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Preface

A major part of research in physics involves solving the Schrödinger equation.
While one-body motion in a potential field and a two-body system with mutual
interaction are subject matters of standard texts of Quantum Mechanics, an ab initio
formal solution of the many-body Schrödinger equation for interacting many-body
systems is not commonly encountered. The reason for this is that mathematical
complexity increases enormously as the number of particles increases from two to
three. It is not just the difficulty arising from the increasing number of position
coordinates, but also the difficulty in imposing the desired symmetry of the system,
identification of appropriate conserved quantum numbers, etc. Naturally, physicists
tend to depend on approximate many-body techniques e.g. Born-Oppenheimer
approximation, variational and perturbation techniques, mean-field theories like
Hartree-Fock and Hartree-Fock-Bogoliubov methods, etc. or on the use of models,
e.g., shell, collective or liquid drop models in Nuclear Physics. However, a number
of problems involving systems containing a few particles demand description in
terms of coordinates of individual particles. In such cases it is necessary to handle
the few-body Schrödinger equation in an exact manner. Hyperspherical harmonics
is the appropriate basis for this. With developments in mathematical and compu-
tational tools, it is becoming increasingly easy to handle the hyperspherical har-
monics basis. Hence it is becoming popular as an effective tool in theoretical
research. The hypespherical technique is quite handy for use in the essentially exact
Monte Carlo methods for a fairly large number of interacting particles.
Unfortunately, there is a dearth of monographs dealing with the hyperspherical
technique. This monograph is aimed at fulfilling this necessity. Besides introducing
the hyperspherical variables (which are many-body generalization of ordinary
spherical polar coordinates) and hyperspherical harmonics basis for the expansion
of a many-body wave function, methods to introduce desired symmetry of the wave
function has been discussed. Approximation methods, which simplify the calcu-
lations, without loosing sight of the interesting physics sought after, have also
been included. Finally, discussion of a number of current topics in physics like
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Bose–Einstein condensation, where this technique has been very useful, have been
incorporated.
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Chapter 1
Introduction

Abstract Need for quantum mechanical solution of few-body to many-body sys-
tems in physics is emphasized. Requirement of appropriate symmetry of the wave
function under exchange of pairs of identical particles in the system is discussed.
Quantum numbers are introduced for classification of states. Good quantum numbers
are defined. Hyperspherical harmonics expansion method (HHEM) is an ab initio
technique which can be generalized for systems with more than three particles.

In problems of physics, one often needs the quantummechanical solution of systems
containing a few to a moderate number, and eventually to a large number of particles.
Examples are as follows:

1. An electron moving in an external field, say an electromagnetic field. This is an
example of a single particle moving under the influence of an external potential
field.

2. An electron moving in the field produced by a proton, but no externally applied
field (the hydrogen atom). This is an example of two particles moving under
mutual forces only. In this case, one can separate the two-body motion into a
center-of-mass (CM)motion and a relative motion governed by the mutual poten-
tial, as in the case of a classical system.

3. Two electrons moving in the field of a nucleus containing two protons and two
neutrons, but no externally applied field. This is the simple neutral Helium atom.
The nucleus is very strongly bound compared to the Helium atom and its size is
verymuch smaller than the size of the atom.Hence, to a very good approximation,
the nucleus can be treated as a single particle and the Helium atom as a three-body
system interacting through mutual Coulomb forces.

4. An atom containing N electrons is an example of an (N+1)-body system (assum-
ing the nucleus to be a single particle).

5. A nucleus consists of N neutrons and Z protons. Treating nucleons as ‘particles,’
the nucleus is an A-body system, where A = N + Z . Such a nucleus is usually
denoted by the symbol A

NXZ , where X is its chemical symbol. It is also denoted
by the symbol AX, since the chemical symbol X is associated with a unique value
of Z . The simplest nucleus, deuteron, is a two-body system consisting of a proton
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2 1 Introduction

and a neutron. Trinucleon nuclei, 32H1 and 3
1He2, are examples of nuclear three-

body systems. Considering the nucleon as constituted by three interacting quarks,
the nucleon itself is a three-body system. The energy and length scales of interest
in a particular study determine whether constituents of a ‘particle’ must be treated
individually or as a single entity treated as a particle.

6. The dilute Bose gas at a very low temperature is an example of a system con-
taining very large number of mutually interacting bosonic atoms. Below a critical
temperature, a macroscopic fraction of such atoms remains in the lowest energy
state. The system in such a state is called theBose–Einstein condensate. Although
the Bose–Einstein condensate behaves as a single quantum mechanical object,
having collective motions, it also exhibits the signatures of a many-body system.
In the following chapters, we will see that the quantum mechanical solution of a
many-body system is very difficult when the number of particles is greater than
three. However, if the system is so dilute that only two-body correlations are of
relevance, then themany-body Schrödinger equation can be solved to a very good
approximation, using the few-body techniques. Such a simplification is valid for
the Bose–Einstein condensate.

In most cases, a ‘particle’ is indeed a bound system of smaller constituents. In
all the above examples, we tacitly assume that a ‘particle’ is a point particle having
specified mass, spin, isospin, magnetic moment, etc. The energy scale under consid-
eration is small enough (it should be small compared to the binding energy against
its dissociation into the constituents), so that an aggregate of smaller constituents
can be considered as a single entity, to be treated as a ‘particle.’ If the energy scale is
higher (larger than or comparablewith the binding energy of the aggregate ‘particle’),
one has to treat all the constituents as separate particles. For example, in the atomic
system (example 4 above), typical energies are of the order of eV, while the binding
energy of the nucleus is of the order of MeV. Hence, in this case, the nucleus can be
treated as a ‘particle.’ Moreover, since the mass of the nucleus is much greater than
the mass of an electron, the nucleus can be treated as at rest. In what follows, we will
consider a physical system consisting of a fixed number of particles at non-relativistic
energies, so that the system is described by the Schrödinger equation.

In many problems of physics, the Hamiltonian is independent of time, at least to a
very good approximation. In this case, the total energy of the system (E) is conserved
(i.e., remains unchanged in time) and the time dependence of the wave function �

separates into a product of a wave function ψ dependent on the space variables of
the system and a function of time given by exp(− i

�
Et). The space-dependent wave

function ψ satisfies the time-independent Schrödinger equation, which is the eigen-
value equation of the time-independent Hamiltonian with eigenvalue E . Since E is
the eigenvalue of a Hermitian operator, it is real. All observable quantities of the sys-
tem involve bilinear combination of the wave function: the operator corresponding
to the observable being sandwiched between �∗ and �. In particular, the probabil-
ity density is the modulus squared of the wave function. Since E is real, the time
dependence of all the observables disappears. Such a state of the system is called a
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stationary state, meaning that even though the wave function has a time dependence,
the observables of the system (unless they have explicit time dependence) are time
independent.

For systems containing two ormore particles, there is a possibility that some of the
particles are identical. If the identical particles are bosons, i.e., particles of integral
intrinsic spin (0, 1, 2, . . . in units of �), the wave function must be symmetric under
the exchange of every pair of such particles. On the other hand, if the particles are
fermions, i.e., particles of half-integral spin ( 12 ,

3
2 ,

5
2 , . . .), the wave function must be

antisymmetric under exchange of every pair of such particles. Exchanging a pair of
particles means interchanging all the dynamical variables viz., position, spin, isospin,
etc. Thus newdegrees of freedom, like the spin and isospin, also come into the picture,
even if the Hamiltonian is independent of them. A system may contain a number of
identical bosons and a number of identical fermions. Then the total many-body wave
function should be symmetric under exchange of any pair of identical bosons and
antisymmetric under the exchange of any pair of identical fermions. However, no
symmetry is required under the exchange of nonidentical particles.

For the complete classification of the states, we have also to specify the quantum
numbers of the system. For simplicity, let us ignore isospin for this discussion. The
total orbital angular momentum of a system of A particles is the vector sum of orbital
angular momenta of all the particles: �L = �l1 + �l2 + · · · + �lA. The vector coupling of
the angular momenta will involve (A − 2) intermediate angular momenta. Likewise
the total spin of the system is �S = �s1 + �s2 + · · · + �sA. Total angular momentum
of the system is �J = �L + �S. There are five quantum numbers associated with the
i th particle: ni associated with the radial motion, li , mli associated with the angular
degrees of freedom, and si , msi associatedwith the spin degrees of freedom.However,
particles have a fixed spin value (for example, electrons have spin 1

2 ) and so only four
quantum numbers are necessary. Hence, a total of 4A quantum numbers are needed
for a complete classification. Not all of these are good quantum numbers. A quantum
number is said to be ‘good’ when the corresponding operator commutes with the
Hamiltonian. A quantum number which is not good is not conserved. i.e., an eigen
state of the Hamiltonian will, in general, be a mixture of states with different values
of such nonconserved quantum numbers. For a system of particles with mutual two-
body spin-independent central interactions only, with no external forces, L and S are
good and one can use the LS-coupling scheme. In this scheme, individual orbital and
spin angularmomenta are vector coupled to total orbital ( �L = �l1 + �l2 + · · · + �lA) and
total spin (�S = �s1 + �s2 + · · · + �sA) angular momenta. The resultant total orbital and
total spin angular momenta are then vector coupled to the total angular momentum
( �J = �L + �S). On the other hand, for spin-dependent mutual forces (for example,
with spin-orbit terms), the jj-coupling scheme should be used, with the total angular
momentum of the i th particle, �ji = �li + �si and the total angular momentum of the
system �J = �j1 + �j2 + · · · + �jA.

It is obvious that an ab initio solution of the Schrödinger equation for a many-
body system is the most desirable one. However, the complexity of the space part
alone increases gallopingly as the number of particles increases from two to three
and more. Moreover, the couplings of orbital and spin (as also isospin, where it is
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relevant) angular momenta become very complicated as A increases. In the following
chapters, we will discuss the hyperspherical harmonics expansion method (HHEM)
for gradually more complicated systems as A increases from 3. Fortunately, a large
number of important physical systems involve up to three particles, which can be
solved by this technique using the present-day numericalmethods inmodern comput-
ers (see Chaps. 3, 5 and 6). Systems containing four or five particles have been solved
by such techniques with some approximations (see Chap.4). The method can be uti-
lized in some bigger systems, where bound clusters of a few particles can be regarded
as a ‘single particle.’ Examples are alpha particle model of light A = 4n nuclei with
n = 3, 4, . . . (see Chap.4). Monte Carlo technique in the few-body hyperspherical
harmonics method has been successfully applied to systems containing up to 100
particles. A large number of particles can also be handled approximately, using a sub-
set called potential harmonics of the full hyperspherical harmonics set (see Chap.7)
for very dilute systems, like the Bose–Einstein condensates (BEC), as mentioned in
example 6 above. This will be discussed in Chap. 8.
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Chapter 2
Systems of One or More Particles

Abstract A particle moving in an external field is an example of one-body sys-
tem. The Schrödinger equation reduces to a single differential equation for central
potential. The relative motion of a two-body system with mutual potential reduces to
one-body Schrödinger equation. Symmetry of the wave function for identical parti-
cles is discussed. In this connection, spin and isospin and wave functions involving
them are introduced. Next many-body wave equation is written down and the need
for approximations and models stressed. Mean-field approximation and independent
particle model are introduced.

2.1 One-Body System: A Particle in a Potential Field

Wefirst consider the simplest system consisting of a single particle ofmassm moving
in an external time-independent potential V (�r). In the following, we review this
topic, which can be found in standard texts in quantum mechanics, for example
references [1–6]. The time-independent Schrödinger equation is

[
− �

2

2m
∇2 + V (�r)

]
ψ(�r) = Eψ(�r), (2.1)

where �r is the position vector of the particle of mass m and the Laplacian is

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

= 1

r2
∂

∂r

(
r2

∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂φ2
, (2.2)

(x, y, z) and (r, θ,φ) being the Cartesian and spherical polar coordinates of �r . The
Laplacian can alsobe expressed in termsof the orbital angularmomentumoperator L̂2

∇2 = 1

r2
∂

∂r

(
r2

∂

∂r

)
− L̂2

r2�2
, (2.3)
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6 2 Systems of One or More Particles

since L̂2 is given in spherical polar coordinates as

L̂2 = −�
2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂φ2

]
. (2.4)

The operator L̂2 satisfies an eigenvalue equation

L̂2Ylm(θ,φ) = �
2l(l + 1)Ylm(θ,φ), (2.5)

with eigenvalue �
2l(l + 1) and the spherical harmonics Ylm(θ,φ) as the correspond-

ing eigenfunction. Note that each component of �̂L commutes with L̂2, but compo-

nents of �̂L do not commute among themselves in pairs. Hence, only one component

of �̂L and L̂2 can simultaneously be specified. Conventionally, this component is
chosen as the z-component L̂ z , with eigenvalue m�. Ylm(θ,φ) is the simultaneous
eigenfunction of L̂2 and L̂ z .

If the potential is spherically symmetric, i.e., independent of the direction (θ,φ),
so that V (�r) = V (r) (such a potential is called central, since then the force is always
directed along the line joining the particle with the center), then the orbital angular
momentum (l) and its projection (m) are good quantum numbers (since the Hamil-
tonian commutes with both L̂2 and L̂ z) and the wave function has the form

ψnlm(�r) = Rnl(r)

r
Ylm(θ,φ). (2.6)

The factor 1
r is included to remove the first derivative with respect to r . The radial

Schrödinger equation satisfied by Rnl(r) becomes

[
− �

2

2m

d2

dr2
+ �

2l(l + 1)

2mr2
+ V (r) − E

]
Rnl(r) = 0. (2.7)

This second-order ordinary differential equation can be solved, subject to appropriate
boundary conditions to get the energy eigenvalue E and the radial wave function
Rnl(r). For a bound state, the probability of finding the particle must be finite only
within a finite region of space and vanish at great distances from the center. Hence,
Rnl(r) must be square integrable and vanish for r → ∞. From Eq. (2.7), we see
that this requirement is satisfied if E < V (∞). Moreover, since ψ should be finite
everywhere, Eq. (2.6) shows that Rnl(r) must also vanish at the origin. Imposition
of these boundary conditions at the origin and at r → ∞ makes energy eigenvalue
(E) discrete and less than V (∞) for the bound state. The quantum number n is
usually associated with numbering the discrete energy eigenvalues consecutively
with increasing energy, for a particular l. Taking n = 0 for the lowest energy state
for a particular value of l, n is the number of nodes in the radial wave function Rnl(r).
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For the unbound scattering state, probability of finding the particle at a large distance
is nonvanishing. Hence, E > V (∞) and energy eigenvalues form a continuum [7].
In this case, the discrete quantum number n is replaced by the energy eigenvalue
E . The boundary conditions on the radial wave function are RE,l(r) vanishes at the
origin, while it oscillates with a finite amplitude as r → ∞.

If the potential has a simple form, like an infinite squarewell, a harmonic oscillator,
or a Coulomb potential, the radial equation can be solved analytically, although for
most other potentials, analytic solutions are not possible. What is the inherent reason
that only some potentials admit exact analytic solutions? This can be understood
from the concept of supersymmetric quantum mechanics. Using the technique of
supersymmetric quantum mechanics [8], one can obtain a supersymmetric partner
potential for any given potential. Then it can be shown that exact algebraic solutions
can be obtained for a potential, if the potential and its supersymmetric partner have
the same mathematical shape, but involves different parameters. Such a potential is
called a shape invariant potential. It has been shown that only a few potentials belong
to this category, the infinite square well, the harmonic oscillator, and the Coulomb
potentials being some of them [8].

Unfortunately,most of the potentials appearing in physical problems do not permit
any analytical solution. In such cases, we need to solve the Schrödinger equation
numerically. Usually, the second-order differential equation (2.7) is written as a
system of two coupled first-order differential equations, which are then solved by
a standard technique, e.g., the Runga–Kutta algorithm [9]. Choosing an initial trial
energy, the integration is done in two parts: outward from the origin to a suitably
chosen match radius (rM ) and inward from a large enough value of r to rM . Next the
trial energy is changed until the log derivatives at r = rM obtained from the inward
and outward integrations match (usually done by a root-finding algorithm [9]). This
gives the eigen energy. The wave function obtained at this energy is then normalized
to get the final normalized wave function. The method will be discussed in detail in
Chap.10.

2.2 Two-Body System with Mutual Interaction

Wenowconsider the nextmore complex system, viz., the two-body system interacting
through mutual forces. In addition to solving the two-body Schrödinger equation,
we have to worry about the symmetry of the wave function, if the particles are
identical [1]. This brings the spin of the particle into consideration, even if the
potential is spin independent. If, in addition, the mutual force depends on the spins
of the particles, additional terms in the Hamiltonian coming from the spins are to
be considered. Thus we see that the system already starts to be complicated, even
when it contains only two particles. First, we discuss how the two-body Schrödinger
equation in space variables can be solved in a suitable way.

http://dx.doi.org/10.1007/978-81-322-2361-0_10
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2.2.1 Two Distinct Particles

For a system consisting of two particles of masses m1 and m2 with position vectors
�r1 and �r2 and interacting through a mutual time-independent potential V (�r1 − �r2),
the Schrödinger equation is (for the moment we ignore spin variables)

[
− �

2

2m1
∇2

1 − �
2

2m2
∇2

2 + V (�r1 − �r2) − ET

]
�(�r1, �r2) = 0, (2.8)

ET is the total energy of the system and

∇2
i = ∂2

∂x2
i

+ ∂2

∂y2i
+ ∂2

∂z2i

= 1

r2i

∂

∂ri

(
r2i

∂

∂ri

)
+ 1

r2i sin θi

∂

∂θi

(
sin θi

∂

∂θi

)
+ 1

r2i sin
2 θi

∂2

∂φ2
i

. (2.9)

where (xi , yi , zi ) are the Cartesian coordinates and (ri , θi ,φi ) are the spherical polar
coordinates of �ri (i = 1, 2). In order to solve this equation, one can easily separate the
relativemotion from the center-of-massmotion, by introducing the relative vector [7]

�r = �r1 − �r2 (2.10)

and the center-of-mass vector

�R = m1�r1 + m2�r2
m1 + m2

. (2.11)

By a straight forward evaluation of the partial derivatives, we can verify that

1

m1
∇2

1 + 1

m2
∇2

2 = 1

μ
∇2

r + 1

M
∇2

R, (2.12)

where ∇2
r and ∇2

R are the Laplacians with respect to �r and �R, respectively, M =
m1 + m2 is the total mass and

μ = m1m2

m1 + m2
(2.13)

is the reduced mass of the system. Since the Laplacian of the two-body system
separates into the sumofLaplacians of the relative and the center-of-mass coordinates
and the potential is a function of �r only, the eigenfunction� [expressed as a function
of �r and �R, using Eqs. (2.10) and (2.11)] becomes separable into a product of the
relative and the center-of-mass wave functions

�(�r , �R) = ψ(�r)�( �R). (2.14)
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Substituting Eq. (2.12) in Eq. (2.8) and dividing throughout by �, we have

1

ψ(�r)

[
− �

2

2μ
∇2

r + V (�r)

]
ψ(�r) = 1

�( �R)

[
�
2

2M
∇2

R

]
�( �R) + ET . (2.15)

We note that the left side is a function of �r only, while the right side is a function of �R
only. This can be true for arbitrary values of �r and �R, only if each side is a constant,
independent of �r and �R. Calling this separation constant E , we have

[
− �

2

2μ
∇2

r + V (�r)

]
ψ(�r) = Eψ(�r) (2.16)

[
− �

2

2M
�∇2

R

]
�( �R) = EC M�( �R), (2.17)

where EC M = ET − E is the energy of the center-of-mass motion, E is the energy of
the relative motion, and ET is the total energy. Equation (2.17) shows that the center-
of-mass of the system moves like a free particle of mass M (sum of the individual
masses) and momentum �P = � �K

�( �R) = Cei �K . �R, (2.18)

where C is a normalization constant and EC M = �
2K 2

2M . This is expected, since there
is no external force and the entire system of two particles moves like a free body as
a single entity. Since only the relative motion of the two particles under their mutual
force is of physical interest, we need to consider only Eq. (2.16). This is the same
as the one-body Schrödinger equation (2.1). Thus a two-body system under mutual
force only is equivalent to the motion of a single fictitious particle of mass μ moving
in a potential field V (�r). This equation can be solved as discussed in the last section.

2.2.2 Two Identical Particles: Symmetry of Wave Function

As mentioned at the beginning of this section, we have to worry about the symmetry
of the wave function, if the particles are identical (hence m1 = m2). The two-body
wave function should be symmetric for two identical bosons (integral spin particles)
and antisymmetric for two identical fermions (half-integral spin particles).

We first discuss the symmetry of the space part of the wave function, ignoring
the spin degrees of freedom for the time being. The symmetric (upper sign) and
antisymmetric (lower sign) wave functions under pair exchange operator P12 satisfy

P12�(�r1, �r2) = �(�r2, �r1) = ±�(�r1, �r2). (2.19)
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Now, Eqs. (2.10) and (2.11) show that under this exchange �r becomes −�r , while �R
remains unchanged. Hence, the center-of-mass motion remains unaffected while the
relativewave functionψ(�r)becomesψ(−�r). This corresponds to the parity operation,
�r → −�r = (r,π − θ,π + φ), and the spherical harmonics in Eq. (2.6) becomes

Ylm(π − θ,π + φ) = (−1)lYlm(θ,φ). (2.20)

Hence, Eq. (2.19) will be satisfied only if l is even for upper sign (symmetric wave
function) and odd for lower sign (antisymmetric wave function). In the following,
we will see how the full wave function (including spin wave function) should be
properly symmetrized.

2.2.3 Inclusion of Spin Degrees of Freedom

Next we consider a two-body system in which spin degrees of freedom come into
play. In the most general case, the forces may depend on spin, position, and orbital
angular momentum. The total spin S (where �S = �s1 + �s2, �si being the spin operator
of the i th particle, i = 1, 2) and its projection MS , as well as the orbital angular
momentum l (where �l = �l1 + �l2, �li being the orbital angular momentum of the i th
particle), and its projection ml are good quantum numbers, if either the total mutual
force is spin independent or if it contains �s1 · �s2 only. However, if there is spin-
orbit force (�l.�S) the good quantum numbers are l, S, J, MJ where J and MJ are
the eigenvalues corresponding to the total angular momentum ( �J = �l + �S) and its
projection. For tensor force [given by 3(�σ1.r̂)(�σ2.r̂) − (�σ1.�σ2), where �σi is the Pauli
spin operator for the i th particle], there can be l mixing.

First, we consider two distinct particles for the simple case where l, S, ml , MS

are good. Typical examples are the simple model of the hydrogen atom, where the
interaction between the proton and the electron is spin independent or a simplemodel
of the deuteron nucleus, where the interaction between the proton and the neutron
depends on S (ignoring the tensor force). For the simple model of the hydrogen atom,
since spin does not appear at all, the spin wave function is either singlet (S = 0) or
triplet (S = 1) and is commonly suppressed. Themost important part of nuclear force
is spin dependent (contains �s1.�s2), the force in the triplet state being more strongly
attractive than that in the singlet state. In the simple model of deuteron (with proton
and neutron treated as distinct particles), the singlet (S = 0) and triplet (S = 1) states
are independently calculated (temporarily suppressing spin variables) with singlet
and triplet potentials, respectively.

The total wave function now becomes a product of space and spin wave functions

�T otal(1, 2) ≡ �T otal(�r1, �s1, �r2, �s2) = �(�r1, �r2)χ(�s1, �s2), (2.21)
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where �si is the spin variable, given by the spin and its projection operators, {ŝi , ŝi z},
of the i th particle (i = 1, 2). If the particles are distinct, there is no requirement of
symmetry of the total wave function. If the interaction is spin independent (as in the
case of simple hydrogen atom), χ(�s1, �s2) can take any of the possible S, MS values,
while �(�r1, �r2) remains the same. If there is spin-dependent force (as in the simple
deuteron model), for each possible χ(�s1, �s2), the space wave function �(�r1, �r2) will
be different, depending on the potential, which depends on �s1.�s2.

Next consider two identical particles. Since the total wave function has to be
symmetric for identical bosons and antisymmetric for identical fermions, the product
� χ should have the appropriate symmetry. Thus for bosons, both space and spin
wave functions must be symmetric or both must be antisymmetric. For fermions,
if one is symmetric, the other must be antisymmetric. We already saw that � is
symmetric or antisymmetric for even or odd l, respectively. The spin wave function
χ is symmetric or antisymmetric for S = 1 or S = 0, respectively. If l, S, ml , MS are
good (no mixing of l and S), we simply have to combine appropriate symmetry of
� and χ in Eq. (2.21). If there is mixing of l or S, the right side of Eq. (2.21) should
be a sum of appropriate combinations of � and χ, corresponding to possible (l, S)

values.

Two-Body Spin Wave Function

Denoting the spin state of the i th particle by |si , msi 〉 (where msi is the eigenvalue of
ŝi z), the two-body spin wave function becomes

χ(�s1, �s2) ≡ |s1, s2, S, MS〉 =
∑

ms1 ,ms2

〈s1, ms1 , s2, ms2 |S, MS〉|s1, ms1〉|s2, ms2〉,
(2.22)

where 〈s1, ms1 , s2, ms2 |S, MS〉 is a Clebsch–Gordan (CG) coefficient. The spin wave
function is represented by the ket vector. S and MS are, respectively, the total spin
and its projection

�S = �s1 + �s2,
MS = ms1 + ms2 . (2.23)

By angular momentum selection rule |s1 − s2| ≤ S ≤ (s1 + s2), i.e., S can take the
values |s1 − s2|, |s1 − s2| + 1, |s1 − s2| + 2, . . . , (s1 + s2). It can easily be seen that
the state with the maximum spin S = s1 + s2 will be symmetric, the state with next
lower S will be antisymmetric, the next lower one symmetric, and so on.

2.2.4 Introduction of Isospin Degrees of Freedom
for Nucleons

The nucleons, viz., the proton and the neutron, have nearly the samemass and both are
spin 1

2 particles. It is known experimentally that the nuclear parts of their interactions
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are the same, at least at low energies. So they can be treated as two states of a single
particle called nucleon. A fictitious ‘spin,’ in analogy with the common spin, is
associated with the nucleon and called isospin, such that the proton and the neutron
are two states with a different ‘isospin projection’ of the nucleon. Since there are
only two projection states of the nucleon, its isospin is t = 1

2 . The projections (called
ti3 instead of tiz , since �ti is not really a vector in three-dimensional coordinate space)
of proton and the neutron are 1

2 and − 1
2 , respectively. Note that this is a purely

mathematical construction for convenience and the isospin is not a physical quantity.
If �ti is the isospin of the i th particle, the total isospin of two nucleons is �T = �t1 + �t2.
Then in exact analogy with Eq. (2.22), one can construct isospin state |t1, t2, T, MT 〉
of two nucleons. Clearly, T can take two values, viz. 0 and 1, which are, respectively,
antisymmetric and symmetric under P12 in the isospin space. With the introduction
of this isospin degree of freedom, the total wave function becomes

�T otal(1, 2) ≡ �T otal(�r1, �s1, �t1; �r2, �s2, �t2) = �(�r1, �r2)χ(�s1, �s2)τ (�t1, �t2), (2.24)

where τ (�t1, �t2) is the two-body isospin wave function. The total wave function must
be antisymmetric under P12, i.e., out of the space, spin, and isospin wave functions,
either all three can be antisymmetric, or only one antisymmetric and the other two
symmetric. Thus for two nucleons, T = 1 states can be spin-triplet odd l (abbreviated
as triplet-odd) or spin-singlet even l (singlet-even). Similarly, T = 0 states can be
triplet-even or singlet-odd. Note that with the introduction of isospin, the deuteron
is a two-body system of identical particles. However, without the isospin, it is a
system of two distinct particles. Both the descriptions are valid, although imposition
of symmetry actually reduces the number of possibilities and thus simplifies the
problem.

2.3 System of Several Particles

The situation becomes already complicated,when threemutually interacting particles
are involved, since itwill involve two relative vectors, after removal of theCMmotion.
Clearly, the situation worsens rapidly as the number of interacting particles in the
system increases. In the next chapter, we will discuss the three-body system in detail.
In this section, we discuss some general features of the A-body system.

The Schrödinger equation for a system of A particles of mass mi (i = 1, A),
interacting through pair-wise mutual forces, is

⎡
⎣−

A∑
i=1

�
2

2mi
∇2

i +
A∑

i< j=2

V (�ri − �r j )

⎤
⎦�(�r1, �r2, . . . , �rA) = E�(�r1, �r2, . . . , �rA).

(2.25)
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The restriction i < j = 2, A in Eq. (2.25) is needed to avoid double counting of
pair-wise interactions. In this case also, we can separate the center-of-mass (CM)
motion in terms of the CM vector �R. In addition, there will be N = (A − 1) relative
vectors to describe the space part of the relative motion. For a mutually interacting
system without any externally applied field, the CM motion is not important, and
only the relativemotion has to be studied. This involves (3A − 3) degrees of freedom
for the space part alone. Associated algebraic procedure is very involved, as we will
see in the following chapters. Imposition of symmetry is also very complicated. For
A ≥ 3, there will be states of mixed symmetry, in addition to states, which are totally
symmetric or totally antisymmetric under pair exchanges. Introduction of spin of
the particles (and isospin, if it is relevant) will further complicate the form of the
total wave function. For a system of identical bosons or fermions, the total wave
function with the appropriate symmetry will be obtained as a sum of products of
space and spin (and also isospin, where the latter is relevant) wave functions of
conjugate symmetry, such that each product has the desired symmetry. Clearly, this
is going to be a nontrivial exercise and will be dealt in the following chapters.

2.3.1 Independent Particle Model: Mean-Field Description

However, the situation simplifies immensely, if the total interaction of a system of
identical particles (with mi = m, i = 1, A) is separable and

∑A
i< j=2 V (�ri − �r j ) can

be replaced by
∑A

i=1 V (�ri ), such that each individual particle is subjected to the same
potential field V (�r). Then Eq. (2.25) is replaced by

[
−

A∑
i=1

�
2

2m
∇2

i +
A∑

i=1

V (�ri )

]
�(�r1, �r2, . . . , �rA) = E�(�r1, �r2, . . . , �rA). (2.26)

In this case, the many-body wave function is separable into a product of single-
particle (s.p.) wave functions

�(�r1, �r2, . . . , �rA) =
A∏

i=1

ψαi (�ri ), (2.27)

with

E =
A∑

i=1

εαi , (2.28)

where ψαi (�ri ) satisfies a single particle Schrödinger equation

[
− �

2

2m
∇2

i + V (�ri )

]
ψαi (�ri ) = εαi ψαi (�ri ). (2.29)
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Here αi represents an abbreviated form of s.p. quantum numbers (a set of three
quantum numbers for the space wave function) associated with a particular s.p. state
|αi 〉 of the Hamiltonian ĥi = − �

2

2m ∇2
i + V (�ri ). The full Hamiltonian of the system

is Ĥ = ∑
i ĥi . Since ĥi is the same for all i , the subscript i can be dropped in

Eq. (2.29). Thus the many-body problem reduces immediately to the solution of a
one-body problem, which is easy to solve and has already been discussed.

It may appear that the satisfaction of the condition
∑A

i< j=2 V (�ri − �r j ) = ∑A
i=1 V (�ri )

is extremely fortuitous and very unlikely in a real physical situation. Indeed, we
may never be so lucky as to have this condition exactly satisfied. However, in a real
situation like a nucleus (with many nucleons) or an atom (with many electrons), it
may not be very far from truth. In such a case, each one of the particles (nucleons
or electrons) moves in the same common field produced by all the remaining parti-
cles in the system. Hence, to a good approximation, each particle moves in the same
mean field V (�r), produced as a result of interactions and motions of all the remaining
particles. This physical scenario may be understood by the following crude analogy.
Consider a merry-go-round, in which each individual can go in completely random
and fast orbital motion. Then a particular individual will not ‘see’ any other particu-
lar individual, but only a cloud (‘field’) around himself, due to fast relative motions
of all others. However, every other individual will ‘see’ the same cloud. Thus, the
sum total of all the individual interactions will effectively be seen as each individual
experiencing the same common field. This is the physical basis of the mean-field
theory (MFT). This leads to the highly successful shell model in a nucleus or in an
atom. The difference

∑A
i< j=2 V (�ri − �r j ) − ∑A

i=1 V (�ri ), called residual interaction,

can be treated as a perturbation. In the MFT, the mean field V (�r) can be calculated
using suitably chosen trial single-particle wave function ψαi (�ri ). This is then substi-
tuted in Eq. (2.29) and a fresh set of ψαi (�ri ) recalculated. This process is repeated
until convergence is achieved.

If the particles in the system (a nucleus or an atom in the above example) are
identical, we have to symmetrize the wave function appropriately. Since the particles
are identical, any permutation of the particle indices leaves theHamiltonian invariant.
Thus the system obeys permutation symmetry and energy eigenvalues are degenerate
under permutation operations. We can see this from Eqs. (2.27) and (2.28). Any
permutation of the particle indices produces another wave function which is different
and orthogonal to the original one, but corresponds to the same energy. Hence, any
linear combination of these degenerate eigenfunctions is also a solution belonging
to the same energy. The symmetrization postulate demands that the physical wave
function be totally symmetric or totally antisymmetric under any pair exchange,
for a system of identical bosons or identical fermions, respectively. Hence, totally
symmetric or totally antisymmetric linear combinations of Eq. (2.27) should be
chosen for a boson system or a fermion system, respectively. Now, any permutation
(P̂) can be obtained as a set of nP successive pair exchanges. Hence, the symmetric
wave function is
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�(symmetric)(�r1, �r2, . . . , �rA) = 1√
A!

∑
P̂

P̂
A∏

i=1

ψαi (�ri ), (2.30)

and the antisymmetric wave function is

�(antisymmetric)(�r1, �r2, . . . , �rA) = 1√
A!

∑
P̂

(−1)n P P̂
A∏

i=1

ψαi (�ri ). (2.31)

The factor 1√
A! in front is the normalization constant, since each s.p. wave function

ψαi (�ri ) [as also �(�r1, �r2, . . . , �rA)] is normalized and there are A! permutations. As
spin (and isospin for nucleons) degrees are relevant for identical particles, the abbre-
viated quantum number αi will now include spin (and isospin for nucleons) and
their projections. Including the spin degrees of freedom, the variable �ri is replaced
by the abbreviated notation i (for the i th particle), which stands for {�ri , �si }. With
the addition of isospin, i represents {�ri , �si , �ti }. With this notation, the antisymmetric
wave function, Eq. (2.31), is just the determinantal wave function

�(antisymmetric)(1, 2, ..., A) = 1√
A!

∣∣∣∣∣∣∣∣∣∣

ψα1(1) ψα1(2) ... ψα1(A)

ψα2(1) ψα2(2) ... ψα2(A)

... ... ... ...

... ... ... ...

ψαA(1) ψαA(2) ... ψαA(A)

∣∣∣∣∣∣∣∣∣∣
. (2.32)

This determinant is called the Slater determinant. Any pair exchange of two particles
corresponds to exchanging two columns of this determinant,which results in the same
determinant with a negative sign. Thus, it clearly shows that this wave function is
antisymmetric under any pair exchange.

2.3.2 Many-Body Description

The discussion in the previous subsection considers the total wave function as a
product wave function. This is an independent particle model of the system and is
exact only if the total Hamiltonian is separable in the particle indices. For an exact
treatment of a realistic case, Eq. (2.25) must be solved. As we explained earlier,
the treatment of the space part becomes very complicated as the number of parti-
cles increases. In addition, imposition of the required symmetry of the total wave
function becomes quite involved. This is because unlike the simple product wave
function where only a particular linear combination of the s.p. wave functions gives
the desired symmetry, one has to sum combinations of space wave function of a
particular (including mixed) symmetry with spin wave function (and isospin wave
function, where it is relevant) of the conjugate symmetry. We will see how this can
be done for the trinucleon system in Chap. 5.

http://dx.doi.org/10.1007/978-81-322-2361-0_5


16 2 Systems of One or More Particles

References

1. Sakurai, J.J.: Modern Quantum Mechanics, 2nd edn. Addison-Wesley, Delhi (2000) (Indian
reprint)

2. Greiner, W.: Quantum Mechanics: An Introduction. Springer, New Delhi, 2004; Quantum
Mechanics: Special Chapters. Springer, Berlin (1998)

3. Shankar, R.: Principles of Quantum Mechanics, 2nd edn. Springer, New Delhi (2008) (Indian
Reprint)

4. Goswami, A.: Quantum Mechanics. Overseas Press, New Delhi (2009)
5. Scheck, F.: Quantum Mechanics. Springer, Bernin (2007)
6. Reed, B.C.: Quantum Mechanics. Jones and Bartlett Publishers, New Delhi (2010)
7. Schiff, L.I.: QuantumMechanics, 3rd edn. McGraw-Hill Book Company Inc., Singapore (1968)
8. Cooper, F., Khare, A., Sukhatme, U.: Phys. Rep. 251, 267 (1995)
9. Press,W.H., Teukolsky, S.A., Vetterling,W.T., Flannery, B.P.: Numerical Recipes in FORTRAN:

The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)



Chapter 3
Three-Body System

Abstract Hyperspherical harmonics (HH) expansion method is introduced for the
three-body system. Jacobi coordinates are defined, in terms of which the center of
massmotion separates for amutually interacting system. Hyperspherical coordinates
and hyperangular momentum are introduced. Analytical expression for the eigen-
function (called HH) of the latter is derived. Expanding the relative wave function
in the complete basis of HH and substituting in the Schrödinger equation, a sys-
tem of coupled differential equation is derived. Symmetrization of the HH basis
using the Raynal–Revai coefficients (RRC) is discussed. Calculation of the potential
matrix elements (PME) is facilitated by multipolar expansion of the potential in the
HH basis. Then PME becomes a sum of products of potential multipoles and geo-
metrical structure coefficients (GSC). An elegant method for calculation of GSC is
developed using the completeness property of the Jacobi polynomials. An explicit
expression is obtained for central potentials.

In this chapter we consider the three-body system, which comes next to the two-
body system, in order of difficulty of handling. We will discuss the hyperspherical
harmonics (HH) expansion method (HHEM) for an ab initio solution of the three-
body Schrödinger equation. Details of this technique can be found in the lecture
notes [1] and review articles [2, 3]. Even though this method can be formulated for
an arbitrary but finite number of particles, we will discuss the simplest case of three
particles in this chapter. In the next chapter we will see how this technique can be
generalized for a larger number of interacting particles. In doing so, we will see the
beauty of the mathematical process of going from an A-body system to the next
(A + 1)-body system.

In HHEM the three-body relative wave function is expanded in the complete set
of HH, which are the six-dimensional generalization of ordinary (three-dimensional)
spherical harmonics. This method reduces the Schrödinger equation for the relative
motion into a set of coupled differential equations in one variable, called the hyperra-
dius. Analytic expressions for the HH are given in closed forms, in terms of standard
orthogonal polynomials. Using these, a major part of coupling matrix element can be
calculated analytically, leaving a simpler integral to be evaluated numerically. Hyper-
spherical formalism was originally introduced by Zernike and Brinkman in 1936 [4]
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and developed by Delves [5] and Smith [6] in the early 1960s. Ballot and Fabre [7]
applied themethod to the trinucleon system in the early 1980s. Since then thismethod
has been developed to its full potential, including some modifications [8–12]. In this
chapter, we will closely follow the approach of Ballot and Fabre [7].

An alternative basis, which incorporates the required symmetry of the three-body
system was introduced by Simonov [13]. However, this procedure cannot be gener-
alized to larger number of particles in an obvious manner. Moreover the convergence
rate of this expansion was found to be too slow to be convenient for realistic poten-
tials. The Ballot–Fabre approach, together with optimal subset and potential basis
(see Sect. 4.5 of Chap.4), is more convenient. As a result the Simonov basis has been
used only rarely [14]. Hence we will not discuss the details of this method.

For simplicity, we consider three identical particles of mass m each, at position
vectors �r1, �r2, �r3, and interacting through mutual two-body forces. The treatment can
easily be generalized for particles of different masses (hence nonidentical). There
are many such systems in nature. Examples are: the trinucleon systems, 3H and 3He
(neutron and proton are identical particleswhen isospin is taken into account), trimers
of inert gases like He, Ne, Ar, etc. The Schrödinger equation for the system is

⎡
⎣−

3∑
i=1

�
2

2m
∇2

i +
3∑

j>i=1

V (�ri − �r j )

⎤
⎦ψ(�r1, �r2, �r3) = ET ψ(�r1, �r2, �r3). (3.1)

When the interactions are mutual and there are no external forces, the CM motion
can be separated. There are several possibilities for introducing the relative vectors.
We will use the Jacobi coordinates, for which the Jacobian of the transformation is
unity.

3.1 Jacobi Coordinates

To separate the center of mass (CM) and relative motions, we introduce the following
system of vectors, called Jacobi coordinates

�ξ1 = �r2 − �r1 = �r12
�ξ2 = 2√

3
[�r3 − 1

2
(�r1 + �r2)] = √

3(�r3 − �R)

�R = 1

3
(�r1 + �r2 + �r3). (3.2)

�R is the CM coordinate and �ξ1, �ξ2 describe the relative motion. Note that the set of
Jacobi vectors is not unique. Equation (3.2) is for the ‘partition’ {(12)3}. The partition
{(i j)k} (with i, j, k a cyclic permutation of 1, 2, 3) is defined to be that set of Jacobi
coordinates for which �ξ1 = �ri j ≡ �r j − �ri and �ξ2 = √

3(�rk − �R). Separation of the

http://dx.doi.org/10.1007/978-81-322-2361-0_4
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kinetic energy (KE) term into the KE of the relative motion and the KE of the CM
motion follows from

1

2

3∑
i=1

∇2
�ri

=
2∑

j=1

∇2
ξ j

+ 1

6
∇2

�R . (3.3)

Above equation can easily be verified using partial derivatives andEq. (3.2). Note that
the Jacobian of the transformation {�r1, �r2, �r3} → {�ξ1, �ξ2, �R} is unity. Substitution of
Eq. (3.3) in Eq. (3.1) separates the latter into a Schrödinger equation for the relative
motion (depending on �ξ1, �ξ2 only) and a Schrödinger equation for the motion of the
center of mass (depending on �R only)

[
− �

2

m

(
∇2

�ξ1 + ∇2
�ξ2

)
+ V (�ξ1, �ξ2)

]
�(�ξ1, �ξ2) = E�(�ξ1, �ξ2)

[
− �

2

2M
∇2

�R
]
�( �R) = ECM�( �R), (3.4)

where E and ECM are the energies of relative motion and CM motion respectively,
ET = E + ECM is the total energy and ψ(�r1, �r2, �r3) = �(�ξ1, �ξ2)�( �R). Note that all
the relative separations of the three particles can be expressed in terms of �ξ1 and �ξ2.
The second of Eq. (3.4) shows that the CM moves as a free particle of the total mass
M = 3m and the first equation describes the relative motion of the three mutually
interacting particles. This can be understood, as there is no external force on the
system.

Solution of the CM equation is trivial. Thus the problem reduces to a solution
of the Schrödinger equation for the relative motion. This is similar to the two-body
system, where the relative motion is described by one three-dimensional relative
vector �r . For the three-body system, we need two three-dimensional relative vectors
�ξ1, �ξ2. These two vectors have a total of six components, which together define a
six-dimensional vector space. In analogy with the three-dimensional spherical polar
coordinates, we define a six-dimensional hyperspherical polar coordinates (which
is simply called the ‘hyperspherical coordinates’) constituted by a hyperradius

ξ =
√

ξ21 + ξ22 (3.5)

and a set of five ‘hyperangles’, consisting of the four spherical polar angles: (ϑ1,ϕ1)

of �ξ1 and (ϑ2,ϕ2) of �ξ2 and an angle φ defining the relative lengths of �ξ1, �ξ2 through

ξ1 = ξ sin φ

ξ2 = ξ cosφ, (3.6)

with 0 ≤ φ ≤ π
2 . The set of five hyperangles is denoted by�6 ≡ {ϑ1,ϕ1,ϑ2,ϕ2,φ}.

They define the hyperangles in the six-dimensional (6D) space. The subscript of �

denotes the dimension of the space spanned by the relative vectors.
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Next, in analogy with the expression of the three-dimensional Laplace operator
in spherical polar coordinates, Eq. (2.2), we express the six-dimensional Laplace
operator in hyperspherical coordinates

2∑
j=1

∇2
ξ j

=
( ∂2

∂ξ2
+ 5

ξ

∂

∂ξ
− L2(�6)

�2ξ2

)
, (3.7)

where

L2(�6) = −�
2
[ ∂2

∂φ2
+ 4 cot 2φ

∂

∂φ
− l21(ξ̂1)

�2 sin2 φ
− l22(ξ̂2)

�2 cos2 φ

]
(3.8)

is the six-dimensional ‘hyperangular momentum’ operator. Here ξ̂i ≡ {ϑi ,ϕi } and�li is the three-dimensional orbital angular momentum operator corresponding to �ξi ,
whose square is given by Eq. (2.4) (i = 1, 2). Note that all the angular momenta in
Eqs. (3.7) and (3.8) are expressed in units of�, as is commonlydone.Thus eigenvalues
of L2, l21 and l22 have a factor �

2 (compare with Eqs. (2.2)–(2.4)). For simplicity of
expressions, from now on, we choose ‘theoretical units,’ in which � = 1. Also note
that in Ref. [7], all square of angular momentum operators are taken with negative
signs. We follow in Eqs. (2.2)–(2.4) and (3.7)–(3.8) the usual sign convention with
positive eigenvalues. The final results will be the same, if one is consistent in the
signs.

3.2 Hyperspherical Harmonics

In analogy with the case of a single relative vector, where we expressed the wave
function in terms of the spherical harmonics, we expand the relative wave function
�(�ξ1, �ξ2) of Eq. (3.4) in the ‘hyperspherical harmonics.’ The latter are defined as
the eigenfunctions Y(�6) of square of the hyperangular momentum operator (as
spherical harmonics are the eigenfunctions of square of the three-dimensional (3D)
orbital angular momentum operator)

L2(�6)Y(�6) = λY(�6), (3.9)

where λ is the eigen value. Note that the solution of the 3D Laplace equation using
the 3D Laplace operator, Eq. (2.3), is

∇2{rlYlm(r̂)} = 0,

where Eq. (2.5) has been used. Now rlYlm(r̂) is a homogeneous polynomial of degree
l in the Cartesian components of �r . In a similar fashion, the solution of the 6DLaplace
equation involving the 6DLaplace operator (Eq. (3.7)), is a homogeneous polynomial

http://dx.doi.org/10.1007/978-81-322-2361-0_2
http://dx.doi.org/10.1007/978-81-322-2361-0_2
http://dx.doi.org/10.1007/978-81-322-2361-0_2
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http://dx.doi.org/10.1007/978-81-322-2361-0_2
http://dx.doi.org/10.1007/978-81-322-2361-0_2
http://dx.doi.org/10.1007/978-81-322-2361-0_2
http://dx.doi.org/10.1007/978-81-322-2361-0_2
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of (say) degree L in the Cartesian components of (�ξ1, �ξ2). From the definition of
hyperangles including Eq. (3.6), it is clear that this homogeneous polynomial has
the form of ξL times a function of hyperangles (ξ̂1, ξ̂2,φ), denoted by Y[L](�6) and
called ‘hyperspherical harmonics’ of order L . Using Eq. (3.7) in the 6D Laplace
equation

2∑
j=1

∇2
ξ j

{ξLY[L](�6)} = 0, (3.10)

we see that Eq. (3.9) is satisfied with λ = L(L + 4)

L2(�6)Y[L](�6) = L(L + 4)Y[L](�6). (3.11)

Here [L] denotes the set of necessary quantum numbers for a given value of L .
Now �6 is a set of five variables. Hence we need five quantum numbers. Next from
Eq. (3.8), it is clear that the variables (ϑ1,ϕ1) and (ϑ2,ϕ2) separate. Hence their
eigenfunctions are the standard spherical harmonics Yl1m1(ϑ1,ϕ1) and Yl2m2(ϑ2,ϕ2)

respectively, with quantum numbers (l1, m1) and (l2, m2). Hence

Y[L](�6) = (2)P l2,l1
L (φ) Yl1m1(ϑ1,ϕ1)Yl2m2(ϑ2,ϕ2), (3.12)

where (2)P l2,l1
L (φ) is still to be determined. The left-superscript (2) indicates the num-

ber of relative vectors. It is introduced in view of the generalization to A-body prob-
lem, to be discussed in Chap.4. The symbol [L] represents the five quantum numbers
{l1, m1, l2, m2, L} in the uncoupled basis. If the interaction potential is spherically
symmetric, the total angular momentum �l = �l1 +�l2 is a good quantum number of the
system and in the coupled basis the symbol [L] represents {l1, l2, l, ml , L}, where ml

is the projection of �l. Substitution of Eq. (3.12) in Eq. (3.11), together with Eq. (3.8)
gives (note that we are now using the units in which � = 1)

[
− ∂2

∂φ2
−4 cot 2φ

∂

∂φ
+ l1(l1 + 1)

sin2 φ
+ l2(l2 + 1)

cos2 φ

]
(2)P l2,l1

L (φ) = L(L +4) (2)P l2,l1
L (φ).

(3.13)

This is the eigenvalue equation satisfied by (2)P l2,l1
L (φ). This can be put in a standard

form by writing
(2)P l2,l1

L (φ) = (cosφ)l2(sin φ)l1g(φ), (3.14)

and changing the variable φ to a new variable x = cos 2φ. With these changes,
Eq. (3.13) becomes the standard Jacobi differential equation [15]

(1− x2)g′′(x)+[β −α− (α+β +2)x]g′(x)+n(n +α+β +1)g(x) = 0, (3.15)

http://dx.doi.org/10.1007/978-81-322-2361-0_4
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whereα = l1+ 1
2 , β = l2+ 1

2 and n is associated with the eigenvalue n(n+α+β+1)
through

L = 2n + l1 + l2. (3.16)

We notice that Eq. (3.15) in the interval [−1, 1] can be put in the Sturm–Liouville
form [16] by multiplying it through by (1− x)α(1+ x)β . Hence we can identify the
eigenvalue as n(n + α + β + 1) and the weight function as

w(x) = (1 − x)α(1 + x)β . (3.17)

The solution of Eq. (3.15) is the standard Jacobi function. The requirement of regu-
larity of g(x) at x = ±1 is satisfied when n is a nonnegative integer n = 0, 1, 2, . . .
Then the solution of Eq. (3.15) becomes the Jacobi polynomials [15]

g(x) = Pα,β
n (x). (3.18)

The quantity L of Eq. (3.16) is called the ‘grand orbital quantum number.’
The Sturm–Liouville theory [16] guarantees that the eigenfunctions of Eq. (3.15)

belonging to different eigenvalues are orthogonal with respect to the weight function
in the interval [−1, 1]

∫ 1

−1
Pα,β

n (x)Pα,β
n′ (x)(1 − x)α(1 + x)βdx = hα,β

n δn,n′ , (3.19)

where hα,β
n is the ‘norm’ of standard Jacobi polynomials [15] given by

hα,β
n = 2α+β+1

2n + α + β + 1

�(n + α + 1)�(n + β + 1)

�(n + 1)�(n + α + β + 1)
. (3.20)

Here �(x) = (x + 1)! is the standard gamma function [16].
The volume element in the 6D space spanned by (�ξ1, �ξ2) is

dV6 = d3ξ1d3ξ2

= ξ21dξ1 sin ϑ1dϑ1dϕ1ξ
2
2dξ2 sin ϑ2dϑ2dϕ2 (3.21)

Using Eq. (3.6), the 6D volume element in terms of the hyperspherical variables
becomes

dV6 = ξ5dξ cos2 φ sin2 φdφ sin ϑ1dϑ1dϕ1 sin ϑ2dϑ2dϕ2. (3.22)
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The intervals for ξ and φ are [0,∞] and [0,π/2] respectively. The intervals for ϑi

and ϕi are the usual ones, viz. [0,π] and [0, 2π] respectively for i = 1, 2. Writing
dV6 = ξ5dξd�6, we have

d�6 = cos2 φ sin2 φ dφ sin ϑ1dϑ1dϕ1 sin ϑ2dϑ2dϕ2. (3.23)

The HH are normalized according to
∫

Y∗
[L](�6)Y[L ′](�6)d�6 = δ[L],[L ′]

= δn,n′δl1,l ′1δm1,m ′
1
δl2,l ′2δm2,m ′

2
. (3.24)

The (2)P l2,l1
L (φ) functions are orthonormalized according to

∫ π
2

0

(2)P l2,l1
L (φ) (2)P l2,l1

L ′ (φ) sin2 φ cos2 φ dφ = δL ,L ′ . (3.25)

Using Eqs. (3.14), (3.16), (3.18)–(3.20) in Eq. (3.25), we have for the complete
expression for normalized (2)P l2,l1

L (φ)

(2)P l2,l1
L (φ) = Nl2,l1

L (cosφ)l2(sin φ)l1 P
l1+ 1

2 ,l2+ 1
2

n (cos 2φ),

where

Nl2,l1
L =

[2(L + 2)�(L + 2 − n)�(n + 1)

�(n + l1 + 3
2 )�(n + l2 + 3

2 )

] 1
2
. (3.26)

The complete expression of 6D HH (for three-body systems) is given by Eqs. (3.12)
and (3.26). The Sturm–Liouville theory guarantees that the set of all such functions
forms a complete set in 6D angular hyperspace, just as the set of all ordinary spherical
harmonics forms a complete set in 3D polar angular space. Thus the HH basis forms
a complete basis for expansion of any function in the 6D space, in particular for the
relative wave function of the three-body system. In the above, we have obtained these
basis functions, without any consideration for the symmetry. However, symmetry of
the wave function is an important aspect for systems containing two ormore identical
particles. We will discuss construction of the basis with different symmetries in
Chap.4.

The HH are used in the theoretical ab initio studies of few-body systems ranging
from fundamental particles, nuclei, atoms up to molecules and clusters. This method
is quite popular in physics research due to its ab initio approach. Even systems which
are not strictly few-body can be modeled as few-body with one or more cluster of
particles treated as a single particle, as we will see in Sect. 4.6 of Chap.4. Although
the hyperspherical technique is a highly mathematical one, it has recently been used
in medical research as well [17].

http://dx.doi.org/10.1007/978-81-322-2361-0_4
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3.3 Schrödinger Equation for Relative Motion

The first of Eq. (3.4) describes the relative motion of three equal mass particles,
ignoring spin and isospin degrees of freedom, i.e., in space variables only. As we
discussed earlier, we expand the relative wave function in the complete set of 6D
HH. The expansion coefficients become functions of the hyperradius ξ. In order to
remove first derivative with respect to ξ in the hyperradial Schrödinger equation, we
introduce a factor of ξ− 5

2 (note that in the 3D case, this factor was r−1)

�(�ξ1, �ξ2) =
∑
[L]

ξ− 5
2 u[L](ξ)Y[L](�6). (3.27)

Substituting this in the relative Schrödinger equation (first of Eq. (3.4)), using
Eq. (3.7), we get

∑
[L ′]

[
− �

2

m

( ∂2

∂ξ2
+ 5

ξ

∂

∂ξ
− L2(�6)

ξ2

)
+ V (ξ,�6) − E

]
ξ− 5

2 u[L ′](ξ)Y[L ′](�6) = 0.

(3.28)
Substituting Eq. (3.11), we have

∑
[L ′]

[
− �

2

m

( d2

dξ2
− L ′(L ′ + 4)

ξ2

)
− E

]
u[L ′](ξ)Y[L ′](�6)

+
∑
[L ′]

V (ξ,�6)u[L ′](ξ)Y[L ′](�6) = 0. (3.29)

We project this equation on a particular HH by premultiplying with Y∗
[L](�6), inte-

grating over �6 and using the orthonormality of HH, Eq. (3.24)

[
− �

2

m

( d2

dξ2
− L(L + 4)

ξ2

)
− E

]
u[L](ξ) +

∑
[L ′]

V[L],[L ′](ξ)u[L ′](ξ) = 0, (3.30)

where V[L],[L ′](ξ) is the potential matrix element (PME). It is a function of ξ and is
given by

V[L],[L ′](ξ) =
∫

Y∗
[L](�6)V (ξ,�6)Y[L ′](�6)d�6. (3.31)

Equation (3.30) is a set of coupled differential equations (CDE) in the hyperradial
variable ξ, where u[L](ξ) are called the hyperspherical partial waves. In order to
solve a given three-body problem, one has to calculate the potential matrix elements
using Eq. (3.31) and use them in the CDE, Eq. (3.30), subject to appropriate boundary
conditions: for a bound state, u[L](ξ) must vanish for both ξ → 0 and ξ → ∞. For
a given potential with a known asymptotic behavior in these limits, the asymptotic
functional forms of u[L](ξ) can be given in analytic forms, for a better accuracy
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and faster convergence. The CDE can in general be solved numerically exactly by
the renormalized Numerov algorithm [18]. However, this procedure requires a large
amount of computation. Alternately, one can solve the set of CDE by the hyperspher-
ical adiabatic approximation, which gives a reasonable solution for most problems
in physics, at a much reduced computation level. We will discuss the hyperspherical
adiabatic approximation in Chap.10.

3.4 Calculation of Potential Matrix Element

The main difficulty in the solution of the three-body problem is the computation
of the PME. Eq. (3.31) is in general a five-dimensional integral and the integrand
contains V (ξ,�6) = V (�r12)+ V (�r23)+ V (�r31), where �ri j = �r j − �ri . From Eq. (3.2),
we have

�r12 = �ξ1
�r32 = 1

2
�ξ1 −

√
3

2
�ξ2

�r13 = 1

2
�ξ1 +

√
3

2
�ξ2. (3.32)

Thus even if the two-body potentials are central, V (ξ,�6) depends on the angle
between �ξ1 and �ξ2. In this case, the three-body system is invariant under overall
rotations and the total orbital angular momentum �l (where �l = �l1 + �l2) and its
projection ml are good quantum numbers. Hence we take the expansion basis as the
coupledHH basis. An angular momentum coupledHH is constructed fromEq. (3.12)

Yl1,l2,l,ml ,L
(�6) = (2)P l2,l1

L (φ)
[
Yl1m1(ϑ1,ϕ1)Yl2m2(ϑ2,ϕ2)

]
lml

, (3.33)

where
[
· · ·

]
lml

indicates angular momentum coupling, viz.

[
Yl1m1(ϑ1,ϕ1)Yl2m2(ϑ2,ϕ2)

]
lml

=
∑

m1,m2

〈l1, m1, l2, m2|l, ml 〉

×Yl1m1(ϑ1,ϕ1)Yl2m2(ϑ2,ϕ2). (3.34)

Here 〈l1, m1, l2, m2|l, ml 〉 is a Clebsch–Gordan coefficient. Thus, although the cal-
culation of PME for the pair (12) is simple (which reduces to a one-dimensional
integral over the variable φ only), those for the pairs (23) and (31) are very compli-
cated. In the next subsection, we will discuss a relatively simple way to evaluate the
PME.

http://dx.doi.org/10.1007/978-81-322-2361-0_10
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3.4.1 Expansion of potential in hyperspherical multipoles

The total interaction potential V (ξ,�6) is, in general, a function of the hyperangles,
besides the hyperradius. Hence for a fixed value of ξ it can be expanded in the
complete set of HH

V (ξ,�6) =
∑
[L ′′]

v[L ′′](ξ)Y[L ′′](�6). (3.35)

The expansion coefficient, v[L ′′](ξ), is a function of ξ and is called the hyperspherical
potential multipole (PM). Substituting Eq. (3.35) in Eq. (3.31)

V[L],[L ′](ξ) =
∑
[L ′′]

v[L ′′](ξ)〈[L]|[L ′′]|[L ′]〉, (3.36)

where

〈[L]|[L ′′]|[L ′]〉 =
∫

Y∗
[L](�6)Y[L ′′](�6)Y[L ′](�6)d�6 (3.37)

is called the geometrical structure coefficient (GSC). Note that although the GSC is a
five-dimensional integral, it is independent of the potential and ξ. The full set of GSC
needs to be calculated only once and stored. These storedGSC can be used in Eq.3.36
to calculate the potential matrix element for all values of ξ, just by calculating the
potential multipole for each value of ξ. Calculation of the matrix element of different
potentials can also be done using the same set of GSCs. This reduces the bulk of the
calculations. Now this will be useful, if the sum over [L ′′] in Eq. (3.36) is a finite
one. Indeed this is the case, as can be seen from the following. One notices that
ξLY[L](�6) is a homogeneous harmonic polynomial of degree L in the Cartesian
components of �ξ1 and �ξ2. Multiply Eq. (3.37) by ξL+L ′

on both sides and note that
ξLY[L] × ξL ′Y[L ′] on the right side is a polynomial of degrees L + L ′. Hence this
product can be expanded in terms of ξL ′′′Y[L ′′′], with values of L ′′′ running from 0
to L + L ′. Then, using the orthogonality of Y[L ′′] in the integral on the right side of
Eq. (3.37), we see that 〈[L]|[L ′′]|[L ′]〉 vanishes unless L ′′ ≤ (L + L ′). Combining
each pair of HH within the integrand of Eq. (3.37), we finally have

L ′′ ≤ (L + L ′)
L ′ ≤ (L + L ′′)
L ≤ (L ′ + L ′′).

These define the triangle rule, inwhich L , L ′ and L ′′ form the three sides of a triangle.
This selection rule can also be written as

〈[L]|[L ′′]|[L ′]〉 = 0

unless |L − L ′| ≤ L ′′ ≤ (L + L ′) (3.38)
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This is the same as the angular momentum selection rule. Note that L , L ′ and L ′′
are all nonnegative integers. Thus only a finite number of L ′′ values [from |L − L ′|
to (L + L ′)] are needed in Eq. (3.36). Potential multipoles corresponding to only
these values of L ′′ are to be evaluated for given L , L ′ and ξ. In the next subsection,
we will see how these can be evaluated for a central potential. Still the calculation
of each GSC remains a difficult task, since it involves a five-dimensional integral.
We will discuss in Sect. 3.6 how the GSC can be evaluated by solving a set of linear
inhomogeneous equations, without even doing a single integration.

3.4.2 Calculation of potential multipole

The next problem is the evaluation of the potential multipole. Multiplying Eq. (3.35)
by Y∗

[L](�6), integrating over �6 and using the orthonormality of HH, we have

v[L](ξ) =
∫

V (ξ,�6)Y∗
[L](�6)d�6. (3.39)

Here V (ξ,�6) is the sum of three pairwise interactions. For central two-body inter-
actions

V (ξ,�6) = V (12)(r12) + V (23)(r23) + V (31)(r31), (3.40)

where V (i j)(ri j ) is the interaction between particles labeled i and j . If the particles
are identical, all V (i j) are the same (say V ). Using Eq. (3.32) we see that calculation
of potential multipole of the (12)-pair is easy

v
(12)
[L] (ξ) =

∫
V (ξ1)Y∗[L](�6)d�6.

= δl1,0δl2,0δl,0δml ,0
4π

∫ π/2

0
V (ξ cosφ) (2)P0,0

2K (φ) cos2 φ sin2 φ dφ

= δl1,0δl2,0δl,0δml ,0
8π

�(K + 2)

�(K + 3
2 )

∫ π/2

0
V (ξ cosφ)P

1
2 , 12

K (cos 2φ) cos2 φ sin2 φ dφ

= δl1,0δl2,0δl,0δml ,0
8π

�(K + 2)

�(K + 3
2 )

∫ 1

−1
V

(
ξ

√
1 + z

2

)
P

1
2 , 12

K (z)
√
1 − z2 dz (3.41)

where, in going from the first to the second line we used Eqs. (3.6), (3.33), (3.16)
(replacing n by K ) and the orthonormality of spherical harmonics and in going from
the second to the third line we used Eq. (3.26). To get the last line, z = cos 2φ has
been substituted. This is a one-dimensional integral and easy to calculate by a suitable
numerical quadrature.

Calculation of the potential multipoles for the (23) and the (31) pairs are not
so easy, since both of them will involve ξ1, ξ2 and the angle between �ξ1 and �ξ2.
However, for three spin zero bosons, the total wave function should be symmetric
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under any pair exchange. Hence Y[L](�6) should be replaced by Y (S)
[L] (�6), which is

symmetric under exchange of any pair. We will discuss in Sect. 3.5 how to construct
this symmetric HH basis for three identical particles. In this symmetric basis, the
contribution of each of the three pairs is the same. Hence

v[L](ξ) = 3v(12)
[L] (ξ), (3.42)

where we calculate v
(12)
[L] (ξ) replacing Y∗

[L](�6) by a symmetric HH Y (S)∗
[L] (�6) in the

first line of Eq. (3.41).

3.5 Symmetrization of HH Basis

It is easy to see that the HH is symmetric (or antisymmetric) under 1 ←→ 2, if
l1 is restricted to even (or odd) values. To impose the symmetries with respect to
exchange of other pairs, we introduce a 3D vector �z() as a linear combination of
�ξ1 and �ξ2, depending on the parameter 

�z() = sin �ξ1 + cos �ξ2. (3.43)

Then comparing with Eqs. (3.2) and (3.32), we have

�r2 − �r1 = �z(π/2)

�r3 − �r2 = �z(π/2 − 2π/3)

�r1 − �r3 = �z(π/2 + 2π/3), (3.44)

as also the position vectors of the particles with respect to the CM are given by

�r3 − �R = 1√
3
�z(0)

�r1 − �R = 1√
3
�z(−2π/3)

�r2 − �R = 1√
3
�z(2π/3). (3.45)

Thus, from Eq. (3.2) we see that for  = π/2,π/2 − 2π/3 and π/2 + 2π/3 the
pair of 3D vectors {�z(), �z( −π/2)} are the { �ξ1, �ξ2} vectors for partitions {(12)3},
{(23)1} and {(31)2} respectively. For this reason �z() is called the ‘kinematic rotation

vector.’ The relative wavefunction � of Eq. (3.4) is �
(
�z(), �z( − π/2)

)
for  =

π/2,π/2− 2π/3 and π/2+ 2π/3, respectively corresponding to the three partitions
{(12)3}, {(23)1} and {(31)2}. Define a symmetrizing operator �0 by
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�0 f () = 1

3

∑
=π/2,π/2−2π/3,π/2+2π/3

f (). (3.46)

Then
�(S) = �0�

(
�z(), �z( − π/2)

)
(3.47)

is the totally symmetric combination under any pair exchange, when l1 is restricted
to even nonnegative integers. Note that the hyperradius ξ is invariant under the

permutations of the three particles.We expand�
(
�z(), �z(−π/2)

)
as in Eq. (3.27)

�
(
�z(), �z( − π/2)

)
=

∑
[L]

ξ−5/2u[L](ξ)Y(l1,l2)lml L(�6,). (3.48)

Now, Y(l1,l2)lml L(�6,) is a function in the 6D hyperangular space and can be
expanded in the set of Y(�6) corresponding to the {(12)3} partition

Y(l1,l2)lml L(�6,) = N
∑
l ′1,l ′2

A[L]
l ′1,l ′2

()Y(l ′1,l ′2)lml L(�6). (3.49)

Note that the grand orbital (hyperangularmomentum) quantumnumber L , associated
with the hyperradius does not change and the sum is over l ′1l ′2 only. The coefficients
A[L]

l ′1,l ′2
() are called Raynal–Revai coefficients [19] and N is a normalization con-

stant. The Raynal–Revai coefficients are given by [7]

A[L]
l ′1,l ′2

() = π

2

∑
��′λ′

1λ
′
2λ1λ2

(−1)n′+λ′
2

(L + 4)!
(L − � + 2)!(� + 2)! (cos)�

′
(sin)L−�′

.

⎛
⎝ l1 λ1 λ′

1
l2 λ′

2 λ2

l l ′1 l ′2

⎞
⎠ . �(λ1λ

′
1l1)�(λ2λ

′
2l2)

·�(l ′1λ1λ
′
2)�(l ′2λ2λ

′
1)〈(2)Pλ2λ1

� |(2)Pλ′
2λ

′
1

�′ |(2)P l2l1
L 〉〈(2)P l ′2l ′1

L |(2)P l ′2l ′1
L ′ |(2)Pλ′

1λ
′
2

�′ 〉. (3.50)

Here the 3 × 3 matrix symbol is a 9-j symbol and

�(abc) = [(2a + 1)(2b + 1)(2c + 1)] 1
2

(
a b c
0 0 0

)
. (3.51)

The last symbol in Eq. (3.51) is a 3-j symbol. The 3-P coefficient

〈(2)Pλ2λ1
� |(2)Pλ′

2λ
′
1

�′ |(2)P l2l1
L 〉 in Eq. (3.50) is given by

〈(2)Pλ2λ1
� |(2)Pλ′

2λ
′
1

�′ |(2)P l2l1
L 〉 =

∫ π
2

0
dφ (2)Pλ1λ2

� (φ) (2)Pλ′
1λ

′
2

�′ (φ) (2)P l1l2
L (φ)

× (sin φ)2(cosφ)2.

(3.52)
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Using Eq. (3.50) in Eq. (3.49), one can calculate the HH for partitions {(23)1} and
{(31)2} and their substitutions in Eq. (3.39) give the corresponding potential multi-
poles. On the other hand, substitution of HH for the three partitions in Eq. (3.47),
together with Eqs. (3.48)–(3.50) give the symmetric HH for the three-body sys-
tem. Numerical calculation of the Raynal–Revai coefficients was performed by
Khan et al. [20].

3.6 Calculation of GSC for Central Potentials

From Eqs. (3.36) and (3.41), we see that for central two-body potentials, the set
of quantum numbers represented by [L ′′] is restricted to {l ′′1 = 0, l ′′2 = 0, l ′′ =
0, m ′′

l = 0, L ′′ = 2K ′′}, with K ′′ a nonnegative integer. This is true for the (i j)-pair
interaction in the (i j)k partition, with i, j, k = 1, 2, 3 cyclic permutation. For other
pair interaction, the Raynal–Revai coefficients, Eq. (3.50) can be used. Hence the
integrals over d ξ̂1d ξ̂2 in Eq. (3.37) are simply done by orthonormality of spherical
harmonics and we have

〈[L]|[L ′′]|[L ′〉 = δl1,l ′1δl2,l ′2δl,l ′δml ,m
′
l

〈(2)
P l2,l1

L

∣∣∣(2)P0,0
L ′′

∣∣∣(2)P l2,l1
L ′

〉
. (3.53)

Thus for central two-body potentials, the GSC reduces to the 3-P coefficients.
Restricting ourselves to the l = 0 states of the three-body system (note that the
ground state will be a l = 0 state), we have l1 = l2 and hence

〈[L]|[L ′′]|[L ′〉 =
〈(2)

P l1,l1
2K

∣∣∣(2)P0,0
2K ′′

∣∣∣(2)P l1,l1
2K ′

〉
, (3.54)

where [L] = {l1, l1, 0, 0, 2K }, [L ′′]={0, 0, 0, 0, 2K ′′} and [L ′] = {l1, l1, 0, 0, 2K ′},
with nonnegative integers for K , K ′, K ′′. Substituting for the (2)P functions from
Eq. (3.26) in Eq. (3.52), this takes the form (writing l for l1 for convenience)

〈
(2)P l,l

2K

∣∣∣(2)P0,0
2K "

∣∣∣(2)P l,l
2K ′

〉
=

∫ π
2

0

(2)P l,l
2K (φ)(2)P0,0

2K "(φ)(2)P l,l
2K ′(φ)sin2φcos2φdφ

= Nl,l
2K N 0,0

2K "Nl,l
2K ′2−(2l+3)

∫ 1

−1
(1 − x)l+ 1

2 (1 + x)l+ 1
2

×P
l+ 1

2 ,l+ 1
2

K−l (x)P
1
2
1
2

K " (x)P
l+ 1

2 ,l+ 1
2

K ′−l (x)dx (3.55)

We see that this is an integral of three Jacobi polynomials times the weight function
of the Jacobi polynomials over the interval [−1, 1]. Now the second order differential
operator corresponding to the Jacobi differential equation (3.15), when putting in the
Sturm–Liouville form, is a Hermitian differential operator. Hence its eigenfunctions,
the Jacobi polynomials, are orthogonal (see Eq. (3.19)) and form a complete set. The
completeness property of Jacobi polynomials is [16]
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∞∑
n=0

(
hα,β

n

)−1
Pα,β

n (x)Pα,β
n (y) = δ(x − y)

(1 − x)α(1 + x)β
, (3.56)

where hαβ
n is given by Eq. (3.20). Multiplying both sides of Eq. (3.55) by (K ′′ +

1)!P 1
2 , 12

K ′′ (y)/�(K ′′ + 3
2 ), summing over K ′′ and using Eqs. (3.56), (3.20) and (3.26),

we have

K+K ′∑
K ′′=|K−K ′|

(K ′′ + 1)!
�(K ′′ + 3

2 )

〈
(2) Pl,l

2K

∣∣∣(2) P0,0
2K "

∣∣∣(2) Pl,l
2K ′

〉
P

1
2 , 12

K ′′ (y)

= Nl,l
2K Nl,l

2K ′2−(2l+1) (1 − y2)l P
l+ 1

2 ,l+ 1
2

K−l (y)P
l+ 1

2 ,l+ 1
2

K ′−l (y). (3.57)

The sum over K ′′ is restricted from |K − K ′| to (K + K ′), which follows from
Eq. (3.38). Equation (3.57) holds for any value of y in the interval [−1, 1]. Now
for given values of K , K ′, l and y, Eq. (3.57) is a linear inhomogeneous equation
(LIE) for the unknown 3-P coefficients. Since the 3-P coefficient vanishes unless
K ′′ satisfies |K − K ′| ≤ K ′′ ≤ (K + K ′), there is a finite number nK ,K ′ = (K +
K ′) − |K − K ′| + 1 of unknowns. We can arbitrarily choose nK ,K ′ different values
of y in the interval [−1, 1] and solve the set of nK ,K ′ LIEs, Eq. (3.57), for the nK ,K ′

unknown 3-P coefficients, for given values of K , K ′ and l. A computer code for
solving a set of LIE is quite fast and very accurate. On the other hand, a direct
numerical integration using Eq. (3.55) would be very slow and inaccurate [21, 22].
Note numerical integration has to be done for each of the nK ,K ′ 3-P coefficients,
while all of them will be obtained by solving the LIE only once.

A simple sum rule is given by setting y = 1 in Eq. (3.57) and using

Pαβ
n (1) =

(
α + n

α

)

where (
a
b

)
= a!

b!(a − b)!
is the binomial coefficient. The result is (note that for y = 1, the right side of
Eq. (3.57) vanishes for l > 0)

K+K ′∑
K ′′=|K−K ′ |

(K ′′ + 1)
〈
(2) Pl,l

2K

∣∣∣(2) P0,0
2K ′′

∣∣∣(2) Pl,l
2K ′

〉
= δl,0

4√
π

(K + 1)(K ′ + 1). (3.58)

Equation (3.58) gives a simple test for the correctness and accuracy of the calculated
GSCs.
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Chapter 4
General Many-Body Systems

Abstract Hyperspherical harmonics expansion method is generalized from three-
body to A-body system, defining N Jacobi vectors and 3N hyperspherical variables
for the relative motion, where N = A − 1. Analytic expression is derived for the
generalized hyperspherical harmonics as the eigenfunction of the generalized hyper-
angular momentum operator. The kinematic rotation vector (KRV) is defined as a
linear combination of the Jacobi vectors. Position vector of a particle from the center
ofmass and relative separation of a pair can be expressed asKRVs in terms of two sets
of parametric angles. Procedure for symmetrization (including mixed symmetry) of
the spatial wave function using KRV is described. It is emphasized that truncation of
the basis is necessary for a practical calculation. Truncation schemes like restricting
the symmetry component, retaining only the lowest hyperangular momentun (Lm

approximation), restriction to optimal subset and the subset of potential harmonics
have been introduced. Application of the truncation schemes to problems in particle,
nuclear, and atomic physics has been discussed.

We discussed the hyperspherical harmonics method for the three-body system in
the last chapter. However, one frequently encounters systems with larger number of
particles in physics. Hence it is necessary to generalize the technique for a system
containing an arbitrary number of particles. Hyperspherical techniques which are
somewhat different from that presented in Chap.3 have also been developed [1–4].
In this chapter, we will generalize the treatment presented in the previous chapter to a
system of A identical spineless particles interacting through mutual forces, retaining
the notations as close to those of Chap.3 as possible. It will serve to illustrate how
one can go gradually from one system to another with onemore particle.Wewill start
with the generalization of the Jacobi vectors and define the hyperspherical variables
in Sect. 4.1. In the next section, the 3(A − 1)-dimensional Laplace operator for the
relative motion will be expressed in terms of the hyperspherical variables. In doing
this, the definition of the hyperangular momentum operator and its eigenfunctions,
the hyperspherical harmonics (HH) in this space will be introduced. In Sect. 4.3, we
will discuss the expansion of the many-body wave function in the HH basis and give
a general idea of how to impose the required symmetry on the wave function. Inclu-
sion of this in the Schrödinger equation leading to a system of coupled differential

© Springer India 2016
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equations will be discussed in Sect. 4.4. It will be seen that this procedure will be too
complex to be used without truncation of basis or other simplifying approximations
for A > 3. Various schemes of truncation will be discussed in Sect. 4.5, and their
applications to physics will be presented in Sect. 4.6.

We have discussed time and again that for A > 3we have to adopt approximations
in order to keep the calculationsmanageable. The approximation stemsbasically from
the restriction of the expansion basis of the wave function. These can be classified
into two different types: first one is the restriction of the expansion basis to a subset of
the full HH basis, arising from the interactions. For example, if the sum of all mutual
interactions depends very weakly on the hyperangles, the grand orbital quantum
number (K ) becomes an approximately good quantum number and the subset of
HH with a few lowest K values is sufficient. This is like the ground state of the
deuteron having a major contribution from � = 0 only, since the nucleon–nucleon
interaction is dominantly central. We will discuss a similar type of approximation,
called the Lm approximation, and some of its applications in Sect. 4.5. Another very
important example is the situation, in which the system is very dilute and only two-
body correlations in the wave function are relevant. In this case one can restrict the
expansion basis to a subset called ‘potential harmonics’ (PH), which involves only
the two-body correlations. The standard Bose–Einstein condensation achieved in the
laboratory is a fine example of this approximation, which we will discuss in Chaps. 7
and 8.

The second type of approximation is to restrict the dominant symmetry compo-
nents of the wave function. In general, a number of symmetry components (arising
from the type of constituent particles and the conserved quantum numbers of the
system) are allowed, but their relative importance in a particular state of the system
may be dominant only for one or at most a few components. In that case, one can
approximately restrict thewave function to the dominant symmetry components only.
A general discussion can be found in Sect. 4.5.1. An application of the technique in
connection with the trinucleon systems has been provided in Chap. 5.

4.1 Jacobi Coordinates and Hyperspherical Variables

We first ignore spin and isospin degrees of freedom and consider a system of A
identical spinless particles of mass m each. In this case, there are N = A − 1 relative
vectors and one CM vector. The relative vectors are not unique and we choose them
as the Jacobi vectors, as a generalization of the three-body system, Eq. (3.2): the j th
Jacobi vector being proportional to the vector separation of the ( j + 1)th particle
from the CM of the first j particles

�ξ j =
[

2 j

j + 1

]1/2 (
�r j+1 − 1

j

j∑
i=1

�ri

)
( j = 1, . . . , A − 1), (4.1)

http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_8
http://dx.doi.org/10.1007/978-81-322-2361-0_5
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where �ri is the position vector of the i th particle. Putting j = 1 and 2, we get back the
two Jacobi vectors of the three-body system, Eq. (3.2). The CM vector is given by

�R = 1

A

(
A∑

i=1

�ri

)
. (4.2)

The constants in front of the Jacobi vectors in Eq. (4.1) are chosen so that

1

2

A∑
i=1

∇2
�ri

=
A−1∑
j=1

∇2
�ξ j

+ 1

2A
∇2

�R . (4.3)

Hence the A-body Schrödinger equation with mutual forces

⎡
⎣−

A∑
i=1

�
2

2m
∇2

�ri
+

A∑
j<i=2

V (�ri − �r j )

⎤
⎦ψ(�r1, . . . , �rA) = ET ψ(�r1, . . . , �rA) (4.4)

separates into the Schrödinger equation for the N = A − 1 relative coordinates

[
−

N∑
i=1

�
2

m
∇2

�ξi
+ V (�ξ1, . . . , �ξN )

]
�(�ξ1, . . . , �ξN ) = E�(�ξ1, . . . , �ξN ), (4.5)

with relative energy E . The CM moves as a free particle with energy ET − E , as in
Eq. (3.4). Hence we have to study Eq. (4.5). As in Chap.3, wewill expand the relative
wave function �(�ξ1, . . . , �ξN ) in an appropriate basis, which will be the generalized
hyperspherical harmonics basis.

Next we introduce the hyperspherical variables in the same manner as in Chap.3.
First define a ‘hyperradius’ through

ξ =
⎡
⎣ N∑

j=1

ξ2i

⎤
⎦

1/2

. (4.6)

In order to introduce the hyperangles, we follow the Zernike and Brinkman [5] rep-
resentation, in which the (3N − 1) ‘hyperangles’ are constituted by the 2N ordinary
spherical polar angles of the N Jacobi vectors [(ϑi ,ϕi ), i = 1, . . . , N ] and (N − 1)
angles (φ2, . . . ,φN ) defining the relative lengths of N Jacobi vectors �ξ1, . . . , �ξN ,
through

ξN = ξ cosφN

ξN−1 = ξ sin φN cosφN−1

ξN−2 = ξ sin φN sin φN−1 cosφN−2

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
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ξN−3 = ξ sin φN sin φN−1 sin φN−2 cosφN−3

...

ξ2 = ξ sin φN sin φN−1 · · · · · · · · · sin φ3 cosφ2

ξ1 = ξ sin φN sin φN−1 · · · · · · · · · sin φ3 sin φ2 cosφ1, (4.7)

with φ1 = 0. This definition is consistent with Eq. (3.6) for N = 2. Each φi lies
in the interval [0,π/2]. Equation (4.7) satisfies Eq. (4.6) automatically. In analogy
with Chap.3, we denote the collection of these (3N − 1) hyperangles by �3N =
{(ϑ1,ϕ1), . . . , (ϑN ,ϕN ),φ2, . . . ,φN }. This choice of hyperangles has the advantage
that the angular momentum �l j carried by the j th Jacobi vector �ξ j appears naturally
and the total orbital angular momentum �l of the relative motion is simply the vector
sumof the N individual angularmomenta: �l = �l1 + �l2 + · · · + �lN . However, there is a
serious disadvantage that the separation vector of two particles �ri j = �r j − �ri becomes
a very complicated function of the hyperangles for arbitrary values of i and j . Only
in a special case, it is simple. For example, from Eq. (4.1), we see that �r12 = �ξ1.
This is particularly important in handling the mutual potential. An alternative to this
complexity is to use an appropriately symmetrized basis, so that the matrix element
of the total mutual interaction becomes simply the number of pairs multiplied by the
matrix element of any one pair interaction. Since this pair can be chosen arbitrarily,
it can be chosen as the (12)-pair. However, the complexity of the calculation goes
over to the calculation of the appropriately symmetrized basis. Indeed there is no
simple way to avoid the complexity for more than three interacting particles.

4.2 Generalized Hyperspherical Harmonics

Next, we express the (3N )-dimensional Laplace operator

∇2
3N =

N∑
j=1

∇2
�ξ j

in terms of the chosen hyperspherical variables {ξ,�3N } [6] (we continue with the
choice � = 1)

N∑
j=1

∇2
�ξ j

=
(

∂2

∂ξ2
+ 3N − 1

ξ

∂

∂ξ
− L̂2

3N (�3N )

ξ2

)
, (4.8)
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where

L̂2
3N (�3N ) = −

N∑
i=1

⎛
⎝ N∏

j=i+1

sin2 φ j

⎞
⎠

−1

×
[

∂2

∂φ2
i

+ ((3i − 4) cot φi − 2 tan φi )
∂

∂φi
− l̂2i (ϑi ,ϕi )

cos2 φi

]
.

(4.9)

Note that the factor in front of the third brackets in Eq. (4.9) takes the value 1
for i = N . We can easily verify that Eqs. (4.8) and (4.9) give Eqs. (3.7) and (3.8),
respectively, for N = 2.

The generalized hyperspherical harmonics Y[L](�3N ) is defined in analogy with
Chap.3, as the eigenfunction of L̂2

3N (�3N ), satisfying the Laplace equation in (3N )

dimensional space
N∑

j=1

∇2
�ξ j

{
ξLY[L](�3N )

} = 0. (4.10)

Thus {ξLY[L](�3N )} is a homogeneous harmonic polynomial of order L in the Carte-
sian components of N Jacobi vectors. Using Eqs. (4.8) and (4.10), the eigenvalue
equation satisfied by the hyperspherical harmonics (HH) becomes

L̂2
3N (�3N )Y[L](�3N ) = L(L + 3N − 2)Y[L](�3N ). (4.11)

L is called the hyperangular momentum (or grand orbital) quantum number and the
symbol [L] denotes the full set of (3N − 1) quantum numbers for a fixed L . These
quantum numbers in the chosen Zernike–Brinkman representation are

[L] ≡ {L; (l1, m1), . . . , (lN , m N ), n2, n3, . . . , nN }, (4.12)

where the nonnegative integer n j is the quantum number associated with the hyper-
angular variable φ j . Note that L is given in terms of l j and n j by

L =
N∑

j=1

(2n j + l j ) (n1 = 0). (4.13)

Thus the number of independent quantum numbers in Eq. (4.12) is (3N − 1).
The form of Eq. (4.9) shows that each (ϑi ,ϕi ) separates and the corresponding

function is the standard spherical harmonics (an eigenfunction of l̂2i ). Also each of
φi separates. Hence the HH will be a product of spherical harmonics Yli mi (ϑi ,ϕi )

and functions of φi . A detailed calculation similar to the three-body case gives [6]

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
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Y[L](�3N ) = Yl1m1(ϑ1,ϕ1)

N∏
j=2

Yl j m j (ϑ j ,ϕ j )
( j)P l j ,L j−1

L j
(φ j ), (4.14)

where ( j)P l j ,L j−1

L j
(φ j ) is given by

( j)P l j ,L j−1

L j
(φ j ) =

[
2ν j�(ν j − n j )�(n j + 1)

�(ν j − n j − l j − 1
2 )�(n j + l j + 3

2 )

]1/2

× (cosφ j )
l j (sin φ j )

L j−1 P
ν j−1,l j + 1

2
n j (cos 2φ j ) ( j ≥ 2). (4.15)

Here, Pα,β
n (x) is a Jacobi polynomial [7] and the quantities ν j and L j are given as

L j =
j∑

i=1

(2ni + li ) (n1 = 0)

ν j = L j + 3 j

2
− 1. (4.16)

It can be verified that these expressions reduce to the HH for the three-body system
for N = 2.

Under ordinary parity operation each Jacobi vector changes sign, the length
remaining unchanged. Hence all the φ j remain unchanged. From Eq. (4.14), we
see that the effect of parity operation introduces a factor

(−1)(l1+l2+···+lN ) = (−1)[L−2(n2+n3+···+nN )] = (−1)L

Thus the parity of the HH is given by the grand orbital L .
The A-body relative wave function can be expanded in the complete set of HH

given by Eqs. (4.14) and (4.15)

�(�ξ1, . . . , �ξN ) = ξ−(3N−1)/2
∑
L ,[L]

u[L](ξ)Y[L](�3N ). (4.17)

The factor ξ−(3N−1)/2 in front is included to remove the first derivative term in the
coupled differential equations resulting from the Schrödinger equation. The sum
over L , [L] in Eq. (4.17) means a sum over L from 0 to ∞ and then for a particular
value of L , the sum over [L] indicates the sum over the (3N − 1) quantum numbers
indicated in Eq. (4.12).
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4.3 Symmetrization of Wave Function

4.3.1 Kinematic Rotation Vector (KRV)

Although nonsymmetrized hyperspherical harmonics have been used [8], it is cus-
tomary to use appropriately symmetrized basis. For symmetrization, we need dif-
ferent permutations of the particle indices. It is clear from the definition of Jacobi
vectors Eq. (4.1) that in general a permutation of the indices will change a given
Jacobi vector into a linear combination (l.c.) of the original set. Also the separation
vector �ri j , as also the position of the i th particle from the CM are l.c.’s of the original
Jacobi vectors. We introduce a 3D vector, called kinematic rotation vector, which is
the most general l.c. of Jacobi vectors { �ξ1, . . . , �ξN } by [9]

�z(�) =
N∑

j=1

sin�N sin�N−1 . . . sin� j+1 cos� j �ξ j , (4.18)

where the set of (N − 1) angles, {�1 ≡ 0,�2, . . . ,�N }, define the particular l.c.
Note the similarity in the way the coefficients in terms of the angular parameters are
chosen with the introduction of hyperangles in Eq. (4.7). In both cases, the sum of
the squares of the coefficients is one. The advantage of this choice will be seen in
the following. Consider an arbitrary l.c. of the Jacobi vectors

�A(�) =
N∑

j=1

a j �ξ j . (4.19)

Note that in the above the argument (�) of a 3D vector is a short hand for the full
set of these angles. In order to express �A(�) in terms of �z(�), we can take the
coefficient a j to be proportional to the coefficient of �ξ j in Eq. (4.18). However, the
sum of squares of the latter coefficients is identically one. So we write

�A(�) = C�z(�). (4.20)

It is easy to find that

cos2 � j = a2
j∑ j

i=1 a2
i

, (4.21)

and

C2 =
N∑

j=1

a2
j . (4.22)

An advantage of the particular choice of the parametric angles in Eq. (4.18) is that it
gives rise to a simple expression for the parametric angle in Eq. (4.21).
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Two sets of these parametric angles with superscripts (i) and (i j) will be used
to denote the position of the i th particle from the CM and the (i j)-pair separation
vector, respectively,

�z(�(i)) =
√
2(N + 1)

N
(�ri − �R)

�z(�(i, j)) = �r j − �ri . (4.23)

Coefficients of KRV for Pair Separation

(a) Consecutively numbered particles
In order to calculate the coefficients of expansion of Eq. (4.23) in the original set of
Jacobi vectors, we first express the relative separation vector of two consecutively
numbered particles, using Eq. (4.1)

�ri+1,i = �ri+1 − �ri = −
√

i − 1

2i
�ξi−1 +

√
i + 1

2i
�ξi . (4.24)

Thus, �ri+1,i contains only two Jacobi vectors, viz., �ξi−1 and �ξi . Following Eq. (4.19),
we write

�ri+1,i =
N∑

j=1

a(i+1,i)
j

�ξ j . (4.25)

Then comparing Eqs. (4.24) and (4.25), the coefficients a(i+1,i)
j are given as

a(i+1,i)
j = 0 j < (i − 1)

= 0 j > i,

and

a(i+1,i)
i−1 = −

√
i − 1

2i

a(i+1,i)
i =

√
i + 1

2i
. (4.26)

In Table4.1, we display the coefficients a(i+1,i)
j for j = 1, N (along the columns)

of consecutively numbered (i + 1, i)-pair separation with i = 1, N (along the rows).

(b) Arbitrary pair separation
For an arbitrary �ri, j with i > j , we can write

�ri, j = �ri,i−1 + �ri−1,i−2 + · · · + �r j+1, j , (4.27)
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Table 4.1 a(i+1,i)
j coefficients for expansion of �ri+1,i according to Eq. (4.19)

(i + 1, i) \ j 1 2 3 4 · · · N − 3 N − 2 N − 1 N

(2, 1) 1 0 0 0 · · · 0 0 0 0

(3, 2) − 1
2

√
3
2 0 0 · · · 0 0 0 0

(4, 3) 0 − 1√
3

√
2
3 0 · · · 0 0 0 0

(5, 4) 0 0 −
√

3
8

√
5
8 · · · 0 0 0 0

· · · · · ·
(N − 1, N − 2) 0 0 0 0 · · · −

√
N−3

2(N−2)

√
N−1

2(N−2) 0 0

(N , N − 1) 0 0 0 0 · · · 0 −
√

N−2
2(N−1)

√
N

2(N−1) 0

(N + 1, N ) 0 0 0 0 · · · 0 0 −
√

N−1
2N

√
N+1
2N

and use Eq. (4.26) repeatedly. As an example, let us calculate �r5,2. We write it
following Eq. (4.27) and then for each consecutively numbered pair, use Table4.1

�r5,2 = �r5,4 + �r4,3 + �r3,2
=
(

−
√
3

8
�ξ3 +

√
5

8
�ξ4
)

+
(

− 1√
3

�ξ2 +
√
2

3
�ξ3
)

+
(

−1

2
�ξ1 +

√
3

2
�ξ2
)

= −1

2
�ξ1 + 1

2
√
3

�ξ2 + 1√
24

�ξ3 +
√
5

8
�ξ4. (4.28)

Thus we get �r5,2 in terms of the original set of Jacobi vectors. A look at Table4.1
shows that for an arbitrary �ri, j with i > j written as Eq. (4.27), one simply adds the
numbers in the kth column from the ( j + 1, j) row to (i, i − 1) row, and multiply
by �ξk . Finally add all the nonvanishing contributions, k = j − 1 to k = i − 1. The
pair separation vectors are useful in calculating the potential matrix.

Coefficients of KRV for Pair Exchange Operations

Under Pi j , which exchanges particle labels of the pair (i j), the new set of Jacobi
vectors becomes a l.c. of the original set. For example, we have from Eq. (4.1)

P12 �ξ1 = −�ξ1
P12 �ξk = �ξk k ≥ 2, (4.29)

and

P23 �ξ1 = 1

2
�ξ1 + 2√

3
�ξ2

P23 �ξ2 = 3
√
3

8
�ξ1 − 1

2
�ξ2

P23 �ξk = �ξk k ≥ 3. (4.30)
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We can easily verify by applying Pi j twice that (Pi j )
2 = 1. One can construct a

table of the expansion coefficients in a manner similar to Table 4.1. Pair exchange
operators can be used for symmetrization of the wave function since any permutation
of the particle indices can be written as a product of pair exchange operators.

Calculation of the Parametric Angles �(i,j) for the pair separation

The coefficients given by Eq. (4.26) will satisfy Eq. (4.18), if we choose the last
cosine factor of each term with j > i to be zero and the last cosine factor of each
term with j < i to be one (so that the corresponding sine is zero), while cos�(i+1,i)

i

and sin�(i+1,i)
i are given by the last two entries of Eq. (4.26)

�(i+1,i)
j = π/2 j > i

= 0 j < i,

and

cos�(i+1,i)
i = −

√
i − 1

2i

sin�(i+1,i)
i =

√
i + 1

2i
. (4.31)

Thus we get the parametric angles to express the separation vector of two con-
secutively numbered particles, using Eqs. (4.18) and (4.31). Fabre gives a tabular
presentation of these parametric angles in Ref [9]. However, note that the definition
of the original set of Jacobi vectors in Ref. [9] is in the reverse order of our choice
Eq. (4.1), such that our �ξi is �ξN−i+1 used in Ref. [9].

4.3.2 Symmetrization of Wave Function

In a fashion similar to Eq. (4.23), we can introduce the set of parametric angles
(�(i,P)) for the i th Jacobi vector (�ξ (P)

i ) under a particular permutation (P) of the
particle indices. Using this, one can construct a desired symmetry component of the
space wave function, as in Chap.3. For example, the totally symmetric space wave
function is

�(S)(�ξ1, . . . , �ξN ) =
∑

P

�(P)(�ξ (P)
1 (�(1,P)), . . . , �ξ (P)

N (�(N ,P)))

= ξ−(3N−1)/2
∑
L ,[L]

u[L](ξ)
∑

P

Y[L](�(P)
3N ), (4.32)

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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where the hyperangles �
(P)
3N is obtained for the set of Jacobi vectors for the per-

mutation (P), viz.,, (�ξ (P)
1 (�(1,P)), . . . , �ξ (P)

N (�(N ,P))). Note that the hyperradius ξ
is invariant under all permutations and under all 3D rotations. We can calculate
the effects of permutations, i.e., the set of angles {�(i,P), i = 1, . . . , N }, for all
(N + 1)! permutations (P), calculate the HH explicitly and use Eq. (4.32). How-
ever, this is a very laborious process for N > 3. Alternatively, we can expand
Y[L](�ξ (P)

1 (�(1,P)), . . . , �ξ (P)
N (�(N ,P))) in the complete set of HH of the original par-

tition, defining coefficients similar to Raynal–Revai coefficients for the three-body
system. This again will be too cumbrous to follow for more than three particles.

However luckily for most systems of interest in physics and chemistry, only a
small subset of the full HH set contributes significantly in the expansion of the
wave function. We will see in Sect. 4.6 that the symmetrization may become more
manageable for the relevant subset of HH. Use of the subset is an approximation
which is guided by the physics of the system.

We next consider inclusion of different symmetry components of the total wave
function (due to spin and isospin, where the latter is relevant). Although use of the
complete set of HH is not very practical, the procedure is the same for a subset.
A particular subset may contain a smaller number of symmetry components. For
the expansion of the total wave function (having total angular momentum J and its
projection MJ ) we replace Eq. (4.17) by

�JMJ (�ξ1, . . . , �ξN , �s1, . . . , �sA, �t1, . . . , �tA) =
ξ−(3N−1)/2

∑
S

∑
L ,[L]

u(S)
[L] (ξ)

[
Y(S)

[L] (�3N )χ(S)(�s1, . . . , �sA, �t1, . . . , �tA)
]

J MJ
, (4.33)

where the superscript (S) refers to a particular symmetry component and χ(S) is
the spin-isospin wave function corresponding to the symmetry component (S). The
symbol [· · · ]J MJ represents angular momentum coupling of total orbital (�l) and total
spin (�s) angular momenta. The symmetries of Y (S) and χ(S) are conjugate to each
other, such that their product has the desired symmetry of the system. For example,
if Y (S) is totally symmetric, then χ(S) is totally antisymmetric, for a system of A
identical fermions. Appropriate symmetrization ofY (S) can be done using the results
of Sect. 4.3.1. The symmetrization of χ(S) is done using angular momentum algebra
and selecting appropriate angular momentum coupling [10, 11]. We will see an
explicit example for the trinucleon systems in the next chapter.

4.4 Schrödinger Equation: Coupled Differential Equations

Substitution of the expansion, Eq. (4.33), in the Schrödinger equation for the relative
motion, Eq. (4.5), premultiplication by Y (S)∗

[L] (�3N ), and integration over d�3N give
rise to a system of coupled differential equations (CDE)
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(
−�

2

m

d2

dξ2
+ L(L + 1)

ξ2
− E

)
u(S)

[L] (ξ)

+
∑
S ′

∑
L ′,[L ′]

〈 [
Y (S)

[L] (�3N )χ(S)(�s1, . . . , �sA, �t1, . . . , �tA)
]

J MJ

|V

|
[
Y (S ′)

[L ′] (�3N )χ(S ′)(�s1, . . . , �sA, �t1, . . . , �tA)
]

J MJ

〉
u(S ′)

[L ′] (ξ) = 0, (4.34)

where L = L + (3N − 3)/2. In the derivation of the above equation, Eqs. (4.8) and
(4.11) have been used. Note that the sets {Y (S)

[L] (�3N )} and {χ(S)} are orthonormal
ones. Note also that both the hyperradius ξ and its associated quantum number (the
hyperangular momentum or ‘grand orbital’ quantum number) L remain invariant
under all permutations. But in general L is not a good quantum number of the system.
In Eq. (4.34), V is the total interaction of all particles, expressed in terms of the Jacobi
vectors. Following Sect. 4.3.1, all mutual separations can be expressed in terms of
the original set of Jacobi vectors. The potential V can, in general, involve spin and
isospin operators, which act on χ(S). The coupling matrix element of Eq. (4.34) can
be evaluated directly. Alternately, one can expand the potential in an appropriate set
of HH. The expansion coefficients become the multipoles, which are functions of
ξ. Then, as in Chap.3, we can calculate the potential matrix element as a sum of
products of potential multipoles and geometrical structure coefficients.

The sum over L in Eq. (4.34) is an infinite one. For a numerical calculation,
the upper limit has to be restricted. This corresponds to a truncation of the full HH
basis. For most physical systems with a realistic interaction, the contribution to the
expansion (4.33) decreases rapidly with increase in L . This is so because for large L
the partial wave will be peaked at a much larger value of ξ, while the low-lying bound
states of the system will be highly localized. The accuracy of such a truncation is
controllable numerically and if no other approximation is made, such a calculation
is referred to as an essentially exact calculation.

In addition to the fact that the procedure becomes very involved for larger N , it
also depends on the nature of interaction and the number and nature of symmetry
components, the conserved quantum numbers, etc. All these may be much simplified
in an approximate way by the choice of a suitable subset of the full HH basis. Thus, it
is not very convenient to discuss the procedure in a general way. In the next section,
we will discuss approximations due to the use of subsets. In Chap.5, applications of
the technique will be presented.

4.5 Approximation by Truncation of Basis

If the pairwise interaction is a purely central one, independent of spin and isospin,
the full set of HH can be retained, with only an upper limit in the L sum in Eq. (4.34).
Coulomb systems like two-electron atoms,muonic atoms, etc. fall in this category and
will be discussed in Chap.6. Effect of the straight forward truncation of the full basis

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_5
http://dx.doi.org/10.1007/978-81-322-2361-0_6
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(keeping up to a maximum of L value of Lmax ) for two-electron atoms was investi-
gated by Chattopadhyay and Das [12]. They found that the binding energy converges
smoothly with Lmax and can be extrapolated for Lmax → ∞. But such essentially
exact calculations are not possible for few-quark and few-nucleon systems, for which
the interaction is noncentral and depends on spin and isospin variables. Even for the
simplest nontrivial system, viz., the trinucleon, there are several symmetry compo-
nents and the calculations become very involved, which will be discussed in Chap.5.
Thus approximation schemes are needed. A common type involves truncation of the
HH basis to be chosen for the expansion of the wave function. We discuss some
truncation schemes in the following.

4.5.1 Restriction of Symmetry Components

The simplest approximation is to restrict the symmetry components of the space
wave function arising from different symmetries under exchange of spin and isospin
of three or more identical particles. For the good quantum number J of a selected
state, different combinations of l and s may contribute. For example, for the ground
states (J = 1

2 ) of trinucleon systems (3H and 3He nuclei), there are three major
components, namely the space totally symmetric l = 0 state (S state), space mixed
symmetry l = 0 state (S′ state), and the l = 2 state (D state). Out of these the S state
contributes almost 90% to the ground state and as a first approximation, the ground
states of trinucleon can be taken as the space totally symmetric S state. This will be
discussed in detail in Chap. 5.

Under this scheme, one can also truncate the expansion basis to a subset that retains
the most important and dominant features of the system and the interactions. The
justification of this truncation follows from the physics of the system. For example, if
the tensor interaction is not very dominant, it can be disregarded, so that l becomes a
good quantum number and the expansion basis for the ground state can be restricted
to the subset corresponding to l = 0 only.

4.5.2 Lm Approximation

As in the case of the three-body system (Chap.3 Sect. 3.4.1), the total potential
V (�ξ1, . . . , �ξN ) can be expanded in the HH basis

V (�ξ1, . . . , �ξN ) =
∑
L ,[L]

V[L](ξ)Y[L](�3N ). (4.35)

If the potential contains spin and isospin operators, the potential multipole V[L](ξ)
will involve the same. If the potential is hypercentral, i.e., independent of �3N , then
only the L = 0 term survives. In this case both l and L become good quantum

http://dx.doi.org/10.1007/978-81-322-2361-0_5
http://dx.doi.org/10.1007/978-81-322-2361-0_5
http://dx.doi.org/10.1007/978-81-322-2361-0_3
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numbers and the CDE (4.34) reduces to a single uncoupled differential equation. For
the ground state both these take zero eigen values. The wave function �0 becomes
hyperspherically symmetric (independent of hyper angles). For other states or if the
potential is not hypercentral, the lowest L may have a nonvanishing value Lm , con-
sistent with symmetry and conserved angular momenta. Since the hypercentrifugal
repulsion of Eq. (4.34) is repulsive and increases rapidly withL, the ground state will
have dominant contribution from Lm . A purely hypercentral potential is unlikely in
a realistic situation. Even if the two-body potential is purely central, V (�ξ1, . . . , �ξN )

depends on the hyperangles (except for the case of harmonic oscillator potential).
In this case, Eq. (4.35) will have contributions from higher order multipoles and the
wave function � will deviate from hyperspherical symmetry. If the dependence of
the total interaction on the hyperangles is weak compared to the hypercentral part,
one can restrict the expansion of the wave function to a single term Y[Lm ](�3N ). This
is referred to as the Lm approximation.

4.5.3 Optimal Subset

On the other hand, if a better approximation is desired, one can use the optimal
subset. When the hypercentral part of the total potential is the dominant one, their
difference can be treated as a perturbation. Consider the subset of HH which is
directly connected to the lowest dominant member Y[Lm ](�3N ) through the potential
V (�ξ1, . . . , �ξN ), i.e., the subset of HH {Y[L]} should satisfy

〈Y[L]|V |Y[Lm ]〉 =
∫

Y∗
[L](�3N )V (�ξ1, . . . , �ξN )Y[Lm ](�3N )d�3N = 0. (4.36)

This subset is called the ‘optimal subset’. Clearly, it depends on the nature of the
potential and the most dominant HH Y[Lm ](�3N ). Use of the optimal subset corre-
sponds to a perturbative calculation up to and including the third order [6]. The use
of the optimal subset for the trinucleon system will be taken up in Chap.5, Sect. 5.3.

4.5.4 Potential Harmonics

The potential harmonics (PH) is the subset ofHHwhich is sufficient for the expansion
of the two-body potential V (�ri j ). Clearly, it depends on the label (i j) of the pair.
If the system of particles interacts through two-body interactions alone, the wave
function can be decomposed in Faddeev components of all interacting pairs. The
(i j) Faddeev component (which represents the (i j)-pair interacting, while all the
remaining particles are inert spectators), in general, depends on position vectors of
all the particles. However, if the system is very dilute, correlations higher than two-
body ones can be disregarded and the (i j) Faddeev component becomes a function

http://dx.doi.org/10.1007/978-81-322-2361-0_5
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of �ri j and hyperradius only. Then it can be expanded in the PH subset corresponding
to (i j)-pair. Such an expansion retains only two-body correlations in the spatial wave
function.

Correlations in the Wave Function

The full HH set takes into account all correlations and hence is necessarily a larger
set than the PH. If the wave function depends on the position of each particle, but is
independent of the relative separations (this is the case when the total wave function
is a product of single particle wave functions, the i th member of which depends on
the position of the i th particle only), then the total wave function has no correlations.
This means that the probability of finding the i th particle at �ri is independent of the
positions of all remaining particles. On the other hand, the total wave function has
n-body correlation if the probability of finding the i th particle at �ri depends on the
relative positions of (n − 1) other particles in its neighborhood, in addition to its own
position.

Consider a few-body system which interacts through two-body forces only. If the
system is very dilute such that the average interparticle separation is much larger
than the range of interaction (R0), then the probability that more than two particles
will be simultaneously within a sphere of radius R0 will be negligible. Hence the
wave function will depend on relative separations of pairs of particles only. In this
case, contributions of correlations higher than two-body ones in the wave function
is negligible. For such a dilute system the PH subset is sufficient for the expansion
of the spatial wave function of the system. This simplifies the analytic and numeri-
cal calculations greatly. An example is the dilute Bose–Einstein condensate (BEC),
which is a cloud of bosonic atoms below the critical temperature. The number density
of the cloud must be extremely low, so that there is no appreciable depletion due to
formation of molecules and clusters through three-body and higher body collisions.
We will discuss the potential harmonics expansion in Chap. 7 and its application to
BEC in Chap.8.

In passing, we discuss how three or higher body correlations may appear with
two-body forces only. Consider a denser system having a finite probability of finding
more than two particles simultaneously within the sphere of influence of radius R0.
Even with only two-body forces, the wave function of the system will depend on
the relative configuration of all the particles within this sphere and thus many-body
correlations enter into the picture. Higher body correlations become relevant as the
system becomes denser. Clearly, the PH subset is not adequate for such a system.

4.6 Truncation of Basis: Application to Particles and Nuclei

The hyperspherical harmonics expansion method (HHEM) with truncation of the
expansion basis according to one or more of the schemes given in the last section
will be briefly discussed in this section. Since we present these as examples of the
technique, discussions of the details of calculations and their results are outside

http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_8
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the scope of this section. Interested readers can find the details from the references
provided.

Few-body systems that have been studied by hyperspherical harmonics expansion
method include baryons treated as three-quark systems, three and four nucleon sys-
tems, clusters (trimer, tetramer, etc.) of inert gases, etc. In the following subsections,
we present a brief description of some of these as examples of truncation of the HH
basis. Because the trinucleon has a special importance in physics, as also historically
it was the first system studied by theHHEM in detail, we reserve it for amore detailed
description in Chap. 5. Furthermore, for its importance in dilute many-body systems,
the potential harmonics will be discussed in detail in Chap. 7 and its application to
the Bose–Einstein condensates will be presented in Chap. 8.

4.6.1 Baryons as Three-Quark Systems

Spectra and other properties of nucleons, � resonances, and strange hyperons have
been described by constituent three-quark model [13–19]. In this case, there are
additional degrees of freedom like color and flavor. The symmetry components were
restricted as follows. Requirement of color singlet states demands that the color wave
function be antisymmetric. Overall antisymmetry means that space-spin-flavor wave
function be totally symmetric under any pair exchange. Thus individual mixed sym-
metry space and spin-flavor states will contribute. A truncation scheme is adopted
by treating the total wave function as a product of the space totally symmetric wave
function (S), symmetric spin-flavor wave function, and the antisymmetric color wave
function. The mixed symmetry space contributions are disregarded by the approx-
imation scheme of Sect. 4.5.1. From our earlier discussion of Sect. 4.5.2 we know
that the lowest grand orbital quantum number contributes most to the ground state.
Hence, as a further simplification, the grand orbital quantum number is restricted
to the lowest value, by the Lm approximation, to reduce the set of CDE to a single
differential equation.

The nucleon wave function is thus given by

ψN = 1√
2
(χρηρ + χληλ)uN (ξ)ξ−5/2, (4.37)

where χρ(ηρ) are the mixed antisymmetric spin (flavor) wave functions and χλ(ηλ)

are the mixed symmetric spin (flavor) wave functions. The wave function for � is
given by

ψ� = χ
3
2 η

3
2 u�(ξ)ξ−5/2. (4.38)
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The hyperradial wave functions are obtained by solving single differential equations

[
�
2

m

(
− d2

dξ2
+ 15/4

ξ2

)
+ VN ,� − E

]
uN ,�(ξ) = 0, (4.39)

where VN ,�(ξ) are the single potential matrix element corresponding to Lm term and
is given by

VN ,�(ξ) = 48

π

∫ 1

0

[
V 0(ξu) − V S(ξu) + CN ,�V χ(ξu)

]
u2
√
1 − u2 du, (4.40)

whereCN = 14
3 andC� = 4

3 are obtained by taking the expectation value of the spin-

flavor operator (�σi · �σ j )(�λF
i · �λF

j ) in the appropriatewave functions. V 0 includes both
the linear confining potential and the spin-independent part of the q-q potential

Vqq(ri j ) = V 0(ri j ) + V S(ri j )�σi .�σ j + V χ(ri j )(�σi .�σ j )(�λF
i .�λF

j ). (4.41)

Equation (4.39) is solved numerically, subject to appropriate boundary conditions,
for masses and wave functions of ground and first radial excitations of the S, P, and
D waves of the nucleon and �. Numerical results and discussions can be found in
Refs. [14, 15].

The hyperspherical harmonics technique has also been used in the study of iden-
tical flavor four-quark systems [20]. Recently, the three-body wave equation with
the constituent quarks bound by a suitable hypercentral potential has been solved by
Abou-Salem to obtain resonance states of N ,�,�, and � baryon systems [21].

4.6.2 Nuclear Few-Body Systems

Several nuclear few-body systems are of great interest in physics. The trinucleon
systems (3H and 3He nuclei) are essential for the investigation of nuclear three-body
force. We will discuss them in detail in Chap.5. Some heavier nuclei can be treated
as few-body nuclear systems with clusters as building blocks. Important among
these are the halo nuclei containing a stable core and a few valence nucleons. As
an example 11Li nucleus can be treated as 9Li core and two loosely bound valence
neutrons [22]. In halo nuclei, very weakly bound extra-core nucleons form a low-
density halo around the stable core giving the nucleus a larger radius than neighboring
stable nuclei. The alpha (α) particle is the 4He nucleus and is a four-body system,
which will be discussed below. The α particle is very stable and it has a large binding
energy. Hence A = 4n (with n = 3, 4, . . .) nuclei can be treated as clusters of α
particles. Such clusters have also been studied as few-body systems using HHEM.
This technique can also be applied in the analysis of nuclear scattering [23]. N − d
scattering has been treated as a three-body system, where the deuteron is treated as
a bound state of a proton and a neutron [24, 25].

http://dx.doi.org/10.1007/978-81-322-2361-0_5
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Halo Nuclei

Experimental discovery of halo nuclei became possible in the 1980swith the develop-
ment of intense radioactive ion beam facility. These nuclei have one ormore nucleons
very weakly bound to a fairly stable core. In such nuclei none of the two-body sub-
systems is bound. Importance of halo nuclei lies in the investigation of longer range
nuclear interaction in low-density regime. The core can be treated as a particle, hence
a few-bodymodel is possible.With large neutron excess, such light nuclei lie near the
neutron drip line, giving a small separation energy for the valence nucleons. The first
experiments in the mid-1980s observed large interaction or reaction cross sections at
high or low energies for light neutron drip line nuclei 11Li, 11Be, 14Be, and 17B. This
gives an abnormally large cross section for the halo nucleus. The valence nucleons
are thus much further from the core than the average separation in a stable nucleus.
Hence they form a very low-density halo around the core, giving the halo nucleus a

larger r.m.s. radius than the r0 A
1
3 formula. A very narrow 9Li transverse momentum

distribution was found from 11Li fragmentation at high energy, giving evidence of
a halo structure and justification of a few-body model consisting of the core and
valence neutrons [26–28]. The halo nuclei 6He and 6Li can be treated as (α + N +
N) and (α + P + N), respectively. However in the latter the finite tail of the deuteron
wave function gives a finite probability of the α plus deuteron channel [26]. Bound
states of two neutron halo nuclei 6He and 11Li were investigated successfully by
HHEM [26, 29, 30]. Binding energy and other observables calculated by the HHEM
agree well with experimental results and other calculations.

Resonance States of Halo Nuclei

Resonance states of the halo nuclei have also been studied using the hyperspherical
formalism. However, such resonances are produced by extremely shallow effective
potentials. Hence they are very broad and lie well into the continuum. Consequently,
the wave function is not localized and standard numerical solution of the Schrödinger
equation is not sufficiently accurate. Using a novel technique of the supersymmetric
quantum mechanics the shallow potential is replaced by an isospectral potential,
which can be made desirably narrow and deep, leading to desired precision [31].
This method needs the existence of a ground state with the same quantum numbers
as the resonance investigated. But this method cannot be used if there is no lower
energy bound state with the same quantum numbers as the resonance studied. In
such a case, one can construct a bound state in the continuum technique to produce
the isospectral potential [31]. The supersymmetric isospectral potential constructed
using the hyperspherical technique has been used in the study of resonances in A = 6
nuclei [32]. For the 2+ resonance of 6He and the 5

2
+
resonance state of 11Be the

method of bound state in continuum using HHEM has been used [33, 34], as there is
no corresponding lower energy bound state. In all these cases excellent agreements
with experimental results have been obtained.
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Bound State of Four Nucleon: The α Particle

The alpha (α) particle is the bound ground state of the four nucleon system, consisting
of two protons and two neutrons, i.e., the 4He nucleus. Its binding energy is about
28.4MeV.The binding energy per particle ismuch higher than that of the neighboring
nuclei. Hence it occupies a special place, since for low energy nuclear physics, it can
be considered as a ‘particle’. In the shellmodel description, it is the first doublymagic
nucleus, fully occupying the 1s 1

2 shell for both proton and neutron. This explains
the large binding energy. Although the net Coulomb force (only between protons) is
repulsive, the strong nucleon–nucleon force,which is dominantly attractive, produces
the strong binding.Aswe have discussed earlier, a full quantummechanical treatment
of the four-body system is a lot more complicated than the three-body system. The
α particle being a doubly magic 1s-shell nucleus, its ground state has Jπ = 0+,
with both total spin and total orbital angular momenta taking zero values (s = 0, l =
0) for the ground state in the shell model description. Hence it behaves as a spin
zero boson. Since both proton and neutron are spin-half fermions, the total wave
function of the α particle is antisymmetric under any pair exchange (including spin
and isospin degrees). Clearly, the ground state can have contributions from various
mixed symmetry spin-isospin states, combinedwith spacewave function of conjugate
symmetry, such that the combination of space-spin-isospin wave functions is totally
antisymmetric. From the shell model description, the ground state of 4He nucleus is
the fully antisymmetric determinantalwave function constructed out of single particle
wave functions φnl jm j mt (i) with i = 1, 4 for four nucleons (mt is the projection of
isospin with the values 1

2 and − 1
2 for proton and neutron, respectively). This state

has s = 0, l = 0, with the space part of the wave function being totally symmetric
under any pair exchange. Since the shell model is a very good starting point, the
contribution of the space totally symmetric S (l = 0) state is very large and to a very
good approximation, the α particle can be represented by this state alone.

Thus in the HHEM, one can restrict the symmetry components to the space totally
symmetric wave function only. The space wave function is expanded in the totally
symmetric HH basis for the four-body system. The latter is obtained by the method
of Sect. 4.3.1 [35, 36]. For the ground state the Lm approximation was found to be
adequate. But for the 0+ excited state it was necessary to include higher L values for
a proper convergence. Charge form factors for e scattering from 4He was calculated
by Sanyal and Mukherjee [36] using the HHEM technique.

Exotic Few-Body Nuclear Systems

Exotic nuclei containing a few hyperons have been modeled as a system consisting
of a normal nucleus as a core and a few hyperons. For example, the exotic nucleus

6
��He is considered as a bound state of the alpha particle and two � particles. Its
ground state has been investigated by hyperspherical technique [37]. Ground state
structure, �� dynamics, and hyperon–nucleon interaction were also studied for
low and medium mass hypernuclei [38]. Techniques of supersymmetric quantum
mechanics were used in conjunction with HHEM to study excited states of such
exotic nuclei [39].
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Nuclear and Atomic Clusters

Some nuclei have been treated as a bound state of subsystems to gain a specific
insight. For example, the 5H nucleus (with large neutron excess) has been consid-
ered as a three-body system of 3H and two neutrons [40]. The continuum resonance
spectrum of this nucleus has been investigated using the complex-scaled hyperspher-
ical adiabatic expansion (see Chap.10) method [41].

The alpha particle model has been proposed for N = Z nuclei with A = 4n, for
n = 3, 4, . . .. It is another example of nuclear cluster. In this model nuclei like 12C,
16O, etc. are considered as bound states of three, four, etc.α particles. This is justified
because the α particle has a large binding energy, compared to the binding energy
of neighboring nuclei. Such nuclei have been treated by the HHEM [42, 43].

Properties of Helium and Rubidium atomic clusters (trimer, tetramer, etc.) have
also been calculated using the HHEM [44], hyperspherical Monte Carlo descrip-
tion [45], adiabatic hyperspherical method [46], and by variational calculation using
correlated HH basis [47]. The effective He–He interaction was chosen to be the stan-
dard TTY potential. The hyperspherical technique has also been used to calculate
binding energy and scattering observables of 4He trimers [48, 49].

Supersymmetric isospectral formalism [31] together with the HHEM was used
for near-zero energy states of He clusters [50]. Such states are spatially very extended
and hence the convergence of the HH expansion is very slow. As a result accurate
calculation of the wave function in the asymptotic region is very difficult. This diffi-
culty is avoided by constructing the isospectral potential according to the prescription
of supersymmetric quantum mechanics (SSQM). This isospectral potential has the
property that its spectrum is identical with the original spectrum, but the width of
the isospectral potential can be controlled through a suitable but arbitrary parame-
ter [31]. This parameter is chosen such that the isospectral potential has a narrow
and deep well. Hence states in this well are not too extended and a high precision
in the observables is possible. The hyperspherical technique has also been used in
the study of diffuse Rubidium clusters, where Rb–Rb interaction is given by the s-
wave scattering length (as) of Rb atoms [51]. The level spacing statistics and spectral
correlations of diffuse van der Waals clusters are investigated using the HHEM [52].
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Chapter 5
The Trinucleon System

Abstract Solutions of trinucleon nuclei (3H and 3He) are important in the study
of nuclear forces. The ground-state wave function, including spin and isospin, is
antisymmetrized, giving rise to several components. Next the optimal subset for the
trinucleon interacting via central and tensor interactions is constructed. The poten-
tial matrix elements are calculated using geometrical structure coefficients. The lat-
ter coefficients (for coupling of various components of the wave function through
central and tensor forces) are obtained elegantly by solving a set of linear inhomoge-
neous equations. Results of typical calculations are presented as illustration. Effect
of nuclear three-body force is also discussed.

In this chapter, we discuss the trinucleon system in detail. There are two bound trin-
ucleon nuclei: 3H containing a proton and two neutrons, and 3He containing two
protons and a neutron, having binding energies of 8.48 MeV and 7.73 Mev, respec-
tively. These are the simplest nuclei after the deuteron 2H. The trinucleon nuclei have
special importance in nuclear physics, since these can provide information on the
existence and importance of nuclear three-body force. Being three-body systems,
essentially exact calculations are possible. In Chap.3, we discussed how the hyper-
spherical harmonics expansion method can be developed for the three-body system.
In this chapter, wewill discuss how appropriate symmetry can be imposed and obtain
the resultant coupled differential equations.

A trinucleon nucleus is a bound state of three spin 1
2 fermions. In the simplest

shell model picture, two identical nucleons (two protons for 3He and two neutrons for
3H) occupy a closed 1s 1

2 shell and the third nucleon occupies 1s 1
2 shell of the other

nucleon type. Hence, the spin parity is Jπ = 1
2

+
, which agrees with experiment. In

this picture, total spin and orbital angular momenta are good and have values s = 1
2

and l = 0. However, from two-nucleon studies, it is known that nuclear force has
a small noncentral contribution and has exchange character. Hence, l and s are not
strictly good quantum numbers, although the l = 0, s = 1

2 (called the S state of the
trinucleon) has a dominant contribution. Introduction of the isospin makes the proton
and the neutron identical spin 1

2 fermions. Hence, the full trinucleon wave function
must be antisymmetric under exchange of any pair. The S state corresponds to the
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space totally symmetric state combined with the totally antisymmetric spin–isospin
wave function. For the three-body system, it is possible to have space and spin–
isospin states of mixed conjugate symmetry, so that the full wave function is totally
antisymmetric. In the following, we discuss how these states can be constructed.
In Chap.3, Sect. 3.5, we discussed the symmetrization of the spatial wave function.
Following the work of Ballot and Fabre [1], we discuss the symmetrization of the
spin–isospin wave function of the trinucleon in Sect. 5.1. In this chapter, we will
assume the potential to have a soft core, as is usually chosen for numerical calculation.
The three-body hyperspherical harmonics technique has to bemodified for potentials
with a hard core [2].

5.1 Symmetrization of Spin–Isospin Wave Function

The total spin (s) of three spin 1
2 nucleons can be 3

2 (once), 1
2 (twice). Likewise, the

total isospin (t) of three isospin 1
2 particles can be

3
2 (once),

1
2 (twice). The normalized

spin wave function of particles i, j and k is

|(si j
1

2
)sms〉(S)

k =
∑

ν1ν2ν3

(−1)
1
2 −si j −ν−ms ŝŝi j

(
1
2

1
2 si j

ν1 ν2 −ν

)(
si j

1
2 s

ν ν3 −ms

)

χ
1
2
ν1(i) χ

1
2
ν2( j) χ

1
2
ν3(k), (5.1)

where �si j = �si + �s j and the total spin is �s = �si j + �sk . In Eq. (5.1), ŝ stands for (2s +
1)

1
2 and χ

1
2
ν (i) is the spin wave function of the i-th particle with projection ν. The

matrix notation is a 3- j symbol. The subscript of the ket vector on left side represents
the last coupled particle (k) of the triplet (i, j, k) and a superscript (S) indicates spin
wave function. This wave function is symmetric or antisymmetric under i ↔ j for
si j = 1 or 0 and is denoted by the abbreviated notation |+〉(S)

k and |−〉(S)
k , respectively.

A similar expression gives the total isospinwave function of three isospin 1
2 particles:

|(ti j
1

2
)tmt 〉(T )

k =
∑

μ1μ2μ3

(−1)
1
2 −ti j −μ−mt t̂ t̂i j

(
1
2

1
2 ti j

μ1 μ2 −μ

)(
ti j

1
2 t

μ μ3 −mt

)

τ
1
2
μ1(i) τ

1
2
μ2( j) τ

1
2
μ3(k), (5.2)

where isospins of particles i and j are coupled to an intermediate isospin �ti j , which in

turn is coupled to �tk to a resultant isospin of �t and τ
1
2
μ (i) is the isospin wave function

of the i particle. A superscript (T ) indicates isospin wave function.
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The known quantum numbers of the ground state of trinucleon are Jπ = 1
2

+
.

Three spin halves can be combined as �si + �s j = �si j , �si j + �sk = �s with si j = 0
or 1 and s = 1

2 ,
1
2 , and

3
2 . The spin state with s = 3

2 is totally symmetric under
any pair exchange and the two s = 1

2 spin states correspond to mixed symmetry
spin states under the exchange of a given pair. An identical result is valid for the
isospin under exchanges in isospin space. One can combine states in isospin and
spin spaces to get one totally antisymmetric, one totally symmetric, and two mixed
symmetry states under combined exchanges in isospin–spin spaces. These states
are to be combined with space wave functions of conjugate symmetry, so that the
combination has the desired symmetry, viz., totally antisymmetric under any pair
exchange in the combined space–isospin–spin spaces.

Since J = 1
2 and s can have values 1

2 (twice) and 3
2 (once), the possible values

of total orbital angular momentum (l) of the system are 0, 1, and 2. Information
from experiments shows that the ground state has a dominant contribution from the
space totally symmetric l = 0 state (S) and smaller contributions from space mixed
symmetry l = 0 state (S′) and a l = 2 state (D). In the following subsections, we
obtain different possible isospin–spin states of the trinucleon.

5.1.1 States Having Total Isospin t = 1
2 and Spin s = 1

2

For t = 1
2 , s = 1

2 states, we introduce a parametric angle � (as was done for the
space wave function in Chap.3, Sect. 3.5) and make a l.c. of the symmetric and
antisymmetric states under i ↔ j

|W (�)〉(X)
k = sin�

∣∣∣∣
(
0
1

2

)
1

2
m〉(X)

k + cos�

∣∣∣∣
(
1
1

2

)
1

2
m〉(X)

k , (5.3)

where the superscript (X) stands for (S) or (T ) for spin or isospin, respectively.
Note that |W (�)〉(X)

k is normalized. We can easily verify that following l.c. are
antisymmetric under the exchange of angular momenta of indicated particles

|W (π/2)〉(X)
k = | (01

2

)
1
2m〉(X)

k ≡ |−〉(X)
k antisymm for i ↔ j

|W (π/2 − 2π/3)〉(X)
k =

√
3
2 |+〉(X)

k − 1
2 |−〉(X)

k

= | (01
2

)
1
2m〉(X)

i antisymm for j ↔ k

|W (π/2 + 2π/3)〉(X)
k = −

√
3
2 |+〉(X)

k − 1
2 |−〉(X)

k

= | (01
2

)
1
2m〉(X)

j antisymm for k ↔ i

(5.4)

In going from first to second line of the last two equations of Eq. (5.4), properties
under exchange of individual angular moments of the coupled state of three angular
momenta |( j1 j2) j12 j3; jm〉 have been used [3]. In a similar fashion, we have the
following l.c. which are symmetric under exchange of the first two angular momenta
of the indicated particles

http://dx.doi.org/10.1007/978-81-322-2361-0_3


58 5 The Trinucleon System

|W (0)〉(X)
k = |(11

2 )
1
2m〉(X)

k ≡ |+〉(X)
k symm for i ↔ j

|W (−2π/3)〉(X)
k = − 1

2 |+〉(X)
k −

√
3
2 |−〉(X)

k

= | (11
2

)
1
2m〉(X)

i symm for j ↔ k

|W (2π/3)〉(X)
k = − 1

2 |+〉(X)
k +

√
3
2 |−〉(X)

k

= | (11
2

)
1
2m〉(X)

j symm for k ↔ i

(5.5)

The combinations |W (�)〉(T )
k |W (� − π/2)〉(S)

k and |W (� − π/2)〉(T )
k |W (�)〉(S)

k
are both antisymmetric in spin–isospin space under i ↔ j, j ↔ k and k ↔ i for
� = π/2, π/2 − 2π/3 and π/2 + 2π/3, respectively. Using Eq. (5.3), we have

|W (�)〉(T )
k |W (� − π/2)〉(S)

k = − sin� cos�
[
|−〉(T )

k |−〉(S)
k − |+〉(T )

k |+〉(S)
k

]

+ sin2 �|−〉(T )
k |+〉(S)

k − cos2 �|+〉(T )
k |−〉(S)

k (5.6)

and

|W (� − π/2)〉(T )
k |W (�)〉(S)

k = − sin� cos�
[
|−〉(T )

k |−〉(S)
k − |+〉(T )

k |+〉(S)
k

]

+ sin2 �|+〉(T )
k |−〉(S)

k − cos2 �|−〉(T )
k |+〉(S)

k (5.7)

In a similar fashion, we can construct two combinations of isospin and spin wave
functions, which are symmetric under exchange i ↔ j, j ↔ k and k ↔ i for � =
π/2, π/2 − 2π/3 and π/2 + 2π/3, respectively,

|W (�)〉(T )
k |W (�)〉(S)

k = sin� cos�
[
|+〉(T )

k |−〉(S)
k + |−〉(T )

k |+〉(S)
k

]

+ sin2 �|−〉(T )
k |−〉(S)

k + cos2 �|+〉(T )
k |+〉(S)

k (5.8)

and

|W (� − π/2)〉(T )
k |W (� − π/2)〉(S)

k = − sin� cos�
[
|+〉(T )

k |−〉(S)
k + |−〉(T )

k |+〉(S)
k

]

+ sin2 �|+〉(T )
k |+〉(S)

k + cos2 �|−〉(T )
k |−〉(S)

k . (5.9)

Equations (5.6)–(5.9) give combinations of isospin–spin wave functions which have
specified symmetry under a pair exchange according to the specific values of �. If
we can find a l.c. of these which is independent of �, then it will have a specified
symmetry under exchange of any pair of particles. We can find two such normalized
combinations from Eqs. (5.6) and (5.7)

1√
2

[
− |W (�)〉(T )

k |W (� − π/2)〉(S)
k + |W (� − π/2)〉(T )

k |W (�)〉(S)
k

]

= 1√
2

[
|+〉(T )

k |−〉(S)
k − |−〉(T )

k |+〉(S)
k

]
≡ � 1

2
1
2
(A), (5.10)
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which is totally antisymmetric in isospin–spin space under any pair exchange. In
Eq. (5.10), we introduce the notation �ts(R) as the isospin–spin state of total isospin
t and total spin s, having a particular symmetryR under pair exchanges. In a similar
manner, we have from Eqs. (5.8) and (5.9)

1√
2

[
|W (�)〉(T )

k |W (�)〉(S)
k + |W (� − π/2)〉(T )

k |W (� − π/2)〉(S)
k

]

= 1√
2

[
|+〉(T )

k |+〉(S)
k + |−〉(T )

k |−〉(S)
k

]
≡ � 1

2
1
2
(S), (5.11)

which is totally symmetric in isospin–spin space under any pair exchange.
Two more mixed symmetry (hence dependent on �) combinations can be con-

structed. From Eqs. (5.6) and (5.7), we have

1√
2

[
|W (�)〉(T )

k |W (� − π/2)〉(S)
k + |W (� − π/2)〉(T )

k |W (�)〉(S)
k

]

= sin 2�
1√
2

[
|+〉(T )

k |+〉(S)
k − |−〉(T )

k |−〉(S)
k

]

− cos 2�
1√
2

[
|+〉(T )

k |−〉(S)
k + |−〉(T )

k |+〉(S)
k

]

≡ sin 2� � 1
2
1
2
(M+) − cos 2� � 1

2
1
2
(M−). (5.12)

This combination is antisymmetric in isospin–spin space under exchange of particles
i ↔ j, j ↔ k and k ↔ i , respectively, for� = π/2, π/2 − 2π/3 and π/2 + 2π/3.
The arguments (M+) and (M−) of � 1

2
1
2
refer to mixed symmetry for t = 1

2 , s = 1
2 .

We have from Eqs. (5.8) and (5.9) that

1√
2

[
− |W (�)〉(T )

k |W (�)〉(S)
k + |W (� − π/2)〉(T )

k |W (� − π/2)〉(S)
k

]

= − sin 2�
1√
2

[
|+〉(T )

k |−〉(S)
k + |−〉(T )

k |+〉(S)
k

]

− cos 2�
1√
2

[
|+〉(T )

k |+〉(S)
k − |−〉(T )

k |−〉(S)
k

]

≡ − sin 2� � 1
2
1
2
(M−) − cos 2� � 1

2
1
2
(M+), (5.13)

which is symmetric in isospin–spin space under exchange of particles i ↔ j, j ↔ k,
and k ↔ i , respectively, for � = π/2, π/2 − 2π/3, and π/2 + 2π/3.

Thus for t = 1
2 and s = 1

2 there are four possibilities of isospin–spin states
(�ts(R), where R denotes a symmetry), viz., one totally antisymmetric (� 1

2
1
2
(A)),

one totally symmetric (� 1
2
1
2
(S)), and two mixed symmetry (� 1

2
1
2

(M+) and � 1
2
1
2

(M−)) states. These are to be combined with space wave function of conjugate
symmetry to obtain the desired symmetry of the total wave function, which we will
discuss in Sect. 5.2.
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5.1.2 States Having Total Isospin t = 3
2 and Spin s = 1

2

The isospin wave function with t = 3
2 is totally symmetric under any pair exchange

in isospin space. We denote this state by (see Eq.5.2)

∣∣∣∣
(
1
1

2

)
3

2
mt

〉
(T )
k ≡

∣∣∣ 0
〉(T )

. (5.14)

The subscript is omitted since it is the same for all k. Hence, the symmetry property
under exchange of particles in the isospin–spin space is given by that in spin space
only, which are given by Eqs. (5.4) and (5.5) for (X) = (S). For the same set of
values of � introduced earlier, we have (using our previous notation for spin states)
from Eq. (5.3)

|0〉(T )|W (�)〉(S)
k = sin� |0〉(T )|−〉(S)

k + cos�|0〉(T )|+〉(S)
k

≡ sin� � 3
2
1
2
(M ′−) + cos� � 3

2
1
2
(M ′+), (5.15)

which is antisymmetric under exchanges i ↔ j, j ↔ k and k ↔ i for � =
π/2, π/2 − 3π/2 and π/2 + 3π/2 , respectively. The argument (M ′±) of � 3

2
1
2

refers to mixed symmetry for t = 3
2 , s = 1

2 . Similarly, we also have

|0〉(T )|W (� − π/2)〉(S)
k = sin� |0〉(T )|+〉(S)

k − cos�|0〉(T )|−〉(S)
k

≡ − cos� � 3
2
1
2
(M ′−) + sin� � 3

2
1
2
(M ′+), (5.16)

which is symmetric under exchanges i ↔ j, j ↔ k, and k ↔ i for � =
π/2, π/2 − 3π/2, and π/2 + 3π/2, respectively.

5.1.3 States Having Total Isospin t = 1
2 and Spin s = 3

2

In this case, the spin state

∣∣∣∣
(
1
1

2

)
3

2
ms

〉
(S)
k ≡

∣∣∣ 0
〉(S)

(5.17)

is totally symmetric under any pair exchange in spin space. Hence, we have as before

|W (�)〉(T )
k |0〉(S) = sin� |−〉(T )

k |0〉(S) + cos�|+〉(T )
k |0〉(S)

≡ sin� � 1
2
3
2
(M ′′−) + cos� � 1

2
3
2
(M ′′+), (5.18)

which is antisymmetric under isospin–spin exchanges of i ↔ j, j ↔ k , and k ↔ i
for � = π/2, π/2 − 3π/2 , and π/2 + 3π/2 , respectively. As before the argument
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(M ′′±) of the isospin–spin state refers to mixed symmetry for t = 1
2 , s = 3

2 . Simi-
larly, we also have

|W (� − π/2)〉(T )
k |0〉(S) = − cos� |−〉(T )

k |0〉(S) + sin�|+〉(T )
k |0〉(S)

≡ − cos� � 1
2
3
2
(M ′′−) + sin� � 1

2
3
2
(M ′′+), (5.19)

which is symmetric under combined isospin–spin exchanges of i ↔ j, j ↔ k , and
k ↔ i for � = π/2, π/2 − 3π/2 , and π/2 + 3π/2 , respectively.

5.1.4 States Having Total Isospin t = 3
2 and Spin s = 3

2

In this case, we have only one possible state, which is totally symmetric under any
pair exchange in isospin–spin space

∣∣∣∣
(
1
1

2

)
3

2
mt

〉
(T )
k

∣∣∣
(
1
1

2

)
3

2
ms

〉(S)

k

= ∣∣0 〉
(T )

∣∣ 0〉(S)
.

≡ � 3
2
3
2
(S′). (5.20)

In this treatment, we have introduced �
mt ms
ts (R) (in the above the projection

quantum numbers mt , ms have been suppressed), which are the nine orthonormal
representations [namely, � 1

2
1
2
(A), � 1

2
1
2
(S), � 1

2
1
2
(M−), � 1

2
1
2
(M+), � 3

2
1
2
(M ′−),

� 3
2
1
2
(M ′+), � 1

2
3
2
(M ′′−), � 1

2
3
2
(M ′′+), and � 3

2
3
2
(S′)] of isospin–spin states for the

trinucleon system.

5.2 Symmetrization of Total Wave Function

To obtain the total wave function having a desired symmetry, we have to combine
�

mt ms
ts (R) with a space wave function having the conjugate symmetry (R̃). Thus we

need to construct space wave function having symmetry R̃. In Chap.3, Sect. 5, we
saw how one can construct a completely symmetric three-body space wave function,
using the kinematic rotation vector. In this section, we discuss how the idea can be
generalized to obtain space wave functions having different symmetries.

http://dx.doi.org/10.1007/978-81-322-2361-0_5
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5.2.1 General Expression for Fully Antisymmetric
Wave Function

For the trinucleon, the total wave function should be antisymmetric under exchange
of any pair. This can be done by multiplying a particular �

mt ms
ts (R) by the space

wave function of conjugate symmetry. The space wave function for three partitions
is given as �(�z(�), �z(� − π/2), where �z(�) is given by Eq. (3.43). It is interesting
that the three partitions (i j)k, ( jk)i , and (ki) j are obtained for the same values of
�, namely, π/2,π/2 − 2π/3, and π/2 + 2π/3, respectively. The totally symmetric
(or antisymmetric) space wave function is obtained by a sum of cyclic permutations
of �(�z(�), �z(� − π/2)) which is symmetric (or antisymmetric) under i ↔ j . The
latter is done by restricting l1 values to even (or odd) integers. The sum of cyclic
permutations is effected by the operator �0 of Eq. (3.46). For the mixed symmetry
states, we first combine a mixed symmetry isospin–spin state with space wave func-
tion having conjugate symmetry under i ↔ j , and then perform the cyclic sum
(�C ). Thus totally antisymmetric trinucleon wave function is given by

�(ξ,�6)

= �
mT mS
1
2
1
2

(A)
∑
C

�
(+)
S

(
�z(�), �z

(
� − π

2

))

+ �
mT mS
1
2
1
2

(S)
∑
C

�
(−)
A

(
�z(�), �z

(
� − π

2

))

+
∑
C

[
sin 2��

mT mS
1
2
1
2

(M+) − cos 2��
mT mS
1
2
1
2

(M−)
]
�

(+)
M

(
�z(�), �z

(
� − π

2

))

−
∑
C

[
sin 2��

mT mS
1
2
1
2

(M−) + cos 2��
mT mS
1
2
1
2

(M+)
]
�

(−)
M

(
�z(�), �z

(
� − π

2

))

+
∑
C

[
sin��

mT mS
3
2
1
2

(M ′−) + cos��
mT mS
3
2
1
2

(M ′+)
]
�

(+)
M ′

(
�z(�), �z

(
� − π

2

))

+
∑
C

[
− cos��

mT mS
3
2
1
2

(M ′−) + sin��
mT mS
3
2
1
2

(M ′+)
]
�

(−)
M ′

(
�z(�), �z

(
� − π

2

))

+
∑
C

[
sin��

mT mS
1
2
3
2

(M ′′−) + cos��
mT mS
1
2
3
2

(M ′′+)
]
�

(+)
M ′′

(
�z(�), �z

(
� − π

2

))

+
∑
C

[
− cos��

mT ms
1
2
3
2

(M ′′−) + sin��
mT mS
1
2
3
2

(M ′′+)
]
�

(−)
M ′′

(
�z(�), �z

(
� − π

2

))

+ �
mT mS
3
2
3
2

(S′)
∑
C

�
(−)
A′

(
�z(�), �z

(
� − π

2

))
, (5.21)

where
∑

C represents sum over cyclic permutations with � = π/2, π/2 − 2π/3
and π/2 + 2π/3. The superscript −(+) on � refers to antisymmetry(symmetry)
under i ↔ j [by restricting l1 to odd(even) values]. The subscript refers to the
symmetry component corresponding to the particular values of t and s. To do the

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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indicated cyclic sum in the above equation, we introduce the following operators as
in Eq. (3.46):

∑
0

f (�) = 1

3

[
f (�) + f

(
� − 2π

3

)
+ f

(
� + 2π

3

)]
(5.22)

∑
+

f (�) = 1

3

[
2 f (�) − f

(
� − 2π

3

)
− f

(
� + 2π

3

)]
(5.23)

∑
−

f (�) = 1√
3

[
f
(
� − 2π

3

)
− f

(
� + 2π

3

)]
(5.24)

Using these operators, we have the completely antisymmetric total wave function

�(ξ,�6) = � 1
2
1
2
(A)φ(0,+)

S (ξ,�6) + � 1
2
1
2
(S)φ(0,−)

A (ξ,�6)

+ � 1
2
1
2
(M−)

[
φ(+,+)

M (ξ,�6) + φ(−,−)
M (ξ,�6)

]

+ � 1
2
1
2
(M+)

[
− φ(−,+)

M (ξ,�6) + φ(+,−)
M (ξ,�6)

]

+ � 3
2
1
2
(M ′−)

[
φ(+,+)

M ′ (ξ,�6) − φ(−,−)
M ′ (ξ,�6)

]

+ � 3
2
1
2
(M ′+)

[
φ(−,+)

M ′ (ξ,�6) + φ(+,−)
M ′ (ξ,�6)

]

+ � 1
2
3
2
(M ′′−)

[
φ(+,+)

M ′′ (ξ,�6) − φ(−,−)
M ′′ (ξ,�6)

]

+ � 1
2
3
2
(M ′′+)

[
φ(−,+)

M ′′ (ξ,�6) + φ(+,−)
M ′′ (ξ,�6)

]

+ � 3
2
3
2
(S)φ(0,−)

A′ (ξ,�6) (5.25)

The functions φ(ε,ε′)
R are defined as

φ(0,ε)
R (ξ,�6) = 3

∑
0

�
(ε)
R

(
�z(�), �z

(
� − π

2

))
(R = A, S, A′) (5.26)

φ(ε′,ε)
R (ξ,�6) = 3

2

∑
ε′

�
(ε)
R

(
�z(�), �z

(
� − π

2

))
(5.27)

(R = M, M ′, M ′′ and ε′ = + or −).

5.2.2 Construction of HH for Different Partitions

To apply operators
∑

ε, one needs HH for different partitions corresponding to the
parametric angle �. We note that the hyperangles (denoted by �6,�) depend on the
partition and thus is a function of the parametric angle �. In our earlier expressions,

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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the hyperangle �6 corresponds to the (i j)k partition, i.e., � = π/2. Note that the
hyperradius ξ is invariant under different permutations. Thus the analytic form of
the HH Y[L](�6,�) for different partitions will be an involved expression in terms of
the original hyperangles. On the other hand, each full set of HH {Y[L](�6,�)} for a
given � forms a complete set. Hence, a particular HH, Y[L](�6,�), can be expanded
in the complete set {Y(�6)}

Y[L](�6,�) =
∑
[L ′]

C[L][L ′](�)Y[L ′](�6). (5.28)

The expansion coefficients C[L][L ′](�) are called Raynal–Revei coefficients [4].
We already discussed the use of Raynal–Revai coefficients in Chap.3. Using the

coupled basis HHY(l1l2)lml L(�6), the space wave function�[L](�z(�), �z(� − π/2) is
expanded in the complete set of coupled HH for the partition corresponding to � in
Eq. (3.48).Next the coupled basisHHY(l1l2)lml L(�6,�) for the partition� is expanded
in the set of original HH according to Eq. (3.49). The Raynal–Revai coefficients
A[L]

l ′1l ′2
(�) are given by Eqs. (3.50)–(3.52). Note that the value of the hyperangular

momentum (grand orbital) quantum number remains unchanged in all partitions, as
it is associated with the hyperradius, which is invariant under permutations. Hence,
the sum is over l ′1l ′2 only. Using these relations, together with Eqs. (5.22)–(5.28), one
can obtain the totally antisymmetric wave function for the trinucleon system.

5.3 Optimal Subset for the Trinucleon

The wave function obtained in the last section involves no approximation. But due
to the large number (nine) of symmetry components in Eq. (5.25), the calculations
are extremely heavy and computer intensive. Known experimental informations can
restrict some of the components. For example, it is known that the ground state of
the trinucleon is a t = 1

2 , J π = 1
2

+
state. Hence, s = 1

2 and 3
2 and l = 0 and l = 2

can contribute, while l = 1 has a negligible contribution. Thus the ground state is a
mixture of the l = 0 space totally symmetric S state, the l = 0 spacemixed symmetry
S′ state, and the l = 2 spacemixed symmetryD state. These correspond, respectively,
to the first component, the first terms of third and fourth components and the first
terms of seventh and eight components of Eq. (5.25). Hence, the ground state is
given by

�(ξ,�6) = � 1
2
1
2
(A)φ(0,+)

S (ξ,�6)

+
[
� 1

2
1
2
(M−)φ(+,+)

M (ξ,�6) − � 1
2
1
2
(M+)φ(−,+)

M (ξ,�6)
]

+
[
� 1

2
3
2
(M ′′−)φ(+,+)

M ′′ (ξ,�6) + � 1
2
3
2
(M ′′+)φ(−,+)

M ′′ (ξ,�6)
]
. (5.29)

The first, second, and third lines correspond to S, S′, and D state, respectively.
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A further simplification is possible using the optimal subset approximation, intro-
duced in Chap.4, Sect. 4.3. Equation (4.36) shows that the optimal subset (OS)
depends on the interaction. It is known that the nuclear interaction is a mixture
of central and tensor forces, the former being the dominant one. It is consistent with
the fact that l = 0 and 2 contribute to the ground state. Hence, the S state (l = 0)
will be the dominant one, which is confirmed by experiments to have a probability of
about 90%. So a representation of space part of the ground state by Y[0](�6) alone
will be a good approximation.

Let the optimal subset be denoted by {Bk(�6, s, t)}. Clearly, the first member of
this set is

B0(�6, s, t) = Y[0](�6)� 1
2
1
2
(A) = π−3/2� 1

2
1
2
(A). (5.30)

Then by Eq. (4.36), the other members of OS satisfy

∫
Bk(�6, s, t)Bk ′(�6, s, t)d�6 = δkk ′

∫
Bk(�6, s, t)V (ξ,�6)B0(�6, s, t)d�6 �= 0, (5.31)

whereV (ξ,�6) is the sumof all interactions, expressed in terms of the hyperspherical
variables. Since the net central potential is an even function and is totally symmetric
under any pair exchange, it can be expanded in the set of totally symmetric HH with
even parity, {P(0)

2K (�6)} [see Eq. (5.37)]

V (ξ,�6) =
∞∑

K=0

a2KP
(0)
2K (�6)V2K (ξ), (5.32)

where V2K (ξ) is the potential multipole and a2K is an operator acting on isospin–spin
variables, but independent of hyperspherical variables. Condition (5.31) with the first
member of OS given by Eq. (5.30) gives the remainingmembers of the optimal subset
(for central interactions) as

B2K (�6, s, t) = C2KP
(0)
2K � 1

2
1
2
(A), (5.33)

where C2K is a normalization constant. This is true for the central interaction only,
for which isospin–spin operator part of a2K is an identity operator and applies to the
S state only. For the D state, total angular momentum �J is obtained by coupling �s
and �l of the isospin–spin and space wave functions. The isospin–spin wave function
is given by [see equations of Sect. 5.1, which define the values of the coefficients
bt

s(R)]

�
mt ms
ti j si j

(R) =
∑

ts

b
ti j
si j (R)|(si j

1

2
)sms〉(S)|(ti j

1

2
)tmt 〉(T ). (5.34)

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
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Since the potential is a sum of central and tensor terms, the expression for a general
member of OS, appropriate for any of S, S′, and D states, in isospin–spin–space
coupled form is given by [1]

[
�ts(R̃) ⊗ B(R)

2K+l (�6)
]

J MJ
= N (R)

2K+l

∑
l1l2ti j si j mms

b
ti j
si j (R̃)(−1)s−m J l̂1l̂2 Ĵ

(
l l1 l2
0 0 0

)(
l s J
m ms −m J

)

×
(∑
R

(2)Pl2l1
2K+l (�)

)
(2)Pl2l1

2K+l (φ)|(l1l2)lm〉|(si j
1

2
)sms〉(S)|(ti j

1

2
)tmt 〉(T ), (5.35)

where N (R)
2K+l is a normalization constant. R̃ represents the conjugate symmetry of

R, such that left side of Eq. (5.35) is totally antisymmetric. This subset of HH, called
a potential basis, was introduced by Fabre [1] and constitutes the optimal subset for
the trinucleon. It was shown by Erens [5] that the OS approximation is a good one
for the trinucleon.

In general, l, s, and t are not good quantum numbers, but J, m J , and mt are
good: mt = 1

2 and mt = − 1
2 correspond to

3He and 3H nuclei, respectively. Thus the
ground state of the trinucleon is a mixture of different components, corresponding to
different (l, s, t) values. A component of the trinucleon wave function with orbital
angular momentum l, spin s, and isospin t is denoted by �

tmt
(ls)Jm J

(ξ,�6). The l = 0
part consists of two components: the totally symmetric S and the mixed symmetry
S′ states, corresponding to the first two terms of Eq. (5.29). These are expanded in
appropriate optimal subsets

�
1
2 mt

(0 1
2 ) 12

1
2
(ξ, �6) = �

mt
1
2

1
2
1
2

(A)ξ−5/2
∑

K

P(0)
2K (�6)u

S 1
2
1
2

2K (ξ)

+ ξ−5/2
∑

K

2−1/2
[
�

mt
1
2

1
2
1
2

(M−)P(+)
2K (�6) − �

mt
1
2

1
2
1
2

(M+)P(−)
2K (�6)

]
u

S′ 1
2
1
2

2K (ξ),

(5.36)

where u
St= 1

2 s= 1
2

2K (ξ) and u
S′t= 1

2 s= 1
2

2K (ξ) are hyperradial partial waves for the S and S′
states, respectively. Hyperangular parts of OS elements with different symmetries
(ε = 0,+ and −) for the S and S′ states are given by

P(ε)
2K (�6) ≡ B(S,ε)

2K (�6)

= N (ε)
2K

K∑
l1=0

(ε)F
l1l1
2K (

π

2
)(2)P l1l1

2K (φ)

l1∑
m1=−l1

Yl1m1(ξ̂1)Y
∗
l1m1

(ξ̂2),

(with ε = 0,+ and −). (5.37)
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The F functions introduce the desired symmetry and is given by

(ε)F
l1l1
2K (�) =

∑
ε

(2)P l1l1
2K (�), (5.38)

and the normalizing constant is

[N (ε)
2K ]−2 =

K∑
l1=0

(2l1 + 1)
[

(ε)F
l1l1
2K (�)

]2
. (5.39)

In a similar fashion, we can expand the complete D state wave function [corre-
sponding to the third term of Eq. (5.29)] in an appropriate OS

�
1
2 mt

(2 3
2 ) 1

2
1
2
(ξ,�6) = ξ−5/2

∑
K

2−1/2
[
D(+)

2K+2(�6)

∣∣∣
(
0
1

2

)
1

2
mt

〉(T )

+ D(−)
2K+2(�6)

∣∣∣
(
1
1

2

)
1

2
mt

〉(T )]
u

D 1
2
3
2

2K+2(ξ), (5.40)

where u
D 1

2
3
2

2K+2(ξ) is the D state partial wave and

D(ε)
2K+2(�6) = B(D,ε)

2K+2

= N (D,ε)
2K+2

∑
l1l2

l̂1l̂2

(
2 l1 l2
0 0 0

)

×(D,ε)Fl2l1
2K+2(π/2) (2)Pl2l1

2K+2(φ)
〈
ξ̂1ξ̂2

∣∣∣(l1l2)2;
(
1
1

2

)
3

2
; 1
2

1

2

〉
(5.41)

with the normalization constant given by

[N (D,ε)
2K+2]−2 =

∑
l1l2

(2l1 + 1)(2l2 + 1)

(
2 l1 l2
0 0 0

) [
(D,ε)F

l1l2
2K+2(π/2)

]2
(5.42)

and
(D,ε)F

l2l1
2K+2(�) =

∑
ε

(2)P l2l1
2K+2(�). (5.43)

In the above
∑

ε is given by Eqs. (5.22)–(5.24).
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5.4 Calculation of Potential Matrix Element: GSC

Since the general elements of the OS are given by Eq. (5.35), the matrix elements of
the potential are given by

Vα,α′(ξ) = 〈
[
�ts(R̃) ⊗ B(R)

2K+l (�6)
]

J MJ

∣∣∣V (ξ,�6)
∣∣∣[�t ′s′ (R̃′) ⊗ B(R′)

2K ′+l ′(�6)
]

J MJ
〉,

(5.44)

where α = {t, s, K , l,R} is an abbreviation of relevant quantum numbers. Since the
OS is totally antisymmetric under any pair exchange, the potential matrix element
(PME) of the total potential is just the PME of any one pair [say (i j)-pair] times the
number of pairs. Hence,

Vα,α′(ξ) = 3〈
[
�ts(R̃) ⊗ B(R)

2K+l (�6)
]

J MJ

∣∣∣V (�ri j ))
∣∣∣[�t ′s′(R̃′) ⊗ B(R′)

2K ′+l ′(�6)
]

J MJ
〉.

(5.45)

Now the nucleon–nucleon potential is a sum of central and tensor potentials. Hence,
(i j)-pair potential can be expanded in HH as

V (�ri j ) = V (�ξ1)
=

∑
l ′′(=0,2)m′′

l

a
l ′′ml′′
i j (�ti , �t j , �si , �s j )

∑
K ′′

V2K ′′+l ′′ (ξ)
(2)P0,l ′′

2K ′′+l ′′ (φ)Yl ′′m′′
l
(ϑ1, ϕ1), (5.46)

where l ′′ = 0 and 2 correspond to the central and tensor terms and al ′′ml′′
i j (�ti , �t j , �si , �s j )

is the operator acting on isospin–spin part of the wave function. The spin operators
�σi and �σ j (vectors in 3D space) of al ′′ml′′

i j (�ti , �t j , �si , �s j ) and Yl ′′ml′′ (ϑ1,ϕ1) (a spherical
tensor of rank l ′′ in 3D space) are to be coupled to a scaler, so that the potential
is invariant under combined spin–space rotations in 3D space [1]. The potential
multipole (PM) V2K ′′+l ′′(ξ) can be calculated easily by a single one-dimensional
integral over φ.

FromEqs. (5.45) and (5.46), we see that the PMEwill be a sumof terms containing
product of 〈�ts(R̃)|al ′′ml′′

i j (�ti , �t j , �si , �s j )|�t ′s ′(R̃′)〉 with a geometrical structure coeffi-

cient (GSC) [see Chap.3 Sect. 6], involving the 3P-coefficients 〈(2)P l2l1
2K+l |(2)P0 l ′′

2K ′′+l ′′

|(2)P l ′2l ′1
2K ′+l ′ 〉. These can be calculated by the method of linear inhomogeneous equa-

tions proposed by De and Das [6, 7] and discussed in Chap.3 for the simple S
state of the trinucleon. We briefly recapitulate the method. Using the definition of
(2)P-function [Eq. (3.26)], we have

〈
(2)P l2l1

2K+l

∣∣∣(2)P0l ′′
2K ′′+l ′′

∣∣∣(2)P l ′2l ′1
2K ′+l ′

〉

=
∫ π

2

0

(2)P l2l1
2K+l(φ) (2)P0l ′′

2K ′′+l ′′(φ) (2)P l ′2l ′1
2K ′+l ′(φ) sin2φ cos2φ dφ

http://dx.doi.org/10.1007/978-81-322-2361-0_6
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= Nl2l1
2K+l N 0l ′′

2K ′′+l ′′ N
l ′2l ′1
2K ′+l ′2

−(ñ+3)
∫ 1

−1
(1 − x)(l1+l ′1+l ′′+1)/2(1 + x)(l2+l ′2+1)/2

× P
l1+ 1

2 ,l2+ 1
2

K+(l−l1−l2)/2
(x)P

l ′′+ 1
2 , 12

K " (x)P
l ′1+ 1

2 ,l ′2+ 1
2

K ′+(l ′−l ′1−l ′2)/2
(x)dx, (5.47)

where ñ = (l1 + l ′1 + l2 + l ′2 + l ′′)/2. Note that this is an integer, since (l1 + l2) and
(l ′1 + l ′2) are even integers (wave function has even parity) and l ′′ = 0 or 2 (corre-
sponding to central and tensor interactions respectively).

Selection Rule
We can easily see that the 3P coefficient given by Eq. (5.47) vanishes, unless a selec-
tion rule is satisfied. Since P̃ l2l1

L = ξL (2)P l2l1
L (φ) is a homogeneous polynomial of

degree L inCartesian components of the Jacobi vectors, the product P̃ l2l1
2K+l P̃ l ′2l ′1

2K ′+l ′ is a
homogeneous polynomial of degree (2K + l + 2K ′ + l ′). Hence, it can be expanded
in a series of polynomials of lower degree, multiplied by ξ raised to the difference
of the degrees [7]

P̃ l2l1
2K+l P̃ l ′2l ′1

2K ′+l ′ =
∑
K ′′

cK ′′P̃ l ′′2 l ′′1
2K ′′+l ′′ ξ{2K+l+2K ′+l ′−(2K ′′+l ′′)}, (5.48)

where cK ′′ are constants. Since the polynomials must be regular at the origin, the
exponent of ξ on the right side must be a positive definite integer. Hence, 2K + l +
2K ′ + l ′ ≥ 2K ′′ + l ′′. Permutations of the three (2)P functions give similar relations.
Combining these we get the triangle inequality for a triangle having sides (2K + l),
(2K ′ + l ′), and (2K ′′ + l ′′)

|(2K + l) − (2K ′ + l ′)| ≤ (2K ′′ + l ′′) ≤ {(2K + l) + (2K ′ + l ′)}. (5.49)

This condition restricts the allowed values of K ′′ for given values of K , K ′, l, l ′,
and l ′′. The corresponding GSC vanishes unless this condition is satisfied. Express-
ing Eq. (5.48) in terms of (2)P functions, multiplying both sides by a third (2)P
function, integrating, and using their orthonormal property [Eq. (3.25)], we see that〈
(2)P l2l1

2K+l

∣∣∣(2)P0l ′′
2K ′′+l ′′

∣∣∣(2)P l ′2l ′1
2K ′+l ′

〉
will be nonvanishing only for values of K ′′ given

by Eq. (5.49). We will derive specific selection rules for K ′′ in specific cases, corre-
sponding to appropriate values of l, l ′ and l ′′.

In the following subsections, we discuss explicitly the coupling of S, S′, and
D states through central and tensor forces. Coupling of two S states in the (i j)k
partition through central (i j)-pair interaction was discussed in Chap.3, Sect. 6. There
we discussed how a whole set of GSCs can be calculated by solving a single set of
linear inhomogeneous equations (LIE), resulting in a very fast computation with very
high precision. The method can easily be generalized for components (in the OS)
of the totally antisymmetric state of the trinucleon coupled through central or tensor
interactions.

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_6
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5.4.1 Coupling Among S and S′ States Through
Central interactions

Both S and S′ states have l = 0. They can be coupled through central interaction.
The OS expansion of S and S′ states is given by Eq. (5.36). The GSC necessary for
coupling two S states, two S′ states, or between S and S′ states is given by [7]

〈K , ε|K ′′, l ′′ = 0|K ′, ε′〉
=

√
π

4
(K ′′ + 1)N (ε)

2K N (ε′)
2K ′

×
min(K ,K ′)∑

l=0

(2l + 1)(ε) F
ll
2K

(π

2

)
(ε′) F

ll
2K ′

(π

2

) 〈
(2)P ll

2K

∣∣∣(2)P00
2K ′′

∣∣∣(2) P ll
2K ′

〉
, (5.50)

where ε and ε′ correspond to superscripts= 0,+ and− of Eq. (5.36) and F-functions
and normalization constants are given by Eqs. (5.38) and (5.39), respectively. The
selection rule for K ′′ values is obtained from Eq. (5.49), by setting l = l ′ = l ′′ = 0

〈K , ε|K ′′, l ′′ = 0|K ′, ε′〉 = 0 unless |K − K ′| ≤ K ′′ ≤ (K + K ′). (5.51)

A double sum was derived by Fabre [1] for the evaluation of the GSC. However, the
double sum was an alternating series, whose terms involve ratios of gamma function
of large arguments. Thus it involved large numerical errors for large values of K and
K ′. Moreover, the calculations have to be performed for each combination of K , K ′,
and K ′′. Instead, we derive a set of linear inhomogeneous equations (LIE) using the
completeness property of the Jacobi polynomials, Eq. (3.56). Multiplying both sides

of Eq. (5.50) by K ′′!P 1
2 , 12

K ′′ (y)/�(K ′′ + 3
2 ), summing over K ′′, and using Eq. (3.56)

and (5.47), we get

∑
K ′′

K ′′! P
1
2 , 12

K ′′ (y) 〈K , ε|K ′′, l ′′ = 0|K ′, ε′〉/�

(
K ′′ + 3

2

)
=

√
π

8
N (ε)
2K N (ε′)

2K ′

×
min(K ,K ′)∑

l=0

(2l + 1) (ε)F
ll
2K

(π

2

)
(ε′)F

ll
2K ′

(π

2

)
2−2l(1 − y)l(1 + y)l

×Nl,l
2K Nl,l

2K ′ P
l+ 1

2 ,l+ 1
2

K−l (y) P
l+ 1

2 ,l+ 1
2

K ′−l (y), (5.52)

where Nl2,l1
L is the normalization constant of (2)P l2,l1

L (φ), given by Eq. (3.26). Equa-
tion (5.52) is a finite set of LIE due to the selection rule Eq. (5.51). Let nK K ′ be the
number of nonvanishing GSCs for given values of K and K ′. Since Eq. (5.52) is valid
for any value of y in the interval −1 ≤ y ≤ 1, we can choose nK K ′ different values
of y. Then Eq. (5.52) is a set of nK K ′ equations for the nK K ′ unknown GSC’s for
given values of K and K ′. Solving this set of LIE, we get all the required GSCs for
given values of K and K ′, in a single step. The LIE can be solved by a very fast and

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
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accurate algorithm. One can also calculate the GSC directly by doing the integral in
Eq. (5.47) numerically. It was found by De and Das [7] that the LIE method is both
fast and accurate, compared with the double sum or the integral methods.

Setting y = 1 in Eq. (5.52), we obtain a simple sum rule for the GSCs

K+K ′∑
K ′′=|K−K ′ |

〈K , ε|K ′′, l ′′ = 0|K ′, ε′〉

= N (ε)
2K N (ε′)

2K ′
(ε)F

00
2K

(π

2

)
(ε′)F

00
2K ′

(π

2

)
(K + 1)(K ′ + 1). (5.53)

This relation can be used to test the accuracy of calculated GSCs.

5.4.2 Coupling Between S and D State Through
Tensor Interaction

The GSC for this coupling is given by [7]

D〈K ,+|K ′′,T|K ′, 0〉S =
√
2π

64
N (D,+)
2K+2 N (0)

2K ′ (2)P2,0
2K ′′+2(0)

×
∑
l1,l2

(2l1 + 1)(2l2 + 1)

(
2 l1 l2
0 0 0

)2
(0) Fl1l1

2K ′
(π

2

)

×(D,+) Fl2l1
2K+2

(π

2

) 〈
(2)Pl2,l1

2K+2

∣∣∣(2)P2,0
2K ′′+2

∣∣∣(2) Pl1,l1
2K ′

〉
. (5.54)

Here K ′′,T corresponds to the K ′′ multipole of the tensor force (l ′′ = 2). The normal-
ization constants and F-functions are given by Eqs. (5.38), (5.39), (5.42), and (5.43).

As before, multiplying both sides of Eq. (5.54) by P
1
2 , 52

K ′′ (y)/P
1
2 , 52

K ′′ (1), summing over
K ′′, and using the completeness property of Jacobi polynomials, Eq. (3.56), we have

∑
K ′′

[P
1
2 , 52

K ′′ (y)/P
1
2 , 52

K ′′ (1)] D〈K ,+|K ′′,T|K ′, 0〉S =
√
2π

32
N (D,+)
2K+2 N (0)

2K ′

×
∑
l1,l2

(2l1 + 1)(2l2 + 1)Nl2,l1
2K+2Nl1,l1

2K ′

(
2 l1 l2
0 0 0

)2

×(0)Fl1l1
2K ′(

π

2
) (D,+) Fl2l1

2K+2

(π

2

)
(1 + y)(l1+l2)/2−1(1 − y)l12−(3l1+l2)/2

×P
l1+ 1

2 ,l1+ 1
2

K ′−l! (y)P
l1+ 1

2 ,l2+ 1
2

(2K+2−l2−l1)/2
(y). (5.55)
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Selection rule: FromEq. (5.49), setting l = 2, l ′ = 0 (corresponding toD and S states
respectively) and l ′′ = 2 (for tensor force), we get

D〈K ,+|K ′′,T|K ′, 0〉S = 0

unless max{K − K ′, K ′ − K − 2, 0} ≤ K ′′ ≤ (K + K ′) (5.56)

Thus the number of terms on left side of Eq. (5.55) is a finite one and we can follow
LIE method by choosing nK K ′ different values of y in the interval [−1, 1], where
nK K ′ is the number of nonvanishing GSCs, according to Eq. (5.56).

As before we can obtain a sum rule for these GSCs, by setting y = 1 in Eq. (5.55)
(note that l1 must vanish due to the factor (1 − y)l1 )

K+K ′∑
K ′′=max(K−K ′,K ′−K−2,0)

D〈K ,+|K ′′,T|K ′, 0〉S

= 1√
2π

N (D,+)
2K+2 N (0)

2K ′
(D,+) F2,0

2K+2

(π

2

)
(0)F0,0

2K ′

(π

2

)

×(K + 2)(K ′ + 1)
[ (K + 1)(K + 3)

(2K + 3)(2K + 5)

] 1
2
, (5.57)

which provides precision of numerically calculated GSCs.

5.4.3 Coupling Between S′ and D States Through
Tensor Interaction

The GSC for such a coupling is given by

D〈K , ε|K ′′,T|K ′, ε′〉S′ = (−ε)δεε′

√
π

64
N (D,ε)
2K+2N (ε)

2K ′
(2)P2,0

2K ′′+2(0)

×
∑

l1,l2 (parity of ε)

(2l1 + 1)(2l2 + 1)

(
2 l1 l2
0 0 0

)2

× (D,ε)Fl2l1
2K+2

(π

2

)
(ε)Fl1l1

2K ′

(π

2

)

× 〈(2)P l2,l1
2K+2|(2)P2,0

2K ′′+2|(2)P l1,l1
2K ′ 〉. (5.58)

Note that the symmetry under P12 (i.e. ε) for theDandS′ statesmust be the same, since
the interaction (including tensor) conserves parity. To obtain the LIE for calculation

of the GSCs, we multiply both sides of Eq. (5.58) by P
1
2 , 52

K ′′ (y)/P
1
2 , 52

K ′′ (1), sum over
K ′′, and use the completeness property of Jacobi polynomials, Eq. (3.56), and get

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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∑
K ′′

[
P

1
2 , 52

K ′′ (y)/P
1
2 , 52

K ′′ (1)
]

D〈K , ε|K ′′,T|K ′, ε′〉S′ = (−ε)δεε′

√
π

32
N (D,ε)
2K+2N (ε)

2K ′

×
∑

l1,l2(parity of ε)

(2l1 + 1)(2l2 + 1)Nl2,l1
2K+2Nl1,l1

2K ′

(
2 l1 l2
0 0 0

)2

× (D,ε)Fl2l1
2K+2

(π

2

)
(ε)Fl1l1

2K ′

(π

2

)
(1 + y)(l1+l2)/2−1(1 − y)l12−(3l1+l2)/2

× P
l1+ 1

2 ,l1+ 1
2

K ′−l1
(y)P

l1+ 1
2 ,l2+ 1

2
(2K+2−l2−l1)/2

(y). (5.59)

Selection rule: Since l = 2, l ′′ = 2, and l ′ = 0 are same as in the case of S and D
state coupling through tensor interaction, the selection rule will be the same and is
given by Eq. (5.56). Once again, the number of nonvanishing GSCs for S′-D coupling
is finite and the set of LIE can be used with the appropriate number of y values in
Eq. (5.59).

Sum rule: As in the previous cases, we obtain a sum rule by setting y = 1 in
Eq. (5.59)

K+K ′∑
K ′′=max(K−K ′,K ′−K−2,0)

D〈K ,+|K ′′,T|K ′,+〉S′

= 1

2
√

π
N (D,+)
2K+2 N (+)

2K ′
(D,+)F2,0

2K+2

(π

2

)
(+)F0,0

2K ′

(π

2

)

×(K + 2)(K ′ + 1)
[ (K + 1)(K + 3)

(2K + 3)(2K + 5)

] 1
2
,

and
K+K ′∑

K ′′=max(K−K ′,K ′−K−2,0)

D〈K ,−|K ′′,T|K ′,−〉S′ = 0. (5.60)

The sum vanishes for ε = −, since in this case the value of l1 must be odd [note
that (−)Fl1,l1

2K (π/2) vanishes for even l1; see Eqs. (5.36–5.38), (5.24) and (3.26)], for
which (1 − y)l1 = 0 for y = 1. For ε = +, l1 must be even and l1 = 0 contributes
nonvanishingly.

5.4.4 Coupling Between Two D States Through Central
Forces

Two D states can couple either through central or through tensor interactions. The
GSC for the former is given as

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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D〈K , ε|K ′′,C|K ′, ε′〉D = δεε′2−7N (D,ε)
2K+2N (D,ε)

2K ′+2
(2)P0,0

2K ′′(0)

×
∑
l1,l2

(2l1 + 1)(2l2 + 1)

(
2 l1 l2
0 0 0

)2

× (D,ε)Fl2l1
2K+2

(π

2

)
(D,ε)Fl2l1

2K ′+2

(π

2

)

× 〈(2)P l2,l1
2K+2|(2)P0,0

2K ′′ |(2)P l2,l1
2K ′+2〉. (5.61)

As before, multiplying both sides of Eq. (5.61) by P
1
2 , 12

K ′′ (y)/P
1
2 , 12

K ′′ (1), summing over
K ′′, and using the completeness property of Jacobi polynomials, Eq. (3.56), we get
the set of LIE

∑
K ′′

[
P

1
2 , 12

K ′′ (y)/P
1
2 , 12

K ′′ (1)

]
D〈K , ε|K ′′,C|K ′, ε′〉D = δεε′2

−7N (D,ε)
2K+2N (D,ε)

2K ′+2

×
∑
l1,l2

(2l1 + 1)(2l2 + 1)

(
2 l1 l2
0 0 0

)2
(D,ε) Fl2l1

2K+2

(π

2

)
(D,ε) Fl2l1

2K ′+2

(π

2

)

×2−(l1+l2) Nl2,l1
2K+2Nl2,l1

2K ′+2(1 − y)l1 (1 + y)l2 P
l1+ 1

2 ,l2+ 1
2

n (y)P
l1+ 1

2 ,l2+ 1
2

n′ (y), (5.62)

where n = (2K + 2 − l1 − l2)/2 and n′ = (2K ′ + 2 − l1 − l2)/2.
Selection rule: Since l = 2, l ′ = 2, and l ′′ = 0, the selection rule following

Eq. (5.49) is
|K − K ′| ≤ K ′′ ≤ (K + K ′ + 2). (5.63)

Once again, the number of nonvanishing GSCs is finite and the set of LIE can be
solved with the appropriate number of y values in Eq. (5.62).

Sum rule: Setting y = 1 in Eq. (5.62), we get a sum rule for this case as

K+K ′+2∑
K ′′=|K−K ′ |

D〈K ,+|K ′′,C|K ′,+〉D = (2π)−1N (D,+)
2K+2 N (D,+)

2K ′+2

× (D,+)F2,0
2K+2

(π

2

)
(D,+) F2,0

2K ′+2

(π

2

)

× (K + 2)(K ′ + 2)
[ (K + 1)(K + 3)

(2K + 3)(2K + 5)

(K ′ + 1)(K ′ + 3)

(2K ′ + 3)(2K ′ + 5)

] 1
2
,

and
K+K ′+2∑

K ′′=|K−K ′ |
D〈K ,−|K ′′,C|K ′,−〉D = 0. (5.64)

As in Eq. (5.60), the sum for ε = − vanishes.

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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5.4.5 Coupling Between Two D States Through
Tensor Interaction

The GSC for such a coupling is given by

D〈K , ε|K ′′,T|K ′, ε′〉D = −δεε′2
−7

√
35

2
N (D,ε)
2K+2N (D,ε)

2K ′+2
(2)P2,0

2K ′′+2(0)

×
∑

l1,l2,l ′2

(2l1 + 1)(2l2 + 1)(2l ′2 + 1)

(
2 l1 l2
0 0 0

) (
2 l1 l ′2
0 0 0

)

×
(
2 l2 l ′2
0 0 0

) [
2 2 2
l2 l1 l ′2

]
(D,ε) Fl2l1

2K+2

(π

2

)
(D,ε)F

l ′2l1
2K ′+2

(π

2

)

× 〈(2)P l2,l1
2K+2|(2)P2,0

2K ′′ |(2)P l ′2,l1
2K ′+2〉, (5.65)

where
[

j1 j2 j12
j j3 j13

]

is a 6- j symbol,where �j = �j1 + �j2 + �j3 is the resultant of three angularmomenta and
�j12 = �j1 + �j2 and �j13 = �j1 + �j3 are the angular momenta of intermediate couplings.
To obtain the set of LIE for computation of these GSCs, we multiply both sides of

Eq. (5.65) by P
1
2 , 52

K ′′ (y)/P
1
2 , 52

K ′′ (1), sum over K ′′, and use the completeness property of
Jacobi polynomials, Eq. (3.56), to get

∑
K ′′

[P
1
2 , 52

K ′′ (y)/P
1
2 , 52

K ′′ (1)] D〈K , ε|K ′′,T|K ′, ε′〉D

= −δεε′2−6

√
35

2
N (D,ε)
2K+2 N (D,ε)

2K ′+2

∑
l1,l2,l ′2

(2l1 + 1)(2l2 + 1)(2l ′2 + 1)

×
(
2 l1 l2
0 0 0

) (
2 l1 l ′2
0 0 0

) (
2 l2 l ′2
0 0 0

) [
2 2 2
l2 l1 l ′2

]

× (D,ε)Fl2l1
2K+2

(π

2

)
(D,ε)F

l ′2l1
2K ′+2

(π

2

)
Nl2,l1
2K+2 N

l ′2,l1
2K ′+2

× 2−(l2+l ′2)/2−l1 (1 + y)(l2+l ′2)/2−1 (1 − y)l1

× P
l1+ 1

2 ,l2+ 1
2

(2K+2−l2−l1)/2
(y) P

l1+ 1
2 ,l ′2+ 1

2

(2K ′+2−l ′2−l1)/2
(y). (5.66)

Selection rule: In this case, l = 2, l ′ = 2, and l ′′ = 2. Hence, from Eq. (5.49), we see
that the GSCs for coupling of two D states through tensor interaction vanish unless

max(K − K ′ − 1, K ′ − K − 1, 0) ≤ K ′′ ≤ (K + K ′ + 1). (5.67)

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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Once again, we have a finite number (nK K ′ ) of GSCs for fixed K and K ′ and the
finite set of LIE, Eq. (5.66), can be solved by choosing nK K ′ different values of y in
the interval [−1, 1].

Sum rule: As in the earlier cases, we set y = 1 in Eq. (5.66) to get sum rules for
ε = + and ε = − as

K+K ′+1∑
K ′′=max(K−K ′−1,K ′−K−1,0)

D〈K ,+|K ′′,T|K ′,+〉D

= − 5

2π

√
35

2
N (D,+)
2K+2 N (D,+)

2K ′+2

(
2 2 2
0 0 0

) [
2 2 2
2 0 2

]

× (D,+) F2,0
2K+2

(π

2

)
(D,+) F2,0

2K ′+2

(π

2

)
(K + 2)(K ′ + 2)

×
[ (K + 1)(K + 3)(K ′ + 1)(K ′ + 3)

(2K + 3)(2K + 5)(2K ′ + 3)(2K ′ + 5)

] 1
2

and
K+K ′+1∑

K ′′=max(K−K ′−1,K ′−K−1,0)

D〈K ,−|K ′′,T|K ′,−〉D = 0. (5.68)

5.4.6 Numerical Computation of GSCs

In the last five subsections, we have listed all the GSCs needed for the trinucleon with
central plus tensor two-body interactions, togetherwith a set of linear inhomogeneous
equations for calculationof theGSCsanda sumrule for each case.Very fast numerical
algorithms for solving the set of LIE are available. The advantages of the LIEmethod
are threefold.All the nonvanishing GSCs for a particular coupling type, corresponding
to given values of K and K ′, are obtained just by solving the set of LIE only once.
In addition, this method is very fast and also very accurate. By contrast, a direct
integration will involve a single, double, or triple sum over intermediate l values of
the numerical integration of the product of three Jacobi polynomials of large orders
(for large K and K ′). Thus the integral has to be evaluated many times for a single
GSC. Clearly, this process will be very slow and inaccurate for large K and K ′.
Alternately, a double sum (derived by Fabre [8] for the S-S′ coupling only) can
be used for each (K , K ′, K ′′) combination. However, this double sum involves an
alternating series, whose terms contain ratios of gamma functions of large arguments.
This introduces large errors.

The LIE method has another advantage. It generates a sum rule, which provides
an estimate of the error in computed GSCs. Numerical calculations [7] show that
the percentage error for the sum rule is less than 10−8 % for coupling of S and S′
states through central forces. The error is about 10−6 % or less when an S or S′ state
is coupled with the D state through tensor interactions. It is also in the same range
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for coupling of two D states through central or tensor forces. Details can be found in
Ref. [7]. GSCs needed for the Reid soft-core (RSC) potential have been calculated
by this method by Das and Bhattacharyya [9]. Thus very accurate calculations are
possible using the LIE method for the GSCs, together with analytical results or
accurate numerical quadratures for the potential multipoles.

5.5 Results of Numerical Calculations for 3H and 3He

As an example, we quote here some of the results reported by Ballot and Fabre [1].
They chose four semi-realistic nucleon–nucleon potentials proposed by Gogny,
Pires, and de Tourreil (GPDT) [10] and by Sprung and de Tourreil (SSCA, SSCB,
SSCC) [11]. All these potentials reproduce the two-nucleon data (properties of the
deuteron and two-nucleon phase shifts) well, but differ slightly in the strengths and
ranges of the central, tensor, L S, and L2 terms. These potentials are called super-soft-
core potentials, as each of them has a relatively soft short-range repulsion. Let us first
look at the rate of convergence of the HH expansion. The sum over K in Eq. (5.36)
was restricted to a maximum of Kmax. Calculated energy (E), incremental energy
(�E), and the matter radius (Rm) for different Kmax values are presented in Table5.1
for the GPDT potential, as an example. From this table, it is seen that both E and
Rm converge fairly rapidly as Kmax increases. Corresponding �E decreases rapidly
to zero. We see that for Kmax = 12, the energy converges to three significant digits.
For better precision, one can go to larger values of Kmax, but that would result in a
much slower computation. As an alternative, one can derive a convergence formula
for a specific type of potential [12] and use it together with the actually computed
results for a few smaller Kmax values to extrapolate the result for Kmax → ∞. The
method of extrapolation will be discussed in detail in Sect. 1 of Chap.6.

Table 5.1 Convergence of HH expansion for 3H nucleus with GPDT potential

Kmax E �E Rm

2 −6.614 1.73

3 −7.509 −0.894 1.70

4 −7.977 −0.469 1.70

5 −8.248 −0.271 1.717

6 −8.395 −0.146 1.727

7 −8.468 −0.074 1.737

8 −8.515 −0.047 1.745

9 −8.543 −0.028 1.752

10 −8.559 −0.016 1.757

11 −8.569 −0.010 1.761

12 −8.575 −0.006 1.764

Energy and incremental energy (both in MeV) and matter radius (in fm) are presented for different
Kmax (corresponding to maximum grand orbital L = 2Kmax)

http://dx.doi.org/10.1007/978-81-322-2361-0_1
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Table 5.2 Results for 3H nucleus with different two-body potentials by the HH expansion method

Potential −E(3H)
Calculated
(MeV)

−E(3H)
Extrapolated
(MeV)

Ec
(MeV)

P(S) P(S′) P(D) Rm

GPDT 8.58 8.58 0.66 94.3 0.97 4.72 1.77

SSCA 7.44 7.51 0.645 93.5 0.76 5.7 1.76

SSCB 7.34 7.41 0.65 93.8 0.81 5.4 1.78

SSCC 7.01 7.13 0.68 92.2 0.85 6.98 1.81

Experiment 8.48 1.7

Binding energy [−E(3H)] calculated with Kmax = 12 and extrapolated, Coulomb energy (Ec),
percentages of S, S′, and D components of the wave function [P(S), P(S′), and P(D), respectively]
and matter radius (Rm ) for selected semi-realistic potentials. Energies are in MeV and radius is in
fm

Table5.2 lists the results of calculated binding energy [−E(3H)], both by direct
calculationwith Kmax = 12 and the extrapolated value for the four selected potentials
for 3H nucleus. Fourth column presents the Coulomb energy. It is calculated as the
difference of ground state energies of 3He and 3H nuclei. Fifth, sixth, and seventh
columns present the percentage probabilities of S, S′, and D states in the ground
state of 3H, denoted by P(S), P(S′), and P(D), respectively. The last column gives
the calculated matter radius (Rm) of the triton. The last line presents the available
experimental values.

The hyperspherical harmonics technique has been used in a variety of calculations
for the trinucleon and other light nuclear systems, some of which are mentioned here.
Coupled HH basis was used by Fang et al. to investigate photo effects on the isospin
3
2 state of the trinucleon [13]. The realistic Reid soft-core (RSC) nucleon–nucleon
potentialwas used byBhattacharyya andDas to calculate trinucleon observables [14].
An efficient numerical algorithm for calculation of matrix element of the realistic
RSC potential for the trinucleon ground state can be found in Ref. [15]. Triton
asymptotic normalization constant was calculated by Ghosh and Das [16]. High
precision was reported for realistic interactions by Kievsky et al. [17]. Accuracy of
HHEM in the calculation of photodisintegration of triton was investigated by Barnea
et al. [18]. Trinucleon energy levelswere also calculated by Purcell et al. [19]. A high-
precision variational calculation using a large HH basis was reported by Kievsky et
al. [20]. Electromagnetic structure and reactions from chiral effective field theory
were studied using trinucleon wave function calculated by the HHEM [20, 21].
Hyperspherical effective interaction for nonlocal two-body forces was calculated by
Barnea et al. [22].

The HHEM has also been applied to the scattering problem involving the trinu-
cleon [23]. Radiative captures of thermal neutrons in n-d and n-3He were calculated
by Girlanda et al. using wave functions obtained by HHEM with two-nucleon and
three-nucleon realistic potentials [24].
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5.6 Addition of Three-Nucleon Forces

In Table5.2, we listed the results of four very simplemodel two-nucleon (2BF) poten-
tials. Out of these the GPDT overbinds the trinucleon. For more realistic 2BF, both
3H and 3He are underbound by about 1.3 ± 0.3 MeV. More striking disagreement is
in the calculated charge form factor (CFF), Fch(q2). The first diffraction minimum of
the calculatedCFF occurs at q2 ≈ 16 fm−2 [1], while the experimental value is≈11.8
fm−2. The magnitude (Fmax) of first maximum after this minimum has an experi-
mental value of≈6 × 10−3, while the calculated value with 2BF is <∼1 × 10−3. Thus,
although the realistic 2BF reproduces all two-nucleon experimental data correctly,
the same 2BF fails to reproduce trinucleon bound state properties. It immediately
shows that the missing binding energy (BE) is due to three-nucleon force (3BF),
which becomes active when three nucleons interact simultaneously. Hence, the net
interaction is not just the sum of three pair-wise interactions. The 3BF is mediated
by the exchange of two pions between the three nucleons: a pion emitted by the first
nucleon is absorbed by the second nucleon, which is excited to the� resonance. The
latter is subsequently de-excitedwith the emission of another pion, which is absorbed
by the third nucleon. Due to the intermediate � resonance excitation, the Feynman
diagram cannot be cut into two simple 2BF diagrams. Thus the 3BF is different from
the sum of three pairs of 2BF. This process is referred to as the two-pion exchange
(TPE) 3BF. This three-body force can easily be incorporated in the hyperspherical
harmonics expansion technique. A large number of such calculations investigating
the effects of 3BF on various properties of the trinucleon have been reported [25]. In
the following we briefly discuss the method and the results obtained in the original
simple calculation of Das et al. [26].

Since the S state has a probability of over 90% for the ground state of the trin-
ucleon, for a simple first calculation the effect of 3BF can be taken for the S state
only. The effective TPE-3BF from the Fujita–Miyazawa force [27] acting on the S
state of the trinucleon has the form [26]

V (3)(ξ,�6) =
∑

i, j,k=1,2,3 (cyclic)

C p(3 cos
2 θk − 1)U(2)(xi )U(2)(x j ), (5.69)

where θk is the angle between the directions �x j and �xi , where �xi = �r j − �rk (i, j, k
cyclic). C p is the coupling constant, whose value is in the range of 0.46 − 1.3 MeV,
according to the πN� coupling constant used in the calculation of TPE-3BF.U(2)(x)

is given by

U(2)(x) =
[
1 + 3

μx
+ 3

(μx)2

]e−μx

μx
, (5.70)

where μ is the inverse of the range of two-pion exchange 2BF, whose numerical
value is 0.7 fm−1, being proportional to the reciprocal of pion mass in theoretical
units. The 3BF can be added with the standard 2BF in the Schrödinger equation.
Since we are at present interested only in the effect of the 3BF on the S state of the
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trinucleon, we can expand the effective 3BF, Eq. (5.69), in the HH multipoles and
add the multipole of the 3BF with the corresponding multipole of the 2BF in the
calculation of the potential matrix. After this we proceed as before. The multipoles
of the 3BF are given by [26]

v
(3)
2K ′′(ξ) = cp

π
3
2

128

(−1)K ′′

〈0, 0|K ′′, C |K ′′, 0〉 N (0)
2K ′′

K ′′∑
l=0,even

√
2l + 1 (0)Fll

2K ′′

(π

2

)

×
∑

K1,K2

(−1)K1+K2U2K1(ξ)U2K2(ξ)
∑

λ

(2λ + 1)

(
2 l λ
0 0 0

)2

×
〈
(2)P2,0

2K1+2|(2)P l,l
2K ′′ |(2)Pλ,l

2K2+2

〉

×(2)P2,0
2K1+2(0)

(2)Pλ,l
2K2+2(−2π/3), (5.71)

where cp = (m/�
2)C p and

U2K (r) = 27

15π

(
K + 5

2

) (
K + 3

2

) ∫ 1

0
U(2)(rr ′) 2F1

(
−K , K + 4; 7

2
; r ′2

) √
1 − r ′2 r ′4dr ′.

(5.72)
The final Schrödinger equation for the triton including both 2BF and 3BF is given
by [see Eqs. (3.30) and (3.36)]

[
− �

2

m

d2

dξ2
+ �

2

m

LK (LK + 1)

ξ2
− E

]
uK (ξ)

+3
∑

K ′,K ′′

[
〈K , 0|K ′′, C |K ′, 0〉{v(2)

2K ′′(ξ) + v
(3)
2K ′′(ξ)}

]
uK ′(ξ) = 0, (5.73)

where the potential multipole is written as a sum of two-body multipoles [renamed
as v

(2)
2K ′′(ξ)] plus three-body multipoles v

(3)
2K ′′(ξ). This Schrödinger equation is solved

in the usual fashion, subject to appropriate boundary conditions to obtain the energy
(E) and the hyper-partial waves [uK (ξ)].

To study the enhancements of BE and CFF due to the inclusion of 3BF, the two-
nucleon potential was chosen as Afnan–Tang S3 potential [28], which is a simple
semi-realistic soft-core potential. Equation (5.69) shows that the 3BF is attractive for
the equilateral configuration (θ1 = θ2 = θ3 = π/3) and repulsive for linear config-
uration (θ1 = θ2 = 0 and θ3 = π). Then Eqs. (5.70–5.72) show that the 3BF has an
attractive singularity, which goes as ξ−6 at the origin, for the triangle configuration.
Since a softcore 2BF is used, this singularity makes the Hamiltonian unbound from
below. For a fully realistic 2BF, the very strong repulsion between nucleons at short
separation prevents this catastrophy. As a softcore 2BF was used, a purely phenom-
enological cut-off parameter (x0) was used to restrict the 3BF at short separations:

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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Table 5.3 Enhancement effects of Fujita–Miyazawa 3BF on the BE and CFF of the trinucleon

Description C p (MeV) x0 (fm) BE (MeV) |Fch(q2)| rms charge
radius (fm)

Position of
first zero
(fm−2)

Fmax × 103

3H (2BF)
(Calc.)

6.489 15.98 1.50 1.82

3H
(2BF+3BF)
(calc.)

0.9 0.340 7.658 16.47 1.94 1.74

3He (2BF)
(calc.)

5.789 15.91 1.06 1.89

3He
(2BF+3BF)
(calc.)

0.9 0.340 6.922 16.39 1.39 1.81

0.46 0.277 6.485 15.54 1.58 1.84
3H (expt.) 8.482 1.70±0.05
3He (expt.) 7.718 11.8 ∼ 6 1.84±0.03

Only zero node results are quoted from Ref. [26]

U(2)(x) =
{U(2)(x0), x < x0

U(2)(x), x ≥ x0.
(5.74)

The effect of 3BF was studied treating x0 as a parameter. For x0 less than a critical
value, there are nodes near the origin. Table5.3 presents some of the enhancement
effects due to the inclusion of 3BF. Only zero node cases are quoted fromRef. [26]. It
can be seen that the addition of 3BF enhances the BE substantially toward the exper-
imental value. However, CFF is not much improved. Fmax increases, but the increase
is not enough. Moreover, the position of the first diffraction minimum remains stub-
bornly too far to the right. Inclusionof 3BFbrings the charge radiiwithin the error bars
of the experimental values. The reasons that the inclusion of 3BF fails to reproduce
the experimental results completely are the following. The two-nucleon potential
chosen in this simple calculation is not realistic. A realistic potential like the Reid
soft-core (RSC) potential with a properly strong short-range repulsion (which will
dispense with the arbitrary cut-off parameter x0) should be used. Furthermore, the
Fujita–Miyazawa form of two-pion exchange three-nucleon potential is not realistic,
as it has an attractive singularity. This has been replaced by more ‘tamed’ three-
nucleon potential derived incorporating nucleon form factors [25]. Later detailed
calculations using more realistic 2BF plus 3BF reproduced the missing BE, but fell
short of reproducing the experimental CFF [25]. The experimental charge form factor
was explained by including the effects of meson exchange currents in the Feynman
diagrams representing electron–trinucleon scattering processes [29].
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Chapter 6
Application to Coulomb Systems

Abstract Few-body Coulomb systems are discussed as examples of the hyperspher-
ical harmonics technique. Nearly complete analytical calculation of the potential
matrix element is possible for the Coulomb interaction. As a simple illustration,
two-electron atoms are treated in details. There is no approximation except an upper
cut-off of the HH basis, which is tested for convergence of binding energy (BE).
An extrapolation formula can be obtained for the BE corresponding to the complete
basis, from BE calculated with a few truncated basis functions. Hence very high pre-
cision is possible. General three-bodyCoulomb systemwith adiabatic approximation
is also presented. Applications of these methods to physical systems are discussed.

Atoms and molecules are examples of Coulomb systems, in which the dominant
interaction is the Coulomb interaction. As basic building blocks of all matter, they
play a major role in physics and are of great interest. Coulomb interaction also exists
in nuclear systems containing more than one charged nuclei, but it is of secondary
importance compared to the dominant strong nuclear interactions. The majority of
atoms and molecules contain a large number of particles, for which the hyperspher-
ical harmonics expansion technique is not very practical. For such large Coulomb
systems, several approximate many-body techniques have been developed, e.g., the
semi-classical Thomas-Fermi (TF) model [1, 2], Hartree-Fock (HF) method [1, 3,
4], density functional theory (DFT) [5], etc. Both TF and HF models are based on
mean-field approaches. TF model is simpler and uses statistical and semi-classical
ideas. The HF theory provides the mean-field more elaborately in a self-consistent
manner. On the other hand, DFT uses functionals of particle densities directly, avoid-
ing a complete solution of the Schrödinger equation. Since atoms and molecules are
fundamental building blocks of all stable matter, a particularly pertinent question
concerns the stability of their bound states, either free or in the presence of elec-
tromagnetic fields. Rigorous quantum mechanical analysis of the stability of large
Coulomb systems can be found in the lecture note series [6]. Spins of the constituent
particles complicate the treatment as appropriate symmetrization has to be imposed.
Condition of existence of the bound ground state of such a system is of special
importance. Substantial amount of mathematically rigorous information concerning
the stability has been obtained in the recent past [7–12].

© Springer India 2016
T.K. Das, Hyperspherical Harmonics Expansion Techniques,
Theoretical and Mathematical Physics, DOI 10.1007/978-81-322-2361-0_6

83



84 6 Application to Coulomb Systems

In this monograph, we are concerned with the application of hyperspherical har-
monics to physical systems. As this technique is not practical for systems containing
a large number of particles, its use is restricted to few-body Coulomb systems only.
Other hyperspherical approaches, which are somewhat different from the technique
presented in Chaps. 3 and 4, have also been adopted. A method using generalized
Sturmian basis functions, can be found in Ref. [13]. Use of row-orthonormal hyper-
spherical coordinates for triatomic [14] and tetra-atomic [15] systems have also been
proposed. As a simple example, we consider only three-body Coulomb systems in
this chapter, for which ab initio calculation without any approximation is possible.
Due to the simple analytic form of Coulomb interaction, a large part of calcula-
tion of potential matrix elements can be done analytically. This permits high degree
of accuracy in numerical results. On the other hand, high precision spectroscopic
data, especially for two-electron atoms, provide very accurate experimental results
to compare with theoretical ones.

A three-body Coulomb system is a bound state of three charged particles—two
of same charge and the third of the opposite charge—bound by the net Coulomb
attraction. In such systems, all the particles can be identical (denoted by A+A−A+),
or two can be identical (denoted byA+B−A+) or all different (denoted byA+B−C+).
Charge conjugated systems like A−B+C− will have the same properties as those of
theA+B−C+ system.An example ofA−A+A− is the negatively charged positronium
ion Ps− (which is e−e+e−). Spectroscopically very interesting class of two-electron
atoms like the neutral He-atom, singly ionized lithium atom (Li+), doubly ionized
beryllium atom (Be++), etc. are examples of the second class. Other examples of this
class are: e−μ+e− (negatively charged muonium atom), d+μ−d+, H−–ion (p+e−e−),
hydrogen molecular ion (H+

2 , which is p
+p+e−), etc. Examples of A+B−C+ systems

are: HD+ (d+p+e−) and HT+ (t+p+e−), etc.

6.1 Two-Electron Atoms

In the following, we take the nucleus of two-electron atoms as infinitely heavy, so
that it remains at rest. Even for the H−, the nucleus to electron mass ratio, m H/me,
is about 1837. For heavier atoms, this ratio is even larger. Hence, this assumption
is quite justified and it makes the calculation simpler. However, such an assumption
is not essential and the nuclear motion can easily be incorporated using the Jacobi
vectors introduced in Chap.3 and the analytical treatment adopted here. For the
Coulomb force, the matrix element can be analytically simplified to a great extent.

Thus, we take the nucleus fixed at the origin and the two electrons are at �r1 and �r2.
We choose atomic units (a.u.), in which lengths are in units of Bohr radius (Bohr),
a0 = �

2/(mee20), with e20 = e2/(4πε0). Its numerical value is 0.5291772083 ×
10−10 m [16]. Energy is expressed in atomic units (a.u.) of energy, e20/a0, whose
numerical value is 27.2113834eV [16]. In the atomic unit the Schrödinger equation
for a two-electron atom with nuclear charge Ze is

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_3
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[
− 1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+ 1

|�r1 − �r2| − E
]
�(�r1, �r2) = 0. (6.1)

We first discuss an exact calculation without using adiabatic approximation for
the ground state of a two-electron atom in Sect. 6.1.1. Later in Sect. 6.2.1, we will
discuss more general Coulomb systems using adiabatic approximation.

6.1.1 Exact Non-adiabatic Treatment of Two-Electron Atoms

In this section, we discuss exact calculation of two-electron atoms without adiabatic
approximation. To make it simpler, we disregard the nuclear motion, assuming the
nucleus to be infinitely heavy. This approximation can easily be relaxed by using
Jacobi vectors instead of the position vectors of the electrons with respect to the
nucleus fixed at the origin. To solve Eq. (6.1), we first introduce hyperspherical
variables: a hyperradius (r ) and a hyperangle (φ) are defined through

r1 = r sin φ,

r2 = r cosφ. (6.2)

The set of five hyperangles are constituted by� ≡ {φ,ϑ1,ϕ1,ϑ2,ϕ2}, where {ϑi ,ϕi }
are the polar angles of �ri . Note the similarity in the definition of hyperspherical vari-
ables and the six-dimensional Laplacian with those in Chap.3—only the Jacobi
vectors �ξ1, �ξ2 have been replaced by �r1, �r2 in the present case. Hence, the HH basis
will be the same functions of the presently defined hyperspherical variables. The
advantage in the definition (6.2) is that actual particle separations are used. The
position variables (�r1, �r2) and the corresponding orbital angular momenta (�l1, �l2) are
the physical variables of the unperturbed Hamiltonian (without the inter-electronic
repulsion). Moreover, symmetry of the wave function only under P12 is relevant,
which for the present definition is (φ ↔ π/2 − φ). The hyperradius r remains invari-
ant under P12 . Total orbital angular momentum �l (= �l1 + �l2), its projection m, total
spin �S (= �s1 + �s2), and its projection MS are good quantum numbers. The angu-
lar momentum coupled HH, YKl1l2lm (�), is given by Eqs. (3.33) and (3.34) [where
K = 2n + l1 + l2 with n a nonnegative integer]. Expansion of � in the HH basis is
given by

�lm(�r1, �r2) = r− 5
2

∑
Kl1l2

uKl1l2lm (r) YKl1l2 lm (�). (6.3)

From Eqs. (3.33) and (3.34), the effect of P12 is found to be

P12YKl1l2 lm (�) = (−1)(n+l1+l2−l)YKl2 l1lm (�). (6.4)

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
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Note that this is different from the choice of hyperspherical variables using Jacobi
coordinates in Chap.3, where the effect of P12 was (−1)l1 . Substitution of Eq. (6.3) in
(6.1) and projection on a particular HH gives the set of coupled differential equations
(CDE)

[
− 1

2

d2

dr2
+ 1

2

LK (LK + 1)

r2
− E

]
uKl1l2lm + 1

r

∑
K ′l ′1l ′2

〈
Kα

∣∣∣[ − Z
( 1

sin φ
+ 1

cosφ

)

+ 1

[sin2 φ + cos2 φ − 2 sin φ cosφ cos θ12]
1
2

]∣∣∣K ′α′
〉
u

K ′l′1l′2 lm
(r) = 0, (6.5)

where α ≡ {l1l2lm}, α′ ≡ {l ′1l ′2lm}, LK = K + 3
2 and θ12 is the angle between �r1

and �r2. There is no approximation in Eq. (6.5), except for the assumption of an
infinitely heavy nucleus (which can be removed as stated above) and the eventual
truncation of the expansion basis for a computer calculation. Solution of Eq. (6.5)
subject to appropriate boundary conditions at the origin and at infinity gives energy of
a state with orbital angular momentum l and its projection m. Energy eigenvalues are
independent of m due to rotational degeneracy. The solution with the lowest energy
corresponds to the ground state and the higher ones to hyperradial excitations.

The Hamiltonian is spin independent, but E depends on S through the symmetry
requirement. Spins of two electrons couple to S, which takes the values 0 and 1 for
the singlet and triplet states, respectively. The singlet and triplet states are respec-
tively antisymmetric and symmetric in spin space. Since the electrons are identical
fermions, the singlet and triplet states are to be combined with symmetric and anti-
symmetric space wave functions respectively. For the ground state, l = 0. Hence,
l1 = l2 and K = 2n + 2l1 must be an even integer. For the spin singlet states, space
wave function must be symmetric under P12 and Eq. (6.4) demands that n must be
a nonnegative even integer. Hence l1 can take even integral values 0, 2, . . . , K/2,
if K/2 is even and odd integral values 1, 3, . . . , K/2, if K/2 is odd. If the expan-
sion (6.3) is truncated at K = Kmax and all allowed l1 values retained, then the
number of basis functions (which is the same as the number of CDE) is

N =
{

(Kmax/4 + 1)2 if Kmax/2 is even
(Kmax/2 + 1)(Kmax/2 + 3)/4 if Kmax/2 is odd

(6.6)

The effective potential of the Hamiltonian is given by

V (r,φ, θ12) = C(φ, θ12)

r
with

C(φ, θ12) = −Z
( 1

sin φ
+ 1

cosφ

)
+ [sin2 φ + cos2 φ − 2 sin φ cosφ cos θ12]

− 1
2 (6.7)

A plot of this potential surface as a function of φ and θ12 for a fixed value of r = 1
and Z = 1 is shown in Fig. 6.1. The effective potential in the hyperradial space has

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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Fig. 6.1 Plot of the potential
surface at a fixed hyperradius
(r = 1) of a two-electron
atom with Z = 1 as function
of φ and θ12 (in radian) along
x- and y-axes, respectively
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potential surface becomes deeply attractive for φ −→ 0 and φ −→ π/2. These cor-
respond to very strong Coulomb attraction, when either of the electrons approaches
the nucleus. A steep repulsive spike appears at φ = π/4 and θ12 = 0, correspond-
ing to the two electrons approaching each other. Finally, a saddle point appears at
φ = π/4 and θ12 = π. At this point the potential increases as θ12 changes from π and
the potential decreases as φ changes from π/4 in either direction. The saddle point
is important for the quasi-stability of the doubly excited states.

The matrix elements in Eq. (6.5) can be simplified analytically [17] to expressions
involving one-dimensional integrals to be evaluated numerically. Thematrix element
of electron-nucleus attraction for the l = m = 0 states is given by

〈
Kl1l100

∣∣∣( 1

sin φ
+ 1

cosφ

)∣∣∣K ′l ′1l
′
100

〉

≡ δl1l ′1 Al1
K K ′

= δl1l ′1

∫ π
2

0

(2)P l1l1
K (φ) (2)P l1l1

K ′ (φ) sin φ cosφ(sin φ + cosφ)dφ. (6.8)

The inter-electron repulsion termcanbe simplifiedbyusing the generating functionof
Legendre polynomials, addition theorem of spherical harmonics [18], and properties
of Clebsch–Gordan coefficients [19]. The result is

〈
Kl1l100

∣∣∣ 1

[sin2 φ + cos2 φ − 2 sin φ cosφ cos θ12]
1
2

∣∣∣K ′l ′1l
′
100

〉

≡ B
l1l ′1
K K ′

= (−1)l1+l ′1
√

(2l1 + 1)(2l ′1 + 1)
l1+l ′1∑

n=|l1−l ′1|

(
l1 n l ′1
0 0 0

)2

×
∫ π

4

0

(2)P l1l1
K (φ) (2)P l ′1l ′1

K ′ (φ)(tan φ)n cosφ sin2 φdφ. (6.9)
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These matrix elements can be computed by suitable quadratures. In terms of these,
the CDE takes the form

[
− 1

2

d2

dr2
+ 1

2

LK (LK + 1)

r2
− E

]
uKl1l100

(r)

+1

r

∑
K ′l ′1

[
− Zδl1l ′1 Al1

K K ′ + 2B
l1l ′1
K K ′

]
u

K ′l′1l′100
(r) = 0, (6.10)

which can be solved by an accurate numerical algorithm, like the renormalized
Numerov (RM) method [20], which will be discussed in Sect. 10.2.1 of Chap.10.

6.1.2 Convergence of HH Expansion: Extrapolation and
Accuracy

One can see from Eq. (6.6) that the number N of CDE increases rapidly with Kmax.
Since the computation time increases as N 3, this methodwill not be useful, unless the
expansion converges fast. The rate of convergence for a system of bosons interacting
through a single Gaussian potential has been studied [21]. In order to study the
rate of convergence of the HH expansion in two-electron atoms, the method was
applied to the ground state (11S state, corresponding to l = 0, S = 0) of H−, He,
Li+, Be2+ and the first excited 21S state of He in Ref. [17]. Table6.1 shows the
calculated BE (= BKmax = −E) for various Kmax values. One notices that, although
a clear convergence trend is discernible with increasing Kmax, still BE does not reach
the desirable precision for Kmax = 20. The rate of convergence is much slower for
the long-range Coulomb force than the short-range nuclear force as seen earlier.
For larger Kmax, the computation time increases rapidly. Moreover, both numerical
errors and instabilities due to such errors increase with large N . Thus calculations for
larger Kmax become increasingly difficult. But BE for larger Kmax can be extrapolated
from the numerically calculated BE for smaller Kmax values, using a convergence
relation. Such a convergence formula for the Coulomb potential can be derived using

Table 6.1 Calculated BE (in a.u.) of some two-electron systems for various Kmax values

Kmax H− He Li+ Be2+ 21S state of
He

0 0.385397 2.500017 6.459134 12.262765 1.275519

4 0.480799 2.784369 7.039221 13.248454 1.599267

8 0.502585 2.850214 7.175991 13.482733 1.771541

12 0.512577 2.876006 7.227336 13.568884 1.878540

16 0.517726 2.887540 7.249755 13.606178 1.947698

20 0.520737 2.893580 7.261233 13.625078 1.994575

http://dx.doi.org/10.1007/978-81-322-2361-0_10
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Schneider’s theorem [22] on convergence of HH expansion [17], as

(Kmax + x)4�BKmax = D, (6.11)

where x and D are constants and

�BKmax = BKmax+4 − BKmax . (6.12)

Relation (6.11) has been tested by actual calculations for smaller Kmax values and
then extrapolated for a large Kmax value, consistent with computational error [17].
Table6.2 presents the converged extrapolatedbinding energies thus obtained, together
with other standard calculations, including very elaborate and precise calculations
by Pekeris [24, 26].

In the last row of Table6.2, we quote the result of a similar calculation for the
positronium ion Ps− from Ref. [27]. One can see that the extrapolated HHEM cal-
culations are almost as precise as those done in Refs. [24, 26, 28, 29], although the
former is much simpler and faster. We can also observe that the relative accuracy of
the HHEM calculations are better for the heavier atoms. This is due to the disregard
of the nuclear motion in the extrapolated HHEM calculations, the assumption being
more justified as the nucleus becomes heavier. An essentially exact many-body cal-
culation for muonic molecular ions and other exotic Coulombic system was reported
by Chakrabarti and Das [30]. This method has also been applied to exotic two-muon
three-body Coulomb systems by Frolov and Wardlaw [31] and by Khan [32].

The HHEM was used together with the techniques of supersymmetric quantum
mechanics [33] by Das and Chakrabarti to calculate binding energy (BE) of excited

Table 6.2 Comparison of calculated binding energies (in a.u.) of two-electron atoms by extrapo-
lated HHEM with other theoretical calculations

Atom State Calculated BE (a.u.) Expt.

Extrapolated HHEM Other calculation

H− 11S 0.52668 [17] 0.52621 [23]
0.52775 [24]

0.52777

He 11S 2.90368 [17] 2.903 [25]
2.90271 [23]
2.90372 [24]

2.9038

Li+ 11S 7.28007 [17] 7.27832 [23]
7.28008 [24]

7.2804

Be2+ 11S 13.65600 [17] 13.65319 [23]
13.65600 [24]

13.6572

He 21S 2.13895 [17] 1.998 [25]
2.14597 [26]

2.14606

Ps− 11S 0.2616689 [27] 0.2620047 [28]
0.2620049 [29]



90 6 Application to Coulomb Systems

states very accurately. The convergence of the HH expansion for the excited state
is very slow, as the wave function gets more extended with excitation. For a given
excited state the supersymmetric partner potential is calculated, whose ground state
has the same energy as the chosen excited state. Calculation of the BE of the ground
state in the partner potential converges very fast, giving an accurate BE for the excited
state. The method was applied to the 1Se state of the He atom [34].

6.2 General Three-Body Coulomb Bound Systems

For a general Coulomb system A+B+C− with arbitrary masses m A, m B , mC and
charges Z A, Z B , ZC (two of same sign and the third of the opposite sign) respectively,
the Schrödinger equation is

[
− 1

2m A
∇2

A − 1

2m B
∇2

B − 1

2mC
∇2

C + Z A Z B

rAB
+ Z A ZC

rAC
+ Z B ZC

rBC
− ETot

]

×ψ(�rA, �rB, �rC) = 0. (6.13)

Here ri j is the distance between particles i and j and ETot is the total energy of the
system. We follow the treatment of the review article by C.D. Lin [35], in which the
Jacobi vectors are chosen as

�ρ1 = �rAB

�ρ2 = �rAB,C , (6.14)

where �rAB is the vector from particles A to B and �rAB,C is the vector from the center
of mass of particle-pair A, B to particleC . In this coordinate system, the Schrödinger
equation for the relative motion becomes

[
− 1

2μ1
∇2

�ρ1 − 1

2μ2
∇2

�ρ2 + Z A Z B

rAB
+ Z A ZC

rAC
+ Z B ZC

rBC
− E

]
�(�ρ1, �ρ2) = 0, (6.15)

where E is the energy of the relative motion and

μ1 = μAB = m Am B

m A + m B

μ2 = μAB,C = (m A + m B)mC

m A + m B + mC
. (6.16)
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In the above, no particle is assumed to be at rest. However, the choice of Jacobi
vectors is different from that of Chap. 3, where the coefficients of the two kinetic
energy terms were chosen to be the same. One can get the coordinate system similar
to the one in Chap.3 by using �ξi = √

(μi/μ) �ρi (i = 1, 2)

[
− 1

2μ
(∇2

�ξ1 + ∇2
�ξ2) + C(�6)

ξ
− E

]
�(ξ,�6) = 0, (6.17)

where �6 ≡ {φ,ϑ1,ϕ1,ϑ2,ϕ2}, (ϑi ,ϕi ) being the polar angles of �ξi . The effec-
tive charge C(�6) is obtained from the Coulomb terms of Eq. (6.15). One can then
solve Eq. (6.17) exactly, following the standard hyperspherical harmonics expansion
technique of Chap.3, with the matrix elements of the effective Coulomb potential
calculated in the manner of Sect. 6.1.1. However, for a simpler calculation the adia-
batic approximation is widely used. This approximation will be discussed in detail in
Sect. 10.2.3 of Chap.10. Here we discuss briefly its application to Coulomb systems
in the next subsection.

6.2.1 Adiabatic Approximation in Coulomb Systems

The adiabatic approximation is similar to the Born–Oppenheimer approximation
(BOA) and will be discussed in detail in Chap.10, Sect. 10.2. It assumes that the
hyperradial motion is slow compared to the hyperangular motion and separates the
latter adiabatically for a fixed value of ξ [35]. The wave function is expanded in the
set of adiabatic wave functions {�κ(ξ,�6)}

�(ξ,�6) =
∑

κ

ξ− 5
2 uκ(ξ)�κ(ξ,�6). (6.18)

The adiabatic wave function is obtained by solving the Schrödinger equation at a
fixed value of ξ [taking μ = 1 in Eq. (6.17)]

[L2

ξ2
+ 2C(�6)

ξ

]
�κ(ξ,�6) = ωκ(ξ)�κ(ξ,�6), (6.19)

where L2 is given by Eq. (3.8). Substitution of Eqs. (6.18) and (6.19) in (6.17) gives
a set of CDE for uκ(ξ)

[
− d2

dξ2
+ ωκ(ξ) − 2E

]
uκ(ξ) =

∑
κ′

[
2〈�κ|d�κ′

dξ
〉 d

dξ
+ 〈�κ|d2�κ′

dξ2
〉
]
uκ′(ξ).

(6.20)
The index κ in Eq. (6.19) characterizes different eigenvalues [called channel poten-
tials ωκ(ξ)] and it is used to label different channels. The global size of the system is

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_10
http://dx.doi.org/10.1007/978-81-322-2361-0_10
http://dx.doi.org/10.1007/978-81-322-2361-0_3
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given by the hyperradial wave function uκ(ξ), while internalmotion including overall
rotation of the system is governed by the channel function �κ(ξ,�6). Hyperradial
excitations for the same channel potential in Eq. (6.20) correspond to the breathing
modes. An important aspect of the solution of Eq. (6.19) is to identify the different
modes of internal motion in terms of quantum numbers used to represent the channel
index κ.

Exact solutions of Eqs. (6.19) and (6.20) can be obtained by the RM method (see
Sect. 10.2.1 of Chap.10). Aswe discussed already, for the two-electron atoms, �l and �S
are good quantum numbers. This is also true for other three-body systems in which
the particles interact only through Coulomb (in general spin-independent central)
forces. In this case, it is particularly convenient to expand the channel function in
products of spherical harmonics coupled to a total orbital angular momentum (l) for
a particular spin angular momentum (S), in the following manner

�lmSMS
κ (ξ,�6) = ÔSym

∑
l1l2

f lS
l1l2(ξ,φ)[Yl1m1(ϑ1,ϕ1)Yl2m2(ϑ2,ϕ2)]lm, (6.21)

where ÔSym represents the symmetrization (Ŝ) or antisymmetrization (Â) operator,
which selects appropriate values of (l1, l2) for specific values of l and S. The sum-
mation is over pairs of selected (l1, l2) values, such that the spatial wave function
has the symmetry conjugate to that of the spin wave function, in order that the total
wave function has the required symmetry. For example, for a two-electron atom,
the space wave function should be symmetric or antisymmetric spin wave function.
Note that the spin wave function does not appear explicitly in Eq. (6.21). For small ξ,
the function f (ξ,φ) spreads over the entire interval [0,π/2] of φ and it approaches
the hyperspherical harmonics in the limit ξ → 0. On the other hand, for large ξ,
it is localized either in φ → 0 or φ → π/2, corresponding to either the first or the
second electron being near the nucleus, with f (ξ,φ) approaching the hydrogenic
wave function.

The set of Eqs. (6.19) and (6.20) has been solved by several methods:

1. Macek [36] solved these equations for the doubly excited states of the Helium
atom by direct numerical integration. However, this method encounters numerical
instabilities when eigenvalues are nearly degenerate.

2. Lin [37] diagonalized the effective Hamiltonian in the HH basis. The convergence
of the expansion becomes slow at large values of ξ.

3. Lin [38] also solved the adiabatic equation by diagonalization, using analytic
channel functions (hydrogenic basis functions for large ξ, generalized to smaller
ξ together with hyperspherical harmonics) to obtain channel potential curves. The
method is quite accurate, stable, and economical.

4. Tang et al. [39] used the generalized Numerov method, using a three term recur-
rence relation (see Sect. 10.2.1 of Chap.10) and resulting in an eigenvalue equa-
tion.

AX = ωκ(ξ)B X, (6.22)

http://dx.doi.org/10.1007/978-81-322-2361-0_10
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where A and B are tridiagonal, nonsymmetric matrices with fixed (l1, l2). The
channel potential is found by searching for zeros of the secular equation

det |A − ωκ(ξ)B| = 0. (6.23)

The method becomes quite fast and accurate, since ωκ(ξ) are obtained by solving
Eq. (6.23) iteratively from its knowledge at a smaller ξ. The accuracy goes as the
sixth power of the step size and can be greatly enhanced with smaller step sizes.

Channel potential curves and details of the calculations for a number of Coulomb
systems can be found in an excellent review article by Lin [35].
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Chapter 7
Potential Harmonics

Abstract Potential harmonics (PH) basis is the subset of HH, which is sufficient
for expansion of two-body potential. It includes only two-body correlations. PH is
appropriate for a sufficiently dilute system, in which only two-body correlations are
relevant. Closed analytic expression for the PH is derived. Potential multipoles for
this basis and overlap of PHs of different pairs are obtained. Use of symmetrized and
unsymmetrized PH bases have also been discussed.

In earlier chapters, we discussed the expansion of the wave function in the complete
set of hyperspherical harmonics (HH). We saw that the exact treatment becomes
unmanageable for systems containing more than three particles. Even for the three-
body system the degeneracy of the HH basis corresponding to a particular order
(which is the grand orbital quantum number L) increases very rapidly with the order.
For this reason the expansion basis has to be truncated according to several alternative
schemes (Sect. 4.5 of Chap.4). One of the truncation schemes is to use the potential
harmonics (PH) basis. This is a subset of the HH basis which is complete for the
expansion of the two-body potentialV(�rij), justifying its name. Clearly, it depends on
the label (ij) and the separation vector �rij of the interacting pair. It is independent of
the position vectors of all noninteracting particles. In order to express the full wave
function (which depends on all particle coordinates) in the PH basis appropriate for
(ij)-pair, we have to decompose the former in pair-wise Faddeev components

ψ(�r1, . . . , �rA) =
A∑

i,j>i

φij(�r1, . . . , �rA). (7.1)

In general, the Faddeev component φij(�r1, . . . , �rA) corresponds to (ij)-interacting
pair, but depends on position vectors of all particles in the system, and thereby
taking care of all correlations. If we expand φij(�r1, . . . , �rA) in PH corresponding to
(ij)-pair, then only its dependence on �rij is retained, which corresponds to only two-
body correlation and dependence on the relative configurations of three, four, . . .

particle subsystems in φij(�r1, . . . , �rA) is disregarded. Hence higher than two-body
correlations are disregarded. Since ψ(�r1, . . . , �rA) is written as a sum of Faddeev
components of all interacting pairs, all two-body correlations are properly accounted

© Springer India 2016
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for. Note that the wave function ψ is uncorrelated if it is a product of single particle
wave functions; it has two-body correlations if it depends on all pair-separations; it
has three-body correlations if it depends on relative configuration of all three-particle
sub-systems, and so on. To accommodate all two-body correlations in ψ, we take the
Faddeev component φij(�r1, . . . , �rA) to be a function of �rij and r (hyperradius) only,
but independent of position vectors of all noninteracting particles. This means that all
the inert degrees of freedom are frozen and the number of active variables reduces to
four only, for each interacting-pair partition, corresponding to �rij and r. This results
in a great simplification for the treatment of the many-body system. The disregard of
higher than two-body correlations is the price one pays for this simplification. When
is this justified? Unless the system is very dense, the probability of finding more
than two particles in a small volume will be very small. Therefore, the contribution
of three- and higher-body correlations in ψ can be expected to be negligible and the
use of PH basis is likely to be a good approximation. In very light and halo nuclei,
where the density is quite low and average internucleon separation is large, this
approximation can be expected to be fairly good. On the other hand, heavier nuclei
have much shorter internucleon separations and such an approximation will not be
good. For the Bose–Einstein condensate (see Chap.8), which is a system containing
several thousand to several million of bosonic atoms in a gas of extremely low
density (number density ∼1015 cm−3), the average interatomic separation is very
large compared to the range of interatomic interaction and this approximation is
very good.

7.1 Potential Harmonics

For simplicity, we again consider a system of A identical particles, each of mass m.
The Jacobi vectors can be defined as in Eq. (4.1). However for our convenience, we
rename the Jacobi vector �ξj as �ξN−j+1 of Eq. (4.1), i.e.

�ξj =
[2(N − j + 1)

N − j + 2

]1/2(�rN−j+2 − 1

N − j + 1

N−j+1∑
i=1

�ri

)
(j = 1, . . . , A − 1),

(7.2)
where N = A − 1. Since Eq. (7.2) only renames the Jacobi vectors, all the relations
of Sect. 4.1 of Chap.4 will be valid. In particular, hyperradius and the hyperangles
are defined through Eqs. (4.6) and (4.7), respectively. The HH is given by Eqs. (4.14)
and (4.15). As already explained, we have to consider the interacting pair [say, the
(ij)-pair] of particles, as a special active pair for the associated PH. Consequently,
we again rename the particles i and j as 1 and 2 respectively, such that

�ξN = �rij = �rj − �ri. (7.3)

http://dx.doi.org/10.1007/978-81-322-2361-0_8
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We can do this, since all particles are identical. In doing this we can use the same
equations for each interacting pair. However, we have to remember that the hyper-
angles depend on the interacting-pair label (ij). Hence, we denote the hyperangles
by �

(ij)
N .

The general HH is given by Eqs. (4.14) and (4.15). We wish to construct that
subset of HH, which is sufficient for expansion of V(�rij), i.e. V(�ξN ). This potential
in independent of all the Jacobi vectors �ξ1, �ξ2, . . . , �ξN−1. Hence the desired subset,
which is complete for the expansion of V(�rij) will not contain the Jacobi vectors
�ξ1, . . . , �ξN−1. We can obtain such basis functions from the general HH by choosing
the quantum numbers [see Eqs. (4.14)–(4.16)]

l1 = l2 = · · · = lN−1 = 0, lN = l
m1 = m2 = · · · = mN−1 = 0, mN = m
n2 = n3 = · · · = nN−1 = 0, nN = K
L1 = L2 = · · · = LN−1 = 0, LN = L = 2K + l.

(7.4)

Thus, a member of this subset is given by

P l,m
2K+l(�

(ij)
N ) ≡ Y[L](�

(ij)
N ) = Yl,m(ϑN ,ϕN ) (N)P l,0

2K+l(φN )Y[0](3N − 3), (7.5)

where Y[0](3N − 3) is the HH of order zero in (3N − 3)-dimensional space, which
it is a constant and its value is obtained from the normalization condition as

Y[0](3N − 3) =
[�((3N − 6)/2)

2π(3N−6)/2

] 1
2

(7.6)

The subset {P l,m
2K+l(�

(ij)
N )} is called the potential harmonics (PH) basis correspond-

ing to the (ij)-interacting pair. Note that it depends on the particular interacting pair
(ij), as the set of hyperangles is denoted by �

(ij)
N , identifying the pair (ij). Con-

sequently, the angles ϑN ,ϕN and φN of Eq. (7.5) should carry this identification,
which we suppress for brevity. The potential harmonic P l,m

2K+l(�
(ij)
N ) of order 2K + l

is a spherical tensor of rank l in 3-dimensional space and involves three quantum
numbers l, m and the grand orbital 2K + l, corresponding to the only active vari-
ables ϑN , ϕN , and φN , respectively. All other quantum numbers have zero values,
as seen from Eq. (7.4); corresponding variables do not appear in the PH. Thus, if
we use the PH basis to expand a general function in the 3N-dimensional space,
variables associated with zero quantum numbers remain ‘frozen.’ Clearly, this sub-
set is useful in a situation in which physical condition asserts that there is no or
at most a weak dependence on the variables associated with zero quantum num-
bers. If a quantum system has no correlations higher than two-body correlations,
then, the PH basis is proper for the expansion of the wave function of the system.
The Bose–Einstein condensate achieved in the laboratory is a good example of such
a system. We will discuss its use in Chap. 8. The degeneracy of a general HH of
order L increases very rapidly with L, corresponding to all allowed sets of quantum

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_8


98 7 Potential Harmonics

numbers {(l1, m1), (n2, l2, m2), (n3, l3, m3), . . . , (nN , lN , mN )}. If the total orbital
angular momentum (l) is good for the system, then the degeneracy of a PH of order
2K + l is only 2l + 1. Thus the effort is reduced greatly, when the PH basis is used.

The orthonormalization satisfied by the PH is obtained from that of the general
HH, and is given by

∫
P l,m
2K+l(�

(ij)
N ) P l′,m′

2K ′+l′(�
(ij)
N ) d�

(ij)
N = δKK ′ δll′ δmm′ . (7.7)

7.2 Potential Multipoles

We next discuss how a general two-body potential V(�rij) can be expanded in the
corresponding set of PH {Pλ,μ

2K ′′+λ(�
(ij)
N )}. The potential (specially in nuclear systems)

generally contains a central plus a tensor term with dependence on spin and isospin
operators. Hence, we can write

V(�rij) =
∑
λ,μ

Aλμ(i, j)Yλμ(r̂ij)Vλ(rij), (7.8)

where Aλμ(i, j) is an operator acting on spin and isospin variables of the pair (ij), but
independent of rij.λ is the rank of the spherical tensor represented by the potential and
μ (which can take values −λ,−λ+ 1, . . . ,λ− 1,λ) is its component, e.g., λ is zero
for a central potential and has the value 2 for a rank 2 tensor potential, as is common
in the case of nuclear interactions. The quantity Vλ(rij) is the corresponding radial
dependence of the potential. The PH basis is sufficient for an expansion of V(�rij) in
the full HH basis. Expanding Vλ(rij)Yλμ(r̂ij) in {Pλ.μ

2K ′′+λ(�
(ij)
N )}, we finally have

V(�rij) =
∑

K ′′,λ,μ

Pλ.μ
2K ′′+λ(�

(ij)
N )V (3N,λ)

K ′′ (ξ)Aλ,μ(i, j), (7.9)

where V (3N,λ)
K ′′ (ξ) is called the potential multipole. Using Eq. (7.5) it is given by

V (3N,λ)
K ′′ (ξ) = 〈Pλ.μ

2K ′′+λ(�
(ij)
N )|V(�rij)〉

= Y[0](3N − 3)
∫ π/2

0

(N)Pλ,0
2K ′′+λ(φ)Vλ(r cosφ)(sin φ)3N−4 cos2 φdφ.

(7.10)

We have displayed the spin–isospin operator Aλμ(i, j) of V(�rij) explicitly in Eq. (7.9).
Note that the potential multipole does not depend on the interacting-pair label (ij),
since the former is a function of ξ only, which is invariant under all permuta-
tions of particle labels. This dependence is taken over by the potential harmonic
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in Eq. (7.9). Expanding the two-body potential as in Eq. (7.9), one can calculate the
potentialmatrix elements in terms of geometrical structure coefficients 〈P l.m

2K+l(�
(ij)
N )|

Pλ.μ
2K ′′+λ(�

(kl)
N )|P l′.m′

2K ′+l′(�
(i′j′)
N )〉 (where the 〈· · ·〉 indicates integration over the hyperan-

gles in the 3N-dimensional space) and potential multipoles V (3N,λ)
K ′′ (ξ). Dependence

on the pair labels (ij), (i′j′) and (kl) is taken up in the next section.

7.3 Overlap of PHs of Different Pairs

The PH depends on the interacting-pair label (ij). In the CDE and the potential matrix
element such labels will enter. In this section, we discuss how it can be handled. The
general overlap of two PH elements has the form 〈P l.m

2K+l(�
(ij)
N )|P l′.m′

2K ′+l′(�
(i′j′)
N )〉. Since

the grand orbital 2K +l, as also orbital angular momentum quantum numbers l, m are
conserved under renaming of particle labels, this overlap vanishes unless K ′ = K ,
l′ = l, and m′ = m. Now one of the particle pairs can be chosen arbitrarily as (12).
Then, the only nonvanishing overlaps of interest are 〈P l.m

2K+l(�
(12)
N )|P l.m

2K+l(�
(ij)
N )〉.

Three situations can arise: when both pair of labels are the same [i.e., when
(ij) = (12)], when one of the labels is the same [i.e., when only one of (ij) is
greater than 2], and when there is no common label [i.e., when both i, j > 2]. It can
be seen [1] that

〈P l.m
2K+l(�

(12)
N )|P l.m

2K+l(�
(ij)
N )〉 =

(N)P l,0
2K+l(ϕ

(ij)
N )

(N)P l,0
2K+l(0)

= (cosϕ
(ij)
N )l P

(3N−5)/2,l+ 1
2

K (cos 2ϕ(ij)
N )

P
(3N−5)/2,l+ 1

2
K (1)

, (7.11)

where

ϕ
(ij)
N = 0 for (ij) = (12)

= π
2 for i, j > 2

and cosϕ
(ij)
N = ± 1

2 , for equal mass particles with one common label. The simplest
case is when (ij) = (12). In this case we see that the overlap is 1, as expected. For
i, j > 2, i.e., no common index, we get from Eq. (7.11)

〈P l.m
2K+l(�

(12)
N )|P l.m

2K+l(�
(ij)
N )〉 = (−1)K

22K

(2K + 1)!
K !

�((3N − 3)/2)

�(K + (3N − 3)/2)
δl0.

(i, j > 2) (7.12)

When there is only one common index (one of i, j is greater than 2, the other is less
than or equal to 2), one has to use Eq. (7.11) with cosϕ

(ij)
N = ± 1

2 .
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7.4 Potential Basis as Optimal Subset

Calculation of the potential matrix element of different interacting pairs is a formi-
dable task, if the entire HH basis is used. The labor in handling this can be reduced
by the use of optimal subset. This is particularly convenient if the first term (which
is of order zero and independent of all hyperangles) of HH expansion of two-body
potential is the dominant term. Then, the HH expansion of themany-bodywave func-
tion will also have a dominant contribution from the HH of order zero, viz, Y[0](3N).
Hence only the PH subset will be the subset of HH, which is directly connected
with the dominant HH (of order zero) of the wave function, through the two-body
potential. Then according to Eq. (4.36), the optimal subset will be the PH basis. It
will also be referred to as the potential basis. Since according to this assumption, the
dominant part of the potential is independent of the hyperangles, coupling of various
HH components of the wave function mediated through the two-body potential can
be treated as a small perturbation. The validity of the assumption that the zeroth order
HH contributes dominantly has been tested for few nucleon system interacting via
various standard nucleon–nucleon potentials. Contribution of the K = 0 term to the
ground state energy has been found to be 80% or more [1].

7.4.1 Symmetrical PH Basis

The PH basis can be symmetrized according to the identity and type of the particles.
Simplest to construct is the totally symmetric space state. For the ground state of a
system ofA identical bosons, all the particles are likely to be in the lowest single parti-
cle state. Thus, the lowest order HHwith L = 0 (i.e., l = m = 0, K = 0) is dominant.
Even for a system of fermions (like the nucleus), the space totally symmetric state has
a dominant contribution. An example is provided by the trinucleon ground state (see
Chap.5). An element of the optimal subset comprised of symmetrical combination
of PH is

B(S)
2K (�N ) = CK

A∑
i,j>i

P0,0
2K (�

(ij)
N ), (7.13)

where CK is a normalization constant and P0,0
2K (�

(ij)
N ) is the PH, given by Eq. (7.5),

corresponding to l = m = 0. The elements of this basis is totally symmetric under
any pair exchange, and hence it is called the symmetrical potential basis. The ground
state wave function for the relative motion can be expanded as

�gs(ξ,�N ) = ξ−(3N−1)/2
∞∑

K=0

uK(ξ)B(S)
2K (�N ). (7.14)

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_5
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The system of CDE resulting from this expansion is

[
− �

2

m

d2

dξ2
+ �

2

m

LK(LK + 1)

ξ2
− E

]
uK(ξ)

+ A(A − 1)

2

∑
K ′

〈B(S)
2K |V(�rij)|B(S)

2K ′ 〉uK ′(ξ) = 0, (7.15)

where LK = 2K + 3N−3
2 . Since the expansion basis is totally symmetric under any

pair exchange, the matrix element of sum of all interacting pairs is just the matrix
element of one pair multiplied by the number of pairs. Thus handling of all pair-wise
interaction becomes much simpler. However, the calculation of the symmetrical
potential basis is not so easy. Detailed calculation of the potential matrix element in
this case, can be found in Ref. [1]. In the next section, we discuss how the potential
matrix element can be calculated in the unsymmetrical PH basis.

7.5 Potential Matrix in Unsymmetrized PH Basis

Wecan also use the unsymmetrized PH basis, given by Eq. (7.5), say for the particular
choice of (ij) = (12), i.e., the set {P l,m

2K+l(�
(12)
N )}. In this case, we cannot replace the

matrix element of sum of all pair-wise potentials as the number of pairs times the
matrix element of any pair potential. Expanding the ground state wave function in
the unsymmetrized basis with l = m = 0

�gs(ξ,�N ) = ξ−(3N−1)/2
∞∑

K ′=0

uK ′(ξ)P0,0
2K ′(�

(12)
N ). (7.16)

Substitution of this in the Schrödinger equation and projection onP0.0
2K (�

(12)
N ) results

in the set of CDE

[
− �

2

m

d2

dξ2
+ �

2

m

LK(LK + 1)

ξ2
− E

]
uK(ξ)

+
∑

K ′

[
〈P0,0

2K |
A∑

i,j<i

V(�rij)|P0,0
2K ′ 〉

]
uK ′(ξ) = 0. (7.17)

Expanding the potential as in Eq. (7.9), we have, in general

VKK ′(ξ) ≡ 〈P l,m
2K+l|

A∑
i,j<i

V(�rij)|P l′,m′
2K ′+l′ 〉
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=
∑
K ′′λμ

V (3N,λ)
K ′′ (ξ)

A∑
i,j<i

〈Aλμ(ij)〉spin−isospin

× 〈P l,m
2K+l(�

(12)
N )|Pλ,μ

2K ′′+λ(�
(ij)
N )|P l′,m′

2K ′+l′(�
(12)
N 〉. (7.18)

The last factor is the geometrical structure coefficient, introduced inChap. 3, although
in the present case, the PH in the middle corresponds to a different partition. Since
the global quantum numbers L, l and m are conserved under all permutations of
particles, Pλ,μ

2K ′′+λ(�
(ij)
N ) can be expanded in a corresponding set of PH belonging to

partition (12). We will specialize to the ground state of the system with l = m = 0,
l′ = m′ = 0 and scaler interaction (λ = μ = 0) only. Then the PH P0,0

2K ′′(�
(ij)
N ) can

be expressed as a linear combination of P0,0
2χ (�

(12)
N ) as

P0,0
2K ′′(�

(ij)
N ) =

∑
χ

cK ′′χP0,0
2χ (�

(12)
N ) (7.19)

Since the global quantum number L is conserved, we must have χ = K ′′. Hence

P0,0
2K ′′(�

(ij)
N ) = cK ′′K ′′P0,0

2K ′′(�
(12)
N )

= 〈P0,0
2K ′′(�

(12)
N )|P0,0

2K ′′(�
(ij)
N )〉P0,0

2K ′′(�
(12)
N ). (7.20)

The first factor can be obtained from Eq. (7.11). For simplicity, we consider a scalar
interaction, independent of spin–isospin operators, for which Aλ,μ(i, j) becomes an
identity operator. The potential matrix element appearing in Eq. (7.18) becomes

VKK ′(ξ) =
∑
K ′′

[( A∑
i<j

〈P0,0
2K ′′(�

(12)
N )|P0,0

2K ′′(�
(ij)
N )〉

)

×V (3N,0)
K ′′ (ξ) 〈P0,0

2K (�
(12)
N )|P0,0

2K ′′(�
(12)
N )|P0,0

2K ′(�
(12)
N 〉

]
. (7.21)

The GSC appearing above is the standard one, defined as in Chap.3, for the principal
partition (12) chosen. Its evaluation can also be done by the LIE technique explained
there. The dependence on the labels of all interacting pairs is given through

f 2K ′′,l=0 ≡
A∑

i<j

〈P0,0
2K ′′(�

(12)
N )|P0,0

2K ′′(�
(ij)
N )〉.

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_3
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Calculation of f 2Kl
Consider, the general case

f 2Kl =
A∑

i<j

〈P l,0
2K (�

(12)
N )|P l,0

2K (�
(ij)
N )〉. (7.22)

To evaluate the sum over different partitions in Eq. (7.22), we note that partition (ij)
has three possibilities:

1. Both labels are the same [only one possibility (i, j) = (1, 2)]
Clearly

〈P l,0
2K (�

(12)
N )|P l,0

2K (�
(12)
N )〉 = 1.

This also follows from Eq. (7.11) with ϕ(12)
N = 0.

2. (i, j) with one common label with (1, 2)
There are two possibilities: i = 1, j > 2 and i = 2, j > 2. Both have (A − 2)
contributions to the sum with j = 3, . . . , A. In this case ϕ(31)

N = ± 1
2 and we have

contribution from one common label

= 2(A − 2)〈P l,0
2K (�

(12)
N )|P l,0

2K (�
(31)
N )〉 = 2(A − 2)

(1
2

)0 Pα,β
K (− 1

2 )

Pαβ
K (1)

= 2(A − 2)
Pα,β

K (− 1
2 )

Pαβ
K (1)

,

where α = (3N − 5)/2 and β = l + 1
2 .

3. No common labels, i > 2, j > i. We can take (i, j) = (3, 4). There are (A−2)C2

such contributions with ϕ(34)
N = π

2 , giving

contribution from no common indices

= (A − 2)(A − 3)

2
〈P l,0

2K (�
(12)
N )|P l,0

2K (�
(34)
N )〉

= (A − 2)(A − 3)

2

(
0
)l Pα,β

K (−1)

Pαβ
K (1)

= δl0
(A − 2)(A − 3)

2

Pα,β
K (−1)

Pαβ
K (1)

Combining the contributions of the three possibilities inEq. (7.22),wefinally have [2]

f 2Kl = 1 + [2(A − 2)Pαβ
K (−1

2
) + δl0

(A − 2)(A − 3)

2
Pαβ

K (−1)]/Pαβ
K (1). (7.23)
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Use of the overlap f 2Kl reduces the algebraic complexity of considering all pairs
separately. Its use in the Faddeev equation will be presented in Chap.8. A similar
approach has been used in computing the projection function for the S states in the
integro-differential equation approach [3].

Dominance of two-body correlation in themany-bodywave function is the basis of
the potential harmonic approximation. Contribution of such two-body correlations
to the wave function of a many-body system was investigated by Fabre et al [4].
They studied self conjugate closed shell nuclei 4He, 16O and 40Ca with the PH
basis and compared the calculated binding energies with those of the full set. The
results agree closely, showing the importance of two-body correlations. The PH
basis is appropriate for the dilute Bose–Einstein condensates, which will be taken
up in Chap.8. Yalcin and Smisek used the PH approximation in atomic three-body
systems [5].
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Chapter 8
Application to Bose–Einstein Condensates

Abstract Bose–Einstein condensate (BEC) is formed when a macroscopic fraction
of bosons in a Bose gas occupies the lowest energy state, below a critical temperature.
It is extremely dilute and the effective two-body interaction is given in terms of
s-wave scattering length (as). Properties of BEC are discussed. The standard Gross–
Pitaevskii equation (GPE) is obtained frommeanfield theorywith contact interaction.
Simplifying assumptions and limitations ofGPEare discussed.Many-body treatment
consists of solving themany-body equation by expanding the interacting pair Faddeev
component in correlatedPHbasis (PHEM),which is appropriate for the dilute system.
For the extremely dilute system interacting via van derWaals potential, a short-range
correlation function is needed with the PH basis. Results for attractive and repulsive
condensates are presented.

In 1924 S.N. Bose explained the black body radiation introducing the Bose
distribution function for photons, which are massless, spin one particles [1]. Ein-
stein extended the idea to massive bosons (integral spin particles) and predicted that
a macroscopic fraction of particles in such a bosonic noninteracting gas can occupy
the lowest energy state below a critical temperature [2]. This state of matter is called
Bose–Einstein condensate (BEC). Details of the BEC can be found in Refs. [3–5].
It is obvious that this can occur at a very low temperature (estimated to be of the
order of 10–100 nano-Kelvin), so that thermal excitations cannot scatter bosons into
higher energy levels. At the critical temperature the thermal de Broglie wavelength
becomes comparable to the average interparticle separation. Another condition to
achieve BEC is that the effect of two-body interactions must be quite small, since
such interactions can also populate higher energy levels. Thus the bosons must form
an extremely dilute cloud, so that average interparticle separation is much larger than
the range of interparticle interaction. This condition gives the number density of a
typical laboratory BEC to be ∼1013–1015 cm−3. This is extremely small compared
to the density of molecules in air at room temperature (≈1019 cm−3). The diluteness
prevents the cloud from condensing to the liquid or solid state, since three-body
collisions (which are necessary to form bound molecules or clusters, in order that
the third particle can escape with the released binding energy) would be practically
absent.

© Springer India 2016
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Even though BEC was predicted in 1924, its experimental achievement in dilute
gases was not possible until 1995, since such a low temperature could not be reached
by conventional cryogenic means. Moreover one has to find a container, which can
hold the condensate, without heating it up. Both cooling and confinement was suc-
cessfully done using very clever laser techniques and magneto-optic confinement.
The experimental observation of BEC has renewed a great deal of interest in it—
experimental as well as theoretical. The importance of this topic is clearly demon-
strated by the fact that three independent Nobel Prizes were awarded on BEC related
works in quick succession in the recent past.

In 1938, London suggested that the superfluidity of liquid Helium is related to
BEC. But the average interparticle separation in the liquid phase is of the order of
interatomic forces. Hence atoms in the lowest energy state are scattered into higher
levels and the occupation number in the lowest energy state is reduced even at zero
temperature.

Attemptsweremade during the 1980s and 1990s to create BEC in extremely dilute
Bose gases, so that the average interparticle separation is much larger than the range
of interparticle interactions. This reduces the probability of molecule formation to
practically zero. As mentioned above, molecule formation is possible only through
three and higher body collisions, so that two atoms form a molecule, while the third
takes away the released binding energy as its kinetic energy. To get an idea of the
temperature (T ) needed to achieve BEC, we can compare the thermal de Broglie
wavelength, λT ∼ √

�2/(2mkB T ) (where kB and m are the Boltzmann constant and
mass of the atom, respectively) with the mean interatomic separation, n− 1

3 (n being
the number density). Since n is in the range of 1013–1015 cm−3, T turns out to be in
the range from 100nK to a few μK. Two main experimental difficulties were: (1)
to attain extremely low temperatures (typically a few hundred nano-Kelvin) and (2)
to find a container for the gas. Any material container will involve collisions with
the walls of the container. This will lead to loss (due to absorption by the wall) and
heating. Very low temperatures are obtained by laser cooling followed by evaporative
cooling [3, 4]. The container problem is relatively easily solved by confining the gas
in magnetic and optical traps. The trap potential is usually chosen to be that of a
harmonic oscillator of frequency ω (typically ∼100Hz). This gives the BEC length

scale aho =
√

�

mω
.

Bose–Einstein condensation was first achieved experimentally in gases of neutral
alkali-atom (87Rb, 23Na and 7Li) vapors in 1995 [3, 4]. The total number of fermions
(protons, neutrons, and electrons) in such an atom is even. Hence they behave as
bosons. In BEC experiments, the apparatus is at room temperature, while the atoms
are trapped andcooled to incredibly low temperatures.Atomsare initially laser cooled
to about 10µK by applying laser beams in six directions, counter propagating pairs
along the three Cartesian axes. The laser frequency is chosen in such a way that the
moving atom will be in resonance only when it encounters a photon coming from the
opposite direction and not in the same direction. This is done by slightly detuning the
laser frequency, such that the Doppler-shifted frequency, as seen by an approaching
atom, is in resonance. Hence only the photon coming from the opposite direction is
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selectively absorbed. This slows down the atom and thus reduces the temperature
of the atomic cloud. The excited atom later spontaneously emits a photon. Since
the process is random and the photon can be emitted in any direction, there is no
net gain in momentum in the spontaneous emission process. Evaporative cooling is
next used, in which external magnetic fields are manipulated to expel from the trap
the most energetic among the remaining atoms, thereby reducing the temperature
to the desired value. Detection of BEC is done as follows. After reaching a desired
temperature, the confining trap is switched off, allowing the atoms to move outward
freely. Fastest atoms move furthest. After a time lag, the expanding cloud is imaged
by a probe laser beam. The density profile corresponds to a velocity distribution at the
time when the trap was switched off. At higher temperatures, a Gaussian distribution
(corresponding to the thermal distribution) is observed. A sharp peak above the
Gaussian pedestal in the velocity distribution was observed below a certain critical
temperature (Tc). Temperature of the cloud is determined by fitting the Gaussian
pedestal with the thermal distribution at a temperature T . The observed sharp peak
at the center indicates an appreciable number of atoms with practically zero speed
and hence provides a clear signature for the experimental attainment of BEC.

The size of the cloud is ∼aho and it is a macroscopic length. It can be a few
tenths of a millimeter. Hence the structure of the condensate wave function can be
investigated directly by optical means, as discussed above. Below Tc, most of the
particles are in the ground state of the harmonic trap. Hence single particle wave
functions of these atoms overlap and the many-body system behaves as a single
quantum entity, where the atoms move in a coherent fashion, describable in terms
of a single macroscopically extended wave function, called the ‘condensate wave
function.’ This provides a unique opportunity to explore quantum phenomena on a
macroscopic scale. Interatomic interactions can produce a measurable effect on the
condensate and are of great interest. The wave function is a product of single particle
wave functions and has no correlations (for definition of correlations see Chap.4,
Sect. 4.5 and Chap.7). On the other hand, inclusion of two-body interactionsmakes it
a nontrivial many-body problem. In the following sections, we will discuss different
theoretical approaches to the problem.

8.1 General Properties of BEC

From the above discussion, we enlist some basic features of a typical laboratory
BEC:

1. Theharmonic oscillator trap in a laboratoryBEChas frequency typically∼100Hz,
corresponding to a length scale, aho ≈ 2 × 104 a0 for the Rb condensate, where
a0 is the Bohr radius (atomic unit of length), a0 = 0.529 × 10−8 cm. Thus the
BEC length scale is four orders of magnitude larger than the atomic length scale.

2. Average interparticle separation in the BEC, rav = n− 1
3 ∼ 2 × 10−5 cm ≈ 4 ×

103 a0. Thus the average separation is also much larger than the atomic length
scale.

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_7
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3. BEC was originally considered for noninteracting bosons, for which the many-
body wave function is a product of single particle wave functions. But actual
bosonic atoms interact among themselves. Typical energy of a bosonic atom in the
BEC is ∼�ω. For ω = 100Hz, this is ∼10−13 eV. It is negligibly small compared
to atomic energy scale (eV). This shows that the atoms in the BEC scatter with
practically zero energy. Hence the scattering cross section is 4π|a|2, where a is
the s-wave scattering length. At such low energies, the interacting pair of atoms
are too far apart to feel the bare (actual) interatomic interaction (which is a van
der Waals type attraction, −C6

r6i j
, ri j being the interacting pair separation), having

a range of ∼20 a0. Thus, the effective interaction between the pair is controlled
entirely by the s-wave scattering. Value of a is about 100 a0 for a condensate of
87Rb atoms. In the zero energy limit, the effective interaction in the momentum
space [4] becomes a constant U0 = 4π�

2a
m . Hence in coordinate space, it becomes

a contact (delta function) interaction of strength U0

Veffective(ri j ) = 4π�
2a

m
δ(ri j ). (8.1)

This effective interaction can be attractive or repulsive accordingly as a is < 0
or > 0 respectively, whereas the bare interatomic interaction is always attractive
at separations greater than the repulsive core (∼5 a0) of the actual interatomic
interaction. Also, since the scattering cross section due to a hard sphere of radius
a is 4πa2, we may take the sphere of interaction around an atom to be a sphere of
radius |a|. For a very dilute system for which rav is much larger than the range of
bare interatomic interaction and at negligible energy, the effective interaction (and
not the bare interaction) will give correct results in the first Born approximation
for scattering and mean field theory for bound states [4].

4. Since rav is quite large compared to the radius of influence of the effective inter-
action |a|, the condensate wave function can be taken as having no correlations,
in the lowest approximation. Hence the wave function becomes a product of
single particle wave functions and the mean field approximation is a reason-
able one. This approximation together with Eq. (8.1) gives rise to the mean-field
Gross–Pitaevskii (GP) equation (Sect. 8.2). However, since two-body scattering
generates the effective two-body interaction, pair correlations play an important
role. This is also demonstrated by the fact that although |a| is small, it is not very
small compared to rav. For larger |a|, correlations higher than two-body ones will
become relevant.

5. One of the conditions for achieving BEC in the laboratory is that three and higher
body collisions must be absent, in order that there is no depletion of the conden-
sate. This means that the number of particles within the sphere of interaction must
be small, i.e., n|a|3 � 1. This implies that three-body and higher body correla-
tions are absent. We will see in the following that it will simplify the many-body
treatment immensely (Sect. 8.3).
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8.2 GP Equation

Substitution of Eq. (8.1) in the mean field equation gives

[
− �

2

2m
∇2 + 1

2
mω2r2 + U0|ψ(�r)|2

]
ψ(�r) = μψ(�r), (8.2)

where U0 = 4π�
2a

m and μ is the chemical potential. ψ(�r) is the condensate wave
function, normalized as ∫

|ψ(�r)|2d�r = N , (8.3)

where N is the number of bosonic atoms in the condensate (in this section, we
adopt the symbols N and a for number of particles and the s-wave scattering length,
respectively, to be consistent with the literature). The density of particles is

n(�r) = |ψ(�r)|2. (8.4)

ψ(�r) can be written as
ψ(�r) = N

1
2 φ(�r), (8.5)

where φ(�r) is the single particle wave function, normalized as
∫

|φ(�r)|2d�r = 1. (8.6)

Equation (8.2) is the celebrated GP equation, obtained independently by Gross and
Pitaevskii in 1961. The above outline is an intuitive and heuristic argument leading
to the GP equation, but not a rigorous derivation. Moreover, a rigorous definition of
contact interactions in more than one dimensions is not straightforward (see, e.g.,
[6, 7] and references quoted therein), and both mathematically and physically it is
more appropriate to start with a bona fide interaction potential. Limitations of the
intuitive arguments are discussed in the following subsection. On the other hand,
since the laboratory achievement of BEC in 1995, a wealth of accurate experimental
results have become available. Most of them agree well with the predictions of the
GP equation. Thus the GP equation should have a stronger basis than that presented
above. Indeed mathematically rigorous works have been carried out on BEC and the
GP equation over the last 15 years, leading to a mathematical proof of existence of
BEC in the GP limit [8]. We will briefly discuss them in Sect. 8.2.2.

TheGP equation is a nonlinear Schrödinger equation, the nonlinearity comes from
the interaction term proportional to particle density n(�r) = |ψ(�r)|2. As we discussed
earlier, this equation ignores all correlations (at least on length scales beyond the scat-
tering length) and is expected to be valid in the dilute limit n|a|3 � 1. It has been
very successful in explaining many observed quantities in dilute BEC [3]. Except
for its nonlinearity, the GP equation is a simple one. It can be studied by variational
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methods [3]. Accurate numerical codes have been developed for the numerical solu-
tion, see for example Ref. [9]. We will not discuss applications of the GP equation,
as our main aim is to introduce the PH expansion to the many-body treatment of
BEC. Interested readers can find details of the GP equation and its applications in
Refs. [3, 4].

8.2.1 Simplifying Assumptions and Their Limitations

In spite of the overwhelming success of the GP equation, the heuristic arguments of
Sect. 8.2 have limitations. Let us list the simplifying assumptions and limitations of
their validity:

1. The fundamental assumption is that the condensate is very dilute, n|a|3 � 1. For
a condensate of 106 atoms of 87Rb (a = 100 a0) in a harmonic trap of frequency
ω = 100Hz, the diluteness parameter n|a|3 = 0.081 and the diluteness condition
is fairly well satisfied. For smaller number of atoms, it is well satisfied, but for 108

atoms, the diluteness parameter is larger than 1 and the condition is not satisfied.
2. Recent experimental setups using Feshbach resonance can change a for certain

atoms (e.g., 85Rb) to almost any value. Thus even for a tenfold increase a =
1000a0, GP equation is not valid even for 105 atoms. In such cases, correlations
enter into the wave function (see Sect. 8.3).

3. Assumption of a contact interaction, Eq. (8.1) is not physically bona fide, but it is
a reasonable approximation when the diluteness condition is satisfied. However,
this is not a good assumption for excited states of the condensate with higher
energies, as also for observables which are sensitive to the details of the two-
body interactions. In such cases, an effective interaction derived from a bare
realistic interatomic interaction is desirable (see Sect. 8.3).

4. Assumption of a mean field approach is only an approximation and it is again
justified for the extremely dilute condensate only. A better approach would be a
many-body treatment using realistic two-body interactions and including corre-
lations.

In the next subsection, we will briefly outline the rigorous mathematical treatment
of BEC and the GP equation. In Sect. 8.3, we will see how some of the limitations
listed above can be addressed by the application of PH expansion method in an
approximate many-body treatment, even if the condensate is not very dilute.

8.2.2 Rigorous Proof of Existence of BEC and Derivation
of the GP Equation

BEC was originally proposed for noninteracting bosons, for which the many-body
ground state is a product of single particle wave functions and all the bosons occupy
this state. But realistic bosonic atoms have interactions and the ground state wave
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function is not strictly a product wave function. Thus a rigorous proof of existence
of BEC in interacting bosons is needed.

Furthermore, the heuristic argument presented at the beginning of Sect. 8.2 to
arrive at the GP equation is not a rigorous derivation. This is because the mean field
theory assumes the many-body wave function to be a product of single particle wave
functions, which is rigorously valid only for noninteracting particles. In particular,
if the two-body interaction has a hard core, the expectation value of the Hamiltonian
diverges [8]. For a finite result, the product wave function must be multiplied by a
Jastrow type function F(�r1, . . . , �rA) [10], which vanishes whenever any pair sepa-
ration becomes less than or equal to the hard core radius. The function F should
be chosen judiciously involving the zero-energy scattering solution of the two-body
problem [11]. Moreover, the contact interaction (8.1) is not a bona fide potential. It
needs to be replaced by a physical potential having a finite range.

A rigorous mathematical proof of BEC for dilute trapped Bose gases of atoms
interacting through repulsive two-body interactions and derivation of the Gross–
Pitaevskii energy functional were provided by Lieb, Seiringer, Yngvason, and other
authors. We will briefly outline the steps in the following. Interested readers should
read the original papers cited below or detailed lecture notes [8, 11–14].

The first rigorous proof of BEC in a gas-containing N bosonic atoms trapped by an
external potential V (�ri ) and interacting via two-body repulsive interaction v(�ri − �r j )

in the dilute limit was given by Lieb and Seiringer [15], starting from Schrödinger
equation for the many-body Hamiltonian

H =
N∑

i=1

[−∇2
i + V (�ri )

] +
∑

1≤i< j≤N

v(�ri − �r j ). (8.7)

In this subsection, the units are so chosen that �
2

2m = 1. The interaction potential v is
assumed to be spherically symmetric, nonnegative, and having scattering length a,
which is allowed to vary with N . This is done by scaling: writing v(�r) = v1(�r/a)/a2,
where v1 is kept fixed when varying a and it has scattering length 1. The ground state
properties of such a trapped dilute, repulsively interacting gas are usually described
in the GP theory by means of the Gross–Pitaevskii energy functional, given by

EGP[φ] =
∫ [

| �∇φ(�r)|2 + V (�r)|φ(�r)|2 + g|φ(�r)|4
]

d3r, (8.8)

where g = 4πNa. Let φGP minimize EGP, subject to normalization condition∫ |φGP|2d3r = 1, corresponding energy being EGP(g) (which is the lowest value
of EGP). The asymptotic exactness of the GP approximation for the ground state of
such a gas was established rigorously by Lieb, Seiringer, and Yngvason [15, 16],
where it was shown that the GP energy functional correctly describes the energy
and particle density of a trapped Bose gas to leading order of the small diluteness



112 8 Application to Bose–Einstein Condensates

parameter ρa3 (where ρ is the mean density) in the limit N → ∞ and a → 0, subject
to Na fixed. Next define a reduced one-particle density matrix

γ(�r , �r ′) = N
∫

�(�r , �X)�(�r ′, �X)d �X , (8.9)

where �X = (�r2, . . . , �rN ) and d �X = ∏N
j=2 d3r j and �(�r1, . . . , �rN ) is the nonnega-

tive, normalized and completely symmetric ground state of H , corresponding to
energy EQM(N , a). Then complete (or 100%) BEC is defined to be the property that
1
N γ(�r , �r ′) becomes a simple product f (�r) f (�r ′), as N → ∞. The function f is called
the condensate wave function. It can be shown [15] that in the GP limit, i.e., N → ∞
with g = 4πNa fixed, the condensate wave function becomes the GPminimizer φGP

lim
N→∞

1

N
γ(�r , �r ′) = φGP(�r)φGP(�r ′). (8.10)

This shows that there is complete Bose–Einstein condensation into the state that
minimizes the Gross–Pitaevskii energy functional. In fact it can also be shown that
there is 100% condensation for all n-particle reduced density matrices of �, with n
fixed as N → ∞. Furthermore, it can be shown [16] that for fixed g = 4πNa

lim
N→∞

1

N
EQM(N , a) = EGP(g),

lim
N→∞

1

N
ρ(�r) = |φGP(�r)|2, (8.11)

where ρ(�r) = γ(�r , �r) is the density of the ground state of H .
Other relations between the quantum mechanical solution of H and the solution

of the GP equation can be derived and are listed below. Let φ1 denote the scattering
solution of v1, subject to normalization limr→∞ φ1(�r) = 1 and s = ∫ |∇φ1|2/4π.
Then 0 < s ≤ 1 and the following relations hold [15]

lim
N→∞

∫
|∇�r1�(�r1, �X)|2d3r1d �X =

∫
|∇φGP(�r)|2d3r + gs

∫
|φGP(�r)|4d3r

lim
N→∞

∫
V (�r1)|∇�r1�(�r1, �X)|2d3r1d �X =

∫
V (�r)|φGP(�r)|2d3r

lim
N→∞

1

2

N∑
j=2

∫
v(�r1 − �r j )|�(�r1, �X)|2d3r1d �X = (1 − s)g

∫
|φGP(�r)|4d3r. (8.12)

Additionally, several mathematically rigorous works on BEC and GP theory have
been reported since the original pioneering works [17–22]. Mathematical derivation
of GP equation of a rotating Bose gas was done by Seiringer and other authors
[23–27].
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8.3 Many-Body Approach

The ideal theoretical approach would be the solution of the complete many-body
Schrödinger equation. However, it is clear from our earlier discussion that an exact
solution of this equation is not feasible. In Chap. 4, we saw the galloping complexity
of the procedure, as the number of particles increases from three to four. In a labora-
tory Bose condensate, the number of atoms lies in the range from a few thousand to
a few million. It is impossible to handle such a large number exactly. In Chap. 7, we
saw that the subset of potential harmonics (PH) of the full hyperspherical harmonics
(HH) basis, makes its application quite manageable, if only two-body correlations
are retained. The subset keeps only four active degrees of freedom, while freezing the
remaining inert degrees of freedom. Indeed correlations higher than two-body one
are absent in laboratory condensates (for which A < 107), except those with very
large s-wave scattering length (as) produced artificially by Feshbach resonance. Thus
the potential harmonics expansion method (PHEM) can be used to expand the con-
densate wave function [28, 29].

In a not-too-dense condensate, only two-body interactions are relevant, with each
pair contributing separately. In a dilute condensate, when the (i j)-pair interacts,
remaining particles are merely spectators. Hence correlation arising from the inter-
acting pair only appears in the (i j) Faddeev component. Contributions from all pairs
give rise to all two-body correlations in the condensate wave function. To handle this
efficiently, we can write the full wave function (ψ) as a sum of Faddeev components
(φi j ) of all interacting pairs

ψ =
A∑

i< j=2

φi j (�r1, . . . , �rA). (8.13)

In principle, each φi j is a function of position vectors of all particles, if many-body
correlations are present in a dense system. But for a dilute condensate, since φi j has
only particles i and j correlated, it is a function of �ri j and does not depend on the
individual position vectors of all the remaining (A − 2) particles (for simplicity, we
consider a system of spinless identical bosons, each ofmassm). The only dependence
on these variables will be through a dependence on the hyperradius (r ), and we can
write (to be consistent with the BEC literature, we use r for hyperradius in this
chapter)

ψ =
A∑

i< j=2

φi j (�ri j , r). (8.14)

We can then expandφi j (�ri j , r) in the PH subset appropriate for (i j)-pair. The Faddeev
component satisfies the Faddeev equation

(T + Vtrap − ET )φi j (�ri j , r) = −V (�ri j )ψ, (8.15)

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_7
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where T is the total kinetic energy operator T = ∑A
i=1 − �

2

2m ∇2
�ri
, Vtrap = ∑A

i=1

Vtrap(�ri ) = ∑A
i=1

1
2mω2r2i , ET is the total energy and ψ is given by Eq. (8.14). V (�ri j )

is the potential for (i j)-pair interaction. Summing both sides of Eq. (8.15) over all
pairs, i.e., applying

∑A
i< j=2 on both sides, we get back the original Schrödinger

equation for the A body system, Eq. (4.4). This shows that the Faddeev equation is
equivalent to the Schrödinger equation. In a similar fashion, the Faddeev equation
for the relative motion is

(T ′ + V ′
trap − ER)�i j (�ri j , r) = −V (�ri j )�, (8.16)

where T ′ = ∑N
i=1 −�

3

m ∇2
�ξi
(with N = A − 1) is the kinetic energy operator of the

relative motion, V ′
trap = ∑N

i=1
1
2mω2ξ2i = 1

2mω2r2 and ER is the relative energy. �
is the total relative wave function and �i j is its Faddeev component, so that

� =
A∑

i< j=2

�i j . (8.17)

As inChap.7, we redefine the Jacobi vectors for each (i j), with �ξN = �ri j . Thus�i j

depends on �ξN and r only. Corresponding PH is independent of �ξ1, . . . , �ξN−1. Hence
l1 = l2 = · · · = lN−1 = 0, m1 = m2 = · · · = m N−1 = 0, n2 = n3 = · · · = nN−1 =
0 (note that n1 ≡ 0) and L1 = L2 = · · · = L N−1 = 0. All the global quantum num-
bers become associated with �ξN only and we have lN = l, m N = m, nN = K = a
nonnegative integer and L N = 2K + l, as inEq. (7.4).Using the notations ofChaps. 4
and 7, the PH is given by Eq. (7.5)

P l,m
2K+l(�

(i j)
N ) = Yl,m(ϑN ,ϕN ) (N )P l,0

2K+l(φN )Y[0](3N − 3), (8.18)

where Y[0](3N − 3) is the HH of order zero in (3N − 3)-dimensional space,
given by Eq. (7.6). A hyperradius in the (3N − 3)-dimensional space spanned by
{ �ξ1, . . . , �ξN−1} is defined as ρi j = ∑N−1

i=1 ξ2i . Then the hyperangle φN is defined
through

ri j = r cosφN ρi j = r sin φN , (8.19)

and (ϑN ,ϕN ) are the polar angles of �ξN . Expanding �i j (�ri j , r) in the subset of PH
given by Eq. (8.18), we have

�i j (�ri j , r) = r−(3N−1)/2
∑

K ′
P lm
2K ′+l(�

(i j)
N )ul

K ′(r). (8.20)

Here ul
K (r) is the hyperspherical partial wave. The factor r−(3N−1)/2 is included

to remove first derivatives with respect to r . To obtain a set of coupled differen-
tial equation (CDE), we substitute Eq. (8.20) in Faddeev equation (8.16), multiply

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
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by P lm
2K+l

∗(�(i j)
N ), integrate over d�

(i j)
N , and use orthonormalization relation of PH

functions (Eq. (7.7)) to get

[
−�

2

m

d2

dr2
+ 1

2
mω2r2 + �

2

m

LK (LK + 1)

r2
− ER

]
ul

K (r)

+
∑

K ′
f 2K ′l VK K ′(r)ul

K ′(r) = 0, (8.21)

where ER is the energy of relative motion and

LK = 2K + l + 3N − 3

2

f 2Kl =
A∑

p<q=2

〈P lm
2K+l(�

(i j)
N )|P lm

2K+l(�
(pq)

N )〉

=
A∑

p<q=2

∫
P lm
2K+l

∗(�(i j)
N ) P lm

2K+l(�
(pq)

N ) d�
(i j)
N

and

VK K ′(r) =
∫

P lm
2K+l

∗(�(i j)
N ) V (ri j ) P lm

2K ′+l(�
(i j)
N ) d�

(i j)
N

= (hαβ
K hαβ

K ′ )
1
2

∫ 1

−1
Pαβ

K (z)V

(
r

√
1 + z

2

)
Pαβ

K ′ (z)Wl(z)dz, (8.22)

withα = 3N−5
2 andβ = l + 1

2 and theweight function of Jacobi polynomial Wl(z) =
(1 − z)α(1 + z)β . The overlap f 2Kl is given by Eq. (7.23). Note that the particle label
(i j) is arbitrary and for convenience can be chosen as (12).

A numerical solution of Eq. (8.21) encounters a serious problem in computing
VK K ′(r). From the third of Eq. (8.22), we see that the integrand involves the weight
function Wl(z) = (1 − z)α(1 + z)β , which for large A, is extremely strongly peaked,
within an extremely narrow interval near z = −1.As a result, any standard quadrature
gives nearly zero for the integral. This problem can be solved by evaluating the
integral in gradually increasing subintervals, starting from an extremely small first
subinterval (see Chap.10, Sect. 10.3).

Symmetry of the Wave Function

As we have a system of bosons, the wave function must be symmetric under any pair
exchange. Since Eq. (8.17) shows that the condensate relative wave function � is a
sum over all Faddeev components, it is symmetric under any pair exchange, provided
�i j is symmetric under i ←→ j . The latter is easily achieved by taking l even.
However, under Pik , where k �= i or j , recoupling of angular momenta complicates
the picture. The situation becomes much simpler, for states with zero total orbital

http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_10
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angular momentum (l = 0). In this case, angular momenta of all intermediate re-
couplings become zero and the l = 0 states (including the ground state) become
totally symmetric under any pair exchange. Indeed the use of PH subset assumes that
each spectator contributes zero angular momentum. Hence the state will be strictly
symmetric under any pair exchange, only if the interacting pair also contributes zero
angular momentum (i.e., l1 = l2 = · · · = lA = 0 and �l = �l1 + · · · + �lA = 0). States
with l > 0 need a special treatment. The present procedure will make states, with
even values of l > 0, only approximately symmetric under any pair exchange.

8.4 Need for a Short-Range Correlation Function

The procedure mentioned in the previous section faces two problems:

1. If a realistic interatomic interaction is used for V (ri j ) in Eq. (8.22), then the
solution of the CDE, Eq. (8.21), gives an unphysically strongly bound ground
state with large negative energy, even for small positive as . The correct energy
per particle should be slightly larger than the ground state energy of the pure
harmonic oscillator.

2. Also the convergence rate of expansion (8.20) turns out to be very slow.

The reason for the first problem is that a realistic interatomic interaction is attrac-
tive for ri j >∼ 5 a0 and is too large negative in BEC energy scale. From the last of
Eq. (8.22), we see that the integrand in the region z → −1 (i.e., ri j → 0) contributes
the largest (since for large A, Wl(z) is very strongly peaked near z = −1) to the
integral in VK K ′(r) for any r . Its contribution becomes large negative and a solution
of Eq. (8.21) corresponds to a molecular bound state. For as > 0, effective potential
has to be repulsive. How can we get an effective repulsion from a strongly attractive
V (ri j )? The answer lies in the extremely low energy scale of the BEC. We saw in
Sect. 8.1 that at such near-zero energy the effective interaction is governed by the
s-wave scattering length as and in the lowest approximation it becomes a contact
potential whose strength is proportional to as . But in Sect. 8.2, we discussed the
inadequacy of a pure contact interaction.

The relative wave function η(ri j ) of the pair of interacting bosons at near-zero
energy very closely satisfies the zero-energy two-body Schrödinger equation

[
−�

2

m

1

r2i j

d

dri j

(
r2i j

d

dri j

)
+ V (ri j )

]
η(ri j ) = 0. (8.23)

Now, in the ri j → 0 limit, η(ri j ) must vanish, since V (ri j ) has a strong short-range
repulsion. In the ri j → ∞ limit, where the potential vanishes, the two-body wave
function quickly (in BEC length scale) attains the form [4]

η(ri j ) = C

(
1 − as

ri j

)
. (8.24)
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Fig. 8.1 Plot of η(ri j )

against ri j (in units of aho) in
log scale for the 87Rb atoms
having as = 100 a0. Since
the rapid change in η(ri j )

from negative to positive
values takes place in a very
narrow region, its detailed
structure for small ri j has
been displayed in the
semilog plot. Value of the
asymptotic normalization is
taken as C = 1
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Figure8.1 is a plot of η(ri j ) for the 87Rb atoms interacting through the van der
Waals potential for as = 100 a0 (= 0.00433 aho).We see that η(ri j ) attains its asymp-
totic value very quickly. Rapid change of η(ri j ) occurs within about 0.01 aho. The
detailed structure of η(ri j ) for small ri j is displayed in the log scale for ri j . We see
that the particles have a very small probability to come close to each other. But expan-
sion (8.20) shows that for ri j → 0 (i.e., for φN → π

2 ), �i j (�ri j , r) remains finite for
K = 0 (for K = 0 the PH is a constant, see Eqs. (8.18), (8.19) and (4.15)). In order
that �i j may vanish in this limit, the sum in Eq. (8.20) must contain a large number
of K values. This explains the slow rate of convergence (problem (2) mentioned
above). Clearly, the small ri j behavior of �i j is given by η(ri j ). Thus we can take
η(ri j ) as a short-range correlation function and replace Eq. (8.20) by [29, 30]

�i j (�ri j , r) = r−(3N−1)/2
∑

K ′
P lm
2K ′+l(�

(i j)
N )η(ri j )u

l
K ′(r). (8.25)

The basis {P lm
2K+l(�

(i j)
N )η(ri j )} is called the correlated potential harmonic (CPH)

basis and its use is called the CPH expansion method (CPHEM). This basis is
non-orthogonal and can be handled by a standard procedure. But in general, it
will lead to a lot of numerical difficulties. Substitution of Eq. (8.25) in Eq. (8.16)
and projection on a particular PH, P lm

2K+l(�
(i j)
N ), introduces the overlap matrix

AK K ′(r) ≡ 〈P lm
2K+l(�

(i j)
N )|P lm

2K ′+l(�
(i j)
N ) η(ri j )〉. Then its first and second hyperra-

dial derivatives appear in the CDE and the numerical procedure to handle the
non-orthogonal, r -dependent basis becomes very slow. However, a great deal of sim-
plification is possible in an approximate treatment valid for a trapped dilute BEC. A
numerical solution of Eq. (8.23) shows that η(ri j ) is appreciably different from its
asymptotic value C (independent of r ) only in a tiny interval of small values of ri j

(Fig. 8.1). Thus, except for small values of r , the overlap AK K ′(r) is nearly indepen-
dent of r . Since η(ri j ) is practically independent of ri j , it is also seen that AK K ′(r)

is approximately proportional to δK K ′ . Now the trapped condensate in the hyperra-
dial space resides around the minimum of the effective potential, which occurs at
approximately rmin = √

3A aho. Thus, for large A and for values of r close to rmin,

http://dx.doi.org/10.1007/978-81-322-2361-0_4
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the overlap matrix can be approximated by AK K ′(r) ≈ C ′δK K ′ , with C ′ a constant
independent of r . With this assumption, the CDE simplifies greatly, as we see below.

Substituting Eq. (8.25) in Eq. (8.16), projecting on the PH P lm
2K+l(�

(i j)
N ) and using

Eqs. (7.20) and (7.22) we have (note that the indices (i j) is arbitrary and can be
replaced by (12))

[
−�

2

m

d2

dr2
+ 1

2
mω2r2 + �

2

m

LK (LK + 1)

r2
− ER

]
ul

K (r)

+
∑

K ′
f 2K ′l ṼK K ′(r)ul

K ′(r) = 0, (8.26)

where

ṼK K ′(r) =
∫

P lm
2K+l

∗(�(12)
N ) V (r12) P lm

2K+l(�
(12)
N ) η(r12) d�

(12)
N

= (hαβ
K hαβ

K ′ )
− 1

2

∫ 1

−1
Pαβ

K (z)V

(
r

√
1 + z

2

)
η

(
r

√
1 + z

2

)
Pαβ

K ′ (z)Wl(z)dz.

(8.27)

The quantity f 2Kl is given by Eq. (7.23). The asymptotic value of η(ri j ) is given
by Eq. (8.24), where C = 1/C ′. Value of C ′ is proportional to the initially chosen
arbitrary asymptotic value (say, 1) of η. Hence η whose asymptotic value is C is
independent of an arbitrary normalization. As a simple procedure, instead of evalu-
ating C by computing the overlap, one can treat it as an empirical parameter, whose
value is determined by fitting with some known property. Note that C is independent
of A.

Equation (8.26) can be put in amore convenient (symmetric) form, bymultiplying
through by the constant fKl

[
−�

2

m

d2

dr2
+ 1

2
mω2r2 + �

2

m

LK (LK + 1)

r2
− ER

]
UKl(r)

+
∑

K ′
V K K ′(r)UK ′l(r) = 0, (8.28)

where

UKl(r) = ul
K (r) fKl

V K K ′(r) = fKl ṼK K ′(r) fK ′l . (8.29)

Computation of the potential matrix element V K K ′(r) and solution of the CDE (8.28)
are straight forward. However numerical difficulties appear for large A, which can
be handled using Eqs. (9.37) and (9.38), see Ref. [31]. For bound states, Eq. (8.28)
is to be solved subject to appropriate boundary conditions, viz., UKl(r) vanishes as
r → 0 and r → ∞.

http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_9
http://dx.doi.org/10.1007/978-81-322-2361-0_9
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8.5 Results for Repulsive and Attractive Condensates

Initially, the PHEMwithout the short-range correlation function (SRCF) was applied
to typical BECs: repulsive [28, 32] as well as attractive [33]. However, the difficulty
was that it did not give correct results for A > 50. Then it was realized that the
SRCF is an essential ingredient in the PHEM. In the following, we describe a brief
history of such calculations to explain original experiments: 87Rb condensate [34]
in the trap used at Joint Institute for Laboratory Astrophysics (JILA), as a typical
repulsive condensate and 7Li [35] and 85Rb [36] condensates as examples of attractive
condensates.

For the 87Rb condensate the natural s-wave scattering length (as) is 100 a0. For
a simple application a spherical trap of frequency ω = 77.78Hz (which is the geo-
metric average value for an axially symmetric trap used in the original experiment
at JILA) is chosen. This value of ω corresponds to aho = 23095 a0. Thus we see
that the range of actual interatomic interaction (∼20 a0) is quite small compared to
|as |, which, in turn, is much less than aho. Thus the conditions for the successful
application of the PHEM are satisfied. For the interatomic potential, a commonly
chosen potential is the van der Waals potential with a hard core of radius rc

V (ri j ) = ∞ for ri j < rc

= −C6

r6i j

for ri j ≥ rc. (8.30)

The van der Waals potential is a realistic interatomic potential with known value of
C6 for a given type of atoms [4]. The exact mathematical dependence of the very
short-range repulsion is not known experimentally. It is modeled by the hard core
repulsion of Eq. (8.30). Value of rc is adjusted, so that the solution η(ri j ) of the two-
body equation (8.23) has an asymptotic form given by Eq. (8.24) with the appropriate
value of as [4]. For a selected value of rc, value of as is obtained from the asymptotic
region of η(ri j ) subject to the boundary condition η(rc) = 0. A plot of as against
rc for the van der Waals potential, Eq. (8.30). is presented in Fig. 8.2. One can see
that there are an infinite number of discontinuous branches. The right most branch
corresponds to zero nodes in η(ri j ). As rc is decreased from a large value, as starts
from a positive value, then decreases slowly, crosses zero and then rapidly decreases
toward−∞ at a particular rc = rc1. As rc is decreased infinitesimally from rc1, value
of as jumps discontinuously and starts decreasing again from +∞, as rc is further
decreased. Finally, at another particular value rc = rc2, value of as passes through
another infinite discontinuity. This second branch corresponds to one node in η(ri j ).
As rc is decreased further, this pattern is repeated, with the appearance of one extra
node in η(ri j ) for each new branch. Thewidths of successive branches reduce rapidly,
to accommodate an infinite number of branches at rc = 0. Appearance of an extra
node in η(ri j ) corresponds to the appearance of an extra virtual state of the two-body
system.
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Fig. 8.2 Plot of as against rc
(both in units of aho) for Rb
atoms
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For the numerical calculation with a negative as , the negative region of the first
branch is chosen. On the other hand, for a positive as , the positive region of the second
branch (with one node in η(ri j )) is chosen. We saw a plot of η(ri j ) for a positive
as (=100 a0 = 0.00433 aho) in Fig. 8.1, from which we see that it starts off with a
negative value from ri j = rc, has a node and then becomes positive, approaching its
asymptotic value in a short interval of ri j As an example of the negative as , a plot
of η(ri j ) for as = −1.836 × 10−4 aho is displayed in Fig. 8.3. It has no nodes and
is purely positive. Comparing Eq. (8.27) with Eq. (8.22), we see that the effective
two-body potential for the dilute BEC becomes

Veff(ri j ) = V (ri j )η(ri j ). (8.31)

Since V (ri j ) is negative for all ri j > rc, we see that Veff(ri j ) is also purely negative
for as < 0, since corresponding η(ri j ) is purely positive. However, Veff(ri j ) is less
attractive than V (ri j ). We discussed earlier that it should be so. On the other hand, for
as > 0, η(ri j ) is initially negative and then it becomes positive. Hence in this case,

Fig. 8.3 Plot of η(ri j )

against ri j (in units of aho)
in log scale for the 85Rb
atoms having as =
−1.836 × 10−4 aho. This has
no nodes, but increases
rapidly from zero at ri j = rc
to its asymptotic value in a
tiny interval. Note the log
scale for ri j . Value of
asymptotic normalization is
taken as C = 1
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Fig. 8.4 Effective hyperradial potential ω0(r) against r in units of aho for 104 atoms of 87Rb,
having as = 4.33 × 10−3 aho in a harmonic trap. The effective potential for a repulsive condensate
has an absolute minimum, where the stable condensate resides

Veff(ri j ) has a short-range repulsive part just outside the hard core and then a reduced
attractive part. The net effect of this is a repulsive effective two-body interaction. The
effective potential (in harmonic oscillator units, o.u.) in the hyperradial space, ω0(r)

(see Sect. 10.2.3 of Chap.10) for 104 atoms of 87Rbwith a positive as (=0.00433 aho)
in a harmonic trap is shown in Fig. 8.4. This has a minimum in a stable region. Thus
the repulsive condensate will be stable, as expected.

The effective potential (in o.u.) for an attractive condensate of 85Rb atoms having
as = −1.836 × 10−4 aho in a harmonic trap is shown in Fig. 8.5. The stable well
of the positive as is replaced for an attractive condensate by a shallow well and a
deep attractive well (called the collapse region) at a smaller r , which are separated
by an intermediate barrier. Hence the condensate residing in the shallow well has a
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Fig. 8.5 Plot of effective hyperradial potential ω0(r) against r/aho for 2400 atoms of 85Rb, having
as = −1.836 × 10−4 aho in a harmonic trap
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probability of transmission through the intermediate barrier into the deepwell, where
cluster states are formed. Thus the condensate has a finite life time and eventually
forms clusters. Consequently, the shallowwell is referred to as themetastable region.
This agrees with the experimental observation [36]. With increase in A, the stable
well of Fig. 8.4 has steeper walls and the position of the minimum shifts to the right.
The changes are similar,whenas is increased keeping A the same. Thus,with increase
of either A or as , the condensate remains stable. On the other hand, for the attractive
condensate, either increasing |as | (i.e., making as more negative), or increasing A,
the metastable well becomes shallower and the intermediate barrier becomes lower.
Hence the probability of transmission into the collapse region increases. At a partic-
ular value of A (=Acr) for a fixed as , the minimum of metastable region merges with
the maximum of the intermediate barrier (resulting in a point of inflection in ω0(r)).
For A > Acr, there is no metastable region and the attractive condensate ceases to
exist. This is called the collapse of the attractive condensate and Acr is called the
critical number. Critical numbers calculated by CPHEM technique [30] agree nicely
with experimental values [36].

Various aspects of the BEC have been investigated and reported in a large number
of publications since the 1980s. Most of the theoretical works are based on the GP
equation. We will not discuss them, but mention only a few in connection with the
calculations using CPHEM. The CHPEM technique has been used in BEC theory
since the beginning of the last decade by a number of groups around the world.
Many calculations using CPHEM have been reported by Das, Chakrabarti, Canuto,
Sofianos, Salasnich and their collaborators, which will be mentioned below. Besides
these, the essentially exact diffusion Monte Carlo (DMC) method by Blume and
collaborators has used hyperspherical description for BEC [37]. Adiabatic hyper-
spherical approach has also been used in the study of trapped bosons by Sorensen
et al. [38].

The lowest lying state in the stable ormetastablewell (for the repulsive or attractive
condensate respectively) is the ground state of the condensate. Excitations in these
wells produce excited states of the condensate. Properties of such states and the
condensate as a whole have been calculated [39–41], which compare favorably with
experimental observations. Since the GP equation is based on amean field theory and
ignores correlations, the effects beyond mean field using CPHEM were investigated
and found to be appreciable [31, 42]. Also the shape independence of the two-body
potential, which is inherent in the GP theory, was tested by the CPHEM technique
and found to be valid for dilute BEC containing a small number of bosons [43], but it
is violated for large A or strongly interacting condensates [44]. Strongly interacting
condensates are generated by large s-wave scattering length (as). Such condensates
have been achieved in the laboratory by Feshbach resonance. This has generated a lot
of interest in strongly interacting Bose gas with a large as . The behavior of a trapped
dilute Bose gas with a large scattering length has been investigated in Ref. [44]. GP
equation is commonly used to investigate ultracold Bose gases [3, 45]. Ground state
properties of ultracold Bose gases at large scattering length were calculated using
the GP equation [46]. Ground state properties at zero temperature of an attractive
BEC was obtained by the correlated potential harmonic method [47].
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Thermodynamic quantities can be calculated using a large number of excited
levels, which are populated at a given temperature according to Bose distribution
law [48]. Condensate fraction ( A0(T )

A ) is defined as the fraction of atoms in the ground
state at a temperature T . At the critical temperature (Tc), the condensate fraction
suddenly becomes microscopically small. Critical temperature, condensate fraction,
heat capacity, etc. calculated by the CPHEM technique agree with experimental
results and other calculations [48–50]. Effect of interaction on the thermodynamics
of a repulsive BEC was studied in Ref. [51]. Corresponding calculations based on
the GP equation can be found in Ref. [52].

Besides the general properties of BEC, the CPHEM was used to investigate the
stability of the attractive bosonic cloud [53] and its destruction under tightening of
the trap [54]. This method has also been adopted in studies of anharmonic traps [55],
resonance and quantum tunneling [56], information entropy [57], etc. These calcu-
lations demonstrate that the CPHEM technique is well suited for the Bose–Einstein
condensates.
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Chapter 9
Integro-Differential Equation

Abstract Solving for the complete many-body wave function (instead of partial
waves in a PH expansion), one gets an integro-differential equation (IDE). The IDE
is derived from PH expansion method. Hence, IDE and PHEM are equivalent. Still
IDE has certain advantages: its structure and complexity do not increase with the
number of particles. Also, since there is no sum over K , there is no problem of
convergence. However, calculation of the kernel function is tricky. Application of
IDE to nuclear systems and BEC is discussed.

The potential harmonics (PH) basis is suitable for systems in which correlations
higher than two-body correlations can be ignored. We saw in Chap.7 that the expan-
sion of the wave function in the PH basis and projection on a particular PH give rise
to a system of coupled differential equations (CDE). The method, being variational
in nature with respect to inclusion of higher harmonics, obeys the Ritz principle.
In Chap.8, we saw that the PH expansion, together with a short-range correlation
function, converges very fast for the Bose–Einstein condensate. However, the rate
of convergence depends on the nature of the system and may not be desirably fast
enough. In fact the PH expansion cannot describe asymptotic part of the many-body
wave function exactly, since the expansion must be truncated for a numerical calcu-
lation, while higher K-partial waves are strongly pushed out in hyperradial space due
to the hyper-centrifugal repulsion which increases rapidly with K . Convergence of
energy can take place at a smaller upper limit in K , for which the asymptotic part of
wave functionmay not still be converged. Thus the usefulness of the method depends
on the nature of the system specifying how fast the PH expansion converges, which
in turn depends on the interparticle interactions. For example, if the sum of pair-wise
interactions deviates from a hypercentral form by a small amount, the PH expansion
will converge quickly. The success of the potential harmonics expansion method
(PHEM) for trapped dilute BEC is due to the fact that the effective interparticle
interaction is quite weak compared with the hypercentral trapping potential.

One can argue that it will be more desirable if one solves an equation for the
unknown many-body wave function, which is complete, i.e., its expansion in PH
basis includes all PH partial waves. This will then lead to an integro-differential equa-
tion like the Faddeev or Faddeev–Yakubovsky equations. Indeed, one can develop
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an integro-differential equation (IDE) starting from the PH expansion, as done origi-
nally by Fabre [1]. Later this equation has been rederived and used by several authors
[2–8]. In this chapter, we discuss such a technique. Although the IDE is equivalent to
the PHEM when all partial waves are included, it does not satisfy the Ritz principle.
Hence, there is no control over the precision, which is essentially due to numeri-
cal errors. The IDE is exact with respect to inclusion of all partial waves (within
the assumption of two-body correlations only). Moreover, its structure remains the
same and its complexity does not increase with the number of particles. The merit
of the technique depends on an accurate computation of the kernel function. It also
depends on how fast and accurately the integro-differential equation can be solved
numerically. It is formally equivalent to the Faddeev (for three-body systems) or
Faddeev–Yakubovsky (for systems with more than three particles) equations involv-
ing two-body correlations only [1]. In the following section, we discuss how the
integro-differential equations can be derived from the PHEM.

9.1 Derivation of IDE

Since the IDE is derived from the PHEM, it also includes two-body correlations,
while effects of higher-body correlations are disregarded. Thus the IDE is applicable
to systems where the PHEM is also applicable, viz. in very dilute systems in which
three-body and higher-body collisions can be disregarded. The potential harmonics
basis was introduced in Chap.7 and its application to Bose–Einstein condensates was
discussed in Chap. 8. We will follow the treatment by Fabre [1] for the derivation of
the IDE, using the notations of Chaps. 7 and 8.

For a dilute system interacting through two-body forces only, the A-body wave
function can be decomposed into Faddeev components

ψ(�r1, . . . , �rA) =
A∑

i,j>i

φij(�r1, . . . , �rA), (9.1)

where the Faddeev component φij(�r1, . . . , �rA) corresponds to the ij-pair interacting,
all other particles being inert spectators. If, in addition, the system is sufficiently
dilute, so that only two-body correlations are important, then the ij-Faddeev compo-
nent is a function only of the interacting-pair separation �rij = �rj − �ri and the global
length (hyperradius) ξ, besides the CM coordinate �R

φij(�r1, . . . , �rA) = φij(�R, �rij, ξ). (9.2)

Since the A-body wave function is a sum of Faddeev components of all pairs, it
includes all pair-wise correlations. In terms of the Faddeev components, the A-body
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Schrödinger equation can be written as

(T − ET )φij(�R, �rij, ξ) = −V(�rij)

A∑
p,q>p

φpq(�R, �rpq, ξ), (9.3)

where T is the total kinetic energy operator and ET is the total energy of the system.
Equation (9.3) is equivalent to the A-body Schrödinger equation, as can be seen by
summing both sides over all (ij) pairs and using Eq. (9.1). Corresponding equation
for the relative motion is [see Eq. (8.16)]

(T ′ − E)�ij(�rij, ξ) = −V(�rij)� (9.4)

where �ij and � are the corresponding relative wave functions (after factoring out
the wave function for the CMmotion, which is a function of �R only), E is the relative
energy, and the relative kinetic energy operator is, using Eqs. (4.8) and (4.9)

T ′ = −�
2

m

N∑
i=1

∇2
�ξi

(N = A − 1)

= −�
2

m

[
∂2

∂ξ2
+ 3A − 4

ξ

∂

∂ξ
− L2

3N (�3N )

ξ2

]
. (9.5)

We assume that the total orbital angular momentum �l of the system is a good
quantum number. For the (ij) Faddeev component, we can choose �ξN = �rij. Then�ij

is a function of �ξN and ξ only and is independent of { �ξ1, . . . , �ξN−1}. Then all quantum
numbers associated with these variables are zero [see Eq. (7.4)] for �ij. Thus �l = �lN
and V(�rij) = V(rij). Hence, we can expand �ij in the PH subset {P lm

2K+l(�
(ij)
3N )}

�ij(�rij, ξ) = ξ−(3N−1)/2Fij(�rij, ξ) = ξ−(3N−1)/2
∑

K

P lm
2K+l(�

(ij)
3N )ul

K(ξ). (9.6)

The factor ξ−(3N−1)/2 is introduced to remove the first derivative with respect to ξ in
Eq. (9.4). We introduce a hyperangle φ through rij = ξ cosφ. Then the variables for
the (ij)-partition become

(ξ,�3N ) = (ξ,φ,ωij,�3(N−1)), (9.7)

where ωij represents the spherical polar angles of �rij. Finally, introducing a vari-

able z = cos 2φ (such that rij = ξ
√

1+z
2 ), a recurrence relation for the grand orbital
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operator is given by [using Eq. (4.9)]

L2
3N (�3N ) = 4(1 − z2)

∂2

∂z2
+ 6[2 − N(1 + z)] ∂

∂z

+ 2
l̂2(ωij)

1 + z
+ 2

L2
3(N−1)(�3(N−1))

1 − z
. (9.8)

In Chap.7, we saw that the PH is an eigen function of L2
3N (�3N ), corresponding

to zero eigenvalue of L2
3(N−1)(�3(N−1))

L2
3(N−1)(�3(N−1))P lm

2K+l(�
(ij)
3N ) = 0, (9.9)

such that P lm
2K+l(�

(ij)
3N ) is an eigenfunction of l̂2(ωij) corresponding to eigenvalue

l(l + 1). Using Eqs. (7.5), (7.6), (4.15), and (4.16), the expression for this PH is

P lm
2K+l(�

(ij)
3N ) = Nl

K Yl,m(ωij) (cosφ)l Pα,β
K (z), (9.10)

where α = (3A − 8)/2 and β = l + 1
2 and Pα,β

K (z) is the Jacobi polynomial. The
constant Nl

K can be determined from the normalization condition

∫
P lm
2K+l

∗
(�

(ij)
3N )P l′m′

2K ′+l′(�
(ij)
3N )d�

(ij)
3N = δKK ′δll′δmm′ . (9.11)

Substituting Eq. (9.6) in Eq. (9.4) and using Eqs. (9.5), (9.8), and (9.9), we get

(
�
2

m
∇2

l + E

)
Fij(�rij, ξ) = V

(
ξ

√
1 + z

2

) ∑
p,q>p

Fpq(�rpq, ξ), (9.12)

where

∇2
l = ∂2

∂ξ2
− L(L + 1)

ξ2
+ 4

ξ2
1

Wl(z)

∂

∂z
(1 − z2)Wl(z)

∂

∂z
, (9.13)

with L = l + (3A − 6)/2 = α + l + 1 andWl(z) being the weight function of Jacobi
polynomial given by

Wl(z) = (1 − z)α(1 + z)β . (9.14)

From Eqs. (9.6) and (9.10), we can write

Fij(�rij, ξ) =
∑

K

P lm
2K+l(�

(ij)
3N )ul

K(ξ) = Yl,m(ωij)Pl(zij, ξ), (9.15)

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
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where zij now refers to the z-value for the ij-partition (the partition in which the
ij-pair interacts) and Pl(z, ξ) is given by

Pl(z, ξ) =
∑

K

Nl
K

(
1 + z

2

)l/2

Pα,β
K (z) ul

K(ξ). (9.16)

Similarly, we have for the pq-partition

Fpq(�rpq, ξ) =
∑

K

P lm
2K+l(�

(pq)

3N )ul
K(ξ) = Yl,m(ωpq)Pl(zpq, ξ), (9.17)

If we project Eq. (9.12) on a particular P lm
2K+l(�

(ij)
3N ), then matrix elements of

the form
〈P lm

2K+l(�
(ij)
3N )|V(�rij)|

∑
p,q>p

Fpq(�rpq, ξ)〉

will appear. Now P lm
2K+l(�

(ij)
3N )V(�rij) is a function of �rij and ξ only. Hence, it can be

fully expanded in the basis {P lm
2K+l(�

(ij)
3N )}. However, ∑

p,q>p Fpq(�rpq, ξ) is a func-

tion of all pair separations �rpq, including �rij. Hence, it cannot be fully expanded
in the basis {P lm

2K+l(�
(ij)
3N )}. However, for the above matrix element, the projection

of
∑

p,q>p Fpq(�rpq, ξ) on the �rij space will only contribute, the residual part being

orthogonal to P lm
2K+l(�

(ij)
3N ). This is similar to the fact that the dot product of a vector

�A, which lies entirely in the (xy) plane with a three-dimensional vector �B can be

replaced by the dot product of �A with the projection of �B on the (xy) plane.
Hence, in Eq. (9.12), we replace

∑
p,q>p Fpq(�rpq, ξ) by its projection on the �rij-

space

(
�
2

m
∇2

l + E

)
Fij(�rij, ξ) = V

(
ξ

√
1 + z

2

)
P̂�rij

∑
p,q>p

Fpq(�rpq, ξ), (9.18)

where P̂�rij is the operator for projection on to the �rij-space. The projection of

Fpq(�rpq, ξ) on the �rij space, viz. P̂�rij Fpq(�rpq, ξ), is done first by expanding Fpq(�rpq, ξ)

in the corresponding PH basis {P l,m
2K+l(�

pq
3N )} as in Eq. (9.17) and then applying P̂�rij

which can be written as
P̂�rij = P̂

�
(ij)
3N

P̂zij , (9.19)
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where P̂
�

(ij)
3N

projects a PH for the pq-partition on to a PH for the ij-partition, viz.

P̂
�

(ij)
3N

=
∣∣∣P lm

2K+l(�
(ij)
3N )

〉〈
P lm
2K+l(�

(ij)
3N )

∣∣∣. (9.20)

The bra vector on the right acts on a PH for the pq-partition, giving an inner product,
which is the projection amplitude of the PH for the ij-partition, the latter being rep-
resented by the ket vector. Note that the hyperangular momentum quantum number
K is conserved for different partitions. The operator P̂zij projects a function of zpq on
to the zij-space. In the expression for a PH, Eq. (9.10), z appears as the argument of
a Jacobi polynomial, which satisfies the orthonormality relation

∫ 1

−1
[Pα,β

K (z)]∗ Pα,β
K ′ (z) Wl(z)dz = hα,β

K δKK ′ , (9.21)

where hα,β
K is the norm of Jacobi polynomials, given by Eq. (3.20). The closure

relation satisfied by the Jacobi polynomials is

∑
K

1

hα,β
K

Pα,β
K (z) [Pα,β

K (z′)]∗ Wl(z
′) = δ(z − z′). (9.22)

Hence, the projection operator P̂z, which acting on a function of z′ projects it on to
the z-space, is given by

P̂z =
∑

K

Pα,β
K (z)

1

hα,β
K

∫ 1

−1
dz′[Pα,β

K (z′)]∗Wl(z
′). (9.23)

With z and z′ replaced by zij and zpq, respectively, we have

P̂zij =
∑

K

Pα,β
K (zij)

1

hα,β
K

∫ 1

−1
dzpq[Pα,β

K (zpq)]∗Wl(zpq). (9.24)

This operator acting on a function of zpq mathematically gives a function of zij, with
no change in the reference partition (which is pq-partition) for the PH, while P̂

�
(ij)
3N

projects it further on to a different reference partition (ij-partition in this case) for
the PH. The scalar variable zpq in Eq. (9.24) is just a variable of integration of a
definite integral, and hence does not refer to any particular partition. As the Jacobi
polynomials are real, the complex conjugation may be dropped.

http://dx.doi.org/10.1007/978-81-322-2361-0_3
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To evaluate P̂�rij

∑
p,q>p Fpq(�rpq, ξ) of Eq. (9.18), we first apply P̂zij on

∑
p,q>p Fpq

(�rpq, ξ), using Eqs. (9.17) and (9.24)

P̂zij

∑
p,q>p

Fpq(�rpq, ξ)

=
∑

p,q>p

Ylm(ωpq) P̂zij Pl(zpq, ξ)

=
∑

p,q>p

Ylm(ωpq)
∑

K

Pα,β
K (zij)

1

hα,β
K

∫ 1

−1
dzpq[Pα,β

K (zpq)]∗Wl(zpq)Pl(zpq, ξ). (9.25)

Next we apply the operator P̂
�

(ij)
3N

from Eq. (9.20) on Eq. (9.25). The result of this

projection is given in terms of P lm
2K+l(�

(ij)
3N ), which contains Ylm(ωij). As mentioned

earlier, zpq in Eq. (9.25) is a variable of integration of a definite integral and is not
affected by the P̂

�
(ij)
3N
projection (we will later replace this variable simply by z′). Thus

we get

P̂
�

(ij)
3N

P̂zij

∑
p,q>p

Fpq(�rpq, ξ)

=
∑

K

∑
p,q>p

〈
P lm
2K+l(�

(ij)
3N )

∣∣∣P lm
2K+l(�

(pq)

3N )
〉

× Ylm(ωij)P
α,β
K (zij)

1

hα,β
K

∫ 1

−1
dzpq[Pα,β

K (zpq)]∗Wl(zpq)Pl(zpq, ξ)

= Ylm(ωij)
∑

K

f 2KlP
α,β
K (zij)

1

hα,β
K

∫ 1

−1
dzpq[Pα,β

K (zpq)]∗Wl(zpq)Pl(zpq, ξ) (9.26)

In the above, we have used Eq. (7.22): f 2Kl=
∑

p,q>p

〈
P lm
2K+l(�

(ij)
3N )

∣∣∣P lm
2K+l(�

(pq)

3N )
〉
,

which is a constant given by Eq. (7.23). Replacing the variable of integration zpq

by z′ in Eq. (9.26), using Eq. (9.19) and noting that Jacobi polynomials are real, we
have

P̂�rij

∑
p,q>p

Fpq(�rpq, ξ)

= Ylm(ωij)
∑

K

f 2KlP
α,β
K (zij)

1

hα,β
K

∫ 1

−1
dz′Pα,β

K (z′)Wl(z
′)Pl(z

′, ξ). (9.27)

In order to separate the term Fij(�rij, ξ) from the sum over all partitions, we add and
subtract 1 from f 2Kl on the right side of Eq. (9.27) and use the closure relation (9.22)
of Jacobi polynomials to get

http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_7
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P̂�rij

∑
p,q>p

Fpq(�rpq, ξ) = Ylm(ωij)

[
Pl(zij, ξ)

+
∑

K

(f 2Kl − 1)Pα,β
K (zij)

1

hα,β
K

∫ 1

−1
dz′Pα,β

K (z′)Wl(z
′)Pl(z

′, ξ)

]
.

= Ylm(ωij)

[
Pl(zij, ξ) +

∫ 1

−1
dz′fl(zij, z′)Pl(z

′, ξ)
]

, (9.28)

where we define

fl(z, z′) =
∑

K

(f 2Kl − 1)Pα,β
K (z)

1

hα,β
K

Pα,β
K (z′)Wl(z

′). (9.29)

Using Eq. (9.15) in Eq. (9.18), substituting Eq. (9.28), eliminating Ylm(ωij), and
replacing zij by z, we have

(
�
2

m
∇2

l + E

)
Pl(z, ξ) = V

(
ξ

√
1 + z

2

)
�l(z, ξ)

= V

(
ξ

√
1 + z

2

) [
Pl(z, ξ) +

∫ 1

z′=−1
fl(z, z′)Pl(z

′, ξ)dz′
]

,

(9.30)

where∇2
l is given by Eq. (9.13) and the kernel function fl(z, z′) is given by Eq. (9.29).

A different but equivalent treatment has been adopted in Ref. [3], which results in a
closed analytic expression for the kernel function for l = 0.

Since the IDE is derived from the PHEM, they are equivalent, provided all K-
partial waves are included in the latter. The advantage of using the IDE is that it does
not involve K-partial waves, as the kernel function can be obtained directly; hence,
one does not have to repeatedly solve a system of gradually increasing number of
CDE and look for convergence. The infinite sum over K for the kernel function in
Eq. (9.29) appears due to the fact that we derived the IDE from the PHEM. If we
try to evaluate the kernel function using a truncated sum over K , we will again have
to solve the IDE repeatedly with an increasing upper limit in K value in Eq. (9.29).
Indeed, this is worthwhile in few-nucleon nuclei [1]. However, in some cases, the
kernel function may be obtained directly in closed form, without any reference to
K-partial waves [3]. In specific cases, it may be possible to evaluate the infinite sum
over K in Eq. (9.29) resulting in a closed form [10]. With a known fl(z, z′), one has
to solve the IDE only once. Thus in contrast with the PHEM, the IDE can be solved
only once, without the need to solve successively bigger sets of equations to check
for convergence. Usefulness of the IDE depends on evaluation of an accurate kernel
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function in a closed form. One great advantage of the IDE approach is that, unlike the
HHEM or Faddeev–Yakubovsky equation methods, its complexity does not increase
with A.

9.2 Applications of IDE

The IDE, like the HHEM and PHEM, was originally applied to nuclear systems,
with relatively small number of nucleons interacting through s-projected potentials
by Fabre and his collaborators. Later, Adam and Sofianos used a mathematical trick
in the large A limit to evaluate the K sum in the kernel function in a closed form and
then applied the technique to Bose–Einstein condensates (BEC) with a fairly large
number of bosons. In the following we will discuss these.

9.2.1 Nuclear Systems

The simplest nuclear application is the one for the trinucleon systems, A = 3, corre-
sponding toα = 1

2 . In Chap.5, we saw that the totally antisymmetric ground state has
a large contribution from the space totally symmetric S-state (l = 0, hence β = 1

2 )
of the system, whose isospin–spin part is totally antisymmetric. The kernel function
for this state can be obtained in a closed form [3]. The IDE for this state has the
form [1, 3]

(
�
2

m
∇2

0 + E

)
P0(z, ξ) = V

(
ξ

√
1 + z

2

)
�0(z, ξ)

= V

(
ξ

√
1 + z

2

)[
P0(z, ξ) + 2√

3(1 − z2)

∫ z+

z−
P0(z

′, ξ)dz′
]
,

(9.31)

where z± = 1
2 (−z ± √

3(1 − z2)). The Faddeev component is given by

�ij(�ξ1, . . . , �ξN ) = ξ− 5
2

∑
K

P00
2K(�

(ij)
6 )u0

K(ξ) = ξ− 5
2 P0(z, ξ), (9.32)

with z = 2
r2ij
ξ2

− 1. It can be shown [1] that Eq. (9.31) has the same form as the
three nucleon Faddeev equation for the S state. To test the validity of the IDE,
Fabre, Fiedeldey, and Sofianos [3] solved the IDE for three- and four-nucleon nuclei
using adiabatic approximation (see Chap.10, Sect. 10.2.3 for a description of adi-
abatic approximation) for the S-state with a number of standard central nucleon–

http://dx.doi.org/10.1007/978-81-322-2361-0_5
http://dx.doi.org/10.1007/978-81-322-2361-0_10
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nucleon potentials and compared the results with other accurate calculations, includ-
ing Faddeev–Yakubovsky equation method. Binding energy of 3H calculated by the
IDE approach (interpolated between extreme and uncoupled adiabatic approxima-
tions) agrees within 0.1% with most other accurate calculations. In Table9.1, we
present selected results for comparison of 3H binding energy by different meth-
ods (ETBM stands for the variational method with correlation functions). Table9.2
presents binding energies of 4He nucleus (without Coulomb interaction) calculated
by interpolated IDE for selected potentials and comparison with other calculations
(ETBM and GFMC stand for variational calculation with correlation function and
Green’s function Monte Carlo calculations, respectively). We can see from these
tables that although the IDE results are quite reliable for the trinucleon, they are less
reliable for the four-nucleon system (differing by up to 0.7MeV). It is not surpris-
ing that the IDE compares worse with other accurate methods for the four-nucleon
system, since higher than two-body correlations contribute non-negligibly for dense
four-body systems.

For the trinucleon system interacting through central (including spin-orbit term)
and tensor interactions, three symmetry components, viz., S, S′, and D states,

Table 9.1 Comparison of trinucleon binding energy (in MeV) by different methods using different
potentials [3]

Potential Interpolated IDE HH ETBM Faddeev

Volkov 8.47 8.465 8.460

EH (S4) 7.08 7.05 7.04

AT (S3) 6.69 6.695 6.677 6.696

MTV Erens 7.78 7.783 7.778

MTV Friar 7.73 7.736

MTV Zabol 8.25 8.253

Table 9.2 Comparison of 4He binding energy (in MeV, without Coulomb interaction) by different
methods using different potentials [3]

Potential Interpolated IDE HH Other results Method

Volkov 30.40 30.40 30.32 ETBM

GPDT 18.32 18.29

EH (S4) 28.71 27.9 28.18 ETBM

AT (S3) 26.92 26.0 26.47 ETBM

MTV Erens 29.42

MTV Friar 29.34

MTV Zabol 30.63 31.36 Faddeev

31.3±0.2 GFMC
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contribute (see Chap.5). In this case, there will be three coupled integro-differential
equations satisfied by the three components PS , PS′

, and PD of �ij [1]

(
�
2

m
∇2

0 + E

)
PS
0(z, ξ) = 1

2
(V 1+ + V 3+)�S

0(z, ξ) + 1

2
(V 1+ − V 3+)�S′

0 (z, ξ)

− 2V+
T (1 + z)�D

2 (z, ξ)(
�
2

m
∇2

0 + E

)
PS′
0 (z, ξ) = 1

2
(V 1+ + V 3+)�S′

0 (z, ξ) + 1

2
(V 1+ − V 3+)�S

0(z, ξ)

+ 2V+
T (1 + z)�D

2 (z, ξ)(
�
2

m
∇2

2 + E

)
PD
2 (z, ξ) = (V 3+ − 2V+

T )�D
2 (z, ξ)

+ 2

1 + z
V+

T

(
�S′

0 (z, ξ) − �S
0(z, ξ)

)
, (9.33)

where V 1+, V 3+, and V+
T are singlet even, triplet even, and tensor even potentials,

respectively, and the argument of each potential is ξ
√

(1 + z)/2. Corresponding �-
functions are given by

�S
0(z, ξ) = PS

0(z, ξ) + 2√
3(1 − z2)

∫ z+

z−
PS
0(z

′, ξ)dz′

�S′
0 (z, ξ) = PS′

0 (z, ξ) − 1√
3(1 − z2)

∫ z+

z−
PS′
0 (z′, ξ)dz′

�D
2 (z, ξ) = PD

2 (z, ξ) −
∫ +1

−1
fD(z, z′)PD

2 (z′, ξ)dz′, (9.34)

where fD(z, z′) is given by Eq. (9.29) and z± = 1
2 (−z ± √

3(1 − z2)). The IDE for
three- and four-nucleon systems including S and S′ states for central forces have been
solved in the adiabatic approximation byOehm et al. [5]. The same systems including
S, S′, and D states were also treated by IDE for realistic nucleon–nucleon potentials
like Reid soft-core (RSC) potential and compared with Faddeev–Yakubovsky calcu-
lations [6, 7]. Good agreementwas obtained, establishing the dominance of two-body
correlations over higher-body correlations in these systems, even for realistic forces.
In actual calculations, the hypercentral average has been added to and subtracted
from the central two-body potentials appearing in the IDE [Eqs. (9.31) and (9.33)],
to accelerate the rate of convergence.We skip the details here, for separate discussion
in Sect. 10.2 of Chap.10.

The IDE has also been applied by Fabre, Sofianos, and Adam to larger nuclear
systems: closed shell nuclei 4He, 16O and 40Ca as also open-shell nucleus 10B [8]. In
these calculations, Coulomb repulsion has been included. More recently, Sofianos,
Adam, and Belyaev used the IDE for anα particle description ofAα nuclei [9]. These
successful applications demonstrate the usefulness of the IDE for nuclear systems
containing up to 40 nucleons. As we have already discussed, the advantage of the

http://dx.doi.org/10.1007/978-81-322-2361-0_5
http://dx.doi.org/10.1007/978-81-322-2361-0_10
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IDE is that its complexity does not increase with the number of nucleons, unlike
other few-body methods. However, nuclear systems are dense and the assumption
that only two-body correlations dominate will not be valid for larger systems. By
contrast, the Bose–Einstein condensate is very dilute and such an assumption is valid
for much larger number of bosons, as we discuss in the next subsection.

9.2.2 Bose–Einstein Condensates

Bose–Einstein condensates (BEC) are achieved in the laboratory by trapping a large
number of bosons (usually neutral odd-mass alkali atoms) by a harmonic oscillator
potential and cooling down to a few hundred nano-Kelvin. The BEC is deliberately
kept extremely dilute to eliminate three- and higher-body collisions, which lead to
molecule formation and consequent depletion (see Chap.8). The diluteness assures
that only two-body forces are active and thewave function contains nomore than two-
body correlations. The conditions are ideal for decomposing the many-body wave
function in Faddeev components and expanding each Faddeev component in the
potential harmonics basis. Hence, it is no wonder that the PHEM finds a successful
application in the BEC (Chap.8). For the same reason, the IDE is expected to be
equally good for theBEC. In Sect. 9.1,we saw that the kernel function of IDE involves
the Jacobi polynomial Pα,β

K (z) and its weight function Wl(z) = (1 − z)α(1 + z)β

with α = (3A − 8)/2, which increases rapidly with A. For large A ∼ 100, the weight
function becomes extremely sharply peaked at z = β−α

α+β
(which is slightly greater than

−1), has a maximum ∼2α, and then decreases very rapidly within a tiny interval,
as z increases. The sharpness of the peak and its peak-value increase very fast with
increase in A. This causes a serious numerical problem. Adam and Sofianos [10]
used a mathematical limit as A → ∞ to convert Jacobi polynomial and its weight
function to associated Laguerre polynomial and its weight function. The latter are
very smooth functions and the kernel of the resulting IDE has a simple analytic
expression. This has been used for A up to 100 and the results agree well with other
accurate calculations. In the following, we follow Ref. [10] to obtain the modified
IDE and its kernel function. However, in order to keep the treatment in the same line
as in Sect. 9.1, we leave out a hypercentral average term, which was added to and
subtracted from the central two-body potential to make the convergence faster. The
latter will be discussed separately in Chap.10, Sect. 10.2.

The IDE and its kernel function for the general case are given by Eqs. (9.30) and
(9.29), respectively. For the ground state of the BEC, l = 0 (β = 1

2 ) and there is a

http://dx.doi.org/10.1007/978-81-322-2361-0_8
http://dx.doi.org/10.1007/978-81-322-2361-0_8
http://dx.doi.org/10.1007/978-81-322-2361-0_10
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confining potential Vtrap = ∑A
i=1

1
2mω2r2i = 1

4mω2ξ2. Hence,

(
�
2

m
∇2

0 − Vtrap(ξ) + E

)
P0(z, ξ) = V

(
ξ

√
1 + z

2

)

×
[

P0(z, ξ) +
∫ 1

−1
f0(z, z′)P0(z

′, ξ)dz′
]

.

(9.35)

As discussed above, Pα,β
K (z) and Wl(z) appearing in Eq. (9.29) become very dif-

ficult to handle numerically for large A. We introduce a new variable ζ in place of z
through

rij = ζξ√
α

, (9.36)

such that z = 2ζ2/α − 1. Then use the mathematical limit [11]

lim
α→∞ P

α, 12
K

(
2

r2ij
ξ2

− 1

)
= (−1)K L

1
2
K

(
αr2ij
ξ2

)
,

= (−1)K L
1
2
K(ζ2) (9.37)

where L
1
2
K(ζ2) is the associated Laguerre function. In the same limit, the weight

function of the Jacobi polynomial becomes (for l = 0)

lim
α→∞ Wl(z) = CW

2α+ 1
2

α
1
2

ζe−ζ2 , (9.38)

where CW is the normalization for the weight function. Note that in this limit, the

weight function has the form appropriate for L
1
2
K(ζ2). Substituting

P0(ζ, ξ) = eζ2/2

ζ
Q(ζ, ξ) (9.39)

in Eq. (9.35), we have

[
Hξ + 4

ξ2
Hζ − E

]
Q(ζ, ξ) = −V

(
ζξ√
α

) [
Q(ζ, ξ) +

∫ √
α

0
F0(ζ, ζ ′)Q(ζ ′, ξ)dζ ′

]
,

(9.40)
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where

Hξ = �
2

m

[
− ∂2

∂ξ2
+ L(L + 1)

ξ2

]
+ Vtrap(ξ) (9.41)

and

Hζ = �
2

m

α

4

[
− ∂2

∂ζ2
+ ζ2 − 3

]
. (9.42)

In the limit α → ∞, the kernel function can be put in a closed form [10]

F0(ζ, ζ ′) = 2(A − 2)√
3

[(
A − 3 − 2

3

(
ζ2 − 3

2

) (
ζ ′2 − 3

2

))
ζζ ′e−(ζ2+ζ ′2)/2

+ 4√
3

[
e−[5(ζ−ζ ′)+2ζζ ′]/6 − e−[5(ζ+ζ ′)−2ζζ ′]/6

]]
. (9.43)

Adam and Sofianos [10] solved Eqs. (9.40)–(9.43) forA atoms of 87Rb confined in the
harmonic oscillator potential having circular frequency ω = 2πν with ν = 200Hz,

simulating the JILA trap. Energy and length were expressed in units of �ω and
√

�

mω

and referred to as oscillator units (o.u.) of energy and length, respectively. Two-body
interaction was represented by two simple semi-realistic potentials:

1. Potential V1: Gaussian potential

V(rij) = V0exp
(
− r2ij

r20

)

with V0 = 3.1985 × 106 o.u. and r0 = 0.005 o.u.
2. Potential V2: Sech-squared potential:

V(rij) = V0 sech2
(

rij

r0

)

with V0 = 1.81847 × 107 o.u. and r0 = 0.001 o.u.

Table 9.3 Comparison of ground state energies (in o.u.) of a BEC containing A atoms of 87Rb,
calculated by IDE, PHEM, and DMC

A Potential V1 Potential V2

IDE PHEM IDE PHEM DMC

3 6.009 4.500

5 7.758 7.505

10 15.003 15.034 15.143 15.1490 15.1539

20 30.001 30.107 30.625 30.6209 30.639

35 52.501 52.768

50 78.701 78.8704

100 165.038 164.907
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Theparameters of the potentials chosen correspond toas = 100Bohr.They solved the
IDE using adiabatic approximation and also adding and subtracting the hypercentral
average (see Chap.10, Sects. 10.2.3 and 10.2.2, respectively). The results are quoted
in Table9.3.

One can notice from this table that the ground state energies calculated by the IDE
are quite close to those by the PHEM and are also close to the DMC results, where
the latter is available. The small differences arise mostly from numerical errors. Thus
the IDE is an important alternative method, which is both simple and at the same
time, its complexity does not increase with the number of particles. The IDE has one
advantage over the PHEM: the wave function calculated by the IDE is better in the
asymptotic region, as we discussed earlier. Although the IDE method is less popular
than the HHEM, it has been applied to atomic three-body systems by Sultanov and
Guster [12].
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Chapter 10
Computational Techniques

Abstract Some computational techniques are presented here.Amethod is presented
for solution of a single differential eigenvalue equation, subject to boundary condi-
tions at the origin and at infinity. Next solution of a system of coupled differential
eigenvalue equations (CDEE) is discussed. First an exact numerical algorithm, viz.,
renormalized Numerov (RN) method is presented. Next approximation methods are
discussed. Introduction of a hypercentral average enhances the rate of convergence.
Hyperspherical adiabatic approximation (HAA) reduces the CDEE to a single dif-
ferential equation. Applicability, accuracy, and numerical procedure of HAA are
discussed. Finally, a method is presented for handling tricky integrals (involving
extremely fast changing integrand) in potential matrix element.

In actual applications of the hyperspherical harmonics techniques, one has to solve
the equations and evaluate physical quantities numerically.Most of these calculations
involve quite intricate numerical methods. Many of these calculations need special
numerical techniques tailored to the particular need and are different from the stan-
dard ones. As an example, we see that the weight function of the Jacobi polynomial
for a large number of particles varies extremely rapidly over an exceedingly small
interval. Standard numerical quadratures involving this weight function in the inte-
grand produces a very large error, needing a special treatment. As another example,
one sees that the computation time required for evaluating a number of potential
matrix elements accurately can be reduced drastically by solving a set of linear
inhomogeneous equations, instead of using standard quadratures for the integrals.

In this chapter, we discuss the numerical techniques to handle such problems. For
the sake of completeness, we also briefly discuss the numerical methods for solving
more standard problems, like the eigen solution of a single differential equation in
Sect. 10.1. Section10.2 deals with solution of a set of coupled differential equations
(CDE). Computation of potential matrix elements will be discussed in Sect. 10.3.

© Springer India 2016
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Theoretical and Mathematical Physics, DOI 10.1007/978-81-322-2361-0_10

141



142 10 Computational Techniques

10.1 Solution of a Single Differential Equation

A simple second order differential equation is the most common one. It results from
the Schrödinger equation for a single particle in a central field (Sect. 2.1) or a two-
body system with mutual central force (Sect. 2.2). Its general form is

[
− �

2

2μ

d2

dr2
+ �

2

2μ

l(l + 1)

r2
+ V (r) − E

]
u(r) = 0, (10.1)

where μ is the mass of the single particle in the central field or the reduced mass of
the two-body system and l is the orbital angular momentum of the system. Systems
containing more than two particles (for which r is replaced by ξ in our notation), or
systems with noncentral interaction give rise to a set of CDE. An adiabatic approxi-
mation can reduce the CDE to a single differential equation of the above form. Thus
Eq. (10.1) as the ultimate form to be solved is quite common. Some text books of
quantum mechanics provide the basic discussion of the numerical procedure [1].
Here, we present a more detailed discussion.

For bound states in a potential V (r) which vanishes at infinity, the energy eigen-
value E is negative. It is obtained by applying boundary conditions on the eigen
function u(r) appropriate for a bound state, viz., u(r) must vanish at r = 0 and
r → ∞. For a numerical solution, r = 0 should be avoided, since the centrifugal
term diverges at this point. Hence, a small enough r value (say r0) should be chosen
as the initial point. Also r = ∞ should be replaced by a large enough, but finite,
r value (say) r f . Criterion for choosing r f should be |V (r f )| < ε, where ε is the
error limit demanded for E . Next we should choose a matching point rm , such that
rm > rmin, where rmin is the position of the minimum of V (r). To obtain the eigen
solution, one has to perform the following steps:

1. Divide the interval [r0, r f ] in two subintervals: r0 ≤ r ≤ rm and rm ≤ r ≤ r f .
Choose an initial trial energy E = E0 < 0.

2. Integrate Eq. (10.1) point-by-point (with a selected r -step size h) in the forward
direction of the first subinterval from r = r0 to r = rm , starting from the initial
values [u(0) = 0 and u′(0) �= 0 are replaced for finite r0 by limiting solution of
Eq. (10.1)]

u(r0) = CLr (l+1)
0 , u′(r0) = CL(l + 1)rl

0,

where CL is an arbitrary constant. The standard procedure to solve the second
order ordinary differential equation is to write it as a set of two coupled first-order
differential equations and solve them by a standard algorithm like Runge–Kutta
method [2, 3]. Store the ratio DL(E) = u′(rm )/u(rm ).

3. Integrate Eq. (10.1) point-by-point in the second sub-interval backwards from
r = r f to r = rm , starting from the asymptotic values [obtained from asymptotic
solution of Eq. (10.1)]

http://dx.doi.org/10.1007/978-81-322-2361-0_2
http://dx.doi.org/10.1007/978-81-322-2361-0_2
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u(r f ) = CR exp(−κr f ), u′(r f ) = −κCR exp(−κr f ), κ2 = −2μE

�2
,

(where CR is an arbitrary constant) by the same method. Store the ratio DR(E) =
u′(rm )/u(rm ).

4. Solve the equation of continuity of log-derivatives of wave function in the two
subintervals at the match point

G(E) = DL(E) − DR(E) = 0, (10.2)

by a suitable root finder algorithm like the bisection method or the Newton–
Raphson method [2], to find E , which satisfies Eq. (10.2). As an example, we
discuss here the Newton–Raphson method. For the chosen energy (E), G(E) is
in general not equal to zero. Calculate the correction to E as

�E = −G(E)
dG
d E

.

The local derivative dG
d E canbe approximately calculated from the storedG(E) cor-

responding to the energy of the previous cycle. Then the trial energy is improved
by replacing E by E + �E and steps (2), (3), and (4) are repeated until desired
precision is achieved, i.e., |�E | < ε. The final value of E is the energy eigen
value.

5. With this final E , Eq. (10.1) is once again solved from r = r0 to r = r f , subject
to initial values in step (2), to obtain the wave function u(r) in the entire chosen
interval. It is then normalized to get the normalized eigen function.

Theprocedure outlined above is the basic algorithm for solving a single differential
eigenvalue equation. The method can be refined in accordance with a particular
situation. Some of these are discussed below.

• If V (r) for r → 0 has an r -dependence stronger than r−2, then the appropriate
r → 0 solution of Eq. (10.1) is to be used in step (2) above. Similarly, if V (r)

does not vanish asymptotically (as in the case of a harmonic oscillator potential)
we have to use appropriate asymptotic solution in step (3) above. Note that E
should be <V (r f ). Choice of r f in this case is more difficult. One should ensure
that |u(r f )/umax| � 1, where umax is the maximum of the wave function, obtained
after an initial estimate.

• If thewave function at every r -mesh point is stored in the current energy-cycle, step
(5) can be dispensed with. We can take the wave functions of the two subintervals,
make them continuous (by multiplying one of them by an appropriate constant)
and normalize it over the entire chosen interval [r0, r f ].

• Use of Newton–Raphson method to solve Eq. (10.2) will be fast and without prob-
lem, if the energy eigenvalues are far apart from each other. However, if they are
closely spaced, problem may arise from different branches of the G(E) versus
E curve (see below). In this case, we can force a slower energy-convergence,
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replacing �E by ν�E , with ν chosen to be a small fraction, such that E + ν�E
belongs to the same branch of the curve. Thiswill assure convergence to the desired
eigenvalue, although it will be slower.

• One can get the radial excitation quantum number by counting the nodes in u(r). In
general, there will be no difficulty in calculating DL(E) and DR(E), even if u(r)

has one or more nodes. However, these will diverge if rm happens to be a node of
u(r). In this case, one can simply change rm . Note that the solution is independent
of the choice of rm . But it should be so chosen that |u(rm )| is large, in order that the
numerical errors in calculation of log-derivatives, and hence in E , are small. Also,
we should avoid an extremum of u(r) at r f , where the log-derivative vanishes.
Hence, a suitable choice for rm will be a point which is somewhat on the right of
the minimum of V (r) + �

2

2μ
l(l+1)

r2 , close to which |u(r)| has its maximum.
• For a potential which can support several bound states, a plot of G(E) against E
shows several continuous branches, separated by infinite discontinuities at specific
E values Ea, Eb, . . . and zeros at E1, E2, . . . The latter are the eigenvalues, the
smallest being the ground state (no nodes), the next one the first excited state (one
node), and so on. At E = Ea , E = Eb, etc., u(rm ) has a node.

• In view of the above, an efficient way to get all energy eigenvalues is to calculate
G(E) at E = V0 + (i − 1)hE with i = 1, 2, . . ., where V0 is the minimum of
V (r) + �

2

2μ
l(l+1)

r2 and hE is the energy mesh interval. G(E) is scanned for change
of sign, as E is increased. When a sign change occurs, current value of hE is
divided by 10 and scanning of G(E) is done again, starting from the last E-mesh
value (corresponding to hE before it was divided by 10). This process is stopped
when hE < ε. The last E value is the corresponding energy eigenvalue. For the
next excited state, a new scanning is then started from E + ε with the original hE ,
untill all desired eigenvalues are obtained. Spurious solutions corresponding to
infinite discontinuities of G(E) are eliminated by skipping the energy value, when
|G(E)| increases rapidly with successive reduction of hE . For a true solution En

corresponding to G(En) = 0, the quantity |G(E)| will gradually decrease with
decreasing hE .

10.2 Solution of Coupled Differential Equations

The Schrödinger equation reduces to a set of CDE for a system containing more than
two particles, as we saw in Chaps. 3 and 4. The CDE also results for a single particle
or for the two-body system, when the potential is noncentral. Thus for an exact
numerical solution of the Schrödinger equation in such cases, a numerical algorithm
for the solution of CDE is necessary. In this section, we discuss such an algorithm,
called the renormalized Numerov (RN) method, following Ref. [4].

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_4
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We consider, the general form of CDE, given by Eqs. (3.30) and (4.34), rewriting
it in a general form

(
− �

2

m

d2

dξ2
− E

)
uκ(ξ) +

∑
κ′

Vκ,κ′(ξ)uκ′(ξ) = 0, (κ = 1, 2, . . . , M). (10.3)

Here, a single cardinal number index κ (= 1, 2, . . .) represents the combination of
all relevant quantum numbers in a chosen fixed sequence. For the chosen truncation
of the set of CDE, the maximum value of κ is M . The M × M potential matrix V
includes the hypercentrifugal term and any hypercental term present (as diagonal
elements).

10.2.1 Exact Solution of the CDE

We rewrite Eq. (10.3) in a matrix form

(
[I ] d2

dξ2
+ [Q(ξ)]

)
[u(ξ)] = [0], (10.4)

where a symbol enclosed in square brackets represents an M × M matrix. The
matrices [I ] and [0] represent the M × M unit and null matrices respectively. These
notations will be followed throughout this section. The matrix [Q(ξ)] is defined as

[Q(ξ)] = m

�2

(
E[I ] − [V (ξ)]

)
. (10.5)

Note that the matrices [V ], [Q], and [u] are functions of ξ. It is also to be noted that
before application of boundary conditions, Eq. (10.3) has M linearly independent
solutions. These are arranged along the columns of the M×M matrix [u]. Application
of the boundary conditions select a particular linear combination of the columns as
the eigen vector (see below).

By the same criteria as in Sect. 10.1, we replace end points of the semi-infinite
interval 0 ≤ ξ < ∞ by the finite interval ξ0 ≤ ξ ≤ ξ f , with sufficiently small, but
nonzero, ξ0 and sufficiently large, but finite, ξ f . Next introduce (n + 1) equi-spaced
grid points ξ0, ξ1, ξ2, . . . , ξn(= ξ f ) in this interval, with mesh size p = (ξ f − ξ0)/n,
such that ξ j = ξ0 + j p, ( j = 0, n). We also introduce short-hand notations [Q j ] ≡
[Q(ξ j )], [u j ] ≡ [u(ξ j )], etc., which are M × M matrices at the j th grid point ξ j .

There are several algorithms for the point-by-point integration of a single second
order differential equation. One of them is a simple three-term recurrence formula

http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_4
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called the Numerov algorithm [5], which follows directly from the definition of
second derivative of a function. This can be adopted for matrix equation (10.4) as

(
[I ]−[Tj+1]

)
[u j+1]−

(
2[I ]+10[Tj ]

)
[u j ]+

(
[I ]−[Tj−1]

)
[u j−1] = [0], (10.6)

where [Tj ] = − p2

12 [Q j ] = − p2

12 [Q(ξ j )].
For the RN algorithm, we define

[Fj ] =
(
[I ] − [Tj ]

)
[u j ]. (10.7)

Substituting in Eq. (10.6) one gets

[Fj+1] − [W j ][Fj ] + [Fj−1] = [0], (10.8)

where

[W j ] =
(
[I ] − [Tj ]

)−1(
2[I ] + 10[Tj ]

)
. (10.9)

Next a two-term recurrence relation is obtained by introducing the matrix

[R j ] = [Fj+1][Fj ]−1. (10.10)

Post-multiply Eq. (10.8) by [Fj ]−1 and use Eq. (10.10) to get

[R j ] = [W j ] − [R j−1]−1. (10.11)

This is the basic two-term recurrence relation of the RN method. Knowing [Ri ] and
using Eq. (10.11) one can calculate [Ri+1], [Ri+2], . . . in the forward direction. For
the simple choice of initial condition [u0] = [0] and [u1] �= [0] (which are equivalent
to [u0] = [0] and [u′

0] �= [0]), we get fromEq. (10.7) [F0] = [0] and [F1] �= [0]. Then
from Eq. (10.10), [R0]−1 = [F0][F1]−1 = [0]. With this starting value, the forward
recurrence relation, Eq. (10.11) can be used repeatedly to calculate [R1], [R2], . . .

A similar recurrence relation for backward integration can be found by defining
a matrix

[R̂ j ] = [Fj−1][Fj ]−1. (10.12)

Substitution of this definition in Eq. (10.8) gives

[R̂ j ] = [W j ] − [R̂ j+1]−1. (10.13)

Knowing [R̂i ], one can calculate [R̂i−1], [R̂i−2], . . . using the above backward recur-
rence relation. One can start the backward integration grid-by-grid from the end point
ξn , assuming that [u(ξn)] = [0] and [u(ξn−1)] �= [0], which gives [R̂n]−1 = [0].
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We next choose a matching grid point q, such that ξq is larger than the position of
the minimum of V11(ξ) (assumed to be the most dominant). The continuity condition
is the matching of log-derivatives of each partial wave, as obtained by integrating
the CDE forward and backward to the match point q. Alternative requirement is
to match the partial waves at two consecutive grid points q (integrating forward)
and q + 1 (integrating backward). For this, we integrate the CDE grid-by-grid in
forward direction using Eq. (10.11), starting from 0 to the matching grid point q, and
in backward direction using Eq. (10.13) from n to M + 1. Thus, we get [Rq ] and
[R̂q+1] and the matching condition is

(
[Rq ] − [R̂q+1]−1

)
f (ξq) = 0, (10.14)

where
f (ξq) =

(
[I ] − [Tq ]

)
u(ξq) (10.15)

is the column vector of eigen functions at the match point, being the appropriate
linear combination of the columns of [uq ].

Solution of Eq. (10.14) gives the energy eigenvalue E , since [Rq ] and [R̂q+1]
depend on E . Since Eq. (10.14) is a homogeneous equation, it will have a nontrivial
solution only if the determinant of the matrix vanishes

D(E) =
∣∣∣([Rq ] − [R̂q+1]−1

)∣∣∣ = 0. (10.16)

With the correct energy E satisfying Eq. (10.16), Eq. (10.14) is solved for the column
vector f (ξq) subjected to normalization. The complete eigen function in the two
subintervals is then obtained by iteration in the opposite direction from the match
point

f (ξi ) = [Ri ]−1 f (ξi+1), i = q − 1, q − 2, . . . , 0, (10.17)

for the first sub-interval, and

f (ξi ) = [R̂i ]−1 f (ξi−1), i = q + 1, q + 2, . . . , n, (10.18)

for the second sub-interval.
The standard boundary condition at the end grid point n is taken as [R̂n]−1 = [0].

This assumes that the wave function of the end grid point vanishes, while that at the
previous grid point is nonvanishing [see Eqs. (10.12) and (10.7)]. It can be improved
using exact solution of theCDE,Eq. (10.4), in the asymptotic regionwhere [V ] = [0],
so that theCDEbecomes decoupled and each component is proportional to exp(−βξ)

with β =
√

−m E
�2 [6]. This gives

[R̂n]−1 = e−β p[I ]. (10.19)
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Use of Eq. (10.19) as a boundary condition over the standard one gives a 10%
improvement in the deuteron binding energy with Reid soft core (RSC) potential [6].
A similar modification for the initial boundary value [R0]−1 at ξ0 can be obtained by
using the ξ → 0 analytical solution of the CDE.

Algorithm for the RN Method

From the procedure discussed above, the algorithm for the RN method is given by
the following steps:

1. Choose a trial energy (E), initial increment (�E), precision required in energy
calculation (ε), end points of the chosen interval in ξ variable (ξ0, ξ f ), number
of mesh intervals (n) and match grid point (q).
Calculate p = (ξ f − ξ0)/n. Set IND = 0, D = 0.

2. Set IND = IND +1 and D0 = D
Calculate initial [R0]−1 and final [R̂n]−1 for starting the iterations.

3. Use Eq. (10.11) to iterate [Ri ], point-by-point from i = 1 to i = q. Save [Rq ]
4. Use Eq. (10.13) to iterate [R̂i ], point-by-point from i = n to i = q + 1. Save

[R̂q+1].
5. Calculate the determinant D =

∣∣∣([Rq ] − [R̂q+1]−1
)∣∣∣

6. For IND = 1:

(a) Replace E by E + �E .
(b) Go to step (2).

7. For IND > 1:

(a) calculate d D
d E = D−D0

�E , Then calculate �E = − D
d D
d E
.

(b) Replace E by E + �E .
(c) If |�E

E | < ε go to step (8).
Otherwise, go to step (2)

8. Final eigen energy = E .
9. Set the first component of f (ξq) vector equal to 1 and solve Eq. (10.14), which

now is a set of (M − 1) linear inhomogeneous equations (LIE).
10. Starting from this column vector f (ξq), use Eq. (10.17) with [Ri ] recalculated

for the final energy, to iterate backward and calculate column vectors f (ξi )

with i = q − 1, q − 2, . . . , 0, storing each component of the column vector
fν(ξi ), ν = 1, . . . , M .

11. Starting from the column vector f (ξq), use Eq. (10.18) with [R̂i ] recalculated
for the final energy, to iterate forward and calculate column vectors f (ξi ) with
i = q+1, q+2, . . . , n, storing each component of the columnvector fν(ξi ), ν =
1, . . . , M

12. Normalize the wave function according to

∫ ξn

ξ0

M∑
ν=1

| fν(ξ)|2dξ = 1.
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In the above, we used the simple Newton–Raphson method [2] for solving the
energy equation, as an illustration. It can be replaced by more sophisticated root
finding algorithms discussed in Sect. 10.1. Suitable standard algorithms for solv-
ing the LIE, calculation of determinant and numerical integration should be chosen
[2, 3]. Convergence behavior of the numerical solution of a system of CDE by the
RN method has been studied in Ref. [7].

10.2.2 Introduction of Hypercentral Average

Let us consider, the general form of the CDE

(
− �

2

m

d2

dξ2
+ �

2

m

Lκ(Lκ + 1)

ξ2
+ U (ξ) − E

)
uκ(ξ)

+
∑
κ′

Vκ,κ′(ξ)uκ′(ξ) = 0, (κ = 1, 2, . . . , M), (10.20)

in which the hypercentrifugal term, as also a possible hypercentral potential U (ξ),
have been kept explicitly outside the coupling potential V . It is obvious that con-
vergence of energy and expansion of the wave function will be faster if magnitude
of the off-diagonal matrix elements of V are small compared to magnitude of the
hypercentral terms. Hence for an arbitrary interaction potential Vi j ≡ V (	ri − 	r j ),
the convergence will be faster, if we calculate a hypercentral average V0(ξ) (which is
the average of Vi j over all hyperangles) and replace Vi j by Vi j − V0(ξ), while adding
V0(ξ) to the diagonal term. Thus, rate of convergence and therefore accuracy of the
numerical calculation can be improved by separating the hypercentral average [8].
The hypercentral average for a general two-body potential V (	ri − 	r j ) is given by

V0(ξ) =
∫

V (	ri − 	r j )d�3N . (10.21)

Hence Eq. (10.20) is replaced by

(
− �

2

m

d2

dξ2
+ �

2

m

Lκ(Lκ + 1)

ξ2
+ U (ξ) + A(A − 1)

2
V0(ξ) − E

)
uκ(ξ)

+
∑
κ′

V κ,κ′(ξ)uκ′(ξ) = 0, (κ = 1, 2, . . . , M), (10.22)

where V is given by

V =
A∑

i< j=2

(
V (	ri − 	r j ) − V0(ξ)

)
. (10.23)
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It is the residual potential after subtraction of the hypercentral average. Note that in
Eq. (10.22) the compensation term has a factor A(A − 1)/2, corresponding to the
number of interacting pairs.

Inclusion of the hypercentral average improves the rate of convergence consider-
ably. It would be a fairly good approximation for most two-body potentials, even if
we disregard the coupling term altogether in Eq. (10.22).

Since the integro-differential equation (Chap. 9) was derived from the CDE for the
PHEM, a similar hypercentral average V0(ξ) can be subtracted from the two-body

potential and A(A−1)
2 V0(ξ) added to the left side of Eq. (9.30).

10.2.3 Hyperspherical Adiabatic Approximation

To reduce the bulk of computation in solving theCDE, one can use the hyperspherical
adiabatic approximation (HAA) for decoupling the CDE adiabatically into a single
differential equation [9]. Justification of this approximation is based on a physical
criterion, viz., the assumption that hyperradial motion is slow compared to hyper-
angular motion. This assumption is likely to be valid, since hyperradial excitations
correspond to breathing modes. Hence, one can decouple hyperradial motion adia-
batically and solve hyperangular motion for a fixed hyperradius (ξ) to get an effective
potential as a parametric function of ξ. The hyperradial equation with this potential is
then solved to get energy of the system. This process is similar in spirit to the Born–
Oppenheimer approximation (BOA), in which motion of nuclei (heavy particles) in
an atom is assumed to be slow compared with that of electrons (light particles) and
these two motions are separated adiabatically [11]. First, the Schrödinger equation
of the electrons is solved for a fixed configuration of the nuclei. This gives the poten-
tial energy of that particular nuclear configuration, which is used as the effective
potential in which the nuclei move. A simple illustrative example is the hydrogen
molecular ion H+

2 , in which motion of the electron is solved for the protons kept
at a fixed separation, giving the effective inter-protonic potential. Relative motion
of the two protons is then solved with this potential, which gives the energy of the
system [10, 11]. Justification of the assumption in BOA has a stronger physical basis
than that in HAA. Still in actual atomic and nuclear calculations, HAA appears to be
surprisingly accurate [9, 13]. It has been shown to have a mathematical basis [12]
for a smooth interaction potential.

The general CDE in ξ variable, Eq. (4.34), is obtained by substituting the
HH expansion of A-body relative wave function (4.17) appearing in the N -body
Schrödinger equation, followed by projection on a particular HH. We can express
the same equation in terms of hyperspherical variables ξ and�D bywriting Eq. (4.17)

http://dx.doi.org/10.1007/978-81-322-2361-0_9
http://dx.doi.org/10.1007/978-81-322-2361-0_9
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
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as � = ξ−(D−1)/2�(ξ,�D) (where D = 3N ) and substituting in the N -body
Schrödinger equation (4.5), with kinetic energy operator given by Eq. (4.8)

[
− ∂2

∂ξ2
+ L̂2

D(�D) + (D − 1)(D − 3)/4

ξ2
+ v(ξ,�D) + k2

]
�(ξ,�D) = 0,

(10.24)

where v(ξ,�D) = m
�2 V (ξ,�D) and k2 = −m E

�2 . In theHAAone assumes hyperradial
motion to be slow compared to hyperangular motion, so that for a fixed value of ξ,
one can solve the �D motion adiabatically, i.e.,

[ L̂2
D(�D) + (D − 1)(D − 3)/4

ξ2
+ v(ξ,�D)

]
Bλ(ξ,�D) = ωλ(ξ)Bλ(ξ,�D).

(10.25)

Naturally, the eigenvalue ωλ and the eigen function Bλ(�D) are parametric functions
of ξ. The set of eigen functions {Bλ(ξ,�D)}, being the solution of the Hermitian
differential operator within the square brackets in Eq. (10.25), forms a complete set
for expansion of an arbitrary function of �D . This set is called the adiabatic subset.
Hence �(ξ,�D) (for a fixed ξ) can be expanded as

�(ξ,�D) =
∑

λ

ζλ(ξ)Bλ(ξ,�D). (10.26)

Next, Bλ(ξ,�D) can be expanded in the set of HH

Bλ(ξ,�D) =
∑

L ′,[L ′]
χ

(L′ ,[L′ ]),λ(ξ)YL′ ,[L′ ](�D). (10.27)

Substituting Eq. (10.27) in (10.25), premultiplying by YL ,[L](�D)∗ and integrating
over d�D , we have

∑
(L ′,[L ′])

[LL(LL + 1)

ξ2
δ(L ,[L]),(L ′,[L ′]) + 〈L , [L]|v|L ′, [L ′]〉

]
χ

(L′ ,[L′ ]),λ(ξ)

= ωλ(ξ)χ(L ,[L]),λ(ξ). (10.28)

Here the HH YL ,[L](�D) is also the eigenfunction of the operator L̂2
D(�D) + (D −

1)(D − 3)/4 corresponding to eigenvalue LL(LL + 1), with LL = L + D−3
2 . For a

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_4
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fixed ξ, Eq. (10.28) is a matrix eigenvalue equation. For a given λ, the real numbers
χ

(L ,[L]),λ(ξ) are the elements of the eigen column vector, satisfying the orthonormal-
ization ∑

L ,[L]
χ

(L ,[L]),λ(ξ)χ(L ,[L]),λ′ (ξ) = δλ,λ′ . (10.29)

If we expanded the relative wave function of the A = N +1 body system directly
in the HH basis

�(ξ,�D) =
∑
L ,[L]

uL ,[L](ξ)YL ,[L](�D), (10.30)

then its substitution in the many-body relative Schrödinger equation gives

[
− d2

dξ2
+ LL(LL + 1)

ξ2
+ k2

]
uL ,[L](ξ) +

∑
L ′,[L ′]

〈L , [L]|v|L ′, [L ′]〉u
L′,[L′ ](ξ) = 0.

(10.31)
Comparison of Eq. (10.30) with Eqs. (10.26) and (10.27) gives

uL ,[L](ξ) =
∑

λ

ζλ(ξ)χ(L ,[L]),λ(ξ). (10.32)

Substituting Eq. (10.32) in (10.31), using Eq. (10.28) and taking inner product with
χ

(L ,[L]),λ(ξ), we get

[
− d2

dξ2
+ ωλ(ξ) + k2

]
ζλ(ξ) − 2

∑
λ′,(L .[L])

dζλ′(ξ)

dξ

(
χ

(L ,[L]),λ(ξ)
dχ

(L .[L]),λ′ (ξ)

dξ

)

−
∑

λ′,(L .[L])
ζλ′(ξ)

(
χ

(L ,[L]),λ(ξ)
d2χ

(L .[L]),λ′ (ξ)

dξ2

)
= 0. (10.33)

Differentiating Eq. (10.29) once with respect to ξ, we have

∑
L ,[L]

(
χ

(L ,[L]),λ(ξ)
dχ

(L ,[L]),λ′ (ξ)

dξ
+ χ

(L ,[L]),λ′ (ξ)
dχ

(L ,[L]),λ(ξ)

dξ

)
= 0. (10.34)

Differentiating once again for λ = λ′, we have

∑
L ,[L]

χ
(L ,[L]),λ(ξ)

d2χ
(L ,[L]),λ(ξ)

dξ2
= −

∑
L ,[L]

∣∣∣dχ
(L ,[L]),λ(ξ)

dξ

∣∣∣2 (10.35)
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Substituting Eq. (10.34) for λ = λ′ and Eq. (10.35) in (10.33), we have

[
− d2

dξ2
+ ωλ(ξ) + k2 +

∑
L ,[L]

∣∣∣dχ
(L ,[L]),λ(ξ)

dξ

∣∣∣2]ζλ(ξ)

−
∑
λ′ �=λ

⎡
⎣2

dζλ′(ξ)

dξ

⎛
⎝∑

L ,[L]
χ

(L ,[L]),λ(ξ)
dχ

(L .[L]),λ′ (ξ)

dξ

⎞
⎠

+ ζλ′(ξ)

⎛
⎝∑

L ,[L]
χ

(L ,[L]),λ(ξ)
d2χ

(L .[L]),λ′ (ξ)

dξ2

⎞
⎠

⎤
⎦ = 0. (10.36)

Up to this point, there is no approximation and Eq. (10.36) is equivalent to the exact
CDE, Eq. (10.31). For weak hyperangular dependence of the potential v(ξ,�D) [this
canbe enhancedby subtracting and adding the hypercentral average, seeSect. 10.2.2],
the off-diagonal elements 〈L , [L]|v|L ′, [L ′]〉 (with L ′ �= L) are small and Eq. (10.28)
shows that the column vectors χ

(L ,[L]),λ(ξ) are very slowly varying functions of ξ.
Hence its first and second derivatives are even smaller. Thus the coupling terms
in Eq. (10.36) will be quite small. If we disregard the coupling terms (sum over
λ′ �= λ), the resulting equation is called the uncoupled adiabatic approximation
(UAA). The fourth term is always positive and represents the adiabatic overbinding
correction term. Disregarding even this term, we get the extreme adiabatic approx-
imation (EAA), which gives overbinding [14]. For the ground state one uses the
lowest eigen potential ω0(ξ) for λ = 0 and the UAA becomes

[
− d2

dξ2
+ ω0(ξ) + k2 +

∑
L ,[L]

∣∣∣dχ
(L ,[L]),0(ξ)

dξ

∣∣∣2]ζ0(ξ) = 0. (10.37)

While the EAA overbinds, the UAA underbinds, satisfying an energy inequality
relation [14]

EEAA ≤ Eexact ≤ EUAA, (10.38)

the exact energy Eexact being closer to EUAA.

Applicability of HAA

TheHAA is clearly advantageous, as it reduces the difficult numerical task of solving
a large system of CDE into that of solving a single differential equation. The question
is: when is the HAA applicable? The physical criterion is the assumption that the
hyperradial motion is slow compared to the hyper-angular motion. However in most
physical situations, this cannot be guaranteed a priori. We can check the accuracy
of HAA only in test cases, where exact results are known (see below). But we can
enhance its applicability by subtracting and adding the hypercentral average from the
many-body potential v(ξ,�D), as discussed above. Even then, its accuracy in diverse
(nuclear, atomic, and molecular systems) test cases is better than 1% (see below),
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which is quite intriguing. It has been shown that there is a mathematical justification
for the surprising accuracy of theHAA for smooth potentials [12]. TheHAAbecomes
exact in the ξ → 0 and the asymptotic limits, whereas for intermediate values of ξ,
it is good if the potential does not change too rapidly in any region. The disregarded
coupling terms become small, if eigenpotentials are fairly widely separated. When
this is satisfied, the accuracy of the HAA is quite high. This is in contrast with the
BOA, whose accuracy depends on the validity of the assumption that the heavy
particles move slowly compared to the light particles.

Accuracy of HAA

Aswe have indicated above, the HAA enjoys a surprisingly high accuracy for widely
different systems, viz, nuclear, atomic, ormolecular systems. It has been tested for the
trinucleon (3H and 3He nuclei), atomic (several two-electron atoms) and molecular
(H+

2 ion) three-body systems against exact solutions of up to 24 coupled equations. In
nuclear systems, the nucleon–nucleon (N-N) potentialwas chosen to be semi-realistic
soft-core potentials, with the core part having up to a fairly strong repulsive core, as
in the S3 potential. Thus the N-N potential changes rapidly at short separations for
the S3 potential, but still the accuracy of UAA is better than 1% [9]. For the atomic
and molecular systems, the basic interaction is Coulomb. Deviations of UAA from
exact ground state energies are less than 0.4% [13] for two-electron systems like H−,
He, Li+, Be2+, B3+, eeμ, and Ps−, with up to 24 CDEs. Even for the first excited state
of neutral Helium atom, the deviation is only about 0.67%. For the simple hydrogen
molecular ion H+

2 , the deviation is about 0.4% [12]. Thus the HAA appears to be a
very good approximation scheme for most few-body systems.

Numerical Procedure for UAA

The final UAA equation for the ground state, Eq. (10.37), is a single differential
equation, which can be solved by the method of Sect. 10.1. We need to calculate the
eigenpotential and the overbinding correction term. The procedure can be summa-
rized as follows.

1. Select a maximum L value Lmax. Set up a single index κ for the combination
(L , [L]). κmax corresponds to Lmax.

2. For the chosen interval [ξI , ξF ]with N uniformmesh-intervals, set upmesh points
ξi , i = 1, N + 5, where ξi = ξI + (i − 5)h with h = (ξF − ξI )/N . Start a loop
over i = 1, N + 5. We include four additional mesh points before the chosen
initial point ξI , in order to calculate the first derivative of the eigenvector from ξI

(see step 5 below).
3. For a particular ξi , calculate potential matrix 〈L , [L]|v(ξi ,�D)|L ′, [L ′]〉 (see

Sect. 10.3).
4. Set up the κmax × κmax matrix

Mκ,κ′ =
[
LL (LL +1)

ξ2i
δ(L ,[L]),(L ′,[L ′]) + 〈L , [L]|v(ξi ,�D)|L ′, [L ′]〉

]
,

and diagonalize it to obtain lowest eigenvalue ω0(ξi ) and corresponding column
eigenvector {χκ,0(ξi ), κ = 1,κmax}. Store these quantities in suitable arrays.
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5. For i ≥ 5, compute the first derivative of χκ,0(ξi ), (κ = 1,κmax) employing a
five-point formula [15], using already calculated and stored χκ,0 values.
Next compute the overbinding correction term

κmax∑
κ=1

∣∣∣ dχκ,0(ξ)
dξ

|
ξ=ξi

∣∣∣2

6. Include ω0(ξi ) and the overbinding term of step 5 in Eq. (10.37) and solve for
EUAA and ζ0(ξ) by the method of Sect. 10.1 in the interval [ξI , ξF ]. The eigen-
function is normalized according to

ξF∫
ξI

|ζ0(ξ)|2dξ = 1.

Partial waves of original Eq. (10.31) are given approximately as

uκ(ξi ) ≈ ζ0(ξi )χκ,0(ξi ).

10.3 Computation of Matrix Element

Computation of all the matrix elements 〈L , [L]|v(ξi ,�D)|L ′, [L ′]〉 can be reduced
to a minimum set by using the symmetries of the chosen basis states (see Chaps. 4
and 5). Next, most of the angular integrations can be done analytically, leaving a
fewer dimensional (one dimensional for the three-body system) integral to be done
numerically. In most cases (where the potential has a smooth dependence on its argu-
ments) such integrals can be computed by standard quadratures [3]. Alternately, if the
size of the chosen basis set is large, one can use the geometrical structure coefficients
(see Chaps. 3, 5 and 7) to reduce the bulk of computation. The geometrical structure
coefficients can be computed in an elegant fashion using the linear inhomogeneous
equation method (see Chaps. 3 and 5).

Special discussion is necessary for computation ofmatrix elements if the integrand
depends strongly on its arguments over some domain of integration. An example is
provided by thematrix elements in the correlated potential harmonic basis, Eq. (8.27),
for a large number of particles. In that case, the weight function Wl(z) = (1 −
z)α(1 + z)β is appreciable only in a tiny interval near the lower limit of integration,
over which it varies extremely rapidly (see Chap.8). Unless special care is taken, a
standard numerical quadrature will miss the major contribution to the integral. An
accurate computation of the integral can be done by subdividing the original interval
[a, b] of integration into subintervals, which are sufficiently dense over the domain
giving the major contribution and using standard quadratures for each subinterval.
For a Bose condensate containing a large number of particles, the major contribution
to the integral in Eq. (8.27) comes from near the lower limit of integration z = −1.
Then the interval [−1, 1] is subdivided into n gradually increasing subintervals:
h0, ch0, c2h0, . . . , cn−1h0 (with c a constant > 1), such that [16]

http://dx.doi.org/10.1007/978-81-322-2361-0_4
http://dx.doi.org/10.1007/978-81-322-2361-0_5
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_5
http://dx.doi.org/10.1007/978-81-322-2361-0_7
http://dx.doi.org/10.1007/978-81-322-2361-0_3
http://dx.doi.org/10.1007/978-81-322-2361-0_5
http://dx.doi.org/10.1007/978-81-322-2361-0_8
http://dx.doi.org/10.1007/978-81-322-2361-0_8
http://dx.doi.org/10.1007/978-81-322-2361-0_8
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h0 + ch0 + c2h0 + · · · + cn−1h0 = b − a = 2

which gives

h0 = 2(c − 1)

(cn − 1)
.

The constant c > 1 is so chosen that the first subinterval h0 is desirably small for the
particular case. The integral of Eq. (8.27) is then replaced by a sum of n subintegrals:

∫ 1

−1
=

∫ −1+h0

−1
+

∫ −1+h0+ch0

−1+h0

+ · · · +
∫ 1

1−cn−1h0

.

Each subintegral is evaluated by a standard quadrature, e.g., the 32-point Gauss–
Legendre quadrature. Increasing c by a small amount, the first subinterval can be
made extremely small even for a relatively small number of subintervals. For exam-
ple, fixing n = 20, the first subinterval h0 can be reduced from about 2 × 10−6

to ∼10−14 by increasing c from 2 to 5. Thus even for very large particle number
(large α), the integral can be evaluated fast and accurately, using a small number of
subintervals.
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Two-P function, 21

explicit expression, 23
Two-pion exchange force, 79

V
van der Waals potential, 119
Volume element

six-dimensional, 22
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