
OPTIMISATION OF DESIGN OF 
COMPOSITE STRUCTURES 

Antonio Miravete 

WOODHEAD PUBLISHING LIMITED 



OPTIMISATION OF DESIGN OF 
COMPOSITE STRUCTURES 



OPTIMISATION OF DESIGN OF 
COMPOSITE STRUCTURES 

Antonio Miravete 
Department of Mechanical Engineering 

University of Zaragoza 

WOODHEAD PUBLISHING LIMITED 

Cambridge England 



Published by Woodhead Publishing Limited, Abington Hall, 
Abington, Cambridge CB21 6AH, England 
www.woodheadpublishing.com 

First published 1996 

© Woodhead Publishing Ltd, 1996 

Conditions of sale 
All rights reserved. No part of this publication may be reproduced or 
transmitted in any form or by any means, electronic or mechanical, 
including photocopy, recording, or any information storage and retrieval system, 
without permission in writing from the publisher. 

British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library. 

ISBN-13: 978-1-85573-208-7 
ISBN-lO: 1-85573-208-4 

Printed by Victoire Press, Cambridge, England. 



CONTENTS 

Preface Vll 

Symbols and notation viii 

1 Introduction and preliminaries 1 

1.1 Introduction 1 

1.2 Anisotropic constitutive relations 2 

1.3 Laminate theories 7 

1.4 Numerical methods of stress analysis 11 

1.5 Failure criteria 13 

1.6 Numerical methods for design optimisation 14 

References 16 

2 Design optimisation of constant thickness composite structures 19 

2.1 Introduction 19 

2.2 Special configurations: SMC and fabric composites 21 

2.3 Homogenisation of laminated plates 29 

2.4 The free-edge effect 31 

2.5 Conclusions 34 

References 35 

3 Shells 39 

3.1 Introduction 39 

3.2 Spherical dome 39 

3.3 Spherical vessel 46 

3.4 Pipeline and submersible hull 51 

3.5 Conclusions 55 

References 56 

4 Constant thickness plates 59 

4.1 Introduction 59 

4.2 Design optimisation of composite plates in bending 59 

4.3 Design optimisation of composite plates in buckling 71 

4.4 Conclusions 81 

References 83 

5 Constant thickness sandwiches 87 

5.1 Introduction 87 

5.2 Core materials 87 

5.3 Optimum design of sandwich constructions 98 

5.4 Buckling 105 

5.5 Conclusions 113 

References 114 



6 Design optimisation of variable thickness composite structures 117 

6.1 Introduction 117 

6.2 Variable thickness laminate stress distribution 118 

6.3 Conclusions 135 

References 135 

7 Variable thickness beams 137 

7.1 Introduction 137 

7.2 Behaviour of variable thickness composite beams 138 

7.3 Optimisation of variable thickness composite beams 148 

7.4 Conclusions 152 

References 153 

8 Variable thickness plates 155 

8.1 Introduction 155 

8.2 Model assumptions and method of analysis 155 

8.3 Determination of elastic constants and strengths 158 

8.4 Optimisation of laminated composite plates 160 

8.5 Conclusions 181 

References 182 

9 Variable thickness sandwiches 185 

9.1 Introduction 185 

9.2 One-dimensional laminated composite panels 186 

9.3 Two-dimensional laminated composite panels 188 

9.4 Conclusions 198 

References 199 



PREFACE 

Composite materials have been increasingly used during the last decades, to lighten structures in fields such as 

aeronautics and space. Two steps are essential to take advantage of these materials: design and optimisation. 

Optimisation of composite structures is a recent issue, because both optimisation techniques and composite structures 

have been developed during the last few decades and therefore, the conjunction of them is even more recent. As using 

composite materials is an expensive but efficient way of getting minimum weight structures, it is logical to attempt to 

find out how to design properly optimised laminated composite plates with no reduction in their strength. 

Since many kinds of ground and air vehicles have rectangular plates as a common structural element, an increasing 

demand for improved structural efficiency in such applications has resulted. Composite materials offer a number of 

advantages other than their high stiffness to density values: for example, it is possible to shape them by orientating the 

filaments in the various layers in order to optimise the desired structural behaviour. 

Although there is much literature related to plate analysis, the most modem references lack adequate information which 

could allow a designer to tailor or synthesise an optimal design. There are two reasons for this: llfstly, the difficulty of 

accurately assessing the level of strains and stresses in any point of a laminated composite plate and, secondly, the 

need to implement an optimisation procedure able to find the minimum weight structure. 

Fortunately, the current development of numerical techniques and the existence of powerful computers provide a 

solution to the two problems mentioned above. 

Recently, a number of books dealing with design on composite materials have been published. This is the llfst step for 

relating theory of composite materials to real life, the objective being to produce information that can be used for 

design purposes. 

The aim of this book is to provide another step forward and to obtain rules, not only to design composite structures 

properly but to do this in an optimum way. Two software packages are included with the book for designing and 

optimising rectangular, constant and variable thickness composite plates. 

The author wishes to express his gratitude to Steve W Tsai and Ran Y Kim, for their encouragement and support in the 

course of the work related to variable thickness structures. 

The support of the Mechanics and Surface Interactions Branch (WRDCIMLBM), Non-metallic Material Division, 

Materials Laboratory, Wright Research and Development Center, Wright Patterson Air Force Base, Ohio, USA is also 

acknowledged. 

Special thanks are due to Juan J Alba, Maria J Casamayor, Luis Castej6n, Javier Fernandez and Jesus Saldafia, who are 

all members of the Group of Composite Materials of the University of Zaragoza. Finally I wish to express my 

appreciation to Teresa Laborde who was in charge of editing text and graphics. 
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Symbols and notation 

Length of the plate; or nodal displacement vector 

Relative nodal displacement 

Nodal displacement vector of the finite element e 

Geometric matrix used in the [mite element method; B = L N 

Width of the plate 

Stiffness matrix in the generalized Hooke's law; in concentrated notation, i,j=1,2,3,4,5,6 

Strain-displacement matrix, or core thickness in a sandwich panel 

Matrix of elastic constants 

Young modulus 

Strain energy of the jth layer of the element i 

Strain energy density of the jth layer of the element i 

Strain energy density of the jth layer of the element i 

Relative strain energy of the jth layer of the element i 

Strength parameters in stress formulation of the quadratic failure criterion 

Nodal forces in the [mite element e 

In-plane shear modulus 

Ply thickness 

Stiffness matrix of the whole plate 

Relative stiffness matrix of the whole plate 

Stiffness matrix of the whole plate due to bending stresses 

Geometric matrix of the whole plate 

Elemental stiffness matrix 

Diagonal of a plate 

Surface area of the element i 

Applied bending moment 

Shape function matrix 

Applied compressive force in x-direction per unit width 

Critical compressive force in x-direction per unit width 
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Applied compressive force in y-direction per unit width 

Critical compressive force in y-direction per unit width 

Applied compressive force in xy- or 12-plane per unit width 

Critical compressive force in xy- or 12-plane per unit width 

Applied transverse load 

Reduced stiffness matrix for plane stress 

Distributed forces in the [mite element e 

Term of the reduced matrix for plane stress Qyy = By / (1-v12v21) 

Strength/stress ratio or strength ratio 

Positive pure shear strength in the xy- or 12-plane of a ply 

Negative pure shear strength in the xy- or 12-plane of a ply 

Transformation matrix 

Total laminate thickness 

Difference between the total laminate thickness (t) and the minor thickness of a tapered plate 

Thickness of the jth layer of the ith element 

Deflection in the x-direction 

Strain energy of a single plate element subjected to in-plane stresses 

Strain energy of a single plate element due to plate bending 

Yolume of the finite element e 

Yolume of the jth layer of the ith element 

Strain energy of a single plate element due to in-plane stresses 

Deflection in the y -direction 

Deflection in the z-direction 

Uniaxial tensile strength of a ply along the x -axis 

Uniaxial compressive strength of a ply along the x-axis 

Uniaxial tensile strength of a ply along the y-axis 

Uniaxial compressive strength of a ply along the y-axis 

Uniaxial tensile strength of a ply along the z-axis 

Uniaxial compressive strength of a ply along the z-axis 

Thickness of the jth layer of the ith element normalized to maximum thickness 

Shear strain component 

Strain generated by a virtual displacement 
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Displacement generated by a virtual displacement 

Vector of nodal deflections 

Virtual displacements in the fmite element e 

Strain component 

Relative strain component 

Initial strains 

Angle between x -axis and fiber or principal axis of layer 

Scaling parameter 

Lagrangian parameter; or coefficient used to formulate an eigenvalue problem 

Number of cycle of iteration 

Angle of variation of thickness 

Mass density of the jth layer of the ith element 

Stress component 

Relative stress component 

Initial stresses 

Shear stress component 

One-dimensional thin plate 

One-dimensional thick plate 

One-dimensional sandwich plate 

One-dimensional simply supported plate 

One-dimensional clamped plate 

One-dimensional cantilever plate 

Two-dimensional thin plate 

Two-dimensional thick plate 

Two-dimensional sandwich plate 

Two-dimensional simply supported plate 
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One-dimensional simply supported plate 
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1 INTRODUCTION AND PRELIMINARIES 

Designing with composite materials is complex because there are many variables to consider: orientation of fibres, 

number of plies, ply thickness, type of fibre, type of matrix, configuration, etc. Thus, the optimum design is not 

obvious and different cases must be considered. 

The chapters of this book fall into three groups. Chapter 1 provides a general background on composite materials: 

anisotropic constitutive relations, laminated plates and shear theories to be applied to thin and thick laminates, 

respectively. Chapters 2 to 5 are concerned with constant thickness composite structures, and provide a survey of 

various design methodologies of shells, plates and sandwich constructions. Chapters 6 to 9 examine variable thickness 

composite structures, and consider beams, plates and sandwiches. The users' manuals of DAC and OPT!, two software 

packages for designing constant and variable thickness structures respectively, are presented separately. 

First of all, constant thickness structures are studied. Shells, plates and sandwiches are analysed in terms of design 

optimisation, the weight being the optimisation criterion. Different applications are reviewed and a comparison with 

standard materials and optimum configurations is given for each case. 

Secondly, variable thickness structures are studied. Beams, plates and sandwiches are analysed and a comparison with 

constant thickness structures and optimum configurations is given for each case. 

1.1. Introduction 

The aim of this chapter is to define the basis of the analyses described in this book. First, anisotropic constitutive 

relations are presented in order to obtain the stress-strain relations for composite materials. 

Then, the formulation of two theories which are the most widely used in the field of composites design is described. 

These are the laminated plate theory and the frrst order shear theory. 

The laminated plate theory is simple and easy to implement. The results obtained by means of this theory are accurate 

for thin plates (characteristic length/thickness> 10). Thus, this theory is very useful for this type of plate because 

several optimisation criteria for design may be easily obtained. 

When wolking with thick plates (characteristic length/thickness < 10), the interlaminar effect cannot be neglected and 

thus, a shear theory must be used. For design optimisation pwposes, the first order shear theory gives good results and 

therefore, that methodology will be used in this book. To obtain very accurate results, a higher order shear theory is 

more adequate. 

A rational basis of structural engineering design must be based on the ability to predict the load and hence, the stress, 

likely to be encountered in practice. Therefore, a numerical method to carry out the stress analyses in an optimum way 

must be selected. 
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Failure criteria are needed for design optimisation and materials improvement. The most frequently used criteria are 

extensions of similar criteria for isotropic materials, which include those for maximum stress, maximum strain and 

quadratic. The choice of an appropriate failure criterion is made in this chapter. 

Finally, the numerical methods applied in this text for optimisation purposes are described. 

1.2 Anisotropic constitutive relations 

Laminated composites are constructed from orthotropic plies containing collimated unidirectional fibres, woven cloth or 

chopped strand mattings. Generally, in a macroscopic sense, the lamina is assumed to behave as a homogeneous 

orthotropic material. The constitutive relation for a linear elastic orthotropic material in the fibre co-ordinate system, 

Fig. 1.1, is (1-3): 

tl Sl1 S12 S13 0 0 0 
0'1 

t2 S12 S22 S23 0 0 0 0'2 

t3 S13 S23 S33 0 0 0 0'3 

1 23 0 0 0 S44 0 0 't23 

131 0 0 0 0 S55 0 't31 

112 0 0 0 0 0 S66 
't12 

[1.1] 

where the stress components (OJ. 'tij) are defined in Fig. 1.1 and Sij are elements of the compliance matrix. The strain 

components (~} 'Yij) are defined in a manner analogous to the stress components. 

In a thin lamina a plane stress is commonly assumed by setting: 

1 

a 
1 

a 
3 

Figure 1.1 Defmition of stress components and principal material directions for an orthotropic material. 

2 

[1.2] 
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For equation 1.1 this assumption leads to: 

123 = 131 = 0 [1.3] 

Thus, £3 is not an independent strain component and does not need to be included in the constitutive relationship for 

plane stress. Equation 1.1 becomes: 

c1 Su S12 0 <J1 

c2 S12 S22 0 <J2 

112 0 0 S66 
't12 

Sij may be related to the engineering constants as: 

The relation in equation 1.4 may be inverted to obtain the stress components from the strain components: 

<J1 Qll Q12 0 

<J2 Q12 Q22 0 

't12 0 0 Q66 

where Q.j are the reduced stiffnesses: 

Qll = E/ (1 - '\)12'\)21) 

Q12 = '\)12Ei (1 - '\)12'\)21) 

Q22 = Ei (1 - '\)12'\)21) 

Q66 = G12 

c1 

c2 

112 

[1.4] 

[1.5] 

[1.6] 

[1.7] 

For a lamina whose principal material axes are oriented at an angle with respect to the x - y system (see Fig. 1.2), the 

stresses and strains transform according to: 

"{"xy 
[1.8] 

and 

3 

�� �� �� �� ��



= [T] 

where the transformation matrix is: 

[T] = 

2mn 

-2mn 

x 

z,3 

2 

Figure 1.2 Positive rotation of principal material axes (1-2) from arbitrary x-y axes. 

in which 

m=cose 

n = sine 

[1.9] 

[1.10] 

[1.11] 

From equations 1.8 and 1.9 it is possible to establish the stress-strain relation in any co-ordinate system. In this way 

the compliance relation becomes: 

ex Su S12 S16 ax 

ty = S12 S22 S26 
a y 

'(xv 
S16 S26 S66 

'xy 
[1.12] 
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Similarly, the stiffness relation becomes: 

O"x 011 012 016 tx 

O"y = 012 022 026 
ty 

1'xy 
016 022 066 

Yxy 

where the bars denote transfOlmed properties obtained from: 

Sll = m4S11 + m2n2 (2S12 + S66 ) + n4S22 

S21 = S12 = m 2n2 (Sll + S22 - S66 ) + S12 (m4 + n4 ) 

S22 = n4S11 + m2n2 (2S12 + S66 ) + m4S22 

S16 = 2m3n (Sll - S12) + 2mn3 (S12 - S22) 

S26 = 2mn3 (Sll - S12) + 2m3n (S12 - S22) 

mn (m2 _n2 )S66 

+ mn (m2 - n2)S66 

4m2n2 (S S) + (m2·_ n2)2S66 12 - 22 

Q ll = m4Qll + 2m2n2 (Q12 + 2Q66) + n4Q22 

Q 21 = Q 12 = m2n2 (Qll + Q22 - 4Q66) + (m4 + n4) Q12 

Q22 = n4Qll + 2m2n2 (Q12 + 2Q66) + m4Q22 

Q16 = m3n (Qll - Q12) + mn3 (Q12 - Q22) - 2mn (m2 - n2)Q66 

Q26 = mn3 (Qll - Q12) + m3n (Q12 - Q22) +2mn (m2 - n2)Q66 

Q 66 = m2n2 (Qll + Q22 - 2Q12 - 2Q66) + (m4 + n4)Q66 

[1.13] 

[1.14] 

[1.15] 

Hygrothermal strains. As fibrous composite materials are processed at elevated temperatures, thermal strains introduced 

during cool-down to room temperature may lead to residual stresses and changes in dimensions. Furthermore, matrices 

may be hygroscopic and tend to absorb moisture which may lead to swelling strains and stresses in the material. The 

constitutive relationship with temperature and swelling strains included takes the following form: 

O"X 011 012 016 ex 

O"y = 012 022 026 
ty 

1'xy 016 022 066 
Yxy 

[1.16] 
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CX S11 S12 S16 O'x t T x CS x 

Cy = S12 S22 S16 
O'y + t T 

y + t S 
y 

Yxy 
S16 S26 S66 

Txy T 
Yxy '("~y 

where superscripts T and S denote temperature and swelling-induced strains, respectively. 

Inversion of equation 1.16 gives: 

O'x 011 012 016 Cx _tT 
x 

_tS 
x 

O'y 012 022 026 Cy _cT S 
= Y 

-txy 

Txy 016 026 066 Yxy 
T 

-Yxy -'fxy 
[1.17] 

The thermal and swelling strains may in many cases be expressed as linear functions of the temperature and the 

moisture concentration: 

cx.x 

[1.18] 

c S R 
~y L\C Py 

[1.19] 

where AT and AC are the temperature change and moisture concentration change from the reference state. As might be 

expected, transformations for expansional strains are similar to those for mechanical strains (equation 1.9). 

Note that in the principal material co-ordinate system: 

[1.20] 

as no shear strain is introduced in the principal co-ordinate system because of a change in temperature or moisture 

concentration. 

In many cases, only the steady state temperature and moisture concentration in the composite is of interest. For this 

case, AT and AC are constants throughout the material. However, in a transient situation, the transfer of heat by 

6 
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conduction or diffusion of water has to be considered. There is an obvious analogy between the two phenomena that was 

first recognised by Fick who developed a mathematical formalism for diffusion, similar to heat transfer. 

1.3 Laminate theories 

1.3.1 Laminated plates theory 

The basic assumptions for the laminated plates theory 1-17 are: 

1 The plate is constructed of an arbitrary number of layers of orthotropic sheets bonded together. However, the 
orthotropic axes of material symmetry of an individual layer need not coincide with the x-y axes of the plate. 

2 The plate is thin, i.e., the thickness h is much smaller than the other physical dimensions. 

3 The displacements u, v, and w are small compared with the plate thickness. 

4 In-plane strains ex, loy and exy are small compared with unity. 

5 In order to include in-plane force effects, nonlinear terms in the equations of motion involving products of 
stresses and plate slopes are retained. All other nonlinear terms are neglected. 

6 Transverse shear strains exz and eyz are negligible. 

7 Tangential displacements u and v are linear functions of the z co-ordinate. 

8 The transverse normal strain ez is negligible. 

9 Each ply obeys Hook's law. 

10 The plate has constant thickness. 

11 Rotary inertia terms are negligible. 

12 There are no body forces. 

13 Transverse shear stresses O"xz and O"yz vanish on the surfaces z = ± h/2. 

A laminate is made up of a number of plies with an arbitrary planar orientation (see Fig. 1.3). For the displacements of 

the cross-section of the laminate, it is assumed that a line, originally straight and perpendicular to the middle surface, 

remains so during deformation. This assumption leads to the vanishing of the out-of-plane shear strains: 

Yxz = Yyz = 0 [1.21] 

where the laminate co-ordinate system (x - y - z) is indicated in Fig. 1.3. 

Moreover, the strain ez in the thickness direction is neglected. Consequently, the laminate strains are reduced to ex' loy' 

and Yxy' by the above assumptions, which constitute the Kirchhoff hypothesis for plates. Assuming that the cross­

sections undergo only stretching and rotation leads to the following strain distribution, 

7 
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tx 
to x Kx 

ty = to y + z Ky 

Yxy 0 Kxy 
Yxy [1.22] 

where (cOx' EOy' YOxy) and (Kx' K y' Kxy) are the mid-plane strains and curvatures, respectively, and z is the distance 

from the mid-plane. 

x 

Figure 1.3 Laminate co-ordinate system. 

The resultant forces and moments are obtained by integration of the stresses in each layer over the laminate thickness, 

h: 

N x cr x 
hl2 

Ny = J 
cry dz 

N xy -h/2 'fxy 
k [1.23] 

Mx cr x 
h/2 

My = J 
cry zdz 

Mxy -h/2 'fxy 
k [1.24] 

where (Nx' Ny' Nxy) and (Mx' My' Mxy) are the force and moment resultants, respectively. The subscript k represents 

the kth lamina in the laminate. 

Combination of equations 1.17 to 1.19, 1.22 to 1.24 leads to: 

8 
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N x Au A12 A16 
CO 

x Bu B12 B16 Kx 

Ny = A12 A,.2 A,.6 
CO 
Y + B12 B22 B 26 Ky 

A 16 A,.6 ~6 ° B 16 B 26 B66 Kxy: 
N xy Yxy 

[1.25] 

Mx BU B12 B16 
CO 

x DU D12 D16 Kx 

My = B12 B22 B 26 CO 
y + D12 D22 D 26 Ky 

Mxy B16 B 26 B66 ° Yxy D16 D 26 Do6 Kxy: 

[1.26] 

Aij. Bij and Dij are called extensional stiffnesses, coupling stiffnesses, and bending stiffnesses, respectively. They are 

calculated from: 

N 

A.. L (Qij)k (~- ~) IJ 
k=l 

N 

B .. = 1 L (Qij)k (~ - ~-l) IJ 2 
k=l 

N 

D .. 1 L (Qij)k (zi - zi-l) IJ 3 
k=l [1.27] 

1.3.2 First order shear theory 

For composites having a high ratio of in-plane Young's moduli to interlaminar shear moduli and ratios of in-plane 

dimensions to thickness less than ten, significant differences between the exact solutions and results from classical 

theory are observed. In particular, maximum plate deflections are shown to be considerably larger- than predicted by 

classical laminated plate theory. As a result it is appropriate to develop a fIrst order laminated plate theory which can be 

applied to moderately thick plates. 

There are several references related to shear theories (18-27). In this section a shear theory (Whitney18) which includes 

the effects of transverse shear deformation and rotary inertia is considered. Solutions to the theory are also presented for 

the purpose of assessing the effect of transverse shear deformation on the behaviour of laminated plates. The approach 

presented is an extension of theories developed by Reissner and Mindlin for homogeneous, isotropic plates to laminates 

consisting of an arbitrary number of bonded anisotropic layers. Such an extension was originally due to Yang, Norris, 

and Stavsky with some later modification by Whitney and Pagano. 

1.3.2.1 Constitutive equations 

The basic assumptions for the shear deformation theory are: 

9 
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1 The plate is constructed of an arbitrary number of layers of orthotropic sheets bonded together. However, the 
orthotropic axes of material symmetry of an individual layer need not coincide with the x-y axes of the plate. 

2 The plate is thin, i.e., the thickness h is much smaller than the other physical dimensions. 

3 The displacements u, v, and w are small compared with the plate thickness. 

4 In-plane strains tx, ty and txy are small compared with unity. 

5 In order to include in-plane force effects, nonlinear terms in the equations of motion involving products of 
stresses and plate slopes are retained. All other nonlinear terms are ignored 

6 Tangential displacements u and v are linear functions of the z co-ordinate. 

7 The transverse normal strain tz is negligible. 

8 Each ply obeys Hook's law. 

9 The plate has constant thickness. 

10 There are no body forces. 

11 Transverse shear stresses 0xz and Oyz vanish on the surfaces z = + hl2. 

Thus the displacements are now assumed to be of the form: 

u = UO(x,y,t) + z'l'x(x,y,t) 

v = VO(x,y,t) + z'l'y(x,y,t) 

W = w(x,y,t) 

Using equation 1.28 in conjunction with the strain-displacement relations: 

The following results are obtained: 

where the mid plane strains are defined in the usual manner, by the equation: 

° avo 
E =--

Y ay 
° auO avo 

E =-+-
xy ay ax 

10 

[1.28] 

[1.29] 
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�� �� �� �� ��



and 

[1.31] 

In addition, the interlaminar shear strains are given by the relationships: 

[1.32] 

Using equation 1.30 in conjunction with the assumption of plane stress within each ply, equation 1.22, and the 

deftnition of force and moment resultants, equations 1.23 and 1.24, a constitutive relation of exactly the same form as 

given by equations 1.25 and 1.26 can be obtained, i.e. in abbreviated notation: 

[1.33] 

where the stiffness terms Ai} Bij, and Dij are defined by equation 1.27. Applying the definition of shear force 

resultants, we obtain an additional constitutive relation involving transverse shear. Following Reissner and Mindlin we 

introduce a parameter k in this constitutive relation for transverse shear. Thus we obtain: 

[1.34] 

where Eyz and Exz are defmed in equation 1.32 and 

h/2 

A .. = fe. .dz (i,j = 4,5) 
1J 1J 

-h/2 [1.35] 

with the Cij terms denoting anisotropic stiffnesses. Values associated with the factor k may be obtained in the 

literature. 28 

1.4 Numerical methods of stress analysis 

Although in a few cases boundary element methods have been used, the bulk of a considerable body of literature uses 

the fmite element method.29-34 Thus, the analyses of the structures studied in this text have been carried out by means 

of the ftnite element method. By means of this technique, strains and stresses can be obtained in any point of the plate. 

With the finite element method, the interior of the plate is idealised as an assembly of discrete elements over which the 

unknown displacements are represented approximately by linear, quadratic, etc, variations. Thus, the governing equation 

of internal equilibrium is satisfied approximately. 
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Let Oae be a virtual displacement of the nodes. This displacement generates the following displacements inside the finite 

element: 

Ou= N oae [1.36] 

and the following strains inside the finite element: 

[1.37] 

The work done by the node forces is equal to the addition of the products of each component of force by the 

corresponding displacement 

[1.38] 

Analogously, the internal work-normalised to volume-done by distributed stresses and forces is 

[1.39] 

or 

[l.40] 

The external work must be equal to the internal work integrated on the elemental volume. Therefore, 

[1.41] 

This expression is valid for any virtual displacement. Thus, 

[1.42] 

For a linear relationship between stresses and strains, the following expression can be obtained: 

[1.43] 

where ke is the elemental stiffness matrix: 

[1.44] 

and 

[1.45] 
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The force-displacement relation for the whole plate is given by: 

[K] {a} = {q} [1.46] 

where [K] is the stiffness matrix of the structure, {a} is the displacement vector, and {q} is the force vector. 

The strain energy eij of the jth layer of the ith element is given by: 

[1.47] 

The element strains {£} i in the ith element are expressed by: 

{Eh = [c] {ali [1.48] 

where [c] is the strain-displacement matrix. The stresses {a hj in the jth layer of the ith element are given by: 

[1.49] 

where [Q]ij is the matrix of elastic constants of the jth layer of the ith element 

1.5 Failure criteria 

For optimisation processes, the concept of the strength/stress ratio is extremely useful. Thus, the chosen failure 

criterion must have a unique strength/stress ratio for each combined state of stress and the corresponding state of strain. 

Owing to this, a quadratic criterion has been applied. 

According to Tsai and Wu,35 there exists a failure surface in the stress-space in the following scalar form: 

i,j = 1,2,3,4,5,6 [1.50] 

where the contracted notation is used; Fi and Fij are strength tensors of the second and fourth rank, respectively. 

One method of applying the strength criterion is to transform the stress components into the material-symmetry axes. 

The final expression will be composed by the following terms: 

where 

Fl aI' + F2 (a2' + a3') + Fll' a 1'2 

+ F22' (a 2'2 +a 3'2 + 2 a 4'2 ) + F66 (a 5'2 +a 6'2) 

+ 2 F12 (aI' a2' + aI' a3')+ 2F23(a2' a3' + a 4'2) = 1 

Fl = l/X-l/X' 

Fl1 = 1I(X X') 

F2 = IN-IN' 

F22 = 1I(Y Y') 

F33 = 1I(Z Z') 

F66 = 1I(S S') 
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The coupling or interaction terms can be calculated by means of the following formula: 

p.. p .. * [ p .. p .. ]112 
IJ = IJ 11 JJ i#j [1.58] 

and * Pij = - 0.5 [1.59] 

The strength/stress ratio r is the ratio between the maximum, ultimate or allowable strength, and the applied stress: 

{cr}max. = r {cr} applied [1.60] 

Since each combination of stress components in equation 1.50 reaches its maximum when the left-hand side reaches 

unity, we can substitute equation 1.60 into: 

p.. cr· cr· + F- cr· - 1 IJ 1 J 1 1- [1.61] 

[p .. cr· cr· ] r2 + [F- cr·] r - 1 - 0 IJIJ 11 - [1.62] 

Ifwedefme 

[1.63] 

[1.64] 

Then, the strength/stress ratio r is the positive square root in the quadratic formula: 

r = -( b /2a ) + [( b /2a )2+ 1Ia ] 112 [1.65] 

1.6 Numerical methods for design optimisation 

The recurrence relations proposed here for resizing the elements for variable thickness structures are based on the 

optimality criteria, which are not rigorous in the mathematical sense, but are found to give near optimum weight 

designs for large structures in an efficient way. 

The optimality criterion for the generalised stiffness requirement can be stated as, "the optimum structure is the one in 

which the ratio of the average strain energy density to the mass density is the same in all the elements" .36 This 

criterion can be written as: 

1 - ).. e·· / p .. - IJ IJ 

[1.66] 

where).. is the Lagrangian parameter, e ij is the strain energy density of the jth layer of the ith element, and Pij is the 

mass density. The strain energy density is given by: 

[1.67] 
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where Vij is the volume of the element defmed by: 

v·· t,· 1-IJ = '1J 1 [1.68] 

where tij is the thickness of the jth layer of the ith element and Ii is the surface area of the ith element. The design 

variable tij can be written as: 

[1.69] 

where O:ij is the relative thickness (normalised to the maximum thickness) of the jth layer of the ith element, and A is 

the scaling parameter. Introducing the scaling parameter in equation 1.46 gives: 

A [K'] {a} = {q} [1.70] 

or 

[K'] {a'} = {q} [1.71] 

where 

{a} = {a'} I A [1.72] 

and [K'] is the stiffness matrix for the whole structure obtained by using the relative design vector O:ij- Introducing the 

scaling parameter into equations 1.47 to 1.49, the relations between the actual quantities and the relative quantities at 

element level can be expressed as: 

[khj = A [k'hj 

{ah= {a'h/A 

{Eh={E'h /A 

{crhj = {cr'hj I A 

where the prime quantities are the relative values. 

Introducing equations 1.67, 1.73 and 1.74 into equation 1.66 gives: e'ij 

1 - A. e'·· I (A2 p .. ) - IJ IJ 

where 

e'·· - {r'}t. [K']·· {r'}· 1(0:·· 1·) IJ - 1 IJ 1 IJ 1 

2 
Multiplying both sides of equation 1.77 by O:ij and taking the square root gives: 

0:.. - B 0: .. (e'·· I p .. )112 
IJ - IJ IJ IJ 

where B is a constant Equation 1.79 can be rewritten in an iterative form as: 
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[1.80] 

where v and v+ 1 refer to the cycles of iteration. 

In this procedure the resizing of an element is achieved by dividing the design variable by the minimum actual 

strength/stress ratio for that element: 

(a. ij )v+l = (a. ij)v / (r)min v [1.81] 

Therefore, the election of the appropriate failure criterion is critical. If the strength/stress ratio defmed by the failure 

criterion is unique for each combined state of stress and the corresponding state of strain, the application of equation 

1.81 is efficient and simple. Otherwise, the application of the procedure becomes more complicated. 

For constant thickness structures, sensitivity studies are usually applied to obtain optima configurations. Other 

optimisation procedures are also available.37-51 
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2 DESIGN OPTIMISATION OF CONSTANT THICKNESS COMPOSITE 
STRUCTURES 

2.1 Introduction 

Unlike variable thickness composites where stress concentration effects in the area of change of thickness are critical, 

constant thickness composites design is related to the global behaviour of the structure, particularly stiffness and 

strength. 

Firstly, stiffness and strength properties of some composite material systems are presented. Next, special configurations 

like SMC and fabric composites are analysed and micromechanical formulations given so as to obtain the ply stiffness 

and strength parameters as a function of fibre and matrix properties. 

Also, a comparison study between a fabric and a [0/90] configuration is carried out in order to fmd out whether a fabric 

can be modelled as two unidirectional plies. The behaviour of balanced and unbalanced fabrics is studied. Balanced 

fabrics (same amount of fibres in the two principal directions of the fabric) have seen most use in industrial applications. 

Square plates subjected to transverse uniform load must be designed with balanced fabrics. However, non-square plates 

should not be designed with such a configuration; non-balanced fabrics must be used. The homogenisation of 

laminated plates is also analysed. When the number of repetitions is higher than ten, the laminate behaves as a 

homogeneous material and can be treated as an orthotropic non-laminated material. 

Finally, the free edge effect is studied from the point of view of design optimisation Different solutions are described for 

minimising the delaminate process on laminated composite materials. Design optimisation of some constant thickness 

composite structures like shells, plates and sandwich constructions is analysed in Chapters 3 - 5. 

Composite materials embrace a wide range of reinforcing fibres, such as boron, glass, carbon and aramid. Advanced 

composite materials are used mostly in the form of pre-impregnated sheets which consist of a number of aligned 

unidirectional rovings impregnated with an epoxy resin matrix. In this form a variety of structural materials can be 

made by stacking plies in different directions in much the same way as plywood. With these variations in ply 

orientation, stiffness and strength properties change and, as a consequence, a large number of laminate configurations 

need evaluation. Some stiffness and strength properties for advanced composite materials have been included in Table 

2.1.1 Studies on the effect of different laminate orientations and lay-ups have reduced somewhat the number of 

configurations that are likely to be used for structural members, and this has Simplified the collection of design data. 

Glass fibre is a comparatively cheap fibre with a high specific strength (see Table 2.2)2 and has seen extensive 

commercial utilisation in the form of chopped strand matting (Table 2.3)2 and woven roving (WR) (Table 2.4).2 
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Table 2.1 Stiffness and strength properties of boron, carbon and aramid fibres composite 
materials. 

Type CFRP BFRP CFRP KFRP CFRTP CFRP CFRP CCRP CCRP 
Fibre T300 B(4) AS Kev49 AS4 H-IM6 T300 T300 TIOO 

Matrix N5208 N5505 3501 epoxy PEEK epoxy F934 F934 F934 
APC2 4-mil 13-mil 7-mil 

v/f(%) 70 50 66 60 66 66 60 60 60 
ho,mm 0.125 0.125 0.125 0.125 0.125 0.125 0.100 0.325 0.175 
Density 1.60 2.00 1.60 1.46 1.60 1.60 1.50 1.50 1.50 

Ply stiffnessiGPa) 
Ex 181.00 204.00 138.00 76.00 134.00 203.00 148.00 74.00 66.00 
Ey 20.30 18.50 8.96 5.50 8.90 11.20 9.65 74.00 66.00 
Vx 0.28 0.23 0.30 0.24 0.28 0.32 0.30 0.05 0.04 

Es 7.17 5.59 7.10 2.30 5.10 8.40 4.55 4.55 4.10 
StrenJl;th (MPa) 

X 1500 1260 1447 1400 2130 3500 1314 499 375 
X' 1500 2500 1447 235 1100 1540 1220 352 279 
Y 40 61 52 12 80 56 43 458 368 
Y' 246 202 206 53 200 150 168 352 278 
S 68 67 93 34 160 98 48 46 46 

Table 2.2 Stiffness and strength properties of unidirectional fibre glass composite materials 

Type GFRP GRFP GFRP GFRP GFRP 
Fibre Unid-R-600 Unid-R-1200 Unid-E-1200 Unid-E-500 Unid-E-glass 

Matrix Epoxy Epoxy Vinylester Polyester Epoxy 
v/f(%) 65.31 69.67 40.23 51.85 45.00 
ho, mm 1.00 1.00 0.44 0.49 0.25 
Density 2.082 2.141 1.674 1.926 1.800 

Ply stiffness (GPa) 
Ex 57.100 60.830 31.161 39.296 38.60 
Ey 15.067 19.865 7.452 10.289 8.27 
Vx 0.3020 0.2955 0.3397 0.3222 0.26 
Es 5.032 6.517 2.738 4.260 4.14 

StrenJl;th (MPa) 
X 1300.0 1600.0 500.0 1000.0 1062.0 
X' 1100.0 1400.0 500.0 900.0 610.0 
Y 80.0 70.0 50.0 60.0 31.0 
Y' 70.0 65.0 50.0 60.0 118.0 
S 75.00 70.00 50.00 65.00 72.0 
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Table 2.3 Stiffness and strength properties of fibre glass fabrics composite materials 

Type GFRP GFRP GFRP GFRP GFRP GFRP 
Fibre Fab-E-500A Fab-E-500B Fab-E-580 Fab-E-600 Fab-E-50OC Fab-E-500D 

Matrix Polyester Polyester Polyester Polyester Vinylester Polyester 
v/f(%) 27.41 31.58 40.91 40.91 48.51 31.58 
ho, mm 0.70 0.61 0.55 0.56 0.40 0.61 
Density 1.584 1.642 1.773 1.773 1.802 1.642 

Ply stiffness. (GPa) 
Ex 14.440 16.228 19.817 20.065 9.320 16.228 

Ey 13.639 15.312 19.817 19.569 36.960 15.312 

Vx 0.1480 0.1415 0.1309 0.1326 0.0825 0.1415 

Es 2.070 2.260 2.781 2.781 3.347 2.260 
Strenl?;th (MPa) 

X 196.0 400.0 185.0 185.0 350.0 200.0 
X' 196.0 400.0 180.0 180.0 350.0 160.0 
y 180.0 380.0 180.0 180.0 320.0 200.0 
y' 180.0 380.0 1750 175.0 320.0 160.0 
S 45.00 40.00 45.00 45.00 45.00 50.00 

Table 2.4 Stiffness and strength properties of chopped strand matting fibre glass composite 
materials. 

Type GFRP GFRP GFRP GFRP 
Fibre CSM-E-600A CSM-E-300 CSM-E-600B CSM-Unifllo 

Matrix Polyester Polyester Vinylester Vinylester 
v/f(%) 16.51 23.53 37.72 35.94 
ho, mm 1.40 0.49 0.61 0.48 
Density 1.431 0.529 1.635 1.607 

Ply stiffness (GPa) 
Ex 7.733 9.771 14.236 13.641 
Ey 7.733 9.771 14.236 13.641 

Vx 0.3426 0.3354 0.3287 0.3292 

Es 2.880 3.659 5.357 5.131 
Strenl?;th (MPa) 

X 100.0 140.0 160.0 180.0 
X' 100.0 140.0 150.0 180.0 
y 100.0 140.0 160.0 180.0 
y' 100.0 140.0 160.0 180.0 
S 30.00 30.00 30.00 30.00 

2.2 Special configurations: SMC and fabric composites 

2.2.1 Short fibre composites 

Short fibre composites include sheet moulding composites (SMC) and whisker composites. Using laminated plate 

theory, we can derive: 

• The Q-isotropic constants for randomly oriented fibres in the plate can be obtained using the plane stress 

constants mentioned before. 
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• The Q-isotropic strengths can be obtained using the [1t/3] Q-isotropic laminates subjected to uniaxial tensile and 

compressive stresses, and pure shear, together with the quadratic failure criterion . 

• The strength is based on the last-ply-failure (LPF) on the assumption that the SMC strength reaches its ultimate 

at LPF. The Tresca and Mises criteria can be modified to predict the shear strength. Sensitivity of the fibre 

volume on the SMC strength will also be shown. The cost effectiveness in terms of fibre volume can then be 

predicted accordingly. 

Tsai3 has modelled the SMC configuration by using the Q-isotropic constants (see Table 2.5): 

Table 2.5 Modelling of SMC by means of the Q-isotropic constants 

Type CFRP BFRP CFRP GFRP 
Fibre T300 B(4) AS E-glass 

Matrix N5208 N5505 3501 epoxy 

Linear combinations of [Q], GPa 
U1* 76.37 87.70 59.66 20.54 
U4* 22.61 28.36 16.96 5.51 
U5* 26.88 29.67 21.35 7.47 

* invariant 
Q-isotropic constants 
E,GPa 69.68 78.53 54.84 18.96 

nu 0.30 0.32 0.28 0.27 
G,GPa 26.88 29.67 21.35 7.47 

Q-isotropic constants are defmed as follows: 

E iso = [1 - V iS02 ]U l' v iso = ~ 4 ,GiSO = U 5 

1 

KFRP CFRTP CFRP 
Kev49 AS 4 H-IM6 
epOxy PEEK epOXY 

APC2 

32.44 57.04 85.88 
10.54 17.28 25.43 
10.95 19.88 30.23 

29.02 51.81 78.35 
0.32 0.30 0.30 

10.95 19.88 30.23 

CFRP 
T300 
F934 
4-mil 

.taI>e 
62.47 
19.73 
21.37 

56.24 
0.32 

21.37 

CCRP CCRP 
T300 TIOO 
F934 F934 
13-mil 7-mil 
cloth cloth 

58.84 52.37 
19.05 16.66 
29.89 17.85 

52.67 47.0 
0.32 0.32 

19.89 17.8 

[2.1] 

The micromechanics formulas for SMC (E-glass/epoxy SMC) are given by the empirical model by Manera and Massot: 

- [16 ] 8 E = -E f +2Em = v f +-Em 
45 9 

- [2 3 ] 1 G = -Ef +-Em = vf +-Em 
15 4 3 

_ e 
v=--1 

2G 

[2.2] 

[2.3] 

[2.4] 

This formula for isotropic media is not reliable because the ratio of E over G is close to one. Error is magnified when 

one is subtracted from this ratio. The strength is given by the following expression: 

x = 510vf +14 [2.5] 
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2.2.2 Woven composites 

Woven composites are intended to cover fabric, as well as structures made by filament winding and braiding. Since 

fibres must cross over, laminated plate theory that is applicable to discrete plies in a multidirectional laminate must be 

modified. The author is not aware of any simple theory that can predict the stiffness and strength of woven composites. 

The simplest way is to use a [0/90] laminate of the same ply material to model a balanced woven fabric. For 

unbalanced fabrics, the ratio between the 0 and 90 degree plies can match that between the warp and fill yarns. The 

difficulties in taking account of the fibre cross over arise from the loss of stiffness and strength along the fibres. When 

fibres are not straight their effective stiffness will reduce. Their tensile strength will reduce because of the additional 

bending stress and contact stress at cross over points. The compressive strength will also reduce because fibres are more 

prone to buckling. Another factor that causes difficulty is the fibre volume fraction, which is not likely to be as 

unifolTIl as that for cross ply composites. Voids are also more likely to occur near the cross over points. 

A comparison between the stiffness and strength of a [0/90] composite and those of a balanced fabric made from the 

same composite material has been shown by Tsai3 (Table 2.6). While the fibre volume fractions are only comparable, 

the use of cross ply to model fabric is accurate within 20% for glass and kevlar composites. However for graphite 

composites which have stiff fibres the model is not accurate. For the purpose of design, it is best to use the 

experimentally measured fabric data directly, replacing the ply data of a unidirectional composite. Further development 

of the model for the fibre cross over will include the degraded fibre stiffness and strength. 

2.2.2.1 Comparison of [0/90] and woven fabric 

The predictions of elastic constants of fabrics, filament-wound and braided structures can be made if it is possible to 

replace the woven composite by a multidirectional laminate consisting of the same fibre angles and ply group ratios. 

Only then can the micromechanics fOlTIlulas for stiffness be applied to the plies without modification. In Table 2.6, 

three ply materials are compared to see how close [0/90] laminates can represent balanced woven fabrics of the same 

fibres and fibre volume fractions. Thus, under each of the three ply materials, the first column lists the engineering 

constants of the unidirectional ply. In the second column, the predicted effective laminate stiffness of a [0/90] cross-ply 

laminate are listed. The predicted values are indicated by an asterisk. These laminate stiffnesses can be compared with 

those measured from a balanced woven fabric or cloth, listed in the third column. The same bases of comparison apply 

to the other two ply materials. For the stiffnesses in the x- and y-directions, the [0/90] laminate is higher than those 

measured from the fabric. This is not unexpected when the fibres in the fabric are not straight, and is true for graphite 

and kevlar/epoxy composites. The laminate stiffness is 19 and 14% higher than the fabric stiffness, respectively. In 

the case of the glass/epoxy composite, the laminate stiffness is 18% less than the fabric stiffness. There was 

apparently a difference in the fibre volume fractions that may account for the lower laminate stiffness. The Poisson's 

ratio and shear moduli of the [0/90] laminates are close to those of the fabrics. 

The predicted strengths of [0/90] are also compared with corresponding strengths measured from fabrics in the table 

below. With only one exception the compressive strength of glass-epoxy fabric, cross-ply laminates have higher 

strengths than the fabrics. This is not unexpected because the fibres in fabrics are bent. The fibres in contact will 

cause local stress concentrations that would reduce tensile strengths. Bent fibres reduce buckling strengths which, in 

turn, reduce compressive strengths. 
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Table 2.6 Comparison of [0/90] and woven fabrics for carbon, glass and aramid fibre composites 

Gr h' / apJ lte epoxy Elf, -~Jass epoxy k lar49/ ev epoxy 
Type CFRP CCRP CCRP GFRP GFRP GCRP KFRP KFRP KCRP 
Fibre T300 T300 T300 E-glass E-~lass F161 kev49 kev49 kev49 

Matrix F934 F934 F934 epoxy epoxy 6581 epoxy epoxy N5209 
[0] [0/90] ro1 ro/90] [01 [0/90] 

tape laminate cloth tape laminate cloth tape laminate cloth 
Stiffness (GPa) 

Ex 148.00 79.2* 66.00 38.60 23.6* 29.6 76.00 41.0* 35.8 
Ey 9.65 79.2* 66.00 8.27 23.6* 26.9 5.50 41.0* 35.8 
v/x 0.30 0.04* 0.04 0.26 0.09* 0.12 0.34 0.05* 0.09 
Es 4.55 4.6* 4.10 4.14 4.1 * 6.24 2.30 2.3* 1.79 

Strel!Kths (MPa) 
X 1314 664 375 1062 545* 489 1400 704* 582 
X' 1220 899 279 610 306* 390 235 165* 189 
Y 43 664 368 31 545* 444 12 704* 582 
y' 168 899 278 118 306* 305 53 165* 189 
S 48 49* 46 72 80* 133 34 34* 84 

* Predicted values 

2.2.2.2 Balanced and unbalanced fabrics 

Though both balanced and unbalanced fabrics are available, most fabrics used in engineering applications are balanced. 

This configuration is recommended only in those cases, where values of stresses in 00 and 900 directions are very 

similar. If there is a significant difference between values of stresses in 00 and 900 directions, unbalanced fabrics must be 

used. 

Let us consider a rectangular plate (thickness: t, length: a and width: b) subjected to transverse uniform load (q). By 

means of the theory described in Chapter 1, the deflection of the plate is given by the following expression: 

[2.6] 

Figures 2.1 and 2.2 show the deflection (value of k) of a fibreglass/epoxy resin rectangular plate, simply supported and 

clamped along the four edges, respectively. In both cases, the maximum deflection is given by balanced configurations 

for non-square plates. The next deflection is given by lightly unbalanced configurations (60% of fibres in the transverse 

direction and 40% in the longitudinal direction) and so on. 

The stiffest plate is composed of an unbalanced configuration (100% of fibres in the transverse direction): k = 0.18 and 

k = 0.9 for a plate with b > 2.5 a, and clamped and simply supported along the four edges, respectively. For a balanced 

configuration: k = 0.36 and k= 1.8 for a plate with b > 2.5 a, and clamped and simply supported along the four edges, 

respectively. Thus, a narrow plate (b > 2.5 a), composed of a balanced configuration presents a double deflection with 

respect to the optimum configuration (an unbalanced configuration, 100% fibres in the transverse direction). 

For narrow plates, the deflection decreases linearly with the percentage of fibres in the transverse direction. 

For square plates, there are slight differences between the five configurations represented in Fig. 2.1 and 2.2. The 

optimum one corresponds to a balanced configuration. 
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Another finding is the big difference between deflections of simply-supported and clamped plates. There is a factor of 5. 

0.4 ...........•................. 

0,35 . --.~-.---. --- ...... --~ .... ~-- .. ~ . . - .. ~ .. --~-- .. ~ 

I ~a------u----cr-~--o----:--u-~ ~~~~ 
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• • 
k 0,2 . ... - - -. _. - - - - - - - - _. 
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0,05 .. ....... ..... ...•.......... . .............. . 

2 3 

alb 

4 5 

____ [50%] 
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Figure 2.1 TIOO15208, rectangular plate, all clamped edges, uniform load. {(Opl90qhols; p + q = 5. 
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Figure 2.2 TIOO15208, rectangular plate, all supported edges, uniform load- {(Opl90qhols; p + q = 5. 
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In both cases, the maximum deflection is given by balanced configurations for non-square plates. The next deflection is 

given by lightly unbalanced configurations (60% of fibres in the transverse direction and 40% in the longitudinal 

direction) and so on. 

Similar conclusions are obtained for aramid fibre composite plates. The stiffest plate is composed of an unbalanced 

configuration (100% of fibres in the transverse direction): k = 0.22 and k= 1.15 for a plate with b > 2.5 a, and clamped 

and simply supported along the four edges, respectively (Fig. 2.3 and 2.4). For a balanced configuration: k = 0.44 and 

k= 2.30 for a plate with b> 2.5 a, and clamped and simply supported along the four edges, respectively. 

• • • • • • • • • _ .... _----- -----------0:: I. • .. ··7 .. ~ .. ~u..... .... 
0,4 ... ; ?~~'-.--o-----o-. -_-.-0-- _-- --c--)----{--]-------0--- ----n-----0---1 

': !;r. .... TU.T .T •• 

kO,25 - _. - - - .. - - - - - - - - _. - _. 

0,2 

0,15 

0,1 

0,05 

2 3 

alb 

• .. - -. - - -. - - - -f - - - -.- -~ - - .•. . . - -. 

4 5 

___ [50%] 

-0-[60%] 

~[80%] 

-<>-[100%] 

Figure 2.3 Kevlar, rectangular plate, all clamped edges, uniform load {(0pl90qhols; p + q = 5. 
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0,5 .......... _ ..... . 

2 3 

alb 

• • • • 

4 5 

_[50%] 

-0-[60%] 

----+- [80%] 

~[100%] 

Figure 2.4. Kevlar, rectangular plate, all supported edges, uniform load- {(Opl90qho} s ; p + q = 5 

Results for glass fibre composite plates follow the same trends as those observed for carbon and aramid fibres. As 

might be predicted, values reported for fibreglass are the least stiff of the three systems analysed. The stiffest plate is 

composed of an unbalanced configuration (100% of fibres in the transverse direction): k = 0.68 and k = 3.2 for a plate 

with b > 2.5 a, and clamped and simply supported along the four edges, respectively (Fig. 2.5 and 2.6). For a balanced 

configuration: k = 1.15 and k = 5.7 for a plate with b > 2.5 a, and clamped and simply supported along the four edges, 

respectively. 
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Figure 2,5 Scotchply, rectangular plate, all clamped edges, uniform load- {(Opl9Oqhols; p + q = 5, 
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Figure 2.6 Scotchply, rectangular plate, all supported edges, uniform load- {0pI90qhols; p + q = 5, 
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2.3 Homogenisation of laminated plates 

It has been fotmd through experience and demonstrated analytically that ply groups in a laminate should be dispersed or 

spliced as much as possible to improve laminate strength and toughness. In a finely dispersed laminate, all ply 

groupings have as few plies as possible. If we have a total of 16 plies each of 0° and 90° orientations, the most 

dispersed symmetric laminate will be [0/90] repeated eight times at the top half of the laminate, and [90/0] eight times 

at the bottom half, which is shown on the right in the matrix below. The least dispersed laminate will be eight [0] and 

eight [90] at the top, and eight [90] and eight [0] at the bottom. 

The fewer plies in a ply group, the smaller the percentage of this ply group will be in a total laminate. When the ply 

group fails, the effect is more localised in a dispersed laminate than in a laminate having fewer but thicker ply groups. 

One way to build up a highly dispersed laminate is to use repeating sub-laminates, which is therefore one of the 

recommended design practices. 

Let us consider the sublaminate [0/45/-45]. By means of the classical laminated theory described in Chapter 1, for one 

repetition, the normalised stiffness matrix ABBD presents the following configuration (normalised stiffness matrix is 

not symmetric): 1 

19.989 6.536 .000 -4.019 1.310 -1.355 
6.536 11.862 .000 1.310 1.399 -1.355 

.000 .000 6.660 -1.355 -1.355 -1.310 

[~ ~J= 
-12.058 3.930 4.064 22.669 5.662 -2.709 

3.930 4.198 4.064 5.662 10.929 -2.709 
4.064 4.064 3.930 -2.799 -2.709 5.787 

For two repetitions, the normalised stiffness matrix ABBD of the laminate [0/45/-45]2 is given by the following 

expression: 

19.989 6.536 0.000 -2.010 0.655 -0.677 
6.536 11.862 0.000 0.655 0.700 -0.677 
0.000 0.000 6.660 -0.677 -0.677 0.655 

[~ ~J= 
-6.029 1.965 -2.032 20.659 6.317 -0.677 
1.965 2.099 -2.032 6.317 11.628 -0.677 

-2.032 -2.032 1.965 -0.677 -0.677 6.442 

The normalised stiffness matrix ABBD of the laminate [0/45/-4513 presents the following configuration: 
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19.989 6.536 0.000 -1.340 0.437 -0.452 
6.536 11.862 0.000 0.437 0.466 -0.452 
0.000 0.000 6.660 -0.452 -0.452 0.437 

[~ ~]= 
4.019 1.310 -1.355 20.287 6.439 -0.301 
1.310 1.399 -1.355 6.439 11.758 -0.301 

-1.355 -1.355 1.310 -0.301 -0.301 0.563 

For five repetitions, the normalised stiffness matrix ABBD of the laminate [0/45/-45]5 is given by the following 

expression: 

19.989 6.536 0.000 -0.804 0.262 -0.271 
6.536 11.862 0.000 0.262 0.280 -0.271 
0.000 0.000 6.660 -0.271 -0.271 0.262 

[~ ~]= 
-2.412 0.786 -0.813 20.097 6.501 -0.108 
0.786 0.840 -0.813 6.501 11.824 -0.108 

-0.813 -0.813 0.786 -0.108 -0.108 6.625 

The normalised stiffness matrix ABBD of the laminate [0/45/-45]8 presents the following configuration: 

19.989 6.536 0.000 -0.502 0.164 -0.169 
6.536 11.862 0.000 0.164 0.175 -0.169 
0.000 0.000 6.660 -0.169 -0.169 0.164 

[~ ~]= 
-1.507 0.491 -0.508 20.031 6.522 -0.042 
0.491 0.525 -0.508 6.522 11.847 -0.042 

-0.508 -0.508 0.491 -0.042 -0.042 6.64 

For fifteen repetitions, the normalised stiffness matrix ABBD of the laminate [0/45/-45115 is given by the following 

expression: 

19.989 6.536 0.000 -0.268 0.087 -0.090 
6.536 11.862 0.000 0.087 0.093 -0.090 
0.000 0.000 6.660 -0.090 -0.090 0.087 

[~ ~]= 
-0.804 0.262 -0.271 20.001 6.532 -0.012 
0.262 0.280 -0.271 6.532 11.858 -0.012 

-0.271 -0.271 0.262 -0.012 -0.012 6.656 

For one sublaminate, since the laminate is non-symmetric, matrix B is not zero and since the laminate is balanced, this 

configuration is orthotropic in plane stress but anisotropic in bending. For the laminate [0/45/45] 15 all the elements 
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of matrices B and terms D13 y D23 are lower than 1. Thus, it has been shown that increasing the number of 

sublaminates, matrices B tend to zero and values Dij tend to Aij. In general, when the number of repetitions is higher 

than ten, the laminate behaves as a homogeneous material and can be treated as an orthotropic non-laminated material. 

2.4 The free-edge effect 

When a multi-directional laminate is subjected to tension, compression or bending loads, a delamination process occurs 

along the free edges of the structure. The resultant interlaminar stresses present significant values along a width 

approximately equal to the laminate thickness. Delamination along the straight free edge of composite laminates under 

an in-plane uniaxial load has been observed since the early 1970s. Since then a large amount of work has been reported 

on the free-edge problem in composite laminates, indicating that free-edge delamination is attributed to the existence of 

interlaminar stresses which are highly localised in the region of a free edge under in-plane loading. 

It has been shown by Kim4 (in Pagano) that in addition to interlaminar tensile stress, other mechanisms such as 

transverse cracking and interlaminar shearing appear to be significant at the onset and growth of delamination. The 

[O/901±45]s laminate which has a compressive interlaminar normal stress does not show any delamination under static 

tension, but under fatigue tension shows considerable delamination at the interface between the +45° and -45°plies. The 

interlaminar shear stress at the +45°and -45° interface is not large enough to reach the interlaminar shear strength under 

static loading, but under fatigue loading, the shear stress becomes significant because of the high fatigue sensitivity of 

the epoxy matrix. 

The next section covers several methods for the suppression of delamination by designing proper stacking sequences, 

reinforcing free edges, and toughening the matrix. 

2.4.1 Optimum design/or controlling delamination 

In most cases the presence and growth of free-edge delamination significantly reduces the load-carrying capability and 

stiffness of composite laminates. Because of this adverse effect of delamination on the integrity of composite structures, 

a great deal of work has been reported in the literature. However, most of this work has been concerned with the aspects 

of stress analysis and prediction of delamination initiation and growth. Very little work has been reported on the aspect 

of controlling delamination. 

Delamination can be alleviated by employing a tough material system and/or a change in laminate configuration. A 

number of different approaches are considered in the literature, including: 

• A design of a proper stacking sequence of a laminate.4,5,6,7 

• Reinforcing the free-edge regions by stitching or wrapping. 8,9, 10 

• Using a tough resin or altering the mechanical properties of certain layers in the region of potential 

delamination by adding or replacing some layers' with toughened materials, such as adhesive film, 

hybridisation, etc. 11 , 12 

It has been shown by Tsai3 that for static loads, a spiral stacking sequence of Q-isotropic laminates reduces the 

delamination normal stress component considerably, see Fig. 2.7 
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Figure 2.7 Effect of a spiral stacking sequence on delamjnation normal stress component 

According to Kim (Pagano)4 for fatigue loads, an apropriate stacking sequence for a given laminate can provide a 

considerable reduction in the interlaminar stresses. The effect of the interlaminar normal stress in the [+45/0/90]s 

laminate is intensified considerably with an interchange of the 90° and 0° layer positions. This increase of interlaminar 

normal stress triggers the delamination at a much lower stress level. 

Let us consider a Q-isotropic laminate of ±30° and 90° plies. The stacking sequence of [±30 190]s generates a tensile 

interlaminar normal stress at the free edge in the mid-plane under applied uniaxial tension and, thus, the laminate is 

delamination prone. If we change the stacking sequence to that of a [90/±30)s laminate, then the free-edge normal stress 

becomes compressive, which does not cause delamjnation. 

As another example, let us consider 16 plies of [0/±45/90hs and [02/±452/902]s. The maximum interlaminar normal 

stress at the mid-plane is much smaller in the dispersed plies than in the grouped plies. The former dispersed laminate 

[0/±45/90hs does not display any delamination until final failure under static loading. A ~te design with a proper 

stacking sequence can reduce the interlaminar tensile stress component in such a way that the probability of 

delamination will be greatly reduced or eliminated. 

By means of homogeneous laminates, delamination can be reduced considerably. Free edge stress is inversely 

proportional to the repeating index r (see Fig. 2.8, Tsai3). The tendency to delamjnate is drastically reduced if many 

repeated sub-laminates are used. The same tendency, i.e. higher r, will make LamRank (a software package by Tsai3 

that ranks laminates in terms of in-plane strengths) applicable to designing for flexural loads. It is therefore necessary to 

use sub-laminates that are as thin as possible. 
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Figure 2.8 Effect of number of sublaminates on free edge stress. 

It is possible to prevent or delay the free-edge delamination by suppressing the interlaminar stresses by means of free­

edge reinforcement (Kim (Pagano)4). Figure 2.9 shows a specimen reinforced with fibre glass woven cloth using a 

structural adhesive. the reinforced specimen does not show any evidence of delamination at an applied axial tension of 

552 MPa, whereas extensive delamination occurred in the unreinforced specimen subjected to an applied tension of 414 

MPa. Delamination in this specimen was initiated at 365 MPa as indicated by acoustic emission. No delamination 

signature by acoustic emission is observed in- the reinforced specimens until final failure. The delamination threshold 

strain is an average of four specimens and is determined by acoustic emission. The reinforced specimens of the frrst six 

laminates do not show any delamination until final failure, but the last three laminates, which are subjected to a larger 

value of crz, all delaminate prior to failure. The strength of the reinforced specimen increased by 140% compared with 

the unreinforced specimen. The large increase in strength suggested that the effect of delamination on static strength 

may be much more significant in matrix controlled failure modes than in fibre-controlled failure modes. 
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Figure 2.9 Minimisation of delamination effect by using a reinforcement. 

33 

T 
.75" 

�� �� �� �� ��



Resistance to delamination can also be increased by employing a tough matrix such as thermoplastic. No delamination 

is observed in the [±30/90]s laminate of PEEK! AS4 graphite composite, but as discussed earlier, this laminate with 

epoxy resin experiences extensive delamination. However, there will be some sacrifice in performance in other 

parameters, such as compressive strength and temperature capability. Other research work on the toughening of 

laminates that are prone to delamination introduce an interleaf or adhesive layer. Chen et aIll performed finite element 

analysis of the free-edge problem for a specimen containing an adhesive layer at the mid-plane which is confined to 3.2 

mm from the free edge. The adhesive strips reduce the interlaminar stresses and improve the delamination resistance. 

Soni and Kiml2 conducted analysis and experiment for a [01±45/90]s laminate containing a structural adhesive layer in 

the mid-plane where the critical interlaminar normal stress is present. The stress level at the onset of delamination is 

increased by approximately 40%. 

It is conceivable to control free-edge delamination by novel design of stacking sequence in conjunction with the proper 

reinforcement of toughened interfaces without any significant sacrifice of other important performance parameters of 

advanced composite materials. 

2.5 Conclusions 

At the beginning of this chapter, stiffness and strength properties of some composite material systems were presented. 

Also, special configurations like SMC and fabrics were analysed. SMC laminates can be treated as unidirectional Q­

isotropic configurations. It is important to note that fabric and [0/90] unidirectional laminate give similar results in 

terms of stiffness and strength parameters (errors lower than 20%). Another conclusion arrived at is that balanced fabric 

is the optimum configuration for square plates subjected to transverse loads. In those cases, where the plate is 

rectangular but not square (a -:;:. b), balanced fabrics do not give good results. For very narrow plates (b> 2.5 a), the 

deflection obtained is twice the optimum one: unbalanced fabric. The homogenisation of laminated plates was also 

analysed. Homogeneous laminates are very interesting in terms of design. When the number of repetitions is higher 

than 10, the laminate behaves as a homogeneous material and can be treated as an orthotropic non-laminated material. 

Finally, the free-edge effect has been analysed from the point of view of design optimisation. The following minimise 

the free-edge effect 

• A proper stacking sequence of the laminate. 

• Reinforcing the free-edge regions by stitChing or wrapping. 

• Using a tough resin or altering the mechanical properties of certain layers in the region of potential 

delamination by adding or replacing some layers with toughened materials, such as adhesive film, 

hybridisation. 

References 13-47 give further information about the free-edge effect. 

In the following chapters, shells, plates and sandwich constructions will be analysed. 
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3 SHELLS 

3.1 Introduction 

Shell structures have come to fruition in the twentieth century. Although the Pantheon of Rome, built in AD 1 and the 

Mosque of Santa Sofia in Istanbul, built in AD 538 feature shell roofs spanning large distances, they are relatively 

thick in cross section. It was not until the 1920s that the thin shell roof emerged as a practical means for spanning 

large distances. This emergence was due to a multiplicity of factors: the ability to form and reinforce depths of 

composite materials, architectural imagination and the development of analytical tools to ensure the structural integrity 

of the completed design. Availability of high-strength composite materials, at about the same time, had a similar 

impact on structural form in aerospace and mechanical engineering design. 

Another reason for designing shells with composite materials is that strength is the main parameter in this type of 

structure and specific strength is one of the most favourable properties of composite materials compared with 

conventional metallic materials. For instance, a conventional material used in shells is A-42 steel, whose strength is 

260 MPa and weight is 8 kg/dm3. A common composite material, such as unidirectional fibre glass/polyester resin 

presents 500 MPa and 1.7 kg/dm3. Thus the specific strength ratio is about 9. Interesting developments in shell 

composite structures are given in refs 1-21. 

In this chapter, four types of shell structure are analysed: a spherical dome subjected to uniform vertical load, a spherical 

vessel simply supported and subjected to the weight of an internal fluid, a pipeline subjected to internal pressure and 

finally, a submarine structure subjected to external pressure. The calculations of the shell structures described in this 

chapter have been carried out by means of the classical laminated theory reported in Chapter 1. The optimisation 

procedure used for the ranking of laminates is Lamrank by Tsai.1 

3.2 Spherical dome 

In this section, a spherical dome subjected to a uniform vertical load is analysed, the objective being to evaluate in 

which cases it is worth using a composite material and when this is the case, to assess the weight saving of the 

composite structure and to obtain the optimal lay-up for each case. A representation of a spherical dome and the 

defmition of variables are shown in Fig. 3.1. 
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q 

Figure 3.1 Representation of a spherical dome and defmition of variables. 

In-plane loads are given by the following expressions: 

Nf= 
r·q [3.1] 

l+cosf 

N¢ = r· q . ( 1 - cos fJ 
l+cosf 

[3.2] 

[3.3] 

Nf is always negative, because there is a compression along the meridian lines. This compression increases with the 

value of angle f. 

Nf = - a q 12 for f = 0 and Nf = -a q for f = 90. 

N0 is also negative for values of f < 51 ° 50'. N0 equals zero for f = 51 ° 50' and is positive for values of f higher than 

51 ° 50' . In other words, for values of f higher than this value, there is tension in the parallel direction. 

1 
----cosf=O 
l+cosf 

[3.4] 

In-plane loads defined in equations 3.1 and 3.2 are represented in Fig. 3.2 for r = 2 m, fo = 90° and q = I MPa The 

value of angle ~ varies from 225° to 315°, ~ being defined as: 

[3.5] 
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Figure 3.2. Representation of in-plane loads of a spherical dome. 

2,5 

The weight savings of some composite material systems in comparison with the standard material A 42 steel are shown 

in Fig. 3.3 - 3.6. These graphics can be easily modified to obtain the weight saving with respect to another isotropic 

material: 

. {I (1 WS(A-42)) a(i).p(A-42)} WS(l) = 100 . - - .--.;.....:...:..-=----...:.. 
100 a(A - 42).p(i) 

[3.6] 

where: 

WS(i): weight saving with respect to the isotropic material (i) 

WS(A-42): weight saving with respect to A-42 steel 

cr(i): strength of the isotropic material (i) 

cr(A-42): strength of A-42 steel (260 MPa) 

r(i): density of the isotropic material (i) 

t(A-42): density of A-42 steel (8 Kgldm3) 

Figure 3.3 shows the weight saving of a general spherical dome made of unidirectional fibre glass/vinylester resin UNI­

E1200 with respect to A-42 steel. The weight saving is a function of the angle f. An average weight saving can be 

obtained in terms of the angle fo (Table 3.1). 
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Table 3.1 Average weight saving for the UNI-E1200 

fo AVERAGE WEIGHT SAVING 
15° 45.2 % 

30° 45.3% 

45° 55.1 % 

60° 66.9 % 

75° 67.9 % 

90° 68.7 % 

Thus, in terms of weight saving, the most favourable composite dome is the semi spherical one. For angles fo lower 

than 90°, the weight saving does not reach the optimum value. The lower value of fo, the lower the weight saving. 
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Figure 3.3 Weight saving of a fibre glass/vinylester UNI-E 1200 composite dome versus the angle f. 

For a fabric fibre glass/polyester resin FAB-E-580, the weight saving of a general spherical dome with respect to A-42 

steel is shown in Figure 3.4. The average weight saving is represented in terms of the angle fo (Table 3.2). 

Table 3.2 Average weight saving for the FAB-E-580 

fo A VERAGE WEIGHT SAVING 
15° 66.4 % 

30° 66.4 % 

45° 66.4 % 

60° 66.5% 

75° 66.6 % 

90° 66.7 % 

The most favourable composite dome is the semispherical one. 
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Figure 3.4 Weight saving of a fibre glass/polyester FAB-E-580 composite dome versus the angle f. 

Figure 3.5 shows the weight saving of a general spherical dome made of unidirectional prepreg fibre glass/epoxy resin 

Scotchply with respect to A-42 steel. The average weight saving can be obtained in terms of the angle fo (Table 3.3). 

Table 3.3 Average weight saving for the SCOTCHPL Y 

fo AVERAGE WEIGHT SAVING 

150 80.8 % 

300 81.3 % 

450 84.2 % 

600 85.9 % 

750 84.1 % 

900 82.1 % 

Thus, in terms of weight saving, the most favourable composite domes are those with fo = 60° . There are very slight 

differences between the values obtained for different angles. There is a considerable difference between the average 

weight saving obtained for this configuration and the other two. 
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Figure 3.5 Weight saving of a fibre glass/epoxy prepreg Scotchply composite dome versus the angle f. 

For a unidirectional carbon fibre/epoxy laminate ( TIOOIN5208 ) the weight saving of a general spherical dome with 

respect to A 42 steel is shown in Figure 3.6. The average weight saving can be obtained in terms of the angle fo (Table 

3.4). 

Table 3.4 Average weight saving for the T3001N5208 

fo AVERAGE WEIGHT SAVING 
150 97.1 % 

300 97.1 % 

450 97.4 % 

600 96.7 % 

750 95.4 % 

900 94.4 % 

Thus, in terms of weight saving, the most favourable composite domes are those with fo = 150 • There are very slight 

differences between the values obtained for different angles. There is a considerable difference between the average 

weight saving obtained for this configuration and the other two. 
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Figure 3.6 Weight saving of a unidirectional carbon fibre/epoxy resin T300IN520 composite dome versus the angle f. 

It is interesting to note that the optimum value of the angle fo varies drastically from one material to another. In other 

words, a universal optimum angle fo for all composite material systems does not exist. 

Table 3.5 shows the optimum sublaminate for different values of b and for the four material systems analysed above. 

The angle b is related to f: 

f = 0° ------------> b = 225° 

f = 90° ----------> b = 315° 

The optimum sublaminate is defined for each parallel circle. A four-digit laminate code for the sublaminate is used. The 

digits in the code represent the number of plies in the sub laminate, and the order of ply angles selected. The first 

number represents the number of plies in the sublaminate in the parallel circle direCtion, the second number represents 

the number of plies in the sublaminate in the meridian circle direction, the third number represents the number of plies 

at 45° with respect to the parallel circle direction and the fourth number represents the number of plies at -45° with 

respect to the parallel circle direction. For a generalised rc/4laminate code [4211] means [04"902/45/-45]. 
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Table 3.5 Representation of optimum sub laminates for four composite materials 

8 UNI-E-1200 TEJ-E-500 SCOTCH T300-5208 
2250 0055 0100 5500 5500 

2300 4600 0100 0055 5500 

2350 0433 0100 0433 4600 

2400 0433 0100 0433 4600 

2450 0622 0100 0433 3700 

2500 0622 0100 0622 2800 

2550 0100 0100 0100 2800 

2600 0100 0100 0100 1900 

2650 0100 0100 0100 1900 

2700 0100 0100 0100 1900 

2750 0100 0100 0100 1900 

2800 0100 0100 2800 3700 

2850 0811 0100 4600 4600 

2900 1900 0100 5500 5500 

2950 1900 0100 6400 5500 

3000 2800 0100 7300 6400 

3050 2800 0100 7300 6400 

3100 3700 0100 8200 6400 

3150 4600 0100 8200 6400 

Once again, it is interesting to note that the optimum sublaminates vary drastically from one material to another. The 

following conclusions can be drawn: 

• Optimum laminate with all the plies in meridian and parallel directions have been selected. Number of plies in 

meridian and parallel directions are related to the magnitude of N f and Nl1l in-plane loads respectively. 

• Unidirectional material systems analysed here present an optimum weight saving for f = 51 ° 50', because the 

state of stress is unidirectional for this value. This maximum does not appear in the case of a fabric. 

• Unidirectional configurations present bad results in a compression-compression state, with a weight saving of 

about 45% in the area of f ranged between 0° and 30°. Fabric configurations present better results, with a weight 

saving of around 67%. 

• The optimum sublaminate for the fabric is [0/90] , i.e. all the fibres are oriented in the meridian and parallel 

directions. 

3.3 Spherical vessel 

In this section, a spherical vessel supported on a ring and subjected to the weight of an internal fluid is analysed, the 

objective being to evaluate in which cases it is worth using composite materials and when this is the case, to assess the 

weight saving of the composite structure and to obtain the optimum lay-up for each case. A representation of a 

spherical dome and the defmition of variables are shown in Fig. 3.7. 
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Figure 3.7 Representation of a spherical vessel and definition of variables. 

Equations 3.7 - 3.9 give the in-plane loads for the part of the vessel over the support ring (j<fo), along the meridian 

(Nf) and the parallel (Nj1l): 

N = p. r2 . (1 _ 2 . cos2 f J 
f 6 I+cosf 

[3.7] 

N¢=--· 5-6·cosf+--..;;.... p. r2 ( 2· cos2 fJ 
6 I+cosf 

[3.8] 

[3.9] 

The resultant in the support ring presents a modulus equal to the weight of the internal fluid and its direction is vertical: 

R=4 1tr3p/3 [3.10] 

Equations 3.11 - 3.13 give the in-plane loads for the part of the vessel under the support ring (f>fo),along the 

meridian (Nf) and the parallel (Nj1l): 

N = p. r2 . (5 + 2· cos2 f J 
f 6 I-cosf 

[3.11] 

N¢ = -_. I-6·cosf -----=-p. r2 ( 2· cos2 fJ 
6 I-cosf 

[3.12] 

[3.13] 

According to equations 3.9 - 3.13, the in-plane load Nf suffers a drastic change of value 2 r2_ p / (3 sin2fo), in the area 

around the support ring, and the other in-plane load Nj1l is decreased in 2 r2 - p / (3 sin2fo). 
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In Fig. 3.8 - 3.11, in-plane load graphics are represented for some values of f o. For all the cases, lines relating N f and 

NjiS are located in the range of ~ (-45/90). Moduli of N f and NjiS are given in MN/m and correspond to 

r= 10m 

p = 0.01 MN/m3 
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Figure 3.8. Representation of in-plane loads for fo = 90°. 
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Figure 3.9. Representation of in-plane loads for fo = 120°. 
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Figure 3.10. Representation of in-plane loads for fo = 150°. 
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Figure 3.11. Representation of in-plane loads for fo = 180°. 

The relationships between Nf and NjIl shown in Fig. 3.8 to 3.11 depend only upon f, because r and p appear in the 

factor ( p . r 2 ) in the expressions of both in-plane loads N f and NjIl for angles higher and lower than f o. Therefore, the 

weight saving is a function of f. In order to find out which material system is efficient in comparison with a standard 
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material (A-42 steel), the concept of average weight saving will be used. This parameter is a function of f o' Average 

weight savings for some composite material systems are represented in Fig. 3.12. 

95 

- 90 
~ 0 - 85 
CJ 
z 

80 > c:r: 
en 75 
.... 
::t: 70 
CJ 
w 

65 

== 
60 

__ 111-"-.-'; 
"...---,--:::,.-.-.- -

------------.-.---.-~----------i .-

.' • .;> .- .' 
-.-.~~~----~-------------------.- -- , • • 
- - - - - .• <!'- - - - - - - - - - - - - - - - - - - - - - - -.' ..... '*" 

I I I I I I I I I I I I I 
o 
0> 

(\J -.:t <0 ex:> 0 (\J -.:t 
o T"" (\J (t) LO <0 I'-

ANGLEfo 

-.-- UNI-E1200 

--0- FAB-E-500 

--.-- SCOTCHPLY 

~T300-5200 

Figure 3.12 Representation of average weight saving for some composite material systems. 

Table 3.6 shows the optimum sublaminate for different values of ~ and for the four material systems analysed above. 

The angle ~ ranges from - 45° to 90°, according to Fig. 3.8 to 3.11. 

Table 3.6 Optimum sublaminate for a spherical vessel 

8 UNI-E1200 FAB-E-580 SCOTCH T300-5208 
-45° 4600 0100 8200 6400 
-40° 4600 1000 9100 7300 
-35° 5500 1000 8200 7300 
-30° 5500 1000 8200 7300 
-25° 6400 1000 9100 8200 
_20° 7300 1000 1000 8200 
-15° 8200 1000 1000 1000 
_10° 1000 1000 1000 1000 
_5° 1000 1000 1000 1000 
0° 1000 1000 1000 1000 
5° 1000 1000 1000 1000 
10° 1000 1000 1000 9100 
15° 8200 1000 8200 8200 
20° 8200 1000 7300 7300 
25° 7300· 1000 7300 7300 
30° 7300 1000 6400 6400 
35° 6400 1000 6400 6400 
40° 5500 1000 5500 5500 
45° 5500 0100 5500 5500 
50° 5500 0100 5500 5500 
55° 4600 0100 4600 4600 
60° 3700 0100 4600 4600 
65° 3700 0100 3700 3700 
70° 2800 0100 3700 3700 
75° 2800 0100 2800 2800 
80° 0100 0100 0100 1900 
85° 0100 0100 0100 0100 
90° 0100 0100 0100 0100 
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The following conclusions can be drawn: 

• Weight saving does not depend upon the vessel radius nor fluid density. The average weight saving depends only 

upon the material system: 

UNI - E1200: 69 - 78% 

FAB - E - 580: 67.5% 

SCOTCHPLY: 62 -77% 

T300 - 5208: 88.5 - 92 % 

The maximum value is reported for the carbon fibre system. For the case of fabric, the average weight saving is 

constant and therefore does not depend on the value of f o. 

• The area below the support ring is subjected to in-plane loads located in the first quadrant ( Nj/l > 0 and N f > 0), 

or biaxial. Therefore, unidirectional composite systems will show low values of weight saving. The area above 

the support ring presents loads whose direction is very close to parallel, or uniaxial, up to an angle fo of 135°. 

Therefore, weight saving for unidirectional composite systems will increase with respect to the area below the 

support ring. 

• For values of f 0 higher than 135°, weight saving increases even more, because the state tension-compression is 

more favourable for composite materials than the state tension-tension. However, loads moduli increase 

considerably and therefore, in spite of having an increasing weight saving graphic, the optimum value is reported 

for fo = 135°, because the vessel weight increases more rapidly than the weight saving. 

• Optimum laminate with all the plies in meridian and parallel directions have been selected. Number of plies in 

meridian and parallel directions are related to the magnitude of N f and N ~ in-plane loads respectively. 

3.4 Pipeline and submersible hull 

This section examines the formulation, in-plane loads and weight saving of two cylindrical shell applications. First, a 

pipeline (subjected to internal pressure) is analysed (Fig. 3.13), and second, a submersible,hull (subjected to external 

pressure) is also studied (Fig. 3.14). 

Figure 3.13 Pipeline subjected to internal pressure and the defmition of variables. 
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Mobile underwater vehicles designed for either moderate or extreme depths are likely to require minimisation of 

structural weight as a basis for increasing the payload and extending operating range. By virtue of their specific 

compressive strength, fibre reinforced plastics offer major potential weight saving relative to conventional metallic 

materials. Fibre glass reinforced plastics submersibles fabricated by hand lay-up using polyester resin and E-glass 

reinforcement have been developed successfully for offshore operations in moderate sea depths. Filament wound S­

glass/epoxy and carbon fibre/epoxy shells with helical or polar fibre orientation having compressive strengths of up to 

1400 MPa have been extensively researched and appear to offer large potential advantages over high-strength steel, 

aluminium or titanium in the pressure hulls of high performance submersibles for naval or deep-water exploration 

purposes. 

Figure 3.14 Submersible hull structure and defmition of variables. 

In-plane loads for a pipeline subjected to internal pressure are given by the following expressions: 

p·r 
[3.14] N =-

x 2 

N¢ = p·r [3.15] 

Nx¢ =0 [3.16] 

Consequently, in-plane loads for a submersible hull subjected to external pressure will be similar to those for a 

pipeline, but in compression: 

p·r 
N =--

x 2 

N x¢ =0 

[3.17] 

[3.18] 

[3.19] 

Figure 3.5 shows the in-plane loads for both structures: a pipeline (1st quadrant, Nx >0 and N¢ >0) and a submersible 

hull (3rd quadrant, Nx <0 and N¢ <0 ) . This line is oriented 300 with respect to axes NS1I . 
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Nx 

Figure 3.15 Representation of in-plane loads for a pipeline and a submersible hull. 

As the weight saving only depends on the angle ~, and this is constant for each structure, it is possible to assess the 

weight saving: 

• For a pipeline: ~ = 30° 

• For a submersible hull: ~ = 210° 

The weight saving with respect to the A-42 steel, for the four composite material systems seen before is shown in 

Table 3.7. 

Table 3.7 Weight saving for a pipeline subjected to internal pressure 

Material Weight saving, % 
UNI-E-1200 64.60 
FAB-E-580 68.36 
ScotchoIv 52.02 

T300-5208 87.08 

For the submersible hull, the weight saving with respect to the HY -100 steel (strength: 690 MPa), for the four 

composite material systems seen before, is shown in Table 3.8. 

Table 3.8 Weight saving for a submersible hull subjected to external pressure 

Material Weight saving, % 
UNI-E-1200 -29.50 
UNI-R-600 -42.27 
UNI-R-1200 -87.65 
T300-5208 93.8 

53 

�� �� �� �� ��



A four-digit laminate code for the sublaminate will be used for obtaining the optimum sublaminate. The digits in the 

code represent the number of plies in the sublaminate, and the order of ply angles selected. The frrst number represents 

the number of plies in the sublaminate in the circumferential direction, the second number represents the number of 

plies in the sublaminate in the longitudinal direction, the third number represents the number of plies at 52° with 

respect to the meridian circle direction and the fourth number represents the number of plies at - 52° with respect to the 

meridian circle direction. For a generalised 1tI4laminate code [4211] means [041902/52/-52]. These four directions have 

been selected because 0° and 90° correspond to a polar ftlament winding process and 52° and - 52° correspond to the 

principal directions of a cylindrical structure subjected to a uniform radial load (Tables 3.9 and 3.10). 

Table 3.9 Optima sublaminate for a pipeline subjected to internal pressure 

Material Sublaminate 
UNI-E-1200 4033 
FAB-E-580 1000 
Scotchply 7300 

T300-5208 4033 

Table 3.10 Optima sublaminate for a submersible hull subjected to external pressure 

Material Sublaminate 
UNI-E-1200 6022 
UNI-R-600 6022 
UNI-R-1200 1000 
T300-5208 5122 

The minimum permissible laminate thickness, tm, to prevent buckling in a submersible hull, shall be determined from 

the equations 3.21 or 3.23, as appropriate. 

If 

(
E JO,17 

~ ~ 1,35. lam0 
D p.N 

o 

[3.20] 

where 

N: safety factor 

p: external pressure (in MPa) 

Elam¢: Young's Modulus (in MPa) of laminate under consideration in the circumferential direction 

L: effective shell length (in mm) 

Do: outside diameter of shell (in mm) 

Then 

54 

�� �� �� �� ��



And if 

Then 

p.N 
t =D. 

( J
O,33 

m 0 2.Elam~ 

( J
O,40 

=D O,4.p.N ~ 
tm o' • 

E1arniil Do 

[3.21] 

[3.22] 

[3.23] 

If the proposed design does not meet this requirement, the design should be changed either by redesigning the laminate 

or by providing additional stiffening rings. 

Several particular analyses on composite vessels are shown in references 22-36. 

3.5 Conclusions 

The following conclusions can be drawn: 

• The weight saving of the composite material systems analysed in this sub-section does not depend on the 

geometric parameters nor the load applied, but remains constant for each application and material system, 

because the ratio Nfl N¢ is constant. 

• For a submarine structure, there is no weight saving with respect to HY-IOO steel except for the carbon fibre 

system, which presents an excellent behaviour in terms of compression-compression. 

• Optima sublaminates present 40% of plies oriented ±52° and the rest of fibres in the circumferential direction for 

all the fibre glass composite material systems except for the fabric, which has fibres oriented in longitudinal and 

circumferential directions. The carbon fibre system presents an optimum laminate which is very similar to that 

obtained for fibre glass systems. The only difference is that there is 10% of plies in the longitudinal direction 

and 50% in the circumferential direction. 

• For a pipeline, all the material systems are competitive with the A-42 steel in terms of weight saving. 

• The optimum sublaminate of the unidirectional systems UNI-E-1200 and TIOO-5208 present 60% of plies at 

±52° and the rest in the circumferential direction, whereas the SCOTCHPLY and TEJ-E-580 present an 

optimum sublaminate in longitudinal and circumferential directions. 
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4 CONSTANT THICKNESS PLATES 

4.1 Introduction 

Constant thickness composite plates subjected to buckling and transverse loads (uniform or point load) are most used in 

engineering applications. In most cases, optimum design is required, the weight being the optimisation criterion and 

the maximum deflection for transverse loads, and critical compressive force for buckling loads being the parameters to 

be optimised. Usually, stiffness and not strength is used as the optimisation criterion in plates subjected to transverse 

loads, since failure is associated with very high deflections. 

Three studies have been carried out on constant thickness plates subjected to transverse loads: First, three fibre glass 

composite systems (unidirectional, fabric and chopped strand matting) have been analysed and the influence of several 

lay-ups on the maximum deflection has been reported for a wide range of aspect ratios. Second, three unidirectional 

composite systems (carbon, aramid and glass fibres) have been studied and the influence of variation of e in angle-ply 

laminates [:te] has been analysed as a function of the aspect ratio. Finally, the influence of rotation of cross-ply 

laminates [0190] on the maximum deflection of the plate has been reported as a function of the aspect ratio for the three 

material systems described above. A buckling study of constant thickness plates has also been carried out. Uni-, bi­

axial and shear loads have been treated for a carbon fibre plate with two boundary conditions: simply supported and 

clamped along the four sides of the plate. Optimum sublaminates and critical loads are obtained for each case. The 

behaviour of the optimum angle ply laminates is compared with the isotropic configuration and aluminium, for design 

optimisation purposes. 

4.2 Design optimisation of composite plates in bending 

A study of maximum deflection of rectangular composite plates is carried out in this section by means of the theory 

explained in Chapter 1. A simply supported plate subjected to uniform load is analysed (Figure 4.1). Bending and 

interlaminar shear effects are taken into account. References 1-23 give several proceedings to optimise composite plates 

in bending. 

a 
-I 

Figure 4.1 A rectangular simply supported plate subjected to a uniform load. 

Three fibre glass material systems are considered : 

• UNID-E-500 unidirectional fibre glass/polyester system. V f = 51.85 %. By =10.289 MPa. 
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• FAB-E-S80 fabric fibre glass/polyester system. Vf = 40.91 %. Ey =19.817 MPa. 

• CSM-E-600A chopped strand matting system. Vf = 16.51 %. Ey =7.733 MPa 

For a uniform load q, the maximum deflection is given by the following expression: 

[4.1] 

For a central load P, the maximum deflection is: 

[4.2] 

4.2.1 Influence of lay-up on maximum deflection 

The maximum deflection of square ( alb = 1 ) simply supported and clamped plates subjected to uniform load does not 

depend upon the lay-up, as shown in Fig. 4.2 and 4.3. For rectangular non-square plates ( alb > 1), the optimum lay-up 

is [90] for simply supported and clamped plates, a substantial difference between the values of k for the optimum lay-up 

and for the rest of laminates is reported. 

For simply supported plates, deflections of laminates [±4S], Q-isotropic and [0/90] are very close for aspect ratios 

ranged between 1 and 2.S. For aspect ratios higher than 2.5 , differences among the deflections of these three laminates 

increase, the least stiff being [±4S]. 

For clamped plates, the ranking of laminates in terms of stiffness is [90], [0/90], Q-isotropic and [±4S] for all the 

aspect ratios considered. The values of k are very similar for a square plate ( alb =1 ) for the four lay-ups analysed, as 

shown in Fig. 4.2 and 4.3: 

10 .............................................................. .. 

8 

B (+451-45) 

k • Q-iso 

• (0190) 

• (90) 

2 ............................................................. . 

o 1 2 3 4 5 6 

alb 

Figure 4.2 Uniform load simply supported plate, UNID-E-SOO. 
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2 ............................................................ . 

a (+45/-45) 

• Q-iso 

k • (0/90) 

0 (90) 

a 2 3 4 5 6 

alb 

Figure 4.3 Uniform load clamped plate. UNID-E-SOO. 

When the plate is subjected to a central point load, the maximum deflection of square ( alb = 1 ) simply supported and 

clamped plates depends upon the lay-up, the optimum lay-up being [±4S], as it is shown in Fig. 4.4 and 4.5. 

For simply supported plates, deflections of laminates [±4S], Q-isotropic and [0/90] are very close for aspect ratios 

ranged between 2.S and S. For clamped plates, all the lay-ups considered show very close deflections for all the aspect 

ratios analysed. 

10 ................................... .. 

8 

6 ........................................................... . a 

k • 
4 .......................................................... .. • 

o 

2 ........................................................... . 

a 2 3 4 5 6 

alb 

Figure 4.4 Point transverse load, simply supported plate, UNID-E-SOO. 
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5 ........................................................... .. 

4 ......... ~.I ... l .. J ... ~ .... ~ ........ . 
B (+45/-45) 

3 ........................................................... .. • Q-jso 
k • (0/90) 

2 ............................................................ . 
0 (90) 

o 2 3 4 5 6 

alb 

Figure 4.5 Point transverse load clamped plate. UNID-E-500. 

Behaviour of the FAB-E-580 fibre glass fabric configuration is similar to the unidirectional mentioned above. 

Substantial differences exist in the values of k. This parameter for the fabric is 2.5 times bigber than the unidirectional 

configuration, as shown in Fig. 4.6 to 4.9. 

30 .............................................................. . 

20 ...................................... ~ .. ~. ~.~.~~ .......... ,---____________________ -, 

B (+45/-45 

k • Q-jso 

• (0/90) 
10 ............ . . ............................................ L.... _____ --' 

04-~--~~--T_~--T_~--~~--r-~~ 

o 1 2 3 4 5 6 

alb 

Figure 4.6 Uniform load, simply supported plate, FAB-E-580. 
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k 

k 

k 

5 

4 

3 .......................................................... .. B 

• 
(+45/-45) 

Q-iso 

2 ......... .................................................... • (0/90) L-______ ..J 

O~~--~~--~~--~~--~~--~~~ 

o 2 3 4 5 6 

alb 

Figure 4.7 Uniform load, clamped plate, FAB-E-580. 

30 ....................................................... .. 

20 ........ ~ .. ~ .... ~ ... ~ .... ~ ... ~ .... ~ ....... . 

10 ........................................................ . 

o 1 2 3 4 5 6 

alb 

B 

• 
• 

(0/90) 

Q-iso 

(+45/-45) 

Figure 4.8 Point transverse load, simply supported plate, FAB-E-580. 

15 .......................................................... . 

10 ......... ~~~I~I~I ........ 

5 ......................................................... .. 

o 2 3 4 5 6 

alb 

B 

• 
(+45/-45) 

Q-iso 

• (0/90) 

Figure 4.9 Point transverse load, clamped plate, FAB-E-580. 
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Deflections of chopped strand matting plates subjected to uniform and central load are strongly dependent on the 

boundary conditions, as shown in Fig. 4.10 and 4.11. For simply supported plates, the stiffness increases substantially 

for aspect ratios close to 1. Except for the case of a square plate, the deflection of clamped plates does not depend upon 

the aspect ratio. 

15 ........................................................ . 

10 ....................................................... . 

--181-- Clamped 
-~.t--- Simply k 

5 ....................................................... . supported 

04-~--~~~--~~~~~-r~~~~ 

o 2 3 4 5 6 

alb 

Figure 4.10 Uniform load, CSM-E-600A. 

20 ........................................................ . ........ r-.. : .... ~ .. .. ~ ... ~ .... : .... ~ ........ . 
---181-- Clampled 
--~.t--- Simply k 10 

B B B B B B EI supported 

O;-~--~~~--~-r~~~~--~~~ 

o 1 2 3 4 5 6 

alb 

Figure 4.11 Point transverse load, CSM-E-600A. 

4.2.2 Maximum deflection of the sublaminate [±6] 

The maximum deflection is strongly dependent on the variation of e on angle-ply laminates, as shown in Fig. 4.12 to 

4.17. The stiffest laminate is [90] and the least stiff is [0] for all the aspect ratios considered. Small differences of 

values of k are reported in ;the ranges [0] to [±15] and [±60] and [90]. Carbon, aramid and glass fibre composite 

laminates show similar values of k for the lay-up [90] and high aspect ratios. For low values of the aspect ratio, 

deflections for the glass fibre system become the highest and for the carbon fibre system the 10wesL 
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Figure 4.12 TIOO/5208, rectangular plate, all clamped edges, uniform load, {[ +9/ -9] 1 o} s. 
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Figure 4.13 1'20015208, rectangular plate, all supported edges, uniform load, {[ +9/ -911 0 } s. 
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Figure 4.14 Kevlar, rectangular plate, all clamped edges, uniform load, {[+9/-9ho}s, 
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Figure 4,15 Kevlar, rectangular plate, all supported edges, uniform load, ([+9/-9hols, 
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Figure 4.16 Scotchply, rectangular plate, all clamped edge, uniform load, ([+9/-9ho}s. 
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Figure 4_17 Scotchply, rectangular plate, all supported edges, uniform load, {[+9/-9hols. 
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4.2.3 Maximum deflection ofrotation of sublaminate [0190J 

In this case, the rotation of cross-ply laminates affects drastically the maximum deflection, as shown in Fig. 4.18 to 

4.23. For clamped plates, the stiffest laminate is [±45] and the least stiff is [0/90] for all the aspect ratios and materials 

considered. For aspect ratios higher than 3, the maximum deflection does not depend on the aspect ratio. 

For simply supported plates, two different ranges of aspect ratios are observed for the three material systems studied. 

For aspect ratios ranged from 1 to 2.5, the optimum lay-up is [±45] and the least stiff is [0/90]. For plates whose 

aspect ratio is 2.5, the maximum deflection does not depend on the aspect ratio. For aspect ratios higher than 2.5, the 

optimum lay-up is [0/90] and the least stiff is [±45] . 

0,6 - - - - - _. - - - - - - - - - - - - - - - - _ .. _ ... _ ... _. - _ .. - - - - - - - - - - - - _. - - - - - - - - - - - - - - - - - - - _. _ ... - . - - .... - - - _ .. 

0,5 

0,4 

kO,3 

0.2 . _ .. _. - - - - _ ........... - - - - - _. - -. - _ .. - .. 

0,1 _ ... - .... _.' _. -_ .... -

2 3 

alb 

5 

-- (0/90) 

~ (0/90)+15 

(0/90)+30 

-0---- (0/90)+45 

Figure 4.18 TIOO15208, rectangular plate, all clamped edges, uniform load, {[ (0190) +9] 1 o} s. 
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3 

alb 

4 5 

-"".1-- [0/90] 

-C}--- [0/90]+15 

--+-- [0/90]+30 
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Figure 4.191'300/5208, rectangular plate, all supported edges, uniform load, {[(O/90) +9ho}s . 
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Figure 4.20 Kevlar, rectangular plate, all clamped edges, uniform load, {[(0/90) +9hols. 
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Figure 4.21 Kevlar, rectangular plate, all supported edges, uniform load, {[(0/90) +9hols. 
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Figure 4.22 Scotchply, rectangular plate, all clamped edges, uniform load, {[(0/90) +9hols. 
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Figure 4.23 Scotchply, rectangular plate, all supported edges, uniform load, {[(0/90) +Ohols. 

4.3 Design optimisation of composite plates in buckling 

The problem analysed here can be defined by the follOwing points: 

• The objective is to achieve the minimum weight structure by using critical compressive force as a design 
criterion. 

• Only symmetric and balanced laminates have been considered. 

• Boundary conditions are restricted to: 

- simply supported plates along the four edges of the plate; 

- clamped plates along the four edges of the plate. 

• Six types of loading have been applied: 

- uniform uniaxial compression load; 

- uniform biaxial compression load (Ny = Nxl2); 

- uniform biaxial compression load (Ny = Nx); 

- uniform biaxial compression load (Ny = 2 Nx); 

- uniform shear load; 

- combined load: uniaxial uniform and uniform shear load. 

• The mesh is composed by 400 nodes. The theory used is explained in Chapter 1. 
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• The material used is TIOOIN5208. 

In Fig. 4.24, a definition of co-ordinates axes for two-dimensional plates subjected to uniform uniaxial, biaxial, shear 

and combined compression loads is shown. 

Figure 4.24 Defmition of co-ordinates axes for two-dimensional plates subjected to uniform uniaxial compression, 
biaxial compression, shear or combined load. 

4.3.1 Two-dimensional simply supported plates subjected to compression 

In Fig. 4.25 and 4.26, critical loads are reported for two-dimensional simply supported plates subjected to uniform 

loads. The optimum angle can also be seen in Fig. 4.25. Both critical load and optimum angle are a function of the 

plate aspect ratio, though they present constant values for aspect ratios higher than four. A comparison between the 

optimum configuration and the Q-isotropic laminate is shown in Fig. 4.26. 

70,----------------------------------, 

50 lEI Criticalloadfor [S/-S]opt 

30 

45 

• Opti mum angle S 
20 

4-~~~~~~~~~~~~~~~~~~0 

o 2 4 6 

B 

b 

8 10 

Figure 4.25 Critical load and optimum angle for a simply supported plate subjected to a uniform 
uniaxial compression load. 
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Figure 4.26 Comparison between critical loads of optimum configuration and Q-isotropic laminate (simply supported 
plates subjected to a uniform uniaxial compression load). 

A comparison between critical loads for angle-ply and Q-isotropic laminate as a function of the angle of fibre 

orientation is shown in Fig. 4.27. For angles between 27° and 66°, the critical load for angle-ply laminates is higher 

than for Q-isotropic laminates. 
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Figure 4.27 Comparison of critical loads for cross-ply and Q-isotropic laminate for a square plate (simply supported 
plates subjected to a uniform uniaxial compression load). 

In Fig. 4.28, normalised weights of aluminium and Q-isotropic T300INS208 to the optimum laminate of T300INS208 

are reported. 
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Figure 4.28 Comparison between weights of aluminium and the optimum configuration of TIOOIN5208 (simply 
supported plates subjected to a uniform uniaxial compression load). 

Similar graphics to the ones represented in Figures 4.25 to 4.28 can be obtained for biaxial compression. The results 
are shown in Table 4. 1 

Table 4.1 Bucking parameters for simply supported plates subjected to biaxial compression 

Ny=O Ny =Nx/2 Ny=N~ Ny =2Nx 

Optimum angle (<I» for aIb=l, 2, 3, 4 and >4- 45° 63° 70° 80° 

( Nx cr b2 ) 1 ( Qyy t3 ) for ( <I> 1- <I> )opt 28 18 11 5.5 

( Nx cr b2 ) 1 ( Qyy t3 ) for Q-isotropic 22 13 7 4 

Relative weight of aluminium to ( <I> 1- <I> )opt 1.7 1.8 1.9 2 

4.3.2 Two-dimensional clamped plates subjected to compression 

When the plate is clamped along the four edges, the critical buckling load decreases as the aspect ratio increases. Figures 

4.29 to 4.42 represent optima angles, critical loads for ( e 1- e )opt and Q-isotropic configurations and relative weight 

of aluminium respectively. 
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Figure 4.29 Critical load and optimum angle for a clamped plate subjected to a uniform uniaxial compression load. 
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Figure 4.30 Comparison between critical loads of optimum configuration and Q-isotropic laminate (clamped plates 
subjected to a uniform uniaxial compression load). 
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Figure 4.31 Comparison of critical loads for cross-ply and Q-isotropic laminate for a square plate (clamped plates 

subjected to a uniform uniaxial compression load). 
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Figure 4.32 Comparison between weights of aluminium and the optimum configuration of T3001N5028 (clamped 
plates subjected to a uniform uniaxial compression load). 

Table 4.2 shows the key value for uniaxial and three biaxial compression load cases. 

Table 4. 2 BUCking parameters for clamped plates subjected to biaxial compression 

Ny=O Ny =Nx/2 Ny=Nx Ny =2Nx 

Optimum angle (8) for aIb=1 450 630 700 800 

( Nx cr b2 ) 1 ( Qyy t3 ) for ( 81- 8 )opt 28 18 11 5.5 

(Nx cr b2 ) 1 ( Qyy t3 ) for Q-isotropic 22 13 7 4 

Relative weight of aluminium to ( 8 1- 8 )opt 1.7 1.8 1.9 2 

76 

�� �� �� �� ��



4.3.3 Two-dimensional simply supported plates subjected to a uniform shear load 

The buckling parameters for simply supported plates subjected to a uniform shear load follow similar rules to those 

plates subjected to compression loads (paragraphs 4.3.1 and 4.3.2). Critical shear buckling loads decreases as the aspect 

ratio increases (Fig. 4.33 and 4.34). Small differences are reported between the optimum and the Q-isotropic 

configurations (Fig. 4.34). 
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Figure 4.33 Critical load and optimum angle for a simply supported plate su~jected to a uniform shear load. 
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Figure 4.34 Comparison between critical loads of optimum configuration and Q-isotropic laminate (simply supported 
plates subjected to a uniform shear load). 

A comparison between critical loads for angle-ply and Q-isotropic laminate in function of the angle of fibre 

orientation is carried out in Fig. 4.35. For angles between 27° and 66°, the critical load for angle-ply laminates is 

higher than for Q-isotropic laminates. 
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Figure 4.35 Comparison of critical loads for cross-ply and Q-isotropic laminate for a square plate (simply supported 
plates subjected to a uniform shear load). 

In Fig. 4.36, normalised weights of aluminium and Q-isotropic T300IN5208 to the optimum laminate of T300IN5208 

are shown. 
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Figure 4.36 Comparison between weights of aluminium and the optimum configuration of TIOOIN5208 (simply 
supported plates subjected to a uniform shear load). 
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4.3.4 Two-dimensional clamped plates subjected to a uniform shear load 

The behaviour of clamped plates subject to a uniform shear load is quite similar to that registered for simply supported 

plates, as shown in Fig. 4.37 to 4.40. 
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Figure 4.37 Critical load and optimum angle for a clamped plate subjected to a uniform shear load . 
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Figure 4.38 Comparison between critical loads of optimum configuration and Q-isotropic laminate (clamped plates 
subjected to a uniform shear load). 
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Figure 4.39 Comparison of critical loads for cross-ply and Q-isotropic laminate for a square plate (clamped plates 
subjected to a uniform shear load). 
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Figure 4.40 Comparison between weights of aluminium and the optimum configuration of T3001N5208 (clamped 
plates subjected to a uniform shear load). 

4.3.5 Two dimensional plates subjected to combined loads 

Finally, Fig. 4.41 and 4.42 represent the buckling parameters for simply supported and clamped plates subjected to 

combined uniform uniaxial compression and shear, respectively. 
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Figure 4.41 Buckling parameters for simply supported plates subjected to combined uniform uniaxial compression 
and shear. 
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Figure 4.42 Buckling parameters for clamped plates subjected to combined uniform uniaxial compression and shear. 

Further information can be obtained in references 24-54. 

4.4 Conclusions 

Constant thickness composite plates subjected to buckling and transverse loads (uniform or point load) are used most in 

engineering applications. In most cases, optimum designs are required, the weight being the optimisation criterion and 
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the maximum deflection (transverse loads) or critical compressive force (buckling) being the parameters to be 

optimised. 

Three studies have been carried out on sections of constant thickness plates subjected to transverse loads. First, three 

fibre glass composite systems (unidirectional, fabric and chopped strand matting) have been analysed and the influence 

of several lay-ups on the maximum deflection has been reported for a wide range of aspect ratios. Second, three 

unidirectional composite systems (carbon, aramid and glass fibres) have been studied and the influence of variation of 8 

in angle-ply laminates [±8] has been analysed as a function of the aspect ratio. Finally, the influence of rotation of 

cross-ply laminates [0/90] on the maximum deflection of the plate has been reported as a function of the aspect ratio 

for the three material systems described above. 

The maximum deflection of square ( alb = 1 ) simply supported and clamped plates subjected to uniform load does not 

depend upon the lay-up. For rectangular non-square plates ( alb > 1), the optimum lay-up is [90] for simply supported 

and clamped plates, a substantial difference between the values of k for the optimum lay-up and for the rest of laminates 

is reported. 

For simply supported plates, deflections of laminates [±45], Q-isotropic and [0/90] are very close for aspect ratios 

ranged between 1 and 2.5 and for aspect ratios higher than 2.5, differences between the deflections of these three 

laminates increase, the least stiff being [±45]. 

For clamped plates, the ranking of laminates in terms of stiffness is [90], [0/90],Q-isotropic and [±45] for all the aspect 

ratios considered. The values of k are very similar for a square plate ( alb = 1 ) for the four lay-ups analysed. Behaviour 

of the FAB-E-580 fibre glass fabric configuration is similar to the unidirectional mentioned above. There exist 

substantial differences in the values of k. This parameter for the fabric is 2.5 times higher than that reported for the 

unidirectional configuration. 

Deflections of chopped strand matting plates subjected to uniform and central load are strongly dependent on the 

boundary conditions. For simply supported plates, the stiffness increases substantially for aspect ratios close to l. 

Except for the case of a square plate, clamped plates show a deflection, which does not depend upon the aspect ratio. 

Maximum deflection is strongly dependent on the variation of 8 of angle-ply laminates. The stiffest laminate is [90] 

and the least stiff is [0] for all the aspect ratios considered. Small differences of values of k are reported in the ranges [0] 

to [±15] and [±60] and [90]. Carbon, aramid and glass fibre composite laminates show similar values of k for the lay­

up [90] and high aspect ratios. For low values of the aspect ratio, deflections for the fibre glass system become the 

highest and for the carbon fibre system become the lowest. 

Maximum deflection is strongly dependent on the rotation of cross-ply laminates. For clamped plates, the stiffest 

laminate is [±45] and the least stiff is [0/90] for all the aspect ratios and materials considered. For aspect ratios higher 

than 3, the maximum deflection does not depend on the aspect ratio. 

For simply supported plates, two different ranges of aspect ratios are observed for the three material systems studied. 

For aspect ratios ranged from 1 to 2.5, the optimum lay-up is [±45] and the least stiff is [0/90]. For plates whose 
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aspect ratio is 2.5, the maximum deflection does not depend on the aspect ratio. For aspect ratios higher than 2.5, the 

optimum lay-up is [0/90]and the least stiff is [±45] . 

A buckling study of constant thickness plates has also been carried out. Uni, bi-axial and shear loads have been treated 

for a carbon fibre plate with two boundary conditions: simply supported and clamped along the four sides of the plate. 

Optimum sublaminates and critical loads have been obtained for each case. The behaviour of the optimum angle ply 

laminates has been compared with the Q-isotropic configuration and aluminium and substantial weight savings have 

been reported. 
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5 CONSTANT THICKNESS SANDWICHES 

5.1 Introduction 

A typical sandwich consists of two thin, high-strength facings bonded to a thick, lightweight core. The sandwich 

concept produces extremely stiff and strong structures at minimum weight. Thus, the sandwich structure is a key 

configuration in terms of design optimisation with composite materials. 

Dramatic structural improvements in honeycomb and foam cores seem unlikely unless radically new materials are found 

(high-modulus low density fibres; foams with tubular transverse cells). Steady improvements in non-structural 

properties of foams are sought (stability, fire-resistance, low creep, non-toxicity, low CFC involvement). There is 

scope for new types of manufactured cores (tubes and heavy welded steel). The biggest advances are likely in fabrication 

methods for cores, faces, sandwich panels (continuous production lines), complete structures (fuselages, hulls, 

aerogenerator blades, reflectors) and in the design of connections. 

Core material properties are described at the beginning of this chapter. Four material systems will be reviewed: PVC, . 

polyurethane foam, aluminium honeycomb and aramid honeycomb. Design optimisation on sandwich structures will be 

undertaken. Special attention will be drawn to the design of skins, cores and reinforcements. 

Both bending and buckling analysis will be carried out, showing in each case the optimum sublaminate, weight saving 

and critical load. In order to obtain lightweight structures, the possibilities of increasing the thickness of the sandwich 

and reinforcing the sandwich structure will be studied. 

5.2 Core materials 

A sandwich structure is composed of two skins and a core. The composite material systems used for the skins were 

described in Chapter 2 (carbon, aramid and glass fibres and epoxy, vinylester and polyester resins). Four types of 

materials are mainly used for sandwich structure cores: 

• Polychlorure of vinyl foam (PVC) 

• Polyurethane foam (PUR) 

• 5052 aluminium alloy honeycomb 

• Aramid fibre/phenolic resin honeycomb 

The following four sections present the mechanical properties of these four material systems as a function of the core 

density, which is critical for design purposes. Compression strength, compression modulus, shear strength and shear 

modulus are obtained as a function of the core density (Fig. 5.1-5.20). 
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5.2.1 PVC 
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Figure 5.1 Compression strength of PVC foam versus density. 
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Figure 5.2 Compression modulus of PVC foam versus density. 
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Figure 5.3 Shear strength of PVC foam versus density. 
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Figure 5.4 Shear modulus of PVC foam versus density. 
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5.2.2 Polyurethane foam 
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Figure 5.5 Compression strength of PUR foam versus density. 
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Figure 5.6 Compression modulus of PUR foam versus density. 
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Figure 5.7 Shear strength of PUR foam versus density. 
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Figure 5.8 Shear modulus of PUR foam versus density. 
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5.2.3 Aluminium honeycomb 
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Figure 5.9 Compression strength of 5052 aluminium alloy honeycomb versus density. 
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Figure 5.10 Compression modulus of 5052 aluminium alloy honeycomb versus density. 
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Figure 5.11 Longitudinal shear strength of 5052 aluminium alloy honeycomb versus density. 
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Figure 5.12 Longitudinal shear modulus of 5052 aluminium alloy honeycomb versus density. 
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Figme 5.13 Transverse shear strength of 5052 aluminium alloy honeycomb versus density. 
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Figme 5.14 Transverse shear modulus of 5052 aluminium alloy honeycomb versus density. 
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5.2.4 Aramid honeycomb 
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Figure 5.15 Compression strength of aramid fibre/phenolic resin honeycomb versus density. 
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Figure 5.16 Compression modulus of aramid fibre/phenolic resin honeycomb versus density. 
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Figure 5.17 Longitudinal shear strength of aramid fibre/phenolic resin honeycomb versus density. 
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Figure 5.18 Longitudinal shear modulus of aramid fibre/phenolic resin honeycomb versus density. 
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Figure 5.19 Transverse shear strength of aramid fibre/phenolic resin honeycomb versus density. 
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Figure 5.20 Transverse shear modulus of aramid fibre/phenolic resin honeycomb versus density. 
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5.3 Optimum design of sandwich constructions 

The main causes for sandwich failure are: 

• Tensile or compression failure of the facings. 

• Shear failure of the core. 

• Failure under general instability. 

• Failure under local instability. 

These types of failure must be adequately taken into account and avoided in a strength design. 

5.3.1 Facings design 

The actual stress in a sandwich is of course given by the algebraic sum of the components due to the bending moment 

and the shear force. The presence of the shear force therefore causes a stress increase in one facing and simultaneously a 

stress decrease in the other. If the stresses exceed the corresponding ultimate stresses of the constitutive materials of the 

facings, the latter will fail in a catastrophic way. 

In design calculations, the strength verification of the facings is usually carried out by comparing the stresses caused by 

external loads with the allowable stresses for the constitutive materials of the facings. The allowable stresses are 

obtained by dividing the strengths by suitable factors of safety which take into account the variable properties of the 

materials, the approximations in the structure schematic design, the accidental loads, fatigue phenomena, etc. 

When the calculated stresses exceed the allowable stresses, a change in the sandwich sizing is required. In such a case 

one may: 

• Use a material with higher allowable stresses for the facings. 

• Increase facings thickness, thus reducing the applied stresses. 

• Increase core thickness; this method too will decrease the stresses in the facings. 

The increase of core thickness is often the most suitable way to solve the problem; on the other hand a higher-density 

(therefore stiffer) core does not affect the stresses in the facings. 

5.3.2 Core design 

The sandwich core is then subjected to shear stress only. If the value of the shear stress is greater than the shear 

strength of the core material, the latter fails causing failure of the structure. The shear verification is carried out by 

comparing the calculated stress generated by the design loads with the allowable stress, which is calculated by dividing 

the shear strength of the core material by a suitable factor of safety. If the calculated stress exceeds the allowable stress, 

one may: 

• Use a core material with higher allowable shear stress. 

• Increase the core thickness, thus reducing the shear stress. 
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On the other hand, using a different material for the facings or increasing their thickness does not affect the shear stress 

in the core. 

5.3.3 Stiffness and strength versus core properties 

Stiffness and strength of sandwich structures are strongly dependent on core thickness and core density. A number of 

sandwich structures have been calculated by means of the theory described in Chapter 1. Deflections, R-values (safety 

factor) and weight have been represented as a function of the core density and core thickness for uniformly loaded, square 

sandwiches (Fig. 5.21-5.27). 

Carbon fibre I aluminium honeycomb and glass fibre I polyurethane foam systems have been analysed. 
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As shown in Fig. 5.27, the weight of the structure decreases dramatically in a certain range of core thickness (90-150 

mm). If the core thickness is increased from the upper limit of this range ( thickness higher than 150 mm), the weight 

of the structure decreases very slowly. Therefore, in terms of weight saving, there is a range (90-150 mm) where 

increasing the core thickness is a very efficient design possibility, but in the range of core thicknesses higher than 150 

mm, other designs, such as implementing reinforcements in the sandwich, must be considered. 
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Figure 5.27 Weight (kglm) versus core thickness. Glass fibre and polyurethane foam core 2 m width with uniform load 
(to MPa) 
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Although Fig. 5.27 demonstrates a design curve for a particular sandwich geometry and fibre/resin type, many such 

curves can be derived from a knowledge of the sandwich behaviour of different geometries and fibre/resin types as a 

function of the sandwich thickness. 

5.3.4 Optimum design of reinforced sandwich constructions 

Simple reinforcements are especially efficient for those applications where there is a unidirectional stress, for instance in 

narrow simply supported plates subjected to uniform loads (Fig. 5.28 and 5.29). For square plates, there are stresses in 

the transverse and longitudinal directions, and therefore reinforcement should be used in both directions. Great 

difficulties can be encountered when joining perpendicular reinforcements. 

Figure 5.28 The structure. 

Figure 5.29 The sandwich and reinforcement. 

Weight is the optimisation criterion and the maximum deflection should not be higher than the ratios span/250 or 

span/500 for fibreglass and carbon fibre skins, respectively. This is a rule used in engineering applications design to 

take account of stiffness and strength of the sandwich structure. 

Skin thickness, reinforcement thickness, foam density and number of reinforcements per unit width have been 

optimised. For carbon fibre skins and aluminium honeycomb, with a 2.5 m span and a 30 MPa load, the reinforced 

design is considerably better than the non-reinforced one for sandwich thicknesses between 110 and 280 mm (Fig. 5.30). 

For thicknesses between 80 and 110 mm, one solution exists for reinforced sandwiches but it is not possible to meet 
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the requirements with non-reinforced sandwiches. For thicknesses greater than 280 mm, results from reinforced and non­

reinforced sandwiches are similar (the weight saving is 22%). The optimum number of reinforcements is three per metre 

in all cases. Thus, the efficiency of the implementation of reinforcements depends on the sandwich thickness. 
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Figure 5.30 Carbon aluminium honeycomb. Weight (kglm) versus thickness for a sandwich 2.5 m width with 
uniform load (30 MPa). 

Similar graphics are obtained by varying the load magnitude, span and the material system. Results are shown in the 

table below: 

Table 5.1 Optimisation of reinforced sandwich constructions 

Facing Core Span Load Minimum Minimum Minimum Minimum 

material material (m) (MPa) thickness thickness weight weight 

for reinforced for non-reinforced for reinforced for non-reinforced 

sandwich (mm) sandwich (mm) sandwich (Kglm) sandwich (Kglm) 

Carboni Alum. 2.5 30 78 122 28 36 WS: 22% 

epoxy honey- 2.5 50 100 183 35 51 WS: 31% 

comb 2.5 70 124 241 42 74 WS: 43% 

30klm3 2 30 73 100 18 22 WS: 18% 

2 50 78 144 23 32 WS: 28% 

2 70 100 186 27 40 WS: 32% 

1.5 30 40 75 10 13 WS: 23% 

1.5 50 54 100 13 18 WS: 28% 

1.5 70 70 133 15 23 WS: 35% 

1 30 30 50 4 6 WS: 33% 

1 50 32 68 6 8 WS: 25% 

1 70 34 95 7 10 WS: 30% 
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Facing Core Span Load Minimum Minimum Minimum Minimum 

material material (m) (MPa) thickness thickness weight weight 

for reinforced for non-reinforced for reinforced for non-reinforced 

sandwich (mm) sandwich (mm) sandwich (Kglm) sandwich (Kg/m) 

E-glass PUR 2.5 10 55 105 30 40 WS: 25% 

polyester 30Klm3 2.5 30 100 248 43 90 WS:48% 

2.5 50 120 380 55 140 WS: 61% 

2 10 50 83 18 25 WS: 28% 

2 30 68 200 28 62 WS: 55% 

2 50 88 300 36 95 WS: 62% 

1.5 10 53 63 10 14 WS: 28% 

1.5 30 63 145 18 34 WS:47% 

1.5 50 70 215 20 50 WS: 60% 

1 10 34 40 5 6 WS:8% 

1 30 36 100 7 14 WS: 50% 

1 50 38 140 10 22 WS: 55% 

It has been shown that the weight saving obtained by using reinforced sandwiches is strongly dependent on the load. 

The higher the load, the higher the weight saving. Variations of weight saving with the span of the plate are not 

significant. 

5.4 Buckling 

5.4.1 General buckling 

A sandwich beam subjected to compression may fail because of a condition of instability that involves the whole beam. 

For this reason it is called 'general buckling' (Fig. 5.31 (a». 
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Figure 5.31 Sandwich failures due to a buckling load: (a) general buckling; (b) crimping; (c) wrinkling; (d) dimpling. 

General buckling may also occur when the stress in the facings and in the core is lower then the allowable stress. The 

load that determines sandwich instability depends on such parameters as the beam in-plane size and the constraint 

conditions, which can only be partially modified at the design stage. Other quantities, which are equally important for 

the defmition of buckling load, depend directly on the type of sandwich. 

They are: 

• Flexural rigidity of the sandwich. 

• Thickness of the facings . 

• Elastic properties of the facings. 

• Core thickness . 

• Shear modulus of the core. 

To avoid this type of failure, it is necessary to ensure that the general buckling load is higher, according to a suitable 

factor of safety, than the predicted compression stress. When choosing the safety factor one must take into account that 

the theoretical formulae used to predict the general buckling critical load are less reliable than those for the calculation 

of sandwich stresses. 

If general buckling is feared, one may: 

• Use facings with a higher elastic modulus material. 

• Increase facings thickness. 
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• Increase core thickness. 

• Use a core material with higher shear modulus. 

F F F F 

1 1 1 1 

lcr= 0.7071 lcr= 0.5 1 

Figure 5.32 General buckling of a sandwich structure and critical lengths of some boundary conditions. 

In the case of a sandwich with a relatively low length/thickness ratio and where shear rigidity is small in comparison 

with flexural rigidity, sandwich general buckling will assume a typical configuration, (Fig. 5.54 (b». This failure 

mode, typical of sandwich structures, is called 'shear crimping'. The total load per unit length capable of producing 

crimping is practically independent of facing properties. On the other hand, it increases linearly with the following 

parameters: 

• Core thickness. 

• Shear modulus of the core. 

To increase the total critical crimping load, one should: 

• Increase core thickness. 

• Use a higher shear modulus for the core. 

5.4.1.1 General buckling of a sandwich beam 

It has been shown by Tetil that the critical stress causing the general buckling of a sandwich beam under compressive 

load (Fig. 5.55) is given by: 

1 
O"cr b = [5.1] 

where: 

[5.2] 
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and 

<Jer b = critical buckling stress (N/mm2) 

El = sandwich flexural rigidity (N/mm2) 

b = beam width (mm) 

SFl,2 = thickness of facings 1,2 (mm) 

ler = free length of the sandwich beam (mm) 

GA = sandwich shear rigidity (N) 

It is easily verified that, when l~r GA« El, equation 5.1 reduces to: 

GASA 
<Jcrb= --­

SFt 
[5.3] 

In this case a particular mode of general buckling occurs, usually called 'shear crimping' (Fig. 5.54 (b». Considering 

that the quantity <Jcr b SFt represents the total Crimping load per unit width of the sandwich, it can be concluded from 

equation 5.3 that this load is only dependent on the shear rigidity GA. 

5.4.1.2 General buckling of a rectangular plate compressively loaded along two opposite edges 

The critical stress causing the general buckling of an isotropic rectangular sandwich plate with equal facings and 

isotropic core, subjected to a compressive load along two opposite edges, is given by the following equation: 

where: 

and 

<Jer p = 

K<i = 

EF = 

vF = 

b = 

SA = 

SA = 

SF = 

4 

EF 
-2-
1-VF 

critical buckling stress (N/mm2) 

buckling factor, to be evaluated from Fig. 5.56 and 5.57 

facing compression modulus (N/mm2) 

facing Poisson's ratio 

length of the plate loaded edge (mm) 

distance between the facings centroids (mm) 

core thickness (mm) 

facing thickness (mm) 

[5.4] 

[5.5] 

It is easily seen, from the graphs in Fig. 5.56 and 5.57, that the so-called 'shear deformation factor', S, must be 

evaluated in order to define the buckling factor K<i. S is given by: 

where: 

1t2 EF SF SA 
S= 

2GAb2 (1-V~) 
[5.6] 
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GA = core shear modulus (N/mm2) 

~ is given by Fig. 5.56 and 5.57 for simply supported and clamped sandwich structures, respectively. 
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Figure 5.33 Values of ~ as a function of S and the aspect ratio for a simply supported sandwich structure. 
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Figure 5.34 Values of K<i as a function of S and the aspect ratio for a clamped sandwich structure. 

5.4.2 Local buckling in the sandwich 

Sandwich facings, when considered on their own (i.e. separate from the core) tend to lose stability because of their 

reduced thickness. The buckling of the facings is prevented by the core which, when the facings are subjected to 

compression, supports them laterally. It may happen, however, that when the compression stress on the facings 

exceeds a certain limit, the core will not be able to prevent their buckling. In this case, a local buckling occurs in the 

sandwich. This type of buckling is called 'local' because it does not depend on the geometry of the structure nor on the 

constraint conditions, but only on local phenomena or interaction between facings and core. Local buckling may 

assume two different forms, according to the kind of core used for the sandwich construction. If the core is made of 

foam, it supports the external facings with continuity, i.e. the contact between facings and core occurs practically on the 

entire interface surface. In this case, each facing behaves like a plate on elastic foundation and its buckling necessarily 

involves (Fig. 5.54 (c)) the failure of the bonding at the interface with the core and/or the failure under tension or 

compression of the core itself. This type of failure, called 'wrinkling', is therefore catastrophic and is mainly influenced 

by the following parameters: 

• Elastic modulus of the facings. 

• Elastic modulus of the core. 

• Shear modulus of the core. 
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To prevent local wrinkling phenomena, it must be verified that the compression stress in the sandwich is lower than the 

critical buckling stress, according to a suitable safety factor. When choosing the value of the safety factor, it must be 

borne in mind that the available formulae for the calculation of the critical stress for local wrinkling are approximate. If 

local wrinkling is feared, one may: 

• Use a facing material with a higher elastic modulus. 

• Use a core material with higher elastic properties. 

With regard to the second solution, it should be noted that a foamed polymeric material usually presents higher elastic 

and shear moduli with higher density. As the two moduli both affect the critical stress for local instability, a higher 

core density is twice as efficient in the prevention of this phenomenon. 

When the core is made of honeycomb, the bonding between facings and core is obtained only on honeycomb cells' 

external borders. When facings are subjected to compression, they may therefore undergo buckling in the free spaces 

within the single cells, generating a 'dimpling' phenomenon (Fig. 5.54 (d». Dimpling depends mainly on the 

following factors: 

• Facing elastic modulus. 

• Facing thickness. 

• Core cell size. 

When it is necessary to increase the critical dimpling stress, one should: 

• Use a material for the facings with higher elastic modulus. 

• Use thicker facings. 

• Use a core with smaller cells. 

It is important to note that, differently from the case of wrinkling, the phenomenon of dimpling does not determine the 

failure of the structure. This type of buckling, therefore, is not necessarily catastrophic. It is, however, advisable to take 

dimpling into account at the design stage because it may be a prelude to wrinkling failure and it may also produce 

irreversible deformations in the structure. 

Two different local buckling modes may occur in a sandwich structure under compressive load, depending on the type of 

core. In the case of a core supporting facings continuously (foamed core), facings may buckle as a plate resting on an 

elastic foundation. This type of buckling is called 'wrinkling', and results in debonding at the core-facing interface or 

tensile (compressive) failures in the core (Fig. 5.54 (c». 

When the core supports the facings discontinuously (honeycomb core), facings may buckle into the spaces between cell 

walls; this phenomenon, which does not necessarily lead to failures, is called 'dimpling' (Fig. 5.54 (d». 

5.4.2.1 Wrinkling 

It has been shown by Teti1 that the critical wrinkling stress (Fig. 5.54 (c» of a sandwich facing supported continuously 

by an isotropic core and subjected to a compressive loading is approximately given by: 

111 

�� �� �� �� ��



crcr w = Q [5.7] 

where: 

crcr w = critical buckling stress (N/rom2) 

Ep = facing compression modulus (N/rom2) 

EA = core compression modulus (N/rom2) 

GA = core shear modulus (N/mm2) 

vp = facing Poisson's ratio 

Q = wrinkling parameter, to be evaluated from Fig 5.58 

In order to compute Q, the quantities q and K, appearing in Fig 5.58, must be calculated in advance. These quantities 

are defmed by the following formulae: 

3 

[5.8] 

where 

SA = distance between the facings centroids (rom) 

Sp = facing thickness (mm) 

d = facing initial deflection (rom) 

FA = flatwise strength of the sandwich (the lower value between compression and tensile strength) (MPa) 

Besides: 

[5.9] 

where: 

SA = core thickness (mm) 

SPI,2 = thickness of the facings 1, 2 of the sandwich (rom) 

At present it is not possible to measure the facing initial deflection, d, directly. This quantity must be therefore 

experimentally determined, by carrying out compression test on sandwich panels. In this way, experimental values of 

the critical wrinkling stress are obtained, and using these a Q value can be calculated from equation 5.7. From Fig. 

5.58, a K value which matches the experimental data, is found. Finally, d is calculated by equation 5.9. It can be 

assumed, in the design stage, that d is constant for all the sandwiches obtained by the same fabrication procedure. 
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It is important to note that equation 5.7 is only approximate, and can only be used in designing to give reference values 

of the wrinkling stress. Experimental tests should therefore be performed to support the design. If no information is 

available on d, a reference value d = 0.5 is suggested for an approximate estimate of the wrinkling stress. 
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Figure 5.35 Wrinkling parameter Q as a function of q and K factors 

5.4.2.2 Dimpling 

It has been shown by Tetil that the critical stress for dimpling (Fig. 5.54 (d» of a sandwich facing supported by a 

honeycomb core is calculated by the following empirical formula: 

acrd = 

where: 

EF 

2 
(1- VF) 

acr d = critical dimpling stress (N/rom2) 

Sc = core cell size, given by the diameter of the inscribed circle (rom) 

5.5 Conclusions 

[5.10] 

Design optimisation on sandwich structures has been carried out. Special attention has been drawn to the design of 

skins, cores and reinforcements. Core properties of PVC, polyurethane foam, aluminium honeycomb and aramid 

honeycomb material systems have been shown. 

When the calculated stresses exceed the allowable stresses, a change in the sandwich sizing is required. In such cases: 
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• Use a material with higher allowable stresses for the facings. 

• Increase facings thickness, thus reducing the applied stresses. 

• Increase core thickness; this method too will decrease the stresses in the facings. 

The increase of core thickness is often the most suitable way to solve the problem; on the other hand a higher-density 

(therefore stiffer) core does not affect the stresses in the facings. The sandwich core is then subjected to shear stress 

only. If the value of the shear stress is greater than the shear strength of the core material, the latter fails causing the 

failure of the structure. 

The shear verification is carried out by comparing the calculated stress generated by the design loads with the allowable 

stress, which is calculated by dividing the shear strength of the core material by a suitable factor of safety. If the 

calculated stress exceeds the allowable stress, one may: 

• Use a core material with higher allowable shear stress. 

• Increase the core thickness, thus reducing the shear stress. 

On the other hand, using a different material for the facings or increasing their thickness does not affect the shear stress 

in the core. 

In order to obtain lightweight structures, one can increase the thickness of the sandwich. This option is efficient for 

low-medium values of thickness. From a certain thickness, the weight does not decrease substantially by increasing the 

sandwich thickness. Another option is to reinforce the sandwich structures. This design leads to drastic weight saving in 

most cases. 

It has been shown that the weight saving obtained by using reinforced sandwiches is strongly dependent on the load. 

The higher the load, the higher the weight saving. Variations of weight saving with the span of the plate are not 

significant. The optimum number of reinforcements is three per metre in all cases. In general, as the number of 

reinforcements increases, the minimum weight decreases. However, the weight saving obtained by using four 

reinforcements per metre instead of three is insignificant. 

Optimum buckling design is a function of the type of load (uni or bi-axial) and boundary conditions. It is extremely 

difficult to predict the optimum sublaminates and the critical loads. Thus, the graphs in this chapter are recommended 

for the optimisation design of sandwich structures. 

Further information can be found in refs. 2-36. 
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6 DESIGN OPTIMISATION OF VARIABLE THICKNESS COMPOSITE 
STRUCTURES 

6.1 Introduction 

Composite materials have been increasingly used over the last few decades to lighten structures in fields such as 

aeronautics and space. Two steps are essential in the process of taking advantage of these materials: design and 

optimisation. 

Optimisation of composite structures is a recent issue, because both optimisation techniques and composite structures 

have been developed over the last few decades and therefore, the conjunction of them is even more recent. Composite 

materials are an expensive but efficient technology to achieve minimum weight structures. It is logical to attempt to 

find out how to design optimum laminated composite plates with no reduction in their strength. A general scheme is 

depicted in Fig. 6.1. 

• 
Figure 6.1 Schematic representation of a variable-thickness composite plate. 

This chapter deals with the design optimisation of variable thickness laminated composite structures subjected to a 

transverse load. The study of the optimisation of laminated composite plates subjected to this type of load is extremely 

complex. On the one hand, the whole stress tensor must be considered: the three in-plane stress components are present 

owing to the bending effects, and so are the two interlaminar shear stress components, due to the shear effects. Finally, 

the interlaminar normal stress component must also be considered because of the variable thickness, as equilibrium 

equations predict. References 1-8 give further details about these aspects. 

Firstly, the variable thickness problem is analysed. The behaviour of a bidimensional plate with variable thickness is 

extremely difficult to understand, because it is a 3-D problem, and because bending, shear, and variable thickness effects 

appear simultaneously. Therefore, a one-dimensional plate with variable thickness is studied here by means of a 2-D 

plane strain fmite element model. Results are easy to analyse, and some conclusions about variable thickness laminated 

composite plates can be drawn. Second, the failure mechanisms are identified. 
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One-dimensional laminated composite plates are studied by applying the 2-D plane strain model mentioned above. 

Optimum configurations and weight savings are reported for several types of plates, loads, and boundary conditions. 

Two-dimensional laminated composite plates are also analysed. Since the 2-D plane strain model can only be used for 

the 1-D case, a more general model based on a higher order shear theory is used. This method is efficient and accurate, 

not only because the analysis is carried out very fast, but also because the required number of nodes of the mesh is not 

large, and the results from the shear deformation theory used here and the 2-D plane strain model are very close. 

Variable thickness beams, plates and sandwich constructions will be analysed in subsequent chapters. 

6.2 Variable thickness laminate stress distribution 

The aim of this study is to find out what happens inside the laminate when the laminate thickness varies and one 

transverse load is applied. The behaviour of a 2-D plate with variable thickness is extremely difficult to understand 

because it is a 3-D problem, and because bending, shear and variable thickness effects appear simultaneously. In other 

words, the whole stress tensor must be considered: the three in-plane stress components are present owing to the 

bending effects, and so are the two interlaminar shear stress components because of the shear effects. Finally, the 

interlaminar normal stress component must also be considered because of the variable thickness effect. To simplify 

the problem and to understand the variable thickness phenomenon, a 1-D plate with variable thickness is studied here by 

means of a 2-D plane strain finite element model. 

The next section refers to attempts at obtaining through-thickness stresses distributions in a cross section where the 

laminate thickness varies. Once the stress level is known, the laminate failure will be predicted by means of a quadratic 

failure criterion. The aim of this study is to analyse th~oretically the influence of the different parameters on the 

mechanical behaviour of variable-thickness laminated composite plates. 

An investigation is performed to study the damage in variable thickness laminated composites caused by a transverse 

load. The major objective of the study is to understand the fundamental failure mechanisms in composites caused by 

transverse loads, and to identify the essential parameters causing the damage in composites. 

Finally, an experimental study will be carried out to assess the accuracy of the theory, as well as to analyse 

experimentally the influence of the different parameters on the mechanical behaviour of variable-thickness laminated 

composite plates. By using this method, the results are easy to analyse and some conclusions about variable 

thickness laminated composite plates can be drawn. 

6.2.1 Model assumptions and method of analysis 

The model is used with the following assumptions: 

• This study is limited to one-dimensional laminated composite plates, in order to avoid 3-D effects and to 

analyse properly the consequences of the variable thickness effect. 

• The fibre orientation is longitudinal (x-direction). This is the optimal direction for 1-D laminated composite 

plates. 
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• The material used is graphite/epoxy AS4/3501-6. 

The following method of analysis was used: 

• A 2-D plane strain ftnite element model. 

• The mesh is composed by 1891 nodes. 

• Different types of loading and boundary conditions have been studied to analyse the variable thickness 

problem from a theoretical point of view as well as to obtain through-thickness stress distributions. 

• A three point bending model has been used for theoretically analysing the influence of the different 

parameters on the mechanical behaviour of variable-thickness laminated composite plates. 

• A three point bending test in fatigue and static conditions has been carried out for identifying the failure 

mechanisms. 

• A three point bending test in static conditions has been used to verify the theoretical model, and to analyse 

experimentally the influence of the different parameters on the mechanical behaviour of variable-thickness 

laminated composite plates. 

6.2.2 Through-thickness stress distribution 

This section refers to the attempts which have been made to obtain through-thickness stress distribution in a cross 

section, where the laminate thickness varies from t to t-tl. 

The solution of the problem is a function of a number of parameters: 

• e: angle of variation of thickness. 

• titl: thickness ratio. 

• Stacking sequence. 

• Bending moment distribution. 

• Shear force distribution. 

• Characteristic length / laminate thickness ratio. 

• Material 

The model described in section 6.2.1 has been applied to different cases in order to ftnd out what happens inside the 

laminate when the laminate thickness varies and to study the sensitivity of the parameters mentioned above. Thus, 

once the relationship between each parameter and the mechanical behaviour of the plate is known, some design changes 

can be made in order to improve the mechanical characteristics of the plate. 

Fig. 6.2-6.4 show the distribution of al ,a3 and as through unidimensional, two-sides tapered plates and linear 

bending moment distributions with dM/dX > O. These stress components present remarkable differences with respect to 
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the constant-thickness plate distributions, especially those related to (J3 and (J5, because (J5 has two maxima near the 

top and bottom surfaces and (J3 reaches much higher values than in the case of constant-thickness. 
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Figure 6.3 Distribution of 0"3 for a two-sides tapered plate and aM/ax > o. 

1z 

°Smax -1 o 

2 z 
t 

o 

-1 

Figure 6.4 Distribution of 0"5 for a two-sides tapered plate and aM/ax > o. 
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In Fig. 6.5-6.7, the distributions of al ,a3 and a5 through the thickness for unidimensional one-side tapered plates and 

linear bending moment distributions with aM/ax> 0 are shown. Obviously, to taper the plate on just one side leads to 

non-symmetrical distribution with peaks of interlaminar stresses near the surface which is tapered. 
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Figure 6.5 Distribution of al for a one-side tapered plate and aM/ax> o. 
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Figure 6.6 Distribution of a3 for a one-side tapered plate and aM/ax> o. 
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Figure 6.7 Distribution of 0"5 for a one-side tapered plate and aM/ax> o. 

Figures 6.8-6.10 show the distributions of 0"1 ,0"3 and 0"5 through unidimensional two-sides tapered plates and linear 

bending moment distributions with aM/ax < o. It is apparent that the sign of aM/ax has a strong influence on the 

distributions of longitudinal and interlaminar stresses. 
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Figure 6.8 Distribution of 0"1 for a two-sides tapered plate and aM/ax < o. 
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Figure 6.9 Distribution of <J3 for a two-sides tapered plate and aM/ax < o. 
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Figure 6.10 Distribution of <J5 for a two-sides tapered plate and aM/ax < o. 

Finally, Fig. 6.11 to 6.13 represent the distributions of <Jt ,<J3 and <J5 through unidimensional one-side tapered plates 

and linear bending moment distributions with aM/ax < o. 
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Figure 6.12 Distribution of 03 for a one-side tapered plate and aM/dx < o. 
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Figure 6.13 Distribution of <JS for a one-side tapered plate and aM/ax < O. 

In Fig. 6.14-6.16, <Jl' <J3 and <JS distributions are represented for tl/t=O.3, MlPt=5 and aM/ax < 0, respectively. Two 

angles of variation of thickness have been considered: 15° and 90°. Reducing the angle of variation of thickness from 

90° to 15° leads to a considerable decrease in the values of the peaks in the distributions of <Jl' <J3 and <JS' especially 

these last two. 
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Figure 6.14 Distribution of <Jl for a one-side tapered plate, tl/t=O.3, MIPt=5 and aM/ax > O. 
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Figure 6.15 Distribution of 0"3 for a one-side tapered plate, tl/t=O.3, MlPt=5 and aM/ax> O. 
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Figure 6.16 Distribution of 0"5 for a one-side tapered plate, tl/t=O.3, MIPt=5 and aM/ax > O. 

Figures 6.17-6.19 show the distributions of 0"1' 0"3 and 0"5 for tl/t=0.2, MIPt=5 and aM/ax < 0, respectively. As 
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expected, maximum values decrease considerably with respect to Fig. 6.14 to 6.16, because of the smaller value of 

tl/t. 
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Figure 6.17 Distribution of crl for a one-side tapered plate, tl/t=O.2, MIPt=5 and aM/ax> o. 
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Figure 6.18 Distribution of cr3 for a one-side tapered plate, tl/t=0.2, MIPt=5 and aM/ax> O. 

128 

�� �� �� �� ��



5~------------------------------~ 

4 -

3 

2 

I:l 0= 90 
• 0= 15 

o 2 z 
t 

Figure 6.19 Distribution of 0'5 for a one-side tapered plate, tl/t=O.2, MlPt=5 and aM/ax> O. 

Distributions of 0'1 ,0'3 and 0'5 for tl/t=O.l, MlPt=5 and aM/ax < 0 are presented in Fig. 6.20-6.22, respectively. 

Numerical values keep decreasing because of the value of tl/t=O.l. Also, the effect of the angle of variation of thickness 

can be seen by comparing the distributions for 0=90° and 0=15°. 
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Figure 6.20 Distribution of 0'1 for a one-side tapered plate, tl/t=O.l, MIPt=5 and aM/ax> O. 
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Figure 6.21 Distribution of a3 for a one-side tapered plate, t1/t=O.I, M!Pt=5 and aM/ax> o. 
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Figure 6.22 Distribution of a5 for a one-side tapered plate, t1/t=O.I, M!Pt=5 and aM/ax> o. 

The following conclusions can be drawn after analysing the results described above: 

• The examination of Fig. 6.2-6.13 leads to the conclusion that the variable-thickness effect presents a strong 

influence on the distributions of longitudinal and interlaminar stresses. High peaks of interlaminar stresses 

appear near the areas of change of thickness. 

• It is also noticeable by comparison of Fig. 6.2-6.4 and Fig. 6.5-6.7, that the distributions of the through­

thickness stresses vary as a function of the sign of aM/ax. 
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• Stress distributions are strongly dependent on tit!, the thickness ratio, as the comparison between Fig. 6.14-

6.16,6.17-6.19 and 6.20-6.22, reflect. 

• 0, the angle of variation of thickness has a remarkable influence on interlaminar stress distributions through 

the laminate thickness. This can be seen in Fig. 6.14-6.22. 

Focusing on optimisation of laminated composite plates, the last four parameters in the above list will be input data, 

and the optimisation procedure will determine the other parameters on the list except for the angle of variation of 

thickness. Therefore, the study of this parameter becomes more and more important since the angle of variation of 

thickness is critical for the mechanical behaviour of variable thickness plates. 

6.2.3 Failure mechanisms 

A variable thickness unidimensional laminated composite plate exhibits a variety of failure mechanisms when subjected 

to transverse loads. Knowledge of these modes is very important to understand what happens inside the laminate. Once 

we know the critical failure mechanisms, we will be able to identify the strain components associated with them. 

Different types of laminated composite plates were tested in fatigue and static conditions: 

• AS4/3501-6 graphite/epoxy was used for this work. 

• The types of testing performed were three point static and dynamic bending. 

• The load rate for the static testing was 0.06 inlmin (0.001524 mlmin). 

• For fatigue testing, the frequency was 5 cycles/second, and the load was 60 % of the static failure load. 

The vertical displacement was controlled. 

Figure 6.23 shows the three-point bending testing. 
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Figure 6.23 Three point bending test. 

After studying the results, the following failure mechanisms have been reported: 

1 Delamination. This is the most usual failure mode when the angle of variation of thickness is high. It is due to the 

fact that a sharp thickness variation generates a peak of interlaminar shear stress near the areas of change of 

thickness. In Fig. 6.24, a delamination failure in a tapered surface is shown. This mechanism can also be detected in 

thick plates, though the angle of variation of thickness is low. A representation of this failure mechanism is shown 

in Fig. 6.25. 

Figure 6.24 Delamination failure in the midplane. 

Figure 6.25 Delamination failure in the tapered surface. 
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2 Bending modes (compression). This mechanism occurs when the plate is very thin, the variable thickness effect is 

negligible, and the compression strength is lower than the tension strength in the fibre direction. The following in­

plane compression failure modes can be distinguished: 

(a) Induced transverse tensile failure. Unidirectional composites can fracture along the fibres when loaded 

by compression by a transverse tensile failure mode, because of the weakness of the matrix and the 

fibre-matrix interface, compared with the strength of the fibres. 

(b) Compressive delamination failure. If a fibre buckles, the fibre-matrix interface may fracture in shear and 

lead to ultimate failure. 

(c) Euler failure. If the matrix is ductile and the interface is strong, the fibre can bend without matrix 

failure and eventually fracture in bending. 

(d) Microbuckling. A more likely failure mode of unidirectional composite laminates associated with fibre 

microbuckling and fibre kinking, is shear crippling. Macroscopically, shear crippling looks like a shear 

failure on a plane at an angle to the direction of loading. Microscopic inspection, however, indicates 

that shear crippling is frequently the result of kink-band formation. 

(e) Strength failure. The final failure mode exhibited in unidirectional composites is associated with pure 

compression failure of the fibres. In this case, the fracture surface is likely to be at an angle to the 

loading direction, usually about 450 . 

3 Bending modes (tension). This mechanism occurs when the plate is very thin, the variable thickness effect is 

negligible, and the compression strength is higher than the tension strength in the fibre direction. The following in­

plane tension failure modes can be distinguished: 

(a) Unidirectional composite subjected to longitudinal tensile load. Brittle failure. In this mode, stress 

concentrations created at the broken fibre ends lead to specimen separation at a, given cross section. 

(b) Unidirectional composite subjected to longitudinal tensile load. Brittle failure with fibre pullout. 

Variations in bond strength and local load transfer mechanisms from matrix to fibre can lead to the 

pull-out of the fibres from the matrix at fracture. 

(c) Unidirectional composite subjected to longitudinal tensile load. Brittle failure with debonding and/or 

matrix failure. Finally, in other cases, cracks at different cross sections of the laminate may join 

together at fracture through fibre-matrix debonding or by shear failure of the matrix. This interfibre 

matrix shear failure and fibre-matrix debonding can occur either independently or in combination; i.e., 

portions of the failure path may exhibit debonding, while matrix shear failure is evident in other 

regions. 

4 Mixed modes. A mixed failure mechanism has been detected in the regions close to the application of the load. 
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There exists a compressive delamination failure due to the bending mode (compression), and crushing due to a 

compressive peeling or interlaminar normal stress. This mechanism was observed in three-point bending fatigue 

testing, after 50 000 cycles. In Fig. 6.26, a representation of this mixed mode is shown.This mixed mode does not 

appear in the four point bending testing and it can also be avoided by placing a hard rubber pad (60-80 durometer) 

between the load point and the specimen (Fig. 6.27). 

Figure 6.26 A mixed compression-interlaminar normal failure mode. 

Figure 6.27 A 3P test bending with a hard rubber pad between the load point and the specimen. 

Mter analysing the failure mechanisms described above, the following conclusions can be drawn: 

• The critical failure modes are related to two strain components: c 1 or longitudinal normal strain and c5 or 

interlaminar shear strain. 

• The bending (compression or tension) modes are likely to occur when the plate is thin and the variable 

thickness effect is negligible. 
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• The delamination mechanisms are usual in cases where the variable thickness effect is critical (sharp change 

of thickness). The failure appears in the tapered surface. This mechanism also occurs when the plate is thick, 

even if the variable thickness is negligible. In this case, the failure appears near the middle plane of the 

laminate. 

• The mode related to interlaminar normal strains (mixed modes) are due to stress concentrations in the areas 

near the application of the load. This mechanism can be easily avoided by means of the solutions mentioned 

above. 

6.3 Conclusions 

A study on variable thickness composite structures has been carried out This chapter focused on the distribution of 

stresses through the laminate thickness and failure modes. The following conclusions have been obtained: 

• The variable thickness effect has a remarkable influence on the behaviour of a tapered laminated composite 

plate. The distributions of through-thickness stresses are very sensitive to the thickness ratio (tltl) and the 

angle of variation of thickness. In particular, the interlaminar shear stress reaches very high values in the 

areas of change of thickness. The peak value can be controlled by modifying some parameters: thickness 

ratio, angle of variation of thickness, type of loading, etc. The distributions of interlaminar stresses vary 

with the sign of the bending moment 

• The failure mechanisms reported in variable-thickness composite plates can be grouped in three general 

modes: 

• 

• 

Interlaminar shear mode: This is due to interlaminar shear stresses, and appears in the tapered 

surfaces when the change of thickness is sharp (high angles of variation of thickness) . It can also 

appear in the mid-plane, in thick plates . 

Bending modes: These are due to bending stresses. These modes are usual in thin plates, very low 

angles of variation of thickness and low thickness ratios. They are the typical failure modes in thin, 

untapered plates. 

Mixed modes: A compression-interlaminar normal mode has been found in the area of application of 

the load in the fatigue testing. This mode does not appear in the four-point bending test. 

References 9-13 analyse aspects related to failure of these types of structures. 

The following chapters will be devoted to the optimisation of variable thickness beams, plates and sandwich 

constructions. 
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7 VARIABLE THICKNESS BEAMS 

7.1 Introduction 

In this chapter, a study of optimisation of variable thickness laminated composite beams subjected to transverse loads is 

carried out. Generally speaking, a beam subjected to a transverse load presents a level of stress which varies 

substantially from one cross section to another. Therefore, the variation of thickness represents a possibility for 

reducing the weight of the structure by adapting the thickness of the section to the stress level. There are many 

applications where this philosophy has been successfully applied. For instance, the weight of the non-suspended part 

(suspension system) is critical for the stability of a vehicle. The stability of the vehicle increases by lightening the 

suspension system. 

There are several possibilities to tailor a beam in order to optimise the design (Fig. 7.1). The best design consists of a 

constant width and variable thickness beam composed of a non-continuous fibre internal part and continous fibre 

laminates at the external part. If the external part is non-fibre continuous, delamination takes place at a very low stress 

level. If the cross-section is constant, (width and thickness variable) delamination also takes place. 

p 

(1 
,....-----'7---------... 

~~~=# 
OPTIMUM 

~14----------L----------~.1 

PLl4 
DELAMINATION 

DELAMINATION 

14 L _I 

DIAGRAM OF BENDING MOMENT 
HEAVY 

Figure 7.1 Scheme of variable thickness composite beams. 

This chapter is divided into two parts. The first part deals with the behaviour of variable thickness composite beams. 

An experimental analysis of three types of beams is described and the results of a correlation study between the model 

defined in Chapter 6 and this experimental analysis will be shown. The second part of this chapter is devoted to the 

optimisation of variable thickness composite beams. Solutions for different types of beams, loads and boundary 

conditions are given. 
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7.2. Behaviour of variable thickness composite beams 

An experimental study has been carried out in order to assess the accuracy of the theoretical model, as well as to fmd out 

the influence of the angle of variation of thickness on the strength of a composite plate. 

• AS4/3501-6 graphite/epoxy was used for this work. 

• The type of testing performed was three point static bending. 

• The load rate was 0.06 inlmin (0.001524 mlmin). 

• Three types of specimens were tested. Maximum, minimum thickness and span were the same for the three 

specimens. The only variable parameter was the angle of variation of thickness: 

• Specimen OLCP _7001. Angle of variation of thickness: 6°. 

• Specimen OLCP _7002. Angle of variation of thickness: 45°. 

• Specimen OLCP _7003. Angle of variation ofthickness: 90°. 

• The span was 8 in (0.2032 metres). 

• The maximum thickness was at the centre of the beam: 0.66 in (0.0167 metres). 

• The minimum thickness was at the end of the beam: 0.28 in (0.007 metres). 

• Longitudinal and interlaminar strains were measured by using strain gauges. The situation of the gauges is 

reported in Table 7.1. The choice of the points was carried out as a function of the theoretical analysis. Strain 

gauges were placed at those points whose strain value was critical, according to the results from the finite 

element method applied to variable thickness laminated composite plates. 
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Table 7.1 Co-ordinates x and y of strain gauges. Values are expressed in inches (metres) 

POINT X Y 

1 0.0 (0.0000) 0.100 (0.00254) 

2 0.0 (0.0000) 0.200 (0.00508) 

3 1.0 (0.0254) 0.350 (0.00889) 

4 2.0 (0.0508) 0.415 (0.01054) 

5 3.0 (0.0762) 0.600 (0.01524) 

6 4.0 (0.1016) 0.510 (0.01295) 

7 4.0 (0.1016) 0.350 (0.00889) 

8 4.0 (0.1016) 0.000 (0.00000) 

According to the results of the study on failure mechanisms, critical strain components are the longitudinal strain £1 

and the interlaminar shear strain £5. Therefore, both components are analysed for the three types of specimens described 

above. 

The scheme of the specimen OLCP _7001 is shown in Fig. 7.2. This specimen was made by tapering the inner part of 

the plate (Fig. 7.4). The angle of change of thickness is 6°. The failure load was 4950 lb (22 OOON). The upper surface 

does not pre~ent any failure, in spite of being tapered. Instead of that, a crack appears near the middle plane at the end of 

the plate where interlaminar shear strains are maximum. The reason for this is that the angle of variation of thickness is 

very low. A scheme of the situation of the gauges is depicted in Fig. 7.3. The numerical results of the specimen 

OLCP _7001 are presented in Tables 7.2-7.4. Tables 7.2 and 7.3 show longitudinal and interlaminar shear strains in the 

critical points for the failure load, respectively. The maximum value is registered in point number 1 (£5=0.0131). 
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Figure 7.2 Scheme and measurements of specimen OLCP _7001 in inches (metres). 
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Figure 7.3 Representation of specimen OLCP _7001 and position of gauges. 

Table 7.2 Longitudinal strains in specimen OLCP _7001. Load: 4950 Ib (22 000 N). 

POINT £1 if lE-3 £1 if lE-3 

TESTING THEORY 

8 8.9 8.6 
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Table 7.3 Interlaminar shear strains in specimen OLCP _7001. Load: 4950 lb (22 000 N). 

(5 .. lE-3 
POINT 

(5 .. lE-3 

TESTING THEORY 

1 13.1 (FAILURE) 12_5 

2 9.0 8_1 

3 6_3 7_3 

4 5_7 6_7 

5 4_2 5_8 

6 3_7 3_1 

7 12_7 12_1 

The maximum vertical displacement is reported in Table 7.4. In both fields, strains and displacements, an excellent 

agreement is found between the data and the prediction. 

Table 7.4 Maximum vertical displacement in specimen OLCP _7001. Load: 4950 lb (22 000 N). 

POINT 
d Z TESTING d THEORY Z 

• 
8 - 0_173 (0_00439) - 0_161 (0_00409) 

The scheme of specimen OLCP _7002 is shown in Fig. 7.5. The angle of change of thickness is 45°. Six steps were 

designed along the specimen. The failure load was 2960lb (13 150 N). Owing to the fact that the angle of variation of 

thickness is high, failure appears at the upper surface in the thinnest area of change of thickness. Failure mechanism is 

a kind of interlaminar shear mode. As theoretical results predict, there is a peak of interlaminar shear strains in the 

places where the thickness changes. The position of the gauges is shown in Fig. 7.6. The numerical results of the 

specimen OLCP _7002 are presented in Tables 7.5-7.7 . Tables 7.5 and 7.6 show longitudinal and interlaminar shear 

strains in the critical points for the failure load, respectively. The maximum value is registered in point number 3 

(£5=0.0131). 
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Figure 7.4 Scheme and measurements of specimen OLCP _7002 in inches (metres). 
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Figure 7.5 Representation of specimen OLCP _7002 and position of gauges. 

Table 7.5 Longitudinal strains in specimen OLCP _7002. Load: 2960 lb (13150 N). 

POINT 
(1 -if 1E-3 (1 -if 1E-3 

TESTING THEORY 

8 4_4 3_96 
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Table 7.6 Interlaminar shear strains in specimen OLCP _7002. Load: 2960 lb (13150 N). 

POINT 
(5 ,. 1E-3 (5 .. 1E-3 

TESTING THEORY 

1 6.0 5.7 

3 13.1 (FAI LURE) 12.5 

4 11.0 11.6 

5 10.0 9.8 

7 2.8 2.3 

The maximum vertical displacement is reported in Table 7.7. In both fields, strains and displacements, an excellent 

agreement is found between the data and the prediction. 

Table 7.7 Maximum vertical displacement in specimen OLCP _7002. Load: 2960 Ib (13150 N). 

POINT 
d Z TESTING d THEORY z 

8 - 0.157 (0.004) - 0.141 (0.0036) 

The scheme of specimen OLCP _7003 is shown in Fig. 7.6. The angle of change of thickness is 90°. Six steps were 

designed along the specimen. The failure load was 2485 lb (11 046 N). Owing to the fact that the angle of variation of 

thickness is very high, failure appears at the upper surface in the thinnest area of change of thickness at a low failure 

load. As occurred with specimen OLCP _7002, failure mechanism is a kind of interlaminar shear mode. As theoretical 

results predict, there is a remarkable peak of interlaminar shear strains in the places where the thickness changes. The 

position of the situation of the gauges is shown in Fig. 7.8. The numerical results of the specimen OLCP _7003 are 

presented in Tables 7.8·7.10. Tables 7.8 and 7.9 show longitudinal and interlaminar shear strains in the critical points 

for the failure load, respectively. The maximum value is registered in point number 3 (E5=O.0139). 
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Figure 7.6 Scheme and measurements of specimen OLCP _7003 in inches (metres). 
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Figure 7.7 Representation of specimen OLCP _7003 and position of gauges. 

Table 7.8 Longitudinal strains in specimen OLCP _7003. Load: 2485 lb (11046 N). 

POINT 
(1 ~ 1E-3 (1 ~ 1E-3 

TESTING THEORY 

8 5.13 4.6 
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Table 7.9 Interlaminar shear strains in specimen OLCP _7003. Load: 2485 lb (11 046 N). 

(5 '* 1E-3 (5 '* 1E-3 
POINT 

TESTING THEORY 

1 7.25 7.5 

3 13.9(FAILURE) 12.5 

4 12.18 11.6 

5 11.02 9.8 

7 3.77 3.4 

The maximum vertical displacement is reported in Table 7.7. In both fields, strains and displacements, an excellent 

agreement is found between the data and the prediction. 

Table 7.10 Maximum vertical displacement in specimen OLCP _7003. Load: 2485 lb (11046 N). 

POINT 
d Z TESTING d THEORY z 

8 - 0.171 (0.00432) - 0.157 (0.004) 

Tables 7.11·7.13 show the values of longitudinal, interlaminar shear strains and maxima vertical displacements, 

respectively, for a load of 1000 Ib (4445 N) for the three specimens. 

Table 7.11 Longitudinal strains in specimens OLCP_7001, OLCP_7002 and OLCP_7003. 

Load: 1000 Ib (4445 N). 

(1 if 1E-3 (1 if 1E-3 (1 '* 1E-3 POINT 
OLCP_7001 OLCP_7002 OLCP_7003 

8 1.78 1.77 1.76 

As expected, the longitudinal strains at the inner surface in the middle of the span are very similar for the three 

specimens tested. The reason for this is that the three specimens present the same thickness at the middle of the span 

and, therefore, the longitudinal strains and stresses are very close in all three cases. 
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Table 7.12. Interlaminar shear strains in specimens OLCP _7001, OLCP _7002 and OLCP _7003. 

Load: 1000 Ib (4445 N). 

POINT 
(5 * 1E-3 (5 * 1E-3 (5 * 1E-3 
OLCP_7001 OLCP_7002 OLCP_7003 

1 2.62 2.5 2.4 

3 1.26 4.8 5.24 

4 1.14 4.2 4.4 

5 0.84 3.8 4.0 

7 2.54 1.3 1.12 

Table 7.12 shows very good results. On the one hand, the maximum values are registered in specimens OLCP _7002 

and OLCP _7003, whose angles of variation of thickness present high values (45° and 90°, respectively). On the other 

hand, in these two cases, the values given by gauges numbers 3,4 and 5 are critical, which means that the upper surface 

is the critical one from the failure point of view. However, specimen OLCP _7001 does not present its maximum value 

in any of these points and, therefore, the tapered surface is not critical at all. 

Table 7.13 Maximum vertical displacement in specimens OLCP _7001, OLCP _7002 and 

OLCP_7003. Load: 1000 Ib (4445 N). 

POINT 
d Z d Z d Z 

OLCP_7001 OLCP_7002 OLCP_7003 

8 - 0.0346 (0.00087) - 0.059 (0.00149) -0.0628 (0.00159) 

The results reported in Table 7.13 highlight the higher stiffness of specimen OLCP _7001 with respect to the other two. 

The lower the angle of variation of thickness, the better the fibre works. Hence, according to these results, there is no 

linearity, and the angle of variation of thickness must be very low in order to get a high quality design from the point 

of view of stiffness and strength. 

Figures 7.8 and 7.9 can be used to compare the distributions of interlaminar strains through the laminate thickness. 

Both graphs refer to the three-point bending test and the specimen OLCP _7001 described above. Figure 7.9 shows the 

theoretical and experimental distributions of interlaminar shear strain £5 in section AA. As we can see in Fig. 7.10, 

section AA corresponds to the end of the beam. This section is critical because the laminate thickness is minimum. 

Figure 7.9 represents the same distributions of £5 in section BB, at the middle of the span (Fig. 7.10). In both cases, 

theoretical and experimental distributions are very close. 
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Figure 7.10 Representation of sections AA and BB. 
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7.3 Optimisation of variable thickness composite beams 

The problem analysed here can be formulated by means of the following points: 

• The objective is to get the minimum weight structure by using strength as a design criterion. 

• The laminate used is [O]n because it is the optimum for one-dimensional laminated composite plates 

subjected to transverse loads. 

• Two side tapered laminates have been considered. 

• Two kinds of plates have been analysed: 

• thin plates (l/t» to). 

• thick plates (l/t« 10). 

• Boundary conditions are restricted to: 

• simply supported plates. 

• clamped plates. 

• cantilever plates. 

• Two types of loading have been applied: 

• uniform load 

• point load, at the centre of the beam for simply supported and clamped plates, and at the free end 

of the plate for cantilever plates. 

• The mesh was composed by 400 nodes. 

• The material used is TIOO1N5208. 

In Fig. 7.11 the definition of axis co-ordinates and the shaded key for one-dimensional plates are shown. 
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Figure 7.11 Defmition of axis co-ordinates and shaded key for one-dimensional plates. 

7.3.1 Thin plates subjected to a uniform load 

Optimum thin plates subjected to a uniform load are shown in Fig. 7.13. Whatever the boundary conditions, the 

optimum laminate thickness is: 

t = 2 k a (PIX)1I2 [7.1] 

where a is the plate span, P is the load applied, X is the uniaxial tensile strength of a ply along the x-axis, and k is a 

coefficient that varies in function of x. The value of the non-dimensional coefficient k in function of x is given for the 

following boundary conditions: simply supported, clamped and cantilever one-dimensional plate. Also, the weight 

savings (WS) are reported for these three cases. The 45.7 % WS for the cantilever plate is remarkable. 
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Figure 7.12 Representation of optimal thin one-dimensional plates subjected to a uniform distributed transverse load. 

7.3.2. Thick plates subjected to a uniform load 

Fig. 7.13 shows the optimum thick plates subjected to a uniform load. In this case, the optimum laminate thickness is: 

t = 2 k a PIS [7.2] 

where S is the shear strength in the xy- or 12-plane of a ply. The value of the non-dimensional coefficient k is a 

function of x and the optimum configurations are given for the boundary conditions mentioned above. The weight 

saving is the same for the three boundary conditions: 45.7 %. 
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Figure7.13 Representation of optimal thick one-dimensional plates subjected to a uniform distributed transverse load. 
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7.3.3 Thin plates subjected to a point load 

Optimum thin plates subjected to a point load are shown in Fig. 7.14. Whatever the boundary conditions, the optimum 

laminate thickness is : 

t = 2 k (P aIX)1I2 [7.3] 

The value of the non-dimensional coefficient k in function of x is given for the following boundary conditions: simply 

supported, clamped and cantilever one-dimensional plate. Also, the weight savings (WS) are reported for these three 

cases. The 44.0 % WS for clamped plates is remarkable. 
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Figure 7.14 Representation of optimal thin one-dimensional plates subjected to a point transverse load. 

7.3.4 Thick plates subjected to a point load 

Figure 7.15 shows optimal thick plates subjected to a point load. In this case, the optimum laminate thickness is: 

t = 2 k PIS [7.4] 

The value of the non-dimensional coefficient k as a function of x and the optimum configurations are given for the 

boundary conditions mentioned above. There is no weight saving in this case for any boundary conditions. 
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Figure 7.15 Representation of optimal thick one-dimensional plates subjected to a point transverse load. 

7.4 Conclusions 

The results of the correlation study between the theoretical model and the experimental analysis described in the fIrst 

part of this chapter are excellent in both fIelds: deflection and failure mode. Three types of beams were analysed, the 

difference between them being the angle of variation of thickness. Strain gauge values also reflect an excellent 

correlation between theoretical and experimental strains. 

The main conclusion of this study is that the external part of the beam must be fIbre-continuous to avoid delamination 

at a low stress level. The angle of variation of thickness must be as low as possible. The 90° angle specimen shows 

very weak resistance in terms of delamination. 

Another conclusion of the study described in this chapter is that the critical stress components in terms of failure for 

high angles of variation of thickness are the interlaminar shear ones. A comparison analysis between theoretical and 

experimental interlaminar shear stress distributions has been carried out, the conclusion being that the correlation is 

excellent in the two cross sections considered: at the middle of the span and at the end of the beam. 

Variable thickness composite beams with different types of transverse loading and boundary conditions have been 

analysed and optimised throughout this chapter. Analytical solutions have been obtained for all the cases and weight 

savings and optimum sublaminates are reported. For uniform load and thin beams, the weight savings vary in the range 

between 45.7 % and 24.1 % , depending on the boundary conditions. Thick beams present a 45.7% of weight saving for 

the three boundary conditions considered. 

For uniform load and thin beams, the weight saving varies in the range 44 % and 34.5% , depending on the boundary 

conditions. Thick beams do not present weight saving with respect to the constant thickness beam for the three 

boundary conditions considered. 
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Finally, the weigbt savings reported are very bigb but they also depend substantially on these two aspects (boundary 

conditions, type of beam and load). 
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8 VARIABLE THICKNESS PLATES 

8.1 Introduction 

This chapter provides numerical results for variable thickness laminated composite plates. First, the method of analysis 

used is reported. The conclusions drawn in the last section are the key to the formulation of the present problem. 

Because the results obtained from the 2-D plane strain model are very close to the data given by the experimental study, 

this model can be directly applied for analysing one-dimensional laminated composite plates. And that model can also 

be the base for a more general one, applicable to the analysis of two-dimensional laminated composite plates. 

Once the method of analysis is known, the different input data required for the calculation must be obtained. In a 

structural optimisation problem, there are two types of input data: geometric ones and those related to the material 

itself. There is no problem in obtaining the geometric data of the plate, but the elastic constants and strengths of the 

material require special treatment. In-plane constants are given in the literature though some doubt exists with regard to 

compression strength. However, through-thickness properties are difficult to obtain, and even some constants like 

interlaminar normal and interlaminar shear moduli are a function of the stacking sequence. Therefore, the elastic 

constants and strengths will be obtained for the material used in this work. 

Finally, variable thickness laminated composite plates are studied, and a number of figures will show the optimum 

configurations for different types of plates, loads and boundary conditions. References 1-21 give some information 

about the analysis of variable thickness plates. 

8.2 Model assumptions and method of analysis 

In the last chapter, a 2-D plane strain model was verified by means of an experimental study. Hence, there are two 

options to optimise bidimensional plates: 

• Generalising to a 3-D model, by using a tridimensional finite element theory. 

Using a 2-D model, by applying a shear defonnation plate theory. 

The first option is expensive, especially from the point of view of the optimisation and, therefore, the subsequent 

application of an iterative procedure. The second option is efficient, because the analysis is carried out very fast and 

the required number of nodes of the mesh is not large. However, the following question remains to be answered: is the 

2-D shear deformation plate theory accurate enough to study bidimensional plates with variable thickness? This 

question has two possible answers: 

• If the angle of variation of thickness is 900 , there are discontinuities in the exterior surface( s) of the laminated 

composite plates, there are free-edge effects, and a 3-D fmite element theory should be used. 

• If the angle of variation of thickness is low, and the plate exterior surfaces are continuous, as shown in Fig. 

8.1, a bidimensional plate with variable thickness can be studied very accurately by means of a 2-D shear 

deformation theory. This fact is based on a number of verifications made between 2-D plane strain models 

and 1-D models using a shear deformation plate theory. In all cases, deflections were very close and, 
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according to the conclusions of failure mechanisms, the critical stress components crl and crs presented very 

small differences. One verification is presented in Fig. 8.1-8.3. The geometry is shown in Fig. 8.1. In Fig. 

8.2 and 8.3, distributions of crl and cr5 from both models are depicted, respectively. 

r 1 p 
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0.1 t 1 .f=----' x __ 
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Figure 8.1 Structure used to compare both 2-D plane strain model and shear deformation plate model. 
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Figure 8.2 Distribution of crl through the thickness from a 2-D plane strain model and a shear deformation plate model. 
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Figure 8.3 Distribution of 0"5 through the thickness from a 2-D plane strain model and a shear deformation plate model. 

Both theoretical and experimental studies about variable thickness ( Section 3.2) showed that the angle of variation of 

thickness has a strong influence on the failure load, and that the lower the angle, the higher the failure load. Hence, it is 

logical to design tapered plates with low angles of variation of thickness and continuous exterior surfaces. In this case, 

a 2-D shear deformation plate theory is applicable. 

The finite element used here is based on the higher order shear theory [22] and on the penalty function theory. This 

scheme makes it possible to analyse thin and thick plates, due to its general formulation. The results given by the 

finite element method are optimised by means of an iterative procedure. Laminate thickness and fibre orientation are the 

design variables. Laminate thickness is modified in each step by means of an iterative procedure based on optimality 

criteria to design a minimum weight structure. In order to assess the stress level, a quadratic failure criterion is applied 

in each element. If the stresses in all the elements satisfy this criterion, the process is over. If they do not, another 

iteration starts. Usually, around ten iterations are needed to achieve convergence. 

The optimisation of fibre orientations is complex due to the following points: 

• Due to practical considerations, only four angles have been used: 0°,45°, -45° and 90° . 

• Also due to practical considerations, the optimum laminate should be defined as a function of repetitive 

sublaminates. 

• The stacking sequence has a strong influence on the strain and stress level, due to bending and interlaminar 

effects. 

No acceptable result was obtained by using the optimisation procedures available. Hence, since the 2-D shear 

deformation model is so fast and is able to consider discrete variables, all the possible combinations were tried as 
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possible optimum sublaminates. 

Finally, the following assumptions have been made in the development of the analysis: 

• The analysis is static. 

• The theory applied is valid for small deformations. 

• The material used is supposed to be elastic. 

8.3 Determination of elastic constants and strengths 

The analysis and optimisation of a composite structure require the determination of elastic constants and strengths. 

T3001N5208 is a unidirectional graphitelepoxy laminate. Thus, each layer can be considered as a transversely isotropic 

material. The stiffness matrix for such material is represented in Table 8.1. There are 5 independent constants and 12 

non-zero components. 

Table 8.1 Stiffness matrix for a transversely isotropic material 

£1 £2 £3 q £5 £6 

Ci1 Cll C12 C12 0 0 0 

Ci2 C21 C22 C23 0 0 0 

Ci3 C21 C32 C22 0 0 0 

Ci4 0 0 0 (C22 - C23)/2 0 0 

Ci5 0 0 0 0 C66 0 

Ci6 0 0 0 0 0 C66 

The five independent constants present the following values : 

Cll = 181.8 GPa 

C12 = 2.90 GPa 

C22 = 10.35 GPa 

C23 = 7.05 GPa 

C66 = 7.17 GPa 

For a laminate, the components that relate Ci3/E3 and CiS 1105 are a function of the stacking sequence. According to 

Roy and Tsai,2 Fig. 8.4 gives some values of the interlaminar normal modulus as a function of m and n in a laminate 

T3001N5208 [90m IOn] s· 
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Figure 8.4 Variation of interlaminar normal modulus as a function of m and n in a laminate T300IN5208 [90m IOn] s. 

Figure 8.5 shows the variation of the interlaminar shear modulus as a function of <I> in a laminate TIOOIN5208 [+<1>/­

<I>]s· 
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Figure 8.5 Variation of interlaminar shear modulus as a function of <I> in a laminate T300IN5208 [+<I> 1·<1> ] s. 

The strengths for this material are given by the following values: 

X = 1500 MPa 

X' = 1500 MPa 

Y = 40 MPa 

Y' = 246 MPa 

Z = 40 MPa 

Z' = 246 MPa 

S = 68 MPa 
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S' = 68 MPa 

8.4 Optimisation of variable thickness laminated composite plates 

The problem analysed here can be formulated by the following: 

• The objective is to get the minimum weight structure by using strength as a design criterion. 

• The laminate used is [O]n because it is the optimum for one-dimensional laminated composite plates 

subjected to transverse loads. 

• Two side tapered laminates have been considered. 

• Two kinds of plates have been analysed: 

• thin plates (lit> 10); 

• thick plates (lit < 10). 

• Boundary conditions are restricted to : 

• simply supported plates along the four edges of the plate. 

• clamped plates along the four edges of the plate. 

• Two types of loading have been applied: 

• uniform load; 

• point load, at the centre of the plate for simply supported and clamped plates, and at the free end 

of the plate for cantilever plates. 

• The mesh was composed by 400 nodes. 

• The material used is TIOOIN5208. 

8.4.1 Thin, simply supponed plates subjected to a uniform load 

Weight saving and normalised deflection for thin, simply supported, uniform loaded plates are shown in Fig. 8.7. As 

we can see, the weight saving is a function of the aspect ratio, the maximum value being 27% for a square plate. The 

optimum sublaminate also varies as a function of the aspect ratio: 

• [45/-45] for b/a between 1 and 1.75. 

• [0/45/-45] for b/a between 1.75 and 2.25. 

• [05/45/-45] for b/a between 2.25 and 3.5. 
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Figure 8.6 Weight saving and normalised deflection for a thin, simply supported plate subjected to a uniform distributed 
transverse load. 

The quasi-isotropic sublaminate [0/45/-45/90] presents low weight saving with respect to other sublaminates, the 

maximum value being 18% for a square plate. 

For thin plates, the optimum laminate thickness can be calculated by means of the following expression: 

t = 2 k a (PIX)1I2 [8.1] 

where a is the length of the plate, P is the load applied, X is the uniaxial tensile strength of a ply along the x-axis, and 

k is a non-dimensional coefficient that is a function of x and y. We can see the values of k along the x-axis and the 

diagonal in Fig. 8.7-8.10. 
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Figure 8.7 Representation of an optimal thin, simply supported plate subjected to a uniform distributed transverse load 
for aspect ratios between 1 and 1.75. 
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Figure 8.8 Representation of an optimal thin, simply supported plate subjected to a uniform distributed transverse load 
for aspect ratios between 1.75 and 2.25. 
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Figure 8.9 Representation of an optimal thin, simply supported plate subjected to a Wliform distributed transverse load 
for aspect ratios between 2.25 and 3.5. 
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Figure 8.10 Representation of an optimal thin, simply supported plate subjected to a uniform distributed transverse 
load for aspect ratios higher than 3.5. 
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8.4.2 Thin, clamped plates subjected to a uniform load 

Results for thin, clamped, uniform loaded plates are represented in Fig. 8.12. The weight saving with respect to the 

constant thickness plate is a function of the aspect ratio, the maximum value being 48% for b/a=2. The optimum 

sublaminate also varies as a function of the aspect ratio: 

• [0/90] for b/a between 1 and 1.5. 

• [05/902] for b/a between 1.5 and 4.4 

• [0] for b/a higher than 4.4 
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Figure 8.11 Weight saving and normalised deflection for a thin, clamped plate subjected to a uniform distributed 
transverse load. 

The values of the non-dimensional parameter k along the x-axis and the diagonal are shown in Fig. 8.12-8.14. 
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Figure 8.12 Representation of an optimal thin, clamped plate subjected to a uniform distributed transverse load for 
aspect ratios between 1 and 1.5. 
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Figure 8.13 Representation of an optimal thin, clamped plate subjected to a uniform distributed transverse load for 
aspect ratios between 1.5 and 4.4. 
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Figure 8.14 Representation of an optimal thin, clamped plate subjected to a uniform distributed transverse load for 
aspect ratios higher than 4.4. 

8.4.3 Thick, simply supponed plates subjected to a uniform load 

Thick, simply supported, uniform loaded plates are analysed in Fig. 8.15. The maximum value of the weight saving 

with respect to the constant thickness plate is 46% for b/a=lO. The optimum sublaminate also varies as a function of 

the aspect ratio: 

• [45/-45] for b/a between 1 and 3.5. 

• [0] for b/a higher than 3.5 

166 

�� �� �� �� ��



WEIGHT SAYI NG (%) 

[:J Qiso 
• [45/-45]ns 
.& [O]n 

NORMALIZED DEFLECTION 
Dell ect; 0 n ta pe red plate 

Dellection untapered plate 

50 ~---------------------------, 5 ~-------------------------, 

40 4 

30 3 

20 2 

10 

o +-~~~-r.-~~~~-.~~~~~ o 
o 2 4 6 b 8 

a 
10 12 o 2 4 6 b 8 

a 
10 12 

Figure 8.15 Weight saving and normalised deflection for a thick, simply supported plate subjected to a uniform 
distributed transverse load. 

The quasi-isotropic sublaminate [0/45/-45/90] presents low weight saving with respect to other sublaminates, the 

maximum value being 20% for b/a=10. 

For thick plates, the optimum laminate thickness can be calculated by means of the following expression: 

t = 2 k a PIS 

We can see the values of the non-dimensional parameter k along the x-axis and the diagonal in Fig. 8.16 to 8.17 . 
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Figure 8.16 Representation of an optimal thick, simply supported plate subjected to a uniform distributed transverse 
load for aspect ratios between 1 and 3.5. 
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Figure 8.17 Representation of an optimal thick, simply supported plate subjected to a uniform distributed transverse 
load for aspect ratios higher than 3.5. 
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8.4.4 Thick, clamped plates subjected to a uniform load 

Weight saving and normalised deflection for thick, clamped, uniform loaded plates are shown in Fig. 8.18. As we can 

see, the weight saving is a function of the aspect ratio, the maximum value being 46% for b/a=lO. The optimum 

sublaminate also varies as a function of the aspect ratio: 

• [45/-45] for b/a between 1 and 3.5. 

• [0] for b/a higher than 3.5 
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Figure 8.18 Weight saving and normalised deflection for a thick, clamped plate subjected to a uniform distributed 
transverse load. 

We can see the values of the non-dimensional parameter k along the x-axis and the diagonal in Fig. 8.20 to 8.21. 
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Figure 8.19 Representation of an optimal thick, clamped plate subjected to a uniform distributed transverse load for 
aspect ratios between 1 and 3.5. 
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Figure 8.20 Representation of an optimal thick, clamped plate subjected to a uniform distributed transverse load for 
aspect ratios higher than 3.5. 
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8.4.5 Thin, simply supported plates subjected to a point load 

Thin, simply supported plates subjected to a point load are analysed in Fig. 8.21. The weight saving is a function of 

the aspect ratio, the maximum value being 76% for b/a=2. The optimum sublaminate is [0] for all plate aspect ratios 

analysed. 
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Figure 8.22. Weight saving for a thin, simply supported plate subjected to a point transverse load. 

The quasi-isotropic sublaminate [0/45/-45/90] presents low weight saving with respect to the optimum sublaminate, 

the maximum value being 63% for b/a=2. 

Since no general formula for expressing the optimum laminate thickness has been found, the following particular case 

• has been calculated: 

• a=7.87 in (0.2 m) 

• P=1.125 E4 lb (5 E4 N) 

In Fig. 8.22-8.24, we can see the values of the thickness in metres along the x-axis and the diagonal. 
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Figure 8.22 Representation of an optimal thin, simply supported plate subjected to a point transverse load for aspect 
ratios between 1 and 2. 
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Figure 8.23 Representation of an optimal thin, simply supported plate subjected to a point transverse load for aspect 
ratios between 2 and 5. 
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Figure 8.24 Representation of an optimal thin, simply supported plate subjected to a point transverse load for aspect 
ratios higher than 5. 

8.4.6 Thin, clamped plates subjected to a point load 

Weight saving for thin, clamped plates subjected to a point load is shown in Fig. 8.25. As we can see, the weight 

saving is a function of the aspect ratio, the maximum value being 83% for b/a=10. The optimum sublaminate also 

varies in function of the aspect ratio: 

[45/-45] for b/a between 1 and 1.5. 

• [0] for b/a higher than 1.5. 
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Figure 8.25 Weight saving for a thin, clamped plate subjected to a point transverse load. 

The quasi-isotropic sublaminate [0/45/-45/90] presents low weight saving with respect to the optimum sublaminate, 

the maximum value being 80% for b/a=lO. 

Since no general formula for expressing the optimum laminate thickness has been found, the following particular case 

has been calculated: 

• a=7.87 in (0.2 m) 

• P=1.125 E4lb (5 E4 N) 

In Fig. 8.26-8.28, we can see the values of the thickness in metres along the x-axis and the diagonal. 
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Figure 8.26 Representation of an optimal thin, clamped plate subjected to a point transverse load for aspect ratios 
between 1 and 1.5. 
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Figure 8.27 Representation of an optimal thin, clamped plate subjected to a point transverse load for aspect ratios 
between 1.5 and 5. 
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Figure 8.28 Representation of an optimal thin, clamped plate subjected to a point transverse load for aspect ratios 
higher than 5. 

8.4.7 Thick, simply supported plates subjected to a point load 

Thick, simply supported plates subjected to a point load are analysed in Fig. 8.29. The weight saving is a function of 

the aspect ratio, the maximum value being 82% for b/a=2 The optimum sublaminate also varies as a function of the 

aspect ratio: 

• [45/-45] for b/a between 1 and 2.25. 

• [0] for b/a higher than 2.25. 
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Figure 8.29 Weight saving for a thick, simply supported plate subjected to a point transverse load. 

The quasi-isotropic sublaminate [0/45/-45/90] presents low weight saving with respect to the optimum sublaminate, 

the maximum value being 78% for b/a=2. 

Since no general formula for expressing the optimum laminate thickness has been found, the following particular case 

has been calculated: 

• a=7.87 in (0.2 m) 

• P=1.125 E41b (5 E4 N) 

In Fig. 8.30 and 8.31, we can see the values of the thickness in metres along the x-axis and the diagonal. 
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Figure 8.30 Representation of an optimal thick, simply supported plate subjected to a point transverse load for aspect 
ratios between 1 and 2.25. 
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Figure 8.31 Representation of an optimal thick, simply supported plate subjected to a point transverse load for aspect 
ratios higher than 2.25. 
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8.4.8 Thick, clamped plates subjected to a point load 

Weight saving for thick, clamped plates subjected to a point load, is shown in Fig. 8.32. As we can see, the weight 

saving is a function of the aspect ratio, the maximum value being 82% for b/a=lO. The optimum sublaminate also 

varies as a function of the aspect ratio: 

• [45/-45] for b/a between 1 and 2.5. 

• [0] for b/a higher than 2.5. 
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Figure 8.32 Weight saving for a thick, clamped plate subjected to a point transverse load. 

The quasi-isotropic sublaminate [0/45/-45/90] presents low weight saving with respect to the optimum sublaminate, 

the maximum value being 78% for b/a=lO. 

Since no general formula for expressing the optimum laminate thickness has been found, the following particular case 

has been calculated: 

• a=7.87 in (0.2 m) 

• P=1.125 E4 lb (5 E4 N) 

In Fig. 8.33-8.35, we can see the values of the thickness in metres along the x-axis and the diagonal. 
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Figure 8.33 Representation of an optimal thick, clamped plate subjected to a point transverse load for aspect ratios 
between 1 and 2.5. 

0.0075 -r---------, 

t 
2 
o~~~~~~~~ 

-1 o 2 X 
e 

b 
2.5 ~ e < 5 

OPTIMUM LAMINATE 
[0] 

e = 0.2 m 
P = 5.0 E4 N 

0.0075 -r---------, 

t 
2 

O-+'-....................... r'-' ........ ~.I.....j 
-1 o 2 X 

1 

Figure 8.34 Representation of an optimal thick, clamped plate subjected to a point transverse load for aspect ratios 
between 2.5 and 5. 
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Figure 8.35 Representation of an optimal thick, clamped plate subjected to a point transverse load for aspect ratios 
higher than 5. 

8.5 Conclusions 

A study on analysis and optimisation of variable thickness composite plates subjected to transverse loads has been 

presented. 

In the frrst part of this chapter, a comparison study between a 2-D model and the shear deformation theory was carried 

out. Since results from both models were very close, it is proved that a shear deformation theory can be used for the 

analysis of a variable thickness composite plate. 

Once the method of analysis is known, the different input data required for the calculation can be obtained. Elastic 

constants and strengths of the material are described and interlaminar normal and interlaminar shear moduli are obtained 

as a function of the stacking sequence. 

In the second part of this chapter devoted to optimisation, the following conclusions can be drawn: 

• For uniform loads, optimum sublaminates, normalised deflections and weight saving have been reported. 

Analytical solutions for the weight savings are also obtained. The weight savings for thin simply supported 

plates are a function of the aspect ratio, varying between 27% and 16%. Meanwhile for clamped plates, the 

range is 48% and 34%. For thick plates, the weight savings obtained range from 45% to 18% for both 

simply supported and clamped plates. 

• For central loads, optimum sublaminates and weight saving have been reported. The weight savings for thin 

simply supported plates are a function of the aspect ratio, varying in the range between 76% and 55%, 

meanwhile for clamped plates, the range is 80%-60%. For thick plates, the weight savings obtained range 
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from 83% to 76% for both simply supported and between 80% and 60% for clamped plates. 

Optimum sublaminates are very difficult to predict because there is a strong dependence with the aspect ratio, boundary 

conditions and the type of loading. Thus, a calculation methOd must be undertaken. The weight savings reported are 

very high, especially for central loads but they also depend substantially on these four aspects (boundary conditions, 

type of plate, aspect ratio and type of loading). 
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9 VARIABLE THICKNESS SANDWICHES 

9.1 Introduction 

In the aerospace industry, shaped panels with variable thickness are widely used; components are frequently made as 

single integral sandwich panels. The shaping of the core can be done by complex machining (e. g. using a five-axis, 3-

D profiler), by hot-forming in a mould (where the core is suitable) or by controlled crushing of honeycomb. Where 

expanded plastics are used, the density may be varied from point to point to suit the stress levels at different parts of the 

component. Clearly these processes can be expected to become even more complex and comprehensive as manufacturers 

gain experience, as tools become more controllable, and as materials become more versatile. The only problem is one 

of repair. Aircrafts sometimes suffer damage; repairs then become necessary. Repairs are difficult to carry out 

satisfactorily on a fully optimised component where the reasons for the variation in core density are not apparent. 

Perhaps the ultimate achievement in sandwich construction so far is the Starship project of the Beech Aircraft 

Corporation. This twin-engined aircraft has an unusual configuration. The wing span is 16.59 m. The fuselage is 14.06 

m long and it consists of a single sandwich shell made of 19 mm NOMEX* core with graphite/epoxy faces. Hooper1 

mentioned that 8000 coupons, samples and components were tested before the aircraft became, on 14 June 1988, the 

fIrst all-composite aircraft to be certified by the FAA. 

The fabrication processes in ship- and boat -building are on a larger and heavier scale, with expanded plastics more 

common than honeycombs. The standard moulding techniques for fibre-reinforced plastics are too well known to be 

worth repeating here. However, the manufacture of the larger vessels (patrol boats, mine sweepers, etc.) requires a 

considerable amount of organisation to minimise the amount of effort in what is still basically a fairly labour-intensive 

process. Large jigs, hoists, rotating moulds, and automatic machinery for dispensing reinforcing fabrics and resins are 

all used in the bigger workshops to introduce a greater degree of automation. It is to be expected that the greatest 

advances in the future will come from improvements in this direction, rather than from dramatic changes in the 

materials used. 

In boat consttuction there is a tendency to restrict sandwich construction to deck mouldings and possibly to the sides of 

the hull, and to retain single skin construction (with foam-filled stiffeners) for the bottom of the hull. Weston (2) gave 

a good description of this arrangement as applied to a 13 m fast patrol boat design. Sandwich construction has been 

used for complete hulls, especially in Scandinavia, but it has not been without problems; it would be interesting to 

hear more about this. 

Perhaps the most massive form of sandwich construction so far is to be seen in the blades for wind-generators 

manufactured by MBB in the former West Germany. These blades are 24 m and 30 m long and proportionately broad 

and thick. Even the smallest blade is 2.4 m wide. They are made by forming GRP faces around a very large shaped 

block of expanded plastic material. Even larger blades, 40 m long, are planned. 

Variable thickness rectangular sandwich panels with different types of transverse loading and boundary conditions are 

analysed and optimised throughout this chapter. One and two-dimensional sandwich panels are studied. Analytical 

solutions are obtained for one dimensional sandwich panels. Weight savings are reported for simply-supported and 

clamped panels. Further information about analysis and optimisation of sandwiches can be found in refs. 3-27. 
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9.2 One-dimensional laminated composite panels 

The problem analysed here can be defmed by the following points: 

• The objective is to achieve a minimum weight structure by using strength as a design criterion. 

• The laminate used is [O]n because it is the optimum for 1-D laminated composite plates subjected to 

transverse loads. 

• Two sides tapered laminates have been considered. 

• Boundary conditions are restricted to : 

• simply supported plates; 

• clamped plates; 

• cantilever plates. 

• Two types of loading are applied: 

• uniform load; 

• point load, at the centre of the plate for simply supported and clamped plates, and at the free end 

of the plate for cantilever plates. 

• The mesh is composed of 400 nodes. 

• The material used is TIOO1N5208. 

9.2.1 Sandwich panels subjected to a uniform load 

Optimum 1-D uniform loaded sandwich panels are shown in Fig. 9.1. In this case, only the failure mode in the faces 

have been considered. The optimum laminate thickness can be calculated by means of the following expression: 

t = 2 k (a2 Pic X) [9.1] 

where c is the core thickness. Optimum sandwiches and the value of k as a function of x are presented for different 

boundary conditions. The weight saving is 31.2% for simply supported plates, 58.5% for clamped plates, and 56.9% 

for cantilever plates. 
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Figure 9.1 Representation of optimal one-dimensional sandwich panels subjected to a uniform distributed transverse 
load. 

9.2.2 Sandwich panels subjected to a point load 

Optimum I-D sandwiches subjected to a point load, are shown in Fig. 9.2. In this case, only the failure mode in the 

faces have been considered. The optimum laminate thickness can be calculated by means of the following expression: 

t = 2 k (a PIc X) [9.2] 

Optimal sandwiches and the value of k as a function of x are presented for different boundary conditions. The weight 

saving is 45.7% for simply supported plates, 41.4% for clamped plates, and 45.7% for cantilever plates. 
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Figure 9.2 Representation of optimal one-dimensional sandwich panels subjected to a point transverse load. 
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9.3 Two-dimensional laminated composite panels 

The problem analysed here can be defmed by the following points: 

• The objective is to achieve a minimum weight structure by using strength as a design criterion. 

• The laminate used is [O]n because it is the optimum for I-D laminated composite plates subjected to 

transverse loads. 

• Two sides tapered laminates have been considered. 

• Boundary conditions are restricted to : 

• simply supported plates along the four edges of the plate; 

• clamped plates along the four edges of the plate. 

• Two types of loading are applied: 

• uniform load 

• point load, at the centre of the plate for simply supported and clamped plates, and at the free end 

of the plate for cantilever plates. 

• The mesh is composed of 400 nodes. 

• The material used is TIOOIN5208. 

9.3.1 Simply supponed sandwich panels subjected to a uniform load 

Weight saving and normalised deflection for simply supported, uniform loaded sandwiches are shown in Fig. 9.3. As 

we can see~ the weight saving is a function of the aspect ratio, the maximum value being 35% for b/a=10. The 

optimum sublaminate also varies as a function of the aspect ratio: 

• [45/-45] for b/a between 1 and 2. 

• [0] for b/a higher than 2. 
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Figure 9.3 Weight saving and normalised deflection for a simply supported sandwich panel subjected to a uniform 
distributed transverse load. 

The quasi-isotropic sublaminate [0/45/-45190] presents low weight saving with respect to the rest of sublaminates, the 

maximum value being 20% for b/a=lO. For uniformly loaded sandwich structures, the optimum laminate thickness can 

be calculated by means of the following expression: 

t = 2 k (a2 PIc X) [9.3] 

In Fig. 9.4 and 9.5, we can see the values of the non-dimensional parameter k along the x-axis and the diagonal. 
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Figure 9.4 Representation of an optimal simply supported sandwich panel subjected to a uniform distributed transverse 
load for aspect ratios between 1 and 1.5. 
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Figure 9.5 Representation of an optimal simply supported sandwich panel subjected to a uniform distributed transverse 
load for aspect ratios higher than 1.5. 
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9.3.2 Clamped, sandwich panels subjected to a uniform load 

Clamped, uniform loaded sandwiches are analysed in Fig. 9.6. The weight saving is a function of the aspect ratio, the 

maximum value being 60% for b/a=2. The optimum sublaminate also varies as a function of the aspect ratio: 

[0/90] for b/a between 1 and 1.5. 

[°5/9°2] for b/a between 1.5 and 2.5. 

[0] for b/a higher than 2.5. 
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Figure 9.6 Weight saving and normalised deflection for a clamped sandwich panel subjected to a uniform distributed 
transverse load 

The values of the non-dimensional parameter k along the x-axis and the diagonal are represented in Fig. 9.7-9.9. 
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Figure 9.7 Representation of an optimal clamped sandwich panel subjected to a uniform distributed transverse load for 
aspect ratios between 1 and 1.5. 
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Figure 9.8 Representation of an optimal clamped sandwich panel subjected to a uniform distributed transverse load for 
aspect ratios between 1.5 and 2.5. 
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Figure 9.9 Representation of an optimal clamped sandwich panel subjected to a uniform distributed transverse load for 
aspect ratios higher than 2.5. 

9.3.3 Simply supported sandwich panels subjected to a point load 

The weight saving for simply supported sandwiches subjected to a point load, is shown in Fig. 9.10. As we can see, 

the weight saving is a function of the aspect ratio, the maximum value being 94% for b/a=2. The optimum 

sublaminate is [0] for all the plate aspect ratios analysed. 
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Figure 9.10 Weight saving for a simply supported sandwich panel subjected to a point transverse load. 
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The quasi-isotropic sublaminate [0/45/-45/90] presents low weight saving as compared to the optimum sublaminate, 

maximum value being 80% for b/a=2. Since no general formula for expressing the optimum laminate thickness has 

been found, the following particular case has been calculated: 

• a=7.87 in (0.2 m) 

• P=1.125 E4lb (5 E4 N) 

In Figure 9.11 to 9.13, we can see the values of the thickness in metres along the x-axis and the diagonal. 
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Figure 9.11 Representation of an optimal simply supported sandwich panel subjected to a point transverse load for 
aspect ratios between 1 and 2. 
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Figure 9.12 Representation of an optimal simply supported sandwich panel subjected to a point transverse load for 
aspect ratios between 2 and 5. 
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Figure 9.13 Representation of an optimal simply supported sandwich panel subjected to a point transverse load for 
aspect ratios higher than 5. 

9.3.4 Clamped sandwich panels subjected to a point load 

Clamped sandwiches subjected to a point load are studied in Fig. 9.14. The maximum value of the weight saving is 

96% for b/a=10. The optimum sublaminate also varies as a function of the aspect ratio: 
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• [0/90] for b/a between 1 and 1.5. 

• [05/902] for b/a between 1.5 and 5. 

• [0] for b/a higher than 5. 
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Figure 9.14 Weight saving for a clamped sandwich panel subjected to a point transverse load. 

Since no general formula for expressing the optimum laminate thickness has been found, the following particular case 

has been calculated: 

• a=7.87 in (0.2 m) 

• P=1.125 E4lb (5 E4 N) 

The values of the thickness in metres along the x-axis and the diagonal are represented in Fig. 9.15-9.17. 
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Figure 9.15 Representation of an optimal clamped sandwich panel subjected to a point transverse load for aspect ratios 
between 1 and 1.5. 
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Figure 9.16 Representation of an optimal clamped sandwich panel subjected to a point transverse load for aspect ratios 
between 1.5 and 5. 
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Figure 9.17 Representation of an optimal clamped sandwich panel subjected to a point transverse load for aSpect ratios 
higher than 5. 

9.4 Conclusions 

Variable thickness rectangular sandwich panels with different types of transverse loading and boundary conditions have 

been analysed and optimised in this chapter. 

First, I-D sandwich panels have been studied and analytical solutions have been obtained. Weight saving and optimum 

sublaminates are reported for simply-supported and clamped panels. For uniform loads, the weight savings vary between 

58.5% and 31.2%, depending on the boundary conditions. For point loads, the weight savings vary between 45.7% and 

41.4%, also depending on the boundary conditions. 

Second, 2-D sandwich panels have been analysed. Weight savings, normalised deflections and optimum sublaminates 

are reported for simply-supported and clamped panels. The weight saving is a function of the aspect ratio. Analytical 

solutions for uniform loaded panels are obtained. For uniform loaded and simply supported panels, the weight saving 

ranges from 10% to 35%. For uniform loaded and clamped panels, the weight savings range from 60% to 42%. For a 

central load and simply supported panels, the weight savings range from 95% to 70% and fmally for a central load 

and clamped panels, the weight savings range from 97% to 72%. 

Optimum sublaminates are very difficult to predict because there is a strong dependence on the boundary conditions and 

the type of loading. Thus, a calculation method must be carried out The weight savings reported are very high but they 

also depend substantially on these two aspects (boundary conditions and type of loading). 
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