈ IRn×m : 0 ≤ ai,j ≤ 1 for all i ∈ [n], j ∈ [m]

}
.

2.2 Bimatrix Games

A noncooperative game Γ = 〈N, (Si)i∈N , (ui)i∈N 〉 consists of (i) a finite set of
players N , (ii) a nonempty finite set of pure strategies Si for each player i ∈ N
and (iii) a payoff function ui : ×i∈NSi → IR for each player i ∈ N .

Bimatrix games [8,9] are a special case of 2-player games (i.e. |N | = 2) such
that the payoff functions can be described by two real n×m matrices A and B,
where n = |S1| and m = |S2|. More specifically, the n rows of A, B represent the
pure strategies of the first player (the row player) and the m columns represent
the pure strategies of the second player (the column player). Then, when the
row player chooses strategy i and the column player chooses strategy j, the
former gets payoff ai,j while the latter gets payoff bi,j . Based on this observation,
bimatrix games are denoted by Γ = 〈A, B〉.

A mixed strategy for player i ∈ N is a probability distribution on the set of
her pure strategies Si. In a bimatrix game Γ = 〈A, B〉, a mixed strategy for
the row player can be expressed as a probability vector x ∈ IPn while a mixed
strategy for the column player can be expressed as a probability vector y ∈ IPm.
When the row player chooses mixed strategy x and the column player chooses
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y, then the players get expected payoffs xT Ay (row player) and xT By (column
player). The support of a mixed strategy is the set of pure strategies that are
assigned non-zero probability.

2.3 Nash Equilibria and ε-Nash Equilibria

A Nash equilibrium [11] for a game Γ is a combination of (pure or mixed)
strategies, one for each player, such that no player could increase her payoff by
unilaterally changing her strategy. We formally give the definition of a Nash
equilibrium and an ε-Nash equilibrium for a bimatrix game.

Definition 1 (Nash equilibrium). A pair of strategies (x̃, ỹ) is a Nash equi-
librium for the bimatrix game Γ = 〈A, B〉 if

(i) For every (mixed) strategy x of the row player, xT Aỹ ≤ x̃T Aỹ and
(ii) For every (mixed) strategy y of the column player, x̃T By ≤ x̃T Bỹ.

Definition 2 (ε-Nash equilibrium). For any ε > 0 a pair of strategies (x̂, ŷ)
is an ε-Nash equilibrium for the bimatrix game Γ = 〈A, B〉 if

(i) For every (mixed) strategy x of the row player, xT Aŷ ≤ x̂T Aŷ + ε, and
(ii) For every (mixed) strategy y of the column player, x̂T By ≤ x̂T Bŷ + ε.

Remark 1. From now on we denote by (x̃, ỹ) an arbitrary Nash equilibrium of
〈A, B〉 and by (x̂, ŷ) an arbitrary ε-Nash equilibrium of 〈A, B〉, for some constant
ε > 0 that will be clear from the context.

Positively Normalized Bimatrix Games. As pointed out in [4], since the notion
of ε-Nash equilibria is defined in the additive fashion, it is important to consider
bimatrix games with normalized matrices so as to study their complexity. That
is, the absolute value of each entry in the matrices is bounded, for example by
1, and there exists an entry in each matrix equal to 1. [10] also used a similar
normalization, which we adopt in this paper and describe it below.

Consider the n × m bimatrix game Γ = 〈A, B〉 and let c, d be two arbitrary
positive real constants. Suppose that (x̃, ỹ) is a Nash equilibrium for Γ and
(x̂, ŷ) is an ε-Nash equilibrium for Γ . Let x and y be any strategy of the row
and column player respectively. Now consider the game Γ ′ = 〈cA, dB〉. Then it
holds that

xT (cA)ỹ = cxT Aỹ ≤ cx̃Aỹ = x̃T (cA)ỹ

and, similarly,
x̃T (dB)y ≤ x̃T (dB)ỹ .

Moreover,
xT (cA)ŷ ≤ x̂T (cA)ŷ + cε

and
x̂T (dB)y ≤ x̂T (dB)ŷ + dε .
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Hence Γ and Γ ′ have precisely the same set of Nash equilibria; furthermore, any
ε-Nash equilibrium for Γ is a �ε-Nash equilibrium for Γ ′ (where � = max{c, d})
and vice versa.

Now let C be an n × m matrix such that, for all (columns) j ∈ [m], ci,j =
cj ∈ IR for all i ∈ [n]. Similarly, let D be an n × m matrix such that, for all
(rows) i ∈ [m], di,j = di ∈ IR for all j ∈ [m]. Note that, for every pair x ∈ IPn

and y ∈ IPm,

xT Cy =
m∑

j=1

n∑
i=1

ci,jxiyj =
m∑

j=1

yj

n∑
i=1

cjxi =
m∑

j=1

cjyj

and

xT Dy =
n∑

i=1

m∑
j=1

di,jxiyj =
n∑

i=1

xi

m∑
j=1

diyj =
n∑

i=1

dixi .

Consider now the game Γ ′′ = 〈C + A, D + B〉. Then, for all x ∈ IPn,

xT (C + A)ỹ = xT Cỹ + xT Aỹ ≤
m∑

j=1

cj ỹj + x̃T Aỹ = x̃T (C + A)ỹ

and similarly, for all y ∈ IPm,

x̃T (D + B)y ≤ x̃T (D + B)ỹ .

Also, for all x ∈ IPn it holds that

xT (C + A)ŷ = xT Cŷ + xT Aŷ ≤
m∑

j=1

cj ŷj + x̂T Aŷ + ε = x̂T (C + A)ŷ + ε

and similarly, for all y ∈ IPm,

x̂T (D + B)y ≤ x̂T (D + B)ŷ + ε .

Thus Γ and Γ ′′ are equivalent as regards their sets of Nash equilibria, as well as
their sets of ε-Nash equilibria.

This equivalence allows us to focus only on bimatrix games where the payoffs
are between 0 and 1, i.e. on games 〈A, B〉 where A, B ∈ IRm×n

[0:1] . Such games are
referred to as positively normalized [4].

2.4 Tractability of ε-Nash Equilibria

Consider a bimatrix game Γ = 〈A, B〉 and let (x̃, ỹ) be a Nash equilibrium for
Γ . Fix a positive integer k and assume that we form a multiset S1 by sampling k
times from the set of pure strategies of the row player, independently at random
according to the distribution x̃. Similarly, assume we form a multiset S2 by
sampling k times from set of pure strategies of the column player, independently
at random according to the distribution ỹ. Let x̂ be the mixed strategy for the
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row player that assigns probability 1/k to each member of S1 and 0 to all other
pure strategies, and let ŷ be the mixed strategy for the column player that assigns
probability 1/k to each member of S2 and 0 to all other pure strategies. Clearly,
if a pure strategy occurs α times in the multiset, then it is assigned probability
α/k. Then x̂ and ŷ are called k-uniform [10] and the following holds:

Theorem 1 ([10]). For any Nash equilibrium (x̃, ỹ) of a positively normalized
n × n bimatrix game and for every ε > 0, there exists, for every k ≥ 12 lnn

ε2 , a
pair of k-uniform strategies x̂, ŷ such that (x̂, ŷ) is an ε-Nash equilibrium.

However,

Theorem 2 ([4]). The problem of computing a 1
nΘ(1) -Nash equilibrium of a

positively normalized n × n bimatrix game is PPAD-complete.

Theorem 2 asserts that, unless PPAD ⊆ P, there exists no fully polynomial time
approximation scheme for computing equilibria in bimatrix games. However,
this does not rule out the existence of a polynomial approximation scheme for
computing an ε-Nash equilibrium when ε is an absolute constant, or even when
ε = Θ

(
1

poly(ln n)

)
. Furthermore, as observed in [4], if the problem of finding an

ε-Nash equilibrium were PPAD-complete when ε is an absolute constant, then,
due to Theorem 1, all PPAD problems would be solved in quasi-polynomial time,
which is unlikely to be the case.

3 A 3
4
-Nash Equilibrium

In this section we present a straightforward method for computing a 3
4 -Nash

equilibrium for any positively normalized bimatrix game.

Lemma 1. Consider any positively normalized n×m bimatrix game Γ = 〈A, B〉
and let ai1,j1 = maxi,j ai,j and bi2,j2 = maxi,j bi,j. Then the pair of strategies
(x̂, ŷ) where x̂i1 = x̂i2 = ŷj1 = ŷj2 = 1

2 is a 3
4 -Nash equilibrium for Γ .

Proof. First observe that

x̂T Aŷ =
n∑

i=1

m∑
j=1

x̂iŷjai,j

= x̂i1 ŷj1ai1,j1 + x̂i1 ŷj2ai1,j2 + x̂i2 ŷj1ai2,j1 + x̂j1 ŷj1ai2,j2

=
1
4

(ai1,j1 + ai1,j2 + ai2,j1 + ai2,j2)

≥ 1
4
ai1,j1 .

Similarly,

x̂T Bŷ =
n∑

i=1

m∑
j=1

x̂iŷjbi,j
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= x̂i1 ŷj1bi1,j1 + x̂i1 ŷj2bi1,j2 + x̂i2 ŷj1bi2,j1 + x̂j1 ŷj1bi2,j2

=
1
4

(bi1,j1 + bi1,j2 + bi2,j1 + bi2,j2)

≥ 1
4
bi2,j2 .

Now observe that, for any (mixed) strategies x and y of the row and column
player respectively,

xT Aŷ ≤ ai1,j1 and x̂T By ≤ bi2,j2

and recall that ai,j , bi,j ∈ [0, 1] for all i ∈ N , j ∈ M . Hence

xT Aŷ ≤ ai1,j1 =
1
4
ai1,j1 +

3
4
ai1,j1 ≤ x̂T Aŷ +

3
4

and
x̂T By ≤ bi2,j2 =

1
4
bi2,j2 +

3
4
ai2,j2 ≤ x̂T Bŷ +

3
4

.

Thus (x̂, ŷ) is a 3
4 -Nash equilibrium for Γ . 
�

4 A Parameterized Approximation

We now proceed in extending the technique used in the proof of Lemma 1 so as
to obtain a parameterized, stronger approximation.

Theorem 3. Consider a positively normalized n×m bimatrix game Γ = 〈A, B〉.
Let λ∗

1 (λ∗
2) be the minimum, among all Nash equilibria of Γ , expected payoff for

the row (column) player and let λ = max{λ∗
1, λ

∗
2}. Then, there exists a 2+λ

4 -Nash
equilibrium that can be computed in time polynomial in n and m.

Proof. Observe that, for any pair of strategies x,y of the row and column player
respectively, it holds that xT Ay ∈ [0, 1] and xT By ∈ [0, 1]. Consider the follow-
ing linear programs LP1 and LP2:

LP1 LP2
minimize t
subject to

∑m
j=1 ai,jyj ≤ t ∀i ∈ [n]∑m

j=1 yj = 1
yj ≥ 0 ∀j ∈ [m]

minimize s
subject to

∑n
j=1 bi,jxi ≤ s ∀j ∈ [m]∑n

i=1 xi = 1
xi ≥ 0 ∀i ∈ [n]

Let t∗,y∗ and s∗,x∗ correspond to the optimal solutions of LP1 and LP2 re-
spectively. Then, there exists at least one row r ∈ [n] such that

∑
j ar,jy

∗
j = t∗.

Similarly, there exists at least one column c ∈ [m] such that
∑

i bi,cx
∗
i = s∗.

Let λ∗
1 be the minimum, among all Nash equilibria of Γ , expected payoff for the

row player and let (x̃′, ỹ′) be the corresponding Nash equilibrium. Then λ∗
1, ỹ

′ is
a feasible solution for LP1, thus t∗ ≤ λ∗

1. Similarly, let λ∗
2 be the minimum, among

all Nash equilibria of Γ , expected payoff for the row player and let (x̃′′, ỹ′′) be
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the corresponding Nash equilibrium. Then λ∗
2, ỹ

′′ is a feasible solution for LP2,
thus s∗ ≤ λ∗

2. Now let λ = max{λ∗
1, λ

∗
2}. Thus t∗ ≤ λ and s∗ ≤ λ.

Now consider the pair of strategies (x̂, ŷ) for the row and column player
respectively defined as follows:

x̂i =
x∗

i

2
∀i ∈ [n] − {r}

x̂r =
x∗

r

2
+

1
2

ŷj =
y∗

j

2
∀j ∈ [m] − {c}

ŷc =
y∗

c

2
+

1
2

.

Observe that

x̂T Aŷ =
n∑

i=1

x̂i

m∑
j=1

ŷjai,j

=
∑
i�=r

x∗
i

2

∑
j�=c

y∗
j

2
ai,j +

∑
i�=r

x∗
i

2

(
y∗

c

2
+

1
2

)
ai,c

+
(

x∗
r

2
+

1
2

) ∑
j�=c

y∗
j

2
ar,j +

(
x∗

r

2
+

1
2

) (
y∗

c

2
+

1
2

)
ar,c

≥ 1
4

m∑
j=1

ar,jy
∗
j

=
t∗

4
.

Furthermore, for each row i ∈ [n],
m∑

j=1

ŷjai,j =
m∑

j=1

y∗
j

2
ai,j +

1
2
ai,c

≤ t∗

2
+

1
2

≤ x̂T Aŷ +
2 + t∗

4

≤ x̂T Aŷ +
2 + λ

4
.

Similarly,

x̂T Bŷ =
m∑

j=1

ŷj

n∑
i=1

x̂ibi,j

=
∑
j�=c

y∗
j

2

∑
i�=r

x∗
i

2
bi,j +

∑
j�=c

y∗
j

2

(
x∗

r

2
+

1
2

)
br,j
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+
(

y∗
c

2
+

1
2

) ∑
i�=r

x∗
i

2
bi,c +

(
y∗

c

2
+

1
2

) (
x∗

r

2
+

1
2

)
br,c

≥ 1
4

n∑
i=1

bi,cx
∗
i

=
s∗

4
and, for each column j ∈ [m],

n∑
i=1

x̂ibi,j =
n∑

i=1

x∗
i

2
bi,j +

1
2
br,j

≤ s∗

2
+

1
2

≤ x̂T Bŷ +
2 + s∗

4

≤ x̂T Bŷ +
2 + λ

4
.

Thus, (x̂, ŷ) is a 2+λ
4 -Nash equilibrium for Γ that can be computed in poly-

nomial time. 
�
Note that, for any bimatrix game Γ = 〈A, B〉, we can check in polynomial
time whether there exists a Nash equilibrium in which each player chooses with
probability 1 one of her pure strategies (i.e. a pure Nash equilibrium). If there
exists such an equilibrium, then we can find it in polynomial time and there is no
point in searching for ε-Nash equilibria. On the other hand, if all Nash equilibria
are not pure, then the payoff of either player is strictly less than 1, hence λ =
max{λ∗

1, λ
∗
2} < 1. Thus 2+λ

4 < 3
4 , assuring that the the algorithm described

in the above proof yields a stronger approximation than the one presented in
Section 3.

An Application. The approximation factor achieved by the algorithm we just
described depends on λ∗

1 and λ∗
2. We believe that, in most situations, there

exists a Nash equilibrium such that the payoff of the row player is small, and
that there exists a (possibly different) Nash equilibrium such that the payoff of
the column player is small, and thus the approximation achieved is close to 1

2 .
As an example, consider the n × n generalized matching pennies game Γ =

〈A, B〉 where A and B are described as follows:

ai,j =
{

1 if i = j
0 else

bi,j =
{

1 if j = i(modn) + 1
0 else .

Observe that the pair of strategies (x̃, ỹ) where x̃i = ỹi = 1
n for all i ∈ [n] is

a Nash equilibrium of the generalized matching pennies game. Indeed, for any
x,y ∈ IPn,
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xT Aỹ =
1
n2

n∑
i=1

n∑
j=1

ai,j =
1
n2

n =
1
n

= x̃T Aỹ

x̃T By =
1
n2

n∑
i=1

n∑
j=1

bi,j =
1
n2

n =
1
n

= x̃T Bỹ .

Thus (x̃, ỹ) is a Nash equilibrium1 that gives each player a payoff equal to
1
n . By applying Theorem 3, we can obtain in polynomial time a 1+1/n

2 -Nash
equilibrium. Thus we can guarantee an approximation factor that tends to 1

2 as
n → ∞.

5 Conclusions

In this paper we tried to approximate, within a constant additive factor, the
problem of computing a Nash equilibrium in an arbitrary n×m bimatrix game.

The (additive) approximation parameter achieved by the algorithm described
in the above proof of Theorem 3 depends on λ∗

1 and λ∗
2, i.e. the minimum payoff,

over all Nash equilibria, for the row and column player respectively. Observe that,
so long as not all Nash equilibria of the game give payoffs very close to 1 for either
player, the algorithm gives an approximation very close to 1

2 . In other words, it
suffices that there exists a Nash equilibrium that gives row player a payoff close
to 0 and a Nash equilibrium (not necessarily the same!) that gives column player
a payoff close to 0 so that the approximation achieved can be assured to be close
to 1

2 . Furthermore, this is just a sufficient and not a necessary condition: recall
that we only used λ∗

1 and λ∗
2 so as to prove the existence of feasible solutions to

some linear constraints.
Furthermore, for both Lemma 1 and Theorem 3, we used a factor of 1

2 to
deal with the underlying Linear Complementarity Problem. More specifically,
we tried to compute independently for each player a strategy that guarantees
her a sufficiently large payoff, and then we “merged” in an equivalent way the
strategies found with the ones needed by the other player so as to approximate
a Nash equilibrium. We observed that, for the specific algorithms presented in
these results, this factor of 1

2 is optimal.
Albeit simple, we believe that the techniques described here are a first step

towards establishing whether there exists any approximation scheme for com-
puting an ε-Nash equilibrium and that our methods can be extended in order
to achieve stronger approximations to the problem of finding Nash equilibria of
bimatrix games.

Acknowledgments. We thank Dimitris Fotakis for contributing to our work an
improvement to Theorem 3.

1 In fact it can be proved that (x̃, ỹ) is the unique Nash equilibrium of the generalized
matching pennies game.
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A Note on Approximate Nash Equilibria

Constantinos Daskalakis1, Aranyak Mehta2, and Christos Papadimitriou1

1 University of California, Berkeley, USA�

2 IBM Almaden Research Center, San Jose, USA

Abstract. In view of the intractability of finding a Nash equilibrium, it
is important to understand the limits of approximation in this context.
A subexponential approximation scheme is known [LMM03], and no ap-
proximation better than 1

4
is possible by any algorithm that examines

equilibria involving fewer than log n strategies [Alt94]. We give a simple,
linear-time algorithm examining just two strategies per player and result-
ing in a 1

2
-approximate Nash equilibrium in any 2-player game. For the

more demanding notion of well-supported approximate equilibrium due
to [DGP06] no nontrivial bound is known; we show that the problem
can be reduced to the case of win-lose games (games with all utilities
0 − 1), and that an approximation of 5

6
is possible contingent upon a

graph-theoretic conjecture.

1 Introduction

Since it was shown that finding a Nash equilibrium is PPAD-complete [DGP06],
even for 2-player games [CD05], the question of approximate Nash equilibrium
emerged as the central remaining open problem in the area of equilibrium com-
putation. Assume that all utilities have been normalized to be between 0 and 1
(this is a common assumption, since scaling the utilities of a player by any pos-
itive factor, and applying any additive constant, results in an equivalent game).
A set of mixed strategies is called an ε-approximate Nash equilibrium, where
ε > 0, if for each player all strategies have expected payoff that is at most ε more
than the expected payoff of the given strategy. Clearly, any mixed strategy com-
bination is a 1-approximate Nash equilibrium, and it is quite straightforward to
find a 3

4 -approximate Nash equilibrium by examining all supports of size two. In
fact, [KPS06] provides a scheme that yields, for every ε > 0, in time polynomial
in the size of the game and 1

ε , a 2+ε+λ
4 -approximate Nash equilibrium, where λ

is the minimum, among all Nash equilibria, expected payoff of either player. In
[LMM03] it was shown that, for every ε > 0, an ε-approximate Nash equilibrium
can be found in time O(n

log n

ε2 ) by examining all supports of size log n
ε2 . It was

pointed out in [Alt94] that, even for zero-sum games, no algorithm that examines
supports smaller than about log n can achieve an approximation better than 1

4 .
Can this gap between 1

4 and 3
4 be bridged by looking at small supports? And

how can the barrier of 1
4 be broken in polynomial time?

� Supported by NSF grant CCF-0515259.

P. Spirakis et al. (Eds.): WINE 2006, LNCS 4286, pp. 297–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this note we concentrate on 2-player games. We point out that a straightfor-
ward algorithm, looking at just three strategies in total, achieves a
1
2 -approximate Nash equilibrium. The algorithm is very intuitive: For any strat-
egy i of the row player let j be the best response of the column player , and
let k be the best response of the row player to j. Then the row player plays
an equal mixture of i and k, while the column player plays j. The proof of
1
2 -approximation is rather immediate.

We also examine a more sophisticated approximation concept due to [GP06,
DGP06], which we call here the well-supported ε-approximate Nash equilibrium,
which does not allow in the support strategies that are suboptimal by at least
ε. For this concept no approximation constant better than 1 is known. We show
that the problem is reduced — albeit with a loss in the approximation ratio — to
the case in which all utilities are either zero or one (this is often called the “win-
lose case”). We also prove that, assuming a well-studied and plausible graph-
theoretic conjecture, in win-lose games there is a well-supported 2

3 -approximate
Nash equilibrium with supports of size at most three (and of course it can be
found in polynomial time). This yields a well-supported 5

6 -approximate Nash
equilibrium for any game.

2 Definitions

We consider normal form games between two players, the row player and the
column player, each with n strategies at his disposal. The game is defined by
two n × n payoff matrices, R for the row player, and C for the column player.
The pure strategies of the row player correspond to the n rows and the pure
strategies of the column player correspond to the n columns. If the row player
plays row i and the column player plays column j, then the row player receives
a payoff of Rij and the column player gets Cij . Payoffs are extended linearly
to pairs of mixed strategies — if the row player plays a probability distribu-
tion x over the rows and column player plays a distribution y over the columns,
then the row player gets a payoff of xT Ry and the column player gets a payoff
of xT Cy.

A Nash equilibrium in this setting is a pair of mixed strategies, x∗ for the row
player and y∗ for the column player, such that neither player has an incentive
to unilaterally defect. Note that, by linearity, the best defection is to a pure
strategy. Let ei denote the vector with a 1 at the ith coordinate and 0 elsewhere.
A pair of mixed strategies (x∗, y∗) is a Nash equilibrium if

∀ i = 1..n, eT
i Ry∗ ≤ x∗T Ry∗

∀ i = 1..n, x∗T Cei ≤ x∗T Cy∗

It can be easily shown that every pair of equilibrium strategies of a game does
not change upon multiplying all the entries of a payoff matrix by a constant, and
upon adding the same constant to each entry. We shall therefore assume that
the entries of both payoff matrices R and C are between 0 and 1.
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For ε > 0, we define an ε-approximate Nash equilibrium to be a pair of mixed
strategies x∗ for the row player and y∗ for the column player, so that the incentive
to unilaterally deviate is at most ε:

∀ i = 1..n, eT
i Ry∗ ≤ x∗T Ry∗ + ε

∀ i = 1..n, x∗T Cei ≤ x∗T Cy∗ + ε

A stronger notion of approximately equilibrium strategies was introduced
in [GP06, DGP06]: For ε > 0, a well-supported ε-approximate Nash equilibrium,
or an ε-well-supported Nash equilibrium, is a pair of mixed strategies, x∗ for the
row player and y∗ for the column player, so that a player plays only approxi-
mately best-response pure strategies with non-zero probability:

∀ i : x∗
i > 0 ⇒ eT

i Ry∗ ≥ eT
j Ry∗ − ε, ∀ j

∀ i : y∗
i > 0 ⇒ x∗T Cei ≥ x∗T Cej − ε, ∀ j

If only the first set of inequalities holds, we say that every pure strategy in the
support of x∗ is ε-well supported against y∗, and similarly for the second. This
is indeed a stronger definition, in the sense that every ε-well supported Nash
equilibrium is also an ε-approximate Nash equilibrium, but the converse need
not be true. However, the following lemma from [CDT06] shows that there does
exist a polynomial relationship between the two:

Lemma 1. [CDT06] For every 2 player normal form game, for every ε > 0,
given an ε

8n -approximate equilibrium we can compute in polynomial time an ε-
well-supported equilibrium.

Since in this paper we are interested in constant ε, this lemma is of no help to
us; indeed, our results for approximate equilibria are stronger and simpler than
those for well-supported equilibria.

3 A Simple Algorithm

We provide here a simple way of computing a 1
2 -approximate Nash equilibrium:

Pick an arbitrary row for the row player, say row i. Let j = arg maxj′ Cij′ . Let
k = arg maxk′ Rk′j . Thus, j is a best-response column for the column player to
the row i, and k is a best-response row for the row player to the column j.

The equilibrium is x∗ = 1
2ei + 1

2ek and y∗ = ej , i.e., the row player plays row
i or row k with probability 1

2 each, while the column player plays column j with
probability 1.

Theorem 1. The strategy pair (x∗, y∗) is a 1
2 -approximate Nash equilibrium.

Proof. The row player’s payoff under (x∗, y∗) is x∗T Ry∗ = 1
2Rij + 1

2Rkj . By
construction, one of his best responses to y∗ is to play the pure strategy on
row k, which gives a payoff of Rkj . Hence his incentive to defect is equal to the
difference:
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Rkj − (1
2Rij + 1

2Rkj) = 1
2Rkj − 1

2Rij ≤ 1
2Rkj ≤ 1

2

The column player’s payoff under (x∗, y∗) is x∗T Cy∗ = 1
2Cij + 1

2Ckj . Let j′ be
a best pure strategy response of the column player to x∗: this strategy gives the
column player a value of 1

2Cij′ + 1
2Ckj′ , hence his incentive to defect is equal to

the difference:

(1
2Cij′ + 1

2Ckj′) − (1
2Cij + 1

2Ckj) = 1
2 (Cij′ − Cij) + 1

2 (Ckj′ − Ckj)

≤ 0 + 1
2 (Ckj′ − Ckj)

≤ 1
2 (1)

Here the first inequality follows from the fact that column j was a best response
to row i, by the first step of the construction.

4 Well Supported Nash Equilibria

The algorithm of the previous section yields equilibria that are, in the worst
case, as bad as 1-well supported. In this section we address the harder problem
of finding ε-well supported equilibria for some ε < 1.

Our construction has two components. In the first we transform the given
2-player game into a new game by rearranging and potentially discarding or
duplicating some of the columns of the original game. The transformation will
be such that well supported equilibria in the new game can be mapped back to
well supported equilibria of the original game; moreover, the mapping will result
in some sort of decorrelation of the players, in the sense that computation of
well supported equilibria in the decorrelated game can be carried out by looking
at the row player. The second part of the construction relies in mapping the
original game into a win-lose game (game with 0 − 1 payoffs) and computing
equilibria on the latter. The mapping will guarantee that well supportedness of
equilibria is preserved, albeit with some larger ε.

4.1 Player Decorrelation

Let (R, C) be a 2-player game, where the set of strategies of both players is [n].

Definition 1. A mapping f : [n] → [n] is a best response mapping for the
column player iff, for every i ∈ [n],

Cif(i) = max
j

Cij .

Definition 2 (Decorrelation Transformation). The decorrelated game
(Rf , Cf ) corresponding to the best response mapping f is defined as follows

∀i, j ∈ [n] : Rf
ij = Rif(j)

Cf
ij = Cif(j)

Note that the decorrelation transformation need not be a permutation of the
columns of the original game. Some columns of the original game may very well
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be dropped and others duplicated. So, it is not true in general that (exact)
Nash equilibria of the decorrelated game can be mapped into Nash equilibria of
the original game. However, some specially structured well supported equilibria
of the decorrelated game can be mapped into well supported equilibria of the
original game as we explore in the following lemmas.

In the following discussion, we assume that we have fixed a best response
mapping f for the column player and that the corresponding decorrelated game is
(Rf , Cf ). Also, if S ⊆ [n], we denote by Δ(S) the set of probability distributions

over the set S. Moreover, if x ∈ Δ(S), we denote by supp(x)
�
= {i ∈ [n]|x(i) > 0},

the support of x.

Lemma 2. In the game (Rf , Cf ), for all sets S ⊆ [n], the strategies of the
column player in S are |S|−1

|S| -well supported against the strategy x∗ of the row

player, where x∗ is defined in terms of the set S′ =
{

i ∈ S|Cf
ii = 0

}
as follows

– if S′ 	= ∅, then x∗ is uniform over the set S′
– if S′ = ∅, then

x∗(i) =

⎧
⎪⎨
⎪⎩

1
Z

1

Cf
ii

, if i ∈ S

0, otherwise

where Z =
∑

i∈S
1

Cf
ii

is a normalizing constant.

Proof. Suppose that S′ 	= ∅. By the definition of S′, it follows that ∀i ∈ S′, j ∈
[n], Cf

ij = 0. Therefore, for all j ∈ [n],

x∗T Cfej = 0,

which proves the claim.

The proof of the S′ = ∅ case is based on the following observations.

– ∀j ∈ S:

x∗T Cf ej ≥ x∗(j)Cf
jj =

1
Z

1

Cf
jj

Cf
jj =

1
Z

– ∀j ∈ [n]:

x∗T Cfej =
1
Z

∑
i∈S

1

Cf
ii

Cf
ij ≤ 1

Z

∑
i∈S

1

Cf
ii

Cf
ii =

|S|
Z

– Z =
∑

i∈S
1

Cf
ii

≥ |S| because every entry of Cf is at most 1.

Therefore, ∀j1 ∈ S, j2 ∈ [n],

x∗T Cfej2 − x∗T Cf ej1 ≤ |S| − 1
Z

≤ |S| − 1
|S| ,

which completes the claim.
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The following lemma is an immediate corollary of Lemma 2.

Lemma 3 (Player Decorrelation). In the game (Rf , Cf ), if there exists a
set S ⊆ [n] and a mixed strategy y ∈ Δ(S) for the column player such that the
strategies in S are |S|−1

|S| -well supported for the row player against the distribution
y, then there exists a strategy x ∈ Δ(S) for the row player so that the pair (x, y)
is an |S|−1

|S| -well supported Nash equilibrium.

The next lemma describes how well supported equilibria in the games (R, C)
and (Rf , Cf ) are related.

Lemma 4. ∀S ⊆ [n], if the pair (x∗, y∗), where x∗ is defined as in the statement
of Lemma 2 and y∗ is the uniform distribution over S, constitutes an |S|−1

|S| -well
supported Nash equilibrium for the game (Rf , Cf ), then the pair of distributions
(x∗, y′) is an |S|−1

|S| well supported Nash equilibrium for the game (R, C), where
y′ is the distribution defined as follows

y′(i) =
∑
j∈S

y∗(j)Xf(j)=i, ∀i ∈ [n],

where Xf(j)=i is the indicator function of the condition “f(j) = i”.

Proof. We have to verify that the pair of distributions (x∗, y′) satisfies the con-
ditions of well supportedness for the row and column player in the game (R, C).

Row Player: We show that the strategies y∗ and y′ of the column player give to
every pure strategy of the row player the same payoff in the two games. And,
since the support of the row player stays the same set S in the two games, the
fact that the strategy of the row player is well supported in the game (Rf , Cf )
guarantees that the strategy of the row player will be well supported in the game
(R, C) as well.

∀i ∈ [n] : eT
i Ry′ =

n∑
k=1

Rik · y′(k)

=
n∑

k=1

Rik ·
∑
j∈S

y∗(j)Xf(j)=k

=
∑
j∈S

y∗(j)
n∑

k=1

Rik · Xf(j)=k

=
∑
j∈S

y∗(j)Rif(j)

=
∑
j∈S

y∗(j)Rf
ij = eT

i Rfy∗

Column Player: As in the proof of Lemma 2, the analysis proceeds by distin-
guishing the cases S′ 	= ∅ and S′ = ∅. The case S′ 	= ∅ is easy, because, in
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this regime, it must hold that ∀i ∈ S′, j ∈ [n], Cf
ij = 0 which implies that, also,

Cij = 0, ∀i ∈ S′, j ∈ [n]. And, since, the row player plays the same distribution
as in the proof of Lemma 2, we can use the arguments applied there.

So it is enough to deal with the S′ = ∅ case. The support of y′ is clearly the set
S′′ = {j|∃i ∈ S such that f(i) = j}. Moreover, observe the following:

∀j ∈ S′′ : x∗T Cej =
∑
i∈S

x∗(i)Cij

≥
∑
i∈S s.t.

f(i)=j

x∗(i)Cif(i)

=
∑
i∈S s.t.

f(i)=j

x∗(i)Cf
ii ≥

1
Z

The final inequality holds because there is at least one summand, since j ∈ S′′.
On the other hand,

∀j /∈ S′′ : x∗T Cej =
∑
i∈S

x∗(i)Cij

≤
∑
i∈S

x∗(i)Cif(i)

=
∑
i∈S

x∗(i)Cf
ii

=
∑
i∈S

1
Z

1

Cf
ii

Cf
ii

=
|S|
Z

Moreover, as we argued in the proof of Lemma 2, |S|
Z − 1

Z ≤ |S|−1
|S| . This completes

the proof, since the strategy of the column player is, thus, also well supported.

4.2 Reduction to Win-Lose Games

We now describe a mapping from a general 2-player game to a win-lose game
so that well supported equilibria of the win-lose game can be mapped to well
supported equilibria of the original game. A bit of notation first. If A is an n×n
matrix with entries in [0, 1], we denote by round(A) the 0-1 matrix defined as
follows, for all i, j ∈ [n],

round(A)ij =

{
1, if Aij ≥ 1

2

0, if Aij < 1
2

The following lemma establishes a useful connection between well supported
equilibria of the 0-1 game and those of the original game.
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Lemma 5. If (x, y) is an ε-well supported Nash equilibrium of the game
(round(R), round(C)), then (x, y) is a 1+ε

2 -well supported Nash equilibrium of
the game (R, C).

Proof. We will show that the strategy of the row player in game (R, C) is well
supported; similar arguments apply to the second player. Denote R′ = round(R)
and C′ = round(C).

The following claim follows easily from the rounding procedure.

Claim. ∀i, j ∈ [n] : R′
ij

2 ≤ Rij ≤ 1
2 + R′

ij

2

Therefore, it follows that, ∀i ∈ [n],

1
2
eT

i R′y ≤ eT
i Ry ≤ 1

2
+

1
2
eT

i R′y (2)

We will use (2) to argue that the row player is well supported. Indeed, ∀j ∈
supp(x), and ∀ i ∈ [n]

eT
i Ry − eT

j Ry ≤ 1
2

+
1
2
eT

i R′y − 1
2
eT

j R′y ≤ 1
2

+
1
2
· (eT

i R′y − eT
j R′y) ≤ 1

2
+

1
2
· ε

where the last implication follows from the fact that (x, y) is an ε-well supported
Nash equilibrium.

4.3 Finding Well Supported Equilibria

Lemmas 2 through 5 suggest the following algorithm, ALG-WS, to compute well
supported Nash equilibria for a given two player game (R, C):

1. Map game (R, C) to the win-lose game (round(R), round(C)).
2. Map game (round(R), round(C)) to the game (round(R)f , round(C)f ),

where f is any best response mapping for the column player.
3. Find a subset S ⊆ [n] and a strategy y ∈ Δ(S) for the column player

such that all the strategies in S are |S|−1
|S| well supported for the row

player in (round(R)f , round(C)f ) against the strategy y for the column
player.

4. By a successive application of lemmas 3, 4 and 5, get an 1
2 + 1

2
|S|−1
|S| =

1 − 1
2|S| well supported Nash equilibrium of the original game.

The only non-trivial step of the algorithm is step 3. Let us paraphrase what
this task entails:

“Given a 0-1 matrix round(R)f , find a subset of the columns S ⊂ [n] and
a distribution y ∈ Δ(S), so that all rows in S are |S|−1

|S| well supported
against the distribution y over the columns.”
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It is useful to consider the 0−1 matrix round(R)f as the adjacency matrix of
a directed graph G on n vertices. We shall argue next that the task above is easy
in two cases: When G has a small sycle, and when G has a small undominated
set of vertices, that is, a set of vertices such that no other vertex has edges to
all of them.

1. Suppose first that G has a cycle of length k, and let S be the vertices on
the cycle. Then it is easy to see that all the k strategies in S are k−1

k -well
supported for the row player against y, where y is the uniform strategy for
the column player over the set S. The reason is that each strategy in S has
expected payoff 1

k against y, and thus no other strategy can dominate it
by more than k−1

k . This, via the above algorithm, implies a (1 − 1
2k )-well-

supported Nash equilibrium.
2. Second, suppose that there is a set S of � undominated vertices. Then every

strategy in S is (1− 1
� )-well supported for the row player against the uniform

strategy y of the column player on S, simply because there is no row that
has payoff better than 1− 1

� against y. Again, via the algorithm, this implies
that we can find a (1 − 1

2� )-well-supported Nash equilibrium.

This leads us to the following graph theoretic conjecture:

Conjecture 1. There are integers k and � such that every digraph either has a
cycle of length at most k or an undominated set of � vertices.

Now, the next result follows immediately from the preceding discussion:

Theorem 2. If Conjecture 1 is true for some values of k and �, then Algorithm
ALG-WS returns in polynomial time (e.g. by exhaustive search) a max{1− 1

2k , 1−
1
2�}-well-supported Nash equilibrium which has support of size max{k, �}.

The statement of the conjecture is false for k = � = 2, as can be seen by a small
construction (7 nodes). The statement for k = 3, � = 2 is already non-trivial.
In fact, it was stated as a conjecture by Myers [Mye03] in relation to solving
a special case of the Caccetta-Häggkvist Conjecture [CH78]. Moreover, it has
recently been proved incorrect in [Cha05] via an involved construction. The case
of a constant bound on k for � = 2 has been left open.

While stronger forms of Conjecture 1 seem to be related to well-known and
difficult graph theoretic conjectures, we believe that the conjecture itself is true,
and even that it holds for some small values of k and �, such as k = � = 3.

What we can prove is the case of � = log n by showing that every digraph
has a set of log n undominated vertices. This gives a (1− 1

2 log n )-well-supported
equilibrium, which does not seem to be easily obtained via other arguments. We
can also prove that the statement is true for k = 3, � = 1 in the special case of
tournament graphs; this easily follows from the fact that every tournament is
either transitive or contains a directed triangle.
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5 Open Problems

Several open problems remain: Can we achieve a better than 1/2-approximate
Nash equilibrium using constant sized supports, and if so, what is the limit, in
view of the lower bound of 1/4-approximate equilibria [Alt94]? If constant sup-
ports do not suffice, then can we extend our techniques for larger supports? One
attempt would be a natural extension of our simple algorithm from Section 3:
Continue the iterations for a larger number of steps - in every step, if there
is a good defection for either player, then give that pure strategy a non-zero
probability and include it in the support. A second idea is to run the Lemke-
Howson algorithm for some polynomial number of steps and return the best pair
of strategies (note that our algorithm may be interpreted as running three steps
of the Lemke Howson algorithm with an extension or truncation of the last step).
Towards this, we have the following result: Recall that an imitation game is a
two-player game in which the column player’s matrix is the identity matrix. We
can show that we can find a 1

4 -approximate Nash equilibrium in an imitation
game by running the Lemke Howson method for 6 steps. As a final question,
can we find in polynomial time a constant well-supported equilibrium, either by
proving our conjecture, or independent of it?
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Abstract. The problem of rank aggregation has been studied in con-
texts varying from sports, to multi-criteria decision making, to machine
learning, to academic citations, to ranking web pages, and to descriptive
decision theory. Rank aggregation is the mapping of inputs that rank
subsets of a set of objects into a consistent ranking that represents in
some meaningful way the various inputs. In the ranking of sports com-
petitors, or academic citations or ranking of web pages the inputs are in
the form of pairwise comparisons. We present here a new paradigm using
an optimization framework that addresses major shortcomings in current
models of aggregate ranking. Ranking methods are often criticized for be-
ing subjective and ignoring some factors or emphasizing others. In the
ranking scheme here subjective considerations can be easily incorporated
while their contributions to the overall ranking are made explicit.

The inverse equal paths problem is introduced here, and is shown
to be tightly linked to the problem of aggregate ranking “optimally”.
This framework is useful in making an optimization framework available
and by introducing specific performance measures for the quality of the
aggregate ranking as per its deviations from the input rankings provided.
Presented as inverse equal paths problem we devise for the aggregate
ranking problem polynomial time combinatorial algorithms for convex
penalty functions of the deviations; and show the NP-hardness of some
forms of nonlinear penalty functions. Interestingly, the algorithmic setup
of the problem is that of a network flow problem.

We compare the equal paths scheme here to the eigenvector method,
Google PageRank for ranking web sites, and the academic citation
method for ranking academic papers.

Keywords: Network flow, aggregate ranking, inverse problems.

1 Introduction

We consider here an aggregate ranking scenario whereby the input to the ranking
process is in the form of pairwise comparisons. This form of input is typical in
the ranking of web pages, in the citation-based ranking of academic papers, and
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in sports teams’ ranking. In team rankings the strength or rank of a team is
determined by the scores of games it has played, and possibly also the identities
of the teams with which each game is played. In the ranking of web pages, the
pairwise comparison is in the form of a link from one page to another, that ,as
we show, is analogous to one page “losing the game” to the page it points to. In
academic ranking of papers the citation index counts the number of times that
a paper has been cited in other papers. Each citation is again a form of pairwise
comparison between the citing page and the cited page.

The problem of ranking competitors based on an incomplete set of pairwise
comparisons is well-studied in the context of football and other sports, and also
in general, [11]. There are numerous ranking schemes each with its uniquely
emphasized factors and each with its advantages and shortcomings. The short-
comings, particularly in sports teams ranking where passions run high, bring
about the ire of some people. The generic criticism is that certain games’ out-
comes have not been adequately incorporated, or have had an excessive impact
on the aggregate ranking.

It is important to note that the “correctness” of a ranking is subjective. A
recent method for ranking of academic papers by Chen et al. [9,5] is an illus-
tration of this subjectivity in that its improvement is based on the prevailing
opinion that certain papers are more important than indicated by their academic
citations count rank. More details on this issue are discussed in Section 4.3.

One aspect that all existing schemes have in common is that all pairwise
comparisons are considered equal in their impact on the final outcome. This
causes biases such as counting a win against a weak team equally to a win against
a strong team. In other schemes it might be preferable to not play a game at
all if it is against a weak team, as such a game played by a strong team can
actually reduce its rank, [15]. This uniformity of consideration of each pairwise
comparison is one reason for the inclusion of human polls in, e.g., college footfall
ranking. Human judgement has the advantage that it can take into account
the quality of the game played, rather than the score quantifier alone, which is
often attributed to some degree to chance. These human polls in turn, are often
criticized for lack of transparency, as the factors that go into human ranking are
not made explicit.

The model suggested here is different from the existing ones in that it is
non-uniform with respect to the inputs and it permits the explicit inclusion
of subjective factors. Any form of input from knowledgeable sources can be
incorporated, and each input is associated with a degree of confidence deemed
appropriate for the particular source and the source’s expertise in a specific
pairwise evaluation. The degree of confidence assigned can in itself be subjective,
but it can be made according to a specific protocol and set of rules agreed
upon in advance (e.g. based on past performance of the source). This allows to
differentiate the importance of different games and calibrate their impact on the
final ranking. The inclusion of human polls is still possible, and it can be further
refined by having the assessments by different sources assigned varying degrees
of confidence.
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Another feature of the model here is that it provides a performance measure
that can be used to evaluate the quality of aggregate rankings. Most of the
literature on aggregate ranking has no performance measures on the quality
of the attained consistent ranking, with the exception in Kemeny’s model [16]
based on inputs in the form of permutations corresponding to ordinal rankings
seeking an aggregate ranking minimizing the number of reversed permutations.
This model is limited by not allowing for partial lists (each permutation must
be complete); there is no differentiation between the violation of rankings of
different inputs; and the model is NP-hard to solve optimally.

Our ranking model can be viewed within the inverse problem paradigm. In an
inverse problem one is given problem parameters that must, but do not, satisfy
certain necessary conditions. The goal is to modify those parameters so the nec-
essary conditions are satisfied, subject to a penalty function on the modification,
and so that the total penalty is minimum. In the context of rankings we say that
the inputs are inconsistent if they are conflicting with respect to any underlying
ranking. For instance, if each team loses at least once, then a top team that
ranks number one has its ranking inconsistent with the game(s) it has lost. So
any aggregate ranking is going to conflict with some inputs, except in rare cases
where each input is precisely consistent with one underlying ranking. The neces-
sary condition that the comparisons have to satisfy is that of consistency. This
concept is formally described in Section 2.

As an inverse problem, aggregate ranking has the scores of the games played
and any other form of judgement and pairwise comparisons as the input param-
eters. These invariably are inconsistent and any aggregate ranking will modify
these comparisons. The problem is to come up, for each pair, with a pairwise
comparison that is consistent with some underlying ranking and that deviates
as little as possible from the given inputs. The penalty for deviating from the
inputs is measured in terms of penalty functions that are monotone increasing
in the size of the deviation. These penalty functions are assigned to each input
separately. So the penalty for deviating from the comparison assessment of a
less reliable source can take lower values than the penalty for deviating from the
assessment of a high confidence source.

We introduce here, for the first time, the inverse equal paths problem, and
show that for convex penalty functions the problem is solvable with polynomial
flow-based algorithms. We demonstrate how the inverse equal paths problem is
equivalent to aggregate ranking with pairwise comparisons inputs. We then com-
pare our new ranking technique to leading methodologies that include the eigen-
vector method, the Google PageRank algorithm and the citation index method
for academic papers’ ranking.

2 Fundamental Concepts and Preliminaries

2.1 The Inverse Equal Paths Problem

The inverse problem paradigm is as follows: Given observations and parameter
values that do not conform with physical or feasibility requirements, adjust the
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parameter values so as to satisfy the requirements. The adjustment is made so
as to minimize the cost of the adjustment in the form of penalty functions. A
prominent application is to find the inverse shortest paths that conform with
the reading of the speed of seismic waves. There one seeks a minimum penalty
for deviation from existing estimates on lengths of arcs, so as to conform to the
observation that a shortest path is of a given length, or of a given sequence of
nodes. Variants of this inverse shortest paths problem were studied by Burton
and Toint [6], [7], by Zhang, Ma and Yang [25] and by Ahuja and Orlin [2].

The input to the inverse equal paths problem is a non-simple connected graph
G = (V, A) where for each (i, j) ∈ A there is a set of arcs Rij , so that for r ∈ Rij

there is an arc of weight wr
ij from i to j and an arc in the opposite direction

(j, i) of weight −wr
ij (anti-symmetric weights). Another input is a set of penalty

functions fwr
ij

() for each arc (i, j) ∈ A and r ∈ Rij . A feasible solution to the
problem is a set of anti-symmetric weights w∗

ij for all pairs i, j ∈ V satisfying
that for any pair of nodes s, t ∈ V all the directed paths from s to t (and from t
to s) with arc weights w∗ are of the same length. A weight vector w∗ is optimal
if among all possible weight vectors w it minimizes the total sum of the penalty
functions

∑
(i,j)∈A,r∈Rij

fwr
ij

(wij).
In Section 3 we provide a formulation and algorithms for the inverse equal

paths problem, EP.

2.2 Consistency of Rankings

A fundamental notion related to ranking is that of consistency. Pairwise com-
parisons can be expressed in terms of ordinal preference, or in terms of cardinal
preference. An example of ordinal preferences is permutation ranking [16]. We
consider here the cardinal preferences where each pairwise ranking is accompa-
nied by a level of intensity. Intensity is a quantifier expressing the extent to
which one is preferred to the other. For intensity rankings there are two forms of
consistency: multiplicative and additive consistency. The notion of consistency
in a multiplicative sense, (used e.g. by Saaty [20,21]) is that for a triple i, j, k,
aij · ajk = aik. This is equivalent to the existence of an n-dimensional vector w
so that aij = wi

wj
. Such set of weights, called a priority vector, is not unique as

for any consistent set of weights w1, . . . , wn and a scalar c the set cw1, . . . , cwn

is also a priority vector. So we can anchor arbitrarily w1 = 1 to ensure a unique
set of weights corresponding to a consistent intensity ranking. The second def-
inition of consistency in the additive sense (e.g. [1]) has for each triplet i, j, k,
aij + ajk = aik. We call this condition triangle equality or TE for short. If TE
is satisfied for every triplet then there is an n-dimensional vector w so that
aij = wi − wj . Again the vector of weights is not unique as the vector w + c
for c a constant defines the same set of differences. Here we anchor the weights
uniquely by setting w1 = 0. Both definitions of consistency are obviously equiv-
alent since the logarithms of the aij that are consistent in the multiplicative
sense, are consistent in the additive sense, and vice versa.

One implication of this notion is that for consistent rankings matrix a single
column or a single row contains the full information on the entire matrix: Given
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the ith column (ai1, ai2, . . . , ain) of a consistent matrix in the multiplicative sense
and setting w1 = 1, one can generate all pairwise rankings as akj = aki ·aij = aij

aik
.

We comment that for preference rankings where preferences are expressed only
in the ordinal sense, the notion of consistency is equivalent to the transitivity
of valid rankings. That is, if i is preferred to j and j is preferred to k then
i is preferred to k. The rankings of a set of projects V = {1, . . . , n} can be
formalized as a graph on the set of nodes V with a set of arcs – or ordered pairs
– A so that the ordered pair (i, j) ∈ A if i is preferred to j. The consistency of
the preferences is equivalent to the property of acyclicity of the corresponding
directed graph G = (V, A) – a graph that does not contain a directed cycle. It
is well known that an acyclic directed graph admits a topological ordering which
is an assignment of distinct indices from {1, . . . , n} to the n nodes (representing
the projects) so that for every arc (i, j) in the graph i > j. So the value of
the indices of the topological ordering can serve as the underlying weights of
the respective objects. It should be noted that acyclic graphs do not typically
represent a full order, unless they contain a Hamiltonian path. So some projects
may not be comparable to others in the consistent preferences, and for such pairs
the difference of weights’ values is not meaningful.

3 The Inverse Equal Paths Model for Aggregate Ranking

A consistent aggregate ranking of a set of objects implies a setting of the pairwise
comparisons so that they satisfy the triangle equality.

Lemma 1. If triangle equality is satisfied for all triplets in a graph with anti-
symmetric weights, then all paths between every pair of nodes are of equal length.

Therefore, the requirement of equal lengths of the paths is equivalent to the
requirement of consistency.

The input to both the equal paths and the aggregate ranking problems in-
cludes a penalty function for deviating from each pairwise comparison, or arc
weight. Let the penalty function for the pair (i, j) be Fij(zij) where zij is the
ranking intensity (additive) of i compared to j in the aggregate ranking. For a set
of Rij of pairwise arcs comparing one pair (i, j), the penalty deviation function
is Fij(zij) =

∑
r∈Rij

f r
ij(zij − wr

ij). This function typically takes the value 0 for
an argument of 0 (0 deviation). It is allowed to be non-symmetric for positive
and negative arguments.

The next lemma establishes that all paths are equal, or the preferences are
consistent, if and only if there is an underlying set of weights associated with
the nodes, node potentials, which are the priority weights.

Lemma 2. If z is a set of weights for which graph G has all equal paths, then
there exists a set of values xj , for all j ∈ V , such that xi − xj = zij.

Including in the formulation a set of variables, xj , for the node potentials, or
priority weights, is redundant, but has the advantage that the properties of the
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problem become transparent. We use here the anchoring of x1 = 0. The inverse
equal paths problem EP is then,

(EP) Min
∑

i<j Fij(zij)
subject to xi − xj = zij for i < j

x1 = 0
�j ≤ xj ≤ uj j = 1, . . . , n.

It is easy to see that for C = maxr,(i,j) wr
ij , −nC ≤ xj ≤ nC. We thus let

�j = −nC and uj = nC for all j = 1, . . . , n. In the aggregate ranking problem
it would be reasonable to require a set of weights with some finite resolution. A
set of integer weights in the interval [−n, n] is sufficient to guarantee that there
are enough distinct ranks to assign to each node (or team). Therefore, we would
replace the lower and upper bound constraints on x by,

−n ≤ xj ≤ n integer, for all j ∈ V.

In case of rank ties, one might want to increase the resolution of the weights.
The proximity algorithm of Hochbaum and Shanthikumar guarantees that an
optimal solution in integers for one resolution level is close enough to an optimal
solution on a finer grid, [13]. The EP model has the fixed point property. That is,
if the input intensity preferences are consistent with some underlying ranking,
then the optimal solution will be that underlying ranking.

3.1 Algorithms for the Inverse Equal Paths Problem

Observe that the constraint matrix of EP is totally unimodular. Therefore, when
the objective function is convex, it follows immediately that the problem is
solvable in polynomial time, [13]. Furthermore, the convex EP is a special case
of convex dual of minimum cost network flow studied in [3].

We summarize below the complexity and algorithms for solving EP. Here
U = maxj{uj − �j}, and T (n, m) is the running time required to solve the
minimum s, t-cut problem on a graph with n nodes and m arcs.

1. For F () convex functions the problem EP is solvable in polynomial time. An
algorithm that runs in log U calls to a minimum cut procedure with complex-
ity O(log U ·T (n2, mn)) is reported in [4]. Another, more efficient, algorithm
for this problem runs in O(mn log n log nU), [3]. Both these algorithms have
been devised for the more general problem of the convex dual of minimum
cost network flow (DMNCF).

2. For Fij(zij) = a+
ij max{zij, 0}+a−

ij max{−zij, 0} (that is, Fij() are linear for
positive deviation and for negative deviation), the algorithm reported in [14]
has complexity of O(T (n, m) + n log U), which is best possible.

3. For F () arbitrary functions the problem is NP-hard – it can be shown to be
only harder than the multi-way cut problem which is known to be NP-hard.
This case is known more commonly as the metric labeling problem and the
functions F () are usually δ functions equal to 0 if the argument is 0 and
a positive constant otherwise. For these problems there is a large body of
research on approximation algorithms, e.g. [17].
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Since for EP U = O(n), the run times of the polynomial algorithms for the
convex case are all strongly polynomial.

4 Leading Ranking Methods and Score-Based Algorithms

The simplest ranking algorithm is based on sorting according to total weight,
or citation count, or in-degree of a web page counting the number of pages
pointing to it. The total weight sorting algorithm is used to rank sports teams
by counting the number of wins, losses (and draws). This is the method used
for example to determine division winners in baseball. (To provide an incentive
for goal-richer soccer games higher weights are assigned to stronger wins.) It
is known that giving a weight that is inversely proportional to the out-degree
(number of games won) of a node creates biases where it is possible that a team
wins a game against a weaker team and this win actually decreases the team’s
rank, [15].

College football teams are ranked according to a weighted composite score
called the BCS ranking that combines a number of algorithms with polls of
expert human judges. The 2004 version included three components - the AP
sportswriters’ poll, the USA Today/ESPN coaches poll, and six computer rank-
ings algorithms - all weighing equally. There is a great deal of criticism of
the inclusion of human polls for their lack of transparency. We quote from
http://spirit.tau.ac.il/public/gandal/bcs.htm

Despite the criticism of computer rankings, they are the only ones that
can be transparent and based on measurable criteria, which is to say,
impartial. The computer ratings can also be improved. The computer
ratings used by the BCS should be consistent (this has a formal mathe-
matical meaning) with an endogenous strength of schedule.

Additionally, all computer rankings should be required to publish their
methodology. This insures transparency and will enable experts to eval-
uate them. For example, one could evaluate the rankings by using them
to predict bowl game outcomes. This could create competition among
the computer rankings themselves. Currently six computer ranking sys-
tems are used by the BCS. But there are many other ranking systems
out there. As of December 4, Kenneth Massey (who produces a com-
puter ranking for the BCS) lists 100 rankings on his comparison page:
http://www.masseyratings.com/cf/compare.htm

All the computer rankings in BCS translate the scores of the games into
relative strength of each of the competing teams. One reason for including human
polls is that the scores alone do not fully reflect the strength of each team. For
instance, the score does not capture whether a game is played in poor weather
conditions, or a major player is sick on the day of the game, or a soccer team
plays with fewer than 11 players, In those cases the significance of the score may
need modifying. However, there no previously existing ranking system allowed
to incorporate such contingencies.
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4.1 The Principal Eigenvector Technique

The principal eigenvector technique has been known to apply to ranking since
the 1950s. This method is reviewed e.g. in a study addressing the rankings of
football teams by Keener, [15]. Consider intensity rankings that quantify by how
much team i is stronger than team j by a positive number aij – a multiplicative
intensity preference. (There is a great deal of research on how to determine the
values of aij as a function of the score of a game, and Keener’s study proposes
one mapping between the score of the game and the value of aij .) Let ni be the
number of games played by team i. Then, ri, the ultimate ranking of team i, is
reasonably presumed to be proportional to the calibrated rank,

1
ni

n∑

j=1

aijrj .

Thus ri = 1
λ

∑n
j=1

aij

ni
rj , or Ar = λr for A = (aij

ni
). The solution to this system

of equations – the principal eigenvector – plays an important role in the Analytic
Hierarchical Process, [20], and in the Google PageRank.

Perron-Frobenius theorem states that for a nonnegative nontrivial matrix A
there exists a nonnegative eigenvector r corresponding to a unique eigenvalue
λ. If A is irreducible then r is strictly positive, unique and simple and λ is the
largest eigenvalue.

The notion of irreducibility has an algebraic definition. We prefer to discuss
it as a graph property: Firstly the concept of deduced ranking is important. One
can deduce the relative ranking of a pair of teams indirectly from the outcomes of
a sequence games played. The relative ranking of teams i and j can be deduced,
even if the two teams did not play directly, if there is a sequence of games [i, i1],
[i1, i2], . . . , [ik, j] for k ≥ 1. The ranking of a direct pairwise comparison can be
viewed as such sequence for k = 1. Now the concept of irreducibility is equivalent
to having all pairs of teams comparable by deduced ranking. In graph terms this
means that there is a path between each pair of nodes – namely, the graph is
connected. (Notice that although the graph is directed there are two symmetric
arcs between pairs that are directly linked, so there is a directed path if and only
if there is an undirected path.)

Some properties of the principal eigenvector method are:

1. Unlike the weight sorting algorithm, the eigenvector method takes into con-
sideration not only the count of how many times one object is stronger than
others, but also which objects it is compared to. So winning against a strong
team counts more than winning against a weak one.

2. “Missing games” still must correspond to entries in the matrix, as the matrix
must be full. The standard approach is to include such games as a draw. This
however tends to skew the overall ranking.

3. All games contribute uniformly to the aggregate ranking and no subjective
evaluation of a score of a game can be included. This is also a feature in the
total weight sorting algorithm used for web page ranking or for academic
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citation ranking both of which do not differentiate between citations of be-
tween pointers. So a negative citation stating that a result in a related paper
is wrong, counts the same as a citation referring to a paper as seminal. On
web pages there are sometimes pointers that companies are buying in order
to increase their web page rank, and these pointers are often unrelated to
the content of the web page. The principal eigenvector method as well as
other existing models do not discriminate however between citations as per
their quality and significance.

4. If there are multiple games between teams, it is not clear how to measure
the aggregate effect of the games that have different, and often contradictory
outcomes. In a simple example, if one team wins against the other in one
game, and loses in a second game, then the often used average counts the
same as if the two teams played a game resulting in a draw, or not having
played at all.

Suppose the matrix of comparisons is consistent and the vector of weights is
w = (wi)n

i=1. Then aij = wi

wj
. Summing up over all j, we obtain,

∑n
j=1 aijwj =

nwi. Therefore, the vector of weights w satisfies, Aw = nw, and is thus an
eigenvector specifying the weights assigned to each project or each criterion un-
der the multiplicative model. In that the principal eigenvector satisfies the fixed
point property. If the matrix is not consistent then the eigenvector approxi-
mates the preference weights. One measure of approximation for an asymmet-
ric inconsistent matrix was defined by Saaty [21] is the consistency index C.I.,
C.I. = λmax−n

n−1 . where λmax is the maximum eigenvalue of the matrix. A matrix
is said to be consistent if and only if C.I is zero.

In terms of complexity, the computation of the principal eigenvector w∗ is
not practical for large values of n. It is common to calculate it instead with
the power method, [23]: For a given initial assessment of ranks w0 (typically,
assuming all ranks are equal), this is a recursive procedure based on,

lim
k→∞

Akw0

|Akw0| = w∗. (1)

4.2 Finding “Close” Consistent Rankings

Several approaches other than the eigenvector method have been proposed in the
literature to generate a consistent matrix that is in some sense “close” to the
given matrix. Most of these are based on minimizing some measure of distance
of the generated consistent matrix from the given matrix. Regression-based ap-
proaches have been proposed (see [18] for a review and formal treatment of these
methods) that assume the aij ’s to be random variables with known distribution
centered around a consistent comparison matrix. Least-squares and logarithmic
least squares regression are the most popular of these techniques, and Saaty
and Vargas [22] give a comparison of these methods to the eigenvector method.
Techniques based on linear programming (Chandran et. al [8]), nonlinear pro-
gramming (Wang et. al [24]), and goal programming have also been proposed.
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4.3 The Google PageRank Algorithm

The Google PageRank algorithm is a finite approximation of the limit (1) us-
ing a small number of iterations. The following recursive formula that is used
for Google PageRank can be shown to approximate in the limit the principal
eigenvector of the respective matrix if d = 0:

Gi = (1 − d)
∑

(j,i)∈A

Gj

kj
+

d

N

where N is the number of objects in the universe, Gi is the google number or
strength of object i, kj is the out-degree of node j and d is a parameter.

The ranking of academic papers based on citation count has raised some
interest and criticism recently, [9,5]. Citation-ranking of academic papers are
determined by the citation count of a paper. Setting a citation of article i to
j as an arc (i, j) is a graph G = (V, A) with a node corresponding to each
academic paper, this is equivalent to ranking each paper by its in-degree. Chen
et al. [9] and Buchanan [5] point out that the traditional citation count brings
about results that are contradictory to perceived importance of certain papers.
In their study Chen et al. give some examples. One is a 1929 paper by Slater
that ranks 1853rd in terms of citation count although there is a universal agree-
ment among physicists that ‘Slater determinant’ introduced in that paper is a
fundamental concept that is considered classic and therefore the citation count
rank undervalues Slater’s paper.

Chen et al. used instead the “Google PageRank Algorithm” noting that the
ranking model of web pages is analogous to the academic citations model where
pointing to a web page is equivalent to a citation. Chen et al. [9] computed the
rank of Slater’s paper with Google PageRank and showed it turns out 10th. This,
and the improved rank of other ‘classic’ papers served as evidence that Google
rank is a better measure of impact than the traditional citation count.

5 Using EP for Sports Ranking, Web Page Ranking and
Academic Citations

Both applications of academic citations and web page rankings are unique among
general aggregate ranking problems in that the “evaluators” are also the objects
being evaluated. In sports team ranking the evaluators are the games and their
outcomes provide a comparison of the relative strengths of the pairs of teams that
played each game. In spite of this apparent difference, the models are analogous
as citing a paper j by i is analogous to j winning a game against i. (This makes
an unpleasant corollary that for a paper to retain a high citation count it should
cite as few papers as possible. If using the PageRank for ranking of papers it is
desirable to cite only recognized “strong” papers.)

The EP model can be used in several ways. Every citation or pointer from i to
j are considered to be a pairwise evaluation of the relative strength of i and j in
which j is stronger than i. The amount of this extra strength can be calibrated
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by the type of pointer or citation. The confidence level (or the steepness of the
penalty function) can be determined by the quality of the journal in which the
citing paper appears, or by the type of citation (positive, negative or neutral.)

The EP model shares the advantage of the principal eigenvector (and thus to
some extent the Google pageRank that approximates it) in that it weighs more
heavily comparative strength against strong objects than strength against weak
ones. It does add however the flexibility of incorporating additional sources of
information that are currently excluded from ranking schemes. Furthermore, it
can use as a starting point the current ranking, regardless of the method that
led to it, and adjust it based on additional pairwise comparisons. People and or-
ganizations can individualize the ranking using their own sources of information,
and to the degree that they trust those sources.

One important issue is the evolution of rankings over time, as additional links
and comparisons become available, [10]. The goal is not to recreate the ranking
every time that new information becomes available. The total weight algorithm
is obviously the simplest to adjust to new links - simply add to the count and
shift the modified weight object in the sorted list. The principal eigenvector,
Google pageRank and equal paths are however global in nature. Chien et al. [10]
showed that for Google pageRank it is sufficient to apply the recursive formula
within a limited “radius” from the modified link. Here another advantage of
the EP model is that the relative rank of any selected subsets of objects can
be retained unchanged, by fixing a reference point in the subset and all the
relative rankings are then fixed with respect to that single weight. The position
of the entire subset in the ranking may be shifted with comparisons that include
objects in the subset, but the relative ranking remains the same. This makes it
computationally easier to evolve the ranking weights as new comparisons become
available. The same approach can be used on large data bases where within
certain clusters the relative rankings are required to be unmodified. It remains
to study rigorously the size of the neighborhood on which the impact of an added
link is significant.
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Abstract. In this work, we consider Wardrop games where traffic has
to be routed through a shared network. Traffic is allowed to be split into
arbitrary pieces and can be modeled as network flow. For each edge in
the network there is a latency function that specifies the time needed to
traverse the edge given its congestion. In a Wardrop equilibrium, all used
paths between a given source-destination pair have equal and minimal
latency.

In this paper, we allow for polynomial latency functions with an upper
bound d and a lower bound s on the degree of all monomials that appear
in the polynomials. For this environment, we prove upper and lower
bounds on the price of anarchy.

1 Introduction

Motivation and Framework. The price of anarchy, also known as coordina-
tion ratio, has been defined in the seminal work by Koutsoupias and
Papadimitriou [14] as a measure of the extent to which competition approxi-
mates cooperation. In general, the price of anarchy is the worst-case ratio be-
tween the value of a social objective function, usually coined as social cost, in
some equilibrium state of a system, and that of some social optimum. Usually,
the equilibrium state has been taken to be that of a Nash equilibrium [16] – a
state in which no user wishes to unilaterally leave its own strategy in order to
improve the value of its private objective function, also known as individual cost.
So, the price of anarchy represents a rendezvous of Nash equilibrium, a concept
fundamental to Game Theory, with approximation, an ubiquitous concept in
Theoretical Computer Science today (see, e.g., [22]).

The Wardrop model has already been studied in the context of road traffic
systems by Pigou [17] in the 1920’s and later by Wardrop [23], and by Beck-
mann, McGuire and Winsten [3] in the 1950’s. For a survey of the early work
on this model see [4]. In the Wardrop model, traffic has to be sent through a
shared network and traffic is allowed to be split into arbitrary pieces. In this
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environment, unregulated traffic is modeled as network flow. Wardrop [23] in-
troduced the concept of Wardrop equilibrium to describe user behavior in this
kind of traffic networks. Given an arbitrary network with edge latency func-
tions, Wardrop equilibria have been classified as flows with all flow paths used
between a given source-destination pair having equal latency. A Wardrop equi-
librium can be interpreted as a Nash equilibrium in a game with infinitely
many users, each carrying an infinitesimal amount of traffic from a source to a
destination.

Inspired by the arisen interest in the price of anarchy, Roughgarden and Tar-
dos [21] re-investigated the Wardrop model and used the total latency as their
social objective function. The total latency is a measure for the total travel
time. In this context, the exact value for the price of anarchy was shown for
linear latency functions by Roughgarden and Tardos [21] and for arbitrary poly-
nomial latency functions with nonnegative coefficients and maximum degree d by
Roughgarden [19]. In his book [20, Chapter 3], Roughgarden gives the following
rule of thumb:

The price of anarchy is small unless cost functions are extremely steep.

In this work, we examine this rule of thumb closer by re-considering the price
of anarchy for polynomial latency functions of maximum degree d. However, in
contrast to the latency functions considered by Roughgarden [19], our latency
functions have also a minimum degree of s. For large d these latency functions
are extremely steep, however, we show that in many cases the price of anarchy
remains small.

Related Work. The price of anarchy was introduced by Koutsoupias and Pa-
padimitriou [14] and received a lot of attention in various routing games (see
e.g. [1,2,5,6,7,8,9,10,12,13,15,19,21]).

Early work on the Wardrop model has been done in the context of road traffic
systems [3,4,17,23]. Beckmann et al. [3] showed that a Wardrop equilibrium
always exists and that it is essentially unique. These results were based on the
observation that a Wardrop equilibrium is a solution to a related convex program.

For the Wardrop model, with social cost as total latency, Roughgarden and
Tardos [21] showed that the price of anarchy is exactly 4

3
in case of linear latency

functions. For the case of polynomial latency functions of maximum degree d,
Roughgarden [19] showed that the price of anarchy is (d+1) d

√
d+1

(d+1) d√d+1−d
. Interestingly,

in both cases, the price of anarchy is independent of the network topology, as it
is achieved on the simple network of two parallel links [19,21]. Correa et al. [6]
improved the bounds from [19] on the price of anarchy for the special case
of polynomial latency functions without constant term and for d ≤ 4. The price
of anarchy was also studied for latency functions that arise as delay functions of
M/M/1 queues [19]. For arbitrary nondecreasing latency functions Roughgarden
and Tardos [21] showed that the total latency in a Wardrop equilibrium is upper
bounded by the optimum total latency for the instance where all traffic demands
are doubled.
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Related to Wardrop games are (weighted) congestion games as introduced by
Rosenthal [18]. In a congestion game, there is a set of resources and players can
choose as their strategy a set of resources from a given set of subsets of resources.
Awerbuch et al. [2] and Christodoulou and Koutsoupias [5] were the first to study
the price of anarchy for congestion games. They showed asymptotic tight bounds
on the price of anarchy for congestion games with polynomial latency functions
in case of unweighted [2,5] and in case of weighted player demands [2]. With a
more careful analysis, Aland et al. [1] were able to derive the exact value for the
price of anarchy in both cases. For a survey on weighted congestion games, we
refer to [11].

Contribution. In this paper, we study the price of anarchy for Wardrop games
with polynomial latency functions in more detail. In particular, we consider
polynomials that consist of monomials of maximum degree d and minimum de-
gree s. All our latency functions have nonnegative coefficients. We will call such
polynomials (d, s)-polynomials.

As our first result, we show that for general (d, s)-polynomials, the price of
anarchy (PoA(d,s)) is upper bounded by

PoA(d, s) ≤
(

d
d+1

)d

(d + 1) ·
(

( d
d+1)d

(s+1)

( s
s+1 )s

(d+1)

) d
d−s

·
(

1 −
(

( d
d+1 )d

(s+1)

( s
s+1)s

(d+1)

) 1
d−s

) .

To achieve this result, we adopt a technique that was already used in [1] and that
is again based on a technique from [5]. The core of our analysis is to determine
parameters c1 and c2, such that

y · f(z) ≤ c1 · z · f(z) + c2 · y · f(y)

for all (d, s)-polynomials f and for all reals y, z ≥ 0. Table 1 shows numerical
values for the upper bound for all (d, s)-polynomials with d ≤ 10. The values for

Table 1. Example values for our upper bound on the price of anarchy

s\d 1 2 3 4 5 6 7 8 9 10

0 4
3

1.62575 1.89563 2.15050 2.39438 2.62971 2.85814 3.08084 3.29856 3.51206
1 1.03551 1.09820 1.16756 1.23859 1.30962 1.38002 1.44954 1.51811 1.58575
2 1.01466 1.04498 1.08174 1.12147 1.16262 1.20439 1.24638 1.28834
3 1.00805 1.02614 1.04938 1.07547 1.10324 1.13199 1.16131
4 1.00510 1.01717 1.03329 1.05192 1.07217 1.09348
5 1.00352 1.01215 1.02404 1.03808 1.05358
6 1.00257 1.00907 1.01821 1.02918
7 1.00197 1.00703 1.01428
8 1.00155 1.00561
9 1.00125
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s = 0 have already been shown by Roughgarden [19]. Observe that the values
for s = 1 and d ≤ 4 improve the upper and match the lower bounds from [6].

We then prove monotonicity results on our upper bound. In particular, we
show that the upper bound on PoA(d, s) is monotone increasing in d and de-
creasing in s. Furthermore, we show that if s = d

a is a constant fraction of d,
then the upper bound on PoA

(
d, d

a

)
is still monotone increasing in d. Equipped

with these results, we apply the limit for d → ∞ to prove that for any a > 1,
PoA

(
d,
⌈

d
a

⌉)
is upper bounded by a constant. More precisely, we show that

PoA

(
d,

⌈
d

a

⌉)
≤ a

1
a−1 · (a − 1)

e · ln(a)
.

For instance, this gives upper bounds of 1.0614756 and 1.159983 for a = 2 and
a = 3, respectively.

We close our paper with a discussion on lower bounds on the price of anarchy
for Wardrop games with (d, s)-polynomials. Here, we use the very simple network
of two parallel links. So far, we could not show that our general upper bound
yields the exact value for the price of anarchy; however, numerical analysis for
all (d, s)-polynomials with d ≤ 30 gives a strong indication that this is the case.

For sufficiently large d and for the cases s = d
2 and s = d

3 , we give almost
matching lower bounds on PoA(d, s).

Roadmap. The rest of this paper is organized as follows. Section 2 introduces
the Wardrop model. Section 3.1 presents the upper bound on the price of anarchy,
whereas Section 3.2 discusses lower bounds. We conclude in Section 4 with a
summary of our results and some open problems. Due to lack of space, we omit
some proofs. They can be found in the appendix.

2 Notation

For all k ∈ N denote [k] = {1, . . . , k}.

Routing with Splittable Traffic. A Wardrop game is a tuple Γ = (n, G, w,
P , f). Here, n is the number of players and G = (V, E) is an undirected
(multi)graph. The vector w = (w1, . . . , wn) defines for every player i ∈ [n] its
traffic wi ∈ R

+. For each player i ∈ [n] the set Pi ⊂ 2E consists of all possible
routing paths in G = (V, E) from some node si ∈ V to some other node ti ∈ V .
Denote P = P1 × . . . × Pn. Denote by f = {fe | e ∈ E} the set of differentiable,
monotone increasing and nonnegative edge latency functions.

In this paper, we allow for polynomial latency functions with nonnegative coef-
ficients, where monomials of degree less than s are missing; that is, latency func-
tions are of the form fe(x) =

∑d
i=s aiex

i with aie ≥ 0 for all integers s ≤ i ≤ d
and all edges e ∈ E. We will call such latency functions (d, s)-polynomials.

Strategies and Strategy Profiles. A player i ∈ [n] can split its traffic wi over
the paths in Pi. A strategy for player i ∈ [n] is a tuple xi = (xiPi )Pi∈Pi with
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∑
Pi∈Pi

xiPi = wi and xiPi ≥ 0 for all Pi ∈ Pi. Denote by Xi = {xi | xi is a
strategy for player i} the set of all strategies for player i. A strategy profile x =
(x1, . . . , xn) is an n-tuple of strategies for the players. Define X = X1 × . . .×Xn

as the set of all possible strategy profiles.

Wardrop Equilibria. For a strategy profile x, the load le(x) on an edge e ∈ E
is given by le(x) =

∑
i∈[n]

∑
Pi∈Pi,Pi�e xiPi . A strategy profile x is a Wardrop

equilibrium, if for every player i ∈ [n], and every Pi, P
′
i ∈ Pi with xiPi > 0 it

holds that ∑
e∈Pi

fe(le(x)) ≤
∑
e∈P ′

i

fe(le(x)).

Observe that in a Wardrop equilibrium all flow paths of a player have equal
latency. We can regard each player i ∈ [n] as a service provider who has many
clients each handling a negligible small amount of traffic. In a Wardrop equi-
librium, each service provider satisfies all his clients because none of them can
improve its experienced latency.

Social Cost and Price of Anarchy. For a strategy profile x, define the social
cost SC(x) as the total latency; thus,

SC(x) =
∑
i∈[n]

∑
Pi∈Pi

xiPi

∑
e∈Pi

fe(le(x)).

This social cost is motivated by the interpretation as a game with infinitely many
players with negligible demand and models the sum of the players latencies. The
optimum associated with a game is defined by OPT = minx∈X SC(x). The price of
anarchy, also called coordination ratio and denoted PoA, is the maximum value,
over all instances and Wardrop equilibria x, of the ratio SC(x)

OPT . For the class of
Wardrop games, where all latency functions are (d, s)-polynomials, denote by
PoA(d, s) the price of anarchy with respect to d and s.

3 Price of Anarchy

3.1 Upper Bound

Before proving a general upper bound on the price of anarchy for Wardrop games
with (d, s)-polynomial latency functions, we have to prove the following technical
lemma:

Lemma 1. Let s, d ∈ � with s ≤ d. Choose c1, c2 ∈ �≥0 such that

y · zs ≤ c1 · zs+1 + c2 · ys+1 ∀y, z ∈ �>0 (1)

and y · zd ≤ c1 · zd+1 + c2 · yd+1 ∀y, z ∈ �>0. (2)

Then, it follows that

y · zi ≤ c1 · zi+1 + c2 · yi+1 ∀i ∈ � : s ≤ i ≤ d ∀y, z ∈ �>0.
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Proof. Since

y · zi ≤ c1 · zi+1 + c2 · yi+1 ∀i ∈ � : s ≤ i ≤ d ∀y, z ∈ �>0

is equivalent to
(

z

y

)i

≤ c1 ·
(

z

y

)i+1

+ c2 ∀i ∈ � : s ≤ i ≤ d ∀y, z ∈ �>0

it suffices to show that

zi ≤ c1 · zi+1 + c2 ∀i ∈ � : s ≤ i ≤ d ∀z ∈ �>0.

This follows by replacing z
y ∈ �>0 with a new z ∈ �>0. Furthermore, it follows

from (1) and (2) that

zs ≤ c1 · zs+1 + c2 ∀z ∈ �>0

and zd ≤ c1 · zd+1 + c2 ∀z ∈ �>0.

Fix an arbitrary i ∈ � with s ≤ i ≤ d. We proceed by case study dependent
on z ∈ �>0.
First assume that z ≤ 1. Let i = s + j, then 0 ≤ j ≤ d − s. We get

zi = zs+j ≤ zj (c1 · zs+1 + c2

)
= c1z

i+1 + zj · c2 ≤ c1z
i+1 + c2,

since z ≤ 1.
Now assume that z ≥ 1. Let i = d − j, then 0 ≤ j ≤ d − s. We get

zi = zd−j ≤ 1

zj

(
c1 · zd+1 + c2

)
= c1z

i+1 +
1

zj
· c2 ≤ c1z

i+1 + c2,

since z ≥ 1.
In any case zi ≤ c1 · zi+1 + c2. This completes the proof of the lemma. �	
We are now ready to prove our general upper bound on the price of anarchy.

Theorem 1. For Wardrop games with (d, s)-polynomial latency functions, we
have

PoA(d, s) ≤
(

d
d+1

)d

(d + 1) ·
(

( d
d+1)d

(s+1)

( s
s+1 )s

(d+1)

) d
d−s

·
(

1 −
(

( d
d+1 )d

(s+1)

( s
s+1)s

(d+1)

) 1
d−s

) .

Proof. Observe, that for s = 0 our upper bound on the price of anarchy reduces
to the exact value on the price of anarchy that was proved by Roughgarden [19]
for this case. So, in the following, we assume that s ≥ 1. Let x = (x1P1 , . . . , xnPn)
be a Wardrop equilibrium and let x∗ = (x∗

1P1
, . . . , x∗

nPn
) be a strategy profile with

optimum social cost. Since x is a Wardrop equilibrium, it follows by definition
of a Wardrop equilibrium that

SC(x) =
∑
i∈[n]

∑
Pi∈Pi

xiPi

∑
e∈Pi

fe(le(x)) ≤
∑
i∈[n]

∑
Pi∈Pi

x∗
iPi

∑
e∈Pi

fe(le(x))

=
∑
e∈E

le(x
∗)︸ ︷︷ ︸

:=y

· fe(le(x))︸ ︷︷ ︸
:=x

.
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Now, since le(x∗) and le(x) are both positive real numbers, assume that c1 and
c2 are such that

y · f(z) ≤ c1 · z · f(z) + c2 · y · f(y) ∀x, y ∈ �≥0 (3)

for all polynomials f with minimum degree s and maximum degree d, having
nonnegative coefficients. Then,

SC(x) ≤ c1 ·
∑
e∈E

le(x) · fe(le(x)) + c2 ·
∑
e∈E

le(x
∗) · fe(le(x

∗))

= c1 · SC(x) + c2 · SC(x∗)

and with 0 < c1 < 1 it follows that

SC(x)

SC(x∗)
≤ c2

1 − c1
.

Since x is an arbitrary Wardrop equilibrium, we get

PoA(d, s) ≤ c2

1 − c1
. (4)

We will now show how to determine c1 and c2 such that inequality (3) holds and
that the resulting upper bound is minimal. In case y = 0 equation (3) follows
immediately from c1 ≥ 0 and z ≥ 0. In case z = 0 the left hand side yields
y · f(0) = 0, since by the degree of the lowest monomial being s ≥ 1 there are
no additive constants in the latency functions. This is always less or equal than
c2 · y · f(y), since latency functions are monotone increasing, y ≥ 0 and c2 ≥ 0.
So, in the following we assume that y > 0 and z > 0. In order to show that
(3) holds, it suffices to show that (3) holds for all monomials of degree i ∈ [n]
with s ≤ i ≤ d, since polynomials are a linear combination of monomials. This
implies that (3) then holds also for the considered polynomials. By Lemma 1 it
suffices to show this for the monomials of degree s and d. Consider inequality
(3) for a single monomial f(z) = ai · zi, which we divide by ai · yi+1 yielding

(
z

y

)i

≤ c1 ·
(

z

y

)i+1

+ c2 ∀s ≤ i ≤ d ∀y, z ∈ �>0.

Set ẑ := z
y . Then ẑ ∈ �>0 and (3) reduces to

ẑi ≤ c1 · ẑi+1 + c2 ∀s ≤ i ≤ d ∀ẑ ∈ �>0. (5)

We now view (5) as a function in i, c1 and ẑ, since we want to determine the
maximum ẑ such that inequality (3) holds. Thus, we have the following function

c2(i, c1, ẑ) := ẑi − c1 · ẑi+1, (6)

which we partially differentiate in ẑ in order to retrieve the minimum c2 such
that (5) holds, yielding

∂

∂ẑ
c2(i, c1, ẑ) = i · ẑi−1 − (i + 1) · c1 · ẑi.
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The ẑ for which c2 is maximum can now be easily determined to be ẑmax :=
i

c1·(i+1)
. Simple insertion in (6) yields

c2(i, c1, ẑ
max) =

(
i

c1 · (i + 1)

)i

− c1 ·
(

i

c1 · (i + 1)

)i+1

=
(i + 1) · ii − ii+1

(i + 1)i+1 · ci
1

=

(
i

i+1

)i

ci
1 · (i + 1)

.

We define

c2(i, c1) :=

(
i

i+1

)i

ci
1 · (i + 1)

. (7)

Lemma 1 states that it suffices to focus on the monomials of degree s and d in
order for (3) to hold. We therefore determine c1 as a solution to the equation of
c2(d, c1) = c2(s, c1). Thus, we have

(
d

d+1

)d

cd
1 · (d + 1)

=

(
s

s+1

)s

cs
1 · (s + 1)

or equivalently

c1 =

⎛
⎜⎝

(s + 1) ·
(

d
d+1

)d

(d + 1) ·
(

s
s+1

)s

⎞
⎟⎠

1
d−s

.

Having calculated c1, we can retrieve c2 by simple insertion in (7) using the
maximum degree d of the monomials yielding

c2 := c2(d, c1) =

(
d

d+1

)d

(
(s+1)·( d

d+1)d

(d+1)( s
s+1)s

) d
d−s

· (d + 1)

.

We get with (4) that

PoA(d, s) ≤ c2

1 − c1
=

( d
d+1 )d

⎛
⎝ (s+1)·( d

d+1 )d

(d+1)( s
s+1 )s

⎞
⎠

d
d−s

·(d+1)

1 −
[

(s+1)·( d
d+1 )d

(d+1)·( s
s+1)s

] 1
d−s

=

(
d

d+1

)d

(d + 1) ·
(

( d
d+1)d

(s+1)

( s
s+1 )s

(d+1)

) d
d−s

·
(

1 −
(

( d
d+1 )d

(s+1)

( s
s+1)s

(d+1)

) 1
d−s

) ,

which completes the proof of the theorem. �	
Having proved the general upper bound, we now investigate the case s =

⌈
d
a

⌉
with a ∈ � and 1 ≤ a ≤ d. For the case a = 1, we have that PoA(d, d) = 1
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as shown in [21] for d = 1 and Theorem 1 shows that this also holds for the
case d ≥ 2. In order to prove an upper bound on PoA

(
d,
⌈

d
a

⌉)
, we first show

monotonicity results for the upper bound from Theorem 1.

Lemma 2. The upper bound on PoA(d, s) from Theorem 1 is monotone decreas-
ing in s.

Lemma 3. The upper bound on PoA
(
d, d

a

)
from Theorem 1 is monotone in-

creasing in d.

Combining the last two lemmas yields the corollary that PoA(d, s) is monotone
increasing in d.

Corollary 1. The upper bound on PoA(d, s) from Theorem 1 is monotone in-
creasing in d.

By Lemma 2, we can neglect the ceilings and replace s by d
a in the upper

bound from Theorem 1 to get an upper bound on PoA
(
d,
⌈

d
a

⌉)
. Furthermore,

by Lemma 3, this upper bound has the largest value for d → ∞. By computing
this limit, we get:

Theorem 2. For Wardrop games with (d, s)-polynomial latency functions where
s =

⌈
d
a

⌉
, we have

PoA

(
d,

⌈
d

a

⌉)
≤ a

1
a−1 · (a − 1)

e · ln(a)
. (8)

3.2 Lower Bound

For the lower bound, we consider an instance of a Wardrop game with n = 1
player of traffic w1 = 1. The network consists of two parallel edges u and � from
node s1 to node t1. The latency functions are fu(x) = α · xs and f�(x) = xd,
where α ∈ �>0 will be determined later. With a slight abuse of notation, let
z = (z, 1 − z) be a Wardrop equilibrium and let ẑ = (ẑ, 1 − ẑ) be the optimum
strategy profile, where z (resp. ẑ) is the amount of traffic that is assigned to link
u in the Wardrop equilibrium (resp. optimum).

In the Wardrop equilibrium, the latency on both links is the same, so z is the
only positive solution to

α · zs = (1 − z)d. (9)

On the other hand, the optimum is defined by

ẑ := arg min
x∈[0,1]

{
α · xs+1 + (1 − x)d+1

}
,

which yields that ẑ is the only positive solution to

α · s + 1

d + 1
· ẑs − (1 − ẑ)d = 0. (10)

Observe, that z and ẑ are both dependent on α, s and d. If we can compute z
and ẑ, then we can give a lower bound on the price of anarchy
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PoA(d, s) ≥ SC(z)
SC(̂z)

=
α · zs+1 + (1 − z)d+1

α · ẑs+1 + (1 − ẑ)d+1
.

We can now further optimize this lower bound by choosing the best possible α.
The problem is that to determine z and ẑ, as we have to compute the root

for polynomials with arbitrary degree as demanded for the equations (9) and
(10). Numerical tests for all (d, s)-polynomials with d ≤ 30 gives lower bounds
that match the upper bounds from Theorem 1 up to some numeric precision.
We have given example values for the factor α for polynomial latency functions
up to a degree of 9 in Table 2, where reasonable. This is a strong indication that
our lower bound might be matching for all d ∈ � and s ∈ � with s ≤ d.

Table 2. Example values for α, such that the lower bound is matching

s\d 2 3 4 5 6 7 8 9

1 25
24

1.06452 1.07793 1.08599 1.09074 1.09335 1.09450 1.09462
2 1.02181 1.03361 1.03954 1.04180 1.04166 1.03991 1.03705
3 1.01087 1.01544 1.01603 1.01405 1.01022 1.00524
4 1.00399 1.00365 1.00045 0.99531 0.98885
5 0.99927 0.99540 0.98939 0.98191
6 0.99583 0.98929 0.98112
7 0.99321 0.98459
8 0.99115

An Almost Matching Lower Bound for a Special Case
We now show a lower bound on the price of anarchy for the case that s = d

2 .
Set the constant factor α = 1. Then, the traffic on u in the Wardrop equilib-

rium is the solution of the equation

z
d
2 = (1 − z)d,

which yields

z =
3

2
− 1

2

√
5.

We get that the social cost in the Wardrop equilibrium is

SC(z) = z
d
2 +1 + (1 − z)d+1 = z

d
2 =

(
3

2
− 1

2

√
5

) d
2

.

On the other hand, for the optimum we get that ẑ is the only positive root of(
d

2
+ 1

)
ẑ

d
2 − (d + 1)(1 − ẑ)d.

This root calculates to

ẑ = 1 +
1 −

√
1 + 4

(
2d+2
d+2

) 2
d

2
(

2d+2
d+2

) 2
d

.

The social cost in the optimum is
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SC(̂z) = ẑ
d
2 +1 + (1 − ẑ)d+1 = ẑ

d
2 ·

d
2

+ 1 + d
2
· ẑ

d + 1
.

We get

SC(z)

SC(̂z)
=
( z

ẑ

) d
2 · d + 1

d
2

+ 1 + d
2
· ẑ ,

with limit

lim
d→∞

SC(z)

SC(̂z)
=

1

2
1√
5

· 4

5 −√
5

> 1.0614704.

Thus, for d large enough, we have PoA(d, d
2 ) ≥ 1.0614704. This is slightly below

the upper bound of PoA(d, d
2 ) ≤ 1.0614756. The same computations for a = 3

yield a lower bound of PoA(d, d
3 ) ≥ 1.159949, which is again slightly below

the upper bound of PoA(d, d
3 ) ≤ 1.159983. Note that for a ≥ 5, we are again

confronted with the problem of computing a general root.

4 Conclusion

In this paper, we have shown a general upper bound on the price of anarchy
for Wardrop games with (d, s)-polynomial latency functions. We then proved
monotonicity results on this upper bound and applied these to show that the
price of anarchy is upper bounded by a constant, if s is a constant fraction of d. As
an example, for s = d

2 this upper bound is 1.0614756. This implies that the price
of anarchy does not only depend on the “steepness” of the latency functions, but
rather on the presence of the lower monomials as the price of anarchy increases
with the presence of lower monomials. Our discussion on lower bounds strongly
indicates that our upper bound yields the exact value for the price of anarchy.
However, the problem of finding a matching general lower bound that holds for
all (d, s)-polynomials remains tantalizingly open.

References

1. S. Aland, D. Dumrauf, M. Gairing, B. Monien, and F. Schoppmann. Exact Price of
Anarchy for Polynomial Congestion Games. Proceedings of the 23rd International
Symposium on Theoretical Aspects of Computer Science (STACS’06), LNCS 3884,
Springer Verlag, pages 218–229, 2006.

2. B. Awerbuch, Y. Azar, and A. Epstein. The Price of Routing Unsplittable Flow.
In Proceedings of the 37th Annual ACM Symposium on Theory of Computing
(STOC’05), pages 57–66, 2005.

3. M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of
Transportation. Yale University Press, 1956.

4. M. J. Beckmann. On the Theory of Traffic Flow in Networks. Traffic Quarterly,
21:109–116, 1967.

5. G. Christodoulou and E. Koutsoupias. The Price of Anarchy of Finite Conges-
tion Games. In Proceedings of the 37th Annual ACM Symposium on Theory of
Computing (STOC’05), pages 67–73, 2005.



330 D. Dumrauf and M. Gairing

6. J. R. Correa, and A. S. Schulz and N. E. Stier-Moses. On the Inefficiency of
Equilibria in Nonatomic Congestion Games. In Proceedings of the 11th Conference
on Integer Programming and Combinatorial Optimization (IPCO’05), LNCS 3509,
Springer Verlag, pages 167–181, 2005.

7. R. Cominetti, J. R. Correa, and N. E. Stier-Moses. Network Games With Atomic
Players. In Proceedings of the 33rd International Colloquium on Automata, Lan-
guages, and Programming (ICALP’06), LNCS 4051, Springer Verlag, pages 525–
536, 2006.
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Abstract. We look at the scenario of having to route a continuous rate of traffic
from a source node to a sink node in a network, where the objective is to max-
imize throughput. This is of interest, e.g., for providers of streaming content in
communication networks. The overall path latency, which was relevant in other
non-cooperative network routing games such as the classic Wardrop model, is of
lesser concern here.

To that end, we define bottleneck games with splittable traffic where the
throughput on a path is inversely proportional to the maximum latency of an
edge on that very path—the bottleneck latency. Therefore, we define a Wardrop
equilibrium as a traffic distribution where this bottleneck latency is at minimum
on all used paths. As a measure for the overall system well-being—called social
cost—we take the weighted sum of the bottleneck latencies of all paths.

Our main findings are as follows: First, we prove social cost of Wardrop equi-
libria on series parallel graphs to be unique. Even more, for any graph whose
subgraph induced by all simple start-destination paths is not series parallel, there
exist games having equilibria with different social cost. For the price of stability,
we give an independence result with regard to the network topology. Finally, our
main result is giving a new exact price of stability for Wardrop/bottleneck games
on parallel links with M/M/1 latency functions. This result is at the same time the
exact price of stability for bottleneck games on general graphs.

1 Introduction

Motivation and Framework. In recent years, the Wardrop model—which was already
introduced in the 1950’s (see, e.g., [4,25])—received a lot of attention with regard to
analyzing the price of anarchy, i.e., quantifying the worst-case system loss due to self-
ish behavior of its participants. A Wardrop game can be understood as a game with
infinitely many players each in control of a negligible fraction of the total traffic in a
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network. Players choose a path according to their respective start and destination node,
with the assumption that they act purely selfishly and therefore each takes the fastest
path under current network conditions. A situation in which none of the selfish players
has an incentive to switch to another path is called a Wardrop equilibrium.

While the Wardrop model has been successfully applied for researching road traffic,
its basic assumption of drivers minimizing just their own travel time (more generally
called path latency) is not appropriate in all networks. For instance, in communication
networks such as the Internet, providers of streaming content would strive to maximize
the throughput to their clients whereas the transmission time is of lesser concern. More
generally, for a routing path in this network, one would be interested in the maximum
latency of all its edges—in other words, the latency of the bottleneck—as it is inversely
proportional to the achievable throughput on that very path. From a purely mathemat-
ical perspective, the bottleneck latency of a path corresponds to the ∞-norm of the
(finite) vector of edge latencies whereas the sum of edge latencies—that was of interest
in the Wardrop model—equals the 1-norm. For a broader discussion of when the ∞-
norm should be used, confer also Banner and Orda [3]. They mention, for instance, that
the ∞-norm is appropriate to model wireless networks where each node has a limited
transmission energy. As another motivation, a celebrated result by Leighton et al. [15]
implies that the bottleneck latency is also of interest in settings with individual traffic:
Their result states that individual packets can be routed in time O(congestion + dilation)
when the paths for the packets are given in advance. Here dilation denotes the maxi-
mum length of a path and congestion denotes the maximum number of paths sharing a
common edge.

We address the scenario described in the last paragraphs by studying what we call
bottleneck games with splittable traffic. Similar to Wardrop games, one could think of
infinitely many selfish players each controlling a negligible amount of traffic. However,
their objective is now to choose a path such that their experienced bottleneck latency is
at minimum. Likewise, we define a Wardrop equilibrium in a game of our new model as
a traffic distribution where the bottleneck latency is at minimum on all used paths. As
a measure for the overall system well-being—called social cost—we take the weighted
sum of the bottleneck latencies of all paths. A similar weighted sum over the path la-
tencies was used as social cost for Wardrop games (see e.g. [22]).

In this work, we will consider the degradation of social welfare due to selfish be-
havior of the players. To that end, we will determine the so called price of stability, a
term that was coined by Anshelevich et al. [2] and denotes the worst-case ratio, over
all instances, between the social cost of the best equilibrium and optimum social cost.
Roughly speaking, it describes the worst-case inefficiency of optimum stable states, in
which no player wants to unilaterally deviate, compared to an overall optimum solution.
In contrast, the price of anarchy, which was introduced by Koutsoupias and Papadim-
itriou [14], denotes the worst-case ratio, over all instances, between the social cost of
any equilibrium and that of social optima.

Related Work. Wardrop Games: Inspired by the arisen interest in the price of anarchy,
Roughgarden and Tardos [22] re-investigated the Wardrop games and used the total la-
tency as social cost. In this context the price of anarchy was shown to be 4

3 for linear la-
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tency functions [22] and Θ( d
lnd ) for polynomials of degree at most d with non-negative

coefficients [21]. Roughgarden [19] proved that the price of anarchy is independent of
the network topology if a class F of latency functions is considered that only fulfills
relatively weak assumptions. Instead, it only depends on the so called “anarchy value”
α(F) of F , and the worst-case ratio is already achieved on parallel links. Roughgarden
[21] also considered networks with M/M/1 latency functions. When r is the amount of
traffic and cmin > r is the minimum capacity among all edge capacities in the network,
an upper bound on the price of anarchy is given by 1

2 · (1 +
√

cmin/(cmin − r)). Ob-
serve that this expression approaches ∞ as the amount of traffic r approaches cmin. The
upper bound is asymptotically tight even for games on so-called union of paths graphs,
i.e., on graphs that consist of many disjoint paths from s to t only having the two nodes
s and t in common. Note that the results on the price of stability for games with M/M/1
latency functions that we give in this paper even apply if cmin ≤ r.

In a recent paper, Cole et al. [8] studied Wardrop-like games where the latency of a
path is defined as the p-norm, 1 < p ≤ ∞, of the vector of its edge latencies. In this
context, they also looked at “elastic traffic”, i.e., some share of the participants might be
better off by not traveling at all. When p = ∞ and in the case of inelastic traffic, their
games are equal to our bottleneck games with splittable traffic. However, they looked at
a subclass of Wardrop equilibria that they define as “subpath-optimal”, with the reason
for their restricting being that otherwise the price of anarchy is infinite even if latency
functions are just linear. They showed that the anarchy value is an upper bound on the
price of anarchy for subpath optimal equilibria and hence also an upper bound on the
price of stability.

There is also some work that focused on the original Wardrop games but did not use
total latency to measure the social cost [10,9,20].

Finite Splittable Routing Games: In this setting, a finite number of players with non-
negligible effect on each other is given who have to split their traffics over the available
paths with the objective to minimize their private costs. Two papers [13,16] studied
such games with certain player-specific private cost functions that are based on M/M/1
latency functions. Korilis et al. [13] studied what happens to the private costs of the
players if new capacity is added to the network or if existing capacity is reallocated.
Orda et al. [16] considered the (non-) uniqueness of Nash equilibria. Banner and Orda
[3] studied finite splittable routing games where the private cost of a player is defined
as the maximum among all latencies of edges to which this player assigns a non-zero
flow, whereas social cost is given by the maximum edge latency in the network. Banner
and Orda proved the existence and non-uniqueness of equilibria. They were also able
to show that the price of anarchy is unbounded.

Finite Unsplittable Routing Games: Again, there are finitely many players with non-
negligible effect on each other and each having to route all its traffic on the same path
(see [11] for a survey). Two recent papers [6,7] studied the routing of unsplittable traf-
fics where the private cost of a player is defined as the maximum latency of any edge on
its path, i.e., the bottleneck latency in our words. Caragiannis et al. [7] allowed different
amounts of traffic for the players, whereas in the setting of Busch and Magdon-Ismail
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[6] all players control traffic of unit size. Both studied the price of anarchy with respect
to social cost defined as the maximum latency of any edge in the network.

M/M/1 Latency Functions: M/M/1 latency functions arise in queuing theory as the ex-
pected latency of queues with a Poisson arrival process and an exponentially distributed
service time [12,18]. They are used in networking theory to model packet-switched
networks. Here, a packet that starts at its entry node in the network or arrives at an in-
termediate node on its way to the destination is stored in a queue. It can leave the queue
as soon as the next link on the path of the packet becomes available [5,24].

Contribution. In this work, we define and study bottleneck games with splittable traffic.
The ingredients of such a game are a graph G = (V, E), whose edges e ∈ E are each
endowed with a latency function fe : R

+
0 → R

+
0 ∪ {∞}, and distinct source and sink

nodes s, t ∈ V between which an arbitrarily splittable traffic r > 0 has to be routed. We
will give special attention to instances having M/M/1 latency functions, i.e., functions
of the form fe(u) = 1

ce−u where ce > 0 denotes the capacity of edge e ∈ E.
Our investigations are two-fold: First, we study general properties of bottleneck

games with splittable traffic such as existence and uniqueness of Wardrop equilibria and
dependence of both the price of anarchy and stability of the network topology. Most of
our results here are based on properties of maximum flows and minimum cuts. In the
second part we prove an exact expression for the price of stability for bottleneck games
on parallel links with splittable traffic and M/M/1 latency functions. We view this result
as the main result of our paper. Especially the proof of the upper bound requires a very
careful analysis. In detail, our main findings are:

– General results for bottleneck games with splittable traffic:

• We define the notion of capacity of a network and then show that a bottleneck
game with splittable traffic has a Wardrop equilibrium with finite social cost if
the traffic is smaller than the network capacity.

• For games on series parallel graphs with arbitrary latency functions we prove
the social cost of Wardrop equilibria to be unique. On the other hand, we also
show that for any graph whose subgraph induced by all simple start-destination
paths is not series parallel, there exist games having equilibria with different
social cost.

• We show that the price of stability for bottleneck games with splittable traf-
fic is independent of the network topology, i.e., the worst-case ratio, over all
instances, between the best Nash equilibrium and an optimum is attained on
parallel links. (See Section 3.3 for a comparison with a similar result by Cole
et al. [8].)

– Bottleneck games with splittable traffic and M/M/1 latency functions:
We prove that the expression

m · r
cmin

r
cmin

+ 2 · (m − 1) ·
(√

r
cmin

+ 1 − 1
) (1)
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describes the exact price of stability for games on m parallel links with M/M/1
latency functions, minimum edge capacity cmin, and traffic r. Furthermore, the
expression is increasing in both m and r and it converges to m for large r.

Interestingly, series parallel graphs form exactly the class of graphs where the prices
of anarchy and stability conside for every class of latency functions. Parallel links are
special series parallel graphs. Furthermore, on parallel link graphs bottleneck games
and Wardrop games coincide. Our results imply that for every class of latency functions
bounds for the price of stability for parallel link graphs also hold for the price of stabil-
ity of bottleneck games on arbitrary graphs. This can be used when latency functions
are restricted to polynomials where results of Roughgarden [19] can be used, and also
for the class of M/M/1 latency functions where the expression (1) describes the price of
stability for bottleneck games on arbitrary graphs.

Road Map. The rest of the paper is organized as follows. In Section 2 we give exact
definitions for our bottleneck games with splittable traffic. We study general games in
Section 3, whereas we restrict ourselves to M/M/1 latency functions in Section 4. Due
to lack of space we have to omit most of the proofs.

2 Notation

For all k ∈ N denote [k] = {1, . . . , k}.

Latency Function, Network, Instance. A latency function f : R
+
0 → R

+
0 ∪ {∞}

is a nonnegative, continuous, and nondecreasing function. Here, R
+
0 ∪ {∞} is meant

to be endowed with the topology of the one-point compactification of R
+
0 . (This basi-

cally means that f has no jump discontinuities, not even to ∞.) A network is a tuple
(G, s, t, (fe)e∈E), where G = (V, E) is a directed multigraph, s, t ∈ V are distinct
source and sink (target) nodes, and the fe are latency functions. A bottleneck game
with splittable traffic with general latency functions is a tuple Γ = (G, s, t, (fe)e∈E , r)
where (G, s, t, (fe)e∈E) is a network in which a traffic of r ∈ R

+ has to be routed from
s to t. When obvious, we will usually refer to our bottlenecks games with splittable
traffic only as bottleneck games or even just games.

M/M/1 latency function. For ease of notation, we write Γ = (G, s, t, (ce)e∈E , r) for
a bottleneck game with splittable traffic and M/M/1 latency functions where ce > 0 is
the capacity for edge e ∈ E. The M/M/1 latency functions fe, e ∈ E, are implicitly
defined by

fe(u) =
{

1
ce−u if u < ce

∞ otherwise.

Observe that the latency fe(u) approaches ∞ as the load u approaches ce. We denote
by M the set of all M/M/1 latency functions and by M≥c ⊂ M the functions with a
capacity of at least c where c > 0.

Strategy Profiles, Wardrop Equilibria, and Social Cost. The traffic r can split ar-
bitrarily over the set Pst of all possible simple paths from s to t. A strategy profile is
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a vector x = (xP )P∈Pst where
∑

P∈Pst
xP = r and xP ≥ 0 for all P ∈ Pst. The

load δe on an edge e ∈ E is given by δe(x) =
∑

P∈Pst,P�e xP . A strategy profile is
a Wardrop equilibrium if the latency of each used path is not larger than the latency of
any other path, i.e., if for all P, R ∈ Pst

xP > 0 ⇒ max
e∈P

fe(δe(x)) ≤ max
e∈R

fe(δe(x)).

The social cost of a strategy profile x is defined as the “canonically” weighted sum of
all path latencies, i.e.,

SC(Γ,x) =
∑

P∈Pst

xP · max
e∈P

fe(δe(x)).

If x is a Wardrop equilibrium, l(x) = SC(Γ,x)
r denotes the unique latency of all paths

with non-zero flow. The optimum associated with a bottleneck game with splittable
traffic Γ is the minimum social cost of any strategy profile: OPT(Γ ) = minx SC(Γ,x).
The price of anarchy (PoA) and price of stability (PoS) for a set G of games are defined
as

PoA(G ) := sup
Γ∈G

x Wardr. Equ. in Γ

SC(Γ,x)
OPT(Γ )

and PoS(G ) := sup
Γ∈G

inf
x Wardr. Equ. in Γ

SC(Γ,x)
OPT(Γ )

where by definition ∞/∞ := 1 and 0/0 := 1. Furthermore, u/0 := ∞ if u > 0. For a
given network (G, s, t, (fe)e∈E) its capacity is given by

C(G, s, t, (fe)e∈E) = sup
{

r ∈ R
+
0

∣∣
∣
∣
∃ strategy profile x with SC(Γ,x) < ∞
for (G, s, t, (fe)e∈E , r)

}
∪{0}.

Series Parallel Graphs. (Sometimes also called two terminal series parallel.) Series
parallel is a recursively defined property: As the base case, the graph that only con-
sists of two nodes s, t and a single edge (s, t) is series parallel with terminals (s, t).
An arbitrary multigraph G is series parallel with terminals (s, t) if it can be constructed
from two series parallel graphs with terminals (s1, t1) and (s2, t2) connected either in
series or in parallel. In a series connection, t1 = s2, s = s1, and t = t2. In a parallel
connection, s = s1 = s2 and t = t1 = t2.

Parallel Links. A graph of parallel links is a multigraph G = (V, E) consisting of two
nodes V = {s, t} and m edges E = {1, 2, . . . , m} from s to t. Whenever a bottleneck
game with splittable traffic and M/M/1 latency functions on parallel links is considered
we assume that c1 ≥ . . . ≥ cm and denote C :=

∑m
i=1 ci and C≤i :=

∑i
k=1 ck.

Clearly, C is just the capacity of the network.

For a non-empty set F of latency functions we define G (F) as the set of all bottleneck
games with latency functions drawn from F . The subset P(F) ⊂ G (F) consists of all
games in G (F) that are defined on a graph of parallel links. To further differentiate we
denote by G (F , m, r) ⊂ G (F) the set of games with at most m edges and a traffic of
at most r. Likewise, P(F , m, r) := G (F , m, r) ∩ P(F).
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3 General Results for Bottleneck Games with Splittable Traffic

For general bottleneck games with splittable traffic we will prove the existence of
Wardrop equilibria (Section 3.1), study the (non-)uniqueness of equilibria social cost
(Section 3.2), and show that the price of stability is independent of the the network
topology (Section 3.3).

3.1 Existence of Wardrop Equilibria

Existence of Wardrop equilibria in bottleneck games with splittable traffic can be es-
tablished by employing the general result of [23] (for a proof using more elementary
maths, see [17]). To illustrate the connection to maximum flows, however, we start by
giving a proof that makes use of the max-flow min-cut theorem (see, e.g., [1]). The con-
struction described in the proof will also be used in the proof of Theorem 5. Obviously,
the only interesting case is the traffic to be routed being smaller than the capacity of the
network.

Theorem 1. Let Γ = (G, s, t, (fe)e∈E , r) be a bottleneck game with splittable traffic
where r < C(G, s, t, (fe)e∈E). Then Γ possesses a Wardrop equilibrium of finite social
cost.

3.2 Uniqueness Results About Social Cost of Equilibria

We will show in this section that different equilibria for a bottleneck game with split-
table traffic on a series parallel graph have the same social cost. The proof for this result
employs a technique based on what we define as strong cuts.

Definition 1. Let Γ be a bottleneck game with splittable traffic on a series parallel
graph G = (V, E) and let x be a Wardrop equilibrium for Γ . Then D ⊆ E is called
strong cut with respect to Γ and x if

1. each path P ∈ Pst contains exactly one edge that belongs to D, and
2. fe(δe(x)) ≥ l(x) for all edges e ∈ D.

Observe that, given a strong cut D with respect to Γ and an equilibrium x, all edges
e ∈ D with δe(x) > 0 have latency l(x) whereas all other edges e ∈ D with δe(x) = 0
have latency at least l(x). Before making use of the crucial properties of strong cuts,
we need to ensure their existence.

Theorem 2. Let Γ be a bottleneck game with splittable traffic on a series parallel
graph and let x be a Wardrop equilibrium for Γ . Then a strong cut with respect to
Γ and x exists.

Proof. The proof is by structural induction over all series parallel graphs. Our induction
hypothesis is that every series parallel graph G with terminals (s, t) has the following
property: For any bottleneck game Γ on G and all Wardrop equilibria of Γ , there is a
strong cut.
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The only base case to verify consists of the graph with two nodes s, t solely con-
nected by the edge e. Obviously, for any game Γ on this graph, {e} is a strong cut with
respect to Γ and its trivial equilibrium. For the induction step, consider any arbitrary
graph G = (V, E) with terminals (s, t). Furthermore, assume that G is a series paral-
lel connection of two series parallel graphs G1 = (V1, E1) and G2 = (V2, E2) with
terminals (s1, t1) and (s2, t2), respectively, and both G1 and G2 fulfill the induction
hypothesis. To prove the induction step, we then have to show that G fulfills the induc-
tion hypothesis, too. Thus, let Γ = (G, s, t, (fe)e∈E , r) be an arbitrary game on G and
x be an arbitrary Wardrop equilibrium for Γ and consider the two cases:

Parallel Connection: Set r1 =
∑

P∈Ps1t1
xP and r2 =

∑
P∈Ps2t2

xP where Ps1t1

and Ps2t2 are meant to only contain paths from G1 and G2, respectively. Obviously,
r1 + r2 = r and the games Γ1 = (G1, s1, t1, (fe)e∈E1 , r1) and Γ2 = (G2, s2, t2,

(fe)e∈E2 , r2) have Wardrop equilibria x(1) and x(2) where x
(1)
P = xP for all paths P

with edges in E1 and x
(2)
P = xP for all paths P with edges in E2. It follows by the

induction hypothesis that there are strong cuts D1 and D2 with respect to G1,x(1) and
G2,x(2) that we can use to get a strong cut D := D1 ∪D2 for Γ and its equilibrium x.

Series Connection: Consider the games Γ1 = (G1, s1, t1, (fe)e∈E1 , r) and Γ2 = (G2,
s2, t2, (fe)e∈E2 , r). Obviously, x induces strategy profiles x(1) and x(2) for Γ1 and Γ2,
respectively. At least one of x(1) and x(2) is a Wardrop equilibrium. Otherwise, there
would be a path P ∈ Pst with non-zero flow on which the latency is larger than on
another path R ∈ Pst, and x cannot be a Wardrop equilibrium. If x(1) is an equilibrium
we set D := D1 and D := D2 otherwise. In either case, D is a strong cut for Γ and its
equilibrium x. 
�
We now use strong cuts in the proof of the next theorem to show that all Wardrop
equilibria of a bottleneck game on a series parallel graph have the same social cost. Ob-
viously, this implies that the price of stability does not differ from the price of anarchy
for this class of games, i.e., PoA(S ) = PoS(S ) for any set S of bottleneck games on
series parallel graphs.

Theorem 3. Let Γ be a bottleneck game with splittable traffic on a series parallel
graph, let x̂ and x be two Wardrop equilibria for Γ . Then SC(Γ, x̂) = SC(Γ,x).

Proof. The proof is by contradiction. Assume that two different Wardrop equilibria x̂
and x for Γ = (G, s, t, (fe)e∈E , r) are given such that SC(Γ, x̂) < SC(Γ,x). Clearly,
l(x̂) < l(x). Let D be a strong cut with respect to Γ and x. Consider first of all an edge
e ∈ D with δe(x̂) > 0. Since x̂ is a Wardrop equilibrium and e is an edge of the strong
cut D with respect to Γ and x, we get that fe(δe(x̂)) ≤ l(x̂) < l(x) ≤ fe(δe(x)),
which implies δe(x̂) < δe(x) because fe is nondecreasing. If instead an edge e ∈ D
with δe(x̂) = 0 is considered we trivially obtain that δe(x̂) ≤ δe(x). Together we get
that

r =
∑

e∈D

δe(x̂) <
∑

e∈D

δe(x) = r,

which is a contradiction. 
�
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We will now consider general graphs. If traffic is sent through a graph G then only edges
that are on a simple path from s to t can be used. So the same equilibria are obtained
when playing the game not on G but on the maximum subgraph of G containing only
edges that are on a simple path from s to t, i.e., the subgraph induced by all paths from
s to t. This idea is captured by the following definition.

Definition 2. A directed multigraph G = (V, E) without isolated vertices where s, t ∈
V , s �= t, is called strongly (s, t)-connected if every edge e ∈ E is contained in a
simple path from s to t.

Theorem 4. Let G be a strongly (s, t)-connected graph that is not series parallel. Then
there exists a bottleneck game Γ = (G, s, t, (fe)e∈E , r) possessing Wardrop equilibria
of different social cost.

3.3 Price of Stability

In this section we will show that the price of stability for bottleneck games with split-
table traffic and latency functions from an arbitrary non-empty set of nonnegative, con-
tinuous, and nondecreasing functions F is the same on general graphs as on parallel
links, i.e., PoS(G (F)) = PoS(P(F)). To do so, we will show that given a game Γ on
a general graph with latency functions from F there exists a game Γ ′ on parallel links
with latency functions from F and Wardrop equilibria x for Γ and x̂ for Γ ′ such that
SC(Γ,x)
OPT(Γ ) ≤ SC(Γ ′,x̂)

OPT(Γ ′) .
We assume that Cole et al. [8] proved a very similar result to establish their Theorem

4.6 (whose proof they had to omit due to lack of space). Since we need a rather technical
formulation for our main result on the price of stability for games with M/M/1 latency
functions, we give the following Theorem 5.

Theorem 5. Let Γ = (G, s, t, (fe)e∈E , r), G = (V, E), be a bottleneck game with
splittable traffic where r < C(G, s, t, (fe)e∈E). Then there exist

– a bottleneck game with splittable traffic on parallel links Γ ′ = (G′, s′, t′, (f ′
e)e′∈E′ ,

r), G′ = (V ′, E′), where |E′| ≤ |E| and for each e′ ∈ E′ there is an edge e ∈ E
such that f ′

e′ = fe and
– Wardrop equilibria x for Γ and x̂ for Γ ′,

such that SC(Γ,x)
OPT(Γ ) ≤ SC(Γ ′,x̂)

OPT(Γ ′) .

Recall that in the case of parallel links bottleneck games do not differ from Wardrop
games and hence the prices of stability coincide. This, together with Theorem 5 im-
plies that the price of stability for bottleneck games on arbitrary graphs corresponds to
the price of stability (or anarchy) for Wardrop games on parallel links. Consequently,
the results by Roughgarden [19] on the price of anarchy for Wardrop games lead to the
following corollary.

Corollary 1. Let Γ = (G, s, t, (fe)e∈E , r) be a bottleneck game with splittable traffic
where all functions fe, e ∈ E, are polynomials of degree at most d with non-negative
coefficients. Then there exists a Wardrop equilibrium x where

SC(Γ,x)
OPT(Γ )

≤ (d + 1) · d
√

d + 1
(d + 1) · d

√
d + 1 − d

.
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For readers who are familiar with the anarchy value defined in [19] we would like to
mention that it is possible to draw a more general conclusion that is also the result of
Cole et al. [8, Theorem 4.6]: If the anarchy value α(F) exists for a set of functions
F this value α(F) is an upper bound on the price of stability for bottleneck games
on general graphs and with latency functions from F , i.e., PoS(G (F)) ≤ α(F). Under
some moderate assumptions being made on F even equality holds. This result, however,
cannot be used to prove our main finding, i.e., the price of stability for bottleneck games
with M/M/1 latency functions, since we will include other game properties in the sets
of games under consideration. Therefore, Theorem 5 is essential for the generalization
from parallel links to arbitrary graphs in the M/M/1 case.

4 Bottleneck Games with Splittable Traffic and M/M/1 Functions

In the rest of this paper we focus on bottleneck games with splittable traffic and M/M/1
latency functions. We want to remark that in this setting there are instances for which so-
cial cost of Wardrop equilibria may be arbitrarily worse than those of an optimum. This
justifies looking at the price of stability instead. Unfortunately, also PoS(G (M)) =
PoS(P(M)) = ∞, which will be a trivial consequence of Theorem 8. Hence, we need
to consider other game properties, too, in order to get a meaningful result for the price
of stability. To achieve this goal we will derive the exact value for PoS(P(M≥c, m, r))
where m ∈ N, c > 0, r > 0, and then argue that it is the same as PoS(G (M≥c, m, r)).
By our notation, m is meant here to denote the maximum number of edges, c the mini-
mum edge capacity, and r the maximum amount of traffic.

4.1 Social Cost of Equilibria and Optimum Solutions in the Parallel Link Case

For our later proofs on the price of stability we need some insight into the social cost of
Wardrop equilibria and optimum solutions. Thus we now give the exact social cost of
Wardrop equilibria.

Theorem 6. Let Γ = (G, s, t, (ce)e∈E , r) be a bottleneck game with splittable traffic
and M/M/1 latency functions on m parallel links where r < C, and let x be a Wardrop
equilibrium. Furthermore, let s = |{i ∈ [m] | xi > 0}| denote the number of links used
in x. Then

s = max
{
i ∈ [m] | r + i · ci > C≤i

}
and SC(Γ,x) =

s · r
C≤s − r

.

We will now derive an expression that describes the social cost of an optimum solution.

Theorem 7. Let Γ = (G, s, t, (ce)e∈E , r) be a bottleneck game with splittable traffic
and M/M/1 latency functions on m parallel links where r < C, and let x be a strategy
profile with optimal social cost. Furthermore, let t = |{i ∈ [m] | xi > 0}| denote the
number of links used in x. Then:

t = max

{

i ∈ [m] | r +
√

ci ·
i∑

k=1

√
ck > C≤i

}

and OPT(Γ ) =

(∑t
i=1

√
ci

)2

C≤t − r
− t.
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4.2 Price of Stability for Games on Parallel Links

Combining our knowledge about the social cost of Wardrop equilibria and optimum
solutions, we will now give the exact price of stability for games on m ∈ N parallel
links routing a traffic of r > 0. To that end, we require the capacities c1, . . . , cm and
the traffic r to be normalized such that cm = 1, i.e., we will derive an exact expression
for PoS(P(M≥1, m, r)). This is not a restriction as for an α > 0 the bijective map-
ping Γ = (G, s, t, (ce)e∈E , r) �→ Γα := (G, s, t, (α · ce)e∈E , α · r) associates both the
Wardrop equilibrium and optimum in Γ with the respective equilibrium and optimum
in Γα. Note that, if (xP )P∈Pst is a strategy profile in Γ , (α · xP )P∈Pst is a strategy
profile in Γα with social costs α times as much as that of (xP )P∈Pst in Γ . Hence,
PoS(P(M≥c, m, r)) = PoS(P(M≥1, m, r

c )), where again m ∈ N denotes the max-
imum number of edges, c > 0 the minimum edge capacity, and r > 0 the maximum
amount of traffic.

Theorem 8. For bottleneck games Γ = (G, s, t, (ce)e∈E , r) with splittable traffic and
M/M/1 latency functions on m parallel links where cm = 1 the price of stability is
exactly

PoS(P(M≥1, m, r)) =
m · r

r + 2 · (m − 1) · (√r + 1 − 1)
=: Ψ(m, r).

Note the following properties of Ψ(m, r):

– Ψ(m, r) is strictly increasing in both m ∈ N and r > 0. To see the latter it can
similarly be shown with standard methods that ∂

∂r Ψ(m, r) > 0.
– limm→∞ Ψ(m, r) = r

2
√

r+1+2
and limr→∞ Ψ(m, r) = m, hence we always have

the bound Ψ(m, r) ≤ m.

We conclude this section by the following corollary which is a direct consequence of
the preceding result together with Theorem 5.

Corollary 2. The price of stability for general bottleneck games with M/M/1 latency
functions on a graph with no more than m ∈ N edges each with a minimum capacity
of at least c > 0 and traffic at most r > 0 is the same as in the parallel links case, i.e.,
PoS(G (M≥c, m, r)) = PoS(P(M≥c, m, r)).
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Price of Stability for Network Design with Fair Cost Allocation. In Proc. of the 45th Annual
Symposium on Foundations of Computer Science (FOCS’04), 2004.

3. R. Banner and A. Orda. Bottleneck Routing Games in Communication Networks. In Proc. of
the 25th Conference on Computer Communications (INFOCOM’06), to appear 2006.



342 V. Mazalov et al.

4. M. Beckmann, C. B. McGuire, and C. B. Winsten. Studies in the Economics of Transporta-
tion. Yale University Press, 1956.

5. D. Bertsekas and R. Gallager. Data Networks. Prentice Hall, 1987.
6. C. Busch and M. Magdon-Ismail. Atomic Routing Games on Maximum Congestion. In

Proc. of the 2nd International Conference on Algorithmic Aspects in Information and Man-
agement (AAIM’06), to appear 2006.

7. I. Caragiannis, C. Galdi, and C. Kaklamanis. Network Load Games. In X. Deng and D. Du,
editors, Proc. of the 16th Annual International Symposium on Algorithms and Computation
(ISAAC’05), LNCS Vol. 3827, Springer Verlag, pages 809–818, 2005.

8. R. Cole, Y. Dodis, and T. Roughgarden. Bottleneck Links, Variable Demand, and the Tragedy
of the Commons. In Proc. of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’06), pages 668–677, 2006.

9. J. R. Correa, A. S. Schulz, and N. E. Stier-Moses. Computational Complexity, Fairness, and
the Price of Anarchy of the Maximum Latency Problem. In D. Bienstock and G. Nemhauser,
editors, Proc. of the 10th Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO’04), LNCS Vol. 3064, Springer Verlag, pages 59–73, 2004. An extended version
will appear in Operations Research.
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Abstract. One frequently employed way of propagation exploited by
worms is through the victim’s contact book. The contact book, which
reflects the acquaintance profiles of people, is used as a “hit-list”, to
which the worm can send itself in order to spread fast. In this paper we
propose a discrete worm propagation model that relies upon a combined
email and Instant Messaging (IM) communication behaviour of users.
We also model user reaction against infected email as well as the rate at
which antivirus software is installed. User acquaintance is perceived as a
“network” connecting users based on their contact book links. We then
propose a worm propagation formulation based on a token propagation
algorithm, further analyzed with a use of a system of continuous differ-
ential equations, as dictated by Wormald’s theorem on approximating
“well-behaving” random processes with deterministic functions.

1 Introduction

A worm is a self-contained malicious code that is able to spread itself in com-
puter networks. Propagation, usually, occurs through the exploitation of network
connections, shared storage, email, Instant Messengers or Peer to Peer (P2P) file
sharing networks. Simple Mail Transfer Protocol (SMTP), for instance, is one
of the most common malicious code propagation vehicles. To spread by email, a
worm can propagate as an email attachment or embed itself into html code within
the email body. Then it obtains email addresses from the victim’s computer in
order to propagate. Worm propagation modelling has attracted the attention
through a series of incidents such as the CodeRed [14] worm, Nimda [2] worm,
Slammer worm [9], Sobig [3], W32/Bagle and W32/Novarg [1], Sober. X, Netsky.
P and Mytob. ED [11].
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Recently, worms have appeared that are able to propagate using another
social-like popular communication method such as Instant Messengers (IM) or
Peer-to-Peer (P2P) file sharing networks [5]. IM networks provide the ability not
only to transfer text messages, but also files supporting peer-to-peer file sharing,
leading to the immediate spread of files that are infected. Worms use social en-
gineering to trick people into downloading and execute malicious code [4]. Using
IM, worms spread faster as locating potential victims does not require scanning
attempts to possibly unknown or unused IP addresses. What they need is sim-
ply online users’ contact list. However, there were some IM worms which have
exploited the processing vulnerabilities described in [8] to allow automatic ex-
ecution of code. This worms are much faster than any other that requires user
intervention and, thus, causes significant devastation. As more users adopt IM
services, new worms will spread combining different propagation vectors, not
only using email but also IM and P2P links.

While many researchers deal with the development of new techniques for the
detection and elimination of worms, there seems to be, relatively, little activ-
ity in the theoretical modelling of viral code replication and propagation. Less
research effort has been expended on modelling worms that use IM and email
simultaneously. In [12] Wang et al. study a worm propagation model based on
a clustered and a tree-like hierarchic topologies. In their model, copies of the
worm propagate at a constant rate without needing user interactions. The lack
of a user model coupled with the clustered and tree-like topologies make it un-
suitable for modelling the propagation of email and IM worms/viruses over the
Internet. Zou et al. studied Code Red worm propagation based on the classical
epidemic Kermack-Mckendrick model [14]. Newman et al. derived the analyti-
cal solution of the percolation threshold of small world topology [6,12]. Albert
et al. were the first to explain the vulnerability of power law networks under
attacks [9]. The authors conclude that the power law topology is vulnerable un-
der deliberate attack. Wang, Knight et al. study the effect of immunization on
worm propagation [12]. They compare the effect of random immunization and
selective immunization. They show that immunizing nodes with highest degrees
has better effect than random immunization. This is different from reality where
the immunization is randomly applied to hosts by users or administrators.

In [14] Zou et al. an email model is given as an undirected graph of relation-
ships between people. It is assumed that each user opens an incoming worm
attachment with a certain probability, depending on the user and not on time.
This, however, does not describe well the typical user behaviour. Indeed, as the
new worm starts spreading there is no user alertness, who tend to open the con-
taminated attached file. As news about the worm are circulated, users become
more cautious. Thus users’ behaviour should depend on time. The authors con-
sider a “reinfection” model, where a user sends out copies of the worm each time
an infected attachment is reopened, but this does not add to the infected popu-
lation as long as the host is either already infected or it has been immunized by
an antivirus. An interesting conclusion can be drawn from this study: the overall
spread rate of worms increases as the variability of users’ email checking times
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increases. Thus a worm is more vicious as a better social engineering technique is
applied. Mannan and van Oorschot [7] review selected IM worms and summarize
their main characteristics, motivating a brief overview of the network formed by
IM contact lists, and a discussion of theoretical consequences of worms in such
networks.

In our work, we view email, IM and P2P networks as forming a kind of “social”
network. These networks can be macroscopically considered as an interconnec-
tion of a number of Autonomous Systems (AS). An AS is a subnetwork (usually
a Domain Network) administered by a single authority. In this paper, we de-
scribe a worm spread model based on the social structures induced by users’
communication habits. The model incorporates users’ behaviour by including
the probability of a user opening the message. We also propose a more realis-
tic model of the progressive immunization of systems using the probability that
an updated antivirus software is installed on a host. We finally model the ac-
quaintance network using a formalism stemming from the domain of Constraint
Satisfaction Problems (CSP). Using this model we can determine the impact of
a worm spreading without having proper antivirus or informed users.

2 Acquaintance Networks: Motivation and Formalism

An acquaintance network consists of several hypernodes, where each hypernode
represents a specific domain or LAN (e.g. a university or a company network).
Each hypernode contains several nodes which represent personal computers or
users’ contact information (e.g. email or IM addresses). We assume that with
probability pintacq a node of a hypernode contains in its contact book the contact
address of another node of the same hypernode. Also, with pextacq a node of a
hypernode is associated with a node (user) in a different hypernode. Finally, with
probability phyper we consider that there is a connection between two hypernodes
(which means that at least one user of one hypernode is associated with at least
one user of the other hypernode). The connections between hypernodes forms
the network acquaintance graph while the connections between nodes forms the
person acquaintance graph. Our focus is on modelling a worm outbreak which
starts at some random set of nodes and propagates along the acquaintance links.

More formally, an acquaintance network consists of a set of hypernodes
X1, . . . , Xn containing node sets D1, . . . , Dn respectively, and a set of acquain-
tance relations C. An edge Ri1,i2 ∈ C is a subset of Di1 ×Di2 , with i1, i2 distinct.
We say that Ri1,i2 bounds hypernodes nodes Xi1 , Xi2 to mutual acquaintance,
because of mutual acquaintances stemming from the nodes they contain. The
person acquaintance hypergraph of a network acquaintance graph is an n-partite
graph. Its ith part corresponds to hypernode Xi and it has exactly |Di| vertices,
one for each node in Di. There exists an eedge {vi1 , vi2} if and only if the cor-
responding nodes di1 ∈ Di1 and di2 ∈ Di2 belong to some acquaintance relation
that bounds the corresponding variables.

Email, IM and P2P contacts form a kind of social network. Modelling these
networks as graphs, with each node representing a host, is clearly unfeasible. On
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the other hand, they can be macroscopically considered as an interconnection
of a number of Autonomous Systems (AS). An AS is a subnetwork usually a
Domain Network which is administered by a single authority. For this reason
we propose a hypernode based model with a hyper-node representing a Domain
Network.

According to the above formalism (which, actually, stems from the formalism
of the Constraint Satisfaction Problem (CSP)), the network acquaintance graph
represents the structure of email/IM acquaintances across network domains (or
LANs). The set of hypernodes X1, . . . , Xn represent Autonomous Systems (AS)
or Domains (e.g. universities) of the acquaintance network, while the node sets
D1, . . . , Dn represent distinct contact addresses of each domain. These addresses
comprise an email or IM acquaintances network. We can safely assume, with-
out loss of generality, that every distinct email or IM address is associated with
one host computer which is associated with a single user. The connections be-
tween the hypernodes form the network acquaintance graph, while the connec-
tions among the nodes of each distinct email and IM contact address, form the
person acquaintance graph. Also, in our model the quantity B(i) represents the
number of the infected nodes at step i while W (i) represents the number of
immunized nodes, i.e. nodes on which updated antivirus software is already in-
stalled. The quantity nd − B(i) − W (i) represents the number of susceptible
nodes, that is the number of nodes that have no defence against the new worm.

We will now define some probabilities related to our model: phyper is the
probability that two hypernodes (AS-Domains) are connected. Then pextacq is
the probability with which a user (or a node) has a contact with a specific user
of another hypernode. Also, pintacq is the probability that a node has a contact
with a specific node belonging in same hypernode. Moreover, pantv represents
the percentage of the nodes protected by updated antivirus software. We can
model this probability using a function of time and network size that is gradually
increasing with time and decreasing with the size of the network. In particular
we set pantiv(n, t) = g(t)

n where g(t) is a monotonicaly increasing function of t
and n is the network size which is the number of hypernodes in our model, and
popenm is the probability that a user opens his/her email or IM message. We
also model this probability as a function of time, popenm(t) = f(t), which is
monotonicaly decreasing with time, since as time passes and information of the
worm outbreak circulates people are more cautious in opening suspicious email
messages. The pair I = (pantv, popenm) is called an attack reaction pair since it
characterizes a new worm that has started propagating within a network.

3 Randomly Generated Acquaintance Graphs

According to the notation given in the previous section, an acquaintance graph
is defined by the following four parameters: (a) The number of hypernodes n, (b)
the size of each hypernode d, (c) The network acquaintance graph, and (d) The
person acquaintance graph. We define the following process that generates ran-
dom acquaintance graph instances, for given n and d: Construct the network ac-
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quaintance graph by having each of the possible
(
n
2

)
edges selected uniformly and

independently with probability phyper. Then construct the person acquaintance
graph by having each of the possible d2 edges that may exist between two hypern-
odes that are adjacent in the network acquaintance graph selected uniformly and
independently with probability pextacq and by having each of the

(
d
2

)
edges that

may exist between two nodes of the same hypernode selected uniformly and inde-
pendently with probability pintacq. If no edges are introduced we repeat the edge
formation process. We will denote by G(phyper, pextacq, pintacq, d, n) be the ran-
dom acquaintance network generated according to the process described above.

4 Virus Propagation Model

We assume that a worm spreads itself by attaching its malicious code to an
email, a file transferred or a URL to an infected link and sending it to all con-
tact addresses it finds on a users’ computer. IM contact lists enable users to track
the presence status of their contacts. To a worm, an online contact list provides
an instant hit-list. Note that most email clients provide an address book which
does not reveal any online status of the users thus the propagation is slowed
down by the time the user interacts opening his email. A host is infected when
the user opens the attached or transferred file or when the client previews it
or the exploited vulnerability makes it to execute automatically. According to
the theory above we will now refer to the model that the worm uses in order
to propagate between the hypernodes and the nodes accordingly to the existing
connections. We assume that a worm randomly infects a node v of a hypernode.
By exploiting the address book of the node the worm starts to propagate. Ini-
tially, all the nodes are susceptible to infection. At step zero a randomly chosen
set of nodes becomes infected. Then the infection spreads as follows: at every
infection cycle i the nodes that are infected turn into black and start to infect
other susceptible nodes by sending infected messages to the hit-list they have.
The messages that are been sent by the infected nodes follow the edges of the
person acquaintance graph. We assume that all generated messages, infectious
or not, are send sequentially, as IM and email servers are receiving and send-
ing messages sequentially. Step i is completed after the ith message is ready to
be dispatched. Every user that receives an infected message opens this message
with probability popenm. The user’s computer becomes infected if there is no
updated antivirus program installed at the computer. A susceptible or infected
(black) node becomes white (immunized) with probability pantv if an updated
antivirus program is installed at the node.

5 Theoretical Analysis and Model Evaluation

We will now analyze theoretically the proposed worm propagation model by ap-
plying the differential equations method (for details see [13]). This theorem says
is that if we have a number of co-evolving discrete random variables (associ-
ated with some discrete random process) that satisfy a Lipschitz condition and
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their expected fluctuation at each time step is known, then the value of these
variables at each time step can be approximated using the solution of a system
of differential equations. Furthermore, the system of differential equations re-
sults directly from the expressions for the expected fluctuation of the random
variables describing the random process.

The process we will analyze in what follows involves two jointly evolving ran-
dom variables: B(i), the number of black nodes at step i of the worm spread
process, and W (i), the number of immune nodes at step i of the process. Ac-
cording to our discussion in Section 4, step i is completed after the ith message
(according to some global ordering) is ready to be dispatched from one node (i.e.
personal computer) belonging to some hypernode (a domain). For our model,
the following holds:

Theorem 1. Let G(phyper, pextacq, pintacq, d, n) be an acquaintance graph and
I(pantv, popenm) be an attack reaction pair. Assume a transition from step i
to step i + 1 with the dispatch of an email from the lth hypernode. Let Wl(i)
and Bl(i) be the number of immune and infected nodes respectively within this
hypernode. Then the expected increase in the random variables B(i) and W (i)
in a transition from step i to step i + 1 is the following:

E[B(i + 1) − B(i)] =
B(i)
dn

phyperpextacqpopenm

· [dn − W (i) − B(i) − (d − Wl(i) − Bl(i))]

+ pintacqpopenm
B(i)
dn

· [d − Wl(i) − Bl(i)]

E[W (i + 1) − W (i)] = pantv[dn − W (i)].

Proof. We will first consider the expected fluctuation of the number of black
nodes. Let B(i) be the number of black nodes at step i and l the hypernode in
which the currently considered mail-dispatching node u belongs. Let v be one of
the dn−W (i)−B(i)− (d−Wl(i)−Bl(i)) susceptible nodes which do not belong
to this hypernode. Then v can become black due to the emailing activity of u if
the following, independent, events hold simultaneously: (1) There is a network
acquaintance edge between the hypernodes in which u and v belong. This event
holds with probability phyper. (2) There is a person acquaintance edge between
u and v. This event holds with probability pextacq. (3) Node u is black. This
event holds with probability B(i)

dn assuming a uniform distribution of black nodes
among all the dn network nodes. (4) Node v eventually opens the email, when it
arrives at v’s mailbox. This holds with probability popemn. Thus, the expected
number of black nodes produced by nodes not belonging in the same hypernode
as u, is equal to

phyperpextacq
B(i)
dn

popenm · [dn − W (i) − B(i) − (d − Wl(i) − Bl(i))]. (1)

Similarly, for the d − Wl(i) − Bl(i) susceptible nodes that belong to the same
hypernode as u, we have an expected contribution to B(i) equal to
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pintacqpopenm
B(i)
dn

· [d − Wl(i) − Bl(i)]. (2)

Adding (1) and (2) we obtain the expression for E[B(i + 1) − B(i)].
For the white (i.e. immune) nodes we simply observe that at each step, a new

white node is produced which was either black or not infected previously (there
are nd − W (i) such nodes) with probability pantiv which is the probability of
installing one antivirus package at the ith step. Thus, E[W (i + 1) − W (i)] =
pantiv[dn − W (i)] completing the proof. �

In computing the probability that a node is black at step i we tacitly assumed
a uniform spread of the infection throughout the network. This allows as to set
this probability equal to B(i)

dn . Although this may not true in general (especially
in the time instances close to the beginning of the infection), it can be a close
approximation in the “long run” of the infection process. Based on this assump-
tion, applied within each hypernode, we can approximate Wl(i) and Bl(i) as
follows: Wl(i) = W (i)

n , Bl(i) = B(i)
n . Thus, we obtain the following corollary,

from Theorem 1:

Corollary 1 (assuming uniform spread of the worm).

E[B(i + 1) − B(i)] =
B(i)
dn

phyperpextacqpopenm

· [dn − W (i) − B(i) − (d − W (i)
n

− B(i)
n

)]

+ pintacqpopenm
B(i)
dn

· [d − W (i)
n

− B(i)
n

]

E[W (i + 1) − W (i)] = pantv[dn − W (i)].

We will now obtain the system of differential equations.

Theorem 2. Let phyper = c
n , with c a constant, pextacq a constant indepen-

dent of n and t, pantiv(n, t) = g(t)
n , pintacq a constant independent of n, t, and

popenm(t) = f(t). Then the system of differential equations that results from
the application of Wormald’s theorem to the evolution of the random variables
B(i) and W (i), with observation window T = rdn, is the following (in the limit,
letting n → ∞):

db(t)
dt

= [b(t)cpextacqf(t)d + pintacqf(t)b(t)d][1 − w(t) − b(t)]

dw(t)
dt

= g(t)d[1 − w(t)].

Proof. We will use the equations for the expected fluctuations in W (i) and B(i)
as given in Corollary 1. Then, we scale the time steps by T (we divide i by T ) and
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the quantities W (i) and B(i) by dn (we divide by dn), replacing the expectations
on the left hand-side of the equations in Corollary 1 by first derivatives. The
differential equations given in the statement of the theorem are then obtained
by simple algebraic manipulations, replacing the factor 1

n (d − W (i)
n − B(i)

n ) that
appears with 0, as n → ∞, since d = O(1), W (i) = O(n) and B(i) = O(n). �
The differential equation for w(t) is easy to solve and replacing w(t) in the
differential equation for b(t) with this solution gives us a differential equation of
Bernoulli type. This is a special type of the Ricatti differential equation and can
be solved using for example the method outlined in [10].

Theorem 3. Let phyper = c
n , with c a constant, pextacq a constant indepen-

dent of n and t, pantiv(n, t) = g(t)
n , pintacq a constant independent of n, t, and

popenm(t) = f(t). Let, also,

h = [c pextacq w(0) − pextacq c + pintacq w(0) − pintacq]

u(x) = e

[
−hd

∫
x
0 f(y) e(−d

∫ y
0 g(z) dz)dx

]

. (3)

Then the solution to the system of differential equations given in Theorem 2 is
the following:

w(t) = exp
[
d

∫ t

0

g(z)dz + w(0) − 1
]

exp
[
−d

∫ t

0

g(z)dz

]

b(t) = b(0)
u(t)

b(0)d(pextacq c + pintacq)
∫ t

0

u(s)f(s)ds + 1
.

We will now plot these solutions, for various values of the parameters, in order to
see the interaction between the numbers of black and white nodes. In our model,
the main parameters that affect this interaction are pantv and popenm. In addi-
tion, as we have already argued above, the probabilities pantv and popenm should
depend on the time parameter. In particular, we have set pantv = 1

1+ae(−βt+γ)

and popenm = 0.9
δ+e(+ζt−θ) , where a, β, γ, δ, ζ and θ are constants. The chosen

function for pantv is, initially, monotonicaly increasing with a small rate while
afterwards it increases at a faster rate. This has the interpretation that after a
new worm has been analyzed, as time goes by, more people start downloading
and installing defense software against it while at first only few antivirus installa-
tions take place. The chosen function for popenm has the opposite behaviour. At
first, this function is monotonicaly decreasing at a slow rate, reflecting the fact
that people tend to open emails without a second thought. Then the function is
decreasing with a faster rate reflecting the fact that information about the worm
becomes available and people become more cautious with opening their email.

In the figures that follow, we plot the percentage of black and white nodes, as
a function of time, for two values of d (hypernode or local network size). We can
see the effect that pantv and popenm have to the relative sizes of the populations
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of white and black nodes for the two values of d, all other parameters being fixed.
First we observe that the effect of the worm in Figures 2.(a) and 2.(b) is more
severe than in the Figures 1.(a) and 1.(b). This is due to the fact that in the
former figures d = 20 while in the latter d = 100. This shows that the infection
within the hypernode with 100 nodes can create fast multiple infections outside
the hypernode due to the spread of the worm to many of these 100 nodes which,
in turn, spread the worm to more nodes outside the hypernode.

With regard to the effect of the antivirus installation rate as well as the users’
opening mail easiness, in Figure 1.(a) we have higher installation rate and less
easiness, in comparison with Figure 1.(b). Thus, the spread in Figure 1.(a) is less
devastating than it is in Figure 1.(b). This is also true for Figures 2.(a) and 2.(b)
with the only difference the value for d.

One can also tune the other parameters of the model and, thus, construct
“what-if” scenarios for various worm propagation patterns and and acquaintance
network structures.
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Fig. 1. (a) d=20, large pantv, small popenm, (b) d=20, small pantv, large popenm
(black nodes dotted, white nodes continuous)
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Fig. 2. (a) d=100, large pantv, small popenm, (b) d=100, small pantv, large popenm
(black nodes dotted, white nodes continuous)
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6 Conclusions

In this paper we have proposed a model for users’ acquaintance profiles, as
they result from their email address books or their IM communication habits.
This model can be used for the study of worm propagation as a function of the
antivirus installation rate as well as users’ easiness in opening their email attach-
ments. We showed that the theoretical analysis of this model leads to a system
of differential equations that result from the application of Wormald’s theorem
to the analysis of the expected fluctuations of infected as well as immunized
nodes. These equations can be analytically solved, offering a practical means
of conducting “what-if” scenarios by tuning the parameters of the model. We
believe that our model can be used as a basis for extensions by including other
factors which may affect virus propagation (e.g. network link speed) having, at
the same time, a straightforward theoretical analysis with the aid of Wormald’s
theorem.
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Abstract. We study a setting where a principal needs to motivate a
team of agents whose combination of hidden efforts stochastically deter-
mines an outcome. In a companion paper we devise and study a basic
“combinatorial agency” model for this setting, where the principal is re-
stricted to inducing a pure Nash equilibrium. Here, we show that the
principal may possibly gain from inducing a mixed equilibrium, but this
gain can be bounded for various families of technologies (in particular
if a technology has symmetric combinatorial structure). In addition, we
present a sufficient condition under which mixed strategies yield no gain
to the principal.

1 Introduction

1.1 Background: Combinatorial Agency

The well studied principal-agent problem deals with how a “principal” can moti-
vate a rational “agent” to exert costly effort towards the welfare of the principal.
The difficulty in this model is that the agent’s action (i.e. whether he exerts effort
or not) is invisible to the principal and only the final outcome, which is proba-
bilistic and also influenced by other factors, is visible. “Invisible” here is meant
in a wide sense that includes “not precisely measurable”, “costly to determine”,
or “non-contractible” (meaning that it can not be upheld in “a court of law”).
This problem is well studied in many contexts in classical economic theory and
we refer the readers to introductory texts on economic theory such as [7] Chapter
14. The solution is based on the observation that a properly designed contract,
in which the payments are contingent upon the final outcome, can influence a
rational agent to exert the required effort.

In [2] we initiated a general study of handling combinations of agents rather
than a single agent. While much work was previously done on motivating teams
of agents [5,9,6,3], our emphasis is on dealing with the complex combinatorial
structure of dependencies between agents’ actions. In the general case, each
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combination of efforts exerted by the n different agents may result in a differ-
ent expected gain for the principal. The general question asks, given an exact
specification of the expected utility of the principal for each combination of
agents’ actions, which conditional payments should the principal offer to which
agents as to maximize his net utility? We view this problem of hidden actions in
computational settings as a complementary problem to the problem of hidden
information that is the heart of the field of Algorithmic Mechanism Design [8].
An example that was discussed in [4] is Quality of Service routing in a net-
work: every intermediate link or router may exert a different amount of “effort”
(priority, bandwidth, ...) when attempting to forward a packet of information.
While the final outcome of whether a packet reached its destination is clearly
visible, it is rarely feasible to monitor the exact amount of effort exerted by each
intermediate link – how can we ensure that they really do exert the appropriate
amount of effort? For example, in Internet routing, IP routers may delay or drop
packets, and in mobile ad hoc networks, devices may strategically drop packets
to conserve their constrained energy resources.

In the general model presented in [2], each of n agents has a set of possi-
ble actions, the combination of actions by the players results in some outcome,
where this happens probabilistically. The main part of the specification of a
problem in this model is a function (“the technology”) that specifies this dis-
tribution for each n-tuple of agents’ actions. Additionally, the problem specifies
the principal’s utility for each possible outcome, and for each agent, the agent’s
cost for each possible action. The principal motivates the agents by offering to
each of them a contract that specifies a payment for each possible outcome of
the whole project. Key here is that the actions of the players are non-observable
(“hidden-actions”) and thus the contract cannot make the payments directly
contingent on the actions of the players, but rather only on the outcome of the
whole project.

Given a set of contracts, each agent optimizes his own utility; i.e., chooses the
action that maximizes his expected payment minus the cost of the action. Since
the outcome depends on the actions of all players together, the agents are put in
a game here and are assumed to reach a Nash Equilibrium (NE). The principal’s
problem is that of designing the optimal contract: i.e. the vector of contracts to
the different agents that induce an equilibrium that will optimize his expected
utility from the outcome minus his expected total payment. The main difficulty
is that of determining the required Nash equilibrium point.

Our interest in this paper (as in [2]), is focused on the binary case: each
agent has only two possible actions ”exert effort” and ”shirk” and there are
only two possible outcomes ”success” and ”failure”. Our motivating examples
comes from the following more restricted and concrete ”structured” subclass of
problem instances: Every agent i performs a subtask which succeeds with a low
probability γi if the agent does not exert effort and with a higher probability δi >
γi, if the agent does exert effort. The whole project succeeds as a deterministic
Boolean function of the success of the subtasks.
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1.2 This Paper: Mixed Equilibria

In [2] we studied the notion of Nash-equilibrium in pure strategies: we did not
allow the principal to attempt inducing an equilibrium where agents have mixed
strategies over their actions. In the observable-actions case (where the principal
can condition the payments on the agents’ individual actions) the restriction
to pure strategies is without loss of generality: mixed actions can never help
since they simply provide a convex combination of what would be obtained by
pure actions. Yet, surprisingly, we show this is not the case for the hidden-actions
case which we are studying: in some cases, a Mixed-Nash equilibrium can provide
better expected utility to the principal than what he can obtain by equilibrium
in pure strategies. In particular, this already happens for the “OR” function with
two players, with a certain (quite restricted) range of parameters (see Section 3).

Our main goal is to quantify the principal’s gain from inducing mixed equilib-
rium, rather then pure. To do that, we analyze the worst ratio (over all principal’s
values) between the principal’s optimal utility with mixed equilibrium, and his
optimal utility with pure equilibrium. We term this ratio “the price of purity”
(POP) of the instance under study. We prove that for a class of instances, those
with “increasing returns to scale”, which contains in particular the AND func-
tion, the price of purity is trivial (i.e., POP = 1). Moreover, we show that for
any other Boolean function, there is an assignment of the parameters (agents’
individual success probabilities) for which the obtained structured technology
has non trivial POP (i.e., POP > 1). (Section 4).

While the price of purity may be strictly greater than 1, we obtain quite a
large number of results bounding this ratio (Section 5). These bounds range from
very weak ones (e.g., POP ≤ n for any anonymous or DRS technology) to better
ones for restricted cases (e.g., POP ≤ 1.154... for a family of anonymous OR
technologies, and POP ≤ 2 for any technology with 2 agents). We conjecture
that there exists a universal constant C that bounds the POP for any technology,
thus shrinking the large gaps between our conjecture and the obtained bounds
is the main open problem of this paper.

Conjecture 1. There exists a constant C > 1, such that for any technology t,
POP (t) ≤ C.

A more extreme form of the conjecture states that a non-anonymous OR tech-
nology with 2 agents is the most extreme case and yields the highest possible
POP for any structured technology.

Additionally, we study some other properties of mixed equilibrium. We show
that mixed Nash equilibria are more delicate than pure ones. In particular, we
show that unlike the pure case, in which the optimal contract is also a ”strong
equilibrium” [1] (i.e., resilient to deviations by coalitions), an optimal mixed
contract (in which at least two agents truly mix) never satisfies the requirements
of a strong equilibrium (Section 6).

Finally, we study the computational hardness of the optimal mixed Nash
equilibrium, and show that the hardness results from the pure case hold for the
mixed case as well (Section 7).
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2 Model and Preliminaries

We focus on the simple “binary action, binary outcome” scenario where each
agent has two possible actions (”exert effort” or ”shirk”) and there are two
possible outcomes (”failure”, ”success”). We begin by presenting the model with
pure actions (which is a generalization of [10]), and then move to the mixed
case. A principal employs a set of agents N of size n. Each agent i ∈ N has a
set of two possible actions Ai = {0, 1} (binary action), the low effort action (0)
has a cost of 0 (ci(0) = 0), while the high effort action (1) as a cost of ci > 0
(ci(1) = ci). The played profile of actions determine, in a probabilistic way, a
“contractible” outcome, o ∈ {0, 1}, where the outcomes 0 and 1 denote project
failure and success, respectively (binary-outcome). The outcome is determined
according to a success function t : A1 × . . . × An → [0, 1], where t(a1, . . . , an)
denotes the probability of project success where players play with the action
profile a = (a1, . . . , an) ∈ A1 × . . .×An = A. We use the notation (t, c) to denote
a technology (a success function and a vector of costs, one for each agent).

The principal’s value of a successful project is given by a scalar v > 0, where
he gains no value from a project failure. In this hidden-actions model the actions
of the players are invisible, but the final outcome is visible to him and to others,
and he may design enforceable contracts based on this outcome. We assume that
the principal can pay the agents but not fine them (known as the limited liability
constraint). The contract to agent i is thus given by a scalar value pi ≥ 0 that
denotes the payment that i gets in case of project success. If the project fails,
the agent gets no money (this is in contrast to the “observable-actions” model
in which payment to an agent can be contingent on his action).

Given this setting, the agents have been put in a game, where the utility
of agent i under the profile of actions a = (a1, . . . , an) ∈ A is given by ui(a) =
pi·t(a)−ci(ai). As usual, we denote by a−i ∈ A−i the (n−1)-dimensional vector of
the actions of all agents excluding agent i. i.e., a−i = (a1, . . . , ai−1, ai+1, . . . , an).
The agents will be assumed to reach Nash equilibrium, if such an equilibrium
exists. The principal’s problem (which is our problem in this paper) is how
to design the contracts pi as to maximize his own expected utility u(a, v) =
t(a) · (v −

∑
i∈N pi), where the actions a1, . . . , an are at Nash-equilibrium. In the

case of multiple Nash equilibria, in our model we let the principal choose the
desired one, and “suggest” it to the agents, thus focusing on the “best” Nash
equilibrium.

As we wish to concentrate on motivating agents, rather than on the coordi-
nation between agents, we assume that more effort by an agent always leads
to a better probability of success. Formally, ∀i ∈ N, ∀a−i ∈ A−i we have that
t(1, a−i) > t(0, a−i). We also assume that t(a) > 0 for any a ∈ A.

We next consider the extended game in which an agent can mix between
exerting effort and shirking (randomize over the two possible pure actions). Let
qi denote the probability that agent i exerts effort, and let q−i denote the (n−1)-
dimensional vector of investment probabilities of all agents except for agent i.
We can extend the definition of the success function t to the range of mixed
strategies, by taking the expectation.
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t(q1, . . . , qn) =
∑

a∈{0,1}n

(
n∏

i=1

qai

i · (1 − qi)(1−ai))t(a1, . . . , an)

Note that for any agent i and any (qi, q−i) it holds that t(qi, q−i) = qi ·t(1, q−i)+
(1 − qi) · t(0, q−i). A mixed equilibrium profile in which at least one agent mixes
with probability pi ∈ [0, 1] is called a non-degenerate mixed equilibrium.

In pure strategies, the marginal contribution of agent i, given a−i ∈ A−i, is
defined to be: Δi(a−i) = t(1, a−i) − t(0, a−i). For the mixed case we define the
marginal contribution of agent i, given q−i to be: Δi(q−i) = t(1, q−i) − t(0, q−i).
Since t is monotone, Δi is a positive function.

We next characterize what payment can result in an agent mixing between
exerting effort and shirking.

Claim. Agent i’s best response is to mix between exerting effort and shirking
with probability qi ∈ (0, 1) only if he is indifferent between ai = 1 and ai = 0.
Thus, given a profile of strategies q−i, agent i mixes only if:

pi =
ci

Δi(q−i)
=

ci

t(1, q−i) − t(0, q−i)

which is the payment that makes him indifferent between exerting effort and
shirking. The expected utility of agent i, who exerts effort with probability qi is:
ui(q) = ci ·

(
t(q)

Δi(q−i)
− qi

)
.

A profile of mixed strategies q = (q1, . . . , qn) is a Mixed Nash equilibrium if for
any agent i, qi is agent i’s best response, given q−i.

The principal’s expected utility under the mixed Nash profile q is given by
u(q, v) = (v −P ) · t(q), where P is the total payment in case of success, given by
P =

∑
i|qi>0

ci

Δi(q−i)
. An optimal mixed contract for the principal is an equilib-

rium mixed strategy profile q∗(v) that maximizes the principal’s utility at the
value v. In [2] we show a similar characterization of optimal pure contract a ∈ A.
An agent that exerts effort is paid ci

Δi(a−i)
, and the utilities are the same as the

above, when given the pure profile. In the pure Nash case, given a value v, an
optimal pure contract for the principal is a set of agents S∗(v) that exert effort
in equilibrium, and this set maximizes the principal’s utility at the value v.

A simple but crucial observation, generalizing a similar one in [2] for the pure
Nash case, shows that the optimal mixed contract exhibits some monotonicity
properties in the value.

Lemma 1 (Monotonicity lemma). For any technology (t, c) the expected util-
ity of the principal at the optimal mixed contract, the success probability of the
optimal mixed contract, and the expected payment of the optimal mixed contract,
are all monotonically non-decreasing with the value.

The proof shows that the same monotonicity holds in the observable-actions
case as well. Additionally, the lemma holds in more general settings, where each
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agent has an arbitrary action set (not restricted to the binary-actions model
considered here).

We wish to quantify the gain by inducing mixed Nash equilibrium, over induc-
ing pure Nash. We define the price of purity as the worse ratio (over v) between
the maximum utilities that are obtained in mixed and pure strategies.

Definition 1. The price of purity POP (t, c) of a technology (t, c) is defined as
the worse ratio, over v, between the principal’s optimal utility in the mixed case
and his optimal utility in the pure case. Formally,

POP (t, c) = Supv>0

t(q∗(v))
(
v −

∑
i|q∗

i (v)>0
ci

Δi(q∗
−i(v))

)

t(S∗(v))
(
v −

∑
i∈S∗(v)

ci

Δi(a−i)

)

where S∗(v) denotes an optimal pure contract and q∗(v) denotes an optimal
mixed contract, for the value v.

The price of purity is at least 1, and may be greater than 1, as we later show.
Additionally, it is obtained at some value that is a transition point of the pure
case (a point in which the principal is indifferent between two optimal pure
contracts).

Lemma 2. For any technology (t, c), the price of purity is obtained at a finite
v that is a transition point between two optimal pure contracts.

2.1 Structured Technology Functions

In order to be more concrete, we next present technology functions whose struc-
ture can be described easily as being derived from independent agent tasks – we
call these structured technology functions. This subclass gives us some natural
examples of technology functions, and also provides a succinct and natural way
to represent technology success functions.

In a structured technology function, each individual succeeds or fails in his own
“task” independently. The project’s success or failure deterministically depends,
maybe in a complex way, on the set of successful sub-tasks. Thus we will assume
a monotone Boolean function f : {0, 1}n → {0, 1} which indicates whether the
project succeeds as a function of the success of the n agents’ tasks.

A structured technology function t is defined by t(a1, . . . , an) being the prob-
ability that f(x1, . . . , xn) = 1 where the bits x1, . . . , xn are chosen according
to the following distribution: if ai = 0 then xi = 1 with probability γi ∈ [0, 1)
(and xi = 0 with probability 1 − γi); otherwise, i.e. if ai = 1, then xi = 1 with
probability δi > γi (and xi = 0 with probability 1 − δi). Thus, a structured
technology is defined by n, f and the parameters {δi, γi}i∈N .

Let us consider two simple structured technology functions, “AND” and “OR”.
First consider the ”AND” technology: f(x1, . . . , xn) is the logical conjunction of
xi (f(x) =

∧
i∈N xi). Thus the project succeeds only if all agents succeed in

their tasks. For this technology, the probability of success is the product of the
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individual success probabilities. Agent i succeeds with probability δai

i · γ1−ai

i ,
thus t(a) =

∏
i∈N δai

i · γ1−ai

i .
Next, consider the ”OR” technology: f(x1, . . . , xn) is the logical disjunction

of xi (f(x) =
∨

i∈N xi). Thus the project succeeds if at least one of the agents
succeed in their tasks. For this technology, the probability of success is 1 minus
the probability that all of them fail. Agent i fails with probability (1 − δi)ai ·
(1 − γi)1−ai , thus t(a) = 1 −

∏
i∈N (1 − δi)ai · (1 − γi)1−ai .

These are just two simple examples. One can consider other more interesting
examples as the Majority function (the project succeed if the majority of the
agents are successful), or the OR-Of-ANDs technology, which is a disjunction
over conjunctions (several teams, the project succeed if all the agents in any one
of the teams are successful). For additional examples see [2].

A success function t is called anonymous if it is symmetric with respect to the
players. I.e. t(a1, . . . , an) depends only on

∑
i ai. For example, in an anonymous

OR technology there are parameters 1 > δ > γ > 0 such that each agent i
succeed with probability γ with no effort, and with probability δ > γ with effort.
If m agents exert effort, the success probability is 1 − (1 − δ)m · (1 − γ)n−m.

A technology has identical costs if there exists a c such that for any agent
i, ci = c. As in the case of identical costs the POP is independent of c, we
use POP (t) to denote the POP for technology t with identical costs. We abuse
notation and denote a technology with identical costs by its success function t.
Throughout the paper, unless explicitly stated otherwise, we assume identical
costs. A technology t with identical costs is anonymous if t is anonymous.

3 Example: Mixed Nash Outperforms Pure Nash!

If the actions are observable (henceforth, the observable-actions case), then an
agent that exerts effort is paid exactly his cost, and the principal’s utility equals
the social welfare. In this case, the social welfare in mixed strategies is a convex
combination of the social welfare in pure strategies; thus, it is clear that the op-
timal utility is always obtained in pure strategies. However, surprisingly enough,
in the hidden-actions case, the principal might gain higher utility when mixed
strategies are allowed. This is demonstrated in the following example:

Example 1. Consider an anonymous OR technology with two agents, where
c = 1, γ = γ1 = γ2 = 1 − δ1 = 1 − δ2 = 0.09 and v = 348. The mixed strategies
q1 = q2 = 0.92 achieve a utility of 324.27, while the optimal contract with pure
strategies is obtained when both agents exert effort and achieves a utility of 318.3.
This implies that by moving from pure strategies to mix strategies, one gains at
least 324.27/318.3 > 1.0187 factor improvement (which is approximately 1.8%).

A worse ratio exists for the more general case (in which it does not necessarily
hold that δ = 1 − γ) of γ = 0.0001, δ = 0.9 and v = 233. For this case we get
that the optimal pure contract is with one agent, gives utility of 208.7, while the
mixed contract q1 = q2 = 0.92 gives utility of 213.569, and the ratio is at least
1.0233 (approximately 2.3%).
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To complete the example, Diagram 1 presents the optimal contract for OR
of 2 agents, as a function of γ (when δ = 1 − γ) and v. It shows that for some
parameters of γ and v, the optimal contract is obtained when both agents exert
effort with equal probabilities.

γ

V

0 0.1 0.2 0.3 0.4 0.5

100

200

300

400

500

2 agents with equal prob. qγ,v ∈ (0, 1)

2 agents (with probabaility 1)

1 agent (with probabaility 1)

0 agents

Fig. 1. Optimal mixed contracts in OR technologies with 2 agents. The light area
corresponds to both agents exert effort with the same non-trivial probability, qγ,v . For
any fixed γ, qγ,v increases in v.

The following lemma shows that optimal mixed contracts in any anonymous
OR technology have this specific structure. That is, all agents that do not shirk,
mix with exactly the same probability.

Lemma 3. For any anonymous OR technology (any δ > γ, c, n) and value v,
either the optimal mixed contract is a pure contract, or, in the optimal mixed
contract k ∈ {2, . . . n} agents exert effort with equal probabilities q1 = . . . = qk ∈
(0, 1), and the rest of the agents exert no effort.

4 When Is Pure Nash Good Enough?

Next, we identify a class of technologies for which the price of purity is 1; that
is, the principal cannot improve his utility by moving from pure Nash equilib-
rium to mixed Nash equilibrium. These are technologies for which the marginal
contribution of any agent is non-decreasing in the effort of the other agents. For-
mally, for two pure action profiles a, b ∈ A we denote b � a if for all j, bj �j aj

(effort bj is at least as high as the effort aj).

Definition 2. A technology success function t exhibits (weakly) increasing re-
turns to scale (IRS) if for every i, and every pure profiles b � a

t(bi, b−i) − t(ai, b−i) ≥ t(bi, a−i) − t(ai, a−i)

Any AND technology exhibits IRS [10,2]. For IRS technologies we show that
POP=1.
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Theorem 1. Assume that t exhibits increasing returns to scale (IRS). For any
cost vector c, POP (t, c) = 1. Moreover, a non-degenerate mixed contract is
never optimal.

We show that AND (on some subset of bits) is the only function such that any
structured technology based on this function exhibits IRS, that is, this is the only
function such that for any choices of parameters (any n and any {δi, γi}i∈N),
the structured technology exhibits IRS. For any other Boolean function, there is
an assignment for the parameters such that the created structured technology is
essentially OR over 2 inputs (see lemma in full version), thus it has non-trivial
POP (recall Example 1).

Theorem 2. Let f be any monotone Boolean function with n ≥ 2 inputs, that
is not constant and not a conjunction of some subset of the input bits. Then
there exist parameters {γi, δi}n

i=1 such that the POP of the structured technology
with the above parameters (and identical cost c = 1) is greater than 1.0233.

Thus, our goal now is to give upper bounds on the POP for various technologies.

5 Quantifying the Gain by Mixing

5.1 POP for General Technologies

We first show that the POP can be bounded by the principal’s price of unac-
countability [2]. The principal’s price of unaccountability (POUP (t)) is the worse
ratio (over all v), of the utility of the principal in the observable-actions case,
and the utility of the principal in the hidden-actions case (see formal definition
of POUP in the full version).

Theorem 3. For any technology t is holds that POUP (t) ≥ POP (t).

However, this bound is rather weak. To best see this, note that the principal’s
price of unaccountability for AND might be unbounded (see [2]). Yet, as shown
in section 1, POP (AND) = 1.

In this section we provide better bounds on technologies with identical costs.
We begin by characterizing the payments for a mixed contract. We show that
under a mixed profile, each agent in the support of the contract is paid at
least the minimal payment to a single agent under a pure profile with the same
support, and at most the maximal payment.

For a mixed profile q = (q1, q2, . . . , qn), let S(q) be the support of q, that is,
i ∈ S(q) if and only if qi > 0. Similarly, for a pure profile a = (a1, a2, . . . , an) let
S(a) be the support a. Under the mixed profile q, agent i ∈ S(q) is being paid
pi(q−i) = ci

t(1,q−i)−t(0,q−i)
. Similarly, under the pure profile a, agent i ∈ S(a) is

being paid pi(S(a)\{i}) = pi(a−i) = ci

t(S(a))−t(S(a)\{i}) , where t(T ) is the success
probability when aj = 1 for j ∈ T , and aj = 0 for j /∈ T .

Lemma 4. For a mixed profile q = (q1, q2, . . . , qn), and for any agent i ∈ S(q)
let S−i = S(q) \ {i} be the support of q excluding i. It holds that
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maxT⊆S−i pi(T ) ≥ pi(q−i) ≥ minT⊆S−i pi(T )

In what follows, we consider two general families of technologies with n agents:
anonymous technologies and technologies that exhibit decreasing returns to scale
(DRS). DRS technologies are technologies with decreasing marginal contribution
(more effort by others decrease the contribution of an agent). For both families
we present a bound of n on the POP.

We begin with a formal definition of DRS technologies.

Definition 3. A technology success function t exhibits (weakly) decreasing re-
turns to scale (DRS) if for every i, and every b � a

t(bi, b−i) − t(ai, b−i) ≤ t(bi, a−i) − t(ai, a−i)

Theorem 4. For any anonymous technology or a (non-anonymous) technology
that exhibits DRS, it holds that POP (t) ≤ n.

We also prove a bound on the POP for any technology with 2 agents (even not
anonymous), and an improved bound for the anonymous case.

Theorem 5. For any technology t (even non-anonymous) with 2 agents, it holds
that POP (t) ≤ 2. If t is anonymous then POP (t) ≤ 3/2.

We do not provide bounds for any non-anonymous technology, this is left as an
open problem for future research.

Open Problem 1. Provide an upper bound on the POP for general
technologies.

As mentioned in the introduction, we believe that the obtained bounds are very
weak. In particular, we conjecture that there exists a constant C that bounds
the POP for any technology. Moreover, we believe that a non-anonymous OR
technology with 2 agents yields the highest possible POP. This motivates us to
explore the POP for the OR technology in more detail.

5.2 POP for the OR Technology

As any OR technology (even non-anonymous) exhibits DRS (see claim in the
full version), this implies a bound of n on the POP of the OR technology. Yet,
for anonymous OR technology we present improved bounds on the POP. In
particular, if γ = 1 − δ < 1/2 we can bound the POP by 1.154....

Theorem 6. For any anonymous OR technology with n agents:

1. If 1 > δ > γ > 0:
(a) POP ≤ 1−(1−δ)n

δ ≤ n − (n − 1)δ.
(b) POP goes to 1 as n goes to ∞ (for any fixed δ) or when δ goes to 1 (for

any fixed n ≥ 2).
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2. If 1
2 > γ = 1 − δ > 0:

(a) POP ≤ 2(3−2
√

3)
3(

√
3−2)

(= 1.154..).
(b) POP goes to 1 as γ goes to 0 or as γ goes to 1

2 (for any fixed n ≥ 2).

While the bounds for anonymous OR technologies for the case in which δ = 1−γ
are much better than the general bounds, they are still not tight. The highest
POP we were able to obtain by simulations was of 1.0233 for δ > γ, and 1.0187
for δ = 1 − γ (see Section 3 ), but deriving the exact bound analytically is left
as an open problem.

Open Problem 2. What is the POP for an anonymous OR technology? what
is it for a non-anonymous OR technology?

6 The Robustness of Mixed Nash Equilibria

In order to induce an agent i to truly mix between exerting effort and shirking,
pi must be equal exactly to ci/Δi(q−i) (see claim 2). Even under an increase
of ε in pi, agent i is no longer indifferent between ai = 0 and ai = 1, and
the equilibrium falls apart. This is in contrast to the pure case, in which any
pi ≥ ci

Δi(a−i)
will maintain the required equilibrium. This delicacy exhibits itself

through the robustness of the obtained equilibrium to deviations in coalitions
(as opposed to the unilateral deviations as in Nash). A ”strong equilibrium” [1]
requires that no subgroup of players (henceforth coalition) can coordinate a joint
deviation such that every member of the coalition strictly improves his utility.

Definition 4. A mixed strategy profile q ∈ [0, 1]n is a strong equilibrium (SE)
if there does not exist any coalition Γ ⊆ N and a strategy profile q′Γ ∈ ×i∈Γ [0, 1]
such that for any i ∈ Γ , ui(q′−Γ , qΓ ) > ui(q).

In [2] we show that under the payments that induce the pure strategy profile S∗

as the best pure Nash equilibrium (i.e., the pure Nash equilibrium that maximizes
the principal’s utility), S∗ is also a strong equilibrium. In contrast to the pure
case, we next show that any non-degenerate mixed Nash equilibrium q in which
there exist at least two agents that truly mix (i.e., ∃i �= j s.t. qi, qj ∈ (0, 1)), can
never be a strong equilibrium. This is because if the coalition Γ = {i|qi ∈ (0, 1)}
deviate to q′Γ in which each i ∈ Γ exerts effort with probability 1, each agent
i ∈ Γ strictly improves his utility.

Theorem 7. If the mixed optimal contract q includes at least two agents that
truly mix (∃i �= j s.t. qi, qj ∈ (0, 1)), then q is not a strong equilibrium.

In any OR technology, for example, it holds that in any non-degenerate mixed
equilibrium at least two agents truly mix (see lemma 3). Therefore, no non-
degenerate contract in the OR technology can be a strong equilibrium.

As generically a mixed Nash contract is not a strong equilibrium while a pure
Nash contract always is, if the pricipal wishes to induce a strong Nash equilibrium
(e.g., when the agents can coordinate their moves), he can restrict himself to
inducing a pure Nash equilibrium, and his loss from doing so is bounded by the
POP (see section 5).
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7 Algorithmic Aspects

The computational hardness of finding the optimal mixed contract depends on
the representation of the technology and how it is being accessed. For a black-
box access and for the special case of read-once networks, we generalize our
hardness results of the pure case [2] to the mixed case. The main open question
is whether it is possible to find the optimal mixed contract in polynomial time,
given a table representation of the technology (the optimal pure contract can be
found in polynomial time in this case). Our generalization theorems follow.

Theorem 8. Given as input a black box for a success function t (when the costs
are identical), and a value v, the number of queries that is needed, in the worst
case, to find the optimal mixed contract is exponential in n.

Even if the technology is a structured technology and further restricted to be the
source-pair reliability of a read-once network (see [2]), computing the optimal
mixed contract is hard.

Theorem 9. The optimal mixed contract problem for read once networks is #P -
hard (under Turing reductions).

Acknowledgments. The authors thank Robert Kleinberg for his help creating
the figure. This work is supported by the Israel Science Foundation, the USA-
Israel Binational Science Foundation, the Lady Davis Fellowship Trust, and by
a National Science Foundation grant number ANI-0331659.

References

1. R. Aumann. Acceptable Points in General Cooperative n-Person Games. In Con-
tributions to the Theory of Games, volume 4, 1959.

2. M. Babaioff, M. Feldman, and N. Nisan. Combinatorial agency. In the 7th ACM
conference on Electronic Commerce, pages 18–28, 2006.

3. Y. K. Che and S. W. Yoo. Optimal Incentives in Teams. American Economic
Review, 91:525–541, 2001.

4. M. Feldman, J. Chuang, I. Stoica, and S. Shenker. Hidden-Action in Multi-Hop
Routing. In ACM EC’05, pages 117-126, 2005.

5. B. Holmstrom. Moral Hazard in Teams. Bell Journal of Economics, 13:324–340,
1982.

6. H. Itoh. Incentives to Help Multi-Agent Situations. Econometrica, 59:611–636,
1991.

7. A. Mass-Colell, M. Whinston, and J. Green. Microeconomic Theory. Oxford Uni-
versity Press, 1995.

8. N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic
Behaviour, 35:166 – 196, 2001. A preliminary version appeared in STOC 1999.

9. R. Strausz. Moral hazard in sequential teams. Departmental Working Paper. Free
University of Berlin, 1996.

10. E. Winter. Incentives and Discrimination. American Economic Review, 94:764–
773, 2004.



The Sound of Silence: Mining Implicit Feedbacks

to Compute Reputation

Miko�laj Morzy1 and Adam Wierzbicki2,�

1 Institute of Computing Science
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Abstract. A reliable mechanism for scoring the reputation of sellers is
crucial for the development of a successful environment for customer-
to-customer e-commerce. Unfortunately, most C2C environments utilize
simple feedback-based reputation systems, that not only do not offer
sufficient protection from fraud, but tend to overestimate the reputation
of sellers by introducing a strong bias toward maximizing the volume of
sales at the expense of the quality of service.

In this paper we present a method that avoids the unfavorable phe-
nomenon of overestimating the reputation of sellers by using implicit
feedbacks. We introduce the notion of an implicit feedback and we pro-
pose two strategies for discovering implicit feedbacks. We perform a
twofold evaluation of our proposal. To demonstrate the existence of the
implicit feedback and to propose an advanced method of implicit feed-
back discovery we conduct experiments on a large volume of real-world
data acquired from an online auction site. Next, a game-theoretic ap-
proach is presented that uses simulation to show that the use of the
implicit feedback can improve a simple reputation system such as used
by eBay. Both the results of the simulation and the results of experi-
ments prove the validity and importance of using implicit feedbacks in
reputation scoring.

1 Introduction

Internet economy is doing very well. According to eMarketer, the e-commerce
market is steadily growing with annual gains reaching 25% in 2004 and 21% in
2005. The growth is broad-based and distributes almost equally among all cate-
gories of retail, travel and entertainment. Projection for the future is optimistic:
annual gains will continue to grow at a double-digit level reaching retail revenues
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of $139 billion in 2008 in the United States alone. Online auctions are among
the most popular and important e-commerce services. It is estimated that over
15% of all e-commerce sales can be attributed to online auctions. EBay, the
global leader in online auctions, has over 56 million active users (and over 95
million registered users). Annual transactions on eBay surpass $23 billion, with
approximately 12 million different items posted simultaneously on eBay at any
point in time and slightly less than 1 million transactions committed daily. This
immense marketplace for customer-to-customer e-commerce provides means for
anonymous and geographically dispersed users to seal retail transactions. But
an important question arises: how does one estimate the reputation of an anony-
mous business partner and how does one develop trust when there is hardly any
history of business contacts between any two partners?

A reliable reputation system is crucial for enabling a fair and credible en-
vironment for e-commerce activities. The quality of the reputation system di-
rectly affects the credibility of an online auction service and impacts the amount
of fraud present on the online auction market. Unfortunately, fraud is still the
main reason hindering further development of online auctions. According to Na-
tional Fraud Information Center, online auctions account for 42%1 of all regis-
tered complaints with an average loss of $1,155. The number of complaints grows
quickly (12,315 complaints in 2005 compared to 10,794 in 2004) as well as the
total loss ($13,863,003 in 2005 compared to $5,787,170 reportly lost in 2004).
Online auction fraud definitely outranks other popular types of scams. There-
fore, the reputation system used by an online auction site must be robust enough
to safeguard the online community of auction participants against fraudsters.

Devising a robust and fraud-free reputation system is difficult for various rea-
sons. Most importantly, the reputation system must take into consideration high
asymmetry between buyers and sellers in online auctions. These two classes of
auction participants are exposed to different types of risk. Sellers are almost
never threatened financially, because they can postpone the shipment of the
merchandise until the payment is delivered. Therefore, sellers are generally not
concerned with the reputation of their business partners. On the other hand,
buyers decide upon participation in an auction solely based on the reputation of
a seller. Furthermore, after delivering the payment buyers are still in hazard of
receiving no merchandise, or receiving merchandise of lower quality and incon-
sistent with the initial offer. From a buyer’s point of view, a credible estimation
of seller’s reputation is indispensable for secure and successful trade.

Most online auction sites use a simple feedback-based reputation system [10].
Typically, parties involved in a transaction mutually post feedbacks after the
transaction is committed. Each transaction can be judged as ’positive’, ’neutral’,
or ’negative’. The reputation of a user is simply the number of distinct partners
providing positive feedbacks minus the number of distinct partners providing
negative feedbacks. As pointed out in [5], such simple reputation system suffers
from numerous deficiencies, including the subjective nature of feedbacks and the

1 This number is grossly underestimated due to eBay’s reluctance to cooperate with
NFIC. NFIC estimates that the real number is closer to 70%.
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lack of transactional and social contexts. We identify yet another drawback of
feedback-based reputation systems: these systems do not account for psycholog-
ical motivation of users. Many users refrain from posting a neutral or negative
feedback in fear of retaliation, thus biasing the system into assigning overesti-
mated reputation scores. This phenomenon is manifested by high asymmetry
in feedbacks collected after auctions and, equally importantly, by high number
of auctions with no feedback provided. We believe that many of these missing
feedbacks convey implicit and unvoiced assessments of poor seller’s performance
which must be included in the computation of seller’s reputation to provide an
unbiased estimation of seller’s reliability.

In this paper we introduce the concept of an implicit feedback. Implicit feed-
back is a useful, actionable pattern hidden in large amounts of online auction
data. We mine the history of user feedbacks to discover missing feedbacks that
were left out purposely and we include these implicit feedbacks in reputation
scoring. We present an efficient and flexible strategy for identifying implicit
feedbacks and we compare it to a simple majority voting strategy. We present a
twofold experimental evaluation of our proposal using both game-theoretic sim-
ulation and experiments involving a large set of real-world data. The results of
conducted experiments clearly indicate an important impact of using implicit
feedbacks in reputation scoring. The paper is organized as follows. In Sect. 2
we present the related work on the subject. The existence and computational
feasibility of implicit feedback are presented in Sect. 3. Two strategies for discov-
ering implicit feedbacks are also presented. Section 4 contains the results of the
experimental evaluation of our proposal. In this section we show how a simple
reputation algorithm, such as used by eBay, can be greatly enhanced by using
the implicit feedback. The paper concludes in Sect. 5 with a summary and future
work agenda.

2 Related Work

Reputation systems [11] are trust management systems that are used to enable
trust between anonymous, heterogeneous, and geographically dispersed business
partners. One of the most important tasks of reputation systems is to provide an
economical incentive to behave honestly [2] and to reward participants for fair
behavior [7]. Among many definitions of trust, the one that is the most useful
in the context of online auctions is that trust is a subjective expectation that
other agents (i.e., buyers and sellers) will behave fairly [3,9]. In this context, fair
behavior is defined as carrying out the agreed transaction to the best of agent’s
ability. This definition of trust relates reputation systems to the theory of justice
that can be used to evaluate reputation systems. A reputation system works well
if all agents that behave fairly receive just payoffs.

One of the most well-known method to evaluate justice is the use of the Lorenz
curve and the Gini coefficient [4,6]. The Lorenz curve is a graphical representa-
tion of the ordered cumulative distribution function of a distribution of goods
(income, resources, etc.). Consider a set of n agents that receive shares of goods
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denoted by x1, . . . , xn. First, we need to sort the shares of agents incrementally,
receiving a permutation of shares xi1 , . . . , xin . From the resulting permutation
we take cumulative sums θi =

∑i
j=1 xij . These sums are sometimes normalized

by the sum of all shares, θn. The values of θi plotted against i form the Lorenz
curve. Note that if all shares xi are equal, then the Lorenz curve will be a straight
line. For unequal distributions, the Lorenz curve is convex. An idealized perfect
distribution of goods is given by θi = (i ∗ θn/n). The area between the Lorenz
curve and this perfect distribution line (normalized by 2θn) is known as the Gini
coefficient. We shall use the Gini coefficient as the measure of justice for the
evaluation of reputation system effectiveness.

3 Existence of Implicit Feedback

A close investigation of the distribution of feedbacks reveals a striking deviation.
The examined dataset contains data on a sample group of 10 000 buyers collected
over the period of six months. There are 656 376 committed auctions and 890 876
mutual feedbacks. Table 1 summarizes data statistics.

Table 1. Distribution of feedbacks

negative % neutral % positive %
∑

%

buyer 4318 1% 2877 0.6% 445 723 98.4% 452 918 69%
seller 2558 0.6% 553 0.1% 434 847 99.3% 437 948 66%

Buyers provided 452 918 feedbacks, which accounts for 69% of all examined
auctions. Note that over 30% of all auctions are not sealed with a feedback.
Almost all registered feedbacks are positive (98.4%), with only 1% of negative
and 0.6% neutral feedbacks. Similar characteristics can be observed for feedbacks
provided by sellers, although sellers are slightly less eager to provide a feedback in
general. Similar results are reported in [12], so we believe that such distribution
is quite typical for online auction sites. Table 1 presents a grossly optimistic view
of the quality of service offered by participants. There are two interesting points
to make. First, neutral feedback is missing, the scope for positive feedback ranges
from an open praise to the acknowledgement of a correct auction (but nothing
more), and negative feedback appears only when the quality of service becomes
totally unacceptable. Second, more than 30% of auctions did not finalize with
a feedback. In many of these auctions sellers conducted poorly, but the quality
of service was either bearable, or the buyer was intimidated and afraid of a
retaliatory negative feedback. In both cases the reputation of a seller should be
affected negatively. We refer to these purposely omitted feedbacks as implicit
feedbacks that indicate a seller’s performance that is unsatisfactory and not
deserving a praise, yet passable. Listening to these silent, unvoiced feedbacks
makes the reputation estimation more credible. Alas, current reputation systems
are not aware of the existence of implicit feedbacks and do not incorporate
implicit feedbacks into reputation scoring.
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Not every missing feedback should be regarded as an implicit assessment of
user’s performance. A feedback might be missing for various reasons, e.g., one of
the trading parties might be an unexperienced user who does not know how to
post a feedback. One simple strategy is to check the history of user’s feedback
and compute the ratio of user’s auctions for which a given user has posted a
feedback. If the majority of user’s auctions have been sealed with a feedback,
a missing feedback for a given auction might indicate a purposeful omission of
the feedback, i.e., an implicit feedback. We call this strategy the majority voting
strategy. We also devise a more complex and flexible cosine strategy presented
next. Let F (ui) = 〈f1, f2, . . . , fn〉 , fi ∈ {0, 1} be a chronologically ordered list
of feedback flags posted by the user ui, where fk = 0 denotes the fact that the
user ui did not provide a feedback for her k -th auction, and fk = 1 denotes
the fact that the user ui explicitly provided a feedback for her k -th auction.
We arbitrarily assume that the effect of each auction experience (either posi-
tive or negative) influences the next two auctions of a given user2. F (ui) can
be transformed into an ordered list of trigrams T (ui) = 〈t1, t2, . . . , tn−2〉, where
ti = fifi+1fi+2 is a binary concatenation of feedback flags for the i-th auction
with feedback flags for the consecutive two auctions. There are 23 = 8 possible
trigrams represented by binary numbers ranging from 000 (three consecutive
auctions do not have a feedback) to 111 (three consecutive auctions have a feed-
back). Thus, T (ui) can be represented as a vector T̄ (ui) =

[
t0i , . . . , t

7
i

]
, where tni

is the number of occurrences of the n-th trigram in T (ui). We perceive T̄ (ui)
as a condensed representation of feedback habits of the user ui. Having trans-
formed the original history of user feedbacks into an 8-dimensional vector we
can compare this vector to a template vector representing a user who almost
never provides a feedback for her auctions (in our experiments we have used the
template vector T̄ (0) = [1, 0.1, 0.1, 0.01, 0.1, 0.01, 0.01, 0], where three consecu-
tive auctions without a feedback have the weight 1, two missing feedbacks have
the weight 0.1, and one missing feedback has the weight 0.01). Let k -th auction
of the user ui does not have a feedback. First, we build F (ui) = 〈f1, f2, . . . , fk〉,
which is transformed into T (ui) = 〈t1, t2, . . . , tk−2〉, and the resulting list T (ui)
is transformed into the vector T̄ (ui). Next, we compute the Ochini coefficient
(the cosine similarity function) between T̄ (ui) and T̄ (0) as follows

Ochini(T̄ (ui), T̄ (0)) =
∑7

k=0 tki ∗ tk0√∑7
k=0(tki )2 ∗ ∑7

k=0(tk0)2

If Ochini(T̄ (ui), T̄ (0)) < β, where β is a user-defined threshold, we conclude
that the two vectors are similar and the omission of a feedback should not be
regarded as an implicit feedback.

Example 1. Let us assume a user u with the following list of feedback flags:
F (u) = 〈0, 1, 0, 1, 1, 0〉. The user u participated in six auctions and did not pro-
2 The authors acknowledge that the choice of three consecutive auctions as the range

of psychological influence of an auction outcome is arbitrary and the correctness of
this assumption remains open for discussion.
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vide feedback for three of them. We want to know if the last missing feedback is a
purposeful omission. First, the list of feedback flags F (u) is transformed into a list
of trigrams T (u) = 〈010, 101, 011, 110〉. Next, the list of trigrams is transformed
into a compact vector representation T̄ (u) = [0, 0, 1, 1, 0, 1, 1, 0]. The final result
is Ochini(T̄ (u), T̄ (0)) = 0.09. After a certain period of time the user u partici-
pates in more auctions and gains experience. Let us assume that, after a while,
the list of feedback flags for the user u is F (u) = 〈0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0〉.
We want to decide on the last missing feedback as being an implicit feedback.
The list of trigrams is T (u) = 〈010, 101, 011, 110, 101, 011, 111, 110, 101, 011, 110〉
and the vector representation is T̄ (u) = [0, 0, 1, 3, 0, 3, 3, 1]. Now the computa-
tion of the Ochini coefficient yields Ochini(T̄ (u), T̄ (0)) = 0.035. As can be seen,
this procedure is flexible and allows for temporal changes in feedback habits.

To prove the existence of the implicit feedback we begin by investigating the
distribution of the number of missing feedbacks per user (in this experiment we
include only buyers). The results of the experiment are depicted in Figure 1.
Interestingly, there are only a few buyers with more than 20 missing feedbacks.
This might indicate that most of the missing feedbacks are in fact purposeful
omissions, thus turning the missing feedbacks into implicit feedbacks. When
we have constrained our search to buyers who had participated in at least 10
auctions, the average percentage of missing feedbacks dropped to 11.6%, which
indicates that experienced users are even less likely to omit a feedback.
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Fig. 2. Ochini coefficient selectivity

Figure 2 presents the user selectivity depending on the value of the Ochini
coefficient. Recall that the Ochini coefficient represents the similarity between
a given user’s feedback vector and the template vector of a hypothetical ’I-
don’t-do-feedbacks’ user, with the values closer to 1 representing high similarity
and the values closer to 0 representing high dissimilarity. The figure presents
the percentage of users who would be considered as generally not providing
feedbacks, given the value of the Ochini coefficient threshold. For reasonable
values of the Ochini coefficient threshold (i.e., 0.5 and above) less than 10% of
buyers are regarded as reluctant to provide feedbacks, which means that their



The Sound of Silence: Mining Implicit Feedbacks to Compute Reputation 371

missing feedback would not be considered as implicit feedback. Again, this result
proves that for the majority of buyers a missing feedback is an important, yet
unvoiced, assessment of business partner’s performance.

4 Effectiveness of Using Implicit Feedback

To evaluate a reputation system it is necessary to find out how this system affects
the behavior of users and the outcome of user transactions. Ideally, we would
like to know whether a reputation system enables trust: all honest users should
trust other honest users and should be treated fairly by other honest users. On
the other hand, all dishonest users should not be trusted and therefore should
not participate in transactions. In this section we compare a simple reputation
algorithm, such as used by eBay, to a more complex algorithm that uses implicit
feedback. Section 4.1 presents the design of the simulator of online auctions. The
results of conducted simulations are reported in Sect. 4.2. The impact of implicit
feedback on real-world data is presented in Sect. 4.3.

4.1 The Simulator

Prior to starting the simulation we had to make a decision about a sufficiently re-
alistic, yet not too complex model of the auctioning system, of user behavior, and
of the reputation system. We choose to simulate the reputation system almost
totally faithfully, the only simplification is that we use only positive and negative
feedbacks. The behavior of a user is also realistic: the user takes into account
the reputation when choosing a business partner. The user also decides whether
she wishes to report or not, depending on the type of report. Users can cheat in
reports, as well as in transactions. Users may also use transaction strategies that
depend on the history of their individual interactions with other participants.

The auctioning system, on the other hand, has been simplified. We reflect that
the simulation of the entire auction process is unnecessary. Rather, we simulate the
selection of users using a random choice of a set of potential sellers. The choosing
user (i.e., the buyer) selects one of the sellers from among users with the highest
reputation in the set. The auction itself has also been simplified. We use a popular
game-theoretic model of an auction, namely, the iterated Prisoner’s Dilemma [1].

In the simulator, a number of agents that represent users interact with each
other. Each interaction represents an auction between a seller and a buyer. The
reputation system is maintained by a reputation server that is also used to
summarize the outcomes of agent interactions. Each agent is characterized by
the following parameters: r+, the probability that an agent will send a report
if it is positive, r−, the probability that an agent will send a report if it is
not positive, the chosen game strategy, the reputation threshold ρmin that is
used by some strategies, and the probability of cheating c, that is used by some
strategies. We can specify the number of agents and every agent can have distinct
parameters. However, we usually partition all agents into two sets that have the
same parameters, called the honest and dishonest agents.
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The two game strategies used in the simulations are: to cheat with the proba-
bility c or to play Tit-for-Tat with a reputation threshold ρmin. Tit-for-Tat is a
famous strategy for the iterated Prisoner’s Dilemma game. This strategy works
simply by repeating the move made by the other agent in the previous encounter.
If two agents meet for the first time, the classic Tit-for-Tat strategy forces the
agents to cooperate, thus allowing the agents to start an unending pattern of
honest transactions. We modify Tit-for-Tat to use a reputation threshold: if two
agents meet for the first time and the second agents’ reputation is below ρmin,
the first agent defects.

The server computes reputation scores using available feedbacks and using
any implemented algorithm. The results of the simulation include: reputation
scores of individual agents and the total payoffs (from all auctions) of every
agent. The payoffs are affected by the way the reputation system works. For
example, if agents post very few feedbacks, reputation scores will be generally
random, and the payoffs of good agents would drop. The simulator allows to
check whether the implemented reputation algorithm is effective. To verify the
concept of implicit feedbacks, we simulate the behavior of a simple reputation
algorithm that uses implicit feedbacks.

Consider a user u with the history of n auctions. Let us assume that only m ≤
n of these auctions have a feedback. Out of these m feedbacks m+ are positive
feedbacks, while m− = m − m+ are all other feedbacks. Thus, m+ ≤ m ≤ n.
The reputation ρu of the user u will be calculated as follows

ρu =
m+

α ∗ m− + m

where 0 ≤ α ≤ 1. Thus, if α = 0, the above reputation score becomes a simple
ratio of the number of positive feedbacks received by the user u. In the case
when the user u has had no auctions, the above formula is undefined. In such
case we set the reputation ρu to an initial value, ρ0. To be precise, in our sim-
ulations we use a slightly more complex version of the above algorithm. Since
agents in the simulator choose whom they want to interact with on the basis
of reputation scores, it is necessary to avoid that the reputation would drop
suddenly to a low level. This can happen in the initial phase of the simula-
tion, when the reputation score has not yet stabilized (initially, a single negative
feedback could decrease the initial reputation by a large degree). Therefore, we
use a moving average to smooth reputation changes. The smoothed reputation
ρma

u (t) = 0.5ρma
u (t−1) +ρu(t), where t is time, and ρma

u (0) = ρ0 - the smoothed
reputation is initialized by the initial reputation value. Note that over time,
the estimate converges to the formula for ρu (since the impact of the initial
reputation decreases exponentially).

4.2 Evalutation by Simulation

We have tested the algorithm described above using the following simulation
scenario. First, we have divided all 300 agents into two sets, the good agents
and the bad agents. Good agents were 66% of all agents, the remaining agents



The Sound of Silence: Mining Implicit Feedbacks to Compute Reputation 373

were bad agents. A good agent used the Tit-for-Tat strategy with the reputation
threshold of ρmin = 0.5. A bad agent used a strategy of random cheating with
probability c = 0.6. All agents had the same behavior with respect to feedbacks.
This behavior was a further parameter of the simulation scenarios. We used two
posting behaviors: perfect feedbacks, where all agents always posted feedback
truthfully, and poor feedbacks, where if the feedback was positive, an agent would
post it with probability r+ = 0.66, and if the feedback was not positive, an agent
would post it with probability r− = 0.05. All feedbacks were always true, if they
were sent. The parameters of the poor feedbacks were derived from the analysis
of traces obtained from the real-world data. In all simulations, 40 000 auctions
were simulated between the agents.

Together, there are three significant simulation scenarios: perfect reports with
reputation calculated using a simple ratio of positive feedbacks (a reputation
algorithm like described in the previous section, only with α = 0); poor reports
with a simple ratio; and poor reports with the reputation algorithm that uses
implicit feedbacks, with different settings for α.

All experiments were conducted using the Monte-Carlo method. We present
average results from 10 simulation runs, together with 95% confidence intervals
of results. The outcomes of the experiments were the payoffs of every agent. We
evaluate the effectiveness of a reputation system using the following criteria: the
average payoff of a good agent, the average payoff of a bad agent, and the Gini
coefficient of the payoffs of the good agents. The last criterion was introduced
as a way of evaluating the effectiveness of the reputation system in providing
fairness of the treatment of good agents.

The results of the simulations are summarized in Table 2. The first row in the
table corresponds to the perfect feedback scenario, where all agents always post
truthful feedbacks, and reputation is calculated using a simple ratio of positive
feedbacks. In this idealized scenario, the average payoff of good agents is the
highest, at 101.76 (the values of payoffs for a single auction were derived from
the payoff table of the Prisoner’s dilemma game). The average payoff of a bad
agent is much lower, at 22.66. This indicates that the reputation mechanism

Table 2. Impact of implicit feedback reputation algorithm on agent payoffs and justice

Scenario AVGP+a AVGP-b GC+c GCId AGPCIe

Perfect reports 101.76 22.66 0.70 0.63–0.76 100–103,5

Poor reports, α = 0 96.45 54.20 0.51 0.45–0.58 93.6–99.3

Poor reports, α = 0.05 99.08 23.03 0.75 0.66–0.85 96.1–102

Poor reports, α = 0.1 100.40 23.52 0.67 0.58–0.76 98.8–101.9

Poor reports, α = 0.2 100.74 22.64 0.74 0.66–0.82 98–103.4

a Average payoff of a good agent.
b Average payoff of a bad agent.
c Gini coefficient of good agents.
d Gini confidence interval (95%).
e Average good payoff confidence interval (95%).
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is working because cheating agents get punished by lower reputation. In these
simulations, the final reputation value of bad agents was almost always 0. The
Gini coefficient at about 0.7 will be treated as a reference level for further ex-
periments and values of the Gini coefficient above this level will be considered
unacceptable. The 95% confidence intervals for both the Gini coefficient and the
average payoff are quite narrow. The second row of the Table 2 shows the results
of the second simulation scenario. In this scenario, agents provided feedbacks
realistically, and the effect of this is an increase in the payoff of bad agents by al-
most 150%. In many simulations, bad agents managed to keep a high reputation
value, leading the good agents to trust them. This enabled bad agents to cheat
more good agents. As a result, the average payoff of good agents also decreased
significantly. This decrease is also visible in the confidence interval of payoffs of
good agents.

Further rows of the table show the impact of using implicit feedbacks. The
rows correspond to using the reputation algorithm described in the previous
section with different values of α. For all considered values of α, the payoffs of
bad agents dropped sharply, almost to the level achieved when agents reported
perfectly. This is the main argument for using implicit feedback: as our simula-
tions indicate, the use of implicit feedbacks is efficient in preventing cheating.
The payoffs of good agents also increased to a varying degree, but for all values
of α, the average payoff of a good agent was higher than when a simple ratio
of positive feedbacks was used as the reputation algorithm. On the basis of the
performed experiments, it seems that the value of α = 0.1 gave the best results.
For α = 0.2, the average payoffs of the good agents were higher, and the average
payoffs of bad agents were lower than for α = 0.1. However, the average Gini
coefficient was also higher. The reason for this may be that in the simulations,
good agents sent positive feedbacks randomly with a probability of 66%. It was
possible that a good agent would repeatedly get no positive feedback for her
cooperation with another good agent. This could result in decreasing the repu-
tation of the good agent, especially for higher values of α. The poor performance
of α = 0.05 can be explained by the fact that with such a low setting of α, the
reputation of bad agents did not decrease quickly enough. While our simulations
do not allow to choose the value of α that would be applicable in a real-world
scenario, they are sufficient to indicate that there should exist an optimal value
of α that is neither too high nor too low.

4.3 Evaluation by Mining

We conduct the experiments on a large body of real-world data acquired from
www.allegro.pl, the leading provider of online auctions in Poland. The exam-
ined dataset consists of 656 376 auctions collected over the period of six months.
The reputation of users is determined based on 890 876 mutual feedbacks pro-
vided by users. The dataset has been created by gathering all auctions of a seed
set of 10 000 buyers during a fixed period of six months.

Figure 3 presents the influence of implicit feedbacks discovered using the ma-
jority voting strategy on the reputation score. Users are ordered according to
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Fig. 4. Influence of missing feedbacks (co-
sine strategy

their rating computed traditionally and reported on the first y-axis. The second
y-axis represents the change in user’s reputation if implicit feedbacks are taken
into consideration. We give an implicit feedback the weight of 0.2 of the weight
of a negative feedback. On average, the reputation of users drops by 15% when
implicit feedbacks are included in reputation scoring. For many users the change
in reputation score is negligible, but there are users for whom the change is sig-
nificant. We believe that traditional reputation systems grossly overestimate the
reputation of these buyers and only incorporating the implicit feedback reveals
their poor performance. The results of a similar experiment are depicted in Fig-
ure 4. This time we use the cosine strategy with the Ochini coefficient threshold
β = 0.4. As can be easily noticed, the cosine strategy identifies more missing
feedbacks as implicit feedbacks, thus affecting the reputation scoring stronger
than the majority voting strategy. On average, the reputation of users drops by
17% when implicit feedbacks are included in reputation scoring. Of course, the
impact factor depends on the value of the Ochini coefficient threshold. It remains
to be seen which value of the threshold produces the most accurate and credible
identification of implicit feedbacks. The results of both experiments affirm the
practical usability and importance of using implicit feedbacks.

5 Conclusions

In this paper we have introduced the notion of the implicit feedback. To the best
of authors’ knowledge this is the first proposal to mine online auction data in
search of unvoiced assessments of other user performance. We have been able
to show that the use of implicit feedbacks in a reputation system can be effec-
tive. A simple reputation algorithm that used implicit feedbacks outperformed
the reputation algorithm used by eBay. Using implicit feedbacks prevents the
overestimation of reputation of dishonest auction participants, because negative
opinion about their performance, otherwise concealed by intimidated users, can
be used in reputation scoring. In this paper we have presented our initial findings
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on the impact of using implicit feedback with a simple reputation system. We
plan to extend our experiments on more complex reputation algorithms [8].
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running time of our mechanism, instead, is polynomial in the number n
of nodes and m of edges, and it is only a factor O(n α(n, n)) away from
the best known canonical centralized algorithm.

1 Introduction

The emergence of the Internet as the platform for distributed computing has
posed interesting questions on how to design efficient solutions which account
for the lack of a “central authority” [11,15,16]. This aspect is certainly a key
ingredient for the success of the Internet and, probably, of any “popular” system
that one can envision (peer-to-peer systems are a notable example of this type
of anarchic systems). In their seminal works, Koutsoupias and Papadimitriou
[11] and Nisan and Ronen [15], suggest a game-theoretic approach in which the
various “components” of the system are modeled as selfish agents: each agent
performs a “strategy” which results in the highest utility for him/her-self. For
instance, each agent may control a link of a communication network and each link
has a cost for transmitting (i.e., for using it). A protocol that wishes to establish
a minimum-cost path between two nodes would have to ask the agents for the
cost of the corresponding link [15,2]. An agent may thus find it to be in his/her
interest to lie about his/her costs (e.g., an agent might untruthfully report a very
high cost in order to induce the protocol to use an alternative link, and thus no
cost for the agent). Nisan and Ronen [15] propose a mechanism design approach
that combines an underlying algorithm (e.g., a shortest-path algorithm) with a
suitable payment function (e.g., how much we pay an agent for using his/her
link). The idea is to come up with a so called truthful mechanism, that is, a
combination of an algorithm with payments which guarantee that no agent can
improve his/her own utility by misreporting his/her piece of private information
(e.g., the cost of his/her link). Unfortunately, the design of truthful mechanisms
is far from trivial and known results, originally developed in the microeconomics
field [21,3,5,13], pose new algorithmic challenges which are the main subject of
algorithmic mechanism design (see e.g. [4]).

Some interesting classes of problems (including a family of mechanism design
graph problems considered here and in a number of works [15,7,6,10]) require the
underlying algorithm to be monotone (e.g., if the algorithm selects an edge then
it cannot drop this edge if its cost gets smaller and everything else remains the
same). Though this condition suffices for the existence of a truthful mechanism
[13,2], it is not clear how to guarantee this property nor how the corresponding
payment functions can be efficiently computed (see e.g. [9,14]).

Mu’Alem and Nisan [12] were the first to propose a general method for con-
structing monotone algorithms (and thus truthful mechanisms). Basically, their
approach consists of a set of “rules” to combine monotone algorithms so that the
final combination results in a monotone algorithm as well. As observed by Kao
et al. [10], the method in [12] does not provide an efficient way of computing
the payments. Kao et al. [10] then extend some of the techniques in [12] and
provide an efficient way for computing the corresponding payment functions.
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Kao et al.’s approach [10] represents a significant progress towards a general
technique which accounts for computational issues, though it cannot be applied
to some very basic graph problems (e.g., a problem recently tackled in [19] – we
discuss this issue more in detail below).

1.1 Our Contribution

In this work, we turn one of the main results in [12] into a general technique
for building optimal truthful mechanisms running in strongly polynomial time
(optimality refers to the quality of the computed solution). We show that the
entire mechanism can be obtained if one is able to express/write an algorithm
(for the corresponding optimization problem) as a “suitable combination” of
simpler ones (see Section 2 and Theorem 1 therein). Obviously, the resulting
mechanism is optimal and/or runs in strongly polynomial time if the algorithm
does. However, neither of these conditions is required by our technique to guar-
antee truthfulness. This approach applies to a wide class of mechanism design
graph problems, where each selfish agent corresponds to a weighted edge in a
graph (the weight of the edge is the cost of using that edge). Our technique can
deal with problems in which the cost function “underlying” the algorithm(s) is
any monotonically non-decreasing function in the edge weights of the graph (i.e.,
in the costs of the agents). Since this includes several non-utilitarian1 problems
(e.g., MIN-MAX optimization functions), the results in [12] extend “only par-
tially”, that is, truthfulness can be guaranteed but the payments computation
cannot be done “directly” by computing the “alternative” solution in which an
agent is removed from the input (see e.g. [15,9]). We indeed observe that, for
the problems considered in this work (see the discussion in Example 1), the pay-
ments computation is more complex than the case of monotonically increasing
optimization functions, which are assumed in both [12] (where the problem is
utilitarian) and in [10] (this assumption precedes Theorem 10 in [10] and the
applications therein consist exclusively of utilitarian graph problems).

In Section 3, we apply our technique to the minimum diameter spanning tree
problem and obtain the first (strongly polynomial-time) mechanism for it. For
this non-utilitarian MIN-MAX problem, no truthful mechanism was known, even
considering those running in exponential time (indeed, exact algorithms do not
necessarily yield truthful mechanisms – see [17]). Also, standard techniques for
payment computations may result in a running time which is not polynomial
in the size of the input graph (see discussion in Example 1). The overall run-
ning time of our mechanism is instead O(mn2 α(n, n)), and thus is only a factor
O(n α(n, n)) away from the best known algorithm for this problem [8], where
α(·, ·) is the classic inverse of the Ackermann’s function. For two-edge connected
graphs we also guarantee the voluntary participation condition, that is, no truth-
ful agent runs into a loss (see next section for a formal definition). The minimum

1 An optimization problem is called utilitarian if the goal is to minimize the sum
of all agents costs or, equivalently, to maximize the sum of all agents valuations.
Utilitarian graph problems have been studied in [15,9,10].
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diameter spanning tree has both theoretical and practical relevance (e.g., in a
peer-to-peer system we may want to set up a loop-free logical network using the
resources – links – of a physical network so that any two peers can communicate
efficiently).

The results for the minimum diameter spanning tree are paradigmatic of what
happens when considering certain non-utilitarian mechanism design problems
(another case is the minimum radius spanning tree problem [19] described in
Example 1). First, one has to determine whether an existing algorithm can be
turned into a truthful mechanism, whether a new one is needed, or if none can
serve for this purpose [15,2,19]. In case a suitable algorithm exists, one has to
find out how to compute the corresponding payments efficiently, possibly without
burdening the complexity of the chosen algorithm [9,19]. Our technique can be
used to give a positive answer to both questions, and thus to obtain the efficient
mechanism in “one shot” (see Theorem 1).

We discuss other possible extensions and applications of our technique in
Section 4 (these include a mechanism for the p-center graph problem and an im-
provement in the running time of the mechanism for the minimum radius in [19]).

1.2 Mechanism Design Graph Problems

Consider problems in which we are given a graph G = (V, E) and the set of
feasible outcomes consists of a suitable set O = O(G) which depends only on
the combinatorial structure of the graph (e.g., it consists of certain subgraphs of
G). We have one agent per edge and the type te ∈ �

+ of agent e is noth-
ing but the weight of edge e ∈ E. Each solution Y ∈ O uses a subset of
the edges of G; in particular, if Y uses edge e, then agent e has a cost (for
implementing this outcome) equal to te. This scenario is common to several
problems considered in the algorithmic mechanism design community: shortest-
path [15], minimum spanning tree [15], shortest-paths tree [7], minimum-radius
spanning tree [19]. Consider an agent e and let r−e denote the values reported
by the other agents, that is, r−e = (r1, . . . , re−1, re+1, . . . , rm). When agent e
reports x and the other agents report r−e, algorithm A computes a feasible out-
come A(x, r−e). (That is, the algorithm returns a solution on input the vector
(x, r−e) := (r1, . . . , re−1, x, re+1, . . . , rm).) We say that declaration x is a win-
ning declaration if solution A(x, r−e) uses edge e. A mechanism M = (A, P )
associates a payment Pe(x, r−e) with every agent e whose declaration x is a
winning declaration (given the other agents’ declarations r−e). This determines
the utility of agent e:

uM
e (x, r−e) :=

{
Pe(x, r−e) − te if A(x, r−e) uses e,
0 otherwise.

Mechanism M is a truthful mechanism (with dominant strategies) if every func-
tion uM

e (x, r−e) is maximized for x = te, for all r−e. We are interested in truth-
ful mechanisms which optimize some objective function μ(Y, t) depending on
the agents types t = (t1, . . . , tm). Notice that the mechanism will work on the
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reported types r. Hence, truthfulness guarantees that, if the algorithm returns
an optimal solution for the given input, then the mechanism outputs an optimal
solution w.r.t. the true types. We will also consider mechanisms which satisfy
the voluntary participation, that is, a truthful agent is guaranteed to have a non-
negative utility (i.e., uM

e (te, r−e) ≥ 0). This property will be achieved whenever
there exists an “alternative” solution that does not use edge e, i.e., O(G−e) �= ∅.

2 A Technique for Efficient Truthful Mechanisms

Our approach consists in defining an optimal algorithm A as a “suitable com-
bination” of simpler ones. For minimization problems, we combine algorithms
by means of the following ‘MIN’ operator, which is essentially the same as the
‘MAX’ operator by Mu’Alem and Nisan [12]:

MINμ(A1,A2) operator
• compute Y1 = A1(r) and Y2 = A2(r);
• if μ(Y1, r) ≤ μ(Y2, r) then return Y1 else return Y2.

We can recursively apply this operator to several algorithms and obtain a new
one:

MINμ(A1, . . . , Ak):=MINμ(MINμ(A1, . . . , Ak−1),Ak).

Notice that the ordering among the algorithms specifies how the new algorithm
breaks ties. Our main concern is to have a general technique for building truthful
mechanisms which optimize μ(·) and that are computationally efficient.

To this end, we will assume that each algorithm Ai satisfies a property (called
plateau-like) which is slightly stronger than the one (called bitonic) used in [12]:

Definition 1 (plateau-like algorithm). An algorithm A for a mechanism
design graph problem is monotone if, for all agents e, and for all r−e there
exists a threshold θe(r−e) ∈ (�+ ∪ ∞) such that (i) every x ≤ θe(r−e) is a
winning declaration and (ii) every x > θe(r−e) is not a winning declaration. A
monotone algorithm A is plateau-like w.r.t. μ(·) if, for all e, for all r−e, the
function gA(x) := μ(A(x, r−e), (x, r−e)) is non-decreasing in x and constant for
x > θe(r−e).

It is well known that an algorithm A can be turned into a truthful mechanism
(A, P ) if and only if A is monotone [13,2], in which case the payments are
uniquely2 determined by the thresholds:

Pe(x, r−e) =
{

θe(r−e) if A(x, r−e) uses e,
0 otherwise. (1)

2 If θe(r−e) = ∞, then we can set the payment of e to be any constant value and
guarantee truthfulness. This case arises if edge e will be always included by A, e.g.
for O(G−e) = ∅, in which case voluntary participation cannot be guaranteed (unless
we assume an upper bound on te). Otherwise, i.e. θe(r−e) < ∞, the only payments
which guarantee truthfulness are those in (1) [12] which then satisfy the voluntary
participation condition.
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Mu’Alem and Nisan [12] proved that, if all algorithms Ai are bitonic, then the al-
gorithm A = MINμ(A1, . . . , Ak) is monotone, and thus truthfulness can be guar-
anteed. Our main contribution here is a method for computing these payments
efficiently if we assume that the algorithms are plateau-like. This task is non-
trivial since the computation of the thresholds of a ‘MIN’ combination of algo-
rithms can be rather involved if μ(·) is not monotone increasing in x as in [12,10]:

Example 1 (Minimum Radius Spanning Tree (MRST)). Consider the problem
of computing the minimum radius spanning tree, that is, a tree rooted at some
node of the graph whose height is minimal. Consider the following simple graph
(left):

3

1 1

x

1 A2

A1

2

1

gAir = (x, r−e)

1 2
x

If Ai outputs a shortest paths tree rooted at node i and h(·) denotes the height
of any rooted tree, then both A := MINh(A1, A2) and A′ := MINh(A2, A1)
compute a MRST for this graph. However, the thresholds θe(r−e) and θ′e(r−e)
of the two algorithms are different. This is due to a different tie-breaking rule:
For 0 ≤ x ≤ 1, algorithms A1 and A2 have the same cost, i.e., gA1(x) = gA2(x);
hence,

A(x, r−e) =
{

A1(x, r−e) if x ≤ 1
A2(x, r−e) otherwise

while A′(x, r−e) = A2(x, r−e). Since A2 never uses edge e, while A1 uses this
edge for x ≤ 2, it turns out that θe(r−e) = 1 and θ′e(r−e) = 0.

Observe that, the threshold of algorithm MINh(A1, A2) is different from the
thresholds of the two algorithms. Its computation depends on the way the func-
tions gAi cross with each other, which in general can be quite involved (we have
to consider how n “stairway” functions intersect pairwise [19] and the order in
which we break ties). Finally, a binary search of this threshold may require a
time which depends on the edge weights (namely, the logarithm of the largest
reported type) and thus not strongly polynomial time, i.e., not polynomial in
the number of nodes and edges. �

We reduce the computation of the payment Pe(x, r−e) to the task of comput-
ing, for every algorithm Ai, three thresholds θi = θi

e(r−e), θ̂i = θ̂i
e(r−e) and

θ̆i = θ̆i
e(r−e). The value θi is the threshold in Def. 1 relative to algorithm

Ai. The other two thresholds are defined as follows. Since Ai is plateau-like,
gAi(x) = μ(Ai(x, r−e), (x, r−e)) is constant for all x > θi, where it also reaches its
maximum. Let gi be this maximum and let gmin := mini{gi}. We let inf{∅} = ∞
and define θ̂i, θ̆i ∈ (�+ ∪∞) as follows:

θ̂i := inf{x| gAi(x) ≥ gmin}; (2)

θ̆i := inf{x| gAi(x) > gmin}. (3)



Strongly Polynomial-Time Truthful Mechanisms in One Shot 383

Notice that the maximum gi can be easily computed knowing θi. This is the
main “additional” feature of plateau-like algorithms over bitonic ones. Intuitively
speaking, gmin is the minimum cost if we do not use edge e. Thus, the solution of
algorithm Ai will be selected only if its cost is better/not worse than this value
(depending on the used tie-breaking rule). The two thresholds in (2-3) say what
is the largest x for which this happens.

Our general approach for constructing computational efficient mechanisms
consists in rewriting algorithms as suggested by the following:

Definition 2 (MIN-reducible algorithm). An algorithm A is MIN-reducible
if it can be written as the ‘MIN’ of plateau-like algorithms. That is, there exist k
algorithms A1, . . . , Ak such that A = MINμ(A1, . . . , Ak) and each algorithm Ai

is plateau-like w.r.t. μ(·). Such an algorithm A is MIN-reducible in τ time if,
for every input r, it is possible to compute all thresholds θi

e(r−e), θ̂i
e(r−e) and

θ̆i
e(r−e) in at most τ time steps, for all 1 ≤ i ≤ k and for all edges e used by A(r).

The following result provides a powerful tool for designing efficient truthful mech-
anisms:

Theorem 1. If algorithm A is MIN-reducible in O(τ) time, then there exist
payment functions P such that (A, P ) is a truthful mechanism and all payments
Pe(x, r−e) can be computed in O(τ + k(τμ + N)) time, where τμ is the time to
compute μ(·) and N is the number of used agents/edges.

Proof Sketch. The first part of the theorem follows from a result by Mu’Alem
and Nisan [12]. In order to prove the second part, we simply show that, given
the values θi, θ̂i and θ̆i, it is possible to compute θe(r−e) in O(k) time after the
following preprocessing requiring O(k·τμ) time. First of all, we compute the index
imin of the first algorithm Ai such that gi = gmin. This requires O(k · τμ) time
for computing all gi, and from that the computation of gmin and imin requires
O(k) time. (Recall that gi = gAi(x) for any x > θi.) Then we prove the following
identity (see the full version [17] for the proof):

θe(r−e) = max{θimin , max{θ̂i| i > imin}, max{θ̆i| i < imin}}. (4)

Obviously, if we know θ̂i, θ̆i and imin, then the above equality says that a single
θe(r−e) can be computed in time linear in k. From (1) we need to compute the
payments only for the N edges used in A(r). In this way, by Definition 2, the
overall computation of all such Pe(x, r−e) takes O(τ + k · τμ + k · N) time.

3 The Minimum Diameter Spanning Tree Problem

In the minimum diameter spanning tree (MDST) problem we are given a
weighted undirected graph and the goal is to find a spanning tree which mini-
mizes the longest path between any two nodes in that tree (the length of a path
is the sum of the weights of its edges). In this section we study the corresponding
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mechanism design graph problem. Formally, given a graph G = (V, E), the set
O(G) of feasible solutions consists of all spanning trees; the set of used edges
naturally consists of all edges in the tree, and the goal is to find a tree T of
minimum diameter, that is, a tree such that the length of a maximum-length
simple path in T is minimum. We denote this value by d(G, t). Consider the
following graph:

2 3

1

1 1

te

4 5
10 10

For all te ≤ 9, any spanning tree is a MDST since, according to the edge weights
t in the picture, the maximum-length simple path is the upper one and this path
appears in any spanning tree. Unfortunately, the fact that an algorithm is exact
for the MDST problem is not sufficient for obtaining a truthful mechanism. A
well-known result by Myerson [13] (see also Archer and Tardos [2]) states that,
for our problem, truthfulness can be achieved only if the algorithm is monotone
(see Def. 1). It is possible to show that exact algorithms need not lead to truthful
mechanisms (see [17] for the details).

In the sequel we will show that there exists an efficient polynomial-time al-
gorithm for the MDST problem which is monotone and such that the payments
can be computed efficiently. Both results follow from our main technique (The-
orem 1).

3.1 A MIN-Reducible Algorithm for the MDST Problem

The computation of a MDST of a given graph can be reduced to the computation
of a shortest paths tree rooted at the absolute 1-center (simply center, in the
following) of G [8]. Loosely speaking, the center of a graph is a point c located
on an edge (or on one of its endpoints) such that the distance from c to the
farthest node is minimized. In particular, all edges are rectifiable, meaning that
any point c on edge f = (u, v) can be specified as a pair c = (f, λ) with λ ∈ [0, 1];
in this case, we obtain a new graph Gc where edge (u, v) is replaced by two edges
(u, c) and (v, c); their weights are uc := λte and vc := (1 − λ)te, respectively.
(Notice that we consider each edge as an ordered pair of vertices.) Given a point
c on f , one can build a spanning tree Tc of G by computing a shortest paths
tree of Gc rooted at c, and then by replacing edges incident to c with the edge
(u, v). Trivially, the tree Tc has diameter at most 2hλ

f (t).3 We let h∗
f (t) be the

minimum height among all shortest paths trees rooted at some point on f , that
is, h∗

f (t) := minλ∈[0,1] h
λ
f (t). Our building block is the following algorithm which

computes the relative center of edge f for the reported input r, namely, a point
c = (f, λ) minimizing hλ

f (r):

3 Formally, the tree Tc is obtained by removing c from the shortest paths tree and by
adding back edge (u, v), unless c is sitting on one of the endpoints of (u, v) and is
not connected to the other endpoint.
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Algorithm CENTERf

• compute the minimum λ ∈ [0, 1] such that hλ
f (r) = h∗

f (r);
• compute the tree Tc for c = (f, λ) and edge weights r;
• return Y = (Tc, c). /* return the tree Tc associated with the SPT and the
center */

Since it holds that d(G, r)/2 = h∗(r) := minf∈E h∗
f (r) [8], we can compute a

MDST by searching through all relative centers of G for a best possible position
of the center:

AMDST := MINh(CENTERe1 , . . . , CENTERem),

where e1, . . . , em denote the edges of G in some arbitrary order (independent
of the agents’ bids). We stress that a MDST cannot be obtained by restricting
the computation of the relative center to one of the endpoints of edge f , that is,
by considering only the vertices as possible center locations. This will produce a
minimum radius spanning tree, instead, and thus the mechanism in [19] cannot
be used here.

The following result, combined with Theorem 1, implies the existence of a
truthful mechanism for the MDST (see the full version [17] for the proof).

Theorem 2. Algorithm AMDST is MIN-reducible and, on input a graph G with
edge weights r, it returns a MDST and an absolute center for this input. This
computation requires O(mn α(n, n)) time.

We need one more step to guarantee that payments can be computed in strongly
polynomial time. One of our major technical contributions is to show that the
“MIN-reduction” can be done efficiently:

Theorem 3. Algorithm AMDST is MIN-reducible in O(mn2 α(n, n)) time.

Efficient Computations via Upper/Lower Envelopes (Proof Idea of Theorem 3).
Let δu,v(G, r) be the (shortest path) distance from node u to node v in a graph
G with weights r. We compute the distances δu,v(G, r) and δu,v(G− e, r−e), for
all nodes u and v, and for all edges e used by the computed solution. Using
the O(mn log α(m, n))-time all-pairs shortest paths algorithm by Pettie and Ra-
machandran [18], this step takes O(mn2 log α(m, n)) time. (We have n graphs
in total since the computed solution uses n − 1 edges.) This term is dominated
by O(mn2α(n, n)).

In the remaining of this section, we fix an edge e, and r−e, and an algorithm
Ai = CENTERf , and we show how to compute the thresholds θi

e(r−e), θ̂i
e(r−e)

and θ̆i
e(r−e) in O(n α(n, n)) time. This implies Theorem 3 since there are m

algorithms and n − 1 agents/edges e used by the computed solution.
At the heart of the proof is an efficient method for computing, for any edge

f = (u, v), the following function in O(n α(n, n)) time:

F̂ (�) := inf{x| h∗
f (x, r−e) ≥ �}. (5)
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This value can be computed by considering the lower envelope of n functions
f̂z(�, λ), one for each node z, defined as follows. The value f̂z(�, λ) is the infimum
value x for re such that the distance from a fixed center c = (f, λ) to node z is
at least �. (Recall that x is the weight of edge e.) Such distance is the minimum
of the following two functions, one for the path through u and one for the path
through v:

upathλ(x) := λrf + min{x + δu,z(G, (0, r−e)), δu,z(G − e, r−e)}; (6)
vpathλ(x) := (1 − λ)rf + min{x + δv,z(G, (0, r−e)), δv,z(G − e, r−e)}. (7)

These two functions are of the form λrf +min{x+a, b} and (1−λ)rf +min{x+
a′, b′}, respectively (see Fig. 1(left)).

f̂z(�, λ)

∞

λ
λrf + a

x

(1 − λ)rf + a′

�

vpathλ

upathλ

f̂z(�, λ)

Fig. 1. From shortest paths distances to upper envelopes

We let f̂z(�, λ) = ∞ (respectively f̂z(�, λ) = 0) if, for all x, one function is
below � (respectively, both functions are not below �). Otherwise, f̂z(�, λ) is the x
coordinate of the point where the lowest (i.e., smaller for x = 0) of the functions
in (6-7) intersects with the limit �. Notice that, when increasing λ by one unit,
the two functions (6-7) move by rf units as shown in Fig. 1(left). Hence, the
point moves accordingly and thus the function f̂z(�, λ) can be fully specified
by two slanted segments as in Fig. 1(right). Each slanted segment is obtained
by considering the intersection of each function in Fig. 1(left) with the limit �.
Hence, f̂z(�, λ) is the dotted curve in Fig. 1(right) which is given by the upper
envelope of the two solid curves in Fig. 1(right) (see [17] for the details).

In order to compute F̂ (�), we consider f̂(�, λ) := minz{f̂z(�, λ)} and observe
that F̂ (�) = supλ∈[0,1] f̂(�, λ). The actual computation of F̂ (�) consists in deter-
mining the lower envelope of all functions f̂z(�, ·) and then finding its maximum
for λ ∈ [0, 1]. Since the functions f̂z(�, ·) intersect pairwise in at most one point,
this requires O(n α(n, n)) time using Agarwal and Sharir [1] approach, once the
segments of each function have been computed. The latter can be obtained from
the pre-computed distances using (6-7). Moreover, these distances allow us to
compute the solution of algorithm Ai = CENTERf and the values gi and gmin,
still in O(n α(n, n)) time. From the first step of CENTERf and from (2) we ob-
tain the following two identities, respectively: (i) θi

e(r−e) = inf{x| h∗
f (x, r−e) ≥

gi} = F̂ (gi); (ii) θ̂i
e(r−e) = inf{x| h∗

f (x, r−e) ≥ gmin} = F̂ (gmin). Since the
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threshold θ̆i
e(r−e) can be computed with a very similar approach, each of the

O(mn) thresholds can be computed in O(n α(n, n)) time (see [17] for the de-
tails). Hence, Theorem 3 follows.

From Theorems 1, 2, and 3 we obtain the following:

Corollary 1. There exists an O(mn2 α(n, n))-time truthful mechanism for the
MDST problem.

4 Conclusions

We have described a general approach for building truthful mechanisms running
in strongly polynomial time based on the ‘MIN’ operator defined by Mu’Alem and
Nisan [12]. This is similar to what Kao et al. [10] propose, though their method
for computing the payments assumes that each function gAi(x) is monotonically
increasing in x < θe(r−e) (see the assumptions preceding Theorem 10 in [10]).
This is too restrictive as the optimization functions used in the MRST and
MDST do not fulfill this requirement and payments obtained from [10] do not
guarantee truthfulness in these cases (in Example 1, their approach would ignore
the tie-breaking rule among the algorithms).

Our technique has a very natural application to the MDST problem where
the underlying algorithm in [8] optimizing the diameter d(·) can be rewritten
as a ‘MIN’ combination of m algorithms optimizing a different function h(·),
i.e., the height of a SPT rooted at the relative center of an edge. Although the
results have been presented for mechanism design graph problems, they apply
to a more general framework in which the agent valuations are either 0 or te,
that is, to the known single minded bidders in [12] or, equivalently, to the binary
demand games in [10]. The fact that we require plateau-like algorithms (instead
of bitonic ones in [12]) does not directly prevent from optimal solutions (any
bitonic algorithm minimizing the function μ(·) is automatically plateau-like).
Voluntary participation is guaranteed if optimal algorithms must drop an agent
when its cost becomes too high. We can also obtain a strongly polynomial time
truthful mechanism for the p-center graph problem [20] (in addition to the loca-
tion of the p centers, we want to compute the associated trees), for any constant
p. Notice that the problem is NP-hard for arbitrary p [20]. For the MRST, our
method yields a mechanism which improves slightly the running time in [19].
(Details on both these problems are given in the full version [17].)

An interesting future direction is to apply our technique to NP-hard prob-
lems to obtain truthful approximation mechanisms (this was done in [10] for
problems maximizing the welfare, i.e., the sum of all agents costs which obvi-
ously meet the “monotone increasing” requirement). According to Theorem 1,
it suffices to show that an approximation algorithm is MIN-reducible in polyno-
mial time. An interesting question here is whether the approximation ratio of
the “best” approximation polynomial-time algorithm can be attained by some
truthful polynomial-time mechanism.

Notice that our positive results cannot be extended to the case in which an
agent owns several edges of a graph (these problems can model certain scheduling
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problems for which no exact truthful mechanism exists [15,2], while an extension
of Theorem 1 would imply such an exact mechanism).

References

1. P.K. Agarwal and M. Sharir. Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, New York, 1995.
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Abstract. In many decentralized labor markets, job candidates are of-
fered positions at very early stages in the hiring process. It has been argued
that these early offers are an effect of the competition between employers
for the best candidate. This work studies the timing of offers in a theoreti-
cal model based on the classical secretary problem. We consider a secretary
problem with multiple employers and study the equilibria of the induced
game. Our results confirm the observation of early offers in labor markets:
for several classes of strategies based on optimal stopping theory, as the
number of employers grows, the timing of the earliest offer decreases.

1 Introduction

An essential feature of many modern markets, particularly networked markets, is
that they are online: information about agents, goods, and outcomes is revealed
over time, and the agents must make irrevocable decisions before all of the
information is revealed. A powerful tool for analyzing such scenarios is optimal
stopping theory, the theory of problems which require optimizing an objective
function over the space of stopping rules for a stochastic process. By combining
optimal stopping theory with game theory, we can model the actions of rational
agents applying competing stopping rules in an online market.

Perhaps the best-known optimal stopping problem is the secretary problem,
also known as the best-choice problem or marriage problem. This problem was
introduced in the 1960’s as a model for studying online selection processes in the
presence of a randomly ordered input. In the most basic version of the secretary
problem, a decision-maker observes a sequence of elements of a totally-ordered
set, presented in random order. At any time the decision-maker may stop the
sequence and select the most recently presented element, with the objective of
maximizing the probability of selecting the minimum element of the entire set.
Dynkin [1] determined the optimal stopping rule for this problem and proved
that its probability of success approaches 1/e as the size of the set tends to
infinity. A myriad of subsequent papers have extended the problem by varying
the objective function, varying the information available to the decision-maker,
allowing for multiple choices, and so on, e.g. [2,3,4].
� Supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.
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Another line of work (see [5] for a survey) extends the secretary problem by
studying scenarios in which two players compete to select the minimum element
of a randomly-ordered sequence. If the original secretary problem can be thought
of as the decision problem faced by an employer interviewing candidates for a
job, then this variant should be thought of as the strategic problem faced by
two employers interviewing the same sequence of candidates, when only one of
them can hire the best candidate. Papers in this area differ in their assumptions
about the game’s payoff structure and about the ways in which conflicts (both
players making an offer at the same time) are resolved. For example, Dynkin [6]
proves a minimax theorem and characterizes the game value for a zero-sum
version of the game in which conflicts are avoided by stipulating that in each
step of the game, only one player is allowed to make an offer. Szajowski studies
zero-sum stopping games with a tie-breaking rule which always gives priority
to Player 1 [7] or which gives priority to a player chosen by a (possibly biased)
random lottery [8]. A non-zero-sum version of the two-player game with unbiased
random tie-breaking was studied by Fushimi [9], who observed that although the
game is symmetric, the only pure Nash equilibria are asymmetric. Non-zero-sum
stopping games in which Player 1 always receives priority [10,11] or in which
priority is granted by a (possibly biased) random lottery [12] have also been
studied. As far as we are aware, all of the prior work studies equilibria of the
resulting games when just two employers compete.

In this paper, we first present our own variant of the two-employer game,
providing a new derivation of the resulting symmetric two-player mixed-Nash
equilibrium, and then proceed to study k-employer extensions of our game. One
of the properties of any strategy for the employer game is its threshold time,
defined as the largest fraction τ such that the strategy is guaranteed not to make
an offer to any of the first τ candidates, no matter what the player observes nor
what the other players do. We show that in any pure Nash equilibrium of the
k-employer game, at least one of the players has a threshold time τ ≤ 2/k.
This fact follows from a theorem which generalizes a striking feature of the one-
player secretary problem: in any pure Nash equilibrium, the player with the
earliest threshold time r1 has probability exactly r1 of winning the game. (In
the one-player case, this specializes to the familiar fact that 1/e is both the
probability of winning and the optimal threshold value.)

Next we consider a more realistic version of the game, in which the players are
allowed to use adaptive strategies which base their decisions on the opponent’s
past actions as well as the public information revealed thus far. This defines a
multi-player stochastic game. We describe the unique subgame perfect mixed
Nash equilibrium of this game as the solution of a dynamic program. Using
properties of the dynamic program, we prove that the timing of the first offer
converges to zero as the number of players tends to infinity. More precisely, every
player’s threshold time is at most 1/k.

In many labor markets, competition between employers often leads to an
“unraveling” effect: employers wishing to attract the best candidates make early
offers with short expirations. Such effects are quite pronounced in many markets.



Secretary Problems with Competing Employers 391

In the market for law clerks, offers are made to candidates as early as the second
year of law school, a full two years before graduations [13]. For a survey of
markets which exhibit unraveling effects, see [14]. Our results can be interpreted
as a theoretical justification for these unraveling effects. Namely, as the number
of employers grows, our results confirm that the timing of the earliest offer in an
equilibrium decreases.

2 Preliminaries

In this section we define a discrete-time and a continuous-time version of the
game. The discrete-time version is conceptually simpler whereas the continuous-
time version is more analytically tractable.

In the discrete-time game, we are given a totally-ordered set U = {x1 ≺ x2 ≺
. . . ≺ xn}, (representing the secretaries in decreasing order of value) and a set of
k ≥ 1 players (representing the employers). A random bijection Z : U → [n] is
chosen (representing the order in which the secretaries will be interviewed), but
Z is not initially revealed to the players. (Here and throughout this paper, when
m is a natural number we use [m] to denote the set {1, 2, . . . , m}.) As the game
proceeds, each player is in a state which is either active or inactive; all players
are initially active. At time t = 1, 2, . . . , n, the relative ordering of the elements
Z−1(1), Z−1(2), . . . , Z−1(t) is revealed to the players. Each active player then
chooses an action from the set {O, P}, whose elements are referred to as “offer”
and “pass”, respectively. If one or more active players chooses to offer, then one
of these players (chosen uniformly at random) receives the element x = Z−1(t)
and becomes inactive; this player is denoted by χ(x). The others remain active.
If all active players choose to pass at time t, then all of them remain active and
no player receives x. Each player is informed of the actions of all other players
and of the identity of player χ(x), if defined. At the end of the game, all players
receive a payoff of 0 except for χ(x1) (if defined) who receives a payoff of 1.

The continuous-time variant of the game intuitively captures the limit of the
discrete game as n tends to infinity. In most of this paper, we work on the
continuous model, as this model hides details like integrality in our computations,
hence making the computations cleaner, while still capturing the main ideas. It
is not hard to generalize our results in the continuous model to the discrete
model by incurring an additive error of o(1); the details of this generalization is
omitted from this extended abstract.

We now give an informal definition of the continuous-time model. The rigorous
definition requires technical details and is deferred to the full version of the paper.
In the continuous-time game, U = N and ≺ denotes the usual ordering of N

(hence the best element x1 is 1). Each element x has an arrival time Z(x) picked
independently and uniformly at random from [0, 1]. Each player i has a (possibly
randomized) strategy Si, which at any time t ∈ [0, 1] specifies whether or not
player i makes an offer to the element arriving at time t (if any).1 In general,
1 Note that we can ignore zero-probability events such as the arrival of two elements

at the exact same time.
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Si(t) can depend on all the information revealed before time t (i.e., the ordering
of the elements that have arrived by time t, and the offer/pass decisions made by
other players before time t). We call such strategies adaptive. A simpler class of
strategies, which correspond to stopping rules, are non-adaptive strategies and
are defined as follows. For each r ∈ [0, 1], the non-adaptive strategy with threshold
time r is the strategy which makes an offer to every element observed after time
r which outranks the best element arriving before time r, until it receives one of
these elements and passes on all subsequent ones.

3 Analysis of Non-adaptive Strategies

3.1 Two Players

We begin our discussion with a warmup involving the computation of equilibria
in the two-player game. We will work in the continuous-time model with U = N.

Pure Strategies. Our first calculation characterizes the set of pure strategy
Nash equilibria. Our analysis is quite similar to that of Fushimi [9]. The difference
in the results stems from the fact that our process continues until time t =
n unless both players make successful offers, whereas in Fushimi’s model the
process stops if both employers make an offer to a single element simultaneously.

Assume that players 1 and 2 use the non-adaptive pure strategies r, s, respec-
tively. Let Y denote the following random subset of U :

Y = {y ∈ U |Z(y) < Z(x1)},
and let y1 ≺ y2 denote the two minimum elements of Y . We can then compute
the resulting expected payoff to player 2 as follows.

Case 1 (s > r): Then player 2 wins if either

1. Player 1’s earlier threshold caused him to make a sub-optimal offer, and
player 2 made an offer to the best element: Z(x1) > s and r < Z(y1) ≤ s.

2. Both players made an offer to the best element, and player 2 won the coin
toss: Z(x1) > s and Z(y1) ≤ r and χ(x1) = 2.

3. Both players made offers to the same sub-optimal element, but player 2
lost the coin toss and then proceeded to make an offer to the best element:
Z(x1) > s and Z(y1) > s and Z(y2) ≤ r and χ(y1) = 1.

Conditioned on the arrival time t = Z(x1) of the best element, the random
variables Z(y1), Z(y2) are independently uniformly distributed in [0, t]. There-
fore the probabilities of the three events listed above are respectively

∫ 1

s
s−r

t dt,
1
2

∫ 1

s
r
t dt, and 1

2

∫ 1

s

(
t−s

t

) (
r
t

)
dt, and their sum integrates to s ln

(
1
s

) − r(1−s)
2 .

Case 2 (s ≤ r): Then player 2 wins if either

1. The best element arrives between the two thresholds and player 2 makes an
offer: s < Z(x1) ≤ r and Z(y1) ≤ s.
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2. Both players make an offer to the best element, and player 2 wins the coin
toss: Z(x1) > r and Z(y1) ≤ s and χ(x1) = 2.

3. Both players made offers to the same sub-optimal element, but player 2
lost the coin toss and then proceeded to make an offer to the best element:
Z(x1) > r and Z(y1) > r and Z(y2) ≤ s and χ(y1) = 1.

The probabilities of the three events listed above are respectively
∫ r

s
s
t dt,

1
2

∫ 1

r
s
t dt, and 1

2

∫ 1

r

(
t−r

t

) (
s
t

)
dt, and their sum integrates to s ln

(
1
s

) − s(1−r)
2 .

Hence, when players 1 and 2 play the pure strategies r, s, respectively, the
expected payoff to player 2 is

f(s) =
{

s ln(1/s) − s(1 − r)/2 if s ≤ r
s ln(1/s) − r(1 − s)/2 if s ≥ r

(1)

and the derivative of the expected payoff is

f ′(s) =
{

ln(1/s) − 3/2 + r/2 if s < r
ln(1/s) − 1 + r/2 if s > r

(2)

Let s−(r), s+(r) denote the best responses to r in the intervals [0, r] and [r, 1],
respectively. It follows from (2) that

s−(r) =
{

er/2−3/2 if ln(1/r) − 3/2 + r/2 < 0
r otherwise

(3)

s+(r) =
{

er/2−1 if ln(1/r) − 1 + r/2 > 0
r otherwise

(4)

By symmetry, player 1’s best response function is identical. It follows easily from
(3) and (4) that there is a pure Nash equilibrium (r, s) where r = 0.27557...
satisfies 2 ln(r) + 3 = exp

(
r
2 − 1

)
and s = 0.42222... satisfies 2 ln(s) + 2 =

exp
(

s
2 − 3

2

)
. In fact, (3) and (4) imply that the only two pure Nash equilibria

are (r, s) and (s, r).

Mixed Strategies. The two-player game with non-adaptive strategies also has
a symmetric mixed Nash equilibrium which we may compute explicitly. If player
1’s choice of r is a random variable with density function ν(r) then we find, using
(1), that player 2’s expected payoff from playing strategy s is:

f(s)=
∫ s

0

[

s ln
(

1
s

)

− s(1 − r)
2

]

ν(r) dr +
∫ 1

s

[

s ln
(

1
s

)

− r(1 − s)
2

]

ν(r) dr,

and from (2) we obtain:

f ′(s) = ln
(

1
s

)

− 1 + E

(r

2

)
− 1

2
Pr(r ≥ s). (5)

Let us assume that s has positive probability density in an interval (s0, s1) and
zero probability of lying outside [s0, s1]. Then every s ∈ [s0, s1] is a best response
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to player 1’s mixed strategy, so f ′(s) = 0 for s ∈ [s0, s1]. Since we are assuming
a symmetric mixed Nash equilibrium, r also has zero probability of lying outside
[s0, s1], i.e. Pr(r ≥ s0) = 1, Pr(r ≥ s1) = 0. This implies, using (5) and the fact
that f ′(s) = 0 for s ∈ [s0, s1], that:

ln(1/s0) − 3/2 + E(r/2) = 0
ln(1/s1) − 1 + E(r/2) = 0

ln(1/s0) − ln(1/s1) = 1/2
s1 =

√
e · s0.

Taking the derivative of (5) we obtain:

f ′′(s) = −1
s

+
1
2
ν(s) = 0 for s ∈ [s0, s1],

which implies ν(s) = 2/s for s ∈ [s0, s1]. Hence

E(r/2) = E(s/2) =
∫ s1

s0

(s/2) ν(s) ds =
∫ s1

s0

ds = s1 − s0 = (
√

e − 1)s0.

Recalling that ln(1/s0)−3/2+E(r/2) = 0, we find that s0 satisfies the equation

(
√

e − 1)s0 = 3/2 + ln(s0),

i.e. s0 = 0.265..., s1 = 0.437.... Finally, we must verify that this is indeed a
mixed Nash equilibrium by checking that the expected payoff function f(s) is
maximized when s ∈ [s0, s1]. To do so, it suffices to prove that f ′(s) > 0 when
s < s0 and that f ′(s) < 0 when s > s1:

s < s0 f ′(s) = ln(1/s) − 3/2 + E(r/2) > ln(1/s0) − 3/2 + E(r/2) = 0,

s > s1 f ′(s) = ln(1/s) − 1 + E(r/2) < ln(1/s1) − 1 + E(r/2) = 0.

3.2 Multiple Players

In the previous section we saw that the two-player game has a pure Nash equi-
librium (r, s) = (0.27557..., 0.42222...). One striking feature of this equilibrium
is that player 1’s probability of winning is

f(r) = r ln(1/r) − r(1 − s)/2 = 0.27557...

which is exactly equal to r. Recall that for the one-player game (i.e. the original
secretary problem) the optimal strategy sets its threshold at time 1/e and has
probability 1/e of winning. We begin this section with a theorem which shows
that it is not coincidental that player 1’s optimal threshold time and her proba-
bility of winning are exactly equal in both the one-player and two-player games.
This phenomenon holds for every pure Nash equilibrium of the k-player game,
for every k.
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Theorem 1. If (r1, . . . , rk) is a pure Nash equilibrium of the k-player non-
adaptive game and r1 ≤ r2 ≤ . . . ≤ rk, then Pr(player 1 wins) = r1.

Proof. Fix the values of r2, r3, . . . , rk and let f(r) denote the probability that
player 1 wins when the players use strategies (r, r2, r3, . . . , rk). We will prove that
there is a constant C, depending only on r2, . . . , rk, such that f(r) = r ln(1/r)+
Cr when r ∈ (0, r2]. Since r1 = argmax f(r) and r1 ∈ (0, r2] we have

0 = f ′(r1) = ln(1/r1) − 1 + C =
f(r1)

r1
− 1,

from which we conclude that f(r1) = r1 as claimed.
It remains to prove that f(r) = r ln(1/r)+Cr when r ∈ (0, r2]. The probability

that player 1 wins before time r2 is
∫ r2

r

r

t
dt = r ln(1/r) − r ln(1/r2).

To compute the probability that player 1 wins after time r2, let Y = {y ∈
U |Z(y) < Z(x1)}, and let y1 ≺ y2 ≺ y3 ≺ . . . be the elements of Y in sorted
order. Note that, conditional on Z(x1) = t, the random variables {Z(y)}y∈Y are
independent and uniformly distributed in [0, t). Let A = min{a |Z(ya) ≤ r}, and
let ua = Z(ya) for a = 1, 2, . . . , A. If player 1 wins after time r2 then it must be
the case that Z(ya) > r2 for a < A. Let

g(u1, u2, . . . , uA) = Pr(χ(x1) = 1 ‖ r, r2, . . . , rk, u1, u2, . . . , uA).

Note that the value of g depends only on the relative ordering of the numbers
in the set S = {r, r2, . . . , rk, u1, u2, . . . , uA}. In particular, g is constant as uA

varies over the range [0, r] because uA, r are always the two smallest numbers in
S. Now, letting E denote the event that player 1 wins after time r2,

Pr(E) =
∞∑

a=1

Pr((A = a) ∧ E)

=
∞∑

a=1

∫ 1

r2

[∫ r

0

(∫ 1

r2

· · ·
∫ 1

r2

g(u1, . . . , ua)t−a du1 . . . dua−1

)

dua

]

dt

= r

∞∑

a=1

∫ 1

r2

[∫ 1

r2

· · ·
∫ 1

r2

g(u1, . . . , ua−1, 0)t−adu1 . . . dua−1

]

dt

= C′r,

where C′ denotes the sum on the penultimate line of the equation above. Thus
f(r) = r ln(1/r) + Cr, with C = C′ − ln(1/r2).

Lemma 1. In any pure Nash equilibrium of the k-player non-adaptive game,
no player receives an expected payoff which is more than twice another player’s
expected payoff.
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Proof. Let pi denote the expected payoff of player i. If pj > 2pi, then player i can
deviate from the equilibrium by playing rj instead of ri. We will prove that this
deviation yields an expected payoff of at least pj/2 for player i, contradicting
the assumption that r1, . . . , rk is a Nash equilibrium.

To prove that player i achieves an expected payoff of at least pj/2 by changing
her strategy to rj , note first that players i and j have equal expected payoffs
when they both play rj . Now consider the change in player j’s expected payoff
in a series of two steps. First, player i changes her strategy from ri to 1. (This is
equivalent to player i leaving the game, since a player with a threshold time of 1
never makes an offer.) This change not decrease pj . Second, player i changes her
strategy from 1 to rj . For every time t ≥ rj , this increases the number of active
players at time t by at most one, so it decreases Pr(player j wins at time t) by
at most a factor of 2. Thus, player j’s expected payoff after this second change
is at least pj/2. This is equal to player i’s expected payoff when she deviates by
playing rj , which concludes the proof of the lemma.

The following corollary confirms the observation of early offers in labor markets:
it shows that in any pure Nash equilibrium of the k-player game, the earliest
threshold time is O(2/k). (An easy consequence of this is that the timing of the
first offer converges to zero almost surely as k → ∞.)

Corollary 1. In any pure Nash equilibrium of the k-players non-adaptive game,
if the players are numbered in order of increasing threshold times r1 ≤ r2 ≤ . . . ≤
rk, then r1 ≤ 2/k.

Proof. As before, let pi denote the expected payoff of player i, for i = 1, 2, . . . , k.
Note that

∑
i pi ≤ 1 since the combined payoff of all players is at most 1. By

Lemma 1 we have pi ≥ p1/2 for all i. Hence kp1/2 ≤ ∑
i pi ≤ 1 which implies

that p1 ≤ 2/k. By Theorem 1 we have r1 = p1, hence r1 ≤ 2/k.

4 Adaptive Strategies

When players are allowed to use adaptive strategies, it will be more convenient to
adopt the discrete-time model of the game. This can be described as a stochastic
game with state space [n]× [k]. The interpretation of state (t, j) for t ≤ n is that
there are j players active at time t, and an element x arrives at time t which is
the best element observed so far. (More formally, there is an element x ∈ U with
Z(x) = t such that x ≺ y for all y with Z(y) < t.)

Proposition 1. The adaptive k-player game has a unique symmetric subgame
perfect equilibrium. This equilibrium can be described as follows: for each state
(t, j) ∈ [n] × [k], there exist numbers p(t, j), q(t, j) such that the equilibrium
strategy of an active player in state (t, j) is to play O with probability p(t, j),
P with probability q(t, j), regardless of the prior history of the game. Let v(t, j)
denote the probability that player i wins, given that the game is currently in
state (t, j) and i is active. Then the values of p(t, j), q(t, j), v(t, j) are correctly
computed by the algorithm in Figure 1.
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/* Initialization */
for t = 1, 2, . . . , n

v(t, 0) ← 0; w(t, 0) ← 0
end
for j = 1, . . . , k

p(n, j) ← 1; q(n, j) ← 0; w(n, j) ← 0; v(n, j) ← 1/j
end

/* Dynamic program */
for j = 1, 2, . . . , k

for t = n − 1, n − 2, . . . , 1
w(t, j) ← w(t + 1, j) + v(t + 1, j)/(t2 + t)
A ← w(t, j − 1) − 1/n
B ← w(t, j − 1) − w(t, j)
if 1/n ≥ w(t, j − 1) /* Pure strategy O is optimal */

q ← 0
else if 1/n ≤ w(t, j) /* Pure strategy P is optimal */

q ← 1
else /* Mixed strategy is optimal */

r ← the unique solution of 1 + x + x2 + . . . + xj−1 = jB/A in the interval (1,∞)
q ← 1/r

p(t, j) ← 1 − q
q(t, j) ← q
vO(t, j) ← tw(t, j − 1) − t(A/j)(1 + q + . . . + qj−1)
vP(t, j) ← tw(t, j − 1) − tBqj−1

v(t, j) ← max{vO(t, j), vP(t, j)}
end /* for t = n − 1, n − 2, . . . , 1 */

end /* for j = 1, 2, . . . , k */

Fig. 1. Dynamic program to compute the symmetric subgame perfect equilibrium of
the adaptive game

Proof. See Appendix A.

Although the algorithm in Figure 1 is elaborate and does not yield a closed-form
formula for the equilibrium strategy, it does enable us to draw some useful qual-
itative conclusions about this equilibrium. For example, the following theorem
again confirms the observation of early offers in labor markets.

Theorem 2. In the adaptive game with k players, assume all players use the
symmetric equilibrium strategy described in Proposition 1. If there are j active
players at time t ≥ n/j and the element x which arrives at time t is the best
element observed so far, then all of the active players make an offer to this
element.

Proof. For all j ≥ 1 and all t ∈ [n], we have v(t, j) ≤ 1/j because each of the j
active players in state (t, j) has probability v(t, j) of winning, and these j events
are mutually exclusive. It follows that
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w(t, j − 1) =
n∑

u=t+1

v(u, j − 1)
u(u − 1)

≤ 1
j − 1

n∑

u=t+1

1
u(u − 1)

=
1

j − 1

(
1
t
− 1

n

)

.

If t ≥ n/j then 1/t − 1/n ≤ (j − 1)/n, so w(t, j − 1) ≤ 1/n. According to the
algorithm in Figure 1, this implies that in equilibrium, all active players play O.
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A Proof of Proposition 1

We prove the claims in the proposition by induction on states, in the order they
are considered by the algorithm, i.e. downward induction on t and upward induc-
tion on j. It will be helpful to maintain an additional induction hypothesis that

w(t, j) =
n∑

u=t+1

v(u, j)
u(u − 1)

,

where the right side is interpreted as 0 when t = n.
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The base cases j = 0, t = 1, 2, . . . , n are trivial. (No players are active, so there
is no need to compute the equilibrium strategies, only the values of v(t, j) and
w(t, j).) The base cases t = n, j = 1, . . . , k are also trivial: if the n-th element is
the best one observed so far, there is no reason for any active player to play P.
All of them will play O, and each of them has probability 1/j of winning.

For the induction step, it is easy to check that w(t, j) satisfies the induc-
tion hypothesis given that w(t + 1, j) does. To verify the induction hypothesis
for v(t, j), p(t, j), q(t, j) requires an elaborate calculation which we now explain.
First let us define several events which will appear in the conditional probability
expressions that define the transition probabilities of the stochastic game.

E(t, j) = {the game visits state (t, j)}
EP(t, j) = E(t, j) ∩ {all players pass at time t}
EO(t, j) = E(t, j) ∩ {at least one player makes an offer at time t}

E((t, j) → (u, �)) = {the game makes a state transition from (t, j) to (u, �)}
E((t, j) → •) = {the game visits state (t, j) and Z−1(t) = x1.}

The following conditional probabilities can be calculated using arguments anal-
ogous to the calculations of transition probabilities for Markov decision process
representing the one-player secretary problem (e.g. [15]).

Pr(E((t, j) → •) ‖ EP(t, j)) = t/n

Pr(E((t, j) → •) ‖ EO(t, j)) = t/n

Pr(E((t, j) → (u, j)) ‖ EP(t, j)) = t/(u(u − 1))
Pr(E((t, j) → (u, j − 1)) ‖ EO(t, j)) = t/(u(u − 1)).

Using these conditional probabilities, we wish to calculate the expected payoff
to player i when playing O or P in state (t, j) given that the other players are all
playing O with probability p, P with probability q. Let us denote the expected
payoff to player i in these two cases by vO(t, j), vP(t, j), respectively. A simple
case analysis combined with the conditional probability formulas above yields:

vO(t, j) =
j∑

i=1

(
j − 1
i − 1

)

pi−1qj−i

[
1
i
· t

n
+

(

1 − 1
i

) n∑

u=t+1

tv(u, j − 1)
u(u − 1)

]

(6)

vP(t, j) = qj−1
n∑

u=t+1

tv(u, j)
u(u − 1)

+
(
1 − qj−1

) n∑

u=t+1

tv(u, j − 1)
u(u − 1)

(7)

Let A = w(t, j − 1)− 1/n, B = w(t, j − 1)−w(t, j). We may simplify equations
(6) and (7) considerably, obtaining:

vO(t, j) = tw(t, j − 1) − (t/j)A
1 − qj

1 − q
(8)

vP(t, j) = tw(t, j − 1) − qj−1tB (9)
1
t
(vO(t, j) − vP(t, j)) = qj−1B − (A/j)

1 − qj

1 − q
. (10)
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From (10) we see that the set of best responses for player i is {O}, {P}, or
{O, P} according to whether the value of the function f(q) = qj−1B− (A/j)(1+
q + . . . + qj−1) is positive, negative, or zero.

When j = 1 this computation derives the optimal policy for the ordinary (one-
player) secretary problem. We have A = −1/n, B = −w(t, 1), f(q) = B − A =
1/n − w(t, 1). Let t1 be the largest value of t such that w(t, 1) > 1/n. For all
t > t1, f(q) > 0 and the unique best strategy in state (t, 1) is O; moreover for
t > t1 we have v(t, 1) = t/n and w(t, 1) = 1

n

∑n−1
u=t

1
u . From this formula for

w(t, 1) we deduce that t1 ∼ n/e.
When j > 1 and t < n, let us first observe that B > 0. To see this, note

that B =
∑n

u=t+1(v(u, j − 1) − v(u, j))/(u(u − 1)), that each term of this sum
is non-negative because increasing the number of active players at time t can
not increase player i’s probability of winning after time t, and that the final
term is strictly positive. If A ≤ 0 then f(q) > 0 for all q, which implies that O
is the unique best response for player i and therefore (since we are assuming a
symmetric equilibrium) q = Pr(i plays P) = 0. Conversely, if q = 0 then O is in
player i’s best response set, which implies that f(q) = f(0) ≥ 0 and therefore
A ≤ 0. Recalling that A = w(t, j − 1) − 1/n, we have derived:

q = 0 ⇐⇒ w(t, j − 1) ≤ 1/n. (11)

Now we come to the case q > 0. We know that in this case, A > 0. Note that
f(q) has the same sign as q1−jf(q) and that

q1−jf(q) = B − (A/j)(1 + q−1 + . . . + q−(j−1)). (12)

Letting r = 1/q, the right side of (12) is the polynomial g(r) = B − (A/j)(1 +
r + . . . + rj−1) which is monotonically decreasing as a function of r ≥ 1 because
A > 0. If g(1) = B − A ≤ 0 and q < 1, then r > 1 and g(r) < 0, which
implies that player i’s unique best response is P contradicting the fact that
q < 1 and that we are in a symmetric equilibrium. Hence we see that B −A ≤ 0
implies q = 1. Conversely, if q = 1 then P is in player i’s best response set and
f(1) = g(1) = B−A ≤ 0. Recalling that B−A = 1/n−w(t, j), we have derived:

q = 1 ⇐⇒ 1/n ≤ w(t, j). (13)

Finally, if 0 < q < 1, then player i’s best response set is {O, P} which implies
that g(r) = 0, i.e. 1+ r+ . . .+ rj−1 = jB/A. Since g is monotonic in the interval
(1,∞), the equation g(r) = 0 can have at most one solution in this interval. In
fact there is a solution in this interval by the intermediate value theorem, since
g(1) = B − A > 0 (by our assumption that q < 1) and g(r) tends to −∞ as
r → ∞ (by our assumption that A > 0, as follows from the fact that q > 0).

This concludes the verification that there is a unique symmetric mixed Nash
equilibrium in state (t, j), and that the algorithm correctly computes this equi-
librium. The verification that the algorithm correctly computes v(t, j) — which
is the final part of establishing the induction step — is a trivial consequence of
formulas (8) and (9) above.
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Röglin, Heiko 50
Roughgarden, Tim 112
Rozenfeld, Ola 74

Schoppmann, Florian 331
Schulz, Andreas S. 62
Shende, Sunil 124
Shi, Xiao-Jun 214
Sorkin, Gregory B. 99
Spirakis, Paul G. 286
Stamatiou, Y.C. 343
Sun, Aries Wei 16
Sundararajan, Mukund 112

Teng, Shang-Hua 27, 262, 274
Tennenholtz, Moshe 74
Tiemann, Karsten 331

Vavitsas, G. 343
Vazirani, Vijay V. 239
Ventre, Carmine 37
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