

OPTIMIZATION IN PUBLIC
TRANSPORTATION

Stop Location, Delay Management and Tariff Zone Design
in a Public Transportation Network

Optimization and Its Applications

VOLUME 3

Managing Editor
Panos M. Pardalos (University of Florida)

Editor—Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate
during the last few decades. New algorithmic and theoretical techniques have
been developed, the diffusion into other disciplines has proceeded at a rapid
pace, and our knowledge of all aspects of the field has grown even more
profound. At the same time, one of the most striking trends in optimization is
the constantly increasing emphasis on the interdisciplinary nature of the field.
Optimization has been a basic tool in all areas of applied mathematics,
engineering, medicine, economics and other sciences.

The series Springer Optimization and Its Applications publishes
undergraduate and graduate textbooks, monographs and state-of-the-art
expository works that focus on algorithms for solving optimization problems
and also study applications involving such problems. Some of the topics
covered include nonlinear optimization (convex and nonconvex), network
flow problems, stochastic optimization, optimal control, discrete
optimization, multi-objective programming, description of software
packages, approximation techniques and heuristic approaches.

OPTIMIZATION IN PUBLIC
TRANSPORTATION

Stop Location, Delay Management and Tariff Zone Design
in a Public Transportation Network

By

ANITA SCHÖBEL
Georg-August University, Göttingen, Germany

1 3

Library of Congress Control Number: 2006929191

ISBN-10: 0-387-32896-3 e-ISBN: 0-387-36643-1

ISBN-13: 978-0-387-32896-6

Printed on acid-free paper.

AMS Subject Classifications: 90B06, 90C10, 90C90, 90C27, 90B85

 2006 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

To my parents
Helga and Volker Schumacher

Preface

Der Kunde ist König.

(German saying)

Public transportation plays an important role in most populated areas. Espe-
cially in metropolitan regions public transportation systems are widely used.
But unfortunately, public transportation is often a subject of complaints. Cus-
tomers are annoyed about “unfair prices”, about “bad service” and in partic-
ular get upset in case of delays. Such complaints are understandable, but for
the public transportation companies it is often impossible to provide a better
service without increasing the costs. The reason for these difficulties is the
complexity and the size of the planning problems arising.
The theory of optimization provides a sound methodology for finding good
solutions, if a mathematical model of the respective problem is known. More-
over, due to the availability of fast computers many problems that seemed to
be intractable some years ago can nowadays be solved.

This work provides suitable models for planning public transportation systems
from a customer-oriented point of view, but taking into account the limited
budget public transportation companies have to respect. In particular, we
develop and analyze optimization models for the following three problems:

Part I: Stop location. Here we deal with the location of stops along bus
routes, or of stations along railway tracks. As objective functions we con-
sider the number of customers living close to a station and the additional
travel time arising by the stopping activities of the trains or buses. In
particular, we discuss how to find the minimal number of stops to cover

VIII Preface

a given set of demand points or demand regions, how to cover as many
customers as possible with a given budget and both problems together in
a bicriteria setting.

Part II: Delay management. If a vehicle arrives at a station with a delay, pas-
sengers who wish to change into another vehicle, say a bus, may miss their
connection, if this bus departs on time. Such wait-depart decisions and
their impact on the whole transportation system are investigated from
the customers’ perspective. As objective functions we hence discuss the
sum of all delays over all passengers, the number of missed connections,
and the sum of all delays over all vehicles. The latter two objectives are
treated as a bicriteria optimization problem.

Part III: Zone planning. In order to design a zone tariff system, the complete
transportation area has to be partitioned into zones, and prices for trav-
eling through 1,2,3,. . . zones have to be defined in such a way that the
current income of the public transportation company does not decrease
too much. As objective function we consider the deviations between the
new prices and some given reference prices. These deviations can be in-
terpreted as the fairness of the new tariff system or as the changes to the
current ticket prices.

All three problems were brought to my attention within real-world projects,
and some of the obtained results have already been implemented and applied
in practice. Nevertheless, the main focus of this work is to develop a consistent
mathematical theory and to present basic results within all three fields.

• The stop location problem is treated using the concept of gauges and
ideas of continuous location theory. A finite dominating set of possible
new stops can be derived. This allows us to formulate the stop location
problem as a set covering problem. By using the special structure of the
covering matrix which is due to the geometrical properties of the stop
location problem, efficient solution methods for this type of set covering
problems are developed.

• For the delay management problem three different, but equivalent mixed
integer programming formulations are presented. By combining these mod-
els many structural results for the delay management problem are ob-
tained. In particular, it is possible to identify cases in which the problem
is solvable efficiently. Furthermore, methods of project planning are ap-
plied to determine Pareto solutions.

• Finally, the design of zone tariff systems in public transportation is mod-
eled by methods of graph theory. The obtained theoretical results together
with ideas of clustering theory are utilized for deriving solution approaches.

The theory presented in this text and the obtained results open a wide field
for further developments and implementations of the suggested approaches.
The algorithms that have already been tested on our real-world data confirm
the practical usefulness of the models and show their potential for future
applications.

Preface IX

Before concluding the preface I wish to add several acknowledgments. First
of all, I thank Horst W. Hamacher for his support, for the pleasant and con-
structive work together with him, and for his helpful advice in any question I
had.

For many valuable suggestions I am indebted to Kathrin Klamroth and Dag-
mar Tenfelde-Podehl. I also appreciate the comments of Teresa Melo, Martin
C. Müller, and Michael Schröder.

It was a pleasure to work with Annegret Liebers and Dorothea Wagner on
the stop location problem. My thanks also go to Frank Geraets of Deutsche
Bahn who provided this nice problem together with real-world data. I want
to thank Andreas Ginkel and Nikolaus Ruf for many fruitful discussions we
had during the preparation of their diploma theses on delay management and
set covering problems. Moreover, I want to express my gratitude to Dieter
Grünewald whose expertise in analyzing zone plans influenced my practical
work in this area.

I also want to thank Robert Saley of Springer for his kind assistance during
the publication of the manuscript.

Last, but not least, my special thanks go to my husband Georg and to my chil-
dren Svenja and Malte for their encouragement, patience, and understanding
which made it possible for me to write this text.

Göttingen, Anita Schöbel
December 2005

Contents

1 Customer-oriented Traffic Planning . 1
1.1 Customer-oriented Transportation . 1
1.2 Public Transportation Network and Customer Data 5

Part I Stop Location

2 Introduction . 11
2.1 Application . 13
2.2 Literature Review . 14
2.3 A Model for Continuous Stop Location . 15

3 Covering All Demand Points . 21
3.1 Feasibility and Complexity of Complete Cover 22
3.2 A Finite Dominating Set . 24
3.3 Complete Cover Along a Polygonal Line . 29
3.4 Set Covering With Consecutive Ones Property 32
3.5 Complete Cover in a Realistic Network . 40
3.6 Set Covering With Almost Consecutive Ones Property 46

4 Bicriteria Stop Location . 59
4.1 Constraint Problems and Lexicographic Minimality 60
4.2 Integer Programming Formulations . 62
4.3 Bicriteria Set Covering With Consecutive Ones Property 65
4.4 Varying the Radius . 71

5 Extensions . 75
5.1 Covering Demand Regions . 76
5.2 Minimizing the Total Door-to-door Travel Time 85

XII Contents

Part II Delay Management

6 Introduction . 95
6.1 Application . 97
6.2 Related Literature . 98
6.3 A Model for the Delay Management Problem 100
6.4 Event-activity Networks in Delay Management 104

7 Delay Management With Fixed Connections 109
7.1 Linear Programming Approach . 110
7.2 Relation to the Critical Path Method . 111
7.3 Relation to the Feasible Differential Problem 115

8 Minimizing the Sum of All Delays . 119
8.1 A Linear Model . 121
8.2 Activity-based Model . 125
8.3 Constant Weights and the Never-meet Property 133
8.4 A Simple Special Case . 145
8.5 Solving the model with constant weights 147
8.6 Solving the Total Delay Management Problem 163

9 The Bicriteria Delay Management Problem 175
9.1 A First Analysis . 176
9.2 Integer Programming Formulation . 179
9.3 Lexicographic and Supported Efficient Solutions 180
9.4 Finding All Efficient Solutions . 182

10 Extensions . 195
10.1 The General Delay Management Problem. 195
10.2 Railway and Bus Specific Requirements . 201

Part III Tariff Planning

11 Introduction . 207
11.1 Frequently Used Tariff Systems . 208
11.2 Application . 212
11.3 Literature Review . 213
11.4 A Model for the Zone Design Problem . 213

12 Finding Zones and Zone Prices . 219
12.1 The Fare Problem . 220
12.2 The Maximum Deviation Zone Design Problem 224
12.3 Extensions for Real-world Problems . 232

Contents XIII

A Integer Programming . 237

B Bicriteria Optimization . 239

C Gauges as Distance Measures . 243

Frequently Used Notation . 247

List of the Main Problems . 251

References . 253

Index . 265

1

Customer-oriented Traffic Planning

1.1 Customer-oriented Transportation

Although public passenger transportation plays an important role especially
in large metropolitan areas, it also has to be carefully planned and organized in
a rural environment. There are economical, environmental, and social reasons
for considering the needs of customers when planning public transportation.

• First of all, if a public transportation company attracts more customers
then it will sell more tickets and hence its income will (usually) increase.

• An environmental aim is to decrease the amount of individual traffic
(mainly in large cities) and thus reduce its negative effects such as pollu-
tion, noise, and congestion. This is sometimes accomplished by imposing
restrictions or fines through high parking fees, tolls, closure of roads, or car-
free days. A way of avoiding this would be to offer such a good alternative
that (at least some) people voluntarily decide to use public transportation
instead of their cars.

• In areas with few inhabitants, congestion usually is no problem. The chal-
lenge here is to offer an affordable transportation mode for people who do
not have the opportunity to travel by car, e.g., children, elderly people, or
citizens without a driving license.

We now briefly introduce in an informal way some of the problems occurring
in public transportation. Three of them – locating stops, delay management,
and tariff planning – will be discussed in detail in subsequent chapters. An
overview of the problems considered in this text and their relation to other
customer-related steps in the planning phase and at the operational level is
given in Figure 1.1. Note that sometimes the same model can be used for on-
line decisions and for long-term decisions at the same time. This is for example
the case for the model that we will present for the delay management problem.

2 1 Customer-oriented Traffic Planning

Timetabling

Line planning

OPERATIONAL LEVEL

STRATEGIC LEVEL

Tariff planning

Network design

Re−schedulingDelay management

Fig. 1.1. The problems considered in the text within the planning process in public
transportation.

Network planning

Network planning includes the design of the transportation network, i.e., sit-
ing the stations and the bus routes or train tracks. The outcome of the pro-
cess of network planning is the public transportation network (PTN). Net-
work planning problems have been treated in the general context of net-
work flow problems. In the public transportation literature we refer, e.g., to
[CW86, BM95, CG02] and to the references given therein. However, in real
life a PTN is usually not designed from scratch, but only modifications of an
existing PTN are considered, such as

• finding new stations in a railway or bus network,
• closing existing stations, or
• finding a subnetwork for opening rapid transit lines.

For these problems literature is rather sparse. Locating stops or stations in
the PTN will be discussed in Part I of this text. For finding subnetworks for
operating an underground system or a rapid transit line, hub location models
have been developed by [NSS01].

1.1 Customer-oriented Transportation 3

Line planning

Line planning concerns the definition of paths in the PTN on which service
should be offered, i.e., the routes of the bus or railway lines. The line planning
problem has been well studied in the literature. For an early contribution we
refer to [Die78]. In [BKZ96, Bus97] the goal is to maximize the number of pas-
sengers with direct connections under the constraint that all passengers can
be transported. The solution methods proposed use advanced integer pro-
gramming techniques. Under a similar constraint, the goal in [CvDZ96] is
minimization of costs for the public transportation company. Line planning
problems considering different types of vehicles simultaneously were studied in
[GvHK04, GvHK02]. Various models and algorithms are discussed in [Goo04].

A new approach is to take into account that the behavior of the cus-
tomers depends on the design of the lines. A first model including such
demand changes was treated with simulated annealing in cooperation with
Deutsche Bahn, see [Kli00b, Sch01a]. Moreover, the choice of the routes
of customers depends on the (unknown) line plan. Finding a line plan to-
gether with optimal routes for the customers has recently been considered in
[SS05, Sch05b, BGP04a, BGP04b, Sch05a, LMMO06]. In these approaches,
the goal is to design lines in such a way that the traveling time of the customers
is minimized. The first two of these publications also include the number of
transfers of customers in the objective function. The special case of locat-
ing one single line so as to maximize the number of passengers is treated in
[LMO05].

Timetabling

Timetabling determines the departure and arrival times for all trips at all
stations. Here two cases are distinguished.

Case 1: All rides within the same line start in periodic time intervals, e.g., at
7:03, 7:33, 8:03, 8:33, 9:03 and so on.

Case 2: The timetable of the rides is non-periodic.

Many papers and theses deal with problems related to timetabling. An
overview of the literature in this area will be given in Section 6.2 (see page 98)
within the context of delay management.

Tariff planning

Tariff planning concerns the determination of fares for the customers. Different
systems are possible.

distance tariff: The price depends on the length of the journey.
unit tariff: Each journey costs the same.

4 1 Customer-oriented Traffic Planning

zone tariff: The complete area is partitioned into zones, and the prices depend
on the number of passed zones, from the origin to the destination of the
journey.

In tariff planning the problem is to design a new tariff system along with its
prices. A common requirement is that the new income of the public trans-
portation company should not decrease compared to its current income. On
the other hand, the customers should find the new system acceptable. Design-
ing zone tariffs under such criteria will be treated in Part III.

Summarizing, line planning, timetabling and network design problems have
been well studied in the literature so far. There are other problems belonging
to the strategic planning process in public passenger transportation, like

• rolling stock circulation,
• vehicle scheduling,
• shunting,
• crew management,
• crew rostering,
• maintenance issues.

Since these problems have no direct effects on the customers they will not
be considered in this text. Various models and solution approaches for these
problems exist. For references the reader is referred, e.g., to the proceedings
of the CASPT meetings which are mentioned below.

We finally list two operational problems, which have to be solved on-line in
case of disturbances.

Delay management:

Suppose that a vehicle arrives at a station with a delay. Should a connect-
ing vehicle wait for passengers who wish to change or should it depart on
time? The goal is to minimize the inconvenience caused by delays from the
customers’ point of view. The delay management problem will be treated in
Part II.

Re-scheduling of vehicles:

Especially in rail transportation, construction sites, delays, or any other dis-
turbance make a re-scheduling of trains necessary. This is a difficult prob-
lem since many constraints have to be taken into account. The main re-
quirement in many railway companies is that no two trains are allowed
to occupy the same segment of a track (called block) at the same time.
The goal may be to return to the original schedule as quickly as possi-
ble, or to minimize the additional delays of the trains. The problem has
mainly been considered in transportation and engineering sciences, and is
practically often solved based on priority rules. Operations research models

1.2 Public Transportation Network and Customer Data 5

can be found in [AFT02, BHK99, ADGGT99, Kro97, Zwa96, AD96], while
there are also many other successful approaches from various areas, including
[Tör05b, TJ05, WS05, PMP04, Jac04, vE01, Fay00, HKF96, PT82]. A recent
overview with many references is given in [Tör05a].

Other operational problems include the re-scheduling of crew in case of un-
expected absent drivers, re-planning of rosters, or maintenance re-scheduling.

For more details about the mathematical models used in the planning pro-
cess in public transportation we refer to the basic rail transportation models of
[Ass80] and to the survey of Bussieck, Winter and Zimmermann [BWZ97]. An-
other overview is given by Borndörfer, Grötschel and Löbel [BGL98]. Patriks-
son and Labbé [PL02] collected articles about the state-of-the-art in the field
of transportation planning. The survey of Cordeau, Toth and Vigo [CTV98]
focuses in particular on routing and scheduling in rail transportation. Railway
planning problems are also addressed in the surveys of [Wag03, GJP+04] and
in the forthcoming collection [GKS+06].
Moreover, we refer to the conference proceedings of the CASPT (Computer-
Aided Scheduling of Public Transport) meetings [Wre81, Rou85, DW88,
DR92, DBP95, Wil99, VD01], to the TRISTAN (Triennial Symposium on
Transportation Analysis) [BT96] conferences, and to the proceedings of the
ATMOS workshops [Zar01, Wag02, Ger04, GKS+06].

1.2 Public Transportation Network and Customer Data

We start with a formal definition of a public transportation network, a simple
example of which is depicted in Figure 1.2.

Definition 1.1. A public transportation network is a finite, undirected
graph PTN = (V, E) with

• a node set V representing stops or stations, and
• an edge set E, where each edge e = {u, v} indicates that there exists a

direct ride from station u to station v (i.e., a ride that does not pass any
other station in between).

In public transportation, an ordered pair of stops (or stations) u, v is often
called a relation.

Within the network design step, the PTN is constructed, or modifications of
an already existing PTN such as adding new stops or closing existing ones
are planned. However, for all other purposes, like line planning, timetabling,
delay management, or tariff planning, we assume the PTN as given and fixed.
It may happen that the set E of direct rides in the PTN is not given, but a

6 1 Customer-oriented Traffic Planning

Fig. 1.2. A PTN with its set of stops V and its direct rides E.

timetable is at hand. Possibilities to construct E in such a case are discussed
in [Lie01].

Since we mainly deal with optimization problems from the customers’ point
of view, we now discuss the data about the customers needed for our models.

OD-matrix: The origin-destination matrix (OD-matrix) W = (Wuv) is a |V |×
|V | matrix containing the number of customers who wish to travel from
station u to station v for all relations (u, v) in the PTN. Instead of the
number of customers, the number of sold tickets can be given. The latter
is in particular needed for tariff planning.

Traffic load: The traffic load is defined by the number of customers traveling
along an edge e ∈ E or through a node v ∈ V in the PTN, and is denoted
by ce or cv, respectively. The traffic load can be given as number of cus-
tomers per hour, per day, per week, or per year. The traffic load will be
used for the stop location problem (Part I), and as an approximation in
the delay management problem (in Part II).

We now summarize some notation that will be used throughout the text.

Notation 1.2. Let PTN = (V, E) and let I be a fixed time interval.

• For all u, v ∈ V let Wuv denote the demand of relation (u, v), i.e., the
number of passengers who wish to travel from station u to station v within
the time interval I. The matrix W = (wuv)u,v∈V is called the origin-
destination matrix or, shorter, the OD-matrix.

• For all e ∈ E let ce denote the traffic load of an edge e, i.e., the number
of customers using edge e within the time interval I.

1.2 Public Transportation Network and Customer Data 7

Moreover, for v ∈ V let cv denote the traffic load of station v, i.e., the
number of customers traveling through station v within the time interval
I.

Note that I needs to be chosen appropriately for the respective application
one has in mind. For example, in tariff planning, I usually refers to a long
period such as a whole year, hence Wuv can be used to calculate the annual
income on the relation from u to v. For line planning, however, the traffic
load is important to make sure that all passengers can be transported. Here
I is usually a short interval, like the morning traffic period (e.g., from 6 to 8
a.m.), and ce is used to calculate the number of vehicles needed along edge e
within this period. Apart from these widely used data we sometimes need the
following more detailed information about the customers.

Demand within a point or region (needed in Part I): When dealing with the
location of stops close to customers, we assume that a set of demand
points or demand regions is given. The number of (potential) customers
within a demand point d is denoted by wd. Alternatively, the number of
(potential) customers within a demand region D is called wD.

Paths of the customers (needed in Part II): For calculating the delay of a
customer, it is not enough to know where his journey has started and
to which station he wishes to travel. Also of interest are the starting time
and the stations in which a transfer to other vehicles occurs, i.e., the path
followed within the transportation network, as well as the vehicles used.
For a path p let wp denote the number of customers using this path. Since
the information about such paths is often not available we will also present
models which do not rely on this specific information.

Number of changing passengers (needed in Part II): For calculating how many
passengers miss a connection a from some vehicle g to another vehicle h
at a station v we need the number of transfer passengers wa who plan to
use connection a to change between the respective trains.

Destinations of the customers (needed in Part II): In delay management, it
is also convenient to use the number of customers Cg

v who reach their
final destination v traveling in some vehicle g.

Note that the latter two data sets can be easily obtained if the paths of the
customers are known. If only the OD-matrix W is known, it is possible to
approximate the traffic loads by finding a set of reasonable paths from u to
v for each relation u, v and dividing Wuv among these paths. Doing this for
all relations and then adding for each edge e ∈ E the weights of all paths
containing e gives an approximation of the traffic load of e. Formally, this is
stated next.

8 1 Customer-oriented Traffic Planning

Algorithm 1: Approximating traffic loads

Input: PTN and OD-matrix W = (Wuv)u,v∈V .

Output: Traffic load ce for each edge e ∈ E.

Step 1. For each pair u, v ∈ V with Wuv > 0 determine a set of ‘‘reasonable’’

paths from u to v

P
uv
1 , P

uv
2 , . . . , P

uv
k ,

and assign weights wP uv
1

, wP uv
2

, . . . wP uv
k

to these paths in such a way that

kX
i=1

wP uv
i

= Wuv.

Step 2. For all e ∈ E set

ce =
X

u,v∈V

X
i=1,...,k:
e∈P uv

i

wP uv
i

.

Note that the difficulty of the algorithm above is to express the customers’
behavior by an appropriate set of weighted paths, i.e., the skills are more of a
practical nature rather than of mathematical hardness. For simplicity, k is set
to 1 in many applications, and the only path Puv for the relation from u to v
is chosen as a shortest path. In this case, Algorithm 1 simplifies to computing
the following expression for all e ∈ E:

ce =
∑

u,v∈V :e∈Puv

Wuv .

Part I

Stop Location

2

Introduction

Establishing stops (or stations) within a transportation network is fundamen-
tal for offering public transportation service, since stops are an important part
of the PTN. But it is not clear in advance, how many stops are reasonable,
and where they should be built. Let us consider the effects of stops on the
customers:

• On the one hand, many stops are advantageous from the customers’ point
of view, since they increase the accessibility of the trains or buses. Es-
tablishing a new stop may hence attract new customers and increase the
demand. In bus transportation, the covering radius is often assumed to be
400 m, meaning that a customer will think about using a bus, only if the
next bus stop is within a distance of at most 400 m. In rail transportation,
the covering radius is larger, and is usually assumed to be 2 km.

• On the other hand, each additional stop increases the transportation time
(e.g., by two minutes in rail transportation) for all trains or buses stopping
there. This makes the transportation service unattractive to customers.

Moreover, this additional running time of trains (or buses) is costly for the
transportation company, and also fixed costs arise for establishing a new stop.

In the continuous stop location problem we deal with the location of new
stops along a given track system. This means, we assume that the tracks for
the trains are already built, or the routes for the buses are already fixed. For
the sake of simplicity we will use the wordings “stops” and “tracks” in the
following, but keep in mind that the models and algorithms presented can
also be applied for bus transportation.

We further assume a (possibly empty) set of already existing stops or stations.
As input data we also need the locations of the potential customers, given as
points or as regions in the plane, and the traffic load along the edges of the
given tracks. An example for a set of demand points is depicted in Figure 2.1.
Our goal is to locate additional stops along the tracks such that

12 2 Introduction

• as many (potential) customers as possible live closer than a given radius
r to their nearest stop, and such that

• the increase of travel time caused by the new stops is as small as possible.

demand point
given tracks

Fig. 2.1. The set of tracks T and a set of demand points D in the plane.

The result we obtain by solving the continuous stop location problem defines
the PTN which is the basis for many subsequent optimization models in public
transportation planning. Establishing no stop at all means that the additional
travel time is minimal, but for none of the customers does the accessibility
increase. The other extreme is to open stops until the complete demand is
covered. The following optimization problems will be treated in this chapter.

• In the complete cover stop location problem (CSL) we want to cover all
potential customers with as few stops as possible, or with as few costs
as possible. The problem will be treated in Chapter 3 for the case that
the demand is given at points and in Section 5.1 for the case of demand
regions.

• The bicriteria stop location problem (BSL) focuses on minimizing the addi-
tional travel time and on maximizing the covered demand simultaneously.
This provides solutions between the two extremes of covering the complete
demand and of establishing no (additional) stop at all. (BSL) is discussed
in Chapter 4.

• In the door-to-door travel time stop location problem (DSL) we investigate
the door-to-door travel time over all customers. The door-to-door travel
time for a customer is given by the time he needs to get to the first station
of his trip plus the time of the trip itself plus the time he needs to reach
his final destination after leaving the public transportation system. (DSL)
will be considered in Section 5.2.

Chapter 2 is structured as follows: We start by presenting the applica-
tion which motivated us to deal with continuous stop location problems. A
literature review on stop location is given next. Then we present a model for
the continuous stop location problem, enabling us to evaluate the interesting
objective functions.

2.1 Application

When comparing railway systems all over Europe, it turns out that Switzer-
land has a higher amount of rail transportation than other countries. Among
others, one reason could be that in Switzerland the number of stops compared
to the overall length of the track system is significantly higher than in other
countries. The interesting question arising by this observation is, if it is an
advantage or a disadvantage to have many stops. To come to an answer, we
consider a customer-oriented point of view. A quality criterion for the cus-
tomers which is influenced by the number of stops is the door-to-door travel
time of their journeys, including the time they need to get from home to their
departure stations and the time they need to reach their final destinations. A
priori it is not clear if this time will increase or decrease by opening new stops
along the track system.

Note that by a stop we do not mean a fully equipped station, but just a
stopping point for the trains, which is relatively cheap for the railway company.
Our results and some of our algorithmic approaches have been implemented
and tested using data of the largest German railway company, Deutsche Bahn.
Here we located new stops along the track system, relevant for regional trains,
i.e., all regional trains are supposed to stop while the fast long-distance trains
pass through. Our real-world data is described next.

• We use 30 637 demand regions, given as polygons with an average of 45
nodes per polygon. These polygons are not identical with the borders of the
communities and also do not form a partition of Germany. They represent
the population distribution better than community borders since green
land is excluded. This means that most of the data is very accurate; even
relatively small towns are given as a set of more than 10 different demand
regions.

• The PTN we used represents the network of Deutsche Bahn. It has a size
of 6 828 stations and 8 724 edges.

• For each demand region we furthermore know the number of inhabitants,
and for each edge we got an approximation of the traffic load, i.e., the
number of customers using the edge.

Moreover, Deutsche Bahn specified some of the necessary parameters for our
models. The time needed for an additional stopping activity of a regional train
was estimated as two minutes. For the covering radius, a distance of 2 km is
often used in rail transportation.

14 2 Introduction

2.2 Literature Review

The importance of planning stops carefully and different customer-oriented
criteria for bus stop location were already discussed in the case study of
Demetsky et al, see [DAL82]. Among the many possible objective functions
one goal is to establish as few stops as possible in such a way that all customers
are covered. This was done in [Gle75] and in [MDSF98, Mur01a, Mur01b]. In
the latter papers, the public transportation network in Brisbane, Australia
was analyzed in detail and it turned out that 84.5 % of the stops are not nec-
essary in terms of covering a set of given demand points within a Euclidean
distance of 400 m, i.e., closing them would not decrease the actual number of
covered customers. The stop location problem was treated in a discrete setting
in these papers, i.e., the authors either considered only the actual stops, or
they assumed that a finite candidate set of new stops is given. This leads to
an unweighted set covering problem, also called location set covering problem
which was introduced in [TSRB71, TR73]. In the context of stop location this
problem has been solved by [Mur01a] using the Lagrangian-based set covering
heuristic of [CFT99]. A new discrete stop location model was developed by La-
porte et al. [LMO02]. They investigate which candidate stops along one given
line in Seville should be opened, taking into account demand regions and con-
straints on the inter-station space. The coverage of a new stop is determined
using a gravitation model. Finally, they solved the problem by a longest path
algorithm in an acyclic graph. Their model resembles the maximum coverage
location problem originally presented in [CR74, WC74].

The difference between the continuous stop location problem considered here
and most papers published so far is that in the continuous stop location prob-
lem we do not choose the stops from a known set of possible candidates, but
allow establishing a new stop anywhere along the given railway tracks (or
along the given bus routes). The covering information can hence not be given
explicitly but must be calculated by some (geometric) formula. The first ap-
proaches dealing with a continuous candidate set were given in [HLS+01] and
[SHLW02]. They are described in more detail in Section 5.2 and in Chapter 3.
The results of [RS04, Sch05c, SS03] are based on these two papers and can be
found in Section 3.6, Chapter 9, and Section 5.1. The research of [KPS+03]
was also motivated by this research. They deal with a variant of the continu-
ous stop location problem, aiming to cover as much demand as possible with
a given number of new stops, see Section 4.1. In [MMW04] the stop loca-
tion problem has been investigated and solved for the case of two intersecting
lines. Solving the stop location problem by data reduction of the underlying
covering problem has been studied in [Mec03] and in [MW04].

2.3 A Model for Continuous Stop Location 15

2.3 A Model for Continuous Stop Location

Let G = (V, E) be a finite, planar graph with straight-line embedding in the
plane. In real-world data sets, the nodes of G represent either existing stations
or important breakpoints. We identify each edge e ∈ E by a line segment in
the plane. Moreover,

• ce is the traffic load along edge e ∈ E, i.e., the number of customers using
edge e, and

• cv is the traffic load through station v ∈ V , i.e., the number of customers
passing through station v (and not getting on or off there).

Both parameters can be given, for example, in customers per day.

Definition 2.1. Given G = (V, E) define the track system

T =
⋃
e∈E

e = {x ∈ IR2 : x ∈ e for some e ∈ E} ⊆ IR2

as the set of points on edges of the planar embedding of G.

Our goal is to establish stops (or stations), which are represented by points
in T . The evaluation of a set S ⊆ T is described next.

Additional Travel Time

To calculate the additional travel time induced by some set of stations S ⊆ T
we take the number of customers affected by the additional stopping activities
and multiply them by the time tstop which is needed for an additional stop.
According to Deutsche Bahn, tstop can be assumed to be two minutes, inde-
pendent of the location of the stop. This is specified in the following notation:

Definition 2.2. Given s ∈ T let

g(s) =

{
s if s ∈ V
e if s ∈ e, s �∈ V.

Furthermore, given a finite set S ⊆ T we define

ftime(S) =
∑
s∈S

tstopcg(s).

For an infinite set S we define ftime(S) = ∞.

Since tstop is a constant, e.g., two minutes in rail transportation, it can be
neglected for the optimization process. Furthermore, note that ftime(S) = |S|
if all traffic loads cg(s) = 1, i.e., if we assume that each edge is used by exactly
one customer. Hence, we will refer to the unweighted problem if we deal with
the special case of minimizing the number of stations.

16 2 Introduction

The Cover of a Set of Stops

To deal with the accessibility of potential customers, we next assume that
D ⊆ IR2 is a finite set of either

• demand points, or of
• pairwise disjoint demand regions

representing important points or regions such as settlements, industrial areas,
shopping centers, or leisure parks.

Notation 2.3. For D let
Dtotal =

⋃
D∈D

D

be the demand set. Note that Dtotal = D if D consists of demand points.

We now introduce the notion of covering with respect to a distance measure γ.
We may specify different distance measures for each of the elements of D, i.e.,
for each of the demand points or regions. As distance measure γD we allow any
norm or gauge (see Appendix C); readers who are not familiar with gauges
may simply imagine γD as the Euclidean distance. For d ∈ IR2, S ⊆ IR2, let
(as usual)

γd(d, S) = min
s∈S

γd(d, s).

Notation 2.4. Let d ∈ Dtotal. Then γd denotes the distance measure associ-
ated with d.

If D consists of demand regions, and D ∈ D, then we require for all points
d1, d2 ∈ D:

γd1 = γd2 = γD.

A demand point is covered, if the distance to its closest station is smaller than
or equal to a given radius r, where the used distance need not be the same
for all demand points. Formally, this is specified below.

Definition 2.5. Given r > 0, and S ⊆ T .

1. A point d ∈ Dtotal is covered by S if γd(d, S) ≤ r.
2. Furthermore, the cover is S is coverD(S) = {d ∈ Dtotal : d is covered by S}.

If it is clear to which set D we refer, we just write cover(S). Furthermore, for
s ∈ S we use cover(s) for cover({s}). Note that if γd = γ for all d ∈ Dtotal we
obtain

coverD(S) = {d ∈ IR2 : γ(d, S) ≤ r} ∩ Dtotal.

The cover of a point is illustrated in Figure 2.2. The small rectangles in parts
(a) and (b) represent the demand points d1, . . . , d6, while we consider two
demand regions D1 and D2 in parts (c) and (d). All elements of D in parts (a)
and (c) are assumed to have the Euclidean distance associated with them. In

2.3 A Model for Continuous Stop Location 17

part (b), γd1 , γd2 , and γd3 equal the rectangular distance, while the remaining
elements d ∈ Dtotal again have γd as Euclidean distance. In part (d), we
assume γD1 as rectangular distance and γD2 as Euclidean. In parts (a) and
(b) the cover consists of the filled small rectangles, in parts (c) and (d) the
cover is given by the dashed area.

d1

d2 d3

d4
d5

d6

d1

d2

d4
d5

d6

D1 D1

D2 D2

(a) (b)

(d)(c)

d3

Fig. 2.2. The cover for demand points (see (a) and (b)) and for demand regions
(in (c) and (d)), both for the Euclidean distance (see (a) and (c)) and for mixed
rectangular and Euclidean distances (in (b) and (d)).

We further need the following notation. Consider d ∈ Dtotal with associated
distance function γd. Let Bd = {x ∈ IR2 : γd(x) ≤ 1} be the unit ball
associated with γd, see Appendix C. Using the denotation

Br
d = d + rBd,

we get
γd(d, x) ≤ r if and only if x ∈ Br

d.

Hence, we obtain:

Lemma 2.6. Let d ∈ Dtotal and S ⊆ T . Then d is covered by S if and only
if S ∩ Br

d �= ∅.

We refer to Figure 2.3 for an illustration.

18 2 Introduction

d

S

d
_

Bd
r

Br
d

_

Fig. 2.3. Br
d ∩ S �= ∅, hence d is covered by S. On the other hand, Br

d̄
∩ S = ∅,

hence d̄ is not covered by S.

We will often use this dual view of the stop location problem, not considering
the cover of some points S ⊆ T but starting from one point d ∈ Dtotal. For
d ∈ Dtotal we determine the set of points on T which can be used to cover d,
i.e., those points where the location of a new stop would attract the demand
in d.

Notation 2.7. Let d ∈ Dtotal. Then T (d) = {s ∈ T : γd(d, s) ≤ r}.

T (d) can be calculated by intersecting the unit ball Br
d of the gauge γd (with

radius r) centered at the demand point d with the set of tracks T , as the
following lemma shows. For an illustration, see Figure 2.4.

Br
d

d

Fig. 2.4. The set T (d) = Br
d ∩ T (the thick part of the tracks).

2.3 A Model for Continuous Stop Location 19

Lemma 2.8. Let d ∈ Dtotal. Then T (d) = T ∩ Br
d.

Proof.

=⇒: Let s ∈ T (d). Per definition s ∈ T and γd(d, s) ≤ r, i.e., γd(s − d) ≤ r.
The latter means that

s − d ∈ rBd, i.e., s = d + (s − d) ∈ d + rBd = Br
d.

⇐=: Now let s ∈ Br
d = d + rBd. This yields s − d ∈ rBd, hence γd(d, s) =

γd(s − d) ≤ r. Since s also is in T the result follows. ��

With the notation of T (d) we can reformulate Lemma 2.6 as follows.

Lemma 2.9. Let d ∈ Dtotal and S ⊆ T . Then d is covered by S if and only
if S ∩ T (d) �= ∅. In particular, d can be covered, if T (d) �= ∅.

The Number of Covered Customers

The second objective function we are interested in gives the number of cus-
tomers living closer than the distance of r to their nearest station. Denot-
ing wD as the number of (potential) customers located at demand point or
demand region D ∈ D, we are now in the position of defining the second
objective.

For the case of demand points we investigate

fcover(S) =
∑

d∈cover(S)

wd.

In the case of demand regions, let λ(D) denote the area of a (measurable) set
D ⊆ IR2. Assuming that the demand is equally distributed within each set
D ⊆ D, we get the number of covered customers by calculating the percentage
of D which is covered and multiplying it with the demand wD of the respective
set. By summing up these values over all D ∈ D we obtain

fcover(S) =
∑
D∈D

wD

λ(cover(S) ∩ D)

λ(D)

for demand regions.

We distinguish the following two types of problems.

(SL) Planning stations from scratch: Given D, T , and Qcover, Qtime ∈ IR find
a set S∗ ⊆ T such that fcover(S

∗) ≥ Qcover and ftime(S
∗) ≤ Qtime.

(SL’) Opening additional stations: Given D′, T ′, a set of already existing sta-
tions Sex ⊆ T ′ and Q′

cover, Q
′
time ∈ IR, find a set S∗ ⊆ T ′ such that

fcover(S
∗ ∪ Sex) ≥ Qcover and ftime(S

∗) ≤ Qtime.

20 2 Introduction

In (SL) the goal is to plan the set of stations from scratch, i.e., we assume that
no station has been opened so far, whereas in (SL’) a set of already existing
stations has to be taken into account and we just add some new stations within
the already existing network. For our analysis, both problems are equivalent,
such that we can – for the sake of simpler notation – restrict ourselves to
the problem of planning the stations from scratch. This means, we assume
in the following that the set of already existing stations Sex is empty. The
justification for this assumption is given in the next lemma.

Lemma 2.10. (SL) and (SL’) are equivalent.

Proof. To transfer a problem instance of (SL) to a problem instance of (SL’)
define Sex = ∅ and leave everything else as it is, i.e., T ′ = T , D′ = D,
Q′

cover = Qcover, and Q′
time = Qtime.

For the reduction from (SL’) to (SL) let Wcover be the number of customers in
D′ who are already covered by existing stops, i.e., Wcover = fcover(S

ex) where
cover is meant with respect to D′. To obtain an instance of (SL) we set

D = D′ \ coverD′(Sex)

Qcover = Q′
cover − Wcover,

and leave the set of tracks T = T ′ and Qtime = Q′
time as they are. ��

3

Covering All Demand Points

Throughout this chapter let D ⊆ IR2 be a finite set of points in the plane,
i.e., each d ∈ D is a point given by its geographic coordinates d = (d1, d2).
These points may represent larger demand regions, a simplification which is
used in almost all papers about stop location (except [LMO02]). Note that in
Section 5.1 we will extend the methods of this chapter to the case of demand
regions.
Our goal in this chapter is to cover all of the given demand points. We refer to
this problem as complete stop location problem (CSL). Note that Lemma 2.10
shows that we need not deal with already existing stations as in (SL’), but
can plan all stations from scratch in (CSL). The problem we consider here
hence is the following.

(CSL)

Given G = (V, E) with its set of points T =
⋃

e∈E e, traffic loads ce for all
e ∈ E, and cv for all v ∈ V , and a finite set of points D with gauges γd for
all d ∈ D, find a set S ⊆ T covering all points in D such that the additional
travel time

ftime(S) =
∑
s∈S

cg(s)

is minimized.

Recall that g(s) is the edge or the node, respectively, where stop s is located,
and cg(s) is the traffic load, i.e., the number of customers passing through the
edge, or the node, respectively.

Chapter 3 is structured as follows: In this chapter, we first discuss some
general properties of the complete continuous stop location problem, such as
feasibility and the NP-hardness of the problem. We then present a finite set
of points S on the tracks for which we can show that they always contain an

22 3 Covering All Demand Points

optimal solution. Using this finite dominating set, the continuous stop loca-
tion problem can be transformed to a discrete set covering problem. Instead of
using set covering approaches from the literature, we investigate the structure
of the covering matrix. We identify cases in which this matrix has the con-
secutive ones property. Furthermore, we present decomposition approaches.
Finally, we develop efficient solution approaches for the stop location prob-
lem in a more general context, namely for set covering problems in which the
coefficient matrix (almost) has the consecutive ones property.

3.1 Feasibility and Complexity of Complete Cover

Problem (CSL) can be summarized as

min ftime(S)

such that cover(S) = D

S ⊆ T

where cover(S) = {d ∈ D : γd(d, s) ≤ r for some s ∈ S} according to Defini-
tion 2.5, and γd is the norm or gauge associated with demand point d ∈ D. We
first discuss the feasibility of (CSL). Recall that T (d) is the set of all points
on T which can be used to cover d, i.e., T (d) = {s ∈ T : γd(d, s) ≤ r}.

Lemma 3.1. Given an instance of (CSL), the following properties hold.

1. (CSL) has a feasible solution if and only if T (d) �= ∅ for all d ∈ D.
2. If (CSL) has a feasible solution, then it also has a finite solution with

cardinality less than or equal to |D|.

Proof. Part 1 is a direct consequence of Lemma 2.9. For the second part, if
(CSL) has a feasible solution, we know that T (d) �= ∅ for all d ∈ D. Choosing
sd ∈ T (d) for all d ∈ D yields a finite feasible solution

S = {sd : d ∈ D} ⊆ T

with |S| ≤ |D| < ∞. ��

Next, we discuss the complexity status of (CSL). It turns out that even the
unweighted version of (CSL) is NP-hard in the special case that γd is the
Euclidean distance for all d ∈ D.

Theorem 3.2. (CSL) is NP-hard.

3.1 Feasibility and Complexity of Complete Cover 23

demand point
given tracks

Fig. 3.1. A feasible solution for the Euclidean (CSL).

Proof. We show the NP-hardness of the special case of (CSL), in which we do
not use weights (i.e., all traffic loads are one) and take the Euclidean distance
as distance measure for all given demand points. I.e., the goal in this case is
to cover all demand points with a minimal number of stops. Since γd is the
Euclidean distance this problem has a nice geometric interpretation: We aim
to cover a set of given points in the plane by discs whose center points are
restricted to be in T . For an illustration, see Figure 3.1. Formally, we define:

(Euclidean unweighted CSL-decision version) Given a finite set D ⊆ IR2, a
set of points T = ∪e∈E e ⊆ IR2 of the embedding of a planar connected
graph with edge set E, and a positive integer K ≤ |D|, does there exist
a collection of K discs C with radius r and center points in T , such that
each d ∈ D lies in at least one of the discs C ∈ C?

The proof is based on a reduction of Geometric Covering by Discs to the above
decision version of (CSL). Geometric Covering by Discs has been shown to be
NP-complete [Joh82] and can be stated as follows:

(Geometric Covering by Discs) Given a finite set D of points in the plane and
positive integers r and K ≤ |D|, can the points of D be covered by at most
K discs of radius r?

Now take an instance of Geometric Covering by Discs. To construct an in-
stance of the unweighted (CSL) we

• use the same set D of points,
• the same numbers r and K and
• define the set of edges E of a connected planar graph as follows: For each

unordered pair of points d1 and d2 from D,

24 3 Covering All Demand Points

(i) add the line segment from d1 to d2 as an edge and also
(ii) add a sufficiently large piece of the bisector of d1 and d2 to E.

Claim: D can be covered by at most K discs of radius r, if and only if D can
be covered by at most K discs of radius r which all have their center points
in T .

To see this, assume that D can be covered by some collection C, consisting of
at most K discs of radius r. Then, for each disc C ∈ C:

Case 1: If C contains no points of D, then disregard C.
Case 2: If C contains only one point d of D, then replace C by the disc with

center point d (d is in T , since all line segments from d to any other point
from D are in T) and radius r.

Case 3: If C contains a set of points A ⊆ D with |A| ≥ 2 (i.e., C contains
more than one point of D), then replace C by a disc with center point q
and radius r, where q is the center point of the smallest enclosing circle
of A.
Since C covers A, the radius of the smallest enclosing circle is smaller than
or equal to r, and hence the disc with radius r and center point q also
covers A. Note that finding q is a well-known problem of location theory
and can be done in linear time [Meg83].
Moreover it is known that q always lies on at least one bisector of points
in A, see [EH72], such that q satisfies q ∈ T .

In summary, D can be covered by at most K discs of radius r, all with center
points in T , if and only if it can be covered by at most K discs of radius K.
This completes the proof. ��

As a consequence, the unweighted and the weighted optimization versions of
(CSL) are NP-hard problems. Nevertheless we will present efficient solution
approaches which can be applied for a large class of special cases.

3.2 A Finite Dominating Set

The goal of this section is to reduce (CSL) to a set covering problem by
determining a finite dominating set FDS, i.e., a finite set of candidates S ⊆ T ,
for which we know that it contains at least one optimal solution S∗, if the
problem is feasible. Throughout this section, let us hence assume that (CSL)
has a feasible solution, which is established easily by checking if

Br
d ∩ T �= ∅ for all d ∈ D

(see Lemma 3.1). We define

S̃ = {s ∈ T : γd(d, s) = r for some d ∈ D}, (3.1)

3.2 A Finite Dominating Set 25

d3

d1

d6

d5

d2

d4

Fig. 3.2. The set of candidates along the tracks.

i.e., S̃ is given by the intersection points of D with the boundaries of the balls
Br

d, which are the unit balls Bd of radius r centered at the demand points d
(see Figure 3.2).
To analyze S̃ we consider the situation along each edge e ∈ E separately. For
an edge e = {ve

1, v
e
2} ∈ E with endpoints ve

1, v
e
2 ∈ V , the definition ve

1 ≤e ve
2

naturally induces a (total) order for all points s ∈ e. This means we can talk
about intervals as follows.

Notation 3.3.

• Let ≤e denote the order along the line segment e, induced by ve
1 ≤e ve

2.
• For s1, s2 ∈ e let [s1, s2]e = {s ∈ e : s1 ≤e s ≤e s2} denote the set of points

on e between s1 and s2, and]s1, s2[e= {s ∈ e : s1 <e s <e s2} denote the
set of points strictly between s1 and s2.

Consequently, S̃ can be ordered along each edge e ∈ E. Unfortunately, it may
happen that |S̃ ∩e| = ∞, i.e., the boundary of some Br

d contains a linear piece
which coincides with e in infinitely many points, see p2 + rB2 in Figure 3.3.
To overcome this problem, we first need the following simple lemma.

Lemma 3.4. Let e ∈ E be an edge and assume that T = e consists only of
this edge. Then T (d) is a convex set for all d ∈ D.

Proof. Since T = e we know that T is a convex set in this case. According to
Lemma 2.8, T (d) = T ∩ Br

d, i.e., T (d) is the intersection of two convex sets
and thus is itself convex. ��

Hence, for all d ∈ D either Br
d ∩ e = ∅, or

T (d) ∩ e = Br
d ∩ e = [fe

d , led]e for some pointsfe
d , led ∈ e.

26 3 Covering All Demand Points

v1=s0

s1

s2

s3
s4

v2=s5
d2

d3

d1

Fig. 3.3. The set of candidates on one edge e ∈ E. Between s2 and s3 all points
are in S̃, but not in Se.

We call fe
d the first point of T (d) on edge e and led the last point of T (d),

respectively. In the following, we will show that only these points fe
d and led of

the interval T (d) need to be considered, also in the case of |S̃ ∩ e| = ∞. We
define

Notation 3.5.

Se = {ve
1, v

e
2} ∪

⎧⎨
⎩
⋃

d∈D{f
e
d , led} if

⋃
d∈D{f

e
d , led} contains at least one

point of the interior of e

{
ve
1+ve

2

2 } otherwise.

Note that instead of
ve
1+ve

2

2 any other point in the interior of the edge e may
be used. This case makes sure that at least one point of edge e is included
in Se covering the (unlikely) case that the whole edge e lies in the inte-
rior of at least one Br

d, does not intersect any of the other Br
d′ , and satisfies

ce < min{cve
1
, cve

2
}, i.e., has smaller costs than both of its endpoints.

If cve
1
≤ ce, or cve

2
≤ ce it may happen that one of the endpoints of e is included

in the optimal solution, hence both ve
1 and ve

2 must be in Se.
The result is a finite set of points

Se = {s0, s1, . . . , sNe+1}

for which we assume s0 = ve
1 ≤e s1 · · · ≤e sNe

≤ sNe+1 = ve
2. (The situation

is depicted in Figure 3.3.)

Lemma 3.6. Let e be an edge of E, and let s ∈]sj , sj+1[e for some j ∈
{0, 1, . . . , Ne}. Then

cover(s) ⊆ cover(sj) ∩ cover(sj+1).

3.2 A Finite Dominating Set 27

Proof. Suppose cover(s) �⊆ cover(sj), i.e., there exists d ∈ D such that
γd(d, s) ≤ r and γd(d, sj) > r. Note that for any gauge γd the distance γd(d, s)
from d to s is continuous if we fix d and move s along a line. Hence, the in-
termediate value theorem yields a point s̃ ∈]sj , s]e with γd(d, s̃) = r. Take s̃
minimal with respect to <e with this property, i.e., s̃ = fe

d is the first point
of T (d), and hence s̃ ∈ Se. This contradicts the definition of sj and sj+1 as
consecutive points in Se. ��

Now we are able to prove that

S =
⋃
e∈E

Se (3.2)

is, indeed, a finite dominating set.

Theorem 3.7. Either (CSL) is infeasible, or there exists an optimal solution
S∗ ⊆ S.

Proof. Let S∗ ⊆ T be optimal, but S∗ �⊆ S. The goal is to replace each
s ∈ S∗ \ S by a point in S without loosing feasibility or optimality. To this
end, take some s ∈ S∗ \ S. Note that s �∈ V , i.e., g(s) = e ∈ E, especially let

s ∈]sj , sj+1[e for some j ∈ {0, 1, . . . , Ne}.

Since S contains at least one point of the interior of e, we can assume without
loss of generality that sj �∈ V . For sj , Lemma 3.6 yields that cover(s) ⊆
cover(sj) such that

S′ = S∗ \ {s} ∪ {sj}

still covers D. Moreover, since g(s) = g(sj) = e both points have the same
costs ce such that we obtain ftime(S

′) ≤ ftime(S
∗), which completes the proof.

��

In the following special cases we do not need to investigate the complete set
S:

• The unweighted (CSL) either is infeasible, or there exists an optimal so-
lution

S∗ ⊆
⋃

d∈D,e∈E

{fe
d , led}

if
⋃

d∈D,e∈E{f
e
d , led} �= ∅, i.e., neither V nor the points v1+v2

2 are needed as
candidates in this case.

• If γd is a strictly convex norm for all d ∈ D (e.g., if all γd are the Euclidean
distance), we have that the candidate set S̃ defined in (3.1) on page 24
already is a finite set, i.e.,

S̃ =
⋃

d∈D,e∈E

{fe
d , led} ⊆ S.

28 3 Covering All Demand Points

• Together, in the unweighted Euclidean case (and for any other strictly
convex norm), S̃ suffices as finite dominating set, if S̃ �= ∅. (Note that
even this case is NP-hard.)

Note that by Theorem 3.7 we have transformed (CSL) into a Location Set
Covering Problem , introduced originally in [TSRB71, TR73]. In our case, S
is the discrete set of possible locations. Hence, (CSL) can be formulated as a
set covering problem as follows: For all s ∈ S let xs be a variable with the
following meaning:

xs =

{
1 if s is contained in the optimal solution
0 otherwise

.

Notation 3.8. Define Acov = (ads)d∈D,s∈S with elements

ads =

{
1 if γd(d, s) ≤ r
0 otherwise

as the matrix containing the covering information. Acov is called the covering
matrix.

Then (CSL) is equivalent to the following set covering problem, where each
row of the covering matrix Acov corresponds to a demand point, while the
columns represent the possible candidates.

min cx
s.t. Acovx ≥ 1|D|

x ∈ {0, 1}|S|,
(3.3)

where 1 ∈ IR|D| is the vector consisting of a 1 in each component. The cost
vector c ∈ IR|S| in (3.3) is given by

cs = cg(s) for all s ∈ S.

As a consequence, to solve (CSL) any approach for set covering can be used.
Still, the set covering problem is NP-hard. In the next sections we will develop
a more efficient approach by taking advantage of the special structure of the
covering matrix Acov. We conclude Section 3.2 by summarizing the meaning
of the elements ads of Acov.

Lemma 3.9. Let Acov be the covering matrix of (CSL) as defined in Nota-
tion 3.8. Then

ads = 1 ⇐⇒ γd(d, s) ≤ r ⇐⇒ s ∈ T (d) ⇐⇒ d ∈ cover(s).

3.3 Complete Cover Along a Polygonal Line 29

3.3 Complete Cover Along a Polygonal Line

We start by investigating (CSL) along one single edge e ⊆ T and show that
in this case, the problem can be solved efficiently. This is due to Lemma 3.4
(see page 25), which has a nice consequence for the structure of the coefficient
matrix Acov of the corresponding integer program (3.3), namely the matrix
has the consecutive ones property, defined below.

Definition 3.10 (e.g., [GJ79a, NW88]). Let A be a (0, 1)-matrix.

1. A has the consecutive ones property (c1p) if for all rows i of A the
following holds.

aik = 1, ail = 1, and k ≤ l =⇒ aij = 1 for all k ≤ j ≤ l.

2. A is an interval matrix, if its transposed AT has the consecutive ones
property.

Lemma 3.11. Consider (CSL) in the special case that T = e consists of a
single edge. Then there exists an order of S such that the resulting covering
matrix Acov of (CSL) has the consecutive ones property.

Proof. Each column of Acov represents a candidate s ∈ S. Order the columns
of Acov according to the order of the candidates induced by ≤e (see Nota-
tion 3.3 on page 25). We show that according to this order, Acov has the
consecutive ones property. To this end, take a row of Acov (belonging to a
demand point d ∈ D) such that

adsk
= 1 and adsl

= 1 for some sk ≤e sl.

According to Lemma 3.9 this means sk ∈ T (d) and sl ∈ T (d). Since T (d) is
convex (see Lemma 3.4) the whole segment [sk, sl] lies in T (d). I.e., all s with
sk ≤e s ≤e sl satisfy s ∈ T (d), and hence ads = 1. ��

In the next section we will develop various approaches for solving set covering
problems efficiently in the case that the coefficient matrix has the consecutive
ones property. But first we extend Lemma 3.11 to polygonal lines instead of
one single edge. We use the following notation.

Notation 3.12.

• If the graph G = (V, E) is a simple path, its corresponding set of tracks T
will be called a polygonal line.

• Let va,vb be the endpoints of a polygonal line T . Then let ≤T denote the
(total) order on T defined by va ≤T vb.

• I ⊆ T is called an interval of the polygonal line T if there exist s1, s2 ∈ T
such that I = {s ∈ e : s1 ≤T s ≤T s2}.

30 3 Covering All Demand Points

Note that a subset I of a polygonal line T is an interval of T if and only if I
is a connected part of T .

Theorem 3.13. Let T be a polygonal line. If T (d) is an interval of T for
all d ∈ D, then there exists an order of S such that the coefficient matrix of
(CSL) has the consecutive ones property.

Proof. Let va, vb be the endpoints of the polygonal line T . Since all candidates
S are contained in T we can take the order induced by va ≤T vb and order
the columns of Acov with respect to ≤T . To show that according to this order,
Acov has the consecutive ones property, take a row d of Acov and let

adsk
= 1 and adsl

= 1 for some sk ≤T sl.

According to Lemma 3.9 this means sk, sl ∈ T (d). Due to the assumptions
of the theorem, T (d) is an interval included in T , i.e., there exist two points
fd, ld ∈ T , such that

T (d) = {s ∈ T : fd ≤T s ≤T ld}.

But this means that all s with sk ≤T s ≤T sl satisfy s ∈ T (d), and hence
ads = 1. ��

Note that Lemma 3.11 is a special case of Theorem 3.13. Geometrically, the
conditions of the theorem are satisfied, if

crit(e1, e2) = (cover(e1) ∩ cover(e2)) \ cover(e1 ∩ e2) = ∅

for all pairs of edges e1, e2 ∈ E.

d1

d2
d3

Fig. 3.4. An instance of (CSL) on a polygonal line without consecutive ones prop-
erty.

3.3 Complete Cover Along a Polygonal Line 31

An example of a polygonal line not satisfying the condition of Theorem 3.13
with a coefficient matrix without consecutive ones property is given in Fig-
ure 3.4. In this example, G is a simple path consisting of three nodes. Num-
bering the candidates in S̃ (which is sufficient in the unweighted Euclidean
case, see the third special case on page 28) from left to right, Acov is given by

Acov =

⎛
⎝1 1 0 0 1 1

1 1 1 1 0 0
0 0 1 1 1 1

⎞
⎠ ,

which cannot be reordered to satisfy the consecutive ones property.

On the other hand, Figure 3.5 shows an example of a polygonal line together
with a set of demand points D satisfying the consecutive ones property. The
reason why it is advantageous that the covering matrix of a given instance of
(CSL) satisfies the consecutive ones property becomes clear in the following
result.

Fig. 3.5. An instance of (CSL) on a polygonal line with consecutive ones property.

Theorem 3.14. (CSL) can be solved in polynomial time by linear program-
ming if the conditions of Theorem 3.13 are satisfied. In particular, (CSL) can
be solved by linear programming in the special case that T = e is a single edge.

Proof. From Theorem 3.13 we know that the coefficient matrix Acov of the in-
teger programming formulation (3.3) has the consecutive ones property. This
means, Acov is a totally unimodular matrix (see, e.g., Corollary 2.10 in Chap-
ter III.1.1 of [NW88]) and hence the IP-relaxation of (3.3) solves the integer
program, see Appendix A. ��

Other efficient procedures for solving set covering problems where the covering
matrix has the consecutive ones property are presented in the next section.

32 3 Covering All Demand Points

3.4 Set Covering With Consecutive Ones Property

The problem we consider in this section is a set covering problem with consec-
utive ones property, which we will denote by (SCP-c1p). Although we use the
notation already introduced for the stop location problem, we remark that the
methods presented in this section are applicable to any set covering problem
with consecutive ones property. Let us consider

(SCP-c1p)
min cx
s.t. Acovx ≥ 1|D|

x ∈ {0, 1}|S|,

in which we assume that the covering matrix Acov has the consecutive ones
property, and 1|D| ∈ IR|D| is a vector with a 1 in each component.
In the stop location problem, the set of rows D = {1, . . . , |D|} corresponds to
the demand points, while the set of columns S = {1, . . . , |S|} corresponds to
the candidates of the finite dominating set, ordered in such a way that the
resulting coefficient matrix has the consecutive ones property. Finally, c =
(cs)s∈S is defined by the costs cs = cg(s) of the new stops. In our application
we usually have |D| ≤ |S|. However, in the special case of Lemma 3.11 we
know that no more than two candidates can arise from one demand point,
such that O(|D|)=O(|S|). Similarly, in the case of Theorem 3.13 we obtain
O(|S|)=O(|D|) + O(|V |).

As already stated in Theorem 3.14, matrices with consecutive ones property
are totally unimodular and (SCP-c1p) can hence be solved by linear program-
ming.

In a more efficient approach we use the fact that the transpose of a matrix
with consecutive ones property is an interval matrix, and hence a network
matrix. Since there exists an optimal solution satisfying xs ≤ 1 for all s ∈ S,
we omit these constraints and obtain the following linear program as the dual
of the set covering problem.

(Dual-SCP)
max 1η
s.t. (Acov)T η ≤ c

η ≥ 0.

Note that, since Acov is totally unimodular, the optimal solution values of
(SCP-c1p) and its dual formulation (Dual-SCP) are equal.

Following the approach of Example 3.2. in Chapter III.1.3 of [NW88], this
dual formulation can be reformulated as a network flow problem in an acyclic
network. This network is constructed by interpreting the rows of (Acov)T as
arcs and the columns as paths. One starts by defining the set of nodes as

Vflow1 = {0, 1, . . . , |S|},

3.4 Set Covering With Consecutive Ones Property 33

and by constructing an arc (s − 1, s) ∈ Eflow1 for each row s of (Acov)T .
Furthermore, each column d of (Acov)T can be interpreted as a path which is
composed of the edges (s − 1, s) with ads = 1. For such a path we add one
additional arc to Eflow1, namely the one replacing the respective path. These
arcs correspond to the dual variables ηd. Since all entries in Acov are positive,
the network is acyclic. Defining d0 = c1, ds = cs+1 − cs for s = 1, . . . , |S| − 1,
and d|S| = −c|S| as the demand of the respective node in Vflow1, and setting
0 as the cost of arc (s − 1, s), and 1 as the costs for all other arcs, one finally
obtains an equivalent min-cost flow problem in an acyclic digraph with |S|+1
nodes, see [NW88] for more details.

In this section, however, we propose a new approach for solving set covering
problems with consecutive ones property. This approach transforms the set
covering problem into a shortest path problem in a directed acyclic network
with |S| + 2 nodes.

Taking the given order of the columns of Acov as fixed, we can talk about
s1 < s2 or minS for S ⊆ S, recalling that in the stop location problem this
refers to the order ≤T . We need the following notation.

Notation 3.15. Let A be a matrix containing no zero rows. For s ∈ S and
d ∈ D define

cover(s) = {d ∈ D : ads = 1}

T (d) = {s ∈ S : ads = 1}

fd = min{s ∈ S : ads = 1} is the first element of T (d)

ld = max{s ∈ S : ads = 1} is the last element of T (d).

Then, if Acov has the consecutive ones property, we conclude that for all d ∈ D,

T (d) = {s ∈ S : fd ≤ s ≤ ld}.

Note that for the stop location problem,

T (d) = T (d) ∩ S = {s ∈ S : γd(d, s) ≤ r} and

cover(s) = {d ∈ D : γd(d, s) ≤ r}

have been used before, but since we do not want to use any properties of
(CSL) in this section we redefined both sets using only the covering matrix
Acov.

Without loss of generality let us assume that Acov does not contain any zero
column, since such columns do not cover any row and hence will never appear
in an optimal solution. Other reduction possibilities which were proposed in
[TR73] are listed below in the notation of the stop location problem. Note
that these rules can be applied to any set covering problem (SCP), with or
without consecutive ones property.

34 3 Covering All Demand Points

Lemma 3.16 ([TR73]).

1. Problem (SCP) has a feasible solution if and only if T (d) �= ∅ for all
d ∈ D.

2. If T (d1) ⊆ T (d2), an optimal solution of problem (SCP) can be found by
considering the reduced problem without row d2.

3. If cover(s1) ⊆ cover(s2) and cs1 ≥ cs2 then there exists an optimal solution
of problem (SCP) with xs1 = 0, i.e., it is sufficient to consider the reduced
problem without column s1.

4. If T (d) = {s} then in all optimal solutions xs = 1 holds, and it is sufficient
to consider the reduced problem without column s and without all rows
d′ ∈ cover(s).

We first show that Acov can be transformed into the following more convenient
form.

Definition 3.17. A matrix Acov with consecutive ones property and without
zero rows is called monotone if f1 ≤ f2 · · · ≤ f|D| and l1 ≤ l2 · · · ≤ l|D| hold
simultaneously. Furthermore, if f1 < f2 · · · < f|D| and l1 < l2 · · · < l|D|, Acov

is called strictly monotone.

Lemma 3.18. Let Acov, c be the input data of a (feasible) set covering problem
(SCP-c1p) with consecutive ones property. Then there exists an equivalent set
covering problem with input data Acov

mon, c such that Acov
mon is a strictly monotone

matrix, possibly with fewer rows than Acov.

Proof. The proof works by first sorting the rows of Acov according to fd and
then applying the second reduction rule of Lemma 3.16 to eliminate rows until
strictly monotonicity is obtained. ��

This can be performed efficiently as follows:

Algorithm 2: Transforming a matrix with consecutive ones property into
strictly monotone form

Input: Matrix Acov with |D| (non-zero) rows and consecutive ones property.
Output: Strictly monotone matrix.
Step 1. Order the rows of Acov such that f1 ≤ f2 ≤ . . . ≤ f|D|. Set D =

|D|.
Step 2. If f1 < f2 . . . < fD set d0 = 1 and goto 4. Otherwise choose d, d′

such that fd = fd′.
Step 3. (Reduction 1) If ld ≥ lm′: delete row d, otherwise delete row d′.

Let D = D − 1, and rename fi, i = 1, . . . , D. Goto 2.
Step 4. d = argmin{ld′ : d′ ≥ d0}. If the minimum is not unique, choose

the one with the larger row index d.
Step 5. (Reduction 2) Delete all rows d′ with d0 ≤ d′ < d.
Step 6. If d ≥ D − 1 stop, otherwise set d0 = d + 1 and return to 4.

3.4 Set Covering With Consecutive Ones Property 35

The Unweighted Set Covering Problem With Consecutive Ones
Property

A special case is the unweighted set covering problem in which all cs = 1. In this
case the goal is to cover all rows with a minimal number of columns of Acov.
Since all cs = 1 we can not only apply part 2, but also part 3 of Lemma 3.16,
reducing the number of columns of Acov. It turns out that a matrix Acov with
consecutive ones property can be reduced to a (smaller) unit matrix of an
equivalent set covering problem. Using part 4 of Lemma 3.16 this (smaller)
set covering problem can then be solved easily. Here, we propose the following
approach for solving (SCP-c1p) in the unweighted case.

Algorithm 3: Solving the unweighted set covering problem with consec-
utive ones property

Input: Matrix Acov with the consecutive ones property.

Output: An optimal solution S∗ of (SCP).

Step 1. If Acov contains no zero row, use Algorithm 2 to transform Acov

into a strictly monotone matrix, set d = 1, S∗ = ∅.
Otherwise stop: Problem infeasible.

Step 2. S∗ = S∗ ∪ {ld}
Step 3. If {d′ : fd′ > ld} �= ∅ choose d = min{d′ : fd′ > ld} and goto 2,

otherwise stop. Output: S∗

Theorem 3.19. Algorithm 3 finds an optimal solution of the unweighted set
covering problem.

Proof. Let S = {s1, . . . , sp} be the output of Algorithm 3. To each column s
in S belongs a row d̄ such that ld̄ = s (step 2). Let D̄ = {d̄1, d̄2, . . . , d̄p}. Then
d̄1 < d̄2 < · · · d̄p, since for di ≥ di+1 the monotonicity of Acov would imply
fdi

≥ fdi+1 which is a contradiction to

fdi+1 > ldi
≥ fdi

, see step 3.

Moreover, d̄1 = 1 (step 1).

Feasibility: We show that ld̄j
covers all rows d with d̄j ≤ d ≤ d̄j+1 − 1: Note

that d̄j+1 = min{d′ : fd′ > ld̄j
}. Hence,

d < d̄j+1 =⇒ fd ≤ ld̄j

d ≥ d̄j =⇒ ld ≥ ld̄j
.

Together, ad ld̄j
= 1, i.e., ld̄j

covers d.

36 3 Covering All Demand Points

Optimality: Let S̃ = {s̃1, . . . , s̃q} (ordered) be any solution of (SCP) with
q < p. Since row d̄1 = 1 must be covered, we know that s̃1 ≤ l1 = s1.
Also, d̄2 must be covered, and together with fd̄2

> ld̄1
(step 3) this yields

s̃2 ≤ ld̄2
= s2. Iterating this argument, we finally get that s̃q ≤ ld̄q

= sq,

but consequently, the rows d̄q+1, . . . , |D| are not covered by S̃, hence any
smaller solution is infeasible. ��

Note that we can also directly apply Algorithms 2 and 3 to the stop location
problem on a single edge (or on a polygonal line, if the assumptions of Theo-
rem 3.13 are satisfied and the costs of the new stops are all equal). The idea is
to calculate the intervals T (d) = [fd, ld] for all demand points d, order them
with respect to their endpoints ld, and then to choose successively the last
possible candidate for covering the first uncovered demand point. A reformu-
lation in algorithmic form is given next. In Section 5.1 we will show how to
extend this approach to demand regions instead of demand points.

Algorithm 4: Solving (CSL) along a polygonal line

Input: Polygonal line T , satisfying the assumptions of Theorem 3.13,

D, γd for all d ∈ D, and ce = 1 for all edges e ⊆ T , cv = 1 for all

nodes v ∈ T .

Output: An optimal solution S∗ of (CSL).

Step 1. Calculate T (d) = [fd, ld] for all d ∈ D and order D = {d1, . . . , d|D|}
according to the endpoints ld of T (d) with respect to ≤T . If

T (d) = ∅ stop: Problem infeasible. Otherwise set d = 1, S∗ = ∅.
Step 2.

S
∗ = S

∗ ∪ {min
d∈D

ld}

D = D \ cover(ld)

Step 3. If {d′ : fd′ > ld} �= ∅ goto 2, otherwise stop. Output: S∗

The Weighted Set Covering Problem With Consecutive Ones
Property

We now come back to the weighted set covering problem (SCP-c1p) with
consecutive ones property. Analogously to fd, ld we define

Notation 3.20.

f̄s = min{d ∈ D : ads = 1}

l̄s = max{d ∈ D : ads = 1}.

3.4 Set Covering With Consecutive Ones Property 37

We need the following observations.

Lemma 3.21.

1. Let Acov be a monotone matrix (satisfying the consecutive ones property).
Then Acov is an interval matrix, i.e., (Acov)T also has the consecutive
ones property. Moreover, (Acov)T is also monotone.

2. If S = {s1, s2, . . . , sp} ⊆ S is a cover of Acov with s1 < s2 < · · · < sp then
f̄s1 = 1 and l̄sp

= |D|.

Proof.

1. Let Acov be monotone. We first show that Acov is an interval matrix.
Assume the contrary, i.e., suppose that there exists a column s of Acov

and indices d1 < d2 < d3 such that

ad1s = 1,

ad2s = 0,

ad3s = 1.

This yields dd1 ≤ s ≤ ld1 and dd3 ≤ s ≤ ld3, while for d2 we obtain either
fd2 > s or ld2 < s. Both cases contradict the monotonicity of Acov.

For the monotonicity of the interval matrix we take s1 < s2. Assume
f̄s1 > f̄s2 . Then af̄s2 ,s1

= 0, yielding that

ff̄s2
> ff̄s1

,

a contradiction to the monotonicity of Acov. The monotonicity of l̄s is
shown analogously.

2. For the second part of the lemma assume that f̄s1 �= 1 in a cover S with
smallest element s1. Since Acov has no zero columns we know that a11 = 1.
Together with f̄s1 > 1 we conclude from the consecutive ones property of
Acov that a1s = 0 for all s ≥ s1, in particular for all s ∈ S. This means
that row 1 is not covered by S, a contradiction. Analogously, if l̄sp

�= |D|
we obtain a|D|sp

= 0 and thus a|D|s = 0 for all s ≤ sp, hence row |D| is
not covered by S, a contradiction. ��

Given a monotone matrix Acov we are now in the position to define the fol-
lowing directed acyclic graph.

Notation 3.22. The set covering digraph GSC = (VSC , ESC) is defined by

VSC = S ∪ {s, t} and

ESC = {(i, j) : i < j and f̄j ≤ l̄i + 1} ∪ {(s, i) : f̄i = 1} ∪ {(i, t) : l̄i = |D|}.

Furthermore, for each edge (i, j) we associate a cost

cij =

{
cj if j �= t
0 if j = t

.

38 3 Covering All Demand Points

As an example, consider the matrix

Acov =

⎛
⎜⎜⎝

1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 0 1 1

⎞
⎟⎟⎠ .

The digraph GSC corresponding to Acov hence has eight nodes, and is shown
in Figure 3.6.

3 5 4 2 1 6

ts

Fig. 3.6. The digraph GSC for the example.

Since GSC is acyclic, each node set S ⊆ S uniquely defines an s-t-path in
GSC by adding the nodes s and t to S. This justifies the notation of the next
theorem.

Theorem 3.23. Let S ⊆ S. Then cover(S) = D if and only if S ∪{s, t} is an
s-t-path in GSC .

Proof. Let S = {s1, s2, . . . , sp} with s1 < s2 < · · · < sp.

1. Let S ∪ {s, t} be an s-t-path in GSC , and assume that S is not a cover.
Choose an uncovered row d0 with minimal index. Note that d0 �= 1 since
(s, s1) ∈ ESC meaning that f̄s1 = 1, i.e., a1s1 = 1 and row 1 is covered.
We hence can consider row d0 − 1. Since d0 is chosen minimal we know
that row d0 − 1 is covered, say by si ∈ S, and choose si with maximal
index. Then l̄si

= d0 − 1. We distinguish two cases.
i < p: Since (si, si+1) ∈ ESC we obtain that f̄si+1 ≤ l̄si

+ 1 = d0. Accord-
ing to the monotonicity of (Acov)T we furthermore have d0−1 = l̄si

≤
l̄si+1 . Together we conclude that either d0 − 1 or d0 is covered by S, a
contradiction.

i = p: Then (si, t) ∈ ESC , such that l̄si
= |D| yields d0 − 1 = |D|, a

contradiction.

3.4 Set Covering With Consecutive Ones Property 39

2. Now let S be a cover.
• Then f̄s1 = 1 (Part 2 of Lemma 3.21) and hence (s, s1) ∈ ESC .
• Analogously, l̄sp

= |D| yielding (sp, t) ∈ ESC .
• Assume (si, si+1) �∈ ESC . Then f̄si+1 > l̄si

+1. Due to the monotonicity
of (Acov)T we get:

f̄sj
≥ f̄si+1 > l̄si

+ 1 for all j ≥ i + 1, and

l̄sj
≤ l̄si

for all j ≤ i.

Together, row l̄si
+ 1 is not covered, a contradiction. ��

Since the cost of a cover equals the cost of the corresponding path and vice
versa, we finally get the following result.

Corollary 3.24. A shortest s-t-path in GSC represents a minimal cost cover
and vice versa.

3 5 4 2 1 6

ts

Fig. 3.7. The reduced digraph G′
SC for the example.

The corollary justifies the correctness of the next algorithm, which can further
be improved by using only the reduced edge set

E′
SC = {(i, j) : l̄i+1 ∈ cover(j)}∪{(s, i) : 1 ∈ cover(i)}∪{(i, t) : |D| ∈ cover(i)},

since it still contains all non-reducible covers, i.e., all covers S which satisfy
that no S̃ ⊂ S also is a cover. For the matrix

Acov =

⎛
⎜⎜⎝

1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 0 1 1

⎞
⎟⎟⎠

40 3 Covering All Demand Points

two edges of ESC need not be considered in ESC′ . Namely the edge from 3
to 4, since, if column 3 is chosen, row 3 is already covered and hence there is
no need of choosing column 4. Analogously, the edge from 5 to 6 is omitted.
Further reductions are possible, including the edges from 1 to 2, from 1 to 3,
and from 2 to 3. The resulting digraph is depicted in Figure 3.7.

Algorithm 5: Solving the set covering problem with consecutive ones
property

Input: Matrix Acov with consecutive ones property, cost vector c.

Output: An optimal solution S∗ of (SCP).

Step 1. If Acov contains no zero row, use Algorithm 2 to transform Acov into

a strictly monotone matrix Acov
mon. Otherwise stop: Problem infeasible.

Step 2. Derive the graph GSC = (VSC , ESC) from Acov
mon.

Step 3. Find a shortest s-t-path S in GSC by a shortest path algorithm.

Output: S∗ = S \ {s, t}.

Summarizing, we described the following two approaches.

• Using that (Acov)T is an interval matrix yields a network flow problem in
an acyclic digraph with |S| + 1 nodes.

• Using the result of Theorem 3.23 yields a shortest path problem in an
acyclic digraph with |S| + 2 nodes.

The numerical results obtained in the masters thesis of [Con02] indicate that
solving set covering problems with consecutive ones property by an application
of Algorithms 2 and 5 is much more efficient than solving the corresponding
network flow problem. Note that other – very efficient – approaches for set
covering problems with consecutive ones property using parametric shortest
path techniques have recently been obtained by [HL05].

3.5 Complete Cover in a Realistic Network

We now turn our attention again to (CSL) in a general network. Unfortunately,
nodes of the given graph G with degree higher than 2 can easily destroy the
consecutive ones property, as Figure 3.8 shows. Although in this example T (d)
is an interval for all three demand points d1, d2, and d3, the coefficient matrix
of (CSL) in this case is

Acov =

⎛
⎝1 1 0 1

1 1 1 0
1 0 1 1

⎞
⎠ ,

3.5 Complete Cover in a Realistic Network 41

which cannot be reordered to obtain the consecutive ones property. (Note
that for the sake of simplicity in this example a very special situation is
depicted, in which the unit balls Br

d all pass through v0 and through the same
intersection points. But also more general instances do not result in a matrix
with consecutive ones property.)

s2

s3

s1

v0
d1

d2

d3

Fig. 3.8. An instance of (CSL) without consecutive ones property.

Nevertheless, we now will develop a decomposition result based on the follow-
ing notation.

Notation 3.25. Given G = (V, E) and D the cover graph Gcover =
(Vcover, Ecover) is a bipartite graph with

• Vcover = D ∪ E, and
• Ecover = {{d, e} : T (d) ∩ e �= ∅}.

The cover graph belonging to the example in Figure 3.9 is depicted in Fig-
ure 3.10. Note that this graph consists of four components:

D1 = {d1, d2, d3, d4}, E1 = {e1, e2}
D2 = {d5, d6, d7, d8, d9}, E2 = {e3, e4}
D3 = {d10, d11, d12, d13, d14}, E3 = {e5, e6}
D4 = {d15}, E4 = ∅.

These components can be used to decompose (CSL) as follows.

Notation 3.26. Let Dk ∪Ek, k = 1, . . . , K be the node sets of components of
Gcover, i.e.,

1. Dk ⊆ D, Ek ⊆ E for all k = 1, . . . , K,
2.
⋃

k=1,...,K Dk = D,
⋃

k=1,...,K Ek = E,
3. if d ∈ Dk, e ∈ El, and {d, e} ∈ Ecover then k = l.

42 3 Covering All Demand Points

d2
d3

d4

d8

d9

d10

d11 d14 e1

d6

d7

e5

d15

e6

e3

d12 d13

d5

d1

e2
e4

Fig. 3.9. Example graph to illustrate Notation 3.25 for the Euclidean distance.

15

14

13

12

11

10

9

8

6

4

7

5

3

2

1

e2

e3

e4

e5

e6

e1

Fig. 3.10. The cover graph belonging to the graph in Figure 3.9.

3.5 Complete Cover in a Realistic Network 43

Note that we do not require that the components are connected, but for solving
the problem it is preferable to get a large number K of components. From the
components of the cover graph we now define the following subproblems.

Notation 3.27. Given Dk∪Ek, k = 1, . . . , K as components of Gcover, define
subproblem (CSL(k)) for all k = 1, . . . , K by

• the reduced graph Gk = (V (Ek), Ek), where V (Ek) contains the nodes of
the original graph G which are incident with at least one edge in Ek, and
by

• the reduced set Dk.

Theorem 3.28. Consider (CSL) in a graph G with demand points D. Let
(CSL(k)) for k = 1, . . . , K be subproblems defined by components of Gcover as
specified in Notation 3.27. Then the following statements hold.

1. (CSL) is feasible if and only if (CSL(k)) is feasible for all k = 1, . . . , K.
2. Let (CSL) be feasible and let S∗

k be an optimal solution for (CSL(k)),
k = 1, . . . , K. Then

⋃
k=1,...,K S∗

k is an optimal solution for (CSL). I.e.,
each of the subproblems can be solved independently.

Proof.

1. According to part 1 of Lemma 3.1 (CSL) is feasible if and only if T (d) �= ∅
for all d ∈ D, which is equivalent to requiring that for each d ∈ D there
exists an edge {d, e} ∈ Ecover.
=⇒: Let (CSL) be feasible. Consider (CSL(k)). Then for each d ∈ Dk

there exists e ∈ E with {d, e} ∈ Ecover and due to 3. in Notation 3.26
e ∈ Ek. Hence T (d)∩Ek �= ∅ for all d ∈ Dk, thus (CSL(k)) is feasible.

⇐=: On the other hand, if (CSL) is not feasible, there exists d ∈ D which
is an isolated point in Gcover. Let d ∈ Dk. Then no edge {d, e} ∈ Ecover

exists for any e ∈ Ek (Note that Ek = ∅ is possible). Hence (CSL(k))
is infeasible.

2. Now assume that (CSL) is feasible and let S∗ be an optimal solution of
(CSL). Define Sk = S∗ ∩ Ek. Then Sk is feasible for (CSL(k)):
Consider d ∈ Dk. Since S∗ is feasible, we know that d ∈ cover(S∗). In
particular, there exists s ∈ S∗ such that d ∈ cover(s), hence s ∈ T (d). Let
e = g(s) ∈ E be the edge containing s. This means, e∩ T (d) �= ∅ yielding
that {d, e} ∈ Ecover. Due to point 3. in Notation 3.26 we have e ∈ Ek.
From this we finally conclude s ∈ e ∈ Ek, hence s ∈ Sk, i.e., d is covered
by some point in Sk.
Now let S∗

k be an optimal solution of (CSL(k)). Since Sk is feasible for
(CSL(k)) we obtain

ftime(S
∗
k) ≤ ftime(Sk).

On the other hand, ∪k=1,...,KS∗
k is feasible for (CSL), since

cover(
⋃

k=1,...,K

S∗
k) =

⋃
k=1,...,K

(cover(S∗
k)) =

⋃
k=1,...,K

Dk = D.

44 3 Covering All Demand Points

Thus we obtain

ftime(∪k=1,...,KS∗
k) ≤

K∑
k=1

ftime(S
∗
k)

≤
K∑

k=1

ftime(Sk)

= ftime(
⋃

k=1,...,K

Sk)

= ftime(S
∗) since the Sk are pairwise disjoint.

This yields the optimality of
⋃

k=1,...,K S∗
k . ��

Decomposing (CSL) at least leads to smaller subproblems. In the case of the
following corollary, we even get subproblems with a coefficient matrix with
consecutive ones property.

Corollary 3.29. Given G = (V, E) with its set of points T , as well as a set
D, suppose that each demand point in D can be covered by exactly one edge
e ⊆ T , i.e.,

|{e ∈ E : γd(d, e) ≤ r}| = 1 for all d ∈ D.

Then (CSL) can be decomposed into |E| smaller problems (CSL(e)), e ∈ E,
each of them containing only edge e ∈ E as set of tracks. I.e., the input data of
(CSL(e)) is De = coverD(e) and Te = e. Furthermore, the coefficient matrix
of each subproblem has the consecutive ones property, and also the coefficient
matrix of (CSL) has.

Proof. Consider d ∈ D. Due to the assumptions of the corollary, there exists
exactly one edge e with T (d) ∩ e �= ∅, hence there exists exactly one edge
incident with d in the cover graph Gcover. This means that no two edges e1, e2

are in the same connected component of Gcover, hence the problem decomposes
into |E| independent subproblems according to Theorem 3.28. Furthermore,
since each subproblem involves only one single edge, we can apply Lemma 3.11,
which implies that the consecutive ones property is satisfied for each coefficient
matrix Acov

e of subproblem (CSL(e)). Finally, the covering matrix Acov of
(CSL) can be written as

Acov =

⎛
⎜⎜⎝

Acov
e1

Acov
e2

. . .
Acov

e|E|

⎞
⎟⎟⎠

and hence also has the consecutive ones property. ��

We remark that in practice the assumptions of Corollary 3.29 are often “al-
most” satisfied. The reason for this is that in practice the problem to be

3.5 Complete Cover in a Realistic Network 45

considered is not (SL) but originally (SL’) (see page 19) referring to the es-
tablishment of additional stations, with a usually large set of already given
existing stations Sex. In the corresponding data set the existing stations usu-
ally coincide with the endpoints of the edges, i.e., Sex ⊆ V and V \ Sex is
rather small. Now consider a node v ∈ V with incident edges ei and ej. If
there exists a station in v, a large portion of

cover(ei) ∩ cover(ej)

is already covered. Hence, a situation as depicted in Figure 3.8 (see page 41)
becomes less likely, since all three demand points would have been already
covered by an existing station in v0.

For an illustration of the practical applicability, see also the example depicted
in Figure 3.11. In this example, the coefficient matrix of the complete problem
has the consecutive ones property.

Fig. 3.11. An instance of (CSL) with consecutive ones property, since the lighter
demand points are already covered by existing stations.

These theoretical considerations are confirmed by our numerical results (see
[RS04, Ruf02]) which show that in the practical data set of Deutsche Bahn (see
Section 2.1) the number of rows in which the ones do not appear consecutively
is relatively small. For example, if we assume a covering radius of 2 km, there
exist 1196 demand points which are not yet covered by an existing station,
but which can be covered by some stop in T , i.e.,

| (D \ cover(Sex)) ∩ cover(T)| = 1196.

This leads to 1196 rows in the matrix Acov, and in only 299 of them the ones
do not appear consecutively. This number can further be reduced to 148 by
applying a permutation heuristic to obtain a better order of the columns (see

46 3 Covering All Demand Points

[Ruf02]). For a covering radius of only 1 kilometer, i.e., r = 1, the number of
rows of Acov only is 757. I.e., there exists 757 demand points which are closer
to the tracks than 1 km, but the distance to their closest station is larger than
1 km. After applying the permutation heuristic to this example we are left
with only seven rows not having the consecutive ones property. Note that in
both examples, we further found out that the maximal number of blocks of
consecutive ones was always less than or equal to 3, i.e., even if a row does
not have the consecutive ones property, it can be decomposed into at most
three parts in which the ones appear consecutively. This observation will be
important in the next section, in which we show how problems with “almost”
consecutive ones property can be solved.

3.6 Set Covering With Almost Consecutive Ones

Property

As pointed out at the end of the previous section, in the practical data of
the complete continuous stop location problem the number of rows of Acov

in which the ones do not appear consecutively is relatively small. This gives
rise to developing a procedure for solving set covering problems in which the
covering matrix “almost” has the consecutive ones property. Parts of this
section have been obtained in [RS04], see also [Ruf02].

As in Section 3.4 the analysis presented here does not rely on any special
property of the stop location problem but can be applied to any set covering
problem. Consider

(SCP)

min cx
s.t. Acovx ≥ 1|D|

x ∈ {0, 1}|S|,
(3.4)

and assume that Acov “almost” has the consecutive ones property, i.e., in
many rows of Acov the 1s appear consecutively. Throughout the whole section
we also assume that Acov does not contain any zero row, i.e., that (SCP) is
feasible. The goal is to find an optimal solution x∗, or equivalently, an optimal
set S∗ ⊆ S of columns of Acov, where S∗ = {s ∈ S : x∗

s = 1}. The idea is to
decompose the “bad” rows into a set of new rows, all of them satisfying that
the ones appear consecutively, and to require that at least one of these rows
needs to be covered. More precisely, we define:

Definition 3.30. Let Acov be a 0-1-matrix with |D| rows and |S| columns.

1. If Acov
d is a row of Acov let bld be its number of blocks of consecutive ones.

2. Acov almost has the consecutive ones property , if
∑|D|

d=1 bld � |D||S|.

3.6 Set Covering With Almost Consecutive Ones Property 47

Now consider a matrix Acov with |D| rows, such that in rows 1, . . . , |D| − p
the 1s appear consecutively (i.e., bld = 1 for d = 1, . . . , |D| − p), and in rows
|D| − p + 1, . . . , |D| we have bld > 1.

Notation 3.31. Let Acov be a 0-1-matrix and let bld be the number of blocks
of consecutive ones in row d. For the ith block of consecutive ones in row d
let

• fd,i be the column of the first 1 of block i and
• ld,i be the column of its last 1.

This means, that

adj =

{
1 if there exists i ∈ {1, . . . , bld} such that fd,i ≤ j ≤ ld,i

0 otherwise.

Consider a row d with bld > 1. We replace Acov
d by bld rows,

Bd,1, Bd,2, . . . , Bd,bld

each of them containing only one single block, i.e., we define the jth element
of row Bd,i as

(Bd,i)j =

{
1 if fd,i ≤ j ≤ ld,i

0 otherwise.

The set covering problem

(SCP)
min cx
s.t. Acov

d x ≥ 1 for d = 1, . . . , |D|
x ∈ {0, 1}|S|

can hence be reformulated as (SCP’)

min cx
s.t. Acov

d x ≥ 1 for d = 1, . . . , |D| − p
Bd,ix ≥ yd,i for d = |D| − p + 1, . . . , |D|, i = 1, . . . , bld∑bld

i=1 yd,i ≥ 1 for d = |D| − p + 1, . . . , |D|
yd,i ∈ {0, 1} for d = |D| − p + 1, . . . , |D|, i = 1, . . . , bld

x ∈ {0, 1}|S|.

Lemma 3.32. (SCP) and (SCP’) are equivalent.

Proof.

(SCP) =⇒ (SCP’): Let x be a feasible solution of (SCP), i.e, Acovx ≥ 1|D|.
We directly obtain that Ax ≥ 1|D|−p. Moreover, for each row Acov

d , d =
|D| − p + 1, . . . , |D| we also know Acov

d x ≥ 1, i.e., there exists (at least)
one block i = l(d) of row d such that Bd,ix ≥ 1. Defining

48 3 Covering All Demand Points

yd,i =

{
1 if i = l(d)
0 otherwise

yields Bd,ix ≥ yd,i and
∑bld

i=1 yd,i ≥ yd,l(d) = 1, hence (x, y) is feasible for
(SCP’) with the same objective value.

(SCP’) =⇒ (SCP): On the other hand, each feasible solution of (SCP’) sat-
isfies Acov

d x ≥ 1 for d = 1, . . . , |D| − p, while for d = |D| − p + 1, . . . , |D|
we know that

bld∑
i=1

yd,i ≥ 1

and hence there exists (at least) one i = l(d) for each row d with yd,l(d) = 1.
From this we conclude

Bd,l(d)x ≥ yd,l(d) = 1,

i.e., x covers block l = l(d) of row d. This finally yields Acov
d x ≥ 1 also

for d = |D| − p + 1, . . . , |D|. Together, Acovx ≥ 1, hence x is feasible for
(SCP) with the same objective value. ��

It is more convenient to rewrite (SCP’) in matrix form. To this end, we define

• the matrix A as the first |D| − p rows of Acov,

• bl =
∑|D|

d=|D|−p+1 bld as the total number of blocks in rows of Acov without
consecutive ones,

• B as the matrix containing the bl rows Bd,i, and
• C as a matrix with p rows and bl columns, such that row i of C is defined

by

Cij =

{
1 if

∑|D|−p+i−1
d=|D|−p+1 bld < j ≤

∑|D|−p+i

d=|D|−p+1 bld
0 otherwise.

In the following we will use the next – equivalent – formulation of (SCP’):

(SCP’)
min cx
s.t. Ax ≥ 1|D|−p

Bx −Iy ≥ 0bl

Cy ≥ 1p

x ∈ {0, 1}|S|,
y ∈ {0, 1}bl.

The constraint Cy ≥ 1p makes sure that at least one block of each row Acov
d

with d ≥ |D| − p + 1 is covered.

There are several advantages of this reformulation. The first is that all three
matrices A,B, and C have the consecutive ones property. But note that the
coefficient matrix of (SCP’) does not have the consecutive ones property, and
also is not totally unimodular, such that in general non-integer basic solutions

3.6 Set Covering With Almost Consecutive Ones Property 49

exist. How the new formulation can be used to find good bounds and to set up
a branch and bound approach is described next. It can also be used to provide
an approximation algorithm with an approximation ratio of maxd=1,...,|D| bld
as done in [MSW05].

Lower Bounds

A lower bound on (SCP’) is obtained by relaxing all constraints that contain
variables yd,i, yielding a problem with a coefficient matrix with consecutive
ones property. For the stop location problem this can be interpreted as simply
forgetting about the demand points which destroy the consecutive ones prop-
erty of the matrix, i.e., we do not require to cover them. The corresponding
IP is

(SCPl)
min cx
s.t. Ax ≥ 1|D|−p

x ∈ {0, 1}|S|.

Lemma 3.33. Each optimal solution of (SCPl) is a lower bound on (SCP).

Proof. Since A only contains a part of the rows of Acov, (SCPl) is a relaxation
of (SCP), and the result follows. ��

Since A has the consecutive ones property, a solution of (SCPl) can be cal-
culated efficiently by one of the approaches discussed in Section 3.4. A better
lower bound can be found by considering the dual of the LP-relaxation of
(SCP’). Since there exists an optimal solution with xs ≤ 1 for s ∈ S and
yd ≤ 1 for d ∈ D, the dual of the LP-relaxation is given by

(Dual-SCP’)

max1|D|−pηA + 1blηC

s.t. AT ηA + BT ηB ≤ c (3.5)

−ηB + CT ηC ≤ 0 (3.6)

ηA, ηB, ηC ≥ 0. (3.7)

A feasible solution of (Dual-SCP’) is obtained by solving the following se-
quence of problems.

1. Solve problem (A)

max1ηA

s.t. AT ηA ≤ c

ηA ≥ 0.

Let η∗
A be an optimal solution of (A).

50 3 Covering All Demand Points

2. Solve problem (B)

max1ηB

s.t. BT ηB ≤ c − AT η∗
A

ηB ≥ 0.

Let η∗
B be an optimal solution of (B).

3. Solve problem (C)

max1ηC

s.t. CT ηC ≤ η∗
B

ηC ≥ 0.

Let η∗
C be an optimal solution of (C).

The following properties apply.

Lemma 3.34.

1. (A), (B), and (C) are feasible.
2. (η∗

A, η∗
B, η∗

C) is a feasible solution of (Dual-SCP’).
3. 1|D|−pηA + 1blηC is a lower bound on (SCP’).

Proof.

1. (A) is feasible since c ≥ 0 and hence ηA = 0 solves the problem. Since η∗
A

is feasible for (A) it satisfies

c − AT η∗
A ≥ 0

and hence ηB = 0 is a feasible solution of (B) for any feasible solution
η∗

A of (A). Similarly, since η∗
B ≥ 0 a feasible solution of (C) is given by

η∗
C = 0.

2. Constraint (3.5) is satisfied since from the feasibility of η∗
B for (B) we

know that
AT η∗

A + BT η∗
B ≤ c.

Furthermore, η∗
C is feasible for (C), i.e.,

−η∗
B + CT ηC ≤ 0,

which is constraint (3.6) of (Dual-SCP’).
3. This follows from the feasibility of (η∗

A, η∗
B , η∗

C) for (Dual-SCP’), see part 2.
��

The next lemma shows that this second bound is always better than the first
bound we obtained by solving (SCPl).

Lemma 3.35. Let xl be the optimal solution of (SCPl). Then cxl ≤ 1|D|−pη
∗
A+

1blη
∗
C , where η∗

A, η∗
B , η∗

C are optimal solutions for (A), (B), (C), respectively.

3.6 Set Covering With Almost Consecutive Ones Property 51

Proof. Note that the dual of (A) is (SCPl). Hence, from the strong duality
theorem, see, e.g., [HK01, NW88] we know that

cxl = 1|D|−pη
∗
A,

hence cxl ≤ 1|D|−pη
∗
A + 1blη

∗
C . ��

Moreover, this bound can also be calculated efficiently by using that AT , BT ,
and CT are interval matrices and solving the corresponding problems (A),(B),
and (C) along the lines of Section 3.4.

Upper Bounds

Fixing all yd,i = 1 in (SCP’) also results in a problem in which the coeffi-
cient matrix has the consecutive ones property. Moreover, it yields a feasible
solution to the original problem. In terms of the stop location problem this
strategy requires that each demand point d which can be covered by more
than one edge must be covered by stops on all possible edges. The solution
found is hence feasible but will in general have too many new stations opened.
Formally, this solution is found by solving

(SCPu1)
min cx
s.t. Ax ≥ 1|D|−p

Bx ≥ 1bl

x ∈ {0, 1}|S|.

Lemma 3.36. Each feasible solution of (SCPu1) is an upper bound on (SCP’).

Proof. Let xu be a feasible solution of (SCPu1), and x∗, y∗ be optimal for
(SCP’). Defining y = 1bl yields a feasible solution (xu, y) of (SCP’), hence
satisfying cxu ≥ cx∗. ��

A better upper bound is obtained if we do not require that all rows of B are
covered, but select only one of them for each demand point d.

Notation 3.37. Let l(d) : {|D| − p + 1, . . . , |D|} → IN be a mapping selecting
a block i = l(d) for each row d ∈ {|D| − p + 1, . . . , |D|}. We call the mapping
l feasible if

1 ≤ l(d) ≤ bld

for all d = |D| − p + 1, . . . , |D|. We also write l ⊆ {|D| − p + 1, . . . , |D|} × IN
to specify l.

We obtain the following result: Each feasible solution of the following program

52 3 Covering All Demand Points

(SCPu(l))
min cx
s.t. Ax ≥ 1|D|−p

Bd,l(d)x ≥ 1 for all |D| − p + 1, . . . , |D|
x ∈ {0, 1}S

gives an upper bound on (SCP’). Moreover, the best bound obtained by solv-
ing (SCPu(l)) is better than the best bound obtained by solving (SCPu1).

Lemma 3.38. Let x∗ be the optimal solution of (SCP).

1. Each feasible solution x of (SCPu(l)) satisfies cx ≥ cx∗.
2. If xu1 is an optimal solution of (SCPu1), and xu2 an optimal solution of

(SCPu(l)) (for any feasible mapping l) we have

cx∗ ≤ cxu2 ≤ cxu1.

Proof.

1. We define for d = |D| − p + 1, . . . , |D|

yd,i =

{
1 if i = l(d)
0 otherwise

to obtain a feasible solution (x, y) for (SCP’) with the same objective
value as (SCPu(l)).

2. cx∗ ≤ cxu2 directly follows from part 1 of this lemma, while cxu2 ≤ cxu1

holds since (SCPu(l)) is a relaxation of (SCPu1). ��

Heuristic Approaches

In the following we suggest two heuristics for (SCP’). Both work by choosing
a good mapping l(d) for the formulation (SCP(l)).

The first one is based on a cost-argument, i.e., for each row we choose the
cheapest block that can be used to cover the row. The interpretation for the
stop location problem is the following: We require to cover each demand point
from that edge e ∈ E of the graph (V, E) with the lowest traffic load ce.

The first heuristic works as follows.

Heuristic 6: Cost-Heuristic for (SCP)

Input: Acov, b, c.

Output: A feasible solution x of (SCP).

Step 1. Obtain matrices A and B of (SCP’).

Step 2. For d = |D| − p + 1, . . . , |D|:
Assign l(d) = i if cj = minj′:adj′=1 cj′ and fd,i ≤ j ≤ ld,i.

3.6 Set Covering With Almost Consecutive Ones Property 53

Step 3. Let x, y be the solution of (SCPu(l)) (e.g., by Algorithm 5).

Step 4. Output: x.

In our second heuristic we do not focus on the costs c but choose that block
for row d which can be used to cover most (other) demand points, i.e., we
choose the block containing the candidate with the largest coverage in the
row. The formal description is the following.

Heuristic 7: Coverage-Heuristic for (SCP)

Input: Acov, b, c.

Output: A feasible solution x of (SCP).

Step 1. Obtain matrices A and B of (SCP’).

Step 2. For d = |D|−p+1, . . . , |D|: Assign l(d) = l if maxj′:adj′=1 |cover(j′)| =

|cover(j)| and fd,i ≤ j ≤ ld,i.

Step 3. Let x, y be the solution of (SCPu(l)), (e.g., by Algorithm 5).

Step 4. Output: x.

Apart from these two simple heuristics we can also construct a feasible solution
and an upper bound by combining the lower bound obtained from (SCPl) (or
equivalently, by solving the dual program (A)) with the cost-based heuristic
(Algorithm 6). To this end, let xl be an optimal solution of (SCPl). Then
determine the set of rows which are not covered by xl, i.e., define D = {d :
Acov

d xl = 0} and choose l(d) according to Algorithm 6 for all d ∈ D. Then
solve the reduced set covering problem

(Red-SCP(l))
min cx
s.t. Bd,l(d)x ≥ 1 for all d ∈ D

x ∈ {0, 1}|S|

and let x̃ be an optimal solution. By defining

xs = max{xl
s, x̃s}

we then obtain an upper bound on (SCP’).

Lemma 3.39. Let x∗ be an optimal solution of (SCP). Furthermore, let xl be
an optimal solution of (SCPl) and x̃ be an optimal solution of (Red-SCP(l)).
Then x defined by

xs = max{xl
s, x̃s}, s = 1, . . . , |S|

satisfies cx ≥ cx∗.

54 3 Covering All Demand Points

Proof. We only have to show that x is feasible for (SCP). Let

D = {d : Acov
d xl = 0}.

Then, for all d �∈ D we have that

Acov
d x ≥ Acov

d xl ≥ 1,

hence these rows are covered by x. Now take d ∈ D. Then

Acov
d x ≥ Acov

d x̃ ≥ Bd,l(d)x̃ ≥ 1.

Together, Acovx ≥ 1|D| and the result follows. ��

The above discussion leads to the following algorithm that contains upper and
lower bound computation.

Algorithm 8: Upper and lower bound for (SCP)

Input: Acov, b, c.

Output: Upper bound cxu and lower bound f l on (SCP).

Step 1: Derive the matrices A,B, C of (SCP’) and solve (A),(B),

and (C) with optimal solutions η∗
A, η∗

B , η∗
C.

Let xA be the dual solution of (SCPl).

Step 2: Define D = {d : Acov
d xA = 0}.

Step 3: Calculate l(d) for all d ∈ D according to Algorithm 6.

Step 4: Solve (Red-SCP(l)) with respect to D and l.

Let x̃ be the solution.

Step 5: Define for all s = 1, . . . , |S|: xu
s = max{xA

s , x̃s}.
Step 6: Output: xu and f l = 1|D|−pηA + 1blηC.

Branch and Bound Approach

For solving (SCP’) we propose a branch and bound algorithm. The idea is to
consider a row d (for |D|−p < d ≤ |D|) in each layer of the branch and bound
tree and iteratively select one of the ydi and set it to one. This means, the
corresponding row Bdi can be added to matrix A while all other rows Bdi′

with i′ �= i can be deleted from B. Formally, we obtain:

Notation 3.40. Let D ⊆ {|D| − p + 1, . . . , |D|} be a set of rows with bld > 1
for all d ∈ D. Moreover, let l be a feasible mapping, i.e., l(d) ∈ {1, . . . , bld}
for d ∈ D. For a given instance of (SCP’) define P(D, l) as an instance of
(SCP’) in which yd,l(d) = 1 for all d ∈ D.

3.6 Set Covering With Almost Consecutive Ones Property 55

Using the notation D
C = {|D| − p + 1, . . . , |D|} \ D we get

P(D, l)
min cx
s.t. Ax ≥ 1|D|−p

Bd,l(d)x ≥ 1 for all d ∈ D

Bd,ix ≥ yd,i for d ∈ D
C , i = 1, . . . , bld∑bld

i=1 yd,i ≥ 1 for d ∈ D
C

yd,i ∈ {0, 1} for d ∈ D
C , i = 1, . . . , bld

x ∈ {0, 1}|S|.

Lemma 3.41. Let x∗ be an optimal solution of (SCP), and let xD,l, yD,l be
an optimal solution of P(D, l). Then

1. cx∗ ≤ cxD,l.
2. For each fixed D ⊆ {|D| − p + 1, . . . , |D|} we have

cx∗ = min
l feasible

cxD,l.

Proof.

1. Taking the solution xD,l, yD,l and setting for all d ∈ D

yd,i =

{
1 if i = l(d)
0 otherwise

yields a feasible solution of (SCP’) and hence cx∗ ≤ cxD,l.
2. Let x∗, y∗ be an optimal solution of (SCP’). Then for all d ∈ {|D| − p +

1, . . . , |D|} there exists some i such that ydi = 1. Define l(d) = i for all
d ∈ D and let yD be the vector y∗, restricted to the components of D.
This means, x∗, yD is feasible for P(D, l) and consequently,

cxD,l ≤ cx∗

From part 1 we already know cx∗ ≤ cxD,l, hence equality is attained. ��

The following observations are the basis for the branch and bound approach.

• P (∅, ∅) =(SCP’).
• Fixing ydi = 1 in P (D, l) for some d ∈ D

C and for some 1 ≤ i ≤ bld leads
to P (D ∪ {d}, l ∪ {d, i}).

• The coefficient matrix of P ({|D|−p+1, . . . , |D|}, l) has the consecutive ones
property and the problem can hence be solved efficiently by Algorithm 5.

Thus, by iteratively fixing variables ydi we always obtain subproblems of the
same type, and in each iteration the number of rows d with bld = 1 increases
(yielding a larger matrix A with consecutive ones property) while the number
of “bad” rows d with bld > 1 decreases. Hence, we get closer to the consec-
utive ones property in each step. Before we formulate the branch and bound
procedure we remark that we can reduce the size of (SCP’) by applying the
following reduction rules.

56 3 Covering All Demand Points

Lemma 3.42.

1. If T (d1) ⊆ T (d2) for 1 ≤ d1 ≤ |D| − p then a solution of (SCP’) can
be found by considering the reduced problem without rows Bd2,i for all
i = 1, . . . , bld2.

2. If T (d1) = {s} for some 1 ≤ d1 ≤ |D| − p, then in all optimal solutions,
xs = 1, and it is sufficient to consider the reduced problem without column
s and without all rows Bd2,i with d2 ∈ cover(s) and 1 ≤ i ≤ bld2 .

Proof. The rules are transfered from Lemma 3.16 taking into account that
not all rows of the matrix B need to be covered, i.e., we require that rows
denoted by d1 in the formulation of Lemma 3.16 are rows of the matrix A. ��

The branch and bound algorithm can finally be stated as follows.

Algorithm 9: Branch and bound for (SCP)

Input: Acov, b, c, and accuracy ε.

Output: Feasible solution x of (SCP). such that |cx − cx∗| ≤ ε, if x∗ is

the optimal objective value.

Step 0. Set D = ∅, l = ∅, and S∗ = S.
Derive P by reducing P (D, l) according to Lemma 3.42.

f
l
, f

u = lower and upper bound, obtained by Algorithm 8,

List = {P} with lower bound f
l
P = f

l
.

Step 1.

1. If List= ∅, stop: Exact optimal solution is x∗.

2. f l = min{f l
P : P ∈ List}

3. If fu − f l ≤ ε stop: ε optimal solution is x∗.

Step 2. Choose P = P (D, l) ∈ List with current lower bound f l
P .

Step 3. Reduction of P: Check if P can be reduced according to Lemma 3.42.

(Only the latest added row d ∈ D needs to be considered as d1)

Step 4. Bounds Use Algorithm 8 to obtain a new lower bound f l
P and

a feasible solution xu.

Step 5. Pruning
1. If f l

P = cxu
P , prune by optimality, i.e.,

x
∗ = x

u
P if cx

u
P < f

u

f
u = min{cxu

P , f
u}

List = List \ {P}.

Goto 1.

2. If f l
P ≥ fu prune by bound, i.e., List = List \ {P}.

Goto 1.

3. If cxu
P < fu set

f
u = cx

u
P

x
∗ = x

u
P .

3.6 Set Covering With Almost Consecutive Ones Property 57

Step 6. Choose d ∈ D
C and set

List = List ∪ {P (D ∪ {d}, l ∪ (d, i)) : i ∈ {1, . . . , bld}}

Goto 1.

The application of this branch and bound approach on random data yields
optimal solutions for 100 × 100 matrices Acov in less than a minute on a
standard personal computer, if the number of blocks of consecutive ones is
not too high. As expected, the running time increases drastically with the
number of blocks. A detailed analysis is presented in the diploma thesis of
[Ruf02], see also [RS04].

We also applied Algorithm 9 to the real-world data described in Section 2.1.
For a covering radius of r = 2, i.e., if we require that all demand points should
be closer than 2 km to their nearest station, we obtained a solution with an
optimality gap

ftime(x
u) − ftime(x

l)

ftime(xl)
≤ 0.017,

i.e., of less than 1.7 % in the first iteration of step 4 in the branch and bound
algorithm. This shows that Algorithm 8 behaves very well in this case. The
improvement of the starting solution by Algorithm 9, however, was rather
slow. For the same problem instance, but with a covering radius of only 1 km,
the initial optimality gap was only 0.1 %, such that in this case we can consider
the problem as solved by Algorithm 8 only.

4

Bicriteria Stop Location

There are many useful extensions of the complete continuous stop location
problem (CSL). In this chapter we investigate the following bicriteria variant.
In a practical setting, one might not want to cover all demand points D but
only a given percentage of the population. To this end we assume that for
each demand point, we have given a weight wd representing the number of
customers who would like to use public transportation, if the next station was
closer than r. For a given set of stops S, recall from Section 2.3 that fcover(S)
denotes the number of (potential) customers who live closer than r to some
stop in S. Certainly, it is preferable to cover as many customers as possible,
i.e, to maximize fcover(S). On the other hand, establishing many new stops
for trains is costly and increases the travel time for customers, because each
stop needs an additional time of, e.g., two minutes.Hence, we also have to take
care of the additional travel time ftime which can be computed as the total
time used for the additional stopping activities summed over all customers.
We are hence dealing with the following bicriteria variant of (SL).

(BSL)

Given G = (V, E) with its set of points on edges T =
⋃

e∈E e and with traffic
loads ce for all e ∈ E, and cv for all v ∈ V , as well as a finite set of points D
with weights wd and gauges γd for all d ∈ D, find a set S ⊆ T such that both

ftime(S) =
∑
s∈S

cg(s), and

−fcover(S) = −
∑

d∈cover(S)

wd

are minimized.

60 4 Bicriteria Stop Location

We remark that for a subset S ⊆ T the function fcover(S) was already used in
Section 2.3. Also note that parts of Sections 4.1, 4.2, and of Section 4.3 have
recently been published in [Sch05c].

Chapter 4 is structured as follows: We first present the bicriteria prob-
lem and its two e-constraint versions and point out their relation to efficient
solutions. We then prove that the finite candidate set developed for (CSL)
can also be used for the bicriteria problem. Since this leads to bicriteria set
covering problems, we analyze such problems for the special case that the cov-
ering matrix has the consecutive ones property and prove their equivalence
to bicriteria shortest path problems. Finally we present an alternative finite
dominating set which can be used independent of the given radius r.

4.1 Constraint Problems and Lexicographic Minimality

What we mean by “minimizing both” objective functions is to find Pareto
solutions of the problem with respect to ftime and fcover. Recall from Ap-
pendix B that if S1, S2 ⊆ T denote two feasible sets of stops, S1 dominates
S2 if

ftime(S1) ≤ ftime(S2) and

fcover(S1) ≥ fcover(S2),

where at least one of these inequalities is strict. Then a Pareto solution S∗

is a feasible set of stops which is not dominated by any other feasible set of

stops (see Appendix B). The points

(
ftime(S

∗)
fcover(S

∗)

)
for Pareto solutions S∗ in

the objective space are called efficient points.

To find Pareto solutions a common idea is to minimize only one of the two
objective functions and to bound the other objective in the constraint set.
Since this can be done for both objective functions, we obtain the following two
one-criteria problems, which are called e-constraint problems in the literature.

(BSL-time) Given D, G = (V, E) with its set of points T , weights ce, cv, wd,
gauges γd, and a lower bound Qcover ∈ IR on fcover, find a set S∗ ⊆ T
such that fcover(S

∗) ≥ Qcover and ftime(S
∗) is minimal.

(BSL-cover) Given D, G = (V, E) with its set of points T , weights ce, cv, wd,
gauges γd, and an upper bound Qtime ∈ IR on ftime, find a set S∗ ⊆ T
such that ftime(S

∗) ≤ Qtime and fcover(S
∗) is maximal.

Due to Haimes and Chankong [HC83] (see Appendix B) we have the following
result, providing the connection between Pareto solutions and the optimal
solutions of the e-constraint problems.

4.1 Constraint Problems and Lexicographic Minimality 61

Lemma 4.1.

1. Let S be a unique optimal solution of (BSL-time). Then S is a Pareto
solution. If more than one optimal solution of (BSL-time) exists, the so-
lutions that additionally maximize fcover are Pareto solutions.

2. Let S be a unique optimal solution of (BSL-cover). Then S is a Pareto
solution. If more than one optimal solution of (BSL-cover) exists, the
solutions that additionally minimize ftime are Pareto solutions.

Using Lemma 4.1 to find Pareto solutions is known as the e-constraint method,
see, e.g., [Ehr00]. Unfortunately, both e-constraint problems are hard to solve.

Corollary 4.2. (BSL) and the two e-constraint problems (BSL-time) and
(BSL-cover) are NP-hard, even if all weights ce, cv, wd are equal to 1.

Proof. We already know that (CSL) is NP-hard under the conditions of the
corollary, see Theorem 3.2. The decision version of both e-constraint problems
(BSL-time) and (BSL-cover) is the following:

Given D, G = (V, E) with its set of points T , weights ce, cv, wd, gauges γd, and
Qtime, Qcover ∈ IR, does there exist a set S∗ ⊆ T such that ftime(S

∗) ≤ Qtime

and fcover(S
∗) ≥ Qcover?

Defining Qcover =
∑

d∈D wd shows that the decision version of (CSL) is a
special case of the decision version of both (BSL-time) and (BSL-cover) and
thus both e-constraint problems are NP-hard. ��

We now discuss the two lexicographic optimal solutions, for which we know
that they are Pareto solutions (see Appendix B).

• Maximizing fcover as first objective means that we have to cover all de-
mand points, that can be covered, i.e., all demand points d with T (d) �= ∅.
This yields exactly (CSL) of the previous chapter, if we define

D′ = D ∩ cover(T)

as the set of demand points to cover. In Chapter 3 we have shown that
this problem is NP-hard.

• On the other hand, minimizing ftime leads to a trivial problem since it can
be solved easily by not installing any stop at all. To find a lexicographic
minimal solution S ⊆ T we first determine the set of edges and nodes with
zero costs, i.e.,

E0 = {e ∈ E : ce = 0}

V 0 = {v ∈ V : cv = 0}.

If both sets are empty, S = ∅ is the unique lexicographic minimal solution.
In the case that we can locate stops with zero costs, we further determine

62 4 Bicriteria Stop Location

D′ = cover(E0) ∪ cover(V 0)

as the set of all demand points that can be covered with zero costs. Finally,
we cover all demand points in D′ as follows: For all d ∈ cover(E0) we select
e ∈ E0 such that d ∈ cover(e) and choose

s(d) ∈ argmins∈eγd(d, s).

Then V 0 ∪ {s(d) : d ∈ D} covers D′ with zero costs and hence is a lexico-
graphic minimal solution. In other words, we install a stop in each node
of V 0 and in all the projection points of demand points on a 0-cost edge.

We mention that the unweighted version of (BSL-cover), i.e., to locate at most
K = Qtime stops in such a way that fcover is maximized, was investigated in
[KPS+03] for the case of one single straight-line track and for the case of two
parallel straight-line tracks. For both cases, polynomial time algorithms using
dynamic programming were developed with a time complexity of O(K|D|2)
for the single track case. Moreover, it is shown that along one straight line
track, the unweighted version (BSL-cover) is equivalent to a one-dimensional
uncapacitated and unimodular K-facility location problem. As observed by
[Tam02] the problem can hence be solved in O(K|D|log(D)) time.

4.2 Integer Programming Formulations

We now use the methodology developed in Chapter 3 and again derive a finite
dominating set. Recall the definition of the finite dominating set S for (CSL)
given in Notation 3.5 and in (3.2) on page 27 in Section 3.2, i.e.,

Se = {ve
1, v

e
2} ∪

⎧⎨
⎩
⋃

d∈D{f
e
d , led} if

⋃
d∈D{f

e
d , led} contains at least one

point of the interior of e

{ ve
1+ve

2

2 } otherwise.

where ve
1, v

e
2 are the endpoints of edge e and fe

d , led are the endpoints of the
interval T (d) ∩ e. Fortunately, the following theorem shows that

S =
⋃
e∈E

Se

is also a finite dominating set for the bicriteria stop location problem.

Theorem 4.3. S is a finite dominating set for (BSL-time), (BSL-cover), and
for (BSL). More precisely,

• Either (BSL-time) is infeasible, or there exists an optimal solution S∗ ⊆ S.
• Either (BSL-cover) is infeasible, or there exists an optimal solution S∗ ⊆ S.
• Let (Qtime, Qcover) be an efficient solution of (BSL). Then there exists a

Pareto solution S ∈ S with ftime(S) = Qtime and fcover(S) = Qcover.

4.2 Integer Programming Formulations 63

Proof. Given some optimal (or Pareto) set S∗, we use exactly the proof of
Theorem 3.7 and construct a set S′ ⊆ S by moving stops of the given set S∗

into points of S without changing the objective function values. For S′ we
hence obtain

fcover(S
∗) ≤ fcover(S

′) and

ftime(S
∗) ≥ ftime(S

′),

i.e., S′ is at least as good as S∗ with respect to both criteria, which proves
the result. ��

Using Theorem 4.3, (BSL) and its two e-constraint problems can be formu-
lated as integer programs. To keep track of the population covered by the new
stops, we have to know which demand points are covered and which not. In
addition to the variables xs defined for (CSL), we therefore define another set
of binary variables

yd =

{
1 if demand point d is covered
0 otherwise.

and let w = (w1, w2, . . . , w|D|).
The IP model of (BSL) can be formulated as

min

(
cx

−wy

)
s.t. Acovx ≥ y

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|.

The IP model for (BSL-time) is

min cx
s.t. Acovx − y ≥ 0

wy ≥ Qcover

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|,

(4.1)

and (BSL-cover) is given by

max wy
s.t. Acovx − y ≥ 0

cx ≤ Qtime

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|.

(4.2)

In Lemma 3.11 and Theorem 3.13 we pointed out that Acov has the consecutive
ones property in the case that the set of tracks T consists only of a single
edge, and under some (weak) assumptions also if T is a polygonal line. We
now discuss variants of (BSL-time) and (BSL-cover), in which

64 4 Bicriteria Stop Location

• wd = 1 for all d ∈ D, ce = 1 for all e ∈ E, and cv = 1 for all v ∈ V , and in
which furthermore

• the covering matrix Acov has the consecutive ones property.

Consider the example depicted in Figure 4.1 and note that the coefficient
matrix in this example is

Acov =

(
1 1 1
0 1 1

)
,

which has the consecutive ones property.

a=s1

 s2

b=s3

d2

d1

Fig. 4.1. The coefficient matrix of (BSL-time) is not totally unimodular.

(BSL-time): Although Acov has the consecutive ones property that does not
yield a totally unimodular coefficient matrix for (BSL-time). Namely, the
coefficient matrix of (BSL-time) is in this example given as⎛

⎝1 1 1 −1 0
0 1 1 0 −1
0 0 0 1 1

⎞
⎠ ,

which is not totally unimodular.
(BSL-cover): On the other hand, using the same example for (BSL-cover) the

coefficient matrix is given by⎛
⎝ 1 1 1 −1 0

0 1 1 0 −1
−1 −1 −1 0 0

⎞
⎠ ,

which is a totally unimodular matrix.

4.3 Bicriteria set covering 65

To get rid of the coupling constraint wy ≥ Qcover in (BSL-time) one can
consider the Lagrange-relaxation with respect to this constraint.

min cx + λ(Qcover − wy)
s.t. Acovx − y ≥ 0

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|,

(4.3)

where λ > 0.

Lemma 4.4. Let Acov have the consecutive ones property and assume that
wd = 1 for all d ∈ D, and cs = 1 for all s ∈ S. Then the following hold.

1. The Lagrange-relaxation of (BSL-time) given in (4.3) (with fixed multi-
plier λ) can be solved by linear programming.

2. (BSL-cover) can be solved by linear programming.

Proof. Since Acov is totally unimodular the matrix
(
Acov −I

)
also is totally

unimodular (see Appendix A, or [NW88]). Since this is the coefficient matrix
of (4.3), and since the objective function of (4.3) is linear for fixed λ > 0, this
shows the first part of the lemma.

For part 2, we note that

(
Acov

1 1 . . . 1

)
has the consecutive ones property

and hence is totally unimodular. Thus, also

(
Acov

−1 − 1 . . . − 1

)
is totally

unimodular and hence also the coefficient matrix(
Acov −I

−1 − 1 . . . − 1 0 0 . . . 0

)

of (4.2) satisfies this property. ��

Note that the lower bound we obtain by solving the Lagrangian dual of (BSL-
time) is the same as the lower bound obtained by solving the LP-relaxation of
(BSL-time), since Lemma 4.4 shows that all extreme points of the feasible set
of (4.3) are integral, see [Wol98]. Further note that for wd = 1 the structure
of (BSL-time) resembles the problem (SCP’) discussed in Section 3.6, see
page 48, such that the solution approaches for (SCP’) can be adapted to
(BSL-time).

4.3 Bicriteria Set Covering With Consecutive Ones

Property

Again, we turn our attention to set covering problems as we already did in
Sections 3.4 and 3.6. As before, we do not use any assumptions of the stop
location problem, but deal with the bicriteria set covering problem (and its

66 4 Bicriteria Stop Location

e-constraint versions) if the coefficient matrix Acov satisfies the consecutive
ones property. Let, as before,

S = {1, 2, . . . , |S|} and D = {1, 2, . . . , |D|}.

The problem we consider is given as

(BSC)

min

(
cx

−wy

)
s.t. Acovx ≥ y

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|,

where Acov has the consecutive ones property. For S ⊆ S we define

x(S)s =

{
1 if s ∈ S
0 otherwise

y(S)d =

{
1 if d ∈ cover(S)
0 otherwise

ftime(S) = cx(S)

fcover(S) = wy(S).

Since we do not need to cover all rows of Acov in (BSC), we now have to deal
with the objective function fcover. To this end, we first investigate cover(S).

Lemma 4.5. Let S = {s1, . . . , sp} ⊆ S with s1 < · · · < sp. Then for all
i = 1, . . . , p − 1 we have

cover(si+1) \ cover{s1, . . . , si} = cover(si+1) \ cover(si).

Proof. Since “⊆” is trivial, we only need to verify “⊇”. To this end, let

d ∈ cover(si+1) \ cover(si).

We show that d �∈ cover(sj) for all j ≤ i. Assume to the contrary that
d ∈ cover(sj) and d ∈ cover(si+1). This means that adsj

= adsi+1 = 1, and,
since Acov has the consecutive ones property also adsi

= 1, a contradiction to
d �∈ cover(si). ��

Lemma 4.5 motivates a dynamic programming approach, which we will de-
velop in the following. To this end we define an acyclic digraph GBSC . Note
that we cannot utilize the digraph GSC (see Notation 3.22 on page 37) for
solving (BSC), since we now have to allow solutions which do not cover all
rows. This implies that we have to include all edges (i, j), if i < j, in the edge
set of GBSC .

4.3 Bicriteria set covering 67

Notation 4.6. The bicriteria set covering digraph GBSC = (VSC , EBSC)
is defined by

VBSC = S ∪ {s, t}, and

EBSC = {(i, j) : i, j ∈ S and i < j} ∪ {(s, j) : j ∈ S} ∪ {(i, t) : i ∈ S} ∪ {(s, t)}.

For each edge (i, j) ∈ EBSC we furthermore define costs and weights

cij =

{
cj if j �= t
0 if j = t

wij =

⎧⎨
⎩
∑

d∈cover(j)\cover(i) wd if i �= s, j �= t∑
d∈cover(j) wd if i = s, j �= t

0 if j = t.

Moreover, for an s-t-path S in GBSC let C(S) denote its length according to
cij and W (S) denote its length according to wij .

As in GSC (see Corollary 3.24 on page 39) any S ⊆ S uniquely defines an
s-t-path in GBSC by adding the nodes s and t to S. Moreover,

C(S ∪ {s, t}) = ftime(S).

In the next result we state that the same holds for the objective function fcover.
Note that for proving this observation we need that the coefficient matrix Acov

has the consecutive ones property.

Theorem 4.7. Let S ⊆ S. Then W (S ∪ {s, t}) = fcover(S).

Proof. We use induction on p = |S|. For p = 1 the claim is true due to the
definition of wsj = fcover({j}) and wjt = 0. Now assume that

W (S′ ∪ {s, t}) = fcover(S
′)

for all S′ with |S′| ≤ p. Take some S = {s1, s2, . . . , sp, sp+1} and assume that
s1 < s2 < · · · < sp+1. Define S′ = {s1, s2, . . . , sp}. Then we get

fcover(S) =
∑

d∈cover(S)

wd

=
∑

d∈cover(S′)

wd +
∑

d∈cover(sp+1)\cover(S′)

wd

= W (S′ ∪ {s, t}) +
∑

d∈cover(sp+1)\cover(sp)

wd (4.4)

= W (S ∪ {s, t}),

where (4.4) holds due to Lemma 4.5. ��

68 4 Bicriteria Stop Location

As an example, consider again the matrix

Acov =

⎛
⎜⎜⎝

1 1 1 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 0 1 1

⎞
⎟⎟⎠

and let

c1 = 3 w1 = 3

c2 = 1 w2 = 2

c3 = 2 w3 = 3

c4 = 1 w4 = 1

c5 = 3

c6 = 2.

Let us investigate the path P = {s, 2, 3, 4, t} depicted in Figure 4.2. First, we
determine

cs2 = 1 ws2 = 5

c23 = 2 w23 = 3 since cover(3) \ cover(2) = {3}

c34 = 1 w34 = 0 since cover(4) \ cover(3) = ∅

c4t = 0 w4t = 0.

This yields C(P) = 1 + 2 + 1 = 4 and W (P) = 5 + 3 = 8. On the other hand,
for the corresponding set S = P \ {s, t} = {2, 3, 4} we obtain

ftime(S) = 1 + 2 + 1 = 4

cover(S) = {1, 2, 3}, and hence

fcover(S) = 3 + 2 + 3 = 8,

such that W (P) = fcover(S) and C(P) = ftime(S) holds.

3 5 4 2 1 6

ts

Fig. 4.2. The path S in the digraph GBSC for the example.

4.3 Bicriteria set covering 69

Corollary 4.8. Let S ⊆ S. Then S is a Pareto solution of (BSC) if and only
if S ∪ {s, t} is a path in GBSC which is Pareto minimal with respect to the
two length functions C and W .

This means that finding all efficient solutions of (BSC) reduces to finding all
efficient paths in the acyclic network GBSC . Note further that using negative
weights −w(e) does not affect the solution procedures or the complexity of
the problem, since no directed cycles exist. Finding efficient paths in the
presence of more than one objective function belongs to the most widely
studied multiobjective combinatorial optimization problems. We refer to the
surveys given in Section 6.1. of [EG02] and in [Skr00], where the latter deals
in particular with bicriteria shortest path problems. Available algorithms are
based on dynamic programming (as presented in [Hen85]), or on label setting
methods (see [Han79] for an early contribution). Label correcting methods for
bicriteria shortest path problems were presented, e.g., in [MMO91, SA00]. An
algorithm based on a ranking of paths was proposed by [CM82].

Finally, we turn our attention to the special case in which cs = 1 for all
s ∈ S. In this case, ftime(S) = |S| is equal to the number of edges of the path
S ∪ {s, t}, reduced by 1. Letting Qtime = K ∈ IN, the cost-constraint version
of (BSC) is given as

(BSC-cover(K))

max wy
s.t. Acovx − y ≥ 0

cx ≤ K

x ∈ {0, 1}|S|

y ∈ {0, 1}|D|.

(4.5)

This problem can be solved by finding a longest path with no more than
K + 1 edges, i.e., by solving a cardinality constraint shortest path problem in
an acyclic digraph. This can be done by the Algorithm of Bellman–Ford (see,

[Bel58, FF62]), which needs O(K|S|2) time in the worst case to find a longest
path with no more than K edges from one specified starting node to all other
nodes in the graph. To find all efficient solutions we again use the result of
[HC83].

Lemma 4.9. Let K∗ be the solution of (SCP), i.e., the minimal number of
columns needed to cover all rows of Acov, and let K ≤ K∗. Then, S is an
optimal solution of (BSC-cover(K)) if and only if S is a Pareto solution.

Proof. If S is the unique solution of (BSC-cover(K)) the result follows di-
rectly from [HC83] (see also Lemma 4.1). Now assume that S1 �= S2 but
both are optimal solutions of (BSC-cover(K)). Then fcover(S1) = fcover(S2),
ftime(S1) ≤ K, and ftime(S2) ≤ K. We want to show that

70 4 Bicriteria Stop Location

ftime(S1) = ftime(S2),

since in this case both solutions lead to the same efficient point and no solution
dominating S1 and S2 in both criteria exists.
Assume to the contrary that |S1| = ftime(S1) < ftime(S2) = |S2|. In particular,
|S1| < |S2| ≤ K ≤ K∗, i.e., D\cover(S1) �= ∅. But this means that there exists
a column s ∈ S \ S1 such that adding s to S1 would increase fcover, i.e.,

fcover(S1 ∪ {s}) > fcover(S1) = fcover(S2)

and ftime(S1 ∪{s}) ≤ K, which is a contradiction to the optimality of S1 and
S2 for (BSC-cover(K)). ��

In the following algorithm we make use of this result. If the assumptions of
Theorem 3.13 are satisfied we determine all efficient solutions of (BSC) by
solving a sequence of cardinality constraint longest path problems using the
algorithm of Bellman–Ford. Since one run of the algorithm for K∗ determines
also all solutions with cardinality constraints given by smaller K, i.e., for all
K ∈ {0, 1, . . . , K∗} the overall complexity of the following algorithm equals
the complexity of the algorithm of Bellmann–Ford for one single source node
s, i.e., we obtain a complexity of O(|S|3) for the determination of all efficient
points of (BSC). For our special case of the stop location problem recall further
that for each demand point d we have at most two candidates in the finite
dominating set S such that the complexity of finding all efficient solutions
in the case of a matrix Acov with consecutive ones property, traffic loads
ce = cv = 1 and arbitrary weights wd is bounded by O(|D|3).

Algorithm 10: Finding all efficient points for (BSC) with consecutive
ones property and cs = 1

Input: w, Acov with consecutive ones property, cs = 1 for all s ∈ S.
Output: All efficient points for (BSC), and a Pareto solution for each

of them.

Step 1. Use Algorithm 2 to transform Acov into a strictly monotone matrix.

Step 2. Solve the unweighted set covering problem by Algorithm 3, let K∗

be the cardinality of the optimal solution.

Step 3. Construct GBSC.

Step 4. Use the algorithm of Bellmann-Ford to find all longest paths

w.r.t. the weights w from s to t with K = 1, 2, . . . K∗ edges. Let hK

denote the length of a longest s-t-path P K with at most K edges.

Step 5. Output: Eff = {(hK , K) : K = 1, . . . , K∗} with corresponding Pareto

solutions P K, K = 1, . . . , K∗.

4.4 Varying the Radius 71

4.4 Varying the Radius

The finite dominating set S depends on the given covering radius r. If more
than one value for r should be considered it would be advantageous to have a
finite dominating set which is not dependent on the specific value of r. Such
a set will be derived in this section, for the special case that cv ≤ ce for all
v ∈ V and for all edges e ∈ E incident with v.
Using the same denotation as on page 26 we define

S∗ = {s ∈ T : there exist d1, d2 ∈ D, d1 �= d2 such that γd1(d1, s) = γd2(d2, s)}

∪
⋃

d∈D,e∈E

argmins∈eγd(d, s) ∪
⋃
e∈E

{
ve
1 + ve

2

2

}
∪ V,

where ve
1, v

e
2 are the two endpoints of the edge e ∈ E. The first set of candidates

can be determined by intersecting the bisector between each pair of demand
points with T , the second set describes the projection points from all demand
points onto all edges, and the third set makes sure that V and one point of
the interior of each edge is included in S∗.

Theorem 4.10. S∗ is a dominating set for (BSL), (BSL-time), and (BSL-
cover) for any given radius r > 0, if cv ≤ ce for all v ∈ V , e ∈ E if e is
incident with v.

Proof. Take r > 0 arbitrary, but fixed. Using Theorems 3.7 and 4.3 we can
assume that either the problems are infeasible, or there exists an optimal
solution S∗ ⊆ S, where S is the specific candidate set with respect to r as
defined in (3.2) on page 27. Take s ∈ S∗ with s �∈ S∗. Hence, s �∈ V and

s �=
ve
1+ve

2

2 for any of the edges e ∈ E. Consequently, s lies in the interior of
some edge e, and there exists exactly one d ∈ D such that

γd(d, s) = r

and
argmins′∈eγd(d, s′) �= s,

otherwise, s ∈ S∗. Move s along e within Br
d (i.e., get closer to d) to a new

point, until one of the following conditions is satisfied for the first time.

• s reaches some point in S∗, let this point be denoted by s∗.
• s leaves some ball Br

d′ : Denote this point by s′. It is important to note
that d �= d′, since otherwise the projection point from d onto e would have
been reached before. Then we have

γd′(d′, s′) = r and γd(d, s′) ≤ r

γd′(d′, s) ≤ r and γd(d, s) = r,

meaning that the continuous function h : e → IR defined by h(x) =
γd′(d′, x) − γd(d, x) satisfies h(s′) ≥ 0 and h(s) ≤ 0 such that the in-
termediate value theorem yields the existence of a point s∗ between s and
s′ with h(s∗) = 0, i.e., s∗ ∈ S∗.

72 4 Bicriteria Stop Location

Due to the construction, in both cases we have found a point s∗ ∈ S∗ such
that

cover(s) ⊆ cover(s∗), and

cg(s) ≥ cg(s∗),

the latter holding since either g(s) = g(s∗) = e, or g(s) = e and g(s∗) = v with
v and e incident to each other, and hence satisfying cg(s) = ce ≥ cv = cg(s∗).
Finally we get that S′ = S∗ \ {s} ∪ {s∗} satisfies

fcover(S
∗) ≤ fcover(S

′)

ftime(S
∗) ≥ ftime(S

′).

Since the above argument can be repeated for all s ∈ S∗ \ S∗ this completes
the proof. ��

We remark that, dependent on the structure of the bisectors, S∗ needs not be a
finite set (for a detailed discussion on determining bisectors for gauge distance
functions, see [Wei99]), but can be made finite along the lines of Chapter 3.2.
We further point out that the size of S∗ is O(|D|2 + |D||E|), which is much
larger than the size of S, which is of order O(|D|). Nevertheless, S∗ also is a
finite candidate set for problem (CSL) discussed in Chapter 3.

While the assumption of Theorem 4.10 is in practice usually satisfied for all
nodes with degree at most 2, it may happen that it does not hold for nodes
with more than two incident edges. Unfortunately, the next result implies that
no finite dominating set is possible without this assumption.

e1e2

e3

v0

d

s

Fig. 4.3. No finite dominating set is possible independent of r.

Lemma 4.11. Without the assumptions of Theorem 4.10 no finite dominating
set which can be used for any value of r exists for (BSL), (BSL-time), and
for (BSL-cover).

4.4 Varying the Radius 73

Proof. Consider a star-shaped graph with four nodes and three edges, all edges
incident with node v0 (see Figure 4.3). Let one demand point d be given, such
that argmins∈e1

γd(d, s) = v0, and consider, e.g., the Euclidean distance l2.
Let ce1 = 2, ce2 = ce3 = 100, and wv0 = 102 be (realistic) traffic loads. Now
take any finite candidate set Sf , and let s be the candidate of e1 which is
closest to v0. Note that l2(d, v0) < l2(d, s). Moreover, let r be such that

l2(d, v0) < r < l2(d, s).

Then the optimal solution

• of (BSL-time) with any Qcover > 0, and
• of (BSL-cover) with Qtime = 1

is a point on e1 between v0 and s, which is not contained in the finite candidate
set Sf . Furthermore, such a point dominates any solution S ⊆ Sf , hence Sf

cannot be used to derive all efficient points of (BSL). ��

5

Extensions

The extensions we are going to discuss in this chapter have been brought up
by our practical studies. First, we relax the requirement that D consists of
points and allow demand regions D instead. This idea is motivated by the
accurate data we have for the demand regions in the stop location problem,
given as polygons (representing the settlements). The problem of minimizing
the additional travel time caused by the new stops, while covering all demand
regions, is denoted by (CSL-region), while (BSL-region) refers to the bicriteria
variant corresponding to (BSL), if we consider demand regions instead of
demand points.

Secondly, we consider alternative objective functions. Instead of looking at the
bicriteria variant, we can also sum up the positive and the negative effects of
new stops, where we have to measure both effects using the same scale, e.g.,
minutes of travel time. A new stop decreases the access time for customers
living close to it, but increases the travel time for customers just traveling
through this new stop. Summing up we get an approximation of the change
in door-to-door travel time over all customers.

Chapter 5 is structured as follows: We first reformulate the stop location
problem in the case of demand regions instead of demand points. If a finite
candidate set is given, we present integer programming formulations. Then
we turn our attention back to the continuous case and in particular to (CSL-
region). We show that finiteness of the solution is not guaranteed in this case.
Nevertheless, we present an efficient (exact) algorithm solving (CSL-region)
in the unweighted case. This algorithm is an extension of Algorithm 4.

Then we present a model for minimizing the sum of all changes in the door-to-
door travel time over all customers. We show its NP-completeness and briefly
describe our experience solving this problem with a genetic algorithm. Other
possible objective functions (from the point of view of the public transporta-
tion company) are mentioned.

76 5 Extensions

5.1 Covering Demand Regions

In this section we consider a better approximation of the demand set based
on using demand regions instead of demand points, see also [SS03]. According
to Section 2.3, especially Definition 2.5, we use the following notation. Let
D = {D1, . . . , D|D|} be a finite set of connected, and pairwise disjoint demand

regions Di ⊆ IR2, i = 1, . . . , |D|, and let

Dtotal =
⋃

D∈D

D

be the set of all points in the demand regions. For each demand region we
assume that a distance measure γD has been specified as a norm or a gauge.
Hence, given some possible new stop s ∈ T and a point d ∈ D ∈ D, the
distance from d to s is given as

γd(d, s) = γD(d, s).

Furthermore, recall that for each d ∈ D ∈ Dtotal and each S ⊆ T we defined

T (d) = {s ∈ T : γd(d, s) ≤ r}

= {s ∈ T : d ∈ cover(s)} and

cover(S) = {d ∈ D : γd(d, s) ≤ r}

= {d ∈ D : S ∩ T (d) �= ∅.}

Denoting by λ(A) the area of a (measurable) set A ⊆ IR2, by wD the number
of (potential) customers of demand region D, and by cg(s) the traffic load of
the edge or of the node where s is located, the two objective functions fcover

and ftime for demand regions are given by

fcover(S) =
∑
D∈D

wD

λ(cover(S) ∩ D)

λ(D)

ftime(S) =
∑
s∈S

cg(s).

(CSL-region) is hence given as follows.

(CSL-region)

Given G = (V, E) with its set of points T =
⋃

e∈E e, traffic loads ce for all
e ∈ E, and cv for all v ∈ V , as well as a finite set of demand regions D, with
associated gauges γD for all D ∈ D, find a set S ⊆ T such that cover(S) = D
and

ftime(S) =
∑
s∈S

cg(s)

is minimized.

5.1 Covering Demand Regions 77

Similarly, the bicriteria stop location problem in case of demand regions in-
stead of demand points can be restated as follows.

(BSL-region)

Given G = (V, E) with its set of points T , with traffic loads ce for all e ∈ E,
and cv for all v ∈ V , as well as a finite set of demand regions D with weights
wD and gauges γD for all D ∈ D, find a set S ⊆ T such that both

ftime =
∑
s∈S

cg(s), and

−fcover(S) = −
∑
D∈D

wD

λ(cover(S) ∩ D)

λ(D)

are minimized.

Note that—in contrast to (CSL) and (BSL) for demand points—(CSL-region)
is not a special case of the cover-constraint version of (BSL-region), since

λ(D ∩ cover(S))

λ(D)
= 1

does not imply D ⊆ cover(S). We first state the NP-hardness of both prob-
lems.

Theorem 5.1.

1. (CSL-region) is NP-hard.
2. (BSL-region) is NP-hard.

Proof.

1. If D is a set of points it is a special case of (CSL-region), thus the NP-
hardness of (CSL-region) follows from the NP-hardness of (CSL), see The-
orem 3.2.

2. We can reduce (BSL-region) to (CSL) as follows. Let D be a finite set
of demand points, and let K ≥ 0. We know that it is NP-hard to decide
if D can be covered by K discs all with center points in T , see Theo-
rem 3.2. Now enlarge each demand point to a small disc Bε

d centered at
d. Increasing r to r + ε yields an instance of (BSL-region)
• with D′ = {Bε

d : d ∈ D},
• with γD is the Euclidean distance for all D ∈ D′,
• with wBε

d
= wd, and

• with Qtime = K and Qcover =
∑

D∈D wD.
This instance satisfies the following:
D can be covered by at most K discs of radius r with center points in T ,
if and only if all Bε

d ∈ D′ can be covered by at most K discs of radius
r+ ε which all have their center points in T , i.e., if and only if there exists
S ⊆ T with ftime(S) ≤ Qtime and fcover(S) ≥ Qcover. ��

78 5 Extensions

The Discrete Stop Location Problem for Demand Regions

Let us first assume that a discrete set of candidates Scand ⊆ T is given, and
that we have to find a set of new stops S ⊆ Scand. Then (CSL-region) and
(BSL-region) can be formulated as integer programs.

Notation 5.2. Let x, y be two points in Dtotal.

x ∼ y if
(
∀s ∈ Scand : x ∈ cover(s) ⇐⇒ y ∈ cover(s)

)
.

Note that ∼ is an equivalence relation. Hence we obtain a partition of Dtotal

into equivalence classes. We define a set of cells C by intersecting the equiv-
alence classes with all D ∈ D. Due to the construction of C we obtain the
following lemma.

Lemma 5.3. Let C ∈ C.

1. If C ∩ cover(s) �= ∅ for some s ∈ Scand then C ⊆ cover(s).
2. If C ∩ D �= ∅ for some D ∈ D then C ⊆ D.

Now, define

xs =

{
1 if s ∈ Scand is chosen as new stop
0 otherwise.

and let the following matrix Acov = (aCs)C∈C,s∈Scand contain the covering
information.

acs =

{
1 if C ⊆ cover(s)
0 otherwise

First we give the integer programming formulation for covering all demand
regions with a minimal cost set of stops, i.e., for the problem

(Discrete-CSL-region)

min ftime(S)

s.t. cover(S) = Dtotal

S ⊆ Scand.

To obtain an integer programming formulation we reformulate (Discrete-CSL-
region) as follows.

min cx
s.t. Acovx ≥ 1|C|

x ∈ {0, 1}|S
cand|.

(5.1)

For the bicriteria formulation we need to calculate λ(C) for all cells C ∈ C

and save these values in the vector λ ∈ IR|C|. For C ⊆ D we determine

wC = wD

λC

λD

.

5.1 Covering Demand Regions 79

Furthermore we define

yC =

{
1 if cell C is covered
0 otherwise

such that we can formulate

(Discrete-BSL-region)

min

(
ftime(S)

−fcover(S)

)
s.t. S ⊆ Scand

as the following IP model:

min

(
cx

−wy

)
s.t. Acovx ≥ y

x ∈ {0, 1}|S
cand|

y ∈ {0, 1}|C|.

Note that these formulations are again set covering formulations. Hence, if
Acov has the consecutive ones property we can apply the solution methods de-
veloped in Sections 3.4 to solve (Discrete-CSL-region) and the solution meth-
ods of Section 4.3 for (Discrete-BSL-region). If Acov almost has the consecutive
ones property, we can apply the methods of Section 3.6.

Covering All Demand Regions

We turn our attention back to (CSL-region) in the continuous case, i.e., we
want to find a set of stops in T with minimal cost such that all demand regions
are covered. Unfortunately, (CSL-region) does not have the nice properties of
the corresponding complete cover problem in the case of demand points. One
difference concerns the feasibility of the problem.

Lemma 5.4.

1. (CSL-region) is feasible if and only if Dtotal ⊆ cover(T).
2. (CSL-region) may be feasible but have no finite solution.

Proof.

1. If Dtotal ⊆ cover(T) then T is a feasible solution, otherwise there exists
d ∈ Dtotal that can not be covered by any point in T .

2. An example of a problem for which no finite feasible solution exists is
given in Figure 5.1. ��

80 5 Extensions

r

a b

D

Fig. 5.1. The line segment between a and b is a solution of (CSL-region), but no
finite solution exists.

For the remainder of this section we assume that (CSL-region) is feasible, i.e.,

Dtotal ⊆ cover(T).

Unfortunately it is not possible to transfer the finite candidate set from (SCP)
by using the intervals T (d) as in the case of demand points. Intuitively, one
could determine T (D) as the set of all points which can be used to cover D,
i.e.,

T (D) = {s ∈ T : D ⊆ cover(s)},

and take the endpoints of these intervals T (D) as a candidate set. But this
candidate set need not contain the optimal solution, it even need not contain
any feasible solution (also in the case that a finite feasible solution exists).
Such situations are shown in Figures 5.2 and 5.3 for the case that γD is the
Euclidean distance for all D ∈ D.

D3

T(D1) T(D2) T(D3) T(D4)

S2S1 S3 S4 S6S5 S7

D4D2

D1

Fig. 5.2. The set of endpoints of the intervals T (D) and an optimal solution.

• In Figure 5.2 we have four demand regions D1, D2, D3, D4. For some radius
r we determine

5.1 Covering Demand Regions 81

T (D1) = [s1, s2]

T (D2) = {s3}

T (D3) = [s4, s5]

T (D4) = [s6, s7]

such that the candidate set consisting of the endpoints of these intervals
would be

{s1, s2, s3, s4, s5, s6, s7}.

Within this candidate set the best possible solution contains four stops,
e.g., {s2, s3, s4, s6}. But the optimal solution of this problem instance only
needs three new stations, namely the thick points in Figure 5.2, and only
two of them are endpoints of intervals T (D).

• The situation is even worse in the case of Figure 5.3. Here a demand region
D is depicted which is too large to be covered by only one stop, i.e.,

T (D) = ∅,

leading to an empty candidate set, although the problem is (finitely) fea-
sible with only two new stops, see the thick points in Figure 5.3.

D

Fig. 5.3. The set of endpoints of the intervals T (D) is empty, although the problem
is feasible.

Nevertheless, we now develop an algorithm for solving (CSL-region) in the
continuous case. This algorithm finds the optimal solution on a straight line,
or on a polygonal line satisfying the assumptions of Theorem 3.13, if the costs
ce of all edges and cv of all nodes belonging to the polygonal line are equal.
Recall that for d ∈ Dtotal

T (d) = {s ∈ T : γd(d, s) ≤ r}

is that part of the tracks T which can be used to cover d, i.e., we know that
at least one point of T (d) has to be chosen as a new stop for each d ∈ Dtotal.
Furthermore we know that for an edge e with T (d) ∩ e �= ∅ there exist two
(not necessarily distinct) points fe

d , led ∈ e such that

82 5 Extensions

T (d) ∩ e = [fe
d , led],

see Lemma 3.4 and the discussion on page 25. Moreover, recall from Lemma 3.9
that

d ∈ cover(s) ⇐⇒ s ∈ T (d).

For T (d) ⊆ e we hence obtain

d ∈ cover(s) ⇐⇒ fe
d ≤ s ≤ led. (5.2)

Since all T (d) are intervals we can write

T (d) = [fd, ld].

We use this notation for our next definition.

Definition 5.5. Let T = e. Given some set Q ⊆ Dtotal with Q ⊆ cover(e),
the (left) fixturing point of Q is

L(Q) = inf{ld : d ∈ Q} ∈ e.

We are now in the position to present our algorithm for solving (CSL-region).
Note that we assumed that the costs for all s ∈ T are the same, such that our
goal is to find the minimal number of stops needed to cover Dtotal.

Algorithm 11: Solving (CSL-region) along a single edge

Input: T = e, D ⊆ cover(T), γD for all D ∈ D.

Output: Optimal solution S∗ of (CSL-region).

Step 1. Set S∗ = ∅, D = Dtotal.

Step 2. S∗ = S∗ ∪ {L(D)}, D = D \ cover(L(D)).
Step 3. If D = ∅, stop, otherwise goto 2.

Note that the algorithm need not terminate finitely. But, fortunately, in The-
orem 5.7 we can show that this only happens in the case that no finite optimal
solution exists. Moreover, we will show the correctness of the algorithm, i.e.,
that in case of finite termination of the algorithm, we obtain the optimal
solution of (CSL-region) on a single edge.

In the following, let yi denote the fixturing point found in iteration i and

Di = Dtotal \ cover{y1, . . . , yi−1}

be the set D at the beginning of iteration i, i.e.,

yi = L(Di).

We first state the following lemma.

5.1 Covering Demand Regions 83

Lemma 5.6.

1. yi ≤ yi+1 for i = 1, 2,
2. If the algorithm terminates, then yi < yi+1 for i = 1, 2,
3. Let Y ∗ be the output of the algorithm in case that it terminates. Then Y ∗

is a feasible solution of (CSL-region).

Proof.

1. Since Di+1 = Di \ cover(yi) ⊆ Di we obtain

yi = L(Di) = inf{ld : d ∈ Di}

≤ inf{ld : d ∈ Di+1}

= L(Di+1) = yi+1.

2. Suppose Di �= ∅, but the fixturing point found in iteration i satisfies
yi−1 = yi. Then

Di+1 = Di \ cover(yi)

= Di \ cover(yi−1) = Di �= ∅,

and hence Dk = Di for all k ≥ i, i.e., the algorithm does not terminate.
3. Let Y ∗ be the output of the algorithm. Consider d ∈ Dtotal. We want to

show that d ∈ cover(Y ∗). Since the algorithm has terminated finitely, say
at the end of iteration I, we know that DI+1 = ∅. In particular, d �∈ DI+1.
Let d ∈ Di, but d �∈ Di+1. Then d ∈ cover(L(Di)), i.e., d ∈ cover(Y ∗). ��

Based on the results above, we now present the proof for the correctness of
Algorithm 11.

Theorem 5.7. If there exists a finite solution of (CSL-region) then Algorithm
11 terminates with an optimal solution Y ∗.

Proof. Let Y ∗ = {y1, y2, . . .} be the set generated by Algorithm 11. According
to part 1 of Lemma 5.6 we know that y1 ≤ y2 ≤ · · · . Furthermore, let S∗ =
{s∗1, s

∗
2, . . . , s

∗
K} be any finite solution (ordered), i.e., with s∗1 < · · · < s∗K . It

is sufficient to show that |Y ∗| ≤ K, since from part 3 of Lemma 5.6 we then
know that Y ∗ is feasible, and better than the finite solution S∗. To this end,
we first prove that

cover{s∗k : k < i} ∩ Dtotal ⊆ cover{yk : k < i} ∩ Dtotal.

i = 1: ∅ = ∅.
i → i + 1: From the induction hypothesis we know that

cover{s∗k : k < i} ∩ Dtotal ⊆ cover{yk : k < i} ∩ Dtotal,

yielding Di ⊆ Dtotal \ cover{s∗k : k < i}.

84 5 Extensions

Claim 1: yi ≥ s∗i .
Suppose s∗i > yi. Since yi = L(Di) = inf{ld : d ∈ Di} and s∗i > yi

there exists some d ∈ Di with ld < s∗i . According to (5.2) this means
d is not covered by s∗k if k ≥ i. Since d ∈ Di implies that

d �∈ cover({s∗k : k < i})

it is also not covered by s∗k if k < i, a contradiction.
Claim 2: cover(s∗i) ∩ Di ⊆ cover(yi).

Let x ∈ cover(s∗i) ∩ Di. Since x ∈ cover(s∗i) we get fd ≤ s∗i and using
Claim 1, fd ≤ yi. On the other hand, d ∈ Di and the definition of
yi = L(Di) yields yi ≤ ld. Together, fd ≤ yi ≤ ld such that yi ∈ T (d)
meaning that d ∈ cover(yi) (see (5.2)).

The induction hypothesis together with Claim 2 shows the result.

Finally, since S∗ is a finite solution we get that Dtotal ⊆ cover{s∗i : i ≤ K}
and hence Dtotal ⊆ cover{yi : i ≤ K ′}, where K ′ = min{|Y ∗|, K} ≤ K. This
means that at the end of iteration K ′ the set

D = DK′ = DK′−1 \ cover{yK′}

= Dtotal \ cover{y1, . . . , yK′} = ∅

and the algorithm terminates with a solution with cardinality |Y ∗| = K ′ ≤ K.
��

The algorithm can be transfered to arbitrary graphs, if we know in advance,
that no point d ∈ Dtotal can be covered by two stations belonging to different
edges of G. This is formalized below.

Notation 5.8. For e1, e2 ∈ E let conf(e1, e2) = cover(e1) ∩ cover(e2) be the
conflict zone of edge e1 and edge e2.

Then we get the following result.

Theorem 5.9. If conf(e1, e2) = ∅ for all e1, e2 ∈ E, an optimal solution of
(CSL-region) is given by

S∗ =
⋃
e∈E

S∗
e ,

where S∗
e is the output of Algorithm 11 for edge e.

Proof. From the assumption we know that each point d ∈ Dtotal can be
covered from at most one edge e ∈ E. This means that the assumptions of
Corollary 3.29 hold. Realizing that Theorem 3.28 and Corollary 3.29 hold
also for a non-finite set Dtotal instead of the finite set D used in the proof, we
obtain the result together with Theorem 5.7. ��

Fortunately, in our real-world data the total amount of population living in
a conflict zone is rather small. For the Euclidean unweighted stop location
problem we calculated the following data:

5.2 Minimizing the Total Door-to-door Travel Time 85

• The union of circles with a radius of 2 km centered at the existing stops
covers 52.4 % of the total population.

• We computed that cover(T) contains 65.20% of the population, i.e., only
65.20 % of the inhabitants of Germany live within a distance of less than
2 km from the Deutsche Bahn railway network (nodes and edges). Thus
fcover can be increased by not more than 12.80 %.

• The conflict zones are certainly not empty in our practical problem in-
stance, but they only contain 1.5 % of the total population.

If we discard the population in the conflict zones from the covering problem
we can apply Algorithm 11. With this approach we at least obtain a lower
bound on (CSL-region), since the generated solution will probably not cover
all of the discarded inhabitants. On the other hand, we can still achieve 80%
of the possible improvement of fcover such that we conclude that Algorithm
11 is applicable for practical problem instances.

5.2 Minimizing the Total Door-to-door Travel Time

We now turn our attention back to demand points, but focus on a completely
different objective function, namely the total door-to-door travel time over
all customers. The door-to-door travel time includes not only the travel time
while sitting in a bus or train, but also the access time to reach the first
station and to get from the last station of the trip to the final destination.
Instead of determining the total door-to-door travel time, we only calculate
its total change. The changes in the door-to-door travel time arise due to a
positive and a negative effect. The positive effect takes into account that new
stops decrease the distance to the stations for some of the customers. These
customers hence have a smaller access time to reach their first station. For
the sake of simplicity we assume in this model that all customers depart from
their closest station. On the other hand, the negative effect is the time which
arises by the additional stopping activities of the trains. This value has been
considered in the models before, and was denoted by ftime.

We now describe how the reduction of the access time faccess can be calculated.
To this end, let Sex be the already existing stations, and let S be a possible
set of new stops.

For a demand point d ∈ D,

• γd(d, Sex) is the closest distance to one of the existing stations, i.e., without
opening any new stop.

• γd(d, Sex ∪ S) is the closest distance to a station after the new stops have
been opened.

• The reduction of the distance for customers of demand point d hence is
γd(d, Sex)− γd(d, Sex ∪ S), which may be zero (if no new stop is closer to
d than the closest existing stop) or positive.

86 5 Extensions

To transform a possible reduction of the distance into an amount of saved
access time we introduce a piecewise linear function in two variables g : IR ×
IR → IR, assigning an amount of saved time to each reduction of the distance,
given as a pair consisting of the old and the new distance of a demand point
to its closest train stop. For g we require that

x ≥ y implies g(x, y) ≥ 0.

For example, g can be defined as

g(x, y) = (x − y)/5,

assuming an average (walking) speed of 5 km/h, or as

g(x, y) =

⎧⎨
⎩

x−y
4 if x ≤ 1 (the customer walks)

x−y
7 if 1 < x ≤ 5 (the customer uses a bike)

x−y
20 if 5 < x (the customer uses a bus or a car).

Note that this definition assumes that a customer stays with the same means
of transport used for the old distance x.

The positive effect of new stations S on the door-to-door travel time through
saved access time can hence be calculated by

faccess(S) =
∑
d∈D

wdg(γd(d, Sex), γd(d, Sex ∪ S)).

The door-to-door travel time model can now be formulated.

min ftime(S) − faccess(S)

such that
S ⊆ T .

Note that in this model we neglect the change in train riding time that is
caused by starting or ending the trip at a different train stop, assuming that
these gains and losses roughly even out. We can now define the corresponding
door-to-door travel time stop location problem.

(DSL)

Given G = (V, E) with its set of points T and with traffic loads ce for all
e ∈ E, cv for all v ∈ V , as well as a finite set of points D with weights wd

and gauges γd for all d ∈ D, find a set S ⊆ T such that

fDSL(S) = ftime(S) − faccess(S)

is minimized.

5.2 Minimizing the Total Door-to-door Travel Time 87

The door-to-door travel time stop location problem is the first continuous stop
location problem that has been mentioned in the literature, see [HLS+01].
Some important results have already been obtained in this paper, including
the NP-hardness of (DSL) which we show next.

Theorem 5.10. (DSL) is NP-hard.

Proof. We reduce the unweighted (CSL), which is NP-hard according to The-
orem 3.2, to (DSL). Given an instance of the unweighted (CSL) with D, T ,
γd and K ≤ |D|, let M > |D| and define

Sex = ∅,

wp = M for all d ∈ D, and

ce = 1 for all e ∈ E.

Furthermore, define

g(x, y) =

{
1 if y ≤ r
0 otherwise.

With these definitions, we get that

fDSL(S) = ftime(S) − faccess(S) = |S| − M |cover(S)|.

Claim: There exists a solution S to (DSL) with fDSL(S) ≤ K − M |D| if and
only if there exists a solution to (CSL) with no more than K stops.

=⇒: First, let S be a solution of (DSL) with fDSL(S) ≤ K −M |D|. We show
that then cover(S) = D: Assume to the contrary that

|cover(S)| ≤ |D| − 1. (5.3)

Then

fDSL(S) = |S| − M |cover(S)|

≥ −M |cover(S)|

≥ M − M |D| due to (5.3)

> |D| − M |D|

≥ K − M |D|

≥ fDSL(S),

a contradiction. Furthermore, cover(S) = D implies

|S| − Mcover(S) = fDSL(S)

≤ K − M |D|

= K − M |cover(S)|

and hence |S| ≤ K.

88 5 Extensions

⇐=: For the other direction, let S be a solution of (CSL) with cover(S) = D
and |S| ≤ K. Hence,

fDSL(S) = |S| − M |cover(S)|

= |S| − M |D|

≤ K − M |D|

which completes the proof. ��

Note that we obtain the following result on the objective functions.

Lemma 5.11. Let S1, S2 ⊆ T be two disjoint sets of stops, i.e., S1 ∩ S2 = ∅.
Then

ftime(S1 ∪ S2) = ftime(S1) + ftime(S2)

faccess(S1 ∪ S2) ≤ faccess(S1) + faccess(S2)

fDSL(S1 ∪ S2) ≥ fDSL(S1) + fDSL(S2).

Proof.

1.

ftime(S1 ∪ S2) =
∑
s∈S1

cg(s) +
∑
s∈S2

cg(s)

= ftime(S1) + ftime(S2).

2. For faccess let

fd
access(S) = wdg(γd(d, Sex), γd(d, Sex ∪ S))

denote the positive effect in the access time for a demand point d ∈ D.
For d ∈ D we distinguish the following cases:
Case 1: γd(d, Sex ∪ S1 ∪ S2) = γd(d, Sex), i.e., the closest stop to d does

not change by adding new stops. Then

g(γd(d, Sex), γd(d, Sex ∪ S1 ∪ S2)) = g(γd(d, Sex), γd(d, Sex ∪ S1))

= g(γd(d, Sex), γd(d, Sex ∪ S2))

and hence fd
access(S1 ∪ S2) ≤ fd

access(S1) + fd
access(S2).

Case 2: γd(d, Sex ∪ S1 ∪ S2) = γd(d, S1), i.e., there is a new stop (in S1)
which is closer to d than all existing stops. Then

g(γd(d, Sex), γd(d, Sex ∪ S1 ∪ S2)) = g(γd(d, Sex), γd(d, Sex ∪ S1)),

and since
g(γd(d, Sex), γd(d, Sex ∪ S2)) ≥ 0

(due to γd(d, Sex) ≥ γd(d, Sex ∪ S2)) we obtain

fd
access(S1 ∪ S2) ≤ fd

access(S1) + fd
access(S2).

5.2 Minimizing the Total Door-to-door Travel Time 89

Together we get

faccess(S1 ∪ S2) =
∑
d∈D

fd
access(S1 ∪ S2)

≤
∑
d∈D

(
fd
access(S1) + fd

access(S2)
)

= faccess(S1) + faccess(S2).

3. Finally,

fDSL(S1 ∪ S2) = ftime(S1 ∪ S2) − faccess(S1 ∪ S2)

≥ ftime(S1) + ftime(S2) − faccess(S1) − faccess(S2)

= fDSL(S1) + fDSL(S2).

��

In our experimental study, described in [HLS+01] we used a genetic algorithm
(see, e.g., [Gol89]) to find a heuristic solution for (DSL). This was done by
choosing a set of candidates Scand ⊆ T . Each feasible solution S ⊆ Scand of

(DSL) is then described by a vector x ∈ {0, 1}|S
cand| by

xs =

{
1 if s is contained in S
0 otherwise.

Scand can be chosen by equally distributing possible candidates along all edges
e ∈ E, or by using one of the finite dominating sets S or S∗ developed in Sec-
tions 3.2 and 4.4. Before the genetic algorithm is started, the set of candidates
is reduced according to the following observation.

Lemma 5.12. Let s0 ∈ Scand. If

ftime({s
0}) > faccess({s

0}),

then no optimal solution to (DSL) will contain s0.

Proof. Let S ⊆ Scand be a feasible solution of (DSL) and let s0 ∈ S. Define
S′ = S \ {s0}. Then, due to Lemma 5.11,

fDSL(S) ≥ fDSL(S′) + fDSL({s0})

= fDSL(S′) + ftime({s
0}) − faccess({s

0})

> fDSL(S′),

i.e., a solution containing s0 can be strictly improved by subtracting s0 and
hence s0 will never appear in an optimal solution. ��

The starting population of the genetic algorithm was chosen randomly, and
cross-over and mutation was performed according to the usual rules. The
set of candidates used for the genetic algorithm consisted of 6 700 potential

90 5 Extensions

new stops after the reduction according to Lemma 5.12. Assuming that two
minutes is the time needed for an additional stop and using the function
g(x, y) = (x − y)/5 to describe the gain in access time when the distance to
the nearest train stop changes from x to y, we started the genetic algorithm
with this set of candidates and with three different starting solutions, three
times each. These starting solution were chosen randomly, but with three
different probabilities to establish a candidate as a stop, namely with p ∈
{0.25, 0.5, 0.75}, resulting in three initial populations, P1,P2, and P3, where

• P1 contained solutions with an average of 1 700 new stops,
• P2 contained solutions with an average of 3 350 new stops, and
• P3 contained solutions with an average of more than 5 000 new stops.

We used a population size of 20, and the probability pm for mutation of bits
after crossover was set to 0.0001. After 100 generations each, we let the result-
ing population with the best value for fDSL evolve for another 900 generations.
The development of this population over the course of its 1 000 generations is
shown in Figure 5.4.

 7

 8

 9

 10

 11

 12

 0 200 400 600 800 1000

ch
an

ge
 o

f t
he

 d
oo

r−
to

−
do

or
 tr

av
el

 ti
m

e

generations

population

Fig. 5.4. Development of the population in the genetic algorithm for the door-to-
door travel time.

It turned out that the genetic algorithm converges to a stable number of
new stops very quickly, i.e., we actually do not need to first determine a good
probability p for the creation of the starting population: While a starting pop-
ulation with varying initial probabilities pb contained individuals with almost
no candidates as well as individuals with almost all of the 6 700 candidates,

5.2 Minimizing the Total Door-to-door Travel Time 91

the difference between the lowest and the highest number of candidates in the
individuals of the 10th generation had already shrunk to less than 1 000, and
after 100 generations this difference was merely 22.

Other Objective Functions

Finally, from the point of view of a public transportation company it is de-
sirable to consider demand changes and their impact on the income of the
company as follows. Assume that for customers traveling from d1 to d2 the
door-to-door travel time increased. Then take an elasticity factor estimating
how many of these customers will change to another means of transport and
estimate the loss in income obtained by this change. On the other hand, if the
door-to-door travel time decreases for possible trips, we have to estimate how
many other customers will be attracted by the better connection and estimate
the money they will spend. For this model a lot of other data has to be taken
into account:

• a matrix containing the number of (potential) customers for all possible
pairs of demand points d1, d2 ∈ D. This data is needed to calculate the
changes in the door-to-door travel time for each possible trip. (Note that
for (DSL) it is enough to know the sum of the changes in the door-to-door
travel time, which can be estimated without detailed information.)

• the routes customers are going to use (for calculating the additional time
of the stopping activities) and also the changes they make if their closest
station changes

• elasticity factors for demand changes
• ticket prices
• additional costs arising because of the longer running times of the trains

(for drivers, other crew members, or for the rolling stock itself)
• fixed costs of the new stops.

Since an extension along these lines gets more and more complicated, a further
development of metaheuristic approaches like the genetic algorithm described
in this chapter seems to be appropriate in this context.

Part II

Delay Management

6

Introduction

A major reason for complaints about public transportation is the missing
punctuality, which — unfortunately — is a fact in many transportation sys-
tems. Since it seems to be impossible to avoid delays completely, it is a neces-
sary issue in the dispositive work of a public transportation company to deal
with delayed vehicles.

We focus on the convenience of the customers, so let us first analyze the effects
of a delayed vehicle on its passengers. If a vehicle reaches a station with a
delay, one consequence is that customers getting out there will reach their
destination with this delay. This is annoying, but it is not worth a complaint
if the delay is rather small. The situation becomes worse if customers who
wish to change from the delayed vehicle into another bus or train miss their
connection, and this can happen even in the case of small delays.

Let us now consider some vehicle (e.g., a train g) that arrives at a station
with a delay. At the station, there are other vehicles (e.g., two buses h and h′)
ready to depart, see Figure 6.1. What should each of these connecting vehicles
do? There are two alternatives:

• A connecting bus can wait and therefore cause delay for the customers
within the bus, but also for the customers who wish to get on this bus
later on, and possibly for subsequent other buses which will have to wait
for its delay.

• On the other hand, if a connecting bus departs on time, all customers
who planned to change from the delayed train into the bus will miss their
connection.

In the first case the connecting vehicle does not depart at its scheduled time,
but with a delay. The new departure time of this vehicle is called its perturbed
timetable. In the second case, the perturbed departure time of the bus equals
the scheduled one.

The delay management problem is to find wait-depart decisions and a per-
turbed timetable in case of some known delays, not only for one single bus,

96 6 Introduction

g h’

hv

Fig. 6.1. The wait-depart decision at one single station.

but for all vehicles in the public transportation network, such that the “in-
convenience” over all customers is minimized. As inconvenience we consider
the delay of the customers and the number of missed connections.

To avoid that customers miss their connections, one could force all departing
vehicles to wait until all delayed vehicles have arrived. This makes sure that
all connections are maintained, but leaves the transportation system with
many delayed vehicles. Consequently, the delay spreads out through the whole
network, and hence will affect many customers. On the other hand, if all
vehicles would depart as early as possible the number of delayed vehicles is
minimized, but in this case many customers miss their connections.

A solution between these two extremes can be obtained by using the following
models.

• In the delay management problem with fixed connections (TT) we assume
that we already know the wait-depart decisions and we try to find a per-
turbed timetable which is as close as possible to the original one. This
problem can be solved easily, but it will turn out that it is an important
building block in the following models.

• In the total delay management problem (TDM) we consider the incon-
venience of a customer as the amount of delay when he arrives at his
destination, and minimize the sum of all delays over all customers within
the system. Since the delay in case of a missed connection is usually large,
but many delayed vehicles affect many customers, the solution found will
allow some vehicles to depart on time and force other vehicles to wait.

• The bicriteria delay management problem (BDM) investigates the two
objective functions
– minimize the delay of all vehicles, and
– minimize the number of missed connections
simultaneously, trying to find efficient solutions with respect to both cri-
teria.

• It will turn out that all these models are special cases of the general delay
management problem (GDM), which is also defined by two criteria. In
this problem we want to minimize

6.1 Application 97

– the number of customers missing a connection and
– the amount of the additional delay of the remaining customers.

Chapter 6 is structured as follows: In this chapter we mention our ap-
plication and then give an overview of related literature. Furthermore, we
introduce the notation and definitions needed to state the delay management
problem formally. Especially we discuss perturbed timetables and give two in-
teger programming descriptions of the set of all feasible perturbed timetables.
The first one is based on the “intuitive” description of the problem, while the
second one uses the concept of event-activity networks. A detailed description
of this concept is given.

6.1 Application

The subject of delay management was brought up by two large traffic associa-
tions serving the states Rheinland-Pfalz and the Saarland (both in Germany)
within a project supported by Stiftung Rheinland-Pfalz für Innovation, see
[SS01]. Public transportation companies are interested in analyzing the con-
sequences of delays, or, more generally, also of (small) changes in the schedule.
When analyzing such changes, it is important not to look only at one single
transportation company, but to take into account also connections between
different public transportation companies. The following two problems are of
special interest in our applications.

On-line wait-depart decisions: On a regional train line in Rheinland-Pfalz,
the 40 km long Lautertalbahn leading from Kaiserslautern to Lauterecken,
Deutsche Bahn installed an automatic system informing the bus drivers
waiting at the stations about the exact arrival times of the incoming trains.
The question arising now for the drivers is, whether they should wait for
a delayed train or depart on time. This decision will be investigated from
the perspective of the customers.

Short-term adaption of timetables: Suppose there is a large construction area
somewhere in a city, leading to a detour for some bus lines. Then it is
often known that each time a bus goes there it will gain a delay of, say,
five minutes. Since this delay will occur as long as the construction area is
present it is worthwhile to design a new perturbed timetable for this period
of time. It is important that in this new timetable no bus departs earlier
than planned, since this would annoy passengers who maybe have not
seen any announcement about the perturbed timetable. How to calculate
such a timetable in a way that many customers are satisfied will also be
discussed.

It will turn out that we can use the same mathematical model for analyzing
both problems. In our test data we analyze the effects of delays of trains of

98 6 Introduction

the Lautertalbahn on subsequent other trains and buses belonging to different
public transportation companies. The test set consists of

• 823 stations,
• 1314 vehicles, and
• 2118 direct rides.

We also have to specify the set of connections we consider. We use four differ-
ent sets U5, U10, U30, and U60, where set Ux contains reasonable connections
with a scheduled waiting time of less than x minutes. By “reasonable” we
mean that we do not consider connections where changing results in going
directly back to the previous station. The sizes of the sets Ux are:

|U5| = 6531

|U10| = 10659

|U30| = 39371, and

|U60| = 80716.

The resulting event-activity network (which will be introduced in Section 6.4)
has a size of 46720 nodes (events). The number of edges (activities) depends
on the set Ux used and varies between 51937 (for U5) and and 126122 (for
U60). This data set is the basis for the numerical results mentioned in this
part.

6.2 Related Literature

Since in the delay management problem new departure times for each ve-
hicle at each station have to be determined, it is closely related to the
problem of finding timetables in public transportation. In this field, a lot
of research has been done. Timetabling is fairly easy if the timetables need
not be periodic, but even the detection of a feasible periodic timetable is
an NP-hard problem (see [SU89, Nac98]). Many approaches were applied in
this area. Integer programming approaches and their combinatorial analysis
were studied in [BLNN98, Nac98, Nac97, Odi96, Kri96, Nac94, Ste88]. Ex-
tensions of these approaches using cycle bases were obtained in [LR05, Lie03,
PK03, Pee02, PK01]. Furthermore, quadratic semi-assignment models were
discussed in [AC97, Dom89, Fle91, DV95, KS87]. For graph-theoretical ap-
proaches we refer to [Wei81, Kri96, Nac96]. Moreover there exist geometric
approaches (polygon-on-circle model) in [Bur86, BBH90, BH86], network de-
sign models in [BD92, BT81, Voß92] and various heuristics and metaheuris-
tics, see [LPW04, XC94, Car98, Car99, KNV96, NV96, NV97]. Other mod-
els which were also considered in scheduling and timetabling are the max-
plus-algebra (e.g., used by [GBO99, Gov98b, Gov98a]) or the heaps-of-pieces-
approach, see [vE01]. Practical experience is — among others — reported in

6.2 Related Literature 99

[Kri96, NV96, DV95, Ste88, HH87, Gün85]. In [LM02], a case study (of Berlin
underground) is presented.
As objective functions, the total waiting time or the travel time of the passen-
gers have mainly been considered, sometimes also the costs of operating the
timetable. The main difference between finding a timetable and solving the
delay management problem, besides the slightly different objective functions,
is that in the delay management problem the connections are not given in ad-
vance. In fact, the main decision that must be made in delay management is
to decide which connections should be maintained and which can be dropped.

Delays and their consequences have been addressed before in a few papers,
see e.g., [HK81, HK98b] for models to calculate expected delays. The effect
of delays on the robustness of the timetables was discussed, e.g., in [EFK01a,
EFK01b, EF02]. Decreasing the expected delay by investing in new tracks
was investigated in [EFK01a]. Analyzing delays using the max-plus-algebra
was done in [HdV01]. Max-plus-algebra together with stochastic processes
and the theory of option pricing have recently been used to model the delay
management problem, see [Bau05].

How to react in case of delays has, due to the size and complexity of the
problem, been mainly tackled by simulation and expert systems. We refer
to [SM97, SM99, SBK01, SMBG01] for providing a knowledge-based expert
system including a simulation of wait-depart decisions with a what-if analysis.
Simulation including the capacity constraints on the tracks has also been used
in [Ack99, SM01].

Only few optimization models for the delay management problem have been
published. In [ADGGT99] an objective function from the customers’ point of
view is mentioned. Such an objective was taken into account in the models
developed independently by [Kli00a, SBK01] and by [Sch01b]. Both studied
an approximation of the effects of delays on the customers and presented non-
linear mixed-integer programming formulations. It will turn out that their
models are equivalent to a special case of the total delay management problem
which will be formulated as a linear program in Section 8.4 of this text. In
[APW02], the wait-depart decision at one single station with an unknown
amount of delay was analyzed.

Our basic delay management models (TDM) will be developed in Chapter 8.
(Note that a short review about the corresponding linear model in Section 8.1
was published in [Sch01c].) These models already had some influence on the
research community, which is reflected in several papers dealing with further
results and extensions. An important contribution is given in [GJPS05], where
the complexity status of the delay management problem (TDM) as it will be
defined in Chapter 8 has been clarified. It turns out that even special cases are
NP-hard. For more complexity issues we also refer to [GGJ+04]. An on-line
version of the delay management problem has been investigated in [GJPW06].

100 6 Introduction

Recently, [GHL06] developed some interesting reformulations and extensions
of our models.

6.3 A Model for the Delay Management Problem

In this section we specify the notation necessary for dealing with the delay
management problem. Let PTN = (V, E) and F be the set of vehicles. For
each vehicle g, we introduce

• V g ⊆ V as the set of stations where it stops, and
• Eg ⊆ V g × V g as the set of its direct rides within the transportation

network.

If it is possible to change from vehicle g to vehicle h at a station v, then (g, h, v)
will be called a connection (see Figure 6.2) and the whole set of connections
is given by

U ⊆ F × F × V.

We can assume that each vehicle g ∈ F stops at the same station only once,
otherwise we use a time-dependent representation of the respective station.

v

g

h

Fig. 6.2. A connection (g, h, v) from vehicle g to vehicle h at station v.

Definition 6.1. A timetable Π is given by natural numbers Πarr
v
g,Πdep

v
g

for all g ∈ F, v ∈ V g with the following meaning:

• Πarr
v
g is the scheduled arrival time of vehicle g at station v, and

• Πdep
v
g

is the scheduled departure time of vehicle g at station v.

Furthermore, a timetable Π is feasible, if it satisfies conditions (6.1),(6.3),
and (6.5) below.

Waiting requirements: Consider vehicle g at station v.
• Let Lv

g ∈ IN be the given minimal waiting time of vehicle g, that allows
passengers to get off and on vehicle g at station v, or makes sure that
the driver gets a break.

6.3 A Model for the Delay Management Problem 101

• The scheduled waiting time of vehicle g at station v is Πdep
v
g
−Πarr

v
g .

In a feasible timetable Π we require that

Πdep
v
g
− Πarr

v
g ≥ Lv

g. (6.1)

• The slack time is denoted by sv
g and is given by

sv
g = Πdep

v
g
− Πarr

v
g − Lv

g. (6.2)

Driving requirements: Consider vehicle g going from station v to station u.
• Let Lvu

g ∈ IN be the minimal driving time when vehicle g drives as fast
as possible between stations v and u.

• The scheduled driving time is Πarr
u
g − Πdep

v
g
. In a feasible timetable,

we require
Πarr

u
g − Πdep

v
g
≥ Lvu

g . (6.3)

• The slack time on this driving edge is denoted by svu
g and is given by

svu
g = Πarr

u
g − Πdep

v
g
− Lvu

g . (6.4)

Changing requirements: Finally, consider a customer transferring from vehicle
g to vehicle h at station v, i.e., a connection (g, h, v) ∈ U .
• The minimal necessary changing time for getting off vehicle g, walking

to the departure place of vehicle h, and boarding is denoted by Lv
gh ∈

IN.
• The scheduled time allowed for changing is Πdep

v
h
− Πarr

v
g, and again

in a feasible timetable it is required that

Πdep
v
h
− Πarr

v
g ≥ Lv

gh. (6.5)

• The slack time for changing is denoted by sv
gh and is given by

sv
gh = Πdep

v
h
− Πarr

v
g − Lv

gh. (6.6)

Since the given timetable and the minimal necessary times for waiting, driving,
and changing are integer vectors, it holds that also all slack times are integer.

By dv
g ∈ IN let us denote the source delay (or primary delay) of vehicle g when

arriving at station v. (In practice, this delay is usually given in minutes.) I.e.,

Edel = {(g, v) : dv
g > 0}

is the set of all delayed arrivals known as input for the optimization.

If a delay occurs, say vehicle g arrives at some station v with a source delay of
dv

g > 0, then simply increasing Πarr
v
g by dv

g will in general make the timetable
infeasible. The goal now is to find a wait-depart decision for all connections
and a feasible perturbed timetable xarr

v
g , xdep

v
g

for all g ∈ F, v ∈ V g which

102 6 Introduction

is best with respect to the objective function under consideration. Note that
a perturbed timetable is feasible, if the waiting requirements (6.1) and the
driving requirements (6.3) are satisfied, i.e., the delay of a vehicle is carried
over to its next station correctly. Since we do not force departing vehicles to
wait for possibly delayed arriving vehicles, we do not require that a feasible
perturbed timetable also satisfies the changing requirements (6.5). Formally,
we define a perturbed feasible timetable as follows.

Definition 6.2. Given a timetable Π, a set of source delays dv
g ≥ 0, a per-

turbed timetable xarr
v
g, xdep

v
g
∈ IN for all g ∈ F, v ∈ V g is feasible, if the

following conditions hold.

xarr
v
g ≥ Πarr

v
g + dv

g for all g ∈ F, v ∈ V g, (6.7)

xdep
v
g
≥ Πdep

v
g

for all g ∈ F, v ∈ V g, (6.8)

xdep
v
g
− xarr

v
g ≥ Lv

g for all g ∈ F, v ∈ V g, (6.9)

xarr
u
g − xdep

v
g
≥ Lvu

g for all g ∈ F, (v, u) ∈ Eg. (6.10)

Conditions (6.7) and (6.8) make sure that the perturbed timetable respects
the source delays, while in (6.9) we require that a vehicle arriving at a station
with a delay also departs with this delay, and (6.10) ensures that a vehicle
departing at some station with a delay carries over that delay to its next
station. In both cases the delay may be reduced at most by the given slack
time. The situation of conditions (6.9) and (6.10) is depicted in Figure 6.3 a)
and b), respectively. Note that in a perturbed timetable we do not require
that all connections are maintained, i.e., (6.5) need not be satisfied.

a) waiting b) driving c) changing

g g g g h
v v u v

Fig. 6.3. Illustration of conditions (6.9),(6.10), and of constraint (6.15).

Finally, we make precise the wait-depart decisions.

Definition 6.3. A connection (g, h, v) ∈ U at station v is called maintained
if vehicle h waits for vehicle g, i.e., if

xdep
v
h
− xarr

v
g ≥ Lv

gh.

Otherwise, the connection is called missed.

6.3 A Model for the Delay Management Problem 103

For describing the set of feasible solutions we have to specify the relation
between the wait-depart decisions and the perturbed timetable. To this end
we use variables with the following meaning:

ydep
v
g

= departure delay of vehicle g at station v

yarr
v
g = arrival delay of vehicle g at station v

z̄ghv =

{
0 if connection (g, h, v) ∈ U is maintained
1 if connection (g, h, v) ∈ U is missed.

It will be more convenient to use only the additional delay y instead of the
perturbed timetable x, which is given by

xdep
v
g

= Πdep
v
g

+ ydep
v
g

xarr
v
g = Πarr

v
g + yarr

v
g

for all g ∈ F, v ∈ V g.
For the additional delay y, Definition 6.3 then can be rewritten as follows:
A connection (g, h, v) ∈ U is called maintained if

yarr
v
g − ydep

v
h
≤ sv

gh. (6.11)

Let M be a sufficiently large parameter. (Note that M = maxg∈F,v∈V dv
g is

large enough, as we will show later on.) Then (ydep, yarr, z̄) is feasible, if the
following constraints are satisfied.

yarr
v
g ≥ dv

g ∀(g, v) ∈ Edel (6.12)

yarr
v
g − ydep

v
g
≤ sv

g for all g ∈ F, v ∈ V g (6.13)

ydep
v
g
− yarr

u
g ≤ svu

g for all v, u ∈ V g, g ∈ F : (v, u) ∈ Eg (6.14)

−Mz̄ghv + yarr
v
g − ydep

v
h
≤ sv

gh for all (g, h, v) ∈ U (6.15)

ydep
v
g
, yarr

v
g ∈ IN for all g ∈ F, v ∈ V g

z̄ghv ∈ {0, 1} ∀(g, h, v) ∈ U .

Constraints (6.12) establish the source delays which we assume to be known
for all arrivals and which are strictly positive for all (g, v) ∈ Edel. The delay
management problem is only interesting for at least one source delay dv

g > 0,
otherwise the optimal solution (in all objective functions considered) would
be the one without any delay, i.e., yarr

v
g = ydep

v
g

= 0 for all g ∈ F, v ∈ V g and

z̄ghv = 0 for all (g, h, v) ∈ U .

The conditions (6.9) and (6.10) are rewritten to the y-variables in constraints
(6.13) and (6.14), see again Figure 6.3. Finally, (6.15) enforces that also for

104 6 Introduction

all maintained connections the delay is carried over correctly, where it can
be reduced by the slack time that can be saved if the passengers change as
quickly as possible. The situation is depicted in part c) of Figure 6.3.

In the next section we present a more elegant way of stating the delay manage-
ment problem. This approach is based on event-activity networks and handles
the three types of activities (waiting, driving, changing) together with their
slack times in a uniform way. To the best of our knowledge it has not been used
for analyzing the delay management problem before, except in [Gin01, GS02].

6.4 Event-activity Networks in Delay Management

A more convenient way of describing the delay management problem is to
represent the PTN as an activity-on-arc project network. In timetabling, such
a concept has been used frequently, see, e.g., the PhD-theses [Wei81, Ste88,
Kri96, Nac98, Pee02] and references therein. For our purpose of delay man-
agement, we propose the following representation of the PTN, which is based
on [Nac98].

Notation 6.4. Given a public transportation network PTN = (V, E), a set
of vehicles F , and a timetable specifying the departure and arrival times of
each vehicle at each station, the corresponding event-activity network N =
(E ,A) is constructed as follows. We define a set of nodes, representing arrival
events and departure events

E = Earr ∪ Edep,

and a set of directed arcs, representing driving activities, waiting activi-
ties, and changing activities

A = Adrive ∪ Await ∪ Achange

as follows:

Earr = {(g, v, arr) : vehicle g ∈ F arrives at station v ∈ V },

Edep = {(g, v, dep) : vehicle g ∈ F departs from station v ∈ V },

Adrive = {((g, v, dep), (g, u, arr)) ∈ Edep × Earr : vehicle g goes

directly from station v to u},

Await = {((g, v, arr), (g, v, dep)) ∈ Earr × Edep},

Achange = {((g, v, arr), (h, v, dep)) ∈ Earr × Edep : a changing

possibility from vehicle g into h at station v should be provided}.

Furthermore, let C = |Achange|.

6.4 Event-activity Networks in Delay Management 105

The driving and waiting activities are performed by vehicles, while the chang-
ing activities are used by the customers. In short we can write

Achange = {((g, v, arr), (h, v, dep)) : (g, h, v) ∈ U},

hence U can be identified with Achange, especially |U| = C.

An example of a PTN and its corresponding event-activity network is given
in Figures 6.4 and 6.5.

v0

v1

v2 v3

v4

vehicle h

vehicle g vehicle h

vehicle g

Fig. 6.4. A PTN with two vehicles g and h . . .

driving
driving

driving

waiting

driving

changing

changing

g,v0,dep h,v0,arr

h,v0,depg,v0,arr

of vehicle g

of vehicle g

of vehicle g

from vehicle h to g

from vehicle g to h

of vehicle h

waiting of vehicle h

of vehicle h

h,v3,dep

h,v4,arrg,v1,dep

g,v2,arr

Fig. 6.5. . . . and its corresponding event-activity network.

106 6 Introduction

In the context of the delay management problem the event activity network
according to Notation 6.4 is a special case of a time-expanded network, in
which we can assume that a feasible timetable Π is known. Hence, N is
acyclic, motivating the next definition.

Definition 6.5.

1. Let i, j ∈ E.
• i ≺ j if there exists a path in N containing event i before j.
• i � j if i ≺ j or i = j.

2. Let a, a′ ∈ A.
• a ≺ a′ if there exists a path in N containing activity a before a′.
• a � a′ if a ≺ a′ or a = a′.

3. Let I ⊆ E. Then i is a minimal element of I if there does not exist some
j ∈ I such that j ≺ i.

4. Let A0 ⊆ A. Then a is a minimal element of A0 if there does not exist
some a′ ∈ A0 such that a ≺ a′.

� defines a partial order (and ≺ a strict partial order) both on the set of
events and on the set of activities. In particular we know that for all sets
I ⊆ E (or A0 ⊆ A) a minimal element exists, but it need not be unique. If
and only if the set I (or A0) is contained in one path, ≺ leads to a unique
order of the set.

Using the notation of event-activity networks, a timetable Π is given by as-
signing a time Πi to each event i ∈ E (see [Nac98]). The planned duration
of activity a = (i, j) is hence given by Πj − Πi. Furthermore, let La be the
minimal duration of activity a. Formally, the relation between La and the
minimal durations Lv

g, Lvu
g , and Lv

gh introduced on page 100 is the following:

• If a = (i, j) is a driving activity, where i represents the departure of some
vehicle g at some station v and j represents the arrival of g at another
station u, then La = Lvu

g .
• If a = (i, j) is a waiting activity, where i represents the arrival of vehicle

g at station v and j its departure at the same station, then La = Lv
g.

• Finally, if a = (i, j) is a changing activity, say i represents the arrival of
vehicle g at station v and j represents the departure of another vehicle h
at the same station v, then La = Lv

gh.

In all three cases, the corresponding slack time sa represents the time which
can be saved while performing activity a as fast as possible, and it is given by

sa = Πi − Πj − La

for all three types of activities a = (i, j) ∈ A. This unifies the three different
formulas (6.2), (6.4), and (6.6) introduced on page 100.

Definition 6.1 can hence be reformulated as follows.

6.4 Event-activity Networks in Delay Management 107

A timetable Π ∈ IN|E| is feasible if for all a = (i, j) ∈ A,

Πj − Πi ≥ La.

The next lemma relates the precedence relation with the timetable, and shows
how a set I ⊆ E can be ordered according to ≺ if all minimal durations La

are strictly greater than zero.

Lemma 6.6. Let Π be a feasible timetable in N .

1. If i ≺ j then Πi ≤ Πj.
2. Let I ⊆ E. If Πi = minj∈I Πj and La > 0 for all a = (j, i) ∈ A with j ∈ I,

then i is a minimal element of I with respect to ≺.

Note that the reverse directions are in general wrong for the statements of
Lemma 6.6. On the other hand, if I = {i1, i2, . . . , i|I|} ⊆ E is sorted according
to the scheduled times, i.e.

Πi1 ≤ Πi2 · · · ≤ Πi|I|

and La > 0 for all a = (i, j) ∈ A with i, j ∈ I we obtain that ik �≺ ik−1 for all
k = 2, . . . , |I|. A set of activities A0 ⊆ A can be ordered similarly.

As before, we assume that all source delays are known, i.e., we have a set of
(arrival) events Edel ⊆ Earr such that di > 0 for all i ∈ Edel. For non-delayed
events we again set di = 0. This means that in case of a delay of (arrival) event
i ∈ Earr, the actual arrival time of i does not coincide with the scheduled time
Πi. Increasing Πi by di may lead to an infeasible timetable. As before the
goal is to calculate a perturbed feasible timetable xi for all events i ∈ E . Due
to its importance for the remainder of this part, we repeat the definition of a
feasible perturbed timetable on page 102 in our new notation.

Definition 6.7. A perturbed timetable xi for all i ∈ E is feasible, if the
following conditions hold.

xi ≥ Πi + di for all i ∈ E and (6.16)

xj − xi ≥ La for all a = (i, j) ∈ Await ∪ Adrive. (6.17)

Constraint (6.16) requires that no event must be scheduled earlier than in
the original timetable, and furthermore ensures that for all i ∈ Edel the source
delays are taken into account. Due to constraint (6.17) the delay is carried over
correctly from one event to the next one along waiting and driving activities.
We remark that this definition of feasibility is equivalent to Definition 6.2.

We also rewrite the integer programming formulation of feasible solutions. We
now use variables with the following meaning:

yi = delay of event i

z̄a =

{
0 if changing activity a ∈ Achange is maintained
1 if changing activity a ∈ Achange is missed.

108 6 Introduction

Then (y, z̄) ∈ IN|E| × {0, 1}C is a feasible solution of the delay management
problem, if

yi ≥ di for all i ∈ Edel (6.18)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (6.19)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange. (6.20)

We denote

FeasDM = {(y, z̄) ∈ IN|E| × {0, 1}C : (y, z̄) satisfies (6.18), (6.19), and (6.20)}

as the set of all feasible solutions of the delay management problem.

The necessary size of M in (6.20) depends on the objective function used. If
we know that in all solutions which we are interested in yi ≤ H for any fixed
value H , then M ≥ H is large enough, since it allows that connections are
not maintained.

We remark that the second notation is more general than the “intuitive” no-
tation of the previous section since it can be applied to any directed acyclic
network N̄ , while the event-activity network N corresponding to a timetable
is a very special case of such a graph. (E.g., for each node in N either the
in-degree or the out-degree has to be 1.) Since many models and procedures
which will be presented in the following do not rely on the special structure of
the event-activity network N they can be applied to more general problems in
any acyclic directed network. The question is if our problems become harder
by forgetting about the special structure of N . This is (in terms of complex-
ity) not the case, since it can be shown that each acyclic directed graph N̄
can be transformed to the event-activity network of some appropriate PTN
(according to Notation 6.4) with the same precedence structure in polynomial
time.

7

Delay Management With Fixed Connections

In this chapter we focus on how to calculate a perturbed feasible timetable
which is as punctual as possible, if a set of connections to be maintained
has already been fixed. The goal of this chapter is to find “tight” timetables,
i.e. timetables which minimize the (weighted) sum of differences to the given
timetable and maintain the fixed connections. We will show that both,

• for minimizing the total delay over all customers (TDM, Chapter 8), and
• for finding efficient solutions in the bicriteria problem (BDM, Chapter 9),

we can restrict our search to such “tight” timetables. A proper description of
a “tight” timetable will be given by the concept of a time-minimal solution
in Notation 7.7. The problem of this chapter is the following.

(TT(Ufix))

Given PTN, F , U , minimal necessary times for driving, waiting, and chang-
ing, a feasible timetable Πarr, Πdep, a set of delayed events Edel, a set
of weights wfixv

g for all vehicles at all stations, and a set of connections

Ufix ⊆ U , find a perturbed feasible timetable xarr, xdep, maintaining all
connections in Ufix such that

fTT =
∑

g∈F,v∈V g

wfixv

g(xarr
v
g − Πarr

v
g)

is minimized.

Chapter 7 is structured as follows: (TT) can be interpreted as finding a
(non-periodic) timetable. In this chapter we present three solution approaches
to solve (TT).

• Our first approach is based on an integer programming formulation for
(TT). We show that its coefficient matrix is totally unimodular.

110 7 Delay Management With Fixed Connections

• The second approach uses the critical path method (CPM) of project plan-
ning, and

• the third one clarifies the relation to the feasible differential problem.

Investigating the structure of the optimal solution we prove some properties
that will be needed frequently in the following chapters.

7.1 Linear Programming Approach

In the notation of event-activity networks, the set of connections to be main-
tained is denoted by Afix ⊆ Achange. To derive an integer programming
formulation we can use the formulation of FeasDM (see page 108), but fix
z̄a = 0 for all a ∈ Afix. The remaining variables z̄a, a �∈ Afix are not known
beforehand. The condition yi ∈ IN in the definition of FeasDM is not needed.
This will become clear in Theorem 7.1 below. Consequently, we obtain the
following linear program.

(TT(Afix))

min fTT =
∑
i∈E

wfix
i yi

such that

yi ≥ di ∀i ∈ E (7.1)

yi − yj ≤ sa ∀a = (i, j) ∈ Await ∪ Adrive ∪Afix. (7.2)

We now justify that the constraints yi ∈ IN are in fact not necessary for
TT(Afix).

Theorem 7.1. All extreme points of the feasible set of TT(Afix) are integer.

Proof. The coefficient matrix of TT(Afix) is given by

Φ =

(
−I|E|
ΘT

)
,

where I|E| denotes the |E| × |E| unit matrix, and Θ is the node-arc incidence
matrix of N , i.e.,

Θi,a =

⎧⎨
⎩

−1 if a = (i, j) for some j ∈ E
1 if a = (j, i) for some j ∈ E
0 otherwise.

Since Θ is a totally unimodular matrix, ΘT and hence Φ is. Together with
sa ∈ IN this yields that all basic solutions of the linear programming relaxation
are integer, see Appendix A. ��

7.2 Relation to the Critical Path Method 111

This means that for given connections z̄ to be maintained the delay y can be
assumed to be in minutes as required, and (TT(Afix)) can be solved by linear
programming. Other solution approaches that supply more structural insight
are described next. Since these methods are more intuitive if we deal with
timetables, we rewrite (TT(Afix)) using the variables xi, i ∈ E describing the
perturbed timetable instead of the delay. This means we replace yi by xi−Πi.
We equivalently obtain

(TTx(Afix))

min fTT =
∑
i∈E

wfix
i xi

such that

xi ≥ Πi + di ∀i ∈ E (7.3)

xj − xi ≥ La ∀a = (i, j) ∈ Await ∪ Adrive ∪ Afix. (7.4)

Finally, let us simplify the notation as follows.

Notation 7.2. Given a set Afix ⊆ Achange define

A(Afix) = Await ∪Adrive ∪ Afix.

7.2 Relation to the Critical Path Method

Definition 7.3 (e.g.,[Elm77]). A project network N̄ = (Ē , Ā) is an
acyclic digraph with exactly one source s and one sink t, such that for each
event i ∈ Ē there exists an s-t-path in N̄ containing i. Furthermore, each
activity a ∈ Ā has been assigned a minimal duration L̄a ≥ 0.

Since project networks are acyclic, the precedence relation ≺ defines a partial
order of the nodes Ē , given by a′ ≺ a for a, a′ ∈ Ā, if a′ occurs before a on a
path from s to t (see also Definition 6.5). Activity a can only be performed, if
all activities a′ with a′ ≺ a have already been completed. The goal in project
planning is to find the minimal necessary completion time of the whole project,
i.e., the earliest possible time point when arriving at the sink t. The starting
time for performing the first activity within the project network is known, and
assumed to be 0. The minimal necessary completion time can be determined,
e.g., by the critical path method (CPM). This well-known procedure (see,
e.g., [Elm77, MM98]) consists of two phases, a forward and a backward phase,
where the forward phase works as follows:

(CPM-F) Forward phase of CPM: For each event i the earliest possible
starting time xi is determined iteratively by

112 7 Delay Management With Fixed Connections

• xs = 0
• xj = maxa=(i,j)∈Ā{xi + L̄a}.

Note that xt then gives the smallest possible completion time of the project.

To apply the forward phase of CPM for solving TT(Afix) we construct the
following network N s(Afix) from the given event-activity network N . Note
that a sink is not necessary if only the forward phase of CPM is applied.

Notation 7.4. Let N = (E ,A) and let Afix ⊆ Achange. The corresponding
CPM-network N s(Afix) = (Es,As(Afix)) is given by

Es = E ∪ {s}

As(Afix) = Await ∪ Adrive ∪Afix ∪ {(s, i) : i ∈ E}

Lx
a =

{
La if a ∈ Await ∪Adrive ∪ Afix

Πi + di if a = (s, i), i ∈ E .

The additional arcs a = (s, i) ∈ As \ A are called timetable arcs.

The timetable arcs represent the given timetable, and the known source delays.
They make sure that no vehicle departs earlier than originally planned, and
that the source delays are taken into account. Applying the forward phase of
CPM to the CPM-network N s yields a timetable xi for all i ∈ E . We have
the following result.

Theorem 7.5. Let x̄ be a timetable calculated by (CPM-F). Then x̄i, i ∈ E is
an optimal solution of (TT(Afix)).

Proof. Since x̄ is the timetable calculated by (CPM-F) we have

xs = 0 and

x̄j ≥ x̄i + Lx
a for all a = (i, j) ∈ As(Afix).

This means,

• x̄j ≥ x̄i + La for all a = (i, j) ∈ A, and
• x̄j ≥ Πj + dj for all a = (s, j),

hence x̄ is feasible for (TTx(Afix)). Now let x be another feasible timetable
such that

fTT(x) =
∑
i∈E

wfix
i xi <

∑
i∈E

wfix
i x̄i = fTT(x̄).

Let j∗ be a minimal event, where the timetable calculated by (CPM-F) is
later than x, i.e., take j∗ minimal w.r.t. ≺ satisfying xj∗ < x̄j∗ . Then

xj∗ < x̄j∗ = max
a=(i,j∗)∈As

x̄i + Lx
(i,j∗)

≤ max
a=(i,j∗)∈As

xi + Lx
(i,j∗)

= xi∗ + Lx
(i∗j∗) for some i∗ ∈ E .

7.2 Relation to the Critical Path Method 113

Case 1: i∗ ∈ E . Then xj∗ − xi∗ < Lx
(i∗j∗) contradicts the feasibility of x, see

constraint (7.4).
Case 2: i∗ = s. Then xi∗ = x̄i∗ = 0 and Lx

i∗j∗ = Πj∗ + dj∗ , meaning that
xj∗ < Πj∗ + dj∗ contradicting constraint (7.3) and hence again the feasi-
bility of x. ��

Corollary 7.6. Let Afix ⊆ Achange. Then there exists an optimal solution of
(TT(Afix)) satisfying

yj = max{dj, max
a=(i,j)∈A(Afix)

yi − sa}

for all j ∈ E.

Proof. Let x be an optimal solution for TT(Afix) constructed by (CPM-F)
in N s(Afix). Let j ∈ E . Then according to (CPM-F),

xs = 0

xj = max
a=(i,j)∈As

xi + Lx
a

= max{Πj + dj , max
a=(i,j)∈A(Afix)

xi + La},

where for the second equation we used the definition of As(Afix) and of Lx
a

according to Notation 7.4. Replacing xj by yj +Πj and using that Πj −Πi −
La = sa finally yields

yj = xj − Πj

= max{Πj + dj , max
a=(i,j)∈A(Afix)

yi + Πi + La} − Πj

= max{dj , max
a=(i,j)∈A(Afix)

yi − sa}.

��

We remark that y can also directly be found by applying (CPM-F) in
N s(Afix) = (Es,As(Afix)) with

Ly
a =

{
−sa if a ∈ Await ∪Adrive ∪ Afix

di if a = (s, i), i ∈ E .
(7.5)

Notation 7.7. Let Afix ⊆ Achange. An optimal solution for (TT(Afix)) sat-
isfying the properties of Corollary 7.6 is called a time-minimal solution, and
is denoted by y(Afix).

Due to Corollary 7.6 a time-minimal solution can be calculated by the follow-
ing algorithm.

114 7 Delay Management With Fixed Connections

Algorithm 12: Calculating a time-minimal solution for TT(Afix)

Input: N, di, sa, Afix.

Output: Optimal (time-minimal) solution of TT(Afix).

Step 1. Sort E = {i1, . . . , i|E|} according to ≺.

Step 2. For k = 1, . . . , |E|: yik
= max{dik

, maxa=(i,ik)∈A(Afix) yi − sa}
Step 3. Output: yi, i ∈ E

We conclude this section by presenting some properties which we will use in
the subsequent chapters about delay management.

Lemma 7.8. Let A1,A2 ⊆ Achange be two sets of connections which have to
be maintained. Then the following hold.

1. y(A1) ≤ y for all feasible solutions y of (TT(A1)).
2. If A1 ⊆ A2 then y(A1) ≤ y(A2).

Proof.

1. The first part is shown by induction.
Start: Let i be a minimal element of E . Then y∗

i = di ≤ yi.
Conclusion: Let the induction hypothesis be true for all j ≺ i. Then

y∗
i = max{di, max

a=(j,i)∈A(A1)
y∗

j − sa}

≤ max{di, max
a=(j,i)∈A(A1)

yj − sa} ≤ yi,

due to (7.1) and (7.2) on page 110.
2. Note that (TT(A1)) is a relaxation of (TT(A2)), since the only difference

between both problems is that in the latter we have possibly more con-
straints of type (7.2). Consequently, y(A2) is feasible for TT(A1), and the
result follows according to part 1. ��

The last property is an immediate consequence of Lemma 7.8 and justifies the
small size of M in the integer programming formulation of FeasDM .

Corollary 7.9. Let Afix ⊆ Achange, let y∗ be the time-minimal solution of
(TT(Afix)) and let D = maxi∈Edel

di. Then y∗
i ≤ D for all i ∈ E.

Proof. It can be easily verified that yi = D is a feasible solution of (TT(Afix)).
Hence the result follows from Lemma 7.8, part 1. ��

7.3 Relation to the Feasible Differential Problem 115

7.3 Relation to the Feasible Differential Problem

For an instance of the feasible differential problem (see, e.g., [Roc84]) we need

• a directed, connected network, which will in the following be denoted by
N̄ = (Ē , Ā) and

• upper and lower bounds L̄a and Ūa on each arc a ∈ Ā.

The feasible differential problem consists of finding a node potential x̄i for
each node i ∈ Ē such that for all arcs a = (i, j) ∈ Ā:

L̄a ≤ x̄i − x̄j ≤ Ūa.

Notation 7.10.

• For a node i ∈ Ē, x̄i is called the potential of i.
• For an arc a = (i, j) ∈ Ā, t̄a = x̄j − x̄i is called the tension of a with

respect to x̄.

• A vector t̄ ∈ IR|Ā| is called tension of N̄ if there exists a potential x̄ such
that t̄ is the tension with respect to x̄.

Let the |Ē | × |Ā|-matrix Θ̄ denote the node-arc-incidence matrix of N̄ . This
means,

Θ̄i,a =

⎧⎨
⎩

−1 if a = (i, j) for some j ∈ Ē
1 if a = (j, i) for some j ∈ Ē
0 otherwise.

Then
t̄ = Θ̄T x̄.

The following observation is obvious but will be helpful later.

Lemma 7.11. Let p be any path from i to j in N̄ . Then∑
a∈p

t̄a = x̄j − x̄i.

Proof. Let p be represented by its events (i = i0, i1, i2, . . . , iP = j). Then

∑
a∈p

t̄a =
P∑

k=1

x̄ik
− x̄ik−1

= x̄iP
− x̄i0 = x̄j − x̄i.

��

Furthermore, let the
(
|Ā| − |Ē | + 1

)
× |Ā|-matrix Γ̄ be a network matrix of

N̄ . Such a network matrix can be constructed as follows:
Let T̄ be a spanning tree in N̄ . Then, adding some ã ∈ Ā \ T̄ gives a circuit
Cã in N̄ . The entries of Γ̄ are then given by:

116 7 Delay Management With Fixed Connections

Γ̄ã,a =

⎧⎨
⎩

1 if Cã contains a and ã in the same direction
−1 if Cã contains a and ã in opposite directions

0 if Cã does not contain a.

An interesting question is to determine, if a given vector t̄ is a tension in N̄ ,
i.e., if there exists some potential x̄ such that t̄ is the tension with respect to
x̄. From Lemma 7.11 we directly get a necessary condition: If t̄ is a tension,
then it has to satisfy ∑

a∈C

t̄a = 0

for any circuit C in N̄ . The next theorem shows that this condition is

a) sufficient, and
b) equivalent to the requirement that∑

a∈Cã

t̄a = 0

for all circuits Cã appearing in the rows of (any) network matrix.

Theorem 7.12 (e.g., [Elm77]). Let Γ̄ be a network matrix in N̄ . Then t̄ is
a tension in N̄ if and only if

Γ̄ t̄ = 0,

where 0 is the zero vector with |Ā| − |Ē| + 1 components.

Now we are going to apply these results for (TT(Afix)). To this end, let Θ be
the node-arc-incidence matrix of the event-activity network N . As potential
x̄ we can use either the perturbed timetable x or the delay y. Then tx denotes
the tension in N with respect to x if tx = ΘT x, and ty is the tension with
respect to the delay if ty = ΘT y. To model (TT(Afix)) we again use the CPM-
network N s(Afix), constructed in Notation 7.4 (page 112). Neglecting any
upper bound, we hence get a feasible differential problem in an acyclic graph,
which is equivalent to (TTx(Afix)). Due to Theorem 7.12 its formulation for
tx is given by

(TTx(Afix)-tension)

min
∑

a=(s,i):i∈E

txawfix
a

such that

txa ≥ Lx
a

Γ stx = 0,

7.3 Relation to the Feasible Differential Problem 117

where Γ s is a network matrix of N s, and Lx
a is given as in Notation 7.4. From

x = Π +y we conclude that tx = ΘT Π + ty. Equivalently, using y as potential
we obtain

(TTy(Afix)-tension)

min
∑

a=(s,i):i∈E

tyawfix
a

such that

tya ≥ Ly
a

Γ sty = 0,

where Ly
a is given as in (7.5).

Some remarks are added.

• Given a tension tx (ty), a corresponding node potential x (y) can be con-
structed by setting xs = 0 (ys = 0) and calculating xi (yi) as the length
of (any) longest path from s to i with respect to Lx

a (Ly
a). Note that this

length is the same for all paths from s to i due to Theorem 7.12.
• If the network N s does not contain any circuit, then the constraint

Γ stx = 0 (Γ sty = 0) can be omitted, and the feasible differential problem
is trivially solvable by setting txa = L̄x

a (tya = L̄y
a) for all a ∈ Ā.

• To construct a network matrix Γ s we can proceed as follows. As spanning
tree T ⊆ As we take

T = {(s, i) : i ∈ E}.

Note that As \ T = A, hence the corresponding network matrix Γ s has
|A| rows and |A| + |E| columns and is given by

Γ s =
(
I|A| , −ΘT

)
.

In the following we show that the longest path technique for solving the fea-
sible differential problem can be applied to the delay management problem
with fixed connections. First, we focus on finding a perturbed timetable x.

Lemma 7.13. Let x∗
i = LoP (s, i) be the length of a longest path from s to i

in N s(Afix) with weights Lx. Then x∗ is an optimal solution of (TTx(Afix)).

Proof. First, x∗ is feasible, since

• x∗
i = LoP (s, i) ≥ Lx

(s,i) = Πi + di, and

• LoP (s, j) ≥ LoP (s, i) + Lx
(i,j) for any a = (i, j) ∈ A, hence

x∗
j − x∗

i ≥ La.

118 7 Delay Management With Fixed Connections

Now let x be any other feasible solution of (TTx(Afix)), and assume that
xi < LoP (s, i) for some i ∈ E . Choose i minimal with respect to ≺ with this
property. Let p be a longest path from s to i, say with last edge a = (̄i, i) ∈ As.
Consequently,

xi < LoP (s, i) = LoP (s, ī) + Lx
a ≤ xī + Lx

a,

which is a contradiction to xi ≥ Πi + di if ī = s, and to xi ≥ xī + La if
ī ∈ E . ��

We remark that yi can also be calculated directly as longest path in N s(Afix)
with weights Ly, and that the obtained solution equals y(Afix) of (CPM-F).

Corollary 7.14. Let yi = LoP (s, i) be the length of a longest path from s to
i in N s(Afix) with weights Ly. Then y is an optimal solution of (TT(Afix)).

8

Minimizing the Sum of All Delays

In this chapter we will deal with the total delay management problem
(TDM), where we try to minimize the total delay defined as sum of all delays
over all customers traveling through PTN. To deal with (TDM) we introduce
two more assumptions.

• We assume that T is the (common) time period for all vehicles, and that
• in the next time period all vehicles are on time.

The first assumption is often made, especially in literature about timetabling.
If T is taken as the largest time period over all lines, it overestimates the incon-
venience for the customers. We mention that this assumption can be relaxed
easily in the formulation (TDM-C) which will be presented in Section 8.2, but
is needed for the linear model (TDM-B) in the next section.

The second assumption is no restriction in on-line decisions, since in the on-
line case the planning horizon usually is not larger than the common time
period T . If we want to plan for a complete day, this assumption only is
reasonable, if there is enough slack time for the vehicles at the last stations
of their respective lines.

We now need to specify the data about the customers. To this end, let P be a
set of paths through the public transportation network PTN, which customers
would like to use during their trips. For each path we need to specify not only
the edges e ∈ E of the path, but also a vehicle g ∈ F for each edge. A path is
hence described by a sequence

p = (v1, g1, v2, g2, . . . , glp , vlp+1),

where gj ∈ F and vj ∈ V satisfy that (vj , vj+1) ∈ Egj for all j = 1, . . . , lp.
Moreover, we assume that the customers using path p arrive at their first
station v1 on time by some means of transport not relevant for our system.
For each path we introduce some weight wp > 0 which gives the number of
customers who wish to use path p. The following notation will be used when
dealing with the paths. (For an illustration, see Figure 8.1.)

120 8 Minimizing the Sum of All Delays

changing

g

g

from g to h

h h

h

v1

v2

v3 v4
v5

v6
v(p)=v6

Fig. 8.1. A path p containing the connection (g, h, v3).

Notation 8.1.

• For the sake of simplicity we write (g, h, v) ∈ p if we want to say that a
connection (g, h, v) ∈ U is used in a path p ∈ P. (Formally, if the sequence
(g, v, h) is contained in p.)

• A path is called maintained if all connections (g, h, v) ∈ p are maintained,
otherwise the path is called missed.

• For a path p ∈ P let g(p) denote the last vehicle used on path p and v(p)
be the destination station of path p.

Without loss of generality let us assume that each customer’s path p ∈ P
contains a station at most once. Now consider passengers traveling along a
path p ∈ P through the public transportation network.

Case 1: If all connections on path p are maintained, the delay of these passen-
gers equals the arrival delay of their last vehicle g(p) at their destination

station v(p), and is hence given by (xarr
v(p)
g(p) − Πarr

v(p)
g(p)).

Case 2: If at least one connection on path p is missed, we assume that the
passengers using path p have to wait the whole time period T for the next
vehicle going towards their destination, and their delay hence is T .

We now can state the model for minimizing the total delay.

(TDM)

Given PTN, F , U , minimal necessary times for driving, waiting, and chang-
ing, a feasible timetable Πarr, Πdep, a set of paths P through PTN, with
weights wp for all p ∈ P and a set of delayed events Edel, find a perturbed
feasible timetable xarr, xdep, such that

fTDM =
∑

p∈P:p is maintained

wp

(
xarr

v(p)
g(p) − Πarr

v(p)
g(p)

)
+

∑
p∈P:p is missed

Twp

is minimized.

As before, we may assume that source delays only occur at arrival events. Note
that the NP-completeness of (TDM) has recently been shown in [GJPS05].

8.1 A Linear Model 121

Chapter 8 is structured as follows: We first present the formulation
(TDM-A) which can be linearized to (TDM-B). It is based on looking at
each customer’s path as a whole. Some structural results about both formu-
lations are mentioned, e.g., that we can assume that the optimal solution is
time-minimal according to Notation 7.7. Another approach to tackle (TDM) is
presented in Section 8.2. Here we add up all delays over all activities to calcu-
late the total delay, leading to an alternative integer programming formulation
(TDM-C). We show that this model is equivalent to (TDM-A) and (TDM-B).
Since (TDM-C) is rather complicated we simplify the model by fixing some
parameters. Fortunately, this new problem has some nice properties:

• it is correct if the so-called never-meet-property holds, and
• in this case it can be solved in linear time.

Moreover, we show that it is easy to check whether the never-meet-property
holds and that it is often almost satisfied in practice. For the general case we
derive heuristics, lower bounds, and finally a branch and bound approach.

8.1 A Linear Model

Now let us use the more convenient notation introduced in Section 6.4. We
hence represent the customer’s paths by events, i.e.,

p = (i1, i2, . . . , ipL
)

where ik ∈ E are events, and (ik, ik+1) ∈ A are activities. In each path we
have that i1 is a departure event, i2 an arrival event, i3 ∈ Edep and so on
until we reach the last event ipL

which is again an arrival event. The following
notation is the same as before, namely:

• i(p) denotes the last event on path p, i.e., the arrival of the last vehicle
used at the final station of path p, and

• a ∈ p for some activity a ∈ A and some path p ∈ P , if activity a = (i, j)
is performed on path p, i.e., there exists k such that i = ik, j = ik+1 are
the kth and (k+1)th element of path p.

Again, consider passengers traveling along a path p ∈ P through the public
transportation network, represented as event-activity network N .

Case 1: If all connections on path p are maintained, the delay of these pas-
sengers equals the arrival delay of their last event i(p), i.e., the arrival of
their last vehicle at their destination station, and is hence given by yi(p).

Case 2: If at least one connection on path p is missed, the delay of the cus-
tomers on path p is given by T , as before.

122 8 Minimizing the Sum of All Delays

Suppose that some source delays di of some of the arrival events are given as
an amount of time (in minutes). Let D = max{di : i ∈ E} denote the largest
of these source delays. We assume that 0 < D < T .

To describe the feasible set of (TDM) we again use FeasDM (see page 108).
However, to keep track of the paths which are needed in the objective function
fTDM we replace the variables z̄a by variables zp for all p ∈ P with the
following meaning.

zp =

{
0 if all connections on path p are maintained
1 otherwise.

Our first integer programming formulation of (TDM) can now be presented.

(TDM-A)

min fTDM−A =
∑
p∈P

wp(yi(p)(1 − zp) + Tzp)

such that

yi ≥ di for all i ∈ Edel (8.1)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪Adrive (8.2)

−Mzp + yi − yj ≤ sa for all p ∈ P , a = (i, j) ∈ p ∩Achange (8.3)

yi ∈ IN for all i ∈ E

zp ∈ {0, 1} for all p ∈ P .

To justify that (TDM-A) is in fact a correct model for (TDM) we have to
show that in all optimal solutions zp = 0 if and only if all connections on path
p are maintained. Before we do this, we present some properties of optimal
solutions. The first is that a vehicle can only gain a delay, if there is some
reason for this, i.e., if some source delay has occurred, or if the vehicle waits
for some other delayed vehicle to maintain a connection.

Let a feasible solution of (TDM-A) be given. Let

Afix = {a ∈ A : there exists p ∈ P with a ∈ p and zp = 0}

denote the set of connections which are maintained in this solution. Then
determine the time-minimal solution y∗ with respect to Afix, i.e., an opti-
mal solution of (TT(Afix)) according to page 110. We can be sure that the
timetable of this solution is as tight as possible. Finally, we reconsider all
paths to find out if some additional ones are maintained and adapt the so-
lution of z accordingly. The solution obtained by this procedure is called a
reduced solution of (TDM-A).

8.1 A Linear Model 123

Definition 8.2. Let (y, z) be a feasible solution of (TDM-A). Define

y(z) = y(Afix(z)), where (8.4)

Afix(z) = {a ∈ A : there exists p ∈ P with a ∈ p and zp = 0} (8.5)

zp(y) =

{
0 if yi − yj ≤ sa for all a = (i, j) ∈ p
1 otherwise

(8.6)

and the reduced solution

RA(y, z) = (yred, z(yred)),

where yred = y(z) is the time-minimal solution with respect to Afix(z).

The following properties hold.

Lemma 8.3. Let (y, z) be a feasible solution of (TDM-A).

1. (y(z), z) is feasible for (TDM-A) and fTDM−A(y(z), z) ≤ fTDM−A(y, z).
2. Let di ≤ D < T for all i ∈ Edel. Then RA(y, z) is feasible for (TDM-A)

and fTDM−A(RA(y, z)) ≤ fTDM−A(y, z).

Proof. Let a feasible solution (y, z) be given.

1. Let us denote yred = y(z). Since yred is feasible for (TT(Afix)) (see
page 110) we obtain that (yred, z) is feasible for (TDM-A): (8.1) holds
due to (7.1), (8.2) and (8.3) are ensured due to (7.2) (take equation (8.5)
in Definition 8.2 into account), and the integrality of the variables is also
required in TT(Afix).
Furthermore, we know that y is also feasible for TT(Afix) meaning that
we can use part 1 of Lemma 7.8 (see page 114) and conclude that yred

i ≤ yi

for all a ∈ E . Hence, fTDM−A(yred, z) ≤ fTDM−A(y, z).
2. Consider RA(y, z) = (y(z), z(y(z))). From part 1 of this lemma, we know

that (y(z), z) = (yred, z) is feasible and the definition of zred = z(yred)
gives us feasibility of R(y, z) = (yred, z(yred)). For the objective function,
we first note that zp = 0 means that yred

i −yred
j ≤ sa for all a = (i, j) ∈ p is

still satisfied for the time-reduced solution yred, hence zred
p = z(yred

p) = 0.

This means zred ≤ z. Furthermore, yi(p) < T due to Corollary 7.9 and our
assumption di ≤ D < T . We obtain:

fTDM−A(y, z) ≥ fTDM−A(yred, z), see part 1 of this lemma,

≥ fTDM−A(yred, z(yred)) = fTDM−A(RA(y, z))

since yred < T and zred ≤ z.

��

Note that RA(y, z) = RA(RA(y, z)), i.e., reduced solutions cannot be further
reduced. We now can justify the size of M in the formulation (TDM-A). Recall
that D = max{di : i ∈ E}.

124 8 Minimizing the Sum of All Delays

Lemma 8.4. M = D is large enough in (TDM-A).

Proof. Let (y∗, z∗) be an optimal solution of (TDM-A). Due to Lemma 8.3
we can assume that y∗ = y(Afix(z∗)) is time-minimal. Hence y∗

i ≤ D (Corol-
lary 7.9), and we obtain y∗

i − y∗
j − sa ≤ D, yielding that M ≥ D is large

enough. ��

In the following, we always assume M ≥ D = max{di : i ∈ E}

The given formulation of model (TDM-A) can be linearized (and weakened)
by substituting the quadratic term yip

(1 − zp) by a new variable qp, leading
to the following model (TDM-B).

(TDM-B)

min fTDM−B =
∑
p∈P

wp(qp + Tzp)

such that

yi ≥ di for all i ∈ Edel

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive

−Mzp + yi − yj ≤ sa for all a = (i, j) ∈ Achange

−Mzp + yi(p) − qp ≤ 0 for all p ∈ P (8.7)

qp ≥ 0 for all p ∈ P (8.8)

yi ∈ IN for all i ∈ E

zp ∈ {0, 1} for all p ∈ P .

Lemma 8.5. The linearization is correct.

Proof. (TDM-A) =⇒ (TDM-B): Let (y, z) be a feasible solution of (TDM-A).
According to Lemma 8.3 we can without loss of generality assume that
(y, z) is a reduced solution. For all p ∈ P define qp = yi(p)(1 − zp). Since
yi(p) ≤ D ≤ M we get for all p ∈ P that

−Mzp + yi(p) ≤ −yi(p)zp + yi(p) = qp.

Hence, (y, z, q) is feasible for (TDM-B), and both solutions have the same
objective value.

(TDM-B) =⇒ (TDM-A): Let (y, z, q) be a feasible solution of (TDM-B).
Then (y, z) is also feasible for (TDM-A). From (8.7) and (8.8) we con-
clude that

qp ≥ yip
if zp = 0

qp ≥ 0 if zp = 1.

Consequently, qp ≥ yi(p)(1 − zp), i.e., fTDM−A ≤ fTDM−B. ��

8.2 Activity-based Model 125

8.2 Activity-based Model

Here we present another model for (TDM). By activity-based we mean that
we do not focus on the paths p ∈ P , but sum up the additional delay (i.e.,
the tension) on each single activity a ∈ A. Therefore, we use variables z̄a

describing if the connection a ∈ Achange is missed (z̄a = 1) or maintained
(z̄a = 0).

To motivate this new approach, consider some activity a ∈ A \ Achange. We
want to calculate the additional delay customers will get while using this
activity. The delay customers already have at the start of a = (i, j) is yi, and
at the end of a the delay is yj . This means, the tension ta = tya = yj −yi is the
additional delay gained by the customers while performing this activity. Note
that ta can be negative, meaning that slack times are used to compensate an
already existing delay. For changing arcs we have to be more careful. Let a =
(i, j) ∈ Achange and suppose first, that a is maintained. Then the additional
delay on a is again given by the tension ta = tya = yj−yi. On the other hand, if
a is missed, the additional delay for the customers who planned to use activity
a is given by T − yi = ta + T − yj , since they now have to wait the remaining
time period until the next (non-delayed) vehicle arrives for carrying on their
journey.

The main idea of the second model is to add up all these single delays over
all activities. To this end, we have to extend the set of events and activities
similar to Section 7.2, and we also extend the paths as follows: For each p ∈ P ,
p = (ip1, i

p
2, . . . , i

p
L) add one common additional event s representing the arrival

of the customers at their first station (by a means of transport which is not
considered in the delay management problem). Furthermore, we add timetable
arcs

a = (s, ip1)

for each path p. The resulting network resembles the CPM-network N s =
(Es,As(Achange)) (see Notation 7.4 on page 112) in the special case that
Afix = Achange with

Es = E ∪ {s}

As = As(Achange) = A ∪ {(s, i) : i ∈ E} and

Ps = {(s, ip1, . . . , i
p
L) : p ∈ P}.

This construction makes sure that the delay of a customer waiting at some
station for his first (delayed) vehicle to come, is taken into account. We always
assume that customers reach their first station without any delay, i.e.,

ys = 0.

Now we can present the new model. As before, we assume that T, M ≥ D.
The following decision variables are necessary for (TDM-C).

126 8 Minimizing the Sum of All Delays

yi = delay of event i,

as before, and

z̄a =

{
0 if connection a is maintained
1 otherwise,

z̃p
a =

⎧⎨
⎩

1 if activity a is reached on path p without any missed
connection before

0 otherwise,

wa = number of customers who really use activity a.

It is important to note that the number of customers wa (really) using activity
a ∈ A is a variable, since it depends on the wait-depart decisions whether
customers using a path p ∈ Ps will reach all arcs a ∈ p or not.

(TDM-C)

min fTDM−C =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

such that

yi ≥ di for all i ∈ Edel (8.9)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (8.10)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (8.11)

z̃p
a +

∑
ã∈p∩Achange:

ã≺a

z̄ã ≥ 1 for all p ∈ Ps and a ∈ p (8.12)

z̃p
a + z̄ã ≤ 1 for all p ∈ Ps and for all a, ã ∈ p

with ã ∈ Achange and ã ≺ a (8.13)

wa =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As (8.14)

yi ∈ IN for all i ∈ E

z̄a ∈ {0, 1} for all a ∈ As

z̃p
a ∈ {0, 1} for all p ∈ Ps, a ∈ As

wa ∈ IN for all a ∈ As.

In the objective function the additional amount of delay on each activity is
multiplied by the number of customers really using it. Restrictions (8.9) and
(8.10) are the same as the first two restrictions in (TDM-A). In restriction
(8.11) we make sure that z̄a = 1 if the connection a ∈ Achange is missed.
Restriction (8.12) defines the values of z̃p

a in such a way, that they are forced
to be 1, if no connection on path p before a has been missed, and (8.13)
makes sure that z̃p

a = 0 for all activities a after a missed connection ã on

8.2 Activity-based Model 127

path p. Finally, in (8.14) the number of customers really using activity a is
calculated by summing up the number of customers really using a over all
paths containing a. In the following we will show that this model is equivalent
to (TDM-A) and (TDM-B). Note that in this model we can easily relax the
assumption of one common time period for all vehicles, but can introduce
different time periods Ta for all activities a ∈ Achange. Nevertheless, we will
use only one common period T in the following.

Relation to (TDM-A)

Before we discuss the connection between (TDM-A) and (TDM-C) we show
how the z̄, z̃, w-variables can be constructed from a given feasible solution
yi, i ∈ E . Consider (TDM-C) for some given y.

(TDM-C(y))

min
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

wa(T − yj)z̄a

such that

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange

z̃p
a +

∑
ã∈p∩Achange:

ã≺a

z̄ã ≥ 1 for all p ∈ Ps and a ∈ p

z̃p
a + z̄ã ≤ 1 for all p ∈ Ps and for all a, ã ∈ p

with ã ∈ Achange and ã ≺ a

wa =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As

z̄a ∈ {0, 1} for all a ∈ Achange

z̃p
a ∈ {0, 1} for all p ∈ Ps, a ∈ As

wa ∈ IN for all a ∈ As.

A feasible solution of (TDM-C(y)) can be constructed using the following
rules.

Notation 8.6. Let y ∈ IN|E| satisfy constraints (8.9) and (8.10). Define the
y-constructed solution C(y) by

C(y) = (z̄c, z̃c, wc),

where z̄c = z̄(y), z̃c = z̃(z̄c), and wc = w(z̃c) are given by

128 8 Minimizing the Sum of All Delays

z̄a(y) =

{
0 if yi − yj ≤ sa

1 otherwise
for all a = (i, j) ∈ Achange, (8.15)

z̃p
a(z̄) = max

⎧⎪⎪⎨
⎪⎪⎩1 −

∑
a∈p∩Achange:

ã≺a

z̄ã, 0

⎫⎪⎪⎬
⎪⎪⎭ for all p ∈ Ps, a ∈ p, (8.16)

wa(z̃) =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As. (8.17)

A solution constructed by the rules above is a feasible solution.

Lemma 8.7. Let y ∈ IN|E| be given, such that (8.9) and (8.10) hold. Then
(y, C(y)) is feasible for (TDM-C).

Proof. z̄ is defined in such a way that (8.11) holds, and (8.14) is also satisfied.
From (8.16) we know that

z̃p
a ≥ 1 −

∑
a∈p∩Achange:

ã≺a

z̄ã,

hence (8.12) holds. Finally, assume a, ã ∈ p with ã ∈ Achange, ã ≺ a and
z̄ã = 1. Again from (8.16) we obtain that in this case z̃p

a = 0, establishing
(8.13). ��

It also holds that this solution is optimal for (TDM-C(y)) if yi ≤ T for all
i ∈ E , but the proof for this will be provided later, see Corollary 8.12. First,
we discuss the connection between (TDM-A) and (TDM-C).

Theorem 8.8. Model (TDM-A) and Model (TDM-C) lead to the same set of

optimal solutions y ∈ IR|E|.

Proof. First, if

wa =
∑

p∈Ps:a∈p

wpz̃
p
a for all a ∈ As

the objective function of (TDM-C) can be reformulated to

fTDM−C =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

=
∑

a=(i,j)∈As

∑
p∈Ps:a∈p

wpz̃
p
a(yj − yi) +

∑
a=(i,j)∈Achange

∑
p∈Ps:a∈p

wpz̃
p
az̄a(T − yj)

=
∑

p∈Ps

wp

⎛
⎜⎜⎝ ∑

a=(i,j)∈As:a∈p

z̃p
a(yj − yi) +

∑
a=(i,j)∈Achange

a∈p

z̃p
a z̄a(T − yj)

⎞
⎟⎟⎠

=:
∑

p∈Ps

wpCp.

8.2 Activity-based Model 129

For the objective of (TDM-A), we define

Ap = yi(p)(1 − zp) + Tzp.

(TDM-C) =⇒ (TDM-A): Let (y, z̄, z̃, w) be feasible for (TDM-C). Define
zp = zp(z̄) as follows:

zp(z̄) =

{
0 if z̄a = 0 for all a ∈ p ∩ Achange

1 otherwise.
(8.18)

Then (8.1) holds due to (8.9), (8.2) holds due to (8.10), and (8.3) is triv-
ially satisfied, if zp = 1, and for zp = 0 we know that z̄a = 0 for all
a ∈ p and hence (8.3) holds because of (8.11). This means (y, z) is fea-
sible for (TDM-A). It remains to show that Ap ≤ Cp. To this end, let
p = (s, i1, . . . , iL) ∈ Ps be a path with i(p) = iL.
Case 1: z̄a = 0 for all a ∈ p ∩ Achange. Then, we defined zp = 0. From

(8.12) we get that z̃p
a = 1 for all a ∈ p. Hence, from Lemma 7.11 and

since ys = 0 we conclude that

Cp =
∑

a=(i,j)∈As:a∈p

yj − yi = yiL
− ys = Ap.

Case 2: There exists a ∈ p∩Achange with z̄a = 1. Choose a minimal with
respect to ≺ with this property, say

ā = (ik̄−1, ik̄).

Then, since z̄a, z̃
p
a satisfy (8.12) and (8.13) we obtain

z̃p
a = 0 for all a ∈ p with ā ≺ a

z̃p
a = 1 for all a ∈ p with a � ā.

Hence, for all a ∈ Achange ∩ p we get

z̃p
a z̄a =

{
1 if a = ā
0 otherwise.

This yields

Cp =
∑

a=(i,j)∈As:a∈p

and a�ā

yj − yi + (T − yik̄
)

= yik̄
− yi0 + T − yik̄

= T = Ap.

Together,
fTDM−C(y, z̄, z̃, w) = fTDM−A(y, z(z̄)). (8.19)

130 8 Minimizing the Sum of All Delays

(TDM-A) =⇒ (TDM-C): Now let a feasible solution (y, z) of (TDM-A) be
given. We assume that yi ≤ T for all i ∈ E , otherwise we can take a time-
minimal solution instead of (y, z) with equal or better objective value
according to Lemma 8.3 on page 123, and know that this new solution
satisfies yi ≤ D ≤ T , see Corollary 7.9 (page 114). Since y satisfies (8.1)
and (8.2) we can apply Lemma 8.7 and derive some feasible solution for
(TDM-C) according to (8.15),(8.16), and (8.17). For the objective values of
this solution we again look at Cp and Ap for some path p = (s, i1, . . . , iL) ∈
Ps and get:

Case 1: If zp = 0, we get from (8.3) that yi −yj ≤ sa for all a = (i, j) ∈ p.
Hence, due to the definition of z̄a we conclude that z̄a = 0 for all
a ∈ p ∩ Achange, yielding

Cp = yi(p) = Ap

analogously to Case 1 of the first part of the proof.
Case 2: Now consider the case that zp = 1.

Case 2a: yi − yj ≤ sa for all a = (i, j) ∈ p, yielding that z̄a = 0 for all
a ∈ p and hence

Cp = yi(p) ≤ T = Ap.

Case 2b: There exists a = (i, j) ∈ p such that yi − yj > sa. This gives
us z̄a = 1, and choose ā = (ik̄−1, ik̄) minimal with respect to ≺
with this property. Then, from the definition of z̃p

a we get

z̃p
a = 0 for all a ∈ p with ā ≺ a

z̃p
a = 1 for all a ∈ p with a � ā

and finally, analogously to Case 2 of the first part of the proof,

Cp = T = Ap.

Together, these three cases give us that for yi ≤ T , i ∈ E :

fTDM−A(y, z) ≥ fTDM−C(y, C(y)). (8.20)

Putting both directions together yields that there exists an optimal solution
for (TDM-A) with perturbed timetable y if and only if there exists an optimal
solution for (TDM-C) with the same perturbed timetable y. ��

Reduced Solutions

We are now able to show how to improve a given feasible solution of (TDM-C)
to a so-called reduced feasible solution, analogously to the concept of a reduced
solution on page 123. The motivation to deal with reduced solutions is to
exclude such feasible solutions which are obviously not optimal. For example,
if the y variables are obviously too large, or if z̄ is not chosen optimally. To

8.2 Activity-based Model 131

exclude the first problem, we can use the time-minimal solution instead of
the given one. This has already been formalized in Chapter 7 by defining
time-minimal solutions through (TT(Afix)) (see page 110).

Definition 8.9. Let (y, z̄, z̃, w) be a feasible solution of (TDM-C). Define the
reduced solution

RC(y, z̄, z̃, w) = (yred, C(yred))

by

Afix(z̄) = {a ∈ Achange : z̄a = 0} (8.21)

yred = y(Afix(z̄)), (8.22)

and C(yred) according to Notation 8.6 on page 127.

The following statement ensures that RC(RC(y, z̄, z̃, w)) = RC(y, z̄, z̃, w), i.e.,
a reduced solution cannot be further reduced.

Lemma 8.10. Let (yred, z̄red, z̃red, wred) = RC(y, z̄, z̃, w) be a reduced solu-
tion. Then

• C(yred) = (z̄red, z̃red, wred)
• yred = y(Afix(z̄red)).

Proof. The first statement follows directly from Definition 8.9. For the second
statement we note that z̄red ≤ z̄, meaning that

Afix(z̄) ⊆ Afix(z̄red)

and hence TT(Afix(z̄)) is a relaxation of TT(Afix(z̄red)). But since the opti-
mal solution yred of TT(Afix(z̄)) is feasible for the non-relaxed optimization
problem TT(Afix(z̄red)) it is the optimal solution, i.e., yred = y(Afix(z̄red)).

��

We finally can prove that the reduced solutions of (TDM-C) are never worse
than the original ones, similarly to Lemma 8.3.

Theorem 8.11. Let di ≤ D < T for all i ∈ Edel. Then for each feasible
solution (y, z̄, z̃, w) of (TDM-C) RC(y, z̄, z̃, w) is feasible for (TDM-C) and

fTDM−C(RC(y, z̄, z̃, w)) ≤ fTDM−C(y, z̄, z̃, w).

Proof. Let (y, z̄, z̃, w) be any feasible solution of (TDM-C). Replacing y by
yred = y(Afix(z̄)) is still a feasible solution, since (8.9) and (8.10) hold due to
(7.1) and (7.2), where the latter also ensures (8.11). The remaining conditions
only depend on z̄, z̃, and w, and thus they are also satisfied.
For showing that the objective function value of (TDM-C) does not increase
we first remark that due to the optimality of yred (for TT(Afix(z̄))) we have

132 8 Minimizing the Sum of All Delays

yi ≥ yred
i for all i ∈ E (8.23)

due to part 1 of Lemma 7.8 (see page 114). Now we use the equivalence
between (TDM-C) and (TDM-A). From z̄ we construct z(z̄) according to
(8.18) on page 129, and note that both (y, z(z̄)) and (yred, z(z̄)) are feasible
for (TDM-A) since (y, z̄, z̃, w) and (yred, z̄, z̃, w) are both feasible for (TDM-C)
(see the first direction in the proof of Theorem 8.8).

Hence,

fTDM−C(y, z̄, z̃, w) = fTDM−A(y, z(z̄))

due to (8.19), see page 129 in the proof of Theorem 8.8

=
∑
p∈P

wp(yi(p)(1 − zp(z̄)) + Tzp(z̄))

≥
∑
p∈P

wp(y
red
i(p)(1 − zp(z̄)) + Tzp(z̄)), see (8.23)

= fTDM−A(yred, z(z̄))

≥ fTDM−C(yred, C(yred))

due to (8.20), see page 130 in the proof of Theorem 8.8

= fTDM−C(RC(y, z̄)).

��

Using the equivalence of (TDM-A) and (TDM-C) it is now easy to show
that C(y) is an optimal solution of (TDM-C(y)), if yi ≤ T for all i ∈ E . In
particular, replacing (z̄, z̃, w) by C(y) will always yield the same or a better
objective function value for (TDM-C).

Corollary 8.12. Let yi ≤ T for all i ∈ E. Then C(y) is the optimal solution
of (TDM-C(y)).

Proof. From Lemma 8.7 we know that (y, C(y)) is feasible for (TDM-C).
Similar to the proof of Theorem 8.11 we get for all feasible solutions (z̄, z̃, w)
of (TDM-C(y)) that

fTDM−C(y, z̄, z̃, w) ≥ fTDM−A(y, z(z̄))

due to (8.19), see page 129 in the proof of Theorem 8.8

≥ fTDM−C(y, C(y))

due to (8.20), see page 130 in the proof of Theorem 8.8,

where the latter inequality relies on the assumption yi ≤ T . ��

On a first glance, (TDM-C) does not seem to be useful for solving the delay
management problem better than (TDM-A), since it is much larger:

8.3 Constant Weights and the Never-meet Property 133

• (TDM-A) can be linearized (see Lemma 8.5) while (TDM-C) is cubic.
• The number of variables in (TDM-A) is O(|P|+ |E|), but O((|P||A|+ |E|+

|Achange|) in (TDM-C).

But note again that (TDM-C) is more general since it allows one to replace
the common time period T by time periods Ta for each changing activity
a ∈ Achange. Even with a common time period T we will need (TDM-C) to
derive and solve a special case of (TDM) in the next section. We conclude
this section by using (TDM-C) to derive a reduction result for (TDM) based
on the following idea: Assume that the slack times are so large that the delay
disappears after a few activities. Then we need not consider events which can
not gain any delay in the worst-case time-minimal solution.

Lemma 8.13. Let y = y(Achange) be an optimal solution of TT(Achange).
Then there exists an optimal solution (y∗, z̄∗, z̃∗, w∗) of (TDM-C) such that

• For all i ∈ E: If yi = 0 then y∗
i = 0.

• For all a = (i, j) ∈ Achange: If yi = 0 then z̄∗a = 0.

Proof. Using Theorem 8.11 we can assume that (y∗, z̄∗, z̃∗, w∗) is a reduced
solution, in particular, y∗ = y(Afix(z̄∗)). Since Afix(z̄∗) ⊆ Achange we know
from part 2 of Lemma 7.8 that y∗ ≤ y, in particular, y∗

i = 0 if yi = 0. Further-
more, z̄∗ satisfies (8.15) (see page 128). Hence z̄∗a = 0 since y∗

i − y∗
j ≤ 0 ≤ sa.

��

This kind of reduction will be referred to as late reduction.

Notation 8.14. Ered−late = {i ∈ E : yi(Achange) > 0} denotes the set of
events that need to be considered.

In the following we always can assume that E = Ered−late. (Note that in real-
world instances, late reduction often leads to significantly smaller networks.)

8.3 Constant Weights and the Never-meet Property

The simplification we suggest for solving (TDM-C) is to fix the weights wa

as parameters instead of calculating them during the optimization. Doing
so, we obtain the total delay management problem with constant weights .
Its formulation is given by deleting constraints (8.12), (8.13), and (8.14) in
(TDM-C), and fixing

wa =
∑

p∈Ps:a∈p

wp for all a ∈ As

as parameters, i.e., setting wa as the “traffic load” on activity a. We obtain
the following program.

134 8 Minimizing the Sum of All Delays

min fTDM−const′ =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

such that

yi ≥ di for all i ∈ Edel

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange

yi ∈ IN ∀i ∈ E

z̄a ∈ {0, 1} ∀a ∈ As.

Again, M = maxi∈E di is large enough.

In the following we will identify cases where we make no mistake by fixing
the weights as proposed above. In the general case, if we process the decisions
iteratively we can adapt the weights according to the decisions that have been
fixed in preceding steps. This idea will be utilized in the branch and bound
approach (Algorithm 20) in Section 8.6. We can further rewrite fTDM−const′

as follows. For i ∈ E let

wi =
∑

p∈P:i(p)=i

wp (8.24)

be the number of customers with final destination i. For all changing activities
a ∈ Achange we further use

wa =
∑

p∈Ps:a∈p

wp

=
∑

p∈P:a∈p

wp (8.25)

as the number of customers who plan to use changing activity a. Since∑
a=(i,j)∈As

wa(yj − yi) =
∑

p∈Ps

wp

∑
a=(i,j)∈p

yj − yi

=
∑
p∈P

wp(yi(p) − ys)

due to Lemma 7.11, see page 115

=
∑
i∈E

∑
p∈P:
i(p)=i

wpyi

=
∑
i∈E

wiyi

we rewrite

8.3 Constant Weights and the Never-meet Property 135

fTDM−const′ =
∑

a=(i,j)∈As

wa(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − yj)

=
∑
i∈E

wiyi +
∑

a=(i,j)∈Achange

waz̄a(T − yj).

Unfortunately, in general, we make a mistake by fixing the weights as above.
This is illustrated in Figure 8.2 as follows.

vehicle 3

v1

v2 v3

v4

v0

vehicle 1

vehicle 2

vehicle 2

Fig. 8.2. A PTN in which (TDM-const) is not correct.

We assume that there are three vehicles 1,2, and 3, where vehicle 1 and
vehicle 3 reach the stations v2 and v3 with a delay. We consider a path
p = (v1, 1, v2, 2, v3, 2, v4). Customers on this path use vehicle 1 until they
reach station v2; here they wish to change to vehicle 2 and to go on to sta-
tions v3 and v4. Suppose that vehicle 2 is not waiting for vehicle 1 at station
v2, such that the path p is missed. Assume further that vehicle 2 waits for the
delayed vehicle 3 at station v3. If we have not adapted the weights, the cus-
tomers on path p are counted twice: First, since they missed their connection
at station v2, and secondly, since they reach their final destination v4 with a
delay. This double counting might influence decisions in the wrong way.

Fortunately, we are able to identify problem instances for which the model
with constant weights is correct. One trivial case is, if no path in P contains
a changing arc, i.e., no customer plans to change. A more interesting case, in
which we make no mistake by using the constant weights will be described
next.

Since fTDM−const′ still is no linear function we first further simplify the model.
We would like to forget about subtracting yj in the second part of the objec-
tive, to obtain a linear program. As usual, let M ≥ D and recall that

136 8 Minimizing the Sum of All Delays

for i ∈ E : wi =
∑

p∈P:i(p)=i

wp and

for a ∈ Achange : wa =
∑

p∈P:a∈p

wp

are fixed parameters in the following model.

(TDM-const)

min fTDM−const =
∑
i∈E

wiyi +
∑

a∈Achange

waT z̄a

such that

yi ≥ di for all i ∈ Edel (8.26)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (8.27)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (8.28)

yi ∈ IN ∀i ∈ E

z̄a ∈ {0, 1} for all a ∈ Achange.

Surprisingly, (TDM-const) is equivalent to (TDM) in a large class of practical
examples. Before we define this class of problems and prove the correctness
of (TDM-const) in these cases (see Theorem 8.21), we show that each feasible
solution of (TDM-const) yields an upper bound on (TDM).

Lemma 8.15. Let (y, z̄) be feasible for (TDM-const). Let fTDM be the optimal
objective value for (TDM). Then

fTDM−const(y, z̄) ≥ fTDM.

Proof. Let (y, z̄) be a feasible solution of (TDM-const). It can be extended to
a feasible solution of (TDM-C) by defining z̃c = z̃(z̄) and wc = w(z̃) according
to (8.16) and (8.17). Calculating also z(z̄) finally gives us a feasible solution
(y, z(z̄)) of (TDM-A) and the correct weights wc

a and wc
i for the solution (y, z̄),

i.e.,

wc
i =

∑
p∈P:i(p)=i

wpzp for all i ∈ E (8.29)

wc
a =

∑
p∈P:a∈p

wpz̃
p
a for all a ∈ Achange. (8.30)

We know that the correct weights wc are smaller as the parameters w in
(TDM-const), i.e.,

wc
a ≤ wa and wc

i ≤ wi. (8.31)

Moreover, note that

8.3 Constant Weights and the Never-meet Property 137

zp(z̄) ≤
∑

a∈Achange:
a∈p

z̃p
az̄a, (8.32)

since, if zp = 1 there exists a ∈ p with za = 1. For a minimal (w.r.t. ≺) with
this property, we additionally know that z̃p

a = 1, hence z̄az̃
p
a = 1 ≥ zp.

This gives us

fTDM−const(y, z̄) =
∑
i∈E

wiyi +
∑

a∈Achange

waT z̄a

≥
∑
i∈E

wc
i yi +

∑
a∈Achange

wc
aT z̄a, see (8.31)

=
∑
i∈E

∑
p∈P

i(p)=i

wp(1 − zp)yi +
∑

a∈Achange

∑
p∈P:a∈p

wpz̃
p
a z̄aT

=
∑
p∈P

wp

⎛
⎝(1 − zp)yi(p) +

∑
a∈Achange:a∈p

z̃p
a z̄aT

⎞
⎠

≥
∑
p∈P

wp

(
(1 − zp)yi(p) + wpzpT

)
, see (8.32)

= fTDM−A(y, z) = fTDM−C(y, z̄, z̃, wc).

i.e., each feasible solution of (TDM-const) gives an upper bound on (TDM).
��

To specify problem instances for which (TDM-const) is correct, we first need
some technical details.

Suppose that a set of connections Afix ⊆ Achange which have to be maintained
is given, and let y∗ be the time-minimal solution respecting these connections,
where we have set all slack times to zero. Recall that

A(Afix) = Await ∪Adrive ∪ Afix,

see Notation 7.2 on page 111. We want to show that in this solution the delay
spreads out along all paths emanating at a delayed event. To this end we first
need the following notation.

Notation 8.16. Let y0(Afix) denote the optimal solution of (TT(Afix)),
where the slack times are all set to 0.

The following properties hold in the case of zero slack times.

Lemma 8.17. Let Afix ⊆ Achange and y0 = y0(Afix). Then

1. y0 ≥ y(Afix).
2. Let p be any path consisting of activities a ∈ A(Afix) and let i ∈ p. If

y0
i > 0 then y0

j > 0 for all j ∈ p with i ≺ j.

138 8 Minimizing the Sum of All Delays

Proof. 1. Induction. Let y0 = y0(Afix) and y = y(Afix).
Start: Let i be a minimal element of E . Then y0

i = 0 = yi.
Conclusion: Let the induction hypothesis be true for all j ≺ i. Then

y0
i = max

a=(j,i)∈A(Afix)
y0

j

≥ max
a=(j,i)∈A(Afix)

y0
j − sa

≥ max
a=(j,i)∈A(Afix)

yj − sa = yi.

2. Again, we use induction. Let p = (i = i0, i1, . . . , iL).
Start: y0

i > 0 due to the assumption.
Conclusion: Take il ∈ p, l ≥ 1. Let the induction hypothesis be true for

all k < l. Then

y0
il

= max
a=(j,il)∈A(Afix)

y0
j

≥ y0
l−1 > 0.

��

We are now in a position to introduce the never-meet-property.

Definition 8.18. The delay management problem has the never-meet prop-
erty if for each Afix ⊆ Achange the time-minimal solution y = y0(Afix)
satisfies the following two conditions for all j ∈ Ered−late:

1. If (i1, j), (i2, j) ∈ Afix ∪ Await ∪ Adrive, and yi2 > 0 then yi1 = 0.
2. If (i1, j) ∈ A, and dj > 0 then yi1 = 0.

j
i1

i2

delayed

delayed

Fig. 8.3. Illustration of condition 1 of the never-meet property in N .

Within the special structure of N = (E ,A) the first condition is always satis-
fied for j ∈ Earr, since each arrival event has exactly one incoming edge. For
j ∈ Edep, at least one of the two edges (i1, j) and (i2, j) has to be in Achange.

8.3 Constant Weights and the Never-meet Property 139

The situation that is not allowed to happen is depicted in Figure 8.3. The
interpretation of the never-meet property is the following: By calculating the
time-minimal solution with respect to some given z̄, but without using slack-
times, we can find out how far the source delays can spread out in this solution
in the worst case. The never-meet property requires that in no feasible so-
lution of (TDM) will two delayed vehicles meet, and that source delays can
only occur after non-delayed events. Our goal is to show that we can fix the
weights as in (TDM-const) without making any mistake, if the never-meet
property holds.

Notation 8.19. Let Afix ⊆ Achange and i ∈ E. Define

H(i,Afix) = {j ∈ E : there exists a path from i to j

consisting only of activities in A(Afix)} ∪ {i}.

For all j ∈ H(i,Afix) we hence have i � j. An illustration of H(i,Afix) is
given in Figure 8.4.

i

Fig. 8.4. Illustration of H(i,Afix) (grey discs). The dashed arrows represent the
non-fixed changing activities, the dotted arrows the fixed changing activities and
the solid arrows waiting and driving activities.

We now can state the following property, which is important for proving the
next theorem, but will also be needed for Algorithm 15 and for Algorithm 20.

Lemma 8.20. Let (TDM) have the never-meet property and let (y, z̄, z̃, w) be
a reduced feasible solution of (TDM-C). Let ã = (̃i, j̃) ∈ Achange. If z̄ã = 1 we
have the following.

1. yi = 0 for all i ∈ H(j̃,Achange),
2. z̄a = 0 for all a = (i, j) with i ∈ H(j̃,Achange).

140 8 Minimizing the Sum of All Delays

Proof. Let H = H(j̃,Achange). First of all, note that

yĩ − yj̃ > sã

holds since z̄a is given according to (8.15) and hence would have been set to
0 in the case that yĩ − yj̃ ≤ sã. Especially we know that

yĩ > 0. (8.33)

Now add all changing activities with both endpoints in H to Afix(z̄), i.e.,

Afix
add = {a ∈ Achange : z̄a = 0} ∪ {a = (i, j) ∈ Achange : i, j ∈ H}

and consider the solution y0 = y0(Afix
add) and the given reduced solution y, for

which we know from Lemma 8.10 that

y = y(Afix(z̄)). (8.34)

According to part 1 of Lemma 8.17 we obtain

y0 ≥ y(Afix
add) ≥ y(Afix) = y,

where the second ≥ holds since Afix ⊆ Afix
add, see part 2 of Lemma 7.8. From

(8.33) we hence get
y0

ĩ
> 0. (8.35)

Now consider i ∈ H. We want to show that yi = 0. Since i ∈ H there exists
a path p from j̃ to i. In the solution y0 without slack times, the delay yĩ > 0
is transferred along p, since we added all connections on p to Afix, see part 2
of Lemma 8.17. We hence obtain

y0
i > 0 for all i ∈ H. (8.36)

From the never-meet property, and since y0
ĩ

> 0 we hence conclude that

1. y0
j = 0 for all j ∈ E \ H such that there exists i ∈ H with (j, i) ∈ A, and

2.
di = 0 for all i ∈ H. (8.37)

Consequently, since y ≤ y0 we obtain

yj = 0 for all j ∈ E \ H such that there exists (8.38)

i ∈ H with (j, i) ∈ A.

Again, recall that y = y(Afix(z̄)) according to (8.34). Hence we can apply
Corollary 7.6 (see page 113) and use that y satisfies

yj = max{dj , max
a=(i,j)∈A(Afix)

yi − sa}.

To show that yi = 0 for all i ∈ H we finally can use induction as follows.

8.3 Constant Weights and the Never-meet Property 141

Start: Take j̃ as minimal element of H (with respect to ≺). Then z̄ã = 1 (due
to the assumption in the lemma), such that ã �∈ A(Afix). Furthermore,
according to the never-meet property,
• yj = 0 for all j with with (j, j̃) ∈ A(Afix) (see (8.38)) and
• dj̃ = 0 (see (8.37)).
Hence,

yj̃ = max{dj̃ , max
a=(j,j̃)∈A(Afix)

yj − sa} = 0.

Conclusion: Consider i ∈ H. Let (j, i) ∈ A(Afix). Then, for j ∈ H the induc-
tion hypothesis yields yj = 0 since this holds for all j ∈ H with j ≺ i. On
the other hand, for j �∈ H we conclude yj = 0 from (8.38). Furthermore,
di = 0 (8.37). Together, we obtain

yi = max{di, max
a=(j,i)∈A(Afix)

yj − sa} = 0.

For the second condition of the lemma consider a = (i, j) ∈ Achange with
i ∈ H. Then j ∈ H and from part 1 of the lemma we conclude that yi = yj = 0,
hence, yi − yj ≤ sa and z̄a = 0 since z̄ = z̄(y) according to (8.15). ��

Theorem 8.21. Model (TDM-const) is correct if the never-meet property
holds.

Proof. We show that (TDM-C) and (TDM-const) are equivalent in this case.
First, given a solution (y, z̄) of (TDM-const), we know from Lemma 8.15 that
there exists a feasible solution of (TDM-C) with equal or better objective
value.

The other direction is the interesting one: We show that each feasible solu-
tion of (TDM-C) corresponds to a feasible solution of (TDM-const) with the
same or better objective value. More precisely, given some feasible solution
of (TDM-C), let (y, z̄, z̃, wc) denote the corresponding reduced feasible solu-
tion. We show that y, z̄ is a feasible solution of (TDM-const) with the same
objective value.
Feasibility of y, z̄ for (TDM-const) is trivially satisfied. It remains to show
that

fTDM−C(y, z̄, z̃, w) = fTDM−const(y, z̄).

To this end, suppose that for some ā = (̄i, j̄) ∈ A

wā �= wc
ā.

We have to show that in this case

yj̄ − yī = 0,

and that for ā ∈ Achange,

142 8 Minimizing the Sum of All Delays

Tzā = 0,

meaning that the error we make by calculating the weights will not influence
the value of the objective function. Note that this is satisfied if ī �∈ Ered−late,
since we consider a time-minimal solution. From wā �= wc

ā we get (by compar-
ing (8.17) and (8.25), respectively), that

∑
p∈Ps:ā∈p

wp = wā

�= wc
ā =

∑
p∈Ps:ā∈p

wpz̃
p
ā.

Hence there exists some path p ∈ P containing ā such that z̃p
ā = 0. Since we

deal with a reduced solution we know that z̃ is given by (8.16) (on page 128),
and hence there exists ã ∈ p with ã ≺ ā and z̄ã = 1. Without loss of generality
let us take ã = (̃i, j̃) minimal with this property, i.e., we choose the first
changing activity on path p that is marked as missed. For an illustration, see
Figure 8.5.

j
a

j

a~
~

i
_ _

_
~

i

Fig. 8.5. The path p in the proof of Theorem 8.21. The grey events belong to
H(j̃,Achange).

Since ī, j̄ ∈ H(j̃,Achange) we derive from Lemma 8.20 that

• yī = yj̄ = 0, and
• if ā ∈ Achange then z̄a = 0.

Hence,
yj̄ − yī = 0,

and if ā ∈ Achange,
Tzā = 0,

which completes the proof. ��

The next question is, how to find out efficiently, whether the never-meet prop-
erty holds? To this end, we suggest the following algorithm.

8.3 Constant Weights and the Never-meet Property 143

Algorithm 13: Testing the never-meet property:

Input: N, di, sa.

Output: Answer yes or no.
Step 1. Calculate y(Achange) by Algorithm 12. Let

E = E ∩ {i : yi > 0},

A = {(i, j) ∈ A : i, j,∈ E}).

Step 2. Calculate y0(Achange) for the reduced network N = (E ,A)
by Algorithm 12.

Step 3. If the conditions of Definition 8.18 hold in this

particular solution, the answer is yes, otherwise no.
Step 4. Stop.

The algorithm is based on the fact that it is enough to test the never-meet
property in the worst case, namely, if all connections are maintained. If no
two delayed vehicles will meet in this particular feasible solution, it can also
not happen in any other feasible solution of (TDM) (with zero slack times).
Formally, this is justified in the following theorem.

Theorem 8.22. Algorithm 13 is correct.

Proof. We have to show that conditions 1. and 2. of Definition 8.18 hold for
all Afix ⊆ Achange if they hold for Afix = Achange. Let y∗ = y0(Achange)
be the time-minimal solution of TT(Achange) with zero slack times, and let
y = y0(Afix) be the time-minimal solution of TT(Afix) with zero slack times
for any other Afix ⊆ Achange. Then

y ≤ y∗,

according to part 2 of Lemma 7.8 (page 114). Consequently, for all j ∈ E we
know the following.

1. If (i1, j), (i2, j) ∈ A, and yi2 > 0 then y∗
i2

≥ yi2 > 0, hence y∗
i1

= 0,
since y∗ satisfies condition 1 of the never-meet property. But this means
0 ≤ yi1 ≤ y∗

i1
= 0.

2. If (i1, j) ∈ A, and dj > 0 then 0 ≤ yi1 ≤ y∗
i1

= 0, again since y∗ satisfies
condition 2 of the never-meet property. ��

So far, we have shown that (TDM-const) is correct, whenever the never-meet
property holds, and that this property can be tested efficiently. Furthermore,
our numerical results indicate that the never-meet property often is almost
satisfied in practice. For example, a real-world situation of 120 delayed vehicles

144 8 Minimizing the Sum of All Delays

within the city of Kaiserslautern, each of them with a source delay of 10
minutes leads to only 148 conflicts with the never-meet property considering
the set U10 as connections. A further analysis with randomly chosen source
delays is shown in Figures 8.6 and 8.7. In both figures the graphed functions
correspond to the different sets of relevant connections. The lowest function
uses U5 as its set of connections, the next function corresponds to U10, then
U30, and the top function refers to U60, confirming that the number of conflicts
with the never-meet property increases if the set of connections is enlarged.
Figure 8.6 shows the number of conflicts with the never-meet property as a
function of the source delay, if we assume that 10 vehicles are delayed. It turns
out that we can expect less than 50 conflicts if the source delays are smaller
than 15 minutes.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 4 6 8 10 12 14 16 18 20

C
on

fli
ct

s

Amount of source delay

Fig. 8.6. Conflicts with the never-meet property as a function of the source delay,
if 10 vehicles are delayed.

In Figure 8.7 the number of conflicts with the never-meet property is depicted
as a function of the number of delayed vehicles. For this figure we assume a
source delay of 15 minutes. Again, it turns out that not more than 50 conflicts
are likely if the number of delayed vehicles is smaller than 10. The reason for
the relatively low number of conflicts in practice is in particular due to the
fact that only events in Ered−late that can gain a delay need to be considered
(see Lemma 8.13 on page 133). Furthermore, most conflicts with the never-
meet property arise at events within the city traffic included in our data, while
the never-meet property is more likely to hold for transportation systems in
a rural environment. A slightly more elegant formulation of the never-meet
property and a detailed analysis of the never-meet property in a real-world
railway example is presented in [Sch06].

But all this is only helpful if we can take advantage of the simplified model
with constant weights in terms of solving it. In the next two sections we will

8.4 A Simple Special Case 145

 0

 50

 100

 150

 200

 250

 4 6 8 10 12 14 16 18 20

C
on

fli
ct

s

Number of source delays

Fig. 8.7. Conflicts with the never-meet property as a function of the number of
delayed vehicles, assuming a source delay of 15 minutes for each vehicle.

hence discuss (TDM-const) in more detail, while in Section 8.6 we will show
how (TDM-const) can be used for solving the general problem (TDM).

8.4 A Simple Special Case

First, let us consider the special case (TDM-const-zero), in which

• all source delays have the same amount, i.e., di ∈ {0, D} for all i ∈ E , and
• all slack times are equal to zero, i.e., sa = 0 for all a ∈ A.

Let y be a time-minimal solution to this problem. Then, from Corollary 7.6
(see page 113) we conclude, that

yi ∈ {0, D}

for all i ∈ E . This means that we can use binary variables yi instead of integer
ones, with

yi =

{
1 if event i is delayed by D
0 if event i is not delayed.

Consequently, M = 1 is large enough and (TDM-const) — even with the first
objective fTDM−const′ introduced on page 134 — simplifies to the following
linear program. Recall that Edel = {i ∈ E : di > 0} is the set of events with
a source delay di > 0.

(TDM-const-zero)

min
∑

a=(i,j)∈As

waD(yj − yi) +
∑

a=(i,j)∈Achange

waz̄a(T − D)

146 8 Minimizing the Sum of All Delays

such that

−yi ≤ −1 for all i ∈ Edel (8.39)

yi − yj ≤ 0 for all a = (i, j) ∈ Await ∪Adrive (8.40)

z̄a + yi − yj ≤ 0 for all a = (i, j) ∈ Achange (8.41)

yi ∈ {0, 1} ∀i ∈ E

z̄a ∈ {0, 1} ∀a ∈ Achange,

where wa =
∑

p∈Ps:a∈p wp for all a ∈ As are given parameters as before (see,
e.g., (8.25)).

Theorem 8.23. (TDM-const-zero) can be solved in polynomial time.

Proof. Let C = |Achange|, C̄ = |Adrive ∪Await| and D̄ = |Edel|. Moreover, let
IK denote the unit matrix of size K × K and OK,L the zero matrix of size
K × L. Then the coefficient matrix of (TDM-const-zero) is

Φ =

⎛
⎝−ID̄ 0D̄,C

0C̄,CΘT

IC

⎞
⎠ ,

where the |A|×|E|-matrix ΘT is the transpose of the node-arc-incidence matrix
Θ of N (as defined on page 115). Since Θ is totally unimodular (see [NW88],
or Appendix A), ΘT is. Adding a unit matrix on the right-hand side or above
a totally unimodular matrix still yields a totally unimodular matrix (again,
see Appendix A). Hence, Φ is totally unimodular. This means that all basic
solutions of (TDM-const-zero) are integer and hence the LP-relaxation of
(TDM-const-zero) can be used to solve the problem in polynomial time by
linear programming methods. ��

Note that (TDM-const-zero) is equivalent to the models developed indepen-
dently in diploma theses by Kliewer [Kli00a] and Scholl [Sch01b], where the
latter author also recognized the total unimodularity of the model.

The consequence of this result is that minimizing the total delay can be done
efficiently if the never-meet property holds, all source delays are of the same
amount, and all slack times are zero. If the slack times are not all zero, we
can at least use (TDM-const-zero) as a bound.

Lemma 8.24. Let fTDM−const−zero be the optimal objective value of (TDM-
const-zero), and fTDM−const be the optimal objective value of (TDM-const).
Then

fTDM−const−zero ≥ fTDM−const.

Proof. Let (y, z̄) be any feasible solution of (TDM-const-zero). Defining ỹi =
D for all i ∈ E with yi = 1 yields a feasible solution (ỹ, z̄) for (TDM-const)
with

8.5 Solving the model with constant weights 147

fTDM−const−zero(y, z̄) = fTDM−const(ỹ, z̄),

i.e., fTDM−const−zero(y, z̄) is an upper bound on (TDM-const) for all feasible
solutions of (TDM-const-zero). ��

8.5 Solving the model with constant weights

In this section we discuss the more general case of (TDM-const) as given on
page 136, where we do not have zero slack times. Note that (TDM-const)
(see page 136) without constraints (8.28) is efficiently solvable by the meth-
ods discussed in Chapter 7. Nevertheless, the Lagrange-relaxation of these
constraints will not give any better bound than the LP-relaxation, since all
extreme points of the relaxed feasible set

{y ∈ IR|E| : yi ≥ di for all i ∈ E and

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive}

are integral according to Theorem 7.1, see integer programming textbooks
such as [Wol98] or [NW88]. A brief review of this result is given in Appendix A.
Accordingly, we investigate the LP-relaxation of (TDM-const), given by the
following formulation.

(LP-TDM-const)

min fTDM−const =
∑
i∈E

wiyi +
∑

a∈Achange

waT z̄a

such that

yi ≥ di for all i ∈ Edel (8.42)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive (8.43)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (8.44)

yi ≥ 0 ∀i ∈ E

z̄a ≥ 0 ∀a ∈ As.

We denote (as before) C = |Achange|, C̄ = |Adrive ∪ Await|, IK as the unit
matrix of size K × K and OK,L as the zero matrix of size K × L. Then the
coefficient matrix of (LP-TDM-const) is⎛

⎝ −I|E|0|E|+C̄,C

−MIC
−ΘT

⎞
⎠ .

The transpose of the coefficient matrix is hence given by

148 8 Minimizing the Sum of All Delays(
OC,|E| OC,C̄ −MIC

−I|E| −Θ

)
.

Since

min{cx : Ax ≤ b, x ≥ 0} and max{−ub : −AT u ≤ c, u ≥ 0}

are dual to each other, we obtain the following dual program:

max
∑
i∈E

diξi −
∑
a∈A

saηa

such that

Mηa ≤ waT for all a ∈ Achange

ξi −
∑

a=(i,j)

ηa +
∑

a=(j,i)

ηa ≤ wi for all i ∈ E

ηa ≥ 0 for all a ∈ A

ξi ≥ 0 for all i ∈ E .

The following observations about this dual of the relaxation can be made.

• For i �∈ Edel we have that di = 0 and hence ξi has no contribution to the
objective function. The best choice for ξi is hence ξi = 0.

• For i ∈ Edel we know that yi ≥ di > 0. The complementary slackness
conditions hence yield that in the dual program

ξi −
∑

a=(i,j)

ηa +
∑

a=(j,i)

ηa = wi

holds.

This means that the above formulation is equivalent to the following linear
program.

(Dual-TDM-const)

max
∑

i∈Edel

diξi −
∑
a∈A

saηa

such that

ηa ≤
waT

M
for all a ∈ Achange

−
∑

a=(i,j)

ηa +
∑

a=(j,i)

ηa ≤ wi for all i ∈ E \ Edel

−
∑

a=(i,j)

ηa +
∑

a=(j,i)

ηa = wi − ξi for all i ∈ Edel

ηa ≥ 0 for all a ∈ A

ξi ≥ 0 for all i ∈ E .

8.5 Solving the model with constant weights 149

A feasible solution of (Dual-TDM-const) is given by ξi = wi for all i ∈ Edel

and ηa = 0 for all a ∈ A with objective value
∑

i∈Edel
diwi, yielding a lower

bound on (LP-TDM-const) and hence on (TDM-const).

Lemma 8.25. Let (η, ξ) be an optimal solution of (Dual-TDM-const), and
(y, z̄) be an optimal solution of (LP-TDM-const). Then

1. ξi ≥ wi for all i ∈ Edel.
2. If z̄a > 0 then z̄a =

yi−yj−sa

M
.

Proof. 1. Suppose ξi < wi for i ∈ Edel. Increasing ξi to wi for all i ∈ Edel

implies that ηa = 0 for all a ∈ A is feasible. Since di > 0 for all i ∈ Edel

the objective value has strictly increased, a contradiction.
2. Let z̄a > 0 for some a ∈ Achange. Complementary slackness then requires

that ηa = waT
M

. Since wa > 0 this yields ηa > 0 and hence, again from
complementary slackness, we conclude that (8.44) has to be satisfied with
equality, yielding z̄a =

yi−yj−sa

M
. ��

Note that (Dual-TDM-const) has the following interpretation as a flow prob-
lem in N . First, assume the ξi variables as given. Then the ηa variables are
flow variables for all activities a ∈ A with lower bound zero, and upper bounds
waT
M

on changing arcs a ∈ Achange. The goal is to minimize the costs of the
flow, where the costs on the activities are given by sa for all a ∈ A. The status
of the nodes i ∈ Edel depends on the value for ξi.

• If ξi > wi then i is a surplus node,
• if ξi = wi, then i is a transshipment node, and
• i is a demand node if ξi < wi.

From Lemma 8.25 we know that in an optimal solution, none of the i ∈ Edel

is a demand node.

On the other hand, for i ∈ E \Edel node i can be a demand or a transshipment
node, meaning that it can absorb demand until an amount of wi but need not.
Since the goal is to minimize the costs of the flow, it makes sense to leave as
much flow in i as possible. This means, that, if the flow fi into node i �∈ Edel

is known (i.e. fi =
∑

a=(j,i) ηi), then the optimal choice of the ηa variables for

all a = (i, j) leaving node i satisfies∑
a=(i,j)

ηa = max{0, fi − wi},

if ξi > wi for all i ∈ E , i.e., no demand has to be satisfied later on.

If the ξi variables are not given in advance, we add a source s and arcs (s, i)
for all i ∈ Edel. Then we interpret the variables ξi as flow variables on (s, i),
and obtain that all nodes i ∈ Edel need to be transshipment nodes. The goal
hence is to minimize the costs of the flow, but at the same time maximize the
surplus of the sink, i.e. put as much flow into the network as possible.

150 8 Minimizing the Sum of All Delays

Solving the relaxation provides a lower bound on (TDM-const) for which we
can estimate its quality as follows.

Theorem 8.26. Let (y, z̄) be an optimal solution of the relaxation with objec-
tive value fLP−TDM−const. Let f∗ denote the optimal objective value of (TDM-
const). Then

0 ≤ f∗ − fLP−TDM−const ≤ T
∑

a:z̄a>0

wa

(
1 −

yi − yj − sa

M

)
.

Proof. Let Afix = Afix(z̄) = {a ∈ Achange : z̄a = 0} be the set of connections
which are maintained in the optimal solution of the relaxation. From part 2
of Lemma 8.25 we know that

z̄a =
yi − yj − sa

M
for all a �∈ Afix.

Since M ≥ D ≥ yi − yj − sa according to Corollary 7.9 we conclude that

z̄a ≤ 1. (8.45)

Furthermore, we obtain

fLP−TDM−const =
∑
i∈E

wiyi +
∑

a∈Achange\Afix

Twa

yi − yj − sa

M

=
∑
i∈E

wiyi +
∑

a:z̄a>0

Twa

yi − yj − sa

M
.

We now define a feasible solution of (TDM-const) as

z̄u
a =

{
0 if a ∈ Afix

1 if a �∈ Afix , and

yu = y(Afix).

To compare the objective values of the two solutions (y, z̄) and (yu, z̄u) we
would like to replace yu by y, but this is in general not feasible, since y need
not be integer. Nevertheless, since z̄u

a ≥ z̄a (due to (8.45)) we have

−Mz̄u
a + yi − yj ≤ −Mz̄a + yi − yj ≤ sa

for all a = (i, j) ∈ Achange, such that (y, z̄u) satisfies all constraints of (TDM-
const), except for the integrality of y. Hence y is also a feasible solution

of TT(Afix) (with wfix
i = wi, page 110). Consequently, fTT(Afix)(y

u) ≤
fTT(Afix)(y), i.e. ∑

i∈E

wiy
u
i ≤
∑
i∈E

wiyi.

8.5 Solving the model with constant weights 151

Now let fu denote the objective value of (yu, z̄u), i.e. f∗ ≤ fu. We get:

0 ≤ f∗ − fLP−TDM−const ≤ fu − fLP−TDM−const

=
∑
i∈E

wiy
u
i +

∑
a:z̄a>0

waT −
∑
i∈E

wiyi −
∑

a:z̄a>0

waT
yi − yj − sa

M

≤ T
∑

a:z̄a>0

wa

(
1 −

yi − yj − sa

M

)
.

��

The solution (yu, z̄u) which we have constructed in the proof will be used as
an upper bound in the branch and bound approach, see Algorithm 14.

We remark that Theorem 8.26 provides an alternative proof of Theorem 8.23
(page 146), since for (TDM-const-zero) we obtain that a connection a = (i, j)
is missed if and only if yi = 1 and yj = 0. I.e., for a missed connection we
obtain

yi − yj − sa

M
=

yi − yj − 0

1
= 1.

Consequently, we get

f∗ − fLP−TDM−const−zero ≤ T
∑

a:z̄a>0

wa

(
1 −

yi − yj − sa

M

)
= 0,

meaning that the relaxation solves (TDM-const-zero).

Looking at the bound we further see that the relaxation and the bound both
get better if we use a smaller M . Note that M ′ < M is still large enough if
there exists an optimal solution (for the problem with large M) satisfying

M ′ ≥ yi − yj − sa

for all a ∈ Achange. To strengthen the relaxation we hence replace M by
smaller values Ma for all a ∈ Achange. This gives the following formulation.

(TDM-const-strong)

min fTDM−const =
∑
i∈E

wiyi +
∑

a∈Achange

waT z̄a

such that

yi ≥ di for all i ∈ Edel

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive

−Maz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (8.46)

yi ∈ IN ∀i ∈ E

z̄a ∈ {0, 1} ∀a ∈ Achange.

152 8 Minimizing the Sum of All Delays

Lemma 8.27. Let y = y(Achange) and let M ≥ Ma ≥ yi − sa for all a =
(i, j) ∈ Achange. Then (TDM-const-strong) and (TDM-const) are equivalent.

Proof. It is clear that the feasible set of (TDM-const-strong) is contained in
(TDM-const), such that each feasible solution of (TDM-const-strong) is also a
feasible solution of (TDM-const) with the same objective value. On the other
hand, take an optimal solution (y, z̄) of (TDM-const). Due to Lemma 8.10 we
can assume that y is a time-minimal solution, i.e., y = y(Afix(z̄)). Note that
Afix(z̄) ⊆ Achange, hence we know from part 2 of Lemma 7.8 that

y = y(Afix(z̄)) ≤ y(Achange).

This gives us that for all a ∈ Achange,

Ma ≥ yi(Achange) − sa

≥ yi − yj − sa,

hence (y, z̄) is feasible for (TDM-const-strong) with the same objective func-
tion value and the result follows. ��

Now Theorem 8.26 can be extended easily to the following result, in which we
use the relaxation of (TDM-const-strong) to derive a sharper bound.

Corollary 8.28. Let Ma ≥ yi(Achange) − sa for all a ∈ Achange. Let (y, z̄)
be an optimal solution of the relaxation of (TDM-const-strong) with objec-
tive value fLP−TDM−const−strong. Let f∗ denote the optimal objective value of
(TDM-const). Then

0 ≤ f∗ − fLP−TDM−const ≤ T
∑

a:z̄a>0

wa

(
1 −

yi − yj − sa

Ma

)
.

Unfortunately, even in the case of the never-meet property and for the strong
formulation (TDM-const-strong) the LP-relaxation need not find an integer
solution, as the following example demonstrates. Let a network with three
events E = {1, 2, 3} and one changing activity a = (1, 2) be given as depicted
in Figure 8.8.

• Let d1 = 15 be the source delay of event 1, and
• assume T = 30.
• Furthermore, we consider the following weights: w12 = wa = 7, w1 = 0,

w2 = 10, and w3 = 12.
• The slack times are given as sa = s12 = 5 and s23 = 1.

Calculating y = y(Achange) gives y1 = 15, y2 = 10, y3 = 9 and hence

Ma = 15 − 5 = 10.

The LP-relaxation hence is

8.5 Solving the model with constant weights 153

1

2

3

changing
activity a=(1,2)

w1=0

w2=10

w3=12

wa=7

s23=1

sa=5

Fig. 8.8. The relaxation does not yield an integer solution.

min 10y2 + 12y3 + 210z̄a

s.t. y1 ≥ 15

−10z̄a + y1 − y2 ≤ 5

y2 − y3 ≤ 1

yi, z̄a ≥ 0.

Now compare the following three feasible (time-minimal) solutions

• z̄a = 1,y = y(z̄), i.e., y1 = 15, y2 = 0, y3 = 0 with objective value f = 210,
• z̄a = 0,y = y(z̄), i.e., y1 = 15, y2 = 10, y3 = 9 with objective value

f = 208,
• z̄a = 1

5 , y1 = 15, y2 = 8, y3 = 7 with objective value f = 42+80+84 = 206,

showing that the solution with z̄ �∈ {0, 1} yields a better objective function
value than all possible solutions with integer z̄a. Consequently, the optimal
solution of the relaxation is not integer.

For the following branch and bound approach we not only need lower bounds,
but also upper bounds. These are given by fixing some of the components of
z̄ in any node of the branch and bound tree. A feasible solution can then be
calculated by solving TT(Afix(z̄)). We consequently obtain y = y(Afix(z̄))
and z according to (8.6) on page 123, i.e., by setting

zp =

{
0 if yi − yj ≤ sa for all a = (i, j) ∈ p
1 otherwise.

To formalize these subproblems we introduce the following notation:

Notation 8.29. Let Afix,Amiss ⊆ Achange such that

Afix ∩ Amiss = ∅.

Define P (Afix,Amiss) as an instance of (TDM-const) in which all connections
a ∈ Afix need to be maintained, and all connections a ∈ Amiss need not be
considered.

154 8 Minimizing the Sum of All Delays

A similar notation will be used for (TDM-A), (TDM-B), and (TDM-C) in
Section 8.6. Here, P (Afix,Amiss) is given as the following integer program.

(P (Afix,Amiss))

min fP (Afix,Amiss) =
∑
i∈E

wiyi +
∑

a∈Achange\

(Amiss∪Afix)

waT z̄a

such that

yi ≥ di for all i ∈ Edel

yi − yj ≤ sa for all a = (i, j) ∈ Afix ∪ Await ∪ Adrive

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange \
(
Amiss ∪ Afix

)
(8.47)

yi ∈ IN ∀i ∈ E

z̄a ∈ {0, 1} for all a ∈ Achange \
(
Afix ∪ Amiss)

)
We will also consider the strong formulation (P (Afix,Amiss)-strong), in which
constraint (8.47) is replaced by

−Maz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange \
(
Amiss ∪ Afix

)
.

Recall that A(Afix) = Await∪Adrive∪Afix and, to further simplify notation,
define

Aopen = Achange \
(
Afix ∪ Amiss

)
. (8.48)

The following observations are the basis for the branch and bound approach.

• P (∅, ∅) =(TDM-const).
• Fixing z̄a = 0 for some a ∈ Aopen in P (Afix,Amiss) leads to the new

problem P (Afix ∪ {a},Amiss).
• Fixing z̄a = 1 for some a ∈ Aopen in P (Afix,Amiss) leads to the new

problem P (Afix,Amiss ∪ {a}).
• P (Afix,Achange \Afix) =(TT(Afix)), and hence can be solved efficiently

by Algorithm 12.

This means by fixing variables we always obtain subproblems of the same
type. For the objective function values we know the following.

Lemma 8.30. Let Afix
1 ⊆ Afix

2 ⊆ Achange, Amiss
1 ⊆ Amiss

2 ⊆ Achange, and

let f∗
1 be the optimal objective value of P (Afix

1 ,Amiss
1), and f∗

2 be the optimal

objective value of P (Afix
2 ,Amiss

2). Then

f∗
1 ≤ f∗

2 +
∑

a∈Amiss
2 \Amiss

1

waT.

8.5 Solving the model with constant weights 155

Especially, if f∗ is the optimal objective value of (TDM-const) then

f∗ ≤ f∗
1 +

∑
a∈Amiss

1

waT.

Proof. Any feasible solution (y2, z̄2) of P (Afix
2 ,Amiss

2) can be extended to a

feasible solution of P (Afix
1 ,Amiss

1) by defining y1 = y2 and

z̄1
a =

⎧⎪⎨
⎪⎩

0 if a ∈ Afix
2 \ Afix

1

1 if a ∈ Amiss
2 \ Amiss

1

z̄2
a if Achange \

(
Afix

2 ∪ Amiss
2

)
.

For the objective function values we obtain

f
P (Afix

1 ,Amiss
1)(y

1, z̄1) =
∑
i∈E

wiy
1
i +

∑
a∈Achange\

(Amiss
1 ∪Afix

1)

waT z̄1
a

=
∑
i∈E

wiy
1
i +

∑
a∈Achange\

(Amiss
2 ∪Afix

2)

waT z̄1
a +

∑
a∈Amiss

2 \Amiss
1

waT z̄1
a

= f
P (Afix

2 ,Amiss
2)(y

2, z̄2) +
∑

a∈Amiss
2 \Amiss

1

waT.

Now let y2
∗, z̄

2
∗ be an optimal solution of P (Afix

2 ,Amiss
2) and y1

∗, z̄
1
∗ its extension

as above to a solution of P (Afix
1 ,Amiss

1). Consequently,

f∗
1 ≤ f

P (Afix
1 ,Amiss

1)(y
1
∗, z̄

1
∗)

= f
P (Afix

2 ,Amiss
2)(y

2
∗, z̄

2
∗) +

∑
a∈Amiss

2 \Amiss
1

waT

= f∗
2 +

∑
a∈Amiss

2 \Amiss
1

waT.

��

One upper bound can be calculated easily, namely, if all vehicles are forced to
wait; i.e., all connections should be maintained. Then we set Afix = Achange

and obtain that
f∗ ≤

∑
i∈E

yi(Achange) + 0.

The idea now is to start with Afix = Amiss = ∅. In each node of the branch
and bound tree, one of the z̄a-variables is fixed either to one or to zero. In both
cases, the set Aopen of open variables z̄a is decreased by one. If all variables
of Achange are either fixed to one or to zero, the resulting problem is of type

156 8 Minimizing the Sum of All Delays

(TT). Hence, the optimal solution y is integer and can be found efficiently,
see Chapter 7.

The following reduction lemma is a generalization of Lemma 8.13.

Lemma 8.31. Let Afix,Amiss ⊆ Achange and Afix ∩ Amiss = ∅. Let y =
y(Achange \Amiss) be an optimal solution of TT(Achange \Amiss). Then there
exists an optimal solution y∗, z̄∗ of P (Afix,Amiss) such that

• For all i ∈ E: If yi = 0 then y∗
i = 0.

• For all a = (i, j) ∈ Achange \ Amiss: If yi = 0 then z̄∗a = 0.
• Ma = yi − sa for all a ∈ Achange \

(
Amiss ∪Afix

)
is large enough for the

strong formulation of P (Afix,Amiss).

Proof. This can be shown analogously to Lemma 8.13, taking into account
Lemma 8.27. ��

Note that decreasing M yields better lower bounds according to Theorem 8.26.
The algorithm can now be given.

Algorithm 14: Branch and bound for (TDM-const)

Input: N ,P , wp, di, sa, T, and accuracy ε.

Output: Feasible solution (y, z̄) for (TDM-const) with objective value f,

such that |f − f∗| ≤ ε, if f∗ is the optimal objective value.

Step 0.

Amiss = ∅,

Afix∗
= ∅, best solution obtained so far

f
u =

X
i∈E

yi(Achange) upper bound,

f
l = optimal value of (LP-TDM-const) lower bound

List = {P (Afix∗
,Amiss)} with lower bound f

l
P (Afix∗,Amiss) = f

l
.

Step 1.

1. If List= ∅, stop:

Exact optimal solution is y∗ = y(Afix∗
), z̄∗ = z̄(y∗).

2. f l = min{f l
P : P ∈ List}

3. If fu − f l ≤ ε stop:

ε optimal solution is y∗ = y(Afixu
), z̄∗ = z̄(y∗).

Step 2. Choose P = P (Afix,Amiss) ∈ List with current lower bound f l
P . Let

Aopen = Achange \
`
Afix ∪Amiss

´
.

Step 3. Reduction of P:
1. Calculate y = y(Achange \ Amiss) by Algorithm 12.

2. For all a = (i, j) ∈ Aopen: If yi = 0 then

Afix = Afix ∪ {a},

Aopen = Aopen \ {a}.

8.5 Solving the model with constant weights 157

3. Set Ma = yi − sa for all a = (i, j) ∈ Aopen

Step 4. Bounds
1. Solve LP-P (Afix,Amiss) or its dual and obtain an optimal solution

(yl, z̄l) with objective value f l
P .

2. Let

Afixu
= Afix ∪ {a ∈ Aopen : z̄a = 0}

Amissu
= Amiss ∪ {a ∈ Aopen : z̄a > 0}

and let yu = y(Afixu
),z̄u = z̄(yu) be an optimal solution of

P (Afixu
,Amissu

) with objective value fu
P .

Step 5. Pruning
1. If z̄l is integer, prune by optimality, i.e.,

Afix∗
= {a ∈ Aopen : z̄a = 0} ∪ Afix

if f
l
P < f

u}

f
u = min{f l

P , f
u}

List = List \ {P}.

Goto 1.

2. If f l
P ≥ fu prune by bound, i.e. List = List \ {P}.

Goto 1.

3. If fu
P < fu set

f
u = f

u
P ,

Afix∗
= Afixu

.

Step 6. Choose a minimal a ∈ Aopen such that z̄l
a �∈ {0, 1}.

P
0
a = P{Afix ∪ {a},Amiss) with f

l
P0

a
= f

l
P

P
1
a = P{Afix

,Amiss ∪ {a}) with f
l
P1

a
= f

l
P

List = List ∪ {P 0
a , P

1
a }

Goto 1.

Now we turn our attention back to (TDM-const) if additionally the never-
meet property holds. In this case, the problem can be solved efficiently in
O(|A|) time. The reason for this consists of the two facts listed below. Recall
Notation 8.19 (page 139) where we introduced H(i,Afix) as the set of events
that can be reached from i ∈ E by using only changing arcs contained in Afix.

• First, if we fix z̄a = 1 for some a = (i, j), this means that we can set
yi′ = 0 for all i′ ∈ H(j,Achange) and that all subsequent connections can
be maintained (Lemma 8.20).

• Secondly, the problem can be decomposed into at most |Achange| indepen-
dent subproblems due to the following lemma.

158 8 Minimizing the Sum of All Delays

Lemma 8.32. Let i, j ∈ E, i �= j, and let (y, z̄) be a feasible solution of
(TDM-const) with yi > 0, yj > 0. If the never-meet property holds, exactly
one of the following three cases occurs.

• H(i,Achange) ⊆ H(j,Achange)
• H(j,Achange) ⊆ H(i,Achange)
• H(i,Achange) ∩H(j,Achange) = ∅.

Proof. Let i �= j. Assume that

• neither H(i,Achange) ⊆ H(j,Achange)
• nor H(j,Achange) ⊆ H(i,Achange),

i.e., i �∈ H(j,Achange) and j �∈ H(i,Achange). Then we want to show that
H(i,Achange)∩H(j,Achange) = ∅. Assume the contrary, i.e. take some minimal
k ∈ H(i,Achange) ∩ H(j,Achange). This means there exist two paths pi =
(i, . . . , ki, k) from i to k and pj = (j, . . . , kj , k) from j to k; for an illustration
see Figure 8.9.

i

k

k

i

j

path p

path p

i

j

j

k

Fig. 8.9. The two paths pi and pj in the proof of Lemma 8.32.

Due to the minimality of k we conclude that

ki �= kj .

Now let y0 = y0(Achange). Then we know from Lemma 8.17 that y0
j′ > 0 for

all j′ ∈ p1 ∪ p2, especially, y0
ki > 0 and y0

kj > 0, which is a contradiction to
the never-meet property. ��

For finding an (exact) optimal solution of (TDM-const) in case of the never-
meet property we propose Algorithm 15. This algorithm will be given in the
notation of event-activity networks, although this time it could have been
stated as easily in the original notation. Suppose that some vehicle g has a
delay at its arrival at station k. Then, independently of what we decide for
later connections from this vehicle g to other vehicles, we can be sure that
the vehicle will transfer its delay to subsequent stations, until it has been

8.5 Solving the model with constant weights 159

compensated by the slack times. This delay that will always be contributing
to the objective will be formalized in the following more general notation.

Notation 8.33. Let y be a time-minimal solution of (TDM) and i ∈ E with
yi > 0. Then denote

F (i, yi,A
fix) =

∑
j∈H(i,Afix)

wjyj.

The delay that will be transfered for sure by the delayed event i is then ob-
tained by setting Afix = ∅. In the case that the event-activity network belongs
to some PTN according to Notation 6.4 we get the following interpretation of
H(i, ∅). Namely, it consists of a single path, describing all events belonging to
the vehicle of event i. I.e.,

H(i, ∅) = (i1, i2, . . . , iL),

and if yi is given, the time-minimal solution yil
for all l = 1, . . . , L can be

determined by

yi1 = yi − si1,i (8.49)

yil
= yil−1

− sil−1,il
.

Before we formally state the algorithm, consider the following example, de-
picted in Figure 8.10.

a1

a2

a3

a4

a9

a5

a6

a7
a8

source delay

subproblem belonging to a2

Fig. 8.10. Decomposition of N in case of the never-meet property. The changing
activities are dashed.

160 8 Minimizing the Sum of All Delays

The algorithm will first decompose P into subproblems which are collected in
List(0). Each subproblem Pa is identified by a changing activity a. We obtain

List(0) = {a1, a2, a5, a9}.

The subproblem belonging to a2 is depicted in Figure 8.10. To further decom-
pose a subproblem Pa we store the subproblems belonging to its decomposition
in List(a). In the example this gives the following lists:

List(a2) = {a3, a4}

List(a5) = {a6, a7, a8},

and the lists for all other a ∈ Achange are empty. All subproblems that might
further be decomposed are stored in Decompose, and if a subproblem cannot
further be decomposed it is collected in Compose. Hence, at the end of the
decomposition step, we have

Compose = {a1, a3, a4, a6, a7, a8, a9}.

Moreover, for each subproblem identified by changing activity a,

• maintain(a) contains the value of the objective function of the subproblem
if a is maintained, and

• miss(a) contains the objective value if a is missed.

Algorithm 15: Enumeration for (TDM-const)

Input: N ,P , wp, di, sa, T.

Output: Optimal solution of (TDM), if the never-meet property holds.

Step 0.

1. Calculate wa and wi according to (8.25) and (8.24)

2. Decompose = ∅, Compose = ∅.
3. List(0) = ∅, f(0) = 0, z̄a = 0 for all a ∈ Achange.

4. For all i ∈ Edel:

a) Calculate H(i, ∅)
b) Calculate yj for all j ∈ H(i, ∅) (by (8.49)).

c) f(0) = f(0) + F (i, di, ∅)
d) For all a = (j1, j2) ∈ Achange with j1 ∈ H(i, ∅): If yj1 > 0

i. List(0) = List(0) ∪ {a}
ii. Decompose = Decompose ∪ {a}

5. If List(0) = ∅ stop: f is the optimal objective value,

z̄a = 0 for all a ∈ Achange.

Step 1. While Decompose �= ∅
1. Choose a ∈ Decompose, ã ∈ Achange with a = (i1, i2) ∈ List(ã)
2.

List(a) = ∅,

maintain(a) = 0,

miss(a) = waT.

8.5 Solving the model with constant weights 161

3. yi2 = max{yi1 − sa, 0}
4. Calculate H(i2, ∅)
5. Calculate yj for all j ∈ H(i2, ∅) (by (8.49))

6. maintain(a) = maintain(a) + F (i2, yi2 , ∅)
7. For all a′ = (j1, j2) ∈ Achange with j1 ∈ H(i2, ∅): If yj1 > 0

a) List(a) = List(a) ∪ {a′}
b) Decompose = Decompose ∪ {a′}

8. If List(a) = ∅ then Compose = Compose ∪ {a}.
9. Decompose = Decompose \ {a}.

Step 2. While Compose �= ∅.
1. Choose a ∈ Compose, ã ∈ Achange with a ∈ List(ã)
2. Define

z̄a =

j
0 if maintain(a) ≤ miss(a)
1 if maintain(a) > miss(a)

f(a) = min{maintain(a), miss(a)}

3.

List(ã) = List(ã) \ {a}

maintain(ã) = maintain(ã) + f(a)

Compose = Compose \ {a}

4. If List(ã) = ∅ and ã �= 0 then Compose = Compose ∪ {ã}
Step 3.

1. For all a ∈ Achange: If z̄a = 1 then set z̄a′ = 0 for all a′ �= a with

a ≺ a′.

2. Output: f(maintain(0)), z̄.

Theorem 8.34. Algorithm 15 is correct and runs in time O(|A|).

Proof. We show by induction that at the end of Algorithm 15 f(a) contains
the objective value for the subproblem Pa. Pa is defined as (TDM-const) in
the following network determined by a = (i, j) and some delay yi:

Na = (H(i,Achange),A(H(i,Achange)),

where

A(H(i,Achange)) = {(j1, j2) ∈ A : j1, j2 ∈ H(i,Achange)).

The network belonging to Pa2 in the example is depicted in Figure 8.10.

162 8 Minimizing the Sum of All Delays

Start: Let a = (i, j) be a maximal element of Achange (with respect to ≺) and
let H = H(i,Achange). The subproblem with respect to a is (TDM-const)
in the small network Na = (H,A(H)). Since a is maximal, A(H) does not
contain any changing activity. This means, List(a) = ∅ in step 2 of the
algorithm. Furthermore,

maintain(a) =
∑
i′∈H

yi′wi′ , and

miss(a) = Twa

give the objective values of this small network when maintaining or not
maintaining activity a. To see the correctness of miss(a) we note that due
to Lemma 8.20 yi′ = 0 for all i′ ∈ H. Since a ∈ Compose we compare
both values maintain(a) and miss(a) in step 3, and choose the better as
(correct) objective value, which is then stored in f(a).

Conclusion: Now take any a = (i, j) and let the induction hypothesis be true
for all a′ with a ≺ a′. Let H = H(i, ∅) in this case. Then, if a is not
maintained, we know from Lemma 8.20 that all connections a′ ∈ H are
maintained and all i′ ∈ H satisfy yi′ = 0, i.e., the objective value is in
this case given by miss(a) as calculated in step 2. For maintaining activ-
ity a the algorithm calculates in step 2 the delay which will be gained
for sure, i.e., the delay of all events i′ ∈ H that can be reached with-
out passing any other changing activity, and stores it in maintain(a). All
changing activities a′ that can be reached from j without passing any
other changing activity are stored in List(a). Each of these activities a′

forms an independent subproblem on the smaller network Na′ , since for
a1 = (i1, j1), a2 = (i2, j2) ∈ List(a) we have that

H(i1,Achange) ∩H(i2,Achange) = ∅

according to Lemma 8.32.

In step 3, we add up

maintain(a) +
∑

a′∈List(a)

f(a′).

This sum contains the best possible objective value for (TDM-const) on
Na, if a is maintained, since f(a′) contains the optimal objective value of
subproblem (TDM-const) on Na′ due to the induction hypothesis. Again,
comparing the above sum (stored in maintain(a)) with miss(a) and choos-
ing the smaller of both gives the best possible choice for activity a assum-
ing the delay yi as given.

Finally, in step 0, the problem with the given source delays is decomposed into
a set of subproblems, given in List(0). All these subproblems are independent
due to Lemma 8.32, and they are all solved optimally due to the Claim above.

8.6 Solving the Total Delay Management Problem 163

Adding up these optimal values and adding the delay of all events which are
reached before entering one of the subproblems gives the optimal objective
function value f(0).

For the time complexity we see that the number of subproblems equals the
number of changing activities. For the decomposition step we have to process
each activity exactly once, and in the composition step we need one compar-
ison and one summation for each subproblem. The overall time complexity is
hence linear in |A|. ��

The algorithm relies on the fact that each activity a ∈ Achange appears in
exactly one list, i.e., for each a ∈ Achange there exists a unique ã such that
a ∈ List(ã), or a ∈ List(0). If the never-meet property is not satisfied, this
need not be the case, and hence Algorithm 15 cannot be applied to (TDM)
for general problems. To resolve this problem (and to obtain a heuristic by
applying Algorithm 15) one can either allow that the same element is added
more than once to Compose in step 2 (this would mean to duplicate activities
until the never-meet property is satisfied), or to update the values of maintain
to the larger one, if an element which is already contained is added.

8.6 Solving the Total Delay Management Problem

Finally, we discuss how to solve the general version of (TDM). We first discuss
lower and upper bounds and then put all obtained results together in a branch
and bound procedure. For the following let f∗ denote the optimal objective
function value of (TDM) which is the same in all three formulations (TDM-A),
(TDM-B), and (TDM-C).

Before we present an exact algorithm for solving (TDM), we suggest two
heuristic approaches. Let us first focus on the formulation of (TDM-C). First
note that any set Afix ⊆ Achange can be used to derive a feasible solution by
the following procedure.

Algorithm 16: Calculating a feasible solution of (TDM)

Input: N ,P , wp, di, sa, T, and Afix ⊆ Achange.

Output: Reduced feasible solution for (TDM) with objective f.

Step 1. Determine y(Afix) by Algorithm 12.

Step 2. Calculate C(y) = (z̄, z̃, w) according to Notation 8.6.

Step 3. Output: (y, z̄, z̃, w) with objective value f = fTDM−C(y, z̄, z̃, w)

164 8 Minimizing the Sum of All Delays

Notation 8.35. Let Afix ⊆ Achange. By

R(Afix), f(Afix)

denote the output of Algorithm 16 with input Afix, i.e.,

R(Afix) = (y(Afix), C(y(Afix)))

f(Afix) = fTDM−C(R(Afix)).

All solutions of Algorithm 16 provide upper bounds on (TDM).

Lemma 8.36.

• f∗ ≤ f(Afix) for all Afix ⊆ Achange.
• f∗ = minAfix⊆Achange

f(Afix).

Proof. Part 1 follows immediately, since the solution R(Afix) is feasible for
(TDM-C), see Lemma 8.7. For part 2, take an optimal solution (y, z̄, z̃, w) of
(TDM-C) and define Afix = Afix(z̄) = {a ∈ A : z̄a = 0}. Then R(Afix) =
RC(y, z̄, z̃, w) (see Definition 8.9 on page 131), and hence

f(Afix) = fTDM−C(RC(y, z̄, z̃, w)) ≤ fTDM−C(y, z̄, z̃, w) = f∗

due to Theorem 8.11. ��

Two obvious bounds can be calculated right from the start, namely, if all
connections are maintained (Afix = Achange), or if all vehicles depart on
time (Afix = ∅). The question now is, how to choose a “good” set of fixed
connections Afix heuristically. Before we propose two heuristics, we introduce
the following notation.

Notation 8.37. Let Afix ⊆ Achange. Denote

W (i,Afix) =
∑

p:p∩H(i,Afix)
=∅

wp

as the number of all customers who will pass a station in H(i,Afix).

If i = (g, v, dep) is the departure of some vehicle g at some station v, then
W (i, ∅) can be interpreted as follows. It contains the number of customers
who plan to use vehicle g anywhere later than station v, i.e., those customers
who

• either plan to pass station v with vehicle g, or
• plan to get on vehicle g at station v or at another station later than v.

8.6 Solving the Total Delay Management Problem 165

driving
driving

driving

changing

4

of vehicle g

from vehicle g to h

waiting of vehicle h

of vehicle h

of vehicle h

1=(g,v,dep)

2=(h,v,dep)

3=(h,v,arr)

Fig. 8.11. Example with only one changing activity (dashed). The marked events
belong to H(3, ∅)

These are the customers who will most probably be annoyed if the vehicle
waits at station v for some connecting vehicle.

The first heuristic is motivated by the following observation: Suppose the
simple situation, depicted in Figure 8.11. We only have two vehicles g, h, and
we assume that g has a delay of D minutes. We consider only one connection
U = {(g, h, v)} and assume zero slack times. The network is represented as an
event-activity network in Figure 8.11. To determine the optimal solution for
this small problem, we first calculate

wa =
∑

p∈P:a∈P

wp and

W (3, ∅) =
∑

p∈P:p∩H(3,∅)
=∅

wp.

Note that H(3, ∅) exactly contains all stations which will be passed by vehicle
h after station 2, and W (3, ∅) sums up all customers who plan to use vehicle h
at station 3 or later. (Note that all customers who get off vehicle h at station
k will do this at event 2, and all customers who get on vehicle h at station k
will do this at event 3 and will at least stay there until event 4.) Then,

• z̄a = 1 leads to an objective function value of waT
• z̄a = 0 leads to an objective function value of W (3, ∅)D.

Consequently, the optimal solution is given by

z̄a = 0 ⇐⇒ D ≤ T
wa

W (3, ∅)
.

This result is used in the first heuristic.

166 8 Minimizing the Sum of All Delays

Heuristic 17: A-priori Heuristic for finding Afix

Input: N ,P , wp, di, sa, T, and parameter Ã ⊆ Achange.

Output: Afix.

Step 1. Calculate y = y(Achange) by Algorithm 12.

Step 2. For all a = (i, j) ∈ Achange

1. Calculate wa =
P

p∈P:a∈p
wp

2. Calculate W (j, Ã) =
P

p:p∩H(j,Ã) �=0 wp

3. If yi ≤ T wa

W (j,∅) set z̄a = 0,
Otherwise set z̄a = 1.

Step 3. Output: Afix = {a ∈ Achange : z̄a = 0}

Note that as in the example before, wa contains the number of customers who
wish to use changing activity a, and W (j, Ã) contains the number of customers
who may be affected by a delay of event j. For Ã = ∅ we underestimate the
number of these passengers (at least for small slack times), since we do not take
into account that the delay might spread out along the changing activities.
Increasing Ã is a rather pessimistic approximation of the effects of waiting for
other vehicles and will lead to less maintained connections. Heuristic 17 can
be improved, if the current delay and the number of customers involved are
updated after each decision made.

The next heuristic is based on the idea to maintain such connections, which
are used by many customers.

Heuristic 18: Large-weight-Heuristic for finding Afix

Input: N ,P , wp, di, sa, T, and percentage 0 ≤ p ≤ 1.
Output: Afix.

Step 1. Sort the set of paths P = {p1, p2, . . . , p|P|}
such that wp1 ≥ wp2 ≥ . . . ≥ wp|P|

.

Let W =
P

p∈P wp.

Step 2. Find a number K such thatX
k=1,...,K−1

wp ≤ pW and
X

k=1,...,K

≥ pW.

Step 3. Output: Afix = {a ∈ Achange : a ∈ pk for some 1 ≤ k ≤ K}.

Note that an upper bound on (TDM) can also be obtained by

• solving (TDM-const) according to Lemma 8.15
• solving (TDM-const-zero) according to Lemma 8.24.

8.6 Solving the Total Delay Management Problem 167

Now we turn our attention to the calculation of lower bounds for (TDM). To
this end, we use the LP-relaxation of (TDM-B) (see page 124) to obtain a lower
bound by linear programming. To strengthen this bound, we can decrease M
as much as possible without making the optimal solution infeasible. As in the
strong formulation of the LP-relaxation of (TDM-const) (see page 151) we
replace M by a value Ma for all changing activities. Instead of (TDM-B) we
obtain

(TDM-B-strong)

min fTDM−B =
∑
p∈P

wp(qp + Tzp)

such that

yi ≥ di for all i ∈ Edel

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪ Adrive

−Mazp + yi − yj ≤ sa for all a = (i, j) ∈ Achange

−Mpzp + yi(p) − qp ≤ 0 for all p ∈ P (8.50)

qp ≥ 0 for all p ∈ P

yi ∈ IN for all i ∈ E

zp ∈ {0, 1} for all p ∈ P .

The following lemma is similar to Lemma 8.27.

Lemma 8.38. Let y = y(Achange) and let M ≥ Ma ≥ yi − sa for all a ∈
Achange and M ≥ Mp ≥ yi(p) for all p ∈ P. Then (TDM-B-strong) and
(TDM-B) are equivalent.

Proof. It is clear that the feasible set of (TDM-B-strong) is contained in
(TDM-B), since M ≥ D ≥ Ma for all a ∈ Achange. This means that each
feasible solution of (TDM-B-strong) is also a feasible solution of (TDM-B)
with the same objective value.

On the other hand, take an optimal solution (y∗, z∗, q∗) of (TDM-B). Due to
Lemma 8.3 we can assume that y∗ is time-minimal. Furthermore, note that
{a ∈ Achange : y∗

i − y∗
j ≤ sa} ⊆ Achange, hence we know from part 2 of

Lemma 7.8 that
y∗ ≤ y = y(Achange).

This gives us for all a ∈ Achange that

Ma ≥ yi − sa ≥ y∗
i − y∗

j − sa, and

Mp ≥ yi(p) ≥ y∗
i(p) − q∗p

hence (y∗, z∗, u∗) is feasible for (TDM-B-strong) with the same objective func-
tion value and the result follows. ��

We conclude that in fact, the LP-relaxation of (TDM-B-strong) yields better
bounds than (LP-TDM-B). This is formulated in the next result.

168 8 Minimizing the Sum of All Delays

Lemma 8.39. Let Ma ≤ M ′
a for all a ∈ Achange, Mp ≤ M ′

p for all p ∈ P,
and

• let f be the optimal solution of (LP-TDM-B-strong) with respect to Ma, Mp

and
• f ′ be the optimal solution of (LP-TDM-B-strong) with respect to M ′

a, M
′
p.

Then f ≥ f ′.

Proof. The lemma follows from the fact that (LP-TDM-strong) with respect
to M ′

a, M
′
p is a relaxation of (LP-TDM-strong) with respect to Ma, Mp. ��

The idea of the branch and bound approach is similar to that of Algorithm 14.
In each step we consider the earliest unknown connection a = (i, j) with yi > 0
and define two subproblems by either fixing the respective variable z̄a = 0, or
allowing z̄a = 1. The subproblems we obtain are the same as in Notation 8.29
(on page 153). More precisely, we consider subproblems of type

P (Afix,Amiss)

defined as follows:

• If we consider (TDM-C) we add

yi − yj ≤ sa for all a ∈ Afix (8.51)

to the formulation of (TDM-C), and omit the constraints

−Mz̄a + yi − yj ≤ sa for all a ∈ Amiss. (8.52)

• If we deal with (TDM-A) or (TDM-B) we again add constraints (8.51) to
the respective formulation, but instead of (8.52) we determine the paths
containing a connection of Amiss, i.e.,

Pmiss = {p ∈ P : p ∩ Amiss �= ∅}

and omit the constraints

−Mzp + yi − yj ≤ sa for all p ∈ Pmiss. (8.53)

In the algorithm we will use the following two types of reduction procedures
for the networks appearing in the subproblems.

Late reduction: The concept has been introduced in Lemmas 8.13 and 8.31
for the subproblems, see also Notation 8.14 on page 133. Late reduction
means that we can delete events and activities that will never be delayed
in any time-minimal solution.

8.6 Solving the Total Delay Management Problem 169

Early reduction is relevant, if in a subproblem the first K connections have
already been fixed either to be maintained, or to be not maintained. Then
all events before the first open connection will not be influenced by the
wait-depart decision of the remaining connections later on. This means
that we can delete all events and all activities appearing before we reach
a minimal open connection.

Moreover, the set of paths can be reduced since paths which have no events in
common with the remaining network, or are already known to be missed, need
not be considered any more, and the constants Ma, Mp needed for solving the
relaxations can be adapted. The reduction works as follows.

Algorithm 19: Reduction of (TDM)(Afix,Amiss)

Input: N ,P , wp, di, sa, T, current objective value fP , and Afix,Amiss.

Output: Reduced data of (TDM) problem, updated fP .

Step 1: Calculate y = y(Achange \ Amiss).
Step 2: Early reduction

1. Aopen = Achange \ (Afix ∪Amiss).
2. Define the new set of delayed events Edel as the minimal elements

of the set

{i ∈ E : yi > 0 and there exists a = (i, j) ∈ Aopen},

each of them with source delay yi.

3. Redefine E. For all i ∈ E: If for no j ∈ Edel j ≺ i, then delete i

from E.
4. Redefine A. For all a = (i1, i2) ∈ A: If there does not exist j ∈

Edel with j ≺ i1 then

a) delete a from A.

b) if a ∈ Aopen:

• Afix = Afix ∪ {a}
• Aopen = Aopen \ {a}

Step 3: Late reduction

1. For all a ∈ Aopen: If yi = 0 then

Afix = Afix ∪ {a},

Aopen = Aopen \ {a}.

2. Set Ma = yi − sa for all a ∈ Achange, Mp = yi(p) for all p ∈ P.

Step 4: Redefine P: For all p ∈ P:

1. If p ∩Amiss �= ∅ let fP = fP + wpT and delete p from P.

2. If p ∩ E = ∅ let fP = fP + wpyi(p) and delete p from P.

The more decisions are made, the more reductions can be made, and the
chance that the problem can be decomposed into independent subproblems
increases.

170 8 Minimizing the Sum of All Delays

Notation 8.40. Let ã = (̃i, j̃) be a minimal element of Aopen, i.e., all a ≺
ã are either in Afix or in Amiss. The wait-depart decision of ã is called
independent, if

H(̃i,Aopen ∪ Afix) ∩H(i,Aopen ∪ Afix) = ∅

for all i satisfying the following two conditions.

• yi(Aopen ∪Afix) > 0.
• Neither ĩ ≺ i nor i ≺ ĩ.

Note that all subproblems are independent if the never-meet property holds.
In the next lemma we show that the optimal decision can often be determined
directly, if it is independent. This result is utilized in step 8 of the branch and
bound algorithm.

Lemma 8.41. Let ã = (̃i, j̃) ∈ Achange and let the wait-depart decision of ã
be independent. Define

fmiss = Twã

f l
maintain =

∑
i∈H(̃i,∅)

wiyi(A
fix ∪ {ã})

fu
maintain =

∑
i∈H(̃i,Aopen∪Afix)

wiyi(A
open ∪ Afix)

recalling the definition of wa and wi according to (8.25) and (8.24) on page 134
(in the network after performing the reduction algorithm).
For the optimal choice of z̄ã the following holds:

• If fmiss > fu
maintain then z̄ã = 0.

• If f l
maintain > fmiss then z̄ã = 1.

Proof. For this proof we use (TDM-A). We rewrite the objective to

fTDM−A =
∑
p∈P

wp(yi(p)(1 − zp) + Tzp)

=
∑

p∈P:i(p)∈H(̃i,Achange)

wp(yi(p)(1 − zp) + Tzp) + C

= f(y, z) + const,

where the term const is not affected by the decision concerning the connection
ã due to the independence of the decision concerning ã (meaning that in no
feasible solution does any other delayed vehicle reach H).

• If (y, z) is an optimal solution of (TDM-A) with the additional constraint
yĩ − yj̃ ≤ sã, then denote f0 = f(y, z).

8.6 Solving the Total Delay Management Problem 171

• Similarly, if (y, z) is the best possible solution satisfying yĩ − yj̃ > sã, then
let f1 = f(y, z).

We show that

1. f l
maintain ≤ f0 ≤ fu

maintain, and
2. fmiss = f1,

hence yielding that for fmiss > fu
maintain we obtain f0 < f1 and hence z̄a = 0

is the optimal choice, and analogously for f l
maintain > fmiss z̄a = 1 occurs in

the optimal solution.

fmiss = f1: If connection ã is missed we obtain zp = 1 for all p ∈ P with
ã ∈ p. Moreover, similarly as in Lemma 8.20 we know that all yi = 0
for ĩ ≺ i and hence all other paths ending in H(̃i,Afix ∪ Aopen) make no
contribution to the objective function value, i.e.,

f1 =
∑

p∈P:a∈p

wpT = wã = fmiss.

f l
maintain ≤ f0: Now consider the case that ã is maintained. Then at least

all customers getting out at a node i ∈ H(̃i, ∅) (of the same vehicle h
belonging to j̃ later than ã) gain a delay of at least yi (since there is no
changing activity except ã between ĩ and i. This gives us that

f0 ≥
∑

i∈H(̃i,∅)

wiyi({ã}) = f l
maintain.

fu
maintain ≥ f0: Finally, consider the solution of (TDM) in which ã and all

subsequent connections are maintained. Then no customer (in the set of
paths P after the early reduction) who planned to get off in H(̃i,Aopen ∪
Afix) misses his connection, but arrives with a delay of yi(p) for y =

y(Aopen ∪Afix). We hence obtain

f0 ≤
∑

i∈H(̃i,Achange)

wiyi(Achange) = fu
maintain.

��

Finally, we summarize the results of this section in the next algorithm. We
start with the earliest decision a to be made and branch into z̄a = 1 and
z̄a = 0. For both subproblems we calculate upper and lower bounds and
also investigate their structure to apply Lemma 8.41 or solve them optimally
in case of the never-meet property. The more decisions have been fixed the
more likely an easy subproblem is obtained. To increase the efficiency of the
algorithm we add both reductions steps.

172 8 Minimizing the Sum of All Delays

Algorithm 20: Branch and bound for (TDM)

Input: N ,P , wp, di, sa, T, and accuracy ε.

Output: Feasible solution R(Afix) of (TDM-B) with objective value f = f(Afix),
such that |f − f∗| ≤ ε, if f∗ is the optimal objective value.

Step 0.

Amiss = ∅,

Afix∗
= ∅, best solution obtained so far

f
u = Upper bound calculated by Heuristic 17 or 18

f
l = Lower bound calculated by LP-Relaxation of (TDM-B)

List = {P (Afix∗
,Amiss)} with current objectivef

l
P (Afix∗

,Amiss) = 0

and fP (Afix∗,Amiss) = 0

Step 1.

1. If List= ∅, stop.

Calculate the exact optimal solution RAfix∗

by Algorithm 16.

2. f l = min{f l
P : P ∈ List}

3. If fu − f l ≤ ε stop:

Calculate the ε optimal solution solution RAfix∗

by Algorithm 16.

Step 2. Choose P = P (Afix,Amiss) ∈ List with current objective fP .

Let Aopen = Achange \
`
Afix ∪Amiss

´
.

Step 3. Reduction of P Perform Algorithm 19

Step 4: Never-meet property Check if the never-meet property is

satisfied (Algorithm 13). If yes:

Solve P optimally by Algorithm 15 and let f l = fu be the optimal solution

and Afixu
be the set of maintained connections.

Goto 7.

Step 5. Lower bound Solve the relaxation LP-TDM-B-strong(Afix ,Amiss)

and let f l be its objective value and (y, z, u) its solution.

If (y, z, u) is integer, then

• f l = fu,

• Afixu
= {a ∈ Aopen : z̄a = 0} and

• goto 6.

Step 6. Upper bound Choose at least one of the following steps.

1. Let Afixu
= {a ∈ Achange : a ∈ p with zp = 0} in the solution of

LP-TDM-B(Afix,Amiss) in step 5 and calculate fu = f(Afix) according

to Algorithm 16.

2. Calculate wa and wi according to (8.25) and (8.24) Solve P with

fixed weights by Algorithm 14. If the obtained results are better,

update fu, Afixu
.

3. Run Heuristic 17 or 18 for solving P (Afix,Amiss). If the obtained

results are better, update fu, Afixu
.

Step 7. Pruning

8.6 Solving the Total Delay Management Problem 173

1. If f l = fu, prune by optimality, i.e.,

Afix∗
= Afixu

∪Afix
if f

l + fP < f
u

f
u = min{f l + fP , f

u}

List = List \ {P}.

Goto 1.

2. If f l > fu or if fP + f l ≥ fu prune by bound, i.e.,

List = List \ {P}.

Goto 1.

3. If fu + fP < fu set

f
u = f

u + fP

Afix∗
= Afixu

∪Afix
.

Step 8. Choose a minimal a ∈ Aopen.

P
0
a = P (Afix ∪ {a},Amiss)

P
1
a = P (Afix

,Amiss ∪ {a}) with

fP
a0 = fP

a1 = fP and

f
l
P

a0
= f

l
P

a1
= fP + f

l
.

1. If the wait depart-decision of a is independent:

• If fmiss ≥ fu
maintain set List = List ∪ {P 0

a }
• If f l

maintain ≥ fmiss set List = List ∪ {P 1
a }

2. Otherwise, List = List ∪ {P 0
a , P 1

a }
Goto 1.

Since the choice of the next changing activity is performed according to ≺
step 3 can be performed very efficiently if the reduced data of the parent node
has been stored. Note that step 8 of the algorithm is due to Lemma 8.41.

9

The Bicriteria Delay Management Problem

All models developed in the previous chapter assume that we know the exact
paths the customers would like to use. If this is not the case, we at least need
the OD-matrix W , such that we can estimate the paths of the customers.
Moreover, the OD-matrix should also provide the time at which a customer
starts his journey. While an OD-matrix sometimes is known for railway trans-
portation, many bus companies do not even have this information, and time-
dependent OD-matrices are usually not available at all. In particular, nearly
nothing is known about the customers who change between different trans-
portation companies. In this chapter we hence suggest an approach to the
delay management problem not requiring all this information. To this end we
deal with the bicriteria delay management problem (BDM) of minimizing the
number of missed connections, and at the same time, minimizing the sum of
all delays over all vehicles.

(BDM)

Given PTN, F , U , minimal necessary times for driving, waiting, and chang-
ing, a feasible timetable (Πarr, Πdep), a set of weighted paths P through
PTN, and a set of delayed events Edel, find a perturbed feasible timetable
(xarr, xdep), such that both

fE =
∑

g∈F,v∈V g

xarr
v
g − Πarr

v
g , and

fA =
∑

(g,h,v)∈U :

(g,h,v) is missed

wghv

are minimized.

Again, note that for this approach we do not need any detailed data about
the customers, but only require a rough estimation to specify the importance

176 9 The Bicriteria Delay Management Problem

of the connections for the customers. To model this problem we again use the
concept of event-activity networks as introduced in Section 6.4.

Chapter 9 is structured as follows: We first show that (BDM) is NP-
hard and then present an integer programming formulation of the problem.
For this problem we are able to show that all Pareto solutions are time-
minimal. We point out that finding supported Pareto solutions is equivalent
to an instance of (TDM-const). To find all Pareto solutions of (BDM), we then
develop an exact algorithm based on a procedure for the discrete time/cost
tradeoff problem.

9.1 A First Analysis

Our first result clarifies the complexity status of (BDM).

Theorem 9.1. (BDM) is NP-hard, even if all slack times are zero, and no
two connections are contained in the same connected component of the given
PTN.

Proof. We reduce (BDM) to the knapsack problem, which is NP-hard, see
[GJ79a]. Given an instance of the knapsack problem, i.e., n items, each of
them with a cost ci ≥ 0 and a benefit bi ≥ 0, i = 1, . . . , n, and threshold
parameters C and B, does there exist a subset of items with total weight less
than or equal to C and total benefit at least B? For our proof we may assume
that bi > 0, since items with benefit bi = 0 will never be chosen in an optimal
solution of the knapsack problem.

To construct an instance of (BDM) from the knapsack problem we define
PTN = (V, E) as follows: V consists of 3n nodes, numbered by v1i, v2i, v3i,
i = 1, . . . , n and

E = {(v1i, v2i), (v2i
, v3i) : i = 1, . . . , n}.

Consider 2n vehicles (trains) t1, . . . , tn, t′1, . . . , t
′
n where ti goes from v1i to v2i,

while t′i starts at v2i and arrives at v3i, see Figure 9.1. We assume zero slack
times, i.e., sv

g = sv
gh = svu

g = 0 for all g, h ∈ F, k, u ∈ V . We set the weights
for the connections from ti to t′i at v2i as bi, i.e.,

wtit
′
i
v2i

= bi for all i ∈ {1, . . . , n}.

Furthermore, assume that the arrival of ti at station v2i is delayed by ci for
all i = 1, . . . , n, and we set

C′ =

n∑
i=1

ci + C and

B′ =

n∑
i=1

bi − B.

9.1 A First Analysis 177

...

v11

v21

v12

v22

v1n

v2n

v32v31 v3n

t1 t2

t’2t’1

tn

t’n

Fig. 9.1. Reduction of (BDM) to the knapsack problem.

Claim: There exists a solution to (BDM) with fE ≤ C′ and fA ≤ B′ if and
only if the instance of the knapsack problem can be answered by yes.

To see this equivalence, let xarr, xdep be a solution of (BDM) and define

U∗ := {i : xdep
v2i

t′
i

≥ xarr
v2i

ti
+ Lv2i

tit
′
i
}

as the set of maintained connections, each of them corresponding to an item
packed into the rucksack. Then we obtain

fE(xarr, xdep) ≤ C′

⇐⇒
n∑

i=1

xarr
v2i

ti
− Πarr

v2i

ti
+
∑
i∈U∗

xarr
v3i

t′
i

− Πarr
v3i

t′
i

≤ C′

⇐⇒
n∑

i=1

ci +
∑
i∈U∗

ci ≤
n∑

i=1

ci + C

⇐⇒
∑
i∈U∗

ci ≤ C

and

178 9 The Bicriteria Delay Management Problem

fA(xarr , xdep) ≤ B′

⇐⇒
∑

i:(ti,t
′
i
,v2i) missed

wi ≤ B′

⇐⇒
∑
i
∈U∗

bi ≤
n∑

i=1

bi − B

⇐⇒
∑
i∈U∗

bi ≥ B,

hence the claim is established. ��

With the notation introduced in Section 6.4 we are in the position to restate
the bicriteria delay management problem (BDM) as follows.

(BDM) Given N = (E ,A), a feasible timetable Πi, i ∈ E , minimal arc du-
rations La, a ∈ A, and source delays di determine a feasible perturbed
timetable xi, i ∈ E such that the following two objectives are minimized.
The sum of all delays over all vehicles and all stations:∑

i∈Earr

xi − Πi,

which is equivalent to the minimization of

fE =
∑

i∈Earr

xi

The weighted number of missed connections , given as

fA =
∑

a=(i,j)∈Achange :xj−xi<La

wa.

We assume that wa > 0 for all a ∈ Achange, otherwise we simply delete a from
Achange.

What we mean by “minimizing simultaneously” is to find Pareto solutions of
the problem with respect to fE and fA. Recall from Appendix B that if x1, x2

denote two feasible perturbed timetables, then x1 dominates x2 if

fE(x1) ≤ fE(x2) and

fA(x1) ≤ fA(x2),

where at least one of the inequalities is strict. Then a Pareto solution is a
feasible perturbed timetable which is not dominated by any other feasible

perturbed timetable (see Appendix B). The points

(
fE(x∗)
fA(x∗)

)
in objective

space are called efficient points, if x is a Pareto solution.

9.2 Integer Programming Formulation 179

9.2 Integer Programming Formulation

We now formulate (BDM) as a bicriteria (linear) integer program. To this
end, let M > maxi∈E di.

min fBDM =

(∑
i∈Earr

yi∑
a∈Achange

waz̄a

)
(9.1)

such that

yi ≥ di for all i ∈ E (9.2)

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪Adrive (9.3)

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange (9.4)

yi ∈ IN for all i ∈ E

z̄a ∈ {0, 1} for all a ∈ Achange.

First we show that y is time-minimal in all Pareto solutions of (BDM). Recall
that

Afix(z̄) = {a ∈ Achange : z̄a = 0}.

Lemma 9.2. Let (y, z̄) be a Pareto solution of (BDM). Then

1. y = y(Afix(z̄)).
2. For all a = (i, j) ∈ Achange:

z̄a = 0 ⇐⇒ yi − yj ≤ sa.

Proof. 1. Denote y∗ = y(Afix(z̄)) and assume that y �= y∗. Since y is a
feasible perturbed timetable we know from part 1 of Lemma 7.8 that
y∗ ≤ y, and y �= y∗ gives us additionally that there exists i ∈ E with
y∗

i < yi. Moreover, since y∗ is feasible for TT(Afix(z̄)) we conclude that
(y∗, z̄) also is a feasible solution of (BDM). Hence,

fE(y∗, z̄) =
∑

i∈Earr

y∗
i

<
∑

i∈Earr

yi = fE(y, z̄), and

fA(y∗, z̄) = fA(y, z̄).

This is a contradiction to the Pareto optimality of (y, z̄).
2. First, let z̄a = 0. Then (9.4) directly yields that yi − yj ≤ sa. On the other

hand, suppose that z̄ã = 1 and yĩ − yj̃ ≤ sã for some ã = (̃i, j̃) ∈ Achange.
Defining z̄′ã = 0 and z̄′a = z̄a for all other changing activities we obtain
that (y, z̄′) is feasible for (BDM) and

180 9 The Bicriteria Delay Management Problem

fE(y, z̄) = fE(y, z̄′)

fA(y, z̄) =
∑

a∈Achange

waz̄a

>
∑

a∈Achange

waz̄′a = fA(y, z̄′),

since wã > 0. Again, this is a contradiction to the Pareto optimality of
(y, z̄). ��

Similar to the previous chapter, we can now define reduced solutions as follows.

Definition 9.3. Let (y, z̄) be a feasible solution of (BDM). Define

y(z̄) = y(Afix(z̄))

z̄a(y) =

{
0 if yi − yj ≤ sa

1 otherwise

and the reduced solution

RBDM (y, z) = (yred, z(yred)),

where yred = y(z̄) is the time-minimal solution with respect to Afix(z̄).

In contrast to (TDM) where we only knew that there always exists a reduced
solution, Lemma 9.2 yields that all Pareto optimal solutions are reduced ones.

9.3 Lexicographic and Supported Efficient Solutions

Lexicographic Minimal Solutions

We first discuss the two lexicographic minimal solutions which can both be
determined easily for (BDM). Minimizing in the order (fA, fE) we first have
to minimize the weight of the missed connections. By setting z̄a = 0 for all
a ∈ Achange we obtain fA = 0 which is the best possible solution value.
To minimize fE under this condition we determine y = y(Achange) by Al-
gorithm 12 and its objective function value fE to obtain the lexicographic
minimal solution (y, z̄).

For the order (fE , fA) we proceed in two steps: First let Afix = ∅ (allowing
all connections to be missed) and determine y = y(∅) again by Algorithm 12
to obtain a solution with minimal possible objective function value fE . To
improve the corresponding value of fA we calculate z̄ = z̄(y) according to
Definition 9.3 above, i.e., we find out which connections are really missed in
our particular solution y, yielding the lexicographic minimal solution (y, z̄).

9.3 Lexicographic and Supported Efficient Solutions 181

Supported Efficient Solutions

Supported efficient solutions are those solutions which can be determined by a
scalarization of the two objectives, i.e., by solving the following minimization
problem, see [Geo68], or Appendix B. Given 0 < λ < 1 we have to solve

min λ
∑

i∈Earr

yi + (1 − λ)
∑

a∈Achange

waz̄a

such that

yi ≥ di for all i ∈ E

yi − yj ≤ sa for all a = (i, j) ∈ Await ∪Adrive

−Mz̄a + yi − yj ≤ sa for all a = (i, j) ∈ Achange

yi ∈ IN for all i ∈ E

z̄a ∈ {0, 1} for all a ∈ Achange.

Fortunately, this problem is equivalent to (TDM-const) (Section 8.3 on
page 136).

Theorem 9.4. Finding supported efficient solutions of (BDM) is equivalent
to solving (TDM-const).

Proof. Define T = 1 − λ, wi = λ. (If T should be as large as it used to be,
multiply all weights wi and T by some large value.) ��

This means we can use the results of Sections 8.4 and 8.3. Especially, the never-
meet property gets important again, since it simplifies (BDM) significantly, if
it is satisfied. Recall from Definition 8.18 that the delay management problem
has the never-meet property, if for each Afix ⊆ Achange the time-minimal
solution y = y0(Afix) satisfies the following two conditions.
For all j ∈ Ered−late:

1. If (i1, j), (i2, j) ∈ Afix ∪ Await ∪ Adrive, and yi2 > 0 then yi1 = 0.
2. If (i1, j) ∈ A, and dj > 0 then yi1 = 0.

As a consequence of Theorem 9.4 we hence get:

Corollary 9.5. Let the delay management problem have the never-meet prop-
erty. Then the supported efficient solution belonging to some fixed λ can be
determined in time O(|A|).

Proof. This follows from Theorem 9.4 and from the correctness of Algo-
rithm 15 (see Theorem 8.34) on page 160. ��

Without the never-meet property, but with zero slack times we can use The-
orem 8.23 to obtain the next corollary.

182 9 The Bicriteria Delay Management Problem

Corollary 9.6. Let sa = 0 for all a ∈ A. Then the supported efficient solution
belonging to some fixed λ can be determined by linear programming.

Proof. The corollary also follows from Theorem 9.4, this time in combination
with Theorem 8.23 (see page 146). ��

We remark that solving the scalarization in the general case can be done by
Algorithm 14 (page 156), or by solving the relaxation using the lower bounds
provided in Theorem 8.26 and Corollary 8.28 (see page 150).

9.4 Finding All Efficient Solutions

In this section we present an exact algorithm for finding all efficient solutions
of (BDM). It is based on ideas from solving the discrete time/cost tradeoff
problem (DTCTP) of project planning, and has been applied to delay man-
agement in [Gin01, GS02]. We start by describing (DTCTP).

The (DTCTP) in Project Planning

In project planning the classic goal is to determine the minimal project length.
One possibility to finish a project quicker is to speed up some of the activities.
Usually this is expensive, since new facilities have to be bought or more work-
ers have to be hired. In this sense, we have two objective functions, namely
the project length and the money to be spent, and the goal might be to

• minimize the project length with a given budget,
• attain some required project length as cheaply as possible, or
• find all efficient solutions for both objectives simultaneously.

If the cost-duration function is continuous for each activity, the problem has
been widely studied, see [Elm77, Neu75] and references therein. In the dis-
crete time/cost tradeoff problem (DTCTP), however, the duration L̄a is a
discrete non-increasing function ga depending on the costs c. The possible
cost-duration combinations of the respective activity are called modes, and
are given by

{(L̄m
a , cm

a), m = 1, . . . , Ma}.

As in the continuous case, we have two objective functions in (DTCTP),
namely

1. minimize the project length, and
2. minimize the costs.

In contrast to the continuous case, literature on (DTCTP) is rather sparse.
The NP-hardness of the problem has been shown 1992 in [DDGW97]. De-
meulemeester et al. [DHE96] gave two optimal procedures for that problem.
The first algorithm is based on a procedure for finding the minimal number

9.4 Finding All Efficient Solutions 183

of reductions necessary to transform a general network to a series-parallel
network, see [BKS92]. The second one minimizes the computational effort in
enumerating alternative modes through a branch and bound tree. The solu-
tion method proposed in [DRF+98] uses a branch and bound procedure which
computes lower bounds by making convex piecewise linear underestimations
of the discrete time/cost curves of the activities. Those piecewise linear under-
estimations are used as input for an adapted version of the Fulkerson labeling
algorithm for the linear time/cost trade-off problem.

For solving (BDM) we will adapt a solution method for (DTCTP) which has
been suggested by [DHE96]. It is based on the following ideas.

Any project network N̄ = (Ē , Ā) (according to Definition 7.3) can be reduced
to one single arc by applying the following three operations (Figure 9.2), see
[DHE96]:

Serial merge: Let a1 be an arc from i to j, let a2 be an arc from j to k, and
let no other arc in Ā be incident with node j ∈ Ē . Then merge a1 and a2

to one arc a going from i to k.
Parallel merge: Let a1, . . . , ap be p arcs going from i to j. Then merge all of

them to one arc a going from i to j.
Node reduction: Let i ∈ Ē such that only one incoming arc a0 is incident with

i, and let a1, . . . , ap be the outgoing arcs (or vice versa). Then merge a0

with all of the arcs a1, . . . , ap serially to the new activities a0
1, . . . , a

0
p.

If no node reduction is needed in the reduction process, the network is called
series parallel. An alternative approach to the critical path method (CPM)
(see Section 7.2), is to successively shrink the network by applying the two
merge operations and node reduction, until only one arc from s to t is left
(see [Elm77]). The duration of the new arc a is calculated by

• L̄a = L̄a1 + L̄a2 in a serial merge, and
• L̄a = max{L̄a1 , . . . , L̄ap

} in a parallel merge.

Node reduction consists of p serial merges and is treated accordingly. We refer
to Figure 9.2 for an illustration.

In the (DTCTP) we need to calculate the complete set of modes in each
shrinking operation. In a serial or a parallel merge this can be done easily as
follows.

Serial merge: {(L̄m1
a1

+ L̄m2
a2

, cm1
a1

+ cm2
a2

), for all modes m1 of a1, m2 of a2}
Parallel merge: {(maxl=1,...,p L̄ml

al
,
∑p

l=1 cml
al

for all modes ml of al, l = 1, . . . , p}

Note that many of the modes of the new arc a can be skipped (or, numerically
better, need not be constructed) since they are dominated by other modes of
a. Applying the two merging operations in a series-parallel network, one ends
up with one single arc containing all efficient solutions (as its current set of
modes). The (DTCTP) is hence easy solvable in series-parallel networks.

184 9 The Bicriteria Delay Management Problem

Serial merge:

Parallel merge:

Node reduction:

L1 L2

L2

L1

L2

L3

L4

L1

L3

Serial merge:

Parallel merge:

Node reduction:

L1+L3

L1+L4

L1+L2

max{L1,L2,L3}

L1+L2

Fig. 9.2. Situation before and after a serial merge, parallel merge, or node reduction,
when calculating the minimal completion time.

Unfortunately, node reduction cannot be performed as easily as the serial
and the parallel merge in the bicriteria case, since one has to exclude the
combination of two different modes of the same activity later on. Hence, for
finding all efficient solutions one needs to fix the mode in a node reduction
and to enumerate all possible combinations of modes. How to find a minimal
set of activities to fix is described in [BKS92]. For more details, we refer to
[DHE96].

To use these results for solving the bicriteria delay management problem, we
will first discuss how the delay can be calculated correctly in the shrinking
method in the next section and then show how (BDM) can be modeled and
solved as (DTCTP).

Calculating the Delay Within the Shrinking Method

For answering the questions above we reconsider the delay management prob-
lem with fixed connections TT(Afix) of Chapter 7. Recall that in this problem
we have given a set of changing activities Afix ⊆ Achange for which we require

yi − yj ≤ sa

meaning that these connections must be maintained.

We now adapt the shrinking method sketched on page 182 to calculate the
delay correctly in the delay management problem with fixed connections. Of
course, this method yields the optimal solution by Theorem 7.5. But for the
bicriteria delay management problem it is important to be able to calculate
both objective functions in each intermediate step of the shrinking process.

To this end we introduce a second parameter d̄a for each activity which cal-
culates the delay, and, furthermore, we shrink the network in a specific order.

9.4 Finding All Efficient Solutions 185

That is, we are only allowed to merge activities if no preceding activities ex-
ist any more. This is specified next. Note that during the reduction process
parallel edges may occur, such that the notation a = (i, j) in this section just
means activity a goes from event i to event j. We now define the following
network.

Notation 9.7. Let N = (E ,A) and let Afix ⊆ Achange. The corresponding
delay network N d = (Ed,Ad) is given through

Ed := E ∪ {s, t}

Ad := A∪ {(s, i)s : i ∈ E} ∪ {(s, i)d : i ∈ Edel}

∪{(i, t) : i is a maximal element of E} ∪ {(s, t)}

L̄a :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

La if a ∈ A
Πi if a = (s, i)s, i ∈ E
Πi + di if a = (s, i)d, i ∈ Edel

0 if a = (i, t), i ∈ E
T if a = (s, t).

The arcs a = (s, i)s are called timetable arcs and the arcs a = (s, i)d are
called delay arcs.

sink s

sink s

sink s

(L2,0)(L1,d1)

(L1,d1)

(L2,d2)

(L1,d1)

(L2,0)

(L3,0)

(L4,0)

Serial merge:

Parallel merge:

Node reduction:

(Π.0)

sink s

sink s

sink s

Serial merge:

Parallel merge:

Node reduction:

(L1+L2, d1)

(L,d)

(L1+L2,d1)

(L1+L3,0)

(L1+L4,0)

π

where L=max{L1,L2, }π

d=[L−] + d1 + d2

Fig. 9.3. Situation before and after a serial merge, parallel merge, or node reduction,
when calculating the delay .

We remark that each node (except of the source s) is incident with exactly
one incoming timetable arc.

We now come back to the delay management problem with fixed connections
(TT(Afix)) and present one more algorithm to solve it. The shrinking process
of step 1 is depicted in Figure 9.3.

186 9 The Bicriteria Delay Management Problem

Algorithm 21: Shrinking method for solving TT(Afix)

Input: N, Πi, di, La, Afix.

Output: Optimal (time-minimal) solution of TT(Afix).

Step 0. Set d̄a = 0 for each arc, and let L̄a be defined

as in Notation 9.7.

Step 1. Apply the following operations if applicable:

Serial merge: Applicable for two activities a1, a2

if a1 = (s, i) a2 = (i, j) for i, j ∈ Ē, and no other

activity is incident with i. Then delete i and

replace a1 and a2 by one arc a = (s, j) with

L̄a = L̄a1 + L̄a2 (9.5)

d̄a = d̄a1 (9.6)

Parallel merge: Applicable for activities a1, . . . , ap

with ak = (s, i) for one common node i ∈ Ē,
if there is no other incoming activity of event i.

Let as be the (at most one) timetable arc. Then

replace all ak by one arc a = (s, i) with

L̄a = max{L̄a1 , . . . , L̄ap} (9.7)

d̄a =

(P
a=a1,...,ap

d̄a + L̄a − L̄as if i ∈ EarrP
a=a1,...,ap

d̄a if i �∈ Earr.
(9.8)

Node reduction: Applicable for activities a0, a1, . . . , ap

if a0 = (s, i) and ak = (i, jk) with i, jk ∈ Ē for k = 1, . . . , p, and

no other activities are incident with i.

Then arbitrarily choose an outgoing arc of i, say a1,

delete i, and replace ak, k = 0, . . . , p by p arcs

a0
k = (s, jk), k = 1, . . . , p.

L̄a0
k

= L̄a0 + L̄ak
, k = 1, . . . , p (9.9)

d̄a0
1

= d̄a0 (9.10)

d̄a0
k

= 0, k = 2, . . . , p (9.11)

Step 2 : If the network has been reduced to one single arc

a = (s, t) let fE = d̄a. Stop.

Before we prove its correctness, Algorithm 21 will be illustrated in the fol-
lowing example. Consider the situation shown in Figure 6.4 (see page 105),
representing a PTN with two vehicles g and h that meet at station v0, such

9.4 Finding All Efficient Solutions 187

that passengers can change between the two vehicles. The scheduled times
and the lower bounds for each activity are given. Suppose that vehicle g ar-
rives at v0 with a delay of 10 minutes, i.e., d1 = 10 and the duration of the
corresponding delay arc a = (s, 1)d is L̄a = 18 + 10 = 28. In Figure 9.4 the
corresponding delay network, in which the delay arc (s, 1) has already been
merged with its parallel timetable arc, is depicted.

�

�

��

�

�

� �

�
�

�

�

�

�
�

�
�

��

�
�

�
�

�	 �
�

�
�

�

�
�

�
�

��

s

t

1

2

34

5

6

7

arr

arrdep

dep

arr

arrdep

dep

8:46 8:06

8:00 8:47

8:26 8:20

8:18 8:27

6

6

4 4

14

14

28

10

�

�

�����������

�
�
�
�
�
�
�
�
�
���

�

� �
�

� �

�
�

�
�

���

6

26

20

27

46

47

�
�
�
�
�
�
���

� �

�

0

0

Fig. 9.4. N d for the example. Event 1 is delayed by 10 minutes. The changing
activities are dashed.

Table 9.1 gives the perturbed timetable x. In addition the original timetable
Π and the delay for each event are given. The sum over all delays in the
network equals 23 minutes, which is minimal under the assumption that all
connections are kept.

Lemma 9.8. N̄ can be reduced to one single arc from s to t by using serial
merges, parallel merges, and node reduction as defined above.

Proof. Let N̄ c = (Ēc, Āc) denote the reduced network with its set of nodes
and arcs after c steps of reduction. Note that there exist directed paths from
s to any of the nodes in Ēc, and from each node in Ēc to t. Take a minimal
node i in Ēc and let a1 = (s, i) be the arc from s to i i.e., there is no node
j ∈ Ēc \ {s} with j ≺ i.

188 9 The Bicriteria Delay Management Problem

i event xi Πi yi

s 8:00 8:00 0
1 g , v0, arr 8:28 8:18 10
2 h, v3, dep 8:06 8:06 0
3 h, v0, arr 8:20 8:20 0
4 g , v0, dep 8:32 8:26 6
5 h, v0, dep 8:34 8:27 7
6 g , v2, arr 8:46 8:46 0
7 h, v4, arr 8:47 8:47 0

9>>>>>>>>>>=
>>>>>>>>>>;

P
i∈E

(xi − Πi) = 23min

Table 9.1. New timetable computed by Algorithm 21.

• If there are other arcs a = (s, i), then a parallel merge is applicable.
• Otherwise, a1 is the only incoming arc to event i. In this case, either i = t

and the reduction process is finished, or i �= t meaning that there exists at
least one outgoing arc of node i, such that
– a serial merge is applicable, or
– a node reduction of node i can be performed. ��

Lemma 9.9. During the reduction process let a = (s, i) be the only activity
from s to i, i ∈ Ē . Then La contains the perturbed feasible timetable for event
i of the optimal solution to TT(Afix).

Proof. Applying the shrinking operations together with the rules (9.5),(9.7),
and (9.9) is equivalent to CPM (see [Elm77]). Furthermore, according to Theo-
rem 7.5 we know that CPM yields an optimal solution to TT(Afix). Together,
the result follows. ��

Lemma 9.10. Let a = (s, t) be the only remaining activity at the end of the
shrinking process. Then fE = d̄a, i.e., d̄a contains the sum of all arrival delays
of the event-activity network N .

Proof. We show by induction that in each step of the shrinking process,∑
a∈Ā

d̄a

contains the sum of all delays of arrival events in the set Ẽ , consisting of

• all arrival events which have already been deleted during the process, and
of

• timetable events, i.e., events i ∈ Ē such that there exists exactly one in-
coming arc a = (s, i).

After the initialization, all d̄a = 0. This is correct, since no activity has been
deleted, and all delayed events i ∈ Edel have two incoming arcs (s, i)d and
(s, i)s, i.e., Ẽ = ∅. Now we discuss each of the three shrinking operations.

9.4 Finding All Efficient Solutions 189

Serial merge of an arc a1 = (s, i) and another arc a2 = (i, j) means to delete
event i, which already has been a timetable event before. Since there exists
at least one more arc to j (namely the timetable arc (s, j)) j will not enter
Ẽ, hence Ẽ does not change. On the other hand, activities a1 and a2 are
replaced by a, but since d̄a1 = d̄a and d̄a2 = 0 the sum of all d̄a′ over all
a′ ∈ Āc does not change.

Node reduction is also correct, since it consists of d serial merges, where the
delay of the timetable arc is transferred exactly to one of the new arcs.

Parallel merge of a1, . . . , ap, all of them going from s to i means that i be-

comes a timetable event and is added to Ẽ . We have to show that the new
calculation of the delay now includes the delay of event i, if it is an arrival
event. To this end, let a1 be the unique timetable arc. Note that this means
La1 = Πi contains the original timetable, while L̄a = maxk=2,...,p L̄ak

, con-
tains the (perturbed) time for event i in an optimal solution of (TT(Afix))
due to Lemma 9.10. Consequently, the delay of event i is zero, if L̄a = Πi,
otherwise the delay is given by L̄a − Πi. Adding this new delay to the
given ones d̄ak

, k = 1, . . . , p and using the induction hypothesis proves the
result. In the case that i is not an arrival event, especially, i = t no further
delay needs to be added. Replacing a1, . . . , ap by one arc a is correct since
all the delays are added to the delay of the new arc a. ��

Lemma 9.9 and 9.10 together finally show the desired correctness of our pro-
cedure.

Theorem 9.11. Algorithm 21 yields an optimal solution to TT(Afix).

The Algorithm for (BDM)

To find the set of all efficient solutions of (BDM) we will now transfer the
algorithm by [DHE96] for the discrete time/cost trade-off problem (DTCTP)
to the bicriteria delay management problem.

First, we have to define modes for each arc as follows. For all activities a ∈
Achange we define two modes, given by (La, 0) and (−∞, wa), representing that
we either maintain the connection, i.e., the duration of the changing arc has
to be included in the calculation, or we do not maintain the connection which
means that we lose a weight of wa customers. All other activities (waiting,
driving) as well as the timetable arcs in the construction of the delay network
N̄ d only get one single mode (L̄a, 0). A third parameter, calculating the delay
in each step is also necessary. The modes are given by the triple (duration,
delay, weight of lost connection). A mode m1 dominates m2, if m2 is dominated
in the two last components of the triples.

190 9 The Bicriteria Delay Management Problem

Algorithm 22: Finding all efficient solutions of (BDM)

Input: N, di, Πi, La, wa.

Output: All efficient solutions of (BDM).

0. Initialize: Set d̄a = 0 for each arc, and let L̄a be defined as in

Notation (9.7). Initialize one mode m = (L̄a, d̄a, 0) for all a �∈ Achange

and two modes ma
1 = (La, d̄a, 0), ma

2 = (−∞, da, wa) for all a ∈ Achange.

Step 1: Apply the following operations if applicable:

1.1. Serial merge: Applicable for two activities a1, a2 if a1 = (s, i),
a2 = (i, j) for i, j ∈ Ē, and no other activity is incident with i.

Then delete i and calculate the modes of the new activity a by

combining each possible combination of modes, i.e.,

{(L̄m1
a1

+ L̄
m2
a2

, d̄
m1
a1

, w̄
m1
a1

+ w̄
m2
a2

), for all modes m1 of a1, m2 of a2}

and deleting dominated ones.

1.2. Parallel merge: Applicable for activities a1, . . . , ap with ak = (s, i)
for one common node i ∈ Ē, if there is no other incoming activity

of event i.

Let as be the (at most one) timetable arc. Then the modes of the new

activity a are given by

{(
p

max
l=1

L̄
ml
al

,

pX
l=1

d̄
ml
al

+
p

max
l=1

L̄
ml
al

− L̄as ,

pX
l=1

w̄
ml
al

)

for all modes ml of al, l = 1, . . . , p

in the case that i ∈ Earr. For i �∈ Earr the modes are given by

{(
p

max
l=1

L̄
ml
al

,

pX
l=1

d̄
ml
al

,

pX
l=1

w̄
ml
al

)

for all modes ml of al, l = 1, . . . , p},

where dominated modes are deleted.

1.3. Node reduction: Applicable for activities a0, a1, . . . , ap if

a0 = (s, i) only has one single mode, ak = (i, jk) with i, jk ∈ Ē for

k = 1, . . . , p, and no other activities are incident with i. Then

arbitrarily choose an outgoing arc of i, say a1, delete i, and

calculate the modes of the new activity a0
k, k = 2, . . . , p by

{(L̄a0 + L̄
m
ak

, 0, w̄
m
ak

) for all modes m of ak}

and of a0
1 by

{(L̄a0 + L̄
m
a1

, da0 , w̄a0 + w̄
m
a1

) for all modes m of ak}.

Step 2.

2.1 Final reduction If the network has been reduced to one single arc

goto 3.

9.4 Finding All Efficient Solutions 191

2.2 Fixing an activity Otherwise, choose activity a = (s, i) such that

i is the earliest node still in the network, fix one mode of

activity a and perform node reduction as in step 1.3.

Goto 1.

Step 3: Add the modes of the new solution, delete all non-efficient ones

(compared to other solutions obtained in previous steps) and goto 1,

fixing another combination of modes during step 2.2

If all combinations of modes have been calculated, stop.

Theorem 9.12. Algorithm 2 finds all efficient solutions of (BDM).

Proof. Using the result of Theorem 9.10 we know that the delay fE has been
calculated correctly when reaching step 2.1. It is also clear that the final value
of w̄ in the remaining activity from s to t equals fA. If all solutions had been
determined for each possible combination of modes, the resulting set would
contain all efficient solutions. Since a solution can never be Pareto, if parts
of it are dominated (i.e., can be replaced by a better solution) it is feasible
to delete dominated modes for single activities during the reduction process.
Since in the final step, all remaining dominated solutions are deleted, we end
up with the set of non-dominated solutions in the end. ��

Consider again our example on page 186. Figure 9.5 shows the corresponding
DTCTP. First a serial merge operation can be applied to activities 6 and 10.
Denote the new activity by 17 with mode (20,0,0) and merge it in parallel
with activity 5 which yields the new activity 18 with mode (20,0,0). Now a
node reduction step is performed for event 1, adding the costs of activity 1 to
a succeeding activity, e.g., activity 8 and thus obtain activity 19 with mode
(32,10,0). Activity 9 can then be merged serially with activity 1, this time
without adding the costs to avoid double counting. This yields activity 20 with
modes (34,0,0) and (−∞,0,1). Now merge activity 3 and 19 in parallel. Since
activity 3 is a timetable arc and the duration of activity 19 is greater than the
one of activity 3, the difference of 6 minutes has to be added to the delay of
the new activity, which is numbered by 21 and has mode (32,16,0). Another
parallel merge operation can be performed with activities 2 and 20 which
results in activity 22 with modes (34,7,0),(27,0,1). The delay of 7 minutes in
the first mode results from the difference in the duration of activities 20 and
2 (34 − 27 = 7). Figure 9.6 shows the network after these reduction steps.
Then it can be continued in the same way by performing a node reduction
with event 3. Table 9.2 shows the complete reduction plan.
In step 3 of the algorithm we compare the obtained solutions with solutions
found in previous iterations. Since in this example there were no activities to
fix with more than one mode, the computation can be stopped and yields two
efficient solutions: the first one with no missed connections and 23 minutes of

192 9 The Bicriteria Delay Management Problem

�

�

��

�

�

� �

�
�

�

�

�

�
�

�
�

��

�
�

�
�

�	 �
�

�
�

�

�
�

�
�

��

s

t

1

2

34

5

6

7

12. (6,0,0)

9. (6,0,0)

(−∞,0,1)

(−∞,0,1)

8. (4,0,0) 11. (4,0,0)

14. (14,0,0)

10. (14,0,0)

1. (28,10,0)
13. (10,0,0)

�

�

�����������

�
�
�
�
�
�
�
�
�
���

�

� �
�

� �

�
�

�
�

���

6. (6,0,0)

3. (26,0,0)

5. (20,0,0)

2. (27,0,0)

4. (46,0,0)

7. (47,0,0)

�
�
�
�
�
�
���

� �

�

15. (0,0,0)

16. (0,0,0)

Fig. 9.5. N̄ d with the modes for DTCTP.

�

�

�

�

� �

�
�

�

�
�

�
�

��

�
�

�
�

�

s

t

34

5

6

7

�
�
�
�
�
�
���

� �

�

15. (0,0,0)

16. (0,0,0)

12. (6,0,0)

(−∞,0,1)

11. (4,0,0)

14. (14,0,0)

13. (10,0,0)

�

�

�����������

�
�
�
�
�
�
�
�
�
���

�

� �
�

21. (32,16,0)

18. (20,0,0)

22. (34,7,0)

(27,0,1)

4. (46,0,0)

7. (47,0,0)

Fig. 9.6. Network after the first six reduction steps.

9.4 Finding All Efficient Solutions 193

Action Activities New Modes

1.Series [6,10] 17 (20,0,0)
2.Parallel [5,17] 18 (20,0,0)
3.Reduce [1,8] 19 (32,10,0)
4.Reduce [1,9] 20 (34,0,0),(−∞,0,1)
5.Parallel [3,19] 21 (32,16,0)
6.Parallel [2,20] 22 (34,7,0),(27,0,1)
7.Reduce [18,11] 23 (24,0,0)
8.Reduce [18,12] 24 (26,0,0),(−∞,0,1)
9.Parallel [21,24] 25 (32,16,0)

10.Parallel [22,23] 26 (34,7,0),(27,0,1)
11.Series [25,14] 27 (46,16,0)
12.Parallel [4,27] 28 (46,16,0)
13.Series [26,13] 29 (44,7,0),(37,0,1)
14.Parallel [7,29] 30 (47,7,0),(47,0,1)
15.Series [28,15] 31 (46,16,0)
16.Series [30,16] 32 (47,7,0),(47,0,1)
17.Parallel [31,32] 33 (47,23,0),(47,16,1)
18.Evaluate 33

Table 9.2. Reduction plan for the example.

total delay and the second one with one missed connection and 16 minutes of
total delay.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30

nu
m

be
r

of
 e

ffi
ci

en
t s

ol
ut

io
ns

number of changing activities

Fig. 9.7. Number of efficient solutions as function of the size of Achange.

Instead of fixing all possible combinations of modes, a branch and bound
approach can be applied to make the procedure more efficient. Nevertheless,
our numerical experiments indicate that Algorithm 22 runs rather quickly if
the relevant time interval to be considered is not too large. Evaluating the
delay and the missed connections for all events and activities within the next

194 9 The Bicriteria Delay Management Problem

60 minutes could in most cases be done within a running time of less than
a minute on a standard personal computer. Both the running time and the
number of efficient solutions depend on the number of changing activities that
need to be considered. This behavior is depicted in Figure 9.7, details can be
found in [GS02, Gin01].

The nice behavior of Algorithm 22 on our practical data is due to the fact that
the number of changing activities outside of the municipal areas is relatively
small, such that the event-activity network is close to a series-parallel one.
Summarizing, the method seems to have the potential to be used as an on-
line decision support procedure.

10

Extensions

In the first part of this chapter we present a very general model for the delay
management problem, called general delay management problem (GDM). It
contains all models discussed so far as special cases and allows us to define
many other interesting objective functions. The goal in the general delay man-
agement problem is to minimize the following two objectives simultaneously:

• the number of customers missing a connection and
• the amount of the additional delay of the remaining customers,

where we allow two different subsets P1,P2 ⊆ P , specifying the paths relevant
for either objective.

In the second part we discuss some requirements arising in practice that are
currently under research. In particular in railway delay management problems,
additional requirements modeling the limited capacity of the tracks need to
be taken into account.

Chapter 10 is structured as follows: We discuss the general delay man-
agement problem (GDM), give an integer programming formulation and point
out its relation to the models (TT), (TDM), and (BDM) discussed before. Fur-
thermore we briefly mention requirements for delay management which appear
in practice and first solution approaches to including them in our models.

10.1 The General Delay Management Problem

Here we present a very general model for the delay management problem. We
propose a bicriteria formulation, which takes into consideration that arriving
with a delay and missing a connection may have different utility functions.
The specification, how more important it is to miss a connection, is left open
since experience tells us that this decision strongly depends on the preferences
of the respective planner of the public transportation company.

196 10 Extensions

To formalize the objective functions of (GDM), let two sets of customers’ paths
P1,P2 be given and let P = P1 ∪P2. (Paths have been defined in Chapter 8.)
Then consider passengers traveling along a path p ∈ P through the public
transportation network. We are interested in the following two cases.

Case 1: If p ∈ P1 and all connections on path p are maintained, then we add
the delay of a passenger using path p to our first objective. This delay of
a passenger using path p equals the arrival delay of his last vehicle g(p)
at his destination station v(p), given by

xarr
v(p)
g(p) − Πarr

v(p)
g(p).

Case 2: If p ∈ P2 and at least one connection on p is missed, then we count
all passengers using path p in the second objective.

The general delay management problem can now formally be stated as follows.

(GDM)

Given PTN, F , U , minimal necessary times for driving, waiting, and chang-
ing, a feasible timetable Πarr, Πdep, a set of paths P through PTN with
weights wp for all p ∈ P, and a set of delayed events Edel, find a perturbed
feasible timetable xarr, xdep, such that both

f1 =
∑

p∈P1:p is maintained

wp(xarr
v(p)
g(p) − Πarr

v(p)
g(p)) and

f2 =
∑

p∈P2:p is missed

wp,

are minimized.

By defining the sets P1,P2 appropriately, one can investigate many interesting
objective functions as special cases of f1 and f2. For example, defining P1 as
the set of paths used by the drivers of the PTN, f1 will give the sum of delays
of the drivers when coming back to the depot at the end of their shifts, and
is hence the sum of the overtime over all drivers.

10.1 The General Delay Management Problem 197

Integer Programming Formulation

(GDM) can be formulated as the following integer program.

(GDM)

min

(∑
p∈P1

wpyi(p)(1 − zp)∑
p∈P2

wpzp

)
,

such that

yi ≥ di ∀i ∈ Edel (10.1)

yi − yj ≤ sa ∀a = (i, j) ∈ Await ∪ Adrive (10.2)

−Mz̄a + yi − yj ≤ sa ∀a = (i, j) ∈ Achange (10.3)

Mz̄a − yi + yj ≤ M −
1

2
− sa ∀a = (i, j) ∈ Achange (10.4)

zp −
∑

a∈Achange∩p

z̄a ≤ 0 ∀p ∈ P (10.5)

zp − z̄a ≥ 0 ∀p ∈ P , a ∈ Achange ∩ p (10.6)

yi ≤ T ∀i ∈ E (10.7)

yi ∈ IN ∀i ∈ E

zp ∈ {0, 1} ∀p ∈ P

z̄a ∈ {0, 1} ∀p ∈ P .

The following observations make sure that the integer programming formula-
tion is a correct model for (GDM).

Lemma 10.1. In each feasible solution of (GDM) the following holds.

1. z̄a = 0 if and only if connection a is maintained.
2. zp = 0 if and only if all connections on path p are maintained.

Proof. 1. First consider a connection a ∈ Achange.
=⇒: Let z̄a = 0. Constraint (10.3) then directly gives yi − yj ≤ sa, mean-

ing that this connection is maintained according to Definition 6.3.
⇐=: Let a be a maintained connection, i.e., yi − yj ≤ sa. Then constraint

(10.4), together with the integrality of the variables, forces z̄a = 0.
2. Now consider some path p ∈ P .

⇐=: Let zp = 0. Then constraint (10.6) yields z̄a = 0 for all a ∈ Achange∩
p, meaning that all these connections are maintained due to part 1 of
Lemma 10.1.

=⇒: Let a be maintained for all a ∈ p ∩ U . Again, using the first part
of Lemma 10.1 we obtain that z̄a = 0 for all a ∈ p ∩ Achange. Hence,∑

a∈Achange∩p z̄a = 0 and constraint (10.5) yields zp = 0. ��

We also have to clarify the size of M .

Lemma 10.2. Choosing M ≥ T + sa + 1
2 for all a ∈ Achange is large enough

for constraints (10.4), while for constraint (10.3) M ≥ yi − yj − sa for all
a = (i, j) ∈ Achange is sufficient.

198 10 Extensions

Relations to the Models Discussed Before

Relation to (TT)

fTT can be interpreted as a special case of f1 in (GDM), namely, if the set of
paths P1 only contains paths p such that for all a ∈ p: a ∈ Afix. Defining

Pfix = {p ∈ P : for all a ∈ p : a ∈ Afix} and

wfix
i =

∑
p∈Pfix:i(p)=i

wp

we conclude that

f1 =
∑

p∈Pfix

wpyi(p) =
∑

p∈P1:zp=0

wfix
i yi = f rmTT .

Relation to (TDM)

Here we prove that (TDM) is a scalarization of (GDM), and hence all solutions
of (TDM) are (supported) efficient solutions of the general model (GDM). To
this end, we use the formulation (TDM-A) on page 122.

Theorem 10.3. Let di ≤ D < T for all i ∈ Edel and let (y, z) be an optimal
solution of (TDM-A). Then there exists z̄ such that (y, z, z̄) is a (supported)
efficient solution of (GDM-B).

Proof. We show that (TDM-A) is equivalent to the scalarization of (GDM),
given by

min f1(y, z̄, z) + Tf2(y, z̄, z)

such that (10.1) – (10.7) and the integrality constraints are satisfied (see page
197), then the result follows from weighted sum scalarization with λ1 = 1

1+T
,

λ2 = T
1+T

due to [Geo68], or see Appendix B.

(TDM-A) =⇒ (GDM): Consider a feasible solution (y, z) of (TDM-A) with
objective function value f . We show that

(yred, zred, z̄),

with

yred = y(Afix(z)),

zred = z(yred), and

z̄a =

{
0 if yred

i − yred
j ≤ sa

1 otherwise

is a feasible solution of (GDM) with the same or a better objective function
value. From Lemma 8.3 we already know that RA(y, z) = (yred, zred) is

10.1 The General Delay Management Problem 199

feasible for (TDM-A) and has an equal or better objective value; hence
it only remains to show that (yred, zred, z̄) satisfies constraints (10.3) –
(10.7) of (GDM), i.e.,

(10.3) −Mz̄a + yred
i − yred

j ≤ sa ∀a = (i, j) ∈ Achange

(10.4) Mz̄a − yred
i + yred

j ≤ M − 1
2 − sa ∀a = (i, j) ∈ Achange

(10.5) zred
p −

∑
a∈Achange∩p z̄a ≤ 0 ∀p ∈ P

(10.6) −zred
p ≤ −z̄a ∀p ∈ P , a ∈ Achange ∩ p

(10.7) yi ≤ T ∀i ∈ E .

(10.3): From the definition of z̄ we know that yred
i − yred

j ≤ sa if z̄a = 0;
and for z̄a = 1 there is nothing to show.

(10.4): This is trivially satisfied for z̄a = 0. On the other hand, if z̄a = 1,
we get (due to the integrality of yred)

yred
i − yred

j > sa

=⇒ yred
i − yred

j ≥ sa +
1

2
.

(10.5): For zred
p = 1 we know that there exists some a = (i, j) ∈ p such

that yred
i − yred

j > sa. Consequently, z̄a = 1 and hence

zred
p ≤

∑
a∈Achange∩p

z̄a.

The case zred
p = 0 is trivial.

(10.6): Let a ∈ p. The case zred
p = 1 is trivial. If zred

p = 0 then we know

that for all a = (i, j) ∈ p: yred
i − yred

j ≤ sa from (8.3), and hence
z̄a = 0, which shows (10.6).

(10.7): From Corollary 7.9 we know that yred
i ≤ D for all i ∈ E , if di ≤ D

for all i ∈ Edel; hence yred
i ≤ T for all i ∈ E .

(GDM) =⇒ (TDM-A): Since there are only some constraints missing in the
formulation of (TDM-A), each feasible solution (y, z̄, z) of (GDM) yields a
feasible solution (y, z) of (TDM-A). Furthermore, for any feasible solution
(y, z̄, z) of (GDM) we have that both objective functions f1, f2 do not
depend on z̄, hence

f1(y, z̄, z) + Tf2(y, z̄, z) = fTDM−A(y, z)

and this direction is also satisfied. ��

Relation to (BDM)

Finally, we remark that the bicriteria delay management problem (BDM) (see
page 175) is also a special case of (GDM). This is stated more precisely in the
following lemma.

200 10 Extensions

Lemma 10.4. (BDM) is equivalent to (GDM) in the case that

P1 = {pa : a ∈ Adrive}

P2 = {pa : a ∈ Achange}

wp =

{
1 for all p ∈ P1

wa for all p = pa ∈ P2,

where for a = (i, j) ∈ A the corresponding path pa is simply given by a
sequence of the two events, i.e., pa = (i, j).

Note that to represent the paths of P2 in PTN, we have to add two more
events to all paths p̄a, namely

p̄a = (i′, i, j, j′)

where (i′, i) ∈ Adrive and (j, j′) ∈ Adrive are the unique driving activities
leading into event i, and going out of event j, respectively.

Proof. (GDM) =⇒ (BDM): Let (y, z̄, z) be a feasible solution of (GDM).
Then (y, z̄) is clearly feasible for (BDM). Furthermore, note that (y, z̄, z)
satisfies constraints (10.5) and (10.6) given by

(10.5) zp −
∑

a∈Achange∩p z̄a ≤ 0 ∀p ∈ P

(10.6) zp ≥ z̄a ∀p ∈ P , a ∈ Achange ∩ p.

Since no path of P1 contains a changing activity we conclude from (10.5)
that

zp = 0.

For p̄a ∈ P2 we know that a is the only changing activity contained in p̄a,
hence, (10.5) and (10.6) together yield

zp̄a
= z̄a.

For the objective functions we hence obtain

fE(y, z̄) =
∑

i∈Earr

yi

=
∑
p∈P1

wpyi(p)

=
∑
p∈P1

wpyi(p)(1 − zp)

= f1(y, z̄, z),

and,

10.2 Railway and Bus Specific Requirements 201

fA(y, z̄) =
∑

a∈Achange

waz̄a

=
∑

a∈Achange

wp̄a
zp̄a

=
∑
p∈P2

wpzp

= f2(y, z̄, z).

(BDM) =⇒ (GDM): Now let (y, z̄) be a Pareto solution of (BDM). Define

zp =

{
0 if p ∈ P1

z̄a if p = p̄a ∈ P2.

We have to show that (y, z̄) satisfies all constraints of (GDM) and leads
to the same objective function values for both objectives. Constraints
(10.1),(10.2), and (10.3) are identical to the first three constraints in
(BDM), and constraints (10.5) and (10.6) hold due to the definition of
zp. According to part 1 of Lemma 9.2 we know that y = y(Afix(z̄), and
hence yi ≤ maxi∈E di ≤ T , yielding (10.7).

Finally, consider (10.4) given by

(10.4) Mz̄a − yi + yj ≤ M −
1

2
− sa ∀a = (i, j) ∈ Achange.

For z̄a = 0 this is trivially satisfied. On the other hand, from part 2 of
Lemma 9.2 we know that for z̄a = 1 we have that yi − yj > sa, hence

−yi + yj ≤ −sa − 1 ≤ −sa −
1

2
,

establishing (10.4). Analogously to the first part of this proof, both ob-
jective functions coincide. ��

This yields the following corollary.

Corollary 10.5. The general delay management problem (GDM) is NP-hard,
even if all slack times are zero, P1 = P2, and no two connections are contained
in the same connected component of PTN.

10.2 Railway and Bus Specific Requirements

In practice, there are other effects which need to be considered when dealing
with the delay management problem. Many of them occur since passing and
overtaking of two trains can not be done anywhere on the tracks. E.g., on
a single-track line, two trains have to pass each other in a station, and also

202 10 Extensions

overtaking is only possible in a set of certain locations. Finding train sched-
ules on single-track lines has been considered, e.g., in [XC94, HKF96, Hig97],
and the estimation of delays for single-track train traffic is discussed, e.g., in
[CH90]. As already mentioned in the introduction, a recent overview about
scheduling and re-scheduling of trains is given in [Tör05a].

In the following we briefly outline how railway capacity requirements can be
included in the delay management problem.

Oncoming traffic: On single track lines the oncoming traffic has to be taken
into consideration, i.e., a vehicle is only allowed to leave if the oncoming
vehicle has arrived. This effect can be modeled by introducing some new
connections (g, h, v) representing that vehicle h is not allowed to depart
before the oncoming train has arrived. Fixing z̄ghv = 0 it is possible to
ensure that all these new connections are maintained, if the sequence of
the trains is fixed, see Figure 10.1.

g

h
Fig. 10.1. Vehicle h is only allowed to depart if vehicle g has arrived.

g

g’

h
Fig. 10.2. Vehicle h is only allowed to leave if (the fast) vehicle g has overtaken.

Overtaking: Analogously, overtaking is a problem on single-track railways,
since it can only be done at a few points on the tracks in this case. This
means that a (slow) vehicle h is only allowed to leave such a point, if the
(fast) vehicle g has overtaken, i.e., if it has already departed. If the point
where overtaking should take place is known beforehand, this require-
ment can also be modeled as an artificial activity in the event-activity

10.2 Railway and Bus Specific Requirements 203

network N , namely from (g, k,dep) to (h, v, dep). Note that this is nei-
ther a changing, nor a waiting, or driving activity since it connects two
departure events. In PTN we can illustrate the situation as in Figure 10.2.

Safety requirements: Finally, we discuss safety requirements. These have to
make sure that two vehicles do not depart at the same time but with
at least a distance of s minutes. Again, if we know the sequence of the
departures beforehand, say, g departs before h, then we add the same type
of activity

a = ((g, v, dep), (h, v, dep))

as for overtaking, but with a minimal duration Lghv = s. Fixing z̄ghv = 0
makes sure that the safety requirement will be satisfied in all perturbed
timetables.

In the (more likely) case that the sequence of trains or the places for over-
taking are not known, we end up with disjunctive constraints, which make
the problem much harder to solve. Fortunately, we can still obtain an integer
programming formulation by using additional binary variables to determine
the sequence within the integer program. These are given (exemplary for the
oncoming traffic, if passing is only possible at stations in V) as follows.

sghv =

{
1 if vehicle g is at station v before vehicle h
0 otherwise.

To ensure that at least one of these constraints is satisfied, we add constraints
like ∑

v∈V

sghv ≥ 1.

An exact formulation and solution procedures for this extension are currently
under research. In the the graph-theoretic approach, the idea is to first con-
struct a changing arc for each possible sequence of trains, or for each possible
point suitable for overtaking, and then to make sure that at least one of these
arcs is maintained. This leads to disjunctive constraints, and might be solvable
using the concept of alternative graphs.

Note that modeling such capacity constraints exactly, a microscopic view is
needed instead of the macroscopic model used so far. This includes model-
ing many blocks instead of just one single edge between two stations, and
looking at platforms instead of stations. Integrated models combining the
wait/depart decision and the train re-scheduling aspects are currently under
research within a project together with Deutsche Bahn, see [BGJ+05].

In bus transportation the above constraints are not needed, but in this case,
vehicle schedules and driver schedules may have an effect on the model, since
a delayed vehicle or a delayed driver cannot start his next piece of duty in
time. These effects can easily be modeled by introducing new connections,
which have to be maintained to make sure that a delay is taken over to the
next piece of duty.

Part III

Tariff Planning

11

Introduction

Let us now deal with one more important issue in public transportation,
namely the ticket prices for the customers. Designing a tariff system in pub-
lic transportation is a complex real-world problem, that was brought to our
attention by a regional public transportation company several years ago. In
this part we present our studies and report on our practical experience in this
area.

When using a bus or a train, a passenger usually has to pay for his trip. There
are several possibilities for defining ticket prices in public transportation. The
most popular ones are the distance tariff, the unit tariff and zone tariffs. In
a (counting) zone tariff system the whole area of the public transportation
company is divided into zones. To find out the ticket price for a trip, one counts
the zones passed by the trip and reads off the price which only depends on the
number of passed zones. Zone tariff systems are very popular at the moment,
i.e., many transportation companies and traffic associations plan to introduce
such a system.

When a public transportation company wants to change its tariff system to a
zone tariff, it should be in such a way that the new system is still accepted by
the customers and does not decrease the income of the company. A possible
goal is to establish zones and zone prices such that the resulting ticket prices
are as close as possible to the the current fares. This means that neither the
public transportation company nor the customers will have major disadvan-
tages when changing the current tariff system. Another goal can be to design
a fair tariff system.

Given some preferred ticket prices (called reference prices), the (counting)
zone design problem is to design a zone tariff system, i.e.,

• to design zones
• and zone prices for traveling within 1,2,3,. . . zones

208 11 Introduction

such that the deviations between the resulting zone tariff and the given ref-
erence prices are as small as possible.

The reference prices are used to measure the quality of the new system. This
is discussed in more detail in Section 11.4.

Chapter 11 is structured as follows: We first discuss the most common
tariff systems. We then describe different zone design projects in which we
applied our methodology in practice. Since there does not exist much liter-
ature on zone design problems, the literature review is rather short. Finally,
we present a model for the zone design problem and three different possible
objective functions.

11.1 Frequently Used Tariff Systems

We consider four different tariff systems: The distance tariff, the unit tariff,
the zone tariff with arbitrary prices, and the counting zone tariff. Our goal
will be to change a given tariff system to a counting zone tariff.

Distance Tariff

In a distance tariff system, the price for a trip depends on the length of
the trip, given in kilometers. The longer the trip is, the higher is the fare.
This system is usually considered as fair. To determine the ticket prices one
needs the distance between each pair of stations, resulting in a matrix which
in most cases is too large to be printed and put up at the stations. This
makes a distance tariff inconvenient for the public transportation company
and mysterious for the customers.
For the PTN with seven stations depicted in Figure 11.1, one needs the fol-
lowing 7× 7 matrix to specify the distances (in kilometers) between each pair
of stations.

D =

0
BBBBBBBB@

0 1 2 4 5 4 6
1 0 1 3 4 3 5
2 1 0 2 3 2 4
4 3 2 0 1 4 2
5 4 3 1 0 5 3
4 3 2 4 5 0 5
6 5 4 2 3 5 0

1
CCCCCCCCA

Furthermore, we need a table assigning a price for each trip length (for each
ticket category), e.g.,

11.1 Frequently Used Tariff Systems 209

v1 v2 v3

v4 v5

v6

v7

Fig. 11.1. A PTN to demonstrate the different tariff systems

kilometer price

1 2
2 2
3 3
4 3
5 4
6 5
7 6

For example, to get the price for traveling from station v1 to v7 one has to look
up dv1v7 = 6 and can then read off a price of 5. Most railway transportation
companies use a distance tariff system. Some years ago, distance tariffs were
also used by most regional bus companies in Germany.

Unit Tariff

The simplest tariff system is the unit tariff. In this case all trips cost the same,
independent of their length. A unit tariff is very easy to handle for the public
transportation company, and it is easy to understand for the customers, since
they only have to remember one price (in each ticket category). Taking, e.g.,
a price of 3 in the example of Figure 11.1 this means that the trip from v1 to
v7 costs 3. On the other hand, also the short trip from v1 to v2 has a price of
3, which is annoying for the respective customers. In general, it often is not
accepted that a short trip between two neighboring stations costs the same
as a long trip through the whole system.

Unit tariff systems are used within metropolitan areas, or for small public
transportation companies.

210 11 Introduction

Zone Tariff

A model in between these two tariff systems is a zone tariff system. To estab-
lish a zone tariff, the whole area has to be divided into subregions (the tariff
zones), see Figure 11.2 for the example of Figure 11.1. In this example, the
zone partition is given by the following assignment.

station zone

v1 Z1

v2 Z1

v3 Z2

v4 Z2

v5 Z3

v6 Z4

v7 Z3

The price for a trip in a zone tariff system depends only on the starting and the
ending zone of the trip. We distinguish the following two different realizations
of zone tariff systems.

v1 v2 v3

v4 v5

v6

v7

Z1 Z2

Z3

Z4

Fig. 11.2. The PTN with a zone partition of four zones

Zone tariff with arbitrary prices: If the price can be chosen arbitrarily for
each pair of zones, we call the tariff system a zone tariff with arbitrary
prices. The prices for each possible pair of zones are usually given in
form of a matrix. Note that this matrix is much smaller than the matrix
needed for describing a distance tariff. In the example of Figure 11.1 with
the zone partition into four zones depicted in Figure 11.2, we only need
the following 4×4 matrix to describe the tariff information instead of the
7 × 7 matrix for the distance tariff.

P =

0
BB@

1 2 4 3
2 1 3 2
4 3 3 5
3 2 5 1

1
CCA .

11.1 Frequently Used Tariff Systems 211

To find out the price for the trip from v1 to v7 one first has to find out
that v1 belongs to zone Z1 and v7 ∈ Z3. Then the ticket price can be read
off as entry PZ1Z3 = 4. Note that the price for traveling within the same
zone is not zero, and even need not be small, e.g., for traveling from v5 to
v7.

This type of zone tariff is appropriate if any specialties should be modeled
in the tariff system. An example of a zone tariff system with arbitrary
prices can, for instance, be found north of San Francisco, USA, or within
the city of Saarbrücken, Germany.

Counting zone tariff: A more popular variant of a zone tariff system is the
counting zone tariff system. To know his fare in this system, a customer
has to count how many zones his trip will pass and read off the price
assigned to the number of passed zones. The prices in this system depend
on the starting and the ending zone of the trip, but trips passing the same
number of zones must have the same price. In the example depicted in
Figure 11.2 this means that the price for traveling from Z1 to Z3 has to
be the same as the prices from Z1 to Z4 and from Z3 to Z4. Counting the
number of passed zones can be done easily by the customers themselves,
if a map is available. For knowing the price for a trip they then only need
the following (small) table.

number of zones price

1 1
2 3
3 4

To find out the price for the trip from v1 to v7 we count that this trip
passes through three zones and hence has a price of 4.

Because of their transparency, zone tariff systems are very popular. In
Germany, nearly all tariff associations already have zone tariff systems
or are currently introducing them, such that at the moment almost the
whole local public transportation in Germany, including the commuter
trains of Deutsche Bahn, applies counting zone tariff systems. Also in
other countries, counting zone tariff systems are used, e.g., in the region
south of San Francisco, USA.

Note that the set of direct connections E of the given public transportation
network PTN is not necessary to design a zone tariff with arbitrary prices.
For a counting zone tariff system, however, it is necessary to know the set of
direct connections to count the number of passed zones for each possible trip.

We end this section by remarking that distance tariffs and unit tariffs can
both be seen as special cases of a counting zone tariff system. While it is

212 11 Introduction

directly clear that a unit tariff is nothing else than a zone tariff system with
only one zone, we need to add empty zones for modeling a distance tariff. If
each kilometer along the direct connections is treated as a zone of its own, the
number of passed zones of a trip equals the length of the trip in kilometers.
The zone prices are hence nothing else than the prices assigned to the trip
lengths in the distance tariff.

11.2 Application

Our first application was to design a zone tariff system with arbitrary prices
for a regional bus company in the area of Kaiserslautern, see [Sch94a]. Since
this time, other projects followed. We designed counting zone tariff systems,
e.g., in the state Saarland and in a large part of the state Sachsen-Anhalt.
The data we use for presenting numerical results within this part refers to
our project in the Saarland. There are six public transportation companies
operating in the Saarland. Before introducing the common zone tariff system,
each of them had its own tariff system.

• Four public transportation companies already used a counting zone tariff
system, but their zone prices for passing p zones and the structure of their
zones were completely different, although they are partly operating in the
same geographical region.

• Deutsche Bahn applied its distance tariff.
• There is also a public transportation company (serving the city of Saar-

land’s capitol, Saarbrücken) which used a zone tariff with arbitrary prices.

The traffic association of the Saarland wanted to introduce one common count-
ing zone tariff system which is now applied by all public transportation com-
panies operating in the Saarland. The public transportation network in the
Saarland consists of roughly 4000 stations, where a pre-clustering into 600
mini-zones is given. The goal was to design about 100 zones and install a
counting zone tariff system in such a way that the difference between the cur-
rent fares and the new ones is as small as possible. It also was important that
the new income of each of the public transportation companies should not
differ too much from the old income. While the old fare structure was known
and therefore relatively easy to get, it is usually hard to get realistic data
about customers’ behavior. In our project in the Saarland this was solved by
using the income data of each of the transportation companies and dividing
the income with the help of available statistics among the origin-destination
pairs used by the customers. However, since the data about customers are
confidential, we use an unweighted variant of the zone design problem for
presenting some of the numerical results.

11.4 A Model for the Zone Design Problem 213

11.3 Literature Review

In spite of the importance of the zone design problem there is hardly any
literature on corresponding operations research models. The only papers we
are aware of are motivated by a study of the author ([Sch94a]) about the zone
design problem with arbitrary prices, see [HS95, Sch94b, Sch96, BK03]. These
papers discussed complexity issues and heuristics for this type of problem, as
well as exact solution procedures for special cases. For the counting zone
design problem in which we count the number of zones there is, to the best of
our knowledge, no literature dealing with suitable operations research models.
Note that parts of this chapter have been published in [HS04], and that some
first results in this area have been obtained in the diploma thesis [Pen97].
Related research includes simulation approaches for fare integration ([GM06])
and the determination of fares such as to maximize revenue ([BNP05]).

11.4 A Model for the Zone Design Problem

Let the public transportation network PTN = (V, E) be a connected graph,
where as usual, V refers to the set of stops and E represents the available di-
rect rides without intermediate stops. Furthermore, let duv be given reference
prices for traveling from station u ∈ V to station v ∈ V . Our goal is to design
zones and zone prices in such a way that they are a good approximation of
the given reference prices.

• If duv is the current ticket price of the public transportation company, we
aim to design a zone tariff system in which many customers will only have
minor changes in their ticket prices, and hence will accept the new system.
Also, the income of the company will not change much in this case.

• If duv represents a fair price like the distance tariff, the goal is to design a
fair zone tariff system.

• We also allow any other possibility for duv .

If L denotes the number of planned zones, the zone (planning) problem iden-
tifies a partition

Z = {Z1, Z2, . . . , ZL}

of V (i.e., Zi ⊆ V, i = 1, 2, . . . , L, the Zi are pairwise disjoint and ∪L
i=1Zi = V).

In the fare (planning) problem zone prices

c(p), p = 0, 1, 2, . . .

are determined which depend only on the number of zones p in journey. Here
c(p) denotes the price for passing p zone borders. In particular, c(0) gives the
fare for traveling within the same zone (without passing any zone border),
c(1) is the price for passing one zone border, i.e., for going from one zone to
an adjacent one, and so on. To evaluate some partition Z with a zone price

214 11 Introduction

vector c, we need to count the number of zones on a path from u to v. To this
end, we need the following notation.

Notation 11.1. For each pair of stations u, v ∈ V let nuv denote the minimal
number of passed zone borders, when traveling from station u to station v.

Two remarks are added.

• If there are several paths possible from u to v we take a path realizing
the minimal value for nuv . This means that we assume that customers
choose the cheapest possibility for their journey. In regional transportation
this is usually satisfied, since in most cases the shortest and the cheapest
traveling possibility coincide. In long-distance rail transportation, however,
this assumption need not be true, since other criteria like the traveling
time and the number of changing activities become more important, and
do sometimes lead to other paths and not to the cheapest one.

• Our definition of nuv does not coincide with the usual notation of public
transportation companies. When counting the number of zones n′

uv used
within a trip from u to v in practice, the starting and the ending zone are
both included, as we did in Section 11.1. This means that n′

uv = nuv + 1.
Referring once more to Figure 11.2 we see that for the trip from v1 to v7

the number nv1v7 of passed zone borders is 2, while n′
v1v7

= 3, i.e., three
zones are touched.
As it will turn out later, our model can be stated more simply by using
the denotation nuv instead of n′

uv.

The new ticket price for traveling from u to v is then given by

zuv =

{
c(nuv) if u �= v
0 if u = v.

Given the reference prices duv for a trip between stations u and v, the absolute
deviation in ticket price is calculated by

|duv − zuv| = |duv − c(nuv)|.

Recall that Wuv is the number of customers traveling from station u to station
v. The minimization of the following three objective functions is of interest.

maximum absolute deviation: bmax = maxu,v∈V Wuv |duv − zuv|
sum of absolute deviations: b1 =

∑
u,v∈V Wuv |duv − zuv |

sum of squared deviations: b2 =
∑

u,v∈V Wuv(duv − zuv)
2

All three objectives are considered to be good models by practitioners. The
first objective function, bmax with identical weights models the fact that the
greatest deviation of ticket prices in the two different tariffs should be as small
as possible. It gives a bound for changes in the ticket prices. In the weighted
case, bmax minimizes the maximum deviation in the revenue of the company
over all possible trips.

11.4 A Model for the Zone Design Problem 215

If W denotes the sum of all customers of the public transportation company,
i.e., W =

∑
u,v∈V Wuv then b1

W
gives the average of all absolute deviations,

and b2
W

the average of all squared deviations in ticket prices. The objective
function b2 leads to a smaller percentage of strongly affected customers than
b1. Nevertheless, from our experience, b1 is slightly better accepted by the
practitioners than b2. Furthermore, we point out that deviations in price in-
creases and decreases are treated equally, such that the model reflects both
the interests of the customers and of the transportation companies.

Before we discuss how to compute the values nuv we introduce the following
notation.

Notation 11.2. Two zones Zk, Zl ∈ Z are called adjacent if there exist stops
u ∈ Zk, v ∈ Zl such that {u, v} ∈ E, i.e., with a direct ride in PTN.

To obtain the numbers nuv a shortest path algorithm, e.g., [Flo62, War62,
Dij59] can be used according to one of the following models.

Station Graph Model: We use the public transportation network PTN =
(V, E), but introduce new weights cuv for all {u, v} ∈ E, defined by

cuv =

{
0 if u and v are in the same zone
1 if u and v are in adjacent zones.

The length of a shortest path between two stops equals the minimum
number of passed zone borders. This approach will be needed later to
update the zone distances in the greedy heuristic in Section 12.2.

Zone Graph Model: To reduce the size of the network we define the zone graph
GZ = (Z, EZ) by

Z = {Z1, . . . , ZL}

EZ = {{Zk, Zl} : Zk, Zl ∈ Z and Zk and Zl are adjacent}

ce = 1 for all e ∈ EZ .

For u ∈ Zk and v ∈ Zl we hence get the minimum number of passed zone
borders nuv on a trip from u to v as the length of a shortest path from
Zk to Zl in GZ .

The following example demonstrates the calculation of bmax, b1, and b2. Let a
PTN with a partition into three zones Z1 = {v1, v2}, Z2 = {v3, v4}, and Z3 =
{v5} be given (see Figure 11.3). Suppose that Wuv = 1 for all u, v ∈ V, u �= v,
i.e., W = 20. If we assume that the distance between any adjacent pair of
nodes is 1, the matrix duv according to the distance tariff system may be

D =

⎛
⎜⎜⎜⎜⎝

0 1 2 3 4
1 0 1 2 3
2 1 0 1 2
3 2 1 0 1
4 3 2 1 0

⎞
⎟⎟⎟⎟⎠ .

216 11 Introduction

1 1 11

v1 v2 v3 v4

Z3Z2Z1

v5

Fig. 11.3. The PTN of the example

Z1 Z2 Z3

Fig. 11.4. The corresponding zone graph GZ of the example

The corresponding zone graph GZ consists of three nodes (see Figure 11.4).
The number of passed zone borders between stations u and v is then given by

N =

⎛
⎜⎜⎜⎜⎝

0 0 1 1 2
0 0 1 1 2
1 1 0 0 1
1 1 0 0 1
2 2 1 1 0

⎞
⎟⎟⎟⎟⎠ .

Suppose the new fares for passing p = 0, 1, or 2 zone borders are given by

c(0) = 0.5

c(1) = 1

c(2) = 1.5.

Then the new ticket prices can be calculated as

Z =

⎛
⎜⎜⎜⎜⎝

0 0.5 1 1 1.5
0.5 0 1 1 1.5
1 1 0 0.5 1
1 1 0.5 0 1
1.5 1.5 1 1 0

⎞
⎟⎟⎟⎟⎠ .

The deviations between the reference prices duv and the new ticket prices zuv

are

11.4 A Model for the Zone Design Problem 217

D − Z =

⎛
⎜⎜⎜⎜⎝

0 0.5 1 2 2.5
0.5 0 0 1 1.5
1 0 0 0.5 1
2 1 0.5 0 0
2.5 1.5 1 0 0

⎞
⎟⎟⎟⎟⎠ .

and finally the objective function values can be computed as

bmax = 2.5

b1 = 20

b2 = 32,

i.e., the maximum absolute deviation is 2.5, the average absolute deviation is
1, and the average squared deviation is 1.6.

12

Finding Zones and Zone Prices

In this chapter we deal with the counting zone design problem. We assume
that the public transportation network and the necessary data about the
customers in form of an OD-matrix is given. With the notation introduced in
the previous chapter, the counting zone design problem is given as follows.

(ZD-b)

Given the PTN, reference prices duv, an OD-matrix with entries Wuv, and
L ∈ IN, find a partition of V into L zones Zk, k = 1, . . . , L and zone prices
c(p), p = 1, . . . , L such that an objective function

b ∈ {bmax, b1, b2}

is minimized, where bmax, b1, and b2 are given as follows,

bmax(Z, c) = max
u,v∈V

Wuv |duv − c(nuv)|

b1(Z, c) =
∑

u,v∈V

Wuv |duv − c(nuv)|

b2(Z, c) =
∑

u,v∈V

Wuv(duv − c(nuv))2.

Chapter 12 is structured as follows: In the first section of this chapter
we deal with the fare problem, i.e., we assume that the zone partition Z
is already given and show how to find optimal zone prices c. We present
closed form solutions for each of the three objective functions. Then we turn
our attention to the zone problem in which we want to find the zones and
exemplarily investigate the case of (ZD-bmax). We show that this problem is
NP-hard and we therefore propose three heuristic algorithms. We also discuss
useful extensions to apply the model in practice.

220 12 Finding Zones and Zone Prices

12.1 The Fare Problem

In this section we solve the fare problem with respect to a given zone partition.
This means, we assume that the partition Z is already fixed and deal with
determining the zone prices

c(p), p = 0, 1, 2, . . .

Our first result shows that a closed form solution is possible for each of the
three objectives bmax, b1, and b2. To state the result we first introduce the
following denotation, restricting the fare problem to the price for passing p
zone borders for any fixed p.

Notation 12.1. Given p ∈ {0, 1, . . . , L} let

Mp = {(u, v) : u, v ∈ V, u �= v, and nuv = p}.

Moreover, W p =
∑

(u,v)∈Mp
Wuv denotes the sum of all weights belonging to

pairs of stations in the set Mp.

Note that u �= v is only necessary in the definition of M0.

Theorem 12.2. Let Z = {Z1, Z2, . . . , ZL} be a given zone partition and let
duv be given reference prices. In order to minimize bmax, b1, and b2 we choose
for all p = 0, 1, . . . , L,

a)

c∗max(p) := max
(u,v)∈Mp

duv −
z∗p

Wuv

where z∗p is defined as

z∗p = max
u1,v1,u2,v2:

(u1,v1),(u2,v2)∈Mp

Wu1v1Wu2v2

Wu1v1 + Wu2v2

(du1v1 − du2v2)

b)
c∗1(p) := median{duv , . . . , duv︸ ︷︷ ︸

Wuv times

: (u, v) ∈ Mp}

c)

c∗2(p) :=
1

W p

∑
(u,v)∈Mp

Wuvduv .

Proof. Given the zone partition Z we have to find fares c(p) ∈ IR for all
p = 0, 1, . . ., minimizing bmax, b1, and b2, respectively. First we note that
each of the three objective functions can be separated into at most L + 1
independent subproblems, Kmax(p), K1(p), and K2(p), respectively (for p =
0, 1, . . . , L).

12.1 The Fare Problem 221

bmax = max
u,v∈V

Wuv |duv − zuv|

= max
p=0,1,...,L

max
m∈Mp

Wm|dm − c(p)| =: max
p=0,1,...,L

Kmax(p)

b1 =
∑

u,v∈V

Wuv |duv − zuv|

=
L∑

p=0

∑
m∈Mp

Wm|dm − c(p)| =:
L∑

p=0

K1(p)

b2 =
∑

u,v∈V

Wuv(duv − zuv)
2

=
L∑

p=0

∑
m∈Mp

Wm(dm − c(p))2 =:
L∑

p=0

K2(p).

Consequently, to minimize bmax, b1, and b2 we determine the optimal fare c(p)
for p = 0, 1, . . . , L separately, in each of the three objective functions.

For bmax: For all p = 0, 1, . . . , L the problem of finding a value c(p) that
minimizes

Kmax(p) = max
m∈Mp

Wm|dm − c(p)|

is well-known from location theory when locating a point on a line such
that the maximum distance to a given set of existing facilities on the
same line is minimized. The proof for the formula given in part a) of
the theorem can therefore be found in the location literature, see e.g.
[LMW88, Ham95]. Note that it is also known that for the optimal prices
c∗max we have

Kmax(p) = z∗p. (12.1)

For b1: Since

K1(p) = min
∑

m∈Mp

Wm|dm − c(p)|

is a one-dimensional, piecewise linear and convex function, its minimiza-
tion is known in statistics (see e.g., [Hay81]) and in location theory as the
one-dimensional median problem (see, e.g. [Ham95, Pla95]). It is shown
that the above problem is solved by the so-called weighted median of the
set {dm : m ∈ Mp}, i.e., by any real number c = c∗1(p) which satisfies

∑
m:dm<c

Wm ≤
W p

2
and

∑
m:dm>c

Wm ≤
W p

2
.

222 12 Finding Zones and Zone Prices

For b2: Here we have to minimize K2(p), i.e.,

min
∑

m∈Mp

Wm(dm − c(p))2.

Using the theorem of Steiner (see e.g. [SV74]) of statistics, we note that
the weighted mean of the values in {dm : m ∈ Mp} is the unique optimal
solution for c(p). ��

To demonstrate the results of Theorem 12.2 we continue the example of Sec-
tion 11.4, depicted in Figure 11.3 (see page 215). First we determine the
relations for the sets Mp.

M0 = {(v1, v2), (v2, v1), (v3, v4), (v4, v3)}

M1 = {(v1, v3), (v3, v1), (v1, v4), (v4, v1), (v2, v3), (v3, v2),

(v2, v4), (v4, v2), (v3, v5), (v5, v3), (v4, v5), (v5, v4)}

M2 = {(v1, v5), (v5, v1), (v2, v5), (v5, v2)}.

The optimal values for the zone prices with respect to the objective functions
bmax, b1, and b2 can hence be calculated as

zones c∗max c∗1 c∗2 example
0 1 1 1 0.5
1 2 2 11

6 1
2 3.5 3 3.5 1.5

,

where the last column contains the prices from the example. Finally, the
resulting objective values are:

objective function c∗max c∗1 c∗2 example
bmax 1 1 1.167 2.5
b1 8 8 8.667 20
b2 7 8 6.722 32

.

Note that the best objective value for bmax is attained for the prices c∗max, the
best objective value for b1 for the prices c∗1, and the minimum of b2 is attained
at b∗2.

Calculating the objective function by using the optimal fares according to
Theorem 12.2 implies the following results.

12.1 The Fare Problem 223

Corollary 12.3. Given a zone partition Z = {Z1, Z2, . . . , ZL} and reference
prices duv, the optimal values of the objective functions are given as follows.

a)
b∗max = max

p
z∗p

b)

b∗1 =
∑

p

⎛
⎜⎜⎝ ∑

(u,v)∈Mp:
duv>c∗1(p)

Wuv(duv − c∗1(p)) +
∑

(u,v)∈Mp:
duv<c∗1(p)

Wuv(c∗1(p) − duv)

⎞
⎟⎟⎠

c)

b∗2 =
∑

p

Var{duv : (u, v) ∈ Mp},

where Var denotes the variance of the set.

In practice, restrictions on the new fares are often given; sometimes there even
exist “politically” desired fares for the number of zones in a journey that have
to be realized. With the help of Corollary 12.3 one can easily calculate the
increase of the objective functions when using such given fares instead of the
optimal ones.

Another important consequence of Corollary 12.3 is that for the objective
function bmax the optimal fares c∗max(p) are not needed for calculating the
optimal objective value for a given zone partition. This will be needed in the
next section when we are going to optimize the zone partition with respect to
bmax. If, additionally, bmax is used in the unweighted case, i.e. with Wuv = 1
for all u, v ∈ V , we can further simplify Theorem 12.2 and Corollary 12.3.
Recall that

c∗max(p) = max
(u,v)∈Mp

duv −
z∗p

Wuv

Kmax(p) = max
(u,v)∈Mp

Wuv |duv − c(p)|

and for the optimal zone prices c∗max we have

Kmax(p) = z∗p, see (12.1).

Corollary 12.4. Let a zone partition Z = {Z1, Z2, . . . , ZL} and reference
prices duv be given and assume equal weights Wuv = 1 for all (u, v) ∈ V × V .
Then the optimal fares c∗max(p) and the corresponding objective values b∗max =
bmax(Z, c∗max), and K∗

max are given by

c∗max(p) =
1

2

(
max

(u,v)∈Mp

duv + min
(u,v)∈Mp

duv

)

224 12 Finding Zones and Zone Prices

K∗
max(p) =

1

2

(
max

(u,v)∈Mp

duv − min
(u,v)∈Mp

duv

)

b∗max =
1

2
max

p=1,...,L

(
max

(u,v)∈Mp

duv − min
(u,v)∈Mp

duv

)
.

Proof. We calculate z∗p as

z∗p = max
m1,m2∈Mp

Wm1Wm2

Wm1 + Wm2

(dm1 − dm2)

=
1

2

(
max

m∈Mp

dm − min
m∈Mp

dm

)

and consequently,

c∗max(p) = max
m∈Mp

dm −
z∗p

Wm

= max
m∈Mp

(
dm −

1

2
max

m̃∈Mp

dm̃ +
1

2
min

m̃∈Mp

dm̃

)

=
1

2

(
max

m∈Mp

dm + min
m∈Mp

dm

)
.

From (12.1) we know that z∗p = K∗
max(p); hence the remaining parts follow

immediately from part a) of Corollary 12.3. ��

We remark that for the zone design problem with arbitrary prices, similar
results can be derived (see [HS95, Sch94a]).

12.2 The Maximum Deviation Zone Design Problem

The consequence of the results of Section 12.1 is that we can concentrate on
finding the zones, since the zone pricing follows easily from the choice of the
objective function. We therefore turn our attention to the zone (planning)
problem. In particular, we now focus on the maximum deviation problem
(ZP-bmax) in the unweighted case.

Notation 12.5. For a given zone partition Z = {Z1, Z2, . . . , ZL} and refer-
ence prices duv let b∗max and K∗

max denote the optimal objective function values
of the fare problem according to Corollary 12.4.

A first observation deals with the monotonicity of the objective function de-
pendent on the number of planned zones L. While it is easy to see that for
the zone design problem with arbitrary prices (see Section 11.1) all three ob-
jectives are monotone in L, this is not true for the zone design problem with
counting zones, as Figure 12.1 shows. The PTN in this example consists of

12.2 The Maximum Deviation Zone Design Problem 225

eight nodes. Let us assume that Wuv = 1 for all pairs of nodes u, v. The ref-
erence prices are given as weights between any two adjacent nodes, as shown
in the figure. Between any other pair of nodes the reference prices are given
as the sum of the weights along a shortest path connecting the nodes. For the
(unweighted) max absolute deviation problem, we first calculate the objective
value b∗max for the graphed solution Z by Corollary 12.4.

K∗
max(0) =

1

2
(1 − 1) = 0

K∗
max(1) =

1

2
(102 − 100) = 1

K∗
max(2) =

1

2
(202 − 201) =

1

2
,

hence b∗max = 1. In any solution with L = 5 nonempty zones we will at least
have one zone containing only one single station. Then

K∗
max(1) ≥

1

2
(100 − 1)

=
99

2
> 1,

leading to a strictly higher objective value than the graphed solution for L = 4.
Similarly, we can verify that also allowing empty zones will not yield a better
objective value than 1.

Unfortunately, the zone design problem with bmax is NP-hard, even in the
unweighted case.

1

11

1

100

100

100

100

Z1

Z2Z4

Z3

Fig. 12.1. An example in which the optimal solution for four zones is smaller than
the optimal solution for five zones.

226 12 Finding Zones and Zone Prices

Theorem 12.6. The zone design problem with counting zones and objective
function bmax is NP-hard for all fixed L ≥ 3.

Proof. We use a reduction to the problem partition into cliques for L = 3
cliques, which is NP-hard (see problem [GT15] in [GJ79b]). It is given as
follows.

(Partition into cliques) Given a graph G = (V , E), does there exists a partition
of V into three node sets V1,V2, and V3, such that the induced subgraphs
G1,G2, and G3 are complete?

To reduce this problem to an unweighted zone design problem, we define the
public transportation network as a complete graph PTN = (V, E) by

V = V ∪ {a1, a2, a3, b1, b2, b3} and

E = {{k, l} : k, l ∈ V }, k �= l.

Furthermore, let Wuv = 1 for all u, v ∈ V and define the reference prices as
follows.

duv =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if {u, v} ∈ E
1 if u ∈ V , v �∈ V
1
2 if there exists i = 1, 2, 3 such that {u, v} = {ai, bi}
2 if u, v ∈ V , {u, v} �∈ E
2 if u, v �∈ V , {u, v} �= {ai, bi} for all i = 1, 2, 3.

Claim: G can be partitioned into three cliques if and only if the zone design
problem in PTN has a solution Z with three zones and with b∗max < 3

4 .

=⇒: Let V = V1 ∪ V2 ∪ V3 be the partition of G into cliques. Define Zi =
Vi ∪ {ai, bi} for i = 1, 2, 3. Using Corollary 12.4 we calculate for the zone
partition Z = {Z1, Z2, Z3} that

K∗
max(0) =

1

2

(
1 −

1

2

)
=

1

4

K∗
max(1) =

1

2
(2 − 1) =

1

2
,

such that we get b∗max < 3
4 .

⇐=: Let Z1, Z2, Z3 be a partition of V with b∗max < 3
4 . Define Vi = Zi ∩V for

i = 1, 2, 3. First we prove that we can rename the Zi such that ai, bi ∈ Zi

for i = 1, 2, 3. This can be done by using Corollary 12.4 to verify the
following.
1. If ai, bi and another aj (or bj), j �= i belong to a single common zone,

then

12.2 The Maximum Deviation Zone Design Problem 227

b∗max ≥ K∗
max(0)

≥
1

2

(
daiaj

− daibi

)
=

1

2

(
2 −

1

2

)
=

3

4
.

2. If ai and bi do not belong to the same zone, then they belong to two
different zones Zx, Zy, such that
• either aj (or bj) is contained in Zx (or Zy), hence

b∗max ≥ K∗
max(1)

≥
1

2

(
dajbi

− daibi

)
=

1

2

(
2 −

1

2

)
=

3

4
.

• or no other aj , bj is contained in Zx and Zy, implying that the
remaining zone satisfies condition 1; hence again b∗max ≥ 3

4 .
Now let u, v ∈ Vi. We have to show that the edge {u, v} ∈ E . Assume the
contrary, i.e., duv = 2. But this yields

b∗max ≥ K∗
max(0)

≥
1

2
(duv − daibi

)

≥
1

2

(
2 −

1

2

)
=

3

4
,

(again using Corollary 12.4), a contradiction.

For more than three zones, the proof can be done analogously with a reduction
to partition into L > 3 cliques. ��

We now discuss three heuristics for finding good zone partitions. As a moti-
vation, we first present the following two observations for getting upper and
lower bounds on the objective value bmax of (TD-bmax).

Lemma 12.7. For any zone partition Z we have

b∗max ≤
1

2

(
max
u,v∈V

duv − min
u,v∈V

duv

)
.

Proof. For any zone partition Z and any integer p we have that

K∗
max(p) =

1

2

(
max

(u,v)∈Mp

duv − min
(u,v)∈Mp

duv

)

≤
1

2

(
max
u,v∈V

duv − min
u,v∈V

duv

)
.

Hence b∗max = maxp=1,...,L K∗
max(p) also satisfies this inequality. ��

228 12 Finding Zones and Zone Prices

For the next bound we define the following two sets.

Notation 12.8. For a given zone partition Z, let

INT = {(u, v) : {u, v} ∈ E and there exists Z ∈ Z with u, v ∈ Z},

BET = {(u, v) : {u, v} ∈ E and there exist Z1, Z2 ∈ Z with

Z1 �= Z2 and u ∈ Z1, v ∈ Z2},

i.e., INT is the set of relations belonging to edges with endpoints in the inte-
rior of a zone, and BET contains relations with endpoints in adjacent zones
(between zones).

Lemma 12.9. Let a zone partition Z be given, together with the sets INT and
BET. Then the following statements hold.

1. b∗max ≥
1

2

(
max

(u,v)∈INT
duv − min

(u,v)∈INT
duv

)
.

2. b∗max ≥
1

2

(
max

(u,v)∈BET
duv − min

(u,v)∈BET
duv

)
.

Proof.

1. Since INT ⊆ M0 we have that

min
(u,v)∈M0

duv ≤ min
(u,v)∈INT

duv , and

max
(u,v)∈M0

duv ≥ max
(u,v)∈INT

duv .

Hence we obtain

b∗max ≥ K∗
max(0)

=
1

2

(
max

(u,v)∈M0

duv − min
(u,v)∈M0

duv

)

≥
1

2

(
max

(u,v)∈INT
duv − min

(u,v)∈INT
duv

)
.

2. Analogously, since BET ⊆ M1 we have that

min
(u,v)∈M1

duv ≤ min
(u,v)∈BET

duv , and

max
(u,v)∈M1

duv ≥ max
(u,v)∈BET

duv

and the required result is then obtained as before by using b∗max ≥
K∗

max(1). ��

12.2 The Maximum Deviation Zone Design Problem 229

Lemma 12.9 suggests a zone design in which edges with high weights are
collected in BET and edges with small weights in INT or vice versa. To be
more specific, let Diam be the maximal diameter over all zones in the zone
partition Z. Assuming that edge weights along a path are additive, we get

K∗
max(p) =

1

2

(
max

(u,v)∈Mp

duv − min
(u,v)∈Mp

duv

)

≤
1

2

(
(p + 1)Diam + p

(
max

(u,v)∈BET
duv − min

(u,v)∈BET
duv

))

yielding that the maximal diameter Diam should be small, and consequently
edges with large weights should be in BET while edges with small weights
should be in INT. Following these considerations, we present three heuristics
for the zone design problem with counting zones.

Algorithms Based on Clustering Theory

The first algorithm is based on ideas from clustering theory and here in par-
ticular on the SAHN (sequential agglomerative hierarchical non-overlapping)
algorithms, see, e.g., [DO74]. The idea is to start with n = |V | zones, each of
them containing one single station and to combine in each step the two clos-
est zones to a new one. Depending on the particular definition of the distance
between two zones, different algorithms can be obtained. Two of them have
been applied to the zone design problem: single linkage and complete linkage.

Algorithm 23: Zone design using SAHN-algorithms

Input: PTN, reference prices duv, L ∈ IN.

Output: Zone partition with L nonempty zones.

Step 1. Start with a partition Z consisting of |V | zones each of them

containing a single station.

Let d(Zu, Zv) = duv for all zones Zu, Zv ∈ Z.

Step 2. Determine two zones Zu �= Zv ∈ Z with minimum distance d(Zu, Zv).
Step 3. Join Zu and Zv to a new zone Zk and get a new partition Z.

Step 4. Calculate the new distances to all Z ∈ Z:

d(Zk, Z) = 1
2

(d(Zu, Z) + d(Zv, Z) + c|d(Zu, Z) − d(Zv, Z)|)
Step 5. If the number of planned zones is attained, then Stop,

Output: Z,

else goto 2.

The parameter c in step 4 determines the formula for calculating the distance
between two zones. In the context of the zone design problem, we have used

230 12 Finding Zones and Zone Prices

• c = −1 for the single linkage algorithm and
• c = 1 for the complete linkage algorithm.

The interpretation is the following: In the single linkage algorithm, the dis-
tance between two zones is defined as the smallest distance between elements
of them, and consequently we join along a shortest edge in each step. In the
complete linkage algorithm, the distance between two zones is defined as the
maximum distance between their elements. Hence, in each step complete link-
age tries to minimize the maximum diameter of the zones.

Greedy Approach

This approach is a variant of the SAHN algorithms discussed above, but with
more emphasis on the specific structure of the zone design problem. Using the
basics of Algorithm 23, we calculate for all edges {Zu, Zv} the objective value
buv
max when contracting {Zu, Zv} of the current zone graph. Finally, we contract

the edge with smallest increase in the objective function. This is rather time
consuming, but as we will show in the next section, leads to very good results
in practice. The formulation of the greedy approach is the following:

Algorithm 24: Zone design by greedy approach

Input: PTN, reference prices duv, L ∈ IN.

Output: Zone partition with L zones.

Step 1. Start with a partition Z consisting of |V | zones each of them

containing a single station.

Step 2. For each edge {Zu, Zv} in EZ contract Zu and Zv temporally

and calculate buv
max for the resulting zone partition.

Step 3. Contract the edge {Zu0 , Zv0} permanently, where

b
u0,v0

max = min
{Zu,Zv}∈EZ

b
uv
max,

and get a new partition Z.

Step 3. If the graph has L nodes, then Stop,

Output: Z,

else goto 2.

Spanning Tree Approach

The idea of the following heuristic is to determine a set of edges BET which
contains mainly edges with high weights. To this end, we start with a large
zone containing all stations and separate it into smaller zones. This is done

12.2 The Maximum Deviation Zone Design Problem 231

by deleting edges in a spanning tree until the required number of zones is
attained. The heuristic is formulated next.

Algorithm 25: Zone design by spanning tree approach

Input: PTN, reference prices duv, L ∈ IN.

Output: Zone partition with L non-empty zones.

Step 1. Find a maximum spanning tree T in the complete graph with

edge weights duv.

Step 2. Delete the L − 1 largest edges of T and get a forest with

L components.

Step 3. Output: Zones are the connected components.

Note that in trees, the spanning tree approach is equivalent to the single
linkage algorithm of clustering theory. In general graphs, it is always possible
to find a spanning tree such that omitting its L − 1 largest edges leads to
the same result as single linkage. However, if we start with a spanning tree
with maximal weight (which performed best in practice) the spanning tree
approach differs significantly from single linkage.

Comparison of the Heuristics

We tested our algorithms on the data described above. The results of Algo-
rithms 23, 24, and 25 are shown in Figure 12.2. This figure shows the objective
values bmax produced by the heuristics for any number of possible zones from
1 to 600. The objective values refer to a single trip ticket for an adult, given in
e . It turns out that in this practical application the greedy heuristic (Algo-
rithm 24) is the clear winner in terms of the objective value: it generated the
best results for any number of desired zones. On the other hand, the running
time of Algorithm 24 for all possible numbers of zones, i.e., from L = 1, . . . , 600
was nearly two weeks altogether in our first implementation (on an AixJ90).
The spanning tree approach (Algorithm 25) and the single linkage algorithm
(Algorithm 23) both needed only a few hours, but the results are much less
convincing regarding the objective value bmax again. For a small number L
of desired zones, single linkage did better than the spanning tree approach,
while for a higher number of planned zones it was the other way round. This
is due to the fact that the spanning tree approach starts with only one zone,
while single linkage starts with 600 zones.

On a subset consisting of only 400 stations (or 54 mini-zones) the heuris-
tics have also been tested. In this smaller setting the running times of Algo-
rithms 23 and 25 were within seconds, and also Algorithm 24 needed only two
minutes to obtain again the clearly best results. The results for nine zones

232 12 Finding Zones and Zone Prices

 40

 45

 50

 55

 60

 65

 0 100 200 300 400 500 600

Greedy
Single Linkage
Spanning Tree

Fig. 12.2. Comparison of the heuristics: bmax graphed for any number L of planned
zones.

are shown graphically in Figures 12.3,12.4, and 12.5. Figure 12.3 shows a sug-
gestion for a zone partition which is due to the political districts in this area
of the Saarland. The objective value for this zone partition is bmax = 2.63
e , i.e., there exists a customer that will have a difference of 2.63 e between
his current fare and the new one. The result of the single linkage algorithm
for nine zones is shown in Figure 12.4. As it is reported also in the literature
(see, e.g., [DO74]), single linkage tends to form one large zone and a lot of
smaller zones surrounding it. This behavior is also shown in Figure 12.4. The
objective value of the graphed zone partition is 2.56 e . The objective value
in the spanning tree approach also was 2.56 e for nine zones, but without
these big differences in the sizes of the zones. The best results, however, were
obtained by the greedy approach with an objective value of only 1.92 e . The
corresponding zone partition is shown in Figure 12.5.

12.3 Extensions for Real-world Problems

For evaluating tariff zones in more detail, we use our own software WabPlan

[SS99]. For any given zone partition and zone prices it provides not only the
objective values of bmax, b1, and b2, but also the expected income for each of the
transportation companies in each ticket category. This is done by evaluating

12.3 Extensions for Real-world Problems 233

Fig. 12.3. Political suggestion; bmax = 2.63 e

bincome =
∑

u,v∈V

Wuv(zuv − duv) (12.2)

as the deviation in the income of the public transportation company. This
expression assumes that customers do not change their behavior because of
tariff changes. Since this is not realistic in practice, we add price elasticity
factors when evaluating (12.2) for getting a better approximation of the in-
come. There are different definitions of the price elasticity; the one we use is
the following. Let duv denote the currently existing price for traveling from u
to v. Then the price elasticity factor pelast is given by

pelast =

W new
uv −Wuv

Wuv

zuv−duv

duv

, (12.3)

where the number of new customers W new
uv is the only unknown value in this

formula. Solving this equation for Wnew
uv and replacing Wuv by Wnew

uv in (12.2)
yields a more realistic approximation of the new income.

Formula (12.3) can be found , e.g., in [Höh77], and sometimes is referred to as
the shrinkage ratio, compare, e.g., [LMM81]. Approximately, formula (12.3)
means that increasing the ticket price by 1% will result in a change in the
number of customers of pelast%. Since increasing the price usually yields a
reduction in the number of customers, and a reduction of the prices increases
the number of customers, the price elasticity factors pelast are negative in

234 12 Finding Zones and Zone Prices

Fig. 12.4. Solution of single linkage; bmax = 2.56 e

most cases. The only exceptions are prestige goods, which are bought because
they are expensive. Furthermore, if pelast < −1, the demand is called elastic,
while an elasticity factor 0 > pelast > −1 describes an inelastic demand. If
pelast = −1 , the income will not change, i.e., the increase of the price and
the reduction of customers cancels out.

In (local) public transportation, all studies we are aware of confirm that the
demand is inelastic, i.e., that

−1 < pelast < 0.

The particular elasticity factor which is widely used is based on a rule of
thumb, derived from the classical Simpson and Curtin formula, see [Cur68].
They claimed a factor of −0.3. Many other — more recent — studies [LMM81,
ta98, HK98a] roughly confirm this factor for single trip tickets, but suggest a
smaller factor, e.g., −0.2 for weekly, monthly and annual tickets. In practical
reports, often a more pessimistic point of view is used. Namely, the price
elasticity factor is only used for relations (u, v) for which the tickets get more
expensive, while for relations with a reduction in ticket price it is assumed
that the demand does not change. Neglecting new customers which might
be attracted in such relations makes sure that the new income is treated
pessimistically, i.e., it will not happen, that the loss in income is higher than
estimated.

Moreover, the public transportation companies are interested in learning
about which customers are hardly affected and which customers will be really

12.3 Extensions for Real-world Problems 235

Fig. 12.5. Solution of greedy algorithm; bmax = 1.92 e

annoyed. To this end, WabPlan presents graphics (for each ticket category sep-
arately) showing all trips for which the fare will increase or decrease dramat-
ically (see Figure 12.6 as an example). Statistical evaluations of the number
of relations with price changes, the number of customers affected, and the
absolute and relative amount of the price changes are also computed.

For practical purposes a lot of special rules for using fare zones are common.
A lot of them have also been implemented in our algorithms and tested within
our projects.

Empty zones: In most zone tariff systems, empty zones are used to increase
the number of zones in a journey and hence the fare for special relations.
Note that most given tariff systems can be modeled as a counting zone
tariff system, if enough empty zones are allowed.

Border stations: To avoid injustice, stations can be located on zone borders,
meaning that they belong to more than one zone. Since the zone tar-
iff system should be clear and understandable, we usually try to avoid
this. Fortunately, in many cases it turned out that border stations can be
avoided without losing anything in the objective values only by changing
the zone design.

Special rules for large zones: Also, some zones might be so large that they
have to be counted twice when passing them. Moreover, a special fare
structure can be implemented within large zones.

236 12 Finding Zones and Zone Prices

Fig. 12.6. Zone planning with the software WabPlan in the state Saarland. The
lines show the (fictional) customers who will have a change in their ticket price which
is more than 5 Percent.

Sometimes, zone tariff systems are used to give discounts or to make public
transportation more convenient only for a special group of customers. In the
state of Sachsen-Anhalt, e.g., a zone tariff system was implemented only for
customers using at least two different public transportation companies. The
goal was to make these trips more attractive by

• offering a good ticket price, and
• providing a combination ticket which can be used for all public transporta-

tion companies of the trip.

The new ticket prices in such a system should not be cheaper than the cur-
rent prices of each single public transportation company; otherwise customers
could pretend to change into another bus or train to be allowed to pay the
cheaper price. Since customers who wish to change are still allowed to buy
separate tickets instead of the new combination ticket, they will always choose
the cheaper possibility. Hence, no customer will have to pay more as before, so
it is not possible to achieve a gain in the income of the public transportation
companies. The resulting zone design problem should hence be as attractive as
possible, but with only a small loss in the income of the public transportation
companies.

A

Integer Programming

Here we collect some fundamental results of integer programming which are
used throughout the text. We assume that the reader is familiar with linear
programming, and recommend textbooks as [NW88, Wol98] for the theory of
integer programming. All results of this short appendix can be found in both
of these books.

We consider the following integer programming problem:

(IP)
min cx
s.t. Ax ≤ b

x ∈ ZZn,

where c ∈ IRn, b ∈ IRm and A is an m × n matrix.

Definition A.1. The linear programming relaxation (LP-IP) or short
LP-relaxation of an integer program (IP) is given by deleting the integer
constraints, i.e.

(IP) min{cx s.t. Ax ≤ b, x ∈ ZZn}
(LP-IP) min{cx s.t. Ax ≤ b, x ∈ IRn}.

The relation between an integer program (IP) and its LP-relaxation (LP-IP)
is the following.

Lemma A.2. Let

z∗ = cx∗ = min{cx s.t. Ax ≤ b, x ∈ ZZn}
z̄ = cx̄ = min{cx s.t. Ax ≤ b, x ∈ IRn}.

Then

(i) z̄ ≤ z∗

(ii) If x̄ ∈ ZZn then z∗ = z̄ and x∗ = x̄ is an optimal solution of (IP).

238 A Integer Programming

The lemma states that each solution of the LP-relaxation gives a lower bound
on the original program. Moreover, if the solution of the LP-relaxation hap-
pens to be integer, it is the optimal solution of the integer program. This
observation can be used to find polynomially solvable special cases of integer
programs, namely, if all vertices of the feasible set {x : Ax ≤ b, x ∈ IRn} of
(LP-IP) are integer. In this case, we know that all basic solutions are integer,
and hence we conclude from the theory of linear programming that there ex-
ists an integer optimal solution x̄. Lemma A.2 then yields the optimality of x̄
for the original integer program. Thus, in that case it is enough to solve the
LP-relaxation of the integer program.

To identify integer programs in which all vertices of the feasible set are integer,
we need the concept of total unimodularity.

Definition A.3. A matrix A is totally unimodular, if det(B) ∈ {−1, 0, 1}
for all square submatrices B of A.

If A is a totally unimodular matrix, then

• aij ∈ {−1, 0, 1} for all entries of the matrix A,
• the transposed AT is totally unimodular,
• (A|I) is totally unimodular (I is the m × m unit matrix).

An example of a matrix with entries only in {−1, 0, 1}, but that is not totally
unimodular, is the following: ⎛

⎝1 0 −1
0 −1 0
1 1 1

⎞
⎠ .

Totally unimodular matrices are important since their corresponding integer
programs can be solved by linear programming methods.

Theorem A.4. Let b ∈ ZZm and let A be totally unimodular. Then all vertices
of {x ∈ IRn : Ax ≤ b} are integer. Consequently, each optimal basic solution
of (LP-IP) is an optimal solution for (IP).

Examples of totally unimodular matrices (resulting in polynomially solvable
integer programs) are

• incidence matrices of networks; this result is used in Sections 7.1 and 8.4
in Part II,

• matrices with the consecutive ones property, which play an important role
in Sections 3.4, 3.6, and in 4.3 in Part I,

• network matrices, mentioned both in Section 3.4 (Part I) and in Section 7.3
(Part II).

B

Bicriteria Optimization

Here we briefly introduce bicriteria optimization problems, which are discussed
in Chapters 4 and 9. For an introduction to multicriteria optimization we refer
the reader to textbooks (e.g. [Ehr00]), a detailed state-of-the art survey of the
field is given by [FGE05]. The results of this short overview can be found e.g.
in [Ehr00].

All bicriteria problems treated in this text are combinatorial optimization
problems, such that we will assume that the feasible set Feas consists of a
discrete set of points, i.e.,

Feas ∈ ZZn.

The bicriteria optimization problem we consider is given by a feasible set
Feas ⊆ ZZn and two objective functions f1, f2 : Feas → IR.

(BP) min
x∈Feas

(
f1(x)
f2(x)

)
.

Definition B.1. Let x1, x2 ∈ Feas.

• x1 dominates x2 if

f1(x1) ≤ f1(x2) and

f1(x1) ≤ f1(x2),

where at least one of the inequalities is strict.
• x ∈ Feas is a Pareto solution, if there does not exist any y ∈ Feas that

dominates x.

The goal in bicriteria optimization is to determine the Pareto solutions, i.e.,
the set of all x ∈ Feas which are non-dominated. However, it often is enough
to know the objective values of the Pareto solutions. To this end, let

240 B Bicriteria Optimization

f(Feas) =

{(
f1(x)
f2(x)

)
: x ∈ Feas

}

denote the objective space of (BP). Then a point

(
f1(x)
f2(x)

)
∈ f(Feas) is called

efficient, if x ∈ Feas is a Pareto solution.

For an illustration, see Figure B.1. In this example let us assume that the
set of objective values for all points x ∈ Feas is given by the points depicted
in the figure. Then the five filled points p1, . . . , p5 are not dominated by any
other point, i.e., exactly these points are efficient.

f1

f2 p2

p4

p1

p3

p5

Fig. B.1. Efficient solutions of a bicriteria optimization problem.

For finding Pareto solutions we can solve a one-criteria optimization problem.
This method is called weighted sum scalarization.

Theorem B.2. If x is an optimal solution of

BP(λ) min
x∈Feas

λf1(x) + (1 − λ)f2(x)

for some 0 < λ < 1, then x is a Pareto solution of (BP).

Unfortunately, not all Pareto solutions can be found by weighted sum scalar-
ization, if the set Feas ⊆ ZZn consists of a discrete set of points. In Figure B.1,
the efficient points p1, p3, and p5 can be found by solving a weighted sum prob-
lem, while no λ exists such that p2 and p4 are optimal solutions of BP(λ).

Definition B.3. A Pareto solution x is called supported if there exists λ
with 0 < λ < 1 such that x is the optimal solution of BP(λ).

B Bicriteria Optimization 241

Note that the term supported is due to the following fact: If x is a supported

Pareto solution, then f(x) =

(
f1(x)
f2(x)

)
lies on the boundary of the convex hull

of f(Feas). Hence there exists a supporting line of f(Feas) passing through
f(x).

By weighted sum scalarization, we find exactly the set of supported Pareto
solutions. With the following result we can also find non-supported Pareto
solutions. It uses the constraint versions of (BP).

Lemma B.4. Let {i, j} = {1, 2} and let x be a unique optimal solution of

min{fi(x) : x ∈ Feas and fj(x) ≤ yj}.

Then x is a Pareto solution of (BP).

Finally, we state the definition of lexicographic minimal solutions.

Definition B.5. Let {i, j} = {1, 2}. x is called a lexicographic minimal
solution of (BP) for the order (fi, fj) if for all y ∈ Feas one of the following
conditions holds.

• Either fi(x) < fi(y),
• or fi(x) = fi(y) and fj(x) ≤ fj(y).

Note that the lexicographic minimal solutions are always Pareto solutions.

C

Gauges as Distance Measures

In the stop location problem (Part I) it is important to choose a suitable
function to measure the distance from a demand point to a stop or station.
Hence, in this section we briefly introduce the concept of gauges. For more
information, the reader is referred to [Min67], which is also the basis of this
appendix. Note that gauges have been used frequently in location theory, see,
e.g., [DKSW01]. Although the following definitions and results can directly
be transferred to IRn we only present the notation for two dimensions, since
we obviously only deal with stop location in the plane.

Geometrical observations play an important role for defining the candidate set
in Part I. Thus, it makes sense to use the following “geometrical” definition
of a norm.

Definition C.1. Let B be a compact convex set in IR2 with nonempty interior
which is symmetric with respect to the origin. Let x ∈ IR2. Then define the
norm γ : IR2 → IR as

γ(x) := inf{λ > 0 : x ∈ λB}.

The following Lemma C.2 states that γ satisfies the properties required for
norms, i.e., for all x, y ∈ IR2 and λ ∈ IR we have

γ(x) ≥ 0 (C.1)

γ(x) = 0 ⇐⇒ x = 0 (C.2)

γ(λx) = |λ|γ(x) and (C.3)

γ(x + y) ≤ γ(x) + γ(y). (C.4)

On the other hand, all norms can be characterized by their unit balls B.

244 C Gauges as Distance Measures

Lemma C.2. The following results hold.

1. Let γ be given as in Definition C.1. Then γ satisfies (C.1) – (C.4).
2. Let γ : IR2 → IR≥0 be given, such that γ satisfies (C.1) – (C.4). Then

its unit ball Bγ = {x ∈ IR2 : γ(x) ≤ 1} is a compact convex set with
nonempty interior which is symmetric with respect to the origin.

Examples for norms are

• the Euclidean norm l2(x) =
√

(x1)2 + (x2)2,
• the Manhattan norm l1(x) = |x1| + |x2|,
• the maximum norm (or Chebyshev norm) l∞(x) = max{|x1|, |x2|},
• the p-norms (1 ≤ p < ∞) lp(x) = p

√
|x1|p + |x2|p.

The corresponding unit balls for the first three examples are depicted in Fig-
ure C.1.

a) Euclidean norm b) Manhattan norm c) maximum norm

Fig. C.1. The unit balls of the Euclidean, the Manhattan and the maximum norm.

If we drop the assumption that the set B is symmetric in Definition C.1, then
B does not define a norm, but a gauge.

Definition C.3. Let B be a compact convex set in IR2 containing the origin
in its interior. The gauge of x with respect to B is then defined as

γ(x) := inf{λ > 0 : x ∈ λB}.

Note that the convexity of B is still required, but γ(−x) = γ(x) does not hold
in general without the symmetry assumption.

The distance between two points x, y ∈ IR2 is defined by

d(x, y) = γ(y − x).

If γ is a norm we obtain d(x, y) = d(y, x), while this need not be the case for
a gauge γ.

C Gauges as Distance Measures 245

Fig. C.2. Examples of gauges that are not norms.

Examples of gauges which are not norms are given in Figure C.2. In public
transportation, a distance measure for some demand point d can be con-
structed by defining

Bd = {x ∈ IR2 : x can be reached within a time of r minutes}

as the unit ball for demand point d and using the corresponding gauge γBd

as the required distance measure. Note that the shape of Bd depends on the
road network structure and on the public transportation system in the area
around d.

4

Frequently Used Notation

General notation:

IN natural numbers including 0

ZZ integer numbers

IR real numbers

{u, v} undirected edge in a graph

(u, v) directed edge in a digraph

AT transpose of a matrix

Θ node-arc incidence matrix of a network

Public transportation network:

PTN = (V, E) public transportation network

V set of stops of the PTN

elements denoted by u, v, vi

E set of direct rides in the PTN

elements denoted by {u, v}, or by e

Data about customers:

W = (Wuv) OD-matrix, i.e., number of customers traveling from u to v

ce traffic load on edge e ∈ E,

i.e., number of customers traveling along edge e

cv traffic load through stop v ∈ V

i.e., number of customers traveling through stop v

248 4 Frequently Used Notation

wd demand in demand point d ∈ D

wD demand in demand region D ∈ D

wp number of customers traveling along path p ∈ P

wa “traffic load” on activity a ∈ A

wi number of customers really getting off at event i ∈ E

Stop location:

D set of demand points or demand regions

elements denoted by d for demand points and by D for demand regions

G = (V, E) given graph in which the stops are to be located

T tracks, given as points on the embedding of graph G

γd gauge distance function of demand point d ∈ D

γD gauge distance function of demand region D ∈ D

g(s) edge e or node v in which point s ∈ T is located

Sex existing stops or stations

S set of new stops or stations

Delay management:
(in the notation using event-activity networks)

P set of paths of customers

N = (E ,A) event-activity network

Earr arrival events

Edep departure events

Await waiting activities

Adrive driving activities

Achange changing activities

Πi time for event i ∈ E in the original timetable

xi time for event i ∈ E in the perturbed timetable

yi delay of event i ∈ E

sa slack time of activity a ∈ A

di source delay of event i ∈ E

Edel set of delayed events

4 Frequently Used Notation 249

Tariff planning:

Z zone partition

c(p) price for traveling through p + 1 zones,

i.e., for passing p zone borders

L required number of zones

nuv number of zones needed for traveling from u to v

duv reference price for a ticket from u to v

Mp set of relations passing p zones

5

List of the Main Problems

(SL) continuous stop location problem (from scratch) 19
(SL’) continuous stop location problem (adding new stations) 19
(CSL) complete continuous stop location problem 21
(BSL) bicriteria continuous stop location problem 59
(BSL-time) minimizing the travel time in stop location 60
(BSL-cover) maximizing the covered population in stop location 60
(DSL) door-to-door travel time stop location problem 86
(CSL-region) complete continuous stop location problem

with demand regions 76
(BSL-region) bicriteria continuous stop location problem

with demand regions 77

(SCP) set covering problem 46
(SCPc1p) set covering problem with consecutive ones property 32
(BSC) bicriteria set covering problem 66
(BSC-cover(K)) cardinality constraint set covering problem 69

(TDM) minimizing the total delay 120
(TDM-A) path-oriented formulation for minimizing the total delay 122
(TDM-B) linear formulation for minimizing the total delay 124
(TDM-C) activity-based formulation for minimizing the total delay 126
(TDM-const) minimizing the total delay assuming constant weights 136
(TDM-const-zero) minimizing the total delay assuming constant weights

and zero slack times 145
(BDM) bicriteria delay management problem 175
(GDM) general delay management problem 197

(ZD-bmax) maximum deviation zone design problem 219
(ZD-b1) sum of absolute deviations zone design problem 219
(ZD-b2) sum of squared deviations zone design problem 219

References

[AC97] A. Adamski and W. Chmiel. Optimal service synchronization in pub-
lic transport. In Transportation Systems, IFAC/IFORS Symposium,
Chania, Greece, June 1997, pages 1283–1287, 1997.

[Ack99] T. Ackermann. Die Bewertung der Pünktlichkeit als Qualitätsparameter
im Schienenpersonennahverkehr auf Basis der direkten Nutzenmessung.
PhD thesis, Universität Stuttgart, 1999.

[AD96] B. Adenso-Dı́az. An SA/TS mixture algorithm for the scheduling tardi-
ness problem. European Journal of Operational Research, 88:516–524,
1996.

[ADGGT99] B. Adenso-Dı́az, M. Oliva González, and P. González-Torre. On-line
timetable re-scheduling in regional train services. Transportation Re-
search, 33B:387–398, 1999.

[AFT02] A.Caprara, A. Fischetti, and P. Toth. Modeling and solving the
timetabling problem. Operations Research, 50(5):851–861, 2002.

[APW02] L. Anderegg, P. Penna, and P. Widmayer. Online train disposition: to
wait or not to wait? Electronic Notes in Theoretical Computer Science,
66(6), 2002.

[Ass80] A.A. Assad. Models for rail transportation. Transportation Research
A, 14(3):205–220, 1980.

[Bau05] I. Bauerdorf. Sollen Anschlussverbindungen bei Verspätungen unter-
brochen werden? Ein Ansatz zur Formulierung der Fragestellung in der
Theorie des option pricing. In proceedings of Operations Research 2005,
2005.

[BBH90] P. Brucker, R.E. Burkard, and J. Hurink. Cyclic schedules for r irreg-
ularly ocurring events. Journal of Computational and Applied Mathe-
matics, 30:173–189, 1990.

[BD92] J.H. Bookbinder and A. Desilets. Transfer optimization in a transit
network. Transportation Science, 26(2):106–118, 1992.

[Bel58] R. Bellman. On a routing problem. Quarterly Applied Mathematics,
16:87–90, 1958.

[BGJ+05] N. Bissantz, S. Güttler, J. Jacobs, S. Kurby, T. Schaer, A. Schöbel, and
S. Scholl. DisKon - Disposition und Konfliktlösungs-management für
die beste Bahn. Eisenbahntechnische Rundschau (ETR), 45(12):809–
821, 2005. (in German).

254 References

[BGL98] R. Borndörfer, M. Grötschel, and A. Löbel. Optimization of trans-
portation systems. In Acta Forum Engelberg 98. VDF Hochschulverlag
an der ETH Zürich, 1998.

[BGP04a] R. Borndörfer, M. Grötschel, and M. E. Pfetsch. Models for line plan-
ning in public transport. Technical Report 04-10, ZIP Berlin, 2004.

[BGP04b] R. Borndörfer, M. Grötschel, and M. E. Pfetsch. A path-based model
for line planning in public transport. Technical Report 05-18, ZIP
Berlin, 2004.

[BH86] P. Brucker and J. Hurink. A railway scheduling problem. Zeitschrift
für Operations Research, 30:223–227, 1986.

[BHK99] P. Brucker, S. Heitmann, and S. Knust. Scheduling railway traffic at a
construction site. In K.H. Kim (eds.): in: H.-O. Günther, editor, Con-
tainer Terminals and Automated Transport Systems Logistics Control
Issues and Quantitative Decision Support. Springer, 1999.

[BK03] L. Babel and H. Kellerer. Design of tariff zones in public transportation
systems: Theoretical results and heuristics. Mathematical Methods of
Operations Research, pages 358–374, 2003.

[BKS92] W. Bein, J. Kamburowski, and M. Stallmann. Optimal reduction of
two-terminal directed acyclic graphs. SIAM Journal on Computing,
21(6):1112–1129, 1992.

[BKZ96] M.R. Bussieck, P. Kreuzer, and U.T. Zimmermann. Optimal lines for
railway systems. European Journal of Operational Research, 96(1):54–
63, 1996.

[BLNN98] U. Brännlund, P.O. Lindberg, A. Nou, and J.-E. Nilsson. Rail-
way timetable using lagrangian relaxation. Transportation Science,
32(4):358–369, November 1998.

[BM95] M.H. Baaj and H.S. Mahmassani. Hybrid route generation heuristic
algorithm for the design of transit networks. Transportation Research
C, 3:31–50, 1995.

[BNP05] R. Borndörfer, M. Neumann, and M. E. Pfetsch. Fare planning for
public transport. Technical Report 05-20, ZIB, Berlin, 2005.

[BT81] L. A. Bowman and M.A. Turnquist. Service frequency, schedule reli-
ability, and passengers waiting times at transit stops. Transportation
research, 15A(6), 1981.

[BT96] L. Bianco and P. Toth, editors. Advanced methods in transportation
analysis. Transportation Analysis. Springer, 1996.

[Bur86] R.E. Burkard. Optimal schedules for periodically recurring events. Dis-
crete Applied Mathematics, 15:167–180, 1986.

[Bus97] M.R. Bussieck. Optimal lines in public transport. PhD thesis, Technis-
che Universität Braunschweig, 1997.

[BWZ97] M.R. Bussieck, T. Winter, and U. Zimmermann. Discrete optimization
in public rail transport. Mathematical Programming, 79:415–444, 1997.

[Car98] M. Carey. Optimizing scheduled times, allowing for behavioural re-
sponse. Transportation Research, 32B:329–342, 1998.

[Car99] M. Carey. Ex ante heuristic measures of schedule reliability. Trans-
portation Research, 53B(3):473–494, 1999.

[CFT99] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set
covering problem. Operations Research, 47(5):730–743, 1999.

References 255

[CG02] S. Carrese and S. Gori. An urban bus network design procedure. In
M. Patriksson and M. Labbé, editors, Transportation Planning. State of
the Art, volume 64 of Applied Optimization, chapter 11. Kluwer, 2002.

[CH90] B. Chen and P.T. Harker. Two moments estimation of the delay on
single-track rail lines with scheduled traffic. Transportation Science,
24(4):261–275, November 1990.

[CM82] J.C.M. Climaco and E.Q.V. Martins. A bicriterion shortest path algo-
rithm. European Journal of Operational Research, 11:399–404, 1982.

[Con02] Nicolas Condette. Set covering problems with consecutive ones prop-
erty. Master’s thesis, University of Kaiserslautern, 2002.

[CR74] R. Church and C. ReVelle. The maximal covering location problem.
Papers of the Regional Science Association, 32:101–118, 1974.

[CTV98] J.F. Cordeau, P. Toth, and D. Vigo. A survey of optimization models
for train routing and scheduling. Transportation Science, 1998.

[Cur68] J. F. Curtin. Effects of fares on transit riding. Highway Research Board,
213, 1968.

[CvDZ96] M.T. Claessens, N.M. van Dijk, and P.J. Zwaneveld. Cost optimal
allocation of rail passenger lines. European Journal on Operational
Research, 110, 1996.

[CW86] A. Ceder and N.H.M. Wilson. Bus network design. Transportation
Research B, 20:331–344, 1986.

[DAL82] M. J. Demetsky, M. Asce, and B. B.-M. Lin. Bus stop location and
design. Transportation Engineering Journal, 108:313–327, 1982.

[DBP95] J.R. Daduna, I. Branco, and J.M.P. Paixao, editors. Computer-Aided
Transit Scheduling, volume 430 of Lecture Notes in Economics and
Mathematical systems. Springer, 1995.

[DDGW97] P. De, J. Dunne, J. Gosh, and C. Wells. Complexity of the discrete
time-cost tradeoff problem for project networks. Operations Research,
45(2):302–306, 1997.

[DHE96] E. Demeulemeester, W. Herroelen, and S. Elmaghraby. Optimal proce-
dures for the discrete time/cost trade-off problem in project networks.
European Journal of Operational Research, 88:50–68, 1996.

[Die78] H. Dienst. Linienplanung im spurgeführten Personenverkehr mit Hilfe
eines heuristischen Verfahrens. PhD thesis, Technische Universität
Braunschweig, 1978.

[Dij59] E. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[DKSW01] Z. Drezner, K. Klamroth, A. Schöbel, and G. Wesolowsky. The weber
problem. In Z. Drezner and H.W. Hamacher, editors, Location Theory
- Applications and Theory, chapter 1, pages 1–36. Springer, 2001.

[DO74] B.S. Duran and P.L. Odell. Cluster Analysis — A Survey. Lecture
Notes in Economics and Mathematical Systems 100. Springer, Berlin-
Heidelberg-New York, 1974.

[Dom89] W. Domschke. Schedule synchronisation for public transit networks.
OR Spektrum, 11:17–24, 1989.

[DR92] J.R. Daduna and J.-M. Rousseau, editors. Computer-Aided Transit
Scheduling, volume 386 of Lecture Notes in Economics and Mathemat-
ical systems. Springer, 1992.

256 References

[DRF+98] E. Demeulemeester, B. De Reyck, B. Foubert, W. Herroelen, and
M. Vanhoucke. New computational results on the discrete time/cost
trade-off problem in project networks. Journal of the Operational Re-
search Society, 49:1153–1163, 1998.

[DV95] J.R. Daduna and S. Voß. Practical experiences in schedule synchro-
nization. In Computer-Aided Transit Scheduling, volume 430 of Lecture
Notes in Economics and Mathematical Systems, pages 39–55. Springer,
1995.

[DW88] J.R. Daduna and A. Wren, editors. Computer-Aided Transit Scheduling,
volume 308 of Lecture Notes in Economics and Mathematical systems.
Springer, 1988.

[EF02] O. Engelhardt-Funke. Stochastische Modellierung und Simulation von
Verspätungen in Verkehrsnetzen für die Anwendung der Fahrplanopti-
mierung. PhD thesis, Univerität Clausthal, 2002.

[EFK01a] O. Engelhardt-Funke and M. Kolonko. Cost-benefit analysis of invest-
ments into railway networks with randomly pertubed operations. In
S. Voß and J. Daduna, editors, Computer-Aided Transit Scheduling,
volume 505 of Lecture Notes in Economics and Mathematical systems,
pages 442–459. Springer, 2001.

[EFK01b] O. Engelhardt-Funke and M. Kolonko. Simulating delays for realis-
tic timetable-optimization. In Operations Research Proceedings 2001,
pages 9–15. Springer, 2001.

[EG02] M. Ehrgott and X. Gandibleux. Multiobjective combinatorial opti-
mization. In M. Ehrgott and X. Gandibleux, editors, Multiple Criteria
Optimization. State of the Art. Annotated Bibliographic Surveys, pages
369–444. Kluwer, 2002.

[EH72] J. Elzinga and D.W. Hearn. Geometrical solutions for some minimax
location problems. Transportation Science, 4:379–394, 1972.

[Ehr00] M. Ehrgott. Multiple Criteria Optimization, volume 491 of Lecture
Notes in Economics and Mathematical Systems. Springer, Berlin, 2000.

[Elm77] S.E. Elmaghraby. Activity Networks. Wiley Interscience Publication,
1977.

[Fay00] A. Fay. A fuzzy knowledge-based system for railway traffic control.
Engineering applications of Artiicial intelligence, 13:719–729, 2000.

[FF62] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton Univer-
sity Press, 1962.

[FGE05] J. Figueira, S. Greco, and M. Ehrgott, editors. Multiple Criteria De-
cision Analysis: State of the Art Surveys, volume 78 of International
Series in Operations Research & Management Science. Springer, New
York, 2005.

[Fle91] B. Fleischmann. Synchronization of transfers in public transit net-
works with cyclic schedules. Technical report, Institut für Un-
ternehmensforschung, Universität Hamburg, 1991.

[Flo62] R.W. Floyd. Algorithm 97: Shortest path. Communications of the
ACM, 5(6):345, 1962.

[GBO99] R. Goverde, P Bovy, and G. Olsder. The max-plus algebra approach
to transportation problems. In H. Meersman, editor, Transport Mod-
elling/Assessment,, volume 3 of World Transport Research, pages 377–
391. 1999.

References 257

[Geo68] A. M. Geoffrion. Proper efficiency and the theory of vector maximiza-
tion. Journal of Mathematical Analysis and Applications, 22:618–630,
1968.

[Ger04] B. Gerards, editor. Algorithmic Methods and Models for Optimization
of Railways (ATMOS) 2003, volume 92 of Electronic Notes in Theoret-
ical Computer Science, 2004.

[GGJ+04] M. Gatto, B. Glaus, R. Jacob, L. Peeters, and P. Widmayer. Railway
delay management: Exploring its algorithmic complexity. In Proceed-
ings 9th Scandinavian Workshop on Algorithm Theory (SWAT), vol-
ume 3111 of LNCS, pages 199–211, 2004.

[GHL06] L. Giovanni, G. Heilporn, and M. Labbé. Optimization models for the
delay management problem in public transportation. European Journal
of Operational Research, 2006. to appear.

[Gin01] A. Ginkel. Event-activity networks in delay management. Master’s
thesis, Universität Kaiserslautern, 2001.

[GJ79a] M.R. Garey and D.S. Johnson. Computers and Intractability — A
Guide to the Theory of NP-Completeness. Freeman, San Francisco,
1979.

[GJ79b] M.R. Garey and D.S. Johnson. Computers and Intractability — A
Guide to the Theory of NP-Completeness. H.W. Freeman and Com-
pany, San Francisco, 1979.

[GJP+04] M. Gatto, R. Jacob, L. Peeters, B. Weber, and P. Widmayer. Theory
on the tracks: A selection of railway optimization problems (column:
Algorithmics). In Bulletin of the EATCS, volume 84, pages 41–70, 2004.

[GJPS05] M. Gatto, R. Jacob, L. Peeters, and A. Schöbel. The computa-
tional complexity of delay management. In D. Kratsch, editor, Graph-
Theoretic Concepts in Computer Science: 31st International Workshop
(WG 2005), volume 3787 of Lecture Notes in Computer Science, 2005.

[GJPW06] M. Gatto, R. Jacob, L. Peeters, and P. Widmayer. On-line delay man-
agement on a single train line. In Algorithmic Methods for Railway
Optimization, Lecture Notes in Computer Science. Springer, 2006. pre-
sented at ATMOS 2004, to appear.

[GKS+06] F. Geraets, L. Kroon, A. Schöbel, D. Wagner, and C. Zaroliagis, edi-
tors. Algorithmic Methods for Railway Optimization. Lecture Notes in
Computer Science. Springer, 2006. to appear.

[Gle75] J. Gleason. A set covering approach to bus stop allocation. Omega,
3:605–608, 1975.

[GM06] D. Gattuso and G. Musolino. A simulation approach of fare integra-
tion in regional transit services. In Algorithmic Methods for Railway
Optimization, Lecture Notes in Computer Science. Springer, 2006. pre-
sented at ATMOS 2004, to appear.

[Gol89] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Addison-Wesley, 1989.

[Goo04] J. Goossens. Models and algorithms for railway line planning problems.
PhD thesis, University of Maastricht, 2004.

[Gov98a] R.M.P. Goverde. The max-plus algebra approach to railway timetable
design. In Computers in Railways VI: Proceedings of the 6th interna-
tional conference on computer aided design, manufacture and opera-
tions in the railway and other advanced mass transit systems, Lisbon,
1998, pages 339–350, 1998.

258 References

[Gov98b] R.M.P. Goverde. Optimal transfer times in railway timetables. Paper
presented at the 6th meeting of the EURO Working Group on Trans-
portation, Götheburg, Schweden, 1998.

[GS02] A. Ginkel and A. Schöbel. The bicriterial delay management problem.
Technical report, Universität Kaiserslautern, 2002.

[GvHK02] J. Goossens, C.P.M. van Hoesel, and L.G. Kroon. On solving multi-
type line planning problems. Technical Report RM/02/009, University
of Maastricht, 2002. METEOR Research Memorandum.

[GvHK04] J. Goossens, C.P.M. van Hoesel, and L.G. Kroon. A branch and cut
approach for solving line planning problems. Transportation Science,
38:379–393, 2004.

[Gün85] R. Günther. Untersuchung planerischer und betrieblicher Maßnahmen
zur Verbesserung der Anschlußsicherung in städtischen Busnetzen. PhD
thesis, Technische Universität Berlin, 1985.

[Ham95] H.W. Hamacher. Mathematische Lösungsverfahren für planare Stan-
dortprobleme (Mathematical Solution Algorithms for Planar Location
Problems). Vieweg, Braunschweig, 1995.

[Han79] P. Hansen. Bicriterion path problems. In Multiple Criteria Decision
Making. Theory and Applications, volume 177 of Lecture Notes in Eco-
nomics and Mathematical Systems, pages 109–127. Springer, 1979.

[Hay81] W.L. Hays. Statistics. Holt, Rinehart and Winston, New York, 3.
edition, 1981.

[HC83] Y.Y. Haimes and V. Chankong. Multiobjective Decision Making —
Theory and Methodology. North Holland, New York, 1983.

[HdV01] B. Heidergott and R. de Vries. Towards a control theory for transporta-
tion networks. Discrete Event Dynamic Systems, 11:371–398, 2001.

[Hen85] M.I. Henig. The shortest path problem with two objective functions.
European Journal of Operational Research, 25:281–291, 1985.

[HH87] S. Holz and R. Hüttmann. Optimierung von Anschlußzeiten. Der
Nahverkehr, 4, 1987.

[Hig97] A. Higgins. Optimization of train schedules to minimize transit time
amd maximize reliability. Transportation Research, 31A, 1997.

[HK81] C. Hendrickson and G. Kocur. Schedule delay and departure time
decision in a deterministic model. Transportation Science, 15:62–77,
1981.

[HK98a] D.A. Hensher and J. King. Establishing fare elasticity regimes for urban
passenger transport. Technical Report C37, The University of Sydney,
1998.

[HK98b] A. Higgins and E. Kozan. Modeling train delays in urban networks.
Transportation Science, 32(4):346–357, November 1998.

[HK01] H.W. Hamacher and K. Klamroth. Linear and network optimization -
a bilingual textbook. Mathematics International. Vieweg, 2001.

[HKF96] A. Higgins, A. Kozan, and L. Ferreira. Optimal scheduling of trains on
a single line track. Transportation Research, 30B:147–161, 1996.

[HL05] D. Hochbaum and A. Levin. Optimizing over consecutive 1’s and cir-
clular 1’s constraints. Technical report, University of Berkeley, 2005.

[HLS+01] H.W. Hamacher, A. Liebers, A. Schöbel, D. Wagner, and F. Wagner.
Locating new stops in a railway network. Electronic Notes in Theoret-
ical Computer Science, 50(1), 2001.

References 259

[HS95] H.W. Hamacher and A. Schöbel. On fair zone design in public trans-
portation. In J.R. Daduna, I. Branco, and J.M.P. Paixao, editors,
Computer-Aided Transit Scheduling, number 430 in Lecture Notes in
Economics and Mathematical Systems, pages 8–22. Springer, Berlin,
Heidelberg, 1995.

[HS04] H.W. Hamacher and A. Schöbel. Design of Zone Tariff Systems in
Public Transportation. Operations Research, 52(6):897–908, 2004.

[Höh77] G.J. Höhn. Die Preiselastizität der Nachfrage — graue Theorie oder
handfeste Wirklichkeit für den ÖPNV? Nahverkehrs Praxis, 1977.

[Jac04] J. Jacobs. Reducing delays by means of computer-aided ’on-the-spot’
rescheduling. In Computers in Railways (Comprail) IX, pages 603–612,
2004.

[Joh82] D. S. Johnson. The NP-completeness column: An ongoing guide. Jour-
nal of Algorithms, 3:182–195, 1982.

[Kli00a] N. Kliewer. Mathematische Optimierung zur Unterstützung kundenori-
entierter Disposition im Schienenverkehr. Master’s thesis, Universität
Paderborn, 2000.

[Kli00b] H. Klingele. Verfahren zur Optimierung eines Linienkonzeptes der
Deutschen Bahn AG. Master’s thesis, Universität Karlsruhe, 2000.

[KNV96] M. Kolonko, K. Nachtigall, and S. Voget. Optimierung von integralen
Taktfahrplänen mit genetischen Algorithmen. Technical Report 8/96,
Hildesheimer Informatik-Berichte, 1996.

[KPS+03] E. Kranakis, P. Penna, K. Schlude, D.S. Taylor, and P. Widmayer.
Improving customer proximity to railway stations. In Proceedings of the
5th conference on algorithms and complexity, number 2653 in Lecture
Notes in Computer Science, 2003.

[Kri96] M. Krista. Verfahren zur Fahrplanoptimierung dargestellt am Beispiel
der Synchronzeiten. PhD thesis, Technische Universität Braunschweig,
Fachbereich für Bauingenieur - und Vermessungswesen, 1996.

[Kro97] L. G. Kroon. Routing trains through railway stations: complexity is-
sues. European Journal of Operational Research, 98:485–498, 1997.

[KS87] W.D. Klemt and W. Stemme. Schedule synchronization for public
transport networks. In Computer-Aided Transit Scheduling, volume
308 of Lecture Notes in Economics and Mathematical Systems, pages
327–335. Springer, 1987.

[Lie01] A. Liebers. Analyzing Train Time Table Graphs. PhD thesis, Univer-
sität Konstanz, 2001.

[Lie03] C. Liebchen. Finding short integral cycle bases for cyclic timetabling. In
Proceedings of European Symposium on Algorithms (ESA) 2003, pages
715–726, 2003.

[LM02] C. Liebchen and R. Möhring. A case study in periodic timetabling.
Electronic Notes in Theoretical Computer Science, 66(6), 2002.

[LMM81] A. M. Lago, P.D. Mayworm, and J.M. McEnroe. Transit ridership
responsiveness to fare changes. Traffic Quarterly, 35(1):117–142, 1981.

[LMMO06] G. Laporte, A. Marin, J.A. Mesa, and F.A. Ortega. An integrated
methodology for rapid transit network design. In Algorithmic Meth-
ods for Railway Optimization, Lecture Notes in Computer Science.
Springer, 2006. presented at ATMOS 2004, to appear.

[LMO02] G. Laporte, J.A. Mesa, and F.A. Ortega. Locating stations on rapid
transit lines. Computers and Operations Research, 29:741–759, 2002.

260 References

[LMO05] G. Laporte, J.A. Mesa, and F.A. Ortega. Maximizing trip coverage in
the location of a single rapid transit alignment. Annals of Operations
Research, 136:49–63, 2005.

[LMW88] R.F. Love, J.G. Morris, and G.O. Wesolowsky. Facilities Location,
chapter 3.3, pages 51–60. North-Holland, Amsterdam, 1988.

[LPW04] C. Liebchen, M. Proksch, and F. Wagner. Performance of algorithms
for periodic timetable optimization. In Proceedings of 9th meeting on
Computer-Aided Scheduling of Public Transport(CASPT 2004), 2004.

[LR05] C. Liebchen and R. Rizzi. A greedy approach to compute a mini-
mum cycle basis of a directed graph. Information Processing Letters,
94(3):107–112, 2005.

[MDSF98] A. Murray, R. Davis, R.J. Stimson, and L. Ferreira. Public transporta-
tion access. Transportation Research D, 3(5):319–328, 1998.

[Mec03] S. Mecke. Standortplanung von Bahnhöfen. Master’s thesis, University
of Konstanz, 2003.

[Meg83] N. Megiddo. Linear time algorithms for linear programming in IR3 and
related problems. SIAM Journal on Computing, 12:759–776, 1983.

[Min67] H. Minkowski. Gesammelte Abhandlungen, Band 2. Chelsea Publishing
Company, New York, 1967.

[MM98] H. Müller-Merbach. Operations Research. Vahlens Handbücher der
Wirtschafts- und Sozialwissenschaften. Verlag Vahlen, 1998.

[MMO91] J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving
bicriterion shortest path problems. European Journal of Operational
Research, 53:81–92, 1991.

[MMW04] M.F. Mammana, S. Mecke, and D. Wagner. The station location prob-
lem on two intersecting lines. Electronic Notes in Theoretical Computer
Science, 92:52–64, 2004.

[MSW05] S. Mecke, A. Schöbel, and D. Wagner. Stop location - complexity and
approximation issues. In Proceedings of ATMOS 2005, 2005.

[Mur01a] A. Murray. Coverage models for improving public transit system ac-
cessibility and expanding access. Technical report, Department of Ge-
ography, Ohio State University, 2001.

[Mur01b] A. Murray. Strategic analysis of public transport coverage. Socio-
Economic Planning Sciences, 35:175–188, 2001.

[MW04] S. Mecke and D. Wagner. Solving geometric covering problems by
data reduction. In Proceedings of European Symposium on Algorithms
(ESA), pages 760–771, 2004.

[Nac94] K. Nachtigall. A branch and cut approach for periodic network pro-
gramming. Technical Report 29/94, Hildesheimer Informatik-Berichte,
1994.

[Nac96] K. Nachtigall. Periodic network optimization with different arc fre-
quencies. Discrete applied mathematics, 69:1–17, 1996.

[Nac97] K. Nachtigall. Cutting planes for a polyhedron associated with a peri-
odic network. Technical report, Institut für Flugführung, 1997.

[Nac98] K. Nachtigall. Periodic Network Optimization and Fixed Interval
Timetables. Deutsches Zentrum für Luft– und Raumfahrt, Institut für
Flugführung, Braunschweig, 1998. Habilitationsschrift.

[Neu75] K. Neumann. Operations Research Verfahren, volume III. Carl Hanser
Verlag, München Wien, 1975.

References 261

[NSS01] S. Nickel, A. Schöbel, and T. Sonneborn. Hub location problems in ur-
ban traffic networks. In Niittymaki and Pursula, editors, Mathematical
Methods and Optimization in Transportation Systems, pages 95–107.
Kluwer academic Publishers, 2001.

[NV96] K. Nachtigall and S. Voget. A genetic approach to periodic railway
synchronization. Computers Ops. Res., 23(5):453–463, 1996.

[NV97] K. Nachtigall and S. Voget. Minimizing waiting times in integrated
fixed interval timetables by upgrading railway tracks. European Journal
of Operational Research, 103:610–627, 1997.

[NW88] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Opti-
mization. Wiley, 1988.

[Odi96] M. A. Odijk. A constraint generation algorithm for the construction
of periodic railway timetables. Transportation Research, 30B:455–464,
1996.

[Pee02] L. Peeters. Cyclic Railway Timetabling Optimization. PhD thesis,
ERIM, Rotterdam School of Management, 2002.

[Pen97] K. Penner. Fahrpreisgestaltung im öffentlichen Verkehr. Master’s the-
sis, Universität Kaiserslautern, 1997.

[PK01] L. Peeters and L. Kroon. A cycle based optimization model for the
cyclic railway timetabling problem. In S. Voß and J. Daduna, editors,
Computer-Aided Transit Scheduling, volume 505 of Lecture Notes in
Economics and Mathematical systems, pages 275–296. Springer, 2001.

[PK03] L. Peeters and L. Kroon. A variable trip time model for cyclic railway
timetabling. Transportation Science, 37(2):198–212, 2003.

[PL02] M. Patriksson and M. Labbé, editors. Transportation Planning. State
of the Art, volume 64 of Applied Optimization. Kluwer, 2002.

[Pla95] F. Plastria. Continuous location problems. In Z. Drezner, editor, Facil-
ity Location: A survey of applications and methods, chapter 11, pages
225–262. Springer, New York, Inc., 1995.

[PMP04] D. Pacciarelli, A. Mascis, and M. Pranzo. Scheduling models for short-
term railway traffic optimization. In Proceedings of 9th meeting on
Computer-Aided Scheduling of Public Transport(CASPT 2004), 2004.

[PT82] E. R. Petersen and A. J. Taylor. A structured model for rail line
simulation and optimization. Transportation Science, 16(2):192–206,
1982.

[Roc84] R.T. Rockafellar. Network Flows and Monotropic Optimization. John
Wiley, New York, 1984.

[Rou85] J.-M. Rousseau, editor. Computer Scheduling of Public Transport 2.
North-Holland, 1985.

[RS04] N. Ruf and A. Schöbel. Set covering problems with almost consecutive
ones property. Discrete Optimization, 1(2):215–228, 2004.

[Ruf02] N. Ruf. Locating train stations: Set covering problems with ”almost
c1p” matrices. Master’s thesis, University of Kaiserslautern, 2002.

[SA00] A.J.V. Skriver and K.A. Andersen. A label correcting approach for
solving bicriterion shortest path problems. Computers and Operations
Research, 27(6):507–524, 2000.

[SBK01] L. Suhl, C. Biederbick, and N. Kliewer. Design of customer-oriented
dispatching support for railways. In S. Voß and J. Daduna, editors,
Computer-Aided Transit Scheduling, volume 505 of Lecture Notes in
Economics and Mathematical systems, pages 365–386. Springer, 2001.

262 References

[Sch94a] A. Schöbel. Methoden der kombinatorischen Optimierung in der Tar-
ifplanung im öffentlichen Personennahverkehr. Master’s thesis, Univer-
sität Kaiserslautern, 1994. (appeared under maiden name, A. Schu-
macher).

[Sch94b] A. Schöbel. Fair zone design in public transportation networks. In
U. Derigs, A. Bachem, and A.Drexl, editors, Operations Research Pro-
ceedings 1994, pages 191–196, Berlin, 1994. Springer Verlag.

[Sch96] A. Schöbel. Zone planning in public transportation. In L. Bianco
and P. Toth, editors, Advanced Methods in Transportation Analysis,
Transportation Analysis, pages 117–134. Springer Verlag, 1996.

[Sch01a] M. Schmidt. Modelle zur Linienoptimierung im Zugverkehr unter
Berücksichtigung der Nachfrage. Master’s thesis, Universität Kaiser-
slautern, 2001.

[Sch01b] S. Scholl. Anschlusssicherung bei Verspätungen im ÖPNV. Master’s
thesis, Universität Kaiserslautern, 2001.

[Sch01c] A. Schöbel. A model for the delay management problem based on
mixed-integer programming. Electronic Notes in Theoretical Computer
Science, 50(1), 2001.

[Sch05a] R.-S. Schneider. A new customer-oriented cost model for the line plan-
ning problem. Master’s thesis, Technische Universität Kaiserslautern,
2005.

[Sch05b] S. Scholl. Customer-oriented line planning. PhD thesis, Technische
Universität Kaiserslautern, 2005.

[Sch05c] A. Schöbel. Locating stops along bus or railway lines — a bicriterial
problem. Annals of Operations Research, 136:211–227, 2005.

[Sch06] A. Schöbel. Integer programming approaches for solving the delay man-
agement problem. In Algorithmic Methods for Railway Optimization,
Lecture Notes in Computer Science. Springer, 2006. to appear.

[SHLW02] A. Schöbel, H.W. Hamacher, A. Liebers, and D. Wagner. The contin-
uous stop location problem in public transportation. Technical report,
Universität Kaiserslautern, 2002. Report in Wirtschaftsmathematik
Nr. 81/2001.

[Skr00] A.J.V. Skriver. A classification of bicriteria shortest path (bsp) algo-
rithms. Asia-Pacific Journal of Operational Research, 17(2):199–212,
2000.

[SM97] L. Suhl and T. Mellouli. Supporting planning and operation time con-
trol in transportation systems. In Operations Research Proceedings
1996, pages 374–379. Springer, 1997.

[SM99] L. Suhl and T. Mellouli. Requirements for, and design of, an operations
control system for railways. In Computer-Aided Transit Scheduling.
Springer, 1999.

[SM01] L. Suhl and T. Mellouli. Managing and preventing delays in railway
traffic by simulation and optimization. In Mathematical Methods on
Optimization in Transportation Systems, pages 3–16. Kluwer, 2001.

[SMBG01] L. Suhl, T. Mellouli, C. Biederbick, and J. Goecke. Managing and pre-
venting delays in railway traffic by simulation and optimization. In
M. Pursula and Niittymäki, editors, Mathematical methods on Opti-
mization in Transportation Systems, pages 3–16. Kluwer, 2001.

[SS99] G. Schöbel and A. Schöbel. WabPlan – a software tool for design and
evaluation of tariff systems, 1999.

References 263

[SS01] A. Schöbel and T. Sonneborn. Anschlusssicherung in multimodalen
Verkehrssystemen. Jahresbericht der Stiftung Innovation Rheinland-
Pfalz, 2001.

[SS03] A. Schöbel and M. Schröder. Covering population areas by railway
stops. In Proceedings of OR 2002, Klagenfurt. Springer, 2003.

[SS05] A. Schöbel and S. Scholl. Line planning with minimal transfers. In
proceedings of ATMOS 2005, 2005.

[Ste88] W. Stemme. Anschlußoptimierung in Netzen des öffentlichen Perso-
nennahverkehrs. PhD thesis, Technische Universität Berlin, 1988.

[SU89] P. Serafini and W. Ukovich. A mathematical model for periodic schedul-
ing problems. SIAM Journal on Discrete Mathematic, 2:550–581, 1989.

[SV74] K. Sarkadi and I. Vincze. Mathematical Methods of Statistical Quality
Control. Academic Press, New York-London, 1974.

[ta98] Metropolitan transit association. Urban fact book, 1998.
[Tam02] A. Tamir, July 2002. personal communication.
[TJ05] J. Törnquist and J.A.Persson. Train traffic deviation handling using

tabu search and simulated annealing. In Proceedings of HICSS’38,
Hawaii, 2005.

[TR73] C. Toregas and C. ReVelle. Binary logic solutions to a class of location
problems. Geographical Analysis, 5:145–155, 1973.

[TSRB71] C. Toregas, R. Swain, C. ReVelle, and L. Bergman. The location of
emergency facilities. Operations Research, 19:1363–1373, 1971.

[Tör05a] J. Törnquist. Computer-based decision support for railway traffic
scheduling and dispatching: A review of models and algorithms. In
proceedings of ATMOS 2005, 2005.

[Tör05b] J. Törnquist. N-tracked railway traffic re-scheduling during dis-
turbances: theoretical and practical implications. Technical report,
Blekinge Institute of Technology, Sweden, 2005.

[VD01] S. Voß and J. Daduna, editors. Computer-Aided Transit Scheduling,
volume 505 of Lecture Notes in Economics and Mathematical systems.
Springer, 2001.

[vE01] R.J. van Egmond. An algebraic approach for scheduling train move-
ments. In Proceedings of the 8th international conference on Computer-
Aided Transit Scheduling, Berlin, 2000, 2001.

[Voß92] S. Voß. Network design formulations in schedule synchronization. In
Computer-Aided Transit Scheduling, volume 386 of Lecture Notes in
Economics and Mathematical Systems, pages 137–152. Springer, 1992.

[Wag02] D. Wagner, editor. Algorithmic Methods and Models for Optimization
of Railways (ATMOS) 2002, volume 66(6) of Electronic Notes in The-
oretical Computer Science, 2002.

[Wag03] D. Wagner. Algorithms and models for railway optimization. In Lec-
ture Notes in Computer Science, volume 2748, pages 198–206. Springer,
2003.

[War62] S. Warshall. A theorem on boolean matrices. Journal of the ACM,
9(1), 1962.

[WC74] J. White and K. Case. On covering problems and the central facility
location problem. Geographical Analysis, 6:281–293, 1974.

[Wei81] W. Weigand. Graphentheoretisches Verfahren zur Fahrplangestaltung
in Transportnetzen unter Berücksichtigung von Pufferzeiten mittels in-
teraktiver Rechentechnik. PhD thesis, Technische Universität Braun-
schweig, 1981.

264 References

[Wei99] A. Weißler. General Bisectors and their Application in Planar Location
Theory. PhD thesis, Universität Kaiserslautern, 1999.

[Wil99] N.H.M. Wilson, editor. Computer-Aided Transit Scheduling, volume
471 of Lecture Notes in Economics and Mathematical systems. Springer,
1999.

[Wol98] L. A. Wolsey. Integer Programming. Wiley, 1998.
[Wre81] A. Wren, editor. Computer Scheduling of Public Transport. North-

Holland, 1981.
[WS05] S. Wegele and E. Schnieder. Dispatching of train operations using

genetic algorithms. In 1st International Seminar on Railway Operations
Modelling and Analysis, Delft, 2005.

[XC94] X.Cai and C.J.Goh. A fast heuristic for the train scheduling problem.
Computers and Operations Research, 21(5):499–510, 1994.

[Zar01] C. Zaroliagis, editor. Algorithmic Methods and Models for Optimiza-
tion of Railways (ATMOS) 2001, volume 50(1) of Electronic Notes in
Theoretical Computer Science, 2001.

[Zwa96] P.J. Zwaneveld. Routing trains through railway stations: Model for-
mulation and algorithms. Transportation Science, 30:181–194, 1996.

Index

access time, 75, 85, 86
activity

changing activity, 104
driving activity, 104
waiting activity, 104

adjacency of zones, 215
almost consecutive ones property, 46
application

delay management, 97, 194
stop location, 13, 32, 45, 57
zone planning, 212, 231

arrival event, 104

bicriteria delay management problem
(BDM), 96, 175

bicriteria optimization problem (BP),
239

bicriteria set covering digraph, 67
bicriteria stop location problem (BSL),

12, 59, 63

changing activity, 104
complete stop location problem (CSL),

12, 21, 22
conflict zone, 84
connection, 100

maintained, 102
missed, 102

consecutive ones property (c1p), 29
almost, 46

continuous stop location problem, 11
counting zone design problem, 219
counting zone tariff, 211
cover, 16

cover graph, 41
covered, 16
covering matrix, 28
covering radius, 11
CPM-network, 112
critical path method (CPM), 111

delay
total, 119

delay arcs, 185
delay management problem, 95

bicriteria (BDM), 96, 175
general (GDM), 96, 196
total (TDM), 96, 120
with fixed connections (TT), 96, 109

delay network, 185
delay arcs, 185
timetable arcs, 185

demand of a relation, 6
demand set, 16
departure event, 104
discrete time/cost tradeoff problem

(DTCTP), 182
modes, 182

distance tariff, 208
unit tariff, 209

dominance, 239
door-to-door travel time, 75, 85
door-to-door travel time stop location

problem (DSL), 12, 86
driving activity, 104

e-constraint method, 61
efficient point, 240

266 Index

for delay management, 178
for stop location, 60

event
arrival event, 104
departure event, 104

event-activity network, 104

fare (planning) problem, 213, 220
feasible differential problem, 115
fixturing point, 82

gauge, 244
general delay management problem

(GDM), 96, 196
geometric covering by discs, 23

interval matrix, 29

late reduction, 133
lexicographic minimum, 241
linear programming relaxation, 237
location set covering problem, 14, 28
LP-relaxation, 237

maintained, 120
maintained (connection), 102
maximum coverage location problem,

14
missed (connection), 102
missed path, 120
monotone matrix, 34

strictly, 34

never-meet property, 138
norm, 243
NP-hardness

of bicriteria delay management
problem, 176

of bicriteria stop location problem, 61
of complete stop location problem, 22
of door-to-door travel time stop

location problem, 87
of general delay management

problem, 201
of stop location problem for demand

regions, 77
of zone planning problem, 226

OD-matrix, 6
origin-destination matrix, 6

Pareto solution, 239
supported, 240
for delay management, 178
for stop location, 60

partition into cliques, 226
path

maintained, 120
missed, 120

perturbed timetable, 95, 102, 107
feasible, 102, 107

polygonal line, 29
interval of, 29

potential (of a node), 115
price elasticity, 233
project network, 111
project planning, 111
public transportation network (PTN), 5

reduced solution
of bicriteria delay management, 180
of total delay management, 123, 131

reference prices, 207
relation (in public transport), 5
relaxation, 237

series parallel network, 183
set covering digraph, 37
set covering problem, 14, 28

unweighted, 35
source delay, 101, 107
stop location problem, 11

unweighted, 15
strictly monotone matrix, 34

tariff system
counting zone tariff, 207, 211
distance tariff, 208
fair, 207
zone tariff, 210
zone tariff with arbitrary prices, 210

tariff zone, 210
tension (of an arc), 115
time-minimal solution, 113
timetable, 100, 106

feasible, 100
perturbed timetable, 102, 107

timetable arcs, 112, 185
timetable event, 188
total delay, 119

Index 267

total delay management problem
(TDM), 96, 120

with constant weights, 133
totally unimodular (TU), 238
track system, 15
traffic load, 6

of a station, 7
of an edge, 6

travel time, 75, 85

unit ball, 243
unit tariff, 209

wait-depart decision, 95, 101
depart, 95
independent, 170
wait, 95

waiting activity, 104
weighted median, 221

zone graph, 215
zone planning problem, 213, 219
zone tariff, 210

counting zone tariff, 207, 211
with arbitrary prices, 210

Printed in the United States of America

	Cover
	OPTIMIZATION IN PUBLICTRANSPORTATION
	Optimization and Its ApplicationsVOLUME 3
	ISBN-10: 0387328963
	Preface
	Contents

	1Customer-oriented Traffic Planning
	Part IStop Location
	2Introduction
	3Covering All Demand Points
	4Bicriteria Stop Location
	5Extensions

	Part IIDelay Management
	6Introduction
	7Delay Management With Fixed Connections
	8Minimizing the Sum of All Delays
	9The Bicriteria Delay Management Problem
	10Extensions

	Part IIITariff Planning
	11Introduction
	12Finding Zones and Zone Prices

	Appendices
	AInteger Programming
	BBicriteria Optimization
	CGauges as Distance Measures
	D Frequently Used Notation
	E List of the Main Problems

	References
	Index

