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Preface

Complex networks are powerful allies of our quest to tackle complexity in all
of science. Many lines can be written about the benefits of using networks to
study complex systems. Nevertheless, if I had to name their single most appealing
property, I would say simplicity. One can map the interacting elements of any system
to a set of nodes, and connect these nodes with a set of links according to their
interactions. That is all it takes to build a network. Such a powerful abstraction
allows to study many seemingly unrelated systems with a unified set of tools, and
allows different scientific fields to benefit from advancements in other disciplines.
Thus, it comes as no surprise that network science keeps growing in popularity.

However, while most early results about networks and their properties were
obtained under the assumption that networks are isolated, in reality many networks
interact with other networks. Consider, for example, our modern societies where
individuals participate in different online social networks while they maintain a
sizable amount of off-line contacts. These individuals are the means by which
different social networks interact, so that information can propagate from one
network to the others. Other examples include, but are not limited to, technological
or infrastructure networks, whose proper function may depend on the function of
another network, or transportation networks which are usually organized in layers
that provide complementary access to different locations. In order to understand
this bigger picture, it became clear recently that we have to extend our complex
networks framework, and we are now able to treat such interconnected systems as
multilayered networks.

In a multilayered representation each individual layer represents an isolated
network from the set of networks that describe the whole system, as shown in
Fig. 1. The presence of links between different networks (layers) can alter the way an
interconnected system of networks behaves, even though this interconnectivity does
not alter the basic characteristics of the individual networks in terms of function
and topology (e.g., a communication network remains a communication network
even though it is connected to the power grid). Note that the multilayered view is
not just another way to describe communities in a single network, as it allows to
describe systems with different types of interactions among and within the various

v



vi Preface

Fig. 1 Example of a two-layered network with different interconnectivity patterns. (a) The general
case of a two-layered interconnected network where the two layers can have different number
of nodes and not all nodes in one layer are interconnected to nodes of the other layer. (b) The
special case of a multiplex network, where the nodes in the two layers are exactly the same. In this
case there is a one-to-one connection between the nodes of both layers to represent their identity
relation. Note, however, that in both cases, the links within the layers can be different, as indicated
here with red and black lines

layers. Indeed, this nontrivial coupling allows for nonlinear effects and feedback
loops, which generate emergent features that are visible only through the system as
a whole and disappear when studying its individual component networks. Therefore,
understanding the role of the links that connect individual layers (interconnecting
links) and the way their presence affects the behavior of interconnected networks is
a crucial step toward a more accurate description of real systems.

However, because of the different ways individual layers can be interconnected,
and because interconnecting links may have different functions with respect to
normal interlayer links, different naming schemes appeared aiming to distinguish
cases of interest. But, instead of increasing clarity, names such as interconnected
networks, networks of networks, interdependent networks, multiplex networks, etc.
dominated the literature creating confusion about their actual meaning and proper
use, especially with respect to what is different between them.

In order to clarify this subject, throughout this book we will call interconnected
multilayered (or multilayer) networks the general case where there is no particular
assumption with respect to the connectivity patterns and/or the function of the
interconnecting links. Networks with such general connectivity structures are also
called interacting networks or networks of networks in the literature. The special
cases where the same set of nodes appear across different layers while the links
within the layers are different are called multiplex networks. Multiplex networks are
useful to describe different categorical relationships between nodes, like a set of
people communicating via different channels (like phone calls, emails, etc.).

In the general case interconnecting links provide the means of interaction
between networks. But if the functional properties of these links induce dependency
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relations, so that nodes from one layer depend on nodes form other layers to
function properly, then the system of networks is called interdependent network.
Such networks are very important, especially when studying critical infrastructures
and systemic risk, because nodes that may seem safe from the single network
perspective may have exposures via dependency links to other networks, which
make them extremely fragile. Of course, various combinations of network-to-
network connectivities with different functional properties of interconnecting links
are allowed. Thus, one may encounter multiplex networks with dependency links,
or networks with partial dependency links where one layer depends on another and
not vice versa, etc.

With this volume we want to provide a collection of works that highlight and
summarize recent developments on network theory, signaling the emergence of
a mathematical, computational, and algorithmic framework that deals with inter-
connected complex networks, both on a theoretical and practical level. Individual
chapters deal with related but in most cases complementary subjects. Each chapter
is self-contained and can stand on its own. For the interested reader this removes
the need to follow a particular order and allows to focus on specific subjects.
However, the structure of the book follows, indeed, a specific pattern, starting with
the more theoretical works and gradually dealing with more practical subjects and
applications.

More precisely, the book consists of the following chapters:

• Chapter 1 shows that the formation of interconnected networks undergoes a struc-
turally sharp (discontinuous) transition, depending on the relative importance of
the links within and across layers.

• Chapter 2 describes the topology of an interconnected system of networks in
terms of matrices and discusses about several metrics that are key to characterize
multilayer networks and their spectral properties.

• Chapter 3 investigates diffusion dynamics on multilayer networks when we have
incomplete knowledge about the link formations inside or across the layers, using
ensembles of interconnected networks with similar characteristics.

• Chapter 4 describes how choosing the adequate connector links between net-
works may promote or hinder different structural and dynamical properties of a
particular network.

• Chapter 5 provides a review of recent advances on the role of connectivity and
dependency links in the robustness of interconnected networks, focusing on the
dynamics of cascading failures on interdependent networks.

• Chapter 6 uses percolation theory to describe damage resilience of interconnected
(multiplex) networks, following two alternative definitions on the pruning pro-
cess that alter the nature of the percolation transition.

• Chapter 7 explores how much interconnectivity is needed for the emergence of
cooperation in interconnected networks and shows that an intermediate density
of sufficiently strong interactions between networks is the optimal case.
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• Chapter 8 analyzes the influence of a time delay on a system of two intercon-
nected networks of oscillators and explores its dynamics as a function of the
couplings and communication lag.

• Chapter 9 deals with the architecture of real urban mobility networks from the
multiplex network’s perspective using empirical data of mobility patterns in two
cities. This reveals that the socioeconomic characteristics of the population have
an extraordinary impact on the layer organization of these systems.

• Chapter 10 provides a new understanding of the social structure of elites by
analyzing the community structure of the generalized K-core and by identifying
weakly connected regions that bridge core communities on a multiplex system,
using data from a Massive Multiplayer Online Game.

• Chapter 11 reviews the empirical structure of the multiplex interbank networks
and the theoretical consequences of this representation using Maximum Entropy
null models.

• Chapter 12 describes the phenomenology of multilevel financial networks by
reviewing selected theoretical and empirical works providing arguments in favor
of adopting the broad view of the network approach to finance.

Closing this short introduction, I would like to thank all authors for their
contributions and for their fruitful collaboration. Even though there are much more
to be discussed about interconnected multilayered networks than what is covered in
this volume, I do believe that the reader will find this collection both inspiring and
motivating. I would also like to thank Frank Schweitzer for his valuable guidance
that made this book possible and to acknowledge support from the EU FET project
MULTIPLEX 317532.

Zürich, Switzerland Antonios Garas
2015
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Chapter 1
A Tipping Point in the Structural Formation
of Interconnected Networks

Alex Arenas and Filippo Radicchi

Abstract The interaction substrate of many natural and synthetic systems is well
represented by a complex mesh of networks where information, people and energy
flows. These networks are interconnected with each other, and present structural
and dynamical features different from those observed in isolated networks. While
examples of such dissimilar properties are becoming more abundant, for example
diffusion, robustness and competition, it is not yet clear where these differences
are rooted. Here we show that the composition of independent networks into an
interconnected network of networks undergoes a structurally sharp transition, a
tipping point, as the interconnections are formed. Depending on the relative impor-
tance of inter- and intra- layer connections, we find that the entire interconnected
system can be tuned between two regimes: in one regime, the various layers are
structurally decoupled and they act essentially as independent entities; in the other
regime, strong structural correlation arise, and network layers are indistinguishable
i.e. the whole system behaves as a single-level network. We analytically show that
the transition between the two regimes is discontinuous even for finite size networks.
Thus, any real-world interconnected system is potentially at risk of abrupt changes
in its structure, which may manifest new dynamical properties.

1.1 Introduction

The fundamental goals of network science are: to describe the structure of interac-
tions between the components, and to assess the emergent behavior of many-body
systems coupled to the underlying structure. Advances on the theory of complex
networks will improve our understanding and modeling capabilities so that we
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2 A. Arenas and F. Radicchi

may control or predict the dynamics and function of complex networked systems.
In addition, this approach does not rely on a detailed knowledge of the systems
components and therefore allows universal results to be obtained that can be
generalized with relative ease (e.g., the study of epidemic spreading processes is
equivalent to the spread of computer viruses). For example, biological networks like
protein interaction networks share many structural (scale-freeness) and dynamical
(functional modules) features with other seemingly different systems such as the
Internet and interaction patterns in social systems. Thus, systems as diverse as peer-
to-peer networks, neural systems, socio-technical phenomena or complex biological
networks can be studied within a general unified theoretical and computational
framework.

However, almost all of the work to date is based on an ordinary 1-layer or simplex
view of the networks in question, where every edge (link) is of the same type
and consequently considered at the same temporal and topological scale. Generally
speaking, the description of networks so far has been developed using a snapshot
of the connectivity, this connectivity being a reflection of instantaneous interactions
or accumulated interactions in a certain time window. This description is limiting
when trying to understand the intricate variability of real complex systems, which
contain many different time scales and coexisting structural patterns forming the real
network of interactions. These more realistic multi-layer structures have received a
lot of attention from the physicist community [17, 38] with no common terminology
yet.

Interacting, interdependent or multiplex networks are different ways of naming
the same class of complex systems where networks are not considered as isolated
entities but interact with each other. In multiplex, the nodes at each network are
instances of the same entity, thus the networks are representing simply different
categorical relationships between entities, and usually categories are represented by
layers. Interdependent networks is a more general framework where nodes can be
different at each network.

Many, if not all, real networks are “coupled” with other real networks. Examples
can be found in several domains: social networks (e.g., Facebook, Twitter, etc.)
are coupled because they share the same actors [60]; multimodal transportation
networks are composed of different layers (e.g., bus, subway, etc.) that share the
same locations [4, 18]; the functioning of communication and power grid systems
depend one on the other [10]. So far, all phenomena that have been studied on
interdependent networks, including percolation [10, 58], epidemics [31, 32, 55],
and linear dynamical systems [30], have provided results that differ much from
those valid in the case of isolated complex networks. Sometimes the difference is
radical: for example, while isolated scale-free networks are robust against failures
of their nodes or edges [2], scale-free interdependent networks are instead very
fragile [10, 58].

The standard approach towards the characterization of topological and dynamical
properties of multiplex networks is similar to the one used for isolated networks.
This approach relies on a fundamental approximation about the local structure of
the network, generally indicated as tree-like approximation [1, 20, 21, 46]. The tree
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ansatz assumes the absence of finite loops in a network in the thermodynamic limit
and the presence of only infinite loops. Such an approximation is very convenient
because it allows one to use techniques typical of the theory of random branching
processes [34]. These mainly include degree-based mean field calculations, and the
application of the generating function formalism for the statistical characterization
of structural and dynamical properties of ensembles of networks [48, 63]. Under
this ansatz, the solutions of many problems, that are unsolvable in their exact
form, can be instead provided with very good accuracy [20]: percolation [15],
epidemiological [51] and opinion dynamical models [59, 61], controllability [42]
are just among the most celebrated examples. The same type of approach has been
applied to predict the behavior of special types of critical phenomena in multilayered
networks. Examples include the analysis of the nature of the percolation transition in
multiplex networks [5, 10, 28, 57, 58] and interconnected networks [27, 36, 50], and
the study of the features of several dynamical processes defined on these particular
type of network topologies [9, 19, 55].

Another theoretical approach used in the characterization of networks is the one
based on the analysis of the spectrum of special operators associated with the graphs.
This approach often relies on analytic results obtained in the branch of mathematics
research known as “Spectral Graph Theory” [13], and it has been proved to
be effective in the study of topological and dynamical properties of networks.
Fundamental features of networks can be understood by looking at the eigenvalues
and eigenvectors not only of the adjacency matrix, but also of other matrices
associated with the graph such as the normalized [13] and combinatorial [45]
laplacians, the non-backtracking matrix [35, 41], the modularity matrix [47], just
to mention a few of them.

The fundamental reason behind the effectiveness of spectral methods is that the
spectrum of a graph encodes fundamental physical features of the system: eigen-
values correspond to energy levels, and the corresponding eigenvectors represent
configurations of the system associated with them. Spectral graph theory has a
wide range of applicability. For example, many useful measures, such as graph
energy [12], graph conductance and resistance [22], and the Randić index [39],
are quantifiable in terms of the eigenvalues of the normalized laplacian of a graph.
Finding the minimal eigenpair of matrices associated with graphs is typically
equivalent to identifying the ground state of wide class of energy functions [40] and
fitness landscapes [54]. Examples include, among others, Ising spin models [44] and
combinatorial optimization problems such as the traveling salesman problem [33].
In the study of isolated networks, the spectrum of the matrices associated with
graphs has been successfully applied to several contexts: examples include percola-
tion transition [8], synchronization [3] and epidemiological models [11, 29].

Spectral approaches have recently been proved successful also for the under-
standing of structural [53] and dynamical [30, 52, 56] properties of networks
of networks. In the study of coupled networks, the great advantage of spectral
methods, with respect to those based on the tree-like approximation and the use
of the generating function formalism, is in their ability to predict the behavior of
multiplexes on the basis of features of the individual layers that composed them.
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In the remaining part of the chapter, we will illustrate a concrete example of a
successful application of spectral techniques to the characterization of structural
transitions in arbitrary multiplex networks.

1.2 Mathematical Modeling

Multiplex Networks Composed of Two Layers

For simplicity, we first consider the case of two interconnected networks. We will
later generalize the method to an arbitrary number of interconnected networks. We
assume that the two interconnected networks A and B are undirected and weighted,
and that they have the same number of nodes N. The weighted adjacency matrices of
the two graphs are indicated as A and B, respectively, and they have both dimensions
N � N. With this notation, the element Aij D Aji is equal to the weight of the
connection between the nodes i and j in network A. The definition of B is analogous.

We consider the case of one-to-one symmetric interconnectivity [10] between
nodes in the networks A and B (see Fig. 1.1a). The connections between inter-
connected nodes of the two networks are weighted by a factor p (see Fig. 1.1b),

Fig. 1.1 (a) Schematic example of two interconnected networks A and B. In this representation,
nodes of the same color are one-to-one interconnected. (b) In our model, inter-layer edges have
weights equal to p (From Ref. [53])
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any other weighted factor for the networks A and B is implicitly absorbed in their
weights. The supra-adjacency matrix G of the whole network is therefore given by

G D
�

A p�
p� B

�
; (1.1)

where � is the identity matrix with dimensions N � N. Using this notation we can
define the supra-laplacian of the interconnected network as

L D
�LA C p� �p�

�p� LB C p�

�
: (1.2)

The blocks present in L are square symmetric matrices of dimensions N � N, In
particular, LA and LB are the laplacians of the networks A and B, respectively.

Our investigation focuses on the analysis of the spectrum of the supra-Laplacian
to ascertain the origin of the structural changes of the merging of networks in an
interconnected system. The spectrum of the laplacian of a graph is a fundamental
mathematical object for the study of the structural properties of the graph itself.
There are many applications and results on graph Laplacian eigenpairs and their
relations to numerous graph invariants (including connectivity, expanding proper-
ties, genus, diameter, mean distance, and chromatic number) as well as to partition
problems (graph bisection, connectivity and separation, isoperimetric numbers,
maximum cut, clustering, graph partition), and approximations for optimization
problems on graphs (cutwidth, bandwidth, min-p-sum problems, ranking, scaling,
quadratic assignment problem) [6, 13, 14, 43].

Note that, for any graph, all eigenvalues of its laplacian are non negative numbers.
The smallest eigenvalue is always equal to zero and the eigenvector associated to it
is trivially a vector whose entries are all identical. The second smallest eigenvalue�2
also called the algebraic connectivity [23] is one of the most significant eigenvalues
of the Laplacian. It is strictly larger than zero only if the graph is connected. More
importantly, the eigenvector associated to �2, which is called the characteristic
valuation or Fiedler vector of a graph, provides even deeper information about its
structure [24, 25, 45]. For example, the components of this vector associated to
the various nodes of the network are used in spectral clustering algorithms for the
bisection of graphs [49].

Our approach consists in the study of the behavior of the second smallest
eigenvalue of the supra-laplacian matrix L and its characteristic valuation as a
function of p, given the single-layer network laplacians LA and LB. In the following,
we will make use of the standard bra-ket notation for vectors. In this notation, jxi
indicates a column vector, hxj indicates the transposed (i.e., row vector) of jxi,
hxjyi D hyjxi indicates the inner product between the vectors jxi and jyi, A jxi
indicates the action of matrix A on the column vector jxi, and hxj A indicates the
action of matrix A on the row vector hxj. According to the theorem by Courant
and Fisher (i.e., the so-called min-max principle) [16, 26], the second smallest
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eigenvalue of L is given by

�2 .L/ D min
jvi2V

hvjL jvi ; (1.3)

where jvi 2 V is such that hvj1i D 0; hvjvi D 1. The vector j1i has 2N entries
all equal to 1. Eq. (1.3) means that �2 .L/ is equal to the minimum of the function
hvjL jvi, over all possible vectors jvi that are orthogonal to vector j1i and that
have norm equal to one. The vector for which such minimum is reached is thus the
characteristic valuation of the supra-laplacian (i.e., L jvi D �2 jvi). We distinguish
two blocks of size N in the vector jvi by writing it as jvi D jvA; vBi. In this notation,
jvAi is the part of the eigenvector whose components correspond to the nodes of
network A, while jvBi is the part of the eigenvector whose components correspond
to the nodes of network B. We can now write

hvjL jvi D hvA; vBjL jvA; vBi D
hvAjLA jvAi C hvBjLB jvBi C
p .hvAjvAi C hvBjvBi � 2 hvAjvBi/

and the previous set of constraints as hvAj1iChvBj1i D 0 and hvAjvAiChvBjvBi D 1,
where now all vectors have dimension N. Accounting for such constraints, we can
finally rewrite the minimization problem as

�2 .L/ D p C min
jvi2V

fhvAjLA jvAi C hvBjLB jvBi � 2p hvAjvBig : (1.4)

First of all, we can simply state that the algebraic connectivity of Eq. (1.4) satisfies
the inequality

�2 .L/ � 1

2
�2 .LA C LB/ ; (1.5)

where this upper bound comes out directly from the definition of the minimum of a
function. For every Q � V , we have in fact that

min
jvi2V

hvjL jvi � min
jvi2Q

hvjL jvi

simply because we are restricting the domain where looking for the minimum of the
function hvjL jvi. The particular value of the upper bound of Eq. (1.5) is then given
by setting Q as

jvi D jvA; vBi 2 Q is such that jvAi D jvBi D jqi ;
with hqj1i D 0; hqjqi D 1=2:

Note that the upper bound of Eq. (1.5) does not depend on p, and thus represents the
asymptotic value of �2 .L/ in the limit p ! 1. This analytically proves the result
established by Gómez et al. [30] through approximation methods.
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The minimization problem of Eq. (1.4) can be solved using Lagrange multipliers.
This means finding the minimum of the function

M D hvAjLA jvAi C hvBjLB jvBi � 2p hvAjvBi
�r .hvAj1i C hvBj1i/� s .hvAjvAi C hvBjvBi � 1/ ;

where the constraints of the minimization problem have been explicitly inserted in
the function to minimize through the Lagrange multipliers r and s. In the following
calculations, we will make use of the identities

@
@ jxi htjxi D @

@ jxi hxjti D htj
@
@ jxi hxjxi D 2 hxj
@
@ jxi hxj A jxi D 2 hxj A, if A D AT

;

where @
@ jxi indicates the derivative with respect to all the coordinates of the vector

jxi. Equating to zero the derivatives of M with respect to r and s, we obtain the
constraints that we imposed. By equating to zero the derivative of M with respect to
jvAi, we obtain instead

@M

@ jvAi D 2 hvAjLA � 2p hvBj � r h1j � 2s hvAj D h0j ; (1.6)

and, similarly for the derivative of M with respect to jvBi,we obtain

@M

@ jvBi D 2 hvBjLB � 2p hvAj � r h1j � 2s hvBj D h0j : (1.7)

Multiplying both equations with j1i, we have 2 hvAjLA j1i � 2p hvBj1i � r h1j1i �
2s hvAj1i D 0 and 2 hvBjLB j1i � 2p hvAj1i � r h1j1i � 2s hvBj1i D 0, that can
be simplified in 2.p � s/ hvAj1i � rN D 0 and 2.p � s/ hvBj1i � rN D 0 because
LA j1i D LB j1i D j0i and hvAj1i D � hvBj1i. Summing them, we obtain r D 0.
Finally, we can write

.p � s/ hvAj1i D 0

.p � s/ hvBj1i D 0
: (1.8)

These equations can be true in two cases: (i) hvAj1i ¤ 0 or hvBj1i ¤ 0 and s D p;
(ii) hvAj1i D hvBj1i D 0. In the following, we analyze these two cases separately.

First, let us suppose that s D p, and that at least one of the two equations
hvAj1i ¤ 0 and hvBj1i ¤ 0 is true. If we set s D p in Eqs. (1.6) and (1.7), they
become

hvAjLA � p hvBj � p hvAj D h0j (1.9)
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and

hvBjLB � p hvAj � p hvBj D h0j : (1.10)

If we multiply the first equation with jvAi and the second equation with jvBi, the
sum of these two new equations is

hvAjLA jvAi C hvBjLB jvBi � 2p hvAjvBi D p : (1.11)

If we finally insert this expression in Eq. (1.4), we find that the second smallest
eigenvalue of the supra-laplacian is

�2 .L/ D 2p : (1.12)

We can further determine the components of Fiedler vector in this regime. If we
take the difference between Eqs. (1.9) and (1.10), we have hvAjLA D hvBjLB. On
the other hand, Eq. (1.12) is telling us that hvAjLA jvAi D � hvBjLB jvBi because
the only term surviving in Eq. (1.11) is the one that depends on p. Since hvAjLA jvAi
(hvBjLB jvBi) is always larger than zero, unless jvAi D c j1i (jvBi D c j1i), with c
arbitrary constant value, we obtain

jvAi D � jvBi where jvAi D ˙ 1p
2N

j1i : (1.13)

Thus in this regime, both the relations hvAj1i ¤ 0 and hvBj1i ¤ 0 must be
simultaneously true. Eq. (1.13) also means that hvAjvBi D � 1

2
.

The other possibility is that Eqs. (1.8) are satisfied because hvAj1i D 0 and
hvBj1i D 0 are simultaneously true. In this case, the average value of the
components of the vectors jvAi and jvBi is zero, i.e.,

hvAj1i D hvBj1i D 0 ; (1.14)

and thus the coordinates of the Fiedler vector corresponding to the nodes of the same
layer have alternatively negative and positive signs.

To summarize, the second smallest eigenvalue of the supra-laplacian matrix L is
given by

�2 .L/ D
�
2p , if p � p�
� 1

2
�2 .LA C LB/ , if p � p� : (1.15)

Thus indicating that the algebraic connectivity of the interconnected system follows
two distinct regimes, one in which its value is independent of the structure of the
two layers, and the other in which its upper bound is limited by the algebraic
connectivity of the weighted superposition of the two layers whose laplacian is
given by 1

2
.LA C LB/. More importantly, the discontinuity in the first derivative
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of �2 is reflected in a radical change of the structural properties of the system
happening at p�, the tipping point. Such dramatic change is visible in the coordinates
of characteristic valuation of the nodes of the two network layers. In the regime
p � p�, the components of the eigenvector are given by Eq. (1.13). This means
that the two network layers are structurally disconnected and independent. For
p � p�, they instead obey Eq. (1.14), which means that the components of the
vector corresponding to interconnected nodes of network A and B have the same
sign, while nodes in the same layer have alternating signs. Thus in this second
regime, the system connectivity is dominated by inter-layer connections, and the
two network layers are structurally indistinguishable.

The tipping point p� at which the transition occurs is the point at which we
observe the crossing between the two different behaviors of �2, which means

p� � 1

4
�2 .LA C LB/ : (1.16)

Since inter-layer connections have weights that grows with p, the transition happens
at the point at which the weight of the inter-layer connections exceeds the half part
of the inverse of the algebraic connectivity of the weighted super-position of both
network layers (see Fig. 1.2).
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Fig. 1.2 Algebraic connectivity and Fiedler vector for two interconnected Erdős-Renyí networks
of N D 50 nodes and average degree Nk D 5. We consider a single realization of this model
in which the critical point is p� D 0:602.1/. (a) Characteristic valuation of the nodes in the
two network layers for p D 0:602. (b) Algebraic connectivity of the system (black line). The
discontinuity of the first derivative of �2 is very clear. The two different regimes 2p and �2.LACLB/

2

are shown as red dot-dashed and blue dashed lines, respectively. (c) Inner product hvAjvBi between
the part of the Fiedler eigenvector (jvAi) corresponding to nodes in the network A and the one (jvBi)
corresponding to vertices in network B as a function of p. (d) Inner products hvAj1i and hvBj1i as
functions of p. hvAj1i and hvBj1i indicate the sum of all components of the Fiedler vectors jvAi and
jvBi, respectively. (e) Characteristic valuation of the nodes in the two network layers for p D 0:603

(From Ref. [53])
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Multiplex Networks Composed of More Than Two Layers

The results presented in the previous section can be extended, with analogous
calculations, to multiplexes composed of ` network layers, with ` > 2. The main
result of Eq. (1.15) becomes

�2 .L/ D
(
`p , if p � p�

� 1
`
�2

�P`
iD1 Li

�
, if p � p� ; (1.17)

showing a discontinuity in the derivative of the algebraic connectivity at a certain
value p� estimated as

p� � 1

`2
�2

 X̀
iD1

Li

!
: (1.18)

The algebraic connectivity of the multiplex can be thus written in terms of the
algebraic connectivity of the superposition of all network layers that compose the
multiplex. Unfortunately in the case of a multiplex network with ` > 2, the Fiedler
eigenvector cannot be fully characterized, and it is no longer possible to generalize
Eqs. (1.13) and (1.14) to an arbitrary number of network layers.

Perturbed Multiplex Networks

The discontinuity in the first derivative of the algebraic connectivity �2 is due to
the crossing between different eigenvalues in the spectrum of the supra-laplacian
matrix L. In the case of a multiplex composed of two layers, the presence of this
crossing can be viewed as a simple consequence of the fact that the vector j1;�1i
is always an eigenvector of the matrix in Eq. (1.2) for any value of p. By invoking
the non crossing rule by von Neumann and Wigner [62], it is possible to show that
the eigenvalue corresponding to this eigenvector, i.e., � D 2p, must intersect all
other eigenvalues of L. Although in multiplex networks with an arbitrary number
of coupled networks there is not a trivial eigenvector that can explain the crossing
between eigenvalues, it is, however, worth asking if our results are still valid in
presence of disorder. To this end, we consider a perturbed version of the matrix
in Eq. (1.2). Essentially, instead of using the same p for every entry .i; j/ of the
off-diagonal blocks of Eq. (1.1), we use a weight of the type pij D f .p; �ij/

with �ij random variables such that the average hf .p; �ij/i D p. By applying this
transformation, the vector j1;�1i is not longer an eigenvector L for every value of
p. In presence of disorder, the non crossing rule by von Neumann and Wigner [62]
tells us that no eigenvalues can cross as p varies. It is very interesting to note that
the structural transition observed for the unperturbed case still holds, even for very
small networks and not so small perturbations (see Fig. 1.3).



1 A Tipping Point in the Structural Formation of Interconnected Networks 11

Fig. 1.3 Spectral properties of unperturbed and perturbed supra-laplacian matrices. The multiplex
networks analyzed are composed of two Erdős-Rényi network models with N D 50 nodes and
average degree Nk D 5 as in the case of Fig. 1.2. (a) Second smallest �2 and third smallest �3
eigenvalues for the unperturbed network (black lines) as functions of the coupling strength p
between different layers. We perturbed the coupling matrix by setting pij D p C 10�1.1=2 � �ij/,
with �ij uniform random variate in the interval Œ0; 1�. Red lines stand for average values of the
second smallest and third smallest eigenvalues obtained over 100 perturbed realizations of the
same starting network topology. (b) Sum of the eigenvector components corresponding to nodes in
the same network layer, hvAj1i, for the unperturbed and the perturbed network of panel a. hvAj1i is
rescaled by the factor

p
N to obtain values in the interval Œ0; 1�. (c) Same as in panel (a), but in this

case the perturbation applied is pij D p=2 C p�ij. (d) Same as in panel b, but for the perturbation
scheme described in panel c

1.3 Conclusions

A physical interpretation of the algebraic structural transition that we are able to
analytically predict can be given by viewing the function hvjL jvi as an energy-like
function. From this point of view, Eq. (1.3) becomes equivalent to a search for the
ground state energy, and the characteristic valuation can be viewed as the ground
state configuration. Such analogy is straightforward if one realizes that Eq. (1.3) is
equivalent to the minimization of the weighted cut of the entire networked system
[whose adjacency matrix G is defined in Eq. (1.1)], and that the minimum of this
function corresponds to the ground state of a wide class of energy functions [40] and
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fitness landscapes [54]. These include, among others, the energy associated to the
Ising spin models [44] and cost functions of combinatorial optimization problems,
such as the traveling salesman problem [33]. In summary, the structural transition of
interconnected networks involves a discontinuity in the first derivative of an energy-
like function, and thus, according to the Ehrenfest classification of phase transitions,
can be understood as a discontinuous transition [7].

Since the transition at the algebraic level has the same nature as the connectivity
transition that has been studied by Buldyrev et al. in the same class of networked
systems [10], it is worth to discuss about the relations between the two transitions.
We can reduce our model to the annealed version of the model considered by
Buldyrev et al. by setting A D t2A, B D t2B and p D t, being 1 � t the probability
that one node in one of the networks fails. All the results stated so far hold, with
only two different interpretations. First, the upper bound of Eq. (1.16) becomes a
lower bound for the critical threshold of the algebraic transition that reads in terms
of occupation probability as

tc � 4

�2 .LA C LB/
: (1.19)

Second, the way to look at the transition must be reversed: network layers are
structurally independent (i.e., the analogous of the non percolating phase) for values
of t � tc, while become algebraically connected (i.e., analogous of the percolating
phase) when t � tc.

As it is well known, the algebraic connectivity represents a lower bound for both
the edge connectivity and node connectivity of graph (i.e., respectively the minimal
number of edges or nodes that should be removed to disconnect the graph) [24].
Indeed, the algebraic connectivity of a graph is often used as a control parameter to
make the graph more resilient to random failures of its nodes or edges [37]. Thus, the
lower bound of Eq. (1.19) represents also a lower bound for the critical percolation
threshold measured by Buldyrev et al. Interestingly, our prediction turns out to be
a sharp estimate of the lower bound. For the Erdős-Rényi model, we have in fact
tc � 2=Nk, if the two networks have the same average degree Nk, and this value must
be compared with 2:455=Nk as predicted by Buldyrev et al. [10, 58]. Similarly, we
are able to predict that tc grows as the degree distribution of the network becomes
more broad [14], in the same way as it has been numerically observed by Buldyrev
et al. [10].

Although we are not able to directly map the algebraic transition to the
percolation one, we believe that the existence of a first-order transition at the
algebraic level represents an indirect support of the discontinuity of the percolation
transition. We further emphasize that the transition is effectively present only if
tc � 1, and thus accordingly to Eq. (1.19) only if �2 .LA C LB/ � 4. Such condition
is verified for network layers that have a sufficiently large connectivity, and this
qualitatively confirms the observation by Parshani et al. regarding a change in the
nature of the percolation phase transition in interdependent networks with variable
number of interdependent nodes [50].
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In conclusion, we would like to briefly discuss the deep practical implications
of our results. The abrupt nature of the structural transition is, in fact, not only
visible in the limit of infinitely large systems, but for networks of any size, even
if in presence of disorder. Thus, even real networked systems composed of few
elements may be subjected to abrupt structural changes, including failures. Our
theory provides, however, fundamental aids for the prevention of such collapses.
It allows, in fact, not only the prediction of the critical point of the transition, but,
more importantly, to accurately design the structure of such systems to make them
more robust. For example, the percolation threshold of interconnected systems can
be simply decreased by increasing the algebraic connectivity of the superposition of
the network layers. This means that an effective strategy to make an interconnected
system more robust is to avoid the repetition of edges among layers, and thus bring
the superposition of the layers as close as possible to an all-to-all topology.
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Chapter 2
Multilayer Networks: Metrics and Spectral
Properties

Emanuele Cozzo, Guilherme Ferraz de Arruda, Francisco A. Rodrigues,
and Yamir Moreno

Abstract Multilayer networks represent systems in which there are several topo-
logical levels each one representing one kind of interaction or interdependency
between the systems’ elements. These networks have attracted a lot of attention
recently because their study allows considering different dynamical modes con-
currently. Here, we revise the main concepts and tools developed up to date.
Specifically, we focus on several metrics for multilayer network characterization
as well as on the spectral properties of the system, which ultimately enable
for the dynamical characterization of several critical phenomena. The theoretical
framework is also applied for description of real-world multilayer systems.

2.1 Introduction

Complex network science relies on the hypothesis that the behavior of many
complex systems can be explained by studying structural and functional relations
among its components by means of a graph representation. The emergence of
interconnected network models responds to the fact that complex systems include
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multiple subsystems organized as layers of connectivity. In this way, interconnected
networks have emerged during the last few years as a general framework to deal
with hyperconnected systems [1]. With the term interconnected networks one may
refer to many types of connections among different networked systems: dependency
relations among systems of different objects, cooperative or competitive relations
among systems of different agents, or different channels of interactions among
the same set of actors, to name a few. What these examples have in common is
that different interaction modes among a differentiated or indistinguishable set of
components/actors might exist.

Although this framework has been used for many years, only in the last several
years it has attracted more attention and a number of formalisms have been proposed
to deal with multilayer networks [2, 3]. Here we elaborate on a formalism developed
recently and discussed at length in the review paper by Kivela et al. [4]. To this
end, we report on a more refined formalism that is aimed at optimizing the study
of a particular case of interconnected networks that is of much interest: Multiplex
Networks.

In Multiplex Networks a set of agents might interact in different ways, i.e.,
through different means. Since a subset of agents is present at the same time
in different networks of interactions (layers), these layers become interconnected.
Examples of such type of systems can be founded in different fields, from biological
systems, where the web of molecular interactions in a cell make use of many
different biochemical channels and pathways, to technological systems, where
person-to-person communication (usually machine-mediated) happens across many
different modes. We take the last example as a paradigmatic one, which gave rise to
the now popular term “hyperconnectivity” [5].

Suppose we are interested in analyzing a set of social agents (individuals,
institutions, firms, etc. ), who interact among them through a number of online social
networks (OSNs) like Twitter, Facebook, etc. Some of these agents might be present
in several OSNs and exchange information through them, using the information
obtained in one network to communicate in another one, or integrating information
across all of those in which they are active. We represent such a system as a set of
graphs, one for each OSN, in which each actor who participates in it is represented
by a node. These networks are the layers of the graph. In this scheme, the same
actors are represented by a number of different nodes (as many nodes as the number
of layers in which the actor is present). At the same time, we represent the fact
that different nodes might denote the same actors, thus being related, by a coupling
graph in which nodes representing the same actors are connected.

The rest of the chapter is organized as follows. The first section translates the
aforementioned structural features in the formal language of graph theory. By doing
that, we synthesize the topology of such a system in terms of matrices. In addition,
as many years of research [6] have demonstrated, the relation between structure
and function can be studied by means of the spectral properties of the matrices
representing the graph structure. This is also studied in the second part of this
chapter, where we give a simple example of the epidemic spreading process and
analyze real world multilayer networks.
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2.2 Notation, Basic Definitions and Properties

A multiplex network is a quadruple M D .L; n;P;M/. L D f1; : : : ;mg is an index
set that we call the layer set. Here we have assumed L � N for practical reasons
and without loss of generality. We indicate the general element of L with Greek
lower case letters. Moreover, n is a set of nodes and P D .n;L;N/, N � n � L
is a binary relation. Finally, the statement .n; ˛/ 2 N is read node n participates in
layer ˛. We call the ordered pair .n; ˛/ 2 N a node-layer pair and we say that the
node-layer pair .n; ˛/ is the representative of node n in layer ˛.

On the other hand, M D fG˛g˛2L is a set of graphs, that we call layer-graphs,
indexed by means of L. The node set of a layer-graph Gˇ 2 M is a sub-set nˇ � N
such that nˇ D f.n; ˛/ 2 P j ˛ D ˇg, so the nodes of Gˇ are node-layer pairs; in
that sense we say that node-layer pairs represent nodes in layers. The edge set of a
graph G˛ 2 M is Eˇ � nˇ�nˇ . Additionally, the binary relation P can be identified
with its graph GP. GP has nodes set given by n[L, and edge set EP D N, and we
call it the participation graph.

Consider the graph GC on N in which there is an edge between two node-layer
pairs .n; ˛/ and .m; ˇ/ only if n D m; that is, only if the two edges in the graph
GP are incident on the same node n 2 n, which means that the two node-layer pairs
represent the same node in different layers. We call GC the coupling graph. It is easy
to realize that the coupling graph is formed by n Dj n j disconnected components
that are clicks or isolated nodes. Each clique is formed by all the representatives of
a node in the layers, we call the components of GC supra-nodes.

Let’s now also consider the graph Gl on the same nodes set N, and in which there
is an edge between two node-layer pairs .n; ˛/, .m; ˇ/ only if ˛ D ˇ; that is, only
if the two edges in the graph GP are incident on the same node ˛ 2 L. We call Gl

the layer graph. It is easy to realize that graph is formed by m Dj L j disconnected
components that are clicks.

Finally, we can define the supra-graph GM as the union of the layer-graphs
with the coupling graph: GC [ M. GM has node set N and edge set

S
˛ E˛ [ EC.

GM is a synthetic representation of the Multiplex Network M. It results that each
layer-graph G˛ is a sub-graph of GM induced by n˛ . Furthermore, when all nodes
participate in all layer-graphs the Multiplex Network is said to be fully aligned [4]
and the coupling graph is made of n complete graphs of m nodes.

It is useful to come back to our system of social agents as a paradigmatic
multiplex network to make sense of the previous definitions. The layer set is the
list of OSNs, for example L D fFacebook;Twitter;GoogleCg. Since for practical
purposes we want a set of indexes that are natural numbers, we may say that:
Facebook is 1, Twitter is 2, and GoogleC is 3. The set of nodes is the set of
social actors, for example n D fMarc;Alice;BiFi;Nick;Roseg. The binary relations
represent the participation of each of these agents in some of the OSNs, thus we have
that an statement of the type Alice has a Facebook account is represented by the pair
.Alice; 1/, that is a node-layer pair. Each set of relation in each OSN is represented
by a graph, for example the link Œ.Alice; 1/; .Nick; 1/�means that Alice and Nick are
friends on Facebook. If Alice has a Facebook account and a Twitter account, but not
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a Google+ account, in the coupling graph we will have the connected component
Œ.Alice; 1/; .Alice; 2/� that is the supra-node related to Alice. If only the BiFi, Nick,
and Rose have Google+ accounts, in the layer graph we will have the connected
component Œ.Bifi; 3/; .Nick; 3/; .Rose; 3/�.

2.3 Multiplex Networks Related Matrices

Adjacency Matrices

In general, the adjacency matrix of a (unweighted, undirected) graph G with N nodes
is a N � N (symmetric) matrix A D faijg, with aij D 1 only if there is an edge
between i and j in G, and aij D 0 otherwise. We can consider the adjacency matrix
of each of the graphs introduced in the previous section. The adjacency matrix of a
layer graph G˛ is a n˛ � n˛ symmetric matrix A˛ D a˛ij , with a˛ij D 1 only if there is
an edge between .i; ˛/ and .j; ˛/ in G˛ . We call them layer adjacency matrices.

Likewise, the adjacency matrix of GP is an n � m matrix P D pi˛, with pi˛ D 1

only if there is an edge between the node i and the layer ˛ in the participation graph,
i.e. only if node i participate in layer ˛. We call it the participation matrix. The
adjacency matrix of the coupling graph GC is an N � N matrix C D fcijg, with
cij D 1 only if there is an edge between node-layer pair i and j in GC, i.e. if they are
representatives of the same node in different layers. We can arrange the rows and
the columns of C such that node-layer pairs of the same layer are contiguous and
layers are ordered. We assume that C is always arranged in that way. It results that
C is a block matrix with zero diagonal blocks. Thus, cij D 1, with i; j D 1; : : : ;N
represents an edge between a node-layer pair in layer 1 and a node-layer pair in
layer 2 if i < n1 and n1 < j < n2. Figure 2.1 shows a multiplex network and the
respective matrices A and C.

Fig. 2.1 Example of a multiplex network. The structure of each layer is represented by an
adjacency matrix Ai, where i D1, 2. Clm stores the connections between layers l and m. Note
that the number of nodes in each layer is not the same
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The Supra-adjacency Matrix

The supra-adjacency matrix is the adjacency matrix of the supra-graph GM. Just as
GM, NA is a synthetic representation of the whole multiplex M. By definition, it can
be obtained from the intra-layer adjacency matrices and the coupling matrix in the
following way:

NA D
M
˛

A˛ C C; (2.1)

where the same consideration as in C applies for the indices. We also define A DL
A˛, and we call it the intra-layer adjacency matrix. Figure 2.1 shows the supra-

adjacency and the intra-layer adjacency matrices of a multiplex network. Some basic
metrics are easily calculated from the supra-adjacency matrix.

The degree of a node-layer i is the number of node-layers connected to it by an
edge in GM and is given by

Ki D
X

j

NAij: (2.2)

Sometimes we write i.˛/ as an index, instead of simply i, to explicitly indicate
that the node-layer i is in layer ˛ even if the index i already uniquely indicates a
node-layer pair. Since NA can be read as a block matrix, with the A˛ on the diagonal
blocks, the index i.˛/ can be interpreted as block index. It is also useful to define
the following quantities

e˛ D
X
ˇ<˛

nˇ; (2.3)

which we call the excess index of layer ˛. The layer degree of a node-layer i, ki.˛/,
is the number of neighbors it has in G˛ , i.e., ki.˛/ D P

j a˛ij . By definition of NA

ki.˛/ D
n˛Ce˛X

jD1Ce˛

NAij: (2.4)

The coupling degree of a node-layer i, ci.˛/, is the number of neighbors it has in the
coupling graph, i.e., ci.˛/ D P

j cij. From NA we get

ci˛ D
X
j<e˛;

j>n˛Ce˛

NAij: (2.5)
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Finally, we note that the degree of a node-layer can be expressed as

Ki.˛/ D
X

j

NAij D ki˛ C ci˛: (2.6)

Equation (2.6) explicitly expresses the fact that the degree of a node-layer pair is the
sum of its layer-degree plus its coupling-degree.

The Supra-Laplacian Matrix

Generally, the Laplacian matrix of a graph with adjacency matrix A, or simply the
Laplacian, is given by

L D D � A (2.7)

where D D diag.k1; k2; : : : / is the degree matrix.
Thus, it is natural to define the supra-Laplacian matrix of a Multiplex network

as the Laplacian of its supra-graph

NL D ND � NA; (2.8)

where ND D diag.K1;K2; : : : ;KN/ is the degree matrix. Besides, we can define the
layer Laplacian of each graph G˛ as

L˛ D D˛ � A˛; (2.9)

and the Laplacian of the coupling graph

LC D � � C (2.10)

where� D diag.c1; c2; : : : ; cN/ is the coupling-degree matrix.
By definition, we have

NL D
M
˛

L˛ C LC: (2.11)

Equation (2.11) takes a very simple form in the case of a node-aligned multiplex,
i.e.,

NL D
M
˛

.L˛ C cIN/� Km ˝ In (2.12)

where Km is the adjacency matrix of a complete graph of m nodes, Ik is the k � k
identity matrix and ci D c;8i 2 N is the coupling degree of a node-layer pair.
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Characteristic Matrices

2.3.1 Supra-nodes Characteristic Matrix

The supra-nodes characteristic matrix Sn D fsijg is an N�n matrix with sij D 1 only
if the node-layer i is a representative of node j, i.e., it is in the connected component
j in the graph GC. We call it a characteristic matrix since supra-nodes partitions the
node-layer set and Sn is the characteristic matrix of that partition.

2.3.2 Layers Characteristic Matrix

The layer characteristic matrix Sl D fsijg is an N � m matrix with sij D 1 only
if the node-layer i is in the connected component j in the graph Gl. We call it a
characteristic matrix since it is the characteristic matrix of the partition of the node-
layer set induced by layers.

2.4 The Coarse-Grained Representation of a Multiplex
Network

Nodes Partitions and Quotient graphs

We next briefly introduce the notion of network quotient associated to a partition
of the node set. Suppose that V1; : : : ;Vm is a partition of the node set of a network
G with adjacency matrix A, and write ni D jVij. The quotient network Q of G is a
coarse-grained representation of the network with respect to the partition. It has one
node per cluster Vi and an edge from Vi to Vj weighted by an average connectivity
from Vi to Vj

bij D 1

�

X
k2Vi
l2Vj

akl: (2.13)

Different choices are possible for the normalization parameter � : �i D ni; �j D
nj or �ij D p

ninj. Depending on the choice for � we call the resulting quotient
respectively: left, right or symmetric quotient. We can express the left quotient Ql.A/
in matrix form. Consider the n�m characteristic matrix of the partition S D sij, with
sij D 1 if i 2 Vj and zero otherwise. Then

Ql.A/ D ��1STAS; (2.14)

where� D diagfn1; : : : ; nmg.
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Aggregate Network and Network of Layers of a Multiplex
Network

In the context of Multiplex Networks two quotient graphs arise naturally [7] by
considering coupled node-layer pairs and layers. Supra-nodes partition the supra-
graph, and the supra-nodes characteristic matrix Sn is the associated characteristic
matrix. Then, we define the aggregate network of the multiplex network as the
quotient associated to that partition:

QA D ��1ST
n

NASn; (2.15)

where� D diagf�1; : : : ; �ng is the multiplexity degree matrix. Since, the Laplacian
of the quotient is equal to the quotient of the Laplacian, the Laplacian of the
aggregate network is given by:

QL D ��1ST
n

NLSn: (2.16)

In the same way, layers partition the supra-graph, thus the network of layers is
defined by

QAl D ��1ST
l

NASl; (2.17)

and its Laplacian is given by

QLl D ��1ST
l

NLSl: (2.18)

2.5 Spectral Properties

The Largest Eigenvalue of NA

In the following we will interpret NA as a perturbed version of A, C being the
perturbation. This choice is reasonable whenever

jj C jj<jj A jj : (2.19)

Consider the largest eigenvalue � of A. Since A is a block diagonal matrix, the
spectrum of A, �.A/, is

�.A/ D
[
˛

�.A˛/; (2.20)
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�.A˛/ being the spectrum of the adjacency-matrix A˛ of layer ˛. So, the largest
eigenvalue � of A is

� D max
˛
�˛ (2.21)

with �˛ being the largest eigenvalue of A˛ . We will look for the largest eigenvalue
N� of NA as

N� D �C��; (2.22)

where�� is the perturbation to � due to the coupling C. For this reason, we call the
layer ı for which �ı D � the dominant layer. Let 1˛ be a vector of size m with all
entries equal to 0 except for the ı-th. If 	ı is the eigenvector of Aı associated to �ı ,
we have that

	 D 	ı ˝ 1˛ (2.23)

is the eigenvector associated to �. Observe that 	 have dimension nı, while 1˛ have
dimension m, where nı is the number of nodes on the dominant layer ı, yielding to
a product of dimension nı � m, however it is not true if the number of nodes in is
not the same on all layers. In such case we must construct the vector 	 with zeros
on all positions, except on the position of the leading eigenvector of the dominant
layer. Then, we can approximate�� as

�� � 	TC	
	T	

C 1

�

	TC2	
	T	

: (2.24)

Because of the structure of 	 and C, the first term on the r.h.s. is zero, while only
the diagonal blocks of C2 take part in the product 	TC2	. The diagonal blocks of
C2 are diagonals and

.C2/ii D
X

i0

Cii0 Ci0 i D ci: (2.25)

Thus, we have that the perturbation is

�� � z

�
; (2.26)

where we have defined the effective multiplexity z as the weighted mean of the
coupling degree with the weight given by the squares of the entries of the leading
eigenvector of A:

z D
X

i

ci
	2i
	T	

; (2.27)
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where z D 0 in a monoplex -single layer- network or z D m � 1 in a node aligned
multiplex. Summing up, we have that the largest eigenvalue of the supra-adjacency
matrix is equal to the largest eigenvalue of the dominant layer adjacency matrix at
a first order approximation. As a consequence, for example, the critical point for an
epidemic outbreak in a multiplex network is settled by that of the dominant layer at
a first order approximation [8]. At second order, the deviation of N� from � depends
on the effective multiplexity and goes to zero with �. See Figs. 2.2 and 2.3.

The approximation given in Eq. (2.26) can fail when the largest eigenvalue is
near degenerated. We have two cases in which this can happen:

• the dominant layer is near degenerated,
• there is one (or more) layers with the largest eigenvalue near that of the dominant

layer.

The accuracy of the approximation is related to the formula

�� � 	TC	 C
X

i

.	.i/TC	/
� � �.i/ ; (2.28)

where �.i/ and 	.i/ are the non-dominant eigenvalues and the associated eigenvec-
tors. In the first case it is evident that the second term on the r.h.s. will diverge, while
in the latter, because of the structure of C, 	, and 	.i/, it is zero. In that case, we say
that the multiplex network is near degenerated and we call the layers with the largest
eigenvalues co-dominant layers.

When the multiplex network is near degenerated, 	 used in the approximation of
equation (2.26) has a different structure. Consider that we have l co-dominant layers
ıi; i D 1; : : : ; l. If 	ıi is the eigenvector of Aıi associated to �ıi , we have that

	 D
lX

iD1
	ıi ˝ 1ıi : (2.29)

Note that the same comment on Eq. (2.23) also applies here. The term linear in C in
the approximation of equation (2.26) is no more zero. We have

zc D 	TC	
	T	

D 1

	T	

X
l;mWl¤m

	T
ıl
	ım (2.30)

and we name zc the correlated multiplexity. We can decompose zc in the contribution
of each single node-layer pair

zci D 1

	T	

X
mWm¤l

X
j

	ıl iCij	ım j: (2.31)
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Fig. 2.2 Effective
multiplexity z as a function of
the fraction of nodes coupled
s for a two layers multiplex
with 800 nodes with a power
law distribution with 
 D 2:3

in each layer. For each value
of s, 40 different realizations
of the coupling are shown
while the intra-layer structure
is fixed. In the panel on the
top the z shows a two band
structure, while in the panel
on the bottom, it is
continuous. The difference is
due to the structure of the
eigenvector
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Fig. 2.3 Same setting of top
panel of previous figure. On
the top: calculated N�. We can
see two branches
corresponding to the two
branches of the previous
figure. Bottom: calculated vs
approximated N�

and we call zci the correlated multiplexity degree of node-layer i. By definition,
coupled node-layer pairs have the same correlated multiplexity degree. So, if we
have md co-dominant layers in the multiplex, we get

�� � zc C z

�
D md

X
i2ı

zci C
P

i2ı zi

�
: (2.32)

Spectral Relations Between Supra and Coarse-Grained
Representations

The fundamental spectral result related to a quotient network is that adjacency
eigenvalues of a quotient network interlace the adjacency eigenvalues of the parent
network. That is, if �i; : : : ; �m are the adjacency eigenvalues of the quotient
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network, and �i; : : : ; �n are the adjacency eigenvalues of the parent network, it
results that

�i � �i � �iCn�m: (2.33)

The same result applies for Laplacian eigenvalues. We can derive directly from that
result a list of bounds for the supra-adjacency and the supra-Laplacian in terms of
the aggregate network and of the network of layers [7]. Besides, in the case of node
aligned multiplex networks, we have that the eigenvalues of the laplacian of the
network of layers are a sub-set of the spectrum of the supra-Laplacian. This result is
of special relevance in studying the structural properties of a multiplex network,
since it states that the adjacency (Laplacian) eigenvalues of the coarse-grained
representation of a multiplex interlace the adjacency (Laplacian) eigenvalues of the
parent. In the case of a node-aligned multiplex, the Laplacian eigenvalues of the
network of layers are a sub-set of the Laplacian eigenvalues of the parent Multiplex
network.

The Second Eigenvalue of NL

A number of structural and dynamical properties of a network can be derived from
the value of the first non-zero eigenvalue of the Laplacian. In the particular case of
Multiplex Networks it has been shown that its behavior reflects a structural transition
of the system [9]. We investigate the first non-zero eigenvalue of the supra-Laplacian
of a node-aligned multiplex network. From the interlacing results of the previous
section, we know that

N�2 � Q�a2 (2.34)

and that

N�2 � m: (2.35)

m is always an eigenvalue of the supra-Laplacian, so, we can look for the condition
under which N�2 D m holds. By combining equations (2.34) and (2.35), we arrive to
the conclusion that if m � Q�a2 , then N�2 ¤ m. On the other hand, we can approximate
N�2 as

N�2 D �2 C��2; (2.36)

where �2 is the eigenvalue of L. We have

��2 �
X
i<j

cij.xi � xj/
2; (2.37)
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where xi are the elements of the eigenvector x associated to �2. Because of the
structure of C and x, it results

��2 � m � 1 (2.38)

for a node aligned multiplex. Thus, since m is always an eigenvalue of NM, for that
approximation to be correct, the following condition must hold

�2 C m � 1 < m; (2.39)

from which we can conclude that if �2 < 1 then N�2 ¤ m.
In summary, we have that, if Q�a2 < m or �2 < 1 then N�2 ¤ m, but the converse

is not true in general.

2.6 Applications

Dynamical Processes: Epidemic Spreading

An important application are the dynamical consequences of the interlacing prop-
erties on both adjacency and Laplacian matrices (see Sect. 2.5 and Ref. [7]). Here,
as an example, we show the SIS epidemic spreading on the top of a multilayer
network and the comparison with the aggregate network. Such dynamical process
is based on the contact between individuals, or nodes, which can be infected or
susceptible to the disease. Infected nodes, also called spreaders, spread the disease
to its neighbors inside a time windows with probability ˇ and recover from it
with probability �. Considering a discrete time approach, the Markov chain that
formalizes this processes can be formally written by the iterative equation

pi.t C 1/ D ˇ
X

j

NAijpj.t/ � �pi.t/; (2.40)

where pi.t/ is the probability of the node-layer pair i be infected at time t, NAij are
the elements of the supra-adjacency matrix NA, while ˇ and � are the infection and
recovery probabilities, respectively. Such model consider the inter-layer and intra-
layer as equal, which is a special case of the model presented in [8]. The critical
point can be obtained by the first order approximation of Eq. (2.40) on its stationary
regime, yielding

ˇc D �

�n. NA/ ; (2.41)



2 Multilayer Networks: Metrics and Spectral Properties 31

where �n. NA/ is largest eigenvalue of the supra-adjacency matrix NA (see Eq. (2.1)).
From the interlacing properties

�n˛ .A
˛/ � �n. NA/; (2.42)

Hence, the critical value ˇc is bounded by the individual critical values and it is
always lower or equal to the lowest individual layer critical value. In addition,
observe that when the effective multiplexity, z � 0 in Eq. (2.27), the approxi-
mated leading eigenvalue of the multilayer supra-adjacency is given by the N� D
maxf�. NA/g. Furthermore, exploiting the network of layers spectra,

�m � �n. NA/; (2.43)

where �m is the largest eigenvalue of the network of layers, whose matrix is given
by Eq. (2.17), implying another constraint to the critical point. In other words, the
critical point of the network of layers bound from above the critical point of the
multilayer.

Contrasting with the first model, now we consider a spreading process on the
aggregate network, Eq. (2.15), hence

pi.t C 1/ D ˇ
X

j

Qaijpj.t/� �pi.t/; (2.44)

where pi.t/ is the probability of the node i be infected at time t, Qaij are the elements
of the aggregated adjacency matrix QA, ˇ is the infection probability and � is the
recovery probability. Observe that such process is different from the spreading
described on Eq. (2.40), in which each node can infect its neighbors on any layer.
On the other hand, in Eq. (2.44) each supra-node chooses a layer with uniform
probability, than spreads the disease to all neighbors in that layer. Moreover, the
critical point can be obtained using the same arguments as before, yielding to

Q̌
c D �

�n. QA/
; (2.45)

where �n. QA/ is largest eigenvalue of the aggregated adjacency matrix. Once again,
for the interlacing results we have

Q̌
c � ˇc: (2.46)

Such result imply that the spreading process on the multilayer structure is more
efficient, or in the worst case as efficient as, than the process on the aggregate
network [7].

The results of this section were formerly presented in [7]. In addition, it is
noteworthy that a more complete model is proposed in [8], which consider the
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activity of the nodes and different spreading probabilities for the intra-layer and
inter-layer edges. However, here we show the simplest cases, similar to the ones
exposed in [8], in order to be more didactic. In spite of that, the examples shown
here exemplify the importance of considering the multilayer structure and the role
of the aggregated network and the network of layers.

Real-World Multilayer Networks

In order to evaluate real-world multilayer structures we study some networks avail-
able at http://deim.urv.cat/~manlio.dedomenico/data.php. We separate them into
three different categories: (i) transportation networks; (ii) biological networks and
(iii) social networks. We evaluate the maximum of the individual layer eigenvalues
and the eigenvalue of the supra-adjacency matrix NA. Moreover, the approximations
of the leading eigenvalues are also computed for comparison. Table 2.1 presents
the results. Contrasting with monoplex systems, instead of one type of relationship,
here we have m different types and also the connections between different layers.
The average of the ki˛ contains information about the relationship inside each layer,
whereas the average of ci˛ summarizes the relations between layers, i.e., between a
given structure in two different contexts.

Regarding the networks studied here, we observe that biological networks tend
to be sparser than social nets, specially considering the inter-layer relations. In
addition, observe that there is a relationship between the average of the matrix C and
the effective multiplexity z. For most of the networks, the first order approximation
is accurate. However, some networks are better approximated by the second order
approximation, for instance the CS. Furthermore, among all networks analyzed the
only one that presented a poor approximation is the EU air transportation network,
which can be explained by the high density of inter-layer couplings compared with
the density of intra-layer connections.

2.7 Conclusion

The last years of research have just started to show that interconnected networks
exhibit specific structural and dynamical properties that cannot be directly deduced
from isolated networks. In order to gain understanding of such a system, a complete
new toolbox is needed. On the other hand, such a new framework cannot be a naive
extension of what has been developed for isolated, single layered, networks: we need
that those tools be adapted to particular questions posed by interconnected networks.
It is our conviction that the best way to tackle the problems ahead is to came back to
the very basic concepts of graph theory and to build on them. The supra-adjacency
matrix and the supra-Laplacian are examples of such basic objects, and the specific
structural features of the interconnected system are reflected in them. In this way,

http://deim.urv.cat/~manlio.dedomenico/data.php
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the rigorous study of these objects, as well as of their spectral properties, is likely
to lead us to the correct understanding of the systems under study. Additionally we
presented two applications, firstly the difference an epidemic spreading process that
takes place on top of a multilayer or the aggregated network. Secondly, we have
shown that perturbation theory is accurate enough when it comes to approximate
the eigenvalue of a multilayer structure using the dominant (or co-dominant) layers.
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Chapter 3
An Ensemble Perspective on Multi-layer
Networks

Nicolas Wider, Antonios Garas, Ingo Scholtes, and Frank Schweitzer

Abstract We study properties of multi-layered, interconnected networks from
an ensemble perspective, i.e. we analyze ensembles of multi-layer networks that
share similar aggregate characteristics. Using a diffusive process that evolves on
a multi-layer network, we analyze how the speed of diffusion depends on the
aggregate characteristics of both intra- and inter-layer connectivity. Through a
block-matrix model representing the distinct layers, we construct transition matrices
of random walkers on multi-layer networks, and estimate expected properties of
multi-layer networks using a mean-field approach. In addition, we quantify and
explore conditions on the link topology that allow to estimate the ensemble average
by only considering aggregate statistics of the layers. Our approach can be used
when only partial information is available, like it is usually the case for real-world
multi-layer complex systems.

3.1 Introduction

Networks are often used to describe interactions among the elements of a complex
system. But until recently, the standard assumption in the literature was that
networks are isolated entities and do not interact with other networks. Today
we understand that this assumption is a rough simplification, since real networks
usually have complex patterns of interaction with other networks. In order to study
more realistic systems, network theory extended its perspective to account for
these network to network interactions, and to investigate their influence on various
processes of interest that may use the network topology as substrate [1–4].

Networks consisting of multiple networks and the connections between them are
called interconnected or multi-layer networks [5]. In a multi-layered network each
individual layer contains a network that is different from the networks contained in
other layers, and the layer interconnectivity refers to the fact that nodes in different
layers can be connected to each other. Nevertheless, it is often possible to extend
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and apply methods developed for single-layer (isolated) networks to multi-layer
networks, assuming that all layers and the connections between them are known
precisely. Unfortunately, when creating networks using relational data on real-world
systems we are often confronted with situations where we lack information about the
details of their multi-layer structure. In such situations, ensemble-based approaches
allow us to reason about the expected properties of such networks, provided that we
have access to aggregate statistics which can be used to define a statistical ensemble.

For instance, there are situations in which we are able to precisely map the
topology within each layer individually, but we may not be able to obtain the detailed
topology of connections across different layers. As an example, we may consider the
topology of connections between users in different online social networks (OSNs).
Such a system can be represented as a multi-layer network, where each layer
represents the network of connections between users within one OSN. In addition,
cross-layer connections are due to users which are members of multiple OSNs at the
same time, and which can thus drive the dissemination of information across OSNs.
Data on the network topology within particular OSNs are often readily available,
however it is in general very difficult to identify accounts of the same user in
different OSNs.

Contrary to the situation described above, we may also consider situations in
which detailed information on the topology of cross-layer links is available, while
the detailed topology of connections within layers is not known. For example, there
may be a rather small number of static links across layers, while the topology of
links within layers is too large and too dynamic to allow for a detailed mapping.
Again, in such a situation we may still have access to partial, aggregate information
on the inter-layer connectivity (such as the number of nodes or the density of links)
which we can use in order to reason about a multi-layer complex system.

Both the above situations lead to multi-layer networks, and both require us to
reason about a system with incomplete information. This problem can be addressed
from a macroscopic perspective using statistical ensembles, and in this chapter we
extend the ensemble perspective to multi-layer networks, where we have access
to mere aggregate statistics either on links within or across layers. Combining
both detailed and aggregate information on the links in a multi-layer network, we
first define a statistical ensemble, i.e. a probability space containing all network
realizations that are consistent with available information. Secondly, we assume a
probability mass function which assigns a probability to each possible realization
in the ensemble. And finally, using either analytical or numerical techniques, we
use the resulting probability space to reason about the expected properties of a
network given that it is drawn from the ensemble. The rest of the chapter is
structured as follows. In Sect. 3.2 we present our methodological approach to model
ensembles of multi-layer networks, we formally introduce the diffusion process
that is assumed to run on the multi-layer network, and we introduce a method that
allows to aggregate the statistics of links inside layers and across layers. In Sect. 3.3
we introduce a mean-field approach to approximate ensemble averages, and we
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investigate under which conditions it can be used to argue about diffusion in multi-
layer networks. In particular we discuss three distinct cases according to different
levels of information that we may have about the topology of links across the layers
or inside the layers.

3.2 Methods and Definitions

In our analysis we investigate a diffusion process that evolves on a static multi-layer
network. More precisely we focus on diffusion dynamics modeled by a random walk
process. In the following we provide a short summary that highlights the important
properties of this process. Note that these are facts already known from the theory
of random walks on single layer networks [6, 9], but later on we will extend this
framework to multi-layer networks.

We assume a discrete time random walk process on a network G that consist of n
nodes. Starting at an arbitrary node, at each step of the process the walker moves to
an adjacent node, so that for a pair of nodes i; j the probability for a walker to move
from node i to node j is given by the corresponding entry Tij of a transition matrix
T. Since we have

P
j P.i ! j/ D 1, the transition matrix is row stochastic.

We further consider a vector � t 2 Rn, whose entries � t
i indicate the probability

of a random walker to visit node i after t steps of the process. Here, we consider �0

as a given initial distribution, whose entries �0i give the probability that the random
walker has started at node i. The change of visitation probabilities � t ! � tC1 can
then be calculated based on the transition matrix as follows:

� tC1 D � tT: (3.1)

Since this is an iterative process starting with �0, the visitation probability vector
after t time steps can be calculated as � t D �0Tt, and we can investigate the long-
term behavior of the random walk process for t ! 1. For a visitation probability
vector �� such that ��T D ��, we can say that the process reaches a stationary
distribution ��, and if the transition matrix T is primitive, the Perron-Frobenius
theorem guarantees that such a unique stationary distribution �� exist.

In order to assess the convergence time of a random walk process, we can study
the total variation distance between visitation probabilities � t after t steps and the
stationary distribution��. For two distributions� and� 0, the total variation distance
is defined according to Ref. [7] as

�.�; � 0/ WD 1

2

X
i

j�i � � 0
i j ; (3.2)

where �i indicates the i-th entry of � .
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As a proxy for diffusion speed, we can now investigate how long it takes until
the total variation distance �.� t; ��/ falls below some given threshold value � (for
a small �). In other words, we study how many steps t.�/ a random walker needs
such that �.� t; ��/ � � for t � t.�/

The eigenvalues 1 D �1 � j�2j � : : : � j�nj of a row-stochastic matrix
necessarily have absolute values that fall between zero and one, while the largest
eigenvalue �1 is necessarily one. The number of required time steps t.�/ (and thus
the diffusion speed of the random walk process) can be estimated by means of the
second-largest eigenvalue �2 of T,

t.�/ 	 �1
ln.j�2j/ : (3.3)

For a detailed derivation see Ref. [8]. Equation (3.3) shows that a second-largest
eigenvalue �2 close to one implies slow convergence, while �2 close to zero implies
fast convergence. Therefore in the following we use the second-largest eigenvalue
of a transition matrix �2.T/ as a proxy to measure and quantify the convergence
behavior on a network.

Multi-layer Network

The purpose of our study is to investigate diffusion processes on ensembles of
networks with multiple interconnected layers. Thus, in the following we briefly
introduce the notion of multi-layer networks used in this chapter. Let us consider
a multi-layer network denoted by G that consist of L non-overlapping layers
G1; : : : ;GL. Each of these layers Gl is a single-layer network Gl D .Vl;El/ where
V.Gl/ and E.Gl/ denote the nodes and links of layer l respectively. We call the
links E.Gl/ between nodes within the layers l intra-links. The multi-layer network
G consist in total of n nodes, where n D PL

lD1 jV.Gl/j. In addition, we assume a
set EI.G/ of inter-layer links which connect nodes across layers, i.e. for each edge
.u; v/ 2 EI we have u 2 V.Gi/ and V.Gj/ for i ¤ j. Inter-layer links induce a
multipartite network with the independent sets G1; : : : ;GL.

In our study we consider undirected and unweighted networks, however some of
our results may hold even for directed or weighted networks. Furthermore, from the
perspective of a random walk process, we assume that inter- and intra-layer links
are indistinguishable, i.e. transitions are made purely randomly irrespective of the
type of link. As such, the multi-layer network can also be viewed as a huge single
network consisting of subgraphs G1; : : : ;GL.

As mentioned above diffusion dynamics on networks can be studied analytically
using transition matrices of random walkers [9, 10]. The multi-layer structure of a
network can explicitly be incorporated in a random walk model by constructing
a so-called supra-transition matrix [3, 11] similar to the supra-adjacency matrix
used in [10, 12, 13]. The supra-adjacency matrix of a multi-layer network G can
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be defined in a block-matrix structure as

A D

0
BBBBBBB@

A1 : : : A1t : : : AsL

:::
: : :

:::
: : :

:::

As1 : : : Ast : : : AsL
:::
: : :

:::
: : :

:::

AL1 : : : ALt : : : AL

1
CCCCCCCA
: (3.4)

On the diagonal we have the adjacency matrices A1; : : : ;AL corresponding to the
layers G1; : : : ;GL, thus entries of these block matrices represent the intra-layer links
of the multi-layer network. Off-diagonal matrices Aij for i; j 2 f1; : : : ;Lg with i ¤ j
represent inter-layer links that connect nodes in layer Gi to nodes in layer Gj. Since
we consider undirected networks we have A>

ij D Aji.
Based on a supra-adjacency matrix A we can easily define a supra-transition

matrix T of a random walker on a multi-layer network G. In block-matrix form
such a matrix can be written as:

T D

0
BBBBBBB@

T1 : : : T1t : : : TsL
:::
: : :

:::
: : :

:::

Ts1 : : : Tst : : : TsL
:::
: : :

:::
: : :

:::

TL1 : : : TLt : : : TL

1
CCCCCCCA
: (3.5)

Here, each entry Tij is defined as:

Tij D aijPn
kD1 akj

; (3.6)

where aij are the corresponding entries of the supra-adjacency matrix A. Note that,
due the presence of inter-layer links, block matrices Tij are in general not equal to the
row-normalized version of block matrices Aij. The supra transition matrix defined
above can be used to model a random walk process on a multi-layer network.

From an analytical perspective the supra-transition matrix can be treated in
the same way as the transition matrix of a single layer as explained above. In
the case of undirected networks the eigenvalues of a transition matrix are related
to the eigenvalues of the normalized Laplacian matrix. In our case we study the
second-largest eigenvalue of the supra-transition matrix and use it as a proxy for the
efficiency of a network with respect to a diffusion process as pointed out above.

Using T we are able to model a diffusion process on a multi-layer network.
Since we especially want to emphasize the relevance of the inter-links, in the next
section we introduce a transition matrix that only considers transitions across layers
and not between individual nodes. As we will see later, this aggregated transition
matrix is useful to distinguish the influence of inter-layer and intra-layer links on
the convergence behavior of a random walk process.
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Multi-layer Aggregation

The supra-transition matrix T introduced previously contains transition probabilities
for any pair of nodes in the multi-layer network. In this sense T could also be
the transition matrix of a large network, which is not divided in separate layers.
In order to understand the effects of a layered structure, in this section we focus
explicitly on transitions across layers. To do this we aggregate the statistics of inter-
links and the intra-links of all single layers, and thus, we homogenize all individual
nodes that belong to the same layer. This way we reduce the supra-transition matrix
T of dimension n to an aggregated transition matrix T of dimension L. We call
this process multi-layer aggregation and the matrix T the layer-aggregated or
just aggregated transition matrix. Later on we will provide a relation between the
eigenvalues of T and T, which will allow us to decompose the spectrum of T. This
is important since the convergence behavior of a random walk process depends on
the second largest eigenvalues of T.

Let us begin by discussing the construction process of the layer-aggregated
transition matrix. Our goal is to define transition probabilities across any two layers
Gs and Gt by averaging the transitions between any two nodes of Gs and Gt. Under
certain conditions which will be specified in the following, these average transition
probabilities can be representative for all nodes of the different layers.

Let G be a multi-layer network that consists of L layers G1; : : : ;GL. The
transition probability to go from node vi to any node vj in G is defined as

P.vi ! vj/ D !.vi; vj/P
k !.vi; vk/

(3.7)

where !.vi; vj/ is the weight of a link connecting vi with vj. This is a general
formalism, but since we only consider unweighted networks we have !.vi; vj/ D 1

if and only if there is a link between the nodes vi and vj.
For each node vi in layer Gs we require that the transition probabilities P.vi ! 
/

to nodes in another layer Gt fulfill the following equation

˛ss

X
vj2V.Gs/

P.vi ! vj/ D ˛st

X
vk2V.Gt/

P.vi ! vk/ 8vi 2 V.Gs/ ; (3.8)

where ˛st is a factor that only depends on the layers Gs and Gt. The factor ˛ss is
used to normalize the transitions, such that

P
t ˛st D 1 is satisfied. In other words

Eq. (3.8) implies that the probability for a random walker at node i to stay inside
layer Gs is a multiple of the probability to switch to layer Gt.

We can see that ˛st is independent of i, and therefore Tst D ˛stRst where Rst is a
row stochastic matrix. This means that Tst resembles a scaled transition matrix, and
˛st represents the weighted fraction of all links starting in Gs that end up in Gt. Thus,
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we can define the aggregation of a supra-adjacency matrix satisfying Eq. (3.8) as

T D

0
BBBBBBB@

˛11 : : : ˛1t : : : ˛sL
:::
: : :

:::
: : :

:::

˛s1 : : : ˛st : : : ˛sL
:::
: : :

:::
: : :

:::

˛L1 : : : ˛Lt : : : ˛LL

1
CCCCCCCA
: (3.9)

If a multi-layer network G satisfies Eq. (3.8) we can follow that the spectrum of
the aggregated matrix T D f˛stgst is

Spec.T/ D f1; �2; : : : ; �Lg ; (3.10)

and it holds that �2; : : : ; �L 2 Spec.T/ (see Proposition 1 in the Appendix).
This relation implies that the aggregated matrix T preserves L eigenvalues of the

supra-transition matrix T, where L is the amount of layers. In other words, under the
condition that Eq. (3.8) holds, we are able to make statements about the spectrum of
the transition matrix T only using the layer-aggregated transition matrix T.

Similar to the Fiedler vector, i.e. the eigenvector corresponding to the second
smallest eigenvalue of the Laplacian matrix, here we may use the eigenvector v2
corresponding to the second largest eigenvalue �2 of the transition matrix T. The
vector v2 contains negative and positive entries and sums up to zero. If all individual
nodes that belong to the same layer correspond to entries of v2 with the same sign,
we consider the layers of G partitioned according to v2, which is also called spectral
partitioning or spectral bisection [14, 19]. In this case, according to Corollary 1 in
the Appendix, it holds that �2.T/ D �2.T/.

We note that the multi-layer aggregation, performed according to a spectral
partitioning, has similarities to spectral coarse-graining [15]. The multi-layer
aggregation presented here decreases the state space as well, but still preserves parts
of the spectrum.

The spectral properties introduced in this section are important for our ensem-
ble estimations that follow, since we characterize the diffusion process by its
convergence efficiency measured through the second-largest eigenvalue �2.T/ of
the supra-transition matrix. However, as outlined before, if Eq. (3.8) holds then
this eigenvalue is equal to the second-largest eigenvalue �2.T/ of the aggregated
transition matrix T. Considering that for the construction of T we only used
aggregated statistics on the network and not the detailed topologies of the inter-
links or any of the intra-links of all single layers, this already provides a hint how
we can treat a system in the case of limited information.
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3.3 Mean-Field Approximation of Ensemble Properties

With the layer aggregation introduced in the previous section, we are now able
to deal with multi-layer network ensembles in case of limited information. In our
case, this information concerns knowledge either of the inter-link topology between
layers or the intra-link topologies of all single layers. For our purpose we define
ensembles based on the inter-link densities and intra-link densities of all single
layers, more precisely, by using the amount of nodes, the amount of inter-links
across any two layers, and the amount of intra-links of all single layers. The number
of nodes in individual layers are represented by the vector n D fn1; : : : ; nLg and the
number of links between layers by a matrix M with entries mst where s gives the
source layer and t the target layer. Intra-layer links have both of their ends in the
same layer and therefore we assume that the diagonal elements mss are equal to the
amount of desired intra-links multiplied by two. We denote the ensemble defined by
these two quantities E.n;M/.

A single random realization of this ensemble satisfies the aggregated statistics
given by M and n. We assume a random uniform distribution of links and therefore
each realization of E.n;M/ has the same probability. However, instead of single
realizations we are rather interested in the average values of all possible realizations.
For each multi-layer network realization G of E.n;M/ we build the supra-transition
matrix T, which defines a random walk process that is different for every realization.
As discussed above, a proxy of the convergence quality of these random walk
processes is given by the second-largest eigenvalue �2.T/. Our goal is to estimate
the average �2 of the ensemble E.n;M/, and we do this using a mean-field approach
on the supra-transition matrix T that is similar to Refs. [16, 17].

Hereafter we will provide a mean-field approach for the general case, i.e. when
the exact topology of inter-links and intra-links of all single layers are unknown.
Next, building on this approach, we will discuss the case for which we have full
knowledge of the intra-link topology but we do not know the inter-link topology,
and the case for which we have full knowledge of the inter-link topology but we do
not know the intra-link topology.

Case I: Unknown Topology of Inter-links and Intra-links for All
Layers

For this case we only assume knowledge of the ensemble parameters M and n. We
define a mean-field adjacency matrix OA with a block structure similar to Eq. (3.4),
and for each OAst we are only given the amount of links equal to mst. Since we do not
know how these links are assigned to the entries Ast, without loss of generality we
assume a uniform distribution. Thus, for the blocks of OA we have

OAst D
�

mst

nsnt

�
ij

; i 2 f1; : : : ; nsg; j 2 f1; : : : ; ntg : (3.11)
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Following the discussion of Sect. 3.2, based on the mean-field adjacency matrix
we define a mean-field transition matrix OT. The transition probability between any
two nodes i; j 2 Gs for a fixed layer s is the same since according to the available
information individual nodes cannot be distinguished based on their connectivity.
Further, the transition probabilities between any two nodes i 2 Gs and j 2 Gt are
the same for any two fixed layers s and t. Therefore, all block transition matrices OTst

contain the same value at each entry. Hence we have

OTst D
(

mst

nt
�P

k msk
	
)

ij

; i 2 f1; : : : ; nsg; j 2 f1; : : : ; ntg : (3.12)

Now, using Eq. (3.8) we can construct an aggregated supra-transition matrix T with
entries

˛st D mstP
k msk

: (3.13)

The aggregated supra-transition matrix T describes the macro behavior of the
multi-layer network ignoring the detailed topology of the inter-links and the intra-
links of all single layers. Since T depends on a mean-field approach it only captures
probabilistic assumptions of the ensemble E.n;M/. Thus, the spectrum of the mean-
field supra-transition matrix OT can be calculated by

Spec. OT/ D Spec.T/[
 

L[
sD1

[ns�1
iD1 f0g

!
: (3.14)

To clarify the situation, let us briefly discuss the simple case of a network G that
contains only two layers G1 and G2, for which we get

T D
�
1� ˛12 ˛12
˛21 1 � ˛21

�
: (3.15)

Hence, for the mean-field matrix of a two-layered network we obtain

Spec. OT/ D f1; 1� ˛12 � ˛21; 0; : : : ; 0„ ƒ‚ …
jnj�2 times

g : (3.16)

These results are remarkable, since the layer-aggregated transition matrix captures
the same relevant eigenvalues as the mean-field transition matrix. So, for the case of
a diffusion process in two layers the eigenvalue of interest is �2. OT/ D 1�˛12�˛21.
However, so far we only considered the general case where we can only use the
densities of inter-links and intra-links of all single layers. In the following two
sections we will investigate cases where we may have some additional information
about either the inter-link topology between all single layers or the intra-link
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topology of all single layers. For simplicity, we will restrict ourselves to the two
layer case but, as shown in the appendix, our results can be generalized to multiple
layers.

Case II: Unknown Inter-connectivity

For this case we assume full knowledge of the intra-link topology, i.e. we know
exactly which nodes are connected in all of the single layers. But while we know the
number of links between the layers we do not know how the layers are connected,
i.e. we do not know the inter-link topology. With respect to the general case
discussed previously, here we have more information which is expected to improve
the estimates of the ensemble average.

More precisely, we consider a two-layer network with unknown inter-link
structure denoted by EI.G/, but with a given amount of m interconnecting links
which connect the networks G1 and G2. This means that the diagonal blocks A1 and
A2 of the supra-adjacency matrix are given, but the off-diagonal blocks A12 and A21

can take any form such that they have exactly m entries different from zero. Since
there are no further constraints on the ensemble, any random link configuration that
consists of m inter-links has the same probability to occur. Therefore, we define the
mean-field supra-adjacency blocks that correspond to the inter-links, OA12 and OA21,
to have the same value m

n1n2
in each entry.

For the supra-transition matrix we have to row-normalize A1 with OA12 and OA21

with A2. The row sums of OA12 are all equal to m=n1 and the row sums of OA21 are
all equal to m=n2, while the row sums of A1 and A2 correspond to the individual
degrees of the nodes in G1 and G2 respectively. Thus, we use the mean degree bd1 of
G1 and bd2 of G2 in order to obtain the row-normalized transition matrix OT, and to
define the following factors

˛1 D n1bd1
n1bd1 C m

; ˛2 D n2bd2
n2bd2 C m

; ˛12 D m

n1bd1 C m
; ˛21 D m

n2bd2 C m
:

(3.17)

Note that ˛1 C ˛12 D 1 and ˛2 C ˛21 D 1.
Accordingly we define the mean transition blocks of T12 and T21.

OT12 D
(

m

n2.n1bd1 C m/

)
ij

for i 2 f1; : : : ; n1g; j 2 f1; : : : ; n2g (3.18)

OT21 D
(

m

n1.n2bd2 C m/

)
ij

for i 2 f1; : : : ; n2g; j 2 f1; : : : ; n1g : (3.19)
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This means that each of the off-diagonal block matrices that correspond to the
mean-field inter-link structures have the same value at each matrix element, and
the diagonal blocks are just rescaled transition matrices of A1 and A2,

OT1 D .1 � ˛12/T.A1/; OT2 D .1 � ˛21/ T.A2/ ; (3.20)

where T.M/ is the row-normalized version of matrix M. We denote the supra-
transition matrix with the blocks constructed as described before by OT,

OT D
 OT1 OT12

OT21 OT2

!
: (3.21)

This mean-field matrix has some special properties. First of all, the eigenvalues
of OT1 and OT2 are also eigenvalues of OT. Further, the multi-layer aggregation of OT is
given by

T D
�
˛1 ˛12

˛21 ˛2

�
D
�
1� ˛12 ˛12

˛21 1 � ˛21
�
; (3.22)

so, the second-largest eigenvalue of T is given by �2 D 1 � ˛12 � ˛21.
The second-largest eigenvalues of OT1 is equal to .1�˛12/�12 and of OT2 is equal to

.1 � ˛21/�
2
2, where �12 D �2.T.A1// and �22 D �2.T.A2//. Therefore the second

largest eigenvalue of OT, denoted by �2. OT/, fulfills the following condition (See
Proposition 2 in the Appendix for more details)

�2. OT/ D max
�
1 � ˛12 � ˛21; .1 � ˛12/�12; .1 � ˛21/�

2
2

	
: (3.23)

We would like to remind the reader that an eigenvalue �2 close to one implies
slow convergence and �2 close to zero fast convergence. From the above equation
we can see that as long as �2 D 1 � ˛12 � ˛21 is maximal the inter-links are the
limiting factor of the convergence in the multi-layer network. This means that due to
the inter-link topology the random walk diffusion is slowed down, and the influence
of the intra-layer topologies is marginal to the process.

When either the term of �12 or �22 is maximal then the diffusion is limited by the
single layer G1 or G2, and the additional information provided by the intra-layer
topologies becomes relevant as it affects the diffusion process. Note that the change
between �2 and either �12 or �22 being maximal is related to the transitions pointed
out in Ref. [3, 18], which is also discussed in Chap. 1.

This behavior is shown in Fig. 3.1 for the mean-field matrix of two interconnected
networks. The figure shows the second largest eigenvalues of OT;T and the sparsest
layer T1 for different amount of inter-links. When only a few inter-links are present
the interconnectivity between layers slows the process down, as it is expected. When
we increase the amount of inter-links, we can reach the convergence rate of single
layers, which is the point where the single layers slow down the process. However,
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Fig. 3.1 Eigenvalues of a mean-field approach of a two-layered network. Layer 1 consists of an
Erdös-Rényi network of 100 nodes and 500 links and Layer 2 consists of an Erdös-Rényi network
of 100 nodes and 750 links. The x-axis indicates the amount of inter-links randomly added across
the layers. The lines indicate the second-largest eigenvalue of: black dashed: the mean-field supra-
transition matrix �2. OT/, violet: the layer-aggregated matrix �2.T/, turquoise: the larger single layer
eigenvalues of �2.T1/ and �2.T2/

with an increasing amount of inter-links the single layers lose their importance
and the process is again slowed down by the inter-links. This happens because
a very large amount of inter-links force the random walker to switch between
layers with increasing probability, thus, preventing diffusion to reach the whole
layer. To conclude, the mean-field transition matrix OT is a better estimation than
T in intermediate numbers of interlinks, which for our systems is in the region
of approximately 550–1800 inter-links. Otherwise, the information about the link
densities as captured in T is enough to approximate the second-largest eigenvalue
of OT, and thus the speed of diffusion.

In general the spectrum of a mean-field matrix OT with unknown inter-link
topology is given by

Spec. OT/ D f1; �2; : : : ; �ng [
 

n[
sD1

Spec. OTs/ n �1. OTs/

!
; (3.24)

or

Spec. OT/ D Spec.T/[
 

n[
sD1

Spec. OTs/ n �1. OTs/

!
; (3.25)

where T is the multi-layer aggregation of OT as described before (for details see
Proposition 2 in the appendix). This decomposition of eigenvalues can also be useful
for other network properties that depend on eigenvalues.
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Fig. 3.2 (a) Eigenvalues of a mean-field approach of a two-layered network. Layer 1 and 2 both
consist of an Erdös-Rényi network of 50 nodes and 100 links but with different topologies. The
x-axis indicates the amount of random inter-links added across layers. The lines indicate the
second-largest eigenvalues of: black line: ensemble averages, turquoise line: mean-field estimate
including intra-link topology, violet dashed line: mean-field only considering densities. (b)
Eigenvalue difference between ensemble average and mean-field estimation��2 D �2.T/��2. OT/

So far we provided an estimation based on the eigenvalues of a mean-field
transition matrix OT that intends to approximate the ensemble average. In reality
however, ensemble realizations of multi-layer networks that contain layer G1

and G2 can deviate from the mean-field estimation. This is shown in Fig. 3.2a
where we plot the second-largest eigenvalues of OT, T, and ensemble averages
over 100 realizations of T against the number of inter-links between G1 and
G2. As we can see, the magenta colored dashed line showing the mean-field
approximation of T is a good proxy for the diffusion dynamics in the region
when inter-links dominate, which is the case for either sparse or very dense inter-
link topologies. However, as shown by the cyan colored line, we can actually
improve this approximation if we additionally consider the intra-links of all single
layers.

There is a peak where the difference between the estimation and the ensemble
averages ��2 D �2.T/ � �2. OT/ reaches high values up to 0:225, as shown in
Fig. 3.2b. This happens, on one hand, due to the large degree of freedom that
comes from the absence of intra-connectivity informations within the layers. On
the other hand, the mean-field matrix assumes “full-connectivity” across layers,
and even though this implies small weights for each single inter-link, it leads
to a systematic bias towards overestimating the diffusion speed. Nevertheless,
we would like to highlight that the multi-layer aggregation provides a quite
accurate estimation of the diffusion speed in the regimes where inter-links limit
diffusion.
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Case III: Unknown Intra-connectivity

For this case we assume full knowledge of the inter-link topology, i.e. we know
exactly how the layers are connected, but the intra-link topologies, i.e. how the nodes
are connected within the single layers, are unknown. More precisely, we consider
two interconnected layers G1 and G2 of a multi-layer network, and we fix the inter-
links EI.G/ in a bipartite network structure that connects nodes of G1 to nodes of
G2. Since we have no information about the intra-link topologies of G1 and G2, we
assume random connectivities within the layers, so that we only know the average
degrees bd1 and bd2 of G1 and G2 respectively. This means that the off-diagonal blocks
A>
12 D A21 of the supra-adjacency matrix are given, but the diagonal blocks A1 and

A2 are unknown.
Because we only know the average degrees bd1 and bd2 of the layers, we can define

mean-field versions of the adjacency matrices such that

cA1 D
( bd1

n1

)
ij

and cA2 D
( bd2

n2

)
ij

:

However, even though we know the topology of the inter-links, we do not know
which nodes exactly are connected to each other. Hence we use the same approach
as in Case II with m equal to the amount of inter-links and the factors defined as
in Eq. (3.17). Therefore we get the mean-field transition matrix OT consisting of the
following block matrices,

OT1 D
( bd1

n1bd1 C m

)
ij

for i 2 f1; : : : ; n1g; j 2 f1; : : : ; n2g (3.26)

OT2 D
( bd2

n2bd1 C m

)
ij

for i 2 f1; : : : ; n2g; j 2 f1; : : : ; n1g : (3.27)

The off-diagonal blocks are just rescaled transition matrices of A12 and A21,

OT12 D ˛12T.A12/; OT21 D ˛21T.A21/ : (3.28)

However, this time we are not able to compute exactly the single layer eigen-
values �11 and �22, as it was the case in Case II. In particular, depending on the

ensemble constraints we could only compute an average eigenvalue b�2 for a single
layer. Therefore, we can use the following maximization term

�2. OT/ D max
�
1 � ˛12 � ˛21; .1 � ˛12/

b�12; .1 � ˛21/b�22
�
; (3.29)
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Fig. 3.3 (a) Eigenvalues of a mean-field approach of a tow-layered network with 250 inter-links.
Layer 1 and 2 both consist of 50 nodes but no edges. The x-axis indicates the amount of links intra-
links that are simultaneously added to both layers. The lines indicate the second-largest eigenvalue
of: black line: ensemble averages, turquoise line: mean-field estimate including inter-links, dashed
violet line: mean-field only considering link densities. (b) Eigenvalue Difference between ensemble
average and mean-field approach ��2 D �2.T/� �2. OT/

which is has the same form as in Case II (see Eq. (3.23)). Here again, as long as
�2 D 1 � ˛12 � ˛21 is maximal the inter-links are the limiting factor of diffusion in
the multi-layer network, which means that due to the inter-link topology the random
walk diffusion is slowed down, and the influence of the intra-layer topologies is

marginal to the process. On the other hand, when either the average term of b�12 orb�22 is maximal then the diffusion is limited by the single layer G1 or G2, and the
additional information provided by the intra-layer topologies becomes relevant as it
affects the diffusion process.

In Fig. 3.3a, starting with initially empty intra-networks,1 we plot the second
largest eigenvalues of T, OT, and the ensemble average of 100 realizations of T
against the number of intra-links that are simultaneously and randomly added in
both layers. We observe that the general behavior is similar to Fig. 3.2. Thus, the
multi-layer aggregation plotted in magenta approximates well the regions where
the inter-links are the relevant factor, which is for very sparse and increasingly
dense intra-links densities. The difference between the mean-field and the ensemble
average��2 D �2.T/� �2. OT/ as seen in Fig. 3.3b again rises up to a peak of about
0:225.

Our analysis shows that there is some form of symmetry in knowing the degree
of the nodes in the single layers, but not knowing how they are connected to nodes in
other layers and to knowing the inter-links between layers, but not the degree of their
adjacent nodes. Even though the ensembles generated from these two constraints
can be much different, the relevance of inter-links or intra-links of all single layers
to a diffusive process is comparable for both cases.

1Note that even though the intra-layer networks are empty initially, there is a number of inter-layer
links which provide connectivity across the layers, similar to a bipartite network.
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3.4 Conclusion

In this chapter, we showed how an ensemble perspective can be applied to
multi-layer networks in order to address realistic scenarios when only limited
information is available. More precisely, we focused on a diffusion process that runs
on the multi-layer network and its relation to the spectrum of the supra-transition
matrix. We have shown that the convergence rate of the diffusion process is limited
by either the inter-links or intra-links of the single layers and we identified for which
relation of inter-link compared to intra-link densities it is sufficient to only consider
transitions across layers, instead of the full information on all individual nodes. This
implies that we do not always need perfect information to make statements about
a multi-layer network because, under certain conditions, we are still able to make
analytical statements about the network only using partial information. In realistic
situations data can be an issue either due to availability constraints or due to their
vast amounts. In such cases, even though an exact analysis is impossible, we may
still derive useful conclusions about processes that depend on the network spectrum
(like diffusion and synchronization) using only aggregated statistics.

For our study we assumed the simplest case of random networks, therefore
exploring other ways to couple the network layers or including link-weights and
directed links and testing their influence on our results is up to future investigation.

Acknowledgements N.W., A.G. and F.S. acknowledge support from the EU-FET project MUL-
TIPLEX 317532.

Appendix

Note: Unless stated otherwise, here vectors are considered to be row-vectors and
multiplication of vectors with matrices are left multiplications.

We assume a multi-layer network G consisting of L layers G1; : : : ;GL and n
nodes. A single layer Gs contains ns nodes and therefore

PL
sD1 ns D n. For a multi-

layer network G we define the supra-transition matrix that can be represented in
block structure according to the layers:

T D

0
BBBBBBB@

T1 : : : T1t : : : TsL
:::
: : :

:::
: : :

:::

Ts1 : : : Tst : : : TsL

:::
: : :

:::
: : :

:::

TL1 : : : TLt : : : TL

1
CCCCCCCA
:

Each Tst contains all the transition probabilities from nodes in Gs to nodes in Gt.
Assuming Eq. (3.8) it follows that Tst D ˛stRst where Rst is a row stochastic matrix.
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This means that all Tst are scaled transition matrices. The factor ˛st represents the
weighted fraction of all links starting in Gs that end up in Gt.

In this respect we define the aggregated transition matrix T of dimension L,

T D

0
BBBBBBB@

˛11 : : : ˛1t : : : ˛sL
:::
: : :

:::
: : :

:::

˛s1 : : : ˛st : : : ˛sL
:::
: : :

:::
: : :

:::

˛L1 : : : ˛Lt : : : ˛L

1
CCCCCCCA
:

Each vector v of dimension n can be split according to the layer-separation
given by G,

v D �
v.1/; : : : ; v.k/; : : : ; v.L/

	
:

Each component v.k/ has exactly dimension nk. We define the layer-aggregated
vector v D .v1; : : : ; vL/ of dimension L as follows

8k 2 f1; : : : ;Lg vk D
nkX

iD1



v.k/

�
i
:

We use the bracket notation Œv�i to represent the i-th entry of the vector v.
Analogously, by ŒvM�i we mean the i-th entry wi that represents the multiplication
of v with a matrix M, i.e. w D vM. Further, by jvj we indicate the sum of the entries
of v, jvj D P

i vi D P
iŒv�i.

Theorem 1 For a multi-layer network G consisting of L layers we assume the
supra-transition matrix T to consist of block matrices Tst such that for all s; t 2
f1; : : : ;Lg, Tst D ˛stRst where ˛st 2 Q and Rst is a row stochastic transition
matrix. The multi-layer aggregation is defined by T D f˛stgst. If an eigenvalue �
of the matrix T corresponds to an eigenvector v with a layer-aggregation v that
satisfies v ¤ 0 then � is also an eigenvalue of T.

Proof Assume v is a left eigenvector of T corresponding to the eigenvalue �.
Therefore, it holds that vT D �v. Let v.k/ be the k-th part of v that corresponds
to the layer Gk. We can write the matrix multiplication in block structure.

�
v.1/; : : : ; v.k/; : : : ; v.L/

	
T D

 X
l

v.l/Tl1; : : : ;
X

l

v.l/Tlk; : : : ;
X

l

v.l/TlL

!
:

Each v.k/ is a row vector which length is equal to the amount of nodes nk in Gk.
The transformation

P
l v
.l/Tlk is also a row vector with the same length as v.k/.
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According to the eigenvalue equation it holds that for all k 2 f1; : : : ;Lg

�v.k/ D .vT/.k/ D
X

l

v.l/Tlk :

Now let us denote the sum of the vector entries of v.k/ as

vk D
X

i



v.k/

�
i
:

Further, we define layer-aggregated vector consisting of this sums by v D
.v1; : : : ; vn/. Note that for a general row stochastic matrix M and its multiplication
with any vector v it holds that

P
jŒv�j D P

jŒvM�j. For the components after
multiplication with T we can deduce

X
i

h
.vT/.k/

i
i
D
X

i

"X
l

v.l/Tlk

#

i

D
X

i

"X
l

˛lkv
.l/Rlk

#

i

D
X

l

˛lk

X
i



v.l/Rlk

�
i
D
X

l

˛lk

X
i



v.l/
�

i
D
X

l

˛lkvl :

If we multiply v with T and look at a single entry of vT we get

ŒvT�k D
X

l

vlTlk D
X

l

vl˛lk :

Hence it holds that

ŒvT�k D
X

i

h
.vT/.k/

i
i
;

and therefore

vT D
 X

i

h
.vT/.1/

i
i
; : : : ;

X
i

h
.vT/.L/

i
i

!
:

Finally since T is row stochastic and �v D vT we have that

�v D � .v1; : : : ; vn/

D �

 X
i

Œv.1/�i; : : : ;
X

i

Œv.L/�i

!

D
 X

i

h
.vT/.1/

i
i
; : : : ;

X
i

h
.vT/.L/

i
i

!

D vT :
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Therefore, � is also an eigenvalue of T to the eigenvector v defined as before. It is
important to note that this only holds if v ¤ 0.

The procedure used in the proof of the previous theorem applies to several
eigenvalues of T but at most L of them. Next we give a proposition for the reversed
statement of Theorem 1.

Proposition 1 Let G be a multi-layer network that consists of L layers and fulfills
all of the conditions of Theorem 1. Let T D f˛stgst be the multi-layer aggregation of
T. If � is an eigenvalue of T then � is also an eigenvalue of T.

Proof Assume that � is an eigenvalue of T. For each matrix there exist a left and
right eigenvector that correspond to the same eigenvalue �. Assume the w is the
right eigenvector and therefore a column vector. Hence Tw D �w and

Tw D
0
@X

j

˛1jwj; : : : ;
X

j

˛kjwj; : : : ;
X

j

˛Ljwj

1
A

>

D �w :

Now we generate a column vector w of dimension n such that for all the layer
components w.k/ it holds that

w.k/ D .wk; : : : ;wk/
> :

Next we perform a right multiplication of w with T,

Tw D
 X

l

T1lw
.l/; : : : ;

X
l

Tklw
.l/; : : : ;

X
l

TLlw
.l/

!>

D
 X

l

˛1lR1lw
.l/; : : : ;

X
l

˛klRklw
.l/; : : : ;

X
l

˛LlRLlw
.l/

!>
:

Since all Rst are row stochastic matrices and w.l/ contains only the value wl for each
entry we get Rstw.l/ D w.l/. It follows that

Tw D
 X

l

˛1lw
.l/; : : : ;

X
l

˛klw
.l/; : : : ;

X
l

˛Llw
.l/

!>

D �
�w.1/; : : : ; �w.k/; : : : ; �w.L/

	>
D �w :

And therefore � is also an eigenvalue of T.
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In the case of a diffusion process we are especially interested in the second-
largest eigenvalue of T, denoted by �2.T/, which is related to algebraic connectivity
of T. In this perspective the following corollary is useful:

Corollary 1 Let G be a multi-layer network consisting of L layers that fulfill all of
the conditions of Theorem 1. Further assume that G is partitioned according to a
spectral partitioning, i.e. according to the eigenvector corresponding to �2.T/, then
�2.T/ D �2.T/.

Proof In general all the eigenvectors of a transition matrix, except the eigenvector
corresponding to the largest eigenvalue that is equal to one, sum up to zero.
However, these eigenvectors consist of positive and negative entries that allow
for a spectral partitioning. Especially the eigenvector v2 that corresponds to the
second-largest eigenvalue �2.T/, can be used for the partitioning of the network.
This eigenvector is related to the Fiedler vector that is also used for spectral
bisection [19]. Therefore if the layer-partition of G coincides with this spectral
partitioning we assure that the layer-aggregated vector of v2 satisfies v2 ¤ 0.
Considering this and Proposition 1 the corollary follows directly from Theorem 1.

Given Eq. (3.8) we can fully describe the spectrum of T based on the intra-layers
transition blocks Ti for i 2 f1; : : : ; ng and the spectrum of T. Note that with uniform
columns of a matrix M we mean that each column of M contains the same value in
each entry. However, this value can be different for different columns.

Proposition 2 Let T be the supra-transition matrix of a multi-layer network G that
consist of L layers and satisfies Eq. (3.8). If T has off-diagonal block matrices Tst,
for s; t 2 f1; : : : ; ng and s ¤ t, that all have uniform columns, then the spectrum of
T can be decomposed as

Spec.T/ D f1; �2; : : : ; �Lg [
 

L[
sD1

Spec.Ts/ n f�1.Ts/g
!
;

where Ts are the block matrices of T corresponding to the single layers Gs and
�1.Ts/ the largest eigenvalue of Ts. The eigenvalues �2; : : : ; �L are attributed to the
interconnectivity of layers.

Proof To prove this statement we just have to show that all eigenvalues (except the
largest one) of Ts for s 2 f1; : : : ;Lg are also eigenvalues of T. We assume that �
is any eigenvalue corresponding to the eigenvector u of some block matrix Tr , i.e.
�u D uTr. We define a row vector v that is zero everywhere except at the position
where it corresponds to Tr. The vector v looks like v D .0; : : : ; 0; u; 0; : : : ; 0/. Now
we investigate what happens if we multiply this vector with the transition matrix T.

vT D �
v.1/; : : : ; v.k/; : : : ; v.L/

	
T D

 X
l

v.l/Tl1; : : : ;
X

l

v.l/Tlk; : : : ;
X

l

v.l/TlL

!
:
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Let us take a look at the effect of the matrix multiplication on an arbitrary component
v.k/ with k ¤ r and recall that v.k/ is equal to a zero vector 0 for k ¤ r.

.vT/.k/ D
X

l

v.l/Tlk D
X
l;l¤r

0Tlk C uTrk D uTrk :

Note that all eigenvectors u of a transition matrix that are not related to the largest
eigenvalue sum up to zero. Therefore it holds that uTrk D 0 since Trk has uniform
columns and therefore uTrk yields in a vector where each entry is equal to some
multiple of juj. In case of k D r it holds that v.k/ D u and we get

.vT/.r/ D
X

l

v.l/Tlr D
X
l;l¤r

0Tlk C uTrr D uTr D �r :

Hence, it holds that vT D �v, which means that � is also an eigenvalue of T.
This way we get n � L eigenvalues of T apart from the largest eigenvalue that is
equal to one. The remaining eigenvalues denoted by �2; : : : ; �L are not attributed
to any block matrix of T. Therefore they are considered to be the interconnectivity
eigenvalues.

Corollary 2 Let G be a multi-layer network consisting of L layers that satisfies
Eq. (3.8) and the conditions of Proposition 2. Then the aggregated matrix T D
f˛stgst has spectrum

Spec.T/ D f1; �2; : : : ; �Lg ;
and it holds that �2; : : : ; �L 2 Spec.T/.

Proof Note that every eigenvalue � ¤ 1 of some block matrix Tr with �u D uTr

is by Proposition 2 also an eigenvalue of T. Furthermore, � is attributed to the
eigenvector v D .0; : : : ; 0; u; 0; : : : ; 0/ of T. However jvj D 0 since u is an
eigenvector of a transition matrix, not related to the largest eigenvalue, and therefore
sums up to zero. Hence all eigenvalues fulfilling this condition are by Theorem 1
not eigenvalues of T. Since T contains at least L eigenvalues that by Proposition 1
also correspond to eigenvalues of T, the remaining eigenvalues �2; : : : ; �L have to
also be eigenvalues of T.

In the following we provide a useful proposition for the eigenvalues arising from
the inter-links in case of two layers. Note that by the function T.�/ applied to matrix
M we indicate that T.M/ is the row-normalization of M.

Proposition 3 Let G be a multi-layer network that satisfies Eq. (3.8), consisting of
two networks G1 and G2 in separate layers. Assume that the supra-transition matrix
T has the form

T D
 

T1 T12
T21 T2

!
D
 

ˇT.A1/ .1 � ˇ/TI
12

.1� ˇ/TI
21 ˇT.A2/

!
;
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where TI is the transition matrix of the layer G that only consists of the inter-layer
links and ˇ 2 Q is a constant. Furthermore, assume that T1 and T2 have uniform
columns.

Then for � 2 Spec.TI/ and � ¤ 1;�1 it holds that .1 � ˇ/� 2 Spec.T/.

Proof If v is an eigenvector to the eigenvalue � ¤ 1;�1 of TI it holds that vTI D
�v. Hence,

vTI D �
v.1/; v.2/

	
TI D �

v.2/TI
21; v

.1/TI
12;
	 D �

�
v.1/; v.2/

	
:

Because �v.2/ D v.1/TI
12, we get �2v.1/ D v.1/TI

12T
I
21. Therefore, v.1/ is also an

eigenvector of the transition matrix TI
12T

I
21 to the eigenvalue�2. Note that � ¤ 1;�1

hence �2 < 1 which implies that v.1/ does not correspond to the largest eigenvalue
and therefore its entries sum up to zero. The same holds for v.2/ and the matrix
TI
21T

I
12. For the multiplication of v with T we deduce that

vT D �
v.1/; v.2/

	
T D �

v.1/T1 C .1� ˇ/v.2/TI
21; .1 � ˇ/v.1/TI

12 C v.2/T2;
	
:

Since T1 and T2 have uniform columns we get v.1/T1 D 0 and v.2/T2 D 0. And
therefore vT D .1� ˇ/�v and .1 � ˇ/� 2 Spec.T/.

Proposition 3 can be extended to multiple layers, however the proof is more involved
and will be omitted.
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Chapter 4
Interconnecting Networks: The Role
of Connector Links

Javier M. Buldú, Ricardo Sevilla-Escoboza, Jacobo Aguirre, David Papo,
and Ricardo Gutiérrez

Abstract Recently, some studies have started to show how global structural
properties or dynamical processes such as synchronization, robustness, cooperation,
transport or epidemic spreading change dramatically when considering a network
of networks, as opposed to networks in isolation. In this chapter we examine the
effects that the particular way in which networks get connected exerts on each
of the individual networks. We describe how choosing the adequate connector
links between networks may promote or hinder different structural and dynamical
properties of a particular network. We show that different connecting strategies
have consequences on the distribution of network centrality, population dynamics
or spreading processes. The importance of designing adequate connection strategies
is illustrated with examples of social and biological systems. Finally, we discuss
how this new approach can be translated to other dynamical processes, such as
synchronization in an ensemble of networks.
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4.1 Introduction

During more than a decade, the application of Complex Networks Theory to
real systems has given fruitful results in the understanding of how networked
systems organize, interact and evolve [1–4]. Initially, the main motivation was to
characterize the topology of real systems (randomness, heterogeneity, modularity,
etc.) and its connection with structural problems such as resilience, robustness or
navigability [5–9]. Then, attention was devoted to how dynamical processes such as
synchronization [10, 11], spreading [12–15] or congestion [16–18] were constrained
by the network structure [19]. In a further development, the interplay between
structure and dynamics was interpreted as a closed loop, wherein the structural
properties of networks could be understood as a consequence of an adaptative
process influenced by the dynamics and vice versa [20].

More recently, the idea that a network is, in many real cases, a network of
networks (NoN), has emerged [21, 22]. In many cases, component networks of
a NoN can be interpreted as modules of a unique modular network. While the
detection and analysis of modules inside a network has been deeply studied [23, 24],
the influence of intranetwork structures on dynamical processes remains largely
unexplored. For instance, as shown in Ref. [21], interconnections between networks
may play a crucial role in processes such as percolation, eventually leading to
dramatic first order transitions. Other example is epidemic spreading, where it was
shown that the creation of links between the most central nodes of two communities
can enhance the propagation of a disease through the whole network [25].

In this chapter we focus on the competition taking place when two initially
separated networks are coupled with one or more connector links to form a unique
ensemble network. In particular, we examine how one or both networks can be better
off according to some criterion depending on the connecting strategy that is adopted.
To determine which network is benefitting the most from the interaction, we make
use of the eigenvector centrality [4]. The eigenvector centrality is a measure of
node importance that is obtained by calculating the eigenvector associated to the
largest eigenvalue of the connectivity matrix, which, as we will see, depends on the
dynamical process occurring in the network. Next, the centrality captured by each
competing network is obtained as the sum of the centrality of all its nodes. The
whole problem can then be framed as a competition for limited resources, since an
increase of centrality for one network necessarily entails a corresponding decrease
in that of its competitors.

The advantage of such a way of analyzing network competition is that, in addition
of being a measure of node importance, the eigenvector centrality is related to
a series of dynamical processes, such as disease spreading, diffusion processes,
evolution of genotypes, rumor and opinion formation (see Ref. [4] for a review).
In these cases, the transient or final state of the system depends directly on the
eigenvector u1 associated to the largest eigenvalue �1 of the connectivity matrix.
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We will describe how the eigenvector u1 of two isolated networks is modified
when certain connections between them are created, leading to an interconnected
network [21, 22].

In the remainder of this chapter we first analyze how the eigenvector u1 of a NoN
can be obtained from the spectral properties of the networks forming the ensemble.
We then identify the optimal strategies that a network can follow when connecting
to other networks and apply this methodology to population dynamics and epidemic
spreading. We finally discuss the main concepts introduced in this chapter and point
to possible problems to be tackled in the future.

4.2 The Influence of Interconnectivity on the Spectral
Properties of an Interconnected Network

In this section we give analytical expressions for the spectral properties associated
to a generic connectivity matrix M, resulting from the connection of two initially
isolated networks A and B [26]. The connectivity matrix is a weighted version of
the classical adjacency matrix A, where the component Mij measures the strength of
the connection between nodes i and j (and Mij D 0 if i and j are not connected to
each other). The aim is to gain a priori knowledge of the main spectral properties
of the interconnected network by inspecting the structure of A and B, and the
link(s) connecting both networks. Specifically, we are interested in: (i) the highest
eigenvalue of the connectivity matrix and (ii) its associated eigenvector.

Figure 4.1 schematically represents two independent networks A and B, of NA

and NB nodes and LA and LB links respectively, which initially form the disconnected
network AB of NA C NB nodes and LA C LB links. Next, we connect both networks
via a set fclglD1;:::;L of L connector links to create a total interconnected network
T of NT D NA C NB nodes and LT D LA C LB C L links. The adjacency matrix
GT corresponding to network T is therefore formed by adding to the block diagonal
network containing the original adjacency matrices of A and B, GAB, the connector
links. For simplicity, let us suppose that GT is symmetric, that is, the links of
network T are bidirectional (this is tantamount to considering the initially isolated
networks A and B to be symmetric and establishing interconnecting links that are
bidirectional). Depending on the topological importance of the nodes that act as
connectors between networks, four different strategies in the election of a connector
link can be adopted: (a) peripheral-peripheral (PP), (b) peripheral-central (PC), (c)
central-central (CC) and (d) central-peripheral (CP). Let us call �A;i and �B;i the i
eigenvalues of the connectivity matrices MA and MB respectively, where i goes from
1 to the size of the corresponding network (NA or NB) with i D 1 corresponding
to the largest eigenvalue and the rest following in decreasing order. The relation
between connectivity matrices such as MA, MB and MT and the adjacency matrices
such as GA, GB and GT depends on the peculiarities of the process. Let us suppose
�A;1 > �B;1 throughout the chapter, being the strong network the one with highest
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Fig. 4.1 Schematic representation of the different strategies for connecting two networks, accord-
ing to the centrality of the connector nodes. The strong network is defined as the network with
higher �1 (first eigenvector of the connectivity matrix M). Central nodes C are those with the
highest eigenvector centrality, obtained from u1 (eigenvector associated to �1), while peripheral
nodes P have the lowest centrality. Initially, the networks remain disconnected and, next, we
connect them by adding connector links. According to the centrality of the connector nodes, four
different strategies can be followed: (a) peripheral-peripheral (PP), (b) peripheral-central (PC),
(c) central-central (CC) and (d) central-peripheral (CP)

�1 and the weak network the one with the lowest. This way, from now on, network
A (B) will be the strong (weak) network.

We call uA;i the NA vectors of length NT where the first NA elements coincide with
the eigenvector i of matrix MA and the rest are equal to zero, while uB;i are the NB

vectors of length NT where the first NA elements are zeros and the rest coincide with
the eigenvector i of matrix MB. �T;i and uT;i are the eigenvalues and eigenvectors
of matrix MT. The main idea of the analytical calculations is to describe the total
graph T as a perturbation of graph A by graph B, in a way that the weight of the
connector links is � � 1. Therefore, as �A;1 > �B;1 by construction, the maximum
eigenvalue �T;1 will be a perturbation of �A;1 and its associated eigenvector uT;1

will be a perturbation of uA;1. This methodology is inspired by the perturbation
theory of matrices presented in [27], and among some other examples it was recently
applied in the context of Complex Network Theory to characterize the importance
of network nodes and links [28], and for the detection of communities [29]. We give
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a fully detailed calculation in the Appendix, which ends up with

uT;1 D uA;1 C �

NBX
kD1

akuB;k C o.�2/ ; (4.1)

where ak D .uA;1PuB;k/=.�A;1 � �B;k/, and P is a matrix representing the connector
links in such a way that MT D MAB C �P. Note that, since uA;1PuB;1 DP
.uA;1/iPij.uB;1/j , only the connector nodes (i.e., those connected by Pij) will

contribute to this latter term. See [26] for more details and its application to the
case of directed networks (i.e., asymmetric networks, with unidirectional links) and
more than two networks.

4.3 Identifying Successful Strategies

The eigenvector uT;1 can be used to determine the outcome of a competition between
networks A and B. In this section, we focus on how two networks compete for
acquiring the maximum importance inside the interconnected network, while in
the next sections we will discuss how to apply these concepts to other dynamical
processes. The eigenvector centrality, which is given directly by the eigenvector
uT;1 is used as a measure of the topological importance of a node. Subsequently, the
centralities of networks A (CA) and B (CB) are obtained from the fractions of the
total centrality that remain in the nodes of A and B after the connection:

CA D
PNA

iD1 .uT;1/iPNT
iD1 .uT;1/i

; (4.2)

CB D 1� CA : (4.3)

Suppose that a networks’s goal is to accumulate as much C as possible.
Regarding Eqs. (4.1) and (4.2), and taking into account that a1 > akC1, with k � 1

(since eigenvalues are ranked according to their value), the final outcome of the
competition depends mainly on a1: uT;1 ! uA;1 when a1 ! 0 and therefore,
CA ! 1, since the elements of uA;1 are zero for all nodes belonging to network
B (see Appendix for details). Otherwise, CB will grow when a1 grows.

But, how does a1 depend on networks A and B, and on the connector links?
Inspecting the expression of a1 (i.e., a1 D ŒuA;1PuB;1�=Œ�A;1 � �B;1�) we can observe
that it relies on two main factors: (i) the difference between the highest eigenvalues
associated to both networks, �A;1 and �B;1, and (ii) uA;1PuB;1, a quantity that is
proportional to the centralities of the connector nodes when the networks are still
disconnected, and to the number of connector links. Importantly, these two factors
will control the distribution of centrality between the two competing networks.
While (i) is independent of the connection strategy, (ii) depends crucially on the
nodes that are chosen to establish connections between A and B.
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This way, when the connector nodes are the most central (i.e., uA;1PuB;1 is
maximum), network B (the weakest) shows its best results in centrality. On the
contrary, when the connector links join peripheral nodes of both networks, the value
of a1 reaches its minimum. Consequently, when a1 ! 0, most centrality distributes
over network A and therefore uT;1 ! uA;1, leading to CA ! 1. Finally, the larger
the number of connector nodes, the higher the term uA;1PuB;1, leading to an increase
of a1 and, as a consequence, to a decrease of CA, indicating that the strong network
does not benefit from multiple connections.

It is remarkable that the expression of uT;1 can be approximated, up to first order,
to a linear combination of uA;1 and uB;1 (terms k > 1 in Eq. (4.1) are less relevant
and mainly affect the connector nodes). In spite of the fact that the percentage of
centrality captured by both networks is altered by introducing connector links, the
distribution of centrality inside each network after the connection is therefore to
some extent proportional to what it was before.

In summary, these results allow developing a general set of strategies that
competitors A and B (with �A;1 > �B;1) should follow in order to obtain as much
centrality as possible after the connection. Recalling that the strong network is the
one with the largest first eigenvalue, and the weak network the one with the smallest,
the general rules to maximize the outcome of a network that competes for centrality
tell us that:

• Connecting the most central nodes of two networks optimizes the centrality
of the weak network.

• Connecting the most peripheral nodes of two networks optimizes the
centrality of the strong network.

• Increasing the number of links reinforces the centrality of the weak
network.

From all above, we stress that the goal of each competitor is not really to
overcome the adversary, but to obtain the optimum outcome measured with the
eigenvector associated to the largest eigenvalue of the interconnected network.
Importantly, the strategy played by each network depends on whether its largest
eigenvalue is higher or lower than its competitor, i.e., strong and weak networks
must play different strategies to maximize its outcome.

4.4 Applications

As we have seen, the selection of connector nodes between networks strongly
influences the eigenvector uT;1 of the interconnected network and how its elements
are distributed between the two networks forming it. Since the eigenvector centrality
of the nodes is given by the eigenvector uT;1, the competition for uT;1 between two
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networks can be interpreted as a struggle for acquiring the highest possible centrality
for the nodes inside a network. Interestingly, uT;1 may also contain information
about the dynamical processes undergoing inside the network. In this section, we
will show two particular examples in population dynamics and disease spreading.
We will see how the previous strategies can be interpreted as a way of maximizing
the outcome of a dynamical process and that this can be done by just looking at uT;1.

Population Dynamics

A variety of dynamical processes occurring on a network can be mathematically
described as

n.t C 1/ D M n.t/ ; (4.4)

where n.t/ is a vector whose components give the state of each node at time t (for
example, the population of individuals at each node), and M, with Mij � 0, is a
connectivity matrix that contains the peculiarities of the dynamical process (usually
named as “transition matrix” in this context).

M is a primitive matrix. For this reason, its largest eigenvalue is positive, it
verifies that �1 > j�ij, 8 i > 1, and its associated eigenvector is also positive
(i.e., all its elements are positive). After t steps, the state of the system is given by

n.t/ D Mtn.0/ D
mX

iD1
.n.0/ � ui/�

t
iui ; (4.5)

where n.0/ is the initial condition, ui the i�th eigenvectors of M, and m the size of
the network. As we consider M to be a real symmetric matrix, ui for i D 1; 2; : : : ;m
can be conveniently chosen so as to form an orthonormal basis that permits the
spectral decomposition above.

From Eq. (4.5) we obtain that the system evolves towards an asymptotic state
independent of the initial condition and proportional to the first eigenvector u1,

lim
t!1

�
n.t/

.n.0/ � u1/�t
1

�
D u1 ; (4.6)

while its associated eigenvalue �1 yields the growth rate at the asymptotic equilib-
rium. If n.t/ is normalized such that jn.t/j D 1 after each iteration, n.t/ ! u1 when
t ! 1. Therefore, there is a correspondence between the eigenvector centrality and
the asymptotic state of the system at equilibrium: both quantities are proportional to
the eigenvector u1 associated to the largest eigenvalue of the transition matrix M.

Let us discuss one specific example showing the evolution of a population
of genomes (e.g. RNA sequences) that duplicates and mutates inside a genotype
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network, where each node represents a different sequence. Two nodes are linked if
they differ in only one nucleotide, and therefore one sequence can evolve from one
node to the other via point mutations. At each node i of the network, we consider
a certain population ni. At each time step: (i) the population ni replicates with a
growing rate R > 1, (ii) its daughter individuals leave the node with probability
�, being 0 < � � 1, and (iii) the parameter S controls how probable it is for
an individual to remain alive after leaving a node (see Fig. 4.2a for a qualitative
description of the process). The transition matrix describing the evolution of the

Fig. 4.2 Evolutionary dynamics of a population of genomes. (a) Schematic representation of
the evolution of the vector state of the system n.t/ when the population spreads on a single
network of genomes. The population evolves through a duplication+mutation process, each node
sending/receiving population from its neighbors when mutation occurs. (b) The evolution of the
average degree hKi of the population shows that the final distribution is independent from the
initial conditions, and higher that the average node degree NK. Three different initial distributions
are considered: (I) the whole population placed at the most central node (“hub”), (II) uniformly
distributed over the network, and (III) placed at the most peripheral node. (c) and (d) Evolution
of the population when two networks are connected through the most central nodes (CC) and two
peripheral nodes (PP) respectively. While in the CC configuration the weak network is able to
retain 14.6 % of the population, in the PP case the population is almost completely absorbed by the
strong network and only 10�4 % stays in the weak one. The parameter values are �A;1 D 1:9135,
�B;1 D 1:9109, R D 2, � D 0:1, and S D 36 (Note that the networks used are artificial examples
that verify the basic topological properties of genotype networks but do not represent real cases;
see [30, 33] for more details)
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system is given by [30]:

M D .R � �/I C �

S
G ; (4.7)

where G is the adjacency matrix (i.e., Gij D 1 if nodes i and j are connected and zero
otherwise) and I is the identity matrix (i.e., Iij D 1 if i D j and zero otherwise).

Within this framework, the eigenvector u1 of the matrix M yields the final
distribution of the population at the stationary state. As expected from the reasoning
above, the final distribution does not depend on the initial conditions as illustrated
in Fig. 4.2b, where the population is initially distributed in three different ways.
Furthermore, the average degree of the stationary population hKi is given by the
largest eigenvalue �1, which fulfills that �1 � NK, being NK the average degree
(number of connections) of the nodes in the network [31].

Now, let us analyze the evolution of the population when two (sub)networks are
joined through a connector link. This situation could resemble, for example, the
evolution on one very modular RNA neutral network (in [32] the high modularity
of such networks was recently analyzed), or two different RNA neutral networks
connected via a unique link, representing each neutral network A and B the total
set of sequences that fold in two different secondary structures [33]. In Fig. 4.2c, d
we observe that the election of the adequate link between those two networks has
critical consequences on the population accumulated at each network. Following
the rules explained in the previous section, the weak network benefits from the CC
connection, acquiring 14.6 % of the total population (CB D 0:146). This is the best
outcome that the weak network would be able to achieve when connecting through
one link. On the contrary, when the PP strategy is followed, the strong network
absorbs the majority of the population and the weak network remains virtually
empty (CB D 10�6) .

Spreading Processes: The SI Model

The highly developed mathematical modeling and statistical physics analysis of
spreading processes have successfully described the existence of, for example,
fixed points, phase transitions or spreading thresholds [34]. Among the different
examples of spreading, such as rumor spreading or packet transmission through the
WWW, disease spreading has been studied the most [35]. The prediction of disease
evolution and the dynamics of contagions have been analyzed with a diversity
of models which combine both the state of the system at different scales (from
the individual to the whole population) and the structure of connections between
individuals [34]. In this section our focus will be on how the structure of the network
of contacts between individuals affects the probability of individuals being infected
by a disease. Several works have investigated how the network topology constrains
the epidemic dynamics and, more specifically, the outbreak of a disease and the
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properties of the epidemics in equilibrium [12, 13]. Nevertheless, less attention
has been paid to the fact that social networks are typically organized in modules
(or subnetworks), which interact between them through certain connector links.
What is the effect of the connector links on the spreading of a disease through
different subnetworks? As we are going to see, the concepts and tools defined in the
previous sections will help us to understand this issue. With this aim, we are going
to implement a specific disease model, the Susceptible-Infected (SI) model [36],
over two networks that interact by creating interlinks as it is explained in Fig. 4.1.
But first of all let us describe in detail the model and its implementation on a single
network.

The SI model distinguishes two different states of the individuals: Susceptible
(S) of acquiring the disease and Infected (I). When a susceptible individual (i.e., a
person prone to be infected) meets an infected one, it will acquire the disease with
a certain probability, which is controlled by the spreading rate ˇ:

S C I
ˇ! 2I; (4.8)

Next, we construct a network where the nodes are individuals and the links
account for interactions between them. The connectivity matrix M of the network
contains the connections between individuals (i.e., Mij D 1 if two individuals
are connected, and zero otherwise). The probability that a node (i.e., a person) k
becomes infected is given by Ik.t/, while Sk.t/ D 1 � Ik.t/ is the probability of
it being susceptible (i.e., not infected). The network structure strongly influences
the probability that node k becomes infected between times t and t C dt, as it is
proportional to the number of neighbors that are already infected ˇ

P
j MkjIj. Since

only susceptible individuals can get infected, the dynamics of Sk.t/ and Ik.t/ can
be described by a set of N differential equations, N being the total number of
individuals:

dSk

dt
D �ˇSk

X
j

MkjIj D �ˇSk

X
j

Mkj.1 � Sj/; (4.9)

dIk

dt
D ˇSk

X
j

MkjIj D ˇ.1 � Ik/
X

j

MkjIj; (4.10)

with Sk C Ik D 1. If the disease starts from a small number of nodes, in the limit of
large system size N and ignoring quadratic terms, Eq. (4.10) becomes:

dIk

dt
D ˇ

X
j

MkjIj; (4.11)
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which in matrix form reads

dI
dt

D ˇMI; (4.12)

I being a vector of components Ik. The temporal evolution of I can be expressed as
a linear combination of the eigenvectors uk of the connectivity matrix M:

I.t/ D
NX

kD1
ak.t/uk; (4.13)

where uk is the eigenvector associated with the eigenvalue �k of M. Then

dI.t/
dt

D
NX

kD1

dak.t/

dt
uk D ˇM

NX
kD1

ak.t/uk D ˇ

NX
kD1

�kak.t/uk: (4.14)

Comparing the terms that multiply uk, we obtain:

dak

dt
D ˇ�kak; (4.15)

which has the solution

ak.t/ D ak.0/e
ˇ�kt: (4.16)

If we substitute Eq. (4.16) into Eq. (4.13) we obtain the following expression for
I.t/:

I.t/ D
NX

kD1
ak.0/e

ˇ�ktuk: (4.17)

Since the largest eigenvalue �1 dominates over the others, we can approximate the
infected population as

I.t/ 	 eˇ�k tu1: (4.18)

Thus, for t ! 1 the exponential term leads to I ! 1, i.e. the whole population
gets infected at the final state. Nevertheless, for low to intermediate time scales
(t � 1), it is u1, i.e. precisely the eigenvector centrality of the nodes, that controls
the distribution of probabilities of getting infected.

As explained in Sect. 4.2, the properties of the eigenvector uT;1 when two
networks A and B are connected depend on the kind of interlink. If we consider
two networks of individuals and want to understand how the distribution of the
probability of being infected depends on the kind of connection between the two
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Fig. 4.3 Probability of being infected by a disease (SI model), at the beginning of the spreading
process, for two interconnected networks. Two social networks based on romantic connections
between young students [37] are connected through a (a) CC and (b) PP connection. Node size
is proportional to the probability of being infected (obtained from uT;1) and bars indicate the
percentage of infection risk accumulated by each network. The PP strategy leads the strong network
to increase its risk of infection as compared to the weak network

networks, all strategies defined in Sect. 4.3 apply. The only difference is that, since
the terms CA and CB are related to the probability of being infected at low to
moderate times after the beginning of the epidemics, the aim of the networks will
be to reduce this probability instead of increasing it. Therefore, the strategies are
exactly the same as in the case of network centrality or population dynamics, but
they must be applied in the opposite way.

In Fig. 4.3 we show an example of how spreading processes on interconnected
networks are strongly dependent on the way the networks are linked between them.
We consider two social networks based on the romantic relationships between
students in an American high school [37]. Specifically, we select two subnetworks
that are isolated and evaluate how a connection between one student of each
subnetwork affects the probability of being infected by a disease throughout the
network ensemble. With this aim, we introduce a SI spreading process with an
infection rate ˇ D 0:1 in the networks and calculate the fraction of the first
eigenvector that lies within each subnetwork for a CC and a PP connection. In
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this particular example, the largest eigenvalues of the strong and the weak network
are, respectively, �A;1 D 2:69 and �B;1 D 2:39. Figure 4.3a, b shows how the
probability of being infected at short to moderate times is always higher in the strong
network. Nevertheless, when the two most peripheral nodes of both networks are
connected (Fig. 4.3b) the probability that the strong network gets infected increases
dramatically. This is a situation that the strong network has to avoid, since it gets
much more vulnerable to the disease than the weak network. Therefore, the PP (CC)
connection is now the most harmful strategy for the strong (weak) network, while
the CC (PP) connection is the safest one.

4.5 Conclusions

In this chapter we have shown that the way networks interact to form interconnected
networks and, more specifically, how they choose the connector links, can have
important consequences on the structural and dynamical properties of the networks
[26]. A series of dynamical processes occurring on interacting networks, such as
population dynamics or disease spreading, can be explained from the analysis of
the spectral properties of the transition matrix, which in its turn depends on the
way the networks are coupled. We have seen that it is possible to define strategies
that maximize the outcome (defined in terms of the dynamical process under
consideration) acquired by a certain network. As a general strategy, strong networks
(i.e. those with the highest largest eigenvalue) will benefit from establishing
connections between peripheral nodes. Weak networks, instead, obtain a higher
benefit when the central nodes of both networks are elected as connectors.

Throughout this chapter we considered that the network’s goal is to accumulate
as much percentage of u1 as possible. However, in some cases, networks may want
to minimize it as in the case of disease spreading.

It is important to stress that the proposed methodology applies for processes
where the final state of the system is given by the eigenvector associated to the
largest eigenvalue of the transition matrix. For example, this is not the case for
diffusion processes where the system dynamics is described by the (weighted)
Laplacian matrix L, obtained as L D W � M, where W is a diagonal matrix with
Wii containing the total weight of node i [38].

The spectral properties of the Laplacian matrix also determine the stability
of the synchronization manifold in the complete synchronization of networked
systems [39]. Nevertheless, the influence of the connection strategies in the spectral
properties of the Laplacian are much more difficult to interpret than in the case of
the transition matrix, as there is no straightforward relation between the spectral
properties of both matrices. The reader is referred to Ref. [40] for a detailed
theoretical, numerical and experimental study of the effect of different connection
strategies on the synchronization of an ensemble of networks.

Finally, there are other dynamical aspects that may not be explained by the
analysis of either the transition or the Laplacian matrix. For example, it is expected



74 J.M. Buldú et al.

that the complexity of the global dynamics in networks of dynamical systems that
are coupled through different connection strategies will be affected by the strategy
adopted in creating connections, but it is not clear at this point whether this may be
related to the spectral properties of any matrix representing the coupling topology of
the system. These and other problems related to networks of networks are still open
and will have to be addressed in the future, showing that network interconnection is a
promising subfield of network theory with potential applications in several branches
of science.
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Appendix

Networks A and B, of NA and NB nodes and LA and LB links respectively, form
the initially disconnected network AB of NA C NB nodes and LA C LB links. We
connect them through L connector links to create a new interconnected network T
of NT D NA C NB nodes and LT D LA C LB C L links. For convenience, the nodes
of network A are numbered from i D 1 to NA and the nodes of network B from
i D NA C 1 to NT D NA C NB. The adjacency matrix GAB of the disconnected
network consists of two diagonal blocks corresponding to GA and GB. The relation
between the transition matrix MAB, also formed by two blocks, and GAB, depends
on the peculiarities of the process. Note that the eigenvectors of MA and MB are
related to those of MAB as follows: Let us call xA;i (i D 1; : : : ;NA) and xB;j (j D
1; : : : ;NB) the eigenvectors associated to the eigenvalues �A;i and �B;j of matrices
MA and MB respectively. Note that the NA eigenvectors xA;i are of length NA, the NB

eigenvectors xB;j are of length NB, and the eigenvectors of MAB are of length NT .
The first i D 1; : : : ;NA eigenvectors of MAB verify .uAB;i/k D .xA;i/k for k � NA and
.uAB;i/k D 0 for k > NA. Therefore, �AB;i D �A;i for i D 1; : : : ;NA. The eigenvectors
i D NA C1; : : : ;NT of MAB verify .uAB;i/k D 0 for k � NA and .uAB;i/k D .xB;i/k�NA

for k > NA. Therefore, �AB;i D �B;i�NA for i D NA C1; : : : ;NT . For simplicity in the
following calculations, due to their evident relation with the eigenvectors of MA, we
denote eigenvectors uAB;i for i D 1; : : : ;NA as uA;i. Analogously, we denote uAB;iCNA

for i D 1; : : : ;NB as uB;i.
Considering the addition of interlinks as represented by the symmetric matrix

P (with non-zero entries in the off-diagonal blocks of elements .i; j/ with i � NA

and j > NA and i > NA and j � NA) to be a small perturbation of parameter �,
and Taylor-expanding the largest eigenvalue of MT and its associated eigenvector
around those of MAB, we obtain

MTuT;1 D �T;1uT;1 (4.19)
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where

MT D MAB C �P; (4.20)

uT1 D uA;1 C �v1 C �2v2 C o.�3/; (4.21)

�T;1 D �A;1 C �t1 C �2t2 C o.�3/: (4.22)

Taking into account that (i) juT;1j D 1 ) uA;1 � v1 D 0 and uA;1 � v2 D 0,
and (ii) uA;1PuA;1 D 0 because .uA;1/i D 0 for i > NA, we include Eqs. (4.20–
4.22) in Eq. (4.19), premultiply by uA;1 and equate the terms of the same order in �.
Considering that point (i) above, in its turn, implies that v1 and v2 can be expressed
as linear combinations of the other eigenvectors of MT , which are orthogonal to uA;1,
and therefore uA;1 � MABv1 D 0 and uA;1 � MABv2 D 0, we obtain to first order in �

uA;1 � .MABv1 C PuA;1/ D uA;1 � .�A;1v1 C t1uA;1/ (4.23)

) t1 D 0 (4.24)

) .MAB � �A;1/v1 D �PuA;1 ; (4.25)

and for order �2

uA;1 � .MABv2 C Pv1/ D uA;1 � .�A;1v2 C t2uA;1/ ) t2 D uA;1Pv1: (4.26)

The vector v1 can be numerically obtained solving Eq. (4.25). However, it can
also be analytically expressed as

v1 D
NTX

kD1
ckuAB;k D

NAX
kD1

ckuA;k C
NTX

kDNAC1
ckuB;k�NA : (4.27)

We know c1 D 0 because uA;1 � v1 D 0. Including Eq. (4.27) in Eq. (4.25), and
multiplying both sides by uAB;k from the left, we obtain ck D 0 for 1 < k � NA

(because uA;kPuA;1 D 08k) and ck D uA;1PuB;k�NA
�A;1��B;k�NA

for k > NA. All this yields

v1 D
NBX

kD1

uA;1PuB;k

�A;1 � �B;k
uB;k ; (4.28)

and including Eqs. (4.28) and (4.26) in Eq. (4.22), we finally obtain

uT;1 D uA;1 C �

NBX
kD1

uA;1PuB;k

�A;1 � �B;k
uB;k C o.�2/ ; (4.29)
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Chapter 5
Vulnerability of Interdependent Networks
and Networks of Networks

Michael M. Danziger, Louis M. Shekhtman, Amir Bashan, Yehiel Berezin,
and Shlomo Havlin

Abstract Networks interact with one another in a variety of ways. Even though
increased connectivity between networks would tend to make the system more
robust, if dependencies exist between networks, these systems are highly vulnerable
to random failure or attack. Damage in one network causes damage in another. This
leads to cascading failures which amplify the original damage and can rapidly lead
to complete system collapse.

Understanding the system characteristics that lead to cascading failures and
support their continued propagation is an important step in developing more robust
systems and mitigation strategies. Recently, a number of important results have been
obtained regarding the robustness of systems composed of random, clustered and
spatially embedded networks.

Here we review the recent advances on the role that connectivity and dependency
links play in the robustness of networks of networks. We further discuss the
dynamics of cascading failures on interdependent networks, including cascade
lifetime predictions and explanations of the topological properties which drive the
cascade.

5.1 Background: From Single Networks to Networks
of Networks

As the ability to measure complex systems evolved, driven by enhanced digital
storage and computation abilities in the 1990s, researchers discovered that network
topology is important and not trivial. New structures were observed and new
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models proposed to explain them. Scale-free networks dominated by hubs [1, 2],
small-world networks which captured the familiar “six degrees of separation” idea
[3, 4], ideas of communities and clustering, and countless other variations [5, 6]
were discovered and analyzed. Network topologies were shown to be very different
from the abstractions of classical graph theory [7–9] in many real systems and
yet important calculations, predictions and measurements could still be executed.
Looking to the topology of networks provided new insights into epidemiology [10],
marketing [11], percolation [12], traffic [13], and climate studies [14, 15] amongst
many others.

One of the most important properties of a network that was studied was its
vulnerability to the failure of a subset of its nodes. Utilizing percolation theory,
network robustness can be studied via the fraction of nodes in its largest connected
component P1 which is taken as a proxy for functionality of the network [16, 17].
Consider, for example, a telephone network composed of telephone lines and
retransmitting stations. If P1 	 1 (the entire system), then there is a high level
of connectivity in the system and information from one part of the network is likely
to reach any other part. If, however, P1 	 0, then information in one part cannot
travel far and the network must be considered nonfunctional. Even if P1 	 1, some
nodes may be detached from the largest connected component and those nodes are
considered nonfunctional. We use the term giant connected component (GCC) to
refer to P1 when it is of order 1. Percolation theory is concerned with determining
P1.p/ after a random (or targeted) fraction 1 � p of nodes (or edges) are disabled
in the network. Typically, P1.p/ undergoes a second-order transition at a certain
value pc: for p > pc, P1.p/ > 0 and it approaches zero as p ! pc but for
p < pc, P1.p/  0. Thus there is a discontinuity in the derivative P01.p/ at pc even
though the function itself is continuous. It is in this sense that the phase transition is
described as second-order [18]. It was shown, for example, that scale-free networks
(SF)–which are extremely ubiquitous in nature–have pc D 0 as long as the degree
distribution has a sufficiently long tail [12]. This is in marked contrast to Erdős-
Rényi (ER) networks (pc D 1=hki) and 2D square lattices (pc � 0:5927 [17]) and
helps to explain the surprising robustness of many systems (e.g. the internet) with
respect to random failures [12, 19].

However, in reality, networks rarely appear in isolation. In epidemiology,
diseases can spread within populations but can also transition to other populations,
even to different species. In transportation networks, there are typically highway,
bus, train and airplane networks covering the same areas but behaving differently
[20]. Furthermore, the way in which one network affects another is not trivial
and often specific nodes in one network interact with specific nodes in another
network. This leads to the concept of interacting networks in which links exist
between nodes within a single network as well as across networks. Just as ideal
gases–which by definition are comprised of non-interacting particles–lack emergent
critical phenomena such as phase transitions, we will see that the behavior of
interacting networks has profound emergent properties which do not exist in single
networks.
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Since networks interact with one another selectively (and not generally all
networks affecting all other networks), we can describe networks of networks (NoN)
with topologies between networks that are similar to the topology of nodes in a
single network.

Multiplex networks are interconnected networks in which the identity of the
nodes is the same across different networks but the links are different [21–23].
Multiplex networks were first introduced to describe a person who participates in
multiple social networks [24]. For instance, the networks of phone communication
and email communication between individuals will have different topologies and
different dynamics though the actors will be the same [25]. Also, each online social
network shares the same individuals though the network topologies will be very
different depending on the community which the social network represents.

When discussing networks of networks, a natural question is: why describe this
phenomenon as a “interconnected networks?” If we are dealing with a set of nodes
and links then no matter how it is partitioned it is still a network. Each description of
interacting networks will answer this question differently but any attempt to describe
a network of networks will be predicated on a claim that more is different—that
by splitting the overall system into component networks, new phenomena can be
uncovered and predicted. One way of describing the interaction between networks
which yields qualitatively new phenomena is interdependence. This concept has
been studied in the context of critical infrastructure and been formalized in several
engineering models [26, 27] (see Fig. 5.1). However, as a theoretical property of
interacting networks, interdependence was first introduced in a seminal study by
Buldyrev et al. in 2010 [28]. This review will focus on the theoretical framework
and wealth of new phenomena discovered in interdependent networks. Some parts
of this review first appeared in the proceedings of NDES 2014 [29].

5.2 Interdependence: Connectivity and Dependency Links

The fundamental property which characterizes interdependent networks is the
existence of two qualitatively different kinds of links: connectivity links and
dependency links [28, 30–32] (see Fig. 5.1). The connectivity links are the links
which we are familiar with from single network theory and they connect nodes
within the same network. They typically represent the ability of some quantity
(information, electricity, traffic, disease etc.) to flow from one node to another.
From the perspective of percolation theory, if a node has multiple connectivity
links leading to the GCC, it will only fail if all of those links cease to function.
Dependency links, on the other hand, represent the idea that for a node to function,
it requires support from another node which, in general, is in another network. In
such a case, if the supporting node fails, the dependent node will also fail–even
if it is still connected to the GCC in its network. If one network depends on and
supports another network, we describe that pair of networks as interdependent.
Interdependence is a common feature of critical infrastructure (see Fig. 5.1) and
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Fig. 5.1 An example of interdependent critical infrastructure systems and several modelled
interdependent networks. (a) Schematic representation of interdependent critical infrastructure
networks after [33]. (b) Illustration of interdependent networks composed of connectivity links (in
blue, within the networks) and dependency links (in red, between the networks). Clockwise from
upper-left: coupled lattices, a lattice coupled with a random regular (RR) network, two coupled RR
networks and an RR network coupled to a real-world power grid (After [34])
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many multiplex networks. Often whatever causes a node to stop functioning in
one layer will also disable it in other layers. Indeed, the percolation properties of
interdependent networks describe the typical behavior in multiplex networks as
well [28]. The properties of interdependence can affect a network’s function in a
variety of ways but here we focus on the response of a network of interdependent
networks to the failure of a subset of its nodes using the tools of percolation theory
[6]. We refer the reader to recent general reviews for other descriptions of interacting
networks [24, 35, 36].

Percolation on a single network is an instantaneous process but on a system
of interdependent networks, the removal of a random fraction 1 � p of the nodes
initiates a cascading failure in the following sense. Consider percolation on two
interdependent networks A and B for which every node in A depends on exactly one
node in B and vice versa. If we remove a fraction 1�p of the nodes in A, other nodes
in A which were connected to the GCC via the removed nodes will also be disabled,
leaving a new GCC of size P1.p/ < p. Since all of the nodes in B depend on nodes
in A, a fraction 1�P1.p/ of the nodes in B will now be disabled via their dependency
links. This will lead, in turn, to more nodes being cut off from the GCC in B and the
new GCC in B will be smaller yet. This will lead to more damage in A due to the
dependency links from B to A. This process of percolation and dependency damage
accumulating iteratively continues until no more nodes are removed from iteration
to iteration. This cascading failure is similar to the cascades described in flow and
overload models on networks and the cascading failures in power grids which are
linked to blackouts [37, 38]. The cascade triggered by a single node removal has
been called an “avalanche”[39] and the critical properties of this process have been
studied extensively [39, 40].

5.3 Interdependent Random Networks

This cascading failure was shown to lead to abrupt first-order transitions in systems
of interdependent ER and SF networks that are qualitatively very different from
the transitions in single networks (see Fig. 5.2). Furthermore, pc of a pair of ER
networks was shown to increase from 1=hki to 2:4554=hki. Surprisingly, it was
found that scale-free networks, which are extremely robust to random failure on
their own [12, 19], become more vulnerable than equivalent ER networks when they
are fully interdependent and for any � > 2, pc > 0. In general, a broader degree
distribution leads to a higher pc [28]. This is because the hubs in one network, which
are the source of the stability of single scale-free networks, can be dependent on
low degree nodes in the other network and are thus vulnerable to random damage
via dependency links. These results were first demonstrated using the generating
function formalism [28, 41], though it has recently been shown that the same results
can be obtained using the cavity method [42].

After the first results on interdependent networks were published in 2010 [28],
the basic model described above was expanded to cover more diverse systems. One
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Network of n ER networks Network of n SF networks

Fig. 5.2 Percolation of a network of interdependent random networks. (a) The fraction of viable
nodes at time t for a NoN composed of 5 ER networks. The gray lines represent individual
realizations and the black line is calculated analytically. After [51]. (b) Percolation in a NoN of
ER and SF networks. Shown here is the effect of increasing the number of networks n for tree-like
NoNs composed of ER and SF networks (After [51])

striking early result was that if less than an analytically calculable critical fraction
qc of the nodes in a system of two interdependent ER networks are interdependent,
the phase transition reverts to the familiar second-order transition [30]. However, for
scale-free networks, reducing the fraction of interdependent nodes leads to a hybrid
transition, where a discontinuity in P1 is followed by a continuous decline to zero,
as p decreases [43]. A similar transition was found when connectivity links between
networks (which were first introduced in [44]) are combined with dependency links
[45]. It has also been shown that the same cascading failures emerge from systems
with connectivity and dependency links within a single network [46–48].

The assumption that each node can depend on only one node was relaxed in [49]
and it was shown that even if a node has many redundant dependency links, the
first-order transition described above can still take place. If dependency links are
assigned randomly, a situation can arise in which a chain of dependency links can
be arbitrarily long and thus a single failure can propagate through the entire system.
To avoid this scenario, most models for interdependent networks assume uniqueness
or “no feedback” which limits the length of chains of dependency links [50, 51]. For
a pair of fully interdependent networks, this reduces to the requirement that every
dependency link is bidirectional. Under partial dependency, this assumption is not
necessary and the differences between systems with and without feedback have also
been studied [34, 51].

Though both the connectivity and dependency links were treated as random and
uncorrelated in Refs. [28, 30, 31, 50–52], the theory of interdependent networks has
been expanded to more realistic cases. Assortativity of connectivity links was shown
to decrease overall robustness [53]. Assortativity of dependency links was treated
numerically [54], analytically for the case of full degree-degree correlation [55] and
analytically for the general case of degree-degree correlations with connectivity or
dependency links using the cavity method [42]. Interestingly, if a fraction ˛ of the
highest degree nodes are made interdependent in each network, a three-phase system
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with a tricritical point emerges in the ˛–p plane [56]. If the system is a multiplex
network, there may be overlapping links, i.e., two nodes which are linked in one
layer may have a tendency to be linked in other layers [57–59]. In interdependent
networks this phenomenon is referred to as intersimilarity [54, 60]. Clustering,
which has a negligible effect on the robustness of single networks [61], was shown
to substantially reduce the robustness of interdependent networks [43, 62] and
networks of networks [63].

In the following subsections, we highlight some significant methodological
approaches and results from the study of cascading failures in two interdependent
networks (Sect. 5.3) and from the study of networks of n interdependent networks
(Sect. 5.3).

Cascading Failures in Coupled Networks

Consider two networks A and B which are partially dependent in the sense that only
a fraction qA (qB) of the nodes in A (B) are dependent, the rest being autonomous
[30]. If a fraction 1 � p of the nodes in A are removed, we define  0

t (	0
t ) as the

fraction of viable nodes at time t in network A (B). Of those nodes, the fraction
which are part of the GCC is given by 	t D 	0

t gA.	
0
t / ( t D  0

t gB. 
0
t /). By tracing

the value of  0
t and 	0

t , we can measure and predict the dynamics of the cascading
failure in a system of interdependent networks. The function gi.p/ can be determined
analytically for ER, SF and indeed for a random network with an arbitrary degree
distribution using generating functions. Using this, we can predict the size of the
giant component in both networks at every time t:

 0
1  p

	0
1 D 1 � qBŒ1 � pgA. 

0
1/�

 0
t D p.1� qAŒ1 � gB.	

0
t�1/�/

	0
t D 1 � qBŒ1 � pgA. 

0
t�1/�

(5.1)

Since the steady state is defined as the configuration for which  t D  t�1 and
	t D 	t�1 we obtain a system of two equations and two unknowns:

 01 D p.1� qAŒ1 � gB.	
01/�/

	01 D 1 � qBŒ1 � pgA. 
01/�

(5.2)

Depending on qi and gi, the size of the GCC in each network will either approach
zero as p ! pc in which case there will be a second-order transition or will abruptly
jump to zero and there will be a first-order transition. Results of these calculations
are shown in Fig. 5.2. The cascade “plateau” emerges from the analytic predictions
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as well as simulations. We discuss this phenomenon in greater detail in Sect. 5.4.
Letting qA D qB D 1 and gA D gB D g we recover the results from [28].

Results for Networks of Interdependent Networks

In a series of articles, Gao et al. extended the theory of pairs of interdependent
networks to networks of interdependent networks with general topologies [31, 50–
52]. Within this framework, analytic solutions for a number of key percolation
quantities were presented including size of the GCC at each time-step t (see
Fig. 5.2), the size of the GCC at steady state (see Fig. 5.2), pc and other values.

The NoN topologies which were solved analytically include: a tree-like NoN of
ER, SF or random regular (RR) networks (q D 1), a loop-like NoN of ER, SF or
RR networks (q � 1), a star-like NoN of ER networks (q � 1) and a RR NoN of
ER, SF or RR networks (q � 1). For tree-like NoNs, it was found [31, 52] that the
number of networks in the NoN (n) affects the overall robustness but the specific
topology of the NoN does not. In contrast, for a RR NoN the number of networks
n does not affect the robustness but the degree of each network within the NoN
(m) does [50, 51]. Because the topology of the loop-like and RR NoNs allows for
chains of dependency links going throughout the system, there exists a quantity qmax

above which the system will collapse with the removal of a single node, even if each
network is highly connected (p D 1).

In a NoN, each node is a network and pairs of networks are considered linked
if dependency links exist between then. We define a “NoN adjacency matrix” Q
with elements qij defined as the fraction of nodes in network i that depend on nodes
in network j. Recently, it was shown that the formalism developed for analytically
solvable networks can be applied to NoNs for which the percolation profile of the
individual networks is known only numerically [64].

For a tree-like NoN formed of n ER networks [50, 52] the size of the GCC is
obtained from the self-consistent solution to

P1 D pŒ1 � e�hkiP1 �n (5.3)

For n D 1 this is the familiar second-order transition for a single ER network [7–9]
but for n D 2 (as in [28]) or greater, there is a discontinuity in P1 and the transition
is first-order as shown in Fig. 5.2. For fully interdependent, tree-like NoNs, the
robustness decreases as n increases but is not impacted by the specific topology
of the NoN. For case of partially interdependent ER networks, the specific topology
does influence the robustness as shown analytically for the special case of a star-like
NoN in [31]. Similar results have been obtained for trees of RR networks [50, 52]
and SF networks [51].
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For a loop-like NoN of partially interdependent ER networks [31, 50] the number
of networks also does not affect the robustness and the GCC can be calculated as

P1 D p.1� e�hkiP1/.qP1 � q C 1/; (5.4)

which recovers the familiar result for single networks if q D 0.
A more thorough analysis of the influence of loops in NoNs appears in a random-

regular network of ER networks (RR NoN of ERs). Such a system can exhibit first
or second order phase transitions depending on the value of q [51]. For q < qc,
the transition is second-order and takes place at p D pII

c . For qc < q < qmax, the

transition is first-order and takes place at p D pI
c. Above qmax, the feedback loops

enabled by the NoN topology lead to spontaneous collapse, even in a fully connected
network. The mutual GCC for an RR NoN of ERs is

P1 D p

2m

�
1 � e�kP1

	 �
1 � q C

p
.1 � q/2 C 4qP1

�m
(5.5)

from which we can derive

pII
c D 1

hki.1 � q/m
(5.6)

and

qc D k C m � p
m2 C 2km

k
: (5.7)

The values of qmax and pI
c can also be derived analytically from Eq. (5.5), but require

several intermediate results. We refer the interested reader to the original derivation
in Gao et al. [51].

In light of these results, we can now see that single network percolation is simply
a limiting case of NoN percolation theory. These results have been recently reviewed
in [32] and [65].

5.4 Critical Dynamics and the Cascade “Plateau”

Because the phase transition in interdependent networks is characterized by a
cascading process, it has a duration which is determined by the number of iterations
and is referred to in the literature as NOI or  . In random networks at criticality,
the size of the GCC decreases from iteration to iteration via an initial quick drop in
size, followed by a long period of very little change (the “plateau”) and finally a fast
collapse, see Fig. 5.2. A similar plateau with different scaling behavior appears in
spatially embedded networks with random dependency links, as discussed in [66].
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Explaining the critical properties of this plateau is an important result of recent
research [40].

Zhou et al. [40] showed that at the critical point of a given realization, pc, the
duration of the plateau, and thus the cascade () scales with system size as

 	 N1=3 (5.8)

in ER networks and thus diverges in the thermodynamic limit. The value of the
scaling exponent can be derived directly from universality arguments alone. If we
consider that ER networks are describable with mean-field theory, they are thus in
the same universality class as 6-dimensional lattice percolation (i.e., N D L6 $
L D N1=6). If we consider the branching process which characterizes the bulk of
the cascading failure (Fig. 5.3), we can see that its duration will scale linearly with
the number of steps (l) required for a random walker to traverse an ER network at
criticality (i.e.  	 l). Absent interactions as is the case for mean field theory, this
scales with linear system size as

l 	 L2 !  	 N1=3: (5.9)

Combining Eq. (5.9) with the fact that the upper critical dimension for percolation is
6, we recover Eq. (5.8). A different derivation of this result was previously published
by Zhou et al. [40]. Buldyrev et al. [28] showed that for the mean pc,  	 N1=4. Zhou
et al. [40] developed a theory to explain the relation of this result to Eq. (5.8) that
was found for single realizations.

Recent work by Zhou et al. [40] has shed new light on the dynamics of the plateau
formation at criticality (Figs. 5.2 and 5.3). When a node ai in network A fails, it will
typically cause a node to fail in network B. This may lead to further damage in B
due to percolation and that damage will cause the failure of a (possibly empty) set
a0 � A due to the dependency links. Thus at each iteration, there is a branching
process of induced damage in each network.

Fig. 5.3 (a) The first order transition in a system of interdependent networks is characterized by
an abrupt drop in the size of the GCC. (b) On closer inspection, this jump is the product of a
cascade of failures, the bulk of which is dominated by a “plateau” during which the GCC changes
very little. (c) The plateau can be analyzed in terms of a branching process where the branching
factor at time t, �t, describes the number of failures at time t relative to the step before. During the
plateau, �t � 1 due to a balance of competing processes, as described in the text (After [40])
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The researchers in [40] examined st, the number of nodes which failed at time
t from the root node. They then defined the branching factor, �t, as stC1=st. It was
shown that �t goes through three phases. When t is small, �t < 1 and the branching
process is decaying. This is due to the fact that the dependency damage which A
carries to B causes less percolative damage in B and thus less dependency damage
back in A. If the network was not also becoming more dilute in the process, then
the branching process would decay and stop quickly. Indeed, for p > pc this
is what happens. However, when p D pc, the process continues for an infinite
amount of time (in the thermodynamic limit). This is because although �t < 1,
the network becomes weaker each time nodes are removed and at criticality these
processes are exactly balanced. Thus the plateau stage is a second-order percolation
transition caused spontaneously by a perfect matching between the dilution of the
network (which would tend to amplify the damage) and the decreasing damage due
to percolation (which would decrease the damage). During this stage the branching
factor is �t � 1. However, due to the finite size of the system, the network eventually
becomes sufficiently dilute for �t > 1. At this point, �t grows exponentially and the
entire system collapses within a few steps.

5.5 Spatially Embedded Interdependent Networks

One of the most compelling motivations for developing a theory of interdependent
networks is that many critical infrastructure networks depend on one another
to function [26, 27]. Essentially all critical infrastructure networks depend on
electricity to function, which is why threats like electromagnetic pulses are taken
so seriously (see Fig. 5.1, Ref. [33]). The power grid itself, though, requires
synchronization and control which it can only receive when the communication
network is operational. One of the largest blackouts in recent history, the 2003
Italy blackout, was determined to have been caused by a cascading failure between
electrical and communications networks [67].

In contrast to abstract networks, all infrastructure networks are embedded in
space [20]. The nodes (e.g., power stations, communication lines, retransmitters
etc.) occupy specific positions in a 2D plane and the fact that the cost of links
increases with their length leads to a topology that is markedly different from
random networks [68]. Thus infrastructure networks will tend to be approximately
planar and the distribution of geographic link distances will be exponential with
a characteristic length [69]. From universality principles, all such networks are
expected to have the same general percolation behavior as standard 2D lattices
[16, 69]. As such, the first descriptions of spatially embedded interdependent
networks were modelled with square lattices [34, 64, 70–72] and the results have
been verified on synthetic and real-world power grids [34, 71].

Analytic descriptions of percolation phenomena require the network to be
“locally tree-like” and in the limit of large systems, this assumption is very accurate
for random networks of arbitrary degree distribution [41]. However, lattices and
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other spatially embedded networks are not even remotely tree-like and analytic
results on percolation properties are almost impossible to obtain [16, 17]. Therefore
most of the results on spatially embedded networks are based on numerical
simulations.

One of the few major analytic results for spatially embedded systems is that for
interdependent lattices, if there is no restriction on the length of the dependency
links then any fraction of dependency leads to a first-order transition (qc D 0). In
[34], it was shown that the critical fraction qc for which the system transitions from
the first-order regime to the second order regime must fulfill:

1 D p?c qcP
01.pc/ (5.10)

in which p?c is the percolation threshold in the system of interdependent lattices, pc

is the percolation threshold in a single lattice and P01.p/ is the derivative of P1.p/
for a single lattice. Since as p ! pc, P1.p/ D A.x � pc/

ˇ and for 2D lattices
ˇ D 5=36 [73], P01.p/ diverges as p ! pc and the only way to fulfill Eq. (5.10)
is if qc D 0. From universality arguments, all spatially embedded networks in
d < 6 have ˇ < 1 [16, 17, 69] and thus all systems composed of interdependent
spatially embedded networks (in d < 6) with random dependency links will have
qc D 0. In Fig. 5.1, all of the configurations shown except the RR-RR system have
qc D 0.

If the dependency links are of limited length, the percolation behavior is
surprisingly complex and a new spreading failure emerges. Li et al. [70] introduced
the parameter r, called the “dependency length,” to describe the fact that in most
systems of interest the dependency links, too, will likely be costly to create and, like
the connectivity links, will tend to be shorter than a certain characteristic length.
In this model, dependency links between networks are selected at random but are
always of length less than r (in lattice units). If r D 0, the system of interdependent
lattices behaves identically to a single lattice. If r D 1, the dependency links are
unconstrained and purely random as in [34]. Li et al. [70] found that pc as a function
of r shows a sharp maximum at rc D 8 which is explained by the correlation length
of percolation. Moreover, as long as r is below a critical length rc, the transition
is second-order but for r > rc the transition is first order (See Fig. 5.4). The first-
order transition for spatially embedded interdependent networks is unique in that it
is characterized by a spreading process. Once damage of a certain size emerges at a
given place on the lattice, it will begin to propagate outwards and destroy the entire
system (See Fig. 5.4).

If the dependency is reduced from q D 1 to lower values, it is found that rc

increases and diverges at q D 0, consistent with the result from [34] that qc D 0 for
r D 1 [72] (See Fig. 5.4).

Recently, the framework developed in [31, 50–52] was extended to general
networks of spatially embedded networks in [64]. There they developed a theory
for a network of spatially embedded interdependent networks with r D 1 and
presented simulation results for the case of finite r.
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Fig. 5.4 Percolation of spatially embedded networks. (a) A snapshot of one lattice in a pair of
interdependent lattices with nodes colored according to the time-step in which the node failed.
The regularity of the color-change reflects the constant speed of the spreading failure in space
(Generated for q D 1; r D 11; L D 2900). (b) The effect of r and q on pc. As r increases, pc

increases until r reaches rc. At that point the transition becomes first-order and pc starts decreasing
until it reaches its asymptotic value at r D 1 (Both after [72])

Though the generating function for a square lattice is not analytically solvable,
we do know how P1 behaves as a function of p for a single lattice. In [34, 70], that
information was utilized to derive the theoretical mutual giant connected component
for a system of two interdependent lattices. Shekhtman et al. [64] extended that
theory to the case of a network composed of n lattices. Specifically, three main
cases were solved: a treelike fully dependent network of lattices, a starlike partially
dependent network of lattices, and a random-regular partially dependent network
of lattices. Similar to the case of networks of random networks, the robustness of
fully dependent tree-like spatially embedded NoNs are affected by n but not by the
topology of the tree while RR NoNs are affected by m (the number of networks
that each network depends on) but not by n [64]. Furthermore, the theory derived
in [64] can be used to find the mutually giant connected component of any system
of interdependent networks where we know the percolation profile of the individual
networks.

For the case of random-regular networks there exists a certain fraction of
interdependence, qmax, for which removing even a single node, i.e. p ! 1, causes
the entire system to collapse [51] (see Sect. 5.3). In networks of lattices, this fraction
decreases rapidly and for m � 15 only 10% of nodes need to be interdependent for
the entire system to collapse after a single node is removed [64].

The extension of analytical results from random networks to spatially embedded
networks is possible only for the case in which the dependency links are purely
random (r D 1). As mentioned above, two fully interdependent lattices undergo
a first-order transition only when r > rc � 8 [66, 70]. This requires nodes
to be dependent on their eighth nearest neighbors, which may be unlikely for
a real system. Shekhtman et al. [64] showed that rc decreases significantly as
n increases (for treelike networks) and as m increases (for random-regular net-
works) (Fig. 5.5). They further observed that for m � 15, qmax is approximately
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Fig. 5.5 Percolation of interdependent spatially embedded networks. (a) Here we observe that
for fully dependent treelike NoNs with r D 2 the transition becomes first order as the number of
networks increases. (b) The transition becomes first order where the pc-r curve reaches a max. This
occurs for smaller value of r as n increases. In the inset we show how rc decreases as n increases
(After [64])

independent of r. In this case, even systems with short dependency links (low r)
and small fractions of dependent nodes q can collapse when only a single node is
removed.

The model of spatially embedded interdependent networks was extended to the
case where the ability to provide support to a node in another network requires
dynamic functionality in the form of the flow of current and not just connectivity to
the giant component. Process-based dependency leads to more vulnerable systems
than structural dependency as described in other models. Also, the current-based
model suggests that the ideas of interdependent networks can be utilized for new
kinds of sensors [74].

Recently, spatially embedded interdependent networks have been modeled as
multiplex networks with connectivity links of characteristic geographic length [75].
In this model, the connectivity links in each layer have lengths which are distributed
exponentially. Instead of nodes in one network depending on nodes in another,
each node has links in multiple networks and requires connectivity in each layer
to function. This model exhibits first or second-order transitions, depending on the
characteristic length of the connectivity links.

5.6 Attack and Defense of Interdependent Networks

Due to their startling vulnerabilities with respect to random failures, it is of
particular interest to understand how non-random attacks affect interdependent
networks and how to improve the robustness of interdependent networks through
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topological changes. Huang et al. [76] studied tunable degree-targeted attacks on
interdependent networks. They found that even attacks which only affected low-
degree nodes caused severe damage because high-degree nodes in one network
can depend on low-degree nodes in another network. This framework was later
expanded to general networks of networks [77].

Since high degree nodes in one network which depend on low degree nodes
in another network can lead to extreme vulnerability, there have been several
attempts to mitigate this vulnerability by making small modifications to the inter-
network topology. Schneider et al. [78] demonstrated that selecting autonomous
nodes by degree or betweenness can greatly reduce the chances of a catastrophic
cascading failure. Valdez et al. have also obtained promising results by selecting
a small fraction of high-degree nodes and making them autonomous [79]. These
mitigation strategies are methodologically related to the intersimilarity/overlap
studies discussed above [54, 60].

The theory of stochastic block models [80, 81] has been generalized to model
interdependent networks and networks of networks. Using this framework, it was
found that the optimal topological configuration which balances construction cost
and robustness to random failure for random and interdependent networks is a core-
periphery topology [82].

As we have seen, cascading failures are dynamic processes and the overall
cascade lifetime can indeed be very long [40, 66]. The slowness of the process opens
the door for “healing” methods allowing the dynamic recovery of failed nodes in the
midst of the cascade. Recently, a possible healing mechanism along these lines has
been proposed and analyzed [83].

When considering infrastructure or other spatially embedded networks, not only
is the network embedded in space but failures are also expected to be geographically
localized. For instance, natural disasters can disable nodes across all networks in a
given area while EMP or biological attacks can disable the power grid or social
network only in a given area. Geographically localized attacks of this sort have
received attention in the context of single network percolation on specific networks
[84] and flow-based cascading failures [85]. However, the existence of dependency
between networks leads to surprising new effects. Recently, Berezin et al. [71]
have shown that spatially embedded networks with dependencies can exist in three
phases: stable, unstable and metastable (See Fig. 5.6). In the metastable phase,
the system is robust with respect to random attacks–even if finite fractions of the
system are removed. However, if all of the nodes within a critical radius rc

h fail, it
causes a cascading failure which spreads throughout the system and destroys it (See
Fig. 5.6). Significantly, the value of rc

h does not scale with system size and thus,
in the limit of large systems, it constitutes a zero-fraction of the total system. A
method of localized attacks on random networks was also recently studied in Shao
et al. [86].
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Fig. 5.6 Geographically localized attacks on interdependent networks. (a) The hole on the left is
below rc

h and stays in place while the hole on the right is larger than rc
h and propagates through the

system. (b) The phase space of localized attacks on interdependent networks. The increasing gray
circles represent the dependence of rc

h on hki (Both after [71])

5.7 Applications of Networks of Networks

Many of the fields for which networks were seen as relevant models have been
re-evaluated in light of the realization that interacting networks behave differently
than single networks. Epidemics on interdependent and interconnected networks
have received considerable attention [25, 87–90]. Economic networks composed of
individuals, firms and banks all interact with one another and are susceptible to
large scale cascading failures [91–93]. Interacting networks have also been found
in physiological systems [94], ecology [95] and climate studies [96]. Recently,
Reis et al. published an important step connecting interacting networks with
fMRI measurements of brain activity [97]. Multilevel transportation networks have
also been studied from the perspective of interacting networks [98]. Recently a
framework for optimal recovery of interdependent networks was developed by
Majdandzic et al. [99].

The breadth of applications of networks of networks is too great to address here
and we refer the reader to recent reviews for more thorough treatment of applications
[24, 35].
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Chapter 6
A Unified Approach to Percolation Processes
on Multiplex Networks

Gareth J. Baxter, Davide Cellai, Sergey N. Dorogovtsev, Alexander V. Goltsev,
and José F.F. Mendes

Abstract Many real complex systems cannot be represented by a single network,
but due to multiple sub-systems and types of interactions, must be represented
as a multiplex network. This is a set of nodes which exist in several layers,
with each layer having its own kind of edges, represented by different colors. An
important fundamental structural feature of networks is their resilience to damage,
the percolation transition. Generalization of these concepts to multiplex networks
requires careful definition of what we mean by connected clusters. We consider two
different definitions. One, a rigorous generalization of the single-layer definition
leads to a strong non-local rule, and results in a dramatic change in the response of
the system to damage. The giant component collapses discontinuously in a hybrid
transition characterized by avalanches of diverging mean size. We also consider
another definition, which imposes weaker conditions on percolation and allows
local calculation, and also leads to different sized giant components depending on
whether we consider an activation or pruning process. This ‘weak’ process exhibits
both continuous and discontinuous transitions.
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6.1 Introduction

Networks are a powerful tool to represent the heterogeneous structure of interactions
in the study of complex systems [12]. But in many cases there are multiple
kinds of interactions, or multiple interacting sub-systems that cannot be adequately
represented by a single network. Examples include financial [8, 15], infrastructure
[21], informatic [16] and ecological [19] systems.

There are many representations of multi-layer networks, appropriate in different
circumstances, see [6] for a recent review of the topic. We focus on multiplex
networks, which are networks with a single set of nodes present in all layers,
connected by a different type of edge (which may be represented by different
colors) in each layer. Some interdependent networks, in which different layers
have different sets of nodes, but the nodes are connected between layers by
interdependency links [7, 14], can be captured by this construction [22].

One of the fundamental structural properties of a network is its response to
damage, that is, the percolation transition, where the giant connected component
collapses. In multi-layer networks, interdependencies between layers can make a
system more fragile. Damage to one element can trigger avalanches of failures that
spread through the whole system [13, 20]. Typically a discontinuous hybrid phase
transition is observed [3], similar to those observed in the network k-core or in
bootstrap percolation [2] in contrast to the continuous transition seen in classical
percolation on a simplex network.

Under a weaker definition of percolation, a more complex phase diagram
emerges, with the possibility for both continuous and discontinuous transitions.
When invulnerable or seed nodes are introduced, we can define activation and
pruning processes, which have different phase diagrams. The results presented in
this Chapter are based on those obtained in [3] and [4].

In a single-layer network (simplex), two nodes are connected if there is at least
one path between them along the edges of the network. A group of connected nodes
forms a cluster. The giant connected component (GCC) is a cluster which contains a
finite fraction of the nodes in the network. The existence of such a giant component
is synonymous with percolation. We can study its appearance by applying random
damage to the network. A fraction 1 � p of nodes are removed, independently at
random, and we check whether the remaining network contains a giant connected
component. Typically the GCC appears linearly with a continuous second-order
transition, although when the degree distribution is very broad (as in scale-free
networks) the nature and location of the transition may be dramatically altered [10].

For multiplex networks, we must generalize these definitions of clusters and
percolation. Consider a multiplex network, with nodes i D 1; 2; : : : ;N connected
by m colors of edges labeled s D a; b; : : : ;m. Two nodes i and j are m-connected
if for each of the m types of edges, there is a path from i to j following edges only
of that type. Let us suppose that the connections are essential to the function of
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Fig. 6.1 (a) In an ordinary network, two vertices i and j belong to the same cluster if there is a
path connecting them. (b) In a multiplex network, vertices i and j belong to the same viable cluster
if there is a path connecting them for every kind of edge, following only edges of that kind. In
the example shown, there are m D 3 kinds of edges. Vertices i and j are said to be 3-connected
(After [5])

each site, so that a node is only viable if it maintains connections of every type to
other viable vertices. A viable cluster is then a cluster of m-connected nodes. This
definition is described in Fig. 6.1.

In a large system, we wish to find when there is a giant cluster of viable nodes.
From this definition of viable clusters, it follows that any giant viable cluster is
a subgraph of the giant connected component of each of the m layers formed by
considering only a single color of edge in the multiplex network. The absence of a
giant connected component in any one of the layers means the absence of the giant
viable cluster. Note that when m D 1, the viable clusters are identical to clusters of
connected vertices in ordinary networks with a single type of edges. As we will see,
the rigorous requirements for viability in multiplex networks have a profound effect
on the percolation of the network, revealing a discontinuous hybrid transition in the
collapse of the giant viable component.

The giant viable cluster is related to the so-called giant mutually connected
component in interdependent networks [7, 14]. By definition, a node belongs to
the giant mutually connected component if at least one of its neighbors within its
own network and its interdependent neighbors in the other network (if it exists)
belong to this component. In this way, the giant viable cluster corresponds to the
giant mutually connected component in the case of full interdependency, i.e. when
each node in one network has a single interdependent replica node in the other net.

If we relax the criterion that a cluster must be connected by all layers, instead
requiring only connection via paths of any color of mixture of colors, we imme-
diately return to ordinary percolation, equivalent to projecting all the layers of the
multiplex onto a single layer, that is, ignoring all the colors. If, rather, we were to
consider clusters of nodes in which each pair is connected by at least one single
colored path, the resulting giant connected component would be the union of the
connected components of the individual layers.
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Fig. 6.2 Examples of small connected clusters in the strong and weak definitions of connectedness
in a two-layer multiplex network. (a) In the strong definition of a cluster, every node in a viable
cluster can reach every other by every kind of edge. (b) In the weak definition, every node has
connections of both colors, but there is not necessarily a path of every color between every pair of
nodes

Instead, we may consider a more interesting definition, which is still weaker than
the viable clusters defined above. To differentiate it from the definition above, we
will call this weak percolation. We continue with the requirement that each node
only functions if it is connected to other functioning nodes by every color of edge.
However, it does not need to be connected to every node in the cluster by every kind
of edge. Weak percolation can be defined in the following way: a node i is active if,
for each of the m colors, it is connected to at least one active neighbor by an edge
of that color. Weak percolating clusters are then simply connected clusters of active
nodes. Examples of the connected clusters resulting from the two different rules can
be compared in Fig. 6.2.

We can consider an activation process, in which a small number of nodes
are initially activated, and activation may spread to neighboring nodes. This can
represent, for example, social mobilization or the repair of infrastructure after a
disaster [13]. This generalizes activation processes such as bootstrap percolation [1]
to multiplex networks. Comparing with the counterpart pruning process, we find that
the two processes do not result in the same giant active component [4]. A similar
problem was considered in [17].

In the following Section, we analyze the strong definition of percolation on
multiplex networks, identifying the nature of the percolation transition and the
associated avalanches of damage. In Sect. 6.3, we analyze the weak definition of
percolation and explore the activation and pruning processes, showing that they also
exhibit hybrid transitions, and outlining the complex phase diagrams that appear.

6.2 Multiplex Percolation

The viable clusters in a multiplex network can be identified by an iterative pruning
process, testing the connectivity in every layer, and removing nodes that fail. Such
removals may affect the connectivity of the remaining nodes, so we must repeat the
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Fig. 6.3 An example demonstrating the algorithm for identifying a viable cluster in a small
network with two kinds of edges. (a) In the original network, in step (i) we select vertex 0 as
the test vertex. (b) In step (ii) we identify the clusters of vertices connected to 0 by each kind of
edge. (c) Step (iii): the intersection of these two clusters becomes the new candidate set for the
viable cluster to which 0 belongs. (d) We repeat steps (ii) using only vertices from the candidate
set shown in (c). Repeating step (iii), we find the overlap between the two clusters from (d), shown
in (e). Further repetition of steps (ii) and (iii) does not change this cluster, meaning that the cluster
consisting of vertices 0, 1, 3 and 4 is a viable cluster (After [5])

process until an equilibrium is reached. An algorithm for identifying viable clusters
is the following:

(i) Choose a test vertex i at random from the network.
(ii) For each kind of edge s, compile a list of vertices that can be reached from i by

following only edges of type s.
(iii) The intersection of these m lists forms a new candidate set for the viable cluster

containing i.
(iv) Repeat steps (ii) and (iii) but traversing only the current candidate set. When

the candidate set no longer changes, it is either a viable cluster, or contains
only vertex i.

(v) To find further viable clusters, remove the viable cluster of i from the
network (cutting any edges) and repeat steps (i)–(iv) on the remaining network
beginning from a new test vertex.

Note that this process is non-local: it is not possible to identify whether a node
is a member of a viable cluster simply by examining its immediate neighbors. An
example of the use of this algorithm in a small network is illustrated in Fig. 6.3.

We now study in more detail the collapse of the giant viable cluster under damage
by random removal of nodes. We use the fraction p of undamaged nodes as a control
variable. In uncorrelated random networks the giant viable cluster collapses at a
critical undamaged fraction pc in a discontinuous hybrid transition, similar to that
seen in the k-core or bootstrap percolation [1, 11].

Let us consider sparse uncorrelated networks, which are locally tree-like in the
infinite size limit N ! 1. We take advantage of this locally tree-like property
to define recursive equations which allow us to find the giant viable cluster. We
define Xs, with the index s 2 fa; b; : : :g, to be the probability that, on following
an arbitrarily chosen edge of type s, we encounter the root of an infinite sub-tree
formed solely from type s edges, whose vertices are also each connected to at least
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Fig. 6.4 Diagrammatic representation of Eq. (6.1) in a system of two interdependent networks a
and b. The probability Xa, represented by a shaded infinity symbol can be written recursively as a
sum of second-neighbor probabilities. Open infinity symbols represent the equivalent probability Xb

for network b, which obeys a similar recursive equation. The filled circle represents the probability
p that the vertex remains in the network (After [3])

Fig. 6.5 Viable and critical viable vertices for two interdependent networks. (a) A vertex is in
the giant viable cluster if it has connections of both kinds to giant viable subtrees, represented by
infinity symbols, which occur with probabilities Xa (shaded) or Xb (open) – see text. (b) A critical
viable vertex of type a has exactly 1 connection to a giant sub-tree of type a (After [3])

one infinite subtree of every other type. We call this a type s infinite subtree. The
vector fXa;Xb; : : :g plays the role of the order parameter. In a two-layer network, for
example, the probability Xa can be written as the sum of second-level probabilities
in terms of Xa and Xb, as illustrated in Fig. 6.4. In general, writing this graphical
representation in equation form, using the joint degree distribution P.qa; qb; : : :/,
we arrive at the self consistency equations (for more details, see [3])

Xs Dp
X

qa;qb ;:::

qs

hqsiP.qa; qb; : : :/


1 � .1� Xs/

qs�1�Y
l¤s



1 � .1 � Xl/

ql
�

�s.Xa;Xb; : : :/ ; (6.1)

where p is the probability that the vertex was not initially damaged. The term
.qs=hqsi/P.qa; qb; : : :/ gives the probability that on following an arbitrary edge of
type s, we find a vertex with degrees qa; qb; : : :, while Œ1 � .1 � Xa/

qa � is the
probability that this vertex has at least one edge of type a ¤ s leading to the root of
an infinite sub-tree of type a edges. This becomes Œ1 � .1 � Xs/

qs�1� when a D s.
A vertex is then in the giant viable cluster if it has at least one edge of every type

s leading to an infinite type s sub-tree (probability Xs), as shown in Fig. 6.5a.

S D p
X

qa;qb;:::

P.qa; qb; : : :/
Y

sDa;b;:::



1 � .1 � Xs/

qs
�
; (6.2)

which is equal to the relative size of the giant viable cluster of the damaged network.
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A hybrid transition appears at the point where �s.Xa;Xb; : : :/ first meets Xs at a
non-zero value, for all s. This occurs when

detŒJ � I� D 0; (6.3)

where I is the unit matrix and J is the Jacobian matrix Jab D @�b=@Xa. The critical
point pc can then be found by simultaneously solving Eqs. (6.1) and (6.3). To find
the scaling near the critical point, we expand Eq. (6.1) about the critical value X.c/s .
We find that

Xs � X.c/s / .p � pc/
1=2: (6.4)

This square-root scaling is the typical behavior of the order parameter near a hybrid
transition. It results from avalanches of spreading damage which diverge in size
near the transition. The scaling of the size of the giant viable cluster, S, immediately
follows

S � Sc / .p � pc/
1=2: (6.5)

Avalanches

We now examine the avalanches of damage which occur in the system, in order
to understand the nature of the transition more completely. We focus on the case
of two types of edges. Consider a viable node that has exactly one edge of type
a leading to a type a infinite subtree, and at least one edge of type b leading to
a type b infinite subtree. We call this a critical node of type a. It is illustrated in
Fig. 6.5b. It is a critical vertex because it will be removed from the viable cluster if
it loses its single link to a type a infinite subtree. The removal of any node from the
giant viable cluster, and the edges to which it is connected, therefore also requires
the removal of any critical vertices which depend on the removed edges. Removed
critical nodes may have edges leading to further critical nodes. This is the way that
damage propagates in the system. The removal of a single node can result in an
avalanche of removals of critical vertices from the giant viable cluster.

To represent this process visually, we draw a diagram of viable nodes and the
edges between them. We mark the special critical edges, that critical viable nodes
depend on, with an arrow leading to the critical node. An avalanche can only
transmit in the direction of the arrows. For example, in Fig. 6.6, removal of the vertex
labeled 1 removes the essential edge of the critical vertex 2 which thus becomes
non-viable. Removal of vertex 2 causes the removal of further critical vertices 3
and 4, and the removal of 4 then requires the removal of 5. Thus critical vertices
form critical clusters. Graphically, upon removal of a vertex, we remove all vertices
found by following the arrowed edges, which constitutes an avalanche. Note that
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Fig. 6.6 A critical cluster. Removal of any of the shown viable vertices will result in the removal
of all downstream critical viable vertices. Vertices 2–5 are critical vertices. Removal of the vertex
labeled 1 will result in all of the shown vertices being removed (becoming non-viable). Removal
of vertex 2 results in the removal of vertices 3, 4, and 5 as well, while removal of vertex 4 results
only in vertex 5 also being removed. As before, infinity symbols represent connections to infinite
viable subtrees. Other connections to non-viable vertices or finite viable clusters are not shown
(After [3])

Fig. 6.7 Symbols used in the diagrams to represent key probabilities. Solid lines represent edges
of type a, dashed lines represent edges of type b (After [5])

an avalanche is a branching process. Removing a vertex may lead to avalanches
along several edges emanating from the vertex (for example, in Fig. 6.6, removing
vertex 2 leads to avalanches along two edges). As we approach the critical point
from above, the avalanches increase in size. The mean size of avalanches triggered
by a randomly removed vertex finally diverges in size at the critical point, which is
the cause of the discontinuity in the size of the giant viable cluster, which collapses
to zero. These avalanches are thus an inherent part of a hybrid transition. To show
this, we use a generating function approach [18] to calculate the sizes and structure
of avalanches.

There are three possibilities when following an arbitrarily chosen edge of a
given type: (i) with probability Xs we encounter a type s infinite subtree (ii) with
probability Rs we encounter a vertex which has a connection to an infinite subtree
of the opposite type, but none of the same type. Such a vertex is part of the
giant viable cluster if the parent vertex was; or (iii) with probability 1 � Xs � Rs,
we encounter a vertex which has no connections to infinite subtrees of either
kind. These probabilities are represented graphically in Fig. 6.7. We will use these
symbols in subsequent diagrams.
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Fig. 6.8 (a) The probability Ra can be defined in terms of the second-level connections of the
vertex found upon following an edge of type a. Note that possible connections to ‘dead ends’ –
vertices not in the viable cluster (probability 1� Xa � Ra or 1� Xb � Rb) are not shown. (b) The
equivalent graphical equation for the probability Rb (After [5])

Fig. 6.9 Representation of the generating function Ha.x; y/ (right-hand side of Eq. 6.7) for the size
of a critical cluster encountered upon following an edge of type a (After [5])

The probability Ra obeys

Ra D
X

qa

X
qb

qa

hqaiP.qa; qb/.1 � Xa/
qa�1 Œ1 � .1 � Xb/

qb � (6.6)

and similarly for Rb. This equation is represented graphically in Fig. 6.8.
The generating function for the size of the avalanche triggered by removing

an arbitrary type a edge which does not lead to an infinite type a subtree can be
found by considering the terms represented in Fig. 6.9. The first term represents the
probability that, upon following an edge of type a (solid lines) we reach a node with
no connection to a type b subtree (and hence is not viable),that is, a critical cluster of
size 0. The second term represents the probability to encounter a critical cluster of
size 1. The node encountered has a connection to the type b infinite subtree (infinity
symbol), but no further connections to viable nodes. Subsequent terms represent
recursive probabilities that the vertex encountered has 1 (third and fourth terms), 2
(fifth, sixth, seventh terms) or more connections to further potential critical clusters.
The variables u (for type a edges) and v (type b) are assigned to each such edges.
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Considering these terms, we can write the generating function for the number of
critical vertices encountered upon following an arbitrary edge of type a (that is, the
size of the resulting avalanche if this edge is removed) as

Ha.u; v/ D 1 � Xa � Ra C uFaŒHa.u; v/;Hb.u; v/� (6.7)

and similarly for Hb.u; v/, the corresponding generating function for the size of the
avalanche caused by removing a type b edge is

Hb.u; v/ D 1 � Xb � Rb C vFbŒHa.u; v/;Hb.u; v/�; (6.8)

where the functions Fa.x; y/ and Fb.x; y/ are defined as:

Fa.x; y/ 
X

qa

X
qb

qa

hqaiP.qa; qb/x
qa�1

qbX
rD1

 
qb

r

!
Xr

byqb�r (6.9)

and similarly for Fb.x; y/, by exchanging all subscripts a and b. While the function
Fa.x; y/ does not necessarily represent a physical quantity or probability, we can see
that it incorporates the probability of encountering a vertex with at least one child
edge of type b leading to a giant viable subtree (probability Xb) upon following an
edge of type a. All other outgoing edges then contribute a factor x (for type a edges)
or y (type b). Here u and v are auxiliary variables. Following through a critical
cluster, a factor u appears for each arrowed edge of type a, and v for each arrowed
edge of type b. For example, the critical cluster illustrated in Fig. 6.6 contributes a
factor u2v2.

The mean number of critical vertices reached upon following an edge of type
a, i.e. the mean size of the resulting avalanche if this edge is removed, is given
by @uHa.1; 1/ C @vHa.1; 1/, where @u signifies the partial derivative with respect
to u. Unbounded avalanches emerge at the point where @uHa.1; 1/ [or @vHb.1; 1/]
diverges. Taking derivatives of Eq. (6.7),

@uHa.u; v/ DFaŒHa;Hb�C u
˚
@uHa@xFaŒHa;Hb�C @uHb@yFaŒHa;Hb�

�
(6.10)

@vHa.u; v/ Du
˚
@vHa@xFaŒHa;Hb�C @vHb@yFaŒHa;Hb�

�
(6.11)

with similar equations for @uHb.u; v/ and @vHb.u; v/. Some rearranging gives

@uHa.1; 1/ D Ra C @uHb.1; 1/@yFa.1 � Xa; 1 � Xb/

1 � @xFa.1� Xa; 1 � Xb/
(6.12)

and

@vHa.1; 1/ D @uHa.1; 1/@xFb.1 � Xa; 1 � Xb/

1 � @yFb.1 � Xa; 1 � Xb/
(6.13)
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where we have used that Ha.1; 1/ D 1 � Xa and Fa.1 � Xa; 1 � Xb/ D Ra. From
Eqs. (6.1) and (6.9),

@xFa.1 � Xa; 1 � Xb/ D @

@Xa
�a.Xa;Xb/ (6.14)

@yFb.1 � Xa; 1 � Xb/ Dhqai
hqbi

@

@Xa
�b.Xa;Xb/; (6.15)

and similarly for @xFb and @yFb, which when substituted into (6.12) and (6.13) give

@uHa.1; 1/ D RaŒ1 � @
@Xb
�b.Xa;Xb/�

detŒJ � I�
: (6.16)

We see that the denominator exactly matches the left-hand side of Eq. (6.3), meaning
that the mean size of avalanches triggered by random removal of vertices diverges
exactly at the point of the hybrid transition.

6.3 Weak Multiplex Percolation

Now we consider, for comparison, the weaker definition of percolation on multiplex
networks. In this case we also find a discontinuous hybrid transition, but a
continuous second order transition may also occur.

In ordinary percolation, and the strong multiplex percolation considered above,
activation and deactivation yield the same giant cluster. In weak percolation,
however, activation of the network yields a very different phase diagram than a
pruning process. We define an activation process, which we call Weak Bootstrap
Percolation (WBP) and a deactivation/pruning process, Weak Pruning Percolation
(WPP). We also introduce invulnerable vertices, which are always active. These are
necessary to seed the activation process, and we include them in the pruning process,
for symmetry.

Weak Pruning Percolation (WPP)

Let us begin with Weak Pruning Percolation. A fraction f of the nodes are randomly
assigned as invulnerable, the rest being vulnerable. In the WPP process, the network
is then damaged, with a fraction p of all nodes remaining undamaged. Once again,
p acts as a control parameter. Each of the remaining vulnerable nodes is pruned if
it fails to have at least one connection in each layer to a surviving node (vulnerable
or invulnerable). The removal of some nodes may affect the neighborhoods of other
surviving nodes, so the pruning process must be repeated until no more nodes can
be removed. Invulnerable nodes cannot be pruned.
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Let Zs be the probability that, upon following an edge of type s, we encounter
the root of a sub-tree (whether finite or infinite) formed solely from type s edges,
whose vertices are also each connected to at least one such subtree of every other
type. We define Xs as the probability that such a subtree is infinite. Precisely, Xs is
the probability that each member the subtree encountered, as well as meeting the
criteria for Zs, also has at least one edge leading to an infinite subtree of any type
(probability Xa etc.).

In a multiplex with m types of edges and a degree distribution P.qa; qb; : : :/, the
equation for Zs is (see [4] for more details):

Zs D pf C p.1� f /
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi
Y
n¤s

Œ1 � .1 � Zn/
qn �  ˚s.Za;Zb; : : :/:

(6.17)
The first term (pf ) accounts for the probability that the encountered node is an
undamaged invulnerable node, which is always active, and so its state doesn’t
depend on any of its neighbors. The second term (proportional to p.1�f /) calculates
the recursive probability for vulnerable undamaged nodes.

The equation for Xs is

Xs Dpf
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi


1 � .1 � Xs/

qs�1Y
n¤s

.1 � Xn/
qn
�

C p.1 � f /
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi

( Y
n¤s

Œ1�.1 � Zn/
qn ��.1� Xs/

qs�1

�
Y
n¤s

Œ.1 � Xn/
qn �.1 � Zn/

qn �

)

�s.Xa;Xb; : : : ;Za;Zb; : : :/ : (6.18)

The first sum on the right hand side calculates the probability that we encounter
an undamaged invulnerable node, which has at least one child edge leading to an
infinite subtree of any type. The second sum calculates the same probability but in
the case when the encountered node is not invulnerable. This term is written as a
difference between the probability of having at least one edge leading to finite or
infinite subtrees of each type and another term which removes the possibility that
all of the subtrees are finite. This last product must be multiplied by .1 � Xs/

qs�1 to
exclude the possibility of reaching an infinite subtree by a type s edge.
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Finally, given equations for Zs and Xs, we can use them to find S, i.e. the
probability that a randomly chosen node is in the giant percolating cluster defined
in this model. This is the strength of the giant percolating cluster. It is given by the
following formula:

S D pf
X

qa;qb;:::

P.qa; qb; : : :/

"
1 �

Y
s

.1� Xs/
qs

#

Cp.1� f /
X

qa;qb;:::

P.qa; qb; : : :/
Y

s

Œ1 � .1 � Zs/
qs ��

Y
s

Œ.1 � Xs/
qs � .1 � Zs/

qs � :

(6.19)

This equation is constructed in a similar way to that for Xs.
A continuous transition appears at the point where a non-zero solution to Xs D �s

first appears. A hybrid transition appears at the point where �s is first tangent to Xs

at a non-zero value, for all s. Because a jump in Xs is always accompanied by a jump
in Zs, it is more simple to look for the point where ˚s is tangent to Zs. This occurs
when

detŒJ � I� D 0; (6.20)

where I is the unit matrix and J is the Jacobian matrix Jab D @˚b=@Xa. Together
these criteria allow us to map the phase diagram of the process with respect to the
two parameters f and p.

In the case of only two layers, the phase diagram is characterized by a line of
continuous phase transitions. An example is shown in Fig. 6.10, for the case where
each of the two layers is an Erdős-Rényi network, with identical mean degree �.
In the limit f D 0, the probability of a node being in the giant WPP component
is given by the product of the classical percolation probability in each layer. In the
Erdős-Rényi example shown in the figure, this means the percolation point is at
�  p� D 1. In the limit f D 1, all nodes are invulnerable, and the situation

Fig. 6.10 Phase diagram of
the WPP model for two
uncorrelated Erdős-Rényi
networks with identical mean
degree � (After [4])
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Fig. 6.11 Phase diagram of
the WPP model for three
uncorrelated Erdős-Rényi
networks with identical mean
degree �. The solid line gives
the location of the continuous
transition, the dashed line
gives the location of the
discontinuous transition. The
point C is the critical point
(After [4])

corresponds to classical percolation with the multiplex is treated as a single network.
There is no hybrid transition in the two layer case.

In the case of three layers, now a hybrid transition also appears. The line
of discontinuous transitions can be calculated by solving Eqs. (6.17) and (6.20)
together. An example phase diagram is given in Fig. 6.11. We see that the both
continuous and discontinuous transitions are present, with the giant component
appearing discontinuously for small f , and having two transitions for slightly larger
f : a continuous appearance followed by a discontinuous hybrid transition.

Weak Bootstrap Percolation (WBP)

Now we consider an activation process called Weak Bootstrap Percolation, which
extends the concept of bootstrap percolation [9] to multiplex networks. As for the
pruning model, a fraction f of nodes are invulnerable, and are active from the start.
Again, a random damage is applied to the network, with the undamaged fraction
p acting as the control parameter. Now, however, the vulnerable nodes begin in an
inactive state. A node becomes active if it has at least one active neighbor in each
of the m layers of the multiplex. The activation of nodes may in turn provide the
required active neighbors to more nodes, so the process is repeated until no more
nodes can become active.

At the end of the activation process, the active clusters are in general not the same
as those that would be found through the pruning process. This is because in WPP
nodes are considered active until pruned. This means that, for example, a pair of
nodes connected by an edge of one type, provide the required support of that type
for one another, even if neither has another edge of that type. In WBP, on the other
hand, such an isolated dimer can never become activated (Fig. 6.12). The same holds
for many larger configurations as well.
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Fig. 6.12 Example of clusters in a multiplex with two types of edges. Black nodes are invulnera-
ble/seed vertices, white nodes are vulnerable vertices. In WPP, all the nodes are unprunable (remain
active), because each white node is connected to another node by each edge type. In WBP, only the
nodes inside the green dot-dashed lines become active, while the remaining two nodes have only
one active neighbor, by one edge type only, so they cannot become active (After [4])

Let Zs be the probability that, upon following an edge of type s, we encounter
the root of a sub-tree (whether finite or infinite) formed solely from type s edges,
whose vertices are also each connected to at least one such subtree of every type.
This obeys the equation

Zs D pf C p.1 � f /
X

qa;qb ;:::

qsP.qa; qb; : : :/

hqsi


1 � .1 � Zs/

qs�1�Y
n¤s

Œ1 � .1 � Zn/
qn �

 ˚s.Za;Zb; : : :/: (6.21)

This differs from the equivalent equation for WPP, Eq. (6.17), because now each
node must have connections of every type, not just of the types different from s.

Similarly, we define Xs as the probability that such a subtree is infinite. Precisely,
Xs is the probability that each member the subtree encountered, as well as meeting
the criteria for Zs, also has at least one edge leading to an infinite subtree of any
type.

An argument similar to the one for Eq. (6.18) leads us to the equation:

Xs D pf
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi

1 � .1 � Xs/

qs�1Y
n¤s

.1 � Xn/
qn

�

Cp.1 � f /
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi
�
Œ1 � .1 � Zs/

qs�1�
Y
n¤s

Œ1 � .1 � Zn/
qn �

�Œ.1 � Xs/
qs�1 � .1 � Zs/

qs�1�
Y
n¤s

Œ.1 � Xn/
qn � .1 � Zn/

qn �

�
: (6.22)
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Fig. 6.13 Phase diagram of the WBP model for two uncorrelated Erdős-Rényi networks with
mean degree �1 and �2. Horizontal axis is �2 D p�2. Each solid curve shows the location of
the continuous transition for a particular value of �1, from top to bottom �1 D f1:5; 2:193; 5; 10g.
Dashed curves show the corresponding location of the discontinuous transition (which is always
above the continuous transition), with circles marking the critical end point (After [4])

While Zn and Xn are different from their WPP counterparts, the equation for S is
the same as Eq. (6.19). In the case of WBP, a hybrid transition appears already in
a two layer multiplex. A typical phase diagram is plotted in Fig. 6.13, for the case
of two Erdős-Rényi layers with different mean degrees. Now we see that the giant
component always first appears continuously, with a second, discontinuous hybrid
transition occurring afterwards, for small f . The line of discontinuous transitions is
obtained using the conditions

(
˚f ;�1;�2 .z/ D 1

˚ 0
f ;�1;�2

.z/ D 0
(6.23)

The line ends at the critical point defined by these two conditions in combination
with a third condition

˚ 00
f ;�1;�2 .z/ D 0: (6.24)

Avalanches

To understand the discontinuous transitions which we observe in the two weak
percolation models, we again analyze avalanches, which propagate through clusters
of critical vertices. Diverging avalanche sizes lead to the discontinuous transitions.
As before, in the pruning process, WPP, a critical vertex is a vertex that just meets
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Fig. 6.14 A representation of a cluster of critical vertices in WPP. Hatching indicates that vertices
are members of the WPP percolating cluster. Because critical vertices are in the percolating cluster
for WPP, a critical vertex may be linked to the percolating cluster via another critical vertex. That
is, external edges of type Zs are not necessarily required. Furthermore, this means that critical
dependencies can be bi-directional: it is possible for avalanches to propagate in either direction
along such edges. Note that outgoing critical edges must be of the opposite type to the incoming
one. The boxes containing crosses represent the probability Zn � Rn (After [4])

the criteria for inclusion in the percolating cluster (in the case of WPP). However,
in the activation process, WBP, the avalanches which diverge in mean size at the
discontinuous transition are of activations of nodes, not of pruning, so critical nodes
are those that just fail to meet the criteria for activation.

In the case of WPP, a critical node of type s has exactly one connection to an
infinite subtree of type s, and at least one of all the other types. A vertex may
be critical with respect to more than one type, if it simultaneously has exactly
one connection to infinite subtrees of different types. Such a vertex is related
to avalanches because it has one (or possibly more) edge(s) which, if lost, will
cause the vertex to be pruned from the cluster. If, in turn, other outgoing edges
of this vertex are critical edges for other critical vertices, these vertices will also be
removed. Chains of such connections therefore delineate the paths of avalanches of
spreading damage. An example is shown in Fig. 6.14. Damage to the node at one
end of an edge is transmitted along arrowed edges.

There are three possibilities when following an arbitrarily chosen edge of a
given type: (i) with probability Xs we encounter a type s infinite subtree (ii) with
probability Rs we encounter a vertex which has a connection to an infinite subtree
of the opposite type, but none of the same type. Such a vertex is part of the
giant viable cluster if the parent vertex was; or (iii) with probability 1 � Xs � Rs,
we encounter a vertex which has no connections to infinite subtrees of either
kind. These probabilities are represented graphically in Fig. 6.7. We will use these
symbols in subsequent diagrams.

To examine these avalanches, we define the probability Rs, to be the probability
that, on following an edge of type s, we encounter a vulnerable vertex (probability
1 � f ), which has not been removed due to random damage (probability p) and
has at least one child edge of each type n ¤ s leading to a subtree defined by the
probability Zn, and zero of type s. That is

Rs D p.1� f /
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi .1 � Zs/
qs�1Y

n¤s

Œ1 � .1 � Zn/
qn � : (6.25)
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We can then define a generating function for the size of the critical subtree
encountered upon following an edge of type s (and hence resulting pruning
avalanche should the parent vertex of that edge is removed) in a recursive way by

Hs.u/ D Zs � Rs C usFsŒH1.u/;H2.u/; : : : ;Hm.u/�: (6.26)

Where the functions Fs.x/ are defined to be

Fs.x/ D p.1�f /
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi .1�Zs/
qm�1Y

n¤s

qsX
lD1

 
qs

l

!
.1�Zn/

qn�lxl
n:

(6.27)

Notice that Fs has no dependence on xs. This method is very similar to that used in
[3]. A factor us appears for every critical edge of type s appearing in the subtree.
The first terms Zs � Rs give the probability that zero critical nodes are encountered.
The second term, with factor us, counts the cases where the first node encountered is
a critical one. This node may have outgoing edges leading to further critical nodes.
These edges are counted by the function Fs, and the use of the generating functions
Hn as arguments recursively counts the size of the critical subtree reached upon
following each of these edges.

The mean size of the avalanche caused by the removal of single vertex is then
given by

X
s

@us Hs.1/ : (6.28)

Where @z signifies the partial derivative with respect to variable z.
Let us first examine the mean avalanche size in the case of two layers. Taking

partial derivatives of Eqs. (6.26) and (6.27), and after some rearranging, we arrive at

@u1H1.1; 1/ D R1
1 � @x2F1.Z1;Z2/@x1F2.Z1;Z2/

: (6.29)

where we have used that F1.Z1;Z2/ D R1 and also that H1.1; 1/ D Z1, and
H2.1; 1/ D Z2.

Let us define the right-hand side of Eq. (6.17) to be �1.Z1;Z2/. From Eq. (6.17),
and comparing with Eq. (6.27), the partial derivatives of �1.Z1;Z2/, are

@�1

@Z1
D 0

@�1

@Z2
D p.1 � f /

X
q1;q2

Pq1;q2

hq1i q1q2.1 � Z2/
q2�1

D hq2i
hq1i

@

@x1

F2.Z1;Z2/: (6.30)
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and similarly for @�2=@Z1 and @�2=@Z2. Substituting back, we find that

@uH1.1; 1/ D R1
.@�1=@Z2/.@�2=@Z1/

: (6.31)

The denominator remains finite, and the numerator does not diverge, so this
quantity remains finite everywhere in the 2-layer WPP model. This confirms that
a discontinuous transition does not occur when there are only two layers.

Following the same procedure in the case of three layers reveals that

@u1H1.1; 1/ D R1

�
1 � @2�1Œ@1�2 C @1�3@3�2�

1 � @2�3@3�2 � @1�3@3�1

��1
D R1
1� d�1

dZ1

;

(6.32)

where for compactness we have written @m�n for @�n=@Zm. Now, an alternative
form for the condition for the location of the discontinuous transition is d�1

dZ1
D 1.

We see immediately that this implies that the mean avalanche size diverges at the
critical point. In other words the avalanches diverge in size as the discontinuous
hybrid transition approaches, just as the susceptibility does for an ordinary second-
order transition.

In the case of the activation process, WBP, a critical vertex is one that fails the
activation criterion for a single type of edge. That is, it has exactly zero edges
leading to the root of type s subtrees (probability Zs), and at least one of every
other type. If such a node gains a single connection to the root of a type s subtree, it
will itself become the root of such a subtree. Chains of such connections therefore
delineate the paths of avalanches of spreading activation. An example of a small
critical cluster is shown in Fig. 6.15.

Fig. 6.15 An example of a critical cluster in WBP. Avalanches of activation propagate through
the cluster following the arrowed edges. If an upstream vertex is activated, all downstream critical
vertices will in turn be activated. Note that, unlike for WPP, in WBP it is not possible for an edge
to be arrowed in both directions. Activation can only ever propagate in one direction along a given
edge. Also note that in the WBP case outgoing critical edges must be of the same type as the
incoming one (After [4])
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To examine these avalanches, we now define Rs to be the probability that, on
following an edge of type s, we encounter a vertex which is not a seed vertex
(probability 1� f ), has not been removed due to random damage (probability p) has
at least one child edge of all other types n ¤ s leading to the appropriate subtrees
(probability Zn), and zero of type s. That is

Rs D p.1� f /
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi .1 � Zs/
qs�1Y

n¤s

Œ1 � .1 � Zn/
qn � : (6.33)

Note that this is identical to (6.25), but the probabilities Zn are different, as is the
following argument.

Because critical vertices are outside the WBP cluster, the probabilities Zs and
Rs are mutually exclusive. This means that, upon following an edge of type s,
there are three mutually exclusive possibilities: (i) we encounter a subtree of type
s (probability Zm) (ii) we encounter a critical vertex (probability Rs) or (iii) we
encounter neither (probability 1�Zs �Rs). We can then define a generating function
for the size of the critical subtree encountered upon following an edge of type s
(and hence resulting activation avalanche should the parent vertex of that edge be
activated) in a recursive way by

Hs.u/ D 1 � Zs � Rs C usFsŒH1.u/;H2.u/; : : : ;Hm.u/� : (6.34)

The functions Fs.x/ are defined to be

Fs.x; y/ D p.1 � f /
X

qa;qb;:::

qsP.qa; qb; : : :/

hqsi xqs�1
s

Y
n¤s

qnX
lD1

 
qn

l

!
Zl

nxqn�l
n : (6.35)

Note that Fs.1 � Z1; 1 � Z2; : : : ; 1 � Zm/ D Rs and Hs.1/ D 1 � Zs.
The mean size of the avalanche caused by the activation of a single vertex is

again given by

X
s

@us Hs.1/: (6.36)

Let us consider the case of WBP in a 2-layer multiplex. Taking partial derivatives
of (6.34) and (6.35) and after some rearranging, we find

@u1H1.1; 1/ D R1 Œ1 � @x2F2�

Œ1 � @x1F1� Œ1 � @x2F2� � @x2F1@x1F2
(6.37)

where for brevity we have not written the arguments of the derivatives of the
functions F1 and F2, but they should be taken to be evaluated at .1 � Z1; 1 � Z2/,
and where we have used that F1.1 � Z1; 1 � Z2/ D R1, H1.1; 1/ D 1 � Z1, and
H2.1; 1/ D 1� Z2.



6 A Unified Approach to Percolation Processes on Multiplex Networks 121

Remembering that we have defined ˚s.Z1;Z2/, in the two layer case, to be the
right-hand side of Eq. (6.21),

@˚1

@Z1
D p.1 � f /

X
q1;q2

Pq1;q2

hq1i q1.q1 � 1/.1� Z1/
q1�2Œ1 � .1 � Z2/

q2 �

D @x1F1.1 � Z1; 1 � Z2/ (6.38)

and

@˚1

@Z2
D p.1� f /

X
q1;q2

Pq1;q2

hq1i q1q2.1 � Z2/
q2�1Œ1 � .1 � Z1/

q1�1�

D hq2i
hq1i@x1F2.1 � Z1; 1 � Z2/ (6.39)

and a similar procedure is followed for ˚2. This means that the equation for
@u1H1.1; 1/ can be written

@u1H1.1; 1/ D R1Œ1 � @˚2=@Z2�

detŒJ � I�
: (6.40)

where the Jacobian matrix J has elements Jij D @˚i=Zj, and I is the identity matrix.
The condition d˚1

dZ1
D 1 for the location of the discontinuity in Z1 (and Z2) can be

rewritten

detŒJ � I� D 0 (6.41)

meaning that @u1H1.1; 1/ diverges, and hence the mean avalanche size, diverges
precisely at the critical point. This indicates that indeed a discontinuous hybrid
transition, with accompanying avalanches of activations, appears even in the two-
layer multiplex. A similar analysis can be performed for three or more layers.

6.4 Conclusions

In conclusion, the study of percolation in multiplex networks requires new defi-
nitions of connectivity. We have studied the robustness of multiplex networks to
damage under two different definitions of connectedness. In the first definition, that
is a natural generalization of the concept of single network connectedness, we find
a strong criterion which leads to an abrupt collapse of the giant component of a
multiplex network having two or more layers. In contrast to ordinary networks,
where two vertices are connected if there is a path between them, in multiplex
network with m types of edges, two vertices are m-connected if for every kind of
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edge there is a path from one to another vertex. The transition is a discontinuous
hybrid transition, similar to what was found, for example, in the network k-core
problem. The collapse occurs through avalanches which diverge in size when the
transition is approached from above. We described critical clusters associated with
these avalanches. The avalanches are responsible for both the critical scaling and
the discontinuity observed in the size of the giant viable cluster.

We compared this with a weaker definition of connectedness, but one which can
be calculated locally. In this definition, nodes are members of a cluster if they have at
least one edge of each type leading to another member of the cluster. This means that
two nodes can belong to the same cluster even when there are no paths of a single
color connecting them. We also introduced the concept of invulnerable nodes. In
the pruning process form of this model, we find that a two-layer multiplex network
no longer exhibits a hybrid transition in the collapse of the giant component, but in
three layers such a transition can occur. Finally, we introduced an activation process
on multiplex networks, dual to the weak pruning process, in which a small number
of seed (invulnerable) nodes are initially activated and further nodes activate if they
have connections by every type of edge to active neighbors. The two processes have
related phase diagrams, but we find that a discontinuous hybrid transition can occur
even when there are only two layers.
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Chapter 7
How Much Interconnected Should Networks
be for Cooperation to Thrive?

Zhen Wang, Attila Szolnoki, and Matjaž Perc

Abstract While the consensus is that interconnectivity between networks does pro-
mote cooperation by means of organizational complexity and enhanced reciprocity
that is out of reach on isolated networks, we here address the question just how
much interconnectivity there should be. The more the better according to naive
intuition, yet we show that in fact only an intermediate density of sufficiently
strong interactions between networks is optimal for the evolution of cooperation.
This is due to an intricate interplay between the heterogeneity that causes an
asymmetric strategy flow because of the additional links between the networks,
and the independent formation of cooperative patterns on each individual network.
Presented results are robust to variations of the strategy updating rule, the topology
of interconnected networks, and the governing social dilemma, and thus indicate a
high degree of universality. We also outline future directions for research based on
coevolutionary games and survey existing work.

7.1 Introduction

Network reciprocity is amongst the most well-known mechanisms that may sustain
cooperation in evolutionary games that constitute a social dilemma [1]. It was
discovered by Nowak and May [2], who observed that on structured populations
cooperators can aggregate into compact clusters and so avoid being wiped out
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by defectors. Although the mechanism may not work equally well for all social
dilemmas [3], and recent empirical evidence based on large-scale economic exper-
iments indicate that it may be compromised or fail altogether [4, 5], there is still
ample interest in understanding how and why networks influence the evolution of
cooperation. Recent reviews are a testament to the continued liveliness of this field
of research [6–9].

Following the explorations of evolutionary games on individual small-world [10–
14], scale-free [15–29], coevolving [30–35], hierarchical [36] and bipartite [37]
networks, the attention has recently been shifting towards interconnected networks
[38–42]. The latter have been put into the spotlight by Buldyrev et al. [43], showing
that even seemingly irrelevant changes in one network can have catastrophic and
very much unexpected consequence in another network. Subsequently, intercon-
nected networks have been tested for their robustness against attack and assortativity
[44–47], properties of percolation [48–52] and diffusion [53], and they have indeed
become a hot topic of general interest [54, 55], touching upon subjects as diverse
as epidemic spreading [56], the appearance and promotion of creativity [57], and
voting [58].

Previous research concerning evolutionary games on interconnected networks
has revealed, for example, that biased utility functions suppress the feedback
of individual success, which leads to a spontaneous separation of characteristic
time scales on the two interconnected networks [38]. Consequently, cooperation
is promoted because the aggressive invasion of defectors is more sensitive to the
deceleration. Even if the utilities are not biased, cooperation can still be promoted
by means of interconnected network reciprocity [39], which however requires
simultaneous formation of correlated cooperative clusters on both networks. It has
also been shown that the coupling of the evolutionary dynamics in each of the
two networks enhances the resilience of cooperation, and that this is intrinsically
related to the non-trivial organization of cooperators across the interconnected layers
[40]. Perhaps most closely related to the setup of the present work is that by Wang
et al. [42], who showed that probabilistic interconnections between interconnected
networks can very much promote the evolution of cooperation. In our model,
however, the strategy transfer between networks is prohibited. The interconnectivity
is thus due solely to coupling together the payoffs of select players that reside on
different networks.

Here, we wish to determine how strong the interconnectivity between the
networks really ought to be for the optimal promotion of cooperation. Since
existing works unequivocally declare that interconnectivity works in favor of the
resolution of social dilemmas, one might intuitively assume that the stronger the
interconnectivity the better. As we will show, however, this assumption is not
necessarily true. To address the problem, we consider primarily the prisoner’s
dilemma game on two square lattices, where a certain fraction of randomly selected
players is allowed to connect with the corresponding players in the other lattice
(see Methods section). While strategy transfers between the two networks are not
allowed, the additional connections between the corresponding players do influence
their utility, and thus their ability to retain and possibly spread their strategies on the
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home network. This introduces two new parameters, namely the fraction of players
that is allowed to form links with the corresponding players in the other network
�, and the strength of this links ˛. Together, these two parameters determine the
strength of interconnectivity, and also the success of resolving social dilemmas. In
the next section we provide further details with regards to the studied evolutionary
games, the applied dynamical rule, and the topology of interaction networks.
Independent of the strategy updating rule, the topology of interconnected networks,
and the governing social dilemma, we will show that cooperation is promoted best
if only an intermediate fraction of players is allowed to have external links to the
other network, but also that those links should be sufficiently strong. We will also
reveal mechanisms that lead to the emergence of the optimal interconnectivity.

7.2 Methods

The evolutionary game is staged on two square lattices, each of size L � L, where
initially each player x is designated either as a cooperator .sx D C/ or defector
.sx D D/ with equal probability. Likewise randomly, a fraction � of players on
each lattice is selected and allowed to form an external link with a corresponding
player in the other lattice. Although we predominantly use the square lattice, we
will also resort to using the triangle lattice, given that the difference in the clustering
coefficient has been determined as a potentially key factor for the outcome of games
that are governed by pairwise interactions [67, 68].

The accumulation of payoffs �x on both networks follows the same standard
procedure, depending on the type of the governing social dilemma. In both games
two cooperators facing one another acquire R, two defectors get P, whereas a
cooperator receives S if facing a defector who then gains T. The prisoner’s dilemma
game is characterized by the temptation to defect T D b, reward for mutual
cooperation R D 1, and punishment P as well as the sucker’s payoff S equaling 0,
whereby 1 < b � 2 ensures a proper payoff ranking [2]. We note that qualitatively
similar results are obtained also for other values of S. The snowdrift game, on
the other hand, has T D ˇ, R D ˇ � 1=2, S D ˇ � 1 and P D 0, where
the temptation to defect can be expressed in terms of the cost-to-benefit ratio
r D 1=.2ˇ � 1/ with 0 � r � 1. Due to the interconnectivity (external links
between corresponding players), however, the utilities used to determine fitness are
not simply payoffs obtained from the interactions with the nearest neighbors on
each individual network, but rather Ux D �x C˛�x0 for players that have an external
link, and Ux D �x otherwise. The parameter 0 � ˛ � 1 determines the strength of
external links, i.e., the larger its value the higher the potential increase of utility of
two players that are connected by the external link.

Importantly, while the interconnectivity affects the utility of players, it does not
allow strategies to be transferred between the two networks. Thus, the evolution of
the two strategies proceeds in accordance with the standard Monte Carlo simulation
procedure comprising the following elementary steps for each network. First, a
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randomly selected player x acquires its utility Ux by playing the game with all its
nearest neighbors and taking into account also the potential addition to the utility
stemming from the possible external link, as described above. Next, one randomly
chosen neighbor of x within the same network, denoted by y, also acquires its utility
Uy in the same way. Lastly, player x attempts to adopt the strategy sy from player y
with a probability determined by the Fermi function

W.sy ! sx/ D 1

1C expŒ.Ux � Uy/=K�
; (7.1)

where K D 0:1 quantifies the uncertainty related to the strategy adoption process
[6, 65]. The latter is usually associated with errors in decision making and imperfect
information transfer between the players. Notably, to test the robustness of our
findings, we will also use the best-takes-over [2] and the proportional imitation
[66] strategy updating rule. Regardless of which type of interaction network,
evolutionary game, or the strategy updating rule is used, in accordance with the
random asynchronous update, each player on both networks is selected once on
average during a full Monte Carlo step. Moreover, sufficiently large system sizes
(from L D 200 to L D 800) and relaxation times need to be used to avoid finite
size effects and to ensure a stationary state has been reached. Presented results were
averaged over up to 30 independent runs to further improve accuracy.

7.3 Results

To begin with, we show in Fig. 7.1 the impact of parameters � and ˛ on the outcome
of the prisoner’s dilemma game. It can be observed that there exists an intermediate
range of the fraction of players that are allowed to form an external link at which

Fig. 7.1 Tuning in on the optimal interconnectivity between two square lattices for the resolution
of the prisoner’s dilemma. Color coded is the fraction of cooperators fC in dependence on the
fraction of players that are allowed to form an external link � and the strength of these links ˛,
as obtained for b D 1:03 (a), b D 1:05 (b) and b D 1:1 (c). Irrespective of b, there exists an
intermediate value of � � 0:5 at which cooperation is optimally promoted. But in addition to that,
the value of ˛ needs to be sufficiently large as well (After [70])
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cooperators fare best. Irrespective of the temptation to defect b, values around � �
0:5 yield an optimal outcome of the social dilemma. Yet the coupling strength is
important too. Only if the value of ˛ is sufficiently large are the players able to
utilize the advantage of being linked to their corresponding players in the other
network. Although the level of cooperation appears to fade slightly beyond ˛ D 0:7

if the temptation to defect is low or moderate [panels (a) and (b)], the prevailing
conclusion is that the coupling strength needs to be sufficiently strong.

To clarify the mechanism that is responsible for the promotion of cooperation, we
first monitor the evolution of cooperation by measuring not just the overall average
cooperation level (fC), but separately also the average cooperation level for players
with (fCd ) and without (fCo ) external links to the other network in dependence on the
number of full Monte Carlo steps (MCS), as defined in the Methods section. For
easier reference, we will refer to individuals with external links to the other network
as “distinguished” and to those who have no such links as “ordinary” players (note
that the subscripts in fCd and fCo are chosen accordingly). Figure 7.2 reveals that
the cooperation level amongst the distinguished players who do have external links
to the other network is significantly higher than the cooperation level amongst the
players who are not externally linked. Expectedly, the overall cooperation level is
in-between fCd and fCo . The identified difference between fCd and fCo is crucial,
because it indicates that players who have the ability to collect an additional payoff
from the other network are more likely to cooperate. Indeed, the natural selection

Fig. 7.2 Distinguished players who have an external link with their corresponding player in the
other network are more likely to cooperate than those who are not externally linked. Depicted is the
time evolution of the fraction of cooperators in the whole population (fC), among the distinguished
players (fCd ), and among ordinary players, i.e., those that do not have an external link to the other
network (fCo ). It can be observed that fCd > fCo . Parameter values used were: b D 1:05, � D 0:3

and ˛ D 0:8 (After [70])
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of the cooperative strategy among distinguished players is higher than in the whole
population, which is a consequence of an asymmetric strategy flow that emerges
between the distinguished and other players. Because of generally higher payoffs,
the distinguished players are followed by the others, which results in the selection
of cooperation around them. In other words, distinguished players with an external
link to the other network play the role of leaders in the community, similarly as
was reported many times before for hubs on heterogeneous isolated (individual)
networks [6].

To test this explanation further, we directly adjust the teaching activity of players,
i.e., the ability to pass their strategy to a neighbor [59, 60], which can be done
effectively by introducing a multiplication factor w to Eq. (7.1). We consider two
options. First, we depreciate all distinguished players by using w D 0:05 while
keeping w D 1 for those who do not have an external link, and second, we reverse
these values. The expectation is that the first option will nullify the advantage of
interconnectivity between the two networks, while the second option will further
amplify the positive effects on the evolution of cooperation.

Figure 7.3 reveals nicely how the leading role of distinguished players improves
the cooperation level [panels (a) and (c)], yet only if distinguished players are not
depreciated by w D 0:05 [panel (b)]. For comparison, we show in panel (a) the
results obtained with the basic model where all players have w D 1. There the
change from ˛ D 0 to ˛ D 0:5 (note that for ˛ D 0 the difference between
distinguished and ordinary players vanishes) introduces a noticeable increase in
the critical temptation to defect where cooperators die out and an overall increase
in the level of cooperation. But if w D 0:05 is applied to distinguished players,

Fig. 7.3 Interconnectivity between networks favors cooperation only if the awarded additional
payoffs are not counteracted by reduced teaching activity. Panel (a) depicts the fraction of
cooperators fC in dependence on the temptation to defect b for the basic version of the game, where
all players have teaching activity w D 1. In panel (b) the teaching activity of all distinguished
players who have an external link to the other network is reduced to w D 0:05. It can be observed
that the promotion of cooperation due to the interconnectivity vanishes. In panel (c) the teaching
activity of all ordinary players is reduced to w D 0:05, which further strengthens the leading role
of the distinguished players and leads to the strongest promotion of cooperation. All panels feature
results for ˛ D 0 and ˛ D 0:5 at � D 0:5, where ˛ D 0 means that effectively the two networks
are isolated, i.e., there is no interconnectivity because the links between the two networks yield no
additional utility to either player (After [70])
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then they become unable to lead the others despite of the fact that their utilities are
higher than those of their neighbors. In the absence of hierarchy that was previously
warranted by the interconnectivity between networks, there will form no groups
with homogeneous strategies, and hence the advantage of cooperation will not be
revealed. As panel (b) shows quite interestingly, ˛ D 0 (absence of interconnectivity
between networks) even slightly outperforms ˛ D 0:5, because a weak hierarchy is
then restored due to the unequal teaching activity of players. Note that at ˛ D 0:5

the unequal teaching activity is counteracted by the additional payoff distinguished
players receive from the other network. At ˛ D 0 this counterbalance is lost, and
the ordinary players become the leaders due to their higher value of w. The positive
effect on the level of cooperation is, however, rather marginal.

In the opposite case, when distinguished players are endowed with the full
teaching activity w D 1 while ordinary players without an external link are
depreciated with w D 0:05, the change from ˛ D 0 to ˛ D 0:5 is the strongest
[panel (c)]. Here the inequality of w and the additional payoffs stemming from the
other network are able to strengthen each other and fortify the leaders to yield the
highest cooperation level within the framework of this model. The enforced role of
distinguished players will cause an immediate reaction from the followers, and this
prompt reaction will select the more successful cooperative strategy as described
before. From the technical point of view, it is interesting to note that the curves for
˛ D 0 in Fig. 7.3b, c coincide, because in the absence of extra payoff from the other
network it does not matter whether distinguished or ordinary players are endowed
with w D 1 (or w D 0:05). Since the fraction of distinguished players was set to
� D 0:5, both fractions are equally large, thus resulting in the same cooperation
level.

Results presented in Fig. 7.3 and the pertaining interpretation can be corroborated
by comparing the evolution of cooperation within different groups of players,
similarly as done in Fig. 7.2 above. As Fig. 7.4b shows, when the teaching activity
is reduced for distinguished players the cooperation among them is not favored
by natural selection. Consequently, only a very low value of b can ensure a
reasonably high cooperation level in the whole population because the latter is
dragged down considerably by the low fCd . There is a slight improvement among
other players, as evidenced by the higher fCo , which is due to a higher teaching
activity. However, despite their higher teaching activity, ordinary players cannot
lead the whole population efficiently because distinguished players are reluctant
to follow them due to their higher individual utility. If either the teaching activity
of all players is left intact [panel (a)] or the higher teaching activity is awarded
to distinguished players [panel (c)], then fCo < fCd , as observed initially in Fig. 7.2.
Thus, the basic mechanism of cooperation promotion is restored or even additionally
fortified.

Furthermore, it is important to emphasize that the optimal interconnectivity
between the networks can work in favor of cooperation only if there are distin-
guished players in both graphs. On the other hand, if the additional utilities flow only
in one direction, the mechanism will fail or yield only a marginally better outcome.
Results supporting this argumentation are presented in Fig. 7.5. For reference, the
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Fig. 7.4 Decreasing the teaching activity of distinguished players nullifies their higher propensity
to cooperate, and it reduces the temptation to defect that still warrants a healthy cooperation level
in the whole population. Depicted is the time evolution of the fraction of cooperators in the whole
population (fC), among the distinguished players (fCd ), and among ordinary players (fCo ). It can
be observed that fCd > fCo in panels (a) and (c), but not in panel (b). In the latter, the teaching
activity of all distinguished players who have an external link to the other network is reduced to
w D 0:05. In panel (a) all players have w D 1, while in panel (c) the teaching activity of all
ordinary players is reduced to w D 0:05, which further amplifies the fCd > fCo difference. We have
used parameter values that yield approximately the same overall level of cooperation (fC) in all
three cases: � D 0:3, b D 1:05 and ˛ D 0:8 for panel (a), � D 0:3, b D 1:0 and ˛ D 0:25 for
panel (b), and � D 0:3, b D 1:09 and ˛ D 0:25 for panel (c) (After [70])

Fig. 7.5 Optimal interconnectivity between the two networks works optimally only if the links
connecting them go both ways. Depicted is the fraction of cooperators fC in dependence on the
temptation to defect b as obtained on an isolated network (reference case), on two networks
connected by means of unidirectional links, and on two mutually interconnected networks.
Cooperation is optimally promoted only if there is independent formation of cooperative patterns
on each individual network, for which the chance for heterogeneity (distinguished players) needs
to be provided on both of them. Parameter values used were: � D 0:5 and ˛ D 0:5 (After [70])
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outcome on an isolated network is depicted as well. It can be observed that if
distinguished players in the first network can collect additional payoffs from the
second network, but the evolution in the second network is independent from the
first network because players there are unable to collect additional payoffs (the
interconnectivity is unilateral), then the critical temptation to defect b at which
cooperators die out does not increase at all. In fact, only the level of cooperation
increases slightly in the mixed C C D phase. If the interconnectivity is bilateral, i.e.,
players on both networks can collect an additional payoff from the other network,
however, the positive impact on the evolution of cooperation is much stronger.
This highlights the importance of mutual interconnectivity and the independent
formation of cooperative patterns on each individual network. Players connected to
their corresponding partners in the other network can support each other effectively
only if homogeneous cooperative domains emerge on both networks. Notably, the
importance of correlated growth and formation of cooperative domains has been
emphasized already in [39], although here they need not overlap geographically. We
could observe practically the same cooperation level when distinguished players
collected additional payoffs from an ordinary player in the other network. Namely,
there is no need to link distinguished players from different networks with one
another. The crucial condition is the chance of heterogeneity on both networks
[61], the positive effect of which can then be mutually amplified through the
interconnectivity.

Our argument for the spreading of cooperative behavior among distinguished
players can also be supported by how the border of the full D phase behaves in
dependence of � and ˛ at a high temptation to defect. As results presented in
Fig. 7.1c suggest, a smaller density of distinguished players can be compensated by
a higher value of ˛, but only up to a certain point. At such a high temptation value
cooperators cannot survive even for large values of ˛ if the density of distinguished
players � is below a threshold value. Naturally, the critical � depends slightly on the
temptation to defect [compare panels (b) and (c)], but the smallest value of the phase
transition point is close to the critical �c D 0:1869.1/ value of jamming coverage
of particles during a random sequential adsorption when nearest and next nearest
neighbor interactions are excluded on a square lattice [62]. Shortly, if distinguished
players are too rare, then to support them via a high ˛ will not yield the desired
impact because their influence cannot percolate. The latter, however, is an essential
condition to maintain cooperation, which was already pointed out in previous works
[63, 64].

It is lastly of interest to verify the robustness of these observations, first with
regards to the strategy updating rule. As results presented in Fig. 7.6 demonstrate,
our conclusions are not restricted solely to the Fermi-type strategy updating [6, 65],
but remain valid also under the best-takes-over rule [2] and proportional imitation
[66]. In both cases an optimal intermediate value of � is clearly inferable, and the
positive effect on the evolution of cooperation is the stronger the larger the value of
the coupling strength ˛. This is qualitatively identical as observed in Fig. 7.1 with
the Fermi rule.
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Fig. 7.6 Robustness of optimal network interconnectivity on different strategy updating rules.
Color coded is the fraction of cooperators fC in dependence on the fraction of players that are
allowed to form an external link � and the strength of these links ˛, as obtained for b D 1:4 and
best-takes-over strategy updating (a), and b D 1:06 and proportional imitation (b). Irrespective of
the applied strategy updating rule, there exists an intermediate value of � at which cooperation is
optimally promoted, and the dependence on ˛ is also qualitatively the same as in Fig. 7.1, where
the Fermi strategy adoption rule has been used (After [70])

Fig. 7.7 Robustness of optimal network interconnectivity on the topology and the type of social
dilemma. Color coded is the fraction of cooperators fC in dependence on the fraction of players that
are allowed to form an external link � and the strength of these links ˛, as obtained for b D 1:1 on
the triangle lattice (a), and r D 0:3 (snowdrift game) on the square lattice (b). The Fermi strategy
adoption rule has been used in both cases. Irrespective of the topology of each individual network
and the type of the governing social dilemma, the results are qualitatively the same as in Figs. 7.1
and 7.6 (After [70])

Since previous works revealed that the clustering coefficient could be a decisive
factor affecting the evolution of cooperation in games that are governed by pairwise
interactions [67, 68] (note that this is not the case for games governed by group
interactions [69]), it is also instructive to examine the relevance of network
interconnectivity under this condition. Unlike the square lattice that has a zero
clustering coefficient, the triangular lattice has a high clustering coefficient, and
thus serves the purpose very well. Results presented in Fig. 7.7a attest to the fact
that the existence of optimal network interconnectivity does not depend on structural
properties of each individual network, as indeed the ˛ � � dependence of fC is the
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same as observed before for the square lattice in Fig. 7.1. To conclude, we extend
our exploration also to other social dilemmas, more precisely the snowdrift game,
and as shown in Fig. 7.7b, the main conclusions remain intact. To reiterate, the exists
and intermediate level of interconnectivity between networks that is optimal for the
resolution of social dilemmas.

7.4 Discussion

Summarizing, we have studied the evolution of cooperation in the spatial prisoner’s
dilemma and the snowdrift game subject to interconnectedness by means of a
different fraction of differently strong links between the corresponding players
residing on the two interconnected networks. We have found that for cooperation to
be optimally promoted, the interconnectivity should stem only from an intermediate
fraction of links connecting the two networks, and that those links should affect
the utility of players significantly. The existence of optimal interconnectivity has
been attributed to the heterogeneity that is brought about by the enhanced utility
of those players that do have external links to the other network, as opposed to
those who have not. This introduces asymmetric strategy flow, which in turn leads
to the emergence of influential leaders that can act as strong cooperative hubs in
their respective networks. Importantly, the compact cooperative patterns that appear
independently on both networks support each other mutually through the links that
constitute the interconnectivity. Indeed, we have shown that the mechanism works
best only if the interconnectivity is bilateral, and if the asymmetric strategy flow is
not counteracted by artificial low weights assigned to the reproducibility of intercon-
nected players. In case of unidirectional interconnectivity or if the reproducibility of
players is altered, however, some marginal benefits for cooperators may still exist,
but these are then far removed from the full potential of interconnected networks
to aid the resolution of social dilemmas. We have tested the robustness of these
conclusions by replacing the Fermi strategy adoption rule with the best-takes-over
and the proportional imitation rule, as well as by replacing the square lattice having
zero clustering coefficient with the triangle lattice that has a much higher clustering
coefficient, as well as finally by replacing the prisoner’s dilemma game with the
snowdrift game. Quite remarkably, we have found that the optimal interconnectivity
persist across all these different setups, thus leading to the conclusion that it ought
to be to a large degree a universally valid phenomenon.

While interconnectivity can promote the evolution of cooperation by means of
the mechanisms presented in this chapter (for further details see [38–41]), and
while it has been established that there in fact exists an optimal intermediate level
of interconnectivity that works best in deterring defection [70, 71], it is not clear
how it could have emerged from initially isolated subsystems. Many works have
simply assumed some level of interconnectivity be there without considering its
origin or mechanisms that might have led to its emergence. To amend this, we have
recently adopted the established concept of coevolution in the realm of the prisoner’s
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dilemma game [8], with the aim of introducing an elementary coevolutionary
rule that leads towards the spontaneous emergence of optimal interconnectivity
between two initially completely independent networks [72]. The rule is simple
indeed, assuming only that players who are often enough successful at passing their
strategy to one of their neighbors, regardless of which strategy it is, are allowed to
form an external link to the corresponding player in the other network in order to
potentially increase their utility. As we have shown [72], this suffices for the system
to self-organize into a two-class society in which the resolution of the prisoner’s
dilemma is most likely. Alternatively, it is possible to introduce rewards for high-
enough evolutionary fitness of individual players in the form of additional links that
bridge the gap between two initially disconnected populations [73]. These rewards
effectively introduce interconnectivity between two populations, and they allow the
rewarded players to increase their utility with a fraction of the utility of the player
in the other population. Regardless of game-specific details, the self-organization of
fitness and reward promotes the evolution of cooperation well past the boundaries
imposed by traditional network reciprocity [2], as well as past the boundaries
imposed by interconnected network reciprocity [39], if only the utility threshold
is sufficiently large [73]. On the other hand, the threshold must not exceed a critical
value, which could be well below the maximal possible utility a cooperator is able
to reach if it would be fully surrounded by other cooperators. These latest results
concerning coevolution on interconnected networks indicate that even seemingly
irrelevant and minute additions to the basic evolutionary process might have led
to the intricate and widespread interconnectivity between networks that we witness
today in many social and technological systems.

While the games on interconnected networks studied here are not meant to
model a particular real-life situation, they nevertheless do capture the essence of
some situations that are viable in reality. For example, it is generally accepted that
not all individuals are equally fond of making connections outside of their natural
environment. Similarly, some would very much wish to do so, but may not have a
chance. These and similar considerations may all affect the level of interconnectivity
between two or more networks, and it is within the realm of these possibilities that
our study predicts the existence of an optimal level of interconnectedness. Future
studies could address the coupling of more complex (small world or scale-free,
for example) interaction topologies, the outcome of other games on interconnected
networks, such as for example the traveler’s dilemma game that has recently been
studied in a spatial setting [74], as well as the impact of coevolution and growth,
both of which have recently been the subject of much interest [75–79]. Overall,
it seems safe to conclude that the interconnectivity of interaction networks offers
several exciting possibilities for further research related to evolutionary games, and
it ought to bring the models a step closer to actual conditions, given that networks
indeed rarely exist in an isolated state.
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Chapter 8
The Cacophony of Interconnected Networks

Vitor H.P. Louzada, Nuno A.M. Araújo, José S. Andrade Jr.,
and Hans J. Herrmann

Abstract The harmony of an orchestra emerges from the individual effort of
musicians towards mutual synchronization of their tempi. When the orchestra
is split between two concert halls communicating via Internet, a time delay is
imposed which might hinder synchronization. We present this type of system as two
interconnected networks of oscillators with a time delay and analyze its dynamics
as a function of the couplings and communication lag. We describe a breathing
synchronization regime, namely, for a wide range of parameters, two groups emerge
in the orchestra within the same concert hall playing at different tempi. Each group
has a mirror in the other hall, one group is in phase and the other in anti-phase
with their mirrors. For strong couplings, a phase shift between halls might occur.
The implications of our findings on other interconnected systems are also discussed.

Technology has furnished us with global connectivity changing the functioning of
cooperative work, international business, and interpersonal relationships. Today, it is
possible to distribute an orchestra over two concert halls in different continents. Fast
Internet connections would provide the communication infrastructure to properly
combine the sounds [12]. As there is always a physical limit speed to information
transport, the communication between sub-orchestras is subjected to a time delay
due to the distance between halls. As we discuss here, this time delay might pose
a real challenge to the synchronizability among musicians, which is vital to a
successful performance. When isolated, each sub-orchestra would naturally play
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in unison. However, in our model orchestra, when listening to the musicians in the
other sub-orchestra, the musicians in the same hall can split into two groups, playing
with different tempi, leading to breathing synchronization. Interestingly, the partner
in the other hall will be always playing with the same tempo but either in phase or
anti-phase, depending on their tempo.

Understanding the consequences of a communication lag is also of major concern
in other fields [7, 13, 16]. The plasmodium Physarum polycephalum, an amoeba-
like organism consisting of a network of tubular structures for protoplasm flow,
naturally shows periodic variations in its thickness, a useful skill when fighting
predators. In a controlled experiment, two regions of the same organism have
been physically separated by a certain distance with the possibility of fine tuning
the communication between them [32, 33]. Depending on the coupling strength
and time delay, the regions have been shown to present phase and anti-phase
synchronization of the oscillatory thickness. This is precisely what we show here
for the orchestra in the regime of strong influence of other musicians in the same
concert hall. In what follows, we focus on the example of the orchestra but the
results might also have impact on several biological and techno-social systems as,
for example, functional brain networks, living oscillators, or coupled power grids.
For a more general discussion of these findings see Ref. [21].

When playing the same piece, musicians in an orchestra try to synchronize
their tempi, i.e., they try to play the notes at the same pace. Thus, for example,
one violinist focuses simultaneously on the tempi of instruments in the same hall
and on the corresponding violin in the other hall. All the other musicians act in
the same way. The synchronizability of this setup can then be discussed in the
framework of interconnected networks of oscillators. Each concert hall is modeled
by a network, where nodes are musicians and links represent the interaction between
them. Additionally, each musician also establishes a special inter-network coupling
with one partner playing the same instrument in the other network (concert hall).
Intra- and inter-network couplings have different time scales: while the intra-
network interactions can be considered instantaneous, the inter-network ones have
a time delay that depends on the distance between concert halls. Recent geometrical
studies of coupled networks with intra- and inter-network links have revealed novel
features never observed for isolated networks [14]. In particular, it has been shown
that the overall robustness is reduced [28] and the collapse of the system occurs
through large cascades of failures [8, 9]. Dynamic properties of coupled networks
have also been studied [2, 10, 15, 19, 23, 30, 35].

The Kuramoto model is a usual approach to network synchronization [1, 3–6, 17,
18, 20, 22, 24–27, 31, 34]. For illustration purposes, here we stay with the example of
an orchestra. A population� of n Kuramoto oscillators is considered to be mutually
interacting, such as the musicians in one concert hall trying to keep the same tempo.
We consider a random graph of average degree four. Each musician (oscillator) i 2
� is described by a phase �i.t/, representing her/his current position, and a natural
tempo !i, corresponding to the pre-defined tempo of the music. Since all musicians
are playing the same piece, we assume !i  !0. The actual tempo of a musician
is defined as the time derivative of the phase, P�i.t/. To play the piece harmoniously,



8 The Cacophony of Interconnected Networks 143

musicians try to synchronize their tempi. This interaction can be modeled in terms
of the Kuramoto model as P�i D !0 C �

Pn
jD1 A�ij sin

�
�j � �i

	
, where the sum goes

over all other musicians (i ¤ j), � is the coupling strength between them, and A�

is the connectivity matrix such that A�ij D 1 if musician i is influenced by j and zero
otherwise. For simplicity, we assume that the musicians are all playing at the same
unitary amplitude, so that the state of each musician can be described by a phasor
ei�i.t/.

The collective performance in one concert hall, namely, the synchroniza-
tion of its network, is characterized here by the complex order parameter
r�.t/ei�.t/ D 1

n

Pn
j ei�j.t/, where the sum goes over all musicians,�.t/ is the average

phase, and the amplitude 0 � jr�.t/j � 1 measures the global coherence, i.e., how
synchronized the musicians are. If r�.t/ D 1 all musicians play the same note at the
same time, while low values of r� imply that a significant fraction of musicians are
out of phase.

We introduce now a second population � , also of n oscillators, representing the
second concert hall. Within this network, musicians are coupled in the same way.
Each j 2 � is coupled with the corresponding partner i 2 �, forming the inter-
network couplings. In analogy to oscillators in �, the motion of each oscillator is
described by a phasor ei
j.t/, of phase 
j.t/. The inter-network coupling is subjected
to a time delay  , corresponding to the time required for information to travel
between concert halls [29]. Previous studies introduced time delay among oscillators
of the same population [11, 36]. Here we consider the competition between an
instantaneous intra-network and a delayed inter-network coupling. In a nutshell,
the performance of each musician is described by,

8̂
ˆ̂̂<
ˆ̂̂̂
:

P�i D !0 C �EX sin
�

 t�

j.i/ � �i

�
C �IN

NX
kD1

A�ik sin .�k � �i/

P
j D !0 C �EX sin
�
� t�

i.j/ � 
j

�
C �IN

NX
kD1

A�ik sin
�

k � 
j

	 ; (8.1)

where the superscript t �  indicates the instant when the phases are calculated,
and �EX and �IN are the inter and intra-network couplings, respectively. In music,
frequency is typically related with the note. However, here we assume that the
properties of the note are not relevant. Instead, the usual natural frequency of the
Kuramoto model (!) corresponds to the tempo and, therefore, frequency and tempo
will be used as synonymous.

For two interconnected networks of oscillators with time delay, a weak intra-
network coupling, and random initial distribution of phases, two frequency com-
munities emerge within the same network, each synchronized with its mirror in a
breathing mode, as shown in Fig. 8.1b in which the position of each empty circle
represent its phase. A frequency lock occurs within communities, which move in
a cohesive fashion on the complex plane. Interestingly, pairs of nodes that are
part of different networks oscillate with the same frequency but might be either
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Fig. 8.1 The interactions between a strongly delayed inter-network coupling and a weak intra-
network coupling create two communities of different frequencies in steady state. (a), The order-
parameter of two populations (red and green) composed of n D 100 oscillators each with !0 D
1:0,  D 1:53, �IN D 0:01, and �EX D 0:5. (b), Snapshot of populations at three different time
steps (black dashed vertical lines in (a)), for the same parameters. Oscillators are spread across the
complex plane according to their phase, with one plane for each network (left and right columns).
The arrow at the center of each complex plane represents the order parameter of that network: its
length representing the modulus and its argument representing the average phase. Superposition of
the two groups of oscillators leads to breathing synchronization

in phase or anti-phase (phase shift of �). Consequently, the presence of these two
frequency communities affects the measurement of the new global oscillatory state,
called breathing synchronization [21]. Figure 8.1a shows the time evolution of the
order parameters r� and r� for each population, quantifying this breathing behavior.
For each curve, the maximum corresponds to the instant at which both groups of
frequencies are in phase, while the minimum to an anti-phase between groups in
the same network. Additionally, since for one frequency there is a phase shift of �
between inter-network pairs of nodes, the minimum in one network corresponds,
necessarily, to the maximum in the other. In the context of the orchestra this implies
that the communication lag in the interaction between concert halls generates a
tendency to split musicians in each sub-orchestra into two groups playing at different
tempi, hindering harmony. Moreover, cohesion within each community affects the
amplitude of the breathing resulting that the weaker the intra-network coupling, the
smaller is this amplitude and more cacophony is present.

The observed breathing behavior is in deep contrast with what is expected for an
isolated network (�EX D 0). For isolated networks, the classical Kuramoto model is
recovered, with frequency and phase synchronization emerging at a critical coupling
�IN D ��

IN. Above this threshold, a macroscopic fraction of oscillators synchronizes
with the same frequency and since here we consider the same natural frequency
for all oscillators (!i  !0), ��

IN ! 0. The group of synchronized oscillators
has frequency ! D !0 and the order parameter r�.t/ (or r� .t/) saturates in time
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at a non-zero steady-state value, which is a monotonically increasing function of
(�IN � ��

IN) [17]. It is worth noticing that in the case of coupled networks, and for
sufficient inter-network couplings, none of the two frequencies is !0.

Breathing synchronization is a direct consequence of the analytical solution
obtained by Schuster and Wagner [29]. Depending on the initial phase difference
between oscillators, the pair can synchronize with different frequencies !, which
are solutions of,

! D !0 � �EX sin .!/ : (8.2)

Notwithstanding of oscillating with the same frequency in the stationary state,
the two oscillators might either be in phase, if cos.!/ > 0, or anti-phase. On
inter-connected networks, in the limit �IN D 0, the stationary state incorporates all
conceivable solutions of Eq. (8.2). Surprisingly, our results with a weak coupling
uncover two frequency groups with phase locking. In any case, the observed
frequencies are consistent with the solution of Eq. (8.2).

To summarize the impact of several combinations of parameters, we plot in
Fig. 8.2 the phase diagram in the space of the two coupling strengths (�IN and �EX).
To recognize each regime, we compute the amount of oscillators with consistent
steady frequency below and above the mean value of possible frequencies over
different samples. The color map of the main plot of Fig. 8.2 shows the ratio of
these quantities. While the blue area represents the domain of �IN and �EX blends
that leads to the smaller frequency, the shades in red represent the two regions where
two frequencies can be accomplished. Notice however that the two synchronization
regimes in red differ in their underlying features. The one in the left (lower �IN) is
portrayed by the breathing behavior due to the presence of two frequency groups
within each network. By contrast, in the supernode regime all nodes within a

Fig. 8.2 Parameter space of
two coupling strengths �ex

and �in showing that the
prevalence of one frequency
over the other changes
according to the coupling
strengths. The color of each
point represents the logarithm
of the relative areas of the
stable frequencies histogram.
The inset exhibits the phase
boundaries for different time
delays. The dominant
mechanisms of each region
are labeled accordingly:
breathing, (classical)
kuramoto, competing, and
supernode states (After [21])
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network are in phase locking, with the same frequency and, in this way, the order
parameter is steady in time at this state. In the inset, we show the phase boundaries
for distinctive time delays from which one can similarly see that the transition
between regimes changes considerably.

The presence of a time delay between two coupled networks of oscillators
represents one more test to the worldwide control of an orchestra, or any other
global system. We have shown that the interchange between coupling and delay
leads to states of either a unique or two conceivable synchronized frequencies. We
have discovered that, even with a weak intra-network coupling, oscillators inside the
same network part into two frequency groups, each group mirroring another in the
opposite network by oscillating at the same frequency. However, contingent upon
their frequency, a group can be either in phase or anti-phase with its mirror in the
other network, resulting in breathing synchronization. Additionally, we show that an
arbitrary increment of the intra-network coupling is not an option to achieve phase
and frequency synchronization regardless of its starting conditions. In a certain
region of the parameter space, the intra-network coupling promotes the formation
of two supernodes (one for every network), and two frequencies become stable.

It is safe to say that we are some years away of having a working setup
of an intercontinental orchestra. In addition to all the technical challenges, our
study shows that the very nature of a time-delayed system imposes a threat to
the synchronization of the musicians. It would be rather interesting in fact to
observe oscillations with two different frequencies within the musicians at the
same continent due to the communication lag with the other region, resulting in
a breathing synchronization cacophony.
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Chapter 9
Several Multiplexes in the Same City: The Role
of Socioeconomic Differences in Urban Mobility

Laura Lotero, Alessio Cardillo, Rafael Hurtado, and Jesús Gómez-Gardeñes

Abstract In this work we analyze the architecture of real urban mobility networks
from the multiplex perspective. In particular, based on empirical data about the
mobility patterns in the cities of Bogotá and Medellín, each city is represented by six
multiplex networks, each one representing the origin-destination trips performed by
a subset of the population corresponding to a particular socioeconomic status. The
nodes of each multiplex are the different urban locations whereas links represent
the existence of a trip from one node (origin) to another (destination). On the other
hand, the different layers of each multiplex correspond to the different existing
transportation modes. By exploiting the characterization of multiplex transportation
networks combining different transportation modes, we aim at characterizing the
mobility patterns of each subset of the population. Our results show that the
socioeconomic characteristics of the population have an extraordinary impact in the
layer organization of these multiplex systems.
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9.1 Introduction

Understanding human mobility patterns have attracted, for decades, the attention
of researchers from many different scientific realms. The first models based on
empirical observations date back to the 1940s and were elaborated by the sociologist
Samuel A. Stauffer [1] and the philologist George K. Zipf [2]. It is at the end of the
last century when, with the consolidation of mathematical frameworks such as the
well-known Gravity model [3], when transportation science, as a realm of operations
research, became a discipline on its own.

The advent of the big data era, have spurred the activity on transportation science
and provided detailed datasets of real transportation systems. This characterization
spans across many scales, from the short-range mobility patterns in urban areas
[4–6] to world wide trips [7]. Remarkably, different degrees of resolution and
types of information are nowadays available from the combined use of techniques
for data gathering [8]. From the traditional datasets based on direct surveys [9],
allowing to know the purpose of the trip (work/school, leisure, etc), to those
large-scale ones gathered by tracking mobile communication systems [10, 11] or
transport electronic cards [12]. This burst of activity have attracted many scientists
from theoretical disciplines to contribute to the subject through the formulation of
mobility models and mathematical tools aimed at reproducing and characterizing
the observed patterns of movement [13–16].

The rapid change in the patterns of human mobility in the last decades, specially
in what concerns the decrease in their duration together with the increase of their
length, makes its characterization of utmost importance for many disciplines beyond
the traditional scope of transportation science. The most paradigmatic example is the
relevance of human mobility in the spread of diseases. The inclusion of the mobility
ingredient into epidemic models has allowed to design sophisticated theoretical
frameworks aiming at forecasting the onset and duration of pandemics with high
time and spatial resolution [17–22].

In the last fifteen years, networks science [23–25] has appeared as the best
suited mathematical frameworks to accommodate and characterize the interaction
backbone of the very many complex systems captured by big data techniques.
In fact, complex networks had been proposed as the natural framework to study
spatially embedded systems [26] and, in particular, mobility networks. In these
networks the different origins and destinations are represented as nodes of a graph,
whereas the movements between locations are encoded as links connecting them
[27]. Recently, thanks to the availability of more detailed information, it has been
possible to represent many different types of transportation modes used for the
movements within the same area under multilayer networks [28–30], in which each
network layer represents a single transportation mode. In this way, each node still
represents a particular origin/destination location and it is present in each of the
network layers. However, links are represented in a different layer of interaction
depending on the kind of transportation mode used for connecting two locations.
This particular multilayer network is usually termed as multiplex.
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In the recent years, different human mobility systems have been addressed
under the paradigm of multiplex networks, ranging from urban movements [31]
to medium [32] and large scale trips [33, 34]. Following this approach, here we
address the multiplex structure of urban mobility in two different cities: Bogotá and
Medellín. The novelty of the results presented rely on an additional ingredient of the
mobility patterns that, up to our knowledge, has been ignored up to date. This new
ingredient is the socioeconomic status (SES) of the individuals, mainly related to
their wealth. Being the composition of many cities in the world highly hierarchical
and inhomogeneous in terms of the capital distribution, it is thus relevant to unveil
the influence that the different SES have on the mobility patterns.

To this aim, and considering that another relevant ingredient included in the
available data sets is the transportation modes used by the individuals, we analyze
the mobility patterns in terms of a multiplex network. In particular, we will analyze
six different multiplex networks, each one corresponding to a different SES. Our
approach relies on the adiabatic projection technique, introduced in [34], that
consist in monitoring how the structural properties of the aggregate network show
up as a result of the merging of the layers composing the multiplex. Thanks to
this approach, it has been possible to spotlight how segregation and multimodality
are characteristic of some particular social classes, and to unveil the dominant role
played by the middle-class in the utilization of the transportation system as a whole.

The structure of this chapter is the following. We will first introduce the datasets
used in Sect. 9.2 and the adiabatic projection technique together with the topological
estimators in which it is used in Sect. 9.3. Section 9.4 is devoted to present the results
of applying the former technique to the datasets of the cities of Bogotá and Medellín.
Finally, in Sect. 9.5 we draw some conclusions and future work perspectives.

9.2 Urban Mobility and Socioeconomic Status

The mobility data presented and analyzed here are taken from surveys carried out in
two major cities of Colombia: Bogotá and Medellín. These surveys were originally
designed to collect information about travelers and their trips, so to identify traffic
patterns and apply the results to urban and transportation planning. In these surveys,
each householder is asked about the trips performed the day before the interview,
providing with the origin and destination zones, the departure and arrival times, the
transportation mode used and the purpose of each trip. In addition, householders
are characterized by their socioeconomic characteristics, such as the age, gender,
occupation, and the socioeconomic characteristic of their housing, which it is
defined as its SES. The survey for the city of Bogotá, having a population of about 7
million of inhabitants, has a sample size of 45;446 people interviewed, reporting
100;846 trips [35]. On the other hand, the survey for the metropolitan area of
Medellín, with a population of about 3:5 million people, reports 127;849 trips from
56;513 personal interviews [36]. However, not all the people interviewed made a
trip and thus the number of travelers in both cities is smaller (see Table 9.1).
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Table 9.1 Supplementary information about the mobility interviews. From left to right: number
of travellers, P, their average age, hAi, percentage of female subjects, Fem, total number of trips
recorded, TTOT, average number of trips per person, hTi, average number of steps per trip, hnsi,
number of urban areas (nodes), N, number of connections between areas (links), E

P hAi Fem.%/ TTOT hTi hnsi N E

Bogotá 37,483 33.23 54.4 100,846 2.69 – 912 24,588

Medellin 45,496 33.34 53.4 127,849 1.58 1.105273 413 18,442

Fig. 9.1 Maps of the trips made in the city of Bogotá. Each map refers to a particular
socioeconomic status, namely (from left to right) 1, 3 and 6. Each node corresponds to a different
urban mobility zone, while a link (light gray) between two nodes indicates that a displacement has
occurred among them. The size of the nodes indicates the amount of displacements (both from and
to) occurring in that zone

In Table 9.1 we briefly show the most relevant information about the population
interviewed in both cities. From the network perspective, the mobility graphs
derived from these surveys contain N D 912 nodes (being both origins and destina-
tions) for the city of Bogotá, and N D 413 for the metropolitan area of Medellín. In
this way, two nodes are linked whenever the survey reports the existence of at least
one trip between two zones. In addition, we take advantage of the socioeconomic
information provided by the surveys, in particular the information about the SES of
each individual, as this is a good proxy of the population wealth. This categorization
of the population into strata is specific of Colombia, and ranges from status 1 for the
lowest-income householders up to 6 for the highest-income individuals. Examples
of mobility graphs of three of these socioeconomic groups are displayed in Fig. 9.1.

As introduced above, the aim of our work is to study the different means of trans-
portations coexisting in the urban mobility as a multiplex mobility network. Since
the surveys contained a number of different transportation means (25 in Bogotá and
17 in Medellín) we grouped these transportation modes into 6 different categories. In
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Fig. 9.2 Usage of the six transportation modes for the case of Bogotá (left) and Medellín (right)

Fig. 9.3 Socioeconomic distribution of the population for the cities of Bogotá (left) and Medellín
(right). SES ranging from 1 (poorest) to 6 (richest) is assigned to every traveler according to his/her
economic wealth

particular: (i) pedestrian (walking), (ii) public transport, (iii) private transport (e.g.
car or motorbike), (iv) public massive transport (e.g. metro), (v) public individual
transport (e.g. taxi), and (vi) bicycle. The usage of each transportation group is
displayed in Fig. 9.2. Surprisingly, being the same classification for both datasets,
we notice that the usage of each group is not the same in both cities. This is due to
several factors, such as the different morphology of the cities and the differences in
their urban development and planning. Regarding the socioeconomic composition of
the population we report in Fig. 9.3 the partition of the samples used in the surveys
of Bogotá and Medellín in agreement with the real socioeconomic distribution of
both cities, with the majority of the population being in SES 2 and 3.

Our goal in the next sections is to use the mobility and socioeconomic data
provided by these surveys, to explain how the SES of individuals affect the mobility
patterns. To illustrate how the different SES make use of the available transportation
modes we show in Fig. 9.4 two different mobility matrices, M. The first type of
matrix (top) shows how the usage of a transportation mean is partitioned into the
different strata, whereas the second one shows how individuals of a particular SES
use the different available modes. In both cases, the latter information is casted in
6 � 6 matrices whose entries Mt;s correspond to, in the first case, the fraction of
trips that individuals belonging to SES s perform using transportation mode t. In its
turn, in the second case, the entry Mt;s accounts for the probability that a trip of an
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Fig. 9.4 Distribution of usage of transportation modes by the 6 SES. The matrices in the left
(right) correspond to the city of Bogotá (Medellín). The matrices in the top (bottom) are normalized
as
P

s Mts D 1 (
P

t Mts D 1). Transportation modes, from 1 to 6, are ordered according to Fig. 9.2

individual of SES s is performed using mean t. This information is shown for both
cities, Bogotá (left) and Medellín (right).

At first sight, comparing those matrices in the left (Bogotá) and those in the
right (Medellín), both cities display roughly the same usage patterns. In particular,
concerning the matrices in the top we can observe that the usage of modes follows
two different patterns depending on the precise transportation mean. For instance,
modes 3 (private transport) and 5 (public individual transport) accumulate users
from SES 2 to 6, whereas modes 4 (public massive transport) and 6 (bicycle) are
mainly used by individuals with SES 2 and 3.

The second group of matrices (bottom) show, both for Bogotá and Medellín,
that although multimodality is somehow present for individuals from SES 3 and 4,
there is a high tendency to concentrate the trips around few transportation means.
In fact, this concentration makes clear the socioeconomic differences according to
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the means selected: poor individuals from SES 1 and 2 concentrate their trips using
modes 1 (pedestrian) and 2 (public transport), which are the cheapest ones, while
those belonging to SES 5 and 6, mostly use means 3 (private transport) and 5 (public
individual transport), that represent the most expensive ones. Thus, in the first case
the concentration of trips around means 1 and 2 is due to the segregation of SES 1
and 2 towards cheap means whereas individuals from SES 5 and 6 can select their
means according to their commodity. Thus, the mobility patterns in both cities show
a clear transition segregation-multimodality-selection when going from the poorest
to the richest.

9.3 The Adiabatic Projection of a Multiplex

From the analysis of the mobility matrices in Fig. 9.4, it becomes clear that the
usage of the different transportation modes depends strongly on the status of the
individuals. These results demand the analysis of how the different transportation
modes are associated forming a mobility multiplex network (MMN) for each social
status. In this section we present the Adiabatic Projection (AP) technique used to
characterize MMN and the structural quantities under study.

Following the formalism introduced by Battiston et al. [41], we consider the
MMN of a social status s as a system composed of N nodes and M D 6 layers.
As explained before, nodes correspond to the different urban areas in a city. Layers,
instead, represent different transportation modes. Keeping in mind such setup, and
particularizing in the mobility multiplex of a given social status s, it is possible to
associate to each layer ˛ (˛ D 1; : : : ;M) a graph GŒs;˛�.N; E Œs;˛�/ described by an
adjacency matrix AŒs;˛� whose entries are defined as aŒs;˛�ij D 1 if zones i and j are
connected by (at least) a trip of an individual from status s using transportation
mode ˛. Under this formalism, the MMN of a social status s is fully described by
the so-called vector of adjacency matrices As given by:

As D ˚
AŒs;1�; : : : ;AŒs;M�

�
: (9.1)

Once having introduced the basic notation characterizing each of the MMN,
we describe the AP procedure used to study the coexistence of several interaction
(here transportation) modes in a multiplex network. The technique relies in merging
together a subset V.m/ containing m � M layers into a single (monolayer) graph
GŒs;V.m/�.N; E Œs;V.m/�/ where:

E Œs;V.m/� D
[

˛2V.m/

E Œs;˛� : (9.2)

Therefore, the network GŒs;V.m/� is obtained by projecting all the layers contained
in V.m/ onto a single one and by converting the multiple links (those existing in
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several layers in V.m/) into single ones. In this way, the topology of the resulting
projected network is described by the projected adjacency matrix AŒs;V.m/� defined
as:

aŒs;V.m/�ij D
(
1 if

P
˛2V.m/ aŒs;˛�ij > 0

0 if
P

˛2V.m/ aŒs;˛�ij D 0 :
(9.3)

The purpose of the AP of the layers of a multiplex is to analyze the evolution
of some topological quantities when passing from single layers to the projected
network resulting from merging all the M layers of the multiplex. Thus, the
approach, introduced in [34] to study the European Air Transportation Multiplex,
consists in varying the number of layers contained in the subset V.m/ from m D 1

to m D M. It is important to notice that the AP method (as introduced in [34])
considers, for each value m, the set V.m/ containing all the possible subsets V.m/
comprising m layers. In this way, given a topological quantity x, one evaluates x in
each projected graph GŒs;V.m/� derived from each subset V.m/ contained in V.m/ and
average the values obtained over all the resulting graph. Thus, given m, the average
value of x in V.m/ reads:

hxi.m/ D mŠ.M � m/Š

MŠ

X
V.m/2V.m/

x.GŒs;V.m/�/ : (9.4)

Note that although for m D 1 there are M possible subsets in V.1/, for m D M
there is only 1 subset V.M/, while for a general value m the cardinality of V.M/ can
be extremely large. Thus, the AP technique demands a computationally expensive
statistical treatment to cover all the possible layer combinations included in the sum
of Eq. (9.4) when the number of layers M is large enough.

Here, instead, we get rid off the statistics over the sets V.m/. In particular, based
on the details contained in the dataset, we make use of the information about the
usage of each transportation mode ˛ by each SES s so that, for a certain value of
m, we consider the projected graph GŒs;V.m/� constructed by merging the m most
used transportation modes (layers) by SES s. In this way, for each value of m, V.m/
contains one single subset V.m/ and thus we will denote each projected graph as
GŒs;m� and its associated adjacency matrix as AŒs;m�. Apart from the computational
simplification of this variant of the AP technique, the new path from m D 1 to m D
M informs about how the individuals of a particular SES are benefited by adding
transportation modes to their trips allowing to distinguish between strata displaying
either segregation or selection of modes and those socioeconomic compartments
showing multimodality.
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The topological quantities studied with the AP technique cover traditional
structural measures, used in simple networks, and others that take into account the
layer structure of a multiplex.In particular, for each graph GŒs;m� we will study the
following usual properties:

• The size, S, of the giant component and the number of components, nc. It is
important to note that S is normalized to be 0 � S � 1, so that S D 1 when the
N nodes in the network take part of a unique component. In addition, to compute
nc we have considered that isolated nodes do not constitute a component so that
components contributing to nc are those of size equal or larger than 2.

• The average path length, L. As usual, L is the average length of the shortest paths
among all the couples of nodes in the network. Since the networks under study
are highly disconnected, especially for small values of m, we have adopted the
typical way out to avoid divergences in L, i.e., to consider only the nodes in the
giant component.

• The average degree, hki. Again, in order to compute the average number of
connections of the nodes we have excluded isolated nodes.

• The clustering coefficient, C. As usual, the clustering coefficient shows the
probability that two nodes i and j having a common neighbor l are also connected.
In this case also, isolated nodes do not contribute to clustering.

The above measures are those traditionally used for characterizing simple
(single-layer) networks. However, there also exist measures that are specifically
designed for multiplex networks (see the recent reviews [29, 30]). This is the case of
the Overlap, O. The overlap quantifies the redundancy of links between layers, i.e.,
the fact that a link between two given nodes i and j is present in several layers. In our
multiplex networks the existence of a large overlap would imply a large tendency of
the individuals (belonging to the same SES) to use different means of transportation
for connecting the same urban areas i and j. In the recent years, several overlap
measures have been proposed [37–41]. Here, for a given value of the number of
projected layers m, the overlap of the resulting graph GŒs;m� is measured via two
different quantities, namely:

O1 D W � K

K
; (9.5)

O2 D D

K
; (9.6)

where K is the number of links in the aggregate graph GŒs;m�, W is the total sum of
the links in each of the m layers merged in GŒs;m�, and D is the number of redundant
links in the set of m layers. We can express these quantities, W, K and D, making use
of the adjacency matrices associated to each layer, GŒs;˛�, and that of the projection
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of the m most used layers, GŒs;m�, as:

W D
mX
˛D1

NX
i;jD1

as;˛
ij ; (9.7)

K D
NX

i;jD1
as;m

ij ; (9.8)

D D �

 
mX
˛D1

as;˛
i;j � 2

!
; (9.9)

where, in the last equation,�.z/ is the step function defined as �.z/ D 0 for z < 0
and�.z/ D 1 otherwise.

9.4 Results

In this section, and relying on the AP technique of the MMN, our aim is to unveil
the mobility patterns associated to the use of the transportation modes of each SES
and, moreover, to monitor how the different patterns present in the transportation
layers are combined into their corresponding mobility networks.

We start by studying how the combination of different transportation modes
cover the different urban areas. This view can be explained as a percolation process
driven by the addition of network layers (instead of nodes or links as in the
traditional percolation contexts). To this aim, we focus on the evolution with m of the
size of the giant connected component, S.m/, as well as the evolution for the number
of components nc.m/, and that of average path length of the giant component, L.m/.
In Fig. 9.5, we show these evolutions for each of the 6 SES for the cases of Bogotá
(top) and Medellín (bottom).

The adiabatic evolution of the giant component S.m/ shows that both cities
behave in a similar way so that the different evolution S.m/ for the SES follows
the same hierarchy. In particular, SES 2 and 3 reach to cover almost all the urban
mobility zones of the cities. On the other hand, the coverage of SES 6 in both cities
and also 5 in Bogotá are well below the 50% of the zones. The main difference
between the two cities shows up by looking at the rate S.m/ increases. While for
Medellín the rate of change is very small for all the SES, in Bogotá, SES 1, 2 and 3
need to merge at least two different transportation layers in order to achieve the 80%
of their corresponding coverage. This result is the fingerprint of the segregation of
these poor SES observed combined with the effect of the smaller sample size of
the Bogotá survey (as compared to that of Medellín) that makes difficult to capture
weak connections between urban mobility zones. These fact seems to affect more
poor SES due again to their spatial segregation.
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Fig. 9.5 Adiabatic evolution of the size of the giant component S.m/ (left panels), number of
components nc.m/ (central panels), and average path length L (right panels). The top panels are
for the city of Bogotá, while those in the bottom refer to Medellín. Each curve corresponds to a
different SES. Namely: 1 (�), 2 (�), 3 (N), 4 (H), 5 (�) and 6 (F)

The evolution of the number of components nc.m/, and the average path length
L.m/ in the city of Bogotá further confirms the effects of the segregation of SES 1,
2 and 3. As observed, the initial (m D 1) values of both nc and L are extremely large
and they need to merge at least two transportation modes to reach small values of
nc and L. This is not the case for SES 4, 5 and 6 for which the evolution is far more
smooth. Concerning the final values of L in the city of Bogotá, it is remarkable the
large steady value reached by SES 1 as compared to the rest of the population. Thus,
even if they can cover a large number of zones the trips connecting them associate in
a rather linear way, thus not displaying shortcuts. In its turn, the situation in Medellín
concerning the evolution of nc.m/ is not pretty much like to that of Bogotá. In fact,
in this city the locations of the usual destinations appear to be very clustered, leading
to have a system composed of only one component even for m D 1 for most of the
SES. The evolution of L.m/ instead is more interesting. As in the case of Bogotá,
L decreases with m although in a smoother way [as occurred for the evolution of
S.m/]. Again, it is worth to notice how, as in the case of Bogotá, SES 1 displays a
different behavior from the rest of strata.

Summarizing, both the behavior of S.m/ and L.m/ point out that in both Bogotá
and (more clearly) Medellín the six SES can be regrouped into three mobility
compartments related with their wealth. Namely: low (SES 1), mid-low (SES 2 and
3) , and mid-high (SES 4, 5 and 6) compartments.

In Fig. 9.6, we confirm the above compartmentalization by monitoring the
evolution for the number of different trips from/to each urban area (here represented
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Fig. 9.6 Adiabatic evolution of the number of different destinations reached from a place, hki and
clustering coefficient, C as a function of the number of layers merged together, m. Left panels
display the evolution for the average connectivity hki.m/, while those in the right show that of the
clustering coefficient C.m/. The top panels are for the city of Bogotá, while those in the bottom
refer to Medellín. Each curve corresponds to a different SES. Namely: 1 (�), 2 (�), 3 (N), 4 (H),
5 (�) and 6 (F)

as the average degree hki of the nodes) and the role of the various transportation
modes in the triadic closure phenomenon, here studied via the clustering coefficient
C. The evolution hki vs. m reveals two clearly distinct behaviors. First, for SES 2
and 3 (also 4 in the city of Bogotá) incorporating transportation modes implies to
increase the number of origins/destinations, pointing out the genuine multimodal
character of these individuals who assign different transportation modes depending
on the trip to be performed. On the other hand, for the rest of the SES there is almost
no evolution. However, when looking back to the evolution of S.m/ in Fig. 9.5, it is
easy to notice that the almost steady behavior of hki.m/ for these strata has different
roots. While individuals belonging to SES 5 and 6move from/to a limited amount of
different places [as displayed by the small values of S.m/] using few transportation
modes, due to the aforementioned selection mechanism, SES 1 displays a large
coverage. Thus, for SES 1, the addition of a new transportation layer is mostly
devoted to join pairs of disconnected nodes, and thus not used to increment the
communication power of zones for which a trip already exists.

The particular way of evolution with m displayed by SES 1 is also related to the
large resulting networks [as displayed by L.m/ in Fig. 9.5] and further confirmed
by looking at the evolution of the clustering coefficient, C.m/. In both cities the
values displayed by SES 1 are the smallest of the population and it does not show
any significant change when increasing m. At variance, SES 5 and 6 display the
largest values for the clustering in both cities, thus confirming again that, in these
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Fig. 9.7 Adiabatic evolution of the overlap as a function of the number of layers merged together,
m. Left panels display the evolution for first definition of overlap, O1, Eq. (9.5), while those in the
right show the second one, O2, Eq. (9.6). The top panels are for the city of Bogotá, while those in
the bottom refer to Medellín. Each curve corresponds to a different SES. Namely: 1 (�), 2 (�),
3 (N), 4 (H), 5 (�) and 6 (F)

cases individuals cover a limited and rather fixed number of zones, thus, favoring
the formation of triadic paths in the aggregated graph.

Finally, in Fig. 9.7 we present the evolution for two measures of the overlap
proposed above (see Eqs. 9.5 and 9.6). Interestingly, for the two cities the two
measures present almost the same evolution in terms of the relative growth between
the different SES. Considering the definitions of O1 (that takes into account the total
amount of degeneration of the links) and O2 (that only count once the redundant
links regardless of the number of times they are repeated) it is clear that O1 � O2.
However, the similar trends observed and the small difference in the values attained
by O1 and O2 point out that all of the SES do not tend to accumulate more than
two overlapping links. Concerning the differences in the increase rates of O1 and
O2 between SES we observe that, in both cities, individuals belonging to SES
1 tend to avoid overlapping, in agreement with the way (discussed before) SES
1 tend to increase the size of the giant component. Importantly, for the city of
Bogotá the trends observed in both O1.m/ and O2.m/ seem to reproduce the three
mobility compartments discussed above (1, 2 � 3 and 4 � 5 � 6) for both cities.
However, the results for the city of Medellín are completely in disagreement with
these compartments since, for instance, SES 6 display small overlapping tendency
(being similar to that of SES 1) in contrast to the large tendency of SES 4 and 5.
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9.5 Conclusions

We have presented a dataset about the human mobility in urban areas with two
ingredients of utmost interest: the information about the multimodal nature of
the trips, and the socioeconomic status of the individuals. The first ingredient
has allowed us to tackle the analysis of the mobility patterns using the multiplex
framework, which has attracted many attention lately. On the other hand, the
information about SES provides with a novel ingredient that has been ignored up to
date in the studies about human mobility. Exploiting these two ingredients, the aim
of this chapter has been to describe how the different socioeconomic compartments
make use and combine the different transportation layers.

We have analyzed the mobility multiplex networks of each SES by studying how
different structural descriptors evolve as network layers (the transportation modes)
are merged. This procedure, called adiabatic projection, starts from the network of
the trips performed by means of the most used transportation mode and subsequently
adds the layers corresponding to the other means in descending order of usage.

The main result of our work is the classification of the 6 SES into three
compartments according to their behavior. Namely, in a first group we have SES 1
and 2, the poorest ones, whose behavior is characterized by the segregation, i.e., the
usage of few and cheap transportation modes to cover a large fraction of the urban
areas in a rather sparse way. The second compartment is composed of SES 3 and 4,
having a genuine multimodal pattern and covering almost the total number of urban
zones. Finally, the elite compartment composed of SES 5 and 6, is characterized by
a selection of costly modes for performing the trips that, in their turn, display a very
small coverage in terms of the urban areas reached although the connectivity within
these zones turns to be rather dense.

The unveiled differences in the organization of the mobility multiplex networks
according to SES demands the inclusion of this novel ingredient in the studies about
human mobility and intrinsically related processes. As an example, it would be of
interest to incorporate the presence of socioeconomic differences when studying the
development of contagion processes in urban areas. We hope that our work will
motivate more studies in this direction.
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Chapter 10
The Weak Core and the Structure of Elites
in Social Multiplex Networks

Bernat Corominas-Murtra and Stefan Thurner

Abstract Recent approaches on elite identification highlighted the important role
of intermediaries, by means of a new definition of the core of a multiplex
network, the generalised K-core. This newly introduced core subgraph crucially
incorporates those individuals who, in spite of not being very connected, maintain
the cohesiveness and plasticity of the core. Interestingly, it has been shown that
the performance on elite identification of the generalised K-core is sensibly better
that the standard K-core. Here we go further: Over a multiplex social system,
we isolate the community structure of the generalised K-core and we identify the
weakly connected regions acting as bridges between core communities, ensuring
the cohesiveness and connectivity of the core region. This gluing region is the Weak
core of the multiplex system. We test the suitability of our method on data from the
society of 420,000 players of the Massive Multiplayer Online Game Pardus. Results
show that the generalised K-core displays a clearly identifiable community structure
and that the weak core gluing the core communities shows very low connectivity and
clustering. Nonetheless, despite its low connectivity, the weak core forms a unique,
cohesive structure. In addition, we find that members populating the weak core have
the best scores on social performance, when compared to the other elements of the
generalised K-core. The weak core provides a new angle on understanding the social
structure of elites, highlighting those subgroups of individuals whose role is to glue
different communities in the core.
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10.1 Introduction

Which social network structures within a social system define an elite? Elites
are typically formed from individuals that have the capacity to accumulate large
amounts of wealth, power and influence. The location within the multiplex network
of social interactions enables this small group of people to have significant influence
and control over a large fraction of the population. A crucial feature of elites is that
relations between its members define a highly cohesive network at different levels.
Its defining traits are still under discussion [1–5]. Intuitively, elite structures are
formed by individuals with a large number of ties connecting them to the overall
society and by individuals who, in spite not being highly connected, link the highly
connected ones. The later can be seen as intermediaries [6, 7].

A social system can be fairly described with a multiplex network (MPN)
approach [8–10]. In a multiplex network, nodes interact through different types of
relations or links. In this paradigm, elites have been thought to form a cohesive
region which organises the whole topology of the multiplex system [11]. A few
decades ago, quantitative sociology developed the concept of the K-core to identify
this small subset of highly influencial individuals [12–14]. Generally members of
the K-core tend to be highly connected (hubs). The strong-connectivity requirement
in the definition of the K-core, does not allow to identify the potentially important
intermediaries or connectors. To improve this situation a Generalised K-core was
suggested which includes connectors in the definition of the core of a complex
network [7]. The suitability of this definition was demonstrated in a virtual society
of players of the Massive Multiplayer Online Game (MMOG) Pardus, and was
compared to the classic K-core for the identification of elites. The incorporation
of connectors provides a much richer description of the core.

In this chapter we want to take the next logical step and analyse the substructure
of elites. In particular we will focus on the weakly connected regions of the core,
which provide the ‘glue’ for the different core communities. We expand the concept
of a connector to an abstract structure which keeps the cohesiveness of the core of
the multiplex network. The resulting subgraph we call the weak core, which defines
the region of the core which prevents the core to disintegrate into its potential
subcommunities. Interestingly, the notion of a weak core is independent of the
definition of core and independent of the used community detection method.

We demonstrate our idea with data from the MMOG society of the game Pardus
(http://www.pardus.at) [15], an open-ended online game with a worldwide player
base which currently contains more than 420,000 people. MMOGs have been shown
to be exceptional platforms over which quantitative results about social structures,
dynamics, and organisational rules can be derived [7, 15–21]. In this game players
live in a virtual, futuristic universe where they interact with other players in a
multitude of ways to achieve their self-posed goals. A number of social networks
can be extracted from the Pardus game, so that a dynamical multiplex network of a
human social system can be quantitatively defined. The MPN consists of the time-
varying communication, friendship, trading, enmity, attack, and revenge networks.
Our findings in the virtual Pardus society confirm that indeed the weak core plays

http://www.pardus.at
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a crucial role in keeping the cohesiveness of the core of the multiplex system and
show that members populating this subgraph are characterised by the largest scores
in quantitative social performance indicators. The weak core might be a crucial and
practical step towards the understanding of the internal structures of elites.

The chapter is organised as follows: In Sect. 10.2 we formally define the
multiplex network, in Sect. 10.2 we revisit the concepts of generalised K-core and
the M-core, which will be used as a community structure detector. Section 10.2.2
introduces the concept of the weak core. In Sect. 10.2.2 we discuss and define
criteria to identify relevant levels of core organisation. Section 10.3 presents the
results for the weak core analysis in the Pardus society. In Sect. 10.3 we discuss
topological aspects, and in Sect. 10.3 the social performance indicators of those
individuals in the weak core are compared to those comprising other social groups.
Finally, in Sect. 10.4 we discuss the results.

10.2 Identification of the Weak Core

We introduce the following notation. We use bold letters for the various core sub-
graphs, namely K-core for the usual K-core subgraph, GK-core for the generalised
K-core, M-core for the M-core and MGK for the M-core of a generalised K-core. In
general, we will use the word core to refer to the GK-core.

A multiplex system M is made of � layers, which represent different types of
interactions or relations among the same set of nodes. Nodes are usually people; for
the multiplex we write

M D M.G1; : : : ;G�/: (10.1)

Levels or layers of the multiplex are indexes by greek letters. Figure 10.1 gives a
schematic picture of the multiplex and the procedure described in the following.

Intersection of Levels in a Multiplex System

Each layer of the multiplex can be seen as a network G˛.V;E˛/ whose set of nodes
V is shared with the other layers G1; : : : ;G� and whose set of links E˛ describes the
particular connections that occur at level ˛. The number of nodes of the multiplex
system will be denoted by jVj and the number of links of a given level ˛, jE˛j. The
empty graph, the graph with no nodes and no links, will be depicted by the symbol
fg. The intersection graph G\ is defined as

G\ D
\
˛��

G˛; (10.2)
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Fig. 10.1 A given multiplex system is composed by three layers, G1;G2 and G3 (a). Extracting the
weak core (b): First, compute the intersection among the layers, G\, then compute the GK -core
of G\, namely GK.G\/, depicted as the red region containing both grey and white components.
After that we extract the M-core of the GK -core (M D 2) thereby obtaining the subgraph
MGK.G\/, whose components are shown as white regions at the core. These three regions depict
the communities defined through a high degree of clustering; we call them the core communities.
The weak core of G, WK.G/ (grey region), is the subgraph formed by all links and nodes that start
in one of the core communities and end in another core community (grey region). No links between
members of the same core community are allowed in WK.G/. In (c) we show some examples of
potential structures forming the WK.G/-core. We differentiated the nodes belonging to MGK.G\/

(black) and to GK.G\/ n MGK.G\/ (white), to emphasise the hybrid, glue-like character of the
weak core

where the intersection symbol means

\
˛��

G˛  G.V\;
\
˛��

E˛/: (10.3)

Here V\ is the set of nodes which are at the endpoint of at least to one link
in
T
˛�� E˛. Nodes that become isolated after the intersection operation are not

considered for any of the computations involving G\. Note that the more levels the
multiplex has, the more probable is that jVj > jV\j. One can of course intersect
only specific layers of the multiplex. For the intersection of layers ˛1; : : : ; ˛k we
write for the intersection graph

G˛1;:::;˛k\ D
\

˛1;:::;˛k

G˛k :

Links in a given intersection graph are referred to as multi-links [22]. In G˛1;:::;˛k\ ,
two nodes are linked if they are linked in layers ˛1; : : : ; ˛k. Links in G\ depict
pairs of nodes which are connected through all the possible relations that define the
multiplex – see Fig. 10.1a,b.
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The GK-Core and Its Community Structure

10.2.1 The GK-Core

In the following we work with an intersection graph with layers that are considered
relevant, for which we write G\. We then compute its generalised K-core, GK-core,
which is defined as the maximal induced subgraph for which each node has either
a degree equal or larger than K, or it connects two nodes whose degree is equal
or larger than K. Recall that, as for the K-core, the connectivity requirements must
be satisfied inside the subgraph, so that a recursive algorithm must be used. The
algorithm may work as follows: Starting with graph G we remove all nodes vi 2 G
satisfying that: (1) its degree is lower than K and (2) at most one of its nearest
neighbours has degree equal or higher than K. We iteratively apply this operation
over G until no nodes can be pruned, either because the derived subgraph is empty,
or because all nodes which survived the iterative pruning mechanism cannot be
removed following the above instructions. The graph obtained after this process
is the generalised K-core subgraph, referred to as GK-core. The inclusion of the
connectors in the definition of the GK-core makes it a richer topological object. It
has been shown that GK is better suited for the identification of the elite in a social
system than the standard K � core [7].

10.2.2 The M-Core and the Community Structure in the Core

The GK-core can have internal structure itself around core communities. We assume
that core communities are formed by regions of the core which are highly clustered.
The identification of highly clustered regions is performed by means of the M-core
[23]. Given a graph G, the M-core of this graph, M.G/, is defined as the maximal
induced subgraph of G, in which each link participates in at least M triangles. The
M-core highlights the role of triadic-closure within social dynamics, a process that
seems to be a major driving force in social network formation [9, 24–27]. In our
case we will use it to identify the clustered regions of GK.G\/, which we denote
by MGK.G\/. Larger and lower values of M will identify more or less clustered
regions in the core, respectively. The different connected components of MGK.G\/
are the core communities.

Finally, we point out that the identified communities will in general not contain
all the links associated with the core; also some nodes may be removed in the
process. Formally this means that GK.G\/ n MGK.G\/ ¤ fg. This property will
be relevant for the computation of the Weak core.
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The Weak Core and the Minimal Weak Core

The Weak core is the subgraph of the core in which all nodes and links participate
in a path that goes from one core community to another, without crossing any of
such communities. The weak core, thus, ensures the cohesiveness of the core of the
network, acting as a gluing structure between core communities.

We put the above informal statement in a more formal way, assuming the
definitions of core and core community based upon the GK-core and M-core,
respectively. Let us assume that the core defined by GK.G\/ contains a single
connected component and that the MGK.G\/ identifies several core communities
C1;C2; : : : ;Cm – which are, as we said above, the connected components of the
MGK-core. The weak core of a multiplex graph, WK.G\/, is formed by all links
and nodes of GK.G\/ that participate in a path that starts at some node vk 2 Ci

and ends at some v` 2 Cj, where Ci and Cj are different components of MGK.G\/,
with the constraint that all nodes in the paths but vk and v`, if any, must belong to
GK.G\/nMGK.G\/ – see Fig. 10.1b,c. The Weak core of a multiplex network is thus
the region of the core of the intersection network which ensures the cohesiveness of
the core. By definition the weak core itself is a weakly clustered region of the core,
and its nodes may be among the least connected nodes of the core. In Fig. 10.1b,c
we schematically show how such subgraphs can be derived.

We additionally define the minimal weak core, QWK , as those links and nodes
participating in all minimal paths from one component to an other in MGK.G\/. If
there are two (or more) paths of WK that connect vk 2 Ci and vj 2 Cx, where x ¤ i,
we take the shortest. In case two or more paths that connect such two nodes have the
minimal length, we choose one at random. Note that by construction, if WK ¤ fg,
then:

WK.G\/ \ MGK.G\/ ¤ fg and

QWK.G\/ \ MGK.G\/ ¤ fg:

The concept of the weak core is not tied to a particular definition of the core or a core
community. One can define the core of a network in any suitable way (for example
using the K-core). If it is possible to identify more than one community inside
this core (using any method of community detection) the weak core is the region
(links and nodes) that glues the communities. The reason by which we suggest the
combination of the GK-core and the MK-core is that the first has been shown to
perform better in identifying relevant levels of core organisation (especially in social
systems) than the classical K-core, and because the M-core captures clustering. It
may happen that the WK-core is composed of a set of links that connect different
components of the MGK.G\/, thereby indicating that all nodes in GK.G\/ are in
MGK.G\/, and that the M-core extraction only removed a few links. Finally, we
say the Weak core is empty if the application of the M-core does not identify the
communities within the GK-core.
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Identifying Relevant Levels of Core Organisation

Which value of K should be used to compute the GK-core such that the weak core
reveals significant topological information of the organisation of the multiplex?
Informally speaking, if the MGK-core identifies a very large community and a set
of other small communities, the role of the weak core will be less relevant than in
the case where the communities, even eventually lower in number, have comparable
size. The more uniform the size of the core communities, the more relevant are the
level(s) for the core organisation.

To identify such level(s), we compute the MGK.G\/ for all values of K by which
MGK.G\/ ¤ fg. For each of this levels, we proceed as follows: Let C1;C2; : : : ;Cm

be the m core communities of the GK-core, glued in this latter subgraph by means
of the Weak core WK.G\/. Let jCij be the number of nodes of the component Mi

and let us define the probability that a randomly chosen node from MGK.G\/ is in
the component Cj

p.Cj/ D jCjjP
i�m jCij :

We then compute the corresponding Shannon entropy

H.MGK/ D �
X
i�m

p.Ci/ log p.Ci/: (10.4)

The more uniform is the size distribution of the core communities, the larger will
the entropy be. This enables us to compare different core community structures with
the same number of components but with different community distribution sizes. For
example, one can compare the situations where the WK-core glues two components
of sizes 10 and 100, or 50 and 50. The role of the Weak core will be much more
relevant within the core organisation in the second case than in the first one, and this
is identified by the above entropy. To correct for size effects, we use the normalised
Shannon entropy

h.MGK/ D H.MGK/

log m
: (10.5)

The most relevant level of core organisation, K?, if there exists any, will be located
at the level K for which

h.MGK/ D max
K

fh.MGK/g: (10.6)

If such a level exists, this will define the optimal value of K with which the weak
core will be computed.
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Concerning the choice of M, in the computation of the MGK-core, we use the
following observation: If a given core does not break at low values of M, this
means that the core is highly clustered and highly cohesive. In terms of the core
organisation, the role of the community structure (if any) will be less significant.
We therefore choose M as the minimum value that breaks the GK-core. Generally
we will consider M > 1, since values of M D 1 can only isolate regions with low
clustering and can not capture the idea of cohesive community. One can use other
levels of M to gain a better insight in the core structure of the graph.

10.3 Results

We demonstrate the feasibility and quality of identifying the ‘connector regions’
within the core of multiplex social systems with data from a social multiplex
network of social interactions occurring in the virtual society of the Pardus computer
game. The multiplex network is composed of cooperative interactions friendship
(F), communication (C) and trade (T). Our social system is therefore given by
the MPN M.t/ D M.V;EF � EC � ET ; t/, where EF;EC and ET are the sets
of links defining a friendship relation, a communication event, or a commercial
relation, respectively. Our analysis is performed on the three networks GF;GC and
GT obtained from the most active players in two time windows of 60 days in length,
t1 D 796–856 and t2 D 1140–1200. The time units here are days since beginning
of the game. A link between two players in layer GF exists if at least one player
recognises the other as a ‘friend’ within a time window. A link between two players
in layer GC exists if at least one player has sent a message to the other, and a link
between two players in GT means that there has taken place at least one commercial
transaction between the players in the time window. The set of players that defines
the set V of the MPN obtained from the period 796–856 contains 2422 players, and
2059 players for the period 1140–1200. Inactive players are removed from the MPN
which leaves us with about 2000�2500 players. Following Eq. (10.3) and with these
players we construct,

G\ D GF

\
GC

\
GT :

We drop the time label T indicating the time window. All results are presented for
G\. Single layer analysis or even intersections of two layers show much more noisy
and unclear trends. G\ allows us to use the multiplex structure to reduce noise.
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Topological Indicators

In Fig. 10.2 we show the normalised entropy h.MGK/, Eq. (10.6), as a function of
K for both time windows in (a) and (b), respectively. The value of h.MGK/ remains
almost constant with a slight increase before it abruptly jumps to zero. This constant
plateau – see Fig. 10.2a,b – is observed regardless if the number communities in the
core of the network – see Fig. 10.2c,d. It is true even the number of communities
has significant variations – see Fig. 10.2c,d. The number of communities shows
a decreasing trend until only one community is identified, provoking the collapse
of h.MGK/ to zero. Note that the collapse occurs just after the value of K at
which the communities of the core have comparable size. If only a single layer
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Fig. 10.2 Evolution of the relevance parameter h.MGK/ as a function of K for the two periods
under study; 796–856 (a) and 1140–1200 (b). In both periods we observe a remarkably constant
behaviour with a slightly increasing trend followed by an abrupt decay. The larger is h.MGK/, the
more relevant are the weak structures keeping the core connected. In (c) and (d) we plot the raw
number of core communities of the cores of the two periods under study against K. We observe
that such number decreases over time, although the increase on h.MGK/ tells us that the breaking
is more and more uniform as long as K increases, in terms of community sizes. Finally, the abrupt
decay in h.MGK/ coincides with the fact that only one core community is identified, which occurs
at deep levels of the core organisation. The K level in which the WK -core is computed is the
one displaying the maximum h.MGK/. In the first period, (a), the GK -core is already broken at
the levels showing the maximum normalised entropy (K D 14; 15), we thus choose the largest
h.MGK/ by which the GK -core is not broken, K D 13
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of the multiplex system is used, the situation is less well pronounced than the case
shown in Fig. 10.2a,b. Relevant levels identified using the procedure described in
Sect. 10.2.2 are found for K D 14 for the first period, 796–856 days, and K D 13

for the second, 1140–1200 days. Although for the first period h.MGK/ is higher for
K D 15 and 16, at these stages the GK-core is already broken into two components,
whereas at K D 14 it still contains one single component, as required by the
proposed method.

To compute the MGK-core we set M D 2. The MGK-core detects three highly
clustered communities of comparable size in both periods, containing 68% and
61% of all nodes of the GK-core in the first and second time period, respectively.
These communities show a high clustering coefficient c 	 0:6�0:7 (clustering of the
GK-cores is 	0.5), and an average degree of around hki 	 7, which is similar to the
average degree of the GK-cores in both periods. The relative sizes of the identified
weak cores in relation to the respective GK-cores are 0:27 and 0:28 for the first and
second periods, respectively. The WK-core is formed by a weakly connected region
exhibiting less than 1=2 of the average degree of the GK-core, hkiW D 3:0 and
hkiGK D 7:0, and hkiW D 2:9 and hkiGK D 6:8 in two periods, respectively. As
expected the clustering is almost vanishing around c 	 0:07 in both periods.

The most surprising topological property of the observed weak cores is that, in
spite their low connectivity and their role as connector regions, they define a single
connected component in both time periods. This reveals that the WK-core plays an
important functional role in the underlying organisation of the network. We find
that in both time periods QWK � WK . This means that the raw WK-core is quite
optimal in the sense that a few redundant paths connecting the communities of the
GK-core are identified. This confirms the property of the identified weak core as a
true minimal gluing region that keeps the cohesiveness of the core of the multiplex
network.

Social Performance Indicators

Social indicators and social performance measures of those players that populate the
weak core show interesting and unexpected results. These indicators are: Experience
is a numerical indicator accounting for the experience of the player, related to battles
in which the player has participated, or the number monsters he/she killed. Activity
is a numerical indicator related to the number and complexity of actions performed
by the player. Age is the number of days after the player joined the game. Finally,
wealth is a numerical indicator accounting for the wealth of the player within the
game at any point in time. Wealth accounts for money and the cumulative value of
a payers’s equipment within the game. We list the average experience level, activity
level, age and wealth of those nodes in Table 10.1.

The most salient observation is that for almost all indicators in the two periods
under study, those nodes that compose the weak core have the highest social
scores when compared to nodes composing the core, its clustered communities,
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Table 10.1 Table with the
social indicators of the
different subgraphs of G\

corresponding to periods
t1 D 796–856 and
t2 D 1140–1200. Note that
for the first period,
QWK D WK

Subgraph hExperiencei hActivityi hWealthi hAgei
t1
GK 4:9� 105 3:63� 106 5� 107 677

MGK 4:77 � 105 3:62� 106 4:88� 107 668

WK 6:01 � 105 4:11 � 106 5:18 � 107 732
QWK 6:01 � 105 4:11 � 106 5:18 � 107 732

t2
GK 7:72 � 105 5:69� 106 9:84� 107 1020

MGK 8:58 � 105 6:14� 106 1:13 � 108 1060

WK 1:02 � 106 6:3� 106 9:85� 107 1030
QWK 1:03 � 106 6:38 � 106 1:04� 108 1070

or the average player. Even the communities of the core are defined by a strong
connectivity pattern, which does not guarantee the best performance in social
indicators. This tells us that being located between different core communities leads
to superior social performance. We find one exception where the wealth in the
second period is higher for the core communities. In addition, one finds that the
age of the players populating the weak core is sensibly larger than the average age
of the core and, in particular, larger than the average age of the core communities. In
Table 10.1 we collect the results, highlighting the best scores. We finally note that in
the second period the MGK-core is already broken into three components C1;C2;C3
for M D 1. Remarkably, the weak core is formed only by two links, that connect C1
with C2, and C1 with C3. This identifies what one could call supercritical links at
the core of the multiplex society.

10.4 Discussion

In this chapter we described a new type of subgraph, the weak core, which belongs
to the family of core subgraphs. The latter include the clique subgraphs [28], the
Rich club [29], the standard K-core [12–14], and the generalised K-core [7] as
well as other approaches [30, 31]. The interest of this weak core arises since it
captures a property that is essential for the identification of elite structure in social
systems: The ability of the high social performers to maintain ties to the various
core communities that organise the whole topology of the system from its core. The
core of the multiplex network, defined as the generalised K-core of the intersection
network from all layers in the MPN provides a rich structure in which one can
identify core communities. In our case, we identified the community structure of the
core of the MPN through the application of the M-core. In doing so, we consider
that core communities are defined by those regions of the core which depict a
highly clustered structure. In a totally opposite way, the weak core is comprised
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of regions of the core that are neither highly connected nor well clustered. This
region’s primary role is to keep the cohesiveness of the core.

The weak core identifies those individuals performing best in the virtual society.
In previous studies, it has been shown that there is a direct relation between the
degree of the player and its performance [21]. However, our findings indicate that
nodes that are high social performers, well connected and part of a core group, need
ties to other communities in the core. The weak core suggests a deeper structure of
elites in social systems, and includes what seems to be a crucial for elite members:
the ability to maintain ties beyond the community they belong to. Moreover, some
members of the weak core may not belong to any core community and their role
within the core organisation is purely devoted to keep the cohesive nature of it. This
role as topological hinge between core communities may lead this particular class
of players to an increase of their social performance.

The presented methodology is not tied to the particular definitions of the core
or core community. Further works should stress the functional role of these weakly
connected regions at the core of multiplex systems. In addition, the notion of weak
core could be applied to other fields where this type of brokerage structure may
play an important role in organising networks, such as in neurology or biological
networks.
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Chapter 11
Interbank Markets and Multiplex Networks:
Centrality Measures and Statistical Null Models

Leonardo Bargigli, Giovanni di Iasio, Luigi Infante, Fabrizio Lillo,
and Federico Pierobon

Abstract The interbank market is considered one of the most important channels of
financial contagion. Its network representation, where banks and claims/obligations
are represented by nodes and links (respectively), has received a lot of attention
in the recent theoretical and empirical literature, for assessing systemic risk and
identifying systemically important financial institutions. Different types of links,
for example in terms of maturity and collateralization of the claim/obligation, can
be established between financial institutions. Therefore a natural representation of
the interbank structure which takes into account more features of the market, is
a multiplex, where each layer is associated with a type of link. In this paper we
review the empirical structure of the multiplex and the theoretical consequences of
this representation. We also investigate the betweenness and eigenvector centrality
of a bank in the network, comparing its centrality properties across different layers
and with Maximum Entropy null models.

11.1 Introduction

Partly as a consequence of the crisis burst after the Lehman event in late 2008,
financial networks are gaining popularity across policymakers, regulators and
academics interested in systemic risk analysis. Networks are useful and natural tools
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to identify critical financial institutions as well as to understand how distress could
propagate within the financial system.1 The type of financial network considered
in this paper is the one of direct exposures between financial institutions, which
include credit relations, derivatives transactions, cross-ownerships, etc.

Interlinkages between any two financial institutions are more complex than the
information that can be summarized in a single number (the weight of the link)
and a direction, such as in a directed and weighted network. This is due to the fact
that between two institutions there exists a multiplicity of linkages, each of them
related to one class of claims/obligations. The interplay between different types of
relations could be relevant for systemic risk analysis. In the network jargon, such a
situation is best modeled with a multiplex network or simply multiplex. A multiplex
is made up of several “layers”, each of them composed by all relations of the same
type and modeled with a simple (possibly weighted and directed) network. Since
the nodes in each layer are the same, the multiplex can be visualized as a stack
of networks or equivalently by a network where different types of links can coexist
between two nodes, each type corresponding to a layer. Figure 11.1 shows a stylized
representation of the interbank multiplex, where three layers are explicitly shown,
together with the aggregated interbank network.

The study of financial multiplex is still at its infancy [5, 29]. This chapter
builds on the analysis performed recently by the authors on the Italian Interbank
Market (IIN) (see Ref. [5]). Taking advantage of a unique dataset collected by Banca
d’Italia, Bargigli et al. [5] analyze in detail the evolution of the multiplex during the
crisis (2008–2012).2

In this chapter, after a brief description of the Bargigli et al. [5] main findings
on the multiplex representation of the interbank market, we add on a novel result
by investigating an important network property, previously not considered, namely
the network centrality of the banks. Node centrality is critical to identify the most
important nodes in the network architecture. There are several different definitions
of centrality, depending on the meaning given to the word “important” above. Here
we shall consider betweenness centrality and eigenvector centrality, two widespread
centrality metrics. Our main research questions can be summarized as follows: (i)
Given a centrality measure of a node, how much is it correlated with the degree
and the strength of the node? Is this correlation layer specific? (ii) Is the centrality
(absolute or rank) of a bank approximately the same in each layer? Are there banks
which are central in some layers but essentially peripheral in the others? (iii) How
much can the centrality of a node be explained by a statistical null model that

1See for instance [1, 2, 6, 7, 9, 11–13, 18, 19, 21–24, 27, 31]
2Bargigli et al. [5] compare the topological properties of each layer, study the similarity between
layers, i.e. how much one can learn from a layer knowing another one, and use a Maximum Entropy
approach to investigate which high order topological properties of each layer can be explained by
the statistical properties of degree and strength. In other words, the paper investigates how much the
huge heterogeneity in degree and strength observed in interbank markets significantly constrains
(e.g. for the assortativity) or is a sufficient statistics (e.g. for the core-periphery structure) other
topological properties studied in the recent interbank network literature.
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Fig. 11.1 Stylized
representation of the
multiplex structure of the
interbank market. Each node
is a bank, and links represent
credit relations. A layer is the
set of all credit relations of
the same type. The network in
red is the total interbank
market, obtained by
aggregating all the layers

preserves nodes’ degree and strength? Is the centrality ranking mostly determined
by the degree (or strength) ranking?

The chapter is organized as follows. In Sect. 11.2 we present the dataset and
we introduce the construction of our multiplex. In Sect. 11.3 we review the main
findings of Bargigli et al. [5] about the Italian Interbank Network. Section 11.4
introduces several types of centrality metrics and presents our results, both on the
investigation of the centrality property of a bank in each layer and on the comparison
with Maximum Entropy null models. Section 11.5 concludes.

11.2 Data Description

We investigate a unique database of interbank transactions based on the supervisory
reports transmitted to Banca d’Italia by all institutions operating in Italy (see Ref. [5]
for details). We focus only on domestic links, i.e. transactions between Italian banks.
Information refers to end-of-year outstanding balances at the end of 2008, 2009,
2010, 2011, and 2012. This was a particularly delicate period for the Italian banking
system because of the concurrent sovereign debt crisis hardly hitting the Euro zone
and Italy in particular. Most banks operate in Italy through a large set of subsidiaries.
Distinguishing between intragroup and intergroup transactions is therefore crucial.
Since interbank lending and borrowing decisions are normally taken at the parent
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company level, we assume that the relevant economic agents of the network lie at
the group level. We thus focus on data on intergroup transactions consolidated at
the group level. As shown in [5] this consolidation has a dramatic effect on the
volumes and the network structure. In fact, in the investigated dataset and period the
intragroup lending accounts for a fraction of the total volume ranging between 78 %
and 89 %.

We represent the interbank market as a weighted and directed network, where
a set of nodes (banks) are linked to each other through different types of financial
instruments (edges). The direction of the link goes from the bank i having a claim
to the bank j , and the weight is the amount (in millions of Euros) of liabilities of j
towards i.

One specificity of our database is the availability of other information on the
interbank transactions, namely the maturity and the presence of a collateral. As
in [5] we use this information to build a multiplex representation of the interbank
network, where each layer describes the network of a specific type of credit relation.
Specifically, in terms of maturity we consider

• Overnight (OVN) transactions
• Short term (ST) transactions, namely those with maturity up to 12 months

excluding overnight
• Long term (LT) transactions, namely those with maturity of more that 12 months

Considering collateralization we distinguish

• Unsecured (U) loans, i.e. without collateral
• Secured (S) loans, i.e. with collateral

Thus, for example, the symbol U ST stands for unsecured short term contracts.
We have in total five possible combinations, since there are no secured overnight
transactions. It is important to stress that our data on secured transactions only refer
to OTC contracts, while secured transactions taking place on regulated markets and
centrally cleared are not included in our database.

11.3 The Multiplex Structure of the Italian Interbank
Market

In Ref. [5] Bargigli et al. presented one of the first in-depth analyses of the multiplex
structure of an interbank market, investigating in particular the Italian market.
Here we summarize our main findings. The first important observation is that the
interbank market is dominated (in volume) by intragroup lending. To give an idea,
in 2012 almost 78% of the volume of the Italian interbank market was traded
between two banks belonging to the same group, while only 22% was intergroup
lending. Since intergroup lending is the main channel of systemic risk propagation,
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in Ref. [5] and here we aggregate banks belonging to the same group and consider
the network of banking groups.

When we consider the volume in the different layers, we observed that in 2012
the layer with the largest activity was U LT with roughly 41%, followed by OVN
with 28% and U ST with 18%. The two layers describing secured transactions have
small volumes, namely 9% and 2% in the S ST and S LT, respectively. This is
mostly due to the fact that today the majority of collateralized trades are operated
through Central Counterparties (CCPs) and these trades are not included in our
dataset. We found that the three unsecured layers are composed by many nodes,
while the two secured ones are much smaller. In 2012 the Italian multiplex had
533 banks, and almost all of them were active in the three unsecured layers. In all
layers there is a strong correlation between the degree of a node (i.e. the number
of counterparts) and its strength (the total volume lent or borrowed). The Spearman
correlation between these two quantities ranges between 0:49 and 0:94. Moreover
degree and strength are also very correlated (>0.5) with bank size (as measured by
the total asset). This means that the size of a bank is an important determinant of the
amount traded in the interbank market and of the number of counterparts.

In Ref. [5] we also compared the topology of each layer individually. All the
layers display a scale free property, i.e. the degree distribution has a power law tail
characterized by a tail exponent between 1:8 and 3:5. This indicates a very strong
heterogeneity of the system, with few important hubs and many low-degree nodes.
Each layer has a small diameter, it is strongly reciprocal, and has a large clustering
coefficient. Finally, it presents a disassortative mixing and has a clear core periphery
structure. Below we will discuss the relevance of these two related last findings.

The multiplex structure of the system raises immediately the question of the
similarity between layers, not in terms of their generic statistical properties, but
on a link-by-link basis. In other words, in Ref. [5] we investigated how much the
presence of a link between two banks in a layer is predictive of the presence of a
link between the same two banks in the other layers. Interestingly, the answer is that
layers are quite different one from each other, and the knowledge of the links in
one layer gives little information about the presence of links in the other layers. On
average across pairs of layers, the similarity, as measured by the Jaccard similarity,
was roughly 17% in 2012. This means that by observing a link in a layer, one can
predict that the link exists in another layer only in 17% of the cases. This low level
of similarity, combined with the high level of similarity between the same layer in
consecutive years (roughly 70%), indicates that banks diversify their counterparts
across different layers, but maintain stable relationships with the same counterparts
in a given layer across the years. From a systemic risk point of view, the dissimilarity
between layers tells us that the propagation of contagion can be significantly faster
when one considers the multiplex structure, as compared with the contagion in
individual layers. In fact, simple diffusion models on multiplex networks [20] show
that diffusion can be very fast when the layers are “orthogonal” one another. In the
second part of this paper we will consider a related question, namely how much the
centrality measures of a node are specific of a layer or whether different nodes are
the most central in different layers.
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Finally, Bargigli et al. [5] compare the properties of the real multiplex network
with those obtained under statistical null models, specifically with Maximum
Entropy models (see Sect. 11.4 below). The Maximum Entropy principle allows to
build explicitly probability distributions of graphs, which are maximally random
and satisfy some given constraints. In particular we constrained the ensembles to
have, on average, the same degree and/or strength sequence as the real network. This
choice corresponds to the (weighted) configuration model. The aim of this analysis
is to discriminate which high order properties of the real interbank networks are
a mere consequence of the heterogeneity of degrees (or strengths) and which are
instead genuinely new properties. We focused on disassortativity, reciprocity, and
the presence of triadic motifs and we discussed which of these properties can be
reproduced by the null model. To give a specific, yet important, example of the
application of Maximum Entropy null models to interbank networks, we discuss
briefly the case of the core-periphery structure.

Recently there has been an increasing interest toward the core-periphery structure
of the interbank network [14, 17]. The core is defined as a subset of nodes which
are maximally connected with other core members, while the periphery is the
complementary subset made of nodes with no reciprocal connections but only with
connections to the core [10]. Recently, Craig and von Peter [14] defined a tiering
model in which core members without links with the periphery are penalized.
Despite the fact that the two definitions of core-periphery are different, because
of the different objective function, in Ref. [5] we found that the two models are
highly correlated, i.e. the identified cores are essentially the same. The key question
now is whether core-periphery is a genuine property of the interbank network or if
it can be explained by the strong heterogeneity of degree. To this end in Ref. [5]
we generated random samples from the Maximum Entropy ensemble where we
fix either the average degree or the average weight of each node. By comparing
the core-periphery subdivision in the real network or in the random samples, we
conclude that they are very similar to each other.3 Thus core-periphery subdivision
(at least by using the aforementioned definitions) is a consequence of the large
heterogeneity of degree. Since, as mentioned above, degree and bank size are
strongly correlated, we conclude that in great part core-periphery structure is a
consequence of the existence of large and small banks.

11.4 Centrality Measures

Centrality is a key concept of network theory, originally developed in social network
analysis and rapidly developed to other types of networks. Broadly speaking, the
centrality of a node (or of an edge) of a network is a measure of its importance,

3It is worth noticing that this can also be explained by using the result of Ref. [26], showing
analytically that the subdivision in core and periphery according to the definition of Borgatti and
Everett [10] is entirely determined by the degree sequence.
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measuring, for example, how influential is a person in a social network, how critical
is an element in an infrastructure network, what is the disease spreading capacity
of an individual, etc. Despite being an important concept, the loose definition given
above leads to several different proposed centrality measures, each of them able
to capture some specific aspects of the concept of centrality. The review of all the
centrality measures is beyond the scope of this chapter. Below we will discuss three
measures of node centrality we are going to use in the analysis of the different layers
of the IIN.

Degree centrality Degree of a node is an obvious measure of centrality. A large
number of links, in fact, is a symptom of the fact that the node is important for the
connection of all the nodes which are linked to it. It is a local measure, i.e. it does
not take into account the whole network, but only the local neighborhood of the
node. Thus, while for small networks degree is a sensible centrality measure, for
large networks it can miss important global characteristics of the importance of the
node.

Betweenness centrality One of the most popular global centrality measures is the
betweenness centrality (often shortened as betweenness hereafter). It quantifies how
frequently a node acts as a bridge along the shortest path between two other nodes.
More formally, betweenness centrality of a node v is computed in the following
way: for each pair of vertices .i; j/ one identifies the Nij shortest paths between them
and computes the number Nij.v/ of them that pass through v. The betweenness of
node v is

CB.v/ D 1

.n � 1/.n � 2/

X
i;j¤v

Nij.v/

Nij
; (11.1)

i.e. the average fraction of shortest paths passing through v, where the average is
taken across all the pairs of vertices. The number of nodes in the network is n and the
normalization factor in Eq. (11.1), and used in this paper, holds for directed graphs.
Intuitively CB.v/measures how frequently a shortest path between two nodes passes
through a given node.

Eigenvector centrality Eigenvector centrality is defined in terms of the adjacency
matrix A D faijg, where aij can be either a binary or a non negative real value
(weighted matrix). The vector x D .x1; : : : :; xn/

0, containing the eigenvector
centrality xi of node i, satisfies

Ax D �maxx; (11.2)

i.e. it is a right eigenvector of the adjacency matrix corresponding to the maximal
eigenvalue �max. Interpreting the network as a representation of a Markov chain
with n states and transition probabilities proportional to the weights of the links
connecting two nodes (states), it can be seen that the vector x is the stationary
probability distribution of the chain. Interestingly the eigenvector centrality is
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related to Google’s PageRank algorithm. In the context of systemic risk, it has been
recently modified to define DebtRank [8] for measuring the centrality of the network
of mutual exposures, and BankRank [15] for measuring the centrality of the bipartite
network of banks and assets. In the present paper we will use the original definition
of eigenvector centrality of Eq. (11.2).

Centrality Measures in the Interbank Multiplex

The aim of this subsection is to compare the centrality measures in different layers
of the interbank network. The comparison of the degree of a bank in different layers
has been investigated in depth in Ref. [5], also with respect to null models that
preserve the degree in average (configuration model). For this reason in the paper
we will consider mostly betweenness and eigenvector centrality.

As a preliminary analysis, Fig. 11.2 shows the distribution of betweenness in two
important layers, overnight and unsecured medium term in 2012 (similar results are
obtained for the other investigated years). The distribution is well fitted by a power
law function with a tail exponent between 1:5 and 2. This fat tail behavior shows that
there is a large heterogeneity of the betweenness centrality among the banks in all
layers. In part this heterogeneity in the value of the betweenness is due to the scale
free behavior of the layers. In fact, as shown in Ref. [5], the degree distribution of
each layer is well Fit by a power law tail and the estimated values of the tail exponent
are remarkably stable across layers and over time, ranging in Œ1:8; 3:5� and mostly
concentrated around 2:3.

The relation between degree and betweenness of the banks in the overnight of
the Italian Interbank Networks is shown in Fig. 11.3 (top panels), while the bottom
panels show the relation between strength and betweenness. To have a numerical

Fig. 11.2 Complementary cumulative distribution function of betweenness in (a) the unsecured
overnight layer, and (b) in the unsecured long term layer in 2012. The plot is in double logarithmic
scale and the green line is the best fit with a power law function. The tail exponent ˛ is reported in
the panels
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Fig. 11.3 Scatter plot of the betweenness and different nodes properties, namely (a) out-degree,
(b) in-degree, (c) out-strength, and (d) in-strength. Each point is a bank group. The values of � and
�s are the Pearson and the Spearman correlation, respectively. Data refer to the unsecured overnight
layer in 2012

value to quantify the dependence between the two variables, in each figure we
report both the value of the Pearson correlation and the value of the Spearman rank
correlation. It is worth noticing that in general the former is significantly larger than
the latter. This is due to the strong correlation in the right tail of the two variables
(i.e. for large and very connected banks). The top panels show that banks with large
in- (or out-) degree are also the nodes with high betweenness centrality. The same
holds when one considers the in- or out-strength (bottom panels), even if in this case
this strong relation is evident only for a smaller interval of large values of strength.

This analysis shows that large (and/or more interconnected) banks are also
typically those more central (as measured by the betweenness).4 Thus, at least
in the Italian Interbank Market, it is hard to discriminate between too big to fail
and too interconnected to fail. Considering medium and small sized banks, the
relation between centrality and degree and especially size becomes significantly
noisier, and by looking at Fig. 11.3, it is possible to identify banks with moderate

4As mentioned in Sect. 11.3, Ref. [5] shows that nodes’ properties (degree and strength) turn out
to be correlated with balance sheet data of banks, in particular with the total assets.



188 L. Bargigli et al.

strength but significant centrality. These institutions are likely playing a central role
in intermediation in the considered layer or connecting subsets of banks which are
only weakly connected.

We then investigate whether banks which are central in a given layer are also
central in other layers. This is important because gives insight on the degree of
specialization of some banks as intermediary for some type of credit. To answer
this question we compute centrality measure in different layers and compare the
values (or the ranking). We remind that the number of banks active in the different
layers is different [5]. For example, in 2012, out of the 533 banks active in the
interbank market, 532 had credit relations in the overnight market, 521 were active
in the unsecured short term, 450 in the unsecured long term, and 45 in the secured
short term. In order to compare layers with different number of nodes, we computed
the centrality measures in the whole layer (i.e. including all the banks active in the
layer), but we compared the centrality measures only within the subset of banks
which were active in both layers. Therefore, when considering rankings, it should
be kept in mind that these are not absolute rankings, but only rankings among the
banks considered in the intersection.

Figure 11.4 shows the scatter plot of the betweenness in the overnight market
either versus the betweenness in the unsecured long term (left panel) or versus the
betweenness in the unsecured long term (right panel) market. In the figure we also
report the value of the Pearson and Spearman correlation and, as explained above,
the former is typically much higher of the latter due to the high correlation on the
top left part of the scatter plot.

Comparing the short term and overnight layers (left panel), it is evident that top
central nodes in one layer are also typically central in the other layer. For medium
and low centrality, the correlation is much weaker. On the contrary, the right panel
shows that, with the exception of three banks on the top right corner of the figure,
there is a very weak correlation between the centrality in the overnight network and

Fig. 11.4 Scatter plot of (a) the betweenness in the overnight market versus that in the unsecured
short term layer, and (b) the betweenness in the overnight versus that in the unsecured long term
layer. The year investigated is 2012. The values of � and �s are the Pearson and the Spearman
correlation, respectively
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Fig. 11.5 Scatter plot of the eigenvector centrality and different nodes properties, namely (a) out-
degree, (b) in-degree, (c) out-strength, and (d) in-strength. Each point is a bank group. The values
of � and �s are the Pearson and the Spearman correlation, respectively. Data refer to the unsecured
overnight layer in 2012

in the long term network. This is an indication that in some cases, centrality of a
bank, also with respect to the other banks, can be markedly different in different
layers. Therefore central banks in the long term layer are not necessarily central in
the overnight or in the short term layer.

Similar conclusions can be drawn by considering the eigenvector centrality.
Figure 11.5 shows the scatter plot between the eigenvector centrality and in- and
out-degree (top panels) and in- and out-strength (bottom panels). The correlations
are significantly smaller when compared to those of the betweenness centrality
(see Fig. 11.3). In this sense eigenvector centrality (and probably DebtRank) brings
information on the importance of a bank which is not already contained in the basic
measures of degree and strength.

Finally, in Fig. 11.6 we show the three dimensional plots of the eigenvector
centrality in the three unsecured layers, namely overnight, short term, and long
term. We show the results for the 4 years because we find a different behavior in
the different years. In all years we find a very large dispersion of points, indicating
that the eigenvector centrality in the three considered layers is very different. Thus
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Fig. 11.6 Three dimensional scatter plot of the decimal logarithm of the eigenvector centrality in
the three unsecured layers in the period 2009–2012. (a) 2009. (b) 2010. (c) 2011. (d) 2012

the importance of a node, as measured by the eigenvector centrality, is typically
quite layer specific.

Comparison with Null Models

As a last analysis, we compare our findings on the centrality metrics with suitable
statistical null models. In the last two decades complex network theory has
introduced a large number of metrics able to capture many interesting aspects of the
organization of networks, such as clustering, assortativity, core-periphery structure,
etc. However, from a statistical point of view, it is not always clear which of
these properties carries information not already contained, in simpler properties of
the network. For example, one could ask whether the core-periphery organization
observed in many networks (included the interbank ones) is a mere consequence of
the large degree heterogeneity of the considered network. In fact, in a network with
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heterogeneous degree distribution, a core periphery emerges even if the links among
nodes are assigned randomly.

To properly answer to these questions one needs to build statistical models
of networks, which allow computing a probability distribution of graphs. Such a
distribution is calibrated on the investigated real network, and it is chosen in such
a way to preserve some low order properties (e.g. the degree of each node). Then
one computes, analytically or computationally, the distribution of the considered
high order property (e.g. the size of the core) and extracts from it a p-value for the
statistics observed in the real data.

One of the most common methods for building null models is by using the
Maximum Entropy Principle.5 One looks for the probability distribution of graphs,
P.G/, which maximizes the Shannon entropy

SŒP.G/� D �
X

G

P.G/ ln P.G/ (11.3)

under suitable constraints, including the normalization
P

G P.G/ D 1. More details
on the construction and estimation of Maximum Entropy models for networks are
reviewed in Appendix 4 of Ref. [5].

Here we consider the so called Directed Binary Configuration Model (DBCM)
(see Ref. [5]). In this case we impose 2n constraints, namely the average in- and out-
degree of each node. This model can be fitted from a real network using Maximum
Likelihood and one can then sample from a graph distribution of a DBCM calibrated
on the a real network. We can compute the distribution of the betweenness centrality
for each node of the network under the DBCM. We then compute the p-value of the
betweenness centrality of each node observed in the real network.

Figure 11.7 shows the scatter plot of the betweenness centrality in the real
network versus the one simulated in the DBCM. Firstly we note that there is a
significantly high Pearson and Spearman correlation between the betweenness in
the real and simulated network. We can therefore conclude that a significant fraction
of the betweenness centrality property of a node is a consequence of the degree
distribution. This evidence is in line with the empirical observation described above
that betweenness centrality is very correlated with degree. However deviations from
the null model can be identified by computing for each node the p�value, then
comparing the centrality in the real network with the values obtained by a large
sample of network realization. In Fig. 11.7 large dots correspond to nodes for which
the (ME) null model is rejected with 1% confidence. Interestingly, the nodes for
which betweenness centrality is larger than expected from their degree (and the
Maximum Entropy null model) are mostly large banks.

5See for instance [3, 4, 16, 25, 28, 30, 32].



192 L. Bargigli et al.

Fig. 11.7 Scatter plot of the betweenness centrality in the real network and in the one simulated
from the Maximum Entropy (ME) ensemble corresponding to the directed configuration model, for
(a) the overnight market, (b) the short term layer, and (c) the long term layer. Large dots correspond
to nodes for which the (ME) null model is rejected with 1% confidence. The values of � and �s are
the Pearson and the Spearman correlation, respectively. Data refer to 2012

11.5 Conclusions

This paper reviews the multiplex description of the interbank market proposed
in Ref. [5]. In this description, each layer is a network of interbank exposures
characterized by the maturity and the presence of a collateral. By using an unique
dataset of the Italian Interbank market, we discuss the main findings related to (i) the
similarity of the topological properties of the different layers, (ii) the link-by-link
similarity of pairs of layers and (iii) the use of Maximum Entropy approach for the
construction of layer-specific null models.

The main original contribution of the paper is the investigation of two cen-
trality measures, namely betweenness and eigenvector centrality, in the multiplex
describing the Italian Interbank market. We found that the correlation between the
centrality of a bank in different layer is significant, but not extremely large. There
are several medium-sized banks which are central in some layers and peripheral
in others. Very large banks are typically central in all layers, but this can be
due – at least partially – to the constraint given by their typically large degree.
Interestingly, the centrality of large banks is not explained by Maximum Entropy
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null models preserving the degree of each node. This finding indicates deviations
from centrality measure expected by the degree distribution. Finally, betweenness
centrality is more correlated with degree than eigenvector centrality. This finding
seems to indicate that the eigenvector centrality is less affected by information
already contained in the degree, strength, and bank size.
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Chapter 12
The Financial System as a Nexus
of Interconnected Networks

Stefano Battiston, Guido Caldarelli, and Marco D’Errico

Abstract In this Chapter, we describe the phenomenology of multilevel financial
networks. Network analysis represents a useful tool for the analysis of financial
systems, allowing, in particular, for a better understanding of the mechanics of
systemic distress. However, the level of complexity reached by the financial system,
coupled with the linkages arising to and from other economic sectors, calls for a
more integrated approach that takes into account a whole series of networks. In this
Chapter, we therefore describe the financial systems as a nexus of interconnected
networks. By reviewing selected theoretical and empirical works and describing two
methodological extensions for DebtRank, we show different arguments in favor of
the adoption of a broader view of the network approach to finance.

12.1 Introduction

Systemic risk in finance denotes the risk of collapse of a major part of the
financial market with the disruption of its critical functionalities. This notion can
be declined in several ways. However, the main idea is that the collapse of an entire
system (or a large part of it), as opposed to a single entity, can be triggered by
specific interdependencies where the failure of a component (or a small number of
components) propagates, and spreads the distress in a cascading process.

Network theory has recently emerged (from both a research and policy perspec-
tive) as one of the fundamental tools to quantify and assess the interconnected nature
of social systems and therefore to model the spread of shocks within economic
and financial systems. In-depth research has shown that financial organizations are
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particularly prone to be interconnected, through different types of relationships.
Along the simple “size” of an institution, direct and indirect interlinkages (i.e.
the network structure), represent another fundamental characteristic for the iden-
tification of systemically important institutions. The paradigm on which systemic
importance is based must nowadays shift towards the inclusion of the “position” of
an institution in the network.

Importantly, as pointed out in 2013 by the now Chair of the Federal Reserve Janet
Yellen, although “some degree of interconnectedness is vital to the functioning of
our financial system [. . . ] Yet experience – most importantly, our recent financial
crisis – as well as a growing body of academic research suggests that intercon-
nections among financial intermediaries are not an unalloyed good”.1 These words
were echoed, from the European side, by the President of the European Central Bank
Mario Draghi, who pointed out not only that “the process of financial integration has
created a myriad of complex linkages within the EU financial system” but also that
“a more holistic view of interlinkages in the financial system is needed to understand
how shocks are transmitted across the system and how to mitigate them”.2

The first reason why linkages matter is that they can have ambiguous effects:
on the one hand, they increase individual profitability while reducing the risk of
the individual entity because of a more diversified structure; on the other hand,
linkages allows for the propagation of contagion and distress, in certain cases with
substantial amplification effects, thus increasing systemic risk. On this topic several
issues remain open but much work has already been done in the recent years.

Therefore, interconnectedness, as a key structural property of financial systems,
has posed the fundamental research question on whether the network of interdepen-
dences can induce higher levels of systemic risk, possibly amplifying small shocks.
Network models have analyzed the mechanics of default contagion transmission
[16, 23, 24, 36] to capture disruptions and systemic distress. However, they have
been mostly limited to the banking sector (specifically, the interbank lending
market) and to effects caused by the default of one or more banking institutions.
Less attention has been devoted to the spillovers onto other macroeconomic sectors
(including the real economy) and potential feedback effects that these exposures
imply [18]. Moreover, as described later on, not only the propagation of defaults is
important, but also the propagation of distress [9].

In this work, we argue that the financial system should be seen as a nexus of
interconnected networks, rather than an autonomous and independent networked
system where shocks originates from outside. More specifically, the key idea of this
Chapter is to investigate a mechanics of shock transmission, starting from heteroge-

1Janet L. Yellen, Interconnectedness and Systemic Risk: Lessons from the Financial Crisis and
Policy Implications. Speech at the American Economic Association/American Finance Association
Joint Luncheon, San Diego, California, January 4, 2013. URL: http://www.federalreserve.gov/
newsevents/speech/yellen20130104a.htm
2European Systemic Risk Board, Hearing before the Committee on Economic and Monetary
Affairs of the European Parliament, Introductory statement by Mario Draghi, Chair of the ESRB,
Brussels, 18 February 2013. Available at https://www.esrb.europa.eu/news/pr/2013/html/is130218.
en.html.

http://www.federalreserve.gov/newsevents/speech/yellen20130104a.htm
http://www.federalreserve.gov/newsevents/speech/yellen20130104a.htm
https://www.esrb.europa.eu/news/pr/2013/html/is130218.en.html
https://www.esrb.europa.eu/news/pr/2013/html/is130218.en.html
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Fig. 12.1 Representation of the financial system as a nexus of three interconnected networks: the
interbank exposure network (matrix Aij) and the asset (correlation) network are interconnected via
the bipartite network of the asset holdings by banks

neous balance sheet exposures and incorporating the feedback relationship derived
by common asset exposures. Consider, as the starting point for this discussion,
Fig. 12.1, which reports a stylized network representation of one of the levels of
the nexus. The interbank lending structure is on the left part of the figure, and is
represented in Sect. 12.2 by matrix Ab. Alongside this network, we can identify a
network of assets, i.e. a network capturing structural dependencies between single
asset classes. The dependencies can go beyond simple price correlations and include
more “mechanical” dependencies such as those occurring between a derivative and
its underlying. These two networks are further interconnected via a bipartite network
of portfolio holdings (banks’ exposure to external assets) for each bank.

In modern financial systems, banks indeed have a very heterogeneous and
complex portfolio, which might include financial exposures of very different nature
and levels of complexity: from simple mortgage loans and shares to very complex
derivatives [10]. More to this, counterparties in the networks can be actors in
different macroeconomic sectors and therefore feedback effects can arise also along
this dimension.

Notwithstanding the increased awareness of both researchers and policymakers
about the potential associated to modeling such systems via network theory, little
work has been done in understanding how the nexus is shaped and works. We then
envision the nexus as having to deal with two main characteristics:

1. it must take into account both the internal nature of the banking system
(within the sector) and the external (between the sectors) connections with other
institutional sectors.
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2. it must take into account the structure of balance sheets, including feedback
relationships with their external assets.

With respect to the first point, the financial sector is indeed linked with other
parts of the economic system on different levels. In fact, the current configuration of
the financial system seems to even favor spillovers, so that shocks may potentially
propagate quite rapidly and trigger an amplification of the initial distress (however
small). The financial crisis has shown that financial linkages among different
actors in the economy (including banking institutions, non-banking institutions and
firms) are a clear mechanism for the propagation of financial distress, therefore
representing one of the key elements of potential financial instability or systemic
risk.

On the above basis, we also produced one of the first ways to model interconnec-
tions also outside the financial system. In this light, the main research question we
want to address is to evaluate the validity of analysis done only in the intra-sectoral
networks. Indeed, macroeconomic literature considers aggregated economic sectors
as separated “blocks”, therefore neglecting the multiplier effect arising from the
interconnections within each block. However, network effects are relevant also
within an individual sector: considering macroeconomic blocks as mere aggregates
would then lead to neglect the multiplier effect within the block. On the other hand,
the behavior of a single macroeconomic block cannot be assessed outside of its
interconnections with other macroeconomic blocks.

As regards the second point, financial institutions are interconnected not only
through different types of relationships, maturity, and instrument types, but the
linkages also arise from common exposure in terms of asset classes. This feature
may very well amplify an initial shock via fire sales. Therefore, shocks can be
transmitted back and forth via these common exposures. Note that such fire sales
cannot be modeled if only one agent is considered. Shocks on the assets of a bank
trigger sales in order to restore capital requirements that then spillover onto other
financial institutions along two channels: (1) the interbank lending exposures and
(2) the reduction in price of assets held by other banks due to fire selling.

However, these two channels are further intertwined as sudden variations in the
value of assets held by a bank can have direct and indirect spillovers on other
economic sectors, and in particular the real economy (including non-financial cor-
porations, households and government) therefore exacerbating the original shock.

12.1.1 Related Work

In the aftermath of the crisis, substantial academic and policy-oriented research has
been carried out in order to better understand the nature and the potential implication
of systemic risk. In particular, several works focus on the main idea that one of
the fundamental roles in determining financial instabilities is played by financial
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interlinkages. In this light, network models can be useful tools for the mathematical
formulation of systemic risk [29].

Within the network approach to systemic risk, several questions still remain
unanswered. However, considerable work has already been done in the recent years
(see, among other, Refs. [3, 4, 7, 8, 12, 19, 26–28, 30, 39]). Not limited to contagion,
financial interlinkages are also relevant for liquidity provision [27].

There is also an endogeneity problem that has been explored: financial institu-
tions have incentives to become too-connected-to-fail and/or too-correlated-to-fail
[1], therefore forming strongly knit structures [15, 17, 20, 21, 32, 38, 41, 42] and gain
exposures to similar risks [26]. As a consequence, the system as a whole structures
itself such that the incentives of the individual financial institution in terms of risk
taking have been altered, possibly allowing groups of institutions with high market
power to influence the debate on regulation.

12.2 Multi-level Financial Networks and Leverage

The main idea of this Section is that the level of complexity described above is
embedded within the balance sheet structure of financial institutions and that we can
investigate the mechanics of shock transmission starting from this representation.
In particular, within a stylized balance sheet model, the key quantity we consider
is leverage. We argue that leverage plays a key role in quantitatively determining
the mechanics of distress. Leverage is simply defined as the ratio between the
total assets of a bank and its equity. Obviously, leverage varies in time as the size
of the balance sheet but there is evidence that banks might target leverage to a
specific value [2, 40] when facing shocks, often for regulatory reasons. The leverage
ratio can be simply decomposed (additively) by exploiting its linear additivity.
However, each of the contributions to leverage carry with itself a high degree
of interconnection, that results into a leverage network, captured by a weighted
adjacency leverage matrix.

We show, by means of simple calculations, that even though leverage can be
decomposed additively by simply exploiting the linear relationship stemming from
balance sheets, its effects in a network framework are of multiplicative nature,
therefore leading to a compounding effect of initial exposures.

12.2.1 Leverage Decomposition

We reformulate the balance sheet model in terms of leverage and devote particular
attention to its decomposition. The main point here is to show that leverage can
be decomposed additively but compounds multiplicatively in the distress process,
exacerbating potential within and between network effects. Consider the standard
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Fig. 12.2 Expansion of bank i’s balance sheet, showing the banking system as a nexus of
interconnected networks

balance sheet identity for bank i:

Ai D Di C Ei (12.1)

where Ai represent the total assets, Di the total liabilities and Ei the value of its
equity. Equity, in this context, can be interpreted as the buffer for the node/bank
within the network to suffer losses before default. Equation (12.1) reflects the
schematic representation provided in Fig. 12.2. The total leverage of i is defined
as the ratio between its assets and its equity:

li D Ai

Ei
: (12.2)

We divide asset and liabilities of i into two main categories (more detailed
classifications can be easily incorporated in this representation): internal (with
respect to the banking system, i.e. the interbank) and external (i.e. outside the
banking system.). These sub-categories have a correspondence, respectively, to the
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previously described notions of within and between, that will be further explored
in Sect. 12.3. A more granular subdivision is represented by the values of the
asset and liabilities within each counterparty, i.e. the 1; : : : ; k; : : : ;M external assets
(liabilities) and the 1; : : : ; j; : : : ;N interbank assets (liabilities).

The total leverage can be now decomposed as the sum of the leverages with
respect to each external asset and each counterparty:

li D Ai

Ei
D

external assets‚ …„ ƒ
Ae

i1 C : : :C Ae
ik C : : :Ae

iM C
interbank assets‚ …„ ƒ

Ab
i1 C : : :C Ab

ij C : : :C Ab
iN

Ei

D lei1 C : : :C leik C : : :C leiM„ ƒ‚ …
external leverage (between)

C lbi1 C : : :C lbij C : : :C lbiN„ ƒ‚ …
interbank leverage (within)

: (12.3)

We can then expand the balance sheet identity by representing it in terms of
leverage. Identity Fig. 12.2 can be then rewritten as:

0
@ MX

kD1
leik C

NX
jD1

lbij � 1

1
AEi D

MX
kD1

De
i C

nX
jD1

ljiEj

where lji represents, consistently with our notation, the contribution of the total
leverage of j represented by the exposure towards i.

12.3 Networks of Networks: Effects Within and Between

Even though the banking system is now fully understood as a highly interconnected
system along several dimensions, the recent crisis has unequivocally showed that
significant shocks may originate from other macroeconomic sectors and spill over
onto others. The ongoing problems in financing the real economy represent, for
example, compelling evidence that crises in the banking system amplify shocks that
then reverberate onto the real economy. For example, the European Commission,
aware of the “the impact of external financing difficulties on the real economy”,
has pointed out that one of the key policy concerns relates to the steps to be taken
in order to make sure that “banks resume their role as financiers of new business
activities and lenders to viable firms, in particular in those parts of the corporate
sector that rely mostly on bank funding” [25]. The relationship goes in the opposite
direction as well, as the traditional funding activity of banks has been represented
by deposits from households and firms. The fact that several banks had to be bailed
out with complex rescue programmes is also a key example of this.
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Fig. 12.3 (Left). Assets size of the financial sector its and composing sub-sectors (including Rest
of the World, mil euro) from 1999 to 2014 (quarterly observation). (Right). Assets size of financial
sector and sub-sectors (including Rest of the World, mil euro) from 1999 to 2014 (quarterly
observation) (Source: ECB Statistical Data Warehouse)

To illustrate the particular structures we aim at describing, consider Fig. 12.3.
The plot on the left represents the time evolution of the size (measured in terms
of total assets, outstanding amount) of the financial sector in the euro area. It is
clear that the staggering increasing occurred from 2001 to the recent years is mostly
driven by MFI (monetary financial institutions, mostly banks) and other financial
intermediaries (which include financial institutions of different nature). Insurance
and pension funds showed a relatively smaller increase. The increase in assets can
reflect higher level of risk (both individual and systemic), but this would not be of
concern for the financial system as a whole if the different sub-sectors were not
heavily exposed to one-another. It turns out that, on the contrary, these sectors are
heavily interconnected, as shown in the right side figure, which reports the dynamics
of the exposures (in terms of loans) from the banking sector towards other financial
intermediaries. Linking the two figures, it is immediate to observe that the steady
increase in total assets within the banking sector has corresponded to an increase in
the interconnection towards another financial sector, therefore increasing the weight
of the linkage between the two sectors.

The consequences of this are not trivial. Banks might be exposed to investment
funds carrying higher degree of risk than expected: a shock for investment funds
can reverberate, via the balance sheet structure, onto the banking system, then
be amplified within the interbank lending system, and subsequently feed back
onto other sectors. Furthermore, the figure also hints at another peculiarity of the
interconnections occurring in the financial system: linkages can be of different
nature and type. In fact, shocks in short terms loans (often due to liquidity problems)
can lead to reduce exposure in long-terms loans (e.g. mortgages to household or
long-term loans to non-financial companies).

Using disaggregated information on balance-sheet level is therefore crucial in
order to understand potential systemic threats along the different interconnected
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networks. This intrinsic characteristic of financial systems can indeed induce higher
levels of systemic risk, possibly amplifying small initial shocks. In spite of that,
the state of the art in financial network modeling predominantly focuses on the
understanding of particular features of systemic risk within the banking system,
with a particular attention to the interbank lending market. This approach, although
highly valuable for a deeper understanding of the direct and indirect interlinkages
between banks, obviously leads to discarding the above mentioned interlinkages via
exposures to external assets and sources of lending.

The picture we have so far sketched obviously needs a further enrichment, by
considering also other sectors in the economy, including households, non-financial
corporations and the government. The particular level of interdependence we aim
at describing here is aptly captured by bilateral exposures between macroeconomic
sectors. By analyzing such bilateral exposures, one can see how shocks originated
in one sector might indeed engender spillovers onto other macroeconomic sectors,
which in turn feed back to the banking systems itself. A country-based level analysis
of this type can be found in Ref. [18].

The view we hereby adopt is, therefore, a combination of a within as opposed to
a between approach. From this point of view, network effects within a sector (and
particularly, the banking sector) are further exacerbated by network effects within
the banking sector.

Given the potential systemic risk arising from this further levels of interconnec-
tion, the next generation of network-based systemic risk models must necessarily
take into account these two levels. In this light, we aim at underlining the expanding
the notion of interconnectedness in the financial system in order to take into account
the above mentioned within and between nature of the financial system seen as a
network of networks.

However, a bank’s balance sheet is not only composed of interbank loans.
Figures 12.4, 12.5 and 12.6 show the exposures of different macroeconomic sectors,
including banks, in terms of total assets (outstanding amount, as a sum of deposit
plus short and long terms loans) for the euro area in the first quarter of 2005, the
third quarter of 2008 and the first quarter of 2014. This type of macroeconomic
relationship is often referred to as “who-to-whom” and “provides an overview of the
activities between the various sectors of the economy”.3 From a national accounting
perspective, the main statistical source for these types of linkages is represented by
flow-of-funds data, a fundamental concept in the system of national accounts that
captures the interdependencies amongst the balance sheets of different institutional
(macroeconomic) sector. A staggering increase in the total assets of banks is clearly
visible from 2005 to 2008. An overall increase of the weight of the linkages can be
also seen from the Figures.

Figure 12.6 (first quarter of 2014) shows how a shock in the external assets of a
bank (red rectangle), such as mortgage-backed securities, can be exacerbated from

3Euro area accounts: SDW reports, available from the ECB Statistical Data Warehouse at http://
sdw.ecb.europa.eu/servlet/desis?node=1000002778

http://sdw.ecb.europa.eu/servlet/desis?node=1000002778
http://sdw.ecb.europa.eu/servlet/desis?node=1000002778
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Fig. 12.4 The “Macro Network”, 2005 first quarter. Assets (deposits, short and long-term loans)

Fig. 12.5 The “Macro Network”, 2008 third quarter. Assets (deposits, short and long-term loans)

the two networks: common assets and the interbank. Afterwards, this effect can
spill over onto other economic sectors. From a modeling standpoint, this implies to
develop techniques and tools that consider the aggregated macroeconomic blocks
taking into account the multiplier effect of shocks within that and subsequently
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Fig. 12.6 The “Macro Network”, 2014 first quarter. Assets (deposits, short and long-term loans)

spread towards other blocks. These further enriched frameworks should ideally be
able to consider the coupling effect between different sub-sectors in the financial
system itself (such as investment and pension funds, insurance corporations, money
markets, etc.), the impact onto other sectors and possible feedback effects.

From a network perspective, a few important comments are in place, with
reference to the left hand side of each figure. At first, one can observe households
being exposed for a significant amount towards banks in terms of deposits. The
typical maturity transformation banking activity takes place in terms of loans (short
and long terms) towards households and non-financial corporation. However, the
banking sector is exposed by a non-negligible amount towards other financial
corporations (OFI), which partially include shadow-banking activity [5]. This macro
network is coupled with a balance sheet expansion for the banking sector. A shock
on the asset side of the balance sheet can therefore trigger a reverberation (with
further amplifications) in the interbank lending market and subsequent spillovers
onto the other institutional sectors.

This representation shows the need for a more granular representation of a
bank’s balance sheet in order to quantify the exposure towards other institutional
sectors. In addition to this, more information on banks’ balance sheets can be
crucial in understanding also the level of exposures to common assets (see Sect. 12.6
for details on the modeling framework) and therefore to common shocks that
reverberate from one layer to another.
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12.4 Network of Financial Networks: Selected Models

In this Section, we review and put into our “nexus of networks” context some
of the recent advances in financial network models that see the financial system
as a series of interdependent networks. From a modeling perspective, the first
work [36] relates to default cascades due to credit runs and fire sales that deals
with different paradigmatic network topologies. We will then decline DebtRank
(originally introduced in [9]) in a leverage framework. Last, we discuss the model
introduced in [40] and proceed to discuss how procyclicality in banks exposed to
external asset can affect systemic risk. On the empirical level, Roukny et al. [37]
models the German interbank market where the interbank network is seen as a
multi-layered (multiplex) network, whereas Puliga et al. [35] aims at reconstructing
network exposures from the time series of CDS spreads.

A summary of these works is provided in Table 12.1, with an overview of the
network levels considers, the contagion dynamics, the relevant quantities in the
papers and the main results. This set of works provides with a series of compelling
arguments towards the inclusion of several network layers into the understanding of
systemic distress.

12.4.1 Default Cascades with Credit Runs

Theoretical Framework

The balance sheet structure of banks is, once again, the main determinant of a
model originally proposed in Ref. [6]. The model features N banks, with the usual
balance sheet structure: Ab

i being the interbank assets, Ae
i being the external assets

(i.e. outside the banking system), Lb
i and Le

i represent respectively the interbank and
external liabilities. External assets are further classified as short-term (liquid) assets
Aes

i and mid-long-term (less liquid) assets Aem
i . The level of liquidity of the mid-term

assets will determine the loss a bank will face when selling them. Similarly to the
asset side, liabilities can be classified in mid-long-term liabilities (both interbank
and external), Lem

i and short-term liabilities LES
i owed to external creditors.

In line with previous well known work [23], a bank i in the banking network
system defaults when its equity ei becomes negative. The model investigates how
market liquidity on the external assets, coupled with interlinkages arising from
interbank exposures may influence the total number of defaulting banks in the
system. Consistently with the approach used in this work, let:

�i D Ai � Li

Ab
i

D Ei

Ab
i

which can be seen as an interbank equity ratio. Defaults for i will then occur when
�i < 0. When some of the borrowers of i face default, this will trigger the usual
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Table 12.1 Recent works on systemic risk and networks

Theoretical works

Network Contagion Relevant
Reference levels dynamics quantities Main results

Default cascades
[36]

1. Interbank
2. short term

external
funds

1. Default
and

2. fire sales

Default
cascade size
(phase
diagram)

No optimal topology

DebtRank [9] 1. Interbank
2. [possibly]

external
assets

Distress and
defaults

Systemic
impact of
individual or
groups

“There’s more to
impact than balance
sheet size”

Procyclicality Interbank
common
assets

Distress, fire
sales balance
sheet
management

Time to
default

Counterproductive
effects of capital
requirements in
presence of market
illiquidity

Empirical works

Network Relevant
Reference levels Type of data quantities Main results

Interbank
(Germany) [37]

Interbank
lending,
derivatives
(CDS)

Exposures
(monthly
2002, 2012)

Comparison of
network
properties over
time (CDS)

Most topological
properties stable
despite the financial
crisis

CDS networks
[35]

CDS
(simulated)
common asset

Time series
(different
network
construction
methods from
comovements)

Network
properties and
Group
DebtRank

Network effects are
important. A
combination of
network effects with
macro-economic
indicators might be
needed to capture the
building-up of
systemic risk

mechanism of losses on i. By considering the limiting case of zero recovery rate,
creditors of i may opt not to renew short-term loans: i is then forced to sell assets in
order to pay back those liabilities. Quite intuitively, bank i will first sell liquid assets
and, only at a second moment, less liquid assets. If the market for the latter type of
assets is rather liquid, then the bank might have to sell the assets for a lower price
than market price, thus leading to so-called “fire-sellings”.

Within this framework, Ls
i � As

i represents the difference between the amount
bank i must pay back and the amount it can liquidate in a sufficiently short time.
Including fire sales on the less liquid assets, one can express the loss for bank i in
terms of its interbank assets as follows:

ˇi D .q � 1/Ls
i � As

i

Ab
i

:

implying ˇi D 0;8i when the market is perfectly liquid.
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The equity of bank i can be reduced by two mechanisms taking place within this
model:

1. Counterparty. When a counterparty j of i defaults, then i faces a loss of Aij,
without changing its liabilities;

2. Credit run. As a consequence, short-term external creditors might withdraw
liquidity in case the number of defaults among i’s counterparties reaches a certain
level.

The second mechanism depends indeed on i’s capital ratio. Let kfi.t/ be the
number of borrowers of i that have defaulted between time 0 and t, then the threshold
for the credit run will be set in the following way:

kfi.t/

N
> �i.0/=



 is a parameter that captures the sensitivity of the external creditors with respect
to bankruptcies for the borrower of i. This dynamics therefore creates a cascade of
defaults. The size of the cascade is simply measured with the number of defaulted
banks and computed at each time t of the above described mechanism. The process
starts with an exogenously determined number of defaults and continues until no
additional defaults are observed.

Interestingly for the scope of this work, from an aggregated perspective, the
model can capture the macroscopic dynamics of the cascade of defaults depending
on the initial conditions that have triggered the bank run. Furthermore, under some
approximations concerning the topology of the network and the level of correlation
of defaults within the neighborhood of every bank, the total size of the cascade can
be computed analytically [7]. Confirmation of these results and further extensions
to different network structure can be found in Ref. [36].

As the model centers upon the capital ratio �i, it is then interesting to examine and
interpret some results related to the relationship between capital ratios requirements
and systemic risk. In particular, the model helps to understand the resilience of
the system from a network perspective or, in other words, the impact of different
topological structures to the global systemic risk. Even if the model is simple in its
structure, conditioning to a specific topology, coupled with the various parameters,
brings various degrees of freedom, which can be addressed in the following way:

1. Consistently with previous literature on networks (see Ref. [22]) and, in partic-
ular, financial networks (see Ref. [26]), the first modeling choice relates to the
initial selection of the shocked banks, i.e. whether the initially distressed banks
should be chosen at random (randomly chosen shock) or based on their degree
centrality (targeted).

2. Different scenarios in the correlation between a bank’s capital ratio and its degree
are analyzed. When no correlation between capital ratios and degree is present,
this implies that capital ratios are assigned independently from the total number
of a contracts the bank holds. On the contrary, in case of positive correlation,
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higher degrees correspond to higher capital ratios. The opposite holds in case of
negative correlations.

3. Different degrees distributions are examined for three archetypal network topolo-
gies, namely: scale–free networks (power-law degree distribution), random
graphs (Poisson degree distributions) and regular graphs (i.e. all nodes have the
same degree).

4. Last, the parameter ˇ varies to capture different levels of liquidity.

Different combinations of the above-described situations can lead to the analysis
of different scenarios. The model shows interesting results in the way the cascade
size can be related to different network measures such as the average out-degree
(i.e. the average number of out-going exposures) and the initial average individual
capital ratio m.

From a network-theoretical point of view, the networks considered are directed
and weighted. The direction of a link follows the exposure from a lender to a
borrower, and the value of the weight of the link is the outstanding amount. The
model further assumes that banks lend equally to other banks they are exposed to,
i.e. an amount 1=ki;8j, where ki is agent i’s number of borrowers. Out-degree then
measures the number of borrowers, whereas the in-degree measures the number of
lenders. As a benchmark case, the model investigates the case where in-degree and
out-degree are correlated.

Experimental Set-up

The initial value of the capital ratio �i.0/ for each bank is assigned randomly from
a normal distribution with mean � and variance �2� D �2=k where � and � are
exogenously given. In other terms, at time 0, capital ratios are drawn at random from
a normal distribution � 	 N.�; ��/, therefore immediately implying the fraction
of defaulted banks at the beginning (when �i.0/ < 0). In addition to the initially
defaulted banks, a further exogenous shock is added in terms of initially defaulted
banks (a fraction y0).

A key assumption is made within this framework: a large number of credit
counterparties implies a small variance in the return of the credit portfolio of each
bank and reduced the variance of individual robustness. This is reflected in the
relationship between �� and the average number of connections of the banking
system k. For a more thorough discussion about the choice of the parameters, see
Ref. [7]. All simulations in this setting are run for 1000 banks where, for each
simulations, a network is generated and the cascading process takes place. Given
a topology, for each pair of parameters .b;m/ and .k;m/, the mean and standard
deviation of the cascade process is taken over the 1000 simulations. In this way,
it is possible to determine a curve representing the so-called frontier (within the
parameter space) that separates regions where either small or large cascades occur.
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Empirical Evidence: The e-MID Interbank Market

An interesting analysis on empirical data is carried for daily observations of the
Italian interbank money market network, provided by the Italian electronic Market
for Inter-bank Deposits from January 1999 to December 2011,4 aggregated on a
monthly level. In this way, the model can be analyzed in an empirical context, where
network evolution spans different periods (including the crisis).

Phase diagrams are provided in order to illustrate the so-called systemic risk
frontier. High levels of systemic risk (i.e. very large-sized cascades, region in color)
and low levels of systemic risk (small sized-cascades, white region) can be observed
within the parameter space of market illiquidity ˇ and average capital ratio m.
Different colors are associated to different topologies and it can be observed what
value of the average capital ratio would move the system towards a safe region.

Figure 12.7 captures the system in the case of positive/negative correlation
between the capital ratios and the degree. The space for the scale-free topology lies
below the other ones, implying that this type of topology is more robust against
random shocks in the case of higher capital ratios for higher-degree banks (the
opposite happens when higher-degree banks have lower capital ratios). Importantly,
these differences are relevant only when market illiquidity is high enough (b > 0:3).
When shocks are targeted to more central nodes, scale-free topology proves to
be extremely fragile for any level of market illiquidity (see original paper for the
results). This finding relates to previous works in network theory, where the notion
of fragility of the network is measured in terms of the size of the largest connected
component that survives a shock.

Figure 12.8 shows the frontiers for the period 1999–2008 (smooth and linear
dependence on illiquidity ˇ) which can be separated from those within the period
2009–2011. The latter curves lie below the others, showing that the average
robustness is less sensitive to illiquidity. Lower systemic risk can be found for
the year 2009 (post Lehman Brothers) whereas higher systemic risk is found for
the frontier corresponding to the years 2007 and 2008. The post Lehman period is
characterized by significant increases in the interbank rates coupled with takeovers
by central banks in order to provide liquidity: during this period, banks withdrew
from the interbank market, becoming less prone to lend to each other and trading
more with central banks. This historical fact finds a correspondence to a smaller
sensitivity to the illiquidity parameter with respect to previous years. Later, in 2010
and 2011, banks started to resort again to the interbank market for the provision of
liquidity.

A particular historical moment can be found in 2009, with the guarantees
by the European Central Bank (ECB). The ECB’s provisions, coupled with a
rise in the interbank rates, led to banks being less active in the interbank. As a
consequence, illiquidity plays a lesser role in determining the overall cascade size,

4Data are maintained by e-MID S.p.A, Società Interbancaria per l’Automazione, Milan, Italy
(e-MID).
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Fig. 12.7 Frontier of large cascades in the space .b;m/ representing the average capital ratio
across banks and market illiquidity. (Upper figure) Random exogenous defaults and positive
correlation between degree and individual robustness. (Lower figure) Random exogenous defaults
and negative correlation between degree and individual robustness, Networks have an average
degree, k D 20. Other parameters values are: 
s D 
10�3, 
s D 0:13 � D 0:3, y0 D 0:04
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Fig. 12.8 Frontier of large cascades evolution of the e-MID market in the period between January
1999 and January 2011 under random exogenous defaults and random individual robustness
distribution. Impact of illiquidity on the structure of January of each year, � D 0:3, y0 D 0:04,

s D 0:13. For convenience, we use 
s D 
10�3

as the amplification phenomena described in the model are less accentuated in this
case. Quite naturally, since the ECB is not present in this dataset (but could be
regarded as an external node), the model does not capture the level of risk transferred
to the ECB itself. The external node would appear as a node of last resort to avoid
systemic collapses.

Interestingly, these results can be thought as an interesting confirmation of the
usefulness of these models in assessing the systemic impact of a shock from a
macro-prudential point of view, by considering different network types for different
levels of capital ratios and illiquidity on the market. Therefore, adopting this
approach can be useful from a policy and regulatory perspective in that supervisors
could design and implement more sophisticated capital requirements ex-ante and ad
hoc liquidity scheme provisioning ex-post.

12.4.2 DebtRank

Introduced in Ref. [9], DebtRank measures the fraction of the total economic value
that is affected by the default or distress of a financial institution. Recently, a new
stress-test framework based on DebtRank has been proposed in Ref. [11], where
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the two networks of leverage presented in Sect. 12.2 represent the key concepts to
understand the dynamics of distress propagation. Consider the network of financial
interdependencies where the element Aij represents the amount of assets i invests
in the funding of j. The marginal column sums of the weighted adjacency matrix
Ai D P

j Aij represents the total assets of i invested in funding within the network.
Each node i is also endowed with a capital Ei and defaults when Ei � 0. The capital
acts as buffer for i against shocks (see Refs. [19] and [33]) and can be thought, from
a regulatory perspective, as the so-called Tier 1.

In this framework, liabilities are at face value whereas assets are marked to
market. The main idea behind DebtRank is to capture distress induced not only
by events of default, but also by a decrease in equity value due to a shock affecting
the node, regardless of whether the node defaults or not. If the value of the equity
of a node i decreases, this will decrease its distance to default as bank i will be
less likely to repay its obligations in case of further distress. As a consequence, the
market value of i’s liabilities will decline and, as i’s liabilities are on the asset side
of the balance sheets of other institutions, the distress will propagate onto the equity
value of neighbors, neighbors of neighbors, and so on.

However, the amount by which market values should decrease poses a non-trivial
problem to solve, as it is determined by the probability of default of i and the
recovery rate on assets held by i, both depending, in turn, by their market value.
To our knowledge, there is no model in the literature dealing with this problem
within a network system.

A reasonable conjecture would be that of a non-linear relation between losses
on equity and losses on liabilities. In fact, on the one hand, it seems reasonable to
assume that limited losses on equity may have little to none effect on the value of
the liabilities. On the other hand, higher losses would reflect almost entirely and,
especially when losses complete deplete the capital and therefore the equity value,
this should in principle lead to the same impact on all liabilities.

Since neither the theory so far developed allows to capture this level of
complexity nor the empirical evidence has evidenced particular significant patterns,
we assume a simple linear impact, captured by the previously defined matrix Aij. In
other words, if Ei decreases by a proportion p, so does Aji;8j and each j faces a loss
of pAji. It is immediate to show that, in case of default of i, then the loss for j is
the entire amount due by i, 1 
 Aji. As a result of this, also the equity of each j that
has invested in i is impacted by the loss and its equity Ej will decrease in price as
well. This distress mechanism propagates along all counterparties in the network.
The linearity assumption must be intended as a paradigmatic case and future work
will deal with more refined adjustment schemes.

We are therefore interested in the dynamics of the equity levels for each
institutions. The DebtRank dynamics can be indeed thought as a process, starting at
0 and ending at T, where no further impact is seen. We can then see the evolutions
of the equity levels Ei.t/, t D 0; 1; : : : ;T. Let

hi.t/ D Ei.0/� Ei.t/

Ei.0/
D 1 � Ei.t/

Ei.0/
(12.4)
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be the cumulative relative loss on equity from 0 to t of the i-th institution. hi.t; 0/ 2
Œ0; 1� and the default event of i at t implies hi.t; 0/ D 1.

The further propagation along the network is the key aspect of DebtRank.
The mechanism proposed is based on feedback centrality, where the impact of
the distress of an initial node across the whole network is computed recursively.
However, unlike previously defined models of distress based on default cascade
dynamics, DebtRank differs in that the distress propagates along the network even
below the threshold of default. In order to quantify the indirect impact of i on all its
successors (i.e. all the nodes that can be reached from i), a process is introduced: as
a the value of the liabilities of a debtor decline in value, each credit will reduce their
equity in order to face these losses. The dynamic reads:

hi.t/ D min

8<
:1; hi.t � 1/C

X
j2SA

Aij.t/

Ei
hj.t � 1/

9=
; D

D min

8<
:1; hi.t � 1/C

X
j2SA

lij.t/hj.t � 1/

9=
; (12.5)

This iteration goes on for a finite number of steps T, at which point all nodes will
be either defaulted or still active. The recursive process comes into play as a node
becomes distressed at t when a predecessor went into distress and at least one of
its predecessors was in distress at t � 1. Defaulted nodes remove their links from
the network and, formally, they can be considered isolated nodes. This is formally
obtained by summing over the element in set SA in Eq. (12.5).5

In Ref. [11], the above described distress dynamics, starts (t D 1) because of an
initial shock r on the unit value of the external assets of each bank. This results in the
so-called “first-round” effects and banks record the relative equity loss hi.1/ D lei r.
Once this process starts, at t D 2; 3; : : : ;T, the reverberation dynamics follows
Eq. (12.5), leading to “second round effects”. In Ref. [11], hi.t/ is referred to as the
individual vulnerability of each bank i. This allows to compute loss distributions
under different scenarios and/or distribution of the initial shock r. In particular, it is
possible to compute also a global vulnerability, by considering the weighted average
of each individual vulnerability, with weights given by the relative equity at time
t D 0:

H.t/ D
X

i

Ei.0/P
j Ej.0/

hi.t/

5Further technical details on the motivations behind this dynamics, including a formal derivation,
can be found in Ref. [11].
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which expresses the relative amount of equity lost at time t. Different scenarios
for the initial shock r can be adopted, allowing to compute loss distributions and
standard risk measures for the individual institution and for the system as a whole.
Further details on the stress-test framework are covered in Sect. 12.6.

To conclude the discussion on the DebtRank dynamics, we draw the readers’
attention again to Eq. (12.5), which allows for an estimation of an upper bound of
the overall network effect from the initial distress to the final effect. Locally (i.e., at
each time step of the process), leverage plays the key role in that the impact is locally
proportional to the leverage of the distressed exposures. A further characterization
can be found as, indeed, the non-linear operator in Eq. (12.5) is bounded by the first
eigenvalue of the leverage matrix conditioned to the sum of those institutions that
have experienced a loss in equity for the first time. As such eigenvalue is increasing
with respect to the overall levels of leverage, it is possible to link again the level
of distress with the leverage. A formal derivation and further results are beyond the
scope of the present work.

12.4.3 Prociclicality and Systemic Risk

In Ref. [40], the authors consider again a situation of interlocked balance sheets
(Fig. 12.9), where the above mentioned leverage amplification is coupled with com-
mon asset exposures. In line with necessary adjustments to regulatory requirements,
the balance sheets’ dynamics is modeled in a dynamic stochastic settings, so that
banks adjust their Value-at-Risk to specific target levels. The idea of procyclicality
is explored within a framework where banks must be compliant to market risk-based
capital requirements and asset market liquidity. Banks’ compliance and liquidity
in the assets constitute the two dimensions of a table of market procyclicality
(Fig. 12.10). By assuming common asset-price shocks, a probability surface of

Fig. 12.9 The financial system as in Ref. [40]. The nexus hereby reflects the balance sheet
structure of banks as in Fig. 12.2



216 S. Battiston et al.

Fig. 12.10 The
procyclicality table

systemic default is derived. In particular, the system is perturbed with an aggregate
asset price shock which is endogenously determined within banking activity, thus
inducing a self-fulfilling dynamics. In particular, banks with high leverage will tend
to liquidate negatively shocked assets, thus leading to a potential devaluation spiral.
Again, overlapping portfolios, together with interbank claims generate prices drops.
An inverse relationship between the economic cycle, market liquidity and capital
requirement is found: when markets are liquid, strong capital requirements (which
are usually thought as being procyclical) do not increase default probabilities; on
the contrary, when the market is illiquid, weak capital requirements correspond to
higher probability of default.

The main findings show that systemic risk keeps being high if three conditions
occur at the same time: (1) bank compliance to target measure is strong, (2) the
market is illiquid and (3) the structure is imbalanced towards external funds.

Even though banks might be perfectly rational from an individual point of view,
from a systemic perspective this results in unwanted results. In fact, when banks are
synchronized, small effect are amplified.

From an empirical perspective, the U.S. sub-prime crisis (2007–2009) can be
taken as a paradigmatic example. Assets in the model would be the mortgage-
backed securities which, after the shock suffered the blow up of the U.S. housing
bubble. Being marked-to-marked and highly interconnected (via interbank lending),
many large institutions stopped lending to each other, freezing the interbank market.
Consistently with the findings of the mode, the Federal Reserve did indeed inject
additional liquidity and bought part of the mortgage-backed securities, thus reducing
banks’ exposures towards that class of assets.

This has macroprudential implications as risk management needs to be accom-
panied by ad hoc monetary policies aimed at compensating market liquidity in
presence of aggregated shocks.
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12.5 Network of Financial Networks: Selected Empirical
Works

12.5.1 The Interbank Network as a Multiplex

From the perspective adopted in the paper, another aspect needs to be taken into
account: modeling the interbank network as a one-layered network is a limiting
assumption. In fact, banks are increasingly connected along different dimensions.
Though useful as a first analysis, considering only one single layer captures
spillovers over the financial network as a whole, ignoring that distress can propagate
along different dimensions. Introducing more layers in the network allows for a
richer framework, where more types of relationships may occur. In order to capture
systemic distress for banks, in particular, it is useful to identify two dimensions in
the banking multiple network: the type of contract and the maturity of the contract.

Limiting the analysis to only one layer can indeed lead to over simplistic results.
For example, a shock on a short-term loan could lead to a liquidity distress that
can reverberate onto the other layers and generate, e.g., counterparty risk (in the
long-term linkage). A multi-layered network modeling framework is more apt at
capturing the increasingly complex and heterogeneous nature of financial linkages.
Figure 12.11 shows a stylized representation of the multi-layer interbank network.

The multi-layered structure of the interbank market is modeled, for example,
in Ref. [34] by developing an agent-based model. They focus on three different
layers: long term loans (thus capturing direct and indirect counterparty risk), short
term loans (direct and indirect liquidity risk) and common exposure to a certain
asset class (direct and indirect common exposure). Multiple network relationships
amongst banks can go beyond mere balance sheet exposures [13].

In Ref. [37] a descriptive analysis of the joint evolution of the interbank network
for credit and the interbank network for Credit Default Swaps (CDSs), i.e. two
interbank over-the-counter (OTC) markets for banking liquidity. Thus, the network
considered can be seen as a multiplex network with two different link types. The
empirical analysis focuses specifically on the German interbank network exploiting
data for more than 2000 German banks from the German large credit register.
The data span from the first quarter of 2002 to the third quarter of 2012, thus
encompassing different historical periods, including the financial crisis.

As a matter of fact, OTC markets are non-transparent due to the lack of data
availability and therefore can be a particular source of systemic risk. By coupling
the two networks in a multiplex, the authors can investigate potential correlations
in the behavior of banks along the two networks. The paper finds a striking level
of stability for most network variable over the entire period, thus showing that
interbank markets can be much less variable than expected. A certain variability in
the volumes concentration for the CDS was found, in that it increased remarkably
between 2005 and 2008 (i.e. in the build-up of the crisis) and decreased for the
following 3 years. Another interesting results it that the intermediation chains
remained constant in time, despite periods of high market volatility. Last, the data
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Fig. 12.11 The interbank network as a multiple network. A schematic representation of the
balance sheets of three banks akin to that of Fig. 12.2 is reported. The first layer (light blue color,
on the left) represents the exposures banks have to common assets. Shocks on this part of the nexus
will impair the asset side of the banks forcing for a balance sheet reduction. The layer in the center
(light orange) represents the “traditional” interbank lending. The last layer on the right (light red)
represents the CDS network, where pairs of banks are connected if they engage in one of these
contracts (links in red). Interestingly, other banks can be the reference entity for a contract (links
in purple)

shows a large degree of correlation between the network networks, thus implying a
certain level of similarity between the two layers of the multiplex.

Although interbank markets (including the German case) have been previously
extensively studied, this contribution represents the first where the CDS network
has been analyzed relying on actual exposure rather than reconstructed or inferred
networks (Fig. 12.12).

12.5.2 CDS Networks

Another level on the multiplex network of the interbank exposures can be found
in the subscription, by two different banking institutions, of a Credit Default Swap
(CDS), a particular type of derivative contract. A CDS can be briefly described as
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Fig. 12.12 From Ref. [37]. The graph on the left shows the dynamics (2002–2012) for the total
aggregate volume in the credit (red line, left axis) and the CDS (blue line, right axis). The graph
on the right shows the dynamics of the Herfindahl index for the degree and volume for the credit
network (red lines) and the CDS (blue lines)

follows: two parties i and j agree on the payment of a sum (e.g. from i to j) in the
case of the default of a so-called third party underlying or reference entity k. The
exposure of one banking institution towards, say, i to j can be big enough to trigger
the default of i. In this case, if i is the reference entity of other CDSs in the banking
system, new defaults can be triggered, therefore generating a cascade.

CDS data are often confidential and the contracts themselves traded over the
counter. As such, it is difficult to obtain data on CDSs that would involve some sort
of exposure for all (or at least a relevant subset of) banking institutions. However,
it is still possible to infer some sort of dependence structure starting from the time
series of the spreads. In ideal market conditions, in fact, spreads on Credit Default
Swaps should fully reflect the risk of the default of the underlying entity. Despite
this assumption, it has now been widely recognized that CDS spreads have followed,
rather than anticipated the financial breakdown. If CDSs were to price correctly the
risk of defaults, then the network of their correlations could be used an early warning
system, should it show some form of structural breakdown before a collapse.

Following this research question, in Ref. [35], the authors analyzed 176 CDS
time series of different financial institutions (for a time period spanning from 2002
to 2011), by building different networks of correlation. They observed that these
networks show some type of structural change at the onset of the crisis and not
before. Assuming that these network represent a proxy of the dependence structure
between pairs of companies, they further build a stress-test exercise based on Group
DebtRank. Interestingly, they found that systemic risk prior to the crisis (before
2008) rises only when taking into account a specific macroeconomic indicator
reflecting variations in the price of assets related to exposures in the housing sector.
By considering this macroeconomic proxy, the paper provides an argument in favor
of the incorporation of these quantities in order to detect systemic distress.
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Methods: Data and Network Construction

The HPI is defined as the ratio of the house price index over the yearly household
disposable income (source: http://www.fhfa.gov) and therefore expresses house
prices in terms of income. CDS data consists in 176 daily time series with maturity
5 years of top US and European financial institutions. Networks are built in six
different ways and all stem from a measure of comovements for the time series: (i)
a correlation network:

wij D 1 �
p
2.1� �ij/

2
; (12.6)

where �ij is the Pearson correlation coefficient (statistically significant correlations
are then considered); (ii) delayed correlation; (iii) Non-linear correlation; (iv)
Granger causality; (v) drawups.

Main Findings

A simple visual analysis of the daily time series for the CDS spread (Fig. 12.13),
show that the period 2002–2007 is characterized by low spread values and low
volatility (including some minor bursts in 2005). From the beginning of 2007,
spreads rapidly increase reaching values sometimes 10 or more times larger than
they were before. The same figure shows also the behavior of the average market
capitalization for the same set of companies. After a steady increase in the period
2002–2006, from the beginning of 2007 the average value decreases steadily and

Fig. 12.13 The left graph shows the average CDS price for the 176 institutions (in red) and the
average market capitalization (black). The graph on the right shows the house price index divided
by households’ disposable income

http://www.fhfa.gov
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Fig. 12.14 Time-series of the main network statistics with the different network construction
methods. Number of nodes (top left), degree (top right), density (bottom left). Average path length
of the minimum spanning tree (bottom right)

by the end of 2008 drops by almost 50 %. The point of inversion for the two curves
occurs almost at the same time. For the sake of our successive analyses, in Fig. 12.13
(right), the ratio of the house price index over the household disposable income,
denoted as HPI is compared.

Network Measures

The size N of the network is the number of non-isolated nodes. From a time series
perspective, this implies that the times series of one institution has to comove with
at least one other time series in a statistically significant way. The density of each
network is defined as the ratio between the existing links and the number of all
possible links. In other words, it measures the fraction of time series that have
statistically significant comovements. Figure 12.14 (bottom left graph), shows a
generally high network density, ranging from 20 % to 50 % depending on the method
and time periods. Interestingly, at the onset of the crisis, the density increases.
In other words, the level of interdependence between institutions in the network
increases, thus carrying potential implication for enhanced distress propagation.
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A gradual increase of the number of nodes, the number of links and their weights
is observable in time. It is also interesting to observe the structural change occurring
in the time period 2005–2007, with a relevant decrease in the average degree and
density. Notice that, with the rolling window method, the time interval is backward–
looking. The above described findings are quite similar across methods. Given the
high level of density of the networks, the authors extract the Minimum Spanning
Tree (MST) of each undirected network [14]. A particularly interesting quantity is
the average path among nodes in the MST. Figure 12.14 shows (bottom right) a
sharp increase of the average path within the MST in 2003, with a slight increase
later on.

Group DebtRank

Consider the subset Sf of nodes in the network, then one can define a Group
DebtRank, as the simple summation over all nodes belonging to Sf :

R D
X
j2Sf

hj.T/vj �
X
j2Sf

hj.1/vj

or, in other terms, R measures the distress induced by the system, not taking into
account the initial (exogenous) distress, hence giving a useful proxy for the network
effects.

In the two graphs reported in Fig. 12.15, the dynamics of Group DebtRank has
been reported for two different network construction methods (the Pearson on the

Fig. 12.15 Values of Group DebtRank for the Pearson network method (left graph) and the
Drawups method (right graph) for different scenarios
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left and the drawups method on the right). Higher systemic risk is reflected by higher
Group DebtRank values. Solid lines represents the dynamics of Group DebtRank
resulting from the combination of network effects and the macroeconomic shock,
whereas dashed lines refer to the impact on the system if only the shock is
considered. The colors refer to two different scenarios, a higher shock scenario
(red lines) and a lower shock scenario (blue lines). Both graphs show the impact
of network effects in the build up of the crisis. The distance between lines of the
same color can be interpreted as the amplification effect of the network. As shown
in the picture, such amplifications can even reach a factor of 4.

CDS Networks: Conclusions

From a pricing perspective, findings show that networks built from time series do not
capture systemic risk build-up in the system and therefore suggest that CDS do not
price correctly the risk of default. Comovement networks do not suggest particular
additional information. More to this, adopting a modified Group DebtRank approach
with macro-indicators leads to more interesting results that confirm the link towards
another part of the nexus, i.e. common exposures to assets.

12.6 Common Asset Exposures: A Novel Approach Based
on DebtRank

From our “nexus of interconnected networks” approach, the mechanics of common
exposures in determining fire sales can be further formalized in network terms.
In line with the balance sheet representation of Fig. 12.2 we introduce three
networks:

1. the already examined monopartite (N � N) interbank network, whose weighted
adjacency matrix is represented by Ab

ij;
2. the bipartite (N � M) bank/asset network, with weighted adjacency matrix Ae

ik;
3. the monopartite (M � M) asset network.

The asset network represents the common asset dynamics. It goes beyond the
scope of this work to explain the type of commonality each pair of assets shares.
However, from an intuitive point of view, these relationships can be thought of
as common price co-movements or, of a more mechanical nature, such as the
relation occurring between a derivative and its underlying. The network of common
exposure is then a key aspect of the distress process. Work in this direction has been
done, for example, in Ref. [31].
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12.6.1 Network of Assets

A detailed explanation of the network of assets goes beyond the scope of this
work. However, we would like to draw the reader’s attention towards the three main
points.

1. Assets do form a network on their own, by being linked because of various
economic reasons. For example, it is a reasonable assumption that the equity
price of a company active in the construction sector of a particular country
would somehow depend on the housing investment in that specific country. These
effects can be also generated by the productive structure of an economy.

2. Common exposures are not only related to production but also to a signaling
effect of market prices. For example if two firms have a similar asset structure,
bad news about the asset structure of one of the two firms will reflect onto the
other. So common exposures matter in determining the structure of the asset
network. Therefore, mapping common exposures and asset overlap becomes a
crucial aspect represent with a bipartite network on its own.

3. A more mechanicistic level exists between a derivative and its underlying. This
is, however, a quite complex notion that would require extensive research.

12.6.2 Estimations Using the DebtRank Approach

Common exposures towards the same asset class represent another level of inter-
connectedness between financial institutions, therefore they can be aptly integrated
in the nexus of networks we explore in this Chapter. In order to do so, we discuss
the main theoretical and empirical results of the stress-test framework proposed in
Ref. [11]. The authors focus:

1. from the theoretical point of view, on the development of a three-round proce-
dure, that models the dynamics of equity loss at the first (initial shock on external
assets), second (reverberation on the interbank market) and third (fire sales);

2. from the empirical point of view, they apply the stress-test framework to a set of
183 traded European banks.

The theoretical contribution builds on the leverage decomposition analyzed
in Sect. 12.2 and on the DebtRank distress propagation dynamics illustrated in
Sect. 12.4.2.

Consistently with Sect. 12.2, let le D Ae
i

Ei
and lb D Ab

i
Ei

be respectively the leverage
w.r.t. the external assets and the leverage w.r.t. the interbank lending market. If banks
have common asset exposures, a shock on the external assets would hit a number of
institution within the financial system. For sake of simplicity, the authors assume
that banks have common exposure to only one asset class. This, although being
a restrictive assumption, can be interpreted as having a number m of assets with
unitary correlation, so that the impact of the price is uniform and can be helpful
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in providing an upper bound for the computation of the total equity loss. The total
value of the asset is given initially by AE

i D Qip.0/, where Qi is the quantity (e.g.
shares) of asset held by bank i and p.0/ is the initial market price of the asset.

A Three-Round Stress-Test

Now, suppose that the price of the asset drops by an amount r < 0. The equity loss
dynamics is captured by Eq. (12.4). The following dynamic will take place:

1. First round. At the first round, every bank j holding the asset will experience
a loss in equity equal to lei r: therefore the impact is simply proportional to the
leverage ratio.

2. Second round. At the second round, the loss in equity will propagate towards
the neighbors (lenders) of j in the interbank network. If another bank i has lent to
bank j, the value of these obligations will be marked-to-market downwards. We
assume, consistently with the DebtRank approach, such reduction in the value
of the interbank assets to be proportional to the loss of value of the equity of
the neighbors (Eq. (12.5)). Assuming no default, all banks i exposed to j will
therefore lose value in equity equal to:

hi.2/ D hi.1/C
X

j

lijl
e
j r

In other terms, the impact is amplified multiplicatively by the product of the
two leverage ratios. The compounding effects of the two leverage subcomponents
is made explicit by computing a first order approximation (details on the
derivation in Ref. [11]):

hi.2/ D lei r C lbi lei r D r lei .1C lbi /

3. Third round. At the third round banks attempt to restore the previous leverage
ratio before the shock. If this is not possible by raising more equity, banks
will start selling assets in order to reduce their asset size and therefore meeting
leverage target [2, 40]. Each bank will try to target the original leverage levels
li.0/, by selling external assets in exchange of cash. The large aggregate supply
of asset will have a strong impact in reducing asset prices and therefore banks
will experience further losses (third round effects).

Since it goes beyond the scope of this Chapter to provide an analytical
derivation of the third round effects, we will hereby sketch the main points (the
reader can refer to [11] for the complete derivation). First, the loss on equity
before the third round is given by hi.T/ D lei .0/r.1/ C P

j lbijl
e
j s.1/. After some

passages, one can obtain a formula describing the quantity of external assets sold
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by each bank as:

�Qi

Qi.0/
D Di.0/

Qi Op

0
@r.1/C

X
j

lbijl
e
j

1
A (12.7)

By assuming a simple linear impact on prices, with � being the coefficient
used to measure the impact on price of the quantity of external assets sold, the
authors obtain the following analytical expression for the third round effects:

hi D �
lei C lei lei

	
r C �

Di

Qi

�
lei C lbi lei

	2
r (12.8)

which shows how the original shock compounds with the square of the product
of the two leverage subcomponents. Empirically, these quantities are typically
larger than one, therefore the overall effect of a shock can be extremely large. In
this light, Eq. (12.8) shows that:

a. the two leverage components (referring to two different networks in the nexus)
actually have a compounding effect;

b. neglecting the interaction of the two networks would lead to an underestima-
tion of the total possible effects.

The authors also provide an empirical application on a set of 183 listed European
banks. In Fig. 12.16, results of this exercise are reported. The left panel shows
a decomposition of first, second and third round effects, for an initial shock of
r D 0:01 on the global equity loss (global vulnerability). We observe that second

Fig. 12.16 Global vulnerability (From Ref. [11]). (Left) Time evolution for the global vulnera-
bility over a sample of 183 European banks, for an initial shock on external assets of 1%. The
breakdown in the stacked graph represents first, second and third order effects. (Right) Loss
distribution, VaR and CVaR at the first and second round, initial shocks on external assets are
drawn from a Beta distribution (see Ref. [11] for the technical details)
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and third round are at least of the same order of magnitude of the first round effects,
providing a compelling argument towards the inclusion of network and common
asset exposures effects in the current stress test frameworks. The right panel of
Fig. 12.16 shows how, by generating random value for r from a Beta distribution, the
framework allows for the estimation of loss distributions and for the computation
of standard risk measures such as VaR and CVaR. It also shows how these risk
measures can be severely underestimated if network effects are neglected.

12.7 Conclusions and Future Research

In this Chapter, we explored the idea that the financial system ought to be seen as
a nexus of interconnected networks, rather than an isolated networked system. Such
interconnections stem from the balance sheet structure of banks and they are quite
heterogeneous in nature.

By seeing the balance sheet model in terms of leverage, we have provided
a formulation of DebtRank that shows how leverage compounds in the final
effects in terms of distress. We then explored a network of exposures towards
other macroeconomic sectors, illustrating the concepts of network effects within
a macroeconomic block and network effects within blocks. By reviewing a series of
recent theoretical and empirical works, we show the importance of understanding
these further level of interconnections.

Particular emphasis has been given to networks of common exposures, in that
they can exacerbate initial shocks and leads to spirals of asset devaluation. In this
light, we sketched some modeling ideas to extend DebtRank in order to include
common exposures.

Further research will deal with refinement of the leverage-based DebtRank
approach. In particular, attention should be devoted to the understanding of the
relationship between individual and systemic risk from a leverage perspective.
From a regulatory point of view, this notion will then imply a reflection on the
mutual relationship between the level of interconnection of an institution and capital
requirements.
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