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This is the first dedicated work on the use of particulate DEM
in geomechanics and provides key information needed for engineers
and scientists who want to start using this powerful numerical
modelling approach. The book is a concise point of reference for
users of DEM, allowing them to maximize the insight they can
gain their material response using DEM covering:

• The background theory

• Details of the numerical method

• Advice on running simulations

• Approaches for interpreting results of simulations

• Issues related to available particle types, contact modelling
and boundary conditions.

Particulate Discrete Element Modelling is suitable both for
first time DEM analysts as well as more experienced users. It will
be of use to professionals, researchers and higher level students,
as it presents a theoretical overview of DEM as well as practical
guidance on how to set up and run DEM simulations and how to
interpret DEM simulation results.

Catherine O’Sullivan is a Senior Lecturer in the Department
of Civil and Environmental Engineering at Imperial College, UK.
She obtained her undergraduate and master’s degrees at Univer-
sity College Cork, Ireland. Dr. O’Sullivan’s interest in DEM was
sparked during her doctoral studies in Civil Engineering at the
University of California at Berkeley, USA. Following graduation
from UC Berkeley in 2002, she spent two years working as a lec-
turer at University College Dublin, prior to moving to Imperial
College in 2004.
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Chapter 1

Introduction

1.1 Overview

Particulate DEM in geomechanics

Discrete element modelling (DEM) is a numerical modelling or
computer simulation approach that can simulate soil and other
granular materials. The unique feature of this approach is that it
explicitly considers the individual particles in a granular material
and their interactions. DEM presents an alternative to the typi-
cal approach adopted when simulating the mechanical behaviour
of granular materials (soils in particular), which uses a contin-
uum mechanics framework. In a continuum model soil is assumed
to behave as a continuous material and the relative movements
and rotations of the particles inside the material are not consid-
ered. Sophisticated constitutive models (i.e. equations relating
the stress and strain in the soil) are then needed to capture the
complexity of the material behaviour that arises owing to the par-
ticulate nature of the material. In DEM, even if simple numerical
models are used to simulate the inter-particle contacts, and ideal,
approximate, particle geometries are used, many of the mechanical
response features associated with soil can be captured. Simplify-
ing the particle shapes (e.g. using spheres) and adopting very
basic models of the contact response reduces the computational
cost of the simulation and thus allows systems involving relatively



Chapter 1. Introduction

large numbers of particles to be analysed while still capturing the
salient response characteristics of soil behaviour.

There are a range of established and emerging numerical meth-
ods that can be used to simulate granular material response and
so it is worth clarifying what the term “discrete element method”
means in the context of this text. In a discrete element simulation
a numerical model made up of a large number of discrete particles
or bodies is created. A discrete element method is a simulation
method where the finite displacements and rotations of discrete
bodies are simulated (e.g. Cundall and Hart (1993)). Within the
system it is possible for the particles to come into contact with
each other and lose contact, and these changes in contact status
are automatically determined. This definition excludes from con-
sideration the meshless or meshfree continuum methods including
smoothed particle hydrodynamics (SPH). In these methods the
“particles” are interpolation points, rather than being physical
particles, and so they are very similar to the nodes in a finite
element model.

Particulate DEM is used across a variety of disciplines, ranging
from food technology to mining engineering, however the seminal
publication in this area by Cundall and Strack (1979a), was pub-
lished in a soil mechanics journal (Géotechnique). Interest in the
method amongst geotechnical engineers has grown since this orig-
inal publication, with a marked increase in interest in recent years
as a result of the increase in computing power.

Figure 1.1: Simulation of a direct shear test using DEM

2
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There are two main motivations to use DEM amongst both
researchers and practitioners in the area of geomechanics. In the
first case, in a DEM model, loads and deformations can be applied
to virtual samples to simulate physical laboratory tests, and the
particle scale mechanisms that underlie the complex overall ma-
terial response can be monitored and analysed. In a DEM model
the evolution of the contact forces, the particle and contact ori-
entations, the particle rotations, etc., can all easily be measured.
It is incredibly difficult (and arguably impossible) to access all
this information in a physical laboratory test. Figure 1.1 illus-
trates a simulation of a direct shear test using particulate DEM.
The DEM model allows us to look inside the material and under-
stand the fundamental particle interactions underlying the com-
plex, macro-scale response. To date knowledge of soil response has
relied largely on empirical observation of the overall material re-
sponse in laboratory and field tests. DEM simulations thus present
geotechnical engineers with a valuable set of tools to complement
existing techniques as they seek to develop a scientifically rigor-
ous understanding of soil behaviour with likely improvements in
our ability to predict response in the field. DEM therefore is now
established as an essential tool in basic research in geomechanics.

A second, more applied, motivation for the use of DEM is that
it allows analysis of the mechanisms involved in large-displacement
problems in geomechanics. These problems cannot easily be mod-
elled using more widespread continuum approaches such as the
finite element method. Figure 1.2 illustrates a two-dimensional
DEM simulation of the insertion of a cone penetrometer into a con-
tainer of 117,828 disks (for details refer to Kinlock and O’Sullivan
(2007)). The particles are shaded according to the amount of
rotation they experience, with the particles distant from the pen-
etrometer coloured white as they experience little disturbance, and
those closest to the cone penetrometer (coloured black) being ro-
tated and displaced during the penetration. This figure indicates
that DEM can effectively accommodate the large displacements
involved in the penetration mechanism. Failures in geomechan-
ics often involve very large displacements or deformations, DEM
models can therefore inform our understanding of important fail-

3
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ure mechanisms. Examples of mechanisms that cannot be simu-
lated using a continuum approach include internal erosion, scour
and sand production in oil reservoirs. Figure 1.3 shows a bridge
that collapsed in Ireland in 2009 following scour of its foundations,
highlighting the importance of being able to simulate this class of
problem.

Figure 1.2: Two-dimensional DEM simulation of cone penetrom-
eter penetrating a granular material (disk shading indicates mag-
nitude of rotation)

Outline of book

The objective of this book is to serve as an introduction to the
use of discrete element modelling to analyse the response of gran-
ular materials, focussing on applications in soil mechanics and
geotechnical engineering. The intended audience is people who
are thinking about using DEM, or people who are just starting to
use DEM, rather than those with years of experience. However,
hopefully users with some experience and DEM code developers
will also find aspects of the text interesting and useful. In any
case, it is assumed that someone interested in DEM is likely to be
a graduate or post graduate engineer or scientist with some idea

4
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Figure 1.3: Collapse of railway bridge in Malahide, Dublin, Ireland
in August 2009, Photo Courtesy Sarah McAllister

of the basic principles of numerical modelling and a knowledge of
mechanics.

The overall aim is to provide answers to a few key questions:

1. What is the theoretical basis of DEM ? What is the fun-
damental modelling approach used? (Chapters 2, 3, 4 and
6).

2. How does someone run a DEM simulation and what infor-
mation can they get from it? (Chapters 5, 7, 8 and 11).

3. How do you interpret data from a DEM simulation? (Chap-
ters 9 and 10).

4. What has already been achieved using DEM? (Chapter 12).

There is an emphasis on soil mechanics-related applications;
however much of the content of this book has a broader appli-
cation and should prove useful to those working in the fields of
in powder technology, chemical engineering, geology, mining en-
gineering, physics, and other disciplines where there is interest
in analysing material response at a particulate scale. There are
many particulate discrete element codes in use at present, some of
which have been developed by individuals solely for research ap-
plications, while others are commercially available. This book is

5
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not written with any particular code in mind, rather the material
and discussions presented here should be of interest to users (and
possibly developers) of many different codes.

This initial Chapter aims to introduce the general principles
of DEM and presents some of the mathematical concepts used in
later Chapters.

1.2 Particulate Scale Modelling of Gran-

ular Materials

Figure 1.4: Analogy between a granular material and a highly
complex, statically redundant structural frame

In discussing the need for computer simulation to facilitate
analysis of particulate systems at the micro-scale, Rapaport (2004)
points out the similarity between the interaction of a large system
of particles and the classical “n-body” problem that has attracted
the attention of physicists for hundreds of years. The n-body
problem considers the evolution of a system of n “bodies” sub-
ject to Newtonian gravitational forces. The initial motivation to
analyse this problem was a desire to understand the dynamics

6
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of the solar system. There is no general closed-form solution to
this problem for systems with more than 3 bodies, consequently
numerical methods and computer models are required to analyse
these systems.

The need to adopt a computer-based model to analyse gran-
ular materials at the particle scale can be appreciated by looking
at the system from the perspective of a structural engineer. As
illustrated in Figure 1.4, an analogy can be drawn between an as-
sembly of contacting particles and a structure with many elements
connecting the nodes of the structure. Engineers, in particular
civil engineers, understand that a structure with a large number
of connections is statically indeterminate. In a statically inde-
terminate structure, the forces in each structural member cannot
be calculated by considering the static equilibrium of the system
alone. More more sophisticated (and nowadays) computer-based
models that include consideration of the deformations and hence
the stiffness of the structural elements are required to determine
the forces within the structure.

Both Duran (2000) and Zhu et al. (2007) divide the numeri-
cal techniques used in DEM into two categories called soft sphere
models and hard sphere models. A major differentiation between
the methods in each category is whether the particles are approx-
imated to be “soft”, in which case penetration is allowed at the
particle contacts or “hard”, when no deformation or penetration is
considered. Figure 1.5 illustrates schematically both approaches.
Both types of simulation are transient, or time dependent. This
means that the evolution of the system over a period of time is
considered by examining the state of the assembly of particles at
distinct time intervals.

The hard particle, or hard sphere, approximation is at the basis
of the so-called “collisional” or “event driven” (ED) models. The
word hard refers to the absense of interpenetration or deformation
during impact of particles. The collision itself is not necessarily of
interest and may be assumed to be instantaneous. The ED models
start from the equations governing momentum exchange and the
particle contact force is often not explicitly considered (Zhu et al.,
2007). This type of model recognizes that when particles collide

7
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Hard Sphere - Event Driven Approaches Soft Sphere - Molecular Dynamics Approaches
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Figure 1.5: “Hard Sphere” and “Soft Sphere” approaches to DEM

energy is dissipated by plastic deformation and heat. The resultant
loss of momentum when a collision occurs is characterized solely by
means of the coefficients of elastic restitution. Different values for
the normal and tangential coefficients of restitution are specified.

Event driven algorithms analyse events sequentially in the or-
der in which they occur. This means that at any time during the
simulation at most only one collision can occur at a given time in
the analysis. The time increment used in the simulations varies,
and equals the time between one collision and the next. Between
collisions the particles move along a uniform trajectory.

Applications suited to the use of the event driven modelling ap-
proach are generally those involving rapid granular flow, where the
granular material has been partially or completely fluidized, e.g.
avalanches, or rapid flow through conduits in manufacturing pro-
cesses. For example, Hoomans et al. (1996) used this approach to
simulate fluidized beds for process engineering applications, and
Campbell and Brennan (1985) used a hard sphere approach to
simulate granular material flow. Delaney et al. (2007) correctly
argue that, while it is computationally cheaper than other meth-
ods, the hard sphere approach fails to capture the fine details of
the response of dense materials involving multiple simultaneous
contacts. Delaney et al. also highlight the limitation in the ability
to accurately model the tangential or frictional forces between in-
teracting particles. Campbell (2006) considered this method to be
inappropriate for considering dense systems as it is non-physical:
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the real mechanism of force transfer in a granular material involves
deformation of the contacting particles. For further information
on event driven approaches refer to Brilliantov et al. (2996) or Ra-
paport (2009). Pöschel and Schwager (2005) describe two alter-
native algorithms for implementation of an event driven computer
code. As hard sphere approaches are not commonly considered in
current geotechnical engineering research or practice, they are not
considered further here.

The principle behind the soft sphere approach is to solve, in
increments of discrete time, the equations governing the linear and
angular dynamic equilibrium of the colliding or contacting parti-
cles. This contrasts with the strategy used in ED models, which
start from the equations governing momentum exchange. The
word “soft” is a misnomer; the particles in the “soft sphere” sim-
ulations are rigid, however they can overlap at the contact points.
(As discussed above, no overlap is allowed in the “event driven”
methods.) In this approach, friction and elastic restitution come
into effect only when spheres penetrate each other. In the soft
sphere models, the normal component of the inter-particle force
is calculated considering either the particle overlap at the con-
tact point (for compressive forces) or the particle separation at
the contact point (where tensile force transmission occurs). In
geomechanics applications in particular, a key assumption is that
the compressive overlap or tensile separation will be small. The
shear or tangential forces are calculated from the cumulative rel-
ative displacement at the contact points in a direction orthogonal
to the contact normal orientation. In contrast to the hard sphere
approach where only one collision is considered at each time in-
crement, the soft sphere models can handle systems with multiple
simultaneous contacts, as typically arise in static or quasi-static
problems. As outlined by O’Sullivan (2002), various algorithms
that fall within this “soft sphere” category exist however, the most
commonly used approach is the distinct element method, as origi-
nally described by Cundall and Strack (1979a). Given the preva-
lence of Cundall and Strack’s approach the terms “discrete element
method” and “distinct element method” are essentially used inter-
changeably. Strictly speaking the distinct element method really is
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a type of discrete element method. The distinct element method is
the method given the most consideration in this text. Other soft
sphere approaches that are algorithmically similar to DEM in-
clude the discontinuous deformation analysis method (DDA) (Shi
(1988), adapted for particle systems by Ke and Bray (1995)), and
the implicit methods proposed by Kishino (1989) and Holtzman
et al. (2008).

There are a few documented geomechanics research studies
that have adopted a method called contact dynamics (e.g. Lanier
and Jean (2000)). This method does not strictly fall within either
the event driven or soft sphere frameworks and is sometimes re-
ferred to as rigid body dynamics (Pöschel and Schwager, 2005).
The general idea is that the contact forces between the particles
are determined so that there is no particle deformation (i.e. “hard
spheres”, but with finite contact durations). The tangential forces
are determined by considering the forces required to keep the parti-
cles from sliding. Pöschel and Schwager (2005) state that while the
algorithm associated with this method is more complex than DEM
or molecular dynamics, and there are more calculations involved
in each time increment, there is not a corresponding increase in
computational cost, as the time increments in the analysis are
larger.

Another particle-scale approach that is used to analyse granu-
lar materials is the Monte Carlo method. As in the event driven
approach, penetration of particles is not allowed; however the
contacts are finite in duration. As outlined by Sutmann (2002),
amongst others, in this simulation approach at each iteration each
particle is subject to a number of trial moves. The change in en-
ergy generated by each of these moves is calculated and the move-
ment leading to the lowest energy is that selected for progressing
to the next configuration. This approach is applicable only to the
study of systems in static equilibrium, i.e. it cannot be applied
to consider flow of granular materials. A less well-established sta-
tistically based approach involving the application of the Markov
stochastic process was described by Kitamura(1981a,b).
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Molecular dynamics

It is important to be aware of the similarities between particulate
DEM and molecular dynamics. Molecular dynamics is an analysis
tool used in chemistry, biochemistry and materials science. Us-
ing this method, materials are studied at the most fundamental
level by simulating the interactions between individual molecules
or atoms. The objective of these simulations is to relate the bulk
properties of a material (be it liquid, solid or gas) and fundamental
atomistic interactions. These particles are modelled as point-like
centres that interact via pair or multi-particle interaction poten-
tials (e.g. the Leonard-Jones potential). The time scales of interest
in molecular dynamics are of the order of 1 μs, and the trajectory
lengths are between 10 and 100 Ångstroms (Sutmann, 2002).

Liquids tend to be the materials most commonly considered
in molecular dynamics simulations, with consideration often be-
ing given to analysis of phase transformation, for example. In
fact the method was initially proposed by Alder and Wainwright
(1957) who described the phase transformation of a system of rigid
spheres, these authors later outlined the general methodology of
molecular dynamics in Alder and Wainwright (1959). Sutmann
(2002) outlines the history of molecular dynamics, while Rapaport
(2004) provides an overview of molecular dynamics, including de-
tails of the implementation of a molecular dynamics code. Pöschel
and Schwager (2005) suggest that typical molecular dynamics sim-
ulations are less computationally intensive than particulate DEM
simulation as in DEM the particles exert forces on each other only
when they are in contact. The numerical stability requirements
necessitate a smaller time step for particulate DEM as the con-
tact response is relatively stiff (the influence of contact stiffness
on the simulation time increment is considered in some detail in
Chapter 2). However, some molecular dynamics methods (ab ini-
tio molecular dynamics) consider explicitly the interaction of the
particles at the electron scale and are significantly more complex
than granular DEM (e.g. the ONETEP algorithm proposed by
Skylaris et al. (2005)).

As noted above meshless methods, including SPH, are another
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type of particle-based model used in geomechanics. The basic idea
in meshless methods is that the “particles” are used as interpo-
lation points where the material displacement is tracked, and the
material is continuous between these points. These methods differ
significantly from the particulate DEM methods considered in this
text and they are not given further consideration here. Readers
seeking additional information on the meshless methods may wish
to refer to Belytschko et al. (1996).

1.3 Use of Block DEM Codes in

Geomechanics

Two types of discrete element model are used in geomechanics, re-
ferred to here as block DEM and particulate DEM. Both types of
model considers systems made up of numerous individual bodies,
either blocks or particles. These discrete bodies can move relative
to each other and they can rotate. Contacts can form between
the bodies, and as the system deforms, these contacts can break
and new contacts can form. Typically a small amount of overlap
is allowed at the contact between the bodies, and this overlap is
analogous to the deformation that occurs at the contacts between
the real bodies. Simple “contact constitutive models” are used to
relate the contact forces between the bodies to the contact overlap.
The shear components of the contact force impart a moment to the
bodies. Knowing the contact forces and the inertia of the body,
by considering the dynamic equilibrium of each body, its acceler-
ation can be calculated. From these accelerations, displacements
of the particles over small time increments can be determined. By
advancing forward using these small time steps the evolution of
the system can be simulated.

While the focus of this book is on particulate DEM, it is im-
portant to be aware of the use of block DEM simulations in ge-
omechanics. This type of analysis is used to model systems of
polygonal rock blocks or masonry structures; for example Powrie
et al. (2002) analysed dry stone retaining walls, while Basarir et al.
(2008) simulated excavation of rock. Examples of block discrete
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element codes include the commercial code UDEC (Itasca (1998))
and the Discontinuous Deformation Analysis code (DDA) (e.g.
Shi (1988), MacLaughlin (1997), Doolin (2002)). In these codes a
system of orthogonal, stiff (“penalty”) springs are used to calcu-
late the contact forces, while minimizing the overlap between the
blocks. The blocks are typically simply deformable (linear elastic).
The ability of the blocks to deform is the principal difference be-
tween the block codes and the particle codes. As a consequence of
the block deformability, for two equivalent simulations using the
same number of particles and same particle geometries, the calcu-
lations are more time-consuming in comparison with a simulation
using a particle code with rigid particles.

Figure 1.6 illustrates the application of the DDA block code
to analyse the Vaiont landslide that took place in Italy in 1963.
As described by Sitar et al. (2005), when compared with limit
equilibrium analyses, the DDA simulations yielded reasonable re-
sults and facilitated parametric studies considering the influence
of the number of discontinuities on the deformation mode. This
approach to discrete element modelling is not considered in detail
in this text, however many of the basic principles underlying the
particulate discrete element modelling codes described here also
apply to block discrete element codes.

(a) 12 block discretiza-
tion

(b) 105 block discretiza-
tion

Figure 1.6: Back analysis of Vaiont Landslide using the Block Dis-
crete Element Method, DDA. Solid lines indicate deformed block
configuration, dashed lines indicate original slope geometry. Sitar
et al. (2005)
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1.4 Overview of Particulate DEM

As noted above, the distinct element method is the type of discrete
element method that is currently most popular in geomechanics.
The basic formulation for the distinct element method for gran-
ular materials was proposed and described by Peter Cundall and
Otto Strack in two reports to the US National Science Foundation,
Cundall and Strack(1978 and 1979b) and a subsequent paper in
the journal Géotechnique (Cundall and Strack, 1979a).

An overview of the sequence of calculations involved in a DEM
simulation is given in Figure 1.7. To carry out a DEM simulation
initially the user inputs the geometry of the system to be anal-
ysed, including the particle coordinates and boundary conditions.
The material properties are usually input by specifying the con-
tact model parameters, including stiffness and friction coefficient.
The user specifies a schedule for loading or deforming the system.
Then the simulation progresses as a transient, or dynamic, analy-
sis, typically for a specified number of time increments. At each
time step the contacting particles are identified. The magnitude of
the inter-particle forces relate to the distance between contacting
particles. Having calculated these inter-particle forces, the resul-
tant force and moment or torque acting on each particle can be
determined. Except when particle rotation is inhibited, at each
time increment two sets of equations for the dynamic equilibrium
of the particles are solved. The translational movement of each
particle is determined from the resultant applied force, and the re-
sultant applied moment is used to calculate the rotational motion.
Knowing the particle inertia, the translational and rotational ac-
celerations of the particles can be calculated. The displacement
and rotation of the particles over the current time-step is then
found through a simple central-difference-type integration through
time. The resultant forces and moments that impart these transla-
tional and rotational accelerations on the particles are sometimes
called “out-of-balance” forces (e.g. Thornton and Antony (2000),
Itasca (2004)). Using these incremental displacements and rota-
tions, the particle positions and orientations are updated, in the
next time step the contact forces are then calculated using this
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updated geometry, and the series of calculations are repeated. A
discrete element analysis is therefore a transient or dynamic, anal-
ysis, even if the system of interest is responding in an almost static
manner.

t=0: Input

Define system geometry 
and 

contact model

time t: Calculate

Identify contacting particles
+

Calculate contact forces

time t: Calculate

Calculate resultant force acting 
on each particle,

include body forces, 
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Figure 1.7: Schematic diagram of sequence of calculations in a
DEM simulation

As illustrated in Figure 1.8 within each time increment there
are two main series of calculations. In the first instance the par-
ticle velocities and incremental displacements are calculated by
considering the equilibrium of each particle in sequence. Then
having updated the system geometry the forces at each contact in
the system are calculated. The tangential component of the con-
tact force will always impart a rotational moment to the particles,
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and in many cases the normal contact force component will also
generate a moment. These forces and moments are distributed to
the particles and then used to adjust the particle positions in the
next time increment.

Figure 1.8: Indication of calculation sequence within a DEM time
step

A clear statement of the assumptions inherent in DEM is im-
portant from the outset, although it must be acknowledged that
not every implementation of DEM may adhere exactly to these as-
sumptions, particularly as the complexity of DEM codes increases.
However, using the lists proposed by Kishino (1999) and Potyondy
and Cundall (2004) as a basis, the following key assumptions typ-
ically made in particle-based DEM simulations can be stated:

1. The basic particles are rigid, they possess a finite inertia
(mass and rotational inertia) and they can be analytically
described.

2. The particles can move independently of each other and can
translate and rotate.
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3. The program automatically identifies new contacts between
particles.

4. The contact between particles occurs over an infinitesimal
area and each contact involves only two particles.

5. The particles are allowed to overlap slightly at the contact
points and this overlap is analagous to the deformation that
occurs between real particles. The magnitude of the defor-
mation of the each particle at the contact point is assumed
to be small.

6. The compressive inter-particle forces can be calculated from
the magnitude of the overlap.

7. At the contact points, it is possible for particles to transmit
tensile and compressive forces in the contact normal direc-
tion as well as a tangential force orthogonal to the normal
contact force.

8. Tensile inter-particle forces can be calculated by considering
the separation distance between two particles. Once the ten-
sile force exceeds the maximum tensile force for that contact
(which may be 0), the particles can move away from each
other and the contact is deleted and no longer considered
when calculating the contact forces.

9. The time increment chosen in a DEM simulation should
be small enough that the motion of a particle over a given
time step is sufficiently small to only influence its immediate
neighbouring particles.

10. Agglomerates of the rigid base particles can be used to rep-
resent a single physical particle, and the relative motion of
these base particles within the agglomerate may cause a
measurable deformation of the composite particles. Alter-
natively these agglomerates may themselves be rigid.

From the analyst’s point of view there are many similarities
between the overall process involved in a DEM simulation and the
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Figure 1.9: Generic Flow Chart for Numerical Analysis in Me-
chanics

process involved in a continuum-based analysis, e.g. using finite
element analysis. A generic flowchart for numerical analysis in
mechanics is given in Figure 1.9. There are some key differences
between the effort associated with a DEM analysis and a con-
ventional continuum analysis. Undoubtedly mesh generation for
finite element analysis of bodies with highly complex geometries
is non-trivial. However, t generating the initial positions of the
particles in the problem domain to be analysed is probably more
difficult and typically involves DEM calculation cycles. In fact, it
is possible for this model creation phase to be at least as compu-
tationally expensive as the main simulation. As calculation cycles
are involved in the specimen generation stage, the discussion of
this phase of the analysis is given in Chapter 7, after the details
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on the method have been considered in Chapters 2–5.

The non-linearity of the systems considered and the explicit ap-
proach to time integration used mean that a small time increment
must be adopted in DEM simulations. It is these considerations,
combined with the need to include large numbers of particles, that
make DEM simulations so computationally intensive.

A DEM simulation generates basic results in terms of individ-
ual particle positions and inter particle contact forces, rather than
in terms of stress and strain. A postprocessing procedure is re-
quired to interpret these results in a useful or meaningful manner
and relate them to our continuum-mechanics based understanding
of soil behaviour. A wide variety of interpretation techniques have
been proposed in the literature, some of which are not easy to
implement and typically involve greater effort and more abstract
concepts (including statistical mechanics) than the methods used
to interpret continuum analyses. Chapters 8–10 provide overviews
of various interpretation approaches.

For readers accustomed to continuum-based geomechanics anal-
yses it may be useful to consider how DEM meets the theoretical
requirements for a valid analysis. In conventional continuum me-
chanics a method of analysis is typically required to satisfy four
theoretical requirements, namely equilibrium, compatibility, con-
stitutive behaviour and boundary conditions. In a DEM simula-
tion equilibrium is accounted for by considering the dynamic equi-
librium of each particle at each time increment during the analysis.
As discussed further in Chapter 11, for quasi-static analyses the
user must also consider the overall equilibrium of the system as a
test to establish the validity of a particular simulation. In a con-
tinuum analysis the compatibility requirement is satisfied, mean-
ing that as the system deforms holes should not appear and the
material does not develop overlaps. As outlined by Potts (2003),
amongst others, from a mathematical perspective this requirement
implies that components of strain exist and are continuous and the
derivatives of strain exist to at least second-order. This require-
ment is effectively violated in a particulate DEM simulation. No
strain occurs within the rigid bodies, they are allowed to overlap
and the displacement field is highly non-uniform. A discussion on
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interpreting DEM analysis by calculating strains from the particle
displacements is given in Chapter 9.

In continuum-based materials modelling, the constitutive ma-
trix relates the stresses and strains within the material and this
relationship can be linear or non-linear. No constitutive model
is required in a DEM model; rather, as discussed in many DEM
related papers, the constitutive model “emerges” from the DEM
simulation results. A model describing the response at the particle
contacts is required and this is somewhat analogous to the consti-
tutive model. A direct mapping of the contact model to a contin-
uum constitutive model would be inappropriate. The macro-scale
or continuum response will depend on the response at the con-
tacts, the geometry of the granular material and the ability of the
particles to crush, fail or deform. Even if a linear contact model is
adopted, the overall response will be non-linear as a consequence
of the evolution of the inter-particle contacts.

Finally a statement of the boundary conditions is required;
these boundary conditions play a large role in defining the problem
to be analysed. The concepts of boundary conditions are similar
in both continuum and DEM analyses; however, the details differ
and a discussion on the various boundary conditions used in DEM
simulations is given in Chapter 5.

1.5 Use of DEM Outside of

Geomechanics

Granular materials are encountered in a variety of disciplines out-
side of soil mechanics and geotechnical engineering. Most notably,
chemical and process engineers also regularly adopt DEM in their
research. The complexity of granular material response has at-
tracted interest from mathematicians and physicists who use DEM
simulations to generate data for subsequent detailed analysis of
the fundamentals of granular material response. As in the case
of geomechanics applications, there is potential, with increasing
computational power, to apply DEM to solve industrial problems.
Recent conference proceedings, e.g. Nakagawa and Luding (2009),
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illustrate the range of applications of DEM across these disciplines.
Much information on the applicability of DEM to advance under-
standing of granular materials for geomechanics applications can
therefore be gained by reference to journals in these other disci-
plines. Two particularly useful publications are Zhu et al. (2007
and 2008) which provide reviews of the development of DEM algo-
rithms and the application of DEM respectively from a chemical
engineering perspective. The recent special editions of the jour-
nals Powder Technology, Thornton (2009), and Particuology, Zhu
and Yu (2008), also contain papers of interest to the geomechanics
community.

1.6 Introduction to Tensorial Notation

Tensorial notation (sometimes called index notation) is adopted
throughout this book. Most publications referred to in the book
also use tensorial notation and, while some authors (e.g. Potyondy
and Cundall (2004)) provide clarification, familiarity with this no-
tation tends to be assumed. This section is included to give the
reader a very brief overview of tensorial notation both to facilitate
understanding of the material in this book as well as the broader
set of publications associated with the topic. For more detailed
explanation reference to a continuum mechanics textbook (e.g.
Shames and Cozzarelli (1997)) is recommended.

Tensorial notation is attractive as it is allows vectors and op-
erations on vectors to be described concisely. It has particular
advantages when developing computer programs where data are
stored in arrays that are accessed using integer indices. In partic-
ulate DEM there are calculations and operations involving force
vectors, position vectors, displacement vectors, etc. In this book
the intrinsic form of the vector is denoted in bold typeface; thus
the particle displacements are given by u, the resultant force act-
ing on a particle is given by f, and the particle position is given by
x. These terms are then used to refer to the vectors in a general
sense as entities with a specific magnitude (|u| or |f |) and whose
directions can be described relative to a specified coordinate sys-
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tem.
Every vector will have components parallel to each of the co-

ordinate axes. Tensorial notation provides a convenient means of
describing operations on each of these components. When these
vectors are expressed in tensorial, or indicial, form they are de-
noted ui, fi and xi with the subscript i indicating that the vector
component parallel to a specific coordinate axis, i, is under con-
sideration. For example, if the term ui is used to describe the dis-
placement of a particle, this vector may have either 2 or 3 compo-
nents, depending on whether we are considering a two-dimensional
or three-dimensional analysis. In the Cartesian coordinate sys-
tem the displacement denoted ui is given by ui = (ux, uy) and
ui = (ux, uy, uz) in two-dimensional and three-dimensional analy-
ses respectively. As there is only one index (i) the vector ui is a
first-order tensor.

Extending consideration to two-dimensional tensors, the stress
tensor is given by σ or σij and this tensor can represent either a
two-dimensional or three-dimensional state of stress. In this case,
even if the stress state is fully three-dimensional, there are two
indices (i and j) and this tensor is then a second-order tensor.
The indices i and j are considered “free indices” as they are both
“free” to adopt independently any of the values x, y (and z in
3D). The stress tensor for two-dimensional analysis is represented
in matrix form as

σij =

(
σxx σxy

σyx σyy

)
(1.1)

while in 3D the stress tensor is given by

σij =

⎛⎜⎝ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞⎟⎠ (1.2)

Here compressive stresses and forces are taken to be positive
as this is the convention typically adopted in geomechanics (refer
to Figure 1.10(a)). The components along the diagonal (σxx, σyy,
σzz) are the normal or direct stresses, while the off-diagonal terms
(σxy, σyx, σzx, etc.) are the shear stresses. When a material is
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in a state of static equilibrium with equal complementary shear
stresses, then the stress tensor is symmetric and we can say σij =
σji. As illustrated in Figure 1.10 for every stress state (two- or
three-dimensional) planes oriented at θ and θ+ 1

2
π to the horizontal

can be found in the material along which no shear stresses are felt.
The direct stresses acting on these planes are called the principal
stresses and the normals to the planes give the principal stress
orientations. The principal stresses are given by the eigenvalues of
the stress tensor, while the eigenvectors give the principal stress
orientations. Typically the maximum or major principal stress
is denoted by σ1 and the minimum or minor principal stress is
denoted by σ3. In 3D there will also be an intermediate principal
stress σ2, with σ1 > σ2 > σ3.

Figure 1.10: Illustration of two-dimensional stress state

The notation for addition and subtraction of vectors using
tensors is straightforward. For example consider two contacting
(touching) particles a and b. If the centroid of particle a has a
position vector xa

i and the centroid of particle b has a position
vector xb

i , then the vector giving the location of particle b relative
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to particle a (called the branch vector) is given by li = xb
i −xa

i . In
3D this operation expands as follows:

li =

⎛⎜⎝ lx
ly
lz

⎞⎟⎠ =

⎛⎜⎝ xb
x − xa

x

xb
y − xa

y

xb
z − xa

z

⎞⎟⎠ (1.3)

As noted above, the tensorial notation system includes many
ways for expressing mathematical operations involving vectors (1D
arrays) and matrices concisely. The “dummy index” is used to
indicate that we are considering terms along the diagonal, and
less intuitively it denotes summation. Using this approach the
trace of the stress tensor is given by σii, and this is given by

σii = σxx + σyy (2D)
σii = σxx + σyy + σzz (3D)

(1.4)

The sum σii is the first invariant of the stress tensor (Iσ). This
parameter is “invariant” (i.e. unchanging) if the tensor is subject
to an orthogonal rotation, e.g. if the tensor is rotated to consider
the components along the principal axes of stress.

The dummy index concept can be extended to operations in-
volving more than one tensor. For example, consider the contact
force vector between two particles to be denoted by fi and the
branch vector to be denoted by li. In the expression fili, i is a
dummy index and indicates reference to the inner product, i.e.

fili = fxlx + fyly (2D)

fili = fxlx + fyly + fzlz (3D)
(1.5)

In a similar manner, in three dimensions, the magnitude of a
vector |v| is given by

| v |= √
vivi =

√
vxvx + vyvy + vzvz (1.6)

The use of free indices gives the expression filj and this can be
used to represent fxly when i = x and j = y or fxlx when i = x
and j = x. Expressions similar to

∑
N
filj are used throughout
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this book. The expansions of this expression in two and three
dimensions are:

∑
N
filj =

⎛⎜⎝
∑
N
fxlx

∑
N
fxly∑

N
fylx

∑
N
fyly

⎞⎟⎠ (2D)

∑
N
filj =

⎛⎜⎜⎜⎜⎝
∑
N
fxlx

∑
N
fxly

∑
N
fxlz∑

N
fylx

∑
N
fyly

∑
N
fylz∑

N
fzlx

∑
N
fzly

∑
N
fzlz

⎞⎟⎟⎟⎟⎠ (3D)

(1.7)

Note that the product filj is called the dyadic product of the
two vectors f and l, and this can also be expressed as f

⊗
l.

In another example involving the use of the dummy index, the
stress acting along a direction specified by the normal (unit) vector
nj can be calculated by multiplying the normal vector by the stress
tensor. In tensorial notation this operation is expressed as σijnj .
As above, repetition of the index j (the dummy index in this case)
in the term σijnj indicates that there will be a summation. The
expansion (in 3D) is given by

σijnj = σixnx+σiyny+σiznz =

⎛⎜⎝ σxxnx + σxyny + σxznz

σyxnx + σyyny + σyznz

σzxnx + σzyny + σzznz

⎞⎟⎠ (1.8)

Gradients are often of interest in geomechanics, and in the cur-
rent context the use of a deformation gradient to calculate strain
is important. Tensorial notation provides a concise notation for
partial derivatives. In this case a comma, “ , ”, is used to indicate
a partial derivative, i.e. the notation vi,j indicates the spatial par-
tial derivative of the terms in vector vi with respect to coordinate
j. For example, if the vector describing the incremental displace-
ment of a particle is given by ui the displacement gradient is given
by ui,j and in the 3D case this expands to
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ui,j =

⎛⎜⎜⎝
∂ux

∂x
∂ux

∂y
∂ux

∂z
∂uy

∂x
∂uy

∂y
∂uy

∂z
∂uz

∂x
∂uz

∂y
∂uz

∂z

⎞⎟⎟⎠ (1.9)

In addition to spatial derivatives we also need to consider tem-
poral derivatives, i.e. rates. The notation u̇i is used to denote the
rate of change of the tensor ui with respect to time, i.e.

u̇i =

⎛⎜⎝
∂ux

∂t
∂uy

∂t
∂uz

∂t

⎞⎟⎠ (1.10)

Finally in relation to tensorial notation it is useful to introduce
two specific tensors, the Kronecker delta δij and the alternating
tensor eijk. The Kronecker delta is defined to have the property

δij =

⎧⎪⎨⎪⎩
1

0

when i = j

when i �= j
(1.11)

The product of the Kronecker delta and a second-order tensor is
given by

σijδjk = σik (1.12)

In this expression j is a dummy index and the free indices on each
side of the equation are the same.

The alternating tensor is given by

• eijk = 1 when the indices are in the order xyz, yzx, zxy, i.e.
cyclic order of indices.

• eijk = −1 when the indices are in the order xzy, yzx, zyx,
i.e. anticyclic order of indices.

• eijk = 0 when there are repeated indices, e.g. xxy, xxz, xyy,
etc.
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The alternating tensor can be used to calculate the cross prod-
uct of two tensors; in three dimensions the cross product is given
by c = a× b where

ci = eijkajbk (1.13)

The vector c will be orthogonal to both a and b.

1.7 Orthogonal Rotations

Chapters 2, 5 and 8 all refer to rotation of parameters. For exam-
ple, when moving from a coordinate system defined by the prin-
cipal axes of inertia of a given particle to the global coordinate
system. To achieve this rotation an orthogonal rotation tensor
is required. If a rotation is orthogonal then the product of two
successive rotations is given by

TijTkj = δik (1.14)

Furthermore the transpose of T will equal the inverse of T, TT =
T−1. We can rotate any vector a, with components (ax, ay, az)
using a rotation tensor, using the tensor product a′i = Tijaj where
the tensor a′i gives the rotated components of the vector a. The
magnitude of the vector will remain unchanged, i.e. |aj| = |a′i|.

In three dimensions to rotate a vector ai through an angle θ
about the z−axis the following expression is used:

⎛⎜⎝ a′x
a′y
a′z

⎞⎟⎠ = T

⎛⎜⎝ ax
ay
az

⎞⎟⎠ =

⎛⎜⎝ cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎞⎟⎠
⎛⎜⎝ ax

ay
az

⎞⎟⎠
(1.15)

where ai represents the original vector and a′i is the rotated
vector. When a vector is multiplied by an orthogonal rotation
matrix a rigid body rotation is achieved, i.e. the vector length is
preserved as the orientation changes.

While the basic DEM calculations are almost exclusively opera-
tions on one-dimensional vectors (i.e. particle velocity vector, con-
tact force vector), analysis of the system typically involves the use
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of second-order tensors (2D matrices), including the stress tensor,
the strain tensor and the fabric tensor. To rotate a second-order
tensor (σij) from one coordinate system to another the operation
is given by (

σ′
xx σ′

xy

σ′
yx σ′

yy

)
= T

(
σxx σxy

σyx σyy

)
TT (1.16)

1.8 Tessellation

The particulate systems considered in this book comprise discrete
particles and their contacts. The creation of triangulations of
the system is useful for applications including construction of the
initial specimen geometry (Chapter 7), application of boundary
stresses (Chapter 5), calculation of strain (Chapter 9), and anal-
ysis of the material fabric (Chapter 10). An overview of triangu-
lation is therefore included at this point. More detailed consid-
erations of the application of Delaunay triangulation in granular
mechanics are given by Li and Li (2009), Goddard (2001), Ferrez
(2001) and Bagi (1999a). Rapaport (2004) describes the imple-
mentation of a subroutine to construct a Voronoi polygon to anal-
yse the structure of particulate systems in a molecular dynamics
code, while Ferrez (2001) discusses the use of triangulation for
contact detection. It may also be possible to use triangulation to
couple DEM particle codes with continuum mechanics to represent
a fluid phase.

A tessellation is a general term to describe the division of a
space into a set of subspaces that do not overlap and that fill the
space completely (i.e. with no gaps). These tessellations can exist
in two- and three-dimensional space. Amongst the most commonly
used tessellations are the Delaunay triangulation and the Voronoi
diagram; these geometrical constructs are closely related and each
is said to be the “dual” of the other. From a geomechanics per-
spective it is useful to realize that Delaunay triangulation is often
used in mesh generation for finite element analyses of complex
geometries.

Referring to Shewchuk (1999), for example, a triangulation of
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a set of n points or nodes, P = {P1, Pk, Pn}, is a set of m (m �= n)
triangles, T = {T1, Tk, Tm} whose interiors do not intersect each
other. A Delaunay triangulation of a nodal set has the property
that no node in the nodal set falls in the interior of the circumcir-
cle (circle that passes through all three vertices) of any triangle in
the triangulation. The Delaunay triangulation of the vertex set is
unique. Higher-dimensional Delaunay triangulations are a gener-
alization of the two-dimensional Delaunay triangulation. In three
dimensions, the triangulation of V yields a set, T, of tetrahedra,
whose vertices are V, and whose interiors do not intersect each
other. In this case no node in the nodal set falls in the interior of
the circumsphere (sphere that passes through all four vertices) of
any tetrahedron in the triangulation. The Delaunay triangulation
of 10 random points (nodes) in two dimensions is illustrated in
Figure 1.11(b) and a three-dimensional triangulation is illustrated
in Figure 1.12.

(a) (b) (c)

Figure 1.11: (a) 10 random points (b) Delaunay triangulation (c)
Voronoi diagram
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Figure 1.12: (a) 10 random points (b) Tetrahedra generated by
3D Delaunay triangulation

As discussed by Okabe et al. (2000), there are a number of
different algorithms available for the implementation of Delaunay
triangulation. Most of the triangulations used in this work were
calculated using MATLAB, which uses the qhull algorithm (Bar-
ber et al., 1996).

As noted above, the Delaunay triangulation is related to (or
is the dual of) a second geometrical construct called the Voronoi
diagram or the Voronoi tessellation. The Voronoi diagram of a
set of n nodes P = {P1, Pk, Pn}, is a set of n polygons, V =
{V1, Vk, Vm}. Each polygon Vk is centred around a corresponding
node Pk. The polygon Vk encloses an area or volume, such that
every point within that polygon that is closer to the node Pk than
to any other node in the set P. The Voronoi diagram for the
system of points given in Figure 1.11(a) is illustrated in Figure
1.11(c).

1.9 General Comments on Computer

Modelling

A DEMmodel is an idealization of the real physical system and the
extent of the idealizations used in creating the model will be dis-
cussed at various points in this text. It is important also to always
be aware that a DEM simulation is a computer simulation and the
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calculations are performed using finite, floating point representa-
tions of the real numbers, i.e. representations of the real numbers
containing only a finite number of digits. An introduction to some
of the issues associated with floating point arithmetic is given by
Burden and Faires (1997) and a more detailed discussion is given
by Goldberg (1991). The error associated with representing a real
number in the floating point format used by computers is called a
round-off error. The calculations in DEM simulations are there-
fore carried out on approximate representation of real numbers
and the results of the calculations themselves are also subject to
a round-off, which will introduce a further error into the system.
One way to reduce round-off error is to reduce the number of error
generating calculations. Care should also be taken in the choice of
algorithm used to accurately resolve the contact geometry or the
time integration approach. These issues are considered further in
Chapter 4.
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Chapter 2

Particle Motion

2.1 Introduction

A discrete element analysis is a dynamic or transient analysis that
considers the dynamic interaction of a system of interacting par-
ticles. A particulate DEM model creates an ideal system of rigid
particles that can move, connected by rigid springs that simulate
the contact interactions. (The contact spring formulations are
outlined in Chapter 3). As particles move away from each other
contacts are broken and some of the springs will be removed; at
the same time additional springs will be introduced as new con-
tacts are formed. The continuous removal and introduction of
contact springs results in a change in the overall system stiffness.
A reduction in stiffness will also occur if a contact starts to slide.
Therefore the analysis is non-linear. This non-linearity could be
described as a geometrical non-linearity as it arises owing to a
change in the local packing geometry of the particles. As will be
discussed in Chapter 3, the contact constitutive model used to
describe the force displacement response at the contacts is often
non-linear, and this adds a material non-linearity to the system.
These two particle-scale sources of non-linearity combine to give an
overall non-linear macro-scale material response. At larger strains
where sliding occurs the geometric non-linearity caused by gross
movements at the contacts and “buckling” mechanisms that can
develop in local groups of particles will dominate the response,
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while the influence of the non-linear response at the contacts will
be more evident at small strain levels, before the onset of sliding.

The basic principles of DEM are normally introduced by di-
rectly considering the dynamic equilibrium of the individual par-
ticles. Here DEM is introduced in a slightly different way. Civil
engineers are usually familiar with the basic theories of matrix
structural analysis and finite element analysis. In these approaches
typically a large system of linear equations or stiffness matrix is
formed. The displacements of the structural elements are deter-
mined by inverting this stiffness matrix. Particulate DEM uses
a different solution strategy that introduces a greater risk of nu-
merical instability (it is conditionally rather than unconditionally
stable). To understand why the conditionally stable approach is
preferred in particulate DEM, it is useful to initially consider DEM
from the perspective of matrix structural analysis. As was already
shown in Figure 1.4, the particles are analogous to the degrees of
freedom in a matrix structural analysis (i.e. the end points of the
structural elements) or alternatively the nodes in a finite element
mesh. Using this analogy, the overall governing equation for the
system can be expressed as the standard governing equation for
a dynamic analysis in structures or continuum finite element or
finite difference analysis, so that

Mü+Cu̇+K(u) = ΔF (2.1)

where M is the mass matrix (or more correctly the inertia ma-
trix , including both mass and rotational inertia), C is a damping
matrix, u is the incremental displacement vector (including both
translational and rotational displacements) and ΔF is the incre-
mental force vector (including moments). The global stiffness ma-
trix K depends upon the system geometry, i.e. which particles are
contacting. The incremental displacements are the movements of
the particles over the current time step. The objective of the anal-
ysis is to solve for the incremental displacements. The velocity and
acceleration vectors are given by u̇ and ü. The particles in a DEM
model are then analagous to the nodes in a finite element anal-
ysis. However, as the particles are free to rotate, a particle in a
2D DEM analysis has three degrees of freedom (two translational
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and one rotational), while a particle in a 3D DEM analysis has six
degrees of freedom (three translational and three rotational).

Equation 2.1 is the dynamic equilibrium equation for the sys-
tem. Broadly speaking, two approaches can be used to solve the
dynamic equilibrium equation for a multi-nodal system. These
approaches are termed implicit and explicit . In the implicit ap-
proach a single vector u can be created to represent the combined
incremental displacements for all the particle centroids in the sys-
tem. This is similar to the use of a single vector to represent the
displacements of all the nodes in a finite element analysis, i.e.

u =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u1
x

u1
y

u1
z

up
x

up
y

up
z

uNp
x

uNp
y

uNp
z

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.2)

where up
x, u

p
y, u

p
z, are the incremental translational displacements

of particle p in the three coordinate directions respectively and
there are Np particles in the system. (To simplify the discus-
sion rotations are not considered at this point.) The incremental
force vector ΔF is constructed in a similar manner. The global
mass M, stiffness K and damping C matrices are combined as for
the finite element method or in structural analysis. The global
stiffness matrix construction is not detailed here and interested
readers should refer to the finite element or structural analysis
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texts of Zienkiewicz and Taylor (2000a) or Sack (1989) for guid-
ance on stiffness matrix construction. Ke and Bray (1995) discuss
the stiffness matrix formation for the implicitly particulate DEM
algorithm DDAD (Discontinuous Deformation Analysis for Disks).

Where algorithms that involve assembly of a stiffness matrix
are adopted to solve the dynamic equilibrium equation (Equation
2.33), a large system of simultaneous equations is generated, as in
the finite element method, and solution will involve inversion of
a highly sparse stiffness matrix. For a relatively small 3D system
with 1,000 particles, the stiffness matrix will have 36× 106 entries
including the 0 valued terms as each particle has 6 degrees of free-
dom. Even if efficient algorithms to solve sparse systems of linear
equations are used, the sequence of calculations will be very com-
putationally expensive, both in terms of the number of operations
required to solve the system and in terms of memory requirements.
While some further consideration to this type of approach is given
in Section 2.5 below, most geomechanics researchers use an alter-
native explicit approach that was originally outlined by Cundall
and Strack (1979a,b).

In Cundall and Strack’s distinct element approach, and in
molecular dynamics, solution of the global system of equations
is avoided by considering the dynamic equilibrium of the indi-
vidual particles rather than solving the entire system simultane-
ously. This approach also avoids creation and storage of the large
global stiffness matrix and, as highlighted by Potyondy and Cun-
dall (2004), relatively modest amounts of computer memory are
then required to consider large populations of particles. The im-
plementation is somewhat similar to the implementation used for
finite difference continuum analysis. Referring to Zhu et al. (2007)
probably the most general format for expressing the equation gov-
erning the translational dynamic equilibrium of a particle p with
mass mp is

mpüp =
Nc,p∑
c=1

Fcon
pc +

Nnc,p∑
j=1

Fnon−con
pj + Ff

p + Fg
p + Fapp

p (2.3)

where üp is the acceleration vector for particle p, Fcon
pc are the con-
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tact forces due to contact c when there are Nc,p contacts between
particle p and either other particles or boundaries, and Fnon−con

ck

are non-contact forces between particle p and Nnc,p other parti-
cles (or boundaries). From a geomechanics perspective, the most
likely origin of non-contact forces would be capillary forces in un-
saturated soil. Ff

p is the fluid interaction force acting on particle
p, Fg

p is the gravitational (body) force and Fapp
p is a specified ap-

plied force (for example this may arise where a “stress-controlled
membrane” is used as discussed in Section 5.4). Comparing Equa-
tions 2.1 and 2.3, there is no explicit consideration of damping in
Equation 2.3, rather the contribution from damping is included in
the calculation of the contact force (refer to the viscous dashpots
described in Chapter 3 and also to Section 2.7 below).

The torque generated at each contact point is calculated as
the cross-product of the contact force and a vector from the cen-
tre of the particle to the contact point. The dynamic rotational
equilibrium is given by

Ip
dωp

dt
=

Nmom∑
j=1

Mpj (2.4)

where ωp is the angular velocity vector and Mpj is the moment
applied by the jth moment transmitting contact forces involving
particle p and there are a total of Nmom moment transmitting
contacts. As will be discussed in more detail in Chapter 3, at each
contact point there will be a component of the contact force that
is normal to the contact and a second component that acts along
or tangential to the contact. The tangential forces will always
impart a moment; however, the normal forces will only impart a
moment if their line of action does not pass through the centroid of
the particle (i.e. if the particles are non-circular or non-spherical).
Moment transmitting contact models, e.g. rotational springs or
the parallel bond model, have also been proposed.

During the deformation of a granular material the particle posi-
tions and the forces acting on the particles continuously evolve. In
a DEM simulation time is discretized; this means that the system
is examined at specific points in time and the real, continuously
changing physical system is not accurately captured. As illus-
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trated in Figure 1.8 in Chapter 1, at each time step there are two
main sequences of calculations. The contact forces are calculated
based on the most recently updated particle positions. This means
that the applied forces and torques in Equations 2.3 and 2.4 are
assumed to be known. Then Equations 2.3 and 2.4 can therefore
easily be manipulated to give the particle translational and rota-
tional accelerations, ω̇p and üp, i.e. equilibrium equations generate
two sets of ordinary differential equations for each particle.

2.2 Updating Particle Positions

Knowing the resultant forces acting on the particles we can calcu-
late the accelerations for particle p from the equation of dynamic
equilibrium for the particle. If the translation motion of the par-
ticle is isolated, this equation is simply given by:

mpa
t
p = Ft

p (2.5)

where mp is the inertia (mass) matrix, atp = üt
p is the accelera-

tion vector at time t, and Ft is the resultant force vector. Note
that the acceleration vector, at considers only the translational
degrees of freedom and has 2 components in two dimensions and
3 components in three dimensions. The force vector Ft also has 2
components in two dimensions and 3 in three dimensions. In the
two-dimensional case the mass (inertia) matrix is given by

mp =

(
mp 0
0 mp

)
(2.6)

where mp is the particle mass, calculated as the particle density
times the volume. In three dimensions the mass matrix, mp is
a 3 × 3 matrix, with the diagonal terms equal to mp, and the
off-diagonal terms equal to 0.

The next stage in the analysis involves using these acceler-
ation values to obtain incremental displacements and hence up-
date the particle positions. In numerical analysis, the techniques
used to update parameters given their first and second derivatives
with respect to time (i.e. to get displacements from accelerations),
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are called time integration methods. Many time integration algo-
rithms exist (reference to Wood (1990b) may be useful for readers
specifically interested in this topic). It is important to appreciate
that for general 3D particles, analysis of the rotational motion is
significantly more complex than the translational motion.

In most DEM codes a time integration approach similar to the
central-difference method with a time increment Δt is used. This
approach can most easily be understood by considering the rela-
tionship between the acceleration and velocity vectors, as follows:

atp =
1

Δt
(vt+Δt/2

p − vt−Δt/2
p ) (2.7)

where vt−Δt/2
p and vt+Δt/2

p are the velocity vectors at t−Δt/2 and
t+Δt/2 respectively for particle p. Rapaport (2004) terms this
time integration approach a “leap-frog” method as the velocities
and displacements are calculated with a time lag of Δt/2. Other
authors (e.g. Munjiza (2004)) refer to it as the position Verlet time
integration scheme. As with Fp and ap, the vp vector has 3 com-
ponents in two dimensions and 6 components in three dimensions.
The velocity at time t+Δt/2 is then calculated as:

vt+Δt/2
p = vt−Δt/2

p +Δtm−1
p (Ft

p) (2.8)

The velocity at time t+Δt/2 is taken to equal the average
velocity over the time increment t to t+Δt. Then we can calculate
the updated particle position dt+Δt

p as:

xt+Δt
p = xt

p +Δt× vt+Δt/2
p (2.9)

where the particle position vector x gives the particle Cartesian
coordinates and the total rotation about the principal axis (axes
in 3D).

For two-dimensional discrete element simulations there is no
coupling between the three degrees rotational of freedom. This
means that the particle’s rotational or angular velocities can be
calculated by considering the following dynamic rotational equi-
librium equation:

Ip,zω̇p,z = Mp,z (2.10)
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where ωp,z is the angular velocity about an axis through the centre
of the particle orthogonal to the analysis plane. For a circular or

disk particle the moment of inertia Ip,z equals
ρπr4p
2

where rp is the
particle radius and ρ is the particle density. The central-difference
time integration approach can easily be applied to incrementally
solve this equation as follows:

ωt+Δt/2
p,z = ωt−Δt/2

p,z +Δt
M t

p,z

Ip,z
(2.11)

This angular velocity is used to calculate the tangential com-
ponent of the contact force (refer to Section 3.7). It is also used
to update the position of the edges of non-spherical particles, and
to calculate the total particle rotations (rotations are important
as an indicator of localizations within the material (Chapter 8).
A key decision to be made by the analyst is to choose the value of
the time increment, Δt, to be used in the simulation.

2.3 Time integration and Discrete

Element Modelling: Accuracy

and Stability

In their description of the distinct element method Cundall and
Strack (1979a) proposed the use of the computationally efficient,
explicit, central-difference type time integration scheme. A limita-
tion of this scheme is that it is only conditionally stable, so small
time steps must be used. However, this restriction on the size
of the time increment due to numerical stability considerations is
not as limiting as it might initially appear. To successfully capture
the inherent non-linearity of the problem (changing contact con-
ditions and non-linear contact response) the incremental changes
in the particle positions and contact forces in a given time-step
must be small. This translates into a constraint on the time in-
crement to be small to capture the non-linearity of the system.
Ideally the time increment chosen in a DEM simulation should be
small enough that the motion of a particle over a given time step
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is sufficiently small to only influence its immediate neighbouring
particles. Cundall and Strack (1978) stated that a fundamental
idea of DEM is that the time step chosen be sufficiently small that
in a single time step disturbances cannot propagate from a disk
further than its nearest neighbours.

In the context of analysis of physical systems, a numerical al-
gorithm is a procedure involving a sequence of calculations devel-
oped to model the response of the system. In DEM there is a
set of calculations where information about the current configu-
ration of particles is used to step forward and predict the system
state at a future time. This prediction will be approximate, rather
than exact. It is important to carefully consider the limitations
and approximations involved in the numerical model. In DEM it
is important to consider the accuracy, stability and robustness of
the time integration algorithm used. Sutmann (2002) considers
these issues from a molecular dynamics perspective. During each
cycle in a DEM simulation the dynamic equilibrium equation is
solved for each particle in the assembly. The system of differential
equations is an idealization of the real physical system, limiting
accurate prediction. Specific approximation errors are introduced
when the equation is solved numerically. The round-off error in-
troduced in calculations using computers is considered briefly in
Section 1.9. A second, much larger, error is introduced as a con-
sequence of the approximations used to calculate the particle in-
cremental displacements from the calculated accelerations. This
error is called the truncation error.

In any numerical model that simulates the response of a tran-
sient or dynamic system there will be truncation errors introduced
at each time step. The truncation error can be understood by ref-
erence to the Taylor series expansion. The Taylor series expansion
provides an estimate for the value of a parameter, say the position,
at time t+Δt as given by xt+Δt, in terms of the position at time
t and the temporal derivatives of the position at time t, as

xt+Δt
p = xt

p+Δt

(
dxp

dt

)t

+
Δt2

2!

(
d2xp

dt2

)t

+
Δtn

n!

(
dnxp

dtn

)t

+O
(
Δtn+1

)
(2.12)
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The term O (Δtn+1) is the truncation error. This is the error
introduced in the approximate, calculated value of xt+Δt

p by consid-
ering only the first n derivatives of xp at time t in the prediction.
This truncation error is a measure of the amount by which the
exact solution to the differential equation describing the particle
motion differs from the approximate solution. The error is pro-
portional to Δtn+1. As Δt will be a small number, i.e. Δt << 1,
then the higher the value of n, and hence the greater the number
of derivatives that are included in the approximation, the smaller
the error will be. The error will also be reduced using a smaller
Δt value, with the resultant improvement in accuracy being much
greater for large values of n. In a transient simulation, where we
are calculating the values of xt over many time increments, this er-
ror is considered to be a “local” truncation error that is introduced
at each time increment.

Most DEM codes used in geomechanics use either the central-
difference time integration algorithm or a slightly modified version
of the central-difference method. As noted by Wood (1990b) there
is more than one expression available for the central-difference time
integration approach. The Verlet equations used in DEM are given
by

vt+Δt/2
p = vt−Δt/2

p +Δtat
p

xt+Δt
p = xt

p +Δtvt+Δt/2
p

(2.13)

In an alternative form of the central-difference method, the
incremental displacement is calculated directly from the particle
accelerations at time t (Wood, 1990b), so that

Δxt→t+Δt
p = Δxt−Δt→t

p +Δt2at
p (2.14)

where Δxt→t+Δt
p is the incremental displacement over the time

increment from t to t + Δt, i.e. Δxt→t+Δt = xt+Δt
p − xt

p and
Δxt−Δt→t

p = xt
p − xt−Δt

p . This means that Equation 2.14 gives the
acceleration as

at
p =

(xt+Δt
p −2Δxt

p+Δxt−Δt
p )

Δt2
(2.15)
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In either form, the central-difference algorithm is a second-
order scheme, i.e. the accuracy of the calculated displacement de-
pends on the square of the time increment, Δt2. This time integra-
tion scheme has also been implemented for consideration of struc-
tural dynamics problems, and reference to Chopra (1995) may be
useful to aid in developing an understanding of this method. One
author who discusses the issue of accuracy arising from the trun-
cation error explicitly is Cleary (2000) who stated that for this
method between 20 and 50 time increments are needed to accu-
rately resolve each collision in his simulations, resulting in very
small time increments.

When choosing a method to integrate the particle accelerations
and calculate the updated particle coordinates, it is important that
the method chosen be both consistent and convergent. If the local
truncation error at step i is τ , then the method is consistent if
limΔt→0 |τ | = 0 for all steps in the calculation sequence. A method
is convergent if limΔt→0 |xexact,t−xt| = 0 where xexact,t is the exact
solution to the differential equation describing the particle motion
at time t, and xt is the calculated (approximate) value at the
same time. The truncation error will be magnified as the analysis
proceeds, so at time t = nΔt the error will be magnified n times.

The algorithm must also be “stable.” There are a number of
ways of explaining what is meant by “stability” in the context of
numerical modelling. In general, for a stable system if there are
small changes in the initial data input to the model, the resul-
tant changes in the output will also be small. If an error, E0, is
introduced at a given point in time, the error after n subsequent
calculations, En, is the global error. As noted by Burden and
Faires (1997) it is difficult to determine the global error, but there
is a close correlation between the local error and the global error.
Typically a linear growth in the global error will be unavoidable,
meaning that if a local error E0 is introduced at some point in the
calculation, the cumulative effect of the error after n time incre-
ments is En = CnE0, where C is a constant. If the relationship
between the local and global truncation errors is En = CnE0 then
the algorithm is typically stable, however if En = CnE0 where
n > 1, then there will be an exponential growth in error and the
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method is considered to be unstable. In mechanics applications
analysts sometimes monitor the stability of a numerical model by
calculating the total energy of the system. The components of the
total energy include the strain energy stored in the contact springs
and the particles’ kinetic energy (refer to Section 2.6). Where the
numerical integration is stable there will be no drift in the energy
of the system. In an unstable system there will be a non-physical
increase in energy in the system, i.e. energy is not conserved.

2.4 Stability of Central Difference Time

Integration

The stability of the central-difference time integration approach
is outlined in many basic numerical analysis texts (e.g. Burden
and Faires (1997)). The basic idea of any time integration is that
knowing the position and acceleration of a body we can predict
its future displacement. Typically in numerical analysis/dynamics
courses the concept is introduced by considering the free vibration
of a particle of mass, m, suspended on a simple, elastic sphere with
stiffness k. The dynamic equilibrium equation for this single de-
gree of freedom system is then given by a = −kx, where a = ẍ.
For this simple system, if the central-difference approach is used,
the maximum time increment that can be used is Δt = T

π
, where

T is the period for free oscillation of the system. This period is
calculated as T = 2π

√
m
k
. If predictions are made using a time

increment that exceeds this critical value the results quickly be-
come physically unreasonable and the analysis is said to be unsta-
ble. These restrictions on the choice of time increment that occur
when using the central-difference approach to this simple, single
degree of freedom system also apply in the multi degree of freedom
simulations in DEM.

The critical time increment for stable analysis can be calculated
using linear stability analysis by considering the amplification ma-
trix, Zienkiewicz and Taylor (2000a). In general the amplification
matrix, A, is defined such that xt+Δt = Axt. If any eigenvalue μi

of A has a magnitude exceeding 1 (i.e. if |μi| > 1) any initially
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small errors will increase without bound and the analysis will be
unstable. Note that the spectral radius of A, ρ(A), is the max-
imum magnitude of an eigenvalue of A, i.e. ρ(A) = max (|μi|)
Munjiza (2004) adopts a slightly different approach and defines
an amplification matrix A∗ for a single degree of freedom system
with position x so that

(
ẋt+ΔtΔt
xt+Δt

)
=

(
1 −Δt2k

m

1 1− Δt2k
m

)(
ẋtΔt
xt

)
= A∗

(
ẋtΔt
xt

)
(2.16)

Munijza shows that where Δt2k
m

≤ 4 the spectral radius of A∗,
ρ(A∗) will be 1, however once Δt2k

m
> 4 the spectral radius will

increase beyond 1 and the simulation of the single degree of free-
dom system will be unstable. Stability analyses are completed by
considering the undamped dynamic equilibrium equation, as is the
case here. Wood (1990b) states that for simple algorithms, this
assumption is valid.

Accepting this limitation of the central-difference method, it is
necessary to examine the implications of the stability limitation for
the multi degree of freedom systems encountered in DEM analy-
ses. A DEM system is significantly more complex than the simple,
single degree of freedom system. Each particle will have multiple
contacts and multiple contact springs. At each contact there are
two orthogonal springs acting normal and tangential to the con-
tact. There will also most likely be a range of particle inertia
values. O’Sullivan and Bray (2003b) proposed an approach to cal-
culate a bound on the critical time increment for DEM simulations
by drawing an analogy between a discrete element framework, and
a finite element framework. In their analysis, the discrete element
particles correspond to finite element nodes and that the inter-
particle contacts correspond to the finite elements, as illustrated
in Figure 2.1. A global stiffness matrix can be assembled as in
a finite element analysis, with the contact between particle i and
particle j forming an “element” stiffness matrix, Ke

ij and the mass
matrix including the inertia of the particles. Itasca (2008) give an
alternative derivation for the stiffness at a contact point that also
accounts for translational and rotational motion.
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Figure 2.1: Analogy between a DEM model and a finite element
mesh

In dynamic FEM (finite element method) or structural analy-
sis an estimate for the critical time increment for linear systems
can be considered by considering the global stiffness matrix. If it
is assumed that this linear stability analysis also holds for non-
linear cases, then the maximum stable time increment (Δtcrit) is a
function of the eigenvalues of the current stiffness matrix (e.g. Be-
lytschko (1983)). For a linear, undamped system the relationship
is given by:

Δtcrit =
2

ωmax

(2.17)

The maximum frequency, ωmax, is related to the maximum
eigenvalue (λmax) of the M−1K matrix as

ωmax =
√
λmax (2.18)

Calculating the eigenvalues of a large matrix is an expensive oper-
ation. In explicit finite element analysis, the following relationship
is frequently used (this is an extension of Rayleigh’s theorem; a
proof is given by Belytschko (1983)):

λmax ≤ λe
max (2.19)

where λe
max is the maximum eigenvalue of the Me−1Ke matrix for

element “e”, (Me = element mass matrix, Ke=element stiffness

46



Particulate Discrete Element Modelling: A Geomechanics Perspective

matrix). An estimate for the critical time increment can then be
made by applying Equations 2.17 and 2.18, once λe

max is known.
O’Sullivan and Bray (2003b) compared two contacting DEM

particles to a strut element in structural analysis. Referring to
Figure 2.2 the effective stiffness of the contact between two disk
particles, both with radius r, (considering both translational and
rotational degrees of freedom), and a coordinate system parallel
and orthogonal to the strut axis is given by:

Ke,local =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kn 0 rKs −Kn 0 −rKs

0 Ks 0 0 −Ks 0
rKs 0 r2Ks −rKs 0 −r2Ks

−Kn 0 −rKs Kn 0 rKs

0 −Ks 0 0 Ks 0
−rKs0 0 −r2Ks rKs 0 r2Ks

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.20)

In Figure 2.2, the particle nodal displacements in the local
coordinate system are denoted by (ū1, v̄1) and (ū2, v̄2). To use this
stiffness matrix in an eigenvalue analysis of the entire disk system,
this local stiffness matrix must be rotated to the global Cartesian
coordinate system using the following transformation matrix:

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosθ −sinθ 0 0 0 0
sinθ cosθ 0 0 0 0
0 0 1 0 0 0
0 0 0 cosθ −sinθ 0
0 0 0 sinθ cosθ 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.21)

The stiffness of the strut element in the global coordinate sys-
tem is then given by:

Ke,global = T−1Ke,localT (2.22)

This equation can be understood in a static sense by consider-
ing that

Ke,globalΔd = ΔF (2.23)
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where Δd is a vector of displacement increments:

Δd =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Δu1

Δv1
Δφ1

Δu2

Δv2
Δφ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.24)

where Δu1, Δv1, Δu2, Δv2 are the incremental (translational) cen-
troidal displacements and Δφ1, Δφ1 are the incremental rotations
of disks 1 and 2 about their centroids. These incremental rotations
will introduce additional forces acting on particles 1 and 2, where

ΔF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΔFx,1

ΔFy,1

ΔM1

ΔFx,2

ΔFy,2

ΔM2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.25)

and ΔFx,1 is the x-component of the increment in the force acting
on particle 1, ΔM1 is the increment in the moment acting on
particle 1, etc.

θu 1v 1

u2

v2

Spring stiffness Kn,Ks

u 2v 2

u1

v1

Kn

Ks

(a) (b)

θ

Figure 2.2: Analogy between a DEM model and an FEM mesh
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Using this approach, a local stiffness matrix can be determined
for each pair of contacting disks and rotated to a global reference
system. To calculate the system eigenvalues a mass matrix is
needed. In contrast to the strut in Figure 2.2, where the nodes
have no inertia, and the mass of the strut is distributed to the
nodes, DEM disks have inertia and they may be participating
in many other contacts. In a simple first estimation it can be
assumed that the mass of each disk is uniformly distributed to all
of its contacts. Using this assumption our element mass matrix
for contact between particles i and j is:

Me,local
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mi

ni
c

0 0 0 0 0

0 Mi

ni
c

0 0 0 0

0 0 Ii
ni
c

0 0 0

0 0 0
Mj

nj
c

0 0

0 0 0 0
Mj

nj
c

0

0 0 0 0 0
Ij

nj
c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.26)

where Mi is the mass of particle i, Ii is the moment of inertia of
particle i about an axis through its centroid, ni

c is the number of
contacts surrounding particle i. Note that Me,local

ij = Me,global
ij =

Me.

The calculation of the eigenvalues of the Me−1Ke,global matrix
can be simplified as follows. As Me is a diagonal matrix, then
Me−1 is also diagonal and

Me−1Ke,global = Me−1T−1Ke,localT = T−1Me−1Ke,localT (2.27)

T is orthogonal so

T−1 = TT (2.28)

and the matrices Me−1Ke,local and T−1Me−1Ke,localT are simi-
lar and have the same eigenvalues (Golub and Van Loan, 1983).
Then, for each contact element, the calculation of the eigenval-
ues of Me−1Ke,local is equivalent to calculating the eigenvalues of
Me−1Ke,global. Recognizing this equivalence and assuming that the
normal and shear spring stiffnesses are equal (i.e. Kn = Ks = K)
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the eigenvalues were calculated for a number of symmetrical con-
figurations of uniform disks and spheres. The critical time steps
were then determined using the above procedure. Full details of
these calculations are given by O’Sullivan and Bray (2003b). The
key conclusion of their study was that as the number of contacts
per particle increased, nc increased, and the magnitude of the
terms in the element mass matrix decreased, thus increasing the
maximum frequency and hence reducing the critical time incre-
ment Δtcrit.

To explore the implications of this stability limit for analyses
consider a simple study, the case of a regular assembly of uni-
form spheres (with a face-centred-cubic lattice packing) subject to
plane strain compression. Thornton (1979) provided an analyti-
cal solution for the peak strength of this assembly, knowing the
inter-particle friction, so it is suitable for DEM validation (as dis-
cussed further in Chapter 11). The specimen considered contained
150 spheres and is illustrated in Figure 2.3, while the simulation
input parameters are indicated in Table 2.1. The simulation was
repeated a number of times, with different time steps, and the re-
sulting responses are illustrated in Figure 2.4, with the theoretical
strength clearly indicated for reference. The timestep values, Δt
indicated are normalized by the ratio

√
m
K

where m is the particle

mass and K is the spring stiffness, i.e.

Δt =
Δtsim√

m
K

(2.29)

and Δtsim is the simulation time-step. Referring to Figure 2.4,
the simulation with Δt = 0.75, is clearly unstable. However, for
Δt = 0.45, while the results are incorrect, it would be difficult to
determine that the results are erroneous in the absence of knowl-
edge of the correct theoretical solution. When Δt = 0.05 and
Δt = 0.35, the response is close to the theoretically correct value
of peak strength. Note that an Δt = 0.35 is larger than the min-
imum critical time step for the face-centred-cubic packing case
when both translation and rotation are allowed (O’Sullivan and
Bray, 2003b). However, the lattice configuration considered in
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this analysis does not allow significant particle rotation, possibly
explaining the lack of an apparent instability.

As discussed by Belytschko et al. (2000), numerical instabili-
ties in explicit simulations can be detected by an energy balance
check, as an instability results in the spurious generation of energy,
which leads to a violation of the conservation of energy. From a
molecular dynamics perspective, Rapaport (2004) also discusses
the need to consider energy drift in order to ensure the reliability
of DEM simulations. Rapaport noted that tests on angular mo-
mentum and energy conservation provide partial checks on the cor-
rectness of the calculation. O’Sullivan and Bray (2003b) demon-
strated that the simulations exhibiting instability were associated
with excessive errors in the energy balance of the system. (Cal-
culation of the various components of energy in a DEM system is
considered in Section 2.6).

Figure 2.3: Illustration of specimen configuration for FCC plane
strain simulation

The issue of numerical stability of DEM has not been widely
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Figure 2.4: Specimen response in time-step parametric study

discussed in the DEM literature. Itasca (2008) discuss numerical
stability in detail and present an alternative approach to determine
the stability limit for an assembly of contacting spheres. Amongst
those who have discussed this issue, Tsuji et al. (1993) used en-

ergy considerations to decide upon a value of Δtcrit = π
5

√
m/k

for their 2D simulations. An additional challenge is posed where
a non-linear contact model is used (i.e. where stiffness varies).
Itasca (2004) suggest that where the Hertz-Mindlin contact model
is used, the safety factor on the time-step be reduced “especially
under rapidly changing conditions.” The Hertzian contact model
relates the contact stiffness to the continuum shear stiffness of the
material and is outlined in Chapter 3. Thornton and his colleagues
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Parameter Value
Normal Spring Stiffness 1.0× 1011M/T 2

Shear Spring Stiffness 1.0× 1011M/T 2

Density 2,000 M/L3

Radius 20 L
Coefficient of Friction 0.3

Table 2.1: Analysis parameters for sensitivity analysis.(M = unit
of mass, L = unit of length, T = unit of time)

(e.g. Thornton (2000) or Thornton and Antony (2000)) state that
they select their simulation time-step by considering the minimum
particle size and the Rayleigh wave speed. The Rayleigh wave ve-
locity (vr) for an elastic material with shear stiffness G and density
ρ is (e.g. Sheng et al. (2004)):

vr = α
√
Gρ (2.30)

and α is given by the roots of

(2− α2)4 = 16(1− α2)

[
1− 1− 2ν

2(1− ν)
α2

]
(2.31)

with an approximate value of α being given by α = 0.1631ν +
0.876605, where ν is the Poisson’s ratio for the material. The
critical time increment for DEM simulations with spheres and a
Hertizan contact model is then given by (Sheng et al., 2004):

Δtcrit =
πRmin

α

√
ρG (2.32)

where Rmin is the minimum particle radius. Li et al. (2005) use
a slightly different version of Equation 2.32, using the average
particle radius rather than the minimum particle radius.

From the perspective of a DEM user the key points to note
from the material presented in this section are:

1. The critical time-step is a function of the spring stiffness.
The stiffer the spring the smaller the allowable time incre-
ment.
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2. The critical time-step is a function of the particle mass, and
hence density. The greater the density, the greater the al-
lowable time increment.

3. The critical time-step is a function of the number of contacts.
The greater the number of contacts the greater the overall,
effective stiffness of the system and the smaller the allowable
time step.

4. Where we use a non-linear contact model we need to con-
sider the variation of stiffness during the simulation; the cur-
rent tangential stiffness will govern the stability at any given
time-step.

5. One way to monitor the development of instabilities is to
consider the energy balance in the system; refer to O’Sullivan
and Bray (2003b) for further details.

2.4.1 Density scaling

The critical time step is proportional to the particle mass, DEM
users then often scale their particle densities to artificially increase
the particle masses and hence the critical time increment to achieve
results in reasonable run times. This approach is called “mass
scaling” or “density scaling.” Considering this option from a gen-
eral computational mechanics perspective, Belytschko et al. (2000)
suggest that mass scaling should be used in problems where high
frequency effects are not important. When mass scaling is used
it is assumed that the response of the system is not sensitive to
inertia effects. Mass or density scaling is frequently used in dis-
crete element analyses, including the simulations presented in this
work and the studies described by Thornton (2000). Itasca (2004)
propose the use of a differential density scaling coefficient so that
the particle mass is increased to achieve a time increment of 1.
They advise that this approach should be used with caution and
that only the final steady state solution will be valid. Obviously
the use of this approach in geomechanics will typically not be vi-
able as the response observed and material behaviour tend to be
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path-dependent(i.e. the final answer depends on the details of how
you get to that point). In a DEM simulation when a force or dis-
placement is applied on a boundary, the response will propagate
through the system. The speed of propagation of this “distur-
bance” will be a function of the properties of the system, most
notably the contact spring stiffnesses, the particle mass, and the
contact density.

Thornton and Antony (2000) scaled the particle density to en-
sure a quasi-static deformation state with “reasonable” simulation
times. They argue that where this scaling of density is used the
velocities and accelerations will be affected. However the simula-
tions are quasi-static, and as no body force is applied, the contact
forces and displacements are insensitive to the density value used.

In general, the use of density scaling should be approached
with caution, and it is questionable whether its use can ever be
recommended. To reduce the run time of simulations it seems
preferable to maximize the rate of deformation in the simulations
while ensuring that the simulations remain quasi-static by care-
fully monitoring the applied and internal stresses in the specimen.

2.5 Implicit Time Integration in

Discrete Element Algorithms

Given the restrictions imposed by the central-difference time in-
tegration algorithm and the conditional stability of the central-
difference and leap-frog algorithms, one might be tempted to use
an implicit, unconditionally stable time integration approach in
DEM. The idea of an implicit DEM algorithm is not new; in their
original National Science Foundation (NSF) report describing the
development of particulate DEM, Cundall and Strack (1978) cite
the earlier work of Serrano and Rodriguez-Ortiz (1973) who de-
veloped an implicit DEM code. Other implicit approaches have
been proposed or described by Ai (1985), Ke and Bray (1995),
Zhuang et al. (1995), Tamura and Yamada (1996) and Holtzman
et al. (2008). This section explores the implications of choosing
this alternative approach.
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In the absence of damping, any discrete element algorithm is
concerned with solving the equilibrium equation at discrete time
intervals for the system of particles. We can represent this at each
time step as:

Ma+Ku = f (2.33)

where M is the (global) mass matrix, a is the acceleration vector
(considering all the degrees of freedom), K is the (global) stiffness
matrix, f is the force vector, and u is the incremental displacement
vector. The elements of the stiffness matrix represent primarily the
shear and normal springs that are present at the contact points,
the “element” sub-matrices of the global stiffness matrix are the
Ke,global matrices described above. K changes during the analysis
as the system is non-linear.

In addition to the memory requirements considered above,
Cundall and Strack (1978) drew attention to the fact that the
matrix describing the contact stiffnesses must be reformulated ev-
ery time a contact is made or is broken. The inherent geometric
non-linearity restricts the time-increment to be very small so that
changes in geometry can be captured accurately. The formation
of new contacts, breakage of existing contacts, and initiation of
sliding all need to be captured. A second consideration is that, as
the particle rotations will contribute to the incremental tangen-
tial displacements and hence the shear force and linearization is
involved, the accuracy of the calculation of the cumulative shear
displacement will be improved where a small time increment is
adopted. The use of a non-linear contact model will also require
use of a small time step. Each of these considerations restricting
the time-step to be small holds whether the time integration is
implicit or explicit.

A numerical time stepping method is required in order to solve
Equation 2.33 and obtain a history of the particle displacements
over the specified analysis period. The system described in Equa-
tion 2.33 can be manipulated to form a set of simultaneous equa-
tions that can be solved for the unknown displacements, accelera-
tions and velocities. In manipulating these equations, for simplic-
ity, it is useful to consider a single degree of freedom system. The
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Newmark’s equations are used to develop relationships between
the particle displacements, velocities and accelerations at times t
and t+Δt.

xt+Δt = xt +Δtvt + Δt2

2
(1− 2β)at +Δt2βat+Δt

vt+Δt = vt +Δt(1− γ)at + γΔtat+Δt (2.34)

where Δt is the time increment, xt and xt+Δt are the displacement
vectors at time t and time t+Δt, respectively, vt and vt+Δt are the
velocity vectors at time t and time t+Δt, and at and at+Δt are the
acceleration vectors at time t and time t + Δt. The parameters
β and γ define the variation of acceleration over the time-step
and determine the stability and accuracy characteristics of the
method. With a Newmark-type approach, for linear systems the
requirement for unconditional stability is

2β ≥ γ ≥ 0.5 (2.35)

For example, referring to Ke and Bray (1995), the time inte-
gration scheme used in the implicit particulate discrete element
analysis code DDAD is as follows:

xt+Δt = Δtxt + Δt2

2
at+Δt + xt+Δt

at = 2
Δt2

(xt+Δt − xt)− 2
Δt
vt (2.36)

If Equation 2.36 is manipulated to take the form of Equation
2.34 it can be shown that the time integration scheme in DDA uses
β = 0.5 and γ = 1.0; this is equivalent to taking the acceleration
at the end of the time step to be constant over the time step (i.e.
at ≡ at+Δt). This approach is implicit, meaning that to calculate
the displacement up to time t the forces at time t are needed.
Therefore, a large system of linear equations is required to be
solved, at least once for each time increment. Using linear stability
analysis it can also be shown that this approach is unconditionally
stable. Consequently, theoretically a large time increment can be
used. It is assumed that this linear stability also holds for non-
linear cases.

In the DDA algorithm Thomas (1997) suggested limiting the

time increment used to
√
8
√
(m
k
) to ensure diagonal dominance of
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the DDAD stiffness matrix, and convergence of the solver used.
Comparing the DDA and DEM algorithms, the critical time in-
crements would need to differ by probably one order of magnitude
in order for the computational costs associated with both methods
to be equivalent. A key element of the implicit approach is that
it requires the stiffness matrix at the end of the time increment
to be determined. The stiffness matrix at the start of the time
increment is used as an initial guess and the prediction is refined
based on estimates of the particle displacements. This means that
in an implicit approach the global set of equations must be solved
numerous times in each time step in an iterative process to es-
tablish the stiffness matrix. A convergence criteria is difficult to
establish. The source of the non-linearity in a DEM simulation
renders the use of a Newton–Raphson approach to achieve conver-
gence impractical. Shi (1988) proposed a complex system of open
and close iterations for use in his DDA code. While the DDA
method is viable for use in block DEM codes, where the number
of bodies is relatively small, its applications to particulate systems
with tens of thousands of particles is not viable.

The restrictions on implicit approaches noted here mean that
the explicit Distinct Element Method algorithm proposed by Cun-
dall and Strack (1979a) is the most commonly used approach for
DEM. DEM is not unique in using an explicit time integration
to model a highly non-linear problem. Belytschko et al. (2000)
argue that explicit time integration is well suited to dynamic con-
tact/impact problems as the time steps are small because of sta-
bility requirements, so the discontinuities due to contact-impact
pose fewer challenges and neither linearization nor a non-linear
solver is needed. From a general computational mechanics per-
spective, explicit methods are easier to implement than implicit
approaches. They allow for element-by-element evaluation (or in
the case of DEM, particle-by-particle evaluation) of the internal
force vector, and hence do not require a global stiffness matrix
with associated management and storage requirements. In ex-
plicit algorithms, for each time step the equations of motion for
each particle are first integrated completely independently, as if
not in contact. The uncoupled update indicates which parts of
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the body are in contact at the end of the time step, and then
the contact conditions are imposed. Within each time step the
iterations required in an implicit scheme are therefore avoided.
Based upon these considerations, and realizing that to be realistic
simulations of granular materials will need to include millions of
small discrete particles, there is a strong case to adopt an explicit
time integration scheme in particle-based discrete element codes,
and consequently the DEM algorithm, as proposed by Cundall
and Strack (1979a) is the dominant approach to discrete element
modelling used currently in geomechanics.

More comprehensive discussions on the issues associated with
time integration approaches specific to discrete element modelling
can be found in Wang et al. (1996), Bardet (1998), O’Sullivan
(2002) and Munjiza (2004). A comprehensive general reference on
issues related to time integration is Wood (1990b). Doolin (2002)
includes a detailed examination of the DDA time integration al-
gorithm.

The conclusion that we can draw at this point is that while
it is possible to create an implicit DEM formulation to overcome
the numerical stability issues discussed in Section 2.4, implicit
approaches are not easy to implement, they require computation-
ally expensive iteration within each time increment, proving con-
vergence is non-trivial, and the resulting global stiffness matrix,
while sparse, will be very large. Whether an implicit or explicit
approach is used, the time step in a discrete element simulation
must be small to capture the changing contact conditions and to
accurately calculate the increments in shear force caused by par-
ticle rotation.

2.6 Energy

In the analysis of any physical system it is useful to consider the
energy of the system and the conservation of energy. Guidance
on the calculation of energy terms in DEM simulations is given
by Itasca (2004), Kuhn (2006), Bardet (1994) and O’Sullivan and
Bray (2003b). During the simulation energy will be input via the
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boundary forces or body forces (i.e. gravity) and energy will be
dissipated in frictional sliding and the rupture of contact springs.
There will also be a continuous transfer or conversion of strain
energy in the contact springs to kinetic energy and vice versa.

At any point the total translational kinetic energy, Wkin, in the
system of particles is given by:

Wkin =
1

2

Np∑
p=1

vpmpvp (2.37)

where Np is the number of particles in the domain, vp is the ve-
locity vector for particle p, and mp is the mass of particle p.

In an individual spring, the stored strain energy is given by the
area under the force-displacement curve. Therefore, where a linear
force-displacement relationship is used the strain energy stored at
each contact is given by

W c
strain =

F c
n
2

2Kn
+

F c
s
2

2Ks
(2.38)

where F c
n is the normal component of the contact force, F c

s is the
tangential or shear component of the contact force for contact
c and the normal and shear stiffnesses are given by Kn and Ks

respectively. Where a non-linear contact constitutive model is
used, an appropriate integration should be applied. The total
strain energy in the system is the sum of the strain energy stored
at each active contact.

Once the frictional strength of a contact is exceeded, energy
will be dissipated in frictional sliding. The frictional energy dissi-
pation is calculated incrementally so that

W c,t
friction = W c,t−Δt

friction + F c
sΔsc,t−Δt→t (2.39)

where W c,t−Δt
friction and W c,t

friction are the frictional energies dissipated
up to time t−Δt and time t respectively and Δsc,t−Δt→t is the in-
crement in tangential displacement at the sliding contact between
times t−Δt and t.

The sum, Wstrain + Wfriction gives the total internal energy in
the system (Wint). While there can be a transfer in kinetic energy
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to strain energy, energy will be dissipated or reduced in friction
and so while the term Wstrain is positive, Wfriction is negative. Note
also that when two particles lose contact there is a release in the
elastic strain energy stored in that contact.

The system energy can only be incremented by input of exter-
nal energy, (Wext). The main contributors to the external energy
are body forces Wbodyforce, the external applied forces Wappliedforce

and the boundary forces generated by interaction with rigid wall
boundaries, Wrigidwall. Each of these components of the external
energy can be expressed in incremental form. The total energy
input by the body forces up to time t (W t

bodyforce) is given by

W t
bodyforce = W t−Δt

bodyforce +
Np∑
p=1

mpbpΔxt−Δt→t
p (2.40)

where bp is the body force (applied acceleration) acting on particle
p and xt−Δt→t

p is the increment in displacement of particle p from
time t−Δt to time t.

In a similar manner the applied external forces will generate
an increment in energy so that the total energy input to time t is
given by

W t
appliedforce = W t−Δt

appliedforce +
Np∑
p=1

fappp Δxt−Δt→t
p (2.41)

where in this case f appp is a specific force applied to particle p,
a possible origin of such an external force is the stress-controlled
membrane discussed in Chapter 5. This contribution to the energy
is calculated as the product of the force and the displacement of
a particle, i.e. the work done.

The energy input due to motion of rigid wall boundaries (see
Chapter 5), W t

rigidwall, is also calculated by considering the incre-
ment in work done as the product of the force acting on wall w,
Fw, and the incremental displacement of wall w between t − Δt
and t, Δxt−Δt→t

w :

W t
rigidwall = W t−Δt

rigidwall +
Nrw∑
w=1

FwΔxt−Δt→t
w (2.42)
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This discussion on the sources of input energy, stored energy
and dissipated energy in a DEM simulation is not comprehensive.
It is possible for a simulation to use a normal contact force model
that dissipates energy during deformation, it is also possible that
a form of numerical damping may be introduced in the simulation
to simulate sources of energy dissipation that are not explicitly
considered in the DEM model. Damping is considered in Section
2.7, below. It is important to understand the energy balance in
a DEM simulation to avoid the problems with numerical stabil-
ity discussed above. Referring to Belytschko et al. (2000) and
O’Sullivan and Bray (2003b), the requirement for energy balance
is that

Wkin +Wint −Wext ≤ εmax (Wkin,Wint,Wext) (2.43)

where εmax is a tolerance. Alonso-Marroqun and Wang (2009)
give a nice description of how they use the consideration of the
energy balance of their code as a means to check the accuracy of
their simulations. From a geomechanics perspective, tracing the
energy components in the system in detail will give insight into the
material response. For example in their consideration of buckling
mechanisms within the strong force chains that dominate granular
material response (see Chapter 8), Tordesillas (2007) consider the
strain energy stored at inter-particle contacts.

2.7 Damping

Where contact models that are elastic prior to yielding are used,
the energy dissipation that occurs in physical systems of granular
materials is not captured. Here yield is taken to mean the rup-
ture of the contact spring in the contact normal direction or the
initiation of inter-particle frictional sliding in the tangential direc-
tion. As highlighted by Cavarretta et al. (2010) and discussed in
detail by Cavarretta (2009), in real inter-particle contacts there
will be damage to surface asperities and plastic yielding from the
initial formation of the contact. Subsequent to asperity yielding
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the contact response will be largely elastic, however, as noted in
Chapter 3, as the stresses continue to increase plastic strains will
develop in the solid particle material (this is captured in a contact
model proposed by Thornton and Ning (1998)). This damage and
yielding will dissipate energy, consequently the completely elastic
contact models that are frequently used to describe the contact
normal response in DEM codes are unrealistic. Munjiza (2004)
describes this as a lack of “material damping” in rigid particulate
DEM codes. The consequences for a DEM simulation are that
if there is no yield by contact separation or frictional sliding the
particles will vibrate constantly like a highly complex system of
connected elastic springs. To avoid this non-physical phenomenon,
DEM analysts often introduce numerical or artificial damping in
their simulations.

To gain an initial understanding of the vibratory nature of
particles in DEM simulations, consider the particle illustrated in
Figure 2.5. In a simulation of this ball-wall system, a 1 kg ball
rests on a horizontal boundary, gravity is switched on at time
t=0, the beginning of the DEM analysis. The resultant response
is illustrated in Figure 2.6. In Figure 2.6 three contact constitutive
models are considered, a linear elastic contact model (with K=100
N/m), a non-linear elastic (Hertzian) contact model (with G =
100N/m2 and ν = 0.3), and a linear-elasto-plastic Walton-Braun
type model (withK1=100 N/m andK2=1000 N/m). Each of these
contact models is discussed in Chapter 3. Initially all three models
behave in a very similar manner. In the absence of damping it is
seen that both the linear elastic and non-linear elastic models will
vibrate with the same period and oscillation amplitude as long
as no external force modifies the contact conditions. For the non-
linear model after yielding the frequency of the oscillation increases
and the amplitude of the displacement vibrations decreases. Note
however that the system still vibrates and the amplitude of the
force vibrations is unchanged. Considering the energy components
of the system, illustrated in Figure 2.7, it is observed that there is
a decrease in the potential, kinetic and elastic strain energies after
yielding occurs, however no further decrease in any of these energy
components occurs. DEM codes include a damping parameter
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to damp out these non-physical vibrations. Here the two most
common approaches to damping, mass damping and “non-viscous”
damping, are considered. Viscous damping is discussed in Chapter
3.

Figure 2.5: Single degree of freedom system: ball resting on hori-
zontal boundary

Figure 2.6: Single degree of freedom system: ball resting on hori-
zontal boundary (a) Contact force versus time (b) Contact overlap
versus time
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Figure 2.7: Single degree of freedom system: ball resting on hor-
izontal boundary: energy considerations (a) Linear model (b)
Walton-Braun model

Mass damping

Cundall and Strack (1979a) proposed a system of global damping,
which “can be envisioned as the effect of dashpots connecting each
particle to the ground.” The amount of this damping that each
particle “feels” is proportional to its mass. The way in which
mass proportional damping is implemented in DEM analysis is
summarized as follows (Bardet, 1998):

Mat +Cvt = Ft (2.44)

where M is the mass matrix, at is the acceleration vector at time
t, C is the damping matrix, vt is the velocity vector at time t,
and Ft is the force vector. Applying the Verlet time integration
approach, with a time increment Δt:

at = 1
Δt
(vt+Δt/2 − vt−Δt/2)

vt+Δt/2 = 1
Δt
(xt − xt−Δt)

vt = 1
2
(vt+Δt/2 + vt−Δt/2)

(2.45)

where xt is the displacement vector at time t.

Substituting Equation 2.45 into Equation 2.44 gives
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M

Δt
(vt+Δt/2 − vt−Δt/2) +

1

2
C(vt+Δt/2 + vt−Δt/2) = Ft (2.46)

assuming that the damping matrix is proportional to the mass
matrix,

C = αM (2.47)

then Equation 2.46 becomes

vt+Δt/2(1 + αΔt/2) = vt−Δt/2(1− αΔt/2) + ΔtM−1(Ft) (2.48)

which is equivalent to

vt+Δt/2 = vt−Δt/2

(
1− αΔt/2

1 + αΔt/2

)
+

(
Δt

1 + αΔt/2

)
M−1(Ft) (2.49)

As outlined by Bardet (1998), Equation 2.49 is equivalent to
the equation for dynamic relaxation.

Cundall (1987) discusses some of the limitations of mass pro-
portional damping as follows:

1. This form of damping introduces body forces, which may be
erroneous in flowing regions, and may influence the mode of
failure.

2. The optimum proportionality constant (α) depends on the
eigenvalues of the stiffness matrix.

3. The damping is applied equally to all nodes. In reality, dif-
ferent amounts of damping may be appropriate for different
regions.

Local non-viscous damping

Cundall (1987) proposed an alternative damping system in which
the damping force at each node is proportional to the magnitude
of the out-of-balance-force with a sign that ensures that the vi-
brational modes are damped, rather than steady motion. The
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“out-of-balance force” is the non-zero resultant force that acts on
a particle to cause acceleration. Referring to Itasca (2004), the
damping force is given by

Fd = −α∗|Fp|sign(vp) (2.50)

where Fp
d is the damping force for particle p, α∗ is the damping

constant (default value of 0.7), Fp is the resultant or out-of-balance
force acting on particle p, and vp is the velocity vector for particle
p. Fd acts in the opposite direction to vp, and sign(vp) indicates
the sign of the vector vp.

Figure 2.8: Single degree of freedom system: ball resting on hori-
zontal boundary, linear spring. Comparison of response with mass
damping and non-viscous damping

As argued by Itasca (2004), this form of damping has the ad-
vantage that only accelerating motion is damped, therefore no
erroneous damping forces arise from steady-state motion. The
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damping constant is also non-dimensional and the damping is fre-
quency independent. As proposed by Itasca (2004), an advantage
of this approach is that it is similar to hysteretic damping, as the
energy loss per cycle is independent of the rate at which the cycle
is executed.

Figure 2.8 considers the response of the single degree of free-
dom ball-boundary system, with a linear contact model and K =
100 N/m as before. The undamped response is compared with the
response observed with both mass damping and viscous damping.
For both approaches it is seen that the contact force and defor-
mation converge to a single value.

While damping is one means to overcome the non-physical na-
ture of the contact constitutive models used in DEM simulations,
it is difficult to select a physically meaningful value for damping
or to relate the damping algorithms used to physical phenomena.
In reality in a DEM simulation where particles are moving around
each other, the dominant form of energy dissipation is in frictional
sliding and contact breakages. Varying the damping may measur-
ably effect the response, and it may be advisable to run DEM
simulations with the damping parameter set to be very low or
even zero. As highlighted in Chapter 7 it can be useful, however,
to employ damping during specimen generation. Overdamping
in quasi-static simulations can be avoided by checking that the
system as a whole is in equilibrium, as discussed in Chapter 11.

2.8 Rotational Motion of Non-Spherical

3D Rigid Bodies

As noted in Section 2.2, consideration of particle rotations in 2D
DEM simulations is trivial. However, in three-dimensional anal-
yses the situation is more complex. For the general case, the
translational and rotational degrees of freedom are coupled, and
in addition there is a coupling between the three rotational degrees
of freedom. If the reference point for the rotations is selected to
be the body centre of mass, the coupling between the transla-
tional and rotational degrees of freedom is eliminated, and the
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Newton-Euler equations can be used. There are a number of pub-
lications that consider the issues associated with calculation of the
rotational motion of arbitrary 3D particles, and for further read-
ing reference to Kremmer and Favier (2000), who provide further
clarification of the mechanics involved, may be useful.

The inertia tensor for a 3D particle is given by

I =

⎡⎢⎣ Ixx −Ixy −Ixz
−Iyx Iyy −Iyz
−Izx −Izy Izz

⎤⎥⎦ (2.51)

The terms in this tensor are given by

I =

⎡⎢⎣
∫
y2dm+

∫
z2dm − ∫

xydm − ∫
xzdm

− ∫
yxdm

∫
x2dm+

∫
z2dm − ∫

yzdm
− ∫

zxdm − ∫
zydm

∫
x2dm+

∫
y2dm

⎤⎥⎦
(2.52)

where dm is an the mass differential. The integration is carried
out with respect to a local Cartesian axis system, whose axes are
parallel to the global Cartesian axes, but whose origin is at the
particle’s centre of mass. The diagonal elements Ixx, Iyy and Izz
are the moments of inertia of the particle, while the off-diagonal
elements Ixy, Ixz, Iyx, Iyz, Izx, and Izy are called the products
of inertia. The eigenvalues of this tensor, I, give the principal
moments of inertia Ix′ , Iy′ and Iz′ and their orientations relative
to the Cartesian axes are given by the eigenvectors.

For non-spherical particles, composed of aggregates of spheres,
Itasca (2008) uses this inertia tensor directly when considering the
rotational dynamic equilibrium using a local axis system centred
on the particle centroid. The governing system of equations are
given by

M−W = Iω̇ (2.53)

where M gives the moments about the local Cartesian axes, i.e.

M =

⎛⎜⎝ Mx

My

Mz

⎞⎟⎠ (2.54)
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and

W =⎛⎜⎝ ωyωz(Izz − Iyy) + ωzωzIyz − ωyωyIzy − ωxωyIzx + ωxωzIyx
ωzωx(Ixx − Izz) + ωxωxIzx − ωzωzIxz − ωyωzIxy + ωyωxIzy
ωxωy(Iyy − Ixx) + ωyωyIxy − ωxωxIyx − ωzωxIyz + ωzωyIxz

⎞⎟⎠
(2.55)

The acceleration vector ω̇ includes the first derivatives with
respect to time of the rotational velocities ω about the three axes:

ω̇ =

⎛⎜⎝ ω̇x

ω̇y

ω̇z

⎞⎟⎠ (2.56)

Equation 2.53 therefore defines a system of three simultaneous
equations with six unknowns. Itasca use an iterative approach
to solve this system of equations, initially setting the angular ve-
locities ω to be equal to the calculated velocities for the previous
timestep, then calculating the accelerations ω̇. Itasca (2008) states
that convergence is typically achieved within four iterations.

While Itasca’s approach has been used in many geomechanics
studies that have employed PFC, other DEM codes where non-
spherical particles have been implemented use a slightly different
approach. This alternative approach requires definition of three
coordinate axis systems. Firstly there is the global, Cartesian co-
ordinate system. There is also a local Cartesian coordinate system
for each particle whose origin coincides with the particle centroid
with axes parallel to the global Cartesian axes (as used by Itasca).
Finally there is a local rotated coordinate system, whose origin
is also at the particle centroid and whose axes coincide with the
particle principal axes of inertia.

Consider an arbitrary point on the surface of a non-spherical
particle with coordinates xp

i in the global coordinate system. Then
the coordinates in the local Cartesian coordinate system, xpb

i , are
given by xpb

i = xp
i − xc

i , where the particle centroidal coordi-
nates are xc

i . This local Cartesian coordinate system is defined
by axes (xb, yb, zb). The axes of the local particle coordinate sys-
tem are rotated relative to the local Cartesian coordinate system.

70



Particulate Discrete Element Modelling: A Geomechanics Perspective

If the direction cosines defining the orientation of the principal
axes of inertia of the particle relative to the local Cartesian coor-
dinate system are given by

(
nx′

bxb
, nx′byb, nx′bzb

)
,
(
ny′bxb

, ny′byb, ny′bzb

)
,(

nz′bxb
, nz′byb, nz′bzb

)
, then these direction cosines can be combined

to give the following orthogonal matrix

Tij =

⎛⎜⎝ nx′bxb nx′
byb

nx′
bzb

ny′
b
xb ny′

b
yb ny′

b
zb

nz′
b
xb nz′

b
yb nz′

b
zb

⎞⎟⎠ (2.57)

The coordinates of a point xpb
i given in the local coordinate

system can be rotated to obtain the coordinates in the particle-
centred coordinate system x′pb

j by x′pb
j = Tijx

pb
i . If a series of

coordinates in the local coordinate system define the edge of a
particle, the particle can be rotated by multiplying all these edge
coordinates by this matrix, without changing its shape or volume.

For an arbitrarily shaped body the relationship between the
resultant moment acting on the particle about its centroid and its
rotational motion is given by the Euler equations as⎛⎜⎝ Mx′

My′

Mz′

⎞⎟⎠ =

⎛⎜⎝ Ix′ω̇x′ + (Iz′ − Iy′)ωz′ωy′

Iy′ω̇y′ + (Ix′ − Iz′)ωx′ωz′

Iz′ω̇z′ + (Iy′ − Ix′)ωy′ωx′

⎞⎟⎠ (2.58)

where the subscripts x′, y′ and z′ refer to a local coordinate system,
centred at the particle centroid, and with the three orthogonal axes
co-linear with the principal axes of inertia of the particle. The
resultant moments about the three principal axes of inertia of the
particle are denoted as Mx′, My′ , and Mz′. The three rotational
velocities are given by ωx, ωy, ωz, and ω̇x, ω̇y, ω̇z are the time
derivatives of these rotational velocities (i.e. the accelerations).
For the simplest case of spherical particles Ix′ = Iy′ = Iz′ and
Equation 2.58 becomes simply:⎛⎜⎝ Mx′

My′

Mz′

⎞⎟⎠ =

⎛⎜⎝ Ix′ω̇x

Iy′ω̇y

Iz′ω̇z

⎞⎟⎠ (2.59)

Based upon earlier discussions, it is clear that Equation 2.59
can easily be integrated using the central-difference approach. This
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is a factor that contributes to the prevalence of spherical particles
in 3D DEM simulations. However, for the general case (Equation
2.58) the coupling between the three rotational degrees of freedom
remains and an alternative approach is needed.

Equation 2.58 can be rearranged to get expressions for the
accelerations so that

⎛⎜⎝ ω̇x′

ω̇y′

ω̇z′

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎝
Mx′−(Iz′−Iy′ )ωz′ωy′

Ix′
My′−(Ix′−Iz′ )ωx′ωz′

Iy′
Mz′−(Iy′−Ix′ )ωy′ωx′

Iz′

⎞⎟⎟⎟⎟⎠ (2.60)

Thus while the complexity of the equations considered is re-
duced in comparison with Equation 2.53 the challenge of six un-
knowns distributed between three equations remains. Clearly the
central-difference type, Verlet/leap-frog approach cannot be used.
Vu-Quoc et al. (2000) describe a predictor-corrector approach,
where they substitute an initial estimate of the ω values into Equa-
tion 2.61, calculate the accelerations ω̇ and revise their estimate of
ω. Kremmer and Favier (2000) adopt a slightly different linearized
approach where the accelerations at time t +Δt/2 are calculated
based upon the moments at time t and the rotational velocities at
time t−Δt/2, so that

⎛⎜⎝ ω̇x′ t+Δt/2

ω̇y′
t+Δt/2

ω̇z′
t+Δt/2

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

M t
x′−(Iz′−Iy′ )ω

t−Δt/2

z′ ω
t−Δt/2

y′
Ix′

M t
y′−(Ix′−Iz′ )ω

t−Δt/2

x′ ω
t−Δt/2

z′
Iy′

M t
z′−(Iy′−Ix′ )ω

t−Δt/2

y′ ω
t−Δt/2

x′
Iz′

⎞⎟⎟⎟⎟⎟⎟⎠ (2.61)

Then the rotational acceleration at time t is calculated as
ω̇t = 1

2

(
ω̇t+Δt/2 + ω̇t−Δt/2

)
. Kremmer and Favier (2000) observe

that the accuracy of this direct solution approach is limited in
comparison with iterative approaches. Lin and Ng (1997) reduced
the complexity of their system further by considering axisymmet-
ric particles, resulting in a slightly different integration approach.
Munjiza et al. (2003) proposed a method based upon the fourth-
order Runge-Kutta method.
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As outlined by Johnson et al. (2008), amongst other shortcom-
ings, if the principal axis orientations are updated directly using
these approaches there is a risk of loss of orthonormality, i.e. they
may not remain mutually orthogonal. There is a growing con-
sensus in the literature that quaternions are the most appropriate
approach to adopt to deal with the challenges posed by time in-
tegration of non-spherical particles in three dimensions. The use
of quaternions is considered by Zienkiewicz and Taylor (2000b),
Sutmann (2002) and Rapaport (2004). Johnson et al. (2008) de-
veloped a time integration approach that fully integrates quater-
nions, while both Pöschel and Schwager (2005) and Vu-Quoc et al.
(2000) use quaternions to update the principal axis orientations
following calculation of the rotational velocities using the linear
approach proposed above.

Quaternions were originally proposed by the Irish mathemati-
cian Hamilton. A complex number is represented as a sum of a
real and an imaginary part a + b · i. In an analogous manner
a quaternion can also be represented as a sum with four terms
H = a+ b · i+ c · j+ d · k. The fundamental formula of quaternion
algebra is given by

i2 = j2 = k2 = ijk = −1 (2.62)

Weisstein (2010) gives a number of examples of operations using
quaternions.

The orientation of the principal axis of inertia of a particle
can be related to the local Cartesian axis (centred at the particle
centroid), by successive rotation through three angles, Φ, Θ, and
Ψ about each of the coordinate axes. Adopting the notation of
Pöschel and Schwager (2005), these angles are called the Euler
angles. The corresponding quaternions are then given by

q0 = cos
(
Θ
2

)
cos

(
Φ+Ψ
2

)
q1 = sin

(
Θ
2

)
sin

(
Φ−Ψ
2

)
q2 = −sin

(
Θ
2

)
sin

(
Φ−Ψ
2

)
q3 = −cos

(
Θ
2

)
cos

(
Φ+Ψ
2

) (2.63)

The time derivatives of these quaternions relate to the rotations
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about the principal axes as follows:

⎛⎜⎜⎜⎝
q̇0
q̇1
q̇2
q̇3

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
q1 q2 q3
−q0 −q3 q2
q3 −q0 −q1
−q2 q1 −q0

⎞⎟⎟⎟⎠
⎛⎜⎝ ωx′

ωy′

ωz′

⎞⎟⎠ (2.64)

The solution of the set of 4 ordinary differential equations is
then relatively straightforward, given that the vector ω is known.
The Euler angles can be obtained by inverting the quaternion ex-
pressions.

In the simulation as a whole, a system of interacting particles
whose locations are determined relative to a global Cartesian co-
ordinate system is considered. All of the approaches noted above
using the Euler equation are calculating the rotational velocities
relative to a local axis and this local axis will differ for each par-
ticle considered. The DEM code then needs to keep track of the
orientation of the local axis for each particle. In a rigid sphere
cluster particle the coordinates of the constituent spheres will be
updated relative to this local coordinate system and then related
to the global coordinate system (using an orthogonal rotation ten-
sor). Care must be taken in calculating the increments in the shear
displacement at the contact points arising due to relative particle
rotation and in using the rotation direction values in the analysis
of shear bands or localizations.

The objective of the discussion on three-dimensional rigid body
rotation given here is to highlight the complexity of the rotational
motion, in comparison with the translational motion. Further de-
tails on the implementation of non-spherical particles in 3D DEM
codes are given in the references cited in this section. Notably
Munjiza (2004) describes some available approaches and Johnson
et al. (2008) quantitatively compare different methods.
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2.9 Alternative Time Integration

Schemes

While the Verlet time integration algorithm is the most commonly
used approach in particulate DEM, it is important to recognize
that alternative, explicit time integration approaches exist. For
example, Cleary (2000, 2008) states that he uses a second-order
predictor-corrector time integration approach for his 2D simula-
tions with super quadric particles. Cleary notes that his choice
of time increment is such that about 15 time-steps can accurately
resolve each collision. Xu and Yu (1997) also describe the use of
a predictor-corrector approach to avoid overestimation of particle
motion during the current time-step. Munjiza (2004) reviews a
number of time integration schemes and compares their accuracy,
stability and efficiency.

Predictor-corrector time integration schemes are multi-step in-
tegration methods (e.g. Burden and Faires (1997)). The central-
difference method as implemented in DEM is essentially a single
step method. The particle positions at time t give the acceler-
ations at time t and these accelerations are double integrated to
calculate the positions at time t+Δt. As noted by Munjiza (2004),
this approach is a second-order time integration scheme, i.e. the
accuracy of the method is proportional to the square of the time
increment.

In a multi-step method information on the state of the system
not only at time t, but also at previous times, is used to predict
the particle positions at time t+Δt. Various multi-step methods
are considered by Burden and Faires (1997), and many of them
take a general form of

xt+Δt
p = xt

p+c1v
t+Δt
p +c2v

t
p+c3v

t−Δt
p +c4v

t−2Δt
p +cn+2v

t−nΔt
p (2.65)

where (from the perspective of a particulate DEM simulation)
xt+Δt
p , xt

p, xt−nΔt
p are the particle positions at times t + Δt, t,

t − nΔt, and vt+Δt
p , vt

p, v
t−nΔt
p are the corresponding particle ve-

locities for n time-steps before time t. The parameters c1, c2, cn+2

are appropriate constants whose values can be determined using
the Taylor series expansion. When the parameter c1 is 0, the
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method is explicit, i.e. we can predict the value of displacement
at time t+Δt only considering the values at previous time incre-
ments. However, if the parameter c1 is non zero the method is
implicit. Typically, for the same number of steps (i.e. the same n
value) an implicit approach will give a more accurate answer than
an explicit approach. As discussed above there are many impedi-
ments to using implicit time integration in discrete element simu-
lations, however the implicit multi-step methods can be adapted,
so that an implicit multi-step method can be used to improve or
“correct” the value of xt+Δt

p calculated or “predicted” using an
explicit approach. To assess the stability of a multi-step method,
the characteristic equation of the method should be considered as
described by Burden and Faires (1997).

Various predictor-corrector approaches exist. Pöschel and
Schwager (2005) selected Gear’s algorithm, and this method is
also discussed by Munjiza (2004) and used by Garcia-Rojo et al.
(2005). In this approach in the prediction phase the particle po-
sitions, and their derivatives, are calculated at time t + Δt using
a Taylor series expansion. Rather than considering the particle
velocities at n previous time-steps, the higher-order derivatives of
the displacement at time t are considered. Where a 5th order ap-
proach is used time derivatives up to d4

dt4
are considered in the

expansion:

xt+Δt = xt + dxt

dt
Δt+ d2xt

dt2
Δt2

2
+ d3xt

dt3
Δt3

3!
+ d4xt

dt4
Δt4

4!
dxt+Δt

dt
Δt = dxt

dt
Δt+ d2xt

dt2
Δt2 + d3xt

dt3
Δt2

2!
+ d4xt

dt4
Δt3

3!
d2xt+Δt

dt2
= d2xt

dt2
+ d3xt

dt3
Δt+ d4xt

dt4
Δt2

2!
d3xt+Δt

dt3
= d3xt

dt3
+ d4xt

dt4
Δt

d4xt+Δt

dt4
= d4xt

dt4

(2.66)

The contact forces and resultant forces on each particle at time
t+Δt are then calculated using the predicted particle coordinates,
and from these forces the accelerations d2xt+Δt

dt2
can be calculated.

The calculated accelerations are then used to correct or adjust the
previously predicted derivative values by
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xt+Δt = xt+Δt + C1
Δt2

2
d2xt+Δt

dt2
dxt+Δt

dt
= dxt+Δt

dt
+ C2Δt2 d

2xt+Δt

dt2
d2xt+Δt

dt2
= dxt+Δt

dt
+ C3Δt2 d

2xt+Δt

dt2
d3xt+Δt

dt3
= dxt+Δt

dt
+ C4Δt2 d

2xt+Δt

dt2
d4xt+Δt

dt4
= dxt+Δt

dt
+ C5Δt2 d

2xt+Δt

dt2

(2.67)

where C1, C2, C3, C4,C5, are constant coefficients. When im-
plementing Gear’s algorithm different order schemes can be used,
with the order of the scheme giving the highest derivative consid-
ered (Munjiza, 2004). The scheme presented above is a 4th scheme.
If a different order scheme is used the coefficients in the corrector
phase (Equation 2.67) will change. Consideration must also be
given to the initialization.

There is a cost associated with the predictor-corrector scheme
as the calculations required to determine the particle positions at
each time-step are more complex, the information on the particle
positions at more than one previous time-step needs to be calcu-
lated. However, Pöschel and Schwager (2005) completed a com-
puter time profiling study and found that within each calculation
cycle the calculations involved in updating the particle positions
involves much less computing time than the calculations for the
contact forces. They also argue that the increase in computing
time associated with the predictor-corrector scheme is justified as,
when comparison with the Verlet time integration scheme, a larger
time-step can be used to achieve the same accuracy. In the con-
text of the discussion on accuracy in Chapter 1 it is worth recalling
that the number of approximations involved in calculating each of
the higher-order derivative terms at time t can be very large.

77



Chapter 2. Particle Motion

78



Chapter 3

Calculation of Contact
Forces

3.1 Introduction

In particulate DEM large numbers of interacting and potentially
interacting bodies are considered. To determine the contact forces,
or inter-particle reactions, the series of calculations must firstly
identify which particles are contacting, then in a separate series
of calculations the actual contact forces are calculated. These two
stages are described as the contact detection and contact resolu-
tion stages of the analysis respectively (e.g. Hogue (1998)). Both
sets of calculation involve predominantly geometrical calculations.
The challenge with contact detection is to develop efficient algo-
rithms to keep track of which particles are in contact or likely
to come into contact and to form some type of “neighbour list”.
Contact resolution involves the accurate calculation of the contact
geometry and kinematics, typically characterized by the overlap
depth/separation and sometimes also relative tangential motion;
however, in some cases the overlap area or volume may be consid-
ered. A contact constitutive model is then used to calculate the
contact forces from this relatively simple description of the contact
geometry. The sequence of calculations associated with calculat-
ing the contact forces is undoubtedly the most time-consuming as-
pect of a DEM simulation, Sutmann (2002) estimates that these
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calculations account for 90% of the DEM simulation time. The
proportion of the analysis time taken up in contact resolution de-
pends on the packing density of the system; when the void ratio is
lower, the number of contacts per particle increases and the pro-
portion of the analysis time taken up with contact resolution also
increases.

To achieve computational efficiency, relatively straightforward
analytical expressions to calculate the contact force are needed. In
reality the load–deformation response of two contacting soil par-
ticles is highly complex. As noted by Zhu et al. (2007), it would
be very difficult to accurately describe inter-particle contact as
the distribution of the contact stress (or traction) depends on the
particle geometry and material properties as well as the particle
motion. At a sub-particle scale the asperities on the surfaces of the
particles will initially contact, then after these deform and yield,
the particles will interact over a (typically small) finite area. To
facilitate the analytical description of their geometry, DEM par-
ticles are almost always analytically described as smooth surfaces
and most DEM models simplify the contact to be a single point.
The strains experienced by the contacting particles and the non-
uniform stress distributions that are induced are not explicitly
considered in the DEM simulation. Instead, the overlap between
the rigid particles is considered to represent the deformation.

The contact forces in a DEM model are taken to represent
the integral of the real stresses or tractions acting along a physi-
cal contact. The resultant inter-particle force is resolved into its
two orthogonal components, normal and tangential to the con-
tact point. Then, the stress-deformation response at the contact
is represented using two orthogonal rheological models, acting in
the normal and tangential directions respectively. These rheolog-
ical models typically comprise a combination of springs, sliders
and dashpots and are often called contact constitutive models or
contact models. Adopting this simple contact modelling approach
is one of the key fundamental aspects of DEM. It allows inter-
actions between very large numbers of particles to be considered
with good computational efficiency. The level of realism of the
contact models can be advanced by specifying non-linear force-
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displacement relationships for the contact springs, or combining
systems of springs and dashpots in various ways.

This Chapter introduces some of the more common contact
models that have been adopted in geomechanics applications. The
range of interaction models that have been considered to date ex-
tends beyond those considered here and this promises to be an in-
teresting area of DEM research in future years. Readers interested
in contact force modelling outside of geomechanics may wish to re-
fer to Zhu et al. (2007). One challenge in this area is to accurately
calculate the particle scale forces in micro-scale laboratory exper-
iments. While contributions to meet this need have been made by
researchers including Cavarretta et al. (2010), Yu (2004) correctly
identified that better experimental micro-scale characterization is
a central requirement necessary to improve DEM models.

3.2 Idealizing Contact for Particulate

DEM Simulations

In particulate DEM contact forces are usually calculated by in-
troducing “virtual” springs at the contact points, as illustrated
in Figure 3.1. The particles considered in DEM simulations are
completely rigid. However, as discussed in more detail later in this
Chapter, in reality the particles acting in compression will deform
at the contact points. In a DEM model, this deformation is simu-
lated by allowing a small amount of overlap at the contact points.
The springs are not restricted to being linear elastic. The equa-
tion that defines the force-deformation relationship for the contact
spring is called a contact constitutive model. The calculation of the
normal and tangential force components is largely decoupled, i.e.
they are calculated separately. Two orthogonal rheological models
are activated at the contact point to calculate the force compo-
nents. These rheological models use combined systems of springs,
sliders and dashpots with various complexities. The slider in the
contact normal direction is used to prevent or limit tensile forces
developing between the particles, while the slider in the tangen-
tial direction allows the particles to move relative to each other
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when the contact frictional strength is exceeded (calculated using
Coulomb friction). The symbol Fn is used to denote the normal
component of the contact force, while the tangential component is
denoted by Ft. Moments will also be transmitted to the particles,
causing rotations. Irrespective of the particle geometry, moments
will be imparted as a consequence of the tangential component of
the contact forces. Moments will also be generated in the case of
a finite contact area when the contact stress distribution is not
symmetrical about the centre of the contact point. The axis of
application of the moments is orthogonal to the contact normal.
Further discussion on moment transmission at particle contacts is
given in Section 3.9 below.

Figure 3.1: Schematic diagram of approach used to model contact
in DEM

Figure 3.3 illustrates some of the geometrical features consid-
ered in a DEM simulation based upon the contact between two
disks (although this diagram could also be considered to be a sec-
tion through two contacting spheres). In Figure 3.3 the vector
defining the contact normal has the same orientation as the vec-
tor joining the centroids of the two contacting disks as they are
circular. The contact plane is at right angles to the contact nor-
mal and the contact coordinates are taken to be at the middle of
the contact. If the contact normal orientation is described by the
vector n = (nx, ny), the orientation of the tangent to the contact
is given by t = (−ny, nx). Knowing the contact normal and the
coordinates of the contact point, the equation of the contact plane
(contact line in 2D) can easily be determined.

82



Particulate Discrete Element Modelling: A Geomechanics Perspective

Figure 3.2: Diagram of normal and shear contact force models in
DEM

Where the contact forces are non-zero there will be a contri-
bution to the resultant forces acting on both contacting particles.
These two contributions will be equal in magnitude and oppo-
site in direction. In compression the normal inter-particle normal
contact force calculated from the particle overlap acts to repulse
the two contacting particles from each other. If there is a small
separation between the particles, tensile forces will act to draw
the particles towards each other, unless the limiting tensile force
is exceeded. The limiting tensile force is most often specified to
be zero in geomechanics, i.e. no inter-particle tension is allowed.
The tangential forces will induce both relative rotation and trans-
lation. For non-circular or non-spherical particles the contact nor-
mal forces can impart a rotation and contribute to resist particle
rotation.

The dominant approach used in particulate DEM can be clas-
sified as a penalty spring approach. Generally, in computational
mechanics the approach adopted when the penalty method is used
to model contact is to introduce a very stiff spring at the point of
contact. Penetration then occurs at the contact point; however, a
small amount of penetration yields a relatively large force acting
equally (but in opposite directions) on the contacting bodies. As
outlined by Munjiza (2004), there are two options in the penalty
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Figure 3.3: Diagram of disk–disk contact geometry

formulation. One option is for the force to equal the magnitude of
the overlap (i.e. the maximum overlap distance) times the penalty
spring stiffness. Another option is to relate the area or the volume
of the contact overlap to the contact force. This might be more
appropriate in the case of a distributed contact force. Most par-
ticulate DEM implementations use the magnitude of the overlap
to calculate the contact normal force.

It is useful to be aware of the other approaches used in general
in numerical modelling contact (e.g. in the finite element method).
Zienkiewicz and Taylor (2000b) consider three methods to model
contact: the Lagrangian multiplier method, the penalty method
and the augmented Lagrangian method. Munjiza (2004) extends
this list to include the least squares methods. As outlined by
Munijza, where Lagrange multipliers are used, an additional term
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is added to the global equilibrium equation so that the forces are
solved for directly (refer to Munjiza (2004) or Zienkiewicz and
Taylor (2000b), who use variational calculus to derive the modified
dynamic equilibrium equations). Munijza identifies the two main
drawbacks to the use of the Lagrange multiplier method over the
use of a penalty spring approach to be the increase in the number of
unknowns and the fact that in explicit analysis the impenetrability
constraints are only approximately satisfied. As already noted in
Chapter 1, the contact dynamics method proposed by Jean (2004)
uses a slightly different approach such that there is no penetration
at the contact points.

3.3 An Overview of Contact

Mechanics

Before presenting the expressions for the contact constitutive mod-
els used in particulate DEM, it is useful to consider some of the
theory associated with contact between two elastic spheres. The
discussion presented here serves to highlight some of the basic
concepts of contact mechanics relevant to particulate DEM. Read-
ers interested in developing a more in-depth understanding of the
load–deformation response observed at contact between solid bod-
ies, and the stress distributions around the contact points, should
refer in the first instance to the general text on contact mechanics
by Johnson (1985).

Johnson clearly distinguishes conforming and non-conforming
contacts. In a conforming contact the surfaces fit together closely
prior to deformation. The two surfaces interacting at a non-
conforming contact have dissimilar profiles and will initially con-
tact only at a single point. As illustrated in Figure 3.4(a), the
contact between two disks or two spheres will be non-conforming.
Where the contacts are non-conforming the contact area is small
relative to the particle dimensions and the stresses are highly con-
centrated in the contact zone. The stresses are not greatly influ-
enced by the geometry of the body distant from the contact area.
Most DEM models use spheres or disks as their basic particle
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types; therefore, the simulated contacts are non-conforming and
the contact models have been developed based on a point contact
assumption. One of the most commonly used contact models in
geomechanics, the Hertzian contact model, was developed based
upon the application of elastic theory to non-conforming spherical
elastic bodies.

A theoretically perfectly conforming contact is illustrated in
Figure 3.4(b), and, as can be appreciated from Figure 3.4(c),
where real particles contact the complexity of their morphologies
can generate a highly complex contact condition with more than
one inter-particle contact. As noted by Fonseca et al. (2010), in
a natural soil there are a variety of contact types, including many
conforming contacts (refer also to Chapter 10). The real physical
contacts will be three-dimensional, adding additional complexity
to the contact geometry. Any particle surface of interest in geome-
chanics will have many surface asperities. As illustrated in Figure
3.4(d), the initial contact between surfaces is likely to be a non-
conforming contact between two surface asperities, transitioning
to a conforming contact as the asperities yield.

At the contact surface the surface pressures arising due to the
contact forces are referred to as tractions. The term “traction”
is often used in mechanics to describe the surface force per unit
area acting along a boundary. The symbols fn and ft are used
here to refer to the normal and tangential components of the sur-
face tractions respectively. The contact forces are determined by
integration of the tractions over contact area (Ac) as follows:

Fn =
∫
Ac

fndA

Ft =
∫
Ac

ftdA
(3.1)

In Figure 3.5(a) the traction at the contact between two smooth
spherical particles is illustrated. The traction is symmetric about
the centre of the contact. The smooth, convex nature of the parti-
cles means that no rotational resistance is provided at the contact
point and hence moment transmission cannot occur. Figure 3.5(b)
illustrates the distribution of the normal tractions along the con-
tact surface for a conforming contact. In this case the geometry of
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Figure 3.4: Contact types; (a) Non-conforming contact (b) Con-
forming contact (c) Soil particle contact (d) Contact between as-
perities on soil particle surface.

the particles provides a resistance to rotation and is transmitting
both a resultant moment as well as a normal compressive force.
The asymmetry in the traction distribution is a consequence of
the moment loading.

3.4 Contact Response Based Upon

Linear Elasticity

3.4.1 Elastic normal contact response

Anyone who has completed a basic undergraduate course in geotech-
nical engineering including shallow foundation design will have an
appreciation of the complexity of the distribution of stresses be-
neath a contact. In shallow foundation analysis, the integration
of the Boussinesq expression for a point load at the surface of an
elastic half space is often used to derive an expression for the spa-
tial variation in stress beneath the foundation. While the response
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Figure 3.5: Illustration of normal traction distributions (a) Con-
tact between smooth disks or spheres (b) General case with a
non-conforming contact

of real soil is highly non-linear, this assumption of a linear elastic
response is pedagologically useful when developing an understand-
ing of the real stress distributions. Similarly, the use of continuum
elasticity can help to develop an understanding of the response at
the contact between two soil particles as compressive forces are
transmitted between the particles.

Using elastic theory, expressions for the stress distributions
and deformations within two contacting particles can be derived.
These expressions can then give a description of the load–
deformation response at the contact between two continuous, non-
conforming bodies based on a contact mechanics theory proposed
by Hertz. Hertzian contact mechanics assumes an initial point
contact between the solid bodies and then provides expressions
describing the growth of the contact area, the variation in surface
tractions, the surface deformations and the stresses within the par-
ticles. This approach assumes that the solid contacting bodies are
linearly elastic and then solves a boundary value problem, assum-
ing that each contacting body is an elastic half space and that the
contact area is elliptical in shape.

It is important to appreciate the assumptions underlying Hert-
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zian contact mechanics so that the limitations of its applicability
in geomechanics can be established. In the first instance the sur-
face properties of the contacting particles are greatly idealized;
the presence of surface asperities is neglected (i.e. the contacting
surfaces are assumed to be perfectly smooth), and the spheres are
assumed to be frictionless. The contact area is also assumed to
be small relative to the dimensions of the contacting bodies and
the strains induced are assumed to be sufficiently small that the
material response remains linear elastic. It is also assumed that
there is no interaction outside the loaded area (e.g. tensile forces).
As long as the stiffnesses of the two contacting bodies are equal,
friction is not brought into play as there is no relative tangential
straining along the contact surface.

The relationships derived using Hertzian theory for the contact
between two spheres s1 and s2 are expressed in terms of an effective
particle radius, R∗, and an effective Young’s modulus, E∗. These
two parameters are given by

1

R∗ =
1

Rs1

+
1

Rs2

(3.2)

and

1

E∗ =
1− ν2

s1

Es1

+
1− ν2

s2

Es2

(3.3)

where Rs1 and Rs2 are the sphere radii, the Young’s moduli are
Es1 and Es2 and the Poisson’s ratio are νs1 and νs2 for spheres s1
and s2 respectively.

This theory gives an expression for the radius of the circle
defining the contact as follows:

a =
(
3FnR

∗

4E∗

)1/3

(3.4)

The maximum contact traction, fmax
n , is

fmax
n =

(
6FnE

∗2

π3R2

)1/3

(3.5)
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The deformation at the contact point, i.e. the increase in the
proximity of the centroids of the two contacting particles, is given
by

δ =

(
9F 2

n

16R∗E∗2

)1/3

(3.6)

Figure 3.6 illustrates some aspects of contact response calcu-
lated using Hertzian theory. The parameters used to generate the
results presented in Figure 3.6 were selected referring to Thorn-
ton (2000), as follows: Ra = Rb = 0.258, Ea = Eb = 70 GPa
and νa = νb = 0.3. Figure 3.6(a) illustrates the variation in con-
tact force as a function of the contact deformation for these val-
ues. Even though the material response is assumed linear elastic,
a non-linear force-deformation response is observed, with the ef-
fective contact stiffness increasing as the contact force increases.
This non-linearity can be understood by considering the variation
in the contact area as the force increases. The rate of increase in
surface area with deformation decreases as the deformation pro-
gresses. Figure 3.6(b) illustrates the radius of the contact surface
at three discrete load levels (10 N, 50 N and 100 N). The variation
in stresses within the particle along the line joining the centre of
the contact surface and the particle centroid is illustrated in Fig-
ure 3.6(c). The normal stress within the particle σz is oriented
along this line, while the radial stress σr is orthogonal to this line.
The stress conditions will be symmetrical about this line.

While both σz and σr decrease monotonically from their max-
imum values at the contact surface, the variation in the deviator
stress σz − σr is more complex. It is important to consider the
deviator stress as this value is used in both the von Mises and
the Tresca failure criteria that can be applied to the solid particle
material. The von Mises failure criterion states that

1

6

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]
=

Y 2

3
(3.7)

The Tresca failure criterion states that

max (|σ1 − σ2|, |σ1 − σ3|, |σ2 − σ3|) = Y (3.8)
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where Y is the yield stress for the material. These equations then
determine the onset of yield and plastic deformation in the parti-
cles. Thornton (1997a) and Thornton and Ning (1998) proposed
that initially during loading, Hertzian elasticity can adequately de-
scribe the contact normal pressure distribution, however as loading
progresses there is a “plastic” phase where the truncated Hertzian
pressure distribution applies. The resultant force-displacement re-
lationship for the plastic phase is linear (Thornton and Liu, 2000).
For real soil particles, there will be flaws and cracks in the par-
ticles, resulting in inhomogeneous stress conditions. The (gross)
particle failure mode is typically brittle.
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3.4.2 Elastic tangential contact response

In comparison with the normal component of the contact force,
the contact response along or tangential to the contact surface (i.e.
orthogonal to the contact normal) is more difficult to understand.
While (again) the key reference for this topic is Johnson (1985),
the description of the response provided by Thornton (1999) (who
considers the mechanics from a particulate DEM perspective) is
(arguably) clearer. The discussion of tangential contact response
presented here draws on these sources and is included here to
facilitate a better appreciation of the assumptions inherent in the
contact models used in DEM simulations.

The work of Mindlin (1949) and Mindlin and Deresiewicz (1953)
forms the basis for some of the most important models of tangen-
tial response used in DEM simulations. A central assumption of
this approach is that the tangential traction does not influence
the normal traction distribution, which is assumed to follow the
Hertzian response described above. This assumption holds true
only for contact between two spheres with the same elastic prop-
erties. Mindlin (1949) showed that in the case where there is no
variation in the normal force Fn, when a tangential force is ap-
plied, there will be a “slip” over part of the contact area, while
over the remaining contact area there is “stick”, i.e. there is no
relative movement at the contact. From Hertzian theory, the con-
tact area is circular. The slip region is then an annular region
around a central circular “adhered” or “sticking” area. As out-
lined by Johnson (1985), slip is irreversible, consequently, there is
an added complexity introduced as the contact state (i.e. the rela-
tionship between force and displacement) depends on the history
of loading.

The laws of friction proposed by Amontons and Coulomb give
the relationship between the normal and tangential tractions in
the slip region to be as follows:

ft(r) = μfn(r) (3.9)

where, as in the case of Hertzian normal contact, r represents
the distance from the centre of the circular contacting area along

92



Particulate Discrete Element Modelling: A Geomechanics Perspective

the contact surface and fn and ft are the normal and tangential
tractions respectively. This is illustrated in Figure 3.7(a), at the
limiting condition where contact sliding is about to occur and
ft(r) = μfn(r) for 0 ≤ r ≤ a, where a is the contact radius.
Then the distribution of tangential tractions is simply calculated
by multiplying the normal traction by the coefficient of friction.
The entire extent of the contact area is then said to be slipping
(Figure 3.7(b)). However, prior to this point of “gross yield”,
the modelling of the tangential response is non-trivial and the
response depends on whether the contact is being loaded in the
tangential direction for the first time or whether the contact is
already experiencing a tangential force that experiences a change
in direction.

Initial tangential loading

For the initial tangential loading, it is assumed that a contact
subject to a normal force Fn experiences a tangential force that
increases steadily (monotonically) from a value of 0 to Ft. If the
radius of the adhered or stuck area is b and, as before, a is the
radius of the total contact area (calculated using Hertzian theory),
then the tangential traction at a distance r from the centre of the
contact area is given by

ft(r) =
3μFn

2πa3

√
a2 − r2 b ≤ r ≤ a

ft(r) =
3μFn

2πa3

(√
a2 − r2 −√

b2 − r2
)

0 ≤ r ≤ b
(3.10)

The resulting distribution of tangential tractions, assuming that
b = 0.5a, is illustrated in Figure 3.7(c), and the extent of the slip
area relative to the area in “stuck” mode can be appreciated by
reference to Figure 3.7(d).

Mindlin (1949) gave the relative tangential displacement of the
two contacting spheres as

δt =
3μFn

16G∗a

(
1− b2

a2

)
(3.11)
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Figure 3.7: Illustration of tangential traction distributions and
extent of slip areas for sliding of two spheres
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where

1

G∗ =
2− νs1
Gs1

+
2− νs2
Gs2

(3.12)

where Gs1 and Gs2 are the shear moduli of the contacting spheres
s1 and s2 respectively.

The tangential force can then be obtained from the following
integral:

Ft = 2π

a∫
0

ft(r)rdr = μFn

(
1− b3

a3

)
(3.13)

As the tangential force increases, the extent of the slip zone
increases, i.e. b decreases and the slip zone progresses inwards.
Eventually all of the contact area is slipping and, at this point
Ft = μFn and ft(r) = μfn(r) for 0 ≤ r ≤ a. At any point
during this period of monotonically increasing tangential loading,
the relationship between the radius of the stick region (b) and the
contact radius (a) is given by

b

a
=

(
1− Ft

μFn

)1/3

(3.14)

Unloading - reversal of tangential force, Ft

The process of slip is dissipative and thus the slip region will not
shrink once the direction of loading it reversed. Instead a region
of micro-slip or counter-slip will begin at the edge of the contact.
Then the response along the surface will be divided into three
zones: an area with no slip, an area in slip and an area in counter
slip. As explained by Thornton (1999) the energy required to pro-
duce the “annulus of counterslip” is twice that required to produce
the original slip area, and generate slip in the opposite direction.
The following equations now define the distribution of tractions
along the contact surface
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ft(r) = −3μFn

2πa3

√
a2 − r2 c ≤ r ≤ a

ft(r) = −3μFn

2πa3

(√
a2 − r2 − 2

√
c2 − r2

)
b ≤ r ≤ c

ft(r) = −3μFn

2πa3

(√
a2 − r2 − 2

√
c2 − r2 +

√
b2 − r2

)
0 ≤ r ≤ b

(3.15)

δ t

Ft

Figure 3.8: Illustration of hysteresis for a cycle of tangential load-
ing with full reversal

Integration of the traction expressions in Equation 3.15, gives
the following expression for the tangential force at the contact:

Ft = μFn

⎡⎣1− (
b

a

)3
⎤⎦ − 2μFn

(
c

a

)3

(3.16)

Figure 3.8 illustrates the load–deformation response for the
case of a contact where there is an initial monotonic tangential
loading followed by a 180◦ load reversal to unload to a deformation
of −r.

Excluding the contact constitutive models implemented by
Thornton and his colleagues, (e.g. Thornton and Yin (1991)) most
DEM models of tangential loading do not consider the details of
the tangential contact stress distribution and do not distinguish
between loading, unloading and reloading in the tangential direc-
tion. As discussed elsewhere in this book, DEM simulations and
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physical experiments indicate that granular material response is
dominated by the contact normal forces, and so neglecting the de-
tails of the tangential stress distributions in DEM contact models
may be acceptable. The description of tangential response has,
however, been included here to highlight the complexity of the
response in the tangential contact direction, even for the case of
relatively simple elastic spheres.

3.4.3 Applicability of Hertzian contact
mechanics to soil

Hertzian contact mechanics is attractive as it provides a ratio-
nal basis for the development of contact models for application
in DEM models. However, there are limitations to the applica-
tion of Hertzian theory to real soils. The surface geometries as-
sumed are highly idealized. Cavarretta et al. (2010) have demon-
strated that even for relatively simple, manufactured materials,
real particle contacts do not follow elastic theory; rather there
is plastic yield of asperities prior to the development of an elas-
tic Hertzian response. Experimental data for real soil response
indicates that the Hertz-Mindlin contact model cannot correctly
simulate the pressure-dependent nature of the small-strain modu-
lus. As discussed by Goddard (1990), McDowell and Bolton (2001)
and Yimsiri and Soga (2000), if the contact response in sands fol-
lowed Hertzian theory, the small-strain shear stiffness of soil, Gmax

would be proportional to p1/3, where p is the mean stress. How-
ever, as noted by McDowell and Bolton (2001), amongst others,
experimental data indicate that (where the void ratio is kept con-
stant) Gmax varies approximately with p1/2. This deviation from
Hertzian behaviour may be a consequence of the non-spherical ge-
ometry of the particles, or the non-smooth nature of the particle
surfaces.
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Figure 3.9: Graphical representation of basic rheological models

3.5 Rheological Modelling

Before discussing the details of contact modelling in particulate
DEM, it is useful to review some “rheological” or “phenomeno-
logical” models that are applied in continuum mechanics. In this
approach to modelling there are a limited number of base models,
and these can be combined to capture various types of material
response. DEM contact models often use this modelling frame-
work to develop expressions for the load–deformation response at
the contact points. Each of the base models has a graphical repre-
sentation as illustrated in Figure 3.9 and these representations are
often used in geomechanics-related DEM papers. In continuum
mechanics these models describe a constitutive response relating
stresses and strains. However, in the current context they may be
used to relate a contact displacement (δ) to a contact force (F ).

Figure 3.10 illustrates the load–deformation response captured
by each of the basic rheological models. Figures 3.9 and 3.10(a)
and (b) illustrate elastic response and a spring is used to represent
this type of model. In a non-linear elastic spring (Figure 3.9(b))
the force–deformation response is given by a analytical expression
(i.e. F = f(δ), where f(δ) is a non-linear function). A non-linear
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elastic model will not dissipate energy or capture plasticity in the
response, i.e. the loading and unloading paths coincide. For the
viscous response illustrated in Figure 3.10(c) the force is related to
the rate of deformation or deformation velocity; as illustrated in
Figure 3.9(c), this model is represented by a dashpot with damping
η. For the rigid perfectly plastic response illustrated in Figure
3.10(d), there is no deformation (the rate of deformation, δ̇, is
zero) until a yield point (F = Y ) is reached, and after this point
deformation continues at a constant load (Ḟ = 0). This model is
graphically represented as a slider that activates when the yield
point is attained (Figure 3.9(d)).

The force–displacement response observed in each of these mod-
els can be expressed analytically as follows:

F = Kδ Linear elastic, spring stiffnes K

F = f(δ) Nonlinear elastic

F = ηδ̇ Viscous model, damping η

δ̇ = 0 F < Y

Ḟ = 0 F = Y
Rigid perfectly plastic resonse

(3.17)

The basic rheological models presented in Figure 3.9 can be
combined to capture more complex response characteristics. While
there is an almost infinite number of possible combinations, there
are some common standard composite models, and these are il-
lustrated in Figure 3.11. The linear Maxwell model illustrated
in Figure 3.11(a) comprises a spring and dashpot arranged in se-
ries. With this arrangement both elements are restricted to expe-
rience the same force but can exhibit different deformations and
the total deformation is the sum of the two components. The con-
verse situation applies with the linear Kelvin model (Figure 3.11),
i.e. the spring and dashpot experience different forces but are
restrained to have equal deformations, and the total force is the
sum of the two force contributions. The final model illustrated in
Figure 3.11(c) is Burger’s model, sometimes called Burger’s fluid
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model or a four parameter fluid. This model is composed of a lin-
ear Maxwell model and a linear Kelvin model arranged in series.

The response of each of these models is given in Equation 3.18
below. For clarity in each case the response has been presented in
the simplest format. However, for implementation in an explicit
DEM code, the response function should give load as a function
of displacement, i.e. it should be in the form F = f(δ).

Figure 3.10: Load–deformation response of basic rheological mod-
els

δ̇ = Ḟ
K
+ F

η
Linear Maxwell model

F = ηδ̇ + Eδ Linear Kelvin model

K1η1η2δ̈ +K1K2η1δ̇ =

η1η2F̈ + (K1η2 +K2η1 +K1η1) Ḟ
+K1K2F

Burger’s model

(3.18)
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where the terms δ̇ and Ḟ are the rates of change of deformation
and force (i.e. first-order derivatives with respect to time), and δ̈
and F̈ are the corresponding second-order derivatives.

Figure 3.11: Graphical representation of composite rheological
models

Figure 3.12: Load–deformation response of Kelvin rheological
model

The load–deformation response of the Kelvin model is interest-
ing as this model exhibits hysteresis. Referring to Figure 3.12 the
force-deformation responses in loading and unloading are not co-
linear and hence energy is dissipated. As discussed below, many
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DEM modellers use this type of model to simulate energy loss due
to plastic deformation at the contact points.

A key feature of these composite models is that because the vis-
cous dashpot element is included in the model, they can capture a
response that varies with time. This is of interest in geomechanics
both to look at soil creep as well as to model the viscosity of the as-
phaltic binder in road pavements. The time–deformation response
of the models illustrated in Figure 3.11 is illustrated schematically
in Figure 3.13. Figure 3.13(a) illustrates the deformation of the
linear Maxwell model under a constant load, F0. It is clear that the
model experiences a linear increase in deformation with time, i.e.
it exhibits a linear creep. The creep response for the linear Kelvin
model is given in Figure 3.13(b). In this case under a constant
load, F0, the deformation converges monotonically to a value of
F0

K
. Burger’s model, illustrated in Figure 3.13(c) is a combination

of these two types of response. The analytical expressions for the
time–deformation response captured by each of these three models
to a force F0 applied at a time t = 0, are given in Equation 3.19.

δ(t) = F0

(
1
K
+ t

η

)
Linear Maxwell model

δ(t) = F0

K

(
1− e−(

K
η )t

)
Linear Kelvin model

δ(t) = F0

[
1
K1

+ t
η1

+ 1
E2

(
1− e

−tE2
η2

)]
Burger’s model

(3.19)

An appreciation of the range of responses that can be cap-
tured by use of rheological or phenomenological models compris-
ing spring-dashpot combinations approach to modelling, as well as
the approaches used to develop the load–deformation and time–
deformation responses can be gained by reference to Shames and
Cozzarelli (1997). The discussion here is limited to relatively sim-
ple spring-dashpot combinations; as discussed by Shames and Coz-
zarelli, the complexity of the response captured can be increased
by adding additional components to the models presented here.

Itasca (2004) outlines the implementation of Burger’s model
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to capture contact response in a DEM code. A central-difference
time integration approach was used to solve the second-order dif-
ferential equation to describe the load–deformation response (refer
to Equation 3.19).

Figure 3.13: Time–deformation response of composite rheological
models

3.6 Normal Contact Models

3.6.1 Linear elastic contact springs

The simplest type of contact model that can be used in particulate
DEM to simulate the load–deformation response in the contact
normal direction is a linear elastic spring. Where this model is
used the contact normal force Fn is calculated as

Fn = Knδn (3.20)

where Kn is the contact stiffness in the normal direction and δn is
the overlap at the contact point, measured normal to the contact.
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Typically in mechanics stiffness is a ratio of stress to strain and
the units are those of stress (kPa). In this case however, the units
of stiffness are force/length (e.g. N/mm). The calculated force is
directed normal to the contact plane. The orientation of this force
is along the line joining the centre of the two contacting particles,
if disks, spheres or agglomerates of disks or spheres are used.

Given their widespread use in geomechanics, it is important
to realize that in the Itasca PFC codes the user specifies a spring
stiffness for each particle. So for two particles A and B in con-
tact there are two spring stiffnesses kp,An and kp,Bn respectively in
the normal direction and kp,A

s and kp,Bs in the tangential or shear
direction. This results in effective normal stiffnesses Kcontact

n and
Kcontact

s at the contact point of

Kcontact
n = kp,An kp,Bn

kp,An +kp,Bn

Kcontact
s = kp,As kp,Bs

kp,As +kp,Bs

(3.21)

In the case of uncemented, unbonded materials it is assumed
that no tension is transmitted across the particle contact. Then
when a gap develops between the particles the contact is consid-
ered ruptured or terminated.

The spring constants used in the linear elastic model cannot
easily be directly related to the material properties of the solid
particles, so where this model is used the springs should concep-
tually be considered to act as “penalty springs.” In this way, as
discussed in Section 3.2, they are stiff springs whose role is to min-
imize the amount of overlap that can occur at the contact point.
As discussed further in Chapter 12, it is, however, possible to cal-
ibrate a DEM model and adjust the stiffnesses of these contact
springs to match the overall response of an assembly of particles
observed in the laboratory. Latzel et al. (2000) argue that use of
a linear contact model is appropriate for 2D analyses; the extent
of the simplification introduced by representation of a 3D mate-
rial with a 2D model is such that the effort expended in using
a more complex model is not worthwhile. The validity of this
sentiment depends on the nature of the problem or the type of
material behaviour being considered. Examples of geomechanics
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publications where useful insight into material response has been
achieved using a linear contact model include Chen and Ishibashi
(1990), Calvetti et al. (2004) and Rothenburg and Kruyt (2004).

3.6.2 Simplified Hertzian contact model

To overcome the non-physical nature of the linear spring stiff-
nesses, models have been developed to relate the spring parame-
ters to the sphere material properties. Using the Hertzian theory
of elastic contact that has been introduced in Section 3.3 above, an
expression for the secant contact stiffness for the interaction be-
tween two spheres can be obtained. The Hertzian contact model is
a set of non-linear contact formulations. This is sometimes called
the Hertz-Mindlin contact model, as the approximate model used
to describe the tangential force draws upon the work of Mindlin
and Deresiewicz (1953), and this is discussed in Section 3.7 below.
The normal contact stiffness is given by

Kn =

⎛⎜⎝ 2〈G〉
√
2R̃

3(1− 〈ν〉)

⎞⎟⎠√
δn (3.22)

The normal contact force is calculated as

Fn = Knδn (3.23)

where δn is the sphere overlap. For a sphere-sphere contact the
coefficients R̃, 〈G〉 and 〈ν〉 are given by

R̃ = 2RARB

RA+RB〈G〉 = 1
2
(GA +GB)

〈ν〉 = 1
2
(νA + νB)

(3.24)

and for a sphere-boundary contact, the coefficients are given by
R̃ = Rsphere, 〈G〉 = Gsphere, 〈ν〉 = νsphere, where G is the elastic
shear modulus, ν is Poisson’s ratio, R is the sphere radius, and
the subscripts A and B denote the two spheres in contact. This
type of contact model has been used in many published DEM
simulations, including Chen and Hung (1991), Lin and Ng (1997),
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Sitharam et al. (2008), and Yimsiri and Soga (2010). As noted
above, the relationship between mean stress and small-strain stiff-
ness observed in physical experiments on sands differs from that
which would be expected using Hertzian theory.

3.6.3 Normal contact models including yield

Walton-Braun linear model

In an elastic contact model, whether it is linear or non-linear, there
is a unique relationship between the contact force and deformation
and energy is conserved, i.e. the strain energy stored during load-
ing equals the strain energy released in unloading. Walton and
Braun (1986) proposed a linear contact model that dissipates en-
ergy, arguing that the particle interactions are non-conservative
and that kinetic energy is dissipated in every collision. Their
model is hysteretic and the normal force during first loading is
given by

Fn = K1,nδn (3.25)

while the normal force during unloading or reloading is given by

Fn = K2,n(δn − δn,p) (3.26)

where δn is the overlap normal to the contact point, δn,p is the plas-
tic deformation. This plastic deformation depends on the maxi-
mum historical normal force, Fn,max, i.e. δn,p = Fn,max

K2,n
. The stiff-

ness during unloading is greater than during loading, i.e. K2,n >
K1,n and K2,n is either user-specified or given as function of Fn,max

(maximum normal force), i.e. K2,n = K1,n + SFn,max. This model
is simple to understand and relatively straightforward to imple-
ment, however, as with the liner elastic spring approach selection
of suitable K1,n and K2,n values must be considered. The use of
this model requires extra information to be stored at each con-
tact point (Fn,max and/or δn,p), in comparison to the purely elastic
models discussed above. Zhu et al. (2007) describe this to be a
“semi latched” spring model. A version of this model is imple-
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mented in the commercial PFC codes and is referred to as the
hysteretic damping model (Itasca, 2004).

Figure 3.14: Illustration of Walton-Braun type contact model

Often when simulating the collision between two bodies, the
collision is modelled by considering the relative velocities of the
colliding bodies before and after impact, using a coefficient of resti-
tution. This is the approach used in the event-driven simulations
discussed in Chapter 1. The coefficient of restitution, e, quanti-
fies the energy lost during collision. In a perfectly elastic collision
there will be no energy loss and e = 1. Consider two particles a
and b, that have velocities van and vbn in the direction normal to the
contact prior to the collision, and post collision velocities v′an and
v′bn. The coefficient of restitution, e, relates these two velocities as
follows:

e =
v′bn − v′an
vbn − van

(3.27)

As outlined in Chapter 2, the energy stored in an elastic spring
equals the area beneath the force–displacement curve. During
loading the kinetic energy of the particles is converted to strain
energy and during unloading the stored strain energy is converted
to kinetic energy. The reduction in kinetic energy can therefore
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be calculated by considering the force–displacement curve. Where
the Walton-Braun model is used, referring to Figure 3.14, the co-
efficient of restitution is given by the square root of the ratio of the
areas of triangles ABC and AOC (AABC and AAOC respectively),
i.e.

e =

√
AABC

AAOC

(3.28)

which is equivalent to

e =

√
K1,n

K2,n

(3.29)

The energy balance for the Walton-Braun model is considered
in Section 2.7 for a single-degree of freedom system.

The hysteretic normal contact model proposed by Thornton
and Ning (1998) is similar to the Walton-Braun model, however
the Thornton–Ning model uses a non-linear force-displacement re-
lationship, based on Hertzian contact mechanics with a transition
from elastic to plastic response being determined by the yield
stress of the solid particle material. In the description of their
model, Thornton and Ning give an expression for the coefficient
of restitution that depends on the material Young’s modulus and
yield stress, the particle radii and densities, and the impact veloc-
ity of the particles.

Spring–dashpot model

The spring–dashpot model includes a dissipative viscous dashpot
at the contact point to account for energy dissipation due to plastic
deformation at the contact points. This model is equivalent to
the Kelvin rheological model presented in Section 3.5 above. The
force–displacement relationship is given by

Fn = Knδn + Cnδ̇n (3.30)

where Cn is the dissipative term. Examples of the use of this
approach to contact modelling include Cleary (2000) and Iwashita
and Oda (1998). Delaney et al. (2007) argue that the amount of
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energy dissipation is dependent on the velocity, and collisions at
higher impact velocities dissipate less energy. They propose the
use of an alternative dashpot formula where the contact force is
given by

Fn = Knδ
3/2
n + C∗

nδ̇nδ
3/2
n (3.31)

where C∗
n is the modified dashpot term. Note that the viscous

dashpot can be used with a both a linear spring formulation as
in Equation 3.30 or with a Hertzian-type non-linear spring as in
Equation 3.31.

As was the case for the Walton-Braun model, the visco-elastic
parameters can be related to the coefficient of restitution for the
contact (Pöschel and Schwager, 2005):

e = exp

⎛⎜⎜⎝ − πCn

2〈m〉√
Kn

〈m〉 −
(

Cn

2〈m〉
)2

⎞⎟⎟⎠ (3.32)

where 〈m〉 is the effective mass of the colliding particles and is
given by

〈m〉 = mamb

ma +mb

(3.33)

Pöschel and Schwager (2005) include a discussion on the phys-
ical implications of using a coefficient of restitution in this way.

The inverse problem involves determining the contact param-
eters that will yield the required coefficient of restitution. As dis-
cussed by Cleary (2000), where a specific e value is required the
dashpot constant Cn can be selected as follows:

Cn = 2γ
√
〈m〉Kn (3.34)

where Cn is the viscous dashpot coefficient, Kn is the normal (lin-
ear) spring stiffness and the parameter γ is a function of the coef-
ficient of restitution as follows:

γ = − ln(e)√
π2 + ln(e)2

(3.35)
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3.7 Calculating Tangential Forces in

DEM

As discussed by Pöschel and Schwager (2005), there is a funda-
mental discrepancy in the typical approach used to model con-
tact forces in DEM simulations. In the Hertzian model for normal
force it is assumed that the spherical particle surface is completely
smooth. Theoretically, frictional resistance cannot develop at the
contact between two smooth perfectly spherical particles. How-
ever a sliding friction parameter is included in almost every DEM
code and the frictional resistance is assumed to arise from the
interlocking of asperities on the rough surfaces of the particles.

The terms “shear forces” and “tangential forces” are often used
interchangeably to refer to the component of the force that acts
along the contact surface, i.e. orthogonal to the contact normal.
The tangential contact model must be able to describe the material
response before gross sliding (i.e. when at least some of the contact
surface is “stuck”) and the response when the contact is sliding.
The simplest approach to define yield, i.e. the initiation of gross
sliding, is to assume a Coulomb friction model. Then a yield
criterion is defined based upon μ, the coefficient of friction. This
is always a positive number, i.e. 0 ≤ μ and usually μ ≤ 1. If Ft is
the tangential force and Fn is the normal force, then |Ft| ≤ μFn

at all times. When |Ft| < μFn the contact “sticks”, but when
|Ft| = μFn, sliding occurs and the tangential force acts opposite
to the direction of slip and equals μFn. In some cases a cohesion
term may also be added to the failure criterion for the tangential
force. Where this approach is used the contact remains “stuck”
while |Ft| < μFn + C, where C is a user-specified cohesion.

When a contact is first detected the tangential force and the
cumulative tangential contact displacement are set to be 0. As
long as the contact remains “stuck”, the contact force is the prod-
uct of the cumulative displacement in the tangential direction and
the tangential spring stiffness. The cumulative displacement is the
sum of the incremental relative displacements of the particles at
the contact point that occur over each time increment from the
time the contact is formed. Considering (for simplicity) a cohe-
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sionless contact, mathematically

Ft = −min
(
|μFn|, Ft

(
δt, δ̇t

)) δ̇t

|δ̇t|
(3.36)

where Ft

(
δt, δ̇t

)
is the pre-sliding shear force calculated using the

contact constitutive model. The parameter δt represents the cumu-
lative relative deformation at the contact point, while the relative
velocity at the contact point directed along the contact tangent is
given by δ̇t. Whether slipping or stuck, the tangential force acting
on each particle will always act in the direction opposite to the
apparent tangential sliding velocity δ̇t. For a tangential displace-
ment to exist at a the contact point, the particles must be moving
at different rates, so the apparent tangential sliding velocity (or
relative velocity of particle movement at the contact point) will
be in opposite directions for each particle. This relative velocity
at the contact point is a result of both relative translation of the
particle centroids and rotation of the particles.

While a single coefficient of friction is used to model the sliding
response in most DEM simulations, it is worth noting that physi-
cal test data for sliding along a range of interfaces indicates that
the initial tangential force required to initiate sliding exceeds the
tangential force that is measured once sliding begins. The ratio of
the larger initial tangential force to the normal force gives a static
coefficient of friction and the ratio of the force during sliding to the
normal force gives the dynamic coefficient of friction. It is very dif-
ficult to measure accurately the coefficient of friction between two
soil grains. The main difficulties arise from the small particle sizes
involved and the non-conforming nature of the contact. A few cus-
tomized apparatuses to measure inter-particle friction have been
developed (e.g. Skinner (1969), Cavarretta et al. (2010)), however
understanding of the tangential response at the contact between
sand grains remains limited.

The most basic contact model assumes a linear relationship be-
tween the tangential contact forces and the cumulative tangential
displacement prior to sliding. The cumulative deformation at the
contact point is calculated by integration of the particle relative
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velocities at the contact point, so, for a linear spring with stiffness
Kt, the pre-sliding shear force at time t is given by

Ft(δt, δ̇t) = Kt

t∫
t0c

δ̇tdt (3.37)

where t0c is the time at which the two particles initially contact.
In a DEM model the integral in Equation 3.37 is approximated

by a summation, i.e.
t∫

t0c

δ̇tdt ≈ t∑
t0c

δ̇tΔt. There will be an error,

proportional to Δt, associated with the discretisation. This is
an incremental force-displacement model, based upon the relative
particle velocities in the tangential direction at the contact point.
The need to use the cumulative displacement in the tangential
direction to calculate the tangential component of the contact force
is emphasized by Vu-Quoc et al. (2000) and O’Sullivan and Bray
(2003a). Once sliding commences, a convenient way to calculate
the sliding force in the appropriate direction is to use

Ft = |μFn| F ∗
t

|F ∗
t |

(3.38)

where F ∗
t is calculated using Equation 3.37.

Referring to Itasca (2004) for the two-dimensional case, the
tangential relative velocity of particle a relative to particle b at
the sliding point, δ̇t, is given by

δ̇t = (vbi − vai )ti − ωb
z|xC

i − xa
i | − ωa

z |xC
i − xb

i | (3.39)

where ti is the unit vector describing the orientation of the unit
vector tangential to the contact, vai and vbi are the translational
velocities of particles a and b respectively in direction i, the po-
sitions of the particle centroids are given by xa and xb and the
contact coordinates are given by xC. The rotational velocities ωa

z

and ωb
z relate to rotations about axes through the centroids of the

particles, orthogonal to the analysis plane (assumed to be x − y
plane).
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The three-dimensional case is slightly more complicated (Itasca,
2008) and is given by firstly considering the relative velocity at the
contact point (δ̇i):

δ̇i =
[
vbi + eijkω

b
j(x

C
k − xb

k)
]
−

[
vai + eijkω

a
j (x

C
k − xa

k)
]

(3.40)

where eijk, the alternating tensor, is defined in Chapter 1. Here
the rotational velocities are considered relative to a local Carte-
sian coordinate system, with origin at the particle centroids. The
tangential component is then calculated by subtracting the normal
component of the relative velocity vector:

δ̇ti = δ̇i − δ̇ni
δ̇ti = δ̇i − δ̇jnjni

(3.41)

The deformations used to calculate the normal contact forces
could also be calculated by summing the incremental relative dis-
placements, however it is best practice to calculate the normal
forces based upon the contact geometry. This is clarified by Itasca
(2004) who states that calculation of the normal contact force from
geometrical considerations only makes the code less susceptible to
problems from numerical round-off (“numerical drift”).

3.7.1 Mindlin-Deresiewicz tangential models

The work of Mindlin and Deresiewicz (1953) indicates that the
stiffness of the tangential contact spring should depend on the cur-
rent normal load, the current tangential load, the load history and
whether the tangential load is increasing, decreasing or increasing
after a load reversal (i.e. loading, unloading or reloading). (Re-
fer to Thornton (1999), Thornton and Yin (1991), Di Renzo and
Di Maio (2004) and Vu-Quoc et al. (2000)). The path-dependent
nature of the tangential force displacement relationship was al-
ready outlined in Section 3.4.2. Vu-Quoc et al. (2000) and Thorn-
ton and Yin (1991) both proposed contact constitutive models for
implementation in particle DEM codes that capture the depen-
dence of the tangential load response upon the load history.
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Vu-Quoc model

Vu-Quoc et al. (2000) described their model to be a “highly sim-
plified” version of the Mindlin-Deresiewicz model. In this model
the tangential force at time t+ dt, F t+dt

s , is calculated as

F t+dt
s = F t

s +Ks,tδs (3.42)

where Ks,t, the tangential stiffness at time t, is given by

Ks,t =

⎧⎪⎨⎪⎩ Ks,0

(
1− F t

s−F ∗
s

μF t
n−F ∗

s

)1/3
Fs ↑

Ks,0

(
1− F ∗

s −F t
s

μF t
n+F ∗

s

)1/3
Fs ↓

(3.43)

where Ks,0 is the initial tangential stiffness and μ is the coefficient
of friction. F ∗

s is the value of the tangential force at the last turning
point. The value of Ks,0 can be related to the K1,n parameter in
the Walton-Braun contact normal model, as follows:

Ks,0 = K1,n
2(1− ν)

2− ν
(3.44)

where ν is the Poisson’s ratio of the solid particle material.

Thornton and Yin model

Thornton and Yin (1991) proposed a model for the interaction of
spheres that contact obliquely. While the full implementation of
the model also accounts for particle surface adhesion, here only
the version of the model without adhesion is considered. Where
this model is implemented to determine the tangential contact
force, the contact normal force is calculated using Hertizan the-
ory. Thornton and Yin developed their model based upon the
experimental work of Mindlin and Deresiewicz (1953), and the
tangential force (Ft) displacement (δt) relationship is illustrated
in Figure 3.15 for a load–unload–reload cycle at a normal force
Fn.

As illustrated in Figure 3.15 the tangential stiffness in this
model is non-linear and dependent on the current normal force
(Fn), the current tangential force, the load history and whether the
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Figure 3.15: Illustration of tangential force model for oblique con-
tact without adhesion proposed by Thornton and Yin (1991)
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contact is in a state of tangential loading, unloading or reloading.
This model therefore dissipates energy prior to the initiation of
full tangential sliding.

The stiffness, Kt is then given by

Kt = 8G∗θδn ± μ(1− θ)
ΔFn

Δδt
(3.45)

where the negative sign is invoked during unloading.
The parameter G∗ is related to the Young’s moduli (G1,G2) of

the contacting spheres as follows:

1

G∗ =
2− ν1
G1

+
2− ν2
G2

(3.46)

The normal displacement at the contact point is given by δn
and the parameter θ depends on the loading state of the contact:

θ3 = 1− Ft+μΔFn

μΔFn
(loading) (3.47)

θ3 = 1− F ∗
t −Ft+2μΔFn

2μΔFn
(unloading) (3.48)

θ3 = 1− Ft−F ∗∗
t +2μΔFn

2μΔFn
(reloading) (3.49)

As illustrated in Figure 3.15, the parameters F ∗
t and F ∗∗

t define
the load reversal points. The second response curve for the normal
load of Fn +ΔFn is included in Figure 3.15 to illustrate that the
reversal points must be continuously updated as the normal force
changes, so that F ∗

t = F ∗
t + μFn and F ∗∗

t = F ∗∗
t − μFn. To

implement this model, consideration must be made for the case of
small incremental displacements coupled with small increases in
normal force, and the necessary details are given in Thornton and
Yin (1991).

While the publications describing the implementations of the
Mindlin-Deresiewicz type tangential models are not particularly
recent, the linear and Hertz-Mindlin contact models seem to be
the most commonly used tangential contact models in geomechan-
ics DEM-related research. The importance of capturing the pre-
sliding non-linearity of the tangential response is likely to depend

116



Particulate Discrete Element Modelling: A Geomechanics Perspective

on the strain level of interest in the simulations. It would seem,
for example, that capturing this aspect of contact response is very
important where small-amplitude load reversals occur (e.g. dur-
ing shear wave propagation). The contribution of Di Renzo and
Di Maio (2004) is useful as they describe a comparison of different
tangential force implementations by simulating oblique impact of
a single sphere against an anvil using three different tangential
force implementations.

3.8 Simulating Tensile Force

Transmission

Figure 3.16: Basic bonding models in DEM

Conceptually, cement acts to provide a tensile resistance in the
contact normal direction and a cohesion in the tangential direction
in excess of the Coulomb frictional resistance. As noted above,
bonding can be introduced into the model by specifying a tensile
strength in the normal direction and a cohesion (or specified shear
strength) in the tangential direction (Figure 3.16). In both cases
the strength is usually specified in units of force.
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Referring to Figure 3.16 the linear spring model can easily be
extended to allow for transfer of tensile forces between the particles
by restricting the slider action (and contact rupture) to occur when
a finite tensile force is achieved. Where a tensile-capable contact
model is used, this contact will be considered active if |δn| < δt,max

n

where δt,max
n is the separation distance at which the tensile strength

of the contact F t,max
n is mobilized. In a simple linear tensile model,

if the bond strength is specified as Fmax
n , then δt,max

n = F t,max
n

Kn
. In

geomechanics this criterion will usually only apply to pre-existing
contacts, i.e. if |δn| < δt,max

n for two particles that are not already
in contact, no tensile force will be transmitted. If the normal
tensile strength is exceeded, then the contact is removed. Should
the two particles participating in the contact come into contact
again later in the simulation, a new contact will be created and the
tensile strength for the contact will be 0 and the basic notension,
frictional contact model will govern the response.

Refinements to the tensile-capable contact normal model have
been proposed. For example, a displacement softening response
can be adopted as illustrated in Figure 3.16 (for the normal con-
tact) where the normal tensile contact force reduces linearly with
increasing displacement; an example implementation of this type
of model is PFC’s displacement-softening model (Itasca, 2004).
Alternatively, in their simulations Utili and Nova (2008) chose
to adopt the ductile-type model post yield as illustrated for the
tangential contact in Figure 3.16. As the shear strength of the
contacts in Utili and Nova’s study is itself a function of the nor-
mal force and equal to c+ μFn where c is a cohesion term, in the
ductile case, post yield, the contact force will vary, while in the
brittle case it reduces immediately to μFn. An additional example
of the use of a displacement softening model is the work of Hentz
et al. (2004).

The linear tensile model has been used in a number of DEM
related studies in geomechanics, including the 2D simulations of
sand production by Cook et al. (2004), the 3D simulations of par-
ticle crushing by McDowell and Harireche (2002) and Cheng et al.
(2003), and the 3D simulations of cemented sand response by Ku-
latilake et al. (2001). While Camborde et al. (2000) also adopt this

118



Particulate Discrete Element Modelling: A Geomechanics Perspective

simple approach to model tensile forces, they used non-circular
particles and a non-linear, hysteretic model to simulate the re-
sponse of contacts in compression.

3.8.1 Parallel bond model

Scanning electron microscope (SEM) images of the microstructure
of both naturally and artificially cemented sands indicate that the
cement at the particle contacts has a finite volume and it covers a
finite area of the particle surface (e.g. Gutierrez (2007)). It seems
reasonable to assume that the strength of the cemented bonds will
depend on the volume of cement present at the contact. Further-
more, the finite area of the cemented bonds means that a moment
can be transmitted in the contact normal direction and a resistance
to rotation will be provided. The simple tension model described
above cannot capture these facets of the contact response. These
shortcomings are overcome in the parallel bond model described
by Potyondy and Cundall (2004) and implemented within Itasca’s
commercially available codes PFC2D and PFC3D.

Where the parallel bond model is used, at each cemented con-
tact a pair of parallel linear springs are effectively introduced to
work in parallel with the conventional notension contact springs
described above (Figure 3.17). In contrast to the simple bonding
model, in the parallel bond model moments will be transmitted
to the particles by both the normal and tangential contacts. As
illustrated in Figure 3.18, the parallel bond has a finite size. The
bond area is specified using a parallel bond radius multiplier, α, so
that the radius of the bond, Rbond = αrmin where rmin is the radius
of the smaller of the two contacting particles and 0 ≤ α ≤ 1. The
bond area (Apb) is given by Apb = πRbond for a unit thickness in
2D while in 3D Apb = πR2

bond.

Conceptually the size of the bond is a representation of the
amount of cement, with a larger α value representing a case where
there is more cement and a greater extent or degree of bonding.
The physical volume of the cement is not, however, represented by
the parallel bonds and the material void ratio will be unaffected by
the size of the parallel bond. While simulations using the parallel
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bond model have been successfully calibrated against physical test
data (see Chapter 12), it would be very difficult to directly link
a physical volume of cement with a specific α value. When the
bond size is 0 the parallel bond is effectively inactive, and the
resistance in terms of strength and moment transmission increases
as α increases.

In contrast to the simple linear contact bond described above,
for the parallel bond the units of stiffness are given in units of

stress
displacement

and the maximum strengths are specified in units of
stress. In addition to the parameters that are required for the
conventional linear contact stiffness model, the input parameters
required to describe the parallel bond model also include the size
of the parallel bond, α, the bond normal stiffness (Kpb

N ), the bond
tangential or shear stiffness (Kpb

t ), the bond normal strength (σmax
N )

and the bond shear strength (τmax).

Figure 3.17: Parallel bonds acting in parallel with conventional
linear contact model

The forces carried by the parallel bond in the normal and tan-
gential directions (FN

pb and F t
pb) are given by

FN
pb = Kpb

N Apbδn
F t
pb = Kpb

t ApbΣΔδt
(3.50)
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where δn is the contact normal displacement and Σδt is the cumu-
lative tangential displacement. The bond breaks when either the
maximum tensile or shear stress computed in the bond exceeds
the defined strength.

Figure 3.18: Parallel bond size variation with α

Two types of moment are transmitted by the parallel bond: a
spin or twisting moment (M spin

pb ) and a bending moment (M b
pb).

The spin moment can only be calculated in a 3D implementation
of this model as it relates to a moment caused by relative rotation
about the contact normal. The increments in moment (ΔM spin

pb

and ΔM b
pb) caused by an incremental rotation of the particles are

given by

ΔM spin
pb = Kpb

t IpbΔθn
ΔM b

pb = Kpb
N IpbΔθs

(3.51)

where Ipb is the moment of inertia of the parallel bond, for 2D
disks with unit thickness Ipb =

2
3
R3

bond while for 3D spheres Ipb =
1
4
πR4

bond. The cumulative rotation about the contact normal is
given by ΣΔθn, while the cumulative rotation orthogonal to the
contact normal is given by ΣΔθs. The contact forces will add
additional contributions to the moment given by the cross product
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of the resultant contact force and the vector directed from the
contact to the particle centroid.

The breakage criteria, i.e. the stresses that will cause bond
breakage of the normal and tangential parallel bond springs, are
defined by the maximum tensile and shear stresses respectively.
Expressions for the maximum normal stress (σmax

N ) and the max-
imum shear stress (τmax) were derived by consideration of beam
bending theory to be:

σmax
N =

−FN
pb

Apb

+
|M b

pb|
Ipb

Rbond (3.52)

τmax =
|F s

pb|
Apb

Rbond +
|M spin

pb |
Jpb

Rbond (3.53)

where Jpb is the polar moment of inertia of the parallel bond is
only required in 3D simulations and is given by Jpb =

1
2
πR4

bond.
Once σmax

N exceeds the bond strength in the contact normal
direction, the bond is considered to have failed in tension and
the contact is removed. If subsequently these particles come into
contact again, the contact between them will be governed by a
conventional notension contact model, i.e. the particles will take
on an un-bonded material response. In the shear direction once
τmax is exceeded, the bond will be removed if there is a tensile
force in the normal direction. Otherwise the contact response will
revert to the notension contact model described above and relative
slip or sliding of the particles at the contact point will be allowed.

Cheung (2010) carried out a simple two-particle analysis to
understand the distribution of forces between the parallel bond
and the contact model. Cheung showed that in tension the par-
allel bond takes all the tensile force, while in compression there
is a share between the contact model and the parallel bond. At
each time step a contribution to both the resultant force and the
resultant moment acting on the two contacting particles from the
parallel bond is calculated. The moment contribution is a function
of the bond moment of inertia and the relative rotational velocities
of the two contacting particles (refer to Itasca (2008)). Cheung
demonstrated that to capture the brittle response typically ob-
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served in cemented sands, the relative stiffness and hence load
share between the parallel bond model and the particle-particle
model must be carefully considered. This model is available within
the commercial DEM code, PFC 2D and has been used to model
rock mass or cemented sand response in 2D (Wang et al. (2003),
Fakhimi et al. (2006)) and 3D (Potyondy and Cundall (2004) and
Cheung (2010)). The application of this contact model to simulate
rock mass response is considered in Chapter 12.

Using an approach that is somewhat similar to the parallel
bond model, Pöschel and Schwager (2005) proposed connecting
their 2D, triangular particles using a contact model that is based
on beam theory. In this approach the centroids of two contacting
triangular particles are connected using an elastic beam that is
fully fixed at each end. The deformation of this beam is then a
combination of deformation due to elongation, bending and shear-
ing, and elastic superposition is assumed so that the total defor-
mation is the sum of these three contributions.

The rotational bonds proposed byWeatherley (2009) have some
similarity with the parallel bond model; they transfer twisting as
well as bending moments. In their model four spring stiffness pa-
rameters must be specified for the normal, tangential, bending
and torsional responses. Then the breakage criterion is specified
by considering the following summation:

|Fn|
Fmax
n

+
|Ft|
Fmax
t

+
|Mb|
Mmax

b

+
|Mt|
Mmax

t

(3.54)

where Fn and Ft are the current normal and tangential components
of the contact force. The current bending and torsion moments
are given by Mb and Mt respectively and the superscript “max”
is used to denote the breakage forces or moments, which are also
input into the model.
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3.9 Rolling Resistance

3.9.1 General discussion on resistance to rolling
at contact points

The basic particulate DEM formulation was developed based upon
smooth spherical or circular particles with non-conforming con-
tacts that provide no resistance to rotation at the contact points.
The non-convex, rough and often conforming surfaces that meet
when real soil particles contact add a resistance to rotation at the
contact points. For example, referring back to Figure 3.4(b) and
(c), it is clear that particles who interact at these non-conforming
are not free to rotate relative to each other. The terms “rolling
resistance” or “rolling friction” are used to describe this phe-
nomenon.

As illustrated in Figure 3.19, two types of rotation can occur.
When two contacting particles roll, there is a relative angular mo-
tion about an axis that is parallel to their common tangent plane
(i.e. the bending type moment in the parallel bond model). Par-
ticles also spin at their contact points i.e. rotate about an axis
that is orthogonal to the contact plane and along the contact nor-
mal. While contact constitutive models have been proposed to
account for rolling resistance at contact points, energy dissipation
during spin or resistance to spin motion is rarely considered in
DEM models. The parallel bond model discussed above considers
both of these components of motion; however, in the parallel bond
model the resistance to both bending moment and spin moment
is assumed to be provided by a cement between the particles. The
discussion on rolling resistance presented here considers the sim-
ulation of the resistance to rolling that arises from geometrical
sources in unbonded materials.

The torque acting on particles arising from particle contacts
has contributions from the tangential component of the force, the
asymmetry of the normal stress (traction) distribution (if the con-
tact has a finite area) and the contact normal force if the con-
tact normal vector is not coincident with the branch vector (the
branch vector is the vector joining the centroids of two contact-
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Figure 3.19: Rolling and spinning contacts

ing particles). The tangential moment can arise whenever there
is non-zero inter-particle friction or a tangential (shear) cohesion.
Determining the contribution of the normal component to the mo-
ment is non-trivial. This component is often called “rolling friction
torque.”

A limiting extreme case occurs when contacting particles can
roll on each other without any sliding, their centroidal positions
remain fixed and they act like cog wheels. The motion of one
member is transmitted to the next (Figure 3.20). This mechanism
requires the transmission of a moment at the contact point. Ob-
viously the ideal spherical (or circular) convex geometries of the
basic DEM particles (disks and spheres) will not automatically
transmit this moment, and modifications to the contact consti-
tutive models are required to replicate this geometrically derived
mechanism. In contrast, the other ideal extremity is the case of
free rolling, where contacting particles move relative to each other
without generation of any resultant tangential force. A more de-
tailed consideration of this topic is given by Greenwood et al.
(1961) who discuss the issue of rolling friction (in relation to rub-
ber) in detail from both an analytical and an experimental per-
spective.

Johnson (1985) explains that the sources of energy dissipation
in rolling resistance include micro-slip and friction at the contact
interface, the inelastic response of the material in the contact-
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ing particles and energy dissipation associated with the roughness
of the rolling surfaces. Micro-slip will occur when the contact-
ing materials have different elastic constants or where there are
differences in the curvatures of the two contacting bodies. En-
ergy dissipation can occur owing to both micro-slip in rolling and
micro-slip in spin. From a mechanical perspective the resistance to
rolling is associated with a couple that arises owing to the asym-
metry of the contact pressure distribution. As two particles roll
along each other there will be a higher pressure at the front of the
contact than at the rear. If the pressure at the front of the con-
tact becomes sufficiently high, there can be inelastic deformation
within the contacting particles (and not just at the surface) and
there will be an increase in the rolling resistance when this type
of plastic zone develops (Johnson, 1985).

Figure 3.20: Illustration of rolling without sliding

The asperities along the surface play a key role in energy dis-
sipation. In the initial loading they will intensify the real contact
pressure so that some plastic deformation can occur along the con-
tact, even if the nominal (bulk) stress is within the elastic limit
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of the material. Where a contact is subject to repeated loading,
the asperities will deform plastically in the first loading, then the
contact response will become more elastic in subsequent loadings.
Roughness will also provide a resistance as energy is required to
“surmount” the surface irregularities. Johnson (1985) compares
this to the effort expanded when a wagon wheel rolls along a cob-
bled street.

Considering a cylinder of radius R rolling along a flat surface
with an angular velocity ω, Johnson (1985) defines a coefficient of
rolling resistance μR by equating the rate at which work is done
to the rate of energy dissipation. If a resultant moment MR acts
on the cylinder then the rate at which work is done is MRω. If the
contact radius is a and the normal force acting on the surface is
Fn, then the rate of energy dissipation is given by 2

3π
αFnaω, where

α is the fraction of strain energy that is dissipated by hysteresis.
The rolling resistance is then given by

μr =
Mr

PR
= α

2a

3πR
(3.55)

Figure 3.21: Sliding and rolling in a granular material (after Oda
et al. (1982))

127



Chapter 3. Calculation of Contact Forces

In granular materials the rolling mechanism has a measurable
significance for the bulk or overall material response. Oda et al.
(1982) were amongst the earliest researchers to highlight the signif-
icance of rolling for bulk granular material response. On the basis
of a series of experiments on photoelastic oval particles they iden-
tified three potential modes of contact deformation: pure rolling,
pure sliding and simultaneous rolling and sliding (Figure 3.21).
These experiments on two-dimensional materials provided clear
evidence that in a granular material there is significant rolling
at the contact points, and they concluded that micromechanical
models should account for this mode of contact deformation.

3.9.2 Iwashita-Oda rotational resistance model

If disk or sphere particles are used the complexity of a DEM code
and the computational cost of the simulations are both minimized.
Two approaches have been proposed to account for rolling resis-
tance in particulate DEM while continuing to model the system
using geometrically simple spheres or disks. In the first approach,
proposed by Iwashita and Oda (1998), an additional rotational
spring-slider system is added in parallel with the normal contact
spring. Iwashita and Oda (1998) originally developed this model
in two dimensions, and a three-dimensional version of this model
was implemented in the particle DEM code YADE (Belheine et al.,
2009). This contact model is schematically illustrated in Figure
3.22. When the particles rotate relative to each other the com-
bined spring-dashpot-slider system transfers a moment (Mr) to
the contacting particles that is given by

Mr = −Krθr − Cr
dθ

dt
(3.56)

where Kr is the stiffness of the rotational spring, Cr is a rota-
tional viscous dashpot and θr is the relative rotation of the two
contacting particles. As detailed by Iwashita and Oda (1998), the
incremental relative rotation is calculated by considering the in-
cremental particle rotations as well as the change in orientation of
the contact normal over the current time increment. The limiting
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value of Mr (i.e. the yield value, beyond which point there will
be no increment in rotational resistance) is given by ηFn, where
Fn is the (compressive) contact normal force and the parameter η
is the rolling friction. In their three-dimensional implementation
Belheine et al. (2009) propose a linear relationship between η and
the average radius for the two contacting particles. In both imple-
mentations the rotational resistance stiffness Kr is related to the
linear tangential contact spring stiffness Ks.

Figure 3.22: Rolling resistance model proposed by Iwashita and
Oda (1998) (a) Schematic illustration of rotational component of
contact model (b) Moment rotation response

Where this rolling friction model is used, the rolling resistance
moment is added to the moment transmitted by the tangential
contact force. Consequently the rotational dynamic equilibrium
equation for particle p becomes

Ip
dωp

dt
=

Nct∑
c=1

Ft
crp +

Ncm∑
c=1

Mc
r (3.57)
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where ωp is the particle’s rotational velocity, the inertia tensor is
given by Ip and the particle radius is rp. A tangential force Fc

t acts
at Nct contacts and moment due to rotational resistance, Mc

r is
induced at Ncm contacts. Iwashita and Oda (1998) described how
they used their model in a two-dimensional parametric study to
explore the influence of rotational resistance on both the macro-
and micro-scale responses. The triaxial test simulations by Bel-
heine et al. (2009) gave good correlations with physical test data
for triaxial tests on Labenne sand.

3.9.3 Jiang et al. rotational resistance model

Jiang et al. (2005) proposed a rolling resistance model which ex-
tends the earlier Iwashita-Oda rotational resistance model as the
rotational resistance depends on the contact area (as do the nor-
mal and shear contact springs). The Jiang et al. model also
includes viscous damping. Jiang et al. (2009) extended this model
to include roughness.

In both cases the model was derived from a conceptual model
where systems of normal and shear springs acting in parallel sim-
ulate the contact response (Figure 3.24). In the original imple-
mentation by Jiang et al. (2005), both the normal force and the
moment will depend on the rotation at the contact point, and an
asymmetrical distribution of the contact normal traction is mod-
elled. The contact normal stiffness kn relates the normal stress
and displacement at any point along the contact, then the normal
force Fn is given by

Fn =

B/2∫
−B/2

[
kn(δn + θz) + νn(δ̇n + θ̇z)

]
dz (3.58)

where the contact extends from z = −B/2 to z = B/2, the con-
tact overlap is δn at the centre of the contact (where z = 0), the

130



Particulate Discrete Element Modelling: A Geomechanics Perspective

Figure 3.23: System of parallel springs and resultant distribution
of normal forces in model proposed by Jiang et al. (2005)

rotation is θ and the viscous damping parameter is νn. (Here the
contact overlap is taken to be positive in compression and coun-
terclockwise rotation is positive.) The value of B depends on the
grain shape it is sought to model, i.e. B = α〈R〉 where α is a di-
mensionless geometrical parameter and 〈R〉 = 2R1R2

R1+R2
with R1 and

R2 being the radii of the two contacting particles. The moment
at the contact point due to the contact normal traction can also
be expressed in integral form as

Mn = −
∫ B/2

−B/2

[
kn(δn + θz) + νn(δ̇n + θ̇z)

]
zdz (3.59)

In the two-dimensional formulation for rough contacts pre-
sented by Jiang et al. (2009) a rough contact is characterized by
the geometrical parameters α as before, with a second parameter
N being introduced that gives the number of contact points or
asperities and these are assumed to be homogeneously distributed
across the contact area. Each asperity will itself form a separate
“sub-contact” point, with a spring stiffness kN

n so that expressions
for the total contact normal force and the total moment transmit-
ted are derived by summing the contributions from the asperity
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forces. Two scenarios were proposed to calculate the moment in-
duced at the contact point due to relative particle rotation. In
the first case (Model 1 in Figure 3.24) a limiting rotation value is
assumed, and once the rotation exceeds this value the rotation re-
sistance is assumed to disappear as all the asperities are crushed.
In the second case (Model 2 in Figure 3.24), termed the elasto-
perfectly-plastic model, once a critical rotation value is exceeded
the moment transmitted is assumed to be constant. Both the
models proposed by Jiang et al.(2005 and 2009) have a conceptual
advantage over the Iwashita and Oda approach as the width of
the contact is explicitly considered in the model, and this better
represents the real physical situation.

Figure 3.24: Moment rotation relationship for model proposed by
Jiang et al. (2005)
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3.10 Time-Dependent Response

Combinations of springs and dashpots can be used to model time
dependent visco-elastic response, using the rheological modelling
approach presented above. For example, the PFC codes include
an option to use Burger’s model to simulate soil creep (Figure
3.13(c)). Wang et al. (2008) simulated aging using a 2D DEM
model with a Maxwell contact model.

While the time-dependent nature of soil response (including
sand response) is now well established to be a complex phenomenon
(e.g. Di Benedetto et al. (2005)) that certainly merits investigation
at the micro-scale, there have been relatively few DEM simulations
considering soil creep. An early example is the two-dimensional
work of Kuhn and Mitchell (1992) who used an expression for
the sliding velocity δ̇t at the contact points developed using rate
process theory, and given by

δ̇t = λ
2kT

h
exp

(
−ΔF

RT

)
sinh

(
1

2kT
λn1μ

)
(3.60)

where k is Boltzman’s constant, h is Planck’s constant, R is the
universal gas constant, T is the absolute temperature, λ is the
distance between successive equilibrium positions in the direction
of the applied force, n1 is the number of bonds per unit of normal
contact force and ΔF is the activation energy. As discussed by
Kwok and Bolton (2010) this is a thermally activated creep model
that does not include the effects of inter-particle friction or dam-
age to the contact asperities. Kwok and Bolton implemented the
Kuhn-Mitchell model in a 3D DEM code with spherical particles.
They then simulated a triaxial compression test and allowed creep
to take place at various stages during the test and observed results
that were qualitatively similar to the response observed in physical
experiments on various soils.

The time-dependent response of rock mass was considered by
Potyondy (2007) who proposed a modified version of the paral-
lel bond model, called the parallel-bonded stress corrosion model.
This model was developed to simulate the stress-dependent corro-
sion reaction that occurs in silicate rocks in the presence of water.
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In this model an exponential function describes the rate of reduc-
tion in the parallel bond radius once a threshold stress is exceeded.

An additional motivation for the development of time-depen-
dent contact models is the simulation of bituminous asphalt. Ac-
curate modelling of this multiphase material which includes aggre-
gate, filler, bitumen, and air phases, using DEM has not yet been
achieved. However, Collop et al. (2007) demonstrated that the
viscous response of the asphalt matrix between the soil particles
could be simulated by including Burger’s contact model, rather
than explicitly simulating the asphalt phase. Their 3D simula-
tions using spherical particles gave a good quantitative match to
the development of strain with time observed in physical experi-
ments. Abbas et al. (2007) also used Burger’s contact model in
their 2D simulations of asphalt pavement response.

3.11 Unsaturated Soil Response

Granular materials of interest to geotechnical engineers are not
simply two-phase (particle-void) materials, the voids between the
particles can be either dry, fully saturated, or contain a mixture
of air and water. In petroleum engineering applications, the pore
fluid may include both oil and water phases. The use of DEM to
simulate a fully saturated system where one fluid completely fills
the voids is considered in Chapter 6. Unsaturated or partially sat-
urated soil response poses a particular challenge to geotechnical
engineers and a number of research groups have been examin-
ing the fundamental mechanics of unsaturated soil response using
DEM. Surface tension will develop at air-water or water-oil inter-
faces, effectively imparting a capillary force onto the individual
particles. These particle-scale forces have a significant influence
on the overall material response. In DEM, rather than explicitly
modelling the interface between the different fluids, the influence
of the capillary forces in unsaturated soil on the overall material
response is modelled using specially developed contact constitutive
models.

Restricting consideration to situations where air and water oc-
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cupies the void space, the degree of saturation Sr is defined as
the proportion of the void volume occupied by the water phase.
The degree of saturation is related to the matric suction (i.e. the
difference between the air and water pressures in the soil) via the
soil water retention curve (SWRC) for a given soil. The sign con-
vention adopted in soil mechanics takes the water pressure to be
negative when the soil is partially saturated, and it is positive
in a fully saturated soil. Likos (2009) provides an introduction
to unsaturated soil concepts from a micromechanical perspective.
The way the water is distributed in the soil is dependent on the
degree of saturation. The situation where there is a low degree
of saturation (roughly < 20%) is called the pendular regime. In
this case the water is found as a thin film on the particle surface
and liquid bridges form between the particles. As the degree of
saturation increases, and 20% < Sr < 90%, the funicular regime
develops where a network of liquid bridges forms in the partially
filled pores and there are pockets of water-saturated pores. As Sr

approaches 100% the air phase is present as isolated bubbles. In
DEM studies of unsaturated soil response consideration has been
limited to the pendular regime and contact constitutive models
have been developed to determine the tensile forces imparted by
the inter-particle liquid bridges. Gili and Alonso (2002), Jiang
et al. (2004), Richefeu et al. (2008), El Shamy and Gröger (2008),
and Scholts et al. (2009) have all proposed contact models to rep-
resent the inter-particle tensile and cohesive forces that arise owing
to capillary tension in partially saturated soils. Zhu et al. (2007)
list the capillary force as one of the non-contact forces that can ex-
ist between particles and they review implementations of contact
models for unsaturated material response outside of the geome-
chanics research community.

All of the contact force expressions described in the literature
consider a liquid bridge geometry similar to that presented in Fig-
ure 3.25. The liquid bridge itself is assumed to have a toroidal
shape with principal radii r1 and r2 and separation distance a.
The angle β is the half filling angle, θ is the contact angle and
the volume of the liquid bridge is a function of r1, r2, β and θ.
The half filing angle can be related to the degree of saturation and
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Figure 3.25: Illustration of pendular liquid bridge (using notation
of El Shamy and Gröger (2008)

El Shamy and Gröger (2008) used an iterative procedure to deter-
mine β, which, at a particle scale, is a function of the liquid bridge
volume, a and θ. By considering the surface tension acting on the
liquid bridge neck and the matric suction or capillary pressure, an
expression for the tensile force can be obtained. There is a slight
variation in the expressions used to evaluate the force; however,
referring to El Shamy and Gröger (2008), the tensile liquid bridge
force is given by

Fl = πr2Ts
r1 + r2

r1
(3.61)

where Ts is the surface tension acting on the liquid bridge. This
surface tension can be related to the matric suction as

Pc = Ts

(
1

r1
− 1

r2

)
(3.62)
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where the matrix suction, Pc relates to the air pressure (ua) and
water pressure (uw) as Pc = ua − uw.

As noted by Gili and Alonso (2002) this force will act in the
opposite direction to the compressive contact force when there is
overlap between the particles, and will act as the only normal
force when the particles separate. Consideration must be given
to a separation distance where the liquid bridge will break and
various options are considered. Both Richefeu et al. (2008) and
El Shamy and Gröger (2008) describe 3D implementations of their
unsaturated soil formulations, with 2D implementations given by
Gili and Alonso (2002) and Jiang et al. (2004). In their implemen-
tation Jiang et al. (2004) account for merging of adjacent liquid
bridges as the degree of saturation increases and adjacent voids
become flooded with water.

3.12 Contact Detection

3.12.1 Identifying neighbours

The discussion on contact until now has focussed on contact res-
olution and determination of the contact forces. Referring back
to Figure 1.7, the first step in calculating the contact forces is to
identify the particles that are contacting or likely to contact in the
current time increment, i.e. essentially to develop the list of con-
tacts in the system. A variety of approaches can be adopted for
contact detection. Irrespective of the approach chosen, for each
particle a list of “neighbours”, i.e. particles it contacts or parti-
cles it is very likely to contact in a given time increment, must
be developed. Then each of these pairs of neighbouring particles
will be considered in turn in the contact force calculation loop as
illustrated in Figure 1.8.

To identify the set of neighbouring particles, a tolerance δnearn

must be specified. Then the shortest distance between the two
particles under consideration is calculated or sometimes estimated.
The approach to calculate this distance will depend on the particle
geometry. This distance will equal the contact normal overlap, δn
when the particles are actually touching. Taking the overlap dis-
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tance to be positive, when the particles separate and δn < 0 and
|δn| ≤ δnearn , a and b can potentially contact this pair of contacts
should be considered in the next time increment. If two particles
were previously in contact, and |δn| > δnearn , then their contact has
ended and no longer needs to be considered during contact reso-
lution calculations. Pöschel and Schwager (2005) define a Verlet
distance; if the distance between two particles is less than this
Verlet distance, the particles are added to a Verlet list that lists
the contacting, or potentially contacting particles in the system.

Figure 3.26: (a) Bounding sphere (b) Bounding parallelpiped used
to assess potential contact between particles with irregular geome-
tries

Referring to Figure 3.26, when the particles are highly irregular
it is more efficient to assess whether either two bounding circles
(spheres in 3D) or two bounding rectangles (parallelpipeds in 3D)
intersect at the contact detection stage, rather than resolving the
contact geometry in detail (see also Hogue (1998), Munjiza (2004),
Vu-Quoc et al. (2000), Nezami et al. (2007)). The determination of
the bounding box limits is more straightforward than determining
the bounding sphere, as it is defined by the 4 lines (2D) or 6
planes (3D) given by x = xmin, x = xmax, y = ymin, y = ymax,
z = zmin, and z = zmax, where xmin is the minimum x coordinate
on the particle surface, xmax is the maximum x coordinate on
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the particle surface, etc. Alternatively the distance between the
particle centroids can be considered and if it is within a limit
(again called the Verlet distance) these particles are judged to be
sufficiently close that contact is likely.

3.12.2 Contact detection searching strategies

The simplest thing to do from a coding/implementation perspec-
tive would be to check each particle against all other particles in
the system at each time increment. This approach is naive and
prohibitively computationally expensive. If this approach is used,
the cost of the contact detection is proportional to N2

p , where Np

is the number of particles in the system, and thus the simulation
time will increase significantly as the number of particles increases.
As highlighted by Munjiza (2004), in DEM codes it is important
to develop a contact detection algorithm with minimal CPU and
memory requirements. Munjiza (2004) lists the requirements for
a contact detection algorithm, stating that it should be robust
(i.e. reliable), easy to implement, CPU efficient, and RAM effi-
cient. Grid based approaches are relatively easy to implement,
and are commonly used, and so the basic idea of grid-based DEM
contact detection is briefly outlined here. For more detailed dis-
cussions on implementation of contact detection algorithms refer
to Pöschel and Schwager (2005), Munjiza (2004), or Munjiza and
Andrews (1998). Bobet et al. (2009) also cite a number of ad-
ditional references where DEM contact detection algorithms are
described.

Binning algorithms

Where a “binning algorithm” is used to identify contacting par-
ticles, a regular grid is defined that covers the problem domain.
The grid cell dimensions should be large enough that a cell in the
grid can completely contain the largest particle. Each particle is
mapped to a given cell in the grid and the distances between that
particle and particles in the current cell and the adjacent 8 cells
(2D) or 26 cells (3D) are determined when developing the neigh-
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bour list. Referring to Figure 3.27, particles in cell 1 will be tested
for contact with the particles in cells 1 to 9. If these particles are
sufficiently close and not already identified as contacting, a new
contact will be created for consideration in the subsequent contact
force calculations.

It is possible to omit this test for closeness and add all particles
in the adjacent cells to the list of potential contacts (i.e. the
neighbour list). Typically every particle in the domain is assigned
an integer identification number (id number). If the id number
of the particle under consideration is i and the id number of the
particle that is being tested for a potential contact with i is j
then to avoid duplication of contact information a convention is
typically adopted, for example so that the neighbour list is only
updated if j is less than i.

Figure 3.27: Grid used for 2D contact detection

Particles can easily be mapped to rows, columns and layers
within a grid, by dividing the current particle coordinates by the
grid size. Consider a grid with cell dimensions Δx × Δy × Δz,
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including nmax
x columns, nmax

y rows, and nmax
x layers. For a particle

i with centroidal coordinates xi, yi, zi we have:

• The column number: nx = int
(

xi

Δx

)
where the function “int”

converts real numbers to integers.

• The row number: ny = int
(

yi
Δy

)
.

• The layer number: nz = int
(

zi
Δz

)
.

• The cell number: (nz − 1)nmax
x nmax

y + (ny − 1)nmax
x + nx.

Each cell then will have a list of particles mapped to it and each
particle will be mapped to a particular cell.

A data structure to enable efficient searching through the con-
tact information data following binning must then be selected. For
consideration of this issue refer to Munjiza (2004) or Pöschel and
Schwager (2005). One option is to create a list of contacts that
is associated with each particle (avoiding duplication of contact
calculations using the strategy presented above). Alternatively a
list of contacts can be associated with each box, with the box id
for a given contact being calculated by considering the contact
coordinates (or an approximation of the contact coordinates).

The particles can be remapped to their appropriate cells at
every time interval, after a specified number of time steps, or when
a specified amount of deformation has taken place since the last
remapping. For example, Vu-Quoc et al. (2000) and Pöschel and
Schwager (2005) suggest the following criterion for updating their
potential contact lists:

tj∑
t=ti

δtmax ≥
rnb
2

(3.63)

where ti is the time at which the lists were last updated, δtmax

is the maximum particle translation in time step t, and rnb is the
radius of the spherical “neighbourhood” region that surrounds the
spheres.

The binning algorithm illustrated in Figure 3.27 becomes less
effective where there is a wide range of particle sizes in the system.
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The grid cell size must be at least as big as the largest particle
and, if there is a broad particle size distribution, there may be
many small particles within one cell, giving a large number of po-
tential neighbours to consider. For systems with a broad range
of particle sizes, it may be appropriate to use a hierarchy of box
sizes for particle binning (e.g. Peters et al. (2009)). Reference
to the discussion by Rapaport (2004) on calculating long-range
interactions in molecular dynamics simulations may be useful for
analysts contemplating implementation of this approach. To over-
come this problem Pöschel and Schwager (2005) propose an alter-
native grid-based approach where, rather than saying that the
lattice cells must exceed the size of the maximum particle, they
require that each grid cell contain at most one particle centroid.
Then the criterion for the cell size is based on the radius of the
smallest particle, and referring to Figure 3.28, a suggested cell size
is Δx = Δy = Rmin. The grid coordinates of each particle are de-
termined using the approach proposed above and a search distance
is determined based on the radius of the largest particle. In this
way a significantly larger number of cells is considered; however,
the maximum number of particles in a given cell is 1.

Figure 3.28: Lattice grid contact detection proposed by Pöschel
and Schwager (2005)
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Within a DEM code a number of links or pointers are required
to create mappings between particles and their associated con-
tacts, as well as between particles, contacts and their grid cells. A
key challenge in DEM is the evolving nature of the contacts: dur-
ing the simulation contacts will be created and deleted, and careful
consideration must be given to the organization and management
of the memory associated with the contacts. Authors who discuss
the issues associated with this from the perspectives of developing
DEM codes include Alonso-Marroqun and Wang (2009), Vu-Quoc
et al. (2000), Munjiza (2004) and Pöschel and Schwager (2005).
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Particle Types

A key feature of particulate discrete element modelling is that the
particles themselves are idealized, as already outlined in Chapter 1.
All numerical models simplify the physical reality, and the users
of a model should be aware of the extent of the simplifications
and appreciate their implications. In a particulate DEM model
the particles are assumed to be rigid and their geometries are re-
stricted to shapes that can be analytically defined. Where rigid
particles are used, only the translation of the particle centroids
and the rigid body rotation of the particles need be considered in
the governing equilibrium equations, i.e. there are three degrees
of freedom for two-dimesional particles and six degrees of freedom
for three-dimensional particles (as the rotations about the three
principal axes of inertia are considered). If particle deformations
were also to be considered, particle deformations (strains) would
need to be included in the governing differential equations, effec-
tively increasing the numbers of degrees of freedom in the system
and the computational cost. This assumption of rigidity facili-
tates simulations involving large numbers of particles, and if it is
assumed that the movement of particles relative to each other has
a greater influence on the overall response than the deformation
of individual particles, this is a reasonable approach to adopt. In
the block DEM codes used in rock mechanics applications (e.g.
UDEC and DDA), deformation is allowed and the implications of
this for the DEM algorithm can be appreciated by reference to Shi
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(1996) or Itasca (1998).

In reality, when two particles come into contact there is a de-
formation at the contact point. In a DEM simulation the amount
of overlap that occurs at the particle contact points simulates this
deformation. As noted in Chapter 1, it is because of this over-
lap that the term “soft-sphere” is used to describe this approach
to modelling. The contact forces are very sensitive to the calcu-
lated overlap; hence the geometry of the contact must be very
accurately determined, and this motivates the restriction of parti-
cle geometries to shapes that can be easily described analytically.
The simplest type of geometry that can be considered is a disk
(in two dimensions) or a sphere (in three dimensions). These are
the most common types of particle geometry used in DEM codes.
Hogue (1998) presents a coherent description of the issues associ-
ated with choice of particle geometry in DEM codes and Houlsby
(2009) includes a more concise discussion. When choosing a par-
ticle type the analyst needs to assess the benefits of improvement
against the geometrical and numerical challenges associated with
adding complexity and computational cost. This Chapter sum-
marizes of some of the issues associated with the various types of
particle used in DEM simulations.

4.1 Disk and Sphere Particles

Disks and spheres are currently the most common type of particle
considered in 2D and 3D DEM simulations respectively. These
particles are popular as it is very easy to identify whether they
are contacting, and if they are found to touch or almost touch (in
the case of tensile force transmission), the geometry of the contact
point, including the contact overlap or separation, can easily be
accurately calculated. As noted in Chapter 1, in every time incre-
ment in a DEM simulation each contact is considered individually,
and the geometry of that contact point is calculated. There will be
many more contacts than particles in a DEM simulation, and con-
tact resolution is usually the most computationally expensive part
of the DEM algorithm. The more efficient this stage in the calcu-
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lation is, the greater the number of particles that can be included.
Achieving realistic numbers of particles is particularly important
when simulating applied boundary value problems as discussed in
Chapter 11.

Where disk or sphere particles are used, the contact overlap
between two particles, a and b is simply calculated as

δn = Ra +Rb −
√
(xa − xb)

2 + (ya − yb)
2 (2D)

δn = Ra +Rb −
√
(xa − xb)

2 + (ya − yb)
2 + (za − zb)

2 (3D)
(4.1)

where radii Ra and Rb are the particle radii and the centroidal
coordinates are given by (xa, ya, za) and (xb, yb, zb) respectively.
If the calculated overlap δn is positive then this contact is trans-
mitting a compressive force, otherwise the contact is considered
inactive (unless it can transmit tension). This calculation is also
used in the contact detection phase of the simulation to assess
whether the particles can potentially contact.

The contact location xc
i is assumed to be at the midpoint of

the contact overlap (refer to Figure 3.3), and for circular or spher-
ical particles its coordinates can be determined by considering its
location relative to either of the two contacting particles as follows
(e.g. Itasca (2004)):

xc
i = xa

i +

(
Ra − δn

2

)
ni (4.2)

where xc is the vector representing the contact coordinates, while
the particle coordinates are represented by xa. The contact normal
n is defined by considering the position of b relative to a:

nc
i =

xb
i − xa

i

|xb
i − xa

i |
(4.3)

The calculations of the contact overlap and contact position
from Equations 4.1 and 4.2 are straightforward; no iteration is
required and the accuracy of the contact overlap calculation is
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determined only by the precision of the computer used (i.e. trun-
cation error of floating point arithmetic). This is not the case
where more general analytical forms are used. The applicability of
the central-difference method to update the rotations of spherical
particles also contributes to the prevalence of spheres in 3D DEM
simulations. A further contributing factor to the widespread use of
disks and spheres in DEM simulations in geomechanics is the pop-
ularity of Itasca’s PFC2D and PFC3D DEM programs amongst
geotechnical engineers. Examples of research studies completed
using the PFC codes include, amongst others, the work by Cheng
and her colleagues on particle crushing (e.g. Cheng et al. (2003))
(PFC3D), the 2D simulations incorporating particle crushing by
Lobo-Guerrero et al. (2006) (PFC2D), the study of particle geom-
etry effects by Powrie et al. (2005) (PFC3D). These Itasca codes
are restricted to disks (PFC2D) and spheres (PFC3D), however
they allow the creation of rigid particle clusters, and particles can
also be bonded to each other to form crushable agglomerates, as
discussed in Section 4.2 below.

To determine the shear contact force that acts along a tangent
to the contact, the incremental relative tangential displacement at
each contact point is required. Again, in the case where disk or
sphere particles are used this is relatively straightforward. Firstly
the relative velocity of the two particles at the point of contact
must be determined. The velocity vector for contact c, vc is then
given by

vci = ẋa,c
i − ẋb,c

i (4.4)

where ẋa,c
i is the velocity vector for the contact point c on the

surface of particle a and ẋb,c
i is the velocity of contact point, c

on the surface of particle b. This velocity has contributions both
from the particle translational velocities and the particle rotational
velocities.

In 2D the calculation of ẋa,c
i and ẋb,c

i is relatively straightfor-
ward as rotation can only take place in one plane, i.e. about an
axis that is orthogonal to the analysis plane. Then, if the angular
velocities for particles a and b are given by ωa

3 and ωb
3 respectively,

and anticlockwise rotations are taken to be positive, the velocities
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of the contact points are given by(
vc1
vc2

)
=

(
(ẋa

1 − ωa
3Ra)− (ẋb

1 − ωb
3Rb)

(ẋa
2 + ωa

3Ra)− (ẋb
2 + ωb

3Rb)

)
(4.5)

where ẋa
1, ẋ

a
2, ẋ

b
1 and ẋb

2 are the velocities of the particle centroids.
When giving the expression for the velocity of a point on the

surface of a spherical particle, it is more convenient to make use
of the alternating tensor, eijk, (refer to Section 1.6). Then the
velocity at the contact point c on the surface of particle a is given
by

ẋa,c
i = ẋa

i + eijkω
a
j (x

c
k − xa

k) (4.6)

where ẋa
i is the velocity of the centroid of particle a in direction

i, xa
i is the centroidal position of particle a, ωa

j is the velocity of
rotation about axis j (the local axis through the centroid that is
parallel to the three Cartesian axes with direction j) and xc

k is the
position of the contact c. An equivalent expression is obtained for
particle b, and so the relative velocity at the contact point is

vci =
[
ẋa
i + eijkω

a
j (x

c
k − xa

k)
]
−

[
ẋb
i + eijkω

b
j(x

c
k − xb

k)
]

(4.7)

The next step is to resolve the relative velocity into components
along and orthogonal to the contact normal, as follows:

vc,ti = vci − vc,ni = vci − vcjnjni (4.8)

where vc,ti is the component of the relative tangential velocity in
direction i.

The masses (mp) and moments of inertia (Ip) of disks and
spheres can easily be calculated once the radius is known as fol-
lows:

mp = ρπr2p (2D)
Ip =

1
2
mpr

2
p (2D)

mp = ρ4
3
πr3p (3D)

Ip =
2
5
mpr

2
p (3D)

(4.9)
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The symmetrical nature of a sphere means that the moment of
inertia is the same about any axis passing through its centroid.

Figure 4.1: Disk–disk contact

The drawback associated with using disk or sphere particles in
geomechanics studies is that the rotations the particles experience
greatly exceed the rotations particles experience in real soil under
equivalent loading conditions. The issue of rolling resistance or
rolling friction has already been considered in Section 3.9, where
contact models to simulate rotational resistance were reviewed.
The excessive rotations that occur in the case of disks and spheres
arise because their geometry inhibits the transfer of moments to
the particles by the normal component of the contact force. Com-
pare the contact between two disks illustrated in Figure 4.1 and
the contact between two ellipses illustrated in Figure 4.2. Where
two disks contact, the branch vector (the vector connecting their
centroids) and the contact normal are collinear (Figure 4.1(a))
and the normal component of the contact force passes through
the centroid of the disk (Figure 4.1) without imparting any mo-
ment to the disk. On the other hand, when two ellipses contact,
the branch vector and the contact normal are no longer collinear
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(Figure 4.2(a)) and, as the line of action of the normal force no
longer passes through the disk centroid, the contact normal force
imparts a moment to the disk. This non-collinearity of the branch
and contact vectors also means that when particle a tries to ro-
tate in a counterclockwise direction, the normal contact force will
increase, providing a greater resistance to rotation than the in-
crement in tangential force provided when the circular particle a
illustrated in Figure 4.1 rotates counterclockwise.

Figure 4.2: Ellipse–ellipse contact

While ellipses and ellipsoids have some advantages over disk
and sphere particles, in contrast to rough, irregular soil particles,
they have smooth and convex shapes. As illustrated in Figure
4.3(a) multiple points of contact can develop between real sand
grains and the resultant action of the two normal forces illus-
trated in Figure 4.3 can be represented as a resultant force in
combination with an equivalent moment. The pair of contacts be-
tween the irregular particles a and b in Figure 4.3 will provide a
resistance to the rotation of particle a in both clockwise and coun-
terclockwise directions; the contact between the elliptical particles
in Figure 4.2 will provide no resistance to the rotation of particle
a in the clockwise direction. As discussed by O’Sullivan and Bray
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(2002), where non-convex particles are used, there is potential for
a greater number of contacts to develop per particle, resulting in
increases in strength and stiffness in comparison with convex par-
ticles. These particle-scale differences in rotation response have
significant implications for the overall material response. A listing
of the limitations of spherical/circular particles for modelling real
materials includes the differences in shear strength, the differences
in dilative response during shear, and the differences in distribu-
tions of void space (spherical/circular particles pack much more
efficiently than real irregular grains) (Cleary, 2007).

Figure 4.3: Schematic diagram of rough, non-convex contact be-
tween real soil grains

The rotational resistance models introduced in Chapter 3 pro-
vide DEM analysts with a means to incorporate rolling resistance
in their simulations without incurring the additional computa-
tional costs associated with using non-circular or non-spherical
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particles. While it maybe difficult to relate the contact model pa-
rameters for these models to the characteristics of physical sand
grains, at the very minimum these models are useful as they fa-
cilitate parametric studies to analyse the influence of rotation
on the overall macro-scale response. Calvetti and his collabora-
tors, (e.g. Calvetti et al. (2004)) consider an extreme condition
and use spherical particles whose rotation is completely inhibited.
Once appropriate values of inter-particle friction and contact stiff-
ness are selected, simulations using this modelling approach agree
closely with the behaviour of real sands, and Calvetti and his co-
workers have succeeded in calibrating their non-rotating sphere
models to capture the response of a range of laboratory sands
(Calvetti, 2008). When rotation is completely inhibited in this
way, the contact conditions for real soil particles, where rotation
is geometrically inhibited, are not accurately modelled. Any de-
tailed the interpretation of the particle scale interactions should
consider this limitation. When they are completely artificially in-
hibited from rotating, the particles at rest will not be in a state of
rotational equilibrium, consequently the stress tensor for the indi-
vidual particles (calculated using the approach outlined in Section
9.4.2) will not necessarily be symmetric.

4.2 Rigid Disk and Sphere Clusters or

Agglomerates

While contact detection and contact resolution for spheres and
disks is straightforward, in the general case both sets of calcu-
lations become quite complex. Even considering ellipsoids, which
have relatively simple geometries that can be analytically described,
contact resolution involves the solution of a non-linear equation,
which adds to the computational cost of the simulations. The
accuracy with which the contact displacements are resolved must
also be considered (see Favier et al. (2001) or Hogue (1998) for
further discussion of this issue). These issues are avoided if disks
and spheres are used as building blocks to create particles with
more realistic geometries.
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Type 1 Type 2 Type 3 Type 4 Type 5

Figure 4.4: Touching disk clusters of the type considered by
Thomas and Bray (1999)

A range of non-smooth, non-convex, non-spherical geometries
can be modelled by “gluing” disk or sphere particles together to
create rigid clusters. The disks or spheres may either touch or
overlap. Thomas and Bray (1999) considered touching disks in
their 2D simulations (Figure 4.4). The restriction on the particles
not to overlap constrains the particles to have a limited range of
geometries, in comparison with cluster configurations where over-
lapping between the base particles is allowed. Favier et al. (1999)
and O’Sullivan (2002) proposed the use of rather simple combina-
tions overlapping spheres arranged in axisymmetric configurations
(similar to the geometry illustrated in Figure 4.5). Vu-Quoc et al.
(2000) also used clusters of overlapping spheres to approximate
the shape of ellipsoidal particles.

More recently the level of sophistication in the use of over-
lapping clusters has increased significantly. Various authors have
proposed algorithms to create cluster particles from digital im-
ages of real sand particles. For example, the algorithm used by
Das et al. (2008) is illustrated in Figure 4.6. In this approach a
watershed-type algorithm is applied to a binary image of the parti-
cle to define the particle “skeleton.” Then the disk that will cover
the maximum area is inscribed within the particle outline and
subsequent disks are each added to give maximum coverage to the
remaining uncovered particle area. The number of disks required
to accurately capture the shape depends on particle complexity.

154



Particulate Discrete Element Modelling: A Geomechanics Perspective

Figure 4.5: Overlapping sphere clusters of the type used by
O’Sullivan (2002) and Favier et al. (1999)

Traditionally particle geometries were assessed in 2D; however,
advances in optical microscopy and micro-computed tomography
mean that 3D morphological characterization of particle geometry
is now feasible. 3D algorithms to create sphere cluster particles
have been developed by a number of authors including Das et al.
(2008) and Garcia et al. (2009).

Whether the particles overlap or not, the cluster is treated as
a rigid body. No contact forces are calculated between the disks
or spheres making up the cluster even where the overlap would
generate significant inter-particle compression forces, if these base
particles were treated as separate degrees of freedom. The parallel
axis theorem is used to calculate the contribution of each base
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Figure 4.6: Approach used to create overlapping disk cluster par-
ticles proposed by Das et al. (2008) (Figure supplied by B. Suku-
maran)

particle to the cluster moments of inertia about a local Cartesian
axis centred at the cluster centroid Icluster, as follows:

Iclusterij =
Np∑
p=1

(
Ipijδij +mpapia

p
j

)
(4.10)

where the cluster contains Np base disks of spheres, each with
mass mp, and inertia Ip relative to the disk/sphere local Cartesian
axis, and δij is the Kronecker delta. The vector ap is given by
api = xp

i − xcluster
i , where xp and xcluster are the vectors describing

the base particle and cluster centroids respectively.
Where there is no overlap of disks or spheres, the total mass

is the sum of the masses of the constituent disks or spheres. In
the case where overlap occurs and the cluster geometry is rela-
tively straightforward (e.g. as in Figure 4.5) the overlap volume
can be analytically determined by integration and the mass and
inertia values can be adjusted. For the more complex geometries
described by Garcia et al. (2009) and Lu and McDowell (2008)
the implications of the overlap volume must be considered. Gar-
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cia et al. (2009) use an approach where the cluster is overlain by
a grid of cells. Where a cell is overlain by one or more spheres its
mass and position are used to calculate the mass and moments of
inertia. Lu and McDowell (2008) and Ashmawy et al. (2003) adopt
a less complex approach where the density of the base spheres is
scaled to have a value ρbscaled so that

ρbscaled =
ρpVp∑Np

i=1 V
b
i

(4.11)

where ρp is the required density of the cluster particle, V b
i is the

volume of base sphere i, Np is the number of base spheres in the
cluster and Vp is the volume of the target particle for that cluster.

The motion of the particle is then calculated by summing
together the contact forces on its constituent disks or spheres.
The resultant moments will be calculated by considering the cross
product of each contact force and the vector directed from the
contact point to the cluster centroid. Where a body or external
force is applied to a base particle, this should also be accounted for
in both the translational and rotational equilibrium equations for
the cluster. Note, however, that in contrast to perfectly spherical
particles, the normal forces can impart a moment, as the contact
normals and vectors from the contact point to the cluster cen-
troid will not be collinear. The shear forces also impart a torque
as in the single-disk/sphere particles and the lever arm for this
tangential force moment no longer equals the sphere radius.

Using this approach, the clusters themselves are rigid and each
cluster is itself a single particle, with three degrees of freedom
(in two dimensions) or six degrees of freedom (in three dimen-
sions). The approaches for integrating the rotational motion of
non-spherical particles presented in Section 2.8 are required. As
noted by Das et al. (2008), it must be recognized that the resul-
tant total mass of each cluster particle should be used to calculate
the critical time increment for stable analysis, rather than the
mass of the base particles. If the base particle mass were used, a
significantly smaller time increment for stable analysis would be
predicted. Once the centroidal position and the rotations of the
clusters have been updated, then the new positions of the base par-
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ticles are calculated, prior to progressing to the contact resolution
stage of the analysis and moving on to the next time increment.
There is an increase in the simulation time when clusters are used
in comparison with an equivalent simulation using the same num-
ber of spheres, as the number of contacts each cluster particle
can have exceeds the potential number of contacts for disk/sphere
particles.

4.3 Crushable Agglomerates

Particle crushing and damage has become an important research
area in geomechanics (e.g. Coop et al. (2004)). Outside geome-
chanics, comminution is an important issue in many manufactur-
ing processes and Cleary (2000) identifies analysis of comminution
to be one of the main drivers motivating the uptake of DEM in in-
dustrial/process engineering. The fracture of even a single particle
is a highly complex process. Using DEM, however, models that are
conceptually simple can be developed to study the phenomenon
of crushing.

One successful approach to simulate particle crushing has been
to create breakable agglomerates of disks or spheres by forming
bonds between particles in the cluster. The disks or spheres then
are base units or elements within the agglomerate. To create these
agglomerates the coordinates of the base disks or spheres are gen-
erated to be just touching, or overlapping slightly at the time of
creation. Tensile and cohesive bonds are introduced at the con-
tacts between these base particles. The resultant agglomerate will
act as a coherent body until the forces between the base particles
cause rupture of the bonds. If sufficient bonds rupture, the ag-
glomerate will disintegrate into two or more smaller agglomerates.
The comminution limit for the particle (i.e. the smallest size it will
break down to) is determined by the size of the base particles. Fig-
ure 4.7(a) is a schematic diagram of a single particle crushing test
simulation. In contrast to the rigid clusters described above, each
agglomerate is itself a multiple-degree-of-freedom system and each
base particle is a degree of freedom. Therefore, while the dynamic
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equilibrium of the rigid clusters considers the effective inertia of
the cluster, the system of equations for a bonded agglomerate con-
siders the individual base particles, and the contact forces acting
on each of these base particles include contributions from contacts
with spheres in adjacent agglomerates as well as contacts between
the other spheres/disks in its own parent agglomerate. The rota-
tional motion does not require consideration of non-spherical rigid
body motion.

(a) Concept of DEM crushable ag-
glomerate

(b) Crushable
particles used
by Cheng et al.
(2003)

Figure 4.7: Crushable DEM agglomerates

Thornton and Liu (2004) and Kafui and Thornton (2000) used
this approach to simulate the fracture of agglomerates upon im-
pact or in collisions for powder processing applications. These
ideas were then adapted for use in geomechanics by Robertson
(2000) and McDowell and Harireche (2002) so that a solid soil
particle is simulated as an bonded agglomerate of base sphere
particles. Cheng et al. (2003 and 2004) then simulated isotropic
compression and shearing tests on samples of these agglomerate
particles to advance fundamental understanding of the role of par-
ticle crushing on soil response.

A representative crushable agglomerate used by Cheng et al.
(2003) is illustrated in Figure 4.7(b). This agglomerate was cre-
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ated following an approach originally proposed by Robertson
(2000). A dense, regular assembly of 57 spheres in hexagonal
close packing (HCP), without initial overlap was initially gener-
ated. Then, in order to replicate the response observed in real ex-
periments, and achieve a variability in strength and shape, about
20% of the spheres were removed in a probabilistic-based algo-
rithm. Removing spheres from the agglomerates in these ways
introduced flaws in the clusters. Cheng et al. (2003) calibrated
the particle contact parameters to achieve a load–deformation re-
sponse for compression of a single particle that matched a single-
particle physical compression test and also found good agreement
between the DEM simulations of isotropic compression tests and
the real, physical tests. Lu and McDowell (2006 and 2007) pro-
posed idea of using parallel bonded spheres to represent railway
ballast particles, with small spheres being added to the particle
surfaces to simulate abrasion of surface asperities. Pöschel and
Schwager (2005) raised a slight concern that the smaller particles
are effectively more rigid than the larger particles. While this is
true, it may also be true in a physical system where the larger
particles may have a greater number of deformable asperities and
a greater number of internal flaws that could also contribute to
their deformability.

A different approach to model particle crushing was adopted
by Lobo-Guerrero and Vallejo (2005). They initially model the
entire system using disk particles; when a certain pre-defined fail-
ure stress is experienced by the disk particle, each disk is then
replaced by the assembly of eight disk particles illustrated in Fig-
ure 4.8. In this approach the overall mass of the system is not
conserved. Pöschel and Schwager (2005) adopt a similar method-
ology where a fracture criterion is specified, the original particle is
removed from the simulation and the new positions of fragments
are randomly determined within an envelope defined by the origi-
nal disk or sphere particle location. Their model differs from that
proposed by Lobo-Guerrero and Vallejo (2005) as conservation of

mass is achieved by setting a criterion that
∑NP,f

i=1 R2
fi = R2 (2D)

and
∑NP,f

i=1 R3
fi = R3 (3D), where R is the original radius and the

radii of the Np,f particle fragment disks or spheres are given by
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Rfi. Initially the particle fragment disks or spheres will overlap,
the resultant compressive contact force will cause the particles to
be repelled from each other and additional “non-physical” energy
will be introduced to the system. Refer to Pöschel and Schwager
(2005) for a discussion on the breakage criterion and the approach
used to control the particle size distribution of the fragmented
particles.

One final approach to modelling crushable particles that is
worth considering is that proposed by Ben-Nun and Einav (2010).
These authors also proposed a criterion for particle crushing that
is based on the forces acting on smooth ideal particles (disks). For
each particle the sum of the contact forces acting on the particle is
considered by summing the dyadic product of the contact normals
and the contact forces to obtain a second-order tensor sij, where

sij =
∑Np

c
k=1 n

k
i F

k
j , where nk

i and F k
j are the normal and contact

force vectors for contact k and there are Np
c contacts involving

particle p. The eigenvalues of the tensor sij are then used to
calculate a nominal shearing force, S, and a nominal normal force,
N such that

N = s1+s2
2

S = s1−s2
2

(4.12)

where s1 and s2 are the eigenvalues (s1 > s2). The particle is
considered to have failed if 2S−N ≥ Fcrit, a criterion is similar to
the Brazilian test used in rock mechanics. If a particle is judged
to have failed, it is replaced with an agglomerate particle that
initially fits within the envelope defined by the original particle
location and radius. Then the agglomerate particle is rotated and
expanded, so that mass is conserved without inducing unreason-
ably large contact forces. This approach requires a “freezing” of
the system while the adjustment is made. Readers interested in de-
veloping criteria for particle failure in DEM simulations may find
the analytical study of Russell et al. (2009) useful as the stresses
induced within particles by compressive contacts are considered
and related to the particle failure.
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4.4 Superquadrics and Potential

Particles

Spheres, disks, ellipses and ellipsoids are all subsets of a general
type of functions called superquatratics (in 2D) and superquadrics
(in 3D). The general functional forms for these geometries are
given by

f(x, y) =
(

x
ra

)ma

+
(

y
rb

)mb
(2D)

f(x, y, z) =
(

x
ra

)ma

+
(

y
rb

)mb
+

(
z
rc

)mc

(3D)

(4.13)

where the principal axis lengths are given by 2ra, 2rb, and 2rc,
and in the case of a sphere the radius is given by ra = rb =
rc. The particle “squareness” or “blockiness” is controlled by the
exponents ma, mb and mc. Examples of superquadric geometries
are presented in Figure 4.9.

Excluding disks and spheres from consideration (as their con-
tact calculations are straightforward), the most commonly used
superquadric/superquadratic geometries in geomechanics related
DEM are as ellipses (2D) or ellipsoids (3D). These are convex
shapes, and only one contact can exist between a pair of ellipses
/ellipsoids; however, the non-collinearity of the normal and branch
vectors enables moment transmission by the contact normal forces
and consequently a much greater resistance to rotation in compar-
ison with spheres or disks. Elliptical particles for two-dimensional
analyses by were proposed by Rothenburg and Bathurst (1991)
and Ting (1993). Ng has probably been the leading geomechan-
ics researcher promoting the use of ellipsoids, with the approach
used to simulate his axisymmetric particles being described by Ng
and Dobry (1995) and Lin and Ng (1997). Examples of the use
of this code to advance fundamental understanding of material
response include the parametric studies considering the sensitiv-
ity of the particle scale and overall material response described
in Ng (2001), while Ng (2004b) examined different failure crite-
ria that have been proposed for soil (considering a full 3D stress
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Figure 4.8: Crushable particles used by Lobo-Guerrero and Vallejo
(2005)

Figure 4.9: Example superquadric geometries
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state). The use of more general superquadratic/superquadric par-
ticles in geomechanics has been limited. Examples of studies using
these geometries outside geomechanics are given by Mustoe and
Miyata (2001) and Cleary (2008) who both considered 2D process-
engineering-type simulations.

Houlsby (2009) and Ng and Dobry (1995) consider contact de-
tection between smooth, convex particles whose surfaces are an-
alytically described. Then a point, o, in the problem domain
(xo, yo, zo) can be tested against the specific particle, p, whose
surface is described by the function fp. If fp(xo, yo, zo) = 0 then
the point is on the surface of the particle, if fp(xo, yo, zo) < 0
then the point is inside the particle surface and if fp(xo, yo, zo) >
0 it is outside the particle surface. The contact between two
particles P1 and P2 whose surfaces are described by two func-
tions fP1 and fP2 can be calculated using Lagrange multipliers.
The point on P1 that is closest to P2, (xP1,2, yP1,2 , zP1,2), is deter-
mined by minimizing the sum f2 + Λf1. This minimization can
be achieved by differential calculus and Houlsby (2009) used an
iterative Newton–Raphson approach to determine the minimum
point. If fP2(xP1,2 , yP1,2, zP1,2) < 0 then the two particles overlap,
and there is contact. The point on P1 that is closest to P2 is
then sought for calculation of the contact forces. Hogue (1998)
outlined an alternative approach to contact detection and resolu-
tion where the surface of one of the particles is discretized and
then each of these points is tested against the functions used to
define the surfaces of adjacent particles. The contact detection be-
tween superquadratics/superquadrics becomes more expensive as
the geometrical non-linearity increases and Hogue quantitatively
compared the computational cost of contact resolution for a range
of superquadric particles.

Just as disk and sphere particles can be combined to create
clusters with more complex geometries, composite higher-order
particles can be created. For example Kuhn (2003b and 2006)
proposed the use of a composite, 3D convex particle termed an
“ovoid” that comprises spherical “caps” and a toroidal middle sec-
tion. Using similar concept, that avoids any iteration to resolve
the contact geometry Pournin et al. (2005) proposed the use of
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a “spherocylinder” geometry comprising cylinders with a sphere
inserted at each end.

A highly flexible approach was proposed by Houlsby (2009),
who introduced the concept of “potential particles” (in 2D). Hark-
ness (2009) implemented this approach in 3D. The idea of a po-
tential particle is to use the contact detection for smooth, convex
particles outlined above. The innovative aspect of this approach is
the use of MacCauley brackets and Heaviside step functions to add
functions together and create more complex geometries that are
analytically described by “potential functions.” This approach can
be explained with reference to Figure 4.10(a) which illustrates the
scheme adopted by Harkness (2009). Here a geometry comprising
circles with flat sides is sought to simulate the long contacts that
exist in locked sands and the composite geometry is constructed
by taking the equation of a circle.

fc = x2 + y2 − r2c (4.14)

and the equation of a line (or “flat”) given by

fflat = aix+ biy + ci (4.15)

The potential function describing a sphere with k flats is then
given by

f(x, y) = (1− k)

{〈√
x2 + y2 − rc

〉2
+

∑nflat
i=1

〈
aix+biy+ci√

a2i+b2i

〉2

− s2
}

+k(x2 + y2 − r2)
(4.16)

where k defines the extent of circularity, there are a total of nflat

flats, and s2 is a constant. The McCauley brackets 〈·〉 are defined
such that 〈x〉 = x if x > 0, while 〈x〉 = 0 if x ≤ 0. Figure 4.10(b)
illustrates the extension of this concept to spheres with flats to
create 3D particles.
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Figure 4.10: Potential particles used by Harkness (2009): (a) Par-
ticle geometry generation (b); Image of 3D assembly of particles
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4.5 Polygonal/Polyhedral Particles

As noted in Chapter 1, the “block” discrete element codes include
polygonally shaped, simply deformable blocks. Similarly parti-
cle DEM codes exist that use rigid 2D polygonal particles, (e.g.
Mirghasemi et al. (1997, 2002) and Matsushima and Konagai
(2001)), or 3D polyhedral particles (Nezami et al., 2007). Where
polygons are used the geometry is defined by the corner coordi-
nates, the edges and the particle orientation. The dynamic equi-
librium equation is used to update the coordinates of the particle
centroid, then, similar to the cluster particles, the corner coordi-
nates are updated (accounting for the incremental rotation). The
volume of data required to describe a particle is approximately
proportional to the number of corners (Hogue, 1998). By restrict-
ing consideration to a specific number of protoype shapes, the
information can be reduced to the centroid location, the particle
orientation and a shape identification index (Figure 4.11, Nezami
et al. (2007)).

Figure 4.11: 3D polyhedra particles used by Nezami et al. (2007)

An appreciation of the additional effort involved with contact
detection for polygonal/polyhedral particles can be gained by ref-
erence to Cundall (1988b). Cundall clearly identified 6 potential
types of contact that can occur where 3D polyhedral particles
are involved as follows: corner–corner, corner–edge, corner–face,
edge–edge, edge–face and face–face. For the case of 2D polygonal
particles, consideration can be restricted to corner–corner, corner–
edge and edge–edge. In the case of 2D contacts involving edges,
the contact normal is orthogonal to the edge. Cundall (1988b)
proposes a “common plane” approach for contact identification.
The essence of this approach is that the plane that bisects the
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space between two polygons is firstly determined, then contact
between each of these particles and the common plane is consid-
ered. A comprehensive discussion on contact detection for their
2D triangular particles is given by Pöschel and Schwager (2005),
where 6 contact scenarios are considered.

An interesting extension of polygonal particles has recently
been proposed by Alonso-Marroqun and Wang (2009). In their
approach they consider the Minkowski sum of a polygon and a
disk; this operation generates a geometry where the disk is “swept”
along the polygon edge, as illustrated in Figure 4.12. The overlap
distance is then given by

δ = ra + rb − δpolygon (4.17)

where ra and rb are the radii of the disks used in the two contact-
ing particles and δpolygon is the shortest distance between the two
polygons (e.g. a vertex–edge distance).

4.6 Achieving More Realistic

Geometries

The geometries considered to date have been restricted to analyt-
ically described shapes. Real sand particles are highly irregular.
Numerous studies have shown that grain shape influences the me-
chanical behaviour of sands, for example Cho et al. (2006) showed
that shape influences the critical state friction angle, the critical
state line intercept, and the slope of the critical state line, while
Duttine and Tatsuoka (2009) considered how particle geometry in-
fluences the nature of the viscous response of sand. These studies,
amongst many others, show that there is a need to accurately cap-
ture sand particle morphologies in DEM codes to achieve accurate,
quantitative predictions of sand response. Considering the possi-
bility simulating a broad range of morphologies, Hogue (1998) de-
scribed the use of discrete functional representations to represent
a range of particle types. In this approach a series of vertices or
corners are defined by their polar or spherical coordinates relative
to the particle centre. Then, the edges between these vertices can

168



Particulate Discrete Element Modelling: A Geomechanics Perspective

be ascertained by interpolation. Hogue outlined how a bounding
sphere can be placed around these particles to facilitate prelimi-
nary contact detection. The location of the point of intersection
of these bounding spheres can be used to define the search region
used to accurately resolve the contact.

From the perspective of finite element analysis, Zienkiewicz
and Taylor (2000b) describe an approach to detect contact be-
tween irregular particles whose edges are defined by nodes and
the surfaces between the nodes are defined by interpolation func-
tions (i.e. shape functions). Contact identification is then based
upon finding a value ξ = ξc that minimizes the function

f(ξ) =
1

2

(
xT
s − xT

)
(xs − x) (4.18)

where xs is the position vector of a node and x defines a surface
that is potentially contacting xs; the minimization can be achieved
using the Newton–Raphson method. The equation of the surface
is defined as

x = Nα(ξ)xα (4.19)

The function Nα(ξ) may be linear or nonlinear. The contact point
location on the surface is then given by xc = Nα(ξc)xα.

As micro-computed tomography and imaging technologies de-
velop and their use becomes more widespread in the characteri-
zation of granular materials, it is likely that composite triangu-
lar particles will become more widespread in DEM analyses, with
the triangular element geometries being generated by applying
the triangulation methods discussed in Section 1.8 to the image
data. Pöschel and Schwager (2005) proposed the use of triangles
connected by deformable spring beams. This approach has the
potential to draw upon the extensive work on automatic mesh
generation that is ongoing in continuum FEM analyses. It is also
likely that analysts will build particles up using cubic base par-
ticles, as this type of base particle can be directly linked to the
voxels (3D pixels) that are generated from micro-computed to-
mography scans. This approach is used to construct continuum
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models for biomedical engineering applications (e.g. Dobson et al.
(2006)).

Zienkiewicz and Taylor (2000a) consider the challenge of mod-
elling systems of bodies that are “pseudo-rigid” and proposed that
a “faceted shape” for use in this type of analysis can be directly
constructed from a finite element discretization. A “pseudo-rigid”
system is defined as being a system containing many relatively
small particles, each of which can experience large displacements
and is restricted to uniform deformations. The block DDA and
UDEC codes (Shi (1988), Itasca (1998)) are examples of pseudo-
rigid body DEM models. In the case where particle deformation is
introduced in the simulations, additional degrees of freedom (i.e.
strain) will be included in the global equilibrium (balance) equa-
tions, thus increasing the computational cost.

4.7 Linking Ideal DEM Particles to

Real Soil

Figure 4.13 illustrates images of real soils, and these shapes are
clearly significantly more complex than the DEM particle geome-
tries discussed above. Both the material characteristics (strength,
stiffness) as well as the geometry or morphology of real parti-
cles will determine their mechanical response. The mechanical
response of an individual particle in a granular material depends
both on the material properties and the particle geometry
(Cavarretta, 2009). For example, Cavarretta (2009) demonstrated
the influence of surface roughness on the observed contact stiffness.
In particulate DEM, the material response is captured through the
contact model, either the inter-particle contact model or, in the
case of crushable particles, the contact model used to determine
the base particle interactions.

From a morphological perspective, when considering the sim-
ulation of real materials both the particle sizes and shapes should
be considered. The level of complexity required to model the par-
ticle interactions and gain reasonable representations of reality de-
pends on the particle inertia. If the particles are sufficiently large,
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Figure 4.12: Spheropolygons created using the Minkowski sum as
described by Alonso-Marroqun and Wang (2009)

(a) SEM image of
Huisinish Sand

(b) Monterey No. 16
Sand

Figure 4.13: Images to illustrate the geometric complexity of real
soils
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the magnitude of the surface forces will be negligible in compar-
ison with the particle inertia and these surface interactions will
not noticeably influence the particle motion. It seems reasonable
to restrict consideration only to particles whose diameter exceeds
100 μm, unless surface interaction forces are to be included in
the model. In soil mechanics typically a diameter of 60 μm is
taken to define the silt - sand boundary. More generally, Duran
(2000) proposes that particles smaller than 100 μm be considered
powders, while particles larger than 100 μm can be considered as
granular solids. Painter et al. (1998) define a thermal condition
for materials to be considered “granular” as

mgd >> kBT (4.20)

where m is mass, g is gravity, d is the grain diameter, kB is Boltz-
mann’s constant, and T is the absolute temperature. This equa-
tion states that the thermal energies kBT are irrelevant compared
to the gravitational energies (mgd). Duran (2000) also highlights
that as the particle size decreases, the ratio of the particle sur-
face area to the particle volume increases. Consequently, per unit
mass, the area of the particle available to interact chemically with
ambient liquids and gases is much greater. This consideration
does not exclude the application of DEM to fine particle systems,
rather the model becomes more complex. Zhu et al. (2007) out-
line the analytical expressions that can be used to calculate van
der Waals forces and electostatic forces between particles in DEM
simulations. When one considers the smallest sized soil particles,
clay particles, the challenge posed to DEM analysts is not only
the accurate characterization of the chemical interaction forces,
but also the simulation of the relatively complex particle shapes.

The geometry of real particles encountered in geomechanics
applications is highly complex. The extent of this complexity is
evident and quantifiable at different scales. When we consider the
geometrical characteristics, the term “form” is used to describe the
overall particle geometry. It may, however, be useful, and indeed
necessary, to include consideration of more detailed measurements
of the particle geometry, i.e. the particle surface roughness. Tra-
ditionally geotechnical engineers have used qualitative terms to
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describe soil, using visual inspection to determine whether the soil
is angular, sub-angular, rounded or sub-rounded. Krumbein and
Sloss (1963) proposed a chart to provide guidance in assigning
quantitative values to sphericity and roundness. Sphericity is
defined as the ratio of the surface area of a sphere with the same
volume as a particle to its actual surface area. The roundness
is calculated by drawing inscribed circles within each corner of a
two-dimensional image of a particle and then taking the ratio of
the average radius of those circles to the radius of the largest cir-
cle that may be inscribed within the particle outline. Cho et al.
(2006) demonstrated the use of this chart to relate the mechanical
response of particles to their regularity (average of sphericity and
roundness).

The greater availability of optical microscopes with built-in
digital cameras, along with the maturity of image analysis tech-
niques, has motivated the development of a number of approaches
to automate shape quantification and enable more objective mea-
surements to be made (e.g. Bowman et al. (2001)). There are also
now apparatus with built in schemes to record binary images and
quantify shape for a statistically representative number of parti-
cles, for example the Sympatec QicPic apparatus scans particles
falling under gravity with a laser, recording an outline of random
orientation; images obtained from the QicPic apparatus are illus-
trated in Figure 4.14. The experimental techniques to measure
and quantify particle geometry are evolving on an ongoing basis,
and the discussion presented here is far from comprehensive. How-
ever, what seems clear is that when tying DEM geometries to real
soil particles, analysts have two choices. In the first instance they
can work directly from the digitized images to generate their DEM
particles, this approach is adopted by Lu and McDowell (2008) and
Das et al. (2008) as discussed above. Alternatively analysts can
describe their particles using analytical shapes (e.g. using poten-
tial particles) that capture the measured sphericity and roundness
of their real soil particles. A particular challenge is posed in the
case of the highly complex carbonate sands such as those consid-
ered by Coop et al. (2004) or illustrated in Figure 4.13(b) above.
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(a) Mon-
terey
Sand

(b) Ottawa
Sand

Figure 4.14: Sample outputs using the QicPic particle analyser
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Boundary Conditions

5.1 Overview of DEM Boundary

Conditions

In continuum numerical modeling the choice of boundary condi-
tions plays a central role and boundaries are equally important in
DEM. A key choice in setting up a DEM simulation is to decide
on the spatial domain that will be considered. The boundaries
to this domain must then be numerically described in the DEM
model.

In continuum modeling there are displacement boundary con-
ditions, along which the displacement is restricted or specified,
and traction boundary conditions, along which stress is specified.
In a DEM simulation displacement boundary conditions can be
achieved by fixing or specifying the coordinates of selected par-
ticles. Similarly, force boundary conditions can be achieved by
applying a specified force to selected particles. This applied, ex-
ternal, force is added to the contact forces acting on the particle
and the resultant force is then used to calculate the particle ac-
celerations and incremental displacements. These force boundary
conditions cannot easily be directly used with systems that include
thousands of particles as the analyst must apply these conditions
to specific, selected particles. DEM is well suited to problems
involving large deformations, and forces may need to be applied
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to different particles as the system deforms. Consequently, algo-
rithms to select boundary particles are needed. Here four types
of boundary condition are considered, in order of their popular-
ity of use; these are rigid walls (Section 5.2), periodic boundary
conditions (Section 5.3), membrane boundaries (Section 5.4) and
axisymmetrical boundaries (Section 5.5).

5.2 Rigid Walls

The most widely employed boundary type is a rigid boundary.
These rigid boundaries are simply analytically described surfaces
and they can be planar or curved. Examples of DEM simulations
using rigid wall boundary conditions in the simulation of element
tests are illustrated in Figures 5.1 and 5.2. Rigid boundaries can
also be used to simulate inclusions or machinery interacting with
the granular material. For example Kinlock and O’Sullivan (2007)
used rigid wall boundaries to represent the penetrating object in
their simulations of pile installation and cone penetration testing
(refer to Figure 1.2). These boundaries themselves have no in-
ertia; the contact forces determined at particle-boundary contact
are used to update the particle coordinates only; thus in some re-
spects they are similar to the displacement boundary conditions
used in FEM analyses. While the forces acting on the walls do not
influence motion of the walls, the user can control the wall move-
ment by explicitly specifying a wall velocity. Users can also specify
wall velocities indirectly, by developing an algorithm to move the
walls according to some criterion; for example the wall velocity can
be related to the current stress conditions, as considered further
below. In either case, when the walls are moved, deformations
and forces are applied to the assembly of particles through the
walls via the wall-particle contacts. In typical DEM simulations
contacts are not generated between walls that intersect or touch.

In comparison with the particles, relatively little information
is required to describe a rigid wall boundary. A planar rigid wall
can be described by a point coordinate, fixing its position in space,
and the normal vector describing its orientation. Similarly a cir-
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cular, cylindrical or spherical wall can be described by specifying
the centre of symmetry and radius, and the analyst may need to
specify whether the particles will contact the outside or the inside
of the boundary. As described by Weatherley (2009), the planar
boundaries can be extended to consider more complex geometries
by using a series of line segments in two dimensions or a triangular
mesh to define the complex surfaces in 3D.

The normal contact forces are calculated by considering the
distance from the particle centroid to the wall in a direction normal
to the wall. If the normal vector defining the wall orientation is
given by (a, b, c), the equation of the wall will be ax+by+cz+d = 0,
where d = −axw − byw − czw and (xw, yw, zw) are the coordinates
of a known point on the wall. Then typically the distance between
a particle centroid (xp, yp, zp) and the wall will be calculated (in
3D) to be

D =
axp + byp + czp + d√

a2 + b2 + c2
(5.1)

Note that this distance D is a signed distance, consequently the
wall will have an active side and an inactive or “blind” side. In
some DEM codes the contact normal direction is not explicitly in-
put, rather the user specifies three or more coordinates (in 3D) to
define the plane. Care must be taken as the contact normal direc-
tion will depend on the order in which the vertices are input, with
the normal pointing in exactly the opposite direction if the vertices
are input in a clockwise, rather than a counterclockwise order. If
a particle is located on the inactive side of a wall, it will not “see”
the wall, i.e. no contact will develop between the particle and the
wall and it can simply move, unimpeded through the wall. If the
wall stiffness is too low or the velocity of the particles adjacent to
the wall is too high in comparison with the time increment chosen,
in a given time step a particle centroid can move from the active
to the inactive side of the wall and essentially “fall” through the
wall. The shear forces are calculated by considering the relative
displacement of the wall and the particle at the contact point, and
orthogonal to the contact normal. These rigid boundaries are well
suited to model the rigid top and bottom platens in the triaxial
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apparatus.

Figure 5.1: Rigid boundaries used to simulate soil mechanics el-
ement tests (a)Biaxial compression test (b) Triaxial compression
test

Servo-controlled rigid boundaries are often used in published
DEM analysis to simulate element tests such as the triaxial or
direct shear test (e.g. Cheng et al. (2003)). The concept of servo-
controlled rigid boundaries is illustrated schematically in Figure
5.3. A representative stress for the sample is measured. Then if
this measured internal stress, σmeas

ii , differs from the user-specified
stress, σreq

ii , the walls orthogonal to the direction i are slowly
moved. If the σmeas

ii term exceeds σreq
ii (compressive stress is posi-

tive), the walls are moved outwards, and if the σmeas
ii term is less

than σreq
ii , the walls are moved inwards. Two approaches can be

adopted to measure or quantify the stress σii. The contact forces
along the relevant boundaries can be summed (integrated) and
divided by the boundary area (length in 2D). Alternatively an in-
ternal volume can be specified and the average stress within this
area can be calculated using the methods discussed in Chapter
9. Whichever approach is used, the wall velocity is proportional
to the magnitude of the stress difference, V wall

i = α|σmeas
ii − σreq

ii |,
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Figure 5.2: Boundaries facilitating controlled rotation of principal
stress orientation (Li and Yu, 2009)

where the proportionality constant, α, is user-specified. The pa-
rameter α is referred to as the gain in control engineering. The
wall velocity can be set to zero when |σmeas

ii −σreq
ii | ≤ ε, where ε is a

user-specified tolerance. Appropriate selection of the gain param-
eter is essential to ensure that the required stresses are attained,
and it is not always easy to find the optimal α value, especially
where particle breakage is modelled (e.g. Carolan (2005)). It is
good practise to carefully check the success of a servo control sys-
tem.

The examples given in Figures 5.1 and 5.2 can all be used
to simulate element tests in DEM in conjunction with a “servo-
controlled” approach. Figure 5.1(a) illustrates the boundary con-
ditions for a 2D biaxial test. In a strain-controlled biaxial com-
pression test, the rigid lateral boundaries are adjusted to maintain
a constant horizontal stress, while the top boundary moves down-
wards. This approach can be directly extended for 3D triaxial test
simulations; in this case the sample is encased within six planar
rigid boundaries and the position of the four vertical boundaries
are adjusted to achieve the required horizontal stresses. Using
these six planar boundaries it is possible to set up a fully three-
dimensional anisotropic stress state with σ11 �= σ22 �= σ33. Figure
5.1(b) illustrates the use of a rigid cylindrical boundary to main-
tain the axisymmetric stress state that typically exists in triaxial
compression tests. In this case the vertical cylinder forms a rigid
boundary and the radius of the cylinder is adjusted to maintain the
required radial confining pressure. Figure 5.2 illustrates a hexag-
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Vz

-Vz

Vx-Vx
If σxx > σxx,req ;  Vx >0

If σxx < σxx,req ;  Vx <0

If σzz > σzz,req ;  Vz >0

If σzz > σzzreq  ;  Vz >0

Stress Measurement
Volume

Figure 5.3: Schematic diagram of servo-controlled rigid boundaries
used in DEM analyses, (in this case the representative stress, σij

is measured in a subvolume within the sample.)

onal type configuration of rigid walls used by Li and Yu (2009) to
allow rotation of the principal stress directions; this configuration
allows the loading direction to be varied in 15◦ increments.

Pöschel and Schwager (2005) propose an alternative implemen-
tation of rigid boundaries, where the boundaries are made up of
particles. Their implementation has the advantage of generating
walls with a geometrical roughness. These composite particle walls
are not included in the main calculations, i.e. their positions are
not determined in the main DEM calculation cycle, rather they
are either held in place, or their motion is determined using a user-
specified boundary velocity. Marketos and Bolton (2010) describe
a detailed study on the use of planar boundaries in DEM simu-
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lations. They highlight the difference in packing geometry that
exists close to the particle boundary and the influence this has
on the contact force network and the implications for calculating
strain.

5.3 Periodic Boundaries

Another type of boundary condition commonly used in DEM sim-
ulations is periodic boundaries (Figure 5.4). Many of the DEM
simulations discussed in the geomechanics literature have used pe-
riodic boundary conditions (e.g. Thornton (2000) or Ng (2004b)).
While the use of periodic boundaries is widespread, initially the
concept can be slightly difficult to understand. Using periodic
boundaries allows simulation of very large assemblies of particles
by considering only a selected subdomain, called a periodic cell.
This periodic cell is surrounded by identical copies of itself. This
means that each particle, and the local geometry around the par-
ticle, is repeated at intervals of Lx in the x direction, Ly in the
y direction and Lz in the z direction, similar to the repetition of
a pattern in wall paper or fabric. Where periodic boundaries are
used the granular material is then effectively infinite in extent.
In the DEM simulation it is then assumed that the material re-
sponse can be represented by considering the response of repeated,
identical representative elements, filling this infinite space. Each
periodic cell is then a representative volume element (RVE) for the
material (the concept of an RVE is considered further in Chapter
9). The systems considered are thus spatially homogenous when
observed at a scale that is greater than the cell dimensions.

A good overview of the use of periodic space in DEM simu-
lations is provided by Cundall (1988a) and the description pro-
vided by Thornton (2000) is also very useful. The discussion by
Rapaport (2004) on periodic boundaries from the perspective of
molecular dynamics simulations is applicable to particulate DEM
and the comments by Pöschel and Schwager (2005) on the use of
periodic boundaries in event driven simulations are also informa-
tive. Section 11.5 considers the influence of cell size on simulation

181



Chapter 5. Boundary Conditions

results. Referring back to the discussion on contact detection in
Section 3.12, where a cell-based search approach is used to de-
termine the list of neighbours, periodic boundaries can readily be
accommodated (see also Rapaport (2004)).

5.3.1 Periodic cell geometry

The periodic cell, or “periodic solution space” (Cundall (1988a)),
comprises a periodic cell that is almost always a parallelogram in
2D and a parallelepiped in three dimensions. Periodic cells are
not strictly restricted to these geometries, and any space-filling
convex-shaped region can be used (Rapaport, 2004). For example
a hexagon could be used in 2D and this would allow consider-
ation of a broader range of principal stress orientations (similar
to the rigid wall approach of Li and Yu (2009)). There is a nu-
merical connection between opposite faces in the periodic cell so
that the material responds as if the cell repeats itself infinitely in
the directions normal to each periodic cell face. The numerical
connection is developed by allowing particles to contact across pe-
riodic boundaries and particles to move through the boundaries.
Both these issues are considered here. An illustrative diagram of a
periodic cell (for the 2D case) is given in Figure 5.4. As discussed
by Rapaport (2004), a periodic system can be considered to be a
topological remapping of the a 2D region enclosed within the cell
boundaries onto a 3D torus (with a 3D cell being remapped to the
4D equivalent of a torus, a construct that is somewhat difficult to
visualize).

In the periodic space, particles along the boundaries can con-
tact both their immediately adjacent neighbouring particles and
particles close to the opposite periodic boundary. These potential
cross-boundary contacts must be considered both in the contact
detection stage and in the calculation of the contact forces. When
calculating the distance between particles contacting across a pe-
riodic boundary a means to identify that the contact crosses a
periodic boundary is needed. The distance between the particles
can be considered, and where it exceeds a specified distance (say
a multiple of the grid size used in the contact detection stage; re-
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Repeated
Structure

Cell
Analysed

Figure 5.4: Periodic boundaries

fer to Section 3.12) the distance is reassessed while accounting for
the possibility of a cross-boundary contact. For example, refer-
ring to Figure 5.5 considering two contacting particles A and B in
a two-dimensional simulation, with centroids xA, yA, xB, yB and
radii rA, rB, the distance between the particles in the x direction
is given by

lx = xA − xB (5.2)

Then if |lx| exceeds the limit specified, and the periodic cell is
bounded by the planes x = 0 and x = xmax, the overlap at the
contact point is

Δn =

√√√√(
xA − xB − lx

|lx|xmax

)2

+ (yA − yB)
2 − (r1 + r2) (5.3)

The equations in the y- (and in 3D z-) directions are similar. Care
must also be taken in calculating the distance from the contact
points to the particle centroid when determining the contribution
of the shear forces to moment loading on the particle.

Particles will tend to move outside the boundaries of the peri-
odic cell during the simulation as a consequence of the motion of
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the particles and the movement of the periodic boundaries. They
are then “remapped” so that they re-enter the cell at the cor-
responding location on the opposite periodic face. The criterion
for this remapping considers the particle centroidal coordinates.
When the centroid of a particle is detected to move outside the
boundary face 1-1, it is introduced at the boundary face 2-2 at
the same elevation (refer to Figure 5.5). The arithmetic involved
in the remapping is simple: for particle A if xA exceeds xcell

max, xA

is adjusted to become xA = xA − xcell
max, etc.. If a particle is near

a face, it can protrude from that face before it actually crosses it.
In the contact force calculations we are effectively introducing an
“image” of the particle into the opposite periodic face, and this
image is offset from the “real” particle by a distance equal to xcell

max.
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Figure 5.5: Consideration of boundaries in periodic cell (Figure
prepared by Cui (2006))

The periodic cell itself can be deformed and its volume can
change. This deformation is most easily achieved by specifying a
strain rate (i.e. a strain-controlled test). The boundaries of the
periodic cell will be then adjusted in accordance with the globally
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applied strain field. Typically the planes x = 0, y = 0 and z = 0
bound the periodic cell along three sides, while the remaining three
sides are bounded by the planes x = xcell

max, y = ycellmax, and z = zcellmax.
The coordinates of the planes x = xcell

max, y = ycellmax, and z = zcellmax

are adjusted during the simulation as follows:

xcell
max = xcell

max + xcell
maxε̇

grid
11 Δt

ycellmax = ycellmax + ycellmaxε̇
grid
22 Δt

zcellmax = zcellmax + zcellmaxε̇
grid
33 Δt

(5.4)

where ε̇grid11 , ε̇grid22 , ε̇grid33 , are the rates of axial strain specified in the
periodic cell in the x, y and z directions respectively, and Δt is
the time increment used in the simulations.

Almost all the published DEM simulations consider only tri-
axial or true triaxial conditions; however, as discussed by Barreto
(2010) it is possible to deform the specimen in simple shear. In this
case, if the sample is deformed with a strain rate of ε13 then the
cumulative shear deformation of the cell would be calculated by
monitoring the parameter Δxcell,shear

max = Δxcell,shear
max + zcellmaxε̇

grid
13 Δt.

Adjustments then need to be made when calculating contacts
and remapping particles across the periodic boundary defined by
z = zmax and across the boundary originally parallel to the plane
x = 0. This implementation avoids modification of the rectangu-
lar grid system for contact detection. Zhuang et al. (1995) adopt
an alternative approach where all the cells for contact detection
deform as the specimen deforms in shear.

The stress within the periodic cell can be controlled by using a
“servo-controlled” approach that is similar to the servo-controlled
approach used in the rigid wall simulations considered above. The
strain rate is adjusted to achieve a specified stress condition. Typ-
ically the average stress is calculated by considering the entire pe-
riodic cell volume, rather than sampling a subvolume. The strain
rate to achieve the required stress state is then given by (in the
x-direction, for example):

˙ε11
serv = ˙ε11

serv + α (σreq
11 − σmeas

11 ) (5.5)

where σreq
11 is the required axial stress in the x-direction, σmeas

11 is
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the measured axial stress in the x-direction. (Refer to Chapter 9
for details on how the stresses are calculated.) In this way tests
along specified stress paths can be completed. The total strain
rate in the system will be the sum of the servo-controlled strain
rate and the user-specified strain rate, i.e. ε̇gridij = ε̇userij + ε̇servij .

5.3.2 Particle motion in a periodic cell

When a global strain field is applied in the periodic cell, a velocity
is imparted to both the particles and the periodic cell boundaries.
Then at each time increment the particle velocity includes a con-
tribution from the solution of the dynamic equilibrium equation
and a contribution from the grid strain rate. The incremental dis-
placement of a point in the system with position xi due to the grid
motion (Δugrid

i ) is then given by

Δugrid
i = ε̇ijxjΔt (5.6)

These grid-induced displacements are calculated after considering
the dynamic equilibrium of each particle for the current time step.
Cundall (1988a) describes the particles as being “carried along”
and moving “in sync” with the periodic cell deformation until
collisions occur and the particles acquire velocities relative to the
periodic space.

Cundall (1988a) notes the need to also consider the impact of
the periodic cell deformation rate on the relative particle motion
used in calculating the contact forces (refer to Section 3.7). When
a periodic cell is deforming, the relative motion will be the sum of
the velocities calculated from dynamic equilibrium considerations
(Cundall (1988a) calls these the real velocities) and the velocity
related to the periodic space, so that the relative velocity between
two particles a and b δ̇a,bi is given by

δ̇a,bi = u̇b
i − u̇a

i + ε̇ij
(
xb
j − xa

j

)
(5.7)

where the real velocities and position vectors of particles a and b
are given by u̇a

i , u̇
b
i and xa

i , x
b
i respectively.
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5.3.3 Use of periodic cell

The periodic cell is taken to be a representative volume of the ma-
terial and the strain of the periodic cell equals the average strain
experienced by the volume. In a physical triaxial test a strain
softening response is associated with the formation of localiza-
tions or shear bands, i.e. non-uniform strains. A strain softening
type response has been observed in periodic cell simulations (e.g.
Cundall (1988a) and Thornton (2000)). The periodic cell geom-
etry prohibits formation of unique shear bands. As illustrated in
Figure 5.6(a), when a localization forms across a sample it will
intersect a pair of periodic boundaries. This will then mean that
a second localization is introduced in the sample to preserve con-
tinuity of geometry across the periodic boundaries, as illustrated
in Figure 5.6(b). Rather than seeing a single discrete shear band,
Kuhn (1999) observed micro-bands in his discrete element simula-
tions of biaxial compression tests. Kuhn’s micro bands are chains
of small regions (void cells) in which there is intensive slip defor-
mation. Kuhn described how these microbands will wrap around
a sample with periodic boundaries and join with themselves over
an integer number of assembly widths and heights.

While periodic boundary systems can be used to achieve a
triaxial stress state (e.g. Thornton (2000)), care should be taken
when directly comparing periodic simulation results with results
of physical triaxial tests, as the stress inhomogeneities present in
real, physical triaxial tests are avoided in periodic cell simulations.

A particularly clear explanation of how to use periodic bound-
aries is given by Thornton and Antony (2000) who considered the
simulation of stress-controlled tests in the periodic cell. The strain
rate ε̇ used to achieve a desired isotropic stress p is given by

ε̇ = ε̇x = ε̇y = ε̇z = g(pd − pc) (5.8)

where pd is the required isotropic stress state and pc is the cal-
culated isotropic stress. Thornton and Antony (2000) determined
the gain parameter by firstly specifying an initial strain rate ε̇ and
then calculating g as:
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g =

(
ε̇

pd − pc

)
initial

(5.9)

Figure 5.6: Illustration of localization in a periodic cell

Thornton and Antony (2000) clarify how they gradually in-
crease the confining stress pc value in stages or increments, for
example if their target isotropic stress was 100 kPa, the pc values
considered would be 2, 5, 10, 20, 50, and 90 kPa. For each pc
value the strain rate decreases as the sample moves closer to the
target stress level. They ensure that the system is stable at each
stress level by monitoring the coordination number (i.e. the aver-
age number of contacts per particle) and the void ratio, and the
calculation cycles continue until no changes in these parameters
are observed. Thornton and Anthony also described the approach
used to carry out a strain-controlled simulation. In this case the
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strain rate ε̇z is specified, while the strain rates ε̇x and ε̇y are cal-
culated from Equation 5.3.3.

5.4 Membrane Boundaries

Figure 5.7: Schematic diagram of triaxial cell

The triaxial test is probably the most commonly used labo-
ratory element test in soil mechanics to determine strength and
stiffness parameters, and DEM simulations of the axisymmetric
stress conditions encountered in the triaxial apparatus are com-
mon. Many published DEM simulations of element tests have
used rigid walls as the test boundaries in combination with a servo-
controlled system to control the stresses (e.g. Cheng et al. (2004)),
while Thornton (2000) and Lin and Ng (1997), amongst others,
simulated triaxial test stress conditions using a periodic cell. In
comparison with periodic boundaries, specimens bounded by rigid
walls are a closer approximation to real physical tests. Referring
to Figure 5.7, the specimen in the triaxial cell is bounded above
and below by steel platens that can be modelled using the rigid
wall boundaries discussed above. The lateral boundary for the
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specimen is a highly flexible latex membrane that allows the pres-
sure within the triaxial cell to be transferred to the sample; at
the same time no constraint is imposed upon lateral deformation.
The sample can bulge and localizations or shear bands can form.
Where the test is simulated using rigid boundaries, while the over-
all stress state can be attained using the servo-controlled approach
discussed above, the rigid walls will inhibit natural development
of these localizations and there will be significant non-uniformities
in the stresses applied along the boundary. The alternative is to
develop a “stress-controlled membrane” to simulate the flexible
latex membrane enclosing the sample.

There are two approaches to modelling flexible membranes for
triaxial test simulations. In both cases the outermost particles
that would touch the membrane in a real physical test must be
identified. In the first approach, flexible contact springs with a
high tensile capacity are inserted to link these outermost parti-
cles. Then a force is applied to these membrane particles that
equals the product of the confining pressure and a representative
length. Authors who have described the use of this approach in-
clude Mulhaus et al. (2001), Oda and Kazama (1998) and Wang
and Leung (2008). In the second approach the force that must be
applied to the outermost particles to achieve the required stress
level are calculated and no special connection is created between
these particles (Figure 5.8). The idea of creating a membrane
in this way seems to have been first proposed by Cundall et al.
(1982). This approach has been used in a number of element test
simulations (e.g. Bardet (1994), Kuhn (1995) Powrie et al. (2005),
O’Sullivan (2002) and Cui (2006)).

A limitation of the flexible spring approach, is that it is very
difficult to relate the properties of discrete contact springs to a con-
tinuous membrane. For example Wang and Leung (2008) adopted
a membrane particle contact spring stiffness that was 1/10 of the
contact stiffness for the remaining particles and with a tensile
strength of 1 × 10300 Pa. In a real, physical test when there are
large localized displacements, new particles will touch the mem-
brane and this cannot be simulated effectively where the flexible-
bonded particle approach is used (as highlighted by Tsunekawa
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and Iwashita (2001)). However, for simulating membranes with a
finite stiffness this approach is preferred.

F

Figure 5.8: Concept of force membrane

Where a force-based numerical membrane is used, the two key
stages in the membrane algorithm are the identification of the
disks (2D) or spheres (3D) participating in the membrane and
the calculation of the required forces. A representative length (in
2D) or area (in 3D) of the side of the sample is then associated
with each particle along the specimen edge. A specified force is
then applied to each of these side particles equal to the product of
the required confining stress and the relevant length or area. As
a consequence of the geometrical differences, the numerical algo-
rithms required to identify the external particles and to calculate
the representative lengths or areas differ for the 2D and 3D cases.
An essential aspect of a constant stress membrane, both in the
laboratory and in a DEM simulation, is that it allows the spec-
imen to deform during loading. As the specimen deforms, the
outermost particles must be re-identified and the equivalent forces
recalculated in the DEM simulations; the criteria used to update
the membrane are also considered here.

5.4.1 Two-dimensional implementation

Various approaches can be adopted to identify the outermost par-
ticles in the sample. Thomas and Bray (1999) and O’Sullivan et al.
(2002) used rather inefficient approaches that considered only the
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Figure 5.9: Two-dimensional stress-controlled numerical mem-
brane: concepts

particle locations. A more effective and robust approach was de-
veloped by Cheung and O’Sullivan (2008) and implemented in a
disk-based DEM code (PFC2D). Their algorithm considers the
contact information as well as the particle coordinates. The pro-
cedure for identifying the outermost disks that would participate
in the membrane is illustrated in Figure 5.9. The first step is to
identify the disk contacting the bottom boundary whose centroid
has the smallest x−coordinate (Figure 5.9(a)). This is the first
disk in the left membrane. There is then a search through the
linked list of contacts associated with this (current) disk, allowing
all the disks touching this disk to be identified (Figure 5.9(b)).
Then, the outermost contacting disk that is above the current
disk is identified as being the next disk in the membrane. This
procedure is repeated, by searching through the contacts associ-
ated with each new membrane disk, until contact with the top
boundary is detected.

Having identified all the outer disks participating in the mem-
brane, an external force is applied to each of these disks to achieve
the specified confining pressure. For each disk, the vertical and
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horizontal distances, dmemb,x and dmemb,y, between the contact with
the membrane disk beneath and the contact with the membrane
ball above are determined (Figure 5.9(c)). The horizontal and ver-
tical forces applied to each disk are then given by dmemb,y×σconfining

and dmemb,x × σconfining, respectively, where σconfining is the speci-
fied confining pressure. The vertical force orientation (positive or
negative) is determined by considering the orientation of the vec-
tor normal to a line joining the two contacts (Figure 5.9(c)). The
horizontal force will always be directed towards the centre of the
specimen. Rotation of the disks participating in the membrane is
inhibited.

Kuhn (2006) adopts a process that starts from a sample in a
periodic cell. To apply the membrane (referred to by Kuhn as
a “stress-controlled tight-fitting particle boundary”), the periodic
boundaries are removed, or broken. Then the branch vectors that
previously connected the boundary particles across the periodic
boundary are used to apply the forces. Kuhn’s implementation is
more general than other membrane implementations, as he also
includes in his code the capability to apply displacement control
along these boundaries. The user then controls the rate at which
the information on this boundary is updated as the sample sub-
sequently deforms. Kuhn also allows for explicit user definition of
the boundary forces.

5.4.2 Three-dimensional implementation

A comprehensive description of a membrane implementation in
three dimensions is given in Cheung and O’Sullivan (2008) and
some of the key ideas are presented in Cui et al. (2007). The
general principles are outlined here. As before, the two main stages
in the algorithm are identification of membrane spheres and the
calculation of the applied force. Cheung and O’Sullivan (2008)
implemented the algorithm in the commercially available sphere-
based DEM code (PFC3D).
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Figure 5.10: Schematic to illustrate membrane sphere identifica-
tion scheme used by (Cui, 2006)

Identification of membrane spheres

The procedure for identifying the “membrane” spheres or balls is
outlined in Figure 5.10. The external forces are applied to these
particles. The first step in this sequence of calculations is the
identification of a “membrane zone.” This is a region containing
all spheres that can possibly form part of the membrane. The
membrane zone has a thickness d as shown schematically in Figure
5.10. The size of the membrane zone, d, is proportional to the
mean sphere diameter a membrane zone thickness equal to the
particle diameter is satisfactory.

In the second level of checking, a sphere is considered to be
a membrane sphere only if it has no contact with another sphere
that would prevent it touching the membrane in a real physical test
(Figure 5.10). Spheres are removed from the membrane if there is
another sphere outside them that would inhibit such contact.

In their implementation of a numerical membrane, Wang and
Tonon (2010) adopt an alternative approach that may be easier to
implement. As illustrated in Figure 5.11, firstly they create a cylin-
drical sample using rigid walls. Then a grid with cell size smaller
than the minimum particle diameter is created along a cylindrical
surface that is just inside the initial cylindrical wall. For each grid
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cell, the outer most particle is identified. The advantage of the
Cheung and O’Sullivan (2008)/Cui et al. (2007) approach is that
the particles selected have an associated projected area that does
not overlap with the projected areas from any other particles.

Figure 5.11: Schematic to illustrate membrane sphere identifica-
tion approach proposed by Wang and Tonon (2010)
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Calculation of applied forces

Having identified the membrane spheres, the confining pressure
is maintained by applying calculated forces on these membrane
spheres. The magnitudes of these forces are calculated by deter-
mining the areas of a set of Voronoi polygons created based on
the centroids of the membrane spheres (refer to Section 1.8 for
details on the Voronoi diagram). The Voronoi diagram is created
on a planar surface by unfolding the membrane zone and project-
ing the coordinates of membrane spheres onto this 2D projection
plane (as illustrated in Figure 5.12). As outlined by O’Sullivan
(2002), for planar boundaries the Voronoi diagram is created on a
plane through the middle of the membrane particles.

h

rcyl

2 rcyl = perimeter of the cylinder

Projection plane

z

x
x’

z’

Zone A Zone B dend

Figure 5.12: Projection plane used to construct Voronoi diagram

A Voronoi cell is then associated with the centroid of each
membrane sphere, and this polygon represents the area of the
membrane associated with that sphere. The product of that area
and the specified boundary pressure gives the magnitude of applied
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(a) Membrane on sample (b) Detail of membrane

Figure 5.13: Illustration of 3D membrane Cui et al. (2007)

force required for that sphere. The force is directed along the vec-
tor connecting the sphere centroid to the centre of the specimen.
In the three-dimensional implementations proposed by O’Sullivan
(2002), Cui et al. (2007) and Cheung and O’Sullivan (2008), the
vertical component is neglected and only horizontal forces are ap-
plied to the membrane spheres. Care needs to be taken along
the vertical and horizontal boundaries to ensure that the area is
completely covered, and that none of the Voronoi cells extends be-
yond the boundaries. The steps taken to achieve this are outlined
in Cui and O’Sullivan (2006) and Cheung and O’Sullivan (2008);
a sample membrane is illustrated in Figure 5.13.

A final point to note regarding the use of stress-controlled
membranes in DEM simulations is that an interval for updating
the membrane must be specified. As the specimen deforms, new
disks will move closer to the outside of the specimen, especially
when a localization develops. One possible “trigger” for updat-
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Figure 5.14: Macro-scale responses observed in simulations dis-
cussed by Cheung and O’Sullivan (2008)

ing the membrane is to measure the cumulative movement of each
disk since the last update of the membrane and then to update
once more if this value exceeds a specified tolerance. An addi-
tional check may be carried out at selected intervals during the
simulation to “catch” any particles that start to escape from the
membrane.

5.4.3 Comparison of rigid and membrane
boundaries

Cheung and O’Sullivan (2008) compared 2D biaxial and 3D tri-
axial test simulations using both rigid walls and flexible mem-
branes. Figure 5.14 illustrates the overall macro-scale responses
obtained in these simulations. For the 2D simulation a specimen of
2377 disks with radii uniformly distributed between 0.48 mm and
0.72 mm was considered. The inter-particle coefficient of friction
was 0.5 and the boundaries were assumed perfectly smooth, with
a particle-boundary friction coefficient of 0.0. In both cases the
specimen was brought to an isotropic stress state of σ1 = σ3 = 1.0
MPa, for servo-controlled simulation. The lateral (vertical) walls
remained in place, while in the membrane simulation the lateral
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walls were removed and the membrane was inserted. During the
simulation a constant lateral stress of σ3 = 1.0 MPa was main-
tained. For the 3D triaxial test simulations the specimen com-
prised 12,622 spheres, with the sphere radii being uniformly dis-
tributed between 0.88mm and 1.32mm. In this case cementation
was modelled using the parallel bond described in Chapter 3. As
in the 2D case, two equivalent simulations were carried out. In the
first simulation a rigid cylindrical wall enclosed the specimen for
the duration of the test, while the stress-controlled membrane was
used during the triaxial compression stage for the second test. In
both simulations the specimen was brought to an initial isotropic
stress state of 10 MPa. Figure 5.14 clearly indicates that in both
the 2D and the 3D cases the overall specimen response was not
very sensitive to the boundary condition used.

It is interesting to look at the patterns of specimen deforma-
tion, illustrated in Figure 5.15 for the three-dimensional case. In
this figure the shading illustrates the cumulative particle rota-
tion, with the darkest shade illustrating the particles that have
experienced the most rotation. Rotations are used to indicate the
position of localizations in the specimens and it is clear that the
internal deformation patterns are very sensitive to the boundary
conditions. Similar results were observed in 2D. Figure 5.16 com-
pares the forces along the external boundaries at the beginning
and end of the 2D simulation. It is clear that there is a far greater
variation in the applied forces along the vertical boundaries where
the rigid boundary is used. These results indicate that while the
macro-scale response may not indicate a strong sensitivity to the
lateral boundary conditions used, the internal material responses
differ.

199



Chapter 5. Boundary Conditions

(a) Rigid wall x-z view (b) Membrane x-z view

(c) Rigid wall y-z view (d) Membrane y-z view

Figure 5.15: Particle rotations in radians at an axial strain of
4.5% for a (3D) triaxial test on bonded specimens with rigid and
membrane boundary conditions
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Figure 5.16: Comparison of forces along a rigid wall with applied
external forces for 2D simulations
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5.5 Modelling Axisymmetry in DEM

There are many axisymmetric systems of interest to geotechnical
engineers and when analysing such systems it should be sufficient
to model one “slice” of the specimen and thus gain significant
computational efficiency. In a similar manner, the computational
cost of 3D finite element analyses is greatly reduced if an axisym-
metric framework is adopted. Weatherley (2009) proposed using
rigid frictionless walls to simulate only a quarter of the domain
and hence achieve symmetry. “Circumferential periodic bound-
aries” as proposed by Cui et al. (2007) allow for axisymmetri-
cal simulations while maintaining a continuous internal system of
particle-to-particle contacts throughout the specimen.

These circumferential periodic boundaries, illustrated in Fig-
ure 5.17(a), are conceptually similar to the rectangular periodic
boundaries that are widely used in DEM simulations (e.g. Thorn-
ton (2000)). Particles with their centres moving outside one cir-
cumferential boundary (Oa) are re-introduced in at a correspond-
ing location along the other circumferential boundary (Ob) (Figure
5.17(b)). Contact forces can develop between the particles close
to each periodic boundary and particles along the other periodic
boundary. These forces are calculated by using a rotation tensor
when calculating the inter-particle distances (Figure 5.17(c)).

Cui and O’Sullivan (2006) describe the implementation and
validation for a 90◦ segment. The most straightforward way to
implement these boundaries is to centre the system on the z-axis.
The x- and y-axes then form a periodic boundary pair. The posi-
tion of a particle along one periodic boundary can be mapped to
the other periodic boundary by an orthogonal rotation in the xy
plane and the rotation tensor T is given by:(

x′

y′

)
= T

(
x
y

)
=

(
cosθ −sinθ
sinθ cosθ

)(
x
y

)
(5.10)

where x′, y′ are coordinates after rotation, x, y are the coor-
dinates before rotation, and θ is the angle between the current
periodic boundary and its partner periodic boundary (with anti-
clockwise rotation being positive). In the implementation of these
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boundaries, special care must be taken regarding particles that
are located close to the origin. If a particle protrudes from both
boundaries (Oa and Ob), then forces along both periodic bound-
aries must be considered. Furthermore, if the particle centroid is
located exactly along the z axis, then the particle cannot move
in the horizontal (x − y) plane. A more detailed description of
the implementation of these circumferential periodic boundaries
is provided by Cui (2006).

The implementation of axisymmetrical boundaries for “hollow”
systems, e.g. the hollow cylinder apparatus, is relatively straight-
forward. A problem arises when the system is continuous through
the axis of symmetry. In that case, to avoid a local decrease in
void ratio, particles need to be explicitly inserted along the central
axis of symmetry.

Cui and O’Sullivan (2005) validated this algorithm analyti-
cally by simulating the response of a specimen of spheres with
a face-centred-cubic packing and comparing the results with the
expressions for the theoretical peak strength proposed by Rowe
(1962) and Thornton (1979). Subsequently experimental valida-
tion was achieved by simulating physical triaxial compression tests
on specimens of chrome steel ball bearings under vacuum confine-
ment. Specimens of both uniformly sized spheres and spheres with
a range of sizes were subject to monotonic and cyclic triaxial tests
(refer to Cui et al. (2007) and O’Sullivan et al. (2008)).

Cui et al. (2007) compared the response of a test simulated us-
ing circumferential periodic boundaries and circumferential rigid
boundaries. As illustrated in Figure 5.18, the overall response dif-
fered. Analysis of the internal structure of the material revealed
that the difference in response can be attributed to the disruption
of the network of contact forces in the specimens where the rigid
walls are used. Referring to the contact force network plots given
in Figure 5.19, where the periodic boundaries are used there is
a continuous network of particle-particle contacts throughout the
specimen, and this network is broken where the rigid wall bound-
aries are used.
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Figure 5.17: Schematic illustration of periodic boundaries Cui and
O’Sullivan (2006)
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Figure 5.18: Sensitivity of macro-scale response to choice of verti-
cal boundaries in axisymmetrical DEM simulations
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5.6 Mixed Boundary Condition

Environment

The most effective way to achieve a simulation result in reasonable
time may be to use a mixed boundary environment, for example
a combination of rigid walls and periodic boundaries in only one
direction (Weatherley, 2009). Cheung (2010) explored this possi-
bility by comparing the response of a specimen of parallel-bonded
spheres in strain-controlled triaxial compression. The response ob-
served in a simulation with rigid boundaries and an aspect ratio of
2:1 (height:diameter) was compared with the response of subvol-
umes that were extracted along the central axis as illustrated in
Figure 5.20(a). The thickness of the slices considered ranged from
20% to 50% of the specimen height. In all cases the responses
observed were close to the overall response, considering both the
stress-strain response and the volumetric strain response. Zeghal
and El Shamy (2004) used a mixture of periodic and rigid bound-
aries in their simulation of liquefaction.
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(a) Illustration of slice extraction
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Figure 5.20: Comparison of triaxial test response using differing
periodic slice thicknesses
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Chapter 6

Fluid-Particle Coupled
DEM: An Introduction

6.1 Introduction

The principle of effective stress as proposed by Terzaghi (1936),
is one of the most fundamental concepts in soil mechanics. This
principle states that when a soil element is subject to a given stress
state (described by the three total principal stresses σ1, σ2 and σ3)
and when the soil voids are completely filled with water, it is the
effective stress state, described by the effective principal stresses
σ′
1, σ

′
2 and σ′

3 that governs the soil response. These effective prin-
cipal stresses are calculated as the difference between the total
stresses and the water pressure u, i.e. σ′

1 = σ1 − u, σ′
2 = σ2 − u,

and σ′
3 = σ3 − u. A soil’s response to a change in the stress state

(compression, distortion, and a change of shearing resistance) is
then exclusively due to a changes in the effective stresses. To study
the response of a granular material to a change in effective stresses
using DEM, it is valid to model dry conditions; then the applied
total stresses will equal the effective stresses.

There are many applications where explicit consideration of
the fluid-particle interaction merits consideration. For example,
in some cases the variation in the total head in the fluid causes
particle motion. This may be the mechanism underlying sand
production in oil reservoir sandstones or internal erosion in dams
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and beneath flood embankments. Fluid flow can play a major role
in triggering slope instabilities. Liquefaction (a phenomenon more
commonly associated with earthquakes) is a phenomenon where
a load is applied rapidly to a loose soil, resulting in an increase
in the fluid pressure and with the resultant decrease in effective
stress causing a reduction in shear strength. The consequences
include flow slide failures and large permanent deformations.

Numerical models that simulate the response of systems that
include two or more phases or interacting physical sub-systems are
often required for engineering applications. When the indepen-
dent solution of the response of one phase or system is impossible
without simultaneous solution of the other systems or phases, the
problem is said to be “coupled” (Zienkiewicz and Taylor, 2000a).
The response of each phase in the system is then described using
different equations and there are expressions to link or “couple”
the phases together. For example, many geotechnical engineers
will be familiar with Biot theory. Using Biot theory, a model
can be created that considers both the deformations of the soil
matrix and the flow of water in the pores. Biot theory consid-
ers the soil to be a continuum. Zienkiewicz and Taylor (2000a)
draw a distinction between two main classes of coupled systems.
In the first type of system, the coupling is at domain interfaces
and achieved by the imposition of boundary conditions, while in
the second type of coupling the physical domains overlap. Both of
these approaches to coupling have been used in particulate DEM
modelling.

Simulations with coupled particle and fluid motion appear to
have had a bigger impact in process engineering applications, and
Zhu et al. (2008) give overviews of various applications in this dis-
cipline that have benefitted from the use of coupled particle-fluid
simulations. Curtis and van Wachem (2004) presented a review
of particle-fluid coupling from a chemical engineering perspective,
where simulating particle laden fluid flow is important. In chemi-
cal and process engineering applications, the particle packing den-
sities are typically relatively low and turbulent fluid flow condi-
tions often occur. However in geomechanics the particle pack-
ings are denser and it is usually assumed that the flow is lami-
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nar. A large number of algorithms for coupling particle motion
and fluid flow have been presented outside of the geomechanics
literature. Here consideration is restricted to some of the ways
coupled-particle fluid systems have been implemented in geome-
chanics; in each case the particle interactions are simulated using
conventional (soft sphere) particulate DEM (i.e. the algorithm
proposed by Cundall and Strack (1979a)).

Given the significant influence of porewater pressures on fluid
response, many geotechnical engineers want to know whether fluid
can be modelled using DEM and how the particle-fluid coupling is
achieved. This Chapter aims to answer this question by firstly in-
troducing some of basic concepts of fluid flow in porous media and
fluid-particle interaction. Then three approaches to simulate cou-
pled fluid-particle systems that have been used in geomechanics
are considered. These are (in order of increasing complexity) the
assumption of a constant volume during undrained loading (Sec-
tion 6.4), the use of Darcy’s law (Section 6.5), and the numerical
solution of the Navier-Stokes equation on a coarse grid (Section
6.6). Section 6.7 considers some additional alternative approaches
to simulating coupled fluid-particle systems. The methods pre-
sented here are applicable to fully saturated flow. As already
discussed in Chapter 3, if the soil is partially saturated, or unsat-
urated, additional forces will be imparted to the particles arising
from the surface tension at the water-air interface.

6.2 Modelling Fluid Flow

It is useful to start by considering the general governing equations
for fluid flow. Considering the general case of an infinitesimal
element in a fluid with position vector x, continuity considerations
mean that the density and velocities are related as

∂ρ

∂t
+∇

(
ρvf

)
= 0 (6.1)

where ρ is the fluid density, and vf is the fluid velocity. (Note

that in tensorial notation =
(
ρvfi

)
,i
is equivalent to ∇

(
ρvf

)
). If
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a fluid is incompressible and has a constant density, this equation
can be rewritten as

∇vf = 0 (6.2)

Furthermore, for incompressible flow the differential equation
for momentum is given by the Navier-Stokes equation:

ρg −∇u+ μ∇2vf = ρ
∂vf

∂t
(6.3)

where g is a body force vector, u is pressure, and vf is the fluid
velocity vector. Knowing the initial and boundary conditions,
this equation can be analytically solved for some simple problems.
However more often it is solved numerically using, for example, the
finite difference method or the finite element method. The appli-
cation of numerical methods to solve the Navier-Stokes equation
is generally called computational fluid mechanics or CFD.

Generally in geomechanics Equations 6.2 and 6.3 are not ex-
plicitly considered. Rather, it is assumed that Darcy’s law is ap-
plicable. Darcy’s law is an empirically derived one-dimensional
expression that relates the gradient in total head in direction j to
the fluid velocity in direction j as

vfj = −kh,j = −kij (6.4)

where k is the permeability, h is the total head and ij is the hy-
draulic gradient in direction j. The term “head” is used to de-
note the energy per unit weight in the fluid and is the sum of
the pressure head, the elevation (or potential) head and the ve-
locity head. In engineering practice the permeability k is either
determined experimentally or estimated from a knowledge of the
particle size distribution for the soil. It represents the energy loss
as the water passes along the rough, tortuous flow paths formed by
interconnecting voids in the material. While the permeability is
an empirical or phenomenological parameter, the Kozeny-Carmen
equation, which relates permeability to void ratio, is derived by
assuming that flow through soil is analogous to flow through an
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Figure 6.1: Difference between Darcy and Navier-Stokes fluid
modelling approaches

assembly of capillary tubes (refer to Mitchell (1993) for the full
derivation).

Referring to Figure 6.1, the velocity vectors considered in Equa-
tions 6.4 and 6.3 are not the same. In the Navier-Stokes equation
the actual fluid velocity is considered. Darcy’s law considers the
discharge velocity, i.e. vf is taken to be the measured flow rate,
Q in (m3/s), divided by the cross sectional area of the sand filled
flow domain, A (m2), i.e.

vf =
Q

A
(6.5)

However, the fluid flow will only take place through the voids (or
pores), and not through the solid phase. Therefore the actual fluid
velocity will be greater than this calculated value. A measure of
the average velocity in the voids is given by

vf
s =

vf

n
(6.6)

where n is porosity (strictly speaking the area porosity should be
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used, i.e. the area of a given cross section that is occupied by
the void space, divided by the total area). Many authors refer
to this average velocity as the seepage velocity. However, the real
velocity, vf

r of the fluid flow will vary from void to void depending
on the actual void dimensions, and it is this real velocity that is
considered in the Navier-Stokes equation.

For two-dimensional or three-dimensional flow, combining con-
siderations of continuity with Equation 6.4, and assuming homo-
geneity, it can easily be shown that flow is given by

k1
∂2h
∂x2

1
+ k2

∂2h
∂x22

= 0 (2D)

k1
∂2h
∂x2

1
+ k2

∂2h
∂x2

2
+ k3

∂2h
∂x2

3
= 0 (3D) (6.7)

where k1, k2 and k3 are the velocities in the x1−, x2− and x3−
directions respectively. The contribution of the velocity head term
to the total head is usually negligible, and as the elevation head is
simply given by the elevation (x3), Equation 6.7 can be expressed
in terms of pressure, u:

k1
∂2u
∂x2

1
+ k2

∂2u
∂x2

2
= 0 (2D)

k1
∂2u
∂x2

1
+ k2

∂2u
∂x2

2
+ k3

∂2u
∂x2

3
= 0 (3D)

(6.8)

When the permeability is isotropic (i.e. k1 = k2 = k3) Equa-
tions 6.7 and 6.8 reduce to the Laplace equation, i.e. ∇2u = 0 and
∇2h = 0.

Fluid flow is often classified as being either laminar or turbu-
lent. Considering flow along a pipe, if laminar conditions exist, the
fluid “particles” move in an orderly manner and maintain the same
positions relative to the pipe bounding the flow. In contrast, if the
flow is turbulent, there will be strong random high-frequency fluc-
tuations in the magnitude and direction of the “particle” velocities.
From the perspective of flow in granular materials, knowledge of
the flow regime is important for two reasons. Firstly Darcy’s law
is applicable only to laminar flow. Secondly, as explained further
in Section 6.3, one of the equations used to calculate drag force
impacted on a particle (the Wen and Yu equation) depends on the
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flow regime. The type of flow regime can be identified by calculat-
ing the Reynolds number Re of the flow. The Reynolds number
is the ratio of the inertial and viscous forces in the flow. Refer-
ring to Tsuji et al. (1993) the Reynolds number for flow through
a particulate material can be calculated as

Re =
nρfdp|v̄p − vf |

μf

(6.9)

where n is the porosity, ρf is the fluid density, μf is the fluid
viscosity, dp is the particle diameter, v̄p is the average particle
velocity, and vf is the fluid velocity.

Figure 6.2: Regimes of flow in porous media after Trussell and
Chang (1999)

As discussed by Cheung (2010), the review of flow through
porous media by Trussell and Chang (1999) is useful when seek-
ing to understand the implications of the Re values calculated. As
illustrated in Figure 6.2, rather than simply classifying flow to be
either laminar or turbulent, four flow regimes can be identified.
For values of Re < 1 the flow is both laminar and “creeping”, i.e.
there is no significant inertial contribution. As Re increases the
flow enters the Forchheimer regime, where it transitions between
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strictly steady laminar flow to a condition where inertial effects
become increasingly important, as evidenced by the presence of
a small contribution from (vf)2 at the upper end of this regime.
Then, as Re increases further, there is a transitional regime be-
tween full inertial flow to full statistical turbulence. Finally, above
a Reynolds number of about 800 a regime of fully turbulent flow
is encountered.

Equations 6.3 and 6.8 are both partial differential equations
describing the variation in fluid pressure. The principal difference
between these equations is that different scales are considered.
The Navier-Stokes equation (Equation 6.3) directly considers the
fluid flow, and can be applied to model the flow within the voids
of a granular material. Considering Darcy’s law, the permeability
given by the values of k1, k2, k3 used in Equation 6.8 is a macro-
scale parameter, representing the frictional loss incurred as water
flows through a complex network of connected voids, i.e. it is used
to describe an average response for an assembly of particles.

Ideally when simulating a system of particles and fluids inter-
acting, the fluid phase would be modelled by numerical solution
of the Navier-Stokes equation. The motion of the particles would
be determined using DEM, and some means to account for the
fluid-particle interaction would be found. The challenge is that
large numbers of grains are usually required in the particle DEM
model, resulting in large numbers of voids with complex geome-
tries and often very small throat widths. The solution scheme for
the Navier-Stokes equation would need to use some type of grid or
mesh with a very fine discretization that can accurately capture
the geometry of the voids. While models with sub-void resolution
can be created, they are complex and computationally very ex-
pensive. Consequently in geomechanics simplified approaches to
simulate coupled systems are more commonly used.

6.3 Fluid-Particle Interaction

When submerged in a fluid, particles will interact with the fluid
and the particle motion will be influenced by the presence of the
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fluid. Different types of forces act on the particle and these can be
classified either as hydrostatic or hydrodynamic forces (Zhu et al.
(2007) and Shafipour and Soroush (2008)). The hydrostatic force
is the buoyancy force due to pressure gradient around the parti-
cle. The hydrodynamic forces include the drag force, the virtual
mass force and the lift force. The virtual mass force is the force
required to accelerate or move the fluid surrounding the particle.
It is called a virtual mass as its effect is equivalent to adding a
mass to each particle. Viscous effects may cause a delay in bound-
ary layer development, and this is accounted for by including the
Basset force. The lift forces are due to particle rotation, and re-
search, including that by Morsi and Alexander (1972), has shown
that the lift forces are much smaller than the drag forces. Zhu
et al. (2007) give key references discussing each of these interac-
tion forces. Consideration will be restricted here to the pressure
gradient force and the drag force as these are the dominant in-
teraction forces and have a measurable influence on the particle
motion and fluid flow. The other interaction forces are not relevant
for the coupled fluid-particle systems of interest in geomechanics.

The drag force is the dominant fluid-particle interaction mech-
anism and it depends on a drag coefficient, Cd, the particle-fluid
relative velocity and the particle size. For a single isolated particle
moving through a fluid the drag force fd is given by:

fd = Cdπρfd
2
p

∣∣∣vf − vp
∣∣∣ vf − vp

8
(6.10)

where Cd is a drag coefficient, ρf is the fluid density, dp is the
particle diameter, vf is the fluid velocity and vp is the particle
velocity. (Here the sign convention used by Kafui et al. (2002),
Van Wachem and Sasic (2008) and Zeghal and El Shamy (2008) is
followed). This drag force cannot be directly applied for systems
of particles, as the fluid flow regime will be affected by the other
particles in the system. As explained by Zhu et al. (2007), the
presence of other particles reduces the space for the fluid and this
results in a steep gradient in the fluid velocity and an increased
shear stress on the particle surface. The effect of the presence of
other particles on the drag force is most often accounted for using
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a corrective function that depends on the porosity.
Usually the drag force for a system of particles is calculated

using either the Ergun equation or the Wen and Yu equation. In
their implementation Tsuji et al. (1993) calculated the drag force
as

fd = β
vf − vp

ρf
(6.11)

where vp is the velocity of the DEM particle, vf is the fluid velocity
and ρf is the fluid density. If the porosity is less than 0.8 then β
is given by the Ergun equation (Ergun, 1952) as follows:

β = 150μ
(1− n)2

d2pn
2

+ 1.75
(1− n)ρf |vp − vf |

ndp
(6.12)

If the porosity exceeds 0.8 then β is given by the Wen and Yu
expression (Wen and Yu, 1966):

β =
3

4
C
|vp − vf |ρf (1− n)

dp
n−2.7 (6.13)

where C depends on the Reynolds number, i.e.

C = 24
(
1 + 0.15Re0.687p

)
/Rep (Rep < 1, 000)

C = 0.43 (Rep > 1, 000)
(6.14)

Rather than using two different equations for the drag coef-
ficient that depend on the fluid flow regime, Kafui et al. (2002)
and Itasca (2008), adopted the empirical expression proposed by
Di Felice (1994) that gives a single expression for the drag force
for a range of flow regimes. There is a slight difference in the way
the drag force is calculated. The expression used by Xu and Yu
(1997) is given by

fd = n
1

8
CDiF

d ρfπd
2
p|vf − vp|(vf − vp)n−χ (6.15)

while Zhou et al. (2008), Kafui et al. (2002), Xu et al. (2000) and
Zhu et al. (2007) use
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fd = n
1

8
CDiF

d ρfπd
2
pn

2|vf − vp|(vf − vp)n−(χ+1) (6.16)

The porosity function n−χ is included to correct for the presence
of other particles, where n is the porosity of the current cell. This
function depends on the flow, i.e.:

χ = 3.7− 0.65exp

[
−(1.5− log10Rep)2

2

]
(6.17)

The drag coefficient is given by

CDiF
d =

[
0.63 +

4.8√
Rep

]2
(6.18)

where the Reynolds number for the particle Rep is determined
using Equation 6.9. Kafui et al. (2002) showed that this expression
gave a close correlation to a drag force calculated using the Ergun
equation at a porosity of 0.4 and good agreement with a drag
force calculated using the Wen and Yu equation at a porosity of
0.8. Using the DiFelice expression there is a smooth variation in
the drag force as a function of porosity.

The drag coefficient depends on the Reynolds number of the
flow and the liquid properties. The empirical expressions pro-
posed by Ergun (1952) for low-porosity materials were determined
from experimental observation. As noted by Zhu et al. (2007),
high-resolution numerical models that simulate the fluid flow at
a sub-particle-scale resolution can also be used to determine the
coefficients. Curtis and van Wachem (2004) note that the ability
of the empirical drag coefficients to accurately model the interac-
tion decrease with decreasing particle sphericity and they suggest
reference to Chhabra et al. (1999) for a review of drag force coef-
ficients for non-spherical particles. Zhu et al. (2007) propose an
adjustment to the Wen and Yu equation to account for particle
shape.

The hydrostatic force is given detailed consideration by Kafui
et al. (2002). Citing the work of Anderson and Jackson (1967),
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they give an expression for the average stress tensor in the fluid
to be

ξfij = −uδij + τ fij (6.19)

where u is the fluid pressure, δij is the identity tensor (as de-
fined in Chapter 1) and τ f is the viscous stress tensor (sometimes
called the deviatoric stress tensor). Kafui et al. (2002) give two
expressions for the hydrostatic force imparted onto the particle as
follows:

fhydrostatic =
4

3
πr3p(−∇u+∇τ f) (6.20)

and

fhydrostatic =
4

3
πr3p(ρfg +∇τ f ) (6.21)

As outlined by Kafui et al. (2002), when used in a numerical
simulation the choice of equation depends on how the momentum
equations are solved. If the pressure gradient force model is used
then Equation 6.20 is applicable, and if the fluid density based
bouyancy model is used then Equation 6.21 is adopted. Kafui
et al. (2002) noted that Tsuji et al. (1993) neglected viscous stress
and so their hydrostatic force is given by

fhydrostatic =
4

3
πr3p(−∇u) (6.22)

Zeghal and El Shamy (2004) also neglect viscous effects and use
Equation 6.22.

The expressions to account for drag and bouyancy effects have
been presented here in a way that can be directly incorporated in
a DEM model. If the particle velocties are known, the porosity of
the granular material is known and the velocity of the surrounding
fluid is known, the influence of the fluid on the particle motion can
be simulated by adding a drag force to the resultant forces acting
on each DEM particle. The particle velocities can be determined
using DEM, while some type of flow model is needed to determine
the fluid velocities and pressures.
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6.4 Simulation of Undrained Response

Using a Constant-Volume

Assumption

When a saturated soil is subjected to undrained loading, the bulk
modulus of the pore fluid is assumed to be sufficiently large rela-
tive to the bulk modulus of the soil that the material deforms at
a constant volume. DEM simulations where the sample volume is
maintained constant as a deformation is imposed on the system
can be used to model undrained material response. The response
of the mixed particle-fluid system can then be simulated without
explicit consideration of the fluid phase. In effect, the fluid and
particle phases are decoupled. The mechanics of the fluid response
is not explicitly considered, rather the pressures are inferred from
the measured response of the particle system. This is the sim-
plest way to model the response of the particle-fluid system and
is therefore considered prior to discussing more complex coupled
simulations. This approach is restricted to completely undrained
response and is therefore really only applicable to simulate the
ideal situations considered in laboratory element tests.

As outlined by Ng and Dobry (1994) for this type of DEM sim-
ulation a triaxial sample is initially compressed (consolidated) to
an isotropic stress of σxx = σyy = σzz = σ0. During the test, either
a compressive or shear strain is applied. As the sample must de-
form with a constant volume, changes in the horizontal stresses in
the sample (σr = σxx = σyy) will occur during shearing. Assuming
the horizontal stress represents the confining pressure, the excess
porewater pressure is then taken to be Δu = σ0−σr. As noted by
Yimsiri and Soga (2010), a key assumption in this approach is that
the soil skeleton, or network of contacting particles, is significantly
more compressible than either the particles or the pore fluid. Ex-
amples of documented simulations using this approach include Ng
and Dobry (1994), Sitharam et al.(2002, 2009) and Yimsiri and
Soga (2010).

The easiest way to assess the success of this approach to simu-
lating undrained soil response is to consider simulation of a mono-
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Figure 6.3: Results of DEM simulations of undrained biaxial com-
pression tests by Shafipour and Soroush (2008) (a) Stress ratio
(p′/q) versus axial strain (b) Excess pore water pressure versus
axial strain.

tonic undrained test. Shafipour and Soroush (2008) simulated
undrained biaxial tests using 4,000 disks adopting the constant-
volume approach. A range of void ratios was considered and the
results are included in Figure 6.3. Referring to Kramer (1996)
or Mitchell and Soga (2005), the key characteristics one would
expect to see in an undrained test on a sand are evident. The
denser samples dilate, with a reduction in the excess porewater
pressure giving an increase in the mean effective stress. For the
looser samples, a phase transformation point, marking a transition
from dilative to compressive response is observed, most notably for
the specimen with a void ratio of 0.240. Drained and undrained
tests on the same sample yielded equivalent effective stress re-
sponses. Sitharam et al. (2002) also presented results for mono-
tonic undrained response on specimens of polydisperse spheres and
again the loose sample compressed and generated positive excess
porewater pressures, while the dense sample generated negative
excess porewater pressures.

Notable contributions to understanding the criteria that trigger
liquefaction during earthquakes have been made using undrained
laboratory tests where (usually) the deviator stress is cycled and
the number of cycles required to initiate liquefaction is recorded.
Ng and Dobry (1994) used the constant-volume approach to ap-
ply shear strain cycles to a sample of spheres in a periodic cell.
Qualitative agreement was observed with previously documented
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laboratory tests to examine liquefaction; there was a build up in
excess porewater pressure and a decrease in stress as the load cy-
cles progressed. As illustrated in Figure 6.4, the cyclic undrained
triaxial compression tests by Sitharam et al. (2009) also gave a re-
sponse that is similar to that observed in physical cyclic undrained
laboratory experiments.

(a) Variation in deviator
stress and porewater pres-
sure for simulation with
cyclic strain amplitude of
0.6%

(b) Relationship between
shear strain amplitude and
number of cycles to initial
liquefaction

Figure 6.4: Results of DEM simulations by Sitharam et al. (2009)

6.5 Modelling of Fluid Phase using

Darcy’s Equation and Continuity

Considerations

The simplest way to explicitly consider the fluid phase is to use
Darcy’s equation to model the fluid flow. The most basic imple-
mentation restricts the flow to be one-dimensional. Calvetti and
Nova (2004) proposed this type of approach to account for seepage
forces in slope stability analysis. In their method, an infinite slope
with inclination α is considered. The seepage force J is assumed
to act parallel to the slope, the force acting on a representative
subvolume V in the slope is then given by

J = V γwi = V γwsinα (6.23)
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where i is the hydraulic gradient and γw is the unit weight of
water. The macro-scale seepage force is used to determine an
equivalent, seepage-induced force on each particle (Jp). This force
is calculated so that

Jp = Cγwsinα (6.24)

where the constant C is a parameter that is introduced so that V =
CΣVp, where Vp is the particle volume and the summation is over
all the particles in volume V . This condition is met if C = 1

1−n
,

where n is the porosity. The water pressures act in all directions
and will impose an uplift thrust on the particles that is given as
f uplift = γwVp. In a 2D analysis with disk particles (inhibited from
rotating) Calvetti and Nova (2004) compared the critical water
table levels obtained using this model with the analytical solution
and obtained very good agreement.

Cheung (2010) proposed a simple model of axisymmetric flow
through an assembly of particles to a central opening or well. In
her model she discretized the domain using the radial boundary
system illustrated in Figure 6.5 and assumed continuity of flow
along each of the radially directed channels. A series of rings each
centred on the origin of the system form circumferential bound-
aries to the fluid cells in the system. The porosity of each of these
cells can be calculated. Then, if the discharge velocity at the cen-
tre of the assembly is known, the average fluid velocity for each
cell in the system is given by

ui =
1

n

Rcavity

ri
ucavity (6.25)

The average particle velocity in the cell and average particle di-
ameter are known from the DEM simulation results. Knowing the
fluid velocity for the cell, a drag force can then be calculated using
the Ergun, Wen and Yu or DiFelice expressions given in Section
6.3 above.

Jensen and Preece (2001) and Shafipour and Soroush (2008)
both developed coupled fluid-particle algorithms based on Darcy’s
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Figure 6.5: Discretization applied by Cheung (2010) where fluid
velocities are calculated from continuity assumptions

flow model. In both cases the fluid phase is considered by creating
a system of discrete cells that overlay the particles, with Jensen
and Preece using a triangular mesh and Shafipour and Soroush us-
ing a Cartesian grid. In the implementation proposed by Shafipour
and Soroush (2008) three steps are required to simulate the fluid
flow. Firstly the change in pore volume due to particle motion
is calculated. This will cause an increment in excess pore water
pressure that is the product of the volumetric strain and the bulk
modulus B of the fluid-particle system. For the fully saturated
case

1

B
=

1− n

Bp

+
n

Bw

(6.26)

where Bp is the bulk modulus of the particles and Bw is the bulk
modulus of the water (fluid). Flow between cells is governed by
Darcy’s law. Realizing that the increment in pressure due to the
flow of fluid from the cell corresponds to the volume of fluid en-
tering the cell, a large system of linear equations can be formed
to solve for the change in pressure due to water flow during the

225



Chapter 6. Fluid-Particle Coupled DEM: An Introduction

current time increment. Shafipour and Soroush’s implementation
was applied to constant-volume simulations and changes to the
hydraulic conductivity due to changes in void ratio were ignored.

While Shafipour and Soroush argue that an approach based on
Darcy’s law is preferable to the Navier-Stokes equation because of
its simplicity, its implementation remains complex, and the addi-
tion of volumetric strains due to particle motion and volumetric
strains due to fluid flow seems non-physical. The cell size must
also be significantly larger than the particle size to allow a macro-
scale permeability parameter to be used. These considerations
suggest that grid-based schemes that use the Darcian flow models
are unlikely to become a dominant means for simulating coupled
fluid-particle systems in geomechanics. The simpler types of flow
model such as those proposed by Calvetti and Nova (2004) and
Cheung (2010), may more be useful as, while they are approxi-
mate models, they do allow efficient simulation of large boundary
value problems involving fluid flow. An estimate of the errors as-
sociated with the simplifications in these models should ideally be
established.

6.6 Solution of Averaged Navier-Stokes

Equations

The most commonly implemented approach that solves the Navier-
Stokes equation to determine the fluid motion is the coarse-grid
approximation method proposed by Tsuji et al. (1993). In this
approach the flow within each individual pore of the granular ma-
terial is not modelled. Referring to Figure 6.6, the fluid phase is
discretized at a scale that is typically five to ten times the average
particle diameter. Zeghal and El Shamy (2008) propose that the
ideal cell dimension should be large in comparison with the micro
or particle-scale and small compared with macroscopic variations
in the boundary value problem of interest. (The concept of scale
in DEM is considered further in Chapters 9 and 10). The aver-
age velocity and pressure for each fluid cell are calculated. These
velocities and pressures are then used to determine the drag and
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buoyancy forces acting on the particles. This approach does not
simulate flow along individual pore pathways in the material. The
average parameters in each cell determine the fluid flow. Anderson
and Jackson (1967) first proposed the idea that the continuity and
momentum equations for the fluid could be calculated using local
average values. This method is within the second category of cou-
pling introduced in Section 6.1 as the fluid flow domain overlaps
the particles.

A stable 2D granular material will have a relatively high pack-
ing density, and the material will be dominated by closed voids.
Discrete pathways allowing fluid flow will be largely absent. How-
ever, in the coarse-grid-averaged Navier-Stokes approach the fluid
model considers the particles and voids to be merged into a contin-
uous porous medium. The method can therefore be applied in 2D;
the earliest demonstration of the efficacy of this approach was the
2D simulations of fluidized beds by Tsuji et al. (1993). Examples
of the use of this approach include Kafui et al. (2002), El Shamy
and Zeghal (2005) and Zhou et al. (2008) amongst many others.
Kafui et al. (2002) and Zhu et al. (2007) both include discussions
on the different implementations that have been used.

Two partial differential equations determine the response of
the fluid: these are the averaged Navier-Stokes continuity and
momentum equation. The averaged continuity equation is given
by (Tsuji et al., 1993)

∂n

∂t
+∇

(
nvf

)
= 0 (6.27)

where n is the local porosity at position x, t is time and vf is the
fluid velocity vector at position x and time t. This implementation
does not account for fluid compressibility; the continuity equation
for compressible flow is (Kafui et al., 2002)

∂(nρf)

∂t
+∇ ·

(
nρfv

f
)
= 0 (6.28)

Implementations of the averaged Navier-Stokes equations in ge-
omechanics have tended to use Equation 6.28.
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Figure 6.6: Schematic diagram of coarse-grid approach used to
solve the averaged Navier-Stokes equations

Kafui et al. (2002) and Zhu et al. (2007) both give two formu-
lations for the momentum equation; these equations were termed
“Model A” and “Model B” by Gidaspow (1994). In model A it
is assumed that the pressure drop is shared between the fluid and
solid particle phases, it is termed the pressure gradient force model
(PGF) by Kafui et al. (2002).

∂
(
nρfv

f
)

∂t
+∇·

(
nρfv

fvf
)
= −n∇u+∇·(nτ f )−fAfp+nρfg (6.29)

where τ f is the viscous or deviatoric stress tensor. Zeghal and
El Shamy (2004) used this expression, neglecting viscous stresses,
i.e. the term ∇ (nτ f) was excluded. In model B (called the FBD
model by Kafui et al. (2002)) it is assumed that the pressure drop
takes place in the fluid phase only and the momentum equation is
given by

∂
(
nρfv

f
)

∂t
+∇

(
nρfv

fvf
)
= −∇u+∇ (nτ f)− fBfp+nρfg (6.30)
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The volumetric fluid-particle interaction forces fAfp and fBfp differ
for the two models. For model A

fAfp = N̄pnfd (6.31)

where N̄p is the number of particles per unit volume and fd is
the drag force on a single particle (calculated using Equation 6.16
for example). The force fAfp is the volumetric average of the forces
acting on the particle and in discrete form it can also be calculated
for each cell as

fAfp =

∑Np

p=1 f
p
d

ΔV
(6.32)

where f pd is the drag force acting on particle p within the fluid cell,
Np is the number of particles in the cell and ΔV is the volume of
the fluid cell. Zeghal and El Shamy (2004) calculated an average
drag force f̄pd using the Ergun equation directly (Equation 6.12).
However they used the average particle velocity, v̄p, instead of the
actual particle velocity (vp), along with the average fluid velocity
v̄f instead of vf and an average particle diameter, d̄p, giving a
modified version of the Ergun equation

f̄ pd = 150μ
(1− n)2

d̄p
2
n

(
v̄f − v̄p

)
+ 1.75

(1− n)ρf |v̄p − v̄f |
d̄p

(
v̄f − v̄p

)
(6.33)

Zeghal and El Shamy calculated their representative particle
diameter as d̄p = 6/Sa, where Sa is the average specific surface. In
this approach f̄ pd is directly included in the momentum equation,
i.e. f̄ pd = fAfp.

The interaction force for model B is given by

fBfp = −(1− n)∇p+Npnfd (6.34)

The model A formulation seems to be more commonly used,
although this is difficult to assess exactly. From a geomechan-
ics perspective, the limited number of published coupled particle-
fluid studies using the averaged Navier-Stokes approach all seem to
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have used the a model A approach (refer to Zeghal and El Shamy
(2004), Jeyisanker and Gunaratne (2009), and Suzuki et al. (2007)).
Looking outside of the geomechanics literature, Tsuji et al. (1993),
Kawaguchi et al. (1998), Van Wachem and Sasic (2008) and Xu
and Yu (1997) also all used the model A equation. An example of
the use of the model B approach is given in Zhou et al. (2008).

Some of applications of the averaged Navier-Stokes equations
in geomechanics have neglected viscous effects (e.g. Zeghal and
El Shamy (2004) and Suzuki et al. (2007)), as well as assuming an
incompressible fluid. The momentum equation used is then given
by

ρf

⎛⎝∂
(
nvf

)
∂t

+∇
(
nρfv

fvf
)⎞⎠ = −n∇u− fAfp + nρfg (6.35)

Jeyisanker and Gunaratne (2009) accounted for viscous effects,
but assumed the fluid was incompressible.

The drag force applied to each particle in the DEM simulation
is added to the resultant force acting on the particles. Zeghal and
El Shamy (2004) calculated the individual forces acting on the
particles due to interaction with the fluid, ffp, from the average
drag force and the pressure gradient:

ffp =

(
f̄d

1− n
−∇u

)
Vp (6.36)

In other implementations where the drag force is calculated for
each particle, the fluid-particle interaction force is given by

ffp =

(
β

1− n
(vf − vp)−∇u

)
Vp (6.37)

where vf is the average fluid velocity within the current fluid cell
and β is calculated from the Ergun equation.

Having established the concept of calculating the fluid-particle
interaction in an averaged sense, and introduced the concept of
solving the Navier-Stokes equations using a grid of relatively coarse
cells, a solution strategy is needed. Tsuji et al. (1993), Zeghal
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and El Shamy (2004), Xu and Yu (1997), Zhou et al. (2008),
Van Wachem and Sasic (2008) and others all used the SIMPLE
algorithm (Semi-Implicit Method for Pressure-Linked Equation)
to solve for the fluid pressures and velocities. This method is de-
tailed by Patankar (1980). As illustrated in Figure 6.7, in many
of these implementations, the nodes where the pressure values are
calculated are offset from the nodes at which the velocity values
are calculated; this is called a “staggered cell” system. The porosi-
ties, and average particle velocities, and diameters are assigned to
the centre of the cell, i.e. points indicated in Figure 6.7(a).

Figure 6.7: Schematic 2D diagram of staggered grid used in solu-
tion of the averaged Navier-Stokes equations (a) Pressure nodes
(b) X−velocity nodes (c) Y−velocity nodes

A flow chart illustrating how the fluid model is coupled with
a particle DEM code is given in Figure 6.8. The particle coordi-
nates are calculated using the DEM model and this information is
passed to the fluid model, where the fluid velocities and pressures
are determined in an iterative sequence of calculations, knowing
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Figure 6.8: Flow chart to illustrate integration of particle DEM
calculations and fluid phase calculations (Cheung, 2010)

the porosity in each cell. Knowing the pressures and velocities,
the drag and buoyancy forces acting on each particle can be de-
termined. The SIMPLE solver uses a series of iterations within
each fluid time-step and the calculated values will converge to the
numerical solution. Once convergence is achieved, the fluid pres-
sure and velocities are used to calculate the particle forces, and
these forces are passed back to the DEM code and added to the
resultant force acting on each particle that is used to calculate the
particle motion.

Two examples demonstrating the efficacy of the coarse-grid,
averaged Navier-Stokes equations are given in Figures 6.9 and 6.10.
Figure 6.9 illustrates the particle velocity vectors in a fluidized bed
for different values of the inlet air velocities at the bottom of the
assembly. This is a 2D simulation with disk particles. This figure
was chosen for inclusion as Tsuji et al. (1993) are commonly cred-
ited with being the first authors to successfully demonstrate the
use of the coarse-grid approach. The observed flow fields qualita-
tively agree with observations of equivalent experiments on sam-
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ples of spheres. The results presented in Figure 6.10 are of more
interest from a geotechnical perspective. This figure presents re-
sults of simulation of flow through an assembly of spheres with
a gradation equivalent to Nevada Sand described by Zeghal and
El Shamy (2008). The sample had dimensions of 42 mm × 42 mm
× 84 mm and the particle sizes ranged between 0.06 and 0.4 mm.
Samples with different initial void ratios were subject to different
pressure gradients and the fluid velocities were observed. As illus-
trated in Figure 6.10, a linear relationship was observed between
the applied hydraulic gradient and the measured discharge velocity
(i.e. the velocity calculated using Equation 6.5). The calculated
permeability increased with porosity and Zeghal and El Shamy
(2008) found the permeabilities to be in good agreement with ex-
perimental data for the physical Nevada Sand.

Figure 6.9: Illustration of fluid velocity vectors in a fluidized bed
(Tsuji et al., 1993)

Examples of application of the coarse-grid averaged Navier-
Stokes equations in geomechanics are given by El Shamy and Ay-
din (2008) (who simulated flow beneath a levee), Zeghal and El
Shamy (2004 and 2008) (who simulated liquefaction in a column of
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Figure 6.10: Variation in measured discharge velocity with applied
hydraulic gradient for DEM simulations by Zeghal and El Shamy
(2008)

soil subject to cycling at its base) and Jeyisanker and Gunaratne
(2009) (who simulated water flow through a pavement layer).

6.7 Alternative Modelling Schemes

Alternative fluid-particle algorithms have been proposed and these
differ in terms of their level of sophistication and accuracy. Some
researchers such as Li and Holt (2002) have proposed that the pore
network can be simulated as a network of pipes with the Hagen-
Poiseille Law then being applied to calculate the “conductance”
of each pipe. Quantitative correlations of this type of model with
real soil response is likely to be difficult. Approaches that simu-
late the fluid flow using a discretization that is significantly smaller
than the particles are more relevant. This approach is schemat-
ically contrasted with the coarse-grid approach in Figure 6.11.
Sub-particle discretization uses the first of the two general cou-
pling approaches introduced in Section 6.1, i.e. the coupling is at
the fluid-particle interface and the two domains effectively do not
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Figure 6.11: Comparison of coarse grid used in averaged Navier-
Stokes solution with a grid with sub-particle resolution (D50 is the
mean particle diameter)

overlap.

One example of a sub-particle-scale approach is given by Cook
et al. (2004), who used the Lattice Boltzman approach to solve the
Navier-Stokes equation. In the Lattice Boltzman method the fluid
is represented as packets of mass that move about a regular grid.
The particles then overlap with the grid and a no-slip condition
is enforced along the particle boundaries. Feng et al. (2007) pro-
posed a more complex Lattice-Boltzman implementation capable
of handling turbulent flow. Potapov et al. (2001) used smoothed
particle hydrodynamics (SPH) to simulate the fluid phase with
sub-particle discretization. SPH is a meshless method and the
“particles” are interpolation points used in the evaluation of the
Navier-Stokes equation. As in the Lattice-Boltzman method, a no-
slip criterion is enforced at the particle-fluid boundary. Another
example of a method that resolves the fluid flow at a sub-particle-
scale was given by Mark and van Wachem (2008) who used a
technique called the immersed boundary method to enforce the
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flow conditions at the surface of the particles. Zhu et al. (2007)
contrasted the coarse-grid averaged Navier-Stokes approach with
methods that use a sub-particle discretization. While they classi-
fied the coarse-grid approach as being computationally demand-
ing, the approaches with sub-particle grid resolution are extremely
demanding. Zhu et al. (2007) suggest that while the sub-particle
discretization approaches are probably the most suitable for highly
fundamental research into the mechanics of particulate materials,
the coarse-grid approaches show more promise for application to
industrial boundary value problems.
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Initial Geometry and
Specimen/System
Generation

A DEM simulation is a transient analysis where the response of
the system at discrete points in time is predicted based upon the
system state at slightly earlier times. Therefore, specification of
the initial conditions is as important as specifying the boundary
conditions. From an applied, geomechanics perspective, the re-
sponse of a granular material is known to be highly dependent on
its initial state (packing density and stress level), the anisotropy
of the fabric (determined from the particle and the contact orien-
tations), the anisotropy of the stress state, and the orientation of
the principal stresses relative to the fabric. Just as experimental-
ists expend significant effort in preparing their samples for phys-
ical tests, DEM analysts need to give careful consideration as to
how they construct their specimen. While Pöschel and Schwager
(2005) (who consider particulate simulations from a general per-
spective) argue that as the initial conditions are used only once in
each simulation, users should not need to expend significant effort
in defining the initial conditions, this statement is not really valid
from a geomechanics perspective. In fact Bagi (2005), looking at
granular materials from a general perspective, identifies the pro-
duction of the random arrangement of densely packed particles
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needed for many applications, to be a “challenging task.” It is
worth noting that significant effort has been expanded by mathe-
maticians to develop algorithms to generate dense random assem-
blies of spheres (e.g. Sloane (1998) and Jodrey and Tory (1985))
and there is potential to adopt these algorithms in DEM specimen
generation. This Chapter discusses some of the approaches used
to generate initial particle configurations for DEM simulations.
While consideration is restricted here to generation of specimens
to fill simple geometries, e.g. cylinders for triaxial compression
tests, the methods can also be applied to more complex boundary
geometries that might be encountered in simulation of field- and
industrial-scale problems.

Bagi (2005) includes a review of various approaches to gen-
erate random, dense specimens. The methods are divided into
two categories. Dynamic methods are algorithms that include pe-
riods where the system is modified or adjusted and then DEM
calculation cycles are invoked to either bring the system to a state
of static equilibrium or to strain the sample to achieve a target
stress level or packing density. In a constructive method the sys-
tem is created without need for DEM calculation cycles. While
it may often be easy, especially in preliminary simulations, to use
uniform particle sizes in simulations, it is important to recognize
that assemblies of uniform spheres and disks behave in a different
manner to materials with a range of sizes (polydisperse materials).
This is because uniform disks or spheres will tend to find a sta-
ble lattice packing and then there will be a preferential tendency
to move along the lattice planes. This will result in a material
response that differs significantly from natural geomaterials both
at the scale of the overall material response and at the particle
scale. Both the macro- and particle-scale responses are sensitive
to the particle size distribution. In many cases the initial topology
of the granular material packing (i.e. the material fabric) has a
marked influence the mechanical response of the material, and it
is good practice for analysts to assess the sensitivity of the system
they are modelling to the approach used to generate the “virtual”
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granular material.

7.1 Overall Initial Geometry of

Assemblies of Granular Materials

In a DEM analysis a packing density and a stress level for the sys-
tem under consideration cannot simply be specified as an input
requirement. Rather a sample must be explicitly created and it
must be in a state of equilibrium under the prescribed stress level.
DEM analysts with laboratory experience will appreciate this, as
the range of packing densities that can be considered in physical
laboratory tests is similarly limited, and physical specimen prepa-
ration requires very careful consideration. Thus the first stage in
a DEM simulation involves creating the initial geometry of the
system, and in many cases, achieving a specified stress level via a
preliminary simulation. In some cases this phase of the analysis
can be more challenging than the subsequent simulation of the
boundary value problem.

For most problems of geo-engineering interest, the physical sys-
tem of particles will initially be in equilibrium under gravitational
load. Almost all the particles will have at least one contact with
another particle, i.e. the packing density will be relatively high.
In contrast, low-density systems are often of interest in chemi-
cal or process engineering, e.g. when simulating fluidized beds.
The concept of percolation merits consideration at this point, as
these requirements mean that for geomechanics analyses systems
that are “percolating” are sought. The term “percolation” comes
from the mathematical discipline of network analysis (e.g. Grim-
mett (1999) or Watts (2004)). The percolation threshold marks
the boundary of a situation where the network of contacts spans
the entire system and can transmit the applied boundary stresses
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across the system (supercritical state). At packing densities lower
than the percolation point, there may be clusters of contacting
particles but these clusters are not connected and so an overall
stress transmission cannot occur. In assemblies of granular ma-
terials there is a minimum number of contacts and a minimum
packing density that must be attained before a link of contacts
that can transmit stress from one side of the system to the other
is formed. In geomechanics we are only interested in packing den-
sities above this minimum point as non-percolating systems will
not be deposited in nature (assuming we are not interested in ma-
terials in suspension). This percolation threshold is not uniquely
defined; it will depend on the particle size distribution. In any
case the specimen generation stage of a geomechanics DEM anal-
ysis must, at a minimum, create a configuration of particles whose
density is sufficiently large such that the number of particles will
exceed the percolation threshold. As clarified in Chapter 10, the
terms “loose” and “dense” are often used in geomechanics to de-
scribe the current state of the particle assembly relative to the
critical state line.

In nature or in the geotechnical laboratory, the particles are
deposited by falling downwards under the action of gravity. The
particles may fall through air (termed dry pluviation in the lab-
oratory) or through water (wet pluviation). The method of de-
position is known to affect the particle packing density and the
geometrical arrangement of the particles (referred to as the fabric,
as discussed further in Chapter 10). Intuitively in a DEM simula-
tion, we might want to simply replicate this process, by generating
particles at some height above the final analysis domain and then
allowing them to fall downwards under a vertical body force. This
process will involve significant particle movement and there will
be a large number of collisions resulting in a varying contact con-
figuration. Consequently, the computational cost of this stage in
the analysis will be high, and is likely to take significantly more
time than the simulation of the boundary value problem of in-
terest. When simulating laboratory tests, for example, a number
of virtual DEM samples will be required to demonstrate the sta-
tistical validity of the results or to complete a parametric study.
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Typically then, rather than using the gravitational depositional
approach, analysts use alternative means to generate relatively
dense particle configurations and achieve the required stress state.
The number of available methods is very large and the optimal
method will depend on the analysts need. Here some of the more
commonly used approaches are presented; many of these can eas-
ily be adapted or varied as necessary. While most of the methods
discussed here consider the generation of “virtual” specimens of
particles to be used in simulation of element tests, they can be
modified to create the initial particle geometries for simulation of
field-scale problems.

7.2 Random Generation of Particles

Provided they are not interested in a lattice or regular particle
packing, most DEM analysts will employ random number gener-
ation at some point in their specimen generation. Most program-
ming languages (such as C, C++ or Fortran) as well as mathemat-
ical software packages (including MATLAB and Excel) include a
function for random number generation. Typically a random num-
ber generator is a complex function that takes the current time as
a seed. Where this type of approach is used, repeated calls to the
function will generate different numbers. However this is not al-
ways the case and when using this type of function care should be
taken to ensure that repeated calls on the function will generate
different numbers. A number of random numbers will be generated
to describe each particle (depending on whether the simulation is 2
or 3 dimensional and what geometry is used). For example, where
a spherical particle is used 4 numbers are needed for each particle:
the values for the x, y and z coordinates of the particle centroid
and the particle radius. Most random number generators output
real values between 0 and 1. These can be scaled and translated
to get a random distribution of particles and positions within the
size limits and geometrical domain of interest in the analysis.

The idea of random particle generation is illustrated in 2D in
Figure 7.1. Each particle position is determined by randomly gen-
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Figure 7.1: Schematic diagram of random number approach to
generate specimens for DEM analyses.

erating the x and y coordinates and the particle size. Then, after
generating each particle the contact detection phase of the DEM
algorithm is invoked to compare the particle position with all pre-
viously generated particles in the system. If the particle overlaps
with an existing particle this combination of centroidal position
and size is considered non-viable. Then, while the particle could
be abandoned and the process repeated to generate new position
and a new size, it is better practice to retain the particle geometry
and chose an alternative centroidal location at random. If both
the particle size and the position are regenerated, there will be a
bias in the particle size distribution, with a relatively large num-
ber of small particles being generated. Figure 7.2 illustrates the
variation in void ratio as a function of the range of disk radii and
the number of attempts to insert particles using the random num-
ber approach implemented in PFC2D. The void ratio is a measure
of the packing density: the greater the void ratio, the smaller the
packing density. As illustrated in Figure 7.2, the broader the range
of particle sizes the greater the void ratio. This is a function of
the random generation and will not be the case when the assem-
bly is compressed, as then the smaller particles will fit inside the
voids formed by the larger particles. It is also obvious that while
increasing the number of attempts to insert particles will increase
the packing density, there is a point where this has little effect,
i.e. little difference was seen between the cases where there were
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1 million attempts to insert a particle and 5 million attempts to
insert a particle.

Using the random number generation approach, specific parti-
cle size distributions can be attained. In this case the target par-
ticle size distribution (PSD) is divided into a number of intervals
and the radius values are randomly generated within each interval.
This approach is not ideal; however, in real laboratory tests the
PSD is usually obtained by sieving and the distribution between
the discrete sieve size intervals is not accurately known. (More
sophisticated PSD characterization tools do exist; however, their
use is not yet widespread in geotechnics). There is also scope to
combine the random number generator approach with a specified
probability density function to get a more continuous PSD. Jiang
et al. (2003) proposed a relatively simple equation to determine
the number of particles required to match a specific distribution
as follows:

N ri =
P ri

rdi P
Np (7.1)

where N ri is the total number of particles with radius ri required,
P ri is the percentage (by mass) of particles with radius ri in the
system, d is the dimension (2 for 2D, 3 for 3D) and Np is the total
number of particles in the system. The parameter P depends on
the ratio between the weight percentage and the radius for each
particle in the system, i.e.

P =
ntypes∑
i=1

P ri

rdi
(7.2)

where ntypes is the total number of particle sizes to be considered.
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Figure 7.2: Illustration of variation in packing density (measured
by considering void ratio and coordination number) with the num-
ber of attempts to insert particles when using the random number
approach to generate specimens for DEM simulations (Cui and
O’Sullivan, 2003)
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Figure 7.3: Illustration of approach used to generate a psd match-
ing a specified size distribution

When a target PSD is to be achieved by discretizing the curve
and generating the sizes within these discrete bins, it is best to
start the generation considering the bin containing the largest
particles, and then move successively through the bins in order
of decreasing particle size, as illustrated in Figure 7.3. Cheung
(2010) presents a discussion on the generation of a particle size
distribution to match the physical particle size distribution ob-
served for Castlegate Sandstone. Ferrez (2001) describes how, for
his 3D simulations, he firstly placed some large particles (spheres)
in a cylinder. Then, the remaining space was filled with medium-
sized spheres, and subsequent iterations are used to densify the
specimen, using increasingly smaller spheres to fill the voids.

An additional consideration when comparing the particle size
distribution against laboratory data is that in the laboratory the
particle size distribution is determined by considering the percent-
age of particles by volume that pass each standard sieve. In a DEM
simulation it is tempting (and very easy) to look at the percentage
of particles in terms of the number of particles that exist within
each size interval. This will not give equivalent results: a large
number of small particles may take up a very small fraction of the
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overall volume relative to a small number of very large particles.
The median particle size as calculated by simply considering the
particle size data will not be equivalent to the D50 calculated from
the sieve analysis. D50 represents the particle size exceeded by the
50% of the particles by volume.

The mass of a particle with radius r is proportional to r3.
Therefore, a relatively large number of small particles may exist
within a very small mass. From a DEM perspective these particles
will add significantly to the computational cost of the simulations,
as the simulation time will increase as the number of particles in-
creases. Furthermore (and possibly more significantly) the criti-
cal time increment for stable analysis is proportional to the ratio√
m/K where m is the particle mass and K is the effective con-

tact stiffness. These restrictions have led analysts to neglect the
smallest fractions of the particle size distribution curve. For ex-
ample in her simulations of Castlegate Sandstone, Cheung (2010)
did not include the smallest 5% fraction by mass of the particles.
This can be justified at the particle scale by assuming that these
particles do not contribute to the strong force chains that trans-
mit stress across the sample. In their simulations of rock mass,
Potyondy and Cundall (2004) describe a procedure for removing
the particles with no contacts (termed “floaters”).

For disk- or sphere-shaped particles size is quantified simply
by considering the particle radii or diameters. However, where
the particles are non-spherical a variety of size measures can be
considered. The size parameter that most closely approximates the
size values obtained in sieving is the Feret minimum diameter. The
Feret diameters are calculated by measuring the distance between
two parallel lines that are tangent to the particle surface.

7.2.1 Radius expansion

The random number generation approach essentially generates a
“cloud” of non-contacting particles. One approach that can be
used to increase the packing density is to isotropically compress
the sample by moving the side walls inwards (where rigid wall
boundaries are used) or by applying a compressive strain in all
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Figure 7.4: Schematic diagram of radius expansion process
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directions where periodic boundaries are used. These approaches
can be time-consuming. As discussed by Itasca (2004) a more
convenient way to increase the specimen density is to gradually
increase the particle sizes, by expanding the particles. In the case
of disk or sphere particles this approach involves multiplying all
the radii values for the particles in the system by a factor α where
α > 1.0. This concept can easily be adapted for more complex
geometries. In any case it is best to increase the particles in a
stepwise manner. For example, the following expression can be
used to calculate the value of α:

α = 1.0 +
β

nγ
(7.3)

where β < 1.0, n is an integer indicating the step, which increases
from a value of 1 until the expansion phase of the simulation is
terminated, and γ is an integer (≥ 1). An appropriate value of
β might be 0.2, while γ might be 1; a value of γ > 1 will give a
greater rate of decrease of α during the expansion process. Other
analytical expressions can be developed to control the radius ex-
pansion process, as long as the particle sizes increase by increas-
ingly smaller amounts as the expansion process continues. The ra-
dius expansion process is illustrated in Figure 7.4. A each stage in
the expansion process, once the particle sizes have been increased
a series of DEM calculations should be carried out to bring the
system into a state of equilibrium. These DEM calculations are
required because when the particle sizes increase, particles that
previously did not touch will now contact, and the overlap at the
contact point may be significant. The resultant repulsive forces
will “push” these particles to contact, and impart forces to other
particles, causing accelerations. The DEM calculation cycles are
thus needed to allow the disturbances to propagate through the
system. The continuous movement and readjustment involved in
the radius expansion approach led Bagi (2005) to classify it as a
dynamic specimen generation approach. In the initial phases of
the expansion the particles will be relatively far apart and the
particles will be relatively small. As the process continues the
particles will be both closer together and larger; thus, unless the
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expansion factor α is reduced using an expression such as that
presented in Equation 7.3, there is potential to induce significant
particle overlaps, resulting in very large accelerations. Accurate
control of the packing density or the stress state also requires a
small α value.

After the particle radii are expanded, a series of DEM cal-
culation cycles should be invoked until the system comes into a
state of equilibrium. A criterion is therefore required to assess
whether the assembly is in equilibrium. One option is to consider
the resultant force acting on each particle. This resultant force
is the force that causes the particles to accelerate is sometimes
called the “out-of-balance force.” When this force is small, the
particles are almost at rest. It can be difficult to chose an out-of-
balance force value that determines equilibrium based directly on
the force values. It is probably most appropriate to monitor the
ratio of the resultant force to the particle mass and then specify
the equilibrium point to have been achieved when the maximum
ratio (considering all particles in the system) is smaller than a
specified value. Alternatively or additionally the stress state and
the total number of contacts in the system can be monitored and
equilibrium be judged to be the point at which these parameters
attain a constant value.

In the early stages of the radius expansion, in particular, there
is a risk that a small number of particles may each experience one
or more very large contact forces inducing significant accelerations
and velocities. When this occurs these particles can experience a
very large displacement in a single time step. This can cause prob-
lems, as a particle that was originally distant from a rigid wall
boundary might move through the boundary and escape from the
simulation space. The particle could also collide with another par-
ticle at a high velocity, generating another large overlap and caus-
ing very large velocities to propagate through the system. To avoid
this, it may be appropriate to include damping in the system in
these early stages. For example, the global damping approach dis-
cussed in Chapter 2 might be used. It is recommended, however,
that this damping be reduced as the packing density increases,
otherwise there is a risk of generating non-uniform stresses in the
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assembly. One way to ensure that the stress state is homogeneous
is to compare the stress in a specified volume within the assembly
with the stresses along the boundary. Where these are close there
is a high probability that the stress state is homogeneous. If the
difference between the internal stress, as measured over a signifi-
cant volume of the specimen is large (i.e. more than 1 or 2%), it is
not recommended to progress to the next stage of the expansion.

This radius expansion approach can either continue for a spe-
cific number of stages (e.g. until the parameter n in Equation 7.3
attains a specified value) or until a target packing density or stress
state is achieved. The radius expansion procedure will generate an
isotropic stress state in the specimen. It is then relatively straight-
forward to implement an algorithm to continue the process until
the stress state is close to this value, i.e. to terminate the expan-
sion when |σtarget

ii − σmeas
ii | ≤ tol where σtarget

ii is the target stress,
σmeas
ii is the measured stress, and tol is a user-specified tolerance

which might be 1% or so. The accuracy with which the target
stress can be attained will depend on the α value. Typically it
is best to approach the target stress for the simulation monotoni-
cally, and so the expansion should also be terminated with an error
statement when σtarget

ii − σmeas
ii ≤ 0. Just as in the case of a phys-

ical sand, the sample will retain a memory of the stress history
and if the target stress is exceeded during the specimen prepara-
tion process, the subsequent observed response will be that of an
overconsolidated sample, which might not be desired. It should
also be noted that during the radius expansion approach the in-
crease in particle size gives an increase in particle mass and this
has implications for the total energy of the system of the system.

Results for some of the radius expansion simulations of Sum-
mersgill (2009) are given in Figure 7.5; the specimen contains 441
disks enclosed within a set of 4 rigid walls forming a square. The
results indicate that in the early phase of the expansion there is
an increase in the stress and the coordination number (number of
contacts per particle) just after the radii are expanded. As the
particles move away from each other the stress drops off and the
coordination number returns to zero. There is, however, a point
where the packing density becomes sufficiently large that the par-
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,

Figure 7.5: Variation in mean stress and coordination number
during radius expansion process

ticles will remain in contact after the adjustment period. From
this point onwards increases in the particle radii were controlled
to give an almost monotonic increase in the stress state by reducing
the value of α (Equation 7.3). This point is called the percolation
threshold and beyond this point the system is percolating (refer
to Section 7.1 above).

In their approach, Potyondy and Cundall (2004) calculate the
α value by considering the current contact configurations and the
required isotropic stress state. Assuming the (circular or spherical)
particles are connected by linear contact springs if the desired
increase the in mean stress, p, is given by Δp, then

α =
λVΔp∑Nb

b=1

∑Nc,b

c=1 R̃c,bKn,cLc

(7.4)

where V is the volume of the region considered, Nb is the total
number of particles, Nc,b is the number of contacts associated with
particle b, R̃ is the distance from the centroid of particle b to
contact c, Kn,c is the normal contact stiffness for contact c and
Lc is the length of the branch vector for contact c. Where there
is particle-to-particle contact, Lc is the sum of the radii of the
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contacting particles; where a particle contacts a wall, Lc is the
particle radius. The parameter λ equals the dimension of the
system (i.e. 2 or 3), and the mean stress is given by p = 1

λ
σkk, i.e.

in 2D, p = 1
2
σkk or in 3D, p = 1

3
σkk. For details on the derivation

of Equation 7.4, refer to Potyondy and Cundall (2004).

There are some approaches similar to the radius expansion
process whose implementation in a DEM code would be rela-
tively straightforward. One example is the “lily-pond” method
proposed by Häggströ and Meester (1996) that was described by
Bagi (2005). In this approach the starting point is a random
configuration of points. Each point is expanded gradually as a
disk/sphere until it touches another disk/sphere, when its expan-
sion ceases. This algorithm would require modification were the
analyst to desire the particle size distribution to remain constant.
Again considering an initial sample of randomly generated parti-
cles, Han et al. (2005) proposed an alternative to radius expansion,
where the initial packing is compressed to create space for addition
of new particles. In this approach the particles adjacent to each
particle are identified and the particle is moved to touch its closest
neighbour in the direction of compression. Each disk is considered
in a sequence; the process is iterative as there is an upper limit to
the distance a particle can move through. Then new particles are
inserted into the resultant voids that form, as described by Han
et al. (2005). As the particles are compressed in a specified direc-
tion, care must be taken to ensure that a configuration of highly
aligned force chains does not develop.

The combination of packing density and stress level, sometimes
referred to as the “state” of the soil, significantly influences the
mechanical behaviour of a granular material. It is not possible to
simultaneously specify a packing density and a stress level, either
in a physical experiment or in a DEM simulation. In laboratory
tests on sand the void ratio can be controlled to some extent by
using different methods to pour the particles into the confining
mould (i.e. different pluviation techniques). There may be subse-
quent vibration or compaction of the sample. In a DEM simula-
tion the packing control over the packing density can be achieved
by varying the coefficient of friction for the particles. For exam-
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Figure 7.6: Illustration of variation in void ratio and coordina-
tion number values obtained as a function of inter-particle friction
coefficient (Summersgill, 2009)

ple, Cundall (1988a) described the use of friction to control the
final porosity of specimens constructed for periodic cell simula-
tions. If the coefficient of friction is set to 0, a dense specimen will
be achieved, while a friction coefficient of 1 will generate a loose
packing. A further reduction in packing density can be achieved
by also specifying an inter-particle cohesion. This sensitivity of
the packing density to friction and cohesion can be understood by
recognizing that the friction and cohesion provide a resistance to
the particles sliding past each other and effectively add stability
to local packing configurations. Using this approach, specimens
with a specified void ratio can be created or a parametric study
considering a range of specimens with differing void ratios can be
completed. Figure 7.6 illustrates the variation in void ratio and
coordination number as a function of inter-particle friction dur-
ing the radius expansion process. The particles with the higher
values of inter-particle friction have higher void ratios and lower
coordination numbers.
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7.2.2 Controlling the stress state

As noted above, even where the required stress state is isotropic,
it is difficult to achieve exact control of the stresses solely using
radius expansion. Thus at the end of every radius expansion pro-
cedure there will most likely be a sequence of DEM cycles carried
out to bring the sample accurately to the required stress level. It
is important that the target stress state be achieved monotoni-
cally, i.e. the stress should be gradually increased from a lower
value to the target level. Even if the analyst wants to test an
over-consolidated sample, they must first bring the system to the
higher level of stress in a controlled manner, prior to reducing the
stress to the value for the simulated test. If the sample is con-
fined within a system of moveable rigid walls, the wall positions
should be slowly moved at velocities that vary based on the cur-
rent (measured) stress value. Consider the 2D case of a sample
bounded laterally by two vertical planes, x = xmin and x = xmax.
To achieve a target stress level, σtarget

xx the velocity of the wall
defined x = xmin will be given by

vx = αx

∣∣∣σtarget
xx − σmeas

xx

∣∣∣ (7.5)

where αx is a user-specified factor, vx is the wall velocity and σmeas
xx

is the measured stress. The wall defined by x = xmax should then
move with velocity −vx The measured stress might be measured
along the boundaries or within the sample. In a similar manner the
strain rate applied in a periodic cell can be linked to the difference
between the current and target stresses. Where flexible boundaries
are used to achieve the initial stress condition it is most convenient
to enclose the sample within a system of rigid boundaries and
move the boundaries to achieve a prescribed stress condition prior
to introducing these boundaries in the system.

It is important that the induced boundary velocities be suffi-
ciently small to ensure that the sample is in a quasi-static stress
state. Otherwise the stress equilibrium phase might be erroneously
terminated based upon the measurement of a stress wave moving
dynamically through the system, rather than consideration of the
equilibrium stress state. This error can be avoided by comparing

254



Particulate Discrete Element Modelling: A Geomechanics Perspective

the average stresses acting on opposite rigid walls or by comparing
the boundary stresses with the average stresses within the sample.
Both stress levels should be met within a small tolerance, of 1% or
less. If the target stress is overshot and the compressive stresses
are too high, the stress will be reduced by relaxing the wall po-
sitions. However, in this case it may take multiple iterations to
achieve the target stress level. An additional potential problem
with rapid motion of the walls is that potentially a heterogeneous
fabric might be induced (with larger packing density close to the
edges of the sample in comparison with the remaining material)
as highlighted by Jiang et al. (2003). Figure 7.7 illustrates the
response observed when a sample of 460 disks is taken from an
initial isotropic stress state of 112 kPa to an isotropic state of
σxx = σyy = 200 kPa. Where the smaller α value of 0.1 is used a
controlled convergence to the desired stress state is attained and
the stress condition is maintained at the end of the compression.
In the first simulation using the larger value of α = 2.0, the stress
control process stopped when both σxx and σyy were within 5% of
the target stress level. The stress condition was not maintained
and decreased to a lower value when the walls ceased moving. In
the second simulation with α = 2 the simulation oscillated for a
long period and eventually when the wall movements ceased the
stress came to a value close to the target. However the stress path
followed to get to this point was complex, and the attainment of
the final stress state was fortuitous rather than controlled. The
appropriate α value will be problem-dependent, and can be found
in a simple parametric study.

As in the case where radius expansion is used, the inter-particle
coefficient of friction can be varied to control the packing density
during the compression process. Barreto et al. (2008) described a
series of periodic cell simulations where an isotropic compressive
stress state was attained by moving the periodic boundaries, and
hence the particles, inwards at a constant strain rate. A servo-
controlled algorithm was used to control the strain rate to mono-
tonically converge to the required confining stress. Typical results
following isotropic compression to a confining stress of 200 kPa for
various inter-particle friction values are presented in Figure 7.8. It
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is clear from Figure 7.8 that, as in the case of radius expansion,
low values of friction result in denser specimens. Care should be
taken when using generation friction values (μgen) higher than the
value that will be used during subsequent shearing (μshear). When
the value of friction is reduced prior to shearing the soil structure
will collapse if μgen > μshear, giving a reduction in void ratio. This
was observed in several simulations where friction value was re-
duced from μgen to μshear and the specimen was allowed come into
equilibrium at the same isotropic stress state of 200 kPa. The sim-
ulations (S1 and S2) illustrated in Figure 7.8 illustrate the degree
of compression following a reduction in friction from μgen = 0.325
to μshear = 0.3 (S1) and μgen = 0.6 to μshear = 0.3 (S2).

As already noted, the stress state attained using particle ex-
pansion will be isotropic. Natural particulate assemblies rarely
have an isotropic stress state. Many natural deposits have a K0

stress state in situ. The term “K0” is used to describe a stress
state attained via a stress path where the vertical stress increases
in a controlled or measurable manner, while the material is re-
stricted from deforming laterally or horizontally. Typically, the
stress conditions are then cross-isotropic, i.e. if the vertical nor-
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Figure 7.8: Illustration of range void ratios obtained using different
inter-particle friction values for isotropic compression in a periodic
cell (Barreto et al., 2008)
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mal stress is σv = σ33, the two horizontal normal stresses are equal
(σh = σ11 = σ22). The vertical and horizontal stresses are then re-
lated by σh = K0σv, where (based upon empirical evidence)K0 is a
constant that can be related to the angle of shearing resistance for
a given soil. To achieve this anisotropic stress state one approach
that could be adopted is to progress with the radius expansion
procedure until a packing density that is just slightly looser than
the percolation point is reached. The termination criterion used in
the radius expansion algorithm should in this case most likely be
based on consideration of the number of contacts per particle in
the system. Then, assuming the sample is confined within vertical
and horizontal boundaries, it can be slowly compressed by moving
the horizontal boundaries towards each other to achieve the target
vertical stress, while maintaining the horizontal boundaries fixed.

Barreto et al. (2008) described an interesting study where they
examined the sensitivity of the system to the stress path followed
to achieve a particular stress state of q=150 kPa and p′=200 kPa.
Note that in geomechanics the deviator stress is given by q =
σ1−σ3 and the mean effective stress is given by p′ = 1

3
(σ′

1+σ′
2+σ′

3),
where σ1, σ2 and σ3 and σ′

1, σ
′
2 and σ′

3 are the principal stresses
and the principal effective stresses respectively. As can be seen
by reference to Figure 7.9, six different stress paths were consid-
ered. The sensitivity of the void ratio, coordination number and
fabric anisotropy to the stress path followed was considered. (The
terms “coordination number” and “fabric anisotropy” are defined
in Chapter 10.) For each of the stress paths A - F considered,
an identical initial specimen was used, only the sample subject to
stress path F did not touch the “K0” line prior to reaching the
target stress state. While, stress paths A-E yielded final void ra-
tios in the range 0.586-0.591 and coordination numbers between
4.24 and 4.27, sample F was measurably less dense, with a void
ratio of 0.597 and a coordination number of 4.20. This example
illustrates that the stress path followed influences the final state
of the sample.
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Figure 7.9: Stress paths followed to achieve a K0 condition, Bar-
reto et al. (2008)
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7.2.3 Jiang’s under-compaction method

One of the most important problems that merits consideration
in geomechanics is liquefaction. Liquefaction occurs when loose,
saturated deposits of sand are subject to rapid dynamic loading
(e.g. earthquake shaking). The material responds to this rapid
loading in an undrained manner, with an increase in porewater
pressure causing a reduction in effective stress and consequently
the shear strength reduces. This phenomenon has been responsible
for significant damage to buildings and infrastructure leading to
fatalities and having substantial financial implications (e.g. in
Haiti in January 2010). Recognizing the need for DEM simulations
to analyse liquefaction, Jiang et al. (2003) focussed on developing a
specimen generation method that can form loose specimens. This
method is similar to the experimental procedure for developing
loose samples proposed by Ladd (1978). The general concept is
illustrated in Figure 7.10. Rather than filling the entire volume at
the beginning, the sample is built up layer by layer. At each stage
in the development the sample is then compressed to achieve a
target void ratio (e1, e2, ...) that is higher than the final required
void ratio etarget. The void ratios should monotonically converge
towards the target value, i.e. e1 > e2 > ... > ej .... > etarget. Jiang
et al. propose both linear and non-linear expressions (similar to
the experimental expression of Ladd (1978)) that can be used to
determine the “undercompaction” criteria, and hence target height
for each layer. Recalling the discussion on percolation in Section
7.1, it is important to realize that where loose samples are sought,
the target density must exceed the percolation threshold for them
to be physically relevant.
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Figure 7.10: Illustration of undercompaction method proposed by
Jiang et al. (2003)
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7.3 Constructional Approaches

In the constructional approaches, the sample is created without
any periods of DEM calculation. While these approaches can be
very effective, and conceptually simple to understand, their im-
plementation in a computer code is less straightforward and some
coding effort must be applied to achieve the gains in specimen gen-
eration efficiency offered above the random generation approaches.
Most of these constructive approaches have been implemented in
two dimensions only and extrapolation to three dimensions is non-
trivial. Here two representative constructional approaches are in-
troduced.

Figure 7.11: Illustration of closed form of advancing front ap-
proach proposed by Feng et al. (2003)

The advancing front approach was proposed by Feng et al.
(2003). In this approach the system of particles is incrementally
constructed by starting from an initial small assembly of disks.
The additional disks that are inserted into the system must con-
tact the pre-existing disks, so that the specimen “grows” in size as
the additional disks are added. Two implementations of this ap-
proach have been proposed: the closed form of the advancing front
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algorithm and the open form of the advancing front algorithm. In
the closed form algorithm (illustrated in Figure 7.11) the spec-
imen grows outwards from an initial triangular arrangement of
three disks, while in the open form approach the specimen is con-
structed layer by layer within a specified geometry. Bagi (2005)
expressed concern that this approach can generate samples with
large voids close to the boundary.

Rather than starting from the inside of the specimen, the in-
wards packing method proposed by Bagi (2005) initially inserts
disks along the boundary, and works inwards. As illustrated in
Figure 7.12(a), in the first stage of the specimen generation a large
disk is inserted in the upper left hand corner. Additional particles
are then inserted, and each particle must touch both the bound-
ary and a previously placed sphere, working downwards along the
left boundary. The process continues until the lower left corner
is reached. A large particle is inserted here, and the previously
placed particle is adjusted to accommodate this insertion. The
process continues in an anticlockwise manner around the bound-
aries until a closed loop of particles is formed (Stages 2 and 3).
The final stage is to identify the innermost (smallest) closed loop
formed by connecting the centroids of contacting particles; this
is the initial front. Then the process continues and particles are
inserted one by one along this front so that they just touch pre-
viously placed particles, considering an “active particle” and the
previous and next particles that touch it. The determination of a
valid disk insertion point will depend on the local geometry and
Bagi (2005) outlines the various scenarios and the most appropri-
ate approach to adopt.
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Figure 7.12: Illustration of closed form of advancing front ap-
proach proposed by Feng et al. (2003)
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7.4 Triangulation-Based Approaches

(a) Triangula-
tion of random
points (2D)

(b) Incircle in-
sertion (2D)

(c) Vertex in-
filling (2D)

(d) Triangula-
tion of random
points (3D)

(e) Insphere
insertion (3D)

(f) Vertex in-
filling (3D)

Figure 7.13: Schematic diagram of specimen generation steps: Tri-
angulation approach (Cui and O’Sullivan, 2003)

Cui and O’Sullivan (2003) proposed a triangulation-based
scheme, where a triangular grid or mesh is created by applying De-
launay triangulation to a random cloud of points (Figure 7.13(a)
and (d)) then disks (spheres) are inserted as incircles (inspheres) in
the triangles (tetrahedra). Each incircle or insphere is entirely con-
tained within its triangle or tetrahedron (Figure 7.13(b) and (e));
consequently a constructional method for specimen generation can
be developed. As there will be large voids close to the triangle ver-
tices, the final stage is to insert a circle or sphere at each vertex
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so that it just touches the circle/sphere that is closest to that ver-
tex. The packing density can be further controlled by controlling
the geometry of the triangles. Cui and O’Sullivan (2003) used the
mesh refinement capabilities that are available within the Triangle
program developed by Shewchuk (2002) for 2D work while the re-
finement in the Geompack ++ program developed by Joe (2003)
was used. Figure 7.14(a) illustrates an unrefined 2D mesh, this
can be compared with a refined mesh (where the minimum angle
is restricted to be > 30◦) by reference to Figure 7.14(b), details of
the refinement process are given by Shewchuk (1996). Jerier et al.
(2009) extended this method for the 3D case. Their algorithm is
more complex than the approach proposed by Cui and O’Sullivan
(2003), and involves placing spheres along the edges of each tetra-
hedron, then at the tetrahedra vertices, then on the tetrahedra
faces, and then within the tetrahedron; for a more detailed de-
scription refer to Jerier et al. (2009). Weatherley (2009) proposed
a triangulation-based specimen generation scheme in which a num-
ber of seed particles are inserted at random locations in the system
so that they do not overlap. Then the 4 adjacent particles (in 3D)
are triangulated and the centroid of the tetrahedron is calculated.
The radius of the particle that just touches one of the 4 particles
(subject to a tolerance) is calculated and if this radius is within
the particle size range specified, it is inserted.

Bagi (2005) described the Stienen model proposed by Stoyan
(1973), which has some similarities with the triangulation-based
approaches. In this approach, random points are generated in
space, as in Cui and O’Sullivan’s triangulation approach. Then
for each point, its nearest neighbour is identified and the disk
with a radius equal to half the distance to the nearest neighbour is
inserted. Bagi proposed that this process essentially generates the
incircles of the Voronoi tessellation of the random points. In the
approach proposed by Labra and Oñate (2008), the particles are
randomly generated using the approach proposed in Section 7.2.
Then the system is triangulated and each particle is connected
to a number of other particles via the edges of the triangles or
tetrahedra. The distance between the particle centroids along the
triangle edges de is given by
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Figure 7.14: Disks generated using an initial coarse mesh (10
points) with subsequent refinement and vertex infilling (2D)

de = |xa − xb| −
(
ra − rb

)
(7.6)

where the centroids of the particles with a common edge are given
by xa and xb and the radii are ra and rb. The positions and radii of
the particles are then adjusted iteratively to minimize the product
DDT , where D is given by

D =
Ne∑
e=1

de (7.7)

where Ne is the total number of triangle edges in the system.

While effective in generating dense assemblies of particle with-
out needing to run DEM calculation cycles, the triangulation ap-
proaches have a notable disadvantage of lacking control of the
particle size distribution within the specified range. They are how-
ever, particularly useful when seeking to generate dense packings
within awkward geometries, as may be encountered in process en-
gineering applications.
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7.5 Gravitation and Sedimentation

Approaches

(a) Gravitational approach proposed by
Feng et al. (2003)

(b) Gravitational approach proposed by
Thomas (1997)

Figure 7.15: Illustration of gravitational specimen generation ap-
proaches

In nature sand is typically deposited as particles fall downwards
under gravitational action. They may fall out of a liquid suspen-
sion or be transported by wind to the site. In the laboratory sand
specimens for testing are formed by pluviation, where the parti-
cles fall gently downwards from a container, through water or air.
While ideally in a DEM simulation we would like to replicate this
process, e.g. have our particles fall downwards through a funnel
or hopper and settle down with a random mixture of different
size disks in a container placed beneath the chute, as illustrated
in Figure 7.15(a), this is expensive, there are very large defor-
mations requiring significant continuous updating of the contact
lists (refer to Chapter 3). It is therefore often easier to create a
“cloud” of close but non-contacting particles within our system,
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and apply gravity to these particles. For example, Thomas (1997)
developed a two-dimensional rectangular mesh and used a random
number generator to select a different sized particle for placement
in each cell of the mesh, and a similar approach was proposed by
Abbiready and Clayton (2010). Then a vertical body force (i.e.
gravity) was applied and the particles were allowed to settle into
a rigid box in a DEM simulation; refer to Figure 7.15.

Figure 7.16: Illustration of valid stable disk position and invalid
metastable disk position

A very interesting approach to simulate sedimentation was pro-
posed by Marketos and Bolton (2010) who simulated the dry pluvi-
ation approach used to create samples in the laboratory by initially
generating an assembly of non-contacting spheres using the ran-
dom number generation approach described in Section 7.2 above.
Having created the initial “cloud” of particles, they then moved
the particles downwards in sequence until the particle contacted a
particle that was already at rest. At this point the particle might
not be in a state of stable equilibrium and it was allowed to slide
along the surface of the already at rest particles until it found a
stable equilibrium position where it came to rest. Bagi (1993) also
used a similar this sedimentation-type approach in 2D. The con-
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cept of stability for a 2D simulation is illustrated in Figure 7.16,
a valid stable inserted particle will require at least two contacts.
As noted by Remond et al. (2008) where sedimentation is applied
to non-spherical particles the particles must be rotated as well as
translated to find a suitable stable point.

7.6 Bonding of Specimens

Where DEM is used to simulate the response of a cemented sand, a
sandstone or other rock mass, the cementation must be inserted at
some point in the sample creation process. In their description of
the formation of a ponded particle model to simulate the response
of rock mass, Potyondy and Cundall (2004) firstly randomly gener-
ated balls in space, then the ball radii were expanded, an isotropic
stress state was achieved and the “floater” particles (i.e. those with
no contacts) were removed. Following these stages, the parallel
bonds were installed throughout the assembly between all parti-
cles considered to be “near” to each other (their definition of near
was to have a separation of less than 10−6 times the mean radius
of the two particles). Cheung (2010) adopted a slightly different
approach. She directly matched a physical particle size distribu-
tion curve, and as she neglected the smallest 10% (by mass) of the
particles in the physical measurement, elimination of floaters was
not considered. She also considered the SEM images of the physi-
cal material obtained by Gutierrez (2007), and observed that only
about 50% of the contacts were bonded. In her model she brought
her sample to a required stress state and then bonded 50% of the
contacts transmitting a compressive contact force, and randomly
assigned a parallel bond α value of between 0.1 and 1.0 to each of
these contacts (see Section 3.8.1). Wang and Leung (2008) used
very small particles to represent the cement phase in their model
of cemented sand, and they adopted a procedure where the larger
sand particles were first generated and the sample was brought
to an isotropic stress state. Then the small cement particles were
introduced and “pulled” towards the particle contacts, at which
point the parallel bonds were introduced.
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7.7 Experimental Generation of DEM

Packing Configurations

Just as it may be possible to use images of real sand particles
to determine the particle morphologies used in DEM simulations
(Section 4.7), there is also potential to use experimental data to
create realistic packings for use in DEM simulations. Scanning
electron microscopy (SEM) is often used to qualitatively examine
the fabric of clays and sands. For example Gutierrez (2007) as-
sessed the particle scale distribution of cementation in cemented
sands using SEM. Optical microscopy can also be used, for exam-
ple Cresswell and Powrie (2004), present images of thin sections
through Reigate Sand gained by resin-impregnating the material,
and cutting thin sections. As noted in Chapter 10, the analyt-
ical approaches used to quantify fabric from the results of DEM
simulations can be applied to the images gained from SEM and op-
tical microscopy to assess the material anisotropy. However these
images are two-dimensional slices through a three-dimensional ma-
terial. While it is technologically feasible to apply image analysis
techniques to recreate an assembly of particles for input into a
2D DEM analysis, the validity of this approach should be care-
fully considered, as the real material is three-dimensional and the
packing geometry arises due to a complex three-dimensional sys-
tem of particle interactions.

Obtaining three-dimensional images of the material micro-
structure is possible, though slightly more difficult than for the
2D case. One example of the use of optical microscopy or two-
dimensional imaging to gain quasi three-dimensional information
on soil structure is the work of Kuo and Frost (1996) and Frost
and Jang (2000). In their research they impregnated their samples
with an epoxy resin, then they cut out subvolumes with horizontal
and vertical orientations and made assessments of the void ratio
(as measured in 2D) along these sections.

The potential to use micro-computed tomography to gain in-
formation on 3D soil microstructure is becoming more feasible
with advances in the technology and increases in computational
power. Desrues et al. (2006) and Viggiani and Hall (2008) give in-
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troductions into micro-computed tomography and its application
in geomechanics, while Ketcham and Carlson (2001) give a more
general introduction to the use of micro-computed tomography on
geological specimens. Micro-computed tomography uses the infor-
mation on the way in which materials attenuate x-ray images to
gain a tree dimensional description of the sample. The data are
stored as voxels (three-dimensional pixels) and each voxel is as-
signed a number to represent the attenuation of x-rays by the ma-
terial at that point in the sample. To date, a lot of the work in soil
mechanics has considered the application of micro-computed to-
mography to look at “meso-scale” variations in density. In general,
when using micro-computed tomography the resolution required
to accurately resolve the particle positions and orientations as well
as the location of the inter-particle contacts can only be achieved
on very small samples. To enable reconstruction of a soil sample
fabric for a μCT scan a high-resolution dataset is required, with
a voxel size that is significantly smaller than the particle diame-
ters. Once the data has been obtained, the subsequent processing
involves two main stages. Firstly the image must be thresholded;
this is the process of associating each voxel with either void space
or solid particles. The information gained at this point can be
used to assess the void ratio. The segmentation process required
to identify the individual particles is slightly more challenging, as
discussed by Fonseca et al. (2009).

Once the particles are segmented, one of two approaches can
be use to generate particles for DEM simulation. In the first case
polyhedral particles could be reconstructed using a mesh genera-
tion or triangulation-based approach. Alternatively the μCT data
can be used to create clumps or clusters of spheres. Algorithms to
reconstruct irregular particle geometries as assemblies or clusters
of disks or spheres from images of real particles are considered in
Section 4.2.

272



Particulate Discrete Element Modelling: A Geomechanics Perspective

7.8 Assessing Success of Specimen

Generation Approaches

While a variety of specimen generation methods for particulate
materials have been developed, there is no uniform agreement on
the optimum specimen generation approach; however the success
of the approach can be quantitatively assessed. Cui and O’Sullivan
(2003), Bagi (2005) and Jiang et al. (2003) all quantified the effi-
cacy of their specimen generation algorithms considering the pack-
ing density (void ratio) of the system of particles generated to be
an appropriate measure of the effectiveness of a particle genera-
tion algorithm. The computational cost of the specimen genera-
tion method is an important measure of its success. The topology
of the packing, or the material fabric must also be considered.
Methods to quantify the material fabric are presented in Chapter
10. It is important to recognize the difference between an inherent
fabric that describes the initial arrangement of the particles and a
stress-induced fabric that arises due to changes in the stress state.

Consideration should also be given to the range of particle sizes
and the shape of the particle size distribution curve. Typically in
geomechanics the size distribution is quantified either by using the
coefficient of uniformity (Cu) or the coefficient of curvature (Cz);
these measures are calculated as

Cu =
D60

D10

(7.8)

and

Cz =
D2

30

D60D10

(7.9)

where 60% of the particles (by volume) are smaller than the size
D60, 30% of the particles are smaller than the size D30 and 10%
of the particles are smaller than the size D10.

Jiang et al. (2003) highlighted the need to assess the homo-
geneity of the packing density generated. They quantified the ho-
mogeneity by measuring the accurately the void ratio within sub-
volumes, and they chose horizontal strips (as illustrated in Figure
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7.17) and vertical strips. If the void ratio in layer i is given by ei,
they measured the extent of the homogeneity in a given direction
by calculating the variance S:

S =
1

Nlayer − 1

Nlayer∑
i=1

(e− ei)
2 (7.10)

where Nlayer is the number of layers and e is the overall void ratio.
As highlighted by Jiang et al. (2003), for this measure to function
it is important that the layers be sufficiently thick, and a mini-
mum layer thickness of 2.25d50, where d50 is the median particle
diameter, was found necessary to register a variance of less than
5% on a homogeneous sample.

Figure 7.17: Illustration of subdivision approach used by Jiang
et al. (2003) to analyse sample homogeneity
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7.9 Concluding Comments on Specimen

Generation

Many of the specimen generation approaches described here were
proposed to minimize the time spent creating the virtual granular
systems for use in simulations. A lot of the algorithms considered
have been implemented in 2D and extension to 3D is non-trivial.
It is important to recognize that with improvements in computer
hardware and software, the computational costs of DEM simu-
lations will decrease. The simulation of a more realistic physi-
cal pluviation process within reasonable time frames will become
more viable and the need to use the approaches considered in this
Chapter will be eliminated. Where pluviation is used, an initial,
inherent anisotropy will be induced in the system. In fundamen-
tal research into granular materials there will always be scenarios
where an isotropic fabric is required and in these cases the ra-
dius expansion approach is likely to be the best option to create
specimens. The mechanical response of a granular material will
be sensitive to the topology of the particle packing, as discussed
further in Chapter 10. As noted at the beginning of this Chap-
ter, analysts interested in simulating the response of a particular
physical system should give careful consideration to the procedure
used to generate the initial packing and develop an understand-
ing of the sensitivity of their model to the specimen generation
procedure.
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Chapter 8

Postprocessing: Graphical
Interpretation of DEM
Simulations

8.1 Introduction

The enormous wealth of data that is available for output from a
DEM simulation presents many alternatives for detailed observa-
tion of the particulate system. Management and interpretation of
these data is in itself a challenge. Prior to starting a simulation, a
DEM analyst therefore must consider not only details relating to
the DEM simulation itself but also what data to monitor, how to
extract these data in a manageable form, and how then to examine
it. Chapter 9 explains how to interpret DEM data within a contin-
uum mechanics framework and outlines approaches to obtaining
stress and strain (both average parameters for the system and lo-
cal values). In Chapter 10 methods to characterize the packing
of the system of particles are considered. As argued by Rapa-
port (2004), DEM simulations (or in Rapaport’s case molecular
dynamics) simulations are the computational equivalent of an op-
tical microscope; in three dimensions it may be more correct to
consider them analogous to micro-computed tomography. DEM
simulations offer an advantage over both these physical micro-
scale observation tools because as well as allowing the geometry
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to be observed, data on the contact forces and internal stresses are
also available. This Chapter considers selected approaches used to
look inside our particulate systems.

Creating plots of the system of particles or the contacts linking
them can generate interesting and colourful images and attractive
animations. These images are not simply pretty pictures. In the
first instance, visual observation of the system as it evolves dur-
ing the simulation is essential as a means to assess whether there
has been a gross error in the analysis. Some software includes
the option for graphical representation of the system on screen as
the simulation runs. However, typically if DEM simulations are
run with this graphics option enabled, there will be a significant
increase in the simulation run time. For large simulations in par-
ticular, it is more appropriate to generate images of the system
by intermittent output of data and subsequent plotting in a post-
processing tool. Even when using a commercial DEM software
package, use of a more general programming language/software
for postprocessing is advantageous. This is true in particular for
research applications where the analyst may want flexibility in the
visualization approach to better understand the mechanics of the
system.

The variety of ways one can graphically interpret the results of
DEM simulations is limited only by the curiosity and imagination
of the analyst. The objective of this Chapter is to present some of
the more common approaches that have been used, mainly to point
a novice user of DEM in the right direction. The discussion is il-
lustrated by relatively simple simulations completed by the author
or students working with the author. Most of the plots presented
here were generated using MATLAB; however, many other soft-
ware packages for visualization exist; for example the open-source
code Paraview is used by some DEM analysts (Ahrens et al., 2005).
While emphasis is placed here on the generation of figures (static
graphics), these approaches can easily be adapted to generate an-
imations. Observation of animations may provide useful insight
into the evolution of the system. To get an impression of how
graphical interpretation of DEM data can provide insight into the
mechanics of the material response, reference to Kuhn (1999) is
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recommended. Kuhn used a variety of visualization and analysis
approaches to study the particle mechanics of a dense 2D granular
material and only some of his ideas are directly referred to here.

8.2 Data Generation

In order to generate the data required to create diagrams of the
system evolution, digital “snapshots” of the system must be taken
at selected points during the simulation. These snapshots are not
images themselves, rather they contain the information needed to
create the images. The snapshot process should generate distinct
data files containing information about the state of the particles
and the contacts. Referring to Figures 1.7 and 1.8, during the
calculation loop the DEM code will be recording and updating
information for each particle and contact. Typically in geome-
chanics simulations the number of contacts will greatly exceed the
number of particles and so the data files saving the contact state
are larger than those saving information on the particles. Further-
more, while the number of particles will normally remain constant,
the number of contacts will evolve as previously contacting parti-
cles move away from each other, and new contacts form, and so
the size of the contact data file will also change.

The minimum “snapshot” information for the particles includes
the particle reference number, the current particle locations and
cumulative rotations. Additional particle information might in-
clude the individual particle stresses (calculated using the ap-
proach presented in Section 9.4.2), the number of contacts the
particle participates in, or the particle velocity. The contact infor-
mation should include the contact location, the orientation of the
contact normal, the magnitude of the contact normal and tangen-
tial forces, and the reference numbers for the particles involved
in the contact. More sophisticated analysis can also be carried
out within the DEM code to generate data for visual inspection.
For example Kuhn (2006) proposes calculation of parameters in-
cluding the energy dissipation at each sliding contact, the rate of
change in contact force and the inter-particle movements at the
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contacts. The necessary snapshot files are then either taken (i.e.
output) at specified intervals during the simulation, or when a
trigger criterion is met. This information will be saved to disk, of-
ten in the form of a simple ASCII text data file. The data also can
be saved in binary format; however, Rapaport (2004) notes that
while this may reduce the storage requirements, there is potential
to constrain future processing of the data as these files may not
be readily transportable between different kinds of computer and
operating systems. The snapshot files can also be used to calcu-
late local strains and to analyse the fabric of the system (refer to
Chapters 9 and 10).

8.3 Particle Plots

The results of a DEM simulation of a 2D biaxial compression test
on a sample made up of 2,376 unbonded disks enclosed within
a stress-controlled membrane boundary are used here to illustrate
some of the ways the particle data can be presented to gain insight
into the mechanics of the material response. This sample contains
a relatively small number of particles and was selected for con-
sideration simply because individual particles can be identified in
the plots generated for inclusion. The disk sizes were between 0.48
mm and 0.72 mm, the particle density was 2.650 ×103 kg/m3. Lin-
ear springs with a stiffness of 1 × 105 kN/m were used to model
the inter-particle contacts and the inter-particle friction was 0.5.
The top and bottom platens were modelled as smooth rigid linear
boundaries. The overall stress-strain response is given in Figure
8.1. The two points selected to take “snapshots” of the system are
indicated in Figure 8.1.

The plots illustrated in Figure 8.2 show how the internal defor-
mation in the sample can be observed by creating a regular grid
within the sample. The grid was generated by colouring horizon-
tal and vertical layers of disks according to their initial position,
and the deformation pattern can be appreciated by comparing the
initial disk positions and the disk positions at an axial strain of
12.0%. An alternative means to examine the deformations is to
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Figure 8.1: Plot of overall stress-strain response for selected sam-
ple simulation

illustrate both the original grid configuration and the deformed
configuration on a single plot, as in Figure 8.3. Schöpfer et al.
(2007) demonstrated the use of bands of disks shaded in this way
to analyze the failure mechanisms involved in large-scale geolog-
ical faulting processes; this approach could be applied to other
boundary value problems (e.g. deformation around a pile during
installation).

The exact inclination and extent of any shear band or localiza-
tion that may have formed in the sample is not evident. In Figure
8.4 the deformed specimen at axial strains of 5.5% and 12.0% is
again considered. Now each disk is shaded according to the mag-
nitude of the net rotation it has experienced since the start of
shearing; the zones of localized displacement are more much ob-
vious in the resultant plots. Figure 8.5 is included to show the
potential benefit of considering the rotation direction. The sim-
ulation considered a biaxial compression of 12,512 disks and the
simulation parameters are detailed in O’Sullivan et al. (2003) (see
also Figure 11.2). Following the visualization approach adopted
by Iwashita and Oda (2000), the mean particle rotation magni-
tude was calculated. Then only particles whose rotations that
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(a) Initial Configuration (b) Deformed sample at an
axial strain of 12.0%

Figure 8.2: Plot of deformation mechanism for biaxial simulation
of 2,376 unbonded disks, confining pressure applied using a stress-
controlled membrane.
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Figure 8.3: Plot of deformed grid of tracked particles at an axial
strain of 12.0% imposed on original grid geometry for biaxial sim-
ulation of 2,376 unbonded disks, with confining pressure applied
using a stress-controlled membrane.

were greater in magnitude than these mean values are considered.
As illustrated in Figure 8.5, the particles whose rotation exceeds
the mean counterclockwise rotation are presented as solid black
circles, while the particles whose rotation exceeds the mean clock-
wise rotation are plotted as hollow circles. A magnified image of
the central zone where the two localizations intersect is given in
Figure 8.5(b). In both cases the shear band locations are defined
by the locations of the zones of maximum rotation. The disks
on the dominant localization tend to rotate counterclockwise. An
example of authors who have considered rotations in some detail
is Bardet and Proubet (1991) who proposed that the gradients in
the rotations are useful in characterizing the deformation of the
material inside shear bands.

While visualization of 3D simulation data is complicated by the
opaque 3D nature of the particles; as before, plots of the overall
system geometry from the exterior are obviously useful to under-
stand how the specimen has captured the physical system. An
example 3D plot is given in Figure 8.6; in this case the sensi-
tivity of the deformed specimen geometry at the end of triaxial
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0 0.5 0 0.5

Figure 8.4: Plot of deformed sample at (a) 5.5% and (b) 12% for
biaxial simulation of 2,376 unbonded disks, confined with stress-
controlled membrane. Shading illustrates magnitude of disk rota-
tion in radians

(a) (b)

Figure 8.5: Plot of rotation directions for a specimen of 12,512
disks subject to biaxial compression, with an axial strain of 3%,
only rotations exceeding the mean value are considered
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compression to the friction along the top and bottom boundaries
is considered. The axisymmetric boundary condition discussed
in Section 5.5 was used and so only a quarter of the sample is
shown. While the influence of the boundaries on the overall spec-
imen deformation is evident, it is more difficult to identify the
local, particle-scale deformations.

(a) fbd = 0.0 (b) fbd = 0.1

Figure 8.6: Sensitivity of deformed specimen shape (εa = 15.3%)
to particle-boundary friction coefficient (Cui et al., 2007)

Just as in the 2D case, bands of particles can be coloured
according to their initial positions to give an impression of their
movement (Figure 8.7). For 3D simulations, rather than plotting a
3D plot it can be more useful to take slices through the system and
plot 2D projections of the particles. Cheung and O’Sullivan (2008)
described a triaxial compression test on a sample of 12,622 spheres
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Figure 8.7: Use of a coloured band of particles to indicate defor-
mation in a 3D simulation of the direct shear test

where cementation was modelled using the parallel bond model
presented in Section 3.8.1 and a 3D stress-controlled membrane
formed the lateral boundary. Figure 8.8 shows two orthogonal cuts
through the centre of the specimen, and the rotations of spheres
intersecting a 2 mm thick vertical plane through the specimen are
considered. For the Y Z view in Figure 8.8(a), rotation about the
X-axis is considered, while rotation about the Y -axis is XZ view
in Figure 8.8(b). Each sphere is represented as a filled disk whose
radius equals the disk radius and the disk shading indicates the
magnitude of the rotation (in radians) of the sphere. By presenting
the data in this way, the presence of a localization through the
centre of the sample is easily identified.

8.4 Displacement and Velocity Vectors

Figure 8.9(a) and (b) illustrate the total (or cumulative) displace-
ment of each disk in the simulation considered in Figures 8.2 to
8.4, up to axial strains of 5.5% and 12% respectively. In both
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(a) YZ plane (b) XZ plane

Figure 8.8: Particle rotations in radians at an axial strain of 4.5%
for a (3D) triaxial test on bonded specimens with a membrane
lateral boundary condition (Cheung and O’Sullivan, 2008)

cases the displacement vectors are scaled by a factor of 2 to allow
visualization of the local deformation mechanisms. As in the case
of the cumulative particle rotations illustrated in Figure 8.4, the
deformation is largely homogeneous at an axial strain of 5.5%. At
the larger axial strain value (Figure 8.9(b)) it is clear that the lo-
calizations, evident from the rotation plot (Figure 8.4(b)) bound
regions within which the particles move together, almost like a
single deformable body.

Rather than plotting the cumulative displacements, more in-
sight into the mechanics of the system can be gained either by con-
sidering the displacement increments between two selected points
or the instantaneous velocities. For example Cundall et al. (1982)
used plots of the velocity vectors to identify discontinuities in the
deformation mechanism. Figure 8.10 is a plot of the velocity vec-
tors at the points considered in Figure 8.9. The velocity vectors
are scaled, with different scaling factors being applied at the two
axial strain values. At an axial strain of 5.5% the velocity vectors
provide a better indication of the sample failure mechanism than
the displacement vectors. The velocity vectors illustrate the com-
plexity of the internal deformation pattern; in particular, where
the two localizations intersect, the particles are almost moving in
a circular trajectory. At an axial strain of 12% it is clear that
deformation along the localization dipping to the left dominates.
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(a) εa=5.5% (b) εa=12%

Figure 8.9: Plot of particle displacement vectors for biaxial sim-
ulation of 2,376 unbonded disks, confined with a stress-controlled
membrane
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Circular, almost vortex-like deformation patterns are again evi-
dent.

(a) εa=5.5% (b) εa=12%

Figure 8.10: Plot of particle velocity vectors for biaxial simulation
of 2,376 unbonded disks, confined with a stress-controlled mem-
brane

Kuhn (1999) presented the results of a biaxial test simulation
on about 4000 disk particles in a periodic cell and analysed the
particle velocity vectors in some detail. In his analysis, rather
than observing the particle velocities directly, Kuhn considered
the velocities of the particles relative to the “background velocity”
that is calculated from the global strain rate, and assuming a
unform deformation within the sample, i.e. for particle k

vrel,k =
vk − Lxk

D50|L| (8.1)
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(a) Initial disk configuration (b) Normalized relative ve-

locity vectors (vrel,k) at ax-
ial strain of 0.6%

Figure 8.11: Illustration of “vortex” nature of disk velocity vectors
observed in the 2D simulations by Kuhn (1999)
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where vrel,k is the relative velocity for particle k, vk is the velocity
vector for particle k and L is the global velocity gradient. The
difference between the particle velocity and the background veloc-
ity was divided by the product of the median particle diameter
and the magnitude of the velocity gradient (D50|L|) so that the
results could be presented in dimensionless format. As illustrated
in Figure 8.11, even though the sample was subject to a simple
biaxial strain field, Kuhn observed complex circulation patterns
with a vortex-like geometry. Kuhn noted that similar observa-
tions of circulation cells or vortex structures had been made by
researchers analyzing 2D DEM data including Murakami et al.
(1997), while Zhu et al. (2008) referred to the observations of
Williams and Rege (1997). Additional approaches that can be
applied to analyse the distribution of particle velocities within the
system (including analysis of the relative velocities of contacting
particles) are presented in Kuhn (1999).

When considering the particle velocities, it is useful to note
that many researchers use the term “fluctuation” to refer to the
difference between the actual particle velocities and the back-
ground velocity (i.e. vrel,k in Equation 8.4). Campbell (2006)
defines a granular temperature TG that is analogous to a ther-
modynamic temperature and which can be calculated from the
velocity fluctuations as follows:

TG = 〈
(
vrel,kx

)2〉+ 〈
(
vrel,ky

)2〉+ 〈
(
vrel,kz

)2〉 (8.2)

where vrel,kx is now termed the velocity fluctuation and the brackets
〈 and 〉 refer to the arithmetic mean of the parameter over the total
number of particles considered. Cleary (2007) gives a modified
version of this expression in 2D to include the particle rotations,
as follows:

T 2D
G = 〈

(
vrel,kx

)2〉+ 〈
(
vrel,ky

)2〉+ 〈(rω)2〉 (8.3)

where ω is the particle rotational velocity and r is the particle
radius.

Plots of displacement vectors can also be generated for 3D
simulations, and in this case orthogonal plots of the displacement
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(b) Side view (the whole
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Figure 8.12: Incremental displacement vectors for the global shear
strain interval from γ=0% to γ=15.3% (Cui and O’Sullivan, 2006)

vectors can be very useful. For example, Figure 8.12 illustrates
the displacements of particles in a simulation of a direct shear test
(described by Cui and O’Sullivan (2006)). In this simulation the
macro-scale shearing was in the x − z plane, i.e. the top half of
the shear box was moved in the x direction, and the macro-scale
dilation during shear was in the z direction. Referring to Figure
8.12(b) it is clear that the magnitude of the particle displacements
in the y-direction, i.e. orthogonal to the global direction of shear-
ing, is finite. The vector plots are not necessarily the most useful
means to gain quantitative insight into the material response. For
this simulation, a plot of the particle displacements in the direc-
tions of each of the coordinate axes against the original vertical
position of the particle (Figure 8.13) more clearly illustrates the
finite magnitude of the displacements orthogonal to the zone of
shearing than the displacement vector data in Figure 8.12.
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Figure 8.13: Incremental displacements of particles as a function of
depth for the global shear strain interval from γ=0% to γ=15.3%
in the direct shear test simulation described by Cui and O’Sullivan
(2006)
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Figure 8.14: Particle trajectories during the load-unload cycles for
a specimen of spheres
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As well as examining incremental or cumulative displacements
of particles, it can be useful to consider the displacement trajecto-
ries of individual particles. For example, Figure 8.14(a) illustrates
the macro-scale response observed in an axisymmetric DEM simu-
lation of a triaxial compression tests on a sample of 1173 spheres.
Two load reversals were included in the simulation; the simulation
details are given by O’Sullivan and Cui (2009 a,b). The trajecto-
ries of a subset of the particles in horizontal and vertical views is
given in Figure 8.14(b) and (c). The energy dissipation evident
from the hysteresis in the stress-strain plot indicates a plastic re-
sponse and there is a net movement of many of the particles during
the load reversal.

8.5 Contact Force Network

The fact that a DEM simulation can provide information on the
particle interactions and contact forces is central to its use in ad-
vancing our understanding of particulate material response. To
visualize the contact forces, the convention generally adopted is to
illustrate contact forces by drawing a line between the centroids of
contacting particles whose thickness is proportional to the mag-
nitude of the force. As illustrated in Figure 8.15, the resulting
image is one of a highly complex web or network, which is referred
to here as the contact force network. Cundall and Strack (1978)
explain that this approach to modelling contact forces was initially
adopted as it was used to present data obtained in physical ex-
periments on photoelastic disks, therefore allowing comparison of
DEM simulation results with physical test data.

Figure 8.15 illustrates the evolution of the contact force net-
work for the sample of 2,376 disks considered in Figure 8.1. At all
three values of axial strain considered (εaxial = 0%, εaxial = 5.5%
and εaxial = 12.0%), the contact force network is highly complex,
heterogeneous and difficult to describe quantitatively. As the sam-
ple is strained and the deviator stress increases, the network be-
comes noticeably anisotropic, as the larger contact forces tend to
align with the direction of the major principal stress. It is also
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(a) εaxial = 0% (b) εaxial = 5.5% (c) εaxial = 12.0%

Figure 8.15: Evolution of contact forces during biaxial test simu-
lation of 2,376 disks

evident that the topology evolves as previously contacting parti-
cles disengage and new contacts form. Comparing Figure 8.15(b)
and (c) in detail, it is possible to observe chains of contacts within
the system bending and eventually buckling as the specimen de-
forms. Figure 8.16 is a plot of the mean particle stresses at the
strain values considered in Figure 8.15. In this case each particle is
coloured according to the average stress acting on it (the approach
used to calculate the particle stresses is described in Section 9.4).
The heterogeneity in the contact force network is reflected in the
heterogeneity of the particle stresses. It is clear that some of the
particles carry little or no stress, and these particles are sometimes
called “rattlers.” Kuhn (1999) adopts a slightly different termi-
nology: he recognizes that as the system is deformed particles will
“disengage” from the force network and he refers to this process
as one where those particles become “dormant.” Note that many
DEM analysts use their simulation data to generate a probability
density function to characterize the range of contact forces in their
systems.

Visualization of the contact force network in three dimensions
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(a) εaxial = 0%

0 100 200

(b) εaxial = 5.5%

0 100 200

(c) εaxial = 12.0%

Figure 8.16: Evolution of mean particle stresses during the biaxial
test simulation of 2,376 disks
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is more challenging. However, some insight can be gained by con-
sidering “slices” through the system and looking at the projection
of the forces onto selected planes. It is also often useful to restrict
consideration to the larger forces only. Figure 8.17 illustrates a
plot of the contact force distribution in a direct shear box simu-
lation. For clarity, to generate the plot only the central third of
the sample was considered and only forces that exceed the mean
contact force plus one standard deviation are illustrated. A diag-
onal distribution of contact forces across the shear box has also
been observed in two-dimensional simulations (e.g. Masson and
Martinez (2001)).

2000 N

x

z

Figure 8.17: Contact force vectors at a global shear strain (γ) of
15.3% (Cui and O’Sullivan, 2006)

To create dimensionless contact force plots, Kuhn (2006) pro-
poses that the line thickness used to represent contact k should

be proportional to |fk|
pD50

where |fk| is the contact force, D50 is the
median particle diameter and p is the mean stress. Kuhn also in-
cludes expressions so that the magnitude of the contribution of a
given contact force to the average stress tensor can be considered.

Even for simple, 2D systems of disks, the contact force network
is very complex. Quantitative analysis of this system and extrac-
tion of data to characterize the force network is non-trivial. The
force network is normally highly redundant or statically indeter-
minate (using the language of structural engineering). As noted
since the earliest DEM analyses (e.g. Cundall et al. (1982)), “force
chains” can be traced through the sample with nodes located at
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Figure 8.18: (a) Macro-scale response of sample considered in Fig-
ure 8.19(b) Zones used to generate horizontal (XY) views of con-
tact force network
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Figure 8.19: Network of contact forces in three zones for monodis-
perse specimen (only forces exceeding the mean force plus one
standard deviation are illustrated)
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the particle centroids and a link exists between any two nodes if
the particles are contacting and transmitting a force. Almost in-
finite numbers of possibilities exist to trace force chains or paths
through the material. As illustrated in Figure 8.15, and confirmed
in countless other DEM simulations the contact force network is
both heterogeneous and anisotropic.

Considering firstly the heterogeneity of the contact force net-
work it is clear that some contacts transmit much more force than
others. Looking just at the larger contact forces and consider-
ing Figures 8.15(b) and (c), paths can be traced down through
the sample along the thicker lines, representing the larger contact
force. These thicker lines are referred to as “strong force chains” or
“load columns” within the material. Behringer et al. (2008) pro-
vide a nice definition of a strong force chain as being a “filamen-
tary” structure comprising the contacts that carry a disproportion-
ately large % of the contact force. Tordesillas and Muthuswamy
(2009) describe force chains to be “quasi-linear, chain-like particle
groups through which above average contact forces are transmit-
ted.” Analysts may want a more specific criterion to select strong
force chains and a reasonable definition is given by Pöschel and
Schwager (2005) who consider a particle b in contact with at least
two other particles, including particles a and c. If the contacts
with particles a and c both exceed a threshold force value and
if the centres of the three particles are almost along a straight
line then particles a, b and c are all members of a strong force
chain. The three particles can be considered on a straight line if
the obtuse angle between the two line segments ab and bc exceeds
a specified value. Pöschel and Schwager (2005) suggest a threshold
angle of 140◦.

As noted above, the contact force networks in Figure 8.15(b)
and (c) are anisotropic. Initially, when the stress state is almost
isotropic (σ1

σ2
≈ 1.1), there is no apparent preferential orientation

for the larger contact forces. However as the sample is compressed
the stress state becomes more anisotropic at εaxial = 5.5%, σ1

σ2
≈ 1.8

and at εaxial = 12.0%, σ1

σ2
≈ 1.65, and this results in the anisotropic

force network evident in the figure. The larger contact forces are
clearly aligned with the direction of the major principal stress,
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which acts vertically, and the strong force chains are clearly trans-
mitting the stress across the sample. Approaches for quantifying
the degree of the anisotropy of the contact force network are con-
sidered in Chapter 10.

The examples given of contact force networks in this Chap-
ter are restricted to circular or spherical particles. Where non-
spherical particles are used the contact normal orientation and
the branch vector will no longer be coincident. Where the parti-
cles are non-convex, there may be multiple contact points between
two contacting particles. In these cases, more detailed consider-
ation must be given as to how to plot the contact force network.
It would seem reasonable, in the first instance, to plot one line
between the centroids of contacting particles and make the line
thickness proportional to the magnitude of the resultant force act-
ing between the two particles.

Observations of the contact force network and its evolution in
a granular material have fundamentally changed the way failure is
considered in a granular material. The strength of soil is frictional,
i.e. the shear strength of the material increases as the confining
stress increases. While this has in the past been related to the fric-
tion at particle contacts, an alternative hypothesis is to consider
the failure to be directly related to the buckling or collapse of the
strong force chains. These force chains are laterally supported by a
“weak network” of contacts oriented orthogonal to the major prin-
cipal stress direction. Dean (2005) proposed that the majority of
the plastic work in the system is done in those particles supporting
the strong force chains. While these ideas have been proposed by
a number of researchers, some of the most interesting work in this
area is described by Tordesillas and her colleagues (e.g. Tordesillas
(2007 and 2009)). Tordesillas (2009) identifies four stages in the
progression towards buckling of a force chain. There is an initial
pre-buckling stage prior to attainment of a critical buckling load,
then there is a phase of elastic buckling. Then, the system evolves
into an initial plastic buckling phase where either the contacts in
the force chain column or in the lateral supports will remain elas-
tic. At the fully plastic stage the contacts in the lateral support
and the force chain column have reached their plastic threshold.
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These findings, amongst other research indicate that the buckling
of the strong force chains is the governing mechanism behind the
formation of shear bands.

Experimental evidence on real sand specimens seems to con-
firm the hypothesis that the material response is dominated by the
strong force chain kinematics. Oda and Kazama (1998) identified
“columnar-like” structures when they studied the microstructure
of shear bands in thin sections formed by resin-impregnated sand
samples that had been subject to plane strain compression. From
their 3D micro-computed tomography (μCT) images Hasan and
Alshibli (2010) could identify arch-like structures of contacting
particles within a shear band that are indicative of strong force
chains buckling. By applying two-dimensional digital image cor-
relation to images of a sand subject to a plane strain compression
test, Rechemacher et al. (2010) observed patterns of variation in
strain along a shear band, which they attributed to force chain
formation and collapse.

While displacement mechanisms can be observed in digital im-
ages of sands, no information can be gained on the forces and their
magnitudes. Experimental observation of force chains has, how-
ever, been achieved using photoelasticity. In photoelastic exper-
iments transparent birefringent materials are considered. These
are materials whose optical properties vary as a function of the
stress conditions. As discussed by Behringer et al. (2008), when
images of photoelastic materials are observed using polarizers, the
magnitude of the contract forces can be deduced. Experiments
using photo elastic disks provided key insight into the microme-
chanics of granular material response prior to the development of
DEM. Some of the early notable contributions in this area include
the work of Dantu (1957, 1968), de Josselin de Jong and Verru-
jit (1969) and Drescher and de Josselin de Jong (1972). As an
example, results from the photoelastic experiments of Behringer
et al. (2008) are illustrated in Figure 8.20. In their experiments
Berhinger and his colleagues compressed an assembly of photoelas-
tic disks in the biaxial tester illustrated in Figure 8.20(a). No clear
pattern in the contact force network could be deduced from the
initial image of the assembly (Figure 8.20(b)(i)). However, during
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shearing an anisotropic stress condition developed and chains of
contacting particles transmitting high stresses are visible in the
sample (Figure 8.20(b)(ii)). Three-dimensional verification of the
existence of strong force chains is also possible; for example Mueth
et al. (1997) describe a carbon-paper-based approach that can
measure the contact forces along the boundary of a granular ma-
terial and the force distributions obtained for samples of ballotini
are in agreement with observations in 3D DEM simulations on
spheres.

Figure 8.20: Illustration of results of photoelastic experiments de-
scribed by Behringer et al. (2008) (a) Diagram of biaxial testing
apparatus used (b) Photo-elastic images of granular samples that
have been (i) isotropically compressed and (ii) subject to pure
shear. (c) Photoelastic image of a single disc illustrating the dis-
tribution of stress within a particle.
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The growth of the internet and global social connectivity,
amongst other issues, has fuelled research into networks and net-
work topologies and a very accessible introduction to networks
is provided by Watts (2004). It seems likely that some of these
developments can be exploited to better understand our contact
force network. Adopting the language of network analysis, in a
granular material each node will be a particle and the connec-
tions are the force transmitting contacts between the particles.
As discussed further in Chapter 10 some of the related concepts
used in network analysis are of interest in granular mechanics.
When considering the contact force network, the idea of “percola-
tion” threshold might be useful. As already outlined in Chapter
7, generally for networks percolation is associated with a phase
transition (Grimmett, 1999). This phase transition point marks
the transition between a connected network and a disconnected
network (Watts, 2004). Specifically considering granular materi-
als, the percolation threshold appears to be the point when the
number of contacts per particle sufficient to create a network of
contact forces capable of transmitting stress through the sample
(Summersgill, 2009). Some authors refer to this point as the jam-
ming transition point.

Where contact or parallel bonds are used to simulate cemented
materials or rock mass (e.g. Potyondy and Cundall (2004)) the
bond breakages can be monitored and considered analogous to
the evolution of micro-cracks within the material. One way to vi-
sualize this is to adopt the approach used to generate the contact
force plots, but rather than plotting every contact in the system,
only the intact bonds are plotted, as illustrated in Figure 8.21
where two orthogonal views of the intact bonds corresponding to
the sample illustrated in Figure 8.8 are presented. Authors in-
cluding Fakhimi et al. (2002) have related the locations of bond
breakages to crack locations deduced from acoustic emission in the
laboratory.
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(a) YZ plane (b) XZ plane

Figure 8.21: Intact bonds at an axial strain of 4.5% for a (3D) tri-
axial test on bonded specimens with a membrane lateral boundary
condition
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Chapter 9

DEM Interpretation: A
Continuum Perspective

9.1 Motivation for and Background to

Homogenization

Much of our understanding of soil response has been developed
within a continuum mechanics framework. Continuum-based anal-
yses tools are dominant in geotechnical engineering practice. Use
of a continuum mechanics framework requires knowledge of the
stresses and strains in the material. In a slightly provocative tone,
Cundall et al. (1982) suggest that for a granular material these
stresses and strains are “fictitious” parameters. The deformation
and strength responses that distinguish granular materials from
other materials arise from their particulate nature and special,
highly complex constitutive models are needed to apply continuum
mechanics to granular materials. Continuum mechanics cannot
capture many important mechanisms that operate at the particle
scale. Geomechanics cannot exclusively adopt either a continuum
or a discrete approach, leading Muir Wood (2007) to state that
there is a “particulate-continuum duality” in geomechanics. From
a geomechanics perspective, DEM micro-scale analyses serve little
purpose, and will have little impact on research or practice, if the
particulate measurements are not interpreted or translated into
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continuum mechanics terminology. The need to relate discrete and
continuum parameters has been recognized since the early work of
Cundall and Strack (1978) who presented formulae for the average
stress tensor, the average moment tensor and the average displace-
ment gradient tensor within an assembly of disks. In this Chapter
approaches that have been proposed to “translate” the results of
DEM simulations into the language of continuum mechanics are
discussed, considering firstly stress and then strain.

9.2 Representative Volume Element and

Scale

Figure 9.1: Illustration of concept of homogenization

A key inherent assumption in continuum mechanics is that, if a
specific point in the material is considered, the material itself and
the stresses and strains in an infinitesimal region around that ma-
terial point are assumed to be uniform. As shown in Chapter 8 the
contact force distributions and particle deformations are highly
non-uniform or heterogeneous. Dean (2005) quoted an observa-
tion by Lambe and Whitman (1979) that “when we talk about
stresses at a point in a soil .... we often must envisage a rather
large point.” Continuum mechanics does not explicitly accommo-
date sudden transitions in geometry and material properties (e.g.
a particle void interface) which will result in highly non-uniform
stress and strain fields at the particle scale. There are many ma-
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terials in which the material properties are locally discontinuous
when sufficiently small scales are considered and continuum-based
approaches that can accommodate such inhomogeneities exist, as
discussed by Nemat-Nasser and Hori (1999).

Figure 9.2: Variation in measured parameter with sample size
(developed with reference to Masad and Muhunthan (2000))

Recognizing the inherent inhomogeneity in a granular mate-
rial, when considering the material to be a continuum, a scale
that is significantly larger than the particles themselves must be
considered. It is useful to introduce the concept of a “representa-
tive volume element” or RVE as described by Nemat-Nasser and
Hori (1999), amongst others. As illustrated in Figure 9.1 the mi-
crostructure within the RVE may be highly complex considering
both the particles themselves and the contact force orientations
and magnitudes. The RVE for a material is defined to be a vol-
ume that can be considered to be statistically representative of the
material under consideration. It must be sufficiently large that an
increase in size will not change the measured parameter (Figure
9.2). This RVE must therefore include a (potentially large) num-
ber of particles.

Nemat-Nasser (1999) introduced the general concept of local
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and global heterogeneity, while Masad and Muhunthan (2000) dis-
tinguish microscopic heterogeneity and macroscopic heterogeneity
(Figure 9.2). For example, there will be local heterogeneities in
the sample as a consequence of the particle packing and the de-
velopment of a localized shear band will introduce heterogeneities
at a slightly larger scale. In addition, obviously, in a physical soil,
whether it is naturally deposited or a reconstituted sample used
in the laboratory, there will be depositional heterogeneities. Ge-
ological processes will introduce larger scale heterogeneities (e.g.
bedding) in naturally deposited sands. Up until the time of writ-
ing most DEM analysts have been concerned with local, or micro-
scopic, heterogeneity.

The appropriate diameter of the RVE (DRV E) will most likely
be a function of the particle diameter, i.e. if d50 is the mean par-
ticle diameter, then DRV E/d50 � 1. In DEM analyses for soil
mechanics the particle sizes may vary from about 100 μm to hun-
dreds of millimetres, and so the RVE sizes can vary significantly.
In a general discussion on material heterogeneities Nemat-Nasser
(1999) cited the observation of Hill (1956). Hill’s guidance on the
selection on the size of the RVE for a heterogeneous material is
that the ratio should be given by DRV E/d50 > 103. In DEM sim-
ulations in geomechanics to date limited number of particles have
been used (refer to Chapter 12) and the typical DRV E/d50 ratios
that have been considered are much smaller than this suggested
limit.

The concept that there are multiple scales at which a mate-
rial can be considered is closely associated with the transition
from discrete to continuum mechanics, and the terms “macro-
scale,” “meso-scale,” and “micro-scale” are often used. There is
little ambiguity in particulate geomechanics on the definition of
a micro-scale. This is taken to be a scale where individual par-
ticle responses are measurable, i.e. the contact forces and parti-
cle displacements can be distinguished. However if particle dam-
age or crushing is important (refer to Section 4.3), the relevant
micro-scale may be substantially smaller than the particle diam-
eter. Recalling the discussion on the stress distributions around
the contacts in Chapter 3, at this sub-particle micro-scale stress
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and strain may be relevant parameters. There are therefore two
continua: a sub-particle continuum and a macro-scale continuum,
with the discrete representation (contact forces and displacements)
being relevant at the particle micro- and meso-scales.

The macro continuum length scale that is considered in con-
tinuum soil mechanics can be defined to be a scale where the in-
dividual particle properties cannot be distinguished, i.e. it will
likely correspond with the size of the RVE. When considering the
concept of scale for soil, some useful ideas are found in Cambou
(1999), who presented an introduction to the concepts involved in
homogenization, including a definition of scale. Cambou proposed
that the macro-scale corresponds to the discretization of a bound-
ary value problem in a continuum analysis, i.e. the dimension of
the smallest element of a finite element mesh. The macro-scale is
often considered to correspond to the size of a laboratory element
test. Some authors have considered the existence of a “meso-
scale.” For example, Dean (2005) suggests that this intermediate
scale is defined by “patterns” that can be identified by considering
the material topology (particles, contact forces and void space).
Other considerations determine the definition of a meso-scale; for
example it could be considered to the size of the fluid cell adopted
in coarse-grid coupled particle-fluid DEM simulations (Chapter 6).

There are times when, while the use of an RVE may not be
valid, continuum terminology is still relevant. For example, when
a shear band develops, the width of the localization may be signif-
icantly smaller than the ideal RVE dimension, yet an assessment
of strain within the shear band may be sought. In the process
of upscaling, important details on mechanisms and deformation
patterns may be erased. Therefore this Chapter will consider how
to calculate local stresses and strains as well as representative
averaged stress and strain values. The use of a RVE is equally
applicable when quantifying the packing or geometrical arrange-
ment of particles in the material using the methods discussed in
Chapter 10.
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9.3 Homogenization

Having selected the reference volume, averaging procedures are
needed to calculate the representative stresses and strains from the
discrete forces and displacements calculated by DEM. The meth-
ods to translate particulate mechanics into continuum mechanics
are often called homogenization techniques. This transition from
discrete to continuum mechanics is equivalent to an upscaling from
the micro- to the macro-scale and homogenization techniques are
associated with “multi-scale” modelling. This homogenization is
often achieved using a volume averaging approach. As outlined
by Hori (1999) the use of volume averaging to relate micro- and
macro-scale properties comes within the “mean field theory” in
physics, and an alternative approach based on homogenization
theory uses perturbation analysis, i.e. a singular perturbation is
applied to the governing differential equations.

Zhu et al. (2007) classify the homogenization or averaging tech-
niques used in DEM simulations to be either volume, time-volume,
or weighted time-volume averaging methods. The volume averag-
ing methods are applicable to quasi-static systems, where inertia
effects are ignored. These are the methods that are most com-
monly used in geomechanics and are considered in this Chapter.
Readers interested in applying DEM to rapid flows are advised to
consult Zhu et al. (2007), who provide an overview of the relevant
theories and cite useful references. Luding et al. (2001) proposed
that in general when averaging parameters in granular materials
an average or representative value for the quantity or parameter
should first be assigned to each particle. Then, considering the
volume or subvolume of the material of interest (referred to as the
measurement volume here), the average value for the parameter Q
is given by

Q = 〈Q〉 = 1

V

∑
p∈V

wp
vV

pQp (9.1)

where Qp is the representative value of the parameter for particle
p, V p is the volume of particle p, and wp

v is the weighting assigned
to particle p. Luding et al. (2001) suggest that the parameter wp
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should equal the proportion of the total volume of particle p that
exists within the measurement volume. Using this approach, the
volume of solid particles considered in calculation of the void ratio
(Equation 10.1) is given by

Vs =
∑
p∈V

wp
vV

p (9.2)

As outlined in Section 9.4, calculation of stress from DEM
simulations is relatively straightforward, there is, however, more
variation in the approaches used to calculate strain (Section 9.5).

9.4 Stress

Various approaches have been used to derive expressions for the
continuum parameter stress for a discrete system comprising con-
tacting particles. Three approaches for stress calculation are con-
sidered here: these are calculating stresses by integration of forces
along a boundary (Section 9.4.1), consideration of the stresses on
individual particles (Section 9.4.2) and the summation of the prod-
uct of the contact forces and the branch vectors within the granular
material (Section 9.4.3).

9.4.1 Stress from boundaries

As noted by Weatherley (2009), in a DEM simulation we can trace
measurable quantities, i.e. quantities that can be measured in
conventional physical laboratory tests. In the first instance these
measurable quantities can then be compared with physical test
results for the purpose of DEM model validation or calibration.
The most obvious of these measurable quantities are the forces
acting along boundaries.

In a conventional triaxial apparatus (schematically illustrated
in Figure 5.7), the vertical deviator stress (σ1 − σ3) transmitted
through the upper and lower horizontal boundaries is measured
by a load cell located above the top platen or beneath the base.
The load cell gives a measure of the deviator stress and the ap-
plied cell pressure is σ3. In a DEM simulation the average stress
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on the upper and lower rigid walls gives the vertical stress (i.e.
σ1). The lateral stress (typically σ3) is either applied through
the stress-controlled membrane or calculated by considering the
average stress acting on rigid wall, vertical lateral boundaries.

In any DEM simulation the average stresses along a rigid wall
boundary are calculated by summing the contact forces along the
boundary, and dividing by the surface area of the rigid bound-
ary (3D) or rigid boundary length (2D). Using a similar approach
the distribution/variation of stresses along the boundary can be
determined by dividing it into subareas.

From an alternative perspective, referring to Bagi (1999b), for
a closed continuous domain, with volume V and boundary area S,
Gauss’s integral theorem gives the relation between the stresses
within the material (σij), and the applied boundary force as∫

V

σijdV =
∮
S

xitjdS (9.3)

where the boundary force or boundary traction tj is applied at
position xi along the surface of the volume considered. This force
is normally not explicitly applied, it is more often a contact force
that develops between the particle and a rigid wall boundary. The
stresses acting normal to the boundary are related to the boundary
traction by σijni = tj, where ni is the normal vector directed
outwards from the surface S.

The average stress within the material (σ̄ij) is then given by

σ̄ij =
1

V

∫
V

σijdV (9.4)

σ̄ij =
1

V

∮
S

xitjdS (9.5)

In continuum analyses, the boundary forces tj may be specified
as a function of xi, allowing integration. However, in a DEM anal-
ysis the forces act at discrete points, e.g. at the particle boundary-
contact points (or the particle centroids where a numerical mem-
brane is used, as discussed in Section 5.4). Rather than using
integration, to interpret DEM simulation data, Equation 9.5 must
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then be reformulated in terms of a summation over a set of discrete
forces applied at distinct points. Replacing the surface integration
by a summation yields:

σ̄ij =
1

V

NBF∑
k=1

xk
i t

k
j (9.6)

where the force tkj is applied at location xk
i and a total of NBF

forces act along the boundary.

9.4.2 Local stresses: Calculation from particle
stresses

Potyondy and Cundall (2004) and Li et al. (2009), amongst oth-
ers, present detailed derivation of the calculation of the average
stress within a RVE (σij) from the individual particle average, or
representative stresses, σp

ij. As stress can exist only within the
particles (i.e. the voids don’t transmit force or stress), the prod-
uct of the average stress and the volume V equals the sum of the
stresses acting on the Np particles within the volume weighted by
the particle volumes Vp i.e.

σ̄ijV =
Np∑
p=1

σp
ijVp (9.7)

As the particles used in DEM are rigid, the idea of a particle
stress is somewhat contradictory, and so strictly σp

ij is a notional
or representative stress. An expression for σp

ij can be derived by
firstly considering the stress equilibrium equation as follows:

σp
ij,i − ρgj = −ρaj (9.8)

where ρ is the particle density, gj is a body force (e.g. gravity) and
aj is the particle acceleration vector. Assuming a quasi-static re-
sponse (i.e. negligible accelerations) and neglecting consideration
of the body force, the equilibrium equation reduces to

σp
ij,i = 0 (9.9)
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Now imagine that a stress domain exists within the particle
and that the stress at any point x within the particle volume is
given by σx

ij . The equilibrium equation also holds at this point,
i.e.

σx
ij,i = 0 (9.10)

Equation 9.10 can be expanded by application of Gauss’s di-
vergence theorem. This theorem considers a vector function, e.g.
Fij , and relates the volume integral of the divergence, ∇ · F, of F
over a volume V to the surface integral of F over the boundary,
S, of V (provided certain smoothness conditions are met). In the
general case it is given by:∫

V
∇ · FdV =

∫
V
(Fij),i dV =

∮
S
FijnidS (9.11)

where
∫
V ...dV represents integration over the volume of the do-

main and
∮
S ...dS represents an integration over the surface of the

domain, and ni is a unit vector normal to the surface and pointing
away from the domain.

Some manipulation of terms is required to allow application of
Gauss’s theorem to Equation 9.9. The objective is to develop an
expression for the particle stress σp

ij in terms of the contact forces
f c
i and their locations, xc

i , these data are known from the DEM
simulation results. To get to this point an expression for the stress
tensor that includes the position vector x is sought. Applying the
product rule for differentiation to the product xiσ

x
kj gives(

xiσ
x
kj

)
,k
= xiσ

x
kj,k + xi,kσ

x
kj (9.12)

Referring to Chapter 1, the Kronecker delta δij equals xi,j, where x
is the position vector. From equilibrium considerations (Equation
9.9) σx

kj,k = 0. Therefore Equation 9.12 is equivalent to(
xiσ

x
kj

)
,k
= xi,kσ

x
kj (9.13)

Referring to Equation 1.12

xi,kσ
x
kj = δikσ

x
kj = σx

ij (9.14)
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so (
xiσ

x
kj

)
,k
= σx

ij (9.15)

The average, or representative, particle stress is related to the
point stress σx

kj by

σp
ij =

1

V p

∫
V p

σx
ijdV =

1

V p

∫
V p

(
xiσ

x
kj

)
,k
dV (9.16)

Applying Gauss’s theorem gives

σp
ij =

1

V p

∫
V p

(
xiσ

x
kj

)
,k
dV =

1

V p

∮
Sp

xiσ
x
kjnkdS (9.17)

where
∮
Sp ...dS indicates integration over the particle surface. Along

the particle surfaces the product of the stresses σx
kj and the outward-

facing normal vector nk will equal the applied forces or tractions
acting on the particle surfaces, denoted here as tj , so

σ̄p
ij =

1

V p

∮
Sp

xitjdS (9.18)

In a DEM simulation these particle surface tractions will be the
discrete contact forces, f c

j acting at contact points xc
i along the

surface of the particle. So the integration can be replaced by a
summation over the total number of contacts involving particle p,
N c,p

σp
ij =

1

V p

Nc,p∑
c=1

xc
if

c
j (9.19)

Equation 9.19 can be directly used to calculate the average
stress tensor for individual particles. As noted by Nemat-Nasser
(1999) when considering a heterogeneous material comprising an
agglomerate of crystals or particles, it is common to assume the
stress and deformation fields within each grain to be uniform. Re-
ferring back to the discussion on particle crushing in Chapter 4,
these definitions of stress do not account for the variation in stress
that will exist within the particles themselves in the real, physical
situation. These stress distributions within individual grains are
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highly non-uniform, as illustrated already in Figure 8.20. Refer-
ence to Russell et al. (2009) may also be useful to those considering
the stress inhomogeneities in actual particles.

Figure 9.3 illustrates the stresses within an assembly of 460
disks. This is a relatively small specimen and its size was chosen
so that individual particles can be observed. Two stress states
are considered: in the first case the average stresses are given by
σ1 = σ3 = 120 kPa, while in the second case σ1/σ3 = 2.6 and
σ3 = 120 kPa. In Figure 9.3(a) and (b) the distribution of inter
particle-contact forces is given. The heterogeneity in the contact
force network is reflected in the range of mean stresses the parti-
cles experience, (Figure 9.3(c) and (d)). The particles experienc-
ing the highest contact forces tend to experience higher stresses
(as illustrated in Figure 9.3(f) in particular). Note, however, as
observed by Summersgill (2009), the calculated mean stresses de-
pend on the particle volume. Using this approach small particles
with relatively low contact forces can have higher mean stresses
than larger particles participating in the strong force chains. In
reality the stress distribution within the particles is non-uniform,
and so the larger particles transmitting larger forces might ex-
perience much higher stresses (in particular close to the contact
point) than the maximum stresses induced within smaller particles
experiencing smaller contact forces.

Equation 9.19 can also be used to develop an expression for
the average stress within a specified subvolume or measurement
volume in the material. As outlined by Potyondy and Cundall
(2004), each contact location can be expressed as

xc
i = xp

i + |xc
i − xp

i |nc,p
i (9.20)

where xp
i is the position of the particle centroid, and nc,p

i is the unit
vector directed from the particle centroid to the contact point, c.
As the sum of the contact forces acting on a particle in equilibrium
must equal 0

Nc,p∑
c=1

f c
j = 0 (9.21)
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For particles in equilibrium
∑Nc,p

c=1 xp
i f

c
j = xp

i

∑Nc,p

c=1 f c
j = 0 and

Equation 9.19 can be expressed as

σp
ij =

1

Vp

Nc,p∑
c=1

|xc
i − xp

i |nc,p
i f c

j (9.22)

The average stress within an arbitrary subvolume, V can be de-
termined by summing the contributions from each particle within
that subvolume. Care must be taken to account for the inter-
section of particles with the measurement volume boundary, i.e.∑Np

p=1 Vp is not the actual amount of the volume that is occupied
by solid particles (Vs). (Latzel et al. (2000) includes a discus-
sion on the sensitivity of the calculated stresses to the accuracy
with which the volume of the particles that intersects the measure-
ment subvolume boundary are considered in the calculations.) To
rectify this, Potyondy and Cundall (2004) propose applying an
adjustment to the volume by considering the porosity so that

V ≈
∑Np

p=1 Vp

1− n
(9.23)

where n is the porosity of the measurement volume considered. In
making this adjustment, it is assumed that the geometrical dis-
tribution of the particles within the measurement volume is sta-
tistically uniform and so the volume associated with each particle
is Vp

1−n
. Then the overall average stress within a selected mea-

surement volume or measurement region containing Np particles
is given by

σ̄ij =
(1− n)∑Np

p=1 Vp

Np∑
p=1

σp
ijVp (9.24)

or

σ̄ij =
1

V

Np∑
p=1

σp
ijVp (9.25)

where V is the measurement volume under consideration.
Equation 9.24 can be expanded to
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σ̄ij =
(1− n)∑Np

p=1 Vp

Np∑
p=1

⎛⎝Nc,p∑
c=1

|xc
i − xp

i |nc,p
i f c

j

⎞⎠ (9.26)

This formulation does not include contributions from moment
terms.

Equation 9.26 can be further developed to eliminate the double
summation, i.e. summing over the contacts involving each particle
and then summing over each particle. If each contact is shared
between two particles, then each contact is considered twice, and
the double summation in Equation 9.26 can be re-expressed as

∑Np

p=1

(∑Nc,p

c=1 |xc
i − xp

i |nc,p
i f c

j

)
=∑Nc

c=1

(
|xc

i − xpa
i |nc,pa

i f ca
j +

∣∣∣xc
i − xpb

i

∣∣∣nc,pb
i f cb

j

) (9.27)

where there are Nc contacts in the measurement region and each
contact involves two particles, a and b, with centroidal coordinates
xpa
i and xpb

i respectively. The forces exerted on each particle at the
contact act in equal and opposite directions so that f cb

j = −f ca
j .

Referring to Figure 9.4, by the rules of vector addition, subtracting
the vector extending from the centroid of particle b to the contact
point c from the vector from the centroid of particle a to the
contact point c gives the vector between the two particle centroids
(a to b). This is the branch vector (lci ) for contact c and it connects
a and b, i.e.

lci = |xc
i − xpa

i |nc,pa
i −

∣∣∣xc
i − xpb

i

∣∣∣nc,pb
i (9.28)

Therefore

∑Nc
c=1 |xc

i − xpa
i |nc,pa

i f ca
j −

∣∣∣xc
i − xpb

i

∣∣∣nc,pb
i f cb

j

=
∑Nc

c=1 l
c
if

c
j

(9.29)

and so Equation 9.26 can be re-expressed as

σ̄ij =
1− n∑Np

p=1 Vp

Nc∑
c=1

lcif
c
j (9.30)
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(a) Contact force network
σ1 = σ2 = 120kPa

(b) Contact force network
σ1/σ2 = 2.6
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Figure 9.3: Distribution of particle stresses within an assembly of
disk particles; isotropic and anisotropic stress distributions
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Figure 9.4: Illustration of particle contacts and branch vector
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Thus, working from a consideration of the average stresses act-
ing on individual particles, two alternative expressions for the av-
erage stress within an arbitrary volume in a granular material can
be developed (Equations 9.24 and 9.30). Both expressions relate
the stress to the magnitude of the contact forces and the locations
of the particles and contacts.

9.4.3 Local stresses: Calculation from contact
forces

Figure 9.5: Schematic diagram of material cell system proposed
by Bagi (1996)

Rather than working from a perspective where the average par-
ticle stresses are used to calculate the average stress in a subdo-
main of the system, Bagi (1996) showed how the average stresses
can be directly calculated from the contact forces. Bagi developed
her expression by considering the forces acting on the boundary
of a subdomain within the system. Bagi selected her subdomains
or graph cells so that their boundaries pass through the contact
points. In the limiting case the smallest subdomains will be the
material cells illustrated in Figure 9.5. This material cell system is
essentially a space-filling tessellation; each cell is centred around a
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single particle in the system and the domains are contiguous. The
material cell system is an example of a graph representation of the
particle network and the concept of a particle graph is discussed
in more detail in Chapter 10.

Similar to the case above where the average stress within a
particle was considered (Equation 9.18), the average stress within
a material cell, σ̄MC

ij , is given by

σ̄MC
ij =

1

V MC

∮
SMC

tixjdS (9.31)

where V MC is the volume of the material cell and
∮
SMC ...dS is a

surface integral for the material cell considered.
Expressing Equation 9.31 in summation format gives

σ̄MC
ij =

1

V MC

Nf,MC∑
c=1

f c
i x

c
j (9.32)

where a total of N f,MC contact forces (f c
i ) act along the boundary

at points xc
j .

A representative stress for any sub-region of the granular ma-
terial can be determined by summing together the stresses in the
material cells within the chosen “measurement region.” The con-
tribution from each material cell is weighted by its volume:

σ̄MR
ij =

1

V MR

NMC,MR∑
MC=1

σ̄MC
ij V MC (9.33)

where σ̄MR
ij is the average stress within the measurement region,

NMC,MR is the number of material cells within the measurement
region and V MR is the volume of the measurement region (V MR =∑NMC,MR

MC=1 V MC). Then combining Equations 9.32 and 9.33 gives

σ̄MR
ij =

1

V MR

NMC,MR∑
MC=1

Nf,MC∑
c=1

f c
i x

c
j (9.34)

The position vector xc of the contact force can be represented
as xc

j = xp
j +

∣∣∣xc
j − xp

j

∣∣∣nc,p
j , where xp

j are the centroidal coordi-

nates of the particle on which the stress acts and nc,p
j is the unit
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vector directed from xp
j to xc

j. Equilibrium considerations mean∑Nf,SD

c=1 f c
i = 0 (and so

∑Nf,SD

c=1 f c
i x

p
j = 0), then

σ̄MR
ij =

1

V MR

NMC,MR∑
MC=1

Nf,MC∑
c=1

f c
i

∣∣∣xc
j − xp

j

∣∣∣nc,p
j (9.35)

and particle p is at the centre of material cell MC. Each con-
tact force f c

i is represented by two material cell boundary forces
acting in equal and opposite in directions, and so Equation 9.35
can be rewritten as a summation over the contact points in the
measurement region, i.e.:

σ̄MR
ij =

1

V MR

Nc,MR∑
c=1

(f c
i

∣∣∣xc
j − xa

j

∣∣∣nc,a
j − f c

i

∣∣∣xc
j − xb

j

∣∣∣nc,b
i ) (9.36)

where xa
j and xb

j are the centroidal coordinates of the two particles
participating in contact c. From considerations of vector addition∣∣∣xc

j − xa
j

∣∣∣nc,a
j −

∣∣∣xc
j − xb

j

∣∣∣nc,b
j = xc

j − xa
j − xc

j + xb
j = lbaj (9.37)

where lbaj = lcj is the branch vector for contact c directed from
particle a to particle b. Then

σ̄MR
ij =

1

V MR

Nc,MR∑
c=1

f c
i l

c
j (9.38)

Comparing Equations 9.38 and 9.30, it is clear that while they
adopted alternative perspectives, both Bagi (1996) and Potyondy
and Cundall (2004) have developed equivalent expressions for the
calculation of (continuum) stresses from DEM simulation data.
Note that while the derivations presented here follow the steps
outlined by Bagi (1996) and Potyondy and Cundall (2004), alter-
native earlier, derivations were given by Christoffersen et al. (1981)
and Rothenburg and Bathurst (1989) amongst others. The more
recent expression developed by Li et al. (2009) includes a term to
account for particle rotation in the stress tensor.
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9.4.4 Stresses: Additional considerations

Both Equations 9.38 and 9.30 give an expression for the stress
within an arbitrary volume of a granular material in terms of the
contact forces and the branch vectors. The stresses may either
be calculated within the DEM programme or in a postprocessing
stage using information output in the snapshot files that contain
details on the particles and the contact forces (as described in
Chapter 8).

Expanding the tensorial expressions for the 2D stress tensor
gives

(
σxx σxy

σyx σyy

)
= 1

V

( ∑Nc,V

c=1 f c
xl

c
x

∑Nc,V

c=1 f c
xl

c
y∑Nc,V

c=1 f c
y l

c
x

∑Nc,V

c=1 f c
y l

c
y

)
(9.39)

while the 3D stress tensor is given by

⎛⎜⎝ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞⎟⎠ = 1
V

⎛⎜⎜⎝
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c=1 f c
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c
x
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c=1 f c
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c
y

∑Nc,V

c=1 f c
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c
z∑Nc,V

c=1 f c
y l

c
x

∑Nc,V

c=1 f c
y l

c
y

∑Nc,V

c=1 f c
y l

c
z∑Nc,V

c=1 f c
z l

c
x

∑Nc,V

c=1 f c
z l

c
y

∑Nc,V

c=1 f c
z l

c
z

⎞⎟⎟⎠
(9.40)

where Nc,V is the total number of contacts in the volume V con-
sidered, (f c

x, f
c
y , f

c
z ) is the force vector for contact c and (lcx, l

c
y, l

c
z) is

the branch vector for contact c. The typical convention for stress
used in geomechanics takes compressive stresses to be positive.
Referring to Figure 9.6, the contact between two particles a and b
if we define the contact force to be the force applied by particle a
on particle b and the branch vector to be directed from the cen-
tre of particle a to particle b then the calculated stresses will be
positive in compression.

In geomechanics the stress state is normally characterized by
the principal stresses and their orientations, rather than using
the stress tensor directly. The principal stresses are given by
the eigenvalues of the matrices represented in Equations 9.39 and
9.40, while the eigenvectors give the orientations. Alternatively
a Mohr’s circle construction or the characteristic equation can be
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used; these approaches are outlined in general undergraduate me-
chanics texts, e.g. Gere and Timoshenko (1991). In three dimen-
sions the intermediate principal stress (σ2) must be considered in
addition to the major (maximum) and minor (minimum) prin-
cipal stresses (σ1 and σ3 respectively). The extent of the stress
anisotropy in a three-dimensional stress state is often quantified
by considering the principal stress ratio, b, defined as

b =
σ2 − σ3

σ1 − σ3

(9.41)

Thornton (2000) and Barreto (2010) both considered the influ-
ence of the intermediate principal stress on the material response.
Sand particles deposited in nature and in reconstituted samples
in the laboratory are typically deposited under gravity and so
the particle long axes will be preferentially oriented horizontally.
Therefore, when quantifying the direction loading, the orientation
of the major principal stress to the vertical is considered. The
stress states are often quantified using the invariants of the stress
tensor; the expressions for the invariants are defined in continuum
mechanics texts such as Shames and Cozzarelli (1997).

Figure 9.6: Convention for stress in geomechanics

The volume selected for calculating the representative or av-
erage stress obviously depends on the application and the infor-
mation sought. As an example, Figure 9.7(a) illustrates a typical
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control volume, which takes the form of a measurement sphere
that is used to calculate internal stresses and control the vertical
stress in the DEM simulations of the direct shear test described
by Cui and O’Sullivan (2006). Figure 9.7(b) illustrates the con-
figuration of a rectangular box whose depth was varied to define
different volumes of internal stress calculation. Figure 9.7(c) then
illustrates how the calculated average shear stresses vary with the
size of the volume used for stress homogenization.

As well as studying the heterogeneities within the domains
simulated, the expressions for the stress tensor can be applied
and manipulated to study fundamental mechanics. The papers by
Thornton (2000) and Thornton and Antony (2000) describe a par-
ticularly interesting approach to the calculation of stress. These
authors partitioned the stress tensor and decoupled the contribu-
tion to the average stress due to the normal (σN

ij ) and tangential
components of the contact force (σT

ij), i.e.

σij = σN
ij + σT

ij (9.42)

Recall that the representative particle stress is given by

σp
ij =

1

Vp

Nc,p∑
c=1

|xc
i − xp

i |nc,p
i f c

j (9.43)

where there are N c,p contacts acting on particle p. For spherical or
circular particles, |xc

i − xp
i | = Rp where Rp is the particle radius.

If the resultant contact force f c
j is decomposed into its normal

and tangential components f c,N
j and f c,T

j , respectively, then the
particle stress is given by σp

ij:

σp
ij =

1

Vp

(
Nc,p∑
c=1

Rpnc,p
i f c,N

j +
Nc,p∑
c=1

Rpnc,p
i f c,T

j

)
(9.44)

and the average value is taken to be the volume weighted sum
of the contributions from the individual particles, divided by the
total volume. Thornton and his colleagues applied this equation to
data from a periodic cell and considered all contacts in the system,
so it is valid to simply divide by the total volume of the cell, V .
Equation 9.42 can then be expressed as
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Moving Boundaries

Stationary Boundaries

Shear Plane

Direction of 
Shearing

x

yz Measurement
Sphere

(a) Spherical volume used for control of vertical
stress simulation (Cui and O’Sullivan, 2006)

H d

Direction of shearing

x

y
z

(b) Rectangular box
used to explore stress
non uniformities

0 5 10 15 20 25

Global shear strain (%)

0

25

50

75

z
x
 i
n

 m
e

a
s
u

re
m

e
n

t 
b

o
x
 (

M
P

a
)

n
=50MPa

Central plane

Box, d=H/10

Box, d=H/5

Box, d=2H/5

n
=100MPa

Central plane

Box, d=H/10

Box, d=H/5

Box, d=2H/5

n
=150MPa

Central plane

Box, d=H/10

Box, d=H/5

Box, d=2H/5

(c) Shear stress variation with in-
ternal volume considered
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σ̄ij =
1

V

⎡⎣ Np∑
p=1

(
Nc,p∑
c=1

Rpnc,p
i f c,N

j

)
+

Np∑
p=1

(
Nc,p∑
c=1

Rpnc,p
i f c,T

j

)⎤⎦ (9.45)

where there are Np particles within the volume V . Thornton
(2000) used this decomposition effectively to describe the nature
of stress transmission in granular materials. In a simulation of
triaxial compression, it was shown that σN

ij � σT
ij, so the bulk of

the deviatoric stress is transmitted by the normal component of
the contact force. This reflects the fact that the material response
is dominated by contact forces that are oriented in the direction
of the major principal stress acting on the sample.

The discussion to date has considered quasi-static/static situa-
tions where the particles are assumed to be approximately in static
equilibrium. Luding et al. (2001) define a dynamic component of
the stress tensor to be given by

σd
ij =

1

V

∑
p∈V

wp
vV

pρpvpi v
p
j (9.46)

Luding et al. noted that there are two components to this stress
tensor, the stress due to the fluctuations of the velocities about
the mean and the stress due to the mean mass transport in the
overall direction of strain or flow.

9.5 Strain

Just as was the case for stress, a representative strain for the mate-
rial in an element test simulation can be calculated by considering
the boundary positions. For example, in a triaxial test simulation
the position of the top and bottom boundaries can be used to
calculate the overall axial strain, εa = ΔH

H0
where ΔH is the axial

compression and the original height is given by H0. As highlighted
by Marketos and Bolton (2010), just as in the laboratory, the local
kinematics of particle motion close to the boundary may not be
indicative of the overall response, and this should be considered
when interpreting these strain values.
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A DEM simulation gives detailed information on the displace-
ment trajectories of all the particles in the system. Using this
information, a representative, or average, strain for the overall
system of particles or a subdomain of the system can be deter-
mined. In many applications the particle deformation field is not
homogeneous and therefore calculating of local strains within the
problem domain is of interest. Methods to calculate both average
and local strains are introduced here.

9.5.1 Overview of calculation of strain from
a continuum mechanics perspective

In continuum mechanics, the strains at a point are calculated from
the local deformation or displacements, specifically the spatial gra-
dients of these deformations. When a material experiences strain
there is a change in geometry from an original configuration or
“state” to a deformed configuration or state, and points within
the material will be displaced. Considering a particle with a po-
sition vector in the original configuration given by x0, the same
particle will have a position vector given by xD in the deformed
configuration. If the original geometry is taken as the reference
configuration, then the incremental displacement is taken to be
u = xD − x0; however, if the deformed geometry is taken as the
reference configuration, then the incremental displacement is given
by U = x0−xD. In geomechanics applications the strains are usu-
ally calculated relative to the original configuration.

For many engineering applications, it is assumed the strains
are small, and Cauchy’s infinitesimal strain tensor is applicable
(Fung, 1977):

eij =
1

2
(uj,i + ui,j) (9.47)

where eij is the strain tensor, ui is the displacement tensor and
ui,j represents the partial derivatives (i.e. ux,y = ∂ux

∂y
, etc.). This

definition is only appropriate where the partial derivatives, ui,j,
are sufficiently small that the squares and products of these terms
are negligible.
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In “finite strain” problems the products can no longer be ne-
glected, and the definition of the strain tensor depends on whether
the deformation measure is related to the reference (original) con-
figuration or the current configuration (Zienkiewicz and Taylor,
2000b). The definition of the finite strain tensor depends on
whether the deformation measure is related to the reference (orig-
inal) configuration or the current configuration (Zienkiewicz and
Taylor (2000b)). When the deformation measure is related to the
original configuration, the Green strain tensor, Eij, is applicable:

Eij =
1

2
(uj,i + ui,j + uk,iuk,j) (9.48)

Whichever definition is used to calculate the strain, once the
deformation gradients ui,j are known the strain can easily be cal-
culated. This section focusses on how these gradients can be calcu-
lated. In a DEM simulation the displacement gradients can be cal-
culated by taking “snapshots” of the system, i.e. by outputting all
the particle coordinates at specific points in the simulation. The
particle locations at the beginning of the chosen interval define
the reference location and the calculated strains can be mapped
to these points for visualization purposes. The displacement in-
crements will be calculated by subtracting the initial particle co-
ordinates from the particle coordinates in the deformed system.
Alternatively a single “snapshot” can be taken and the particle
velocities can be used to calculate the current strain rate.

An analytical expression (i.e. an equation) is needed to de-
scribe the incremental displacements, u, so that the partial deriva-
tives ui,j can be calculated. If the velocities are considered the
partial derivatives of the deformation rate tensor, u̇i,j, are sought.
The displacement and velocity fields are highly heterogeneous, and
various approaches have been proposed to determine the displace-
ment gradients. These can be broadly divided into best fit ap-
proaches, spatial discretization approaches, and local non-linear
wavelet based approaches. The spatial discretization approaches
are sometimes called equivalent continuum approaches (e.g. Bagi
(2006)). Each of these approaches is considered below. Reviews
of various strain calculation approaches are given by Bagi (2006)
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(comparison of 2D implementations) and Duran et al. (2010) (com-
parison of 3D implementations).

Rotations and strain

Figure 9.8: Particle rotation and strain

The particle centroidal displacements describe only the trans-
lational motion of the particles. The particle rotations will also
contribute to the material displacements at a micro-scale. As al-
ready highlighted in Chapter 8, rotations within shear bands can
be significant, and where local strains within a shear band are
needed, it would seem appropriate to capture the deformation due
to these rotations in the calculated strain value. A schematic dia-
gram illustrating the effects of particle rotation on the calculated
strain values is illustrated in Figure 9.8(a). When a particle ex-
periences a finite amount of rotation, the displacements of points
on the edge of the particle may differ substantially from the cen-
troidal displacements. Consequently, the displacement gradient
values calculated considering the centroidal coordinates alone do
not capture the actual strains that the assembly of particles is ex-
periencing. Various approaches have been proposed for account-
ing for rotation. In one approach, proposed by O’Sullivan et al.
(2003), the displacements of two points located at a distance from
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the particle centroid are tracked. For example these points might
be located along the particle’s principal axes as indicated in Figure
9.8(b).

Considering the two-dimensional case, for each particle the co-
ordinates of the two “tracked” points (j=1,2) are as follows:(

uj
x

uj
y

)
=

(
u0
x

u0
y

)
+ α(−1)jr

(
sinω
cosω

)
(9.49)

where uj
x and uj

y are the displacements of the tracked points, in
the x- and y-directions, u0

x and u0
x are the displacements of the

particle centroid, ω is the particle rotation accumulated over the
increment considered, r is the particle size (radius for circular par-
ticles), and α is a constant of proportionality to relate the position
of the monitoring point to the particle size. All of these variables
are easy to monitor in a two-dimensional discrete element anal-
ysis. For the three-dimensional case, the coordinates of the two
“tracked” points (j=1,2) can be defined to be at the intersection
of the principle axis of inertia of the particle with the particle
boundary. The time integration approaches for three-dimensional
analysis generally keep track of the orientation of the principal
axes of inertia. Therefore, as with the two-dimensional case, no
additional calculations are required within the body of the discrete
element code.

Wang et al. (2007) also explicitly account for rotations in their
meshless calculation approach. However, rather than tracking the
motion of reference points located on the particle, they consider a
background grid of reference points, whose motion depends both
on the particle rotations and translations (this is considered fur-
ther in Section 9.5.4 below).

9.5.2 Best fit approaches

The idea in the best fit approaches is find the equation or curve
that most accurately describes the observed particle displacements
within the region of the material considered. Once this best fitting
curve is found, it can be differentiated to give the deformation
gradient. Itasca (2008) and Potyondy and Cundall (2004) fitted
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a linear expression (i.e. a first-order polynomial) to the velocity
data to get the deformation gradient rates (u̇i,j). The method can
equally be applied to the incremental displacements to calculate
actual strains (e.g. Marketos and Bolton (2010)).

To calculate u̇i,j, the velocity of each particle relative to the
centroid of the selected monitoring region is firstly determined.
If the velocity of a particle is denoted u̇p

i and the position vector
is denoted xp

i , then the mean velocity, ¯̇ui, and mean position x̄i

within the region considered are given by

u̇i =

∑
Np

u̇
p
i

Np

xi =

∑
Np

xpi

Np

(9.50)

whereNp is the number of particles within the measurement region
and

∑
Np

indicates a summation overNp particles. The velocities and

positions of every particle relative to these mean values are given
by

u̇p,rel
i = u̇p

i − u̇i

xp,rel
i = xp

i − xi

(9.51)

If every grain moved with a uniform deformation rate gradient the
following would hold:

u̇p,rel
i = ȧijx

p,rel
j (9.52)

where ȧij is the deformation rate gradient. For an arbitrary de-
formation, the objective is to seek ȧij to minimize the following:

∑
Np

(u̇p,rel
i − ȧijx

p,rel
j )(u̇p,rel

i − ȧijx
p,rel
j ) −→ min (9.53)

where Np is the number of particles in the domain, and |u̇p,rel
i −

ȧijx
p,rel
j | is the magnitude of the difference between the actual par-

ticle displacement and the approximate value determined using
the best fit expression. The minimization problem is solved us-
ing a least squares approach, yielding a system of simultaneous
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equations for the gradients in direction i. For a 2D system the
resultant equations are:

⎛⎜⎜⎝
∑
Np

xp,rel
1 xp,rel

1

∑
Np

xp,rel
1 xp,rel

2∑
Np

xp,rel
2 xp,rel

1

∑
Np

xp,rel
2 xp,rel

2

⎞⎟⎟⎠
(

ȧi1
ȧi2

)
=

⎛⎜⎜⎝
∑
Np

u̇p,rel
i xp,rel

1∑
Np

u̇p,rel
i xp,rel

2

⎞⎟⎟⎠
(9.54)

Cundall and Strack (1979b) noted that the strain rate approach
based on instantaneous velocities will only be meaningful if the
assembly is deforming steadily.

To get the average deformation gradients aij , instead of the
average deformation rate gradients, ȧij , the incremental relative
displacements should be considered. The incremental displace-
ment of a particle over the time increment t1 to t2 will be given
by Δup

i = xp,t2
i − xp,t1

i , where the particle positions at times t1
and t2 are x

p,t1
i and xp,t2

i respectively. Then the mean incremental
displacement (Δui) and relative incremental displacements Δup,rel

i

are given by

Δui =

∑
Np

Δup
i

Np

Δup,rel
i = Δup

i −Δui

(9.55)

The deformation gradients (again for direction i and in 2D)
are found by solving the following system of equations:
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xp,rel
1 xp,rel

1

∑
Np

xp,rel
1 xp,rel

2∑
Np

xp,rel
2 xp,rel

1

∑
Np

xp,rel
2 xp,rel

2

⎞⎟⎟⎠
(

ai1
ai2

)
=

⎛⎜⎜⎝
∑
Np

Δup,rel
i xp,rel

1∑
Np

Δup,rel
i xp,rel

2

⎞⎟⎟⎠
(9.56)

Liao et al. (1997) proposed an alternative best-fit-type ap-
proach, where they considered only the contact displacements.
Restricting consideration only to the contact displacements will,
however not give a good estimate of the overall deformation experi-
enced by the material. Both Bagi and Bojtar (2001) and Cambou
et al. (2000) found this method yielded average strain values that
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underestimated the globally applied strain. Whether the infor-
mation gained using a “best fit” approach will be representative
depends on the heterogeneity of the strain field in the material, i.e.
if the average strain over a relatively large volume is calculated,
shear bands or localizations may not be picked up.

9.5.3 Spatial discretization approaches

The best fit approaches are applicable when the strain within a
RVE is sought. If the local variation of strains at a micro- or
meso-scale is of interest, other approaches are preferable. In the
“spatial discretization” type approaches (also termed equivalent
continuum approaches by Bagi), a graph, or tessellation, connect-
ing the particles is created. While various graph topologies have
been used, the edges of each cell in the tessellation are given by
lines connecting particle centroids. The incremental displacement
gradient is calculated by considering the relative incremental dis-
placement along each edge of the graph. Normally the variation in
the displacement values between adjacent nodes is assumed to be
linear. Strain values are then assigned to each cell in the graph;
these can then be volume-averaged to give a representative value
for the RVE, where required.

Triangulation-based approaches

Referring to Figure 9.9(a), Thomas (1997) and Dedecker et al.
(2000), proposed approaches based on a simple Delaunay trian-
gulation of the particle centroids (Delaunay triangulation is de-
scribed in Chapter 1). Over a given increment of deformation, the
displacement of each triangle vertex triangles is given by the parti-
cle incremental displacements (Figure 9.9(b)). In each triangular
element, a linear variation in displacement is assumed. These tri-
angles are directly analogous to the constant strain triangles that
can be used in finite element analysis. Referring to Figure 9.10, if
the particle coordinates are plotted in the xy plane, we can create
a 3D diagram where the displacements are plotted against the ver-
tical axis. A 3D planar triangular surface can be plotted through
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(a) (b) (c)

Figure 9.9: Calculating strain in a DEM simulation

the displacement points and the slopes of this surface in the x and
y directions give the displacement gradients.

In this local, linear approach, the gradients are calculated by
recognizing that at any point (x, y) within the triangle the dis-
placement vector (ux, uy), can be expressed as

ux = β1 + ā11x+ ā12y
uy = β2 + ā21x+ ā22y

(9.57)

The coefficients of these two linear equations ā11, ā12, ā21, and
ā22 give the displacement gradients, i.e. ā11 = ūx,x, ā12 = ūx,y,
ā21 = ūy,x, and ā22 = ūy,y. The terms β1 and β2 are constants. By
substituting the nodal coordinates ( (xa, ya), (xb, yb), and (xc, yc))
and nodal displacements into Equation 9.57, a system of linear
equations is created that can easily be solved to get the displace-
ment gradients, i.e.

β1 + ā11x
a + ā12y

a = ua
x

β1 + ā11x
b + ā12y

b = ub
x

β1 + ā11x
c + ā12y

c = uc
x

(9.58)

The equivalent process is used to get the values of ūy,x, and ūy,y.
O’Sullivan (2002) extended this approach to three dimensions,

using a three-dimensional Delaunay triangulation and calculating
the displacement gradient by reference to the approach used in
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Figure 9.10: Schematic diagram to illustrate calculation of dis-
placement gradients in x and y directions for 2D analyses

constant strain tetrahedra in FEM. The use of tetrahedral ele-
ments in three-dimensional finite element analysis is described by
Zienkiewicz and Taylor (2000a). Referring to Figure 9.11, the
four nodes of the tetrahedra are the particle centroids, or, when
rotations are considered, the measured points. Using linear inter-
polation, the displacement at any point with coordinates (x, y, z)
in the tetrahedron can be expressed as

ux = β1 + ā11x+ ā12y + ā13z
uy = β2 + ā21x+ ā22y + ā23z
uz = β3 + ā31x+ ā32y + ā33z

(9.59)

where ux, uy and uz represent the incremental displacements in
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Figure 9.11: Diagram of tetrahedral element
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the x, y and z directions respectively, the āij values are the aver-
aged displacement gradients for the tetrahedron, and the β values
are constants. Considering the x-component of displacement the
āij values can be obtained by solving the following system of equa-
tions (which is equivalent to the two-dimensional system given in
Equation 9.58):

⎛⎜⎜⎜⎝
1 xa ya za

1 xb yb zb

1 xc yc zc

1 xd yd zd

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

β1

ā11
ā12
ā13

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
ua
x

ub
x

uc
x

ud
x

⎞⎟⎟⎟⎠ (9.60)

where (xa, ya, za) are the coordinates of point a, and ua
x is the

x-component of the incremental displacement of point i. The re-
maining displacement gradient values are obtained in a similar
fashion.

When implementing this approach, it is important to use a
consistent order of numbering. Referring to Figure 9.11, for point
d the other nodes should be numbered in an anticlockwise order as
viewed from d (this is the convention adopted by Zienkiewicz and
Taylor (2000a)). For the purposes of contouring, the strain values
are taken to be the point values at the tetrahedron centroids.

When the strains are calculated using this triangulation-based
approach, the calculation process can also be carried out in a
slightly different way by recognizing the similarity with the finite
element constant strain triangle (the principle is, however, the
same). As already noted, the triangles used to calculate the strain
are equivalent to finite elements. In the finite element method
a continuous material is discretized into small elements and the
displacement at specific points (nodes) in each element is sought.
Then the displacement at any point x in the element, u, can be
approximated by interpolating between the nodal displacements
anode using the expression

u ≈ Nae (9.61)

where ae is a matrix that lists all the nodal displacements for
that element and N is an interpolation function or shape function
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whose value varies with position x. The simplest type of triangu-
lar element is the constant strain triangle, and in this case each
triangular element has three nodes that are positioned at the tri-
angle vertices. The displacement gradient at any point can then
be calculated as

ui,j ≈ (Naei ),j (9.62)

As the nodal displacements are constants,

ui,j ≈ N,ja
e
i (9.63)

The discussion on shape functions is included to illustrate that
if we can find a suitable interpolation function that is multiplied
by the nodal displacements to calculate the displacements within
the material, the strains can then be calculated by taking the
product of the derivatives of the interpolation function and the
nodal displacements. This concept is used in the local, non-linear
approach described in Section 9.5.4 below.

As argued by Thomas (1997) when linear, triangulation-based,
approaches are applied to problems where localizations emerge, it
can be difficult to define the location of the shear band because
plotting strain contours is complicated by the inter-element vari-
ation in strain values. O’Sullivan (2002) demonstrated that these
limitations were amplified in 3D and discussed the use of smooth-
ing operators to overcome this problem. The simplest type of
smoothing is to assign a strain value to each node, which is the
average of the strains in each triangle that includes that node,
weighted by their area. This approach can give some improve-
ments to the observed values.

Representative results for the linear triangulation approach
were obtained by applying the method to a DEM simulation of
a biaxial compression test on a specimen of 2,377 unbonded disks.
Full details of the simulation parameters are given by Cheung and
O’Sullivan (2008). The specimen configuration is illustrated in
Figure 9.12(a) and the overall stress-strain response is given in
Figure 9.12(b). The position of the localization that develops in
the sample post-peak can be appreciated by considering the plot
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of the cumulative particle rotations up to an axial strain of 10%
as illustrated in Figure 9.13(a). The tessellation obtained upon
applying Delaunay triangulation to the initial particle positions is
illustrated in Figure 9.13(b). This triangular mesh was used as
the basis for calculating the strains. The local strains are then
plotted on the deformed specimen configuration (at an overall ax-
ial strain of 10%). As illustrated in Figure 9.14(a), while there
is significant heterogeneity in the local strain values, the dilation
along the localizations is clear, and the position of the localiza-
tion coincides with the zones of peak rotation in Figure 9.13(a).
Figure 9.14(b) is included here to quantitatively demonstrate the
heterogeneity in the response, while the overall axial strain is 10%
the vertical strains (εyy) along the localizations greatly exceed this
mean value. It is also interesting to note that there are zones of
both local extension and compression evident in the sample.

(a) Specimen geometry

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Axial strain (%)

(σ
1−

σ 3)/
(σ

1+
σ 3)

(b) Macro-scale stress-strain response

Figure 9.12: Macro-scale response for specimen considered in lin-
ear triangulation example

Alternative spatial discretization approaches

As outlined by Duran et al. (2010) Gauss’s integral theorem can be
applied to relate the average deformation gradient within a system
to the displacements along the boundaries,
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0 0.1 0.2 0.3 0.4 0.5

(a) Cumulative particle rotations
(axial strain 10%)

(b) Triangular mesh used in
strain calculations

Figure 9.13: Cumulative rotations and mesh used to calculate
strain for linear triangulation example

ui,j =
1

V

∫
V
ui,jdV =

1

V

∮
S
uinjdS (9.64)

where
∮
S ...dS indicates a surface integral along the surface of the

domain and nj is vector normal to the surface. While direct imple-
mentation of this approach is non-trivial, a number of approaches
use this concept, by looking at the orientation of the edges to cells
in a tessellation and the relative displacement of the two nodes
forming each edges. Consideration is restricted here to the meth-
ods proposed by Bagi (2006). However, other authors including
Kruyt and Rothenburg (1996), Kuhn (1999) and Li et al. (2009)
have proposed similar algorithms.

Bagi proposed a graph topology to calculate strain that is a
dual to the material cell system outlined in Figure 9.5 above. This
graph is called the “space cell system.” As illustrated in Figure
9.15, the nodes of this space cell system correspond to the particle
centroids and the edges are formed by connecting the centres of
particles whose material cells have a common edge, i.e. the edges
are the branch vectors. Each cell is a triangle in 2D or a tetrahe-
dron in 3D. The duality of the material cell and space cell systems
are similar to the duality of the Voronoi and Delaunay tessella-
tions. However, in contrast to the material cell edges, which pass
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ε
vol

−0.5 0 0.5

(a) Volumetric strains (axial strain
10%)

ε
yy

−0.1 −0.05 0 0.05 0.1 0.15

(b) Local axial strains (overall ax-
ial strain 10%)

Figure 9.14: Local volumetric and direct (εyy) strains calculated
using linear triangulation-based approach.

through the particle contacts and do not overlap with the solid
particles, if a Delaunay triangulation were created based on the
particle centroids, the resultant Voronoi diagram edges would in-
tersect the particles. Then Bagi (1996) showed that the average
deformation gradient, (āij), within a cell in the space cell system
(with volume VSC) is then given by

āij =
1

VSC

Ne,SC∑
k=1

dkiΔuk
j (9.65)

where the summation is made over the number of edges (Ne,SC) in
the considered space cells and is carried out in a consistent manner
(i.e. consistently clockwise or counterclockwise). Δuk

j is the rela-
tive incremental displacement of the two grain centers of the edge
k, i.e. referring to Figure 9.15, for the edge connecting the centre
of particle a and the centre of particle b, Δuab

j = Δub
j −Δua

j . The
vector dci is the complementary area vector. The complementary
area vector is a vector that characterizes the local geometry of
the neighborhood of the kth edge, and the direction of a represen-
tative complementary area vector is illustrated in Figure 9.15(b),
its magnitude will be one third the length of the line segment cd.
The sum of the products of the branch vectors li that form the
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Figure 9.15: Schematic diagram of space cell system proposed by
Bagi (1996)

space cell edges and the vectors di for every edge in a given domain
equals three times the volume (3D) or twice the area (2D) of the
domain, i.e. in the 2D case the area of the domain, A, is given by

A =
1

2

Ne,SD∑
k=1

lki d
k
i (9.66)

where Ne,SD is the total number of edges in the subdomain.
In Bagi’s space cell system and the triangulation approach pro-

posed above, the particles whose vertices are connected along one
edge of the cell may or may not contact. Kuhn (1999) and Kruyt
and Rothenburg (1996) only considered edges along which the par-
ticles are contacting, generating the tessellation illustrated in Fig-
ure 9.16. Expressions for deformation gradient/strain have also
been proposed for this tessellation by these authors.

As noted by Li and Li (2009), where the spatial discretiza-
tion approach is used to calculate the average strain for individual
cells in selected volume, the average displacement gradient in the
domain is calculated as a volume-weighted average:

āij =
1

V

∑
NSD

V MaMij (9.67)
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Figure 9.16: Schematic diagram of tessellation system proposed
by Kruyt and Rothenburg (1996)

where V M is the volume of cellM , aMij is the displacement gradient
in cell M , and

∑
NSD

indicates a summation over all the cells in the

volume.
The constant strain triangle approach outlined above is easier

to implement then the edge-based methods of Bagi (2006) and
Kruyt and Rothenburg (1996). However, these edge-based meth-
ods present an interesting alternative, as they allow a strain to be
associated with sets of particles that define the void edges.
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9.5.4 Local, non-linear interpolation approach

(a)
(b)

Figure 9.17: Comparison of (a) mesh-free approach using nodes
and regions of influence with (b) the nodes and elements used in
linear interpolation.

The approaches considered to date have used linear interpolation
or linear curve fitting. When presented with a set of data, it can
be rather limiting to restrict consideration to an assumption of a
linear variation of strain across the system or between the parti-
cle centroids. O’Sullivan et al. (2003) proposed a local, non-linear
approach that uses elements of the algorithms for mesh free meth-
ods (e.g. Li and Liu (2000)). The specific method considered
by O’Sullivan et al. was the reproducing kernel particle method
(RKPM) (Liu et al., 1995). Similarly to the finite element method,
the meshless methods were developed to model materials as con-
tinua.

The linear triangulation approach is contrasted with the mesh-
free approach in Figure 9.17. Where the triangular elements are
used to calculate the strain, each particle forms a vertex of at least
three triangles and the strains within each of these triangles are
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calculated independently. In the meshless approach, each particle
is assigned its own “region of influence” over which it contributes
to the calculated strains. Typically the region of interest is either
a circular (2D) or spherical (3D) region (Figure 9.17(b)). Con-
ceptually, it is easy to imagine that within its region of influence
the particle’s contribution to the strain field should decrease as
the distance from the particle centroid increases. A number of
wavelet functions can capture this type of response, while also
meeting the requirement that the interpolation function describ-
ing the displacement field be continuous and differentiable over
the region of influence so that the strains can be calculated. The
advantage of this method is that it provides a smooth interpola-
tion basis capable of capturing the high deformation gradient field
that can exist within the shear bands (and hence the strain field),
while also eliminating the high inter-element variation in strain
values associated with the triangulation (or other cell-based) ho-
mogenization approaches.

Figure 9.18: Schematic diagram illustrating principles of local,
non-linear interpolation

The concept of the local, non-linear interpolation approach is
given in Figure 9.18. As illustrated in Figure 9.18(a) if a point P
is within the zone of influence of particle A, then its displacement
will be the product of the function IA evaluated at point P and the
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displacement of particle A (in this case uA
y ), i.e. uP

y = IA(P )uA
y .

The function IA describes how the influence of particle A on the
calculated displacements varies within its zone of influence. While
a linear function is chosen to represent the distribution of the
influence in Figure 9.18, non-linear wavelet functions (e.g. cubic
or Gaussian functions) can also be used. If, as illustrated in Figure
9.18(b), the point P is also within the zone of influence of particle
B then the displacement at P will be given by uP

y = ĨA(P )uA
y +

ĨB(P )uB
y , where the influence functions IA and IB are scaled so

that ĨA + ĨB = 1.
In summation form, the displacement vector, ux, at an arbi-

trary point x with position vector x, can be expressed in terms of
the nodal or particle displacements, up, at nodal positions xp as
follows

ux �
Np∑
i=1

K�(x− xp)upΔV p (9.68)

where Np is the number of nodes, i.e. particles, whose zones of
influence include the point, ΔV p is the nodal weight, and the term
K�(x− xp) is given by

K�(x− xp) = C�(x− xp)Φ�(x− xp) (9.69)

where C�(x− xp) is a correction function to reduce the interpola-
tion error, Φ�(x−xp) is the compact kernel function, and � is the
dilation parameter that defines the size of the window function.
The compact kernel function is generally defined as:

Φ�(x− xp) = 1
�
Φ(x−xp

�
)

{
> 0; x−xp

�
≤ 1

= 0; x−xp

�
> 1

(9.70)

The correction function, C�(x− xp), is given by

C�(x− xp) = P(
x− xp

�
)b(

x

�
) (9.71)

where the vector P(x) is a given function and the vector b(x)
is an unknown function that is sought to suit the local particle
distribution.
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For the implementation presented here the window function,
φ(x), is a wavelet function given by Daubechies (1992). In one-
dimensional form the function is given by:

φ(x) = 1
6
(x+ 2)3 −2 ≤ x ≤ −1

φ(x) = 2
3
− x2(1 + x/2) −1 ≤ x ≤ 0

φ(x) = 2
3
− x2(1− x/2) −1 ≤ x ≤ 0

φ(x) = 1
6
(x− 2)3 −2 ≤ x ≤ −1

φ(x) = 0 otherwise

(9.72)

In higher dimensions the shape functions are simply calculated as
follows:

φ(x, y) = φ(x)φ(y)

φ(x, y, z) = φ(x)φ(y)φ(z) (9.73)

The two-dimensional shape function described in Equation 9.72
is plotted in Figure 9.19, the first derivatives of this function (used
in the calculation of the displacement gradients) are illustrated in
Figure 9.20.

Figure 9.19: Diagram of wavelet function used in non-linear inter-
polation (2D)

The incremental volume, ΔV p, (Equation 9.75), associated
with each particle p is calculated by triangulating the system and
calculating the incremental volume as

ΔV p =
1

Nv

NT∑
k=1

ΔΩk (9.74)
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Partial Derivative With Respect to x

Partial Derivative With Respect to y

Figure 9.20: Diagram of first partial derivatives of wavelet function
used in non-linear interpolation (2D)

where ΔΩk represents the area of a triangle/tetrahedron k with a
vertex at point p, NT is the total number of triangles or tetrahedra
with vertices at point p, and Nv is the number of vertices per
triangle or tetrahedra (Nv = 3 in 2D and Nv = 4 in 3D).

The displacement gradients are then calculated by considering
the gradient of the shape function K�(x− xp), i.e.

∂u(x)

∂x
�

Np∑
i=1

∂K�(x− xp)

∂x
upΔV p (9.75)

A schematic diagram of the approach used to implement the
local, non-linear interpolation is illustrated in Figure 9.21. A rect-
angular grid is generated to serve as a referential continuum dis-
cretization over the volume of particles under consideration, i.e.
the strains are calculated at the grid points. The area of influence
of each particle is a multiple of the particle radius.

For each particle the distance d to each grid point is calcu-
lated. If d < wr for that particle, the contributions to the inter-
polated grid displacements are evaluated using Equation 9.72, in
combination with Equation 9.75. The variable x is given by d/wr.
If wr < d < 2wr the contribution to the interpolated grid dis-
placement is calculated using Equation 9.72, in combination with
Equation 9.75. The displacement values at grid points located a
distance of more than 2wr from the particle under consideration
are not influenced by that particle.
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Figure 9.21: Illustration of grid used in local, non-linear interpo-
lation

Wang et al. (2007) also proposed a grid-based approach to
calculate incremental displacements and strains. Their approach
differs from the non-linear approach proposed by O’Sullivan et al.
(2003) as each grid point is assigned only to one particle. Referring
to Figure 9.22, the displacement ug of each grid point depends on
both the particle displacements and rotations (as noted above)
and is given by

ug
x = up

x + d [cos(θ0 + ω)− cos(θ0)]
ug
y = up

y + d [sin(θ0 + ω)− sin(θ0)]
(9.76)

This approach is therefore significantly easier to implement than
the approach proposed by O’Sullivan (2002). However, in contrast
to other approaches, the measured displacement field is not con-
tinuous as the translational displacement of the grid points equals
the displacement of their associated particle.

To illustrate the applicability of the non-linear interpolation
approach reference is made to a simulation carried out by Che-
ung (2010). The sample tested in the simulation had a diame-
ter of 40mm and a height of 80mm. It comprised 12,622 spheres
with sphere radii being uniformly distributed between 0.88mm and
1.32mm. The simulation was performed using the commercial code
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Figure 9.22: Illustration of grid point displacements assumed by
Wang et al. (2007)
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PFC 3D . The spheres were firstly randomly generated, then two
horizontal platens and a cylindrical wall were created to bound
the specimen. By moving these walls in a controlled manner us-
ing a servo-controlled technique, the specimen was brought to an
initial isotropic stress state of 10MPa. Once the initial isotropic
stress state was achieved, parallel bonds were installed at all the
inter-particle contacts that were found at this stage. The parallel
bond model is described by Potyondy and Cundall (2004) and is
also considered in Chapter 3. These parallel bonds were therefore
uniformly distributed throughout the specimen. The sample was
then subject to a triaxial compression test where the cylindrical
wall forming the lateral boundary to the specimen was continu-
ously adjusted to maintain a constant horizontal stress while the
top boundary moved downwards.
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Figure 9.23: Macro-scale stress-strain response for cemented sand
specimen (Cheung, 2010)

The overall specimen response is illustrated in Figure 9.23.
The specimen reached a peak stress ratio of 0.76 at 3.5% axial
strain. Strain softening was observed after peak and the rate of
softening decreased with increasing axial strain. The volumetric
strain results showed that the specimen contracted prior to peak
and dilated during strain softening.

The local volumetric and shear strains at axial strain values
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of 5% and 10% are presented in Figure 9.24, considering a repre-
sentative “slice” through the centre of the sample. Referring to
Figure 9.25 there is a clear correlation between the points where
the strain is a maximum and the zone of most intense distur-
bance within the sample (where the bonds break and there are
notably high particle rotations). It is clear that by calculating
the strains, the heterogeneity of the specimen response along the
localization can be appreciated, giving insight into the post-peak
response of brittle granular materials. The extent of the varia-
tion in the response along the localization is not evident in the
other plots. There is scope to analyse the constitutive response
along the shear band in more detail by coupling the local strain
calculations with local measurements of stress.

Validation and comparison of strain calculation algorithms

As described by Bagi (2006) amongst others, evaluations of strain
calculation methods have compared the strains calculated with the
homogenization method and the global, overall strains. An exam-
ple of such a validation is given in Figures 9.26 and 9.27 where the
validations of the 3D implementation of the triangulation-based
linear interpolation approach and the local non-linear approach
proposed by O’Sullivan and Bray (2003b) are considered. A servo-
controlled triaxial compression test on a sample of 9,000 spheres
enclosed within 6 rigid boundary walls was considered. The over-
all specimen response is illustrated in Figure 9.26(b). The average
displacement gradients (a11, a22, and a33) obtained using the rota-
tional discretization described above closely approximated overall,
global values as illustrated in Figure 9.27.
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Figure 9.24: Local volumetric and shear strains for cemented sand
model at εa = 5% and εa = 10% (Cheung, 2010)
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Figure 9.25: Particle-scale response for cemented sand specimen:
particle rotations and intact bonds (Cheung, 2010)
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Figure 9.26: Validation of 3D kinematic averaging approaches
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Figure 9.27: Results of validation of three-dimensional kinematic
averaging approaches: Comparison of global displacement gradi-
ents and average displacement gradients for linear and non-linear
interpolation with “rotational” discretization.
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Chapter 10

Analysis of Particle System
Fabric

Experimental observation of the way sand grains are packed around
each other and how this packing evolves during loading is diffi-
cult. In a DEM simulation detailed information on the internal
structure of a granular material can be accessed at any point. As
already established in Chapter 8, the topology of the system of
particles and contacts is highly complex. A means to unravel or
make sense of these data is needed to establish the link between
the particle scale mechanics and the overall macro-scale response.
This Chapter describes procedures to quantify the internal struc-
ture of a granular material, considering the packing density of the
of particles and the preferential orientations of the particles and
contacts. Many techniques can be applied to analyse the data
available for output from a DEM simulation; here the more com-
monly used approaches are presented and the information provided
should hopefully point DEM analysts in the right direction as they
try to make sense of their simulation results.



Chapter 10. Analysis of Particle System Fabric

10.1 Conventional Scalar Measures of

Packing Density

In traditional soil mechanics the parameters void ratio, specific
volume and porosity are used to quantify the density of packing
of the granular material. While these parameters are defined in
any undergraduate soil mechanics textbook (e.g. Craig (2007) or
Atkinson (2007)), they are repeated here for clarity and in partic-
ular for the benefit of DEM users from other disciplines. As out-
lined in Chapter 12, the response of a granular material is largely
determined by its “state.” The state is quantified by considering
the void ratio (or specific volume) and the mean effective stress.
Just as in experimental geomechanics, knowledge of the void ratio
is important to be able to interpret the overall response of the
material in DEM simulations.

The measures of packing density that are commonly used in
geomechanics are based upon the relationship between the volume
of solid particles in the material and the overall volume occupied
by the granular materials. In experimental work, the dry mass
of the material is measured. If the density of the solid material
is known, the volume of solid soil particles can be calculated. (If
unknown it can be measured using pycnometer testing.) The void
ratio, normally denoted e is then given by

e =
Vv

Vs
(10.1)

where Vv is the volume of voids and Vs is the volume of solid
soil particles. The specific volume, denoted v, is the total volume
occupied by the material per unit solid volume and is given by

v =
V

Vs

(10.2)

The parameters v and e are thus related as

v = 1 + e (10.3)

The final basic characterization of packing density is the porosity
n, which is defined as the ratio of the volume of voids to the total
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volume occupied by the soil, i.e.

n =
Vv

V
(10.4)

The porosity and void ratio values are related as follows

n = e
1+e

e = n
1−n

(10.5)

Outside of geomechanics the term “solid volume fraction” is
often used and is defined as (e.g. Bedford and Drumheller (1983))

ν =
Vs

V
(10.6)

All of these approaches give (scalar) measurements of the ma-
terial packing density. They can all be easily calculated in DEM
simulations as the volumes and areas occupied by the particles
are known. The packing density will vary with the particle size
distribution. In a real soil with a broad range of particle sizes, the
smaller particles will occupy the voids between larger particles,
giving lower void ratios than in the case of the almost uniformly
sized particles often considered in DEM analyses. Furthermore,
the particle geometry will influence the range of attainable void
ratios. As noted in Chapter 12, many DEM simulations are two-
dimensional. Therefore measures of the porosity, void ratio and
specific volume will be in terms of area, rather than volume. The
range of attainable void ratios differs for 2D and 3D materials,
with void ratio values usually being smaller for 2D simulations.
For example in two dimensions the most dense packing config-
uration for uniform disks (hexagonal packing) has a void ratio
of 0.103, while in the three-dimensional case for uniform spheres
(both hexagonal close packing or face-centred-cubic packing) the
minimum void ratio is 0.4 (i.e. a packing density of 0.7405).

The packing within the assembly will be inhomogeneous. Mar-
ketos and Bolton (2010) highlighted the fact that the packing den-
sity will be influenced by the presence of flat boundaries and a
local decrease in porosity will occur close to the boundary. Kuo
and Frost (1996) present data indicating measurable particle-scale
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e = 0.39536 e = 0.27096

e = 0.18997 e = 0.17193

Figure 10.1: Illustration of void ratio variation with size of mea-
surement volume

heterogeneity within sand samples by measuring the void ratios (in
2D) within resin-impregnated specimens of real sand. If a shear
band forms, additional heterogeneity will be introduced. Refer-
ring to the discussion on heterogeneity in Chapter 9, the concept
of a representative volume element (RVE) applies to calculation
of void ratio and quantification of the material microstructure.
This is simply illustrated in Figure 10.1 which indicates how the
void ratio of specimens of uniform disks placed within an equi-
lateral triangle with the same arrangement varies as a function of
the number of spheres. Munjiza (2004) considered this problem
in a series of DEM simulations and showed that for specimens
of uniform spheres deposited under gravity, the measured pack-
ing density tended to increase as the ratio of the sphere diameter
to the container side length decreased. Therefore to get statisti-
cally representative measures of packing density care must then
be taken to ensure that the RVE used is sufficiently large. Refer-
ring to Figure 10.2, just as was the case when calculating stress,
when measuring the void ratio in subregions within the assembly,
the intersection of particles with the region boundary should be
considered (Bardet and Proubet, 1991).

DEM simulations allow for alternative definitions of void ra-
tio. Referring to Section 8.5, within the granular material the
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Figure 10.2: To accurately calculate void ratio within the sample
the intersection of the disks with the boundary edge should be
considered

force transmission is highly heterogeneous and there are particles
that do not participate in stress transmission. Recognizing this
Kuhn (1999) proposed an effective void ratio including only those
particles that participate in stress transmission when calculating
the volume of solids.

10.2 Coordination number

The void ratio quantifies the particle packing density without ex-
plicit consideration of the particulate structure; only the total
mass of particles, the solid particle material density and the overall
material volume are required. The coordination number quantifies
the number of contacts per particle in the material and it gives a
measure of the packing density or packing intensity at the scale of
the particles. The simplest definition of the coordination number
Z is

Z = 2
Nc

Np

(10.7)

where Nc is the total number of contacts and Np is the number of
particles. The number of contacts is multiplied by 2 as each con-
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tact is shared between two particles. While it is standard practice
to refer to the void ratio as e and the porosity as n, the notation
used to describe the coordination number varies. For example
Rothenburg and Kruyt (2004) denote the coordination number
using the symbol Γ, while here the symbol Z is used following
the notation of Thornton (2000). The coordination number is the
most basic particle-scale measure of the material structure and it
can easily be determined from DEM simulation data. Referring
to Chapter 3, the total number of contacts Nc considered in cal-
culation of the coordination number should include only engaged
contacts, and not the potential contacts between particles that are
close, but not actually transmitting an inter-particle force.

Just as the evolution of void ratio is typically quantified and
analysed when considering data from physical laboratory experi-
ments, it is usual to record the evolution of Z during DEM sim-
ulations of element tests. As an example, the variations of both
vertical strain and coordination number with displacement in a
simulation of the direct shear test (Cui and O’Sullivan, 2006) are
illustrated in Figure 10.3. Note that at a strain level of 20%, while
the vertical strain data indicate that the sample continues to di-
late, the coordination number appears to have reached a more
constant value.

Modified, or refined, definitions of the coordination number
exist. For example Thornton (2000) defined a mechanical coordi-
nation number Zm to be

Zm = 2
Nc −N 1

p

Np − (N1
p +N0

p )
(10.8)

where N 1
p is the number of particles with one contact, and N0

p is
the number of particles with no contacts. These particles cannot
participate in transmitting stress through the material and are of-
ten termed “rattlers” or “floaters.” Kuhn (1999) applied a higher
level of discrimination in selecting particles for calculation of his
coordination number Zp, termed the effective coordination num-
ber. Referring to Figure 10.4, Kuhn identifies the pendant, island,
peninsula and isolated particles as particles that do not partici-
pate in the load-bearing framework. He excludes these particles
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Figure 10.3: Macro-scale deformation and coordination number
variation in direct shear test simulations Cui and O’Sullivan (2006)

and their contacts when calculating Zp.
Other means to quantify the intensity of contacts in the ma-

terial have been proposed in addition to the coordination number
Z. For example Rothenburg and Bathurst (1989) considered the
contact density, denoted mv which is defined to be

mv =
2Nc

V
(10.9)

where V is the volume of material under consideration.

Degree distribution

A concept that is complementary to the coordination number is
the degree distribution. As noted in Chapter 8, if a granular ma-
terial is considered from the perspective of network analysis, each
particle is a node and each contact is a connection. The connectiv-
ity or degree of a particle is the particle’s own coordination num-
ber, i.e. the number of contacts it participates in. Kuhn (2003a)
uses the term valance for this parameter. The degree distribution,
Pc(k), is a function that gives the probability that a given particle
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Figure 10.4: Definition of participating particles by Kuhn (1999)

will have k contacts. The average degree equals the coordination
number, i.e.

Z =
∞∑
k=1

kPc(k) (10.10)

As demonstrated by Summersgill (2009), for example, in a polydis-
perse material (i.e. a granular material with a range of sizes), the
individual particle coordination number values tend to decrease
with particle size. Consequently the smaller particles are signifi-
cantly less likely to be participating in the strong force chains in
comparison with the larger particles. Oda et al. (1980) suggested
looking at the standard deviation of the particle coordination num-
bers to assess the degree of heterogeneity in the system.

Another interesting measure is described by Wouterse et al.
(2009) who introduced the term “caged” to describe the case of
particles whose movement is curtailed by neighbouring particles.
The caging number is defined as the minimum average number of
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contacts required to immobilize a particle, assuming these contacts
are randomly located.

Experimental determination of Z

An understanding of the relationship between the coordination
number and the overall material response predates the develop-
ment of DEM. For two-dimensional photoelastic systems the co-
ordination number can be relatively easily determined by visual in-
spection. Experimental determination of Z for three-dimensional
materials is more challenging. Oda (1977) described a study using
glass ballotini in drained triaxial compression tests. At different
points in the tests a black paint was permeated into the voids be-
tween the particles; this sample was then drained, leaving a small
amount of paint at each contact. Then, following drying, samples
of particles were extracted and the number of contact points ob-
served on each particle was noted. Using this methodology Oda
demonstrated that there is a correlation between the average co-
ordination number combined with the standard deviation of the
individual particle coordination numbers and the peak angle of
shearing resistance (angle of internal friction) for the material.
This experimental study was clearly time-consuming and tedious
and, while it includes data useful for verifying DEM results, it is
also a good case study to illustrate why DEM is such an attractive
tool for geomechanics studies. More recent experimental studies
on coordination number have used micro-computed tomography
(μCT) scans of specimens of sand impregnated with resin (Hasan
and Alshibli, 2010).

Relation between e and Z

Given the importance of void ratio (e) in geomechanics, it is logical
to seek a relationship between Z and e. Obviously the coordina-
tion number will increase as the void ratio decreases and vice versa.
Oda (1977,1999b), Oda et al. (1980) and Chang et al. (1989) all
cite experimental studies where the coordination number of a real
(physical) granular materials was determined and compared with
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the void ratio. Based upon the data obtained in these studies rela-
tionships were been proposed between these e and Z; for example
Field (1963) related the coordination number and the void ratio
as follows:

Z =
12

1 + e
(10.11)

Mitchell (1993) gave the following empirical equation to relate
coordination number Z and porosity n for the case of uniform
rigid spheres as follows:

Z = 26.386− 10.726

n
(10.12)

Thinking about a real sand, and also about ideal DEM par-
ticles, it is difficult to accept that a single analytical expression
can describe the relationship between Z and either e, v or n for
all granular materials. The relationship will clearly depend on
the particle morphology, both shape and surface roughness, the
variations in particle morphology within the material, as well as
the distribution of particle sizes. Some data to support the idea
that e and Z are not simply related is given by Rothenburg and
Kruyt (2004), who in a series of biaxial compression test simula-
tions, demonstrated that the relationship between void ratio and
coordination number is sensitive to the anisotropy of the contact
orientations, and that the use of a single relationship may not
be appropriate. Using micro-computed tomography scans on real
sand specimens, Hasan and Alshibli (2010) found that the relation-
ship between e and Z for their sand differed from the empirical
expressions developed using ideal materials. The data of Rothen-
burg and Kruyt (2004) and Thornton (2000) suggest that just as
at large strain samples tend towards a critical void ratio, where
the density remains constant as the material is sheared, a “critical
coordination number” also exists.

Outside of geomechanics, the relationship between void ratio
and coordination number has been considered in studies of jam-
ming of flowing particles. The “jamming transition” is considered
to be the point where the material transitions from a fluid-like
behaviour to a solid-like behaviour (e.g. O’Hern et al. (2003)).
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Coordination number for real sands

Figure 10.5: Schematic diagram of different types of contacts, after
Barton (1993)

As noted in Chapter 4, where smooth convex particles are used,
contact between particles is restricted to a single point. The defini-
tions of conforming and non-conforming contacts were introduced
in Chapter 3. The idea of a non-conforming, single point con-
tact between particles does not hold for real sands. In the case of
densely packed angular particles the contact areas may represent a
substantial proportion of the particle surface areas. Then describ-
ing the density of inter particle contacts simply using a coordina-
tion number is probably inadequate. Figure 10.5 illustrates differ-
ent types of contacts that can be observed in real sands (drawing
on ideas presented by Barton (1993)). Figure 10.5(a) illustrates
a tangential contact, (b) a straight contact, (c) a concavo-convex
contact, (d) a non-continuous contact and (e) a sutured contact
where the particles are connected into each other like jigsaw pieces.

Analysis of micro-computed tomography data on real sand (e.g.
Fonseca et al. (2010)) provides 3D evidence of the contact configu-
rations described by Barton (1993). Fonseca et al. (2010) propose
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that rather than using Z, it may be more appropriate to use a con-
tact index parameter CI to quantify the contact intensity. This
contact index is defined as

CI =
1

Np

Np∑
i=1

1

Spi

Nc,i∑
j=1

Scj (10.13)

whereNp is the total number of particles considered, Spi is the sur-
face area of particle i, Scj is the surface area of contact j and Nc,i

is the number of contacts involving particle i. In two dimensions
the surface areas will be lengths. Other metrics for application to
real materials have been proposed; for example Barton (1993) pro-
posed the use of a tangential index that considers the percentage
of contacts that are tangential.

Redundancy of packing

Civil engineers will be familiar with the concept of redundancy; in
a redundant structure there are additional load-carrying elements
beyond those needed for basic stability. This idea of redundancy
has also been applied in granular mechanics. For example, Maeda
(2009) describes 2D packings where the coordination number ex-
ceeds 3 as being “hyper-static.” Rothenburg and Kruyt (2004)
related the stability of the material structure to the coordination
number, arguing that in the case of a frictionless system static
equilibrium can only be achieved if at least 2N contacts exist
within a system of N disks (i.e. Z should be ≥ 4). In the case
of frictional contacts where shear contact forces impart a moment
to the system, static equilibrium or stability requires a minimum
coordination number of Z = 3.

More recently, Kruyt and Rothenburg (2009), quantified the
redundancy of the system by comparing the total number of equi-
librium equations with the degrees of freedom at the contacts. In
their 2D study they restricted consideration to the particles with
1 or more contacts (i.e. zero-contact rattlers were excluded). The
number of elastic contacts (i.e. contacts where the shear force
does not exceed the shear resistance given by Coulomb friction) is
given by N el

c , while the number of frictional (sliding) contacts is
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given by N fr
c , and N el

c + N fr
c = Nc, where Nc is the total number

of contacts. The redundancy factor, R, is then given by the ratio
of the number of degrees of freedom at the contact points divided
by the number of governing equations, as follows

R =
2N el

c +N fr
c

3(Np −N 0
p )

(10.14)

where N 0
p is the number of rattlers and R ≥ 1. In a biaxial

compression test Kruyt and Rothenburg found that the initial R
value of about 1.4, rapidly dropped to 1 and remained at this
value as shearing progressed, indicating that the system tended
towards a state of static equilibrium at larger strain values. Note
that other definitions of redundancy exist, (e.g. Satake (1999)).

10.3 Contact Force Distribution
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Figure 10.6: Example probability distributions for normal contact
force data

The coordination number indicates only the contact intensity
and gives no information on the contact force magnitudes. As al-
ready outlined in Chapter 8, there is a significant variation in the
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magnitude of the contact forces. A number of researchers have
analysed the contact force data by considering the probability dis-
tribution of the magnitude of the contact forces. An example plot
is given in Figure 10.6. The probability of a contact transmitting a
given force is plotted against the vertical (logarithmic) axis, while
along the horizontal axis the contact force values are given (usu-
ally normalized by the average contact force). Two simulations
of isotropic compression of polydisperse spheres with different size
ranges are considered. Clearly there are a large number of contacts
transmitting very small forces.

Probability distribution functions can be fitted to the data.
Radjai et al. (1996) analysed the distribution of contact forces in
an assembly of polydisperse disks deposited under gravity and then
subject to shearing. They found that for forces that exceeded the
average force, an exponential function gave a good fit to the sim-
ulation data. Thornton (1997b) examined the distribution of the
contact forces within his specimens of rigid spheres and compared
the data with various analytical expressions for the probability
distribution. Thornton observed a change in shape in the distri-
bution, with a exponential distribution being valid if only contacts
transmitting more than twice the average force are considered.
The work of Voivret et al. (2009) is particularly interesting from
a geomechanics perspective as they consider the sensitivity of the
force distribution to the particle size distribution for highly poly-
disperse 2D disk specimens. They found that the range of contact
force values increases as the particle size distribution increases.

In relation to the tangential component of the contact forces,
a number of authors have given consideration as to whether the
contacts are sliding or not. For example Cundall et al. (1982)
observed that particle sliding tends to occur outside of the strong
force chains. Thornton and Antony (2000) and Thornton (2000)
considered the proportion of sliding contacts in their system. They
found that following an initial increase, the proportion of sliding
contacts remains essentially constant after a small amount (1%) of
deviator strain and that the proportion seemed to be independent
of the initial packing density.
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10.4 Quantifying Fabric at the Particle

Scale

Motivation

It is generally accepted that the density of a sand at a particular
stress level is the most important factor determining its behaviour.
(This is considered again in Chapter 12, where the critical state
soil mechanics framework is introduced). The void ratio and (at a
particle scale) the coordination number are scalar measures used
to quantify the material packing density. However, as already il-
lustrated in Chapter 8, under certain conditions the contacts in
granular material display clear biases in their orientation. Further-
more, when deposited under gravity particles tend to fall so that
their long-axis orientation is horizontal. Some means of quantify-
ing or describing the extent and influence of general biases in the
topology or geometry of the particulate assembly is needed. As
clarified by Mitchell (1993), the term fabric “refers to the arrange-
ment of particles, particle groups and pore spaces in the soil.” The
terms “fabric” and “structure” are often used in an interchange-
able manner; however, Mitchell suggests that structure be used
to account for the effects of fabric, composition and inter-particle
forces (including bonding) on soil response.

Experimental evidence has clearly indicated that soil strength
and stiffness are anisotropic (i.e. they vary depending on the direc-
tion in which the soil is deformed). Early evidence of anisotropic
soil response was given in the cubical cell experiments of Arthur
and Menzies (1972). In their experiments they varied the direc-
tion of loading relative to the orientation of the sample during
particle deposition, and found differences of well over 200% in
the axial strains taken to reach a given (prepeak) stress ratio.
The extent of a soil’s anisotropy can be examined in significant
detail in a hollow cylinder apparatus (HCA) where the principal
stress axes orientation can be controlled. For example, using HCA
tests, Zdravkovic and Jardine (1997) showed the non-linear stiff-
ness characteristics of a quartzitic silt to be dependent on the stress
path direction and the orientation of the major principal stress
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axis to the vertical. The effects of fabric are evident even in “sim-
ple” granular materials. Shibuya and Hight (1987) found (again
using a HCA) that isotropically consolidated, spherical glass ballo-
tini show strongly anisotropic yielding and failure characteristics.
Kuwano and Jardine (2002) observed differences in the horizontal
and vertical elastic stiffnesses of ballotini specimens using bender
elements mounted on triaxial specimens. In 2D, Oda et al. (1985)
considered specimens of elliptical particles with differing initial
orientations in their experimental (photoelastic) study. Li and Li
(2009) and Dean (2005) cite additional examples of a experimental
studies of anisotropic soil response from a DEM perspective.

A significant amount of DEM data exists that show the in-
fluence of anisotropy on the material response. In their two-
dimensional DEM simulations Mahmood and Iwashita (2010) con-
sidered the sensitivity of the overall response and the evolution of
the internal material fabric to the initial particle orientations in
a series of DEM simulations with elliptical particles; in this work
the inherent fabric was considered. Yimsiri and Soga (2010) in-
duced a preferential orientation in their contact force network by
preshearing (i.e. they formed a stress-induced fabric) and found
this had a substantial influence on the material response. In fact,
understanding the observed sensitivity of the material response to
either the preferred particle or contact orientations, or the evo-
lution of these preferential orientations during deformation, has
been the focus of almost all DEM analyses that have calculated a
fabric parameter for the material.

It should be recognized that while the preferential orienta-
tions are important, other fabric effects can influence soil response.
Rather than focussing on the direction of loading relative to the
particle orientations, some experimental studies have considered
the effect of sample preparation methods on the material response.
For example Jefferies and Been (2006) present data from an ear-
lier experimental study where they compared triaxial tests on two
reconstituted samples of the same sand. These samples had the
same initial void ratio and the same confining pressure, but they
had been prepared differently (one using moist tamping, the sec-
ond using wet pluviaton). It is difficult to directly associate the
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differences between these methods with different preferred particle
orientation; however, notable variations in both the deviator stress
response and volumetric strain response were observed. Studies
that have demonstrated the influence of sample preparation on the
number of cycles to achieve liquefaction in undrained cyclic loading
include Nemat-Nasser and Tobita (1982) and Mulilis et al. (1977).
In discussing soil liquefaction, Jefferies and Been (2006) suggest
the influence of fabric on cyclic soil response, is more marked than
the influence of fabric on monotonic or static soil behaviour. Vaid
and Sivathayalan (2000) discussed measurable sensitivities to the
specimen preparation method in undrained monotonic tests on
sand.

Moving outside of the laboratory and thinking about real sands,
the situation is even more complex. As noted by Vaughan (1993)
additional factors to consider include the stress history (which
could be considered in DEM) and bedding (more difficult to model).
Vaughan (1993) also argues that almost all natural in-situ soils are
subject to a degree of lithification, which has the effect of bond-
ing particles together. While very important, a measure of fabric
that gives the preferred particle orientations and the extent of the
bias in this direction does not completely describe the material
micro-structure.

Anisotropy

As discussed by Barreto (2010), amongst others, in geomechanics
anisotropy is classified to be either inherent, induced or initial.
The inherent anisotropy is the result of the depositional process;
while the inherent anisotropy is influenced by the geometry of
grains even spherical grains may develop anisotropy during deposi-
tion (Oda, 1972). Casagrande and Carrillo (1944) defined induced
anisotropy to be the strain-induced particle reorientation associ-
ated with changes in stresses. The initial anisotropy of a sand
in situ represents the anisotropy that has developed both during
deposition and over the geological stress history of the deposit.

It is conceptually easy to relate the response anisotropy to the
preferential orientation of the particles in the material. From a
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micromechanics perspective, when analysts talk about quantifying
the material fabric, they are most likely thinking about quantifi-
cation of a type of “orientation fabric”, using the term adopted
by Oda, (e.g. Oda (1977)). Oda applied the term “orientation
fabric” to consider only preferential orientations of the particles
and the intensity of the bias in the preferential direction. This
concept of an “orientation fabric” is extended here to include the
orientations of the contact forces and the branch vectors.

To quantify anisotropy, a set of reference axes are chosen and
then either the orientations of the particles (e.g. long-axis ori-
entation), Figure 10.7(a), the orientations of the vectors linking
the centroids of contacting particles (the branch vectors), Figure
10.7(b), or the orientation of the contact normals, Figure 10.7(c),
is considered. For spherical or circular particles the branch vector
orientations and the contact normal orientations will be the same.

Note that there are some slight differences in the meanings
attributed to the term “branch vector” in the literature. Here the
branch vector is taken to be the vector, lc joining the centroids of
the two particles contacting at contact c is adopted following Bagi
(1999b). However, Luding et al. (2001) and Latzel et al. (2000)
use the term “branch vector” to describe the vector, that they
denoted lpc, joining the centroid of particle p to its contact c (i.e.
c is restricted to be of the contacts involving particle p).

n

n

n

Contact Normal Branch vector

Long axis 

orientation

Figure 10.7: Different orientation vectors that can be used to quan-
tify fabric
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The challenge associated with quantifying fabric is to inter-
pret the orientation data to provide a meaningful measure of any
preferred orientation of the vectors. Broadly speaking two ap-
proaches are used to quantify fabric: the fitting of curves to rose
diagrams or the fabric tensor approach. Both approaches are out-
lined here. Whichever method is used, the anisotropy quantified
will be a measure of the frequency of particles being oriented in
the most preferential orientation relative to the frequency of par-
ticles having the least preferential orientation. In DEM the fabric
has most often been quantified by considering the contact nor-
mal orientations, and the discussion on the fabric measures will
focus on contact normal orientations. However the mathematical
techniques can be applied to any data set of unit vectors. These
methods can be applied to the results of DEM analyses and also
two-dimensional images or 3D micro-computed tomography data
sets. Many of these approaches were initially used in soil mechan-
ics applications to analyse images of thin sections of soil samples,
or to analyse 2D photoelastic experiments.

10.5 Statistical Analysis of Fabric:

Histograms of Contact

Orientations and Curve Fitting

Approaches

To create a polar histogram or rose diagram to visualize the dis-
tribution of orientations of a set of vectors, an angular interval
is selected to define the “bin” size. Then each of these bins is
plotted as the segment of a circle whose radius is proportional to
the number of contacts oriented within the angles defining the bin
limits. The contact force network for a specimen of 2D disks in an
isotropic stress state is illustrated in Figure 10.8(a) and the cor-
responding histogram is illustrated in Figure 10.8(b). There is no
apparent bias in the number of contacts oriented in any particular
direction. Some analysts prefer to use a conventional linear his-
togram instead of a rose diagram to illustrate the distribution of
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the contact orientations. From an interpretative perspective this
approach is suited to analysis of two-dimensional or axisymmetric
systems, however as illustrated in Figure 10.9, three-dimensional
rose diagrams can be created.

(a) Contact force network

−400 −200 0 200 400

−300

−200

−100

0

100

200

300

(b) Histogram of contact normals

Figure 10.8: Illustration of a histogram of contact forces for an
isotropic assembly of 9,509 2D disks

Plotting the histograms based solely on information on the con-
tact orientations cannot provide information on the relative mag-
nitudes of the contact forces oriented in each direction. O’Sullivan
et al. (2008) showed that a simple shading can be applied to each
bin in the histogram so that the magnitude of the average force
in a given direction, as well as the number of contacts oriented in
that direction, can be ascertained from a single plot, this idea is
illustrated in Figure 10.10.

The histograms or rose diagram plots of the orientation data
can be used to analyse the data quantitatively. This analysis is
achieved by fitting an analytical function to the histogram data
and the parameters of the function quantify the intensity of the
anisotropy and the preferred orientation. The basic idea is that the
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Figure 10.9: Illustration of 3D contact orientation histogram

orientations can be described using a probability density function
(PDF) E(n). This function tells us the likelihood that a contact
(or particle) will have an orientation described by the unit vector
n. The integral of this function over the domain must be 1, i.e.

∫
Ω
E(n)dΩ = 1 (10.15)

where dΩ is the differential solid angle in a spherical coordinate
system. Oda et al. (1980) described the PFD as the “fabric ellip-
soid.” The anisotropy can be determined from the shape of the
ellipsoid, and the ellipsoid long-axis orientation gives the preferen-
tial orientation of the contact normals. For an isotropic material
the fabric ellipsoid will have spherical symmetry. However for most
materials deposited under gravity, the ellipsoid will be axisym-
metric about a vertical axis, with the fabric appearing isotropic in
horizontal views.
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Figure 10.10: Histograms of the normalized contact forces in the
vertical plane: Triaxial test simulation on specimens of uniform
spheres

382



Particulate Discrete Element Modelling: A Geomechanics Perspective

Fourier analysis of 2D data.

2D fabric analysis is useful when considering either 2D DEM data
or axisymmetric systems in 3D. For 3D axisymmetric systems the
orientation required for input into a 2D analysis is given by the
angle between the vector under consideration and the vertical.
Then Equation 10.15 can be expressed as

∫ 2π

0
E(θ)dθ = 1 (10.16)

where θ is the inclination to the reference axis. Then,
∫ θ2
θ1

E(θ)dθ
gives an estimate of the number of vectors with orientations be-
tween the angles θ1 and θ2. This function can thus be related to
the rose diagram or histogram for the data set of vectors. As-
suming the contact normals are oriented so that 0 ≤ θ ≤ 2π,
the function E(θ) must be a periodic function with a period of
2π. Consequently it can be expanded using the following Fourier
series

E(θ) =
1

2π

(
a0 +

∞∑
k=1

(akcos (kθ) + bksin (kθ))

)
(10.17)

Oda (1999a) states that ak and bk are zero for odd values of k.
Rothenburg and Bathurst (1989) used a Fourier series expan-

sion containing only two terms. The Rothenburg and Bathurst
equation is given by

E(θ) =
1

2π
[1 + acos2 (θ − θa)] (10.18)

where a is a parameter defining the magnitude of fabric anisotropy
and θa defines the direction of the fabric anisotropy or the principal
fabric. The analysis can be extended to include additional terms
in the Fourier series expansion; however, interpretation becomes
less elegant.

Barreto et al. (2008) outline the steps to determine the param-
eters a and θa. Taking the data set of contact normal orientations
each vector is binned into an angular interval Δθ centred around
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an angle θi. The number of contacts in bin i is then given by
ΔNc(θi) and is normalized by the product NcΔθ, where Nc is the
total number of contacts. For each angular interval the value of
ΔNc(θi) is related to the Fourier parameters as follows:

ΔNc(θi)

NcΔθ
=

1

2π
[1 + acos2 (θi − θa)] (10.19)

Equation 10.19 can be rewritten as

ΔNc(θi)

NcΔθ
=

1

2π
+

acos2θa
2π

cos2θi +
asin2θa

2π
sin2θi (10.20)

A least squares approximation can be used to determine the coef-
ficients acos2θa

2π
and asin2θa

2π
, from which the preferred fabric orienta-

tion, θa, and the anisotropy, a, can be calculated.
Using this approach, the value of a determines whether θa gives

the major or minor principal fabric direction. For a > 0, the θa
value gives the major principal fabric direction, and for a < 0, θa
gives the minor principal fabric orientation. The magnitude of a
can vary between 0 and 1 and relates to the degree of anisotropy.
Figure 10.11 illustrates the pattern of the contact normal distri-
butions for various values of a and θa. Figure 10.12 plots both
the distribution of contact normals and the best fit curve for data
obtained from two 3D DEM simulations.

A curve-fitting approach can also be applied to the orientations
of the tangential components of the contact force. As noted by
Rothenburg and Bathurst (1989), amongst others, the distribution
function takes a slightly different form to the distribution for the
contact normal orientations, and is given by:

Et(θ) = atsin2(θ − θt) (10.21)

As for the contact normal orientations, curve fitting exercise can
be used to determine the parameters at and θt.

Fourier analysis of 3D data

The Fourier analysis approach can also be applied to 3D data sets.
Referring to Chang et al. (1989), in the case where the fabric is
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(a) Distribution of contact
normals for various anisotropy
values

(b) Distribution of contact
normals for differing pre-
ferred orientations.

Figure 10.11: Illustration of relation between Fourier parameters
and contact normal distributions (Barreto et al., 2008)
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(a) Best fit parameters for isotropic
distribution of contact normals

(b) Best fit parameters for
anisotropic distribution of contact
normals

Figure 10.12: Fourier distribution fitted to contact normal distri-
butions obtained during anisotropic compression of a DEM sample
(Barreto et al., 2008)
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cross-anisotropic and symmetric about the z-axis as illustrated in
Figure 10.13, the function E(γ, β) is given by

E(γ, β) =
3(1 + acos2γ)

4π(3− a)
(10.22)

where a is the degree of anisotropy (−1 < a < 1).

Figure 10.13: Illustration of three-dimensional vector

Chang and Yin (2010) propose an alternative expression for the
distribution of the contact orientations in three dimensions that is
derived from a truncated form of a continuous three-dimensional
spherical harmonic expansion:

E(γ, β) =
1

4π

(
1 +

a20
4

(3cos2γ + 1) + 3sin2γ (a22cos2β + b22sin2β)
)

(10.23)

Note that whether Equation 10.23 or Equation 10.22 is used

∫ ∫
E(γ, β)sinγdγdβ = 1 (10.24)
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For 3D data, it may be more convenient to analyse the fabric
using the fabric tensor approach that is outlined in Section 10.6
below.

Relationship between fabric parameters and overall
response

Oda et al. (1980) stated that, after void ratio, the fabric ellipsoid
is the second most important index describing the structure of a
granular material. The work of Rothenburg and Bathurst (1989) is
important as it established a quantitative link between the macro-
scale stress-strain response and the fabric parameters obtained
by applying the Fourier series approach to the contact normal
orientations. As well as using the Fourier parameters a and θa
introduced above, they fitted two Fourier series to the contact
force vectors as follows:

f̄n(θ) = f̄n0 {1 + anfcos2(θ − θnf )} Normal contact forces

f̄t(θ) = −f̄n0atf {sin2(θ − θtf)} Tangential contact forces
(10.25)

where θnf refers to the orientation of the direction of the maxi-
mum average force and anf describes the anisotropy of the con-
tact normal forces, or “magnitude of the directional variation of
the average normal forces.” In a similar manner atf describes the
anisotropy of the tangential components of the force; however, θtf
defines the direction where the tangential force is zero on average.
The parameter f̄n0 is the average normal contact force when all
groups are given equal weight, i.e.

f̄n0 =

2π∫
0

f̄(θ)ndθ (10.26)

The parameter f̄n0 is introduced in both the equation defining the
normal force distribution and the equation describing the tangen-
tial force contribution, where it acts as a scaling factor.
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As illustrated in Figure 10.14(a), Rothenburg and Bathurst
considered the orientation of the three parameters a, anf and atf
during DEM simulation of biaxial compression of a specimen of
1,000 polydisperse disks subject to biaxial compression. The spec-
imen was initially isotropic and during compression σ22 > σ11 and
the confining pressure (σ11 remained constant. As illustrated in
Figure 10.14(b) close agreement was found between the principal
stress ratio and the sum 1

2
(a+ an + at). Note that the formula-

tion presented by Rothenburg and Bathurst (1989) assumes that
the directions of contact anisotropy and the principal directions
of force are coincident; general conditions where the direction of
anisotropy and the principal direction do not coincide were con-
sidered by Rothenburg (1980).

Figure 10.14: Correlation between stress-strain response and fab-
ric parameters in simulations of Rothenburg and Bathurst (1989)
(a) Fabric response (b) Stress strain response
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10.6 Statistical Analysis of Fabric,

the Fabric Tensor

The fabric tensor can be determined directly from the data set of
orientation vectors and used to determine the preferred orientation
and the magnitude of the anisotropy. As shown below, the values
of anisotropy and the preferred orientations obtained using the
fabric tensor are equivalent to those obtained using the Fourier
series approach. The most commonly used definition of the fabric
tensor is the second-order fabric tensor. In tensorial notation the
second-order fabric tensor (for contact orientations) is given as

Φij =
1

Nc

Nc∑
k=1

nk
i n

k
j (10.27)

where nk
i is the unit vector describing the contact normal orien-

tation and the summation takes place over the Nc contacts in the
system. In granular mechanics the definition of the fabric tensor
is generally attributed to Satake(1978, 1982). Ng (2004a) refers
to the earlier work of Scheidegger (1965). Fabric tensors for the
particle orientations, the branch vector orientations or the void
orientations could easily be obtained by substituting the relevant
unit vectors into Equation 10.27.

Higher-order fabric tensors can be determined, for example the
fourth-order fabric tensor is given by

Φijkl =
1

Nc

Nc∑
k=1

nk
i n

k
jn

k
kn

k
l (10.28)

These higher-order fabric tensors result in multidimensional ar-
rays that can be difficult to interpret. Kanatani (1984) is a useful
theoretical reference for those attempting to develop an advanced
understanding of the fabric tensor, including higher order fabric
tensors. Generally in geomechanics related DEM simulations, con-
sideration is restricted to the second-order fabric tensor defined in
Equation 10.27, and when the term fabric tensor is used, it nor-
mally refers to this second-order tensor.
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In two dimensions, expansion of Equation 10.27 gives a two-
dimensional matrix:(

Φxx Φxy

Φyx Φyy

)
= 1

Nc

( ∑Nc
k=1 n

k
xn

k
x

∑Nc
k=1 n

k
xn

k
y∑Nc

k=1 n
k
yn

k
x

∑Nc
k=1 n

k
yn

k
y

)
(10.29)

If the orientation of the vector to the horizontal (x) axis is given
by θ, then the normal vector for contact k is given by

nk =

(
nk
x

nk
y

)
=

(
cosθk

sinθk

)
(10.30)

Then if contact k makes an angle θk to the x axis, the fabric
tensor is given by

(
Φxx Φxy

Φyx Φyy

)
= 1

Nc

( ∑Nc
k=1 cos

2θk
∑Nc

k=1 cosθ
ksinθk∑Nc

k=1 sinθ
kcosθk

∑Nc
k=1 sin

2θk

)
(10.31)

As cos2θk + sin2θk = 1 and the tensor is normalized by the
total number of contacts, then the trace of the contact tensor is 1
(i.e. Φxx + Φyy = 1).

The fabric tensor is directly related to the distribution of vector
orientations described above. It can be determined from the a2
and b2 coefficients from the Fourier fit to the vector orientations
(Equation 10.17) as follows:

(
Φxx Φxy

Φyx Φyy

)
= 1

4

(
a2 + 2 b2
b2 −a2 + 2

)
(10.32)

Similarly Oda (1999a) states that a relationship exists between
the coefficients a2, a4, b2, and b4 and the fourth-order fabric tensor.
Similar relationships exist for the higher-order fabric tensors and
the higher-order terms in the Fourier Series expansion.

In three dimensions the second-order contact fabric tensor is
given by
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⎛⎜⎝ Φxx Φxy Φxz

Φyx Φyy Φyz

Φzx Φzy Φzz

⎞⎟⎠ =

1
Nc

⎛⎜⎝
∑Nc

k=1 n
k
xn

k
x

∑Nc
k=1 n

k
xn

k
y

∑Nc
k=1 n

k
xn

k
z∑Nc

k=1 n
k
yn

k
x

∑Nc
k=1 n

k
yn

k
y

∑Nc
k=1 n

k
yn

k
z∑Nc

k=1 n
k
zn

k
x

∑Nc
k=1 n

k
zn

k
y

∑Nc
k=1 n

k
zn

k
z

⎞⎟⎠
(10.33)

where Nc is the number of contacts and (nx, ny, nz) is the unit
vector describing the contact normal orientation. Referring Figure
10.13, in 3D the normal vector for contact k can be related to the
angles β and γ as

nk =

⎛⎜⎝ nk
x

nk
y

nk
z

⎞⎟⎠ =

⎛⎜⎝ cosβksinγk

sinβksinγk

cosγk

⎞⎟⎠ (10.34)

The fabric elements of the fabric tensor are then given by

Φxx =
∑Nc

k=1 cos
2βksin2γk

Φxy =
∑Nc

k=1 cosβ
ksinβksin2γk

Φxz =
∑Nc

k=1 cosβ
ksinγkcosγk

Φyx =
∑Nc

k=1 cosβ
ksinβksin2γk

Φyy =
∑Nc

k=1 sin
2βksin2γk

Φyz =
∑Nc

k=1 sinβ
ksinγkcosγk

Φzx =
∑Nc

k=1 cosβ
ksinγkcosγk

Φzy =
∑Nc

k=1 sinβ
ksinγkcosγk

Φzz =
∑Nc

k=1 cos
2γk

(10.35)

As in the two-dimensional case the trace of the fabric tensor is
1 (i.e. Φxx + Φyy + Φzz = 1). Both the two-dimensional and
three-dimensional fabric tensors are symmetric (i.e. Φij=Φji).

As in the two-dimensional case, the curve fitted parameters
and the 3D fabric tensor can be related. Referring to Figure 10.13,
Equation 10.15 can be expressed as

Φij =
∫ 2π

0

∫ π

0
ninjE(γ, β)sinγdγdβ (10.36)
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In three dimensions, knowing the contact normal distribution
function the fabric tensor can be calculated as (Oda (1982), Yim-
siri and Soga (2010)):

Φij =
∫
Ω
ninjE(n)dΩ (10.37)

where ni is the contact normal in direction i, E(n) is the contact
normal distribution function (spatial probability density function
of n) Ω is the unit sphere and dΩ is the elementary solid angle.

As outlined by Yimsiri and Soga (2010), if the distribution of
contact orientations for an axisymmetric system takes the form of
Equation 10.22 then the 3D fabric tensor is given by

⎛⎜⎝ Φxx Φxy Φxz

Φyx Φyy Φyz

Φzx Φzy Φzz

⎞⎟⎠ =

⎛⎜⎜⎝
3a−5
5(a−3)

0 0

0 3a−5
5(a−3)

0

0 0 −(5+a)
5(a−3)

⎞⎟⎟⎠ (10.38)

where the anisotropy is given by a. This expression assumes that
the preferred or principal orientations are aligned with the coor-
dinate axes. Referring back to Equation 10.23, Chang and Yin
(2010) include an expression for a 3D second-order fabric tensor
whose elements are related to the coefficients a20, a22, and b22.

The orientation data required for calculation of the fabric ten-
sor are available for output from DEM simulations; for example
n = fn

|fn| where fn is the normal contact force vector. Further-
more the contact force will act with equal magnitude in oppo-
site directions on both contacting bodies, and so we can restrict
consideration of the contact force orientations to 0 ≤ θ ≥ 2π
and 0 ≤ φ ≥ 2π. Similarly consideration of the particle orienta-
tions and branch vectors can also be restricted to 0 ≤ θ ≥ π and
0 ≤ φ ≥ π.

Interpretation of fabric tensor using eigenvalue analysis

The fabric tensor is an abstract concept and it is difficult to vi-
sualize. Perhaps the best place to start is to recognize the sim-
ilarity between the fabric and stress tensors. Both these tensors
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are second-order and symmetric. Just as the principal stresses
and their orientations can be determined from the stress tensor,
once the fabric tensor is known the preferred orientations and the
magnitude of the anisotropy can be calculated. The magnitude of
the major fabric is given by Φ1, the minor fabric is given by Φ3,
and in three dimensions, the intermediate fabric is given by Φ2,
i.e. Φ1 > Φ2 > Φ3. In the case of a two-dimensional planar DEM
analysis (e.g. using disks) the Φ2 parameter does not exist, while
in an axisymmetric system either Φ2 = Φ3 or Φ1 = Φ2.

Ng (2004a) provides a useful verbal description of these princi-
pal fabric parameters. He states that they represent the degree of
clustering of the orientation data, along each of the three preferred
fabric directions, i.e. they tell us the extent to which the particles
or contacts under consideration are oriented along the principal
fabric directions. In the same way, the principal stresses act along
specific principal stress orientations. In the case of fabric, knowing
these characteristics of the fabric tensor, we can develop an idea of
the shape of the distribution of the particle or contact orientations
under consideration.

Just as the eigenvalues of the stress tensor give the principal
stresses and their orientations, information on the principal fabric
parameters can be determined by eigenvalue decomposition of the
fabric tensor. The eigenvectors will be orthogonal unit vectors, i.e.
the principal fabric directions are oriented at right angles to each
other. The extent of the bias in the most preferential direction
of fabric orientation is given by the largest eigenvalue and the
corresponding eigenvector gives the direction of the principal fabric
component.

Alternative analytical approaches can be used to obtain the
principal fabric values. The expressions used in continuum me-
chanics (e.g. Mase and Mase (1999)) to calculate principal stresses
and their orientations can be applied to calculate the principal
fabric components and their orientations. For a 2D or axisymmet-
ric system, the principal fabric components for a two-dimensional
system are then given by(

Φ1

Φ2

)
= 1

2
(Φxx + Φyy)± 1

2

√
(Φxx − Φyy)

2 + Φ2
xy (10.39)
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Similarly the expressions used to determine the principal stress
orientations are given in most undergraduate solid mechanics texts
(e.g. Gere and Timoshenko (1991)) and these can be applied to
determine the principal fabric orientations.

Once calculated, the principal fabric components, Φ1, Φ2, and
Φ3, can be used to describe the magnitude or intensity of the
anisotropy. While a consensus on how the magnitude of anisotropy
should be quantified is not yet fully developed, all approaches
tend to use these principal values. In three dimensions, a fully
anisotropic fabric will be manifested by three distinct eigenval-
ues, while a transversely anisotropic or cross-anisotropic fabric
will yield only two distinct eigenvalues.

Analysis of fabric eigenvalues in two dimensions

For two-dimensional systems or three-dimensional transversely
anisotropic (cross-anisotropic) systems, consideration can be re-
stricted to the major and minor fabric components, Φ1 and Φ3.
(Here the minor fabric component is denoted Φ3 for both 2D and
3D data). Thornton (2000) quantified the anisotropy by consider-
ing the difference Φ1−Φ3. This approach was also adopted by Cui
and O’Sullivan (2006). Similarly, Oda (1999a) cited Curray (1956)
who proposed the use of the parameter Φ1−Φ3

2
. Maeda (2009) de-

scribed the use of a slightly different form of the deviator fabric,
which he calls the “deviator fabric intensity”, this is given as the
product of the coordination number and the deviator fabric, i.e.
for his 2D simulations it is Z (Φ1 − Φ3).

Instead of looking at the difference between the principal eigen-
values of the fabric tensor, some authors have considered the ratio
of these two components. For his 2D simulations, Bardet (1994)
quantified anisotropy as the ratio Φyy

Φxx
; this expression gives a valid

estimation of anisotropy when the principal fabric is oriented in
the vertical (y) direction (as is the case in biaxial compression
tests). Ibraim et al. (2006) directly considered the ratio of the
principal fabric values, i.e. Φ1

Φ2
.
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Comparison of second-order fabric tensor and Fourier se-
ries approach to calculating fabric

(a) Contact force network
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(b) Histogram of contact normals

Figure 10.15: Illustration of a histogram of contact forces for an
anisotropic assembly of 9,509 2D disks, σ1/σ2 = 1.94

To demonstrate the equivalence of the anisotropy obtained us-
ing the fabric tensor and the anisotropy obtained by fitting a
Fourier series to the distribution data, two sample 2D analyses are
considered. Figure 10.15 gives the distribution of contact forces
and the histogram for the specimen considered in Figure 10.8. The
specimen has been subject to biaxial compression and these data
are the contact normal orientations close to the point where the
peak stress is mobilized. The fabric tensor is given by

Φ =

(
0.4748 0.0014
0.0014 0.5252

)
(10.40)

Eigenvalue analysis gives the values of Φ1 = 0.5252 and Φ3 =
0.4748 for the major and minor fabric parameters, with the ma-
jor fabric having an orientation of 88.4◦ to the horizontal. The
anisotropy given by Φ1 − Φ3 equals 0.0504. Using the curve fit-
ting approach described above to obtain the Fourier parameters,
yields values of a = −0.1003 and θa = −1.6◦. As a < 0 this gives
a preferred major fabric orientation of 90◦ − 1.6◦ = 88.4◦ to the
horizontal, and |a| ≈ 2 (Φ1 − Φ2).
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The findings are similar when a more anisotropic data set was
considered. Figure 10.16 illustrates the distribution of orientations
of a set of vectors obtained when analysing clay fabric from SEM
data. In this case the fabric tensor is given by

Φ =

(
0.612 −0.0121

−0.0121 0.388

)
(10.41)

Eigenvalue analysis gives Φ1 = 0.613, Φ2 = 0.387 and Φ1 − Φ2 =
0.226 and a major fabric orientation of −3.10o to the horizontal.
The Fourier parameters obtained are a = 0.45 and θa = −3.10o.
This time, as a > 0, θa gives the major fabric orientation directly.
Again |a| ≈ 2 (Φ1 − Φ2).
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Figure 10.16: Distribution of unit vectors to analyse fabric from
SEM images (Wilkinson, 2010)

Analysis of fabric eigenvalues in three dimensions

Interpretation of fabric anisotropy becomes more challenging for
the general three-dimensional case. Barreto et al. (2009) proposed
quantification of three-dimensional anisotropy or deviator fabric
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using the following invariant (analogous to the shear stress in the
octahedral plane):

Φd =
1√
2

√
(Φ1 − Φ2)2 + (Φ2 − Φ3)2 + (Φ3 − Φ1)2 (10.42)

Kuo et al. (1998) used a similar expression to assess 3D fabric
anisotropy. Ng (2004a) also considered a fully three-dimensional
stress state and adopted the approach proposed by Woodcock
(1977). In this approach two fabric descriptors β1 and β2 are
considered:

β1 = ln
(
Φ1

Φ3

)
β2 = ln

(
Φ1

Φ3

)
/ln

(
Φ2

Φ3

) (10.43)

Woodcock presented a graphical technique to interpret the fabric
eigenvalue data using β1 and β2. In Woodcock’s notation Φ1 is
denoted S1, Φ2 is denoted S2, and Φ3 is denoted S3. As illustrated
in Figure 10.17, the value of ln

(
Φ2

Φ3

)
is plotted on the horizontal

axis, while the value of ln
(
Φ1

Φ3

)
is plotted on the vertical axis. If

the eigenvalue data plot at the origin the fabric is isotropic and
the vectors are uniformly distributed. For an anisotropic fabric
the value of β1 then indicates the extent of the concentration of
vectors in the preferred orientation. If the eigenvalue data plot
along the vertical axis the fabric is axisymmetric. Otherwise, the
β2 value determines whether the distribution of orientations is a
cluster or a girdle.

Alternative definitions of the fabric tensor

Alternative definitions of the fabric tensor exist; for example Lud-
ing et al. (2001) propose that in calculating the fabric tensor, the
fabric tensor for each particle should initially be calculated (by
considering the contact locations relative to the particle centroid),
then the average fabric tensor within a defined measurement vol-
ume/region should be calculated by considering the sum of the
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Figure 10.17: Graphical means for interpreting fabric tensor eigen-
values proposed by Woodcock (1977)

particle contributions to the overall fabric, normalized by the par-
ticle volumes, and then divided by the overall volume of the mea-
surement region.

Filters can be applied to the data considered for inclusion in
the fabric tensor; for example Kuhn (2006) suggests the use of a
“strong” fabric tensor, including only those contacts that carry a
greater than average force:

Φs
ij =

1

NS
c

∑
k∈S

nk
i n

k
j (10.44)

where there are a total of NS
c contacts within the set S that com-
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prises those contacts transmitting a force exceeding the average
force.

Fabric tensor for particle and void orientations

While the particle orientation tensor can simply be calculated by
considering the long-axis orientations of the particles (e.g. Ng
(2009a)), this definition does not account for the particle geometry.
A particle whose intermediate axis length is only slightly bigger
than its minor axis length would have the same contribution to
the overall tensor as a particle whose intermediate axis length is
just smaller than its major axis length. Oda et al. (1985) propose
the use of a weighted tensor, Φparticle

ij , for particle orientations that
is given by

Φparticle
ij =

1

λ

Np∑
p=1

T p
kiT

p
ljS

p
kl (10.45)

where Np is the number of particles and Tij is the orientation

tensor for particle p. If xpb
i are the coordinates of the point in

a Cartesian coordinate system centred at the particle centroid,
x′pb
j = Tijx

pb
i gives the coordinates of a point on the particle defined

in a local coordinate system centred on the particle centroid with
axes aligned with the particles principal axes of inertia. The tensor
Sp
ij is given by

Sp
ij =

⎛⎜⎝ ap 0 0
0 bp 0
0 0 cp

⎞⎟⎠ (10.46)

where ap, bp and cp are the major, intermediate and minor half-
lengths of the particle respectively. The parameter λ is given by
λ =

∑Np

p=1 (a
p + bp + cp).

In their description of analysis of photoelastic experiments,
Oda et al. (1985) define a void fabric tensor which can be used
to quantify void shape. Referring to Figure 10.18, for the two-
dimensional case the analysis involves constructing series of par-
allel scan lines through an image of the system at inclinations of
θ varying between 0◦ and 180◦. At a given orientation, θ, the
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contribution to the fabric tensor is then given by[
lθvcos

2θ lθvcosθsinθ
lθvcosθsinθ lθvsin

2θ

]
(10.47)

where lθv is proportional to the total length of the scan line at
orientation θ that intercepts the void space, scaled so that∫ 180o

0
lθvdθ = 1 (10.48)

The void orientation fabric tensor is then determined by summing
the contributions from each scan line orientation considered. The
ratio of the major and minor fabrics Φvoid

1 /Φvoid
3 gives a measure

of the void elongations.
Kuo et al. (1998) also used a parallel scan line approach to anal-

yse digitized images of sections through resin-impregnated sand
specimens. A finite number of orientations must be considered,
and Kuo et al. (1998) suggested that the scan line orientations be
varied in 5◦ increments. This method was developed for analysis
of images, and the most straightforward way to apply it to DEM is
probably to create binary digital images of the disk system. Where
the void fabric is considered for DEM data it is more typical to
use the graph-based approaches proposed in the following section.

401



Chapter 10. Analysis of Particle System Fabric

Figure 10.18: System of scanning lines to determine void orienta-
tion proposed by Oda et al. (1985)
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Use of the fabric tensor to link particle- and macro-scale
responses

Having established how to determine the orientation fabric, it re-
mains to discuss how this measure of fabric relates to the macro-
scale material behaviour. In their study of experiments on pho-
toelastic oval-shaped rods, Oda et al. (1985) compared the ma-
terial stress-strain response with the contact normal orientation
fabric tensor, the particle orientation fabric tensor and the void
orientation fabric tensor. The fabric measure that gave the best
correlation with the macro-scale response (quantified using the
principal stress ratio σ1/σ3) was the ratio of the major to mi-
nor fabric for the contact normal orientations. Similarly, in 3D
DEM simulations using ellipsoidal particles, Ng (2009a) showed
that the contact normal fabric tensor correlates more strongly with
the overall material response than the particle orientation tensor.
This is hardly surprising as the expression for the fabric tensor
(Φij =

1
Nc

∑Nc
k=1 n

k
i n

k
j ) is very similar to the expression for the stress

tensor (σij = 1
V

∑Nc
k=1 f

k
i l

k
j ). The unit vector for the contact nor-

mal orientation is given by nk = fk

|fk| , and for circular and spherical
particles the contact normal orientation equals the branch vector
orientation, i.e. nk = lk

|lk| . Note that Oda and his colleagues were
not working in isolation as they developed their understanding of
the relationship between the fabric tensor and the stress -strain re-
sponse. Oda et al. (1980) credit Cowin (1978) and Jenkins (1978)
with establishing that a second-order fabric tensor developed from
a consideration of the contact normal distribution is a physically
meaningful parameter to consider for granular materials.

As discussed further in Chapter 12, numerous DEM simula-
tions have demonstrated a link between the principal values of the
contact normal fabric tensor for the contact orientations and the
overall stress-strain response. Two examples to illustrate this ob-
servation are presented here: Figure 10.19 presents data from a
triaxial test simulation, while Figure 10.20 considers a simulation
of a direct shear test.

As noted by Oda et al. (1980), the experimental work on pho-
toelastic particles indicated that just as the principal stress axes
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can rotate during loading, so to do the orientations of the principal
axes of the fabric, with the orientation of the major component
of the fabric tending towards the principal stress orientation. The
evolution of the principal fabric orientation is tied in with the de-
velopment of strong force chains whose alignment develops during
loading so that they can transmit (or resist) the applied stresses.
An example of a study that has carefully considered the principal
fabric orientation during deformation is Li and Li (2009).

Maeda (2009) observed that the response of the deviator fabric
was similar in shape to the stress-strain response and he observed
in his simulations the occurrence of a limit anisotropy and a critical
anisotropy. Yunus et al. (2010) also put forward the idea of a
critical anisotropy corresponding to the critical state.

Applying the measure of void anisotropy calculated using Equa-
tion 10.47 to their photoelastic disk data, Oda et al. (1985) found
that upon axial compression the voids tend to orientate them-
selves with their long axis aligned in the major principal stress
direction and the voids themselves become more elongated. Us-
ing the graph-based approach to quantify fabric described below,
Kuhn (1999) found that during deformation the number of void
cells decreased and those that remained became larger and more
elongated as particles tended to lose contacts with their neighbours
in minor principal stress direction.
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Figure 10.19: Variation in deviator fabric during triaxial test sim-
ulations (monotonic test and test involving unload - reload cycles)
(a) Macro-scale stress-strain response (b) Deviator fabric variation
(O’Sullivan and Cui, 2009b)
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Figure 10.20: Comparison of macro-scale stress ratio and deviator
fabric for simulations of a direct shear test (Cui and O’Sullivan,
2006)

10.7 Particle and Void Graphs

The concept of a particle graph was considered in Chapter 9, where
Bagi’s dual cell system for measuring stress and strain was intro-
duced. There are a few motivations to develop graph representa-
tions of granular materials. A graph consists of nodes and cells,
and these cells form base units that can be used for the calcula-
tion of local stresses and strains or to analyse the material fabric.
In addition, it may be possible to use developments in network
science to interpret DEM data. Macro-scale data seem to indicate
that there might be some type of organized complexity associated
with granular materials. If the particle or contact data can be
expressed as a network, then the tools used in network analysis
and complexity theory can be applied to granular materials.

The idea of using a graph representation for granular materials,
including the concept that two, dual graphs exist, i.e. a particle
graph and a void graph, is credited to Satake (e.g. Satake(1978,
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1992)). Many interesting ideas about using graphs to analyse gran-
ular material fabric and deformation have been proposed by Bagi
(e.g. Bagi(1996, 2006)) and her particle graph constructs called
the material cell and space cell systems were introduced in Chap-
ter 9. Here two additional approaches to construct graph repre-
sentations of particles are considered, referring primarily to Kuhn
(1999) and Li and Li (2009).

Constructing the particle graph

The concepts of a tessellation and the Delaunay triangulation were
introduced in Chapter 1. The most straightforward way to con-
struct the particle graph is to create a Delaunay triangulation of
the particle centroids and then to delete from the triangulation
those edges that connect particles that are not contacting. As
illustrated in Figure 10.21, Kuhn (1997) uses a slightly more com-
plex criterion to create his particle graph by restricting consider-
ation to participating particles. The thinner black lines represent
the graph formed by Delaunay triangulation on the disk centroids.
The thicker lines represent the edges of the particle graph; these
edges are identified by removing the isolated, pendular, peninsu-
lar and island particles (defined in Figure 10.4) from the Delaunay
graph, i.e. only participating particles are included in the particle
graph.

Each edge of the graph is then a branch vector, with no specific
rule governing the choice of the orientation of the vector (i.e. the
vector joining particle a and particle b can point from a to b or
b to a arbitrarily). Satake terms this graph the particle graph.
In the graph the particles correspond to the node points and the
branch vectors correspond to the graph edges. The voids then
correspond to the cells within the graph. A void graph can also be
created connecting the centroids of adjacent voids. The particle
and void graphs are complementary or dual graphs, with each
branch in the void graph being associated with a branch in the
particle graph As noted by Li and Li (2009), the definition of a
single void in 3D is ambiguous. Therefore when extending this
concept to three dimensions, it may be more reasonable to define
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a minimum “throat width” to define the edges of a given void.
Rather than creating a tessellation based upon the particle cen-

troids, Li and Li (2009) proposed using one based on the contact
points. The first step in the graph creation is to carry out a Delau-
nay triangulation of each particle, with the triangle nodes being
the contact points on the surface of the particle. These triangles
are merged to form a single solid particle cell for each particle.
Then, as illustrated in Figure 10.22(a), the Delaunay triangula-
tion (tessellation) for the entire system of contacts is created. To
separate the system into the solid and void elements illustrated in
10.22(b), only those edges in the system tessellation that are also
edges of solid particle cells are permitted to remain. Referring to
Figure 10.22(c), the cells in the solid cell system are formed by
identifying the centres of the void elements, and creating a tri-
angulation of each void element using its centroidal coordinates
and the contact points that define the edges of the solid elements
enclosing the void element. Any edges that are entirely contained
within a solid element are then deleted to form the solid cell sys-
tem illustrated in Figure 10.22(c). The complementary void cell
system (Figure 10.22(d)) is constructed by creating a triangula-
tion based on the centroid of the solid element for each particle
and the contact points on the surface of the particle. Then edges
that correspond with solid element edges are deleted to form the
void cell system.
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(a) Creation of graph

(b) Elements of graph

Figure 10.21: Illustration of the particle graph proposed by Kuhn
(1997)
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(a) Delaunay triangulation
of contacts

(b) Division of system into
solid and void elements

(c) Solid cell system (d) Void cell system

Figure 10.22: Approach to construct particle and void graphs pro-
posed by Li and Li (2009)
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Use of particle and void graphs to analyse material fabric

Once created, the graphs can be analysed to identify features
within a particular granular material. The use of graphs to calcu-
late strain has been considered in Chapter 9; for example, Kuhn
(1999) made extensive use of his graph structure to identify pat-
terns of deformation within his 2D granular system. Graphs can
also be used to analyse fabric.

As noted in Section 10.2, the coordination number can be used
to estimate the redundancy of a granular material. Redundancy
can be more accurately assessed using the graph construct. For
a two-dimensional system, Satake (1999) defined a redundancy
number r̂ = s− 3, where s is the number of sides of a given cell.

Then the mean redundancy number for a system is

R =
1

Nv

∑
r̂ (10.49)

where Nv is the number of void cells in the system. Satake states
that the mean coordination number Z and redundancy number
are related as

R =
6− Z

Z − 2
(10.50)

Kuhn (1999) proposes a number of graph-based measures to
quantify the topology of the granular material system. He defines
the average valence of the system to be

m = 2
Mp

L
(10.51)

where Mp is the number of edges in his graph (i.e. the number of
branch vectors for the participating particles) and L is the number
of cells in his system (these are called void cells as a closed loop
of edges will surround an effective void). Kuhn presents the Euler
formula for his particle graph to be

L−Mp +Np
p = 0 (10.52)

where N p
p is the number of participating particles. As noted above,
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the effective coordination number is given by

Zp =
2Mp

Np
p

(10.53)

Combining Equations 10.51, 10.52 and 10.53 the following rela-
tionship holds:

m = 2 +
4

Zp − 2
=

2Zp

Zp − 2
(10.54)

Figure 10.23: Cell branch vectors used by Kuhn (1999) to calculate
void anisotropy

As illustrated in Figure 10.23, for each cell the branch vectors
are oriented to form a closed loop around the cell. Kuhn (1999)
calculates a loop tensor for each cell. This tensor is given as the
sum of the dyadic products of the branch vectors for each cell
(Tsuchikura and Satake, 1998):

Kc
ij =

Nc
s∑

e=1

lei l
e
j (10.55)

where lei is the branch vector for edge e and there are a total of
N c

s edges or sides to cell c. The elongation of cell c is given by
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(K22/K11)
c and the average height-to-width ratio of the cell given

by
(√

K22/K11

)c
is a measure of the average vertical elongation of

the cell. The average value of
(√

K22/K11

)c
, for all the cells in the

system is a measure of the anisotropy of the system. This measure
of void fabric yields results that are in agreement with the findings
of Oda et al. (1985); Li and Li (2009) quantified the anisotropy of
their void cell system (illustrated in Figure 10.22(d)) by calculat-
ing the second-order fabric tensor based on the void vectors. They
defined these void vectors to be the vectors connecting the centre
of each void cell to the contacts along the edge of that void cell.

10.8 Conclusions

The tools presented in this Chapter are a non-exhaustive set of ex-
amples that illustrate how the soil fabric, and its evolution, can be
quantified from a geometrical point of view. While the approaches
are proposed as means to analyse data from DEM simulations,
some of these methods can also be applied to analyse 2D images
of soil obtained from optical microscopy, scanning electron mi-
croscopy or 3D micro-computed tomography data sets. Effective
experimental particle-scale image analysis is constantly develop-
ing, however information on fabric evolution during deformation
in physical tests cannot easily be obtained. Use of image analysis
of two-dimensional thin section images or three-dimensional CT
data sets can provide information on particle orientations at spe-
cific points in the testing sequence. While researchers have been
developing techniques to quantify soil fabric based on SEM im-
ages over the past few decades (e.g. Tovey (1980), Hattab and
Fleureau (2010)), the technology available both to obtain images
and to analyse these images is rapidly evolving, and Wilkinson
(2010) provides a comprehensive overview of the current state of
the art in this area.

This Chapter has, for the most part, focussed on describing
method that quantify the fabric of the material in an overall, or
average, sense. The existence of particle-scale heterogeneity is ob-
vious from diagrams of the contact force network (e.g. Figure
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10.15(a)). Kuhn (2003a) classifies heterogeneity into 5 categories:
these include heterogeneity in the material structure, static het-
erogeneity (stresses and forces) and kinematic heterogeneity (dis-
placements and rotations). The variation in velocities (velocity
fluctuations) has been discussed in Chapter 8. Examples of stud-
ies that consider kinematic and static heterogeneity include Chang
and Misra (1990) and Kuhn (2003a). Of relevance to the descrip-
tion of fabric, Kuhn (2003a) proposes that topological heterogene-
ity can be quantified by considering the coefficient of variation
of the valence (i.e. particle-scale coordination number), this can
be calculated as the standard deviation of the valence divided by
the mean valence. To quantify geometrical heterogeneity, Kuhn
proposed calculating a fabric tensor for each particle by consider-
ing the contacts associated with that particle. The average and
the standard deviation of the particle anisotropies calculated from
eigenvalues of the particle fabric tensors could then be used to
quantify the heterogeneity of the anisotropy.

There are almost as many different methods to analyse the
data from DEM simulations as there are research groups in the
area. There is, however, a need to adopt a common language to
maximize the impact of DEM analyses. Traditional soil mechanics
quantifies packing density in terms of porosity or specific volume,
i.e. e or v, and describes the evolution of stress using the mean
stress p′ and the deviatoric stress (q). Numerous studies indi-
cate that if the material anisotropy is quantified by considering
the difference between maximum and minimum eigenvalues of the
second-order contact fabric tensor, the variation of this anisotropy
with strain correlates closely with the stress-strain response. It
would seem logical for micro-soil mechanics to adopt the coordi-
nation number as a measure of contact density and the deviator
fabric Φ1 −Φ3 as a measure of the material anisotropy. This con-
clusion is, however, largely based on the results of simulations with
spherical and convex particles and point contacts. As additional
information on more realistic particle geometries becomes avail-
able, the contact fabric tensor may need modification to account
for contact areas.

Finally, it may be appropriate to question the motivation for
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quantifying fabric. In the first instance, the methods presented in
this Chapter are tools that can be used to propose rational descrip-
tors of the mechanics that underly the often complex macro-scale
response of granular materials. These measures may, in the long
term, be used in continuum constitutive models. Some continuum
constitutive models that include a fabric term have already been
proposed, (e.g. Papadimitriou and Bouckovalas (2002)).
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Chapter 11

Guidance on Running
DEM Simulations

This Chapter includes some observations that may be of use to
those running particulate DEM simulations or considering run-
ning them in the future. While it is probably an exaggeration to
state that there is an “art” to achieving successful simulations,
the user certainly needs a bit of time to develop simulation skills
prior to embarking on full-scale “production analyses” that will
generate the final results. As with any numerical method, the
user should also have an understanding of the numerical algo-
rithm and details such as the behaviour of the the contact model
used. A complicating factor for DEM simulations, in comparison
with continuum methods, is the need to generate the initial pack-
ing configuration for the simulations. As noted in Chapter 7, the
specimen generation simulation stage where the DEM model is
created can be more computationally expensive than the simula-
tion of the boundary value problem of interest. Virtually all DEM
analyses simulate a non-linear system; therefore it can be difficult
for the analyst to know whether the simulation results are correct
or not. (Suggestions on suitable validation problems are given in
Section 11.7 below.) These challenges mean that it can be diffi-
cult initially for users to develop appropriate techniques used to
achieve accurate simulation results. Documented research studies
that have used DEM vary in the extent to which the details of
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the simulation approach are described. The guidance provided by
Kuhn (2006) and discussion by Ng (2006) are both useful. As al-
ready discussed in Section 5.3, Thornton and Antony (2000) give a
particularly clear description of how to use periodic boundaries to
achieve a prescribed isotropic stress state and then to shear a sam-
ple in a strain-controlled periodic cell simulation. Potyondy and
Cundall (2004) discuss the use of DEM to simulate the response of
a bonded material and the detailed description of the simulation
approach given include comments relevant to DEM analysts sim-
ulating the response of unbonded materials. The objective of this
Chapter is to provide some preliminary guidance on simulating
physical systems using DEM, drawing on personal experience and
documented studies. The discussion will, hopefully, be of some
use to first time users of DEM in particular.

It is important to be aware that the results obtained in a DEM
simulation may be very sensitive to the particular initial geometry
of the system to be analysed. The guidance on molecular dynam-
ics simulations by Rapaport (2004) is directly applicable to DEM
simulations. He argued that the output of a simulation should be
treated using the same statistical methods as used in analysing ex-
periments and that care must be taken to demonstrate reliability
of results and adequate sampling. Appropriate validation of the
code is also obviously essential.

11.1 DEM Codes

Two DEM codes are associated with the original Géotechnique
publication outlining the DEM algorithm (Cundall and Strack,
1979a) and the NSF report (Cundall and Strack, 1979b). These
codes were called BALL (a 2D code) and Trubal (a 3D code).
To date most of the DEM simulations within the geomechanics
community have been completed either using the original Trubal
code Cundall and Strack (1979a) (including modified versions of
Trubal such as ELLIPSE3D: Lin and Ng (1997)) or the “Particle
Flow Codes” PFC2D and PFC3D. PFC2D and PFC3D are com-
mercially available and are somewhat linked to Trubal as Peter
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Cundall has had significant input in their development. Running
simulations using PFC2D or PFC3D requires the analyst to de-
velop skills in the interpreted programming language FISH. While
becoming an expert in FISH requires takes time, the flexibility it
then offers makes it a very attractive program for both research
and industry applications. At the time of writing, use of a sec-
ond commercial DEM code, EDEM (DEMSolutions, 2009) is be-
coming more widespread in the process and mining engineering
communities in particular. Open source DEM codes include ESyS-
Particle Simulation (Weatherley, 2009), YADE (Kozicki and Donz,
2008), “Virtual Geoscience Workbench” (Xiang et al., 2009) and
OVAL (Kuhn, 2006). These codes have largely been developed for
use in research. The open source LAMMPS Molecular Dynamics
software, (Plimpton et al., 2010), includes granular contact mod-
els and a granular implementation of LAMMPS, LIGGGHTS has
been developed by Kloss and Goniva (2010). Many other DEM
codes have been developed within individual research groups. The
contact dynamics method (Jean, 2004) is also used within the
French geomechanics/particulate modelling community in partic-
ular (e.g. Silvani et al. (2009)).

Note that this listing of DEM codes is non-exhaustive and sub-
jective (developed based largely upon familiarity with the codes
used in documented geomechanics research studies). Jing and
Stephansson (2007) give an overview of the history of the de-
velopment of DEM and list a number of additional codes. The
inclusion of any of the named codes in the above list should not
be taken as an endorsement of their accuracy. As with all soft-
ware, whether developed as a research code or for commercial use,
the user take the responsibility to satisfy themselves that the code
generates accurate results. Suggestions of DEM validation prob-
lems are presented in later in this Chapter.
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11.2 Two- or Three-Dimensional

Analysis?

An important decision to be made by researchers approaching the
use of DEM for the first time is whether to embark on 2D or 3D
analyses. Deluzarche and Cambou (2006) include a useful discus-
sion on the implications of using 2D simulations to gain insight
into the response of materials with 3D particles. Conceptually
particles in a 2D simulation must really be viewed as rods or flat
disks (when they are circular). While granular materials of inter-
est to engineers are nearly always 3D, as discussed in Chapter 12,
the number of documented 2D DEM studies published each year
has tended to outnumber the number of 3D DEM studies. The
advantage of 2D simulations is that a 2D simulation will run more
rapidly than a 3D simulation with equivalent numbers of parti-
cles. This difference in computational effort arises because 2D
particles have three degrees of freedom, while 3D particles have
six. Furthermore the number of contacts per particle (i.e. the
coordination number) is greater in the 3D case as contacts can
develop anywhere along the particle surface, rather than being re-
stricted to in-plane contacts, as in the 2D case. The time taken to
run a DEM simulation is largely determined by the number of con-
tacts in the system. 3D rigid body dynamic rotational equilibrium
is more complex than in the 2D case, as outlined in Chapter 2.
Particles in a 2D simulation will not experience out-of-plane forces
and only moments acting about axes orthogonal to the analysis
plane can be considered. The complexity of 3D systems relative to
2D systems also means that it is easier to develop a 2D DEM code
in comparison with the 3D case. As visualization of particle dis-
placements and contact force networks is much easier, 2D models
can be more useful to analysts interested in studying particle-scale
mechanics in detail. A final consideration is that commercial 2D
DEM codes can sometimes be significantly economically cheaper
than 3D codes.

In a general discussion on 2D analysis Brooks (2009) describes
two dimensional “flatland” as a space with “just enough room
for interesting and useful things to arise.” This is certainly the
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case in DEM analyses in geomechanics. The overall response of a
2D system is qualitatively similar to a 3D system, i.e. phenom-
ena such as the dependence of the material response on the state
(stress level and void ratio), hysteresis, dilation upon shearing, etc.
are all observed. As a 2D DEM model then captures many of the
key complex mechanical response features unique to soil and other
granular materials, it can be used with a large degree of confidence
to study the internal mechanics of granular materials and to assess
how different particle-scale parameters influence the overall mate-
rial response. The benefit of using two-dimensional analogues of
soil has been demonstrated in physical experiments using photoe-
lastic disks (e.g. de Josselin de Jong and Verrujit (1969), Oda
et al. (1985), Utter and Behringer (2008)), and experiments using
Schneebeli rods (e.g. Ibraim et al. (2010)). DEM studies in 2D,
including Rothenburg and Bathurst (1989), Kuhn (1999), Wang
and Gutierrez (2010) and Li and Yu (2010), amongst many oth-
ers, represent contributions that have significantly advanced our
understanding of granular material response. 2D DEM simula-
tions provide analysts with a convenient means to develop new
ideas about how to model granular materials, for example, Jiang
et al. (2005, 2009) demonstrated qualitatively the potential of
their contact models in 2D DEM simulations.

DEM analysts and the broader geomechanics community need
to carefully consider how to interpret the results of 2D DEM analy-
ses. Undoubtedly meaningful qualitative insight can be gained and
valid analyses of the relationship between particle-scale mechanics
and the overall macro-scale responses can be carried out. However
the geometrical restrictions imposed by reducing a 3D problem to
2D including neglecting the out-of-plane contacts and displace-
ments mean that drawing quantitative comparisons with the re-
sponse of physical 3D materials may not be appropriate. Both
physical experiments and DEM simulations have clearly shown
that the response of 3D granular materials depends on the three-
dimensional stress state, for example the intermediate principal
stress influences the overall strength (e.g. from a DEM perspec-
tive Ng (2004b), Barreto (2010), Thornton and Zhang (2010)).
Cui and O’Sullivan (2006) showed that when globally constrained
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to plane strain (2D) deformation, there are significant particle
movements orthogonal to the direction of movement. These ob-
servations have implications in particular for the calibration of 2D
DEM models against physical test data on materials with three-
dimensional particle geometries.

In their discussion on the use of 2D DEM simulations Delu-
zarche and Cambou (2006) pointed out that the differences in the
contact geometries mean that contact model parameters used in a
2D DEM model cannot be directly related to the material proper-
ties of real 3D particles. Furthermore careful consideration needs
to be taken when attempting to link 2D and 3D grading curves.
As almost anyone who has used 2D DEM will know, the void ra-
tios obtained for the 2D material, calculated by considering the
ratio of the area of voids to the area occupied by particles, differ
significantly from void ratio values obtained for real 3D materials.

11.3 Selection of Input Parameters

The input parameters for DEM simulations can be classified as
being geometrical (particle morphology and particle size distri-
bution) or mechanical (contact force stiffness). As noted by Ng
(2006), there are various parametric studies in the literature that
have documented the sensitivity of DEM simulation results to par-
ticle shape, the contact model parameters and the inter-particle
friction coefficient adopted. Firstly considering the choice of par-
ticle shape, the constraints on particle geometry used in DEM
simulations, along with approaches used to achieve more realistic
geometries, are discussed in Chapter 4. Circular and spherical par-
ticles are easy to implement in a DEM code and simulations will
be faster than for the case where non-circular/non-spherical par-
ticles are used. Non-circular and non-spherical particles are more
realistic. There is therefore a tradeoff between simulation cost
(run time) and physical realism. Many of the studies document-
ing the development of algorithms to simulate non-circular and
non-spherical particles include analysis of the material response
to particle geometry. As highlighted in Chapter 4, the significant
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difference between spherical and non-spherical particles is that for
non-spherical particles the normal component of the contact force
can impart a moment to the particles and play a role in resisting
rotation. Tordesillas and Muthuswamy (2009) discuss the influ-
ence of rolling resistance on force-chain stability, and the ability
to resist rotation will influence the stability of the strong force
chains that dominate the material’s mechanical response. De-
spite this limitation, simulations using assemblies of polydisperse
disks and spheres generated results from which meaningful con-
clusions about real soil response can be drawn (e.g. Rothenburg
and Bathurst (1989), Thornton (2000)). In considering the choice
of particle geometry, DEM analysts may also find experimental
studies that have considered the sensitivity of material response
to particle geometry useful (e.g. Cho et al. (2006)).

The second geometrical choice to be made is the particle size
distribution (PSD). It is very important to realize that uniform
disks and spheres will tend to “crystalize”; 2D uniform disks will
tend towards a hexagonal packing, while 3D uniform spheres will
tend towards either a face-centred-cubic or rhombic packing. There
is a significant difference between the response of uniform disks/-
spheres arranged on a regular grid and real soil (O’Sullivan et
al. (2002, 2004)), inhibiting the development of general conclu-
sions about the material response from simulations using uni-
formly sized particles. Geotechnical engineers have a good under-
standing of the influence of the PSD on the mechanical response
of a material and determining the PSD is a basic characterization
of any soil. Using DEM Cheung (2010) demonstrated that both
the particle-scale and overall response characteristics will be in-
fluenced by the PSD. As discussed in Section 7.2, it is possible
to replicate the particle size distribution for a physical material
in a DEM simulation test; however, the computational cost of
the simulations can be reduced by neglecting the finer particles in
the distribution. Neglecting the smallest particles is valid if we
can assume that these particles do not play a major role in stress
transmission.

Friction is a parameter that is both geometrical and mechan-
ical: it depends upon both the surface geometry (surface rough-
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ness) and the surface hardness. As outlined in Chapter 3, friction
is typically modelled in DEM using a single coefficient of friction
(i.e. the difference between static and dynamic friction is not con-
sidered) and there is little available data on the coefficient of fric-
tion between real soil particles. Researchers including Thornton
(2000), Cui and O’Sullivan (2006) and Yimsiri and Soga (2010)
have shown that there is a non-linear relationship between the
overall shear strength of the assembly of particles and the inter-
particle friction coefficient, with the overall strength being more
sensitive to changes in this parameter at smaller values of friction
than at higher values. For many DEM studies it would be appro-
priate to establish the extent of the sensitivity for the particular
problem of interest.

The selection of the contact model parameters also requires
careful consideration. Where a Hertzian contact model is used,
the model parameters can be directly inferred from the solid parti-
cle material properties. As noted in Chapter 3 the Hertzian/Hertz-
Mindlin contact model that is often used in DEM simulations is
theoretically derived by considering the interaction of two elastic
spheres. In principle, this should be adequate as a simple contact
model for soils and other granular materials. This model has been
shown to adequately represent the larger strain response (e.g. Cui
and O’Sullivan (2006)) however it does not generate data on the
small-strain response that matches experimental observations. If
the response at the contact between sand particles were Hertizan
then the small-strain stiffness of the soil (i.e. either Emax or Gmax)
would be proportional to the mean stress, p, raised to the power of
1
3
, i.e. Gmax ∝ p1/3. However, experimental evidence suggests that

the small-strain stiffness of a soil varies with the square root of the
mean stress. Discussion on this discrepancy from a micromechan-
ical perspective is given by McDowell and Bolton (2001), Yimsiri
and Soga (2000) and Goddard (1990). While the origin of the
discrepancy may be either geometrical (i.e. related to shape) or
rheological (i.e. related to the material properties), it seems that
further refinement to the DEM models used is needed to allow
the stress-dependent nature of granular material stiffness to be
accurately modelled.
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Where a linear spring is used as a penalty spring to calculate
the contact force, the objective is often to select a spring stiffness
so that the contact overlap is minimized for the stress level under
consideration. The ratio between the normal and tangential con-
tact spring stiffnesses (kn and kt respectively) may also influence
the overall response. As discussed by Hu et al. (2010), at higher
kn/kt ratios there is a tendency for the load to be attracted to
the stiffer normal contacts; this impacts upon the point at which
sliding will initiate at the contacts and hence influences the overall
material response.

Many DEM simulations have been carried out to examine gen-
eral aspects of granular material response without having a direct
link to a real sand. These simulations are often 2D and use disks
and linear contact springs (e.g. Kuhn (1999), Kruyt and Rothen-
burg (2009)). The coefficient of friction, the spring stiffnesses, and
the particle size distributions are therefore not directly linked to
any physical measurement and are selected by the user. In labora-
tory studies considering sand response, researchers often restrict
consideration to “standard” sands such as Leighton Buzzard Sand,
Monterey Sand or Hostun Sand. It would seem sensible that fu-
ture DEM analysts adopt a similar strategy and that, where they
are not considering a particular sand, they refer to previously pub-
lished simulation data to select their input parameters.

It can be particularly difficult to relate the damping parameter
applied in a DEM simulation to a physical property. Damping is
used to minimize the non-physical vibrations that develop at the
contacts because of the elastic nature of the rheological model
used to relate the contact forces and displacements. As noted in
Chapter 3, where a viscous dashpot is used, this can be related to
a coefficient of restitution. However, it is more difficult to relate
a mass damping parameter to a physical property of the material.
Ng (2006) includes a discussion on the sensitivity of the output
results to the damping parameter adopted, illustrating that this
parameter can influence both the macro-scale and particle-scale
responses. As discussed by O’Sullivan (2002) during deformation
there will be significant energy dissipation due to frictional sliding.
If mass damping is used in quasi-static simulations, it is best to
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use a small amount of damping during the specimen generation
stage of the analysis, and then to reduce this value to 0 or close
to 0 during subsequent deformation of the material. This will
minimize the potential for this parameter to unduely influence the
overall material response.

As in the case of any numerical model, it is useful to carry out a
parametric study to assess the extent of the influence of the input
parameters on the overall material response. It is also important
to document clearly the input parameters when reporting results
of analyses.

11.3.1 Calibration of DEM models against
physical test data

Many studies have confirmed the ability of DEM models to cap-
ture intrinsic features of granular materials (dilatancy, localiza-
tion, stress dependence of response, etc.). However, the DEM
model simplifies the complexity of the real physical system, most
notably in terms of modelling contact, particle geometry, particle
deformation and typically the number of particles involved. The
philosophy of calibration is therefore to acknowledge these sim-
plifications and rather than developing a material working using
measured particle-scale parameters, to “tune” or “calibrate” the
DEM model to capture the response observed in physical labora-
tory tests. Typically in calibration studies the model parameters
are then varied to capture the macro-scale response. Outside of
geomechanics the goal is often to select an appropriate rolling re-
sistance parameter so that spherical particles can be used to sim-
ulate industrial processing of non-spherical particles. Most of the
discussion in relation to DEM model calibration in geomechanics
to date has considered the application of DEM to simulate rock
mass response.

The idea of bonding particles together using appropriate con-
tact models to create a model of rock mass has been introduced
in Chapter 3 (Section 3.8) and is also discussed in Chapter 12.
The objective in these models is to assign appropriate contact
parameters between the disks to achieve a mechanical response
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that matches the response observed in laboratory tests. Once cal-
ibrated appropriately, the model can be applied to simulate more
applied boundary value problems. The basic idea of this approach
is outlined clearly by Potyondy and Cundall (2004). The DEM
models often use 2D disks as their base particles (e.g. Fakhimi
et al. (2006), Cho et al. (2007), Yoon (2007), Camusso and Barla
(2009)). DEM simulations on unbonded particles indicate the
same degree of sensitivity to the intermediate principal stress as
exhibited by real soils. The intermediate principal stress will also
influence the bonded granular material response. Consequently a
2D model calibrated against triaxial test data may not give an
accurate representation of the rock mass response during simula-
tion of a boundary value problem where the stress state is fully
three-dimensional. Potyondy and Cundall (2004) examined re-
sponses under different stress conditions and demonstrated that a
DEM model may capture the strength observed in different physi-
cal tests in different manners, giving the example of a DEM model
material that captures the material response in uniaxial compres-
sion, but underestimates the strength once a confining pressure is
applied, and then over estimates the strength in Brazilian tests.
It may be that rigorous calibration studies should demonstrate
the ability of the model to quantitatively simulate the material
response for different types of tests, with different test boundary
conditions, as well as the variation in observed response as testing
conditions (e.g. stress level) vary.

Wang and Tonon (2010) suggest that most calibrations are es-
sentially “trial and error”; however, most researchers vary each in-
put parameters systematically, and some analysts have developed
sophisticated calibration strategies. For example when calibrating
their model rock against physical test data, Kulatilake et al. (2001)
made an initial guess of the rock contact parameters by matching
their contact normal stiffness kn to the material’s Young’s modu-
lus E using E = kn

4R
where R is a representative particle radius,

and σt = Sn

4R2 where σt is the target tensile stress and Sn is the
contact normal strength. Assuming the contact shear strengths
and stiffnesses are given by kt and St, they then carried out a
parametric study to develop calibration curves to select the op-
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timal contact parameters. The complexity of the system means
that there can be interaction between the various parameters and
independent variation of parameters may not be sufficient to ob-
tain the best possible match to the physical response. Cheung
(2010) used a similar approach to calibrate a DEM model of a
reservoir sandstone. Yoon (2007) proposed application of a “de-
sign of experiment” (DOE) approach in calibration studies. DOE
is a structured, organized method for determining the relation-
ship between factors affecting a process and the output of that
process and Yoon includes an overview of different types of DOE
approach. DOE was also applied by Favier et al. (2010) to cal-
ibrate models using unbonded particles for materials processing
applications. Well documented parametric studies are useful as
they identify the parameters that should be considered in calibra-
tion; for example Schöpfer et al. (2009) illustrated that the rock
mass response depends strongly on the particle size distribution
used. Other studies that consider calibration of particulate DEM
codes to simulate rock mass response include Cho et al. (2007)
and Camusso and Barla (2009).

As outlined by Potyondy and Cundall (2004) the parameters
that have the most significant influence on the overall material
response for the bonded particle model of rock are the particle
shape, the particle size distribution, the packing of the particles,
and the contact model. Many DEM simulations include a limited
range of particle sizes (e.g. (Yoon, 2007): Rmax/Rmin = 1.66,
Fakhimi et al. (2002): Rmax/Rmin = 3). The parametric studies by
Potyondy and Cundall (2004) and Schöpfer et al. (2009) provide
useful information. For example, Potyondy and Cundall (2004)
simulated Brazilian tests and biaxial/triaxial tests in 2D and 3D
with 4 different average diameters in each case. They found that
while the particle size did not significantly influence the material
stiffness, the 2D and 3D Brazilian strengths and the 3D strength
in triaxial compression were sensitive to the particle size. Schöpfer
et al. (2009) showed that the overall response is sensitive to the
shape of the particle size distribution.

Considering the response of unbonded granular materials, an
interesting contribution has been made by Calvetti and his col-
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leagues (Calvetti (2008), Calvetti and Nova (2004), Calvetti et al.
(2004), Butlanska et al. (2009)). In their DEM calibration method
spherical particles are used to simulate the response of sand and
the experimentally determined particle size distribution is matched,
neglecting particles that are smaller than the D5 of the material.
Then the particles are completely inhibited from rotating to cap-
ture the rotational resistance that exists at the contact between
real non-spherical irregular sand particles. Calvetti has found that
where rotations are inhibited, the macro-scale friction angle is a
linear function of the inter-particle friction. As acknowledged by
Calvetti (2008), the inter-particle friction values he uses to simu-
late sand particles are rather low, with friction coefficients in the
range of 0.3 - 0.35. The stiffness (Young’s modulus, E) of the
assembly of particle was found to be a function of the ratio be-
tween the normal contact stiffness and average particle diameter.
While the ratio of the tangential to normal contact spring stiff-
nesses Kt

Kn
has only a slight influence on the Young’s modulus, this

ratio strongly influences the Poisson’s ratio, and Calvetti proposed
that to have realistic Poissons ratios, the value of Kt

Kn
should be

close to 0.25. Calvetti (2008) demonstrated that this approach to
calibration can capture the response of Ticino and Hostun sand,
while Gabrielia et al. (2009) successfully captured the response
of Adige sand. One point to note in relation to this approach
is that because rotation is inhibited, the particles at rest will be
in a state of static equilibrium considering translational motion,
but the resultant moment on the particle may not be 0. Conse-
quently the stress tensor for individual particles may not always
be symmetric. While Calvetti completely inhibited rotation, other
researchers have introduced a rotational resistance (often termed
rolling friction) between the DEM particles to compensate for the
differences in geometry between a real soil particle and a sphere.
The value of rolling friction is then an additional parameter to
consider in the calibration study as it is difficult to relate to a
particle-scale physical measurement.

The work of Cheng et al. (2003) demonstrated the ability of
DEM to quantitatively simulate the mechanical response of indi-
vidual sand grains. As noted in Chapter 4, crushable sand particles
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were modelled as assemblies of bonded spheres. The calibration
process focussed on simulating the crushing of individual agglom-
erate between two planar boundaries and comparing the response
with equivalent unconfined compression tests on real sand grains.
They then confirmed the validity of their model by comparing the
response of simulations of isotropic compression tests on an assem-
bly of particles with physical test data. This study is considered
in more detail in Chapter 12.

Even as DEM evolves, the restrictions on the number of par-
ticles simulated and the ideal nature of the particles and contact
models will remain. This has lead Simpson and Tatsuoka (2008)
to predict that as DEM develops into a tool that could be ap-
plied to field-scale problems, rather than being able to predict
response from input of particle-scale input parameters, some form
of macro-scale calibration of the DEM model against appropriate
laboratory tests will always be necessary. Calibration is not easy
and a strategy developed for one sand may not be applicable to a
second material. For example, while Cheung (2010) successfully
calibrated a model that can simulate the response of one cemented
sand (Castlegate) at various stress levels, using the same calibra-
tion approach a model of Saltwash sandstone was created and this
was less effective at replicating the physical response over a range
of stress levels.

11.4 Choice of Output Parameters

The process of planning or designing a DEM simulation includes
the selection of the parameters to monitor and output. The data
chosen for output should of course allow suitable analysis of the
response of the system of grains, but also facilitate an assessment
of the performance of the simulation. The DEM analyst is pre-
sented with a wide spectrum of parameters for potential output.
As noted in Chapter 8, “snapshot” files output at specific time
intervals that list the particle positions and contact forces are use-
ful to generate images of the system as it evolves. Measurements
of the stresses and fabric of the material (using the methods out-
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lined in Chapters 10 and 9) are typically made at more regular
intervals. As writing to disk is computationally expensive, these
parameters are typically saved to memory for output at the end of
the simulation. To assess the effectiveness of the simulation it is
useful to monitor either the average or maximum contact overlap
and the energy of the system. (Kuhn (2006) monitors a “dimen-
sionless overlap” that is the ratio between the average overlap at
the contact points and the mean particle size, while Ng (2006)
considers the maximum overlap between particles.) It is also use-
ful to measure the forces along all boundaries to the system to
assess whether the assembly is overall in, or close to, a state of
static equilibrium. Where a servo-controlled algorithm is used in
conjunction with rigid boundaries (Section 5.2) it is important to
output both the target stress and actual stress to assess the suc-
cess of the servo-controlled algorithm and the control parameters
used.

11.5 Number of Particles

The problem of achieving a direct mapping between the numbers
of particles in the physical systems under consideration and in the
DEM model is daunting. There are very large numbers of parti-
cles in even small samples of sand. This can be illustrated by a
very simple calculation. Consider a small triaxial test specimen
that is 30 mm in diameter and 60 mm high and has a void ratio
of 0.65. The volume occupied by soil particles is 16,708 mm3. If
we assume a D50 of 200 μm for this material, then a representa-
tive particle volume would be 4

3
π0.13 = 0.004mm3. Dividing the

total volume of particles by this representative volume, a rough
estimate of the number of particles in the specimen is 4 million.
Similar calculations have been made by others, for example Dean
(2005) estimated that there are about 1 million 1 mm sized parti-
cles in a volume of 1 litre. The need to achieve results in realistic
run times restricts analysts to consider significantly smaller num-
bers of particles. Referring to Chapter 12, geomechanics DEM
simulations using more than 1 million particles are rare. This is
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a key constraint on the use of DEM to consider industrial prob-
lems in particular. As discussed in Chapter 13, developments in
high-performance computing will hopefully contribute greatly to
solving this problem. In the meantime, analysts need to carefully
consider the implications of the unrealistically small numbers of
particles used for their particular application. The importance of
considering system size is not unique to particulate DEM, Rapa-
port (2004) also highlighted the need to understand the implica-
tions of the finite size of the system when simulations are used to
predict physical responses in molecular dynamics simulations.

In experimental geomechanics, consideration is typically given
to the relationship between the particle diameter and the specimen
size. For example Jeffries et al. (1990) described triaxial compres-
sion tests that examined the response of specimens of dense sand
to sample size. It would be rare to see a physical experiment (e.g.
a triaxial test) performed on a sample that is less than about 10
- 20 times the size of the largest particle in the system. Mar-
ketos and Bolton (2010) consider this from a DEM perspective,
citing the guidance of Head (1994), who specified that the mini-
mum ratio of sample size to maximum particle dimension should
be 5 when testing compressive strength, 10 for consolidation tests
and 12 for permeability tests. This rule is not always strictly
adhered to in DEM simulations, with the simulation computa-
tional cost obviously limiting the number of particles that can be
included in the “virtual” samples. It clearly is important to in-
clude enough particles in a DEM simulation so that the response
is representative of the material in general and not indicative of
that particular disk configuration, i.e. the analyst must confirm
whether two simulations with the same particle sizes and shapes,
and the same coordination number, but with slightly different ini-
tial coordinates, give the same mechanical response. In Figure
11.1(a) and (b) biaxial test simulations were repeated on speci-
mens of 224 and 896 disks respectively (see also O’Sullivan et al.
(2002)). For both simulations a small perturbation was introduced
by varying the particle size distributions slightly. As illustrated in
Figure 11.1, the response of the smaller sample was clearly very
sensitive to small variations in the distribution of the radii sizes,
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(a) Stress-strain response of
samples with 224 disks

(b) Stress-strain response of
samples with 896 disks

Figure 11.1: Illustration of sensitivity of systems with different
numbers of particles to small perturbations O’Sullivan et al. (2002)
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while the sensitivity of the larger specimen was less marked. The
large fluctuations in the response observed in the smaller simula-
tions indicates that the macro-scale response is highly sensitive to
a change in only one or two contact positions. In Figure 11.2 the
response of two equivalent specimens with 5,728 disks and 12,512
disks can be seen to be very similar. While the results presented
in Figure 11.2 indicate that upscaling of DEM results to samples
with larger domain sizes is possible, care should be taken in ex-
trapolating these findings to simulations with different boundary
conditions, particle geometries or particle size distributions.

Careful consideration of the influence of specimen size on the
measured response is given by Kuhn and Bagi (2009). These au-
thors cite the earlier work of Bazant and Planas (1991) who pro-
pose the two main mechanisms for introducing size effects in gran-
ular materials are a fracture mechanics size effect and a boundary
layer effect. Kuhn and Bagi link the fracture mechanics size effect
with the fact that the width of a shear band depends on the par-
ticle size rather than the specimen size. The boundary layer effect
occurs because the particle packing density and fabric close to the
boundaries will differ from that in the interior of the specimen
and the relative volume of affected material in the boundary zone
compared to the total volume will increase as the sample size de-
creases. In their simulations of tunnel boring machine-soil interac-
tion Melis Maynar and Medina Rodŕıguez (2005) used a relatively
small number of particles for this type simulation (13,100 rigid
clusters, each comprising two overlapping spheres), and observed
that their simulations were very sensitive to small perturbations
(e.g. small changes in the particle packing).

Potyondy and Cundall (2004) make some useful comments re-
garding the issue of simulation size. They propose a guideline that
stresses should be measured over a volume 12 particles in diam-
eter to ensure homogeneity of response. They also provide some
interesting data on the relationship between particle size and ob-
served macro-scale response. A parametric study was carried out
in which parallel bonded model rock specimens were subject to
a Brazilian test and biaxial (2D) and triaxial (3D) tests at 0.1
MPa and 10 MPa. The 2D specimens had dimensions 31.7 mm
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(a) Initial disk configurations for biaxial tests

(b) Specimen response for large random biaxial
simulations, indicating location of strain mea-
surement points

Figure 11.2: Equivalence of response for two large, dense, two
dimensional disk specimens subject to biaxial compression
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× 63.4 mm, while the 3D specimens had dimensions 31.7 mm ×
31.7 mm × 63.4 mm. The average particle diameter within the
specimens was varied and all other input parameters remained
constant. Representative findings are summarized in Figure 11.3,
where the mean value and the coefficient of variation (based on 10
DEM simulations) are plotted as a function of particle size, con-
sidering the overall Young’s modulus (Figure 11.3(a)) and friction
angle (Figure 11.3(b)). As can be observed the material Young’s
modulus tends to decrease slightly with increasing particle size in
both 2D and 3D simulations, while no clear correlation between
the friction angle and the particle size was observed. There is a
slight increase in the unconfined compressive strength and cohe-
sion with decreasing particle size, while the tensile stress decreases
slightly, and the Poisson’s ratio exhibits less sensitivity. While the
conclusions of this study may not be generalized to all DEM simu-
lations, the approach taken in this research is thorough and a very
good example of the detailed parametric studies that are advisable
before drawing conclusions from DEM simulations. A particularly
nice aspect of this work is the way the authors repeated the simu-
lations on equivalent specimens (generated using different random
number seeds) and then monitored the variation in the observed
response. For all of the macro-scale parameters observed there is
a clear decrease in the coefficient of variation as the particle size
decreases and the number of particles increases.

One way to avoid the problem posed by limited numbers of par-
ticles is to use a periodic cell , e.g. Thornton (2000) or Ng (2004b).
Where used to simulate element tests this approach also removes
the non-uniformities associated with boundary effects, which can
affect the macro-scale response measured. Cambou (1999) dis-
cusses the fact that where periodic boundary simulations are used
the representative volume element (RVE) considered must be suf-
ficiently large. Rapaport (2004) pointed out that where a periodic
boundary is used finite size effects arise. Pöschel and Schwager
(2005) considered the use of periodic boundaries in hard sphere,
event driven particle codes. They stated that if the periodic cell
is too small, correlations will develop between opposite sides of
the cell. Cundall (1988a) described the repetition of periodic cell
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Figure 11.3: Representative results from particle size study of Po-
tyondy and Cundall (2004) (a) Macro-scale Young’s modulus ver-
sus particle size, (b) Angle of friction versus particle size

simulations with 45, 150 and 1,200 spheres of two sizes subject
to triaxial compression to a strain of 60%. He found that the
overall sample responses were very similar, with more noise being
observed in the 45-sphere specimen. To assess whether a peri-
odic cell size is adequate, the analyst can either check whether
the results change significantly if the cell size is increased or al-
ternatively assess whether equivalent results are obtained if the
system is perturbed (e.g. a different series of random numbers
are used to generate the initial particle positions). However, for
his simulations using spheres, Barreto (2010) found 4,000 to be
the optimum number of particles for periodic cell simulations; he
compared simulations using 2,000, 4,000 and 8,000 particles. The
optimum number of particles will certainly depend on the particle
size distribution. Thornton and Zhang (2010) used a significantly
larger number of particles (27,000) than have been used in other
documented studies with periodic cell boundaries.

Simpson and Tatsuoka (2008) acknowledge the suggestion by
Cundall (2001) that for simulation of field-scale problems in par-
ticular, appropriate scaling laws may be adopted, but that it is
difficult to apply this approach to problems with strain localiza-
tions. Another alternative is to used a mixed boundary simulation
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environment. Just as Cui et al. (2007) used circumferential peri-
odic boundaries to simulate axisymmetrical systems, planar pe-
riodic boundaries can be used to simulate 3D systems deforming
in plane strain conditions. Cook et al. (2004) considered failure
of rock mass around a central, circular opening using 2D DEM
simulations and used an approach somewhat analogous to mesh
refinement in finite element analysis, where small disks were used
to simulate the rock mass close to the opening, and the disk size
increased moving away from the circular hole. In their model Cook
et al. (2004) varied the contact parameters as functions of the disk
size to achieve a constant bulk strength for the material.

11.6 Speed of Simulation

A DEM model comprises a large assembly of particles contacting
using (most commonly) elastic springs. Care needs to be taken in
selecting the speed at which a sample is compressed or sheared.
For many geomechanics applications the objective is to simulate a
quasi-static response. This means that the system is not flowing
and is in, or is close to, a state of static equilibrium. If the speed
of deformation is too fast, a dynamic response will be recorded
(i.e. stress waves propagating through the system) rather than a
static response, as might be intended. Furthermore in a servo-
controlled simulation it may appear that the specified stress state
is achieved, but in reality the system is responding like a large
spring (refer to Figure 2.5) and the equilibrium stress level is less
than that instantaneously measured.

To get a feel for the individual contact response in a DEM
model it is useful to consider a single degree of freedom sys-
tem comprising a weightless ball resting on a horizontal boundary
where the contact between the ball and the boundary is modelled
with a linear spring. If gravity is suddenly turned on, in the ab-
sence of energy dissipation, the force in the contact spring will
oscillate around the equilibrium position between a value of 0 and
twice the ball weight. If damping is applied, the magnitude of
the oscillations will decrease and the ball will come to rest. Sim-
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ilarly, when there is a change to the boundary conditions for an
assembly of particles, initially there may be an elastic response at
many of the contact points, with some of the particles experienc-
ing very high forces. If these forces are very large, the fabric of the
assembly can be disturbed, or in an extreme case selected parti-
cles may experience such unnaturally high accelerations that they
may escape from the boundaries because of excessively large par-
ticle displacements occurring within a single time step. As noted
above, and emphasized by Kuhn (2006), one way to mitigate this
problem is to apply changes in stress state incrementally.

Typically in DEM simulations with rigid walls, it is useful to
ensure that the forces measured along the boundaries are in equi-
librium, e.g. in a triaxial test simulation the total force on the
bottom boundary should be approximately equal in magnitude
to the total force along the top boundary throughout the sim-
ulation. Where a servo-controlled algorithm is used to control
the stress state by moving the system boundaries, ideally stress
changes should be applied slowly and incrementally so that the
assembly approaches the required stress state in a controlled and
monotonic manner. If the target stress is overshot it can be dif-
ficult to achieve the desired stress state; the system may simply
oscillate around the target value, with the overshooting indicating
that the walls are moving too fast. Furthermore there is a risk of
inducing undesirable changes to the fabric of the material. Simi-
larly care must be taken when using a servo-controlled algorithm
to control the stress state during a simulation and it is essential to
check that the desired stress state was achieved and maintained.
Carolan (2005) found that maintaining the stress state was more
difficult where particle crushing was simulated.

In servo-controlled simulations once the desired specific stress
state is attained, it is good practice to halt all boundary motion
and run through a number of DEM calculation cycles to ensure
that the system is in equilibrium at that required stress level.
Kuhn (2006) describes this as allowing a period of “quiescence”
For periodic cell simulations Cundall (1988a) described how he set
his strain rates to be zero at certain points in his simulations and
then monitored the stresses. If large stress changes were noted
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this was taken to indicate the presence of finite dynamic effects
and the test was repeated at a lower strain rate. Kuhn (2006)
also acknowledges that when selecting a deformation rate “slow is
(usually) better.” Accepting that running a simulation at a rate
that is too slow will waste time, he found that a trial and error
procedure is often needed to select the appropriate deformation
rate. He also suggests monitoring the average overlap between the
particles as a means to assess whether the speed is appropriate.
Allowance for a period of quiescence is also necessary when con-
figurations are read into the program from previous simulations
as numerical round-off may result in small variations in the disk
positions and in the contact forces. Similarly if there is a change
in the boundary conditions, e.g. from rigid boundaries to a stress-
controlled membrane, there will be local changes in the forces felt
by particles on the exterior of the sample, and a period of DEM
cycles without any applied deformation is recommended until a
state of static equilibrium is attained.

As acknowledged by many DEM analysts, the time step in a
DEM simulation should be significantly small so that a disturbance
propagates from a particle only to its nearest neighbours. The
strain rate will also influence the amount a particle moves in a
given time increment, and so there must be a balance between the
time step chosen and the strain rate applied.

Quantitative measures to assess whether the system is in equi-
librium exist. Radjai (2009) amongst others proposes a definition
for an inertia number that can be used to identify whether a flow
is quasi-static. The 3D inertia number I is given by

I = ε̇q

√
m

pd
(11.1)

where ε̇q is the shear strain rate, m is the particle mass, d is
the particle diameter, and p is the confining pressure. In 2D the
expression is slightly different:

I = ε̇q

√
m

p
(11.2)

For a simulation to be quasi static the condition I � 1 should
be met, giving an indication that the inertia forces are significantly
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lower than the contact forces. As outlined by Radjai (2009), this
parameter I is derived by considering that the static forces acting
on the particle (in 3D) are of the order fs = pd2 and the impulsive
forces due to shear strain, i.e. the inertia forces, are given by
fi = mdε̇q

Δt
where m is the average particle mass, Δt is the time

scale of the flow and is given by Δt = ε̇−1
q .

Kuhn (2006) and Ng (2006) consider the ratio of the magni-
tude of the resultant forces (i.e. the out-of-balance forces) acting
on the particles and the magnitude of the average contact force.
Kuhn (2006) considers the average moment imbalance acting on
the particles as a further indication of a pseudo-static state dur-
ing simulation. Ng (2006) defines a index to monitor during the
simulation as:

Iuf =

√√√√∑Np

p=1(f
p
res)2/Np∑Nc

c=1(f
c)2/Nc

(11.3)

where f pres is the resultant force acting on particle p and f c is the
contact force for contact c and there are Np particles and Nc con-
tacts in the system respectively.

11.7 Validation and Verification of

DEM Codes

As with any computer program, it is essential that a DEM code be
validated. For example in finite element analyses the “patch test”
is used to check for convergence and also to check that the pro-
gramming of the code is correct. In principle, validation of a DEM
code can be approached in two ways: analytically or experimen-
tally. Analytical validation using closed form solutions provides
information that the model is performing as it should, while ex-
perimental validation or verification conforms that the physical
material response is captured. Validation exercises are useful to
confirm correct implementation of the algorithms, the insensitiv-
ity of the program to the hardware platform used in simulations,
and that a user is correctly running the code.
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Figure 11.4: Study of ball sliding down an inclined plane
(O’Sullivan and Bray, 2003a)

11.7.1 Single-particle simulations

A preliminary check on any DEM code including a rigid wall im-
plementation is to assess whether a single-particle, resting on a
horizontal boundary will exhibit simple harmonic motion, with
the period being determined by the mass and the contact spring
stiffness. Simulating this system also gives an analyst a basic “feel”
for the fundamentals of the analysis method and allows them to
appreciate its dynamic nature. Simple single-particle systems can
be very useful analytical validation tools. For example, O’Sullivan
and Bray (2003a) demonstrated that simulating a ball rolling down
an inclined plane is a useful test to confirm appropriate implemen-
tation of the shear contact model in DEM codes. As illustrated
in Figure 11.4 this simple benchmark exercise was instrumental
in picking out an error in the shear spring formulation adopted in
the implicit DEM code, DDAD, and validating a modified shear
spring formulation.
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Another example of the use of a simple system in DEM vali-
dation is Munjiza et al. (2001) who validated their time integra-
tion algorithm for updating the rotations of non-spherical par-
ticles in three dimensions by considering the motion of a single
non-spherical particle subject to various initial angular velocities.
Vu-Quoc et al. (2000) also include some simple analytical valida-
tion examples for their ellipsoidal particles.

11.7.2 Multiple particles on lattice packings

The simple single-particle simulations are really only useful to vali-
date implementations of the time integration scheme and particle-
boundary interactions. Validation of the ability of the code to
simulate the response of an assembly of particles is also neces-
sary. Analytical validation of the ability of DEM codes to simu-
late the response of multiple interacting particles is challenging as
most dense assemblies of particles form statically indeterminate
systems. However, expressions for the peak strength of uniform
disks and spheres with lattice packings can be found by refer-
ence to Rowe (1962) or Thornton (1979). The study by Rowe
(1962) included physical experiments on hexagonally packed rods
and uniform spheres with lattice packings. Rowe’s work is useful
for those developing either 2D or 3D DEM codes. He validated
analytical expressions he proposed for assemblies of uniform disks
and spheres with regular packing configurations against triaxial
and biaxial compression tests on assemblies of steel balls and steel
rods respectively. In the original documentation of the Trubal
code, Cundall and Strack (1979b) used Rowe’s triaxial test on face-
centred-cubic packed spheres for validation purposes. A detailed
description of the simulation approach can be found in the PFC
3D User Manual (Itasca, 2004). In his analytical study Thornton
considers assemblies of spheres (3D) and provides expressions for
the peak stress ratios under both triaxial and plane strain con-
ditions. Both Rowe and Thornton give expressions for the peak
strength as a function of the particle friction, hence a parametric
study can be carried out to ensure the appropriate response is ob-
served for a range of friction values. These problems can play a
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key role in validating new implementations of algorithms in DEM:
for example Cui and O’Sullivan (2005) validated their circumfer-
ential periodic boundaries by firstly considering the response of a
specimen of uniform spheres with a face-centred-cubic packing.

11.7.3 Experimental validation

The analytical expressions proposed by Rowe (1962) and Thorn-
ton (1979) are themselves very idealized models of the material
response. Consequently comparison of DEM codes against physi-
cal tests is also necessary. It is important to draw a distinction
between validation tests and calibration tests. When calibrating a
model, the real material is tested and the DEM input parameters
are varied to match the physical response observed. In contrast,
in a validation test a simple granular material is considered and
the particle geometry and material properties are accurately mod-
elled in the DEM simulation. A calibrated model is developed to
capture features of the overall material response, rather than to
study fundamental particle-scale mechanics.

In two dimensions validation studies can be achieved using
Schneebeli rods or photoelastic disks. In one of the earliest ex-
perimental validation studies Cundall and Strack (1978) used the
BALL computer program to simulate two photoelastic simple shear
tests on photoelastic disks that had been carried out by Oda and
Konishi (1974). O’Sullivan et al. (2002) made some observations
that may be useful to others considering two dimensional DEM
code validation. If analysts are considering regular packings, it is
important to use precision manufactured rods, as the response of
these systems are very sensitive to small variations in geometry.
If randomly packed polydisperse rods are used then the sample
must be large enough to be insensitive to small perturbations to
the system as illustrated in Figure 11.1 above. Figure 11.5 illus-
trates a representative 2D validation study that considered biaxial
compression of hexagonally packed disks subject to vacuum con-
finement, simulations carried out using PFC2D.

In three dimensions, good correlation has been observed be-
tween the response of assemblies of steel balls and DEM simula-
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(a) Deformed specimen geometry: comparison of DEM
simulation and physical test

(b) Stress-strain response: comparison of DEM simula-
tion and physical test

Figure 11.5: Biaxial compression of hexagonally packed disks for
2D DEM code validation (O’Sullivan et al., 2002)
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tions using spheres (Cui and O’Sullivan (2006), Cui et al. (2007),
and O’Sullivan et al. (2008)). Figure 11.6 compares strain-control-
led physical cyclic triaxial tests (again with vacuum confinement)
with DEM simulations using circumferential periodic boundaries.

Typically validation studies considering the ability of DEM to
simulate the response of an assembly of particles focus on the
macro-scale, overall response of the assembly. The model’s ability
to accurately capture the particle-scale mechanics is then inferred
from a macro-scale agreement. Studies using photoelastic parti-
cles are an obvious method to validate DEM codes at the particle
scale. Another potentially promising alternative is the compari-
son of local strains and deformations obtained by analysis of the
DEM data with deformations calculated using analysis of images
obtained of 2D Schneebeli rod tests (e.g. using the data developed
by Hall et al. (2010)). Developments in micro-computed tomog-
raphy (e.g. Hasan and Alshibli (2010)) will likely allow future
verification of observations on the internal material structure and
its evolution that have been made using DEM. There is clearly a
need to compare the measurements of particle deformation mech-
anisms and fabric evolution obtained in DEM with physical exper-
iments. Comparison of images of particle motion during testing
with DEM simulations is one possible option, however, this neces-
sitates images with high spatial resolution, and possibly with high
temporal resolution. Promising results using this type of approach
are presented by Gabrielia et al. (2009) who compared a 3D DEM
simulations of a shallow foundation at the top of a slope with a
model test on sand. Good agreement was obtained between the
vertical load displacement plots for the physical model test and
the DEM simulation; considering the internal material response,
equivalent distributions of vertical displacements were obtained
for the DEM data and the physical test (where the displacement
data were obtained using digital image correlation).
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(a) Representative
laboratory test
specimen

(b) Representative
“virtual” specimen
for DEM analyses
(boundary conditions
indicated)
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Figure 11.6: Comparison of macro-scale response observed in the
laboratory tests and DEM simulations of strain-controlled cyclic
triaxial tests (O’Sullivan et al., 2008)
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11.8 Benchmarks

Potts (2003) discussed the results of two benchmarking exercises
that were performed to assess the ability of various FEM codes to
give equivalent results when analysing the same problem. The re-
sults indicated that the results obtained from a FEM analysis can
be user dependent. There is certainly a need to establish bench-
mark tests within the DEM geomechanics community to assess the
reliability of the various DEM codes that are currently available.
The objective of such a benchmark test would be to assess accu-
racy of different implementations and simulation approaches. A
benchmark test would also be important for testing implementa-
tions in different hardware environments and assessing computa-
tional performance. As granular materials are inherently complex
and highly non-linear it would seem that an initial benchmark test
should consider a simple simulation of triaxial/biaxial compression
of disks/spheres arranged on lattice packings with known analyt-
ical peak strengths, prior to embarking on simulation of a more
complex material or boundary value problem. Holst et al. (1999)
described a comparative study considering silo filling. When com-
pared, there was a wide scatter in the DEM simulation results.
Given the increase in use in DEM since this study was completed,
there is certainly scope for a repeated study considering a geome-
chanics application.
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Use of DEM in
Geomechanics

There are two primary motivations to use DEM in geomechan-
ics. Firstly, in applied boundary value problems, discrete ele-
ment methods can more easily simulate large-deformation prob-
lems than continuum-mechanics-based analysis tools. DEM sim-
ulations can also capture mechanisms such as arching or erosion
that are a consequence of the particulate nature of the material.
The second use of DEM is as tool in basic research. A discrete el-
ement simulation can probe the material response at a much more
detailed scale than can be monitored even in highly sophisticated
laboratory tests. In conventional experimental soil mechanics hy-
potheses about the mechanisms underlying the sometimes highly
complex response of soil can be proposed. A DEM model allows
us to delve into the inner workings of soil and confirm or reject
these hypotheses. To paraphrase Weatherley (2009), in a DEM
simulation information which is “hidden” in conventional physical
experiments is revealed.

This Chapter firstly gives an estimate of the extent of DEM
use in geomechanics, primarily by considering publications in peer-
reviewed international journals. Then a review of selected publi-
cations documenting DEM simulations of applied boundary value
type problems is presented. The final section of this Chapter con-
siders the use of DEM in basic soil mechanics research. As is clear
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from the data presented in Section 12.1, the number of people us-
ing DEM and applying it in a variety of interesting ways is rapidly
increasing. The examples of DEM use selected for inclusion here
should give readers an idea both of what can be achieved and
what has been achieved using particulate DEM. The most recent
references used here date from mid 2010, and it is reasonable to
anticipate further noteworthy contributions will be published in
the near future, building on this growing body of knowledge.

12.1 Extent of DEM use in Geomechan-

ics

DEM is by now established as a research tool across a number of
disciplines. Interest in DEM is rising rapidly and assessing the
state of the art of DEM use either in geomechanics, or in the
broader scientific community, is difficult as the situation is rapidly
changing. Zhu et al. (2007) used the Web of Science database to
gauge the extent of DEM use across engineering and the physical
sciences between 1985 and 2005. To get a more recent assessment
of the popularity of DEM the approach was again applied using
the ISI Web of Knowledge database (Reuters, 2010). The search
for DEM-related publications used the keywords discrete element
method/model, distinct element method/model, discrete particle
simulation/method/model and granular dynamic simulation. To
access the database over the full period, each keyword was input
separately as under the “topic” search option; therefore there is a
slight risk of double counting of papers. The results of this search
are presented in Figure 12.1. The survey indicated that an esti-
mated 2,451 papers relating to discrete element type simulations
were published between 1977 and the end of 2009. There has
been a continuous increase in the number of papers published per
year over the past 20 years, and between 1996 and 2006 there was
an almost linear rate of increase with about 18 additional papers
being published each year. There has been a more recent sharp
increase in the rate of DEM-related publications, with 425 papers
being published in 2009. This represents 127 additional papers in
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comparison with the number of publications from 2008. DEM is
clearly a method whose user community is rapidly growing. Direct
reference to Zhu et al. (2008) is useful as they cite many publi-
cations where DEM has been used both in basic and in applied
research across a range of applications, including geomechanics.

Figure 12.1: Synthesis of data obtained in ISI Web of Knowledge
Search, following approach of Zhu et al. (2007)

To determine the level of DEM use in geomechanics research,
the contents of nine geotechnical journals were reviewed and a
summary database of discrete element related papers published in
these journals was created. It was not possible to review every
single paper in these journals, rather discrete element publica-
tions were identified by reviewing the paper titles and the authors
names; therefore it is possible that a few relevant papers may have
been omitted. The journals considered were Géotechnique, the In-
ternational Journal for Numerical and Analytical Methods in Ge-
omechanics, the International Journal of Geomechanics (ASCE),
the Journal of Geotechnical and Geoenvironmental Engineering
(ASCE), Soils and Foundations, the Canadian Geotechnical Jour-
nal, Computers and Geotechnics, Geomechanics and Geoengineer-
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ing: An International Journal, and the International Journal of
Rock Mechanics and Mining Sciences. The time period examined
was between the start of 1998 and the end of 2009. A total of 130
papers were identified. This total excludes the use of block DEM
codes for rock block stability analyses; for an indication of contri-
butions using this type of analysis refer to Jing and Stephansson
(2007) or Bobet et al. (2009).

As illustrated in Figure 12.2(a) the general trend is for the
number of publications each year to increase, however this in-
crease has not always been consistent. Similar to the pattern in
the broader scientific community (Figure 12.1), there has been a
recent surge in DEM related activity in the geomechanics research
community. The range of DEM studies published within the ge-
omechanics literature can be broadly classified as documentations
of DEM algorithm modifications, validation of DEM models, cal-
ibration of DEM models, analyses of the relationship between
particle-scale (micro-scale) mechanics and the bulk (macro-scale)
material response, development of interpretation techniques, sim-
ulations of element tests and simulations of field-scale boundary
value problems. About 34 of the papers describe developments to
discrete element algorithms, 24 describe the application of discrete
element modelling to simulate boundary value problems, while 67
describe discrete element analyses of the micromechanics of soil
response including simulations of element tests. In a general re-
view of developments in constitutive and numerical modelling of
soil between 1948 and 2008 (focussing primarily on the publica-
tion Géotechnique) Zdravkovic and Carter (2008) concluded that
to date the main use of DEM has been in advancing understand-
ing of material response by simulation of element tests. This re-
flects a broader trend of numerical simulations becoming an in-
tegral part of basic research. However, in contrast to the finite
element method, whose use in both applied research and industry
is now commonplace, studies that have applied DEM to large-scale
boundary value problems are relatively rare.

Figure 12.2(b) is a plot of the number of particles used in pub-
lished geomechanics DEM simulations versus the year. There has
been a significant advancement on the original numbers of parti-
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(a) Number of papers published each year

(b) Number of particles in published simulations

Figure 12.2: Summary of data collated in a review of DEM related
papers
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cles in the simulations of Cundall and Strack (1978) (200 - 1,200
disks), but the numbers of particles remain significantly smaller
than those encountered in real applications. The data presented in
Figure 12.2(b) indicate that there have been few published studies
involving more than 50,000 particles in either 2D or 3D. These are
small numbers of particles in comparison with real soil. Consider
a very simple estimate: assuming a void ratio of 0.563, there are
over 150,000 200 μm spheres in a 10 mm × 10 mm × 10 mm
cubical specimen. (Refer also to the comments in Section 11.5).
While Cundall (2001) predicted that by 2011 a DEM simulation
involving 10 million particles would constitute an “easy” problem,
referring to Figure 12.2(b) it is clear that within the geomechan-
ics research community the largest simulations are one order of
magnitude smaller than this aspiration. It seems that outside of
geomechanics larger simulations are more common; for example
Cleary (2007) states that his simulations typically consider more
than 100,000 particles routinely and refers to simulations including
up to 8 million particles. Studies using less computationally inten-
sive two-dimensional DEM simulations outnumbered 3D papers in
almost every year until 2007. Special editions of journals focussing
on “micro-soil mechanics” and DEM give useful overviews of the
types of study that have been completed using DEM. A number
of examples of DEM use in geomechanics can be found in the two
volume themed issue of Géotechnique that was produced in 2010
(Baudet and Bolton, 2010a and 2010b) and in the special edition of
Geomechanics and Geoengineering: An International Journal en-
titled “Advances in discrete element methods for geomechanics”
(Morris and Cleary, 2009). Other DEM related special editions
of journals outside of geotechnics include the Journal of Engi-
neering Mechanics (Ooi et al., 2001), Powder Technology (Thorn-
ton, 2009), Particuology (Zhu and Yu, 2008) and Granular Matter
(Luding and Cleary, 2009). Each of these special editions includes
contributions that are likely to be of interest to the geomechanics
community and each of these journals regularly publish contribu-
tions related to particulate DEM.
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12.2 Field-Scale/Applied Boundary

Value Simulations

In general, geomechanics studies are application driven. The use
of DEM to study soil micromechanics may inform development of
more sophisticated and reliable continuum models, and thus have
an indirect impact on engineering practice. From an industrial
perspective, there is interest in the direct application of DEM to
simulate field-scale boundary value problems. An intrinsic fea-
ture of discrete element models is their ability to make and break
contacts. They are therefore particularly well suited to modelling
problems involving large displacements or localizations. The prin-
cipal challenge in the use of DEM in this way however, is the
number of particles that are included in our DEM models. A
real boundary value problem will include millions of particles with
highly complex and varying geometries. DEM models are there-
fore simplifications of the physical system that are usually bet-
ter suited to provide insight into the development of mechanisms,
rather than providing quantitative predictions of response.

It is difficult to gauge the current level of DEM use in industry;
however published applied research studies are a good indicator of
the level of industrial-oriented analyses using DEM. It seems that
the use of DEM in geotechnical engineering practice lags its use
in process engineering. Zhu et al. (2008) and Cleary (2000, 2007)
give a number of examples of applications where DEM has been
used. These include flow in hoppers, mixers, drums and mills,
pneumatic conveying, pipeline flow, industrial processes such as
cyclones, visualization of transient flow mechanisms, examination
of breakage rates, analysis of boundary stresses, segregation and
mixing rates, and wear rates. Examples of the application of DEM
that are relevant to the geomechanics community can be found in
geological publications (e.g. Schöpfer et al. (2007) considered the
development of faults in rock mass simulated as bonded disks).

In most cases the applied research studies documented in the
geomechanics literature have used highly idealized models (small
numbers of particles, often 2D) and quantitatively accurate pre-
dictions of soil response have been rare. However, the references
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cited here and in other similar studies are important contributions
as they document the first steps towards developing the method-
ologies for applying DEM to analyse industry-oriented problems.
The findings will inform the techniques used in larger scale sim-
ulations once the computational resources become more accessi-
ble (following the necessary hardware and software developments).
Such studies also give an indication of potential future application
of DEM in geotechnical engineering.

Simulation of rock mass response

The concept of bonding particles together with tensile-capable
contact models to simulate rock mass or cemented sand response
was introduced in Chapter 3. As discussed in Chapter 11, the
required contact model parameters are determined by calibrat-
ing the particulate DEM models against physical tests on rock
specimens. Many of the published studies using bonded particle
DEM models have simulated element tests rather than applied
boundary value problems. Fundamental research using DEM in
simulations of element tests is discussed in Section 12.3. Contri-
butions documenting simulations of laboratory tests using bonded
particle models are considered separately here, as the objective
of these studies has been to demonstrate the ability of DEM to
capture rock mass response, rather than to study the fundamental
mechanics in detail. These element test simulations form a key
part of applied DEM modelling as they are laying the ground for
future use of particulate DEM to simulate rock mass response in
large-scale field applications. Potyondy and Cundall (2004) give an
excellent introduction to the “philosophy” of using this approach
to simulate rock mass response; the reviews by Bobet et al. (2009)
and Jing and Stephansson (2007) are also useful.

Some of the contact models that have been used in bonded
particle simulations were introduced in Chapter 3 (Section 3.8).
While a few different approaches have been used to model the
cementation at the grain contacts, in all cases the contact model
used is capable of transmitting a normal tensile contact force. In
the tangential direction a contact shear strength is also specified
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(i.e. shear resistance is no longer simply governed by Coulomb
friction). The contact model is then used to model the cement in
a sandstone or a “notional” cement in a granite rock mass. In the
parallel bond contact model used by Potyondy and Cundall (2004),
moments and forces are transferred at the contact points. Huang
and Detournay (2008) used a simpler contact model that does
not transmit moment at the contact points; other contact models
include the ductile contact bond used by Utili and Nova (2008).
In their 2D simulations Li and Holt (2002) and Cho et al. (2007)
used non-circular particles composed of disks bonded together,
with a distinction being made between inter-granular bonds and
intra-granular bonds.

As illustrated in Figure 12.3, Wang and Leung (2008) used
small disks to represent the cement phase of the material with a
parallel bond contact model used to model the contact between the
cementing disks and between the cementing disks and the larger
“soil” disks. While this approach is attractive in principle, relating
the DEM model parameters to the volume and strength of cement
in a real soil is not easy.

The DEM models are often very ideal representations of the
real rock mass response whose response they aim to simulate. As
noted in Chapter 11, in many cases a 2D DEM model is calibrated
against physical tests on a 3D rock. The physical model has el-
ementary particles that can move in 3D and in many situations
the in-situ 3D stress state will determine the material response as
discussed in Chapter 11. In general, the validity of the bonded-
particle approach may depend on the type of rock in question,
and engineering judgement should be applied to assess whether a
bonded particle model can be applied to the material and problem
of interest. It seems reasonable to apply this modelling approach
to sandstone, or cemented sands, where bonded particles are a
valid approximation of the physical material. Use of this approach
to simulate other rock types, such as granite mass may be more
difficult to justify.

Potyondy and Cundall (2004) list the features of rock mass
response observed in the laboratory, that can be captured using a
bonded particle model. Some of the response characteristics are
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Figure 12.3: Illustration of approach used to model cement by
Wang and Leung (2008), with parallel points inserted at contact
points between cement and soil particles.

also observed in sand; as discussed in Section 12.3.2 below. The
response characteristics most relevant to rock mass include:

1. A continuously non-linear stress-strain response, with either
a softening or hardening in the response being observed after
yield.

2. A transition from brittle to ductile shear response with in-
creasing confining stress

3. The “spontaneous” appearance of microcracks and localized
macro-fractures and emission of acoustic energy.

4. A non-linear strength envelope.

5. A material response that is dependent on the stress regime,
with crack patterns being quite different in the tensile and
unconfined and confined compressive regimes.
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The response of rock is often determined by the joints or faults
that divide the rock mass. The block DEM codes UDEC (Itasca,
1998) and DDA (Shi, 1996) are designed to simulate systems of
blocks intercepted by planar joints. Simulations of jointed rock
mass can also be achieved using particulate DEM. Kulatilake et al.
(2001) described triaxial test simulations on an assembly of bonded
spheres. Joint planes were created in the triaxial specimens by set-
ting the bond strengths to be very low on planes that intersected
the sample; the range of sizes and heterogeneity of the sample
meant that the resultant planes were rough. The mechanical re-
sponse along the rock joints was simulated using direct shear tests.
The response observed in the triaxial compression tests was in rea-
sonable agreement (considering both the observed strength and
the deformation mode) with the results of physical tests. Wang
et al. (2003) used a similar approach to model joints in their 2D
model, and again they characterized the joint response using a
direct shear test simulation. They then applied the model to sim-
ulate the response of a rock slope including a joint. The element
test simulation by Park and Song (2009) is interesting as they ex-
amine the response at a smaller scale than that considered in other
studies. They created a 3D model of a rough joint and simulated a
direct shear test along the joint and considered the response of the
rock mass along the joint in some detail. Another development in
this area is the smooth joint model (Mas-Ivars et al., 2008) which
allows smooth joints to be formed in the bonded particle mass,
thus removing the influence of the particle geometries on the joint
roughness.

The response of rock mass around central, circular openings
has been considered by a number of analysts. Petroleum engi-
neers are often concerned with the stability of well bores and per-
forations stemming from well bores in sandstones. This problem
motivated the study of Cook et al. (2004) who created a 2D DEM
model of a square sample of bonded disks with a central circular
opening. To simulate the impact of fluid flow on the rock mass re-
sponse, the flow of very small particles towards the central cavity
was simulated until failure was observed. The model qualitatively
captured fracture patterns observed in physical laboratory experi-

459



Chapter 12. Use of DEM in Geomechanics

ments on Berea sandstone. Fakhimi et al. (2002) also used bonded
disks to model the rock mass material; however, their model in-
cludes a softening response, where the tensile strength reduces
after yielding. In their model, by controlling the rate of reduction,
the brittleness and fracture toughness can be controlled. In their
simulations they subjected a rectangular specimen with a central
circular opening to biaxial compression and they compared the re-
sultant failure patterns with acoustic emission data from a physical
test.

At a larger scale, the potential to use bonded DEM particles to
study the response of rock mass to tunnelling or mining has been
considered. For example, Potyondy and Cundall (2004) describe
a coupled continuum (finite difference) and particulate DEM sim-
ulation where, as illustrated in Figure 12.4(a), a section of the
rock mass above the tunnel was modelled as a bonded disk as-
sembly. Then, as illustrated in Figure 12.4, they simulated the
stress-induced notches (groupings of microcracks) that had been
observed in a field case study by applying a strength reduction
factor to the parallel bond strengths and then examined the dif-
ferences in failure patterns (Figure 12.4(b) and (c)). The notch
formation process was observed to be sensitive to the particle size.
Calvetti et al. (2004) created a 3D model of the rock around 3
abandoned mine tunnels. 9,800 spherical particles were used, and
so the average DEM particle was about 1,000 times larger than
the real particle size in the cemented sand used to calibrate the
DEM model parameters. A weathering process was simulated by
reducing the sizes of the bonds in the DEM model. The settle-
ment trough at the ground surface above the tunnels observed
in the DEM model was qualitatively in good agreement with the
settlement pattern observed in an equivalent finite element model.

Bonded particle DEM models have been used to study the in-
fluence of material damage on the overall mechanical response.
Schöpfer et al. (2009) included microcracks in their model by re-
moving selected bonds. Potyondy (2007) proposed a modified ver-
sion of the parallel bond model, called the parallel-bonded stress
corrosion (PSC) model, where the radius of the parallel bond varies
with stress level and time. This model successfully captured the
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(a) DEM model configura-
tion

(b) Strength
reduction
value 0.5

(c) Strength
reduction
value 0.75

Figure 12.4: DEM simulation of rock mass failure above a tunnel
(a) Model (b) and (c) Failure patterns for two strength reduction
values (Potyondy and Cundall (2004)
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macro-scale response of granite specimens subject to static fatigue
tests.

Bonded particle DEM has been applied to look at other types
of problems and some more examples are given in the following
sections, where applied studies that have used unbonded particles
are also considered. Jing and Stephansson (2007) and Bobet et al.
(2009) cite references where bonded particle DEM has been ap-
plied to look at fracturing and fragmentation due to rock blasting,
hydraulic fracturing, rock fracture and faulting.

Machine - soil interaction

(a) (b)

(c) (d)

(e) (f)

(a) Simulation of drag
bucket excavator (Cleary
(2000)

(b) Simulation of bucket ex-
cavator with angular parti-
cles (Nezami et al. (2007)

Figure 12.5: Examples of simulation of machine-soil interaction

The potential for DEM to aid in the prediction of soil-machine
interaction and to be used as a tool to improve machine design has
been recognized for over a decade, and reflects some of the interest
in DEM among process engineers. Horner et al. (1998) simulated
soil plowing using particulate DEM, Horner et al. (2001) consid-
ered soil-vehicle interaction, while Cleary (2000) considered the in-
fluence of particle geometry on filling a dragline excavator (Figure
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12.5(a)). Nezami et al. (2007) also considered the issue of particle
geometry in their simulations of interaction of a front-end loader
bucket and gravel, using 3D angular shapes to model the gravel
particles (Figure 12.5(b)). Melis Maynar and Medina Rodŕıguez
(2005) simulated tunnelling using an earth pressure balance ma-
chine with a 3D particulate DEM model. The soil was simulated
using cluster particles made up of two overlapping spheres, and
bonds were created between the particles. Their results showed
agreement with field observations; however, the simulation results
were very sensitive to small perturbations. As already mentioned
in Chapter 11, this was most likely a consequence of the relatively
small number of particles used. At a significantly smaller scale,
Huang and Detournay (2008) used 2D bonded disk particles in
simulations of indentation and cutting of rock, fracture mecha-
nisms were examined and it was shown that the intrinsic length
scale for the material can be varied by varying the ratio of the
shear to normal bond strength.

Penetration

The potential to use DEM to simulate penetration of rigid bodies
into soil has also been recognized for a long time. A notable early
study was the simulation of a cone penetration test (CPT) using a
system of two-dimensional disks by Huang and Ma (1994). In this
simulation only half the problem domain was modelled as symme-
try was assumed, and a rigid wall was installed along the axis of
symmetry. Jiang et al. (2006) also simulated CPT testing in two
dimensions. Butlanska et al. (2009) approached the problem in
three dimensions and inhibited rotation of their spherical particles.
Despite the relatively small number of particles employed (60,000),
when the cone penetration resistance was plotted against depth for
different relative densities, the variation in the asymptotic resis-
tance values was similar to experimental results (Figure 12.6(a)).
The DEM simulation data then allowed investigation of the inter-
nal stress distributions (Figure 12.6(b)). Bruel et al. (2009) also
describe simulation of 3D penetration tests. Lobo-Guerrero and
Vallejo (2005) simulated pile installation in 2D; their contribution
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is notable as they applied their simplified particle failure model
to capture particle crushing around the penetrating pile. Kinlock
and O’Sullivan (2007) demonstrated that plug formation in open-
ended piles can be captured in 2D DEM simulations using disks.
However, their work highlighted the challenge associated with de-
veloping a problem domain that is sufficiently large to minimize
the effect of boundaries on the observed response.
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Figure 12.6: (a)Cone resistance versus depth for DEM simulations
of CPT tests (b) Variation in stress around penetrating cone, with
the lighter circles indicating the largest stresses (Butlanska et al.
(2009), Butlanska et al. (2010))
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Rockfall, landslides, slope stability

Rockfalls and landslides are inherently large-displacement prob-
lems and so seem well suited to DEM analysis. The block discrete
element codes UDEC and DDA have been applied to simulate fail-
ures involving motion of large blocks of rock (e.g. MacLaughlin
et al. (2001)). Particulate DEM (both bonded and unbonded)
has also been applied to look at slope stability analyses. In his
study Maeda (2009) initially completed a series of biaxial com-
pression tests on unbonded disks to characterize the compression
and shearing response of his material by establishing the normal
compression line and critical state line for his material. Know-
ing the critical state parameters, Maeda (2009) then considered
the response within different zones in a simulation of dry flow and
quantified the internal variation in micro-scale parameters (coordi-
nation number and particle velocity), as well as macro/continuum
soil mechanics parameters (void ratio and state parameter).

Examples of 2D simulations where the stability of rock slopes
has been considered using bonded particle DEM include Utili and
Nova (2008) and Wang et al. (2003). Utili and Nova (2008) cali-
brated their DEM contact properties in rigid blocks and then anal-
ysed failure mechanisms for vertical slopes in rock (Figure 12.7).
One particularly interesting aspect of their work is the inclusion of
a study on the influence of weathering on the failure mechanism,
where the rock mass properties were varied to reflect a higher de-
gree of weathering close to the rock surface. The approach used
by Wang et al. (2003) differed as they introduced zones of lower
strength in the material to simulate joints.

Bertrand et al. (2008) considered the highly discontinuous prob-
lem of a rock block impacting a support structure made of a ver-
tically supported wire mesh (for application to road protection).
The mesh was modelled as a series of DEM particles connected
by tensile-carrying contact bonds. The sensitivity of the force im-
parted to the supports to the kinetic energy of the impacting rock
and the effect of damage to the mesh on the maximum force that
can be resisted were both examined.
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Figure 12.7: Simulation of rock slope stability using DEM, com-
parison of displacement vectors with upper bound limit analysis
solution (Utili and Nova, 2008)

Railway ballast and rockfill

Railway ballast and rockfill are materials of interest in geome-
chanics that are obviously discrete or discontinuous and have at-
tracted interest from DEM analysts. Lu and McDowell (2006 and
2010) and Hossein et al. (2007) described simulations of ballast re-
sponse. Lu and McDowell (2010) modelled each ballast particle as
a ten-sphere tetrahedon, adding smaller spheres to the edges of the
tetrahedra to model the surface asperities using the parallel bond
model (Potyondy and Cundall, 2004). They compared their model
response with experimental data obtained in large-scale monotonic
and cyclic triaxial tests.

Bertrand et al. (2005) used the wire mesh modelling approach
to model gabions, as illustrated in Figure 12.8. The rockfill parti-
cles themselves were modelled as clusters of overlapping spheres.
The DEMmodel was validated by considering the unconfined com-
pression of a gabion block and comparing with data from an equiv-
alent physical experiment. Deluzarche and Cambou (2006) pro-
posed a DEM model of a rockfill dam, where each rock fill lock
is made up of rigid clusters of disks joined together with bonds
that have a finite strength. They then used the model to assess
damage to the rockfill material during the dam construction, to
assess the dam stability and to explore the implications of rockfill
damage on the dam deformation.
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(a) Initial DEM model con-
figuration

(b) Deformed system

Figure 12.8: Use of DEM to simulate gabion structures (a) Initial
configuration (b) Deformed mesh at 16% axial strain (Bertrand
et al., 2005)

Soil-structure interaction

Apart from the penetration problems described above, there has
been limited application of DEM to simulate soil-structure inter-
action. Calvetti et al. (2004) considered the large-displacement
problem of a pipe being pulled through a sandbox to study the
damage imparted on pipelines by landslides. The sand particles
were modelled as spheres whose rotation was inhibited. The ob-
served displacement mechanisms were qualitatively in agreement
with experimental observations. By varying the direction of pipe
motion, they could monitor the sensitivity of the force felt by the
pipe to the direction of motion and they used their DEM model
to develop a failure surface defining the relationships between the
horizontal and vertical forces acting on the pile at failure.

In a separate study Calvetti and Nova (2004) used 2D disk
particles, again restrained from rotating, to simulate the move-
ment of a retaining wall. The model captured the difference in
magnitude between active and passive pressure, with the defor-
mation required to mobilize the full passive resistance exceeding
the deformation required to mobilize the full active pressure.

Arching is an important response characteristic associated with
granular materials. Jenck et al. (2009) considered the arching
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Figure 12.9: DEM model used in simulation of soil pipeline inter-
action (Calvetti et al., 2004)

mechanism involved when piles support granular embankments
overlying soft soil (Figure 12.10). A particularly interesting as-
pect of this work is the way the authors compared their 2D DEM
simulations with physical tests on assemblies of Schneebeli rods
and with continuum (finite difference) simulations. While more
complex 3D arches develop in the systems that are installed in
reality, the good macro-scale agreement of the physical tests and
the numerical models, indicates that future 3D DEM simulations
will be useful as a tool to inform design of this type of geotechnical
structure.

Seepage and soil erosion

As noted by Zhu et al. (2008) the development of coupled fluid-
particle DEM algorithms was a key advancement leading to the
greater use of DEM to simulate industrial boundary value prob-
lems. Chapter 6 has given an introduction to the approaches used
to model coupled particle-fluid systems in geomechanics. While,
as noted in Chapter 6, water and porewater pressures have a signif-
icant influence on soil response, there have been fewer applications
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(a) DEM model configuration (b) Particle scale re-
sponse

Figure 12.10: DEM simulation of a load transfer platform (Jenck
et al., 2009)

of DEM to simulate soil-fluid interaction outside of element test
simulations. In some research studies, such as the soil pipe inter-
action study by Calvetti et al. (2004) noted above, very simple
analytical approaches are used to take account of the pore water
pressures. An example of a study where a 3D fully coupled DEM
model was used is the simulation of seepage beneath a flood wall
adjacent to a river by El Shamy and Aydin (2008). As acknowl-
edged by the authors, the numbers of particles used to simulate
the subsoil (22,303) was relatively small; however, the distribu-
tion of porewater pressures in the soil beneath the flood wall was
in good agreement with continuum analysis. The authors present
their results as evidence that with refinement of the DEM model,
including an increase in the number of particles, realistic seep-
age analyses will be possible. A second example of an application
driving coupled fluid-particle simulation is given by Jeyisanker and
Gunaratne (2009), who simulated water seepage through a pave-
ment system that comprised layers of particles with different sizes.
Their DEM model used spherical particles and they looked at the
variation in flow velocities, pressure and hydraulic gradient within
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the layered system.

12.3 Application of DEM to Study the

Fundamentals of Soil Response

Documented simulations of element tests to study fundamental
material response greatly outnumber simulations of field-scale
boundary value problems. In physical science and engineering use-
ful models are those that simplify the real physical system while
still capturing the main response features, thus allowing detailed
analysis to advance knowledge. Particulate DEM meets these cri-
teria. The results of DEM simulations indicate that, even with
very simple particle geometries and contact force models, the en-
semble overall response of a large assembly of virtual DEM parti-
cles captures the key response characteristics of physical granular
materials. DEM provides us with a tool to generate the data re-
quired to develop rational explanations for complex phenomena
observed in the physical laboratory and consequently improve our
ability to predict and control soil response. Potyondy and Cun-
dall (2004) draw a distinction between more conventional mod-
elling approaches, where the objective is to reproduce the physical
response, and DEM modelling, where the goal is more often to
understand the mechanisms driving this response.

Soil and other granular materials behave in a rather unique
manner. In fact, it can be argued that granular materials are a
fourth state of matter as, depending on the packing density and
stress conditions, they can behave like a solid continuum or al-
ternatively they can flow like a liquid. Some specific characteris-
tics of soil or granular material response can be attributed to the
particulate nature of the material. These include volume change
upon shearing, frictional (or stress-dependent) material strength,
stress-dependent stiffness, a wide range of attainable strengths and
stiffnesses, the importance of state in determining the material
properties, the influence of stress history, rate and ageing effects
on the mechanical response, extremely high strain and stress non-
linearity, anisotropy, strain-softening associated with shear band-
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ing, the importance of effective stress, etc. (see also Simpson and
Tatsuoka (2008)).

Soils (and other granular materials) are examples of complex
systems, made up of basic units that interact to generate an emer-
gent response that is more complex than the response of the units
themselves (e.g. Watts (2004)). This means that a reductional
approach to soil mechanics that breaks the material down into
its individual particles will not easily provide answers about the
overall material response. However, despite the challenges posed
by the complexity of the systems, our understanding of the link
between the particles, their interactions and the overall “macro-
scale” soil response has significantly improved since the original
development of particulate DEM in the late 1970s.

From a physical perspective, it is slightly naive to state that a
granular material is made up of a large system of particles whose
individual responses are “simple.” Sand grains themselves are
very complex, with every particle having its own unique geometry
and surface roughness topology. These particles can contain inter-
nal flaws and can themselves be damaged, either suffering surface
abrasion or complete crushing.

12.3.1 Context and other particle-scale
approaches

Before outlining how DEM simulations have advanced understand-
ing soil response, it is important to establish the context for DEM
use in geomechanics research. Both prior and subsequent to the
development of DEM, a number of research studies have that ex-
plicitly considered the particulate nature of soil alternative ap-
proaches.

As noted elsewhere in this text (Chapters 8 and 10), key contri-
butions to advancing understanding of the link between particle-
scale mechanics and overall granular material response were made
using data from physical experiments on disk or rod assemblies.
These disks and rods were used to create 2D physical analogue
models of soil element tests allowing measurements of particle
kinematics that could not be observed in the laboratory. Where
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opaque, rigid rods are used, they are referred to as Schneebeli rods,
and while particle movements can be recorded, measurement of
inter-particle forces cannot be made. However, as mentioned in
Chapter 8, where photoelastic materials are used, measurements
of the particle stresses and inter-particle forces can also be made.
Notable early contributions in this area are listed in Chapter 8.
Many of the approaches now used to analyse the micromechanics
of soil response using DEM were originally developed and applied
to interpret photoelastic disk experiments. For example, key con-
tributions demonstrating the correlation of the fabric tensor with
the stress-strain response of soil were made by Oda and his col-
leagues, e.g. Oda et al. (1985). Photoelastic experiments give
independent verification of the particle scale mechanics observed
in DEM simulations. However, DEM presents advantages over
photoelasticity; as highlighted by Gaspar and Koenders (2001),
the analysis of a photoelastic assembly to generate data on the
contact forces is tedious, and particularly difficult in 3D. On the
other hand, referring to Figure 8.20(c), photoelastic experiments
provide information on the stress distributions within individual
particles; such data cannot be obtained from DEM simulations.

Recent contributions including Ibraim et al. (2010) and Jenck
et al. (2009) demonstrate that the use of Schneebeli rods can con-
tinue to provide insight into fundamental soil response. Hall et al.
(2010) demonstrate that modern image analysis techniques can be
used to determine local strains within Schneebeli rod systems; the
patterns of deformation revealed by the calculation of local strains
resemble the findings of Kuhn (1999).

Granular materials form statically indeterminate systems and
general expressions that predict the material response by consid-
eration of the individual particles cannot be analytically derived.
However, a number of analytical studies have restricted consider-
ation to uniform particles (disks or spheres) with regular, lattice
packing configurations. These types of highly idealized materi-
als were considered by researchers including Rowe (1962), Horne
(1965) and Thornton (1979) who used the symmetry of these
packings to derive analytical expressions for the peak strengths.
As noted in Chapter 11, the expressions proposed by Rowe and
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Thornton are useful for DEM code validation. More recently in
research to examine particle crushability, Russell et al. (2009) de-
rived expressions for the distribution of stresses within individual
particles, again considering regular, lattice packings. Tordesillas
and her colleagues (e.g. Tordesillas and Muthuswamy (2009)) have
studied force chain stability analytically by considering subsets of
particles participating in the strong force chains and hexagonally
packed disks.

Conventional constitutive modelling uses theories largely based
in continuum mechanics to develop expressions linking the mate-
rial stresses and strains that can accurately reproduce the macro-
scale response characteristics observed in the laboratory or the
field. Sometimes these models are described as “phenomenologi-
cal” as the focus is on capturing the overall response, rather than
accurately modelling the fundamental, grain-scale mechanisms.
An alternative approach to constitutive modelling is to use in-
formation on the material fabric and the contact parameters to
derive overall constitutive parameters. This approach is called
micromechanical continuum modelling or microstructural contin-
uum modelling. Kassner et al. (2005) termed the general process
of determining the macro-properties of a many-body system from a
knowledge of the individual interactions to be the “forward prob-
lem” of statistical mechanics. As explained by Chang and Yin
(2010), the idea is that the continuum constitutive response can
be determined by using analytical expressions describing the con-
tact orientations, combined with the contact stiffness values (both
normal and tangential) and the friction angle at the contacts. The
average strain is related to the inter-particle displacements. Key
contributions to micromechanical modelling have been by Chang
and his colleagues e.g. Chang and Liao (1990), Chang (1993)
and Chang and Hicher (2010). This approach to modelling was
adopted by Yimsiri and Soga (2000 and 2002) to study small-
strain (elastic) response of granular materials. Another contin-
uum mechanics approach that accounts for the particle scale is
the Cosserat continuum. As outlined by Kruyt (2003) and Mul-
haus et al. (2001), this is a continuum theory that includes point
rotations as well as translations (normally in continuum modelling
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of deformations only translations are considered).

DEM has been applied to research that often appears very ab-
stract in comparison with applied geotechnical engineering. How-
ever, the need for theoretical, particle-scale studies on soil response
is generally accepted within the geomechanics community. For
some time a technical committee (TC) of the International Soci-
ety of Soil Mechanics and Foundation (ISSMFE) engineering has
comprised a group of (mainly research orientated) engineers inter-
ested in studying soil response at the particle scale. This technical
committee was called “TC35: Geomechanics of Particulate Mate-
rials”, and was chaired by Professor Malcolm Bolton. Following a
restructuring of the ISSMFE technical committees in 2010 the rel-
evant TC name is “TC105 Geo-Mechanics from Micro to Macro.”
The proceedings of TC35 conferences, such as Hyodo et al. (2006)
and Jiang et al. (2010) provide an indication of the way DEM is
applied in geomechanics.

Critical state soil mechanics

Prior to outlining how DEM can influence soil mechanics, it is use-
ful to give a general introduction to the basics of critical state soil
mechanics, originally described in detail by Schofield and Wroth
(1968). As explained by Coop (2009), while the theory of criti-
cal state soil mechanics was largely derived to describe the clay
response, it can be usefully applied, with some adjustments, to
the response of sands. The theory of critical state soil mechanics
was formulated using concepts originating in theoretical plastic-
ity, modified to take account of the volume changes during loading
exhibited by soils. This framework provides an explanation as to
why a soil at a particular density and stress level will behave in a
particular way. The key central concept in the critical state me-
chanics framework is that upon prolonged shearing a soil will tend
to an ultimate state where the stresses and volume remain con-
stant. This critical state locus (sometimes called a critical state
line) is formed by plotting the void ratio e or specific volume v
against the logarithm of the mean effective stress ln(p′). Referring
to Been et al. (1991) and Jefferies and Been (2006), for sands the
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locus of points referred to as the “critical state line” (CSL), is il-
lustrated in Figure 12.11. The CSL is often drawn as a straight
line but a curved locus is more appropriate for sands; the dia-
gram shown here follows the geometry given by Jefferies and Been
(2006). Muir Wood et al. (2010) used an equation for the curved
CSL proposed by Gudehus (1997) and their curved CSL is concave
upwards. Ng (2009a) captured the curvature of the critical state
line in e − log(p′) space for his triaxial DEM simulations on el-
lipsoidal particles. The critical state line is also associated with a
critical shear stress ratio, calculated as M = q

p′ , where q = σ1−σ3

and p′ is the mean effective stress. This stress ratio can also be
expressed as a critical state friction angle φ′

cv.

Referring to Figure 12.11, the response of a sand is shown to
be largely governed by the material “state.” This state can be
quantified by the state parameter ψ, a measure of the difference
between the e or v value that the soil will have on the critical state
line at the same stress level and the current value of e or v (e.g.
Been and Jefferies (1985)). Dense soils (“dry” of critical) have
negative values of ψ and, upon shearing, the mobilized stress ratio
will increase to a peak stress, exceeding the critical state stress,
and subsequently reduce to the critical state value as the material
strain softens. Loose soils (“wet” of critical) have positive ψ val-
ues and, upon shearing, they will tend to approach the maximum
mobilized shear stress monotonically.

Considering the volumetric response, the loose sample will
compress upon shearing, and, while the dense sample may ini-
tially experience a slight compression, it tends to dilate. The spe-
cific volume of both samples will approach the critical state line as
shearing progresses. Dilatancy in soils was initially recognized by
Reynolds (1885) and Rowe (1962) proposed that a link could be
established between the mobilized principal stress ratio and the
dilatancy, with dilatancy typically quantified as the ratio of the
rates of change of volumetric and deviatoric strain (D = ε̇v/ε̇q).

A second important concept illustrated in Figure 12.11 is the
existence of a normal compression line (NCL) that represents a
bound to the possible states that a soil may experience. As out-
lined by Jefferies and Been (2006) this idea of a single NCL that
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is parallel to the CSL is not always true for real sands.
The stress-dilatancy relationship, which can be obtained by

considering the work equation proposed by Taylor (1948) is very
important as couples shear and volumetric strains and takes the
following format (in its linear form):

ε̇pv
ε̇ps

= M − q

p′
(12.1)

where M is the critical state friction parameter, p′ and q are
the mean pressure and deviator stress respectively, and ε̇pv and ε̇ps
are the plastic volumetric and deviator strain rates.

Figure 12.11: Schematic diagram of the critical state line (critical
state locus) and normal compression line in v : ln(p′) space (after
Jefferies and Been (2006))

Here only a very brief overview of critical state soil mechanics
has been provided, more comprehensive descriptions are provided
by Wood (1990a) and Jefferies and Been (2006). This discus-
sion has been included for two main reasons. Firstly, the use of
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a critical state approach has greatly aided the interpretation of
geomechanics element tests and the understanding and modelling
of soil response. To maximize the potential benefit of DEM sim-
ulations to the broader geomechanical community it is therefore
worthwhile to considerable the response observed in DEM simu-
lations within this framework. Jefferies and Been (2006) outline
the experimental procedures necessary to determine the critical
state parameters and these can easily be simulated using DEM.
The work of Thornton (2000) and Cheng et al. (2004) (amongst
others) has shown that DEM can make significant contributions
to our understanding of frameworks for soil response that have
largely been developed based upon empirical observations of the
overall material response.

A second reason to highlight the critical state framework is
that critical state concepts allow the influence of the inherent soil
properties, which are invariant with density and stress level, on
the mechanical response to be separated from soil state. Referring
to Jefferies and Been (2006), the intrinsic properties of a mate-
rial are its particle geometry, particle size distribution and crit-
ical state locus. Acknowledging these two types of contribution
to the granular material response is important when interpreting
results obtained in DEM simulations. General conclusions about
observed response or comparisons between different studies cannot
be drawn without knowledge of the material’s state. For example
if a parametric study is carried out using DEM in which the par-
ticle shape or surface properties are varied, the shift in the critical
state locus is probably the most reliable index of the change to
the material properties.

12.3.2 Demonstration that DEM can capture
the micromechanics of response

If DEM is to be used with confidence to study the mechanical be-
haviour of soil, the ability of DEM to capture the response char-
acteristics typically observed for soil must be established. Some
of the mechanical response characteristics specific to granular ma-
terials have been listed above. The following lists a number of
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distinguishing response characteristics of granular materials, in-
cluding citations of key references indicating that the feature has
been successfully captured in DEM simulations (refer also to Cun-
dall (2001)):

1. A “frictional” strength response, where the peak shear stress
that can be sustained increases with increasing normal stress
(Bolton et al. (2008), Cui and O’Sullivan (2006), Sitharam
et al. (2008) and Potyondy and Cundall (2004)).

2. A critical state type response with loose samples contracting
upon shearing, dense samples dilating upon shearing and
both tending towards unique stress and void ratios at large
strain (Thornton (2000), Rothenburg and Kruyt (2004) and
Salot et al. (2009)).

3. The sensitivity of peak mobilized stress ratio (peak angle
of shearing resistance) to void ratio (Powrie et al. (2005),
Rothenburg and Kruyt (2004) and Thornton (2000))

4. A non-linear stress-strain response including yield prior to
failure (even where a linear contact model is used) has been
observed in almost all particulate DEM element test simula-
tions (Rothenburg and Bathurst (1989), Cheng et al. (2004)
and Yimsiri and Soga (2010)).

5. Hysteresis as a consequence of cyclic/repeated loading (e.g.
Chen and Hung (1991), Chen and Ishibashi (1990) and Alonso-
Marroquin et al. (2008)).

6. Strain softening and development of localizations or shear
bands (Bardet (1994), Iwashita and Oda (1998) and Powrie
et al. (2005)).

7. Significance of intermediate principal stress and a failure cri-
terion that depends on the magnitude of all three principal
stresses (Thornton (2000) and Ng (2004b)).

8. Anisotropy of strength and stiffness (Yimsiri and Soga (2001),
Li and Yu (2009) and Yimsiri and Soga (2010)).
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9. Stress-dependent elastic stiffness (Holtzman et al., 2008).

10. A phase transformation point that occurs during undrained
shearing where the material transitions from having a con-
tractive response to a dilative response (Cheng et al. (2003)
and Sitharam et al. (2009)).

11. Non-coaxiality of principal stresses and principal strain in-
crements (Li and Yu, 2009, 2010)).

12.3.3 Overview of key contributions to under-
standing soil response

Having established the ability of DEM to capture the response
trends that one would expect to see in a granular material, DEM
can then be used with a degree of confidence to advance under-
standing of fundamental soil behaviour. Some of the main con-
tributions of discrete element simulations to soil mechanics are as
follows:

1. Confirmation of the inhomogeneous nature of stress trans-
mission in granular materials (following early photoelastic
studies of de Josselin de Jong and Verrujit (1969)). As
discussed in Chapter 8, DEM simulations have repeatedly
demonstrated that stress is transmitted across a granular
material via a highly heterogeneous network in which the
most highly stressed particles form strong force chains align-
ed in the direction of major principal stress and supported
by an orthogonal weaker force network. Graphical illustra-
tions of this concept have been presented by Rothenburg and
Bathurst (1989), Masson and Martinez (2001) and Cui et al.
(2007), amongst many others. DEM simulations can gener-
ate data allowing detailed analysis of the buckling of force
chains (e.g. Tordesillas and Muthuswamy (2009)). Thorn-
ton (2000) and Rothenburg and Bathurst (1989) observed
that the normal contact forces contributed more significantly
to the average stress tensor for the assembly than the tan-
gential contact forces. These findings have provided further
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evidence for the influence of the force chains on the material
response, and add weight to the hypothesis that the buckling
of the strong force chains is the key mechanism underlying
failure and shear banding in granular materials.

2. A number of parametric studies have considered the influ-
ence of inter-particle friction on the overall material response
(e.g. Thornton (2000), Powrie et al. (2005), Cui and O’Sull-
ivan(2006), Yimsiri and Soga (2010)). Each of these studies
indicates that the peak angle of shearing resistance (often
called the peak friction angle) of the material as a whole, is
relatively insensitive to the inter-particle friction angle.

3. As noted in Chapter 4, in contrast to disks or spheres, con-
tacting non-spherical or non-circular particles can transmit
moment as well as force resulting in a rotational resistance.
As demonstrated by contributions from Iwashita and Oda
(1998) and Jiang et al. (2005), parametric studies that con-
sider the influence of rotational resistance (sometimes called
rolling friction) on identical samples can be carried out using
DEM. Findings from studies have indicated that as the re-
sistance to relative rotation of contacting particles increases,
there is an increase in the peak and critical state/residual
angles of shearing resistance, and this can be tied to the
mechanism of strong force deformation (Iwashita and Oda
(2000), Tordesillas and Muthuswamy (2009)). It can be dif-
ficult to directly compare specimens with differing particle
geometries. In these studies typically specimens have had
both different initial void ratios as well as different particle
geometries. As noted above one possibility is to compare
the critical state loci (CSL) for the two materials. Studies
in this area include Ng (2009b), who varied the aspect ratio
of ellipsoidal particles, and Powrie et al. (2005), who varied
the geometry of particles developed by joining two spheres
with parallel bonds. The work of Mirghasemi et al. (2002)
is a good example of a study that considers the influence of
the particle geometry both on the overall response and on
the material fabric.
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4. Contributions have been made to better understand the re-
sponse of materials in physical element testing apparatuses.
For example DEM simulations have provided insight into
the non-uniformities of stress and strain present in element
tests; for example Masson and Martinez (2001), Zhang and
Thornton (2007), Cui and O’Sullivan (2006) and Wang and
Gutierrez (2010) all presented results illustrating the hetero-
geneity of the contact forces and strains in the direct shear
apparatus. Using DEM parametric studies can be carried
out to understand the limitations of physical testing appa-
ratuses. For example, the influence of platen friction on the
specimen response in triaxial tests was considered by Cui
and O’Sullivan (2006) and Powrie et al. (2005). DEM can
also be used to improve design of experimental apparatuses;
both Zhang and Thornton (2007) and Wang and Gutierrez
(2010) examined different configurations for the direct shear
apparatus.

5. DEM simulations considering the evolution of localizations
and shear bands (e.g. Bardet (1994), Iwashita and Oda
(2000), and Powrie et al. (2005)) have shown that particle
rotations tend to be significantly large within the shear band,
in comparison with the remainder of the sample. Analyses
of the local strains (O’Sullivan et al. (2003) and Wang et al.
(2007)) have shown that the strains within a shear band are
highly heterogeneous with regions of both compressive and
dilative strains existing, as observed in plane strain tests on
sand by Rechemacher et al. (2010).

6. Numerous DEM simulations have confirmed that the coordi-
nation number and the second-order fabric tensor (calculated
considering the contact normal orientations) are key descrip-
tors of the material fabric that correlate strongly with the
stress-strain response of the material. For example Rothen-
burg and Bathurst (1989), Rothenburg and Kruyt (2004),
Thornton (2000) and Ng (2001), amongst others, have all
shown that the evolution of anisotropy calculated by con-
sidering maximum and minimum eigenvalues of the second-
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order fabric tensor with straining correlates closely with the
stress-strain response. Rothenburg and Bathurst (1989),
Bardet (1994), Thornton (2000) and Rothenburg and Kruyt
(2004) all showed that, upon shearing, the coordination num-
ber tends towards a relatively constant value. Thornton
(2000) and Rothenburg and Kruyt (2004) showed that for
rigid, unbreakable particles, upon shearing, equivalent loose
and dense specimens tend towards the same “critical” coor-
dination number.

7. As noted already experimental observation of soil response
under fully three-dimensional stress conditions is difficult.
Using DEM failure criteria that have been proposed for sand
in the literature have been examined in ideal testing condi-
tions by Thornton (2000), Ng (2004b) and Thornton and
Zhang (2010), with Thornton and Zhang obtaining a good
fit with the 3D failure criterion proposed by Lade and Dun-
can (2003).

8. Energy considerations are important in the development of
continuum constitutive models for soil. For example the
Cam Clay yield locus is determined by integration of the
flow rule, which is determined from the work done in plas-
tic deformation (e.g. Britto and Gunn (1987)). Some DEM
analysts have considered the internal energy of the system
in detail. For example, Bardet (1994) found that during
strain softening the internal energy dissipation is highest in
shear bands. Bolton et al. (2008) calculated the energy dis-
sipated in their DEM simulations of crushable agglomerates
and compared the results with the Cam Clay and Modified
Cam Clay dissipation functions. Thornton (2000) monitored
the kinetic energy to quantify the extent of instabilities in-
duced during shearing.

While the listing of contributions provided here is subjective,
its purpose is to give an impression of both the way DEM has ad-
vanced understanding of soil response and potential future areas
for exploration. As well as facilitating numerical experiments to
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interrogate the micro-macro link, DEM provides us with a tool to
hypothesize on the particle scale mechanics that drive the overall
material response. For example, the influence of the particle con-
tact rheology on the overall response of soil can be examined, ex-
amples include the studies of Lu et al. (2008) and Gili and Alonso
(2002) who considered unsaturated soil response, and Jiang et
al. (2005 and 2009) who examined the sensitivity of the overall
material response to rolling resistance and particle surface rough-
ness. These numerical experiments can be extended to explore
how soil response can be modified and to develop appropriate soil
improvement techniques. Prior contributions in this area include
the work of Ibraim et al. (2006) who developed a 2D particulate
DEM model that can qualitatively capture the response of fibre-
reinforced soil. Bonded DEM particles have also been used to
explore the use of cementation to mitigate liquefaction hazards by
Zeghal and El Shamy (2008).

DEM simulations are convenient tools to answer questions of
the type “what would happen if...?” For example Muir Wood et al.
(2010) explored the implications of internal erosion (suffusion) on
the mechanical behaviour of a soil in a series of 2D simulations
where the smallest particles in the assembly were successively re-
moved while maintaining quasi-static conditions and a constant
isotropic stress state, and the resultant stress and volumetric re-
sponses were observed. These numerical experiments allowed the
influence of a change in volumetric state and a change in grading
to be monitored and were used to develop a continuum model that
can capture the evolution of the overall material response as the
particle size distribution changes due to erosion.

One particular advantage posed by DEM simulations is that
complex stress states induced in the ground in real physical situa-
tions, which are difficult to replicate in a conventional laboratory
test, can be simulated. Most notably a DEM simulation can easily
achieve a true, three-dimensional stress state with σ1 �= σ2 �= σ3.
To attain these stress conditions in a controlled manner in the
laboratory requires the use of complex types of apparatus that
are not found in a typical geomechanics laboratory, such as the
hollow cylinder apparatus or the true triaxial apparatus. DEM
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simulations are therefore well placed to have (at the minimum) an
indirect influence on engineering practice by playing a role in ex-
amining and possibly developing continuum constitutive models.

Research that has used DEM to study fundamental soil re-
sponse has mainly been restricted to considerations of non-cohesive
materials, i.e. particles exceeding about 100 μm. These particles
are sufficiently large that the surface attraction forces are negligi-
ble in comparison with the particle inertia. DEM simulations of
clay are less common and are complicated by both the complexity
of the surface interaction forces and the particle geometry. How-
ever, researchers including Anandarajah (2003), Lu et al. (2008)
and Peron et al. (2009), have explored the use of DEM to simulate
clay response.

To illustrate the use of DEM as a tool in basic geomechanics
research, three examples of key research studies that have used
DEM to significantly advance understanding of granular material
response are outlined here as case studies of the benefits of using
DEM in fundamental geomechanics research.

12.3.4 Response of assemblies of particles to
triaxial and more general stress states

A series of publications by Colin Thornton and his colleagues
(Thornton (1997b), Thornton and Antony (1998),Thornton (2000),
Thornton and Antony (2000) and Thornton and Zhang (2010))
have all explored the response of assemblies of spherical particles
in a periodic cell. The body of research has included triaxial (ax-
isymmetric) and true-triaxial (σ1 �= σ2 �= σ3) test simulations to
examine both failure and pre-failure response. These studies are
an excellent example illustrating the ability of DEM to capture
the type of response we would expect in a physical system and
to allow interrogation of the fundamental mechanics that underly
this response.

Thornton and Antony (1998) and Thornton (2000) simulated
the triaxial compression at a constant mean stress of dense and
loose assemblies of spheres. The simulations included between
3,000 and 8,000 polydisperse spheres with periodic cell bound-
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Figure 12.12: (a) Deviator stress response (b) Volumetric stress
response for loose and dense specimens of spheres in axisymmetric
compression (Thornton, 2000)

aries. As illustrated in Figure 12.12, the differences in the re-
sponses observed were similar to the differences observed for equiv-
alent physical tests on loose and dense sands. Upon shearing, the
dense sample achieved a peak deviator stress and post-peak strain
softening was observed. The loose sample exhibited a strain hard-
ening response. Both samples tended towards a constant-volume
condition at large strains, and at large strains their void ratios
were similar, i.e. a critical state was almost achieved.

The analysis of the internal material structure revealed that
the normal contact forces contributed significantly more to the
stress transmission than the tangential contact forces. As acknowl-
edged by Thornton and discussed in Chapter 10, this had been
observed in earlier studies including Rothenburg and Bathurst
(1989). Thornton (1997b) analysed the distribution of the con-
tact forces within his assemblies. The evolution of deviator fabric
during straining is illustrated in Figure 12.13(a). Analysis of the
fabric tensor for the greater than average forces and less than
average forces revealed that contacts transmitting less than the
average forces act to provide lateral stability to the strong force
chains (Figure 12.14).

Returning to the comparison of loose and dense material re-
sponse, as illustrated in Figure 12.13(b), Thornton (2000) found
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(a) Deviator fabric (b) Mechanical coordination
number

Figure 12.13: Variation in internal structure during axisymmetric
compression of assemblies of loose and dense spheres (Thornton,
2000)

that both samples attained the same mechanical coordination num-
ber (Equation 10.8) after only a small amount of straining. Rothen-
burg and Kruyt (2004) observed a similar response in their two-
dimensional simulations. In their triaxial stress simulations Thorn-
ton and Antony (2000) found that values of the mechanical coordi-
nation number for two samples sheared in extension and compres-
sion at a constant mean stress were very similar. Two additional
simulations (again shearing in triaxial compression and extension)
carried out in constant-volume (undrained) conditions also had
similar mechanical coordination numbers. Despite starting from
the same initial values, the mechanical coordination numbers for
the constant-volume simulations were greater those obtained for
the constant-mean-stress simulations.

Thornton (2000) described a series of true triaxial type simula-
tions where the principal stress ratio, b = σ2−σ3

σ1−σ3
was systematically

varied. The deviatoric failure states observed were in agreement
with the three-dimensional failure criterion proposed by Lade and
Duncan (2003). Ng (2004b) also simulated deformation under
various b values in a periodic cell with ellipsoidal particles. He
considered four different failure criteria and found the failure cri-
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(a) Decomposition of stress
into normal and tangential
components (Thornton and
Antony, 1998)

(b) Contributions to stress
from strong and weak forces
(Thornton, 2000)

Figure 12.14: Stress partitioning into normal and shear force con-
tributions and strong and weak force network contributions

terion proposed by Ogawa et al. (1974) gave the best match to
the simulation data. During a simulation of a constant deviatoric
strain test, both the stress tensor and the second-order contact
normal fabric tensor was observed to rotate together, while the
strain tensor lagged the observed response, indicating non-coaxial
behaviour.

Thornton and Zhang (2010) built upon the ideas proposed in
the earlier studies, and turned their attention to look at the re-
sponse of an assembly of 27,000 spheres to deviator strain probes.
The deviator strain probes differed in magnitude and direction;
however, they all considered the same initial sample. The result-
ing stress response envelopes had the same geometry as the Lade
and Duncan failure surface. Considering the invariants of the fab-
ric tensor, Thornton and Zhang constructed “fabric response en-
velopes” in a principal fabric coordinate system and observed the
response to be that of inverted Lade-type surfaces. A new pa-
rameter calculated from the invariants of the fabric tensor was
proposed to define these fabric response envelopes.
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12.3.5 Particle crushing

Experimental research including Coop and Lee (1993) and Coop
et al. (2004) has shown that sands can experience significant par-
ticle breakage in both compression and shearing. Coop and Lee
(1993) found that a unique relationship exists between the amount
of particle breakage that occurs during shearing to a critical state
and the value of the mean normal effective stress. These find-
ings, amongst others, have motivated a number of studies into
particle crushing using DEM. Approaches to simulate crushable
particles using DEM have been described in Chapter 4. Some of
the DEM crushing related studies have used very simple DEM
models of particle crushing that can provide some insight, while
being suited to simulation of boundary value problems (e.g. Lobo-
Guerrero and Vallejo (2005)). Here a series of studies that have
used agglomerates to simulate the response of silica sand grains
are considered. Agglomerates and agglomeration of powders into
larger particles are of interest in process engineering and Thorn-
ton and Liu (2004) explored the idea of bonding spheres together
to simulate agglomerates, while Golchert et al. (2004) used DEM
to analyse the influence of the overall agglomerate shape on its
breakage behaviour.

As noted in Chapter 4, Robertson (2000), McDowell and
Harireche (2002), Cheng et al. (2003, 2004), and Bolton et al.
(2008) document the development and validation of the approach
to modelling sand particles and subsequent application of the
method to analyse the overall material response. Each aggregate of
bonded spheres used to simulate a single sand grain is generated
following the approach proposed by Robertson (2000). Initially
a hexagonal close-packed assembly of bonded spheres is created,
reflecting the crystalline nature of the particle material, with se-
lected numbers of spheres being removed to represent the flaws
present in real soil particles. At the particle scale there was a two-
level confirmation that this approach captured the response of in-
dividual sand grains. Cheng et al. (2003) demonstrated that these
particles could be calibrated to reproduce the response of single
silica sand particles in single particle compression tests. McDowell
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and Harireche (2002) and Cheng et al. (2003) demonstrated that
the size-strength relationship observed in crushing tests on real
soil particles can be reproduced, as the Weibull moduli (obtained
by analysing the variation in the of failure of an individual dis-
tribution of strengths with stress level) were equivalent for both
physical tests and numerical experiments.

Cheng et al. (2003) then found that DEM simulations of isotro-
pic compression of assemblies of clusters quantitatively matched
the response observed for the silica sand (comparing data where
both the void ratios and mean effective stresses were normalized).
When triaxial compression test data were considered, the agree-
ment of the model with the physical data was less successful, but
the results were broadly consistent. As the validity of the cali-
brated model was confirmed at both the particle and macro-scales,
interpretations of the relationships between particle-scale response
and overall response could be made with confidence. Cheng et al.
(2003) could then clearly demonstrate the extent to which particle
crushing dominates the material response along the normal com-
pression line as well as observing particle crushing in undrained
shear. This modelling approach was also used by Cheng et al.
(2004) to examine yielding. For DEM samples that were lightly
overconsolidated at yield, the yield surfaces were shown to be asso-
ciated with contours of the percentage of bond breakages or dam-
age events in the material. For samples that were more heavily
overconsolidated at yield, the models captured the response trends
proposed in published stress dilatancy theories. Most notably the
hypothesis proposed by Bolton (1986) that grain breakage can ex-
plain the decrease in the peak friction angle with increasing of
stress for these samples was confirmed.

Bolton et al. (2008) directly compared the response of speci-
mens of breakable agglomerates and geometrically equivalent un-
breakable agglomerates in both isotropic compression and triaxial
compression. While the micromechanical analyses by Cheng et
al. (2003, 2004) tended to focus on bond breakages only, Bolton
et al. (2008) extended the micromechanical analyses to include
consideration of coordination number, deviator fabric and the en-
ergy stored in each agglomerate. At lower confining pressures the
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coordination numbers for the breakable and unbreakable agglom-
erates were similar; as would be expected, they diverged at higher
pressures. However in both cases the mean stress was seen to
significantly increase the coordination number. The anisotropy
of the crushable agglomerates (measured using the second-order
fabric tensor) in triaxial compression decreased with increasing
confining pressure. When particles break, there is an increase in
the number of contacts in the system, resulting in an increase in
energy dissipated through friction.
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Figure 12.15: Use of DEM to develop insight into sand particle
crushing (Cheng et al., 2003)
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12.3.6 Cyclic loading and hysteresis

To date, most published DEM simulations have considered the
response of soil to monotonic loading and deformation. The re-
sponse of soil to cyclic loading and load reversals is both intriguing
and important. Scenarios where soil is subject to cyclic loading
include soil beneath road pavements and ballast beneath railway
tracks, soil in offshore and wind turbine foundations, soil backfill
adjacent to integral bridge abutments, and soil subject to ground
shaking during earthquakes. In the previous two examples of the
use of DEM in fundamental geomechanics studies, an overview of
the development of ideas within two specific research groups was
considered; here a more general review of contributions in the area
of simulation of cyclic soil response is given.

Considering firstly drained cyclic loading, motivated by earlier
experimental studies on ballotini specimens, (Chen et al. (1988)
and Ishibashi et al. (1988)), Chen and Ishibashi (1990) and Chen
and Hung (1991) described two series of DEM simulations where
the response of an assembly of spherical particles with periodic
boundaries to both monotonic loading conditions and stress rever-
sals was considered. The initial study (Chen and Ishibashi, 1990)
used a relatively small number of particles (155) and a linear con-
tact spring, while the second study (Chen and Hung, 1991) used a
Hertzian contact model and about 1,000 particles. In both simu-
lations a hysteretic response was observed and the shear modulus
was seen to depend strongly on the coordination number. Chen
and Hung (1991) found that upon unloading to the initial stress
level the coordination number increases only slightly while upon
unloading to an isotropic stress state the fabric anisotropy induced
during loading remained essentially intact. Kuhn (1999) subjected
his 2D assembly to load reversals and found that particles did not
return to their original positions.

As noted in Chapter 11, O’Sullivan et al. (2008) validated the
ability of DEM to simulate cyclic response by comparing strain-
controlled cyclic triaxial experiments on steel spheres with equiv-
alent DEM simulations. A parametric study considered the varia-
tion in overall stresses and in the material fabric during cyclic load-
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ing. As discussed by both O’Sullivan et al. (2008) and O’Sullivan
and Cui (2009a), for the strain amplitudes considered (1%, 0.5%,
0.05%, 0.005%) even after 50 loading cycles, while the macro-scale
stress-strain response exhibited little variation from cycle to cy-
cle, a net change in fabric anisotropy and coordination number
over each load cycle continued to be observed. Yunus et al. (2010)
also considered 3D strain-controlled cyclic loading and, based on
their simulation data, they proposed that the fabric anisotropy
can be used as an internal variable in phenomenological models
(i.e. continuum constitutive models) for soil response.

The findings of Kuhn and of Cui and O’Sullivan indicate that
during load reversals there is significant movement of particles to
cause changes in contact configuration. In real sands where the
particles are not ideal and rigid, when there is a change in contact
configurations it is possible for particles to be damaged. In their
2D simulations of railway ballast particles subject to biaxial cyclic
loading Hossein et al. (2007) used bonded disk particles to repre-
sent the ballast. Their simulations indicated that damage occurred
over the initial 2,000 cycles. More realistic ballast particle geome-
tries were achieved by Lu and McDowell (2010) who simulated the
particles as tetrahedral of bonded spheres with mini-spheres be-
ing bonded to the outside of the tetrahedra to simulate asperities.
Monotonic and cyclic triaxial tests were simulated. The inclusion
of asperities was found to give a more realistic model response,
and the overall response trends gave good agreement with phys-
ical test data, considering the sensitivity of volumetric strain to
stress level, the magnitude of the permanent deformation and the
amount of ballast damage incurred. Lu and McDowell (2006) cre-
ated a model of ballast material around a sleeper and subjected
the ballast to cyclic load reversals by moving the model sleeper.
Their results indicated a linear relationship between the cumula-
tive settlement and the logarithm of number of load cycles.

Cyclic triaxial tests do not allow consideration of a range of
principal stress orientations. Li and Yu (2010) simulated the
response of a 2D material to controlled variation in the princi-
pal stress orientation, and applied a number of cycles where the
principal stress orientation was systematically varied. They used
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their results to study the fundamental mechanisms underlying
non-coaxial material response. Outside of the geomechanics lit-
erature, there have been some documented studies of ratcheting
that may also prove interesting (e.g. Garcia-Rojo et al. (2005),
Alonso-Marroquin et al. (2008)).

Other examples of the use of DEM to study cyclic response
include the simulation of liquefaction using either the constant-
volume approach (e.g. Ng and Dobry (1994) or Sitharam et al.
(2009)) or a coupled DEM model (e.g. Zeghal and El Shamy
(2008) who used the averaged Navier-Stokes approach). These
studies have also been considered in Chapter 6.

12.4 Conclusions

Appreciating the significant assumptions and simplifications in-
herent in DEM, it is both amazing and encouraging that DEM
simulations have been shown to be able to capture the major re-
sponse features of granular materials. The potential benefit that
this approach to modelling can bring to the geomechanics commu-
nity make the application and development of DEM an exciting
and satisfying field to work in.
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Chapter 13

DEM: Future and Ongoing
Developments

DEM is not a new technique; however, a widespread apprecia-
tion of the method amongst the geomechanics research community
has only recently been achieved and awareness of the technique
in geotechnical practice remains limited. The seminal paper on
DEM from the perspective of geomechanics was published in 1979
(Cundall and Strack, 1979a). As noted in Chapter 1, molecular
dynamics is a technique that shares algorithmic similarities with
particulate DEM. Molecular dynamics was originally developed in
the 1950s. However, the computational cost of simulations using
particulate DEM codes has rendered them relatively inaccessible
and unattractive to both researchers and practitioners until rela-
tively recently. Consequently, at the time of writing, and consid-
ering its slow uptake in the geotechnical industry in particular to
date, it is probably still reasonable to echo the comment of Rapa-
port (2004) (who considered molecular dynamics) and state that
the method is not “fully mature.” This final Chapter presents
some (subjective) ideas of how DEM use within the geotechnical
engineering is likely to evolve in coming years.

In order to see where DEM is going it is useful to see where
it has come from. Jing and Stephansson (2007) give a history
of DEM development, documenting how it has evolved starting
from the original disk and sphere codes BALL and Trubal devel-
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oped by Cundall and Strack. Drawing on this history as well as
other references, the key milestones in the development of DEM
can be said to include the hysteretic contact model proposed by
Walton and Braun (1986), the extension to non-spherical parti-
cles including ellipses and ellipsoids (e.g. Lin and Ng (1997)),
the coupling of DEM with fluid (Tsuji et al., 1993), the devel-
opment of bonded particulate modelling as a means to simulate
rock mass response (Potyondy and Cundall, 2004), and the imple-
mentation of DEM in a high-performance or parallel computing
software environment (e.g. Kloss and Goniva (2010), Weather-
ley (2009), Kozicki and Donz (2008)). While their objective has
been to advance understanding of material response, users of DEM
codes have made important developmental contributions by estab-
lishing the sensitivity of the response of different systems to the
DEM input parameters.

13.1 Computational Power

The computational cost of DEM simulations is the main constraint
inhibiting DEM analyses with realistic numbers of particles and
realistic particle geometries. As discussed in Section 11.5, this
constraint imposes a limitation both on DEM simulations of el-
ement tests used in basic research and in simulations of field- or
industrial-scale boundary value problems. The amount of compu-
tation and hence the processing time will increase at least linearly
with the number of particles and the time interval of interest and
this obviously also contributes significantly to the associated com-
putational cost. Tackling this problem is a key ongoing challenge
for DEM analysts.

The way in which computer hardware is developing, with even
processors for desktop PCs having multiple cores, means that
DEM codes implemented to run in a parallel or high-performance
computing environment will certainly become much more common
in geomechanics applications. Up until recently, the argument in
favour of implementing numerical algorithms in parallel codes was
somewhat muted by the high rate in improvement in the perfor-
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mance of single processors. However, as highlighted by Asanovic
et al. (2006), the old rule of a doubling in processor performance
every 18 months no longer holds. The future clearly lies in multi-
core or many-core architectures, and even possibly with exascale
operating systems with 10-100 million processing elements (Kogge,
2008). Both DEM and MD broadly come within the classification
of the N-Body Methods identified as one of the “seven dwarfs” of
high-performance computing proposed by Colella (2004). These
seven dwarfs are seven classes of numerical methods used in phys-
ical science that would benefit from parallel implementation. The
current rapid developments in the available hardware (including
the use of graphical processing units for example) could potentially
make simulations involving millions of particles very tractable.
Asanovic et al. (2006) have highlighted the fact that the increased
complexity of computer hardware architectures poses a significant
challenge to code development. Hopefully ongoing software engi-
neering research activities will enable DEM to take advantage of
the latest high-performance computing systems as they develop.
As highlighted by Asanovic et al. (2006), a key software challenge
is to develop a level of abstraction that allows the programmer to
implement algorithms without the need for a detailed knowledge
of the underlying hardware, while still enabling the user to take
full advantage of the power and performance of the multicore sys-
tem. Research and development considering the use of graphical
processing units (GPUs) to accelerate molecular dynamics codes is
ongoing, for example Plimpton et al. (2010) includes information
on the GPU accelerated version of the molecular dynamics code
LAMMPS (Plimpton, 1995). It is likely that particulate DEM
codes that also take advantage of GPUs will be developed in the
near future.

As discussed by Rapaport (2009) as the computations in MD
(and hence DEM) are based on highly localized information (i.e.
particles and their adjacent contacts), the algorithms are well
suited to implementation in a distributed or high-performance
computing environment. Various approaches can be used to im-
plement a DEM algorithm in parallel. Sutmann (2002) gives a
relatively broad discussion on options for parallelization of molec-
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ular dynamics/DEM codes. One approach considered by both Ra-
paport (2004) and Pöschel and Schwager (2005) is to divide the
system into subdomains or subvolumes. The response of each sub-
volume is then assigned to a different processor. Information about
the particles in adjacent subdomains falling within a margin zone
just outside the edge of the subdomain must also be provided. The
analyst needs to carefully consider how to choose the size of the
subdomain. Examples of parallel implementations of DEM codes
can be found amongst the open source research oriented codes that
are now available. The Esys DEM code (Weatherley, 2009) uses a
domain decomposition approach, with a distributed memory MPI
implementation, the DEM code LIGGGHTS (Kloss and Goniva,
2010) which is based upon the MD code LAMMPS (Plimpton,
1995) also uses MPI and a spatial discretization approach. YADE
(Kozicki and Donz, 2008) adopts a slightly different approach, us-
ing OpenMP and a shared memory strategy. As computer hard-
ware architecture evolves, there will certainly be a number of de-
velopments in the approaches adopted to implement DEM codes
in high-performance/parallel computing environments.

13.2 Future of DEM

Looking forwards, it is certain that DEM will not replace con-
tinuum modelling as a means to predict soil deformations, nor
will it replace physical experiments as a means to advance funda-
mental understanding of soil response. Rather it has established
itself firmly as one of the key “tools” available to geotechnical
engineers. In their review of likely research developments in ge-
omechanics in the 60-year time period from 2008 to 2068, Simpson
and Tatsuoka (2008) surveyed a large number of engineers working
in both geomechanics research and in industry. Many respondents
to this survey suggested that DEM will play a prominent role
in developing future analytical methods in geomechanics. From
a geomechanics perspective, when thinking about the future of
DEM, key developments will include application of the method
to a broader range of problems or research questions, algorith-
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mic/methodological developments and improvements in the real-
ism of DEM models. To maintain a high level of confidence in
both the method and its applicability, ongoing careful validation
and verification will be needed.

Considering firstly the application of DEM, it is clear that it
will continue to be used as a fundamental research tool, looking at
the micromechanics of soil response, with the goal in many cases
being to use the insight gained to advance constitutive models for
continuum modelling. DEM is also well placed to provide infor-
mation on mechanisms that operate at the particle scale but that
cannot easily be observed in the laboratory. In particular there is
significant potential for greater exploitation of DEM to simulate
soil-water interaction problems. For example, the problem of sand
production poses a great economic risk to the petroleum industry
and the somewhat similar problem of internal erosion poses a sig-
nificant risk to dams. There is scope for DEM simulations to in-
form guidelines to practising engineers considering these problems
in the not too distant future. DEM is also very likely to make a
significant contribution in the area of soil improvement, the poten-
tial in this area has been illustrated in the work by Ibraim et al.
(2006) looking at fibre-reinforced soil. As discussed in Chapter
12, at an industrial-scale DEM is most attractive when consider-
ing large deformation problems, including penetration, landslide
run-out or soil-machine interaction. Roberts (2008) demonstrated
that there is scope for DEM to play a role in the development of
sensors and transducers embedded in soil. No doubt as awareness
of the method grows within the geomechanics community, engi-
neers working both in research and in industry will have countless
suggestions on the potential of this method to help them tackle
their problems.

Significant future algorithmic developments in DEM are likely
to occur outside of geomechanics and the geomechanics DEM com-
munity needs to be aware of relevant ongoing developments in
powder technology and molecular dynamics. Taking account of
suggestions by Simpson and Tatsuoka (2008) and Yu (2004), the
specific algorithmic research needed to develop DEM clearly in-
cludes the following:
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1. Further parametric studies to consider the influence of the
model parameters (shape, stiffness, etc.) on the observed
response.

2. More realistic contact models and particle morphologies.

3. An increase in the number of particles considered in simula-
tions.

4. The development of more robust models and more efficient
computer codes.

5. Improved micro-scale quantification of inter-particle forces
and particle fluid interaction forces to inform future model
development.

6. Improved theories to relate the macro- and micro-scales.

7. Further developments in relation to coupling particles and
fluid, including simulation of multi-phase fluids (e.g. oil and
water mixtures).

This list of required studies includes both experimental and
numerical research. In considering the future of multi-scale mod-
elling in mechanics in general Kassner et al. (2005) recognized the
need for nano- and micro-scale experimentation. As outlined by
Kassner et al. there are significant challenges associated with the
design and manufacture of the type of small scale apparatus, in-
cluding accurate control and measurement loads and deformations
needed to accurately determine the contact interactions between
soil particles. A further challenge is posed by the irregular topol-
ogy of the surface of real soil particles. A more detailed discussion
on the issues involved can be found in Cavarretta (2009).

13.3 Further Reading

The objective of this book has been to provide a general reference
for people commencing to use DEM or contemplating the applica-
tion of DEM to simulate a problem involving granular materials
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of interest to them. As noted in Chapter 12, there has been a
rapid increase in the use of DEM in recent years as evidenced
by the number of DEM-related papers that have been published
across a range of scientific disciplines as well as publications specif-
ically concerning geomechanics related applications. The breadth
of disciplines that use DEM make this a particularly interesting
and stimulating area to work in, but for researchers or engineers
just starting to use DEM seeking appropriate information can be
very daunting.

There are many very interesting DEM related publications in
the literature, the most relevant of which will depend on the partic-
ular application of interest. However, there are some papers that
are likely to be particularly useful to many DEM analysts. The
original Géotechnique publication by Cundall and Strack (1979a)
gives a good overview of the DEM algorithm. While the review
papers by Zhu et al. (2007, 2008) approach the use of DEM from
a chemical engineering perspective, they contain information that
would be of interest to any DEM analyst. Those interested in
coupled DEM should refer to Tsuji et al. (1993) or Curtis and
van Wachem (2004). While the paper by Potyondy and Cundall
(2004) considers application of DEM to simulate the response of
rock mass, it includes a particularly clear description of the sim-
ulation process, as well as the approaches used to interpret the
results and it likely to be useful for analysts considering a range
of problem types. Bobet et al. (2009) consider, from a rock me-
chanics perspective, a number of modelling approaches for discon-
tinuous materials, including particle-based DEM. The two themed
issues of Géotechnique that considered soil mechanics at the grain-
scale include a number of very interesting DEM papers (Baudet
and Bolton, 2010a and 2010b). There has also been an issue of
Geomechanics and Geoengineering devoted to advances in DEM
(Morris and Cleary, 2009). Thornton (2000) and Rothenburg and
Bathurst (1989) are key references that show how DEM can be
used to relate particle-scale mechanisms to overall granular ma-
terial response. The experimental paper by Oda et al. (1985) is
also particularly useful as it gives a useful overview of how fabric
can be quantified and related to the granular material’s overall
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mechanical behaviour.

Considering previously published textbooks the publication
edited by Oda and Iwashita (1999) provides an excellent introduc-
tion to particle-scale mechanics of granular materials, the DEM
algorithm and micromechanics interpretation techniques that can
be applied to DEM simulation results. The theory manual for the
PFC software (Itasca, 2008) includes a very clear description of the
DEM algorithm. There have been many conference proceedings
including useful DEM related papers. The proceedings of the Pow-
ders and Grains series of conferences are particularly interesting as
they illustrate the range of applications involving DEM. Reference
to the 2009 proceedings is particularly recommended (Nakagawa
and Luding, 2009). Readers interested in DEM code development
in particular should refer to the textbook by Pöschel and Schwa-
ger (2005), who consider code development from the perspective of
granular materials, and include the description and code for many
DEM related functions in C++. Rapaport (2004) discusses the
implementation of a molecular dynamics code and this reference
is also likely to be useful to readers interested in development of
a particulate DEM code. Munjiza (2004) discusses the develop-
ment of a combined FEM/DEM algorithm and this book will be
of interest both to those interested in DEM code development and
in the simulation of particles using non-spherical geometries. Jing
and Stephansson (2007) discuss DEM as applied in rock mechan-
ics; they include one chapter on the use of particulate DEM, while
also considering the block DEM codes.

For those approaching granular materials from outside of the
geotechnical community, there are a number of undergraduate soil
mechanics texts that introduce the typical mechanical response
characteristics observed in soil, as well the methods used to test
and characterize the material. The textbook by Atkinson (2007)
is particularly readable and accessible. More in-depth discussions
from the perspective of critical state mechanics are given by Wood
(1990a) and Jefferies and Been (2006). Mitchell and Soga (2005)
approach soil mechanics from a scientific perspective and include
many references to particle-scale mechanisms. Geomechanics re-
searchers may find general texts on granular materials such as
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Duran (2000) interesting.

13.4 Concluding comments

In his Rankine lecture Potts (2003) presented arguments both in
favour and against the use of numerical modelling in geotechni-
cal engineering and queried whether modelling techniques are just
advanced toys for academics or genuine tools for routine numeri-
cal analyses. Considering this comment, it is useful to summarize
the role of particulate DEM in geotechnical engineering. As noted
in Chapter 12, granular materials, including soils, are complex
systems, where the overall material response emerges due to in-
teractions of simpler base units. This inherent complexity arising
from the particulate nature of the material hinders our ability
to accurately predict soil response when analysing real problems
of industrial, societal or environmental importance. The hetero-
geneity of the naturally deposited material adds a further level of
complexity to the systems.

The underlying goal motivating geomechanics research is to
improve our predictive skills, and an improved understanding of
soil response will contribute to achieving this goal. At the time
of writing it is reasonable to state that the complexity of granu-
lar material response is not completely understood. A scientific
understanding of a material requires both observation of the over-
all response via experiments and comprehension of the underlying
mechanisms. DEM simulations are uniquely placed to provide de-
tailed data that will facilitate the evolution of our comprehension.
Physical and numerical models that allow the exploration of hy-
potheses and examination of mechanisms will play a key role in
achieving this improved understanding. From the perspective of
physical science and engineering, a successful model is a simplifi-
cation of reality that captures the main features of the system of
interest while allowing more detailed analysis. Results obtained
to date demonstrate that DEM clearly meets these criteria.

There is no doubt that the use of particulate DEM within
the research community will continue to grow. This will have an
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impact on engineering practice either directly or indirectly. As
noted in Chapter 12, the application of DEM to large boundary
value problems of interest to industry lags its use in basic research
significantly. While routine quantitative predictions involving par-
ticulate DEM remain in the distant future, in the short to inter-
mediate term the most likely industrial application of particulate
DEM in geotechnical engineering will be in qualitative exploration
of failure mechanisms involving large deformations.

In 1999, a debate on the future of soil mechanics research was
held at Imperial College’s “Geotechnics in the New Millennium
Symposium.” The motion, “that this house believes continuum
models are past their sell-by date,” was passed. Over a decade
later it is clear that DEM is not likely to replace continuum anal-
yses, rather it is a very useful tool to supplement continuum anal-
ysis and laboratory experiments to develop our understanding of
soil response. While recognizing the limitations and development
needs of DEM, when looking to the future of geotechnics Simpson
and Tatsuoka (2008) stated that “it is likely that computations
that model the non-continuous nature of soils, with discrete load
paths, fractures and similar features, will become important and
might provide a major step forward.”
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Oda, M., J. Konishi, and S. Nemat-Nasser (1982). Experimental
micromechanical evaluation of strength of granular materials:
effect of particle rolling.Mechanics of Materials 1, 267–283.

Oda, M., S. Nemat-Nasser, and J. Konishi (1985). Stress-induced
anisotropy in granular masses.Soils and Foundations 25 (3), 85–
97.

Ogawa, S., S. Mitsui, and O. Takemure (1974). Influence of the
intermediate principal stress on mechanical properties of a sand.
In Proceedings of 29th Annual Meeting of JSCE, pp. 49–50.

O’Hern, C. S., L. E. Silbert, A. J. Liu, and S. R. Nagel (2003).Jam-
ming at zero temperature and zero applied stress: The epitome
of disorder.Physical Review E 68 (1), 011306.

Okabe, A., B. Boots, K. Sugihara, and S. N. Chiu (2000).Spatial
Tessellations Concepts and Applications of Voronoi Diagrams
(Second ed.).New York: Wiley.

Ooi, J., S. Sture, and M. Hopkins (2001). Editorial, special issue:
The statics and flow of dense granular systems, advances in the
mechanics of granular materials.ASCE Journal of Engineering
Mechanics 127 (10), 970.

O’Sullivan, C. (2002).The Application of Discrete Element Mod-
elling to Finite Deformation Problems in Geomechanics. Ph.D.
thesis, University of California, Berkeley.

O’Sullivan, C. and J. Bray (2002).Relating the response of ideal-
ized analogue particles and real sands. In Numerical Modelling
in Micromechanics via Particle Methods, pp. 157–164. A. A.
Balkema.

539



REFERENCES

O’Sullivan, C., J. Bray, and M. Riemer (2004). An examination
of the response of regularly packed specimens of spherical parti-
cles using physical tests and discrete element simulations.ASCE
Journal of Engineering Mechanics 130 (10), 1140–1150.

O’Sullivan, C. and J. D. Bray (2003a). A modified shear spring
formulation for discontinuous deformation analysis of particu-
late media. ASCE Journal of Engineering Mechanics 129 (7),
830–834.

O’Sullivan, C. and J. D. Bray (2003b). Selecting a suitable
time-step for discrete element simulations that use the cen-
tral difference time integration approach. Engineering Compu-
tations 21 (2/3/4), 278–303.

O’Sullivan, C., J. D. Bray, and S. Li (2003). A new approach for
calculating strain for particulate media. International Journal
for Numerical and Analytical Methods in Geomechanics 27 (10),
859–877.

O’Sullivan, C., J. D. Bray, and M. F. Riemer (2002).The influence
of particle shape and surface friction variability on macroscopic
frictional strength of rod-shaped particulate media. Journal of
Engineering Mechanics 128 (11), 1182–1192.

O’Sullivan, C. and L. Cui (2009a). Fabric evolution in granular
materials subject to drained, strain controlled cyclic loading.In
M. Nakagawa and S. Luding (Eds.), Powders and Grains 2009,
Proceedings of the 6th International Conference on Microme-
chanics of Granular Media, pp. 285–288.

O’Sullivan, C. and L. Cui (2009b). Micromechanics of granular
material response during load reversals: Combined DEM and
experimental study.Powder Technology 193, 289–302.

O’Sullivan, C., L. Cui, and S. O’Neil (2008).Discrete element anal-
ysis of the response of granular materials during cyclic loading.
Soils and Foundations 48, 511 – 530.

540



Particulate Discrete Element Modelling: A Geomechanics Perspective

Painter, B., S. Tennakoon, and R. Behringer (1998). Collisions
and fluctuations for granular materials. In H. Herrmann, J.-P.
Hovi, and S. Luding (Eds.), Physics of Dry Granular Media,
Volume 350 of E: Applied Sciences. NATO ASI Series: Kluwer
Academic.

Papadimitriou, A. and G. Bouckovalas (2002).Plasticity model for
sand under small and large cyclic strains: a multiaxial formula-
tion.Soil Dynamics and Earthquake Engineering 22, 191–204.

Park, J.-W. and J.-J. Song (2009).Numerical simulation of a direct
shear test on a rock joint using a bonded-particle model. Inter-
national Journal of Rock Mechanics and Mining Sciences 46 (8),
1315–1328.

Patankar, S. (1980).Numerical Heat Transfer and Fluid Flow. Tay-
lor and Francis.

Peron, H., J. Delenne, L. Laloui, and M. El Youssoufi (2009).
Discrete element modelling of drying shrinkage and cracking of
soils”.Computers and Geotechnics 36, 61–69.

Peters, J. F., K. R., and R. S. Maier (2009).A hierarchical search
algorithm for discrete element method of greatly differing par-
ticle sizes.Engineering Computations 26 (6), 621–634.

Plimpton, S. (1995).Fast parallel algorithms for short-range molec-
ular dynamics.Journal of Computational Physics 117, 1–19.

Plimpton, S., P. Crozier, and A. Thompson
(2010). LAMMPS molecular dynamics simulator.
http://lammps.sandia.gov/index.html, accessed Dec 2010.
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particles.Géotechnique 19 (1), 150–157.

Skylaris, C.-K., P. D. Haynes, A. A. Mostofi, and M. C. Payne
(2005). Introducing ONETEP: Linear-scaling density func-
tional simulations on parallel computers. Journal of Chemical
Physics 122 (8), 084119.

Sloane, N. J. A. (1998).The sphere packing problem.In Proceedings
of Internat. Congress Math. Berlin, Documenta Mathematica
Extra Volume ICM, Volume 3, pp. 387–396.

Stoyan, D. (1973).Models of random systems of non-intersecting
spheres. In Prague Stochastics 98, JCMF, pp. 543–547.

Summersgill, F. (2009). The use of particulate discrete element
modelling to assess the vulnerability of soils to suffusion. Mas-
ter’s thesis, Imperial College London.

Sutmann, G. (2002). Classical molecular dynamics. In J. Groten-
dorst, D. Marx, and A. Muramatsu (Eds.), Quantum Simula-
tions of Complex Many-Body Systems: From Theory to Algo-
rithms, Lecture Notes, Volume 10, pp. 211–254. John von Neu-
mann Institute for Computing, Jülich, NIC Series.
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Géotechnique 57 (7), 513–526.

Wang, J. and M. Gutierrez (2010).Discrete element simulation of
direct shear specimen scale effects.Géotechnique 60 (5), 395–409.
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337, 344, 407
density scaling, 54
dilatancy, 426, 475, 489
discontinuous deformation anal-

ysis(DDA), 10, 13, 36,

57, 145, 170, 459, 465
disk cluster, 153, 466

crushable, 159
disk particle, 146
displacement gradient, 308
displacement vectors, 286
drag forces, 217

EDEM, 419
effective stress, 209, 222, 362,

471, 474
ELLIPSE3D, 418
ellipses, 151, 162, 376
ellipsoids, 151, 162, 475
emergent response, 471
energy, 425, 482

acoustic, 458
dissipation in hysteretic con-

tact model, 106, 116, 127
energy in fluid flow, 212
hard sphere model, 8
Monte Carlo method, 10
non-linear elastic contact model,

99
numerical stability, 44, 51
system energy, 59, 250

equilibrium equation, 35, 44, 145
particle stresses, 315
rotation, 37, 39, 129

Ergun equation, 218
ESysS, 419, 498
event-driven model, 7, 107, 181,

436
explicit time integration, 19, 35,

40, 58, 75
finite element analysis, 46

fabric, 375
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fabric ellipsoid, 381
fabric tensor, 390, 481, 485

fourth-order, 390
particle orientations, 400
void orientations, 400

failure criterion
Tresca, 90
von Mises, 90

finite difference method, 34, 212,
460, 468

finite element method, 2, 18, 34,
45, 84, 169, 212, 311, 337,
438, 441

floater particles, 246, 270, 366
fluid-particle coupling, 209, 468
Fourier analysis

fabric quantification, 383, 396
friction coefficient, 14, 93, 110,

255, 422, 480

Gauss’s divergence theorem, 316
Gauss’s integral theorem, 314,

343
granular temperature, 291

hard sphere model, 7, 436
Hertzian contact mechanics, 87

limitations of, 97
high-performance computing, 496
homogenization, 307, 312
hysteresis, 68, 96, 101, 106, 127,

295, 421, 478, 492

image analysis, 169, 173, 271,
413, 472

implicit time integration, 35, 55
incremental displacement vector,

34, 331

index notation, 21
inertia, 14, 149, 484

inertia matrix, 34, 38, 69
inertia number, 440
moments of inertia, 69, 149,

156
products of inertia, 69

internal erosion, 209, 483

Kelvin model, 99

Lagrangian multiplier
contact detection, 164
contact resolution, 84

LAMMPS, 419, 498
lattice packing, 238, 443, 473

face-centred-cubic, 50, 202,
444

LIGGGHTS, 419, 498
liquefaction, 210, 223, 260, 483

machine-soil interaction, 462
macro-scale, 310, 471
mass scaling, 54
material cell system, 323, 344
Maxwell model, 99, 133
membrane boundaries, 189, 280,

314
shear band, 190

membrane boundary, 37
meshless methods, 11
meso-scale, 310
micro-computed tomography (μCT),

155, 169, 271, 302, 369,
446

micro-scale, 310
micromechanical

continuum modelling, 473
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microstructural
continuum modelling, 473

Minkowski sum, 168
molecular dynamics, 11, 28, 142,

181, 277, 418, 495, 502
Monte Carlo method, 10

Navier-Stokes equation, 216, 226
coarse-grid approximation
method, 226

neighbour list, 137, 140
network analysis, 239, 304, 406
non-conforming contact, 85, 88,

111, 124, 371
normal contact response, 87, 103
numerical stability, 11, 34, 40,

43, 44, 55

orientation fabric, 378
out-of-balance force, 14, 67, 249,

441
Oval, 419
ovoid particle, 164

partially saturated soil, 134
particle graph, 324, 406
particle morphology, 370
particle rotations, 2, 34, 37, 48,

68, 111, 145, 149, 199,
217, 279, 481

inhibited, 153, 429, 463, 467
shear band, 280
strain, 333

penalty spring, 13, 425
penetration, 3, 463
percolation, 239
percolation threshold, 239, 304

periodic boundaries, 181, 248, 255,
418, 436, 484, 492

circumferential, 201, 446
deformation of periodic cell,

184
servo controlled simulation,

185, 254
use with other boundary con-

ditions, 206
periodic cell, 181, 222, 289, 328,

418, 436, 484
shear band, 187

PFC (Particle Flow Code), 70,
104, 107, 118, 119, 133,
148, 192, 193, 242, 355,
418, 443, 502

phase transformation point, 222,
479

photoelasticity, 128, 295, 302, 369,
379, 400, 421, 444, 472,
479

pluviation, 240, 268
polar histogram, 379
polygonal particles, 167
polyhedral particles, 167, 463
porosity, 362
principal stress ratio, b, 327
principal stresses, 23

intermediate, 327, 427, 478
orientations, 23, 180, 295, 375,

493

quasi-static simulation, 254, 312,
438, 440

quaternions, 73

radius expansion, 246
railway ballast, 466
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random generation of particles,
241

rattler particles, 246, 296, 366
reduncancy, 298
redundancy, 7, 372, 411
representative volume element,

181, 308, 364, 436
Reynolds number, 215
rheological models, 80, 98, 133,

425
rigid wall boundary, 176, 314

servo-controlled, 178, 355, 356,
431, 438

rock joint, 459
roughness, 459

rock mass, 123, 246, 270, 304,
426, 455

rock mass response, 456
rockfill, 466
rolling friction, 124, 150, 429, 480
rolling resistance, 124, 150, 423,

426
rose diagram, 379
rotational resistance, 86, 119, 124,

130, 150, 162, 423, 429,
480

rotational spring, 128
roundness, 173

Schneebeli rods, 421, 444, 446,
468, 472

shape function, 342
shear band, 310, 342, 434, 471,

478, 481
particle rotations, 280

shear bands, 302
slope stability, 223, 465

smoothed particle hydrodynam-
ics (SPH), 2, 11, 235

soft sphere model, 7, 146
soil-structure interaction, 467
space cell system, 344
specific volume, 362
specimen generation, 18, 68, 237,

417
sphere cluster, 74, 153, 434, 463,

466
crushable, 159, 482

sphere clusters
crushable, 429, 489

sphere particle, 146
sphere particles, 484
sphericity, 173
spin moment at contact, 121, 124
stable particle packing, 270, 372,

423
state, 362, 475
state parameter, 475
statically indeterminate, 7, 298
stiffness matrix, 34, 45, 56
strain, 330

best fit approach, 334
calculated from boundaries,

330
non-linear interpolation ap-

proach, 348
spatial discretization approach,

337
strain rate, 336, 439
strain softening, 187, 355, 470,

478, 485
stress, 313

calculated from boundaries,
313
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calculation from contact
forces, 323

particle stresses, 315
strong force chains, 62, 246, 298,

368, 404, 479
structure, 375
superquadratics, 162
superquadrics, 162
surface asperities, 62, 80, 86, 97,

110, 126, 131, 160, 466
surface roughness, 110, 127, 151,

170, 370, 424, 471, 483

tangential contact response, 92
tangential forces, 10, 37, 81, 110,

124, 148, 279, 328, 388,
485

tensorial notation, 21
tessellation, 28, 323, 337, 344,

407
time increment, 17, 39, 440

calculation steps in each, 15
critical, 44, 54, 58, 157
event-driven model, 8

time integration, 19, 39, 443
Gear’s algorithm, 76
leap-frog time integration scheme,

42
predictor corrector, 75
Verlet time integration scheme,

39
Trubal, 418, 443, 495

unsaturated soil response, 134

valance, 367
validation, 50, 201, 313, 441, 444
velocity fluctuations, 291

velocity vectors, 287
Virtual Geoscience Workbench,

419
void graph, 407
void orientations, 400
void ratio, 362
void shape, 400
Voronoi tessellation, 28, 266, 345

wavelet function, 351
weak force network, 301, 479
Wen and Yu equation, 218

YADE, 419, 498
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