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Preface

Viscoelasticity or rheology is important in polymer science and engineering
because it plays a crucial role in production and characterization of polymeric
materials. Understanding the viscoelasticity of polymers requires knowledge of
various disciplines such as continuum mechanics, thermodynamics, advanced
applied mathematics, polymer physics, and statistical mechanics. Rheology of
polymers is studied by the researchers from various fields such as polymer scien-
tists, mechanical engineers, chemical engineers, physicists, and chemists. Hence, it
is hard to expect that a newcomer to the field of polymer viscoelasticity would be
familiar with such diverse disciplines. From this viewpoint, one may feel the
necessity of a book which addresses basic sciences for polymer viscoelasticity as
possible as many. Examples of such comprehensive books of rheology are
“Dynamics of Polymeric Liquids, volume I and II” written by Bird and coauthors,
and “Engineering Rheology” written by Tanner. The book of Bird and coauthors
does not contain numerical methods for nonlinear viscoelastic flows while the book
of Tanner deals with it. Even though both books are comprehensive rheology
books, in the author’s opinion, the former is focused on development of constitutive
equation while the latter is oriented to the application of constitutive equation to
polymer processing. Because it is practically impossible to write a comprehensive
book of rheology which contains everything of rheology, most famous books of
rheology have their own orientation indicating authors’ expertise, with addressing
sufficient amount of basic knowledges. The author intends to write a comprehensive
rheology book with the orientation to the identification of the rheological properties
of polymers from their experimental data. This has been one of the themes of the
author’s research for recent 10 years.

Any single book cannot satisfy all readers because each reader has different
backgrounds and different maturity in their knowledge. When the author was a
master-degree student, he thought that Larson’s book, “Constitutive Equations of
Polymer Melts and Solutions,” is not good because it is so compact. However,
when he read the book after his Ph.D., he recognized that it is one of well-made
rheology books. The present book assumes the readers to have strong background
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of engineering mathematics of undergraduate level. The readers do not have to be
familiar with tensor analysis because it is given in the book. This book is designed
for experimental rheologists, who are strong in mathematics, as well as for students,
who want to be familiar with theoretical rheology.

The book consists of three parts. The first part provides fundamental principles
which should be necessary to understand the other parts: linear and nonlinear
viscoelasticity. This part briefly addresses necessary mathematics, continuum
mechanics and thermodynamics, statistical mechanics and polymer physics.

As the book is oriented to the rheological identification of polymers from the
experimental data, the second part of linear viscoelasticity contains basic numerical
methods which are useful for viscoelastic spectrum, time–temperature superposi-
tion, and application of linear viscoelastic principles to polymeric systems. Different
from previous rheology books, this part is devoted to numerical algorithms of data
processing which is expected to be helpful for experimentalists.

The last part starts from theory of nonlinear constitutive equation in order to
explain large amplitude oscillatory shear (LAOS). The last chapter on LAOS is one
of the most remarkable features of this book which makes the book different from
previous well-made books of rheology.

The author appreciates for the help of a number of persons: his teachers, col-
leagues, students, and family. Without their help, this book could not have
been written. Professor Jinyoung Park, Dongchoon Hyun, Dongyoon Lee, and
Dr. Jung-Eun Bae are thankful for the review of the manuscript. Several parts of the
book have resulted from the research with my old student, Dr. Jung-Eun Bae. Work
cannot be in isolation. The author owes the present work to his teachers who taught
him. Especially, Prof. Sangyong Kim made him to recognize the pleasure of aca-
demic career. The author cannot forget his students because his research results
included in the book cannot be obtained without their assistance. This book was
supported by Kyungpook National University Research Fund 2011.

Daegu, Korea Kwang Soo Cho
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Chapter 1
Preliminary Mathematics

Abstract This chapter addresses mathematical preliminaries necessary to under-
stand polymer viscoelasticity assuming that the readers are familiar with engi-
neering mathematics of sophomore. Analysis of vector and tensor is the majority of
this chapter, which is necessary to understand constitutive theories of polymer
viscoelasticity as well as the theory of polymer physics. Since the knowledge of
functional analysis is also needed to understand numerical methods to be used for
the processing of viscoelastic data, the vectors and tensors in this chapter include
not only physical quantities but also generalized ones called abstract vectors.
Because of this purpose, the analysis of vector and tensor starts from the notion of
vector space which is an abstraction of physical vector. As for linear viscoelastic
theory, both Fourier and Laplace transforms are frequently used. Since this book is
not a text of mathematics, rigorous proofs will not be seriously considered. For the
proofs, the readers should refer the related references.

1 Vector Space

1.1 Definition of Vector Space

Vector is defined as a quantity having both magnitude and direction as described in
undergraduate text books. Although this definition is simple and intuitive, it is not
convenient for the application to more general cases. Hence, we will adopt the
abstraction of vector which is helpful for the description of the analysis of nonlinear
viscoelasticity and the numerical methods of viscoelastic characterization in a
unified manner.

One of the most intuitive examples of vector is a displacement vector which
points from a position to another position. The sum of two displacement vectors is
the vector obtained by parallelogram rule. This rule works for velocity and accel-
eration obtained by the differentiation of position vector which can be considered as
a displacement vector issuing from the origin. Geometric consideration shows
easily that velocity and acceleration follows the sum rule of displacement vector.
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However, experiment is needed to prove that force follows the sum rule of dis-
placement vectors, though force has both magnitude and direction. The experi-
mental proof is as simple as to show that when three forces exerted on a point are in
equilibrium, the geometric sum of any set of two forces is equal to the opposite of
the other force. Here, the opposite of a force is the vector having the same mag-
nitude but opposite direction. Then, one becomes to know that every physical
quantity considered as a vector follows the sum rule of displacement vector. As for
displacement vector, scalar multiplication is defined as the replacement of the
magnitude of the vector by the multiplication of the magnitude by the scalar but
maintaining direction. These two binary operations can be used as the generaliza-
tion of vector.

A set having the two binary operations called addition and scalar multiplication
is called a vector space when the two binary operations satisfy the followings and
the elements of the set are called vectors.

[1] Addition is commutative:

aþ b ¼ bþ a ð1:1Þ

[2] As for three arbitrary vectors u, v, w, addition is associative:

uþ vð Þþw ¼ uþ vþwð Þ ð1:2Þ

[3] The zero vector 0 is a unique vector such that for any vector a,

aþ 0 ¼ a ð1:3Þ

[4] For every element of the set, there exists a unique vector �a such that

aþ �að Þ ¼ 0 ð1:4Þ

[5] For any real number c and arbitrary vectors a and b, the scalar multiplication
satisfies

c aþ bð Þ ¼ caþ cb ð1:5Þ

[6] For any real numbers c and k, scalar multiplication on a satisfies

cþ kð Þa ¼ caþ ka ð1:6Þ

[7] Associate rule for scalar multiplication is valid for any two scalars c and k and
a vector a:

c kað Þ ¼ ckð Þa ð1:7Þ
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[8] Real number, unity is the identity of the scalar multiplication:

1a ¼ a ð1:8Þ
Note that it is assumed that addition of any two elements of the set is also an
element of the set and scalar multiplication of a vector also belongs to the set. More
generally, complex number can replace the role of real number. However, we will
not treat complex vector space, here, which involves complex number as scalar,
because the complex vector is not relevant in mechanics of viscoelasticity.

It is easy to know that the set of continuous functions satisfies the definition of
vector space and so does the set of matrices with the same form. Then, continuous
function and matrix can be considered as abstract vector.

An example of a vector space, consider pairs of n real numbers denoted by
x ¼ x1; x2; . . .; xnð Þ: Denote the set of all pairs of n real numbers as En. The set is a
vector space when addition and scalar multiplication are defined as

xþ y ¼ x1 þ y1; x2 þ y2; . . .; xn þ ynð Þ 2 En

cx ¼ cx1; cx2; . . .; cxnð Þ 2 En ð1:9Þ

It is easy to prove that En satisfies Eqs. (1.1)–(1.8). The vector space En is called n-
dimensional Euclidean space. An N �M matrix is considered as a vector of ENM ,
too.

1.2 Linear Combination and Basis

When m vectors, say, a1; . . .; am are members of a vector space, a vector x is called
a linear combination of the vectors a1; . . .; am, if there exist scalars c1; c2; . . .; cm
such that

x ¼ c1a1 þ � � � þ cmam ð1:10Þ

When making all of c1; c2; . . .; cm zero is the only way to make the vector x of
Eq. (1.10) the zero vector, the vectors a1; . . .; am are said to be independent.

Suppose that N vectors a1; . . .; aN of a vector space are independent. If any set
consisting of the N vectors a1; . . .; aN and any other vector of the vector space is not
independent, then the N vector a1; . . .; aN are called the bases of the vector space.
Then, any vector b and the N vectors a1; . . .; aN are not independent. This implies
that there exists nonzero real numbers among c1; c2; . . .; cNþ 1 such that

c1a1 þ � � � þ cNaN þ cNþ 1b ¼ 0 ð1:11Þ
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If cNþ 1 ¼ 0, then Eq. (1.11) means

c1a1 þ � � � þ cNaN ¼ 0 ð1:12Þ

and then it is contradictory to the premise that a1; . . .; aN are independent. Hence,
cNþ 1 must not be zero. Finally, we can express b as a linear combination of the
bases a1; . . .; aN :

b ¼ � c1
cNþ 1

a1 � � � � � cN
cN þ 1

aN ð1:13Þ

Equation (1.13) implies that any vector of the vector space can be expressed by a
linear combination of the base vectors a1; . . .; aN . That is, an arbitrary vector v of
the vector space can be expressed by

v ¼
XN
n¼1

vnan ð1:14Þ

The scalars vn are called the components of the vector v with respect to the base
vectors of fa1; . . .; aNg. Equation (1.14) implies that basis fa1; . . .; aNg spans the
vector space because any vector can be expressed by a linear combination of the
base vectors.

A set of base vectors is called simply basis and a base vector is called a base.
There are a number of ways to choose a basis. However, it can be proven that the
number of base vectors is not different from each other. The number of base vectors
is called the dimension of the vector space. In summary, base vectors have two
properties:

[1] Base vectors are linearly independent.
[2] Any vector is expressed by a linear combination of base vectors.

When a set of base vectors of a vector space is known, the two properties of base
vectors imply the components of a vector are uniquely determined. Assume that
fa1; . . .; aNg is the set of the base vectors and a vector v can be expressed by two
sets of components as follows:

v ¼
XN
n¼1

vnan ¼
XN
n¼1

v0nan ð1:15Þ

Then, Eq. (1.15) leads to

XN
n¼1

vn � v0n
� �

an ¼ 0 ð1:16Þ
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Since base vectors are linearly independent, it is clear that for all n, vn ¼ v0n which
proves that components of a vector are uniquely determined. However, this does
not mean that two sets of components of a vector with respect to two different sets
of base vectors are identical.

For physical vector in 3-dimensional space, these theoretical tools such as linear
independence and base vectors look unnecessarily complicate. However, these
concepts are very convenient and necessary when abstract vectors such as con-
tinuous functions are considered. The approaches based on vector space can be met
in several fields of applied mathematics as well as quantum mechanics. See
Atkinson and Han (2000) for numerical methods, and Luenberger (1969) for
optimization theory, Kreyszig (1978) for functional analysis, and Prugovecki
(2006) for quantum mechanics.

A vector space can have a number of base vectors. A new set of N vectors can be
generated by linear combination of a set of base vectors A ¼ fa1; . . .; aNg as
follows:

bi ¼
XN
k¼1

Qikak i ¼ 1; 2; . . .;Nð Þ ð1:17Þ

where coefficients Qik are assumed to form an invertible matrix. Consider a linear
combination from B ¼ fb1; . . .; bNg: u � c1b1 þ � � � þ cNbN . If the vector u is the
zero vector, then we have

u ¼
XN
i¼1

cibi ¼
XN
i¼1

ci
XN
k¼1

Qikak

 !
¼
XN
k¼1

XN
i¼1

Qikci

 !
ak ¼ 0 ð1:18Þ

Equation (1.18) implies that for all k

XN
i¼1

Qikci ¼ 0 ð1:19Þ

Since the matrix Qik is invertible, Eq. (1.19) uniquely determines ci ¼ 0 for all
i. Hence, the set fbig is linearly independent. Let Pmn be the inverse matrix of Qik.
Then, we have

ai ¼
XN
k¼1

Pikbk i ¼ 1; 2; . . .;Nð Þ ð1:20Þ

Substitution of Eq. (1.20) into Eq. (1.14) proves that any vector v can be expressed
by a linear combination of B ¼ fb1; . . .; bNg. Detailed proofs are found in Ames
(1970).
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1.3 Dual Space

Consider a linear mapping e/ from a vector space V to real numbers. It is a
real-valued function of a vector of V with satisfying the following properties:

e/ uþ vð Þ ¼ e/ uð Þþ e/ vð Þ; e/ auð Þ ¼ ae/ uð Þ ð1:21Þ

where α is an arbitrary real number and u and v are arbitrary vectors of V. The linear
mapping e/ is called linear functional. If a set of linear functionals on V satisfies the
conditions of vector space, then the set is denoted by V� and called the dual space
of the vector space V.

Here, the addition of any two functionals e/ 2 V� and eg 2 V� is defined as

e/þ eg� �
uð Þ � e/ uð Þþ eg uð Þ ð1:22Þ

Then, it is clear that e/þ eg 2 V�. For any real number α, scalar multiplication is
defined as

ae/� �
uð Þ � ae/ uð Þ ð1:23Þ

Of course, we know that ae/ 2 V�. The zero functional is defined a mapping from
V to 0 for any elements of V. Then, it is not difficult to show that the set of linear
functional V� is a vector space.

Let fbig be a set of base vectors of N-dimensional vector space V. Consider

N linear functionals e/ðiÞ defined as e/ðiÞðbkÞ ¼ dik where dik is the Kronecker’s
delta which is unity whenever i ¼ k and zero otherwise. Then, it is easy to show

that the set fe/ðiÞg is the base of V�. The first step is to show that fe/ðiÞg is linearly

independent and the second step is to show that fe/ðiÞg generates any linear func-

tional that belongs to V�. The linear independence of fe/ðiÞg means that if a linear

combination of fe/ðiÞg for any vector v of V is zero:

XN
k¼1

ck e/ kð Þ vð Þ ¼ 0 ð1:24Þ

then all coefficients ck are zero. Substitution of a base vector bi of V to Eq. (1.24)

gives ci ¼ 0. Thus, the set fe/ðiÞg is linearly independent. For any vector v whose

components are vk, a linear functional e/ satisfies
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e/ vð Þ ¼ e/ XN
k¼1

vkbk

 !
¼
XN
k¼1

vk e/ bkð Þ ð1:25Þ

Equation (1.25) implies that if N values of e/ðbiÞ are known, then the value of e/ðvÞ
is determined. Consider a functional ew which is a linear functional such that

ew vð Þ ¼
XN
k¼1

e/ bkð Þe/ kð Þ vð Þ ð1:26Þ

Then, we know that w bið Þ ¼ e/ bið Þ from the definition of e/ ið Þ. It is clear that the
functional ew vð Þ is identical to e/ vð Þ because the two linear functionals have the
same value for any vector v.

The Dirac delta function is one of the most important applications of linear
functional. Consider the vector space F of continuous functions defined on the
interval �1;1ð Þ. One may define linear functional by using the following integral
transform

e/ f xð Þ½ � ¼
Z1
�1

/ xð Þf xð Þdx ð1:27Þ

where f ðxÞ is a vector of F and /ðxÞ is the function given by the functional e/. The
function /ðxÞ can be considered as the kernel function from the viewpoint of
integral transform. Fourier transform is a linear functional for functions f ðxÞ which
satisfies

Z1
�1

f ðxÞj jdx\1 ð1:28Þ

and the kernel function is given by /ðxÞ ¼ exp �iqxð Þ where i ¼ ffiffiffiffiffiffiffi�1
p

. One may
imagine that any linear functional corresponds to its own kernel function: the
one-to-one correspondence between linear functional and function. The existence of
the correspondence can be proved when the inner product is defined over the vector
space of functions. It will be treated later. The Dirac delta function is the kernel
function of the linear functional which maps f ðxÞ 2 F to f ð0Þ:

ed f ðxÞ½ � ¼
Z1
�1

dðxÞf ðxÞdx ¼ f 0ð Þ ð1:29Þ
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However, the Dirac delta function dðxÞ cannot be defined at x ¼ 0. Hence, new
name for something like function is necessary. The name is distribution (Zemanian
1987). Note that dðxÞ works always under integration. Thus, the Dirac delta
function can be said to be a linear functional.

Problem 1

[1] Show that the following sets are vector space if addition and scalar multi-
plication are suitably defined.

[a] Set of N × M matrix,
[b] Set of polynomials of order N,
[c] Set of linear functionals from physical vectors.

[2] Show that the followings are linearly independent.

[a] sinxt; sin 2xt; sin 3xt; . . .; sinNxtf g
[b] 1; x; x2; x3; . . .; xN

� �
[3] When B ¼ b1; b2; . . .; bNf g � V is a linearly independent set of vector space

V, show that any subset of B is also linearly independent.
[4] If a1; a2; . . .; aNf g is a base of vector space V and b1; b2; . . .; bMf g is also a

base of the same vector space, then show that M = N.
[5] If a subset of a vector space V is also a vector space, then it is called subspace.

Consider two subspace V1 and V2 of V. Show that the following set is a vector
space.

V1 þV2 � vjv ¼ v1 þ v2; v1 2 V1; v2 2 V2f g

[6] Show that the intersection of two subspace is a vector space.
[7] V1 and V2 are subspaces of V whose dimension is finite. When the dimension

of a vector space U is denoted by dim Uð Þ, show that

dim V1 þV2ð Þ ¼ dim V1ð Þþ dim V2ð Þ � dim V1 \V2ð Þ

2 Inner Product Space

2.1 Generalization of Inner Product

In physics, the inner product of two vectors is defined as the product of three terms:
the magnitudes of the two vectors and the cosine of the angle between the two
vectors. Hence, the inner product can be considered as a mapping from two vectors
to a real number. It is assumed that the readers are familiar with the inner product of
physics. Then, it is clear that
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a � b ¼ b � a
aþ bð Þ � c ¼ a � cþ b � c

kað Þ � b ¼ k a � bð Þ
a � a	 0

ð2:1Þ

where a, b, and c are arbitrary vectors and k is an arbitrary real number. Note that
a � a ¼ 0 is valid only when a ¼ 0. Furthermore, we know that the magnitude of a
vector a is given by

ak k ¼ ffiffiffiffiffiffiffiffiffi
a � ap ð2:2Þ

Generalization of inner product can be done by the replacement of the physical
vectors in Eq. (2.1) by abstract ones of arbitrary vector space. In other words, we
define inner product as a binary operation satisfying Eq. (2.1). The notation a; bh i
instead of a � b would be used in order to emphasize that the inner product under
consideration is a generalized one. There are a number of definitions of inner
product available for a given vector space.

Consider a vector space consisting of integrable functions on the interval of [a, b].
Then, one of the simplest inner product might be defined as

f ; gh i �
Zb
a

f ðxÞgðxÞwðxÞdx ð2:3Þ

where wðxÞ is nonnegative over the interval and called weight function. It is easy to
show that Eq. (2.3) satisfies Eq. (2.1).

As for N × N matrix, one may define inner product as follows:

A;Bh i �
XN
i¼1

XN
k¼1

aikbik ð2:4Þ

where A and B are N × N matrices and aik and bik are their components, respec-
tively. It is also easy to show that Eq. (2.4) satisfies Eq. (2.1).

A vector space with inner product is called inner product space and the mag-
nitude of vector is called norm. Metric space is a vector space equipped with the
definition of norm. Since the norm of vector can be defined from inner product,
inner product space is a metric space. If every Cauchy sequence of vectors of an
inner product space converges in the space, then the space is called Hilbert space
irrespective of the dimension of the space. A sequence of vectors fxkg is a Cauchy
sequence when it satisfies the condition that if for any positive real number e[ 0,
there exists a positive integer N such that for all positive integers m; n[N, then the
magnitude of xm � xn is smaller than ε. Since we can take linear combinations of
base vectors as a sequence, and any vector of the Hilbert space can be expressed by
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a linear combination of base vectors, it is clear that any inner product space of finite
dimension is a Hilbert space. However, all inner product spaces of infinite
dimension are not Hilbert spaces. Further information on metric and Hilbert spaces
are found in Kreyszig (1978), Luenberger (1969), and Prugovecki (2006).

2.2 Generalization of Distance

The distance between two positions is equal to the magnitude of the displacement
vector connecting the two positions. The magnitude of a geometric vector can be
obtained by the inner product as shown in Eq. (2.2). Then, the distance in a metric
space can be defined as the norm of the difference between two vectors of the metric
space.

The notion of distance in our daily life is summarized with the nonnegativity of
distance that the distance between any two vectors is nonnegative; the symmetry of
distance that the distance from a to b is equal to that from b to a; the triangle
inequality that the sum of distances from a to b and from b to c is not less than the
distance between a and c. If the distance between a and b is denoted by g a; bð Þ,
then the three axioms are expressed by

g a; bð Þ	 0

g a; bð Þ ¼ g b; að Þ
g a; bð Þþ g b; cð Þ	 g a; cð Þ

ð2:5Þ

As for inner product space, one can define the distance from inner product as
g a; bð Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a� b; a� bh ip
. Then, it is not difficult to show that the definition of

distance satisfies Eq. (2.5) except the triangle inequality. The Cauchy–Schwarz
inequality is necessary to prove the triangle inequality. For any generalized inner
product which satisfies Eq. (2.1), the following is valid:

a; ah i b; bh i	 a; bh i2 ð2:6Þ

where a and b are arbitrary vectors of an inner product space. Because of the last
inequality of Eq. (2.1), for any real number t, we have

aþ tb; aþ tbh i	 0 ð2:7Þ

Applying the properties of inner product, Eq. (2.7) can be rewritten as

b; bh it2 þ 2 a; bh itþ a; ah i	 0 ð2:8Þ
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Since Eq. (2.8) is valid for any real number, the discriminant must not be positive:

D
4
¼ a; bh i2� a; ah i b; bh i
 0 ð2:9Þ

Note that Eq. (2.9) is identical to Eq. (2.6).
As for physical vector, the Cauchy–Schwarz inequality is straightforward

because of the definition of the inner product in physics such that

a; bh i ¼ a � b ¼ ak k bk k cos h ð2:10Þ

where θ is the angle between the two vectors. Note that �1
 cos h
 1 for any θ.
Analogy to the inner product of physical vectors, the angle between two abstract
vectors might be defined as

cos h � a; bh iffiffiffiffiffiffiffiffiffiffiffi
a; ah ip ffiffiffiffiffiffiffiffiffiffiffiffi

b; bh ip ð2:11Þ

Let us move back to the problem of the triangle inequality of distance. Since
distance is not negative, the triangle inequality is equivalent to

g a; bð Þþ g b; cð Þ½ � 2 	 g a; cð Þ½ � 2 ð2:12Þ

Replace the distance function by the corresponding inner product. Then, we have

g a; bð Þþ g b; cð Þ½ � 2 	 a� b; a� bh iþ b� c; b� ch iþ 2 a� b; b� ch i
¼ a� bð Þþ b� cð Þ; a� bð Þþ b� cð Þh i ¼ a� c; a� ch i
¼ g a; cð Þ½ � 2

ð2:13Þ

Then, the proof is completed.

2.3 Orthogonalized Basis

Vector spaces considered in this book are usually assumed as inner product space or
Hilbert space. From inner product, one can consider the notion of orthogonality such
that the inner product of two nonzero vector is zero. As for physical vectors, orthog-
onality implies that the directions of the two vectors are perpendicular to each other.
Hence, orthogonality is an abstraction of the perpendicularity of geometry. Whenever
we consider physical vectors, orthogonality is identical to perpendicularity.

In general, two base vectors do not have to be orthogonal. However, mutually
orthogonal base vectors are more convenient. Consider N mutually orthogonal
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vectors of an inner product space of finite dimension. These vectors are linearly
independent if N is not larger than the dimension of the inner product space.
Mutually orthogonal vectors u1; u2; . . .; uNf g are said to be vectors such that
ui; ukh i ¼ 0 for any pair of i and k whenever the two indices are not same. If a linear
combination of these vectors is the zero vector:

c1u1 þ c2u2 þ � � � þ cNuN ¼ 0 ð2:14Þ

then taking inner product with ui on both sides of Eq. (2.14) gives ci ui; uih i ¼ 0.
The property of inner product results in ci ¼ 0 for any i. Thus, these N vectors are
linearly independent. It is not difficult to show that contradiction occurs whenever
N is larger than the dimension of the space. If N is equal to the dimension of the
space, it is clear that the N mutually orthogonal vectors are base vectors.

Mutually orthogonal base vectors are called orthonormal base vectors when
every member of the base vectors has the magnitude of unity. If we have mutually
orthogonal base vectors u1; u2; . . .; uNf g, then we can define N vectors such that

ei ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui; uih ip ui for i ¼ 1; 2; . . .;N ð2:15Þ

From Eq. (2.15), it is straightforward that

ei; ekh i ¼ ei � ek ¼ dik ð2:16Þ

where dik is called Kronecker’s delta which is unity when i ¼ k and zero otherwise.
Orthonormal base vectors are more convenient than mutually orthogonal ones
because any vector can be expressed by

v ¼
XN
k¼1

v; ekh iek ¼
XN
k¼1

v � ekð Þek ð2:17Þ

When orthonormal base is used, inner product of any two vectors is expressed by

a; bh i ¼ a � b ¼
XN
k¼1

akbk ð2:18Þ

where ak and bk are kth components of a and b, respectively, with respect to the
orthonormal base.

Then, how can we obtain an orthonormal base from a given base? Suppose that
we have a basis b1; b2; . . .; bNf g, which do not have to be mutually orthogonal.
Since a member of an orthogonal basis e1; e2; . . .; eNf g is also a vector, it can be
expressed by a linear combination of b1; b2; . . .; bNf g:
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ei ¼
XN
k¼1

Qikbk ð2:19Þ

With the help of Eq. (2.16), we have

XN
n¼1

Qinbn;
XN
m¼1

Qkmbm

* +
¼
XN
n¼1

XN
m¼1

QinQkm bn; bmh i ¼ dik ð2:20Þ

Since we know bn; bmh i for any pair of n and m, Eq. (2.20) is a set of N2 nonlinear
equations for N2 unknowns Qik. This is a quite complicate problem. The Gram–
Schmidt orthogonalization is a simpler method to find Qik in a systematic way.

2.3.1 The Gram–Schmidt Orthogonalization

The first step of the Gram–Schmidt orthogonalization is to find a mutually
orthogonal bias, say u1; u2; . . .; uNf g from a given basis b1; b2; . . .; bNf g. The
next step is the normalization of the mutually orthogonal basis by ei ¼ ui= uik k.

Set u1 ¼ b1 and u2 ¼ b2 þ q 2ð Þ
1 u1. Then, there is only one unknown q 2ð Þ

1 which
could be determined by the orthogonality condition of u1; u2h i ¼ 0. Then, we know
that

q 2ð Þ
1 ¼ � b2; b1h i

b1; b1h i ¼ � b2; u1h i
u1; u1h i ð2:21Þ

Since there are two orthogonal conditions such that u1; u3h i ¼ 0 and u2; u3h i ¼ 0,

one may construct u3 by u3 ¼ b3 þ q 3ð Þ
2 u2 þ q 3ð Þ

1 u1. The unknowns q
ð3Þ
2 and qð3Þ1 can

be determined by solving the following set of linear equations:

u1; u1h iqð3Þ1 þ u1; u2h iqð3Þ2 ¼ � u1; u3h i
u2; u1h iqð3Þ1 þ u2; u2h iqð3Þ2 ¼ � u2; u3h i

ð2:22Þ

Since uk; ukh i[ 0 because uk 6¼ 0 for any k, Eq. (2.22) must have a unique solution
and we have

u3 ¼ b3 � b3; u2h i
u2; u2h i u2 �

b3; u1h i
u1; u1h i u1 ð2:23Þ

Similar procedure can be applied to un for n[ 3 and we have

un ¼ bn �
Xn�1

k¼1

bn; ukh i
uk; ukh i uk ð2:24Þ
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Since this procedure gives mutually orthogonal basis u1; u2; . . .; uNf g, finally we
have orthonormal basis:

ei ¼ 1
uik k ui ð2:25Þ

The Gram–Schmidt orthogonalization implies that any inner product space can
have orthonormal basis. We know that finite-order polynomials have the basis
BN ¼ 1; x; . . .; xNf g. Suppose that the inner product space of polynomial is
equipped with the inner product defined by

pðxÞ; qðxÞh i ¼
Zb
a

pðxÞqðxÞwðxÞdx ð2:26Þ

where the weight function wðxÞ is positive for the whole interval of a\x\b.
First, consider the case of a ¼ 0, b ¼ L[ 0, and wðxÞ ¼ 1, then the mutually

orthogonal basis MN ¼ Q0ðxÞ;Q1ðxÞ; . . .;QNðxÞf g from the basis BN is given by

Q0ðxÞ ¼ 1; Q1ðxÞ ¼ x� 1
2
L; Q2ðxÞ ¼ x2 � Lxþ 1

6
L2; . . . ð2:27Þ

Note that MN � MN þm when m[ 0.

2.3.2 Orthogonal Polynomials

There are several named orthogonal polynomials which have different definitions of
inner product. The Legendre polynomials construct an orthogonal basis for a ¼ �1,
b ¼ 1 and wðxÞ ¼ 1. Some of the Legendre polynomials are

P0ðxÞ ¼ 1; P1ðxÞ ¼ x; P2ðxÞ ¼ 2�1 3x2 � 1
� �

;

P3ðxÞ ¼ 2�1 5x3 � 3x
� �

; P4ðxÞ ¼ 2�3 35x4 � 30x2 þ 3
� �

;

P5ðxÞ ¼ 2�3 63x5 � 70x3 þ 15x
� �

; . . .

ð2:28Þ

Although the Gram–Schmidt orthogonalization is easy to be understood and is a
systematic way, the calculation procedures are tedious and time-consuming. As for
the Legendre polynomials, the following recursive equation is valid:

Pnþ 1ðxÞ ¼ 2nþ 1
nþ 1

xPnðxÞ � n
nþ 1

Pn�1ðxÞ for n	 1 ð2:29Þ

Note that P0ðxÞ ¼ 1 and P1ðxÞ ¼ x are needed as initial conditions for the
recursive Eq. (2.29). The recursive equations are more convenient than the Gram–
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Schmidt orthogonalization. As for the Legendre polynomials, the following
orthogonal conditions are valid:

Z1
�1

PmðxÞPnðxÞdx ¼ 2
2nþ 1

dmn ð2:30Þ

When a ¼ �1, b ¼ 1 and wðxÞ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
is used, the Chebyshev polyno-

mials of the first kind are obtained. Some of the Chebyshev polynomials of the first
kind are

T0ðxÞ ¼ 1; T1ðxÞ ¼ x; T2ðxÞ ¼ 2x2 � 1;

T3ðxÞ ¼ 4x3 � 3x; T4ðxÞ ¼ 8x4 � 8x2 þ 1;

T5ðxÞ ¼ 16x5 � 20x3 þ 5x; . . .

ð2:31Þ

The recursive equation for the Chebyshev polynomial of the first kind is given as

Tnþ 1ðxÞ ¼ 2xTnðxÞ � Tn�1ðxÞ for n	 1 ð2:32Þ

with the initial conditions of T0ðxÞ ¼ 1 and T1ðxÞ ¼ x. The orthogonal conditions
are given as

Z1
�1

TmðxÞ TnðxÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼
0 for m 6¼ n
p for m ¼ n ¼ 0
1
2p for m ¼ n 6¼ 0

8<: ð2:33Þ

It is noteworthy that the Chebyshev polynomial of the first kind is useful in analysis
of large amplitude oscillatory shear (LAOS) because it has the following properties:

Tn cos hð Þ ¼ cos nhð Þ
TnðxÞ ¼ Tn n arccos xð Þ ¼ cosh n arccos hxð Þ ð2:34Þ

See Chap. 11. Furthermore, the Chebyshev polynomial of the first kind is also
useful in various fields of numerical methods. Polynomial regression is one of the
most representative applications of the polynomial.

The Chebyshev polynomial of the second kind UnðxÞ is defined over the same
interval, but its weight function is wðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
. Its recursive equation is the

same as that of the first kind while the initial conditions are given as U0ðxÞ ¼ 1 and
U1ðxÞ ¼ 2x.

The Hermite polynomials are an orthogonal basis for a ¼ �1, b ¼ 1 and
wðxÞ ¼ exp �x2ð Þ. Some of the Hermite polynomials are

2 Inner Product Space 17

http://dx.doi.org/10.1007/978-94-017-7564-9_11


H0ðxÞ ¼ 1; H1ðxÞ ¼ 2x; H2ðxÞ ¼ 4x2 � 2;

H3ðxÞ ¼ 8x3 � 12x; H4ðxÞ ¼ 16x4 � 48x2 þ 12;

H5ðxÞ ¼ 32x5 � 160x3 þ 120x; . . .

ð2:35Þ

The recursive equation is given as

Hnþ 1ðxÞ ¼ 2xHnðxÞ � 2nHn�1ðxÞ for n	 1 ð2:36Þ

The initial conditions are H0ðxÞ ¼ 1 and H1ðxÞ ¼ 2x, and the orthogonal conditions
are given as Z1

�1
HmðxÞHnðxÞe�x2dx ¼ 2n

ffiffiffi
p

p
n!dmn ð2:37Þ

The Laguerre polynomials are an orthogonal basis for a ¼ 0, b ¼ 1 and
wðxÞ ¼ exp �xð Þ. Since the interval of the polynomial is identical to that of Laplace
transform, it is applied to numerical inversion of Laplace transform (Cohen 2007).
Some of the Laguerre polynomials are

L0 xð Þ ¼ 1; L1 xð Þ ¼ �xþ 1; L2 xð Þ ¼ 1
2

x2 � 4xþ 2
� �

;

L3 xð Þ ¼ 1
6

�x3 þ 9x2 � 18xþ 6
� �

;

L4 xð Þ ¼ 1
24

x4 � 16x3 þ 72x2 � 96xþ 24
� �

; . . .

ð2:38Þ

The recursive equation of the Laguerre polynomials are given as

Lnþ 1ðxÞ ¼ 2nþ 1� xð ÞLnðxÞ � nLn�1 xð Þ
nþ 1

ð2:39Þ

with the initial conditions of L0ðxÞ ¼ 1 and L1ðxÞ ¼ 1� x.
Polynomial regression by using orthogonal polynomials plays an important role

in the data processing of both linear and nonlinear viscoelasticity. Most orthogonal
polynomials originate from solution of differential equations. These differential
equations belong to Sturm–Liouville equations. See Arfken and Weber (2001) for
further study. Table 1 is the list of some orthogonal polynomials which are pop-
ularly used in various fields of science.

2.3.3 Dual Basis

For any basis of N-dimensional inner product space, say B ¼ g1; g2; . . .; gNf g, we
can define its dual basis B ¼ g1; g2; . . .; gN

� �
which satisfies
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gi; g
k

	 
 ¼ dki ð2:40Þ

If Eq. (2.40) holds, the second basis is called the dual basis of the first. Reversely,
the first basis is also the dual basis of the second. Note that we have used super-
script in order to distinguish the dual base vector from the original base vector and
dki is another notation of the Kronecker’s delta. Question on dual basis is how we
can determine the dual basis from a given basis. Since gi is a vector, it can be
expressed by a linear combination of the original basis as follows:

gi ¼
XN
k¼1

gikgk ð2:41Þ

where ik of gik means superscript not exponent. The definition of dual basis,
Eq. (2.40) gives

XN
k¼1

gikgkm ¼ dim ð2:42Þ

where

gkm � gk; gmh i ð2:43Þ

It is easy to show that the matrix formed by gkm is invertible because gk is linearly
independent. Thus, it can be concluded that gik is the component of the inverse of the
matrix of gik. Since the inverse of a matrix is determined uniquely, the dual basis of a
basis is uniquely determined and always exists. The notion of dual basis is important
in curvilinear coordinate systems (Sect. 3) as well as objective time-derivative for
nonlinear viscoelastic constitutive equations (Sect. 4 in Chap. 10).

Table 1 List of orthogonal polynomials

Name Interval Weight function Recursive equation

Legendre �1\x\1 1
Pnþ 1 xð Þ ¼ 2nþ 1

nþ 1
xPn xð Þ � n

nþ 1
Pn�1 xð Þ

P0 xð Þ ¼ 1; P1 xð Þ ¼ x

Chebyshev I �1\x\1 1ffiffiffiffiffiffiffiffi
1�x2

p Tnþ 1 xð Þ ¼ 2xTn xð Þ � Tn�1 xð Þ
T0 xð Þ ¼ 1; T1 xð Þ ¼ x

Chebyshev II �1\x\1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
Unþ 1 xð Þ ¼ 2xUn xð Þ � Un�1 xð Þ
U0 xð Þ ¼ 1; U1 xð Þ ¼ 2x

Hermite �1\x\1 exp �x2ð Þ Hnþ 1 xð Þ ¼ 2xHn xð Þ � 2nHn�1 xð Þ
H0 xð Þ ¼ 1; H1 xð Þ ¼ 2x

Laguerre 0\x\1 exp �xð Þ
Lnþ 1 xð Þ ¼ 2nþ 1� xð ÞLn xð Þ � nLn�1 xð Þ

nþ 1
L0 xð Þ ¼ 1; L1 xð Þ ¼ 1� x
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2.4 Application of Orthogonal Polynomials

Since we are equipped with how to define distance in abstract vector space, con-
sider an inner product space V consisting of continuous functions defined on the
interval of a\x\b. Note that Nth-order polynomial, PN spanned by BN ¼
1; x; . . .; xNf g is also an inner product space included in V. When f ðxÞ 2 V , we want

to find the best approximation of PN . It is a problem to determine coefficients fakg
which minimize the distance f ðxÞ � pNðxÞk k where

pNðxÞ ¼ a0 þ a1xþ a2x
2 þ � � � þ aNx

N ð2:44Þ

Since it is equivalent to minimize v2 � f ðxÞ � pNðxÞk k2, we express v2 in terms of
inner product:

v2 ¼ pN xð Þ; pN xð Þh i � 2 pN xð Þ; f xð Þh iþ f xð Þ; f xð Þh i ð2:45Þ

Let any basis of PN be denoted by CN ¼ /0ðxÞ;/1ðxÞ; . . .;/NðxÞf g. Then,
Eq. (2.44) is equivalent to

pNðxÞ ¼
XN
k¼0

ck/kðxÞ ð2:46Þ

When /kðxÞ ¼ xk, we know ak ¼ ck. Equation (2.45) can be rewritten in terms of
/kðxÞ as follows:

v2 ¼
XN
i¼0

XN
k¼0

/i xð Þ;/k xð Þh icick � 2
XN
k¼0

/k xð Þ; f xð Þh ick þ f xð Þ; f xð Þh i ð2:47Þ

Since v2 is a quadraction for ck , the minimization implies @v2
�
@cn ¼ 0. Then, we

have a system of Nþ 1 linear equations such thatXN
k¼0

Sikck ¼ bi ð2:48Þ

where Sik � /i xð Þ;/k xð Þh i is a symmetric matrix and bi � /iðxÞ; f ðxÞh i. When we
use orthogonal polynomial such that

/i xð Þ;/k xð Þh i ¼ dik ð2:49Þ

the solution of Eq. (2.48) is given as

cn ¼ f xð Þ;/n xð Þh i ð2:50Þ

Thus, the coefficients depend on the corresponding inner product.
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To obtain the coefficients fang from fcng, we need the relations between the
basis BN and an orthonormal basis. It is noteworthy that there exists invertible
matrix such that

/n xð Þ ¼
XN
k¼0

cnkx
k for n ¼ 0; 1; 2; . . .;N ð2:51Þ

where /kðxÞ is considered as an orthogonal polynomial. Substitution of Eq. (2.51)
into Eq. (2.46) yields

pN xð Þ ¼
XN
k¼0

XN
n¼0

cnkcn

 !
xk ð2:52Þ

and

ak ¼
XN
n¼0

cnkcn ð2:53Þ

The Taylor series expansion is one of the most well-known approximations of a
function. Consider the problem to obtain an approximation of ex over the interval of
�1
 x
 1 to the third order. The Maclaurin series is the Taylor series about x ¼ 0.
The Maclaurin series gives

ex � 1þ xþ x2

2
þ x3

6
ð2:54Þ

Using normalized Chebyshev polynomial of the first kind gives

ex � 2:24404 bT0 xð Þþ 1:41664 bT1 xð Þþ 0:340269 bT2 xð Þþ 0:055568 bT3 xð Þ ð2:55Þ

Note that bTn xð Þ is the normalized Chebyshev polynomial of the first kind such that

bT0 xð Þ ¼ 1ffiffi
p

p bT1 xð Þ ¼
ffiffi
2
p

q
xbT2 xð Þ ¼

ffiffi
2
p

q
2x2 � 1ð Þ bT3 xð Þ ¼

ffiffi
2
p

q
4x3 � 3xð Þ

ð2:56Þ

It is noteworthy that

ex; bTn xð Þ
D E

¼
Z1
�1

ex bTn xð Þffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx ¼
ffiffiffi
p

p
In 1ð Þ for n ¼ 0ffiffiffiffiffiffi

2p
p

In 1ð Þ for n ¼ 1; 2; 3

�
ð2:57Þ
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where InðxÞ is the modified Bessel function of the first kind. Application of
Eq. (2.56) to Eq. (2.55) gives

ex � 0:9946þ 0:9973xþ 0:5430x2 þ 0:1773x3 ð2:58Þ

Using normalized Legendre polynomial gives

ex � e� e�1ffiffiffi
2

p bP0 xð Þþ
ffiffiffi
6

p

e
bP1 xð Þþ

ffiffiffi
5
2

r
e� 7e�1
� � bP2 xð Þþ

ffiffiffi
7
2

r
37e�1 � 5e
� � bP3 xð Þ

ð2:59Þ

where

bP0 xð Þ ¼ 1ffiffiffi
2

p bP1 xð Þ ¼
ffiffiffi
3
2

r
x

bP2 xð Þ ¼
ffiffiffi
5
8

r
3x2 � 1ð Þ bP3 xð Þ ¼

ffiffiffi
7
8

r
5x3 � 3xð Þ

ð2:60Þ

Application of Eq. (2.60) to Eq. (2.59) yields

ex � 0:9963þ 0:9980xþ 0:5367x2 þ 0:1761x3 ð2:61Þ

Figure 1 compares relative errors of the three third-order approximations:
Eqs. (2.54), (2.58), and (2.61). The relative errors are defined here as

Relative Error ¼ 1� Approximation
Exact Value

ð2:62Þ

The approximations by using orthogonal polynomials show similar behavior of
relative errors whose absolute value is less than about 2 % over the whole interval
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Fig. 1 Comparison of the
Maclaurin series with the
economized power series by
using orthogonal polynomials
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of �1\x\1. On the other hand, the Maclaurin series shows much higher errors
when xj j[ 0:5. The economized power series from Chebyshev polynomial looks
better than those from Legendre polynomial.

When polynomial regression is considered, the function f xð Þ of Eq. (2.45) is
replaced by experimental data ya, independent variable x by xa and the inner
product by the summation over data as follows:

v2 ¼
XM
a¼1

ya �
XN
k¼0

ck/k xað Þ
" # 2

ð2:63Þ

where M is the number of data and /kðxÞ is the kth orthogonal polynomial or xk . In
this case, we do not consider that /kðxÞ is normalized. The minimization of
Eq. (2.63) is reduced to Eq. (2.48) again while the matrix Sik and column vector bi
should be modified as follows:

Sik ¼
XM
a¼1

/i xað Þ/k xað Þ; bi ¼
XM
a¼1

ya/i xað Þ ð2:64Þ

When orthogonal polynomial is used for /k xð Þ, the matrix Sik becomes a
diagonal-dominated matrix. In other words, the absolute values of off-diagonal
components become much smaller than those of diagonal components. However,
Sik 
 Sim for k\m when /kðxÞ ¼ xk . In this case, the matrix is no longer
diagonal-dominant and solving Eq. (2.48) is apt to face a numerical problem due to
ill-conditioned matrix (Atkinson and Han 2000; Atkinson 1978).

Economized power series was applied to obtain the analytical solution of the
K-BKZ model for LAOS by Cho et al. (2010). They needed a power series
approximation of the damping function of the K-BKZ model. See Problem 2[6].

2.5 Summation Convention

A vector v of N-dimensional vector space can be expressed by a linear combination
of an orthonormal basis enf g as follows:

v ¼
XN
k¼1

vkek ð2:65Þ

When the dimension N is known, using the summation symbol Σ is not con-
venient. Because the index k appears two times in Eq. (2.65), the omission of the
symbol Σ makes notation much simpler. A new summation convention to be used
here is called Einstein’s convention such that
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v ¼
XN
k¼1

vkek ¼ vkek ð2:66Þ

The twice-repeated index in a single term implies the summation over the index
from 1 to the dimension N. To minimize unnecessary confusion, repetition of index
more than twice is excluded. Hence, aikbkck does not mean summation on k.

By this notation, Eq. (2.48) can be rewritten as

Sikck ¼ bi ð2:67Þ

Both Eqs. (2.48) and (2.67) express N linear equations because Eq. (2.67) implies
that the equation works for any i. The index k meaning summation is called dummy
index, while the index i is called free index. The following examples help the
readers be familiar with the summation convention:

u � v ¼ uibi; vkbkh i ¼ uivk bi; bkh i ¼
XN
i¼1

XN
k¼1

uivk bi; bkh i ð2:68Þ

dikdkj ¼
XN
k¼1

dikdkj ¼ dij

Aikdk1 ¼ Ai1

dkk ¼ d11 þ d22 þ d33 þ � � � þ dNN ¼ N

ð2:69Þ

Problem 2

[1] Consider an inner product space V with finite dimension and its subspaces V1

and V2. If the intersection of the two subspaces is 0f g, then show that a
vector v1 2 V1 and a vector v2 2 V2 are orthogonal.

[2] Show that mutually orthogonal vectors are linearly independent.
[3] Consider a vector space that is spanned by column vectors 1 �1 0½ �T ,

0 2 1½ �T and 1 �1 1½ �T . Find orthonormal basis from the basis by
using the Gram–Schmidt orthogonalization.

[4] For vectors of an inner product space, show that the following is valid:

uþ vk k 2 þ u� vk k2 ¼ 2 uk k 2 þ 2 vk k 2 ð2:aÞ

[5] Consider two sequences u1; u2; . . .; un; . . .f g and v1; v2; . . .; vn; . . .f g which
belong to an inner product space V. If the sequence unf g has the limit
u1 2 V such that u1 � unk k goes to zero as n increases and so does vnf g,
then show that the sequence defined by un; vnh i has the limit u1; v1h i.

[6] Find sixth-order economized power series of f xð Þ ¼ 1þ x2ð Þ�1 over the
interval of �2\x\2.
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[7] Show that the Legendre polynomials satisfy the following differential
equation:

d
dx

1� x2
� � dPn xð Þ

dx

 �
þ n nþ 1ð ÞPn xð Þ ¼ 0 ð2:bÞ

[8] Show the following identities.

[a]
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2xtþ t2
p ¼

X1
n¼0

Pn xð Þtn

[b]
1� tx

1� 2txþ t2
¼
X1
n¼0

Tn xð Þtn

[c] exp 2xt � t2ð Þ ¼ P1
n¼0

Hn xð Þ
n!

tn

[9] Explain the following equations. Assume that index runs from 1 to 3.

[a] xia � xdiað Þ xka � xdkað Þ
[b] Aikxixk

[10] Suppose that index runs from 1 to 3. The permutation symbol is defined as

eikn ¼ i� kð Þ k � nð Þ n� ið Þ
2

ð2:cÞ

[a] If Tik ¼ Tki, then show that eipqTpq ¼ 0.
[b] Show that eipqeipq ¼ 6.
[c] Show that eikmepqm ¼ dipdkq � diqdkp.

[11] Prove that

[a] If Tik ¼ �Tki, then Tikxixk ¼ 0.
[b] If Wik ¼ �Wki and Sik ¼ Ski, then SikWik ¼ 0

[12] We define

Gikpq ¼ kdikdpq þ l dipdkq þ diqdkp
� �þ c dipdkq � diqdkp

� � ð2:dÞ

where λ, μ, and γ are constant. When Tik ¼ Tki and Eik ¼ Eki, calculate
Tik ¼ GikpqEpq:
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3 Coordinate System and Basis

3.1 How to Construct a Coordinate System

From now on, we will devote to physical vectors. We will consider only
3-dimensional inner product space of physical vectors. Since most physical vectors
are related to geometric vectors such as position and velocity, we start from how to
quantify position. One of the simplest way to treat position as a mathematical entity
is to construct three mutually perpendicular axes at the origin. The origin divides
each axis to two parts: positive and negative parts. Let the three unit vectors parallel
to the three axes be denoted by e1, e2, and e3. The direction of each unit vector is
chosen as the one from the origin to positive part. Since these three unit vectors are
mutually perpendicular, they are linearly independent. From our intuition, we know
that a position can be described uniquely by three numbers. This allows us to write
a position vector r as

r ¼ x1e1 þ x2e2 þ x3e3 ¼ xkek ð3:1Þ

where the absolute value of component xk implies the minimum distance from the
position r to kth axis. The sign of xk is positive when the vertical line from the
position to kth axis meets the positive part of the axis. Since the three orthogonal
unit vectors span any position as shown in Eq. (3.1), these vectors form an
orthonormal basis. Thus, coordinate system can be considered as a mapping from a
geometric point to a pair of three real numbers.

Equation (3.1) can be interpreted in different manners. When x1 is considered as
a variable with fixing x2 ¼ x3 ¼ 0, Eq. (3.1) is the equation of the straight line
passing the origin in the direction of e1. Similarly, Eq. (3.1) becomes the equation
of the straight line passing the origin in the direction of ek when xk is considered as
a variable with fixing the other two coordinates fixed. Generalizing this reasoning
further, consider the following vector equation:

p ¼ rþ nkuk ð3:2Þ

where u1, u2 and u3 are linearly independent and constant, and r is a position vector
under consideration. When two of n1, n2, and n3 are fixed at zero and the other is
allowed to vary, Eq. (3.2) becomes the straight line passing the point r. When ni is
chosen as a variable, the direction of the line is parallel to the vector ui. Since u1,
u2, and u3 are linearly independent, Eq. (3.2) can be converted to three straight lines
which do not meet each other anywhere except the point r. These three lines are
called coordinate lines. Every position r has three coordinate lines and is identified
by the intersection of the three coordinate lines. Varying r, the space can be filled
with coordinate lines. The three vectors u1, u2, and u3 are tangent vectors of the
corresponding coordinate lines at the position r because
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ui ¼ @p
@ni

ð3:3Þ

The three numbers n1, n2, and n3 are coordinates of p relative to r.
Consider a plane passing the position r. When the normal vector of the plane is

denoted by n, any point on the plane, say p, satisfies following equation:

p� rð Þ � n ¼ 0 ð3:4Þ

There are infinitely many planes expressed by Eq. (3.4). Among these planes, we
are interested in the planes where one of the three relative coordinates is fixed and
the others are free to vary, say ni ¼ 0. Then, Eqs. (3.2) and (3.4) lead us to

naua þ nbub
� � � ni ¼ 0 ðno sum on a and bÞ ð3:5Þ

Note that a 6¼ i, b 6¼ i and a 6¼ b. The normal vector ni for ni ¼ 0 must be per-
pendicular to both ua and ub because na and nb are arbitrary real numbers. Such
normal vector must be parallel to ua � ub. Then, we can choose

n1 ¼ c1u2 � u3; n2 ¼ c2u3 � u1; n3 ¼ c3u1 � u2 ð3:6Þ

where ci is proportional coefficient. Since u1 � u2 � u3ð Þ 6¼ 0 for any three vectors
of linear independence, we can choose

c1 ¼ c2 ¼ c3 ¼
1

u1 � u2 � u3ð Þ ð3:7Þ

Then, we know ui � nk ¼ dik. It is interesting that these properties of nif g are those
of the dual basis of uif g. Furthermore, it is not difficult to show that position r is the
intersection of the three flat planes obtained by substitution of n1 ¼ 0, n2 ¼ 0 and
n3 ¼ 0 into Eq. (3.2).

From elementary calculus, it is known that f pð Þ ¼ 0, where f pð Þ is a real-valued
function and is a mathematical expression of a surface in three-dimensional space.
It is also known that the gradient of f at a point p on the surface is a vector
perpendicular to the surface at the point p. Thus, the normal vector ni is parallel to
rfi pð Þ, the gradient of fi pð Þ ¼ ni. Note that for a function f pð Þ, the total differential
of the function is given as

df ¼ f pþ dpð Þ � f pð Þ ¼ @f
@nk

dnk ¼ rf � dp ð3:8Þ

Note that rf of Eq. (3.8) is the gradient of f at p. With the help of Eq. (3.2), we
know that dp ¼ dnkuk. Then, Eq. (3.8) gives
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@f
@nk

dnk ¼ uk � rfð Þ dnk ð3:9Þ

Since Eq. (3.9) holds for arbitrary dnk , we have

@f
@nk

¼ uk � rf ð3:10Þ

Note that the right-hand side of Eq. (3.10) is the directional derivative in the
direction of uk . Replacement of f by ni gives

uk � rni ¼
@ni
@nk

¼ dik ð3:11Þ

Since there exists uniquely the set of vectors nif g satisfying ni � uk ¼ dik for a given
set of linearly independent vectors ukf g, it is concluded that the three vectors rni
are identical to the three vectors ni of Eq. (3.6):

ni ¼ rni ð3:12Þ

Coordinate surfaces are defined as the surfaces characterized by ni ¼ 0.
When uif g is a set of unit vectors which are mutually orthogonal, it is clear that

ui ¼ ni. In other words, dual basis is identical to the original basis. If uif g is not an
orthonormal basis, then ui ¼ ni may not be valid. A coordinate system with a set of
orthonormal vectors uif g is called rectangular coordinate system or Cartesian
coordinate system. There are infinitely many rectangular coordinate systems
because it is possible to choose infinitely many uif g. For rectangular coordinate
system, notation ei will be used instead of ui in order to emphasize the fact that
ei � ek ¼ dik and the dual basis of eif g is itself.

Why are such complicate notions necessary? It is because we want to construct a
curvilinear coordinate system. We first consider coordinate lines instead of base
vectors when a curvilinear coordinate system is constructed. Imagine that the space
is filled with infinitely many coordinate lines. The condition of coordinate lines is
that only three coordinate lines intersect at a point in the space and they cannot meet
again at any different point. Let us call it the intersection condition of coordinate
lines. If the three coordinate lines are straight and intersect perpendicularly at any
point of the space, the coordinate system is a rectangular coordinate system. If a
coordinate line is not straight, then the coordinate system is curvilinear. Can this
way to construct a coordinate system describe any point in the space uniquely? The
answer is yes if all coordinate lines satisfy the conditions mentioned above.

Categorize all coordinate lines into three types: n1-lines, n2-lines, and n3-lines.
The classification is that every coordinate line passing at a point is assigned to one
of the three types without any duplication. Thus, every point has its own three
coordinate lines with different types. With this, it is concluded that any two different
coordinate lines with the same type cannot intersect. Let us call it the parallelism of

28 1 Preliminary Mathematics



coordinate line. However, it does not mean that two different points cannot belong
to the same coordinate line. There must be infinitely many points in a coordinate
lines. Without loss of generality, consider a coordinate line which belongs to the
type of n1-lines and two different points A and B on the n1-line. The point A has its
own n2-line and n3-line and so does the point B. If the two n2-lines of A and B are
identical, the contradiction of the intersection condition of coordinate lines is rec-
ognized. It is because the n1-line and the n2-line intersect twice at two different
points of A and B. The same is valid for n3-line. Finally, it can be concluded that
every point is determined uniquely by a particular set of three coordinate lines of
different types.

Since any line can be parameterized by real number (Kreyszig 2011), every point
has a unique set of three real numbers called coordinates. Each real number is the
parameter of corresponding coordinate line.

Now move to the method for determining the basis naturally imbedded in a
coordinate system. One of the most natural ways is to use the tangent vector of
coordinate line as shown in Eq. (3.3). Since all coordinate systems have three types
of coordinate lines, there exist tangent vectors of three kinds according to the
coordinate lines of three types. The magnitude of each tangent vector depends on
how to parameterize the coordinate line. In general, the three tangent vectors
depend on positions where the tangents are taken. The three tangent vectors at a
point are linearly independent because of the intersection condition and the paral-
lelism of coordinate lines. Hence, these tangent vectors at a point can be chosen as a
basis. The members of this basis are called tangent base vectors (Aris 1962).

The tangent base vectors of a rectangular coordinate system are constant vectors
irrespective of position because every coordinate line is straight. Since coordinate
lines at a point intersect perpendicularly, the tangent base vectors are mutually
orthogonal. If the parameterization of coordinate lines is taken to be consistent with
length scale, the three tangent base vectors have the same magnitude of unity.
Hence, it is conventional to define a rectangular coordinate system as the one that
have orthonormal basis. All coordinate systems with straight coordinate lines are
not rectangular coordinate system because straight coordinate lines can be chosen in
order that intersection is made by angles different from rectangular angle. Such
coordinate systems are called oblique linear coordinate systems which are conve-
nient in crystallography.

Let xk be a coordinate of rectangular coordinate system. Then, we are interested
in one-to-one mapping such that

ni ¼ ni x1; x2; x3ð Þ ð3:13Þ

where i is not power but superscript. The three functions ni of rectangular coor-
dinates have different values for different sets of rectangular coordinates because
Eq. (3.13) is a one-to-one mapping. Since x1; x2; x3ð Þ determines a point uniquely,

so does n1; n2; n3
� �

. Hence, it can be said that n1; n2; n3
� �

is also a set of
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coordinates. Let us call ni
� �

generalized coordinate system. Then, there exists the
inverse mapping such that

xk ¼ xk n1; n2; n3
� � ð3:14Þ

When two of nis are fixed, Eq. (3.14) is a curve parameterized by the other ξ.
Hence, Eq. (3.14) can be used to define three coordinate lines. Since a position p is
expressed by p ¼ xkek , the tangent base vectors of n

i-coordinate system is given by

gi ¼
@p

@ni
¼ @xk

@ni
ek ð3:15Þ

The tangent base vectors are called contravariant base vectors.
Coordinate surface was discussed previously. From Eq. (3.13), ni � c ¼ 0 is a

coordinate surface where c is a given real number. Then, we can define gradient
vector of coordinate surface as follows:

gi ¼ rni ¼ @ni

@xm
em ð3:16Þ

It is interesting to investigate the inner product of tangent base vector and gradient
vector:

gi � gk ¼
@xp
@ni

ep

� �
� @nk

@xq
eq

� �
¼ @xp

@ni
@nk

@xq
ep � eq

¼ @xp
@ni

@nk

@xq
dpq ¼ @xp

@ni
@nk

@xp

¼ @nk

@ni
¼ dik

ð3:17Þ

Here, chain rule of differentiation was used. Equation (3.17) implies that the gra-
dient vectors are dual basis of tangent basis. The dual base vectors gi are called
covariant base vectors.

From Eq. (3.17), it is also known that the matrix @ni=@xk is the inverse of the
matrix @xi=@n

k . This existence of inverse implies that the Jacobian of the mapping
of Eq. (3.13) is not zero:

det
@ni

@xk

� �
6¼ 0 ð3:18Þ

Such transform of coordinate is called proper transform (Sokolnikoff 1964).
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Since a coordinate system has base vectors of two kinds, there are two ways to
express a vector:

v ¼ vkgk ¼ vkgk ð3:19Þ

The components denoted by superscript vk and subscript vk are called covariant and
contravariant components of a vector v, respectively. Note that using Eq. (3.17)
gives

vi ¼ gi � v and vi ¼ gi � v ð3:20Þ

The magnitude of a vector v is given by the square root of v � v as follows:

vk k ¼ ffiffiffiffiffiffiffiffiffi
v � vp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vigið Þ � vkgkð Þ

q
¼

ffiffiffiffiffiffiffi
vivi

p
ð3:21Þ

We have more two different ways to express vk k such that

vk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vigið Þ � vkgkð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
gikvivk

p
ð3:22Þ

and

vk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vigið Þ � vkgkð Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gik vivk

p
ð3:23Þ

where

gik ¼ gi � gk and gik ¼ gi � gk ð3:24Þ

It is easily understood that two matrices gik and gik are symmetric. Since the
magnitude of vector is nonnegative real number, it is clear that the followings are
valid for any real numbers of vi and vi:

viv
i 	 0; gikvivk 	 0 and gikv

ivk 	 0 ð3:25Þ

Inequalities (3.25) imply that gik and gik are positive definite. Since gik and gik are
involved in the magnitude of vector, they are called metric matrices.

Since contravariant base vector gi is a vector, it can be expressed by a linear
combination of covariant base vectors such that gi ¼ cikg

k. Application of Eq. (3.24)
gives cik ¼ gik. Similarly gi ¼ cikgk gives cik ¼ gik. Then, we know that metric
matrix converts contravariant base vector to covariant base vector and vice versa:

gi ¼ gikgk and gi ¼ gikgk ð3:26Þ
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Furthermore, it is not difficult to show that

vi ¼ gikvk and vi ¼ gikv
k ð3:27Þ

where vi and vi are, respectively, covariant and contravariant components of a
vector v ¼ vigi ¼ vigi.

3.2 Cylindrical and Spherical Coordinate Systems

Among curvilinear coordinate systems, cylindrical and spherical coordinate systems
are representative and frequently used in engineering problems. The definition of
cylindrical coordinate system is given by

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; / ¼ arctan

y
x
; z ¼ z ð3:28Þ

where x ¼ x1, y ¼ x2, and z ¼ x3 are rectangular coordinates and r ¼ n1, / ¼ n2,
and z ¼ n3 are cylindrical coordinates. Equation (3.28) allows the following inverse
mapping:

x ¼ r cos/; y ¼ r sin/; z ¼ z ð3:29Þ

The contravariant and covariant base vectors of cylindrical coordinate system are
given by

g1 ¼ cos/e1 þ sin/e2; g2 ¼ �r sin/e1 þ r cos/e2; g3 ¼ e3 ð3:30Þ

and

g1 ¼ cos/ e1 þ sin/ e2; g2 ¼ � sin/
r

e1 þ cos/
r

e2; g3 ¼ e3 ð3:31Þ

Equations (3.30) and (3.31) reveal that both contravariant and covariant basis are
orthogonal ones: If i 6¼ k, then gi � gk ¼ gi � gk ¼ 0. Furthermore, gi is parallel to g

k.
Because of these properties of cylindrical coordinate system, it is more convenient
to use the following orthonormal basis:

er ¼ g1 ¼ g2 ¼ cos/ e1 þ sin/ e2

e/ ¼ 1
r
g2 ¼ rg2 ¼ � sin/ e1 þ cos/ e2

ez ¼ g1 ¼ g1 ¼ e3

ð3:32Þ
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Cylindrical coordinate system is more convenient than rectangular coordinate
system when a mathematical problem has axial symmetry. On the other hand,
spherical coordinate system is more convenient when point symmetry is involved.
Spherical coordinate system is defined as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
; h ¼ arctan

zffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ; / ¼ arctan
y
x

ð3:33Þ

The inverse mapping of Eq. (3.33) is given as

x ¼ r cos/ sin h; y ¼ r sin/ sin h; z ¼ r cos h ð3:34Þ

The contravariant and covariant base vectors of spherical coordinate system is given
as

g1 ¼ cos/ sin h e1 þ sin/ sin h e2 þ cos h e3
g2 ¼ r cos/ cos h e1 þ r sin/ cos h e2 � r sin h e3
g3 ¼ �r sin/ sin h e1 þ r cos/ sin h e2

ð3:35Þ

and

g1 ¼ g1; g2 ¼ 1
r2
g2; g3 ¼ 1

r2 sin2 h
g3 ð3:36Þ

Note that n1 ¼ r, n2 ¼ h and n3 ¼ / were used. Just as cylindrical coordinate
system, we have gi � gk ¼ gi � gk ¼ 0 whenever i 6¼ k. Then, it is also convenient to
use orthonormal basis such that

er ¼ g1 ¼ g1 ¼ cos/ sin h e1 þ sin/ sin h e2 þ cos h e3

eh ¼ 1
r
g2 ¼ rg2 ¼ cos/ cos h e1 þ sin/ cos h e2 � sin h e3

e/ ¼ 1
r sin h

g3 ¼ r sin h g3 ¼ � sin/ e1 þ cos/ e2

ð3:37Þ

It is interesting that e/ and longitude angle ϕ of spherical coordinate system are
identical to e/ and ϕ of cylindrical coordinate system, respectively. Note that the
radial distance of spherical coordinate system is denoted by r which is the same
symbol used for the distance from z axis in this book, while symbol ρ is used for the
radial distance in another book (Arfken 2001).
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3.3 Change of Coordinate Systems

Consider two generalized coordinate systems such as fnig and fnig. Since both ni

and n
i
are one-to-one mappings from the same rectangular coordinate system,

composition of mappings gives

n
i ¼ n

i
x1; x2; x3ð Þ ¼ n

i
x1 nk
� �� �

; x2 nk
� �� �

; x3 nk
� �� �� � ¼ n

i
n1; n2; n3
� � ð3:38Þ

Equation (3.38) implies the existence of the mapping from fnig to fnig and the
inverse mapping from n

i� �
to ni
� �

because the two coordinates are proper. Hence,
we can write

ni ¼ ni n
1
; n

2
; n

3
� �

; n
i ¼ n

i
n1; n2; n3
� � ð3:39Þ

Let the contravariant and covariant base vectors of ni
� �

be denoted by gif g and
gif g, respectively. Similarly, gif g and gi

� �
are the contravariant and covariant base

vectors of fnig. Then, chain rule of differentiation gives

gi ¼
@xm

@n
i em ¼ @xm

@nk
@nk

@n
i em ¼ @nk

@n
i gk ð3:40Þ

and

gi ¼ @n
i

@xm
em ¼ @n

i

@nk
@nk

@xm
em ¼ @n

i

@nk
gk ð3:41Þ

Note that chain rule of differentiation gives

@ni

@n
m
@n

m

@nk
¼ @ni

@nk
¼ dik ð3:42Þ

where dik ¼ dik is used to emphasize that contravariant and covariant components
are represented by subscript and superscript, respectively. Equation (3.42) implies

that @ni=@n
k
is the inverse of @n

i
=@nk and vice versa. Then, Eqs. (3.40) and (3.41)

can be rewritten as

gi ¼
@n

k

@ni
gk and gi ¼ @ni

@n
k g

k ð3:43Þ
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Since a vector v can be expressed by Eq. (3.19), we have

v ¼ vigi ¼ vi
@n

k

@ni
gk ¼ vkgk ¼ vigi ¼ vi

@ni

@n
k g

k ¼ vkgk ð3:44Þ

where vk and vk are the covariant and contravariant components of v in n-coordinate
system. Then, we obtain the transform rule for component of vector as follows:

vi ¼ @n
i

@nk
vk and vi ¼ @nk

@n
i vk ð3:45Þ

As a special case, consider two rectangular coordinate systems fxig and fxig
with the common origin. Then, the transform rule for basis is given by

ei ¼ @xk
@xi

ek and ei ¼ @xk
@xi

ek ð3:46Þ

Since base vectors of rectangular coordinate system are constant, the matrix of
partial derivatives @xk=@xi and its inverse are constant matrices. Furthermore, it is
valid that

@xm
@xi

@xm
@xk

¼ @xm
@xi

@xm
@xk

¼ dik ð3:47Þ

because ei � ek ¼ ei � ek ¼ dik. Since the inverse matrix is uniquely determined, we
have

@xi
@xk

¼ @xi
@xk

ð3:48Þ

This implies that the transpose matrix of @xk=@xi is its inverse. Such matrix is called
orthogonal matrix.

Problem 3

[1] Express the intersection point between a flat plane xj n � x� pð Þ ¼ 0f g and a
straight line xjx ¼ qþ v t; t 2 Rf g in terms of n, p, q, and v.

[2] When the condition ni ¼ 0 is posed to Eq. (3.2), show that Eq. (3.5) is
equivalent to the condition.

[3] If Eq. (3.13) is linear equations such as ni ¼ Qikxk , then find covariant and
contravariant bases in terms of the orthonormal basis of the rectangular
coordinate system.

[4] Suppose that the contravariant base vectors of a coordinate system satisfy
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gi � gk ¼ 0 for i 6¼ k
hi for i ¼ k

�
ð3:aÞ

Then, express the covariant base vectors in terms of hi and the contravariant
base vectors.

[5] Derive

ei ¼ @nk

@xi
gk ¼

@xi
@nk

gk ð3:bÞ

[6] Consider two rectangular coordinate systems equipped with orthonormal
basis feig and eif g. Prove that

@xk
@xi

¼ ei � ek

[7] Prove that gikxixk 	 0 for arbitrary real numbers xi with i ¼ 1; 2; 3.
[8] Consider cylindrical coordinate system with n1 ¼ r, n2 ¼ /, and n3 ¼ z and

calculate the coefficients Cm
ik such that

@gi
@nk

¼ Cm
ikgm

[9] For two rectangular coordinates, a vector can be expressed by
v ¼ viei ¼ vkek. Find the relation between vi and vk by using Eq. (3.46).

[10] A position vector x ¼ xkek can be expressed in terms of cylindrical coordi-
nates as follows:

x ¼ rer þ zez ð3:cÞ

From Eq. (3.c), we can obtain

dx ¼ dr er þ rd/ e/ þ dzez ð3:dÞ

Prove Eqs. (3.c) and (3.d).
[11] As for spherical coordinate system, derive the followings:

e1 ¼ sin h cos/ er þ cos h cos/ eh � sin/ e/
e2 ¼ sin h sin/ er þ cos h sin/ eh þ cos/ e/
e1 ¼ cos h er � sin h eh

ð3:eÞ

[12] Consider a change of coordinates from a rectangular coordinate system to
another rectangular coordinate system. Show that for any i and k,
@xi=@xkj j 
 1.
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[13] Express @xi=@xk of the Problem [12] in terms of the inner products of feig
and feig. Note that ei can be expressed by using a linear combination of fekg
and vice versa.

4 Vector Analysis

4.1 Vector Algebra

Before moving to vector calculus, it is worthwhile to study vector algebra which is
helpful for understanding vector calculus. Various vector identities will be intro-
duced here, assuming that the readers know the definition and properties of vector
product.

As for right-handed rectangular coordinate system, the orthogonal basis satisfies

e1 � e2 ¼ e3; e2 � e3 ¼ e1; e3 � e1 ¼ e2 ð4:1Þ

It is interesting that Eq. (4.1) can be rewritten as

ep � eq ¼ epqkek ð4:2Þ

where eikm is called permutation symbol or Levi-Civita symbol such that

eikm ¼ i� kð Þ k � mð Þ m� ið Þ
2

ð4:3Þ

Equation (4.3) implies that eikm ¼ 0 if any duplication of index occurs and eikm ¼
�1 otherwise. When all the three indexes are different, the sign of eikm is deter-
mined by the number of permutation to make the arrange of the indexes ikm be 123.
Odd permutations assign �1 while even permutations 1. Taking examples, we have

e123 ¼ e312 ¼ e231 ¼ 1; e213 ¼ e321 ¼ e132 ¼ �1 ð4:4Þ

Using the permutation symbol provides an easier way to calculate the vector pro-
duct of two vectors, a ¼ amem and b ¼ bnen as follows:

a� b ¼ amemð Þ � bnenð Þ ¼ ambnem � en ¼ eimnambnei ð4:5Þ

There are a few identities related to vector product. The identities often appear in
various calculations of vector and tensor. Consider three arbitrary vectors, say a, b,
and c. One often meets a problem to calculate b� cð Þ � a. Vector b� c is per-
pendicular to both b and c. Use the notation n ¼ b� c. Then, we can decompose
the vector a as follows:
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a ¼ mnþ bbþ cc ð4:6Þ

Using Eq. (4.6) gives

b� cð Þ � a ¼ bb� nþ cc� n ð4:7Þ

Since n is perpendicular to both b and c, it is clear that both b� n and c� n must
be spanned by b and c. Hence, the vector b� cð Þ � a must be a linear combination
of b and c. Since b� cð Þ � a is linear in a, b, and c, it is a reasonable assumption
that

b� cð Þ � a ¼ a1 b � að Þcþ a2 c � að Þb ð4:8Þ

Two coefficients a1 and a2 should be determined. Taking inner product with a on
both sides of Eq. (4.8), the left side is zero since it is perpendicular to a.

0 ¼ a1 b � að Þ c � að Þþ a2 c � að Þ b � að Þ ð4:9Þ

This implies that a1 ¼ �a2 � a. Since Eq. (4.8) must hold for arbitrary vectors,
putting a ¼ e2, b ¼ e2 and c ¼ e3 gives

a e2 � e2ð Þ e3 � a e3 � e2ð Þ e2 ¼ e3 ð4:10Þ

Hence, the coefficient α must be unity and we have

b� cð Þ � a ¼ b � að Þ c� c � að Þ b ð4:11Þ

This identity can be easily memorized if it is called BAC-CAB rule (Arfken 2001).
Applying Eq. (4.5) to Eq. (4.11), we have an identity relating the permutation
symbol and Kronecker’s delta:

eijkepqk ¼ dipdjq � diqdjp ð4:12Þ

From elementary calculus, we know well that the magnitude of vector product is
the area of the parallelogram spanned by the two vectors. Hence, the absolute value
of the triple product a � b� cð Þ is the volume of the parallelepiped spanned by the
three vectors. Consider a point represented by curvilinear coordinate system. There
are three infinitesimal vectors which are tangent to the corresponding coordinate
lines:

t1 � dn1g1; t2 � dn2g2; t3 � dn3g3 ð4:13Þ

38 1 Preliminary Mathematics



We are interested in the volume of the parallelepiped spanned by the three
infinitesimal tangent vectors:

dV ¼ t1 � t2 � t3ð Þ ¼ g1 � g2 � g3ð Þ dn1dn2dn3 ð4:14Þ

Application of Eq. (3.15) gives

dV ¼ @xm
@n1

em

� �
� @xn

@n2
en

� �
� @xk

@n3
ek

� � �
dn1dn2dn3

¼ emnk
@xm
@n1

@xn
@n2

@xk
@n3

dn1dn2dn3 ¼ det
@xi
@nk

� �
dn1dn2dn3

ð4:15Þ

Note that Eq. (4.15) includes the formula for determination of 3� 3 matrix such
that

det Fikð Þ ¼ eijkF1iF2jF3k ¼ eijkFi1Fj2Fk3 ð4:16Þ

4.2 Differentiation of Vector

Consider a sufficiently smooth function of position f ðxÞ. The position x can be
expressed in various ways depending on coordinate systems. Consider the case of
generalized coordinate system such that f ðxÞ ¼ f n1; n2; n3

� �
. Then, the total dif-

ferential of f is given by

df ¼ @f

@nk
dnk ð4:17Þ

From elementary calculus, it is known that the total differential is the inner product
of gradient of the function and infinitesimal difference of position vector:

df ¼ rf � dx ð4:18Þ

Since the position vector x can be expressed by x ¼ xkek, the infinitesimal differ-
ence is given by

dx ¼ dxkek ¼ @xk
@ni

dniek ¼ dnigi ð4:19Þ
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where Eq. (3.15) was used. Since rf is a vector, we can express rf in terms of a
linear combination of covariant base vector:

rf ¼ fkgk ð4:20Þ

Substitution of Eqs. (4.19) and (4.20) into Eq. (4.18) yields

df ¼ fkgk
� � � dnigi

� � ¼ fidn
i ð4:21Þ

Comparison of Eq. (4.21) with Eq. (4.17) illustrates

rf ¼ @f

@nk
gk ð4:22Þ

Elementary calculus defines the gradient of a function as follows:

rf ¼ @f
@xk

ek ð4:23Þ

Application of chain rule of differentiation gives

rf ¼ @f

@ni
@ni

@xk
ek ¼ @f

@ni
gi ð4:24Þ

where Eq. (3.16) was used. Hence, we obtained the same equation again.
Since vector-differential operators such as curl and divergence can be expressed

by vector operation on vectors with del operator r ¼ ek @=@xkð Þ, it is important to
express the del operator in generalized coordinate system. The learning from gra-
dient gives

r ¼ gk
@

@nk
ð4:25Þ

Then, the divergent of a vector v ¼ vigi is given by

r � v ¼ gk
@

@nk

� �
� vigi
� � ¼ gk � @v

igi
@nk

¼ @vi

@nk
gk � gi þ vigk � @gi

@nk
ð4:26Þ

It is noteworthy that the partial derivative of @gi=@n
k is not the zero vector because

base vectors of general coordinate system depend on position in general. Hence, we
have to evaluate the partial derivative. Using Eq. (3.15) gives

@gi
@nk

¼ @

@nk
@xm
@ni

em

� �
¼ @2xm

@ni@nk
em ð4:27Þ
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Then, application of Eq. (3.16) gives

gk � @gi
@nk

¼ @2xm
@ni@nk

@nk

@xn
en

� �
� em ¼ @2xm

@ni@nk
@nk

@xm
ð4:28Þ

Then finally, we have

r � v ¼ @vi

@ni
þ vi

@2xm
@ni@nk

@nk

@xm
ð4:29Þ

These analyses illustrate that vector differentiation in generalized coordinate
system needs formula of partial derivatives of base vectors with respective gener-
alized coordinates. Followings are summary of such partial derivatives:

@gi
@nk

¼ Cm
ikgm ¼ Cmikgm ð4:30Þ

and

@gi

@nk
¼ �Ci

mkg
m ¼ �Ci

nkg
nmgm ð4:31Þ

where

Cm
ik ¼ gm � @gi

@nk
¼ @2xp

@ni@nk
@nm

@xp
¼ Cm

ki ð4:32Þ

and

Cmik ¼ gm � @gi
@nk

¼ @2xp
@nm@ni

@xp
@nk

¼ Cimk ð4:33Þ

The coefficients Cmik and Cm
ik are called the Christoffel symbols of the first kind and

of the second kind, respectively.
For evaluation of curl, we need to know the vector product of base vectors. Note

that fgig are dual basis of fgig. Then, learning from (3.1), the reader easily rec-
ognized that

g1 ¼ g2 � g3
g1 � g2 � g3ð Þ ; g2 ¼ g3 � g1

g1 � g2 � g3ð Þ ; g3 ¼ g1 � g2
g1 � g2 � g3ð Þ ð4:34aÞ

4 Vector Analysis 41



and

g1 ¼
g2 � g3

g1 � g2 � g3ð Þ ; g2 ¼
g3 � g1

g1 � g2 � g3ð Þ ; g3 ¼
g1 � g2

g1 � g2 � g3ð Þ ð4:34bÞ

It is not difficult to derive

g � det gikð Þ	 0 ð4:35Þ

and

ffiffiffi
g

p ¼ g1 � g2 � g3ð Þ ¼ 1
g1 � g2 � g3ð Þ ð4:36Þ

Then, with the help of Eqs. (4.34a, b), we have

gi � gk ¼ eikm
ffiffiffi
g

p
gm; gi � gk ¼ eikmffiffiffi

g
p gm ð4:37Þ

Substitution of (3.26) into the right-hand sides of Eq. (4.37) gives

gi � gk ¼ eikm
ffiffiffi
g

p
gmngn; gi � gk ¼ eikmffiffiffi

g
p gmngn ð4:38Þ

Similarly, we have

gi � gk ¼ gkneinm
ffiffiffi
g

p
gm ¼ einmg

kngmj
ffiffiffi
g

p
gj;

gi � gk ¼ gkq
eiqmffiffiffi
g

p gm ¼ gkqgmp
eiqmffiffiffi
g

p gp
ð4:39Þ

Now we are equipped with every thing necessary to calculate curl of vector.
Application of Eqs. (4.30) and (4.39) gives

r� v ¼ gi
@

@ni

� �
� vkgk
� � ¼ @vk

@ni
gi � gk þ vkgi � @gk

@ni

¼ @vk

@ni
þ vpCk

pi

� �
gkq

eiqmffiffiffi
g

p gm

ð4:40Þ

Although use of the generalized coordinate gives quite complicate equation as
shown in Eqs. (4.24), (4.29), and (4.40), it becomes dramatically simplified when
geometry of mathematical problem has symmetry. These equations are important
not only because most engineering and physical problems are reduced partial dif-
ferential equations which are consist of curl and divergence of vector of scalar fields
but also because nonlinear constitutive theory of viscoelasticity requires generalized
coordinate systems. These equations will be helpful especially in Chap. 8. When
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generalized coordinate system under consideration is orthogonal curvilinear coor-
dinate system such as cylindrical and spherical ones, these equations become
simpler. In addition to gradient, curl and divergence, Laplacian r2 is one of the
most important differential operators in vector analysis. Laplacian is the divergence
of gradient. Followings are useful.

4.2.1 Cylindrical Coordinate System

r ¼ er
@

@r
þ e/

1
r
@

@/
þ ez

@

@z
ð4:41Þ

rf ¼ @f
@r

er þ 1
r
@f
@/

e/ þ @f
@z

ez ð4:42Þ

r2f ¼ 1
r
@

@r
r
@f
@r

� �
þ 1

r2
@2f

@/2 þ @2f
@z2

ð4:43Þ

r � v ¼ 1
r
@ rvrð Þ
@r

þ 1
r
@v/
@r

þ @vz
@z

ð4:44Þ

r � v ¼ 1
r
@vz
@/

� @v/
@z

� �
er þ @vr

@z
� @vz

@q

� �
e/ þ 1

r

@ rv/
� �
@r

� @vr
@/

 �
ez ð4:45Þ

v ¼ vrer þ v/e/ þ vzez ð4:46Þ

4.2.2 Spherical Coordinate System

r ¼ er
@

@r
þ eh

1
r
@

@h
þ e/

1
r sin h

@

@/
ð4:47Þ

rf ¼ @f
@r

er þ 1
r
@f
@h

eh þ 1
r sin h

@f
@/

e/ ð4:48Þ

r2f ¼ 1
r2

@

@r
r2

@f
@q

� �
þ 1

r2 sin2 h
sin h

@

@h
sin h

@f
@h

� �
þ @2f

@/2

 �
ð4:49Þ

r � v ¼ 1
r2
@ r2vrð Þ
@r

þ 1
r sin h

@vh sin h
@h

þ @v/
@/

� �
ð4:50Þ
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r� v ¼ 1
r sin h

@

@h
v/ sin h
� �� @vh

@/

 �
er þ 1

r
1

sin h
@vr
@/

� @

@r
rv/
� � �

e/

þ 1
r

@

@r
rvhð Þ � @vr

@h

 �
e/

ð4:51Þ

where

v ¼ vrer þ vheh þ v/e/ ð4:52Þ

4.3 Integration of Vector and Scalar

Integration can be said to sum infinitely many terms which are divided infinitely
small for easier calculations. As an example, consider the calculation of the area of
a circle. The circle can be divided into N isosceles triangles. It is easier to calculate
the area of the triangles. As N increases, the area of the triangle becomes smaller.
However, the total area of the triangles converges to the area of the circle. This
notion can be applied to various integrations involving vector and scalar such as
line, surface, and volume integrations.

4.3.1 Line Integral

We are interested in an integral of vector over a curve. In physics, calculation of
work is a representative example of line integrals. Suppose that force is given as a
vector-valued function of position and the route of particle motion is given as a
vector-valued function of time. Then, the work is calculated by

W ¼
Zq
p

f xð Þ � dx ð4:53Þ

where f xð Þ is the force field, x is the position on the curve and p and q are initial
and final positions, respectively. If the curve is divided to sufficiently small seg-
ments, say dx, then they can be considered as straight line segments. It is a rea-
sonable assumption that f xð Þ is a nearly constant vector on the line segment. Then,
the integral can be evaluated by

W ¼ lim
N!1

XN
n¼1

f
xn þ xn�1

2

� �
� xn � xn�1ð Þ ð4:54Þ
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where x0 ¼ p, xN ¼ q and xn are points on the curve. Partition of curve is illus-
trated in Fig. 2.

Any curve can be parameterized by a real number. If the parameterization is
known with x toð Þ ¼ p, x tf

� � ¼ q and to 
 t
 tf , then Eq. (4.53) can be replaced by

W ¼
Ztf
to

f x tð Þ½ � � v tð Þ dt ð4:55Þ

where v tð Þ ¼ dx=dt.
With this notion, one can evaluate the following line integral, too:

B ¼
Ztf
to

b tð Þ � dx tð Þ ð4:56Þ

4.3.2 Surface Integral

Now we move to integration over surface. In order to do that, we need a way to
partition a surface. One of the most elegant methods to describe a surface is to use a
mapping from two-dimensional plane to three-dimensional space. Surface of
sphere, as an example, can be characterized by longitude ϕ angle and latitude angle
θ. It is clear that 0
/\2p and 0
 h\p. When the center of a sphere is the origin,
a point of the sphere x can be expressed in terms of θ and ϕ as follows:

x ¼ R cos/ sin h e1 þR sin/ sin h e2 þR cos h e3 ¼ Rer ð4:57Þ

where R is the radius of the sphere. This is the parameterization of surface.
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Fig. 2 Partition of line
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For generalization, consider a set of two-dimensional plane U. Let the coordi-
nates of U be denoted by p and q. Parameterization of surface is to find a one-to-one
mapping from U to three-dimensional space V such that

x p; qð Þ ¼ xk p; qð Þ ek ð4:58Þ

In general, any surface cannot be expressed by a single expression of Eq. (4.58).
However, if a surface is divided to parts of finite numbers, Eq. (4.58) can be applied
for each part with different functions xkðp; qÞ. Consider union of several
two-dimensional sets such that

U ¼
[N
n¼1

Un ð4:59Þ

Consider also a mapping from Un to a set Sn in three-dimensional space such that

x nð Þ p; qð Þ ¼ x nð Þ
k p; qð Þ ek ð4:60Þ

Then, patch of a surface S is defined as the set of mappings of Eq. (4.60) if the
whole surface S is the union of Sn:

S ¼
[N
n¼1

Sn ð4:61Þ

It is known that any surface has at least a patch (O’Neill 2006).
A finite portion of surface Sn can be filled with coordinate lines of two kinds: p-

lines and q-lines. The p-line is defined as a curve that is obtained from a member of
the patch of the surface, say Eq. (4.60) when q is fixed at a certain value. The q-line
can be defined similarly. Now Sn can be partitioned by partitioning Un. One of the
simplest partition of Un is to divide Un to small rectangles whose sides have the
length of dp and dq. The boundaries of these rectangles are mapped into the two
coordinate lines in three-dimensional space. Then, the surface looks like a collec-
tion of small tiles. Since both dp and dq are infinitesimal, each tile can be con-
sidered as a small piece of flat plane. We want to express the normal vectors and
areas of the small tiles mathematically. Figure 3 illustrates partition of surface.

We can define tangent vectors of the two coordinate lines as

tp ¼ @x
@p

; tq ¼ @x
@q

ð4:62Þ

It is not difficult to show that the two tangent vectors are linearly independent. Since
each tile is a parallelogram spanned by the two vectors such as dptp and dq tq, the
area of the tile da is given by
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da ¼ tp � tq
�� �� dp dq ð4:63Þ

Furthermore, the normal vector is proportional to the vector product of the two
tangent vectors. Then, we can define area vector as follows:

da � tp � tq
� �

dp dq ð4:64Þ

When a region is enveloped by a surface, the direction of surface normal vector
is conventionally chosen outward. This convention can be satisfied by the choice of
two coordinate p and q. Now we are equipped with everything to evaluate the
following integrals:

SI1 ¼
ZZ
@X

b � da; ð4:65aÞ

SI2 ¼
ZZ
@X

b� da; ð4:65bÞ

SI3 ¼
ZZ
@X

f da; ð4:65cÞ

SI4 ¼
ZZ
@X

f da; ð4:65dÞ

where @X is the region of surface over which integration is carried. The surface
integral SI1 is scalar, whereas SI2, SI3, and SI4 are vectors. By using Eqs. (4.63) and
(4.64), these surface integrals are reduced to double integrals over the intervals of
p and q.

e

e

e

pt

qt

qpa qp ddd ttn ×≡ ( (Fig. 3 Partition of surface
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4.3.3 Volume Integral

One of the simplest partitions of three-dimensional region is to divide the region to
rectangular cubes. Let the three sides of cubes be aligned parallel to the axis of a
rectangular coordinate system. Then, volume of each cube is given by

dV ¼ dxdydz ð4:66Þ

Then, volume integral is reduced to triple integral. Although this partition is simple,
the evaluation of volume integral happens to be very difficult when the boundary of
the region does not fit rectangular coordinate system.

If a region of integral fits a generalized coordinate system, the boundary of the
region is easily expressed by

ak\nk\bk with k ¼ 1; 2; 3 ð4:67Þ

In this case, it is rather difficult to partition the region. If choosing coordinate lines
with spacing by dnk , very small parallelepiped are spanned by three vectors: g1dn

1,
g2dn

2 and g3dn
3. The volume of the infinitesimal parallelepiped is given by

dV ¼ g1 � g2 � g3ð Þj j dn1dn2dn3 ð4:68Þ

It is not difficult to arrange the coordinates in order that g1 � g2 � g3ð Þ[ 0.
Right-handed coordinate system is the one that satisfies g1 � g2 � g3ð Þ[ 0. Then,
the following volume integrals carried in the curvilinear coordinate system become
triple integral over the three generalized coordinates.

VI1 ¼
ZZZ
X

f xð Þ dV ; ð4:69aÞ

VI2 ¼
ZZZ
X

b xð Þ dV ð4:69bÞ

4.3.4 Divergence Theorem

Here, we will illustrate the divergence theorem which relates surface integral to
volume integral. This theorem is as useful as integration by parts of single-variable
functions. The word “illustrate” is used because following analysis is not a rigorous
proof. The illustration requires coordinate systems. To maximize generality, use of
generalized coordinate system is recommendable. However, generalized coordinate

48 1 Preliminary Mathematics



system results in complicate calculation which might be an obstacle when student
readers understand the theorem. To make it insightful, the complicate equations
should be simplified. Hence, we shall use rectangular coordinate system. Of course,
the same results can be obtained with generalized coordinate system, too.

A three-dimensional region of any shape can be partitioned by coordinate sur-
faces with spacing by dxk. Then, we can obtain infinitesimal cubes spanned by three
tangent vectors dx1e1, dx2e2, and dx3e3 as shown in Fig. 4. Let the center of the αth
cube be denoted by xa. The cube has six flat surfaces whose normal vectors are
�ek. Symbol a �ið Þ denotes the surface whose normal vector is �ei. Note that the
area of a �1ð Þ is da �1ð Þ ¼ dx2dx3. In general, we have

da �ið Þ ¼
dV
dxi

ð4:70Þ

where dV is the volume of the cube, which is given by dx1dx2dx3. The center of
a �ið Þ is given by

r að Þ
�ið Þ ¼ xa � 1

2
dxiei no sum on ið Þ ð4:71Þ

Consider a vector field b xð Þ. We are interested in the sum such that

Ia �
X3
k¼1

b r að Þ
þ kð Þ

� �
� ek þ b r að Þ

�kð Þ
� �

� �ekð Þ
h i

da kð Þ ð4:72Þ

1e

3e

2e

αx

Fig. 4 Infinitesimal volume element for the illustration of the divergence theorem
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Using Taylor expansion, Eq. (4.72) becomes simpler as follows:

Ia ¼
X3
k¼1

bk xa þ 1
2
dxkek

� �
� bk xa � 1

2
dxkek

� � �
dV
dxk

¼
X3
k¼1

@bk
@xk

����
xa

dV

¼ r � bð ÞxadV
ð4:73Þ

Summing Ia over the whole region, we have

X
a¼1

Ia ¼
ZZZ
X

r � bdV ð4:74Þ

If the αth cube is interior to the region Ω, then it has six neighbors and share one of
its faces with one of the neighbors. However, the normal vectors of the common
face of two adjacent cubes have opposite direction. Then, Ia is canceled by
neighborhood. If the αth cube is located on the boundary of Ω, then it has at least
one face without sharing. Note that Eq. (4.72) has six inner products of vector field
b and area vector of each face. Then, canceling by neighborhood gives a surface
integral such that

X
a¼1

Ia ¼
ZZ
@X

b � da ð4:75Þ

Combination of Eqs. (4.74) and (4.75) yields the divergence theorem:ZZ
@X

b � da ¼
ZZZ
X

r � b dV ð4:76Þ

Sometimes surface integral happens to be more difficult than volume integral.
Then, the divergence theorem is powerful in calculation. However, one of the most
important roles of the divergence theorem is to develop a mathematical theory in
various fields of physics and engineering. Examples are derivation of various
balance equations in continuum thermomechanics and molecular theories based on
probability distribution function which fades away at remote places in the space of
random variables.

There are various modifications of the divergence theorem. Consider a vector
fields which is factorized by the product of a scalar field and a vector field such that
v ¼ fu. Application of the divergence theorem givesZZZ

X

u � rf þ fr � uð Þ dV ¼
ZZ
@X

fu � da ð4:77Þ
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If u ¼ rg, then Eq. (4.77) becomesZZZ
X

rg � rf þ fr2g
� �

dV ¼
ZZ
@X

frg � da ð4:78Þ

Interchange of f and g givesZZZ
X

rg � rf þ gr2f
� �

dV ¼
ZZ
@X

grf � da ð4:79Þ

Subtraction of Eq. (4.78) by Eq. (4.79) givesZZZ
X

fr2g� gr2f
� �

dV ¼
ZZ
@X

frg� grfð Þ � da ð4:80Þ

Equations (4.78) and (4.79) are called Green’s first identity, and Eq. (4.80) is named
Green’s second identity. Green’s second identity is used in proving the uniqueness
of the solution of Laplace equation r2w ¼ 0:

4.3.5 Stokes Theorem

Consider a piece of surface Σ and its boundary @R. The surface can be partitioned
by p-coordinate and q-coordinate lines as shown in Fig. 5. The q values of two
adjacent p-lines are different by dq and the p values of two adjacent q-lines by
dp. By this partition, the surface is a collection of infinitesimal parallelograms
spanned by two vectors tpdp and tqdq.

Let the center of the αth parallelogram be denoted by xa ¼ x pa; qað Þ. The
positions of the four corner points of the αth parallelogram are given in terms of xa
and the corresponding patch x p; qð Þ:

r að Þ
1 ¼ x pa � 1

2
dp; qa � 1

2
dq

� �
; r að Þ

2 ¼ x pa þ 1
2
dp; qa � 1

2
dq

� �
;

r að Þ
3 ¼ x pa þ 1

2
dp; qa þ 1

2
dq

� �
; r að Þ

4 ¼ x pa � 1
2
dp; qa þ 1

2
dq

� �
;

ð4:81Þ

Σ

Σ∂

Fig. 5 Partition of the surface
Σ which is bounded by the
loop @R

4 Vector Analysis 51



Now, we are interested in

Ia ¼ b1 � r að Þ
2 � r að Þ

1

� �
þ b2 � r að Þ

3 � r að Þ
2

� �
þ b3 � r að Þ

4 � r að Þ
3

� �
þ b4 � r að Þ

1 � r að Þ
4

� �
ð4:82Þ

where bk ¼ b xkð Þ with

x1 ¼ 1
2

r að Þ
1 þ r að Þ

2

� �
; x2 ¼ 1

2
r að Þ
2 þ r að Þ

3

� �
;

x3 ¼ 1
2

r að Þ
3 þ r að Þ

4

� �
; x4 ¼ 1

2
r að Þ
4 þ r að Þ

1

� � ð4:83Þ

Using Taylor expansion again gives

Ia ¼ tp � ei
� � @bk

@xi
tq � ek
� �� tq � ei

� � @bk
@xi

tp � ek
� � �

dpdq

¼ r� bð Þ � tp � tq
� �

dpdq

¼ r� bð Þ � daa

ð4:84Þ

where all derivatives are those at xa. Derivation from the first line to the second line
of Eq. (4.84) requires an identity related to skew-symmetric tensor which will be
studied in the next sections.

Summing Ia over all infinitesimal parallelograms, we have a surface integral
such that

X
a¼1

Ia ¼
ZZ
R

r� bð Þ � da ð4:85Þ

On the other hand, Eq. (4.82) is a line integral along the boundary line of the αth
infinitesimal parallelogram. Summing Ia results in cancelation of the contributions
from the common line segments shared by two adjacent parallelograms, which
gives

X
a¼1

Ia ¼
Z
@R

b � dr ð4:86Þ

Finally, we arrive at the famous theorem of Stokes:Z
@R

b � dr ¼
ZZ
R

r� bð Þ � da ð4:87Þ

It must be noted that the boundary of the surface @R is a closed loop.
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Stokes theorem is a mathematical basis of Faraday’s law of induction. It is also
useful in calculation of irrotational flow whose velocity field v satisfies r� v ¼ 0.
Equation (4.87) implies that when a force field is irrotational, then the work done by
the force over any closed loop will be zero. This is equivalent to the existence of a
scalar field whose gradient is the force field. The scalar field ψ is called potential
when the following is satisfied

b ¼ �rw ð4:88Þ

The minus sign is adopted in order that the sum of kinetic energy and potential
becomes conserved.

Problem 4

[1] If an unknown vector x satisfies a� x ¼ b and a � x ¼ b for known vector
a and b and a known real number β, express x in terms of a, b, and β.

[2] Prove the identity:

a� bð Þ � c� dð Þ ¼ a � b� dð Þ½ �c� a � b� cð Þ½ �d ð4:aÞ

[3] If n is a given unit vector, then prove that any vector a can be expressed as
follows:

a ¼ a � nð Þ nþ n� a� nð Þ ð4:bÞ

[4] Derive Eq. (4.12) from the identity of Eq. (4.11).
[5] Derive Eqs. (4.30) and (4.31).
[6] Derive Eqs. (4.34a, b)–(4.37), and (4.39).
[7] Derive Eqs. (4.43)–(4.45).
[8] Derive Eqs. (4.49)–(4.51).
[9] Prove following identities.

rf g xð Þ½ � ¼ f 0 g xð Þ½ �rg where f 0 xð Þ ¼ df
dx

; ð4:cÞ

r �rf ¼ 0; ð4:dÞ

r � r � bð Þ ¼ 0; ð4:eÞ

r � r� bð Þ ¼ r r � bð Þ � r2b; ð4:fÞ

r2 r � bð Þ ¼ r � r2b
� �

; ð4:gÞ

r2 r� bð Þ ¼ r � r2b
� � ð4:hÞ

[10] Prove following identity.
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ZZZ
X

c � r � bð Þ dV ¼
ZZ
@X

b� cð Þ � da ð4:iÞ

where c is a constant vector.

5 Tensor Analysis

The second-order tensor is a linear transform from a physical vector to another
physical vector. Linear algebra lets us know that linear transforms form a vector
space if scalar multiplication and addition are defined over the set of linear trans-
form. Thus, third-order tensor can be defined as a linear transform from a vector to a
second-order tensor or from a second-order tensor to a vector. Higher-order tensor
also can be defined. There are several ways to express tensor. Here, polyadic
notation is preferred.

5.1 Polyadic Notation of Linear Transform

Consider an experiment that is aimed at measuring the electric dipole moment
p ¼ piei of a molecule in a coordinate system. For the measurement, suppose that
an electric field E ¼ Ekek is applied to the molecule and the following relation is
obtained:

pi ¼ AikEk ð5:1Þ

where the coefficients Aik are independent of the electric field. This relation looks
like that there exists a mapping from electric field to electric dipole moment vector.
Since electric dipole moment is responsive to electric field, the component-wise
Eq. (5.1) must be a facet of a linear transform from electric field vector to dipole
moment vector. Hence, we want to find the linear transform from Eq. (5.1). Since
pi ¼ ei � p and Ek ¼ ek � E, we want to rewrite Eq. (5.1) as follows:

p ¼ piei ¼ Aik ek � Eð Þ ei ð5:2Þ

Motivated from Eq. (5.2), one may invent a mathematical entity called dyadic
which is a pair of two vectors. For given two vectors a and b, dyadic is denoted by
ab and is equipped with the following properties as an operator. For any vector x,

ab � x ¼ b � xð Þa; x � ab ¼ a � xð Þb ð5:3Þ
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Then, the dyadic ab plays the role of a linear transform because for any two vectors
x and y with arbitrary real numbers α and β, the followings hold:

ab � axþ byð Þ ¼ a b � xð Þaþ b b � yð Þa ¼ aab � xþ bab � y;
axþ byð Þ � ab ¼ a x � að Þbþ b y � að Þb ¼ ax � abþ by � ab ð5:4Þ

Linear transform is a mapping from vector space to vector space. The word “linear”
implies that when the argument is any linear combination of vectors of domain,
then the image of the linear transform is the linear combination of the images of
each vector with the same coefficients as shown in Eq. (5.4).

Using zero vector 0, one can define the dyadic which maps any vector to the zero
vector: O � 00. Then, we know that O � x ¼ x �O ¼ 0. From two dyadics ab and
cd, a new linear transform can be defined as c1abþ c2cd where c1 and c2 are
arbitrary real numbers. The new linear transform, say N ¼ c1abþ c2cd, is defined
to satisfy

N � x ¼ c1 b � xð Þaþ c2 d � xð Þc;
x � N ¼ c1 x � að Þbþ c2 x � cð Þd ð5:5Þ

Equation (5.5) includes the definitions of addition and scalar multiplication. It is
clear that the scalar multiplication of a dyadic with zero is the zero dyadic or the
zero linear transform O. Then, it is not difficult to show that linear combination of
dyadics form the vector space of linear transform.

Denote the set of all linear transforms from a physical vector to another physical
vector by T. Then, any member of T can be expressed by

T ¼ Tikeiek ð5:6Þ

It is not difficult to show that the elementary dyadics eiek form a basis of
T. Furthermore, any linear transform can be expressed by Eq. (5.6).

The notion of dyadic can be applied to Eq. (5.2). Define polarizability as a linear
transform such that

A ¼ Aikeiek ð5:7Þ

Equation (5.2) is recovered by application of A to electric field E ¼ Emem.
However, it cannot be said that the experimental confirmation of Eq. (5.1) in a
single coordinate system implies the existence of the linear transform A. Consider
another rectangular coordinate system different from the original one. Let the basis
of another coordinate system be ekf g. Then, we have

ei ¼ @xk
@xi

ek ð5:8aÞ
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and

ei ¼ @xk
@xi

ek ð5:8bÞ

Application of Eqs. (5.8a, b) to Eq. (5.2) yields

p ¼ Aik
@xn
@xk

en � E
� �

@xm
@xi

em ð5:9Þ

Since Ek ¼ ek � E and pa ¼ ea � p, Eq. (5.9) can be rewritten as

pa ¼
@xa
@xi

@xn
@xk

AikEn ð5:10Þ

Application of Eqs. (5.8a, b) to Eq. (5.7) yields

A ¼ Aabeaeb ¼ @xi
@xa

@xk
@xb

Aabeiek ¼ Aikeiek ð5:11Þ

The experimental proof for the existence of A of Eq. (5.7) is to show that

Aik ¼ @xi
@xa

@xk
@xb

Aab ð5:12Þ

holds for any pair of rectangular coordinate systems. If Eq. (5.12) does not hold,
then Aik is not a component of tensor A. Equation (5.12) is the rule of coordinate
transform for second-order tensor. Since the physical meaning of A is how strong
electric dipole moment is generated by a given electric field, it is a characteristic of
a molecule. Hence, it is a physical quantity.

Tensor is a linear transform that represents a physical quantity. Polarizability
tensor A is a second-order tensor because its transform rule, Eq. (5.12) requires two
transform matrix @xi=@xk. Following this naming, vector is called the first-order
tensor because its transform rule requires only one @xi=@xk, whereas scalar is called
zero-order tensor because it requires no transform matrix. We can define third-order
tensor and higher-order tensors. Although third-order tensor is rarely used in rhe-
ology, fourth-order tensor is important because viscosity and modulus are examples
of fourth-order tensor. Nth-order tensor can be expressed as a linear combination of
N-acids of base vectors

T ¼ Tn1n2...nN en1en2 . . .enN ð5:13Þ
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We use the following notation for second-order and fourth-order tensors

T � E ¼ Timeiemð Þ � Enkenekð Þ ¼ TimEnk em � enð Þ eiek ¼ TimEmkeiek; ð5:14aÞ

T : E ¼ TimEnk ei � enð Þ em � ekð Þ ¼ TikEik; ð5:14bÞ

T � �E ¼ TimEnk ei � ekð Þ em � enð Þ ¼ TkmEmk; ð5:14cÞ

G : E ¼ Gikpqeiekepeq
� �

: Emnemenð Þ ¼ GikpqEpqeiek; ð5:14dÞ

E : G ¼ Emnemenð Þ : Gikpqeiekepeq
� � ¼ GikpqEikepeq ð5:14eÞ

Equation (5.14a) implies that the product of two second-order tensors is also a
second-order tensor. Let C ¼ T � E. Since both T and E are linear transforms, the
tensor C can be interpreted as the composition of the two linear transforms. To
show this, consider v ¼ E � u and w ¼ T � v where u ¼ uaea. Equation (5.14a)
gives

w ¼ T � E � uð Þ ¼ Timeiemð Þ � Enkukenð Þ ¼ TimEmkukei ð5:15Þ

On the other hand, we have

C � u ¼ T � Eð Þ � u ¼ TimEmkeiekð Þ � uaeað Þ ¼ TimEmkukei ð5:16Þ

The equivalence of Eqs. (5.15) and (5.16) proves not only that C is the composite
linear transform of T and E but also that

T � E � uð Þ ¼ T � Eð Þ � u ð5:17Þ

In general, the products of the second-order tensors with single dot such as A � B �
C. . .G satisfies associate rule:

A � B � Cð Þ ¼ A � Bð Þ � C ð5:18Þ

Table 2 summarizes various tensors and their rule of coordinate transform. It is a
convention that second-order tensor is usually called tensor if context does not give
rise to any confusion.

Table 2 Tensors and coordinate transform

Order Polyadics Number of components Coordinate transform

First v ¼ viei 31 vi ¼ @xi
@xk

vk

Second T ¼ Tikeiek 32 Tik ¼ @xi
@xm

@xk
@xn

Tmn

Third H ¼ Hikneieken 33 Hikn ¼ @xi
@xp

@xk
@xq

@xn
@xr

Hpqr

Fourth G ¼ Gijkleiejekel 34 Gijkl ¼ @xi
@xp

@xj
@xq

@xk
@xr

@xl
@xs

Gpqrs
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5.2 Tensor Algebra

5.2.1 Tensor Components with Respect to Generalized Basis

Just as vector, tensor can be expressed by linear combinations of various bases.
When generalized coordinates are used, there are two kinds of basis: covariant and
contravariant basis. Hence, vector has two ways of representation, second-order
tensor has four ways, third-order tensor has eight ways, and so on:

v ¼ vigi ¼ vkgk; ð5:19aÞ

T ¼ Tikgigk ¼ Tikgigk ¼ T �k
i g

igk ¼ Ti
�kgig

k; ð5:19bÞ

H ¼ Hikmgigkgm ¼ Hikmgigkgm ¼ Hi
�kmgig

kgm ¼ � � � ð5:19cÞ

Since gi � gk ¼ dki , it is easily understood that

vi ¼ gi � v; vi ¼ gi � v; ð5:20aÞ

Tik ¼ gi � T � gk; T �k
i� ¼ gi � T � gk;

Ti�
�k ¼ gi � T � gk; Tik ¼ gi � T � gk ð5:20bÞ

Let the Cartesian components of T be denoted by T cð Þ
ik in order to distinguish it from

the contravariant components Tik. If context does not give rise to any confusion,
then we shall use Tik as the Cartesian components of T. Then, the relation between
Cartesian and generalized components can be obtained in a simple way:

T cð Þ
ik ¼ ei � T � ek ¼ ei � Tpqgpgq

� � � ek ¼ Tpq ei � gpð Þ ek � gqð Þ ¼ @np

@xi

@nq

@xk
Tpq;

ð5:21aÞ

T cð Þ
ik ¼ ei � Tpqgpgq

� � � ek ¼ @xi
@np

@xk
@nq

Tpq ð5:21bÞ

The rest relations are left as exercise.
We have learned how generalized base vectors are related according to change of

coordinates. Here Eqs. (3.40) and (3.41) are applied to Eq. (5.20b) in order to obtain
the relation between the components of second-order tensors of two different
generalized coordinate systems:

Tik ¼ gi � T � gk ¼
@np

@n
i gp

 !
� T � @nq

@n
k gq

 !
¼ @np

@n
i

@nq

@n
k gp � T � gq ¼

@np

@n
i

@nq

@n
k Tpq

ð5:22Þ
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Similar method gives

T
ik ¼ @n

i

@np
@n

k

@nq
Tpq ð5:23Þ

5.2.2 Symmetric and Skew-Symmetric Tensors

For any second-order tensor T, we can define its transpose tensor, TT , which
satisfies

u � T � v ¼ v � TT � u ð5:24Þ

for any two vectors u and v. It is clear that TT ¼ Tikekei ¼ Tkieiek when
T ¼ Tikeiek. Equation (5.24) implies that the transpose tensor of the tensor is itself:

TT
� �T¼ T ð5:25Þ

The followings are identities related to transpose tensors:

aTþ bSð ÞT¼ aTT þ bST ; ð5:26aÞ

T � Sð ÞT¼ ST � TT ; ð5:26bÞ

T � u ¼ u � TT ð5:26cÞ

where T and S are arbitrary second-order tensors, a and b are arbitrary real num-
bers, and u is an arbitrary vector.

A tensor S is called symmetric tensor when S ¼ ST and a tensor W is called
skew-symmetric tensor (or antisymmetric tensor) when W ¼ �WT .
A skew-symmetric tensor has 3 nonzero Cartesian components because
Wik ¼ �Wki. Then, one may imagine the existence of a vector w ¼ wkek such that

W � x ¼ w� x ð5:27Þ

for any vector x ¼ xkek . The vector w is called the axial vector of W. Using a
Cartesian coordinate system, Eq. (5.27) yields

Wik ¼ �eikmwm ð5:28Þ
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Using the identity eikmeikn ¼ 2dmn, we have

wi ¼ � 1
2
eipqWpq ð5:29Þ

As for a skew-symmetric tensor W and two any vector u and v, the following is
always valid.

u �W � v ¼ w � v� uð Þ ð5:30Þ

Since A� AT is a skew-symmetric tensor for any tensor A, Eq. (5.30) implies that

u � A � v� v � A � u ¼ a � v� uð Þ ð5:31Þ

where a is the axial vector of A� AT .
For a vector field b xð Þ, the differential of b is given by

db ¼ rbð ÞT � dx ¼ @bi
@xk

dxkei ð5:32Þ

Note that

rb ¼ ei
@

@xi

� �
bkekð Þ ¼ @bk

@xi
eiek ð5:33Þ

The axial vector of rb� rbð ÞT is given by

� 1
2
eipq

@bq
@xp

� @bp
@xq

� �
ei ¼ �eipq

@bq
@xp

ei ¼ �r� b ð5:34Þ

Replacement of A and a of Eq. (5.31) by rb and �r� b, respectively, gives

u � rb � v� v � rb � u ¼ r� bð Þ � u� vð Þ ð5:35Þ

Application of Eq. (5.35) to Eq. (4.84) proves the Stokes theorem.
Any tensor A can be decomposed to symmetric and skew-symmetric parts as

follows:

A ¼ 1
2

AþAT� �þ 1
2

A� AT� � ð5:36Þ

It is clear that the first term of the right-hand side is a symmetric tensor and the last
term is a skew-symmetric tensor.
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5.2.3 The Identity Tensor

If for any vector v, a tensor maps v to itself, then the tensor is called the identity
tensor and is denoted by I:

I � v ¼ v � I ¼ v ð5:37Þ

Since the identity tensor is a tensor, it can be expressed by I ¼ Imnemen.
Determination of Imn can be done by:

Imn ¼ em � I � en ¼ em � en ¼ dmn ð5:38Þ

It must be emphasized that Eq. (5.36) is valid for any orthonormal basis. Hence, it is
clear that

I ¼ ekek ¼ emem ð5:39Þ

From the definitions of covariant and contravariant base vectors, the identity tensor
can be rewritten in terms of covariant or contravariant base vectors (see Problem [5]
of Sect. 3):

I ¼ gikgigk ¼ gikgigk ¼ gkgk ¼ gkg
k ð5:40Þ

5.2.4 Orthogonal Tensors

If a tensor P satisfies P � PT ¼ PT � P ¼ I, then the tensor is called orthogonal
tensor. Consider two orthonormal basis eif g and eif g. Equation (5.8a) can be
rewritten as

ei ¼ Q � ei ð5:41Þ

where

Q ¼ @xp
@xq

epeq ð5:42Þ

It is clear that

QT �Q ¼ @xp
@xi

eiep

� �
� @xm

@xk
emek

� �
¼ @xm

@xi

@xm
@xk

eiek ð5:43Þ
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Since ei � ek ¼ ei � ek , we have

ei � ek ¼ Q � eið Þ � Q � ekð Þ ¼ ei �QT
� � � Q � ekð Þ ¼ ei � QT �Q� � � ek ¼ dik ð5:44Þ

Then, Eq. (5.44) implies that QT �Q ¼ I. It also implies that

@xm
@xi

@xm
@xk

¼ dik ð5:43aÞ

Similarly, we can derive that

@xm
@xi

@xm
@xk

¼ dik ð5:43bÞ

5.2.5 Inverse Tensor

One of important features of the identity tensor is the product with second-order
tensor. For any second-order tensor T, the following is valid

I � T ¼ T � I ¼ T ð5:45Þ

For a second-order tensor T, if there is a second-order tensor T�1 such that

T � T�1 ¼ T�1 � T ¼ I ð5:46Þ

then the tensor T�1 is unique and called the inverse tensor of T. If a tensor T has
the inverse, the tensor is called an invertible tensor. Consider a representation of an

invertible tensor, T ¼ T cð Þ
ik eiek . Suppose that the matrix T cð Þ

ik has the inverse matrix

S cð Þ
ik . Then, we can construct a tensor S ¼ S cð Þ

ik eiek in the same coordinate system. It
is quite easy to check T � S ¼ S � T ¼ dikeiek . Using coordinate change yields

S ¼ @xm
@xi

@xn
@xk

S cð Þ
ik emen; T ¼ @xm

@xi

@xn
@xk

T cð Þ
ik emen ð5:47Þ

Then, we have

S
cð Þ
ik T

cð Þ
km ¼ T

cð Þ
ik S

cð Þ
km ¼ dim ð5:48Þ

Thus, if the components matrix of a tensor is invertible in a rectangular coordinate
system, then so does the component matrix in another rectangular coordinate sys-
tem. Since inverse matrix is determined uniquely, it can be said that inverse tensor
also is determined uniquely.
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When a tensor is expressed by T ¼ Tikgigk, we want to find a tensor S ¼
Smngmgn which satisfies S � T ¼ T � S ¼ I. Note that

S � T ¼ SikT
kngign; T � S ¼ TikSkngign; ð5:49Þ

Since I ¼ gigi, SikT
kn ¼ TikSkn ¼ din should be valid. Hence, the component matrix

Sik should be the inverse of Tik.

5.2.6 Tensor Invariants

The double product of two tensors T : E ¼ TikEik shown in Eq. (5.14b) looks like a
bilinear functional from two tensors to a real number. If Eq. (5.14b) is a real
functional of tensors, the value TikEik must be invariant for the same tensors irre-
spective of coordinate systems. To show this, we use Eq. (5.45):

TikEik ¼ @xi
@xm

@xk
@xn

Tmn
@xi
@xp

@xk
@xq

Epq ¼ @xi
@xm

@xi
@xp

@xk
@xn

@xk
@xq

TmnEpq ð5:50Þ

Application of Eq. (5.43) gives

TikEik ¼ TmnEmn ¼ TikEik ð5:51Þ

Hence, f T;Eð Þ ¼ T : E is a scalar-valued function of tensor. Similarly, we can
show that g T;Eð Þ ¼ T � �E is also a scalar-valued function of tensor. In general,
scalars made of inner product of tensors such as T : E and T � �E are independent of
coordinate change. The scalar quantities are called tensor invariants.

One of the most important tensor invariants is trace of a tensor which is defined
as

tr Tð Þ ¼ I : T ¼ I � �T ð5:52Þ

As for nonnegative integer, we define

T0 ¼ I; T1 ¼ T; T2 ¼ T � T; � � �Tn ¼ T � T � T � � �T|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
n times

ð5:53Þ

Then, f Tð Þ ¼ tr Tnð Þ is a scalar-valued function of tensor. There are several iden-
tities related to trace of tensor:

tr aTþ bSð Þ ¼ a tr Tð Þþ b tr Sð Þ; ð5:54aÞ

tr TT
� � ¼ tr Tð Þ; ð5:54bÞ
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tr T � Sð Þ ¼ tr S � Tð Þ ¼ T : ST ð5:54cÞ

In matrix algebra, determinant is a function from N � N matrix to a real number.
Since a tensor is represented by a 3� 3 matrix, the determinant of a tensor T is
defined as the determinant of the component matrix and denoted by det Tð Þ.
Furthermore, det Tð Þ has the same value irrespective of coordinate change. Thus,
f Tð Þ ¼ det Tð Þ is a scalar-valued function of tensor. Determinant of tensor can be
calculated by the determinant of a component matrix of the tensor in a coordinate
system, det Tð Þ ¼ emnlT1mT2nT3l. Hence, determinant of tensor satisfies the prop-
erties of the determinant of 3� 3 matrix:

det Ið Þ ¼ 1; ð5:55aÞ

det TT
� � ¼ det Tð Þ; ð5:55bÞ

det T � Sð Þ ¼ det Tð Þ det Sð Þ; ð5:55cÞ

det T�1� � ¼ 1
det Tð Þ ð5:55dÞ

5.2.7 The Cayley–Hamilton Theorem

Eigenvalue problem for a tensor T is to find a vector v and a number λ such that

T � v ¼ kv ð5:56Þ

Here, the vector v is called an eigenvector of T and the number λ is called
eigenvalue. In a Cartesian coordinate system, Eq. (5.56) is equivalent to

Tik � kdikð Þ vk ¼ 0 ð5:57Þ

where vk is the kth component of eigenvector v. The trivial solution of Eq. (5.57) is
v ¼ vkek ¼ 0. The condition for the existence of nonzero eigenvector is

det Tik � kdikð Þ ¼ 0 ð5:58Þ

Equation (5.58) is a cubic equation for λ such that

PT kð Þ � k3 � I1k
2 þ I2k� I3 ¼ 0 ð5:59Þ
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where

I1 ¼ Tkk ¼ tr Tð Þ;
I2 ¼ 1

2
TiiTkk � TikTkið Þ ¼ 1

2
tr Tð Þ½ � 2�tr T2� �n o

;

I3 ¼ det Tikð Þ ¼ det Tð Þ
ð5:60Þ

Since Eq. (5.58) is equivalent to det T� kIð Þ ¼ 0 and determinant of tensor is a
tensor invariant, it is easily understood that I1, I2 and I3 are also tensor invariant.
They are called principal invariants of tensor T. Hence, the following notation is
also used:

IT ¼ I1; IIT ¼ I2; IIIT ¼ I3 ð5:61Þ

This notation is used to emphasize that these invariants are obtained from the tensorT.
When an eigenvalue is found, then Eq. (5.56) gives nonzero eigenvectors cor-

responding to the eigenvalue. Since Eq. (5.57) is a homogeneous equation for vk,
the magnitude of eigenvector cannot be determined uniquely. In other words,
eigenvalue problem is to find the direction of vector corresponding to the eigen-
value. Hence, we shall consider only unit eigenvector for convenience. If necessary,
it will be mentioned that the eigenvector under consideration is not a unit vector.

Symmetric tensor is very important in continuum mechanics. It can be proved
that any symmetric tensor has distinct three real roots for the characteristic equation
of (5.59). Then, two eigenvectors with different eigenvalues of symmetric tensor are
orthogonal to each other. Suppose k1 6¼ k2. Then, Eq. (5.56) gives

v2 � T � v1ð Þ ¼ k1v2 � v1; v1 � T � v2ð Þ ¼ k2v1 � v2 ð5:62Þ

where v1 and v2 are the eigenvectors corresponding to k1 and k2, respectively.
Since T is symmetric, v1 � T � v2 ¼ v2 � T � v1, which implies that

k1 � k2ð Þv1 � v2 ¼ 0 ð5:63Þ

This results in the orthogonality of the two eigenvectors: v1 � v2 ¼ 0 because
k1 6¼ k2.

Since a symmetric tensor has three distinct real eigenvalues, it must have three
mutually orthogonal eigenvectors. Then, we can construct an orthonormal base
consisting of the three eigenvectors. Let the basis be denoted by vkf g.
Equation (5.56) implies that vi � T � vk ¼ ki when i ¼ k and vi � T � vk ¼ 0 when
i 6¼ k. This allows us to write

T ¼ k1v1v1 þ k2v2v2 þ k3v3v3 ð5:64Þ

This is called spectral decomposition, which implies that the component matrix of a
symmetric tensor can be diagonalized as shown in Eq. (5.64) when coordinate
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systems is suitably chosen. The axis of the diagonalization is called the principal
axis.

Since any symmetric tensor can be expressed as Eq. (5.64). It is clear that for any
nonnegative integer n,

Tn ¼
X3
k¼1

kkð Þnvkvk ð5:65Þ

From Eq. (5.59), we can derive

T3 � ITT2 þ IITT� IIITI ¼
X3
k¼1

PT kkð Þ vkvk ¼ 0 ð5:66Þ

because of Eq. (5.59). Consider a two-dimensional tensor such that

B ¼ B11e1e1 þB22e2e2 þB12e1e2 þB21e2e1 ð5:67Þ

where Bab are arbitrary real numbers. The principal invariants of B is easily cal-
culated as follows:

IB ¼ B11 þB22; IIB ¼ B11B22 � B12B21; IIIB ¼ 0 ð5:68Þ

Furthermore, the two-dimensional tensor B satisfies

B3 � IBB2 þ IIBA� IIIBI ¼ 0 ð5:69Þ

because the tensor satisfies

B2 � IBBþ IIB I� e3e3ð Þ ¼ 0 ð5:70Þ

Thus, the readers may conclude that any tensor T satisfies

T3 � I1T2 þ I2T� I3I ¼ 0 ð5:71Þ

If we set PT kð Þ ¼ k3 � I1k
2 þ I2k� k0 which is the polynomial of Eq. (5.59), then

Eq. (5.71) is equivalent to P Tð Þ ¼ 0. Equation (5.71) holds for any second-order
tensor, which is called the Cayley–Hamilton theorem.

The proof of the Cayley–Hamilton theorem may be done by the substitution of
Tikeiek to Eq. (5.71), which needs a long and tedious calculation. Although elegant
proofs are found in text books of linear algebra and tensor analysis, these also
require a long series of theorems. Hence, the proof of the Cayley–Hamilton theorem
is omitted here.

Usefulness of the Cayley–Hamilton theorem is to allow us to calculate Tn in
terms of T2, T and I with principal invariants of T. Some examples are

66 1 Preliminary Mathematics



T3 ¼ I1T2 � I2Tþ I3I; T4 ¼ I21 � I2
� �

T2 � I1I2Tþ I1 þ 1ð Þ I3I ð5:72Þ

In general, we have

Tn ¼ f nð Þ
2 I1; I2; I3ð ÞT2 þ f nð Þ

1 I1; I2; I3ð ÞTþ f nð Þ
0 I1; I2; I3ð ÞI ð5:73Þ

The functions f nð Þ
k can be determined iteratively by using the Cayley–Hamilton

theorem.

5.2.8 Quadratic Form

Given a second-order tensor T, a quadratic function of a vector x can be defined by

fT xð Þ ¼ x � T � x ð5:74Þ

A scalar-valued function defined by Eq. (5.74) is called quadratic form of tensor T.
If fT xð Þ[ 0 for any nonzero vector x, the tensor T is called a positive definite
tensor.

Consider a tensor defined by S ¼ r1e1e1 þr2e2e2 with r1 [ 0 and r2 [ 0. The
tensor S is not positive definite because fS xð Þ[ 0 is not valid for x ¼ xe3. An
example of a positive definite tensor is B ¼ F � FT (or C ¼ FT � F) where F is an
invertible tensor. It is easy to show the tensor is positive definite:

fB xð Þ ¼ x � F � FT
� � � x ¼ x � Fð Þ � FT � x� � ¼ FT � x� � � FT � x� �

[ 0 ð5:75Þ

Note that if F is invertible, then so is FT and that FT � x 6¼ 0 whenever x 6¼ 0. Thus,
fB xð Þ is always positive whenever x 6¼ 0 because fB xð Þ is the square of the mag-
nitude of the vector FT � x.

If a symmetric tensor is positive definite, the tensor follows Eq. (5.64) and all
eigenvalues kk are positive. Then, using Eq. (5.64) implies that there exists a
symmetric positive tensor such that T ¼ U2 and

U ¼
ffiffiffiffiffi
k1

p
v1v1 þ

ffiffiffiffiffi
k2

p
v2v2 þ

ffiffiffiffiffi
k3

p
v3v3 ð5:76Þ

Theses theorems will be used in kinematics of continuum mechanics for under-
standing finite deformation of viscoelastic materials.

5.2.9 Tensor Functions

Using the definition (5.53) gives the exponential function of tensor such that
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exp Tð Þ �
X1
n¼0

1
n !

Tn ð5:77Þ

When applying Eq. (5.73) to Eq. (5.77), we use the following definitions such that

f 0ð Þ
2 ¼ f 0ð Þ

1 ¼ 0 ; f 0ð Þ
0 ¼ 1 ;

f 1ð Þ
2 ¼ f 1ð Þ

0 ¼ 0 ; f 1ð Þ
1 ¼ 1 ;

f 2ð Þ
1 ¼ f 2ð Þ

0 ¼ 0 ; f 2ð Þ
2 ¼ 1

ð5:78Þ

Then, Eq. (5.77) becomes

exp Tð Þ ¼
X1
n¼0

f nð Þ
2

n!

 !
T2 þ

X1
n¼0

f nð Þ
1

n!

 !
Tþ

X1
n¼0

f nð Þ
0

n!

 !
I ð5:79Þ

Hence, the existence of exponential function of tensor requires the convergence of
the infinite series in the right-hand side of Eq. (5.79). It is known that the con-
vergences hold. When T is a symmetric tensor, the spectral decomposition of T,
Eq. (5.64) gives

exp Tð Þ ¼
X3
k¼1

exp kkð Þ vkvk ð5:80Þ

If a function f xð Þ can be expanded as the Taylor series with infinite radius of
convergence, we can define

f Tð Þ ¼
X1
n¼0

f nð Þ 0ð Þ
n !

Tn ð5:81Þ

As for a symmetric tensor, we have

f Tð Þ ¼
X3
k¼1

f kkð Þ vkvk ð5:82Þ

As for the exponential function of Eq. (5.77), the following identities hold:

exp aTþ bSð Þ ¼ exp aTð Þ � exp bSð Þ; ð5:83aÞ

exp Tð Þ � exp �Tð Þ ¼ exp �Tð Þ � exp Tð Þ ¼ I ð5:83bÞ

It must be noted that Eq. (5.83a) assumes that T and S commute: T � S ¼ S � T.
Then, we can define exp 0ð Þ ¼ I.
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Consider a tensor-valued function of time, W tð Þ which is a mapping from real
number to tensor. The following differential equation of tensor appears in rheology:

dW
dt

�H �W�W �HT ¼ S tð Þ ð5:84Þ

where H is a constant tensor and S tð Þ is a given tensor-valued function of time. To
solve the differential equation, introduce

K tð Þ ¼ exp �tHð Þ �W � exp �tHT
� � ð5:85Þ

Then, it is clear that

dK
dt

¼ e�tH � dW
dt

�H �W�W �HT

� �
� e�tHT ð5:86Þ

Combining Eq. (5.84) with Eq. (5.86), we have

dK
dt

¼ e�tH � S tð Þ � e�tHT ð5:87Þ

Integration gives

K tð Þ �K 0ð Þ ¼
Z t

0

e�sH � S sð Þ � e�sHT
ds ð5:88Þ

Since K 0ð Þ ¼ W 0ð Þ, application of Eqs. (5.83a, b) gives

W tð Þ ¼ etH �W 0ð Þ � etHT þ
Z t

0

e� s�tð ÞH � S sð Þ � e� s�tð ÞHT
ds ð5:89Þ

We can find an analogy with the solution of the ordinary differential equation
such that

dw
dt

þ hw ¼ b tð Þ ð5:90Þ

5.2.10 Isotropic Tensors

Isotropic tensor is a tensor whose components are not dependent on coordinate
change. When a tensor are expressed by T ¼ Tikeiek ¼ Tikeiek , isotropic tensor
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means Tik ¼ Tik for any pair of basis. Without any proof, we state isotropic tensors
of second, third, and fourth order:

2nd order tensor U 2ð Þ ¼ kI ð5:91aÞ

3rd order tensor U 3ð Þ ¼ keikmeiekem ð5:91bÞ

4th order tensor U 4ð Þ ¼ adikdpq þ bdipdkq þ cdiqdkp
� �

eiekepeq ð5:91cÞ

where α, β, γ, and λ are all arbitrary real numbers.
Isotropic tensor-valued function G Tð Þ is defined as the one which satisfies

G Q � T �QT� � ¼ Q �G Tð Þ �QT ð5:92Þ

where Q is an arbitrary orthogonal tensor. It is known that when the domain of the
isotropic tensor is the set of symmetric tensors, then

G Tð Þ ¼ c0Iþ c1Tþ c2T
2 ð5:93Þ

where ck are functions of principal invariants of T. The proof is found in Haupt
(2000).

5.3 Tensor Calculus

Consider a vector field v ¼ vk xð Þ ek. The differential of the vector field is given by

dv ¼ v xþ dxð Þ � v xð Þ ¼ dviei ¼ @vi
@xk

dxkei ð5:94Þ

Then, one may introduce a tensor called gradient of v such that

dv ¼ grad v � dx ð5:95Þ

Comparison of Eqs. (5.94) with (5.95) gives

grad v ¼ @vi
@xk

eiek ð5:96Þ

Using the symbol del, we have

grad v ¼ rvð ÞT ð5:97Þ
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Note that rv is the dyadic of vector-differential operator r and vector v:

rv ¼ ei
@

@xi

� �
vkekð Þ ¼ @vk

@xi
eiek ¼ grad vð ÞT ð5:98Þ

It is interesting that the gradient of scalar-valued function of vector is a vector
field while that of vector-valued function of vector is a tensor field.

Note that gradients of scalar and vector can be derived from total differentials.
Another method is to use directional derivative. Consider a scalar field and its
directional derivative

d
dt
f xþ thð Þ

����
t¼0

¼ rf � h ð5:99Þ

As for a vector field, we have

d
dt
v xþ thð Þ

����
t¼0

¼ rvð ÞT �h ð5:100Þ

where h is an arbitrary vector. Then, we can extend this notion to a scalar-valued
function of tensor:

d
dt
f Tþ tHð Þ

����
t¼0

¼ @f
@Tik

Hik ¼ @f
@T

: H ¼ tr
@f
@T

�HT

� �
ð5:101Þ

For simplicity, we used the notation such that

@f
@T

¼ @f
@Tik

eiek ð5:102Þ

Then, we can define the gradient of f by @f =@T. Application of Eq. (5.101) gives

@tr Tnð Þ
@T

¼ n TT
� �n�1 ð5:103Þ

where n is a positive integer. To derive Eq. (5.103), the following is needed:

Tþ tHð Þn¼ Tn þ t
Xn�1

k¼0

Tk �H � Tn�1�k þO t2
� � ð5:104Þ

where O t2ð Þ is the terms that can be factorized by t2.
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Taking trace on both sides of Eq. (5.71), we have

det Tð Þ ¼ 1
6

tr Tð Þ½ �3�3tr Tð Þ tr T2
� �þ 2tr T3

� �n o
ð5:105Þ

Then, using Eq. (5.103) gives

@

@T
det Tð Þ ¼ det Tð ÞT�T ð5:106Þ

where

T�T ¼ T�1� �T¼ TT
� ��1 ð5:107Þ

With the help of Eqs. (5.103) and (5.106), we can derive

@IB
@B

¼ I ;
@IIB
@B

¼ IBI� BT ;
@IIIB
@B

¼ IIIBB�T ð5:108Þ

Equation (5.108) is useful when we study constitutive equation of isotropic
nonlinear elastic materials.

Divergence theorem studied in Sect. 4 can be applied to the definition of the
divergence of second-order tensor. Substitution of b ¼ c � T into Eq. (4.76) gives

c �
ZZ
@X

T � da�
ZZZ
X

r � TTdV

0B@
1CA ¼ 0 ð5:109Þ

where c is assumed to be an arbitrary constant vector. The identity (5.109) implies
that ZZ

@X

T � da ¼
ZZZ
X

divT dV ð5:110Þ

where

divT � r � TT ¼ ei
@

@xi

� �
� Tpqeqep
� � ¼ @Tpi

@xi
ep ð5:111Þ

Note that divergence of tensor is defined by Eq. (5.111).

Problem 5

[1] Prove the identity eikmeikn ¼ 2dmn
[2] Using Eqs. (5.8a, b) and (5.42) show that Q ¼ ekek .
[3] Show that tr S �Wð Þ ¼ 0 for any symmetric tensor S and any

skew-symmetric tensor W.
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[4] Derive Eqs. (5.54a–c).
[5] Derive Eqs. (5.60).
[6] Derive Eqs. (5.69) and (5.70).
[7] Derive Eqs. (5.83a, b).

[8] Show that eA
� �T¼ eA

T

[9] Show that C ¼ FT � F is symmetric and positive definite tensor, whenever F
is invertible.

[10] Consider any linearly independent vectors u, v, and w and invertible tensor
F. Show that

FT � F � uð Þ � F � vð Þ½ � ¼ det Fð Þ u� v ð5:aÞ

and

F � uð Þ � F � vð Þ � F � wð Þ½ �
u � v� wð Þ ¼ det Fð Þ ð5:bÞ

See Gurtin et al. (2010).
[11] Prove that tr P�1 � A � P� � ¼ tr Að Þ.
[12] For a given tensor B ¼ bkbk , show that

IB ¼
X3
k¼1

bk � bk;

IIB ¼ b1 � b2k k2 þ b2 � b3k k2 þ b3 � b1k k2;
IIIB ¼ b1 � b2 � b3ð Þ½ �2

ð5:cÞ

See Cho (2009).
[13] Scalar-valued function of tensor is given by f Bð Þ ¼ / IB; IIB; IIIBð Þ. Assume

that B is symmetric. Then, derive

@f
@B

¼ f1 þ IBf2ð Þ I� f2Bþ IIIBf3B�1 ð5:dÞ

where

f1 ¼ @/
@IB

; f2 ¼ @/
@IIB

; f3 ¼ @/
@IIIB

ð5:eÞ

See Gurtin et al. (2010), Haupt (2000), and Drozdov (1996).
[14] Using the divergence theorem, show thatZZ

@X

v� da ¼ �
ZZZ
@X

r� vdV ð5:fÞ
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[15] Consider a function of vector f h; tð Þ which satisfies

@f
@t

¼ �rh � L � hð Þ f � arhf þ bhff g ð5:gÞ

where L is a constant second-order tensor and α and β are constants.
Furthermore, assume that

f 	 0; lim
hk k!1

hk knf ¼ 0;
Z1
�1

Z1
�1

Z1
�1

f h; tð Þ dh1dh2dh3¼ 1 ð5:hÞ

where n ¼ 0; 1; 2. Then, derive the differential equation of T tð Þ which is
defined by

T tð Þ �
Z1
�1

Z1
�1

Z1
�1

hh f h; tð Þ dh1dh2dh3 ð5:iÞ

See Bird et al. (1987).
[16] Consider a function of vector f xð Þ which satisfies

f txþ 1� tð Þ y½ � 
 tf xð Þþ 1� tð Þ f yð Þ ð5:jÞ

where x and y are arbitrary vectors and t is any real number. Then, show that
the Hessian tensor defined by H � rrf is positive definite.
See Luenberger (1969).

[17] Show that for any skew-symmetric tensor W and any vector x,

x �W � x ¼ 0 ð5:kÞ

6 Fourier and Laplace Transforms

Fourier and Laplace transforms are linear mappings from a function space to
another function space. The mappings are known as one-to-one. They are useful not
only in solving differential equations but also in finding physical insights. In linear
rheology, Fourier and Laplace transforms play the role of connecting different
measurements, which results in overcoming the limitation of rheological
measurements.
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6.1 The Dirac Delta Function

Before studying Fourier and Laplace transforms, it is worthwhile to study the Dirac
delta function because it is an important mathematical tool in integral transforms.

When a density distribution q xð Þ is given, the total mass of a region Ω can be
calculated by the volume integral of the density distribution over the region:

M ¼
ZZZ
X

q xð Þ dV ð6:1Þ

Consider mass points that are distributed at rif g with the mass of mif g. If the
total number of mass points is N, the total mass of the particle system is given by

M ¼
XN
i¼1

mi ð6:2Þ

Equation (6.1) contains the information on the spatial distribution of mass
through q xð Þ while Eq. (6.2) does not include the density field. Equation (6.2)
cannot describe the region where mass points are distributed although we have the
information of mif g and rif g. Hence, it is necessary to invent a mathematical entity
which can describe the spatial distribution of mass point.

Consider a function ge x; rið Þ which has nonzero value near a point ri and zero
outside of the neighborhood of ri. Furthermore, the function should satisfyZZZ

ge x; rið Þ dV ¼ 1 ð6:3Þ

In Eq. (6.3), the integration region is over the whole space though it is not
designated under the symbol of integration. The linear dimension of the neigh-
borhood is assumed to be a small positive number e. A mathematical invention to
express the small region might be the open ball defined as

Be rið Þ � x j x� rik k\ef g ð6:4Þ

Then, we can say thatZZZ
ge x; rið Þ dV ¼

ZZZ
Be rið Þ

ge x; rið Þ dV ¼ 1 ð6:5Þ

because ge x; rið Þ ¼ 0 outside of Be rið Þ. Let ge xð Þ be denoted by ge x; 0ð Þ. Then,
we know that ge x� rið Þ ¼ ge x; rið Þ. Let us call ge xð Þ seed function.
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Using the notion of seed function, we can express the density distribution by

q xð Þ ¼
XN
i¼1

mige x� rið Þ ð6:6Þ

Integration of Eq. (6.6) must give the total mass of Eq. (6.2). Hence, Eq. (6.6)
seems to be a distribution of mass. This approach is often found in molecular
theories (Evans and Morris 2008). However, if two particles happen to satisfy
ri � rkk k\e, the distribution deviates from our notion for mass distribution. Thus,

we need a function defined under the limit of e ! 0. For simplicity, we first
consider the case of one-dimension.

Lesson from Eqs. (6.4) and (6.5) may define the one-dimensional seed function as

ge xð Þ ¼ 1
e
g

x
e

� �
ð6:7Þ

where g xð Þ is any function which has positive finite value near x ¼ 0 and satisfiesZ1
�1

g xð Þdx ¼ 1; g �xð Þ ¼ g xð Þ ð6:8Þ

Thus, as ε goes to zero, the value of ge xð Þ at x ¼ 0 goes to the inifinite while the
width of the nonzero region of ge xð Þ goes to zero. There are several examples of
seed functions. However, Fourier transform prefers

ge xð Þ ¼ 1ffiffiffiffiffiffiffiffi
2pe

p exp � x2

2e

� �
ð6:9Þ

Note that ε of Eq. (6.7) is replaced by
ffiffiffi
e

p
in Eq. (6.9) because of simplicity. One

of the simplest seed function might be

ge xð Þ ¼ e�1 � 1
2 e\x\ 1

2 e
0 otherwise

�
ð6:10Þ

The Dirac delta function is defined asZ1
�1

d xð Þ f xð Þ dx ¼ lim
e!0

Z1
�1

ge xð Þ f xð Þ dx ð6:11Þ

instead of

d xð Þ ¼ lim
e!0

ge xð Þ ð6:12Þ
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Note that f xð Þ is any function in Eq. (6.11). Because Eq. (6.12) diverges to
inifinite at x ¼ 0, the Dirac delta function is defined by Eq. (6.11) instead of
Eq. (6.12). As ε goes to zero, the function ge xð Þ increases by the order of e�1, while
the width of the nonzero region of ge xð Þ decreases by the order of ε. Then, the
value of f xð Þ is maintained as f 0ð Þ in the nonzero region. Hence, we have

Z1
�1

d xð Þ f xð Þ dx ¼ f 0ð Þ ð6:13Þ

Thus, the Dirac delta function is a linear functional from function f xð Þ to real
number f 0ð Þ. However, we use it as a function.

One-dimensional Dirac delta function has the following properties:

d �xð Þ ¼ d xð Þ; ð6:14aÞ

d axð Þ ¼ d xð Þ
aj j ; ð6:14bÞ

Z1
�1

d x� xoð Þf ðxÞdx ¼ f ðxoÞ ð6:14cÞ

Z1
�1

dd xð Þ
dx

f xð Þ dx ¼ df
dx

����
x¼0

ð6:14dÞ

N-dimensional version of the Dirac delta function can be defined as

d x1; x2; . . .; xNð Þ ¼ d x1ð Þd x2ð Þ. . .d xNð Þ ð6:15Þ

For simplicity, N-dimensional vector is denoted by x ¼ x1; x2; . . .; xNð Þ and N-
dimensional volume element by dNx ¼ dx1dx2. . .dxN . Then, we haveZ

f xð Þ d xð Þ dNx ¼ f 0ð Þ ð6:16Þ

In three-dimensional space, the electric field E xð Þ generated by a charge q lo-
cated at r is given as

E ¼ q
4peo

x� r

x� rk k3 ð6:17Þ
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where eo is the permittivity in free space. Gauss law gives

r � E ¼ qe xð Þ
eo

ð6:18Þ

Note that the charge density qe xð Þ of a point charge must be

qe xð Þ ¼ qd x� rð Þ ð6:19Þ

Combination of the Coulomb’s law and the Gauss’ law gives

d x� rð Þ ¼ � 1
4p

r2 1
x� rk k ð6:20Þ

where ∇ is the del operator with respect to x. More rigorous discussion on
Eq. (6.20) is found in Marsden and Tromba (2003).

6.2 Fourier Transform and Its Inversion

6.2.1 N-Dimensional Fourier Transform

N-dimensional Fourier transform is used in analysis of chain conformation which is
related to the entropic force exerted on a chain. Statistics of polymer conformation
has an analogy to Brownian motion, stochastic process. Characteristic function of
probability distribution is an example of the application of Fourier transform of
multidimension. Another important application is scattering experiment of polymer
fluids. See Rubinstein and Colby (2003), Doi and Edwards (1986), and Doi (1996).

Consider a scalar-valued function of N-dimensional vector f xð Þ satisfyingZ
f xð Þj j dNx\1 ð6:21Þ

Equation (6.21) implies that

lim
xk k!1

f xð Þ ¼ 0 ð6:22Þ

For the functions, the Fourier transform is defined by

bF f xð Þ½ � ¼ f̂ kð Þ ¼
Z

f xð Þ e�ik�xdNx ð6:23Þ
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where k is also N-dimensional vector, i ¼ ffiffiffiffiffiffiffi�1
p

, and k � x is the inner product of
two N-dimensional vectors such that

k � x ¼
XN
n¼1

knxn ð6:24Þ

Because of Eq. (6.21), the integral of Eq. (6.23) is finite. Thus, the function f̂ kð Þ
exists.

From the definition, it is clear that Fourier transform is a linear mapping from a
function space to another function space. According to Krantz (1992), the inverse
Fourier transform can be derived by using the seed function defined as

Ge xð Þ ¼ exp � e
2
x � x

� �
ð6:25Þ

Then, the Fourier transform of Ge xð Þ is given by

bGe kð Þ ¼ 2p
e

� �N=2

Ge�1 kð Þ ¼ 2p
e

� �N=2

exp � k � k
2e

� �
ð6:26Þ

Using Eq. (6.9), we can define

ge xð Þ ¼ ge x1ð Þge x2ð Þ. . .ge xNð Þ ð6:27Þ

Then, Eq. (6.26) can be rewritten as

bGe xð Þ ¼ 2pð ÞNge xð Þ ð6:28Þ

Now define an integral transform such that

bF�1 f̂ kð Þ� � � 1

2pð ÞN
Z

f̂ kð Þ eik�xdNk ð6:29Þ

Since Ge xð Þ goes to unity as ε goes to zero, Eq. (6.29) becomes

bF�1 f̂ kð Þ� � ¼ lim
e!0

1

2pð ÞN
Z

f̂ kð ÞGe kð Þ eik�xdNk ð6:30Þ

Substituting Eq. (6.23) into Eq. (6.30) and changing the order of integration gives

bF�1 f̂ kð Þ� � ¼ lim
e!0

1

2pð ÞN
Z

f rð Þ bGe r� xð Þ dNr

¼ lim
e!0

Z
f rð Þge r� xð Þ dNr

¼ f xð Þ

ð6:31Þ
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Hence, the integral transform bF�1 is the inverse Fourier transform. In summary,
we have

f̂ kð Þ ¼
Z

f xð Þ e�ik�xdNx; f xð Þ ¼ 1

2pð ÞN
Z

f̂ kð Þ eik�xdNk ð6:32Þ

6.2.2 One-Dimensional Fourier Transform

One-dimensional Fourier transform is important in linear rheology because it
provides the relation between static response function and dynamic response
function. Static response functions are relaxation modulus and creep compliance
which are measured from static loading, while dynamic response functions are
storage and loss moduli which are measured from sinusoidal loading. See Ferry
(1980).

If N of Eq. (6.32) is replaced by 1, then 1-dimensional Fourier transform pair is
obtained by

f̂ xð Þ ¼
Z1
�1

f tð Þ e�ixtdt ; f tð Þ ¼ 1
2p

Z1
�1

f̂ xð Þ eixtdx ð6:33Þ

Of course, the two functions must satisfy

Z1
�1

f tð Þj j dt\1;

Z1
�1

f̂ xð Þ�� �� dx\1 ð6:34Þ

where both f tð Þ and f̂ xð Þ are assumed to be complex-valued function of real
variable, which implies

f tð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f tð Þ f tð Þ

q
ð6:35Þ

In Eq. (6.35), f tð Þ is the complex conjugate of f tð Þ.
From complex analysis, it is known that eih ¼ cos hþ i sin h, which is called

Euler’s formula. If f tð Þ is a real-valued and even function, we have

f̂ xð Þ ¼
Z1
�1

f tð Þ cosxt dt � i
Z1
�1

f tð Þ sinxt dt ð6:36Þ

Since f ðtÞ is an even function of t and sinxt is an odd function of t, the last
integral of the right-hand side of Eq. (6.36) becomes zero. Then, Eq. (6.36)
becomes
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f̂ xð Þ ¼ 2
Z1
0

f tð Þ cosxt dt ð6:37aÞ

Equation (6.37a) implies that f̂ xð Þ is real and an even function such that
f̂ �xð Þ ¼ f̂ xð Þ because cosxt is an even function of x. Similarly, if f tð Þ is real and
an odd function, then we have

f̂ xð Þ ¼ �2i
Z1
0

f tð Þ sinxt dt ð6:37bÞ

This implies that f̂ xð Þ is purely imaginary and an odd function such that
f̂ �xð Þ ¼ �f̂ xð Þ.

Euler’s formula gives the inverse Fourier transform as follows:

f tð Þ ¼ 1
2p

Z1
�1

f̂ xð Þ cosxtdxþ i
2p

Z1
�1

f̂ xð Þ sinxtdx ð6:38Þ

If f̂ xð Þ is real and even, then

f tð Þ ¼ 1
p

Z1
0

f̂ xð Þ cosxtdx ð6:39aÞ

If f̂ xð Þ is purely imaginary and odd, then

f tð Þ ¼ i
p

Z1
0

f̂ xð Þ sinxtdx ð6:39bÞ

In linear rheology, a response function such as relaxation modulus has to obey

v tð Þ ¼ G tð Þ	 0 for t	 0
0 for t\0

�
ð6:40Þ

because of causality. Assume that G tð Þ is a monotonic decreasing function. From
v tð Þ we can define even and odd functions such that

vEven tð Þ ¼
1
2
G tð Þ	 0 for t	 0

1
2
G �tð Þ	 0 for t\0

8<: ; ð6:41aÞ
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vOdd tð Þ ¼
1
2
G tð Þ	 0 for t	 0

� 1
2
G �tð Þ
 0 for t\0

8><>: ð6:41bÞ

Then, we have

v̂ xð Þ ¼ v0ðxÞ � iv00ðxÞ ð6:42Þ

where

v0 xð Þ ¼ 2
Z1
0

vEven tð Þ cosxtdt ¼
Z1
0

G tð Þ cosxtdt ð6:43aÞ

and

v00 xð Þ ¼ 2
Z1
0

vOdd tð Þ sinxtdt ¼
Z1
0

G tð Þ sinxtdt ð6:43bÞ

Equations (6.43a) and (6.43b) are obtained by using the properties of real-valued
functions such as Eqs. (6.37a) and (6.37b). Inverse Fourier transform is given by

G tð Þ ¼ 2
p

Z1
0

v0 xð Þ cosxtdx ¼ 2
p

Z1
0

v00 xð Þ sinxtdx ð6:44Þ

One-dimensional Fourier transform has several properties which are very useful
in many fields of physical science. These properties are introduced below without
proof.

bF df
dt

 �
¼ ixf̂ xð Þ; ð6:45aÞ

bF d2f
dt2

 �
¼ �x2 f̂ xð Þ; ð6:45bÞ

bF Z t

a

f ðsÞds
24 35 ¼ f̂ ðxÞ

ix
þ 2pFðaÞd xð Þ with f ðtÞ ¼ dF

dt
; ð6:45cÞ

bF f ctð Þ½ � ¼ � 1
c
f̂

x
c

� �
; ð6:45dÞ
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bF f tþ cð Þ½ � ¼ eicx f̂ xð Þ; ð6:45eÞ

bF eatf tð Þ½ � ¼ f̂ xþ iað Þ ð6:45fÞ

6.2.3 Convolution Theorem

In Fourier transform, convolution of two functions is defined as

h tð Þ ¼ f �gð Þ tð Þ �
Z1
�1

f sð Þg t � sð Þds ð6:46Þ

Assume that the three functions f tð Þ, g tð Þ, and h tð Þ have their own Fourier
transforms. Application of Eq. (6.32) gives

ĥ xð Þ ¼ f̂ xð Þĝ xð Þ ð6:47Þ

Equation (6.47) can be derived by the change of the order of integration.
Equations (6.46) and (6.47) are called the convolution theorem.

Equation (6.46) becomes the Fredholm integral equation of the first kind if the
function f tð Þ should be determined from the kernel function g t � sð Þ and data
function h tð Þ. Then, the convolution theorem lead us to

f tð Þ ¼ 1
2p

Z1
�1

ĥ xð Þ
ĝ xð Þ e

ixtdx ð6:48Þ

The Fredholm integral equation of the first kind is found in linear viscoelasticity
and linear dielectrics. In linear rheology, relaxation time spectrum is the solution of
the Fredholm integral equation of the first kind. Use of Eq. (6.48) was applied to the
problem of linear dielectrics by Fuoss and Kirkwood (1941), and their method can
be applied to linear rheology of polymer, too Davies and Anderssen (1997) and Lee
et al. (2015).

6.3 Dirac Delta Function Revisited

From the properties of the Dirac delta function, it is clear that it has well-defined
Fourier transform such that
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d̂ xð Þ ¼
Z1
�1

d tð Þe�ixtdt ¼ 1 ð6:49Þ

Since d̂ xð Þ ¼ 1, Eq. (6.33) gives

d tð Þ ¼ 1
2p

Z1
�1

eixtdx ð6:50Þ

which is the Fourier transform representation of the Dirac delta function.
N-dimensional delta function can be expressed by Fourier transform, too. If x

and k are N-dimensional vector, then the N-dimensional delta function is given by

d xð Þ ¼ 1

2pð ÞN
Z

eik�xdNk ð6:51Þ

Equation (6.51) is very useful in treating multidimensional probability density
function. Its diverse applications are found in the statistics for polymer chain
conformation (Doi and Edwards 1986), the distribution approaches of equilibrium
statistical mechanics (McQuarrie 2000), and the derivation of momentum balance
equation in terms of molecular motion (Evans and Morris 2008; Zuvarev 1974).

6.4 Laplace Transform and Its Inversion

6.4.1 Definition and Applications

Laplace transform is a powerful method in solving linear ordinary differential
equations with constant coefficients because it converts a differential equation to an
algebraic equation. Since one-dimensional linear viscoelastic models are linear
ordinary differential equations, the calculation of strain and stress becomes easier
when Laplace transform is used.

The definition of Laplace transform is given as

eL f tð Þ½ � ¼ ef sð Þ �
Z1
0

f tð Þe�stdt ð6:52Þ

Usually, the variable s is considered as real number. It can be, however, con-
sidered as complex number sometimes. When s[ 0, the kernel function e�st is a
decreasing function of time. Hence, it is not necessary to require that
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Z1
0

f tð Þj jdt\1 ð6:53Þ

However, if f tð Þj j increases faster than est, the Laplace transform of f tð Þ cannot
exist. Thus, the domain of Laplace transform is larger than that of Fourier
transform.

Just as Fourier transform, Laplace transform is also a linear mapping from a
function space to another function space. Hence, we have

eL af tð Þþ bg tð Þ½ � ¼ aeL f tð Þ½ � þ beL g tð Þ½ � ð6:54Þ

for any real numbers a and b. One of the most important features of Laplace
transform is

eL dnf
dtn

 �
¼ snef sð Þ �

Xn
k¼1

sn�kd
n�kf
dtn�k

����
t¼0

ð6:55Þ

Just as Fourier transform, Laplace transform also has the convolution theorem.
Suppose that three functions h tð Þ, f tð Þ and g tð Þ have their own Laplace transforms.
Furthermore, suppose that

h tð Þ ¼ f � gð Þ tð Þ ¼
Z t

0

f t � sð Þg sð Þds ð6:56Þ

It is not difficult to show that for any two functions f tð Þ and g tð Þ

Z t

0

f t � sð Þg sð Þds ¼
Z t

0

f sð Þg t � sð Þds ð6:57Þ

The right-hand side of Eq. (6.56) is called the convolution of f and g. Note that
the convolution of Laplace transform has a little difference from that of Fourier
transform. Compare Eq. (6.56) with Eq. (6.46). Then, the convolution theorem of
Laplace transform reads

eh sð Þ ¼ ef sð Þeg sð Þ ð6:58Þ

Since the poof of the convolution theorem is found in several textbooks, we omit
it.

Combination of Eqs. (6.54) and (6.55) converts a differential equation to an
algebraic equation. Consider a linear differential equation which are found in linear
viscoelastic models:
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XM
n¼0

an
dnr
dtn

¼
XN
n¼0

bn
dnc
dtn

ð6:59Þ

where an and bn are constants and one of r tð Þ and c tð Þ is assumed to be given. Note
that in Eq. (6.56), we used the notation such that

f tð Þ ¼ d0f
dt0

ð6:60Þ

Application of Laplace transform gives

P sð Þer sð Þ �P sð Þ ¼ Q sð Þec sð Þ � X sð Þ ð6:61Þ

where

P sð Þ ¼
XM
n¼0

ans
n; P sð Þ ¼

XM
n¼0

an
Xn
k¼1

r n�kð Þ 0ð Þ
 !

;

Q sð Þ ¼
XN
n¼0

bns
n; X sð Þ ¼

XN
n¼0

bn
Xn
k¼1

r n�kð Þ 0ð Þ
 ! ð6:62Þ

Suppose that c tð Þ is given. Then, we have

er sð Þ ¼ eH sð Þec sð Þþ eT sð Þ ð6:63Þ

where

eH sð Þ ¼ Q sð Þ
P sð Þ ; ð6:64Þ

eT sð Þ ¼ P sð Þ � X sð Þ
P sð Þ ð6:65Þ

If we have a method to invert Laplace transform, the convolution theorem gives
the solution of Eq. (6.59) in the form of convolution:

r tð Þ ¼
Z t

0

H t � sð Þc sð Þdsþ T tð Þ ð6:66Þ

The last term of the right-hand side of Eq. (6.66) is originated from initial
conditions. Applications of Laplace transform to rheology are found in Tschoegl
(1989), Riande et al. (2000), and Valko and Abate (2004).
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6.4.2 Inverse Laplace Transform

The necessary condition of Fourier transform is that a function gðtÞ should go to
zero as t goes to infinite. However, convergence condition of Laplace transform is
weaker than that of Fourier transform as mentioned earlier. If we express a function
f ðtÞ which has its Laplace transform, by f tð Þ ¼ ectg tð Þ for a positive real γ, the
function g tð Þ satisfies the condition of Fourier transform. Using inverse Fourier
transform gives

g tð Þ ¼ 1
2p

Z1
�1

ĝ xð Þeixtdx ¼ 1
2p

Z1
�1

Z1
�1

g sð Þe�ixsds

24 35eixtdx ð6:67Þ

Since Laplace transform considers the interval of t	 0, we can say that

f tð Þ ¼ ectg tð Þ t	 0
0 t\0

�
ð6:68Þ

Generality is not lost even if setting g tð Þ ¼ 0 when t\0. Then, Eq. (6.67) can be
rewritten as

g tð Þ ¼ 1
2p

Z1
�1

Z1
0

g sð Þe�ixsds

24 35eixtdx ð6:69Þ

Since f tð Þ ¼ ectg tð Þ, we have

f tð Þ ¼ ect

2p

Z1
�1

Z1
0

f sð Þe�cse�ixsds

24 35eixtdx ð6:70Þ

Setting s ¼ cþ ix, Eq. (6.70) becomes

f tð Þ ¼ 1
2pi

Zcþ i1

c�i1

ef sð Þestds ð6:71Þ

The integral is the contour integral on the complex plane as shown in Fig. 6.
When finite number of simple poles are inside of the loop of Fig. 6, the residue
theorem can be used to evaluate the integral (Arfken and Weber 2001). In general, it
is difficult to evaluate the integral analytically. Thus, hundreds of numerical algo-
rithms have been developed (Cohen 2007). Some algorithms are available in
MATLAB (Valsa and Brancik 1998).
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Problem 6

[1] Derive followings

Z1
�1

e�ax2 þ bxdx ¼
ffiffiffi
p
a

r
exp

b2

4a

� �
for a[ 0 ð6:aÞ

[2] The N � N matrix Aik is symmetric and positive definite:

Aik ¼ Aki and Aikxixk [ 0 for any non-zero vector x ð6:bÞ

Then, derive Z
exp �Aikxixkð ÞdNx ¼ 2pð ÞN=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det Aikð Þp ð6:cÞ

[3] Derive Eq. (6.26).
[4] When g mð Þ is given, solve the integral equation:

g mð Þ ¼
Z1
�1

f tð Þ
cosh m� tð Þ dt ð6:dÞ

See Fuoss and Kirkwood (1941) and Davies and Anderssen (1997).

( )sIm

ri

ri−

r

( )sRe
⊗

⊗
⊗

( )sfest ~singularities of

Fig. 6 Contour of inverse
Laplace transform
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[5] Solve the integro-differential equation:

l
d2c
dt2

þ
Z t

0

G t � sð Þ dc
ds

ds ¼ ro sinxt;

G tð Þ ¼ G1 þ Go � G1ð Þe�t=k;

c 0ð Þ ¼ dc
dt

����
t¼0

¼ 0

ð6:eÞ

See Baravian and Quemada (1998) and Kim et al. (2015).
[6] Find the Fourier and Laplace transforms of G tð Þ which are given by

G tð Þ ¼
0 t\0PN
n¼1

Gne�t=kn t	 0

8<: ð6:fÞ

Compare eG ixð Þ with bG xð Þ.
[7] Prove the following properties of Laplace transform

Initial Value Theorem

f 0þð Þ ¼ lim
s!1 sef sð Þ ð6:gÞ

Final Value Theorem

f 1ð Þ ¼ lim
s!0

sef sð Þ ð6:hÞ

[8] Using Laplace transform and Fourier transform, show that

Z1
�1

sin x
x

dx ¼ p ð6:iÞ

[9] Show that

d xð Þ ¼ lim
a!0

1
ap

sinc
x
a

ð6:jÞ

where

sincx ¼ sin x
x

ð6:kÞ
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Chapter 2
Continuum Thermomechanics

Abstract The core of this chapter is continuum mechanics and the principle of
constitutive equation. Equilibrium and nonequilibrium thermodynamics are also
included because these disciplines are necessary to understand the principle of
constitutive equation. The introduction to some classical constitutive equations is
also addressed for eaiser understanding of the principle of constitutive equation.

Materials consist of atoms and molecules. Although materials are collection of
discrete particles, it is more convenient to treat them as a continuum because the
constituent particles are extremely small and the number of the particles is hugely
large. Continuum is an uncountable set of points which are continuously dis-
tributed. It is assumed that there exist points between any pair of points in the
continuum. Hence, continuum can be considered a subset of three-dimensional
Euclidian space, E3 (O’Neill 2006). The point of continuum is called material
particle. However, it does not mean a physical particle such as atom and molecule.
The material particle is as small as a point from macroscopic viewpoint, while it is
so large to contain a number of molecules from microscopic viewpoint.

A macroscopic quantity is assigned to individual material particles and is
interpreted as an average over the molecules in the material particle. This means
that the macroscopic quantity is related to a function of microscopic quantities
which varies faster in both time and space than the macroscopic quantity. Through
averaging process, the faster variations of microscopic quantities are canceled
mutually, and then, the average of the function of microscopic quantities becomes a
smoothly varying function of both space and time (Callen 1985). This is the reason
why the macroscopic quantity can be described by a field.
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1 Kinematics

1.1 Material and Spatial Coordinates

When classical mechanics is described in terms of particles, the main object is to
predict the position of each particle as a function of time. The curves describing the
motion of particles can be denoted by xaðtÞ where the subscript indicates the
particles. In the case of discrete particle system, the index α is an integer. However,
in the case of continuum, integer cannot be used as an indicator of material particles
because there is no one-to-one correspondence between integers and material
particles.

Imagine that we observe how a lump of materials moves. Since we can construct
a coordinate system and have a clock, we can assign every material particle to a
coordinate at every time. If we choose a time as the reference time among the
interval of observation, then we can identify each material particle by the coordinate
at the reference time. The coordinate at the reference time is an indicator of material
particle and is called material coordinate. Let the material coordinate be denoted by
the vector ~x. As time flows, each material particle moves and is found at x at the
time of t. If we collect all positions at corresponding time, then we have a mapping
from ~x to x at every moment:

x ¼ v ~x; tð Þ ð1:1Þ

Equation (1.1) can be interpreted as the path of the material particle ~x as a function
of time, which is a spatial curve from the viewpoint of geometry. When time t is
fixed, Eq. (1.1) describes the distribution of material particles at time t. The dis-
tribution is called configuration. The configuration at the reference time is called the
reference configuration, while the configuration at the present time t is called the
current configuration. The current configuration is called deformed configuration if
the body of material is considered to be deformed.

When Newton’s second law is written in terms of particle position, it is the
equation of motion whose solution is the path of particle motion. From the solution,
we can calculate the force exerted on the particle at every moment. Thus, if we
know Eq. (1.1), then we come to know everything needed in mechanics. How to
obtain Eq. (1.1) will be studied later. For a while, it is assumed that Eq. (1.1) is
known.

From the definition of material coordinate, it is clear that when time is the
reference time τ, the following is valid:

~x ¼ v ~x; sð Þ ð1:2Þ
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In continuum mechanics, it is basically assumed that any material particle cannot be
created nor annihilated. Then, the mapping Eq. (1.1) is one to one at every moment.
Then, we can assume that the mapping has its inverse such that

~x ¼ v�1 x; tð Þ ð1:3Þ

Since Eq. (1.1) is the path of material particle ~x, the velocity v of ~x is determined
by

v ¼ @v ~x; tð Þ
@t

ð1:4Þ

Here, the time derivative is the partial differentiation with respect to t at fixed ~x.
Then, the velocity is a vector-valued function of material coordinate and time.
Hence, we can write the velocity as follows:

v ¼ ~v ~x; tð Þ ð1:5Þ

Substitution of Eqs. (1.3)–(1.5) yields

v ¼ ~v v�1 x; tð Þ; t� � � v x; tð Þ ð1:6Þ

Equation (1.5) implies that physical quantity v is described in terms of material
coordinate, while Eq. (1.6) implies that the same quantity is described in terms of
current coordinate x. The former is called Lagrangian description or material
description, and the latter is called Eulerian description or spatial description.

Lagrangian description of continuum is a direct translation of the Newtonian
mechanics of particle because Eq. (1.4) is equivalent to the time derivative of xaðtÞ.
On the other hand, Eulerian description is more abstract but is more convenient.
Since material particle is extremely small in macroscopic scale, it is practically
impossible to trace individual material particles experimentally. However, obser-
vation of material at a fixed point in space is easier than tracing the material
particles. Hence, a kind of translation is necessary when formulating a physical law
by Eulerian description.

Acceleration vector is important because it is related to force through the second
law of Newtonian mechanics. It is the time derivative of velocity such that

a ¼ @~v
@t

ð1:7Þ

Note that Eq. (1.7) is the partial derivative of time at fixed material coordinate.
Hence, it is called material time derivative. The material time derivative can be
calculated easily if the function to be differentiated is expressed in terms of material
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coordinate and time. The time derivative of Eq. (1.6) at fixed x is not the genuine
acceleration which can be related to the force exerted on the material particle. Chain
rule of differentiation provides the material time derivative from the function
expressed in Eulerian description:

a ¼ @v
@t

þ v � rv ð1:8Þ

where the partial differentiation of time is the one at fixed spatial coordinate x and
the del operator means the differentiation with respect to spatial coordinate. Hence,
we define a differential operator called material time derivative as

d
dt

¼ @

@t
þ v � r ð1:9Þ

1.2 Strain

1.2.1 Concept of Strain

If any pair of material particles of a continuum maintains the same distance during
motion, the continuum is called rigid body. Motion of the rigid body consists of
only translation and rotation. Hence, there is no pure deformation in the rigid body.
Equation (1.1) describes the motion of material particles. If a continuum body is not
a rigid body, then Eq. (1.1) consists of translation, rotation, and pure deformation.

Strain is a measure of pure deformation. Experience of daily life gives a measure
of deformation for string such as

e ¼ l� lo
lo

ð1:10Þ

where l and lo are the lengths of string after and before a deformation, respectively.
The intuitive strain of string ε is in the interval of �1\e\1. No deformation is
represented by e ¼ 0. Negative strain means contraction, whereas positive strain
means elongation. Various measures of strain can be suggested:

k ¼ l
lo
; h ¼ log k ð1:11Þ

However, these strain measures cannot describe three-dimensional deformation.
Consider a cylinder which has a small arrow on its lateral surface. The arrow is
assumed to be in the direction of the axis of the cylinder. When exerting a
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combination of elongation and twist on the cylinder, the deformed arrow has a
different direction and length from the original arrow. Hence, a three-dimensional
strain measure can describe the change of both direction and length unlike the strain
measures of Eqs. (1.10) and (1.11).

1.2.2 Deformation Gradient

Consider a pair of two material coordinates ~x1 and ~x2. Assume that they are very
close to each other. Then, we can write

d~x ¼ ~x2 � ~x1 ð1:12Þ

When xk ¼ v ~xk; tð Þ, we have

dx � v ~x2; tð Þ � v ~x1; tð Þ ¼ F � d~x ð1:13Þ

where

F ¼ erv ð1:14Þ

In Eq. (1.14), er means the differentiation with respect to material coordinate and r
represents the differentiation with respect to spatial coordinate. Equation (1.13)
implies that deformation gradient F does not contain translational motion because
the contributions from translational motion are same for every material particle.
However, rotational motion is still imbedded in deformation gradient F.

1.2.3 Polar Decomposition

The existence of the inverse mapping, Eq. (1.3), implies that the deformation
gradient is invertible. The theorem of polar decomposition is that any invertible
tensor F can be decomposed to

F ¼ R � U ¼ V � R ð1:15Þ

where R is an orthogonal tensor and both U and V are symmetric and positive
definite tensors, respectively. Furthermore, the decomposition is unique.

It is clear that both B ¼ F � FT and C ¼ FT � F are symmetric and positive
definite, respectively. Then, there exist two symmetric and positive definite tensors
such that

B ¼ V2 and C ¼ U2 ð1:16Þ
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because of the spectral decomposition theorem of symmetric and positive definite
tensors. The two tensors U and V are uniquely determined from the deformation
tensor F. The proof of polar decomposition can be done by showing that F � U�1

and V�1 � F are orthogonal tensors and they are identical. The proof of polar
decomposition is found in Haupt (2000) and other books of advanced continuum
mechanics.

1.2.4 Cauchy–Green Strains

It is not difficult to show that any rotational motion can be determined by an
orthogonal tensor whose determinant is positive. Then, polar decomposition pro-
vides a way to find a strain measure which excludes both translational and rotational
motions. The candidates are

B ¼ F � FT ð1:17aÞ

and

C ¼ FT � F ð1:17bÞ

The tensor B andC are called left Cauchy–Green tensor and right Cauchy–Green
tensor, respectively. When deformation gradient represents only rotational motion,
Fmust be an orthogonal tensor. Then, Eq. (1.17a) implies thatB ¼ C ¼ I. Of course,
both U and V can be used as strain measures. However, calculations of B and C are
easier than those ofU andV, which is whyB andC are preferred rather thanU andV.

Consider a line element imbedded in the reference configuration d~x ¼ d~ln where
n is the unit vector and d~l is the length of the material line element. The material
line element becomes dx ¼ F � d~x after deformation. Then, the length of the
deformed line element is given by

dlð Þ2¼ dx � dx ¼ d~x � C � d~x ¼ d~l
� �2

n � C � n ð1:18Þ

Arrangement of Eq. (1.18) yields

k2n �
dl

d~l

� �2

¼ n � C � n ð1:19Þ

Hence, the diagonal component of C is the square of the ratio of deformed length
to undeformed length when the line element is in the direction of the axis of the
coordinate of the reference configuration.
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Consider two material line elements which are mutually orthogonal: d~x1 ¼ d~ln1,
d~x2 ¼ d~ln2, and n1 � n2 ¼ 0. When dxk indicates the deformed line element of d~xk,
we have

dx1 � dx2 ¼ d~x1 � C � d~x2 ¼ d~l
� �2

n1 � C � n2 ð1:20Þ

Note that the angle h12 between dx1 and dx2 is given by

cos h12 ¼ dx1 � dx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx1 � dx1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 � dx2

p ¼ n1 � C � n2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1 � C � n1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � C � n2

p ð1:21Þ

Equation (1.21) implies that the off-diagonal component n1 � C � n2 is related to the
distortion of shape if both d~x1 and d~x2 do not conduct length change.

Both B and C are three-dimensional generalization of λ of Eq. (1.11). Since the
two Cauchy–Green tensors are symmetric and positive definite, logB and logC can
be defined. These strain measures are generalization of h of Eq. (1.11).

1.2.5 Infinitesimal Strain

For rigid solid, small deformation is more interesting. A convenient measure of
strain is infinitesimal strain which is also called engineering strain. When defor-
mation is infinitesimal, the difference between the reference and deformed con-
figuration is very small. Then, we are interested in displacement vector field defined
as

u ~x; tð Þ ¼ x ~x; tð Þ � ~x ð1:22Þ

Then, the gradient of displacement vector field is given by

eru
� �T

¼ F� I ð1:23Þ

Expression of C in terms of u is given by

C ¼ Iþ eru
� �T	 
T

� Iþ eru
� �T	 


¼ Iþ 2Eþ eru � eru
� �T

ð1:24Þ

where

E ¼ 1
2

eruþ eru
� �T	 


ð1:25Þ
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When deformation is infinitesimally small, the second-order term of Eq. (1.24) can
be neglected. Then, we have

E � 1
2

C� Ið Þ ð1:26Þ

Consider d~x ¼ d~ln as before. Since dlþ d~l � 2d~l for infinitesimal deformation,
we have

dlð Þ2� d~l
� �2

d~l
� �2 ¼ dl� d~l

� �
dlþ d~l
� �

d~l
� �2 � 2

dl� d~l

d~l
ð1:27Þ

On the other hand, the left-hand side of Eq. (1.27) is equal to

dlð Þ2� d~l
� �2

d~l
� �2 ¼ dx � dx� d~x � d~x

d~x � d~x ¼ n � C � n� 1 � 2n � E � n ð1:28Þ

Then, we have

n � E � n ¼ dlþ d~l
� �

dl� d~l
� �

2 d~l
� �2 ¼ dl� d~l

d~l
ð1:29Þ

Here, we used the approximation of dlþ d~l � 2d~l. Equation (1.29) implies that
E can be considered as the generalization of ε of Eq. (1.10). Application of
Eqs. (1.26)–(1.21) yields

cos h12 � n1 � E � n2 ð1:30Þ

Hence, the off-diagonal components of infinitesimal strain have the same meaning
with those of C.

Compared with infinitesimal strain, B and C are called finite strains. When
rubbery materials are considered, finite strains must be used.

1.3 Deformation of Area and Volume

Consider an area element d~a in the reference configuration. From Eq. (4.64) in
Chap. 1, we know that

d~a ¼ ~tp �~tq
� �

dpdp ð1:31Þ
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Since the two tangent vectors ~tp and ~tq are imbedded in a surface in the reference
configuration, the two vectors become

tp ¼ F �~tp and tq ¼ F �~tq ð1:32Þ

Then, the area element in a deformed configuration becomes

da ¼ tp � tq dpdq ð1:33Þ

Now, we will use the identity Eq. (5.a) in Chap. 1 of Problem 5

FT � F � uð Þ � F � vð Þ½ � ¼ det Fð Þu� v ð1:34Þ

Note that ~tp and ~tq are linearly independent. If setting u ¼ ~tp and v ¼ ~tp, then
Eqs. (1.31), (1.33), and (1.34) give

da ¼ det Fð ÞF�T � d~a ð1:35Þ

For right-handed coordinate system, the volume element is given by the triple
scalar product of three tangent vectors of coordinate:

deV ¼ ~g1 � ~g2 � ~g3ð Þd~n1d~n2d~n3 ð1:36Þ

As before, the tilde implies the reference configuration. Since deformation can be
understood as a coordinate change, the chain rule of differentiation gives

gk ¼ F � ~gk ð1:37Þ

Then, the deformed volume element is given by

dV ¼ F � ~g1ð Þ � F � ~g2ð Þ � F � ~g3ð Þ½ �d~n1d~n2d~n3 ¼ det Fð ÞdeV ð1:38Þ

Here, Eq. (5.d) in Chap. 1 of Problem 5 is used.

1.4 Rate of Deformation

1.4.1 Deformation Rate Tensor and Spin Tensor

Now, we are interested in quantitative description of how fast deformation occurs.
The velocity gradient in Lagrangian description is given by

dv ¼ er~v
� �T

�d~x ð1:39Þ

1 Kinematics 101

http://dx.doi.org/10.1007/978-94-017-7564-9_1
http://dx.doi.org/10.1007/978-94-017-7564-9_1


Using the chain rule of differentiation, we have the identity such that

dF
dt

¼ ~r~v
� �T¼ rvð ÞT �F ð1:40Þ

Note that

er~v
� �T

¼ @~vi
@~xk

eiek; rvð ÞT¼ @vi
@xk

eiek ð1:41Þ

Combining the above three equations, we have

dv ¼ rvð ÞT �dx ð1:42Þ

We call the velocity gradient in Eulerian description just velocity gradient and
denote it by

L � rvð ÞT ð1:43Þ

Then, the material time derivative of deformation gradient is given by

_F � dF
dt

¼ L � F ð1:44Þ

This identity is important in the development of the nonlinear viscoelastic consti-
tutive equations.

We shall show that the total differential of velocity field dv is the material time
derivative of the infinitesimal difference dx in the current configuration. Consider
the total differential of v:

dv ¼ v xþ dx; tð Þ � v x; tð Þ ¼ ~v ~xþ d~x; tð Þ � v ~x; tð Þ ð1:45Þ

The first equality is the Eulerian description, and the second is the Lagrangian
description. From the definition of velocity, we obtain

dv ¼ d
dt

x ~xþ d~x; tð Þ � x ~x; tð Þ½ � ¼ d
dt
dx ð1:46Þ

and

dv ¼ d
dt

F � d~xð Þ ¼ dF
dt

� d~x ¼ dF
dt

� F�1 � dx� � ¼ _F � F�1 � dx ð1:47Þ

In Eq. (1.47), it is used that d~x can be considered as constant vector with respect to
material time differentiation. Comparison of Eq. (1.42) with Eq. (1.47) gives
Eq. (1.44) again. This result is not more important than Eq. (1.46) because
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Eq. (1.46) gives a new insight on velocity gradient. The infinitesimal arc length in
the current configuration can be defined as dlð Þ2¼ dx � dx. Then, we have

1
2
d
dt

dlð Þ2¼ dl
d
dt
dl ¼ dx � d

dt
dx ¼ dx � dv ¼ dx � L � dx ð1:48Þ

The last term is the quadratic form of velocity gradient. The Problem 5 (McQuarrie
2000), Eq. (5.k), in Chap. 1 let us know that

d
dt

dlð Þ2¼ dx � D � dx ð1:49Þ

where D is the symmetric part of velocity gradient and is called deformation rate
tensor. The unique decomposition of tensor shown in Eq. (5.36) in Chap. 1 gives

D ¼ 1
2

LþLT
� �

and W ¼ 1
2

L� LT
� � ð1:50Þ

The skew-symmetric tensor W is called spin tensor.
Differential geometry of a curve illustrates that when the curve is parameterized

by its arc length, the tangent vector dx=dl is a unit vector. Then, Eq. (1.49) becomes

1
dl

d
dt
dl ¼ d

dt
log dlð Þ ¼ dx

dl
� D � dx

dl
ð1:51Þ

Thus, D indicates how fast the infinitesimal line element is extended or contracted.
More detailed analysis is found in Aris (1962).

With the help of Eq. (1.44) and the polar decomposition, we have

L ¼ _F � F�1 ¼ _VþV � _R � RT
� � � V�1 ð1:52Þ

Note that _V ¼ dV=dt is symmetric because V is symmetric and the last term in the
right-hand side of Eq. (1.52) is skew-symmetric because of skew-symmetric _R � RT .
Equation (1.50) gives

D ¼ dV
dt

ð1:53Þ

and

W ¼ V � dR
dt

� RT

� �
� V�1 ð1:54Þ

Note that the polar decomposition implies that U and V represent pure deformation.
Thus, Eq. (1.53) also means that D represents deformation rate as shown in
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Eq. (1.51). When the motion of continuum is pure rotation, the deformation gradient
becomes an orthogonal tensor. Putting F ¼ R into Eq. (1.52), we have L ¼ _R � RT .
The tensors V and V�1 in W play the role that pure deformation is canceled when
W transforms dx toW � dx. In other words,W is related to the rotation only. Hence,
we call W spin tensor. Furthermore, for any vector x, the following is an identity:

W � x ¼ � r� vð Þ � x ð1:55Þ

This implies that the curl of velocity represents the rotation in flow.
It is interesting that the representative strain tensors B and C have different forms

of material time derivatives:

_B ¼ L � BþB � LT ð1:56Þ

and

_C ¼ 2FT � D � F ð1:57Þ

1.5 Relative Deformation Gradient

1.5.1 Relativity of Deformation

If the macroscopic properties of a continuum are functions of the states of the body,
then we can choose the reference configuration in a definite manner. For an
example, the lowest energy state may give the reference configuration. Solid was
believed as such a material body. As for such solids, we often experience a state of
material in equilibrium without deformation. It is not much difficult to control the
state of the solid materials in order to choose the reference configuration at will.
However, a tiny perturbation makes fluid flow. Although it is difficult to find the
well-defined reference configuration of fluid, imagination of the concrete reference
configuration allows us to describe mechanical phenomena well if we are equipped
with mathematical tools such as material time derivative and if it is a reasonable
assumption that the macroscopic properties of the fluid are functions of suitable
state variables. However, if the macroscopic properties depend on not only current
state but also how materials experience the variation of state in past, the choice of
reference configuration loses a foundation. The reference configuration becomes
relative. Viscoelastic materials are ones that their history determines their present
just as human.

The use of the current configuration as the reference one is more convenient in
the description of viscoelastic deformation, because viscoelastic behavior is
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determined by the effects of past deformation. Effect of far past is less than that of
near past, which is called fading memory.

1.5.2 Relative Deformation Measures

As before, x is the position vector of a material particle at current time and the
position of the particle at time τ is denoted by x̂. The configuration characterized by
x̂ shall be called past configuration. Then, we have a one-to-one mapping such that

x̂ ¼ vt x; sð Þ; x ¼ vt x; tð Þ ¼ v�1
t x̂; sð Þ ð1:58Þ

Note that the subscript t emphasizes that the configuration at t is the reference
configuration.

The use of Eq. (1.58) gives relative deformation gradient defined by

FtðsÞ ¼ rx̂ð ÞT ð1:59Þ

Equation (1.59) also means that

dx̂ ¼ Ft sð Þ � dx; dx ¼ F�1
t sð Þ � dx̂ ð1:60Þ

Application of polar decomposition to relative deformation gradient gives

Ft sð Þ ¼ Rt sð Þ � Ut sð Þ ¼ Vt sð Þ � Rt sð Þ ð1:61Þ

Of course, it is clear that

FtðtÞ ¼ RtðtÞ ¼ UtðtÞ ¼ VtðtÞ ¼ I ð1:62Þ

This is the result from that the current configuration is chosen as the reference
configuration. Deformation measures such as F, U, and V are defined from the
reference configuration represented by ~x and those such as Ft Ut, and Vt are given
from the current configuration. Carefully considering the definitions of the defor-
mation measures, it can be understood that they represent the quantitative description
of deformation relative to the reference configurations under consideration. Hence,
Eq. (1.62) holds. If we denote tR as the reference time of F, U, and V, then we have

F tRð Þ ¼ R tRð Þ ¼ U tRð Þ ¼ V tRð Þ ¼ I ð1:63Þ

As we did in Sect. 1.2, we can define the various strain measures such as

Bt sð Þ ¼ Ft sð Þ � FT
t sð Þ ð1:64aÞ
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and

Ct sð Þ ¼ FT
t sð Þ � Ft sð Þ ð1:64bÞ

The relative Finger deformation tensor is defined as C�1
t sð Þ, and the relative Piola

deformation tensor is defined as B�1
t sð Þ.

1.5.3 Velocity Gradient Revisited

The velocity of a material particle is the time derivative of x̂ x; sð Þ at fixed x and can
be denoted by v̂ x; sð Þ. Then, the velocity at present is v x; tð Þ ¼ v̂ x; tð Þ. The velocity
gradient at time of τ is given by L x; sð Þ ¼ rv̂ð ÞT . Replacement of τ by t gives the
velocity gradient at present time. The time derivative of relative deformation gra-
dient is given by

@

@s
Ft sð Þ ¼ @

@s
@x̂i
@xk

eiek ¼ @v̂i
@xk

eiek ¼ L x; sð Þ ð1:65Þ

Equation (1.65) implies that although FtðtÞ ¼ I, the time derivative of relative
deformation gradient at present time is the velocity gradient at present time:

@

@s
Ft sð Þ

����
s¼t

¼ L x; tð Þ ð1:66Þ

Application of the polar decomposition of Eq. (1.61) gives

L x; tð Þ ¼ Rt sð Þ � @Ut sð Þ
@s

þ @Rt sð Þ
@s

� Ut sð Þ
	 


t¼s

¼ _UtðtÞþ _RtðtÞ ð1:67Þ

where Eq. (1.62) is used. It is noteworthy that the time derivatives of Ft sð Þ, Ut sð Þ,
Vt sð Þ, and Rt sð Þ at s ¼ t may not be the identity tensor even though Eq. (1.62) is
valid. Since Rt sð Þ is an orthogonal tensor, its time derivative with respect to τ must
be skew-symmetric [see Problem 1 (Huang 1963)]. Compared with Eqs. (1.53) and
(1.54), we have

D ¼ _UtðtÞ ¼ @Ut

@s

����
s¼t

¼ dV
dt

ð1:68Þ

and

W ¼ _RtðtÞ ¼ @Rt

@s

����
s¼t

¼ V � dR
dt

� RT

� �
� V�1 ð1:69Þ
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This confirms again that the deformation rate tensor is the rate of pure deformation
and the spin tensor is the rate of rotation.

1.5.4 Rivlin–Ericksen Tensor

Strain measure Ct defined in Eq. (1.64b) is a function of past time τ. One may want
to estimate Ct in terms of the deformation quantities at present time. It can be done
by the Taylor expansion such as

Ct x; sð Þ ¼ Ct x; tð Þþ
X1
n¼1

1
n!

@nCt

@sn

� �
s¼t

s� tð Þn ð1:70Þ

The Rivlin–Ericksen tensors are defined as

An x; tð Þ � @nCt

@sn

� �
s¼t

ð1:71Þ

The use of Eqs. (1.63) and (1.71) gives

Ct x; sð Þ ¼ Iþ s� tð ÞA1 þ s� tð Þ2
2

A2 þ � � � ð1:72Þ

From the definition of Ct, it is clear that

d̂l
� �2� dx̂ � dx̂ ¼ dx � Ct � dx ð1:73Þ

Differentiation of Eq. (1.73) with respect to τ at a fixed x gives

@n

@sn
d̂l
� �2¼ dx � @

nCt

@sn
� dx ð1:74Þ

Substitution of s ¼ t gives

@n

@sn
d̂l
� �2	 


s¼t
¼ dn

dtn
dlð Þ2¼ dx � An � dx ð1:75Þ

where

d̂l
� �2

s¼t¼ dlð Þ2¼ dx � dx ð1:76Þ
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is used. Note that Eqs. (1.48) and (1.49) give

d
dt
dx ¼ dv ¼ L � dx ð1:77Þ

Finally, we have

dnþ 1

dtnþ 1 dx � dx ¼ dx � Anþ 1 � dx ¼ d
dt
dx � An � dx

¼ dx � LT � An þ dAn

dt
þAn � L

� �
� dx

ð1:78Þ

Comparison of Eq. (1.75) with Eq. (1.78) yields

Anþ 1 ¼ dAn

dt
þLT � An þAn � L ð1:79Þ

Equation (1.79) holds when n is any positive integers. For n ¼ 1, we have

d
dt
dx � dx ¼ dx � LþLT

� � � dx ¼ dx � A1 � dx ð1:80Þ

Hence, we know that

A1 ¼ 2D ð1:81Þ

If An is symmetric, then Anþ 1 is also symmetric. It can be proved easily by the use
of Eq. (1.79). Since A1 is symmetric, mathematical induction gives all the Rivlin–
Ericksen tensors are symmetric.

Problem 1

[1] Simple shear is a motion defined by

x ¼ ~xþ cðtÞ ~x � nð Þm ð1:aÞ

where γ is called shear strain, m and n are constant unit vectors, and
m � n ¼ 0. Let k ¼ m� n. Then, m, n, and k form an orthonormal basis.
Calculate F, B, C, U, V, R, L, D, and W.

[2] Prove that tr Eð Þ � dV � deV� ��
deV for infinitesimal deformation.

[3] Show that IB ¼ IC, IIB ¼ IIC, and IIIB ¼ IIIC.
[4] Prove that

IUð Þ2¼ IC þ 2IIU; IIUð Þ2¼ IIC þ IU
ffiffiffiffiffiffiffiffi
IIIU

p
; IIIUð Þ2¼ IIIC ð1:bÞ
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[5] Consider the unit vector nwhich is in the direction of the rotation axis. Then, it
is not difficult to find a unit vectormwhich is perpendicular to n. From the two
unit vectors, define k ¼ m� n. It is clear that the three unit vectors form an
orthonormal basis. Then, show that the following tensor is an orthogonal
tensor.

Q ¼ nnþ cos h mmþ kkð Þþ sin h km�mkð Þ ð1:cÞ

[6] Show that _R � RT is skew-symmetric. Use R � RT ¼ I.
[7] Consider the velocity field given as v ¼ rx zð Þez where cylindrical coordinate

system is assumed and find deformation rate tensor D.
[8] Prove that

d
dt
dV ¼ r � vð ÞdeV ð1:dÞ

[9] Consider the case that the reference configuration uses generalized basis
~gk
 �

and the current configuration uses generalized basis gkf g. Then, show
that deformation gradient is given by

F ¼ @ni

@~nk
gi~g

k ð1:eÞ

[10] Prove that

dF�1

dt
¼ �F�1 � L ð1:fÞ

[11] Prove Eq. (1.47).
[12] Show that time derivative of any orthogonal tensor is skew-symmetric.
[13] Show that the Rivlin–Ericksen tensors are symmetric.
[14] Show that

FtðsÞ ¼ F ~x; sð Þ � F�1 ~x; tð Þ ð1:gÞ

[15] Derive

d
dt
FtðsÞ ¼ �FtðsÞ � LðtÞ ð1:hÞ

[16] Derive

d
dt
Ct sð ÞþLTðtÞ � Ct sð ÞþCt sð Þ � LðtÞ ¼ 0 ð1:iÞ
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[17] Derive

d
dt
C�1

t sð Þ � LðtÞ � C�1
t sð Þ � C�1

t sð Þ � LTðtÞ ¼ 0 ð1:jÞ

2 Balance Equations

We shall deal with four balance equations of mass, linear momentum, angular
momentum, and energy for single-component materials. As for multicomponent
versions, refer to De Groot (1984). Entropy balance equation will be discussed in
Sect. 4.

2.1 Mass Balance

It is the basic assumption of continuum theory that there exists a scalar field called
mass density such that

M ¼
ZZZ
eX

~q ~x; tð ÞdeV ð2:1Þ

where M is the total mass of material particles in the region of eX. Note that eX is the

region in the reference configuration. Since all material particles in eX move to the
region Ω at time t, mass conservation law implies

M ¼
ZZZ
X

q x; tð ÞdV ð2:2Þ

No mass change during any motion gives

dM
dt

¼ d
dt

ZZZ
X

q x; tð ÞdV ¼
ZZZ
X

dq
dt

dV þ q
d
dt
dV

� �
¼ 0 ð2:3Þ

Application of Eq. (1.d) of Problem 1 givesZZZ
X

dq
dt

þ r � vð Þq
	 


dV ¼ 0 ð2:4Þ

Since Eqs. (2.1) and (2.2) hold for arbitrary subset of the reference configuration,
it is clear that
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dq
dt

þ r � vð Þq ¼ 0 ð2:5Þ

Application of Eq. (1.9), the definition of material time derivative, gives

@q
@t

¼ �r � qvð Þ ð2:6Þ

Equations (2.5) and (2.6) are called continuity equation or mass balance equation.
When volume does not vary during motion, the motion is called incompressible.

Incompressible condition is equivalent to constant density field. Compared with gas,
compression of liquid requires huge pressure. Hence, incompressible condition is a
good approximation for flow of liquid. Rubbery material is observed as incom-
pressible material because its change in shape is easier than the volumetric change
for moderate loading. Then, application of constant density to Eq. (2.5) or (2.6) gives

r � v ¼ 0 ð2:7Þ

Similar approximation can be used for liquid fluids. If flow field is given by
v ¼ v x; y; tð Þe3, Eq. (2.7) holds. Hence, it can be said that incompressible condition
can be considered as a material property for certain materials. It is noteworthy that
certain special deformation of compressible material may not change volume.

The most important feature of mass balance equation is that it holds for every
material. This feature holds for the balance equation to be introduced later. Hence,
these balance equations are called governing equations, too.

2.1.1 Reynolds Transport Theorem

Consider / x; tð Þ is a tensorial quantity of any order. Then, the corresponding
quantity for the region Ω can be given by

U x; tð Þ ¼
ZZZ
X

q x; tð Þ/ x; tð ÞdV ð2:8Þ

Then, the material time derivative of U x; tð Þ is given by

d
dt
U x; tð Þ ¼ d

dt

ZZZ
X

q x; tð Þ/ x; tð ÞdV ¼
ZZZ
X

dq
dt

/ dV þ q
d/
dt

dV þ q/
d
dt
dV

	 


¼
ZZZ
X

q
d/
dt

þ dq
dt

þ r � vð Þq
	 


/

� �
dV

ð2:9Þ
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Here, Eq. (1.d) was used. Application of the mass balance equation, Eq. (2.5), gives

d
dt

ZZZ
X

q/ dV ¼
ZZZ
X

q
d/
dt

dV ð2:10Þ

This identity is called the Reynolds transport theorem. This theorem is very
important because it will be used when we derive various balance equations.

2.2 Momentum Balance

2.2.1 Linear Momentum Balance

There are two kinds of forces exerted on a material body: contact force and body
force. The action of contact force is carried through the contact surface, while that
of body force is carried at a distance. The representative body forces are gravita-
tional and electrostatic forces.

Newton’s second law implies that the total force exerted on a body is the time
rate of the total linear momentum of the body. This holds for any part of the whole
body. The mathematical expression of the second law of Newtonian mechanics is
given by

d
dt

ZZZ
X

qv dV ¼
ZZ
@X

t daþ
ZZZ
X

qb dV ð2:11Þ

where t is the contact force per unit area, called stress vector, and b is the body
force per unit mass. The left side can be expanded as follows:

d
dt

ZZZ
X

qv dV ¼
ZZZ
X

q
dv
dt

dV ð2:12Þ

Here, we used the Reynolds transport theorem.
Cauchy proved that there exists a second-order tensor called stress such that

t ¼ T � n ð2:13Þ

where n is the unit vector normal to the surface element da. Then, the surface
integral of Eq. (2.11) becomesZZ

@X

t da ¼
ZZ
@X

T � nda ¼
ZZ
@X

T � da ¼
ZZZ
X

divT dV ð2:14Þ
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Substitution of Eqs. (2.12) and (2.14) into Eq. (2.11) yieldsZZZ
X

q
dv
dt

� divT� qb
	 


dV ¼ 0 ð2:15Þ

Since this must be valid for any region Ω, the integrand of Eq. (2.15) must be the
zero vector:

q
dv
dt

¼ divTþ qb; ð2:16Þ

which is the local form (or differential form) of linear momentum balance. This
equation is also valid for any materials.

The two governing equations are actually four scalar equations because the
continuity equation is a scalar equation, while the linear momentum balance equation
is a vector equation. However, these equations contain thirteen unknown fields: one
for mass density field; three for velocity vector field; and nine for stress tensor field.
Only four equations cannot determine the thirteen unknown fields uniquely. Hence,
we need nine more equations. The nine equations correspond to constitutive equation
which relates stress tensor to deformation. The constitutive equation is a tensor
equation and will be discussed in Sect. 3. Different from governing equations, the
constitutive equation represents material properties.

2.2.2 Stress Tensor

To understand what stress is, we consider a body of materials as a collection of
molecules. If forces exerting on the body do not give rise to any deformation, then
the body moves as a rigid body. Assume that a tiny probe is installed in the body
and it can detect any variation of the force field around the point where the probe is
installed. The probe averages out the variation whose wavelength is shorter than the
size of material particle hypothesized in continuum theory and also does the vari-
ation whose frequency is higher than the inverse of the minimum characteristic time
concerned in continuum theory. Then, it can be said that the tiny probe can detect
the variation of the force field in the scale of continuum theory. Let us call the force
field in the scale of continuum theory the macroscopic force field. On the other
hand, microscopic force field is the object to be averaged by the probe.

The microscopic force field varies due to the changes in intermolecular potential
and momentum rates of molecules. These changes must be deeply related to the
changes in relative positions of molecules, which is deformation in terminology of
continuum theory. Thus, stress cannot be generated without any deformation.
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Consider a small volume Ω in a deformed body and divide the volume into two
parts: A and B. The volume Ω is enveloped by the surface @X. The surface @X is
the union of @XA and @XB which belong to A and B, respectively. Suppose that the
two subsets A and B are distinguished by the flat plane @XAB between the subsets.
Suppose that a macroscopic force field is distributed on @X. Then, force exerted on
@XA results in the force exerted on @XAB of B. Let the force on @XAB of B be
denoted by dfAB. The force on @XB generates the force dfBA on @XAB of A. The
action–reaction law implies that dfAB ¼ �dfBA. It is assumed that there exists the
limit such that

t x; t; nð Þ ¼ lim
da!0

dfAB
da

ð2:17aÞ

where x is the center of @XAB, da is the area of @XAB, and n is the unit normal
vector of @XAB, whose direction is outward from B. Similarly, we have

t x; t;�nð Þ ¼ lim
da!0

dfBA
da

ð2:17bÞ

The action–reaction law gives

t x; t;�nð Þ ¼ �t x; t; nð Þ ð2:18Þ

The force field t x; t; nð Þ is called stress vector.
Cauchy proved that

t x; t; nð Þ ¼ T x; tð Þ � n ð2:19Þ

by the use of the tiny tetrahedron as shown in Fig. 1.
The tetrahedron shown in Fig. 1 has four flat planes whose normal vectors are

�e1, �e2, �e3, and n. We can choose n freely. The plane of �e1 is the projection of
the plane of n on the x2x3 plane. Hence, if the area of the plane of n is Da, then the

( )2et −

( )1et −

( )3et −
1x

2x

3x

( )nt

Fig. 1 Cauchy’s tetrahedron
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area Da1 of the plane of �e1 is given by n � e1ð ÞDa. Similarly, the area Dak of the
plane of �ek is given by n � ekð ÞDa. The volume of the tetrahedron can be calcu-
lated by DV ¼ 1

3hDa where h is the height of the tetrahedron from the plane of n.
Then, the force balance for the tetrahedron is given by

qDV
dv
dt

¼ t nð Þþ
X3
k¼1

t �ekð ÞDa n � ekð Þþ qgDV ð2:20Þ

If taking DV ! 0 which means Da ! 0 and h ! 0, we have

t nð Þþ
X3
k¼1

t �ekð Þ n � ekð Þ ¼ 0 ð2:21Þ

Using Eq. (2.18), we have

t nð Þ ¼ t ekð Þ ek � nð Þ ð2:22Þ

where summation convention was used as before. Since t ekð Þ is a vector, we can
write

t ekð Þ ¼ Tikei ð2:23Þ

Substitution of Eq. (2.23) into Eq. (2.22) gives

t nð Þ ¼ Tikeiek � n ð2:24Þ

Equation (2.13) is proven.
When a force is exerted on small area, the effect of the force on the body is larger

than that of the same force exerted on larger area. Even though force vector and area
are fixed, the effect of the force can be different depending on the orientation of the
surface. Thus, the effect of force exerted on a body differs depending on both the
area and orientation of the contact surface. Hence, we can consider a piece of
surface as a vector when we consider the effect of force on a body. We want the
effect of force to be represented by the force normalized by oriented area (area
vector). Although a vector cannot be divided by another vector, we can use

f ¼ T � a ð2:25Þ

where f is the force vector, a is the area vector, and the second-order tensor T is the
normalized effect of the force. Hence, stress has the dimension of force per unit
area. When dividing both sides of Eq. (2.25) by the area a ¼ ak k and taking a ! 0,
Eq. (2.13) is recovered.
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2.2.3 Angular Momentum Balance

When linear momentum and position of a particle are given, respectively, as p and x,
the angular momentum of the particle is given by l ¼ x� p. The torque of the
particle is the time rate of angular momentum. Then, we have

dl
dt

¼ d
dt

x� pð Þ ¼ x� f ð2:26Þ

Note that the time rate of angular momentum is equal to the moment of force.
Consider a body denoted by Ω. The total angular momentum is given by

L ¼
ZZZ
X

x� qv dV ð2:27Þ

Continuum version of the moment of force is given by

M ¼
ZZ
@X

x� t daþ
ZZZ
X

x� qb dV ð2:28Þ

Then, we have the continuum version of Eq. (2.26):

dL
dt

¼
ZZZ
X

x� q
dv
dt

dV ¼ M ð2:29Þ

Note that dx=dt ¼ v and v� v ¼ 0. Equation (2.27) can be derived by the use of
the Reynolds transport theorem.

In Sect. 5, we have learned that a vector product can be replaced by the cor-
responding skew-symmetric tensor [see Eqs. (5.27) and (5.28) in Chap. 1]. Then,
we have

x� t ¼ G � t ¼ G � T � n ð2:30Þ

Note that Eq. (2.13) is used and the skew-symmetric tensor G is given by

G ¼ Gikeiek ¼ �eikpxpeiek ð2:31Þ

Then, the divergence theorem givesZZ
@X

x� t dS ¼
ZZZ
X

div G � Tð ÞdV ¼
ZZZ
X

r � TT �GT� �
dV

¼
ZZZ
X

G � r � TT
� �þ @Gik

@xj
Tkjei

	 

dV

ð2:32Þ
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Note that

@Gik

@xj
Tkj ¼ �eikp

@xp
@xj

Tkj ¼ �eikpTkp ð2:33Þ

With the help of Eqs. (2.32) and (2.33), Eq. (2.29) can be rewritten byZZZ
X

G � q
dv
dt

�r � TT � qb
� �

dV ¼ �
ZZZ
X

eikpTkpeidV ð2:34Þ

The left side of Eq. (2.34) is zero vector because of the equation of linear
momentum balance. Hence, we have

eikpTkp ¼ 0 ð2:35Þ

Equation (2.35) is equivalent to Tik ¼ Tki. Finally, we come to know that the
symmetry of stress tensor is the consequence from angular momentum
conservation.

2.2.4 Piola–Kirchhoff Stress

The stress T is called Cauchy stress or true stress. Cauchy stress is a linear
transform from the outward normal vector n of the current configuration to the
stress vector which is exerted on the infinitesimal surface element of the current
configuration. With the help of Eq. (1.37), we have

t da ¼ T � da ¼ eP � d~a ð2:36Þ

where

eP � det Fð ÞT � F�T ð2:37Þ

The tensor eP is called Piola–Kirchhoff stress of the 1st kind, which is a linear
transform from the infinitesimal surface element of the reference configuration to
the force exerted on the infinitesimal surface element of the current configuration.
Note that eP is not symmetric, while Cauchy stress T is symmetric. Piola–Kirchhoff
stress of the 2nd kind is defined by

eT ¼ F�1 � eP ¼ det Fð ÞF�1 � T � F�T ð2:38Þ

Note that eTT ¼ eT from the definition.
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2.3 Energy Balance: The First Law of Thermodynamics

2.3.1 Heat Transfer

There are three ways of heat transfer: conduction, convection, and radiation.
Conduction occurs through mediation of materials irrespective of solid and fluid.
Convection occurs by flow in fluid. On the other hand, radiation does not need any
mediation of materials because it transfers energy through propagation of electro-
magnetic wave. Since convection is an energy transfer coupled with flow motion,
we consider conduction and radiation here.

Since materials absorb and radiate electromagnetic wave, the net energy rate _Qrad

for only radiation is given by

_Qrad ¼
ZZZ
X

qr dV ð2:39Þ

where r is a scalar field representing the rate of the energy gain per unit mass by
absorbance and radiation of electromagnetic wave.

According to Fourier, the heat flux of conduction is given in terms of temper-
ature gradient:

q ¼ �jrT ð2:40Þ

where q is the heat flux, κ is the heat conductivity, and T is the absolute temper-
ature. Then, net energy rate _Qcond for only heat conduction is given by

_Qcond ¼ �
ZZ
@X

q � da ð2:41Þ

2.3.2 Energy Balance

When a body of continuum exchanges mechanical work and heat with its sur-
roundings, the rate of the net energy gain of the body dE=dt is given by

dE
dt

¼ dW
dt

þ dQ
dt

ð2:42Þ

where dW=dt is the rate of mechanical work given to the body and dQ=dt is the rate
of heat gain.

The rate of mechanical work is called the mechanical power which can be
calculated by
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dW
dt

¼
ZZ
@X

t � v daþ
ZZZ
X

qb � v dV ð2:43Þ

Application of Eq. (2.13) gives

dW
dt

¼
ZZZ
X

tr L � Tð ÞdV þ
ZZZ
X

v � r � Tþ qbð ÞdV ð2:44Þ

Here, we used divergence theorem and symmetry of stress tensor. The use of
Eq. (2.16) gives

dW
dt

¼ dK
dt

þ
ZZZ
X

tr L � Tð ÞdV ð2:45Þ

where K is the kinetic energy of the body:

K ¼
ZZZ
X

q
2
v � v dV ð2:46Þ

Note that the Reynolds transport theorem gives

dK
dt

¼
ZZZ
X

qv � dv
dt

dV ð2:47Þ

We define stress power as the second term in the right-hand side of Eq. (2.45). Note
that

tr L � Tð Þ ¼ tr D � Tð Þ ¼ tr T � Dð Þ ¼ tr T � Lð Þ ¼ T : D ð2:48Þ

It is clear that the rate of heat gain dQ=dt is the sum of _Qcond and _Qrad. Then, we
have

dE
dt

¼ dK
dt

þ
ZZZ
X

T : D dV �
ZZZ
X

r � q dV þ
ZZZ
X

qr dV ð2:49Þ

The total energy E can be considered as the sum of the kinetic energy and the
energy stored in the material called internal energy:

E ¼ UþK ð2:50Þ

where U is the internal energy. For the internal energy U, we can define internal
energy density u such that
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U ¼
ZZZ
X

qu dV ð2:51Þ

Substitution of Eq. (2.50) into Eq. (2.49) and rearrangement giveZZZ
X

q
du
dt

þr � q� qr � T : D
	 


dV ¼ 0 ð2:52Þ

Since Eq. (2.52) is valid for arbitrary region of Ω, it can be concluded that

q
du
dt

¼ �r � qþ qrþT : D ð2:53Þ

The term including stress, T : D, is called stress power. Equation (2.53) implies that
the rate of internal energy is equal to the sum of the rate of net gain of heat and the
stress power. The first law of equilibrium thermodynamics reads

du ¼ dqþ dw ð2:54Þ

where du is the differential of internal energy, dq is the infinitesimal heat entering
the system, and dw is the infinitesimal work done on the system. Comparison of
Eq. (2.53) with Eq. (2.54) tells us that the stress power and the rate of heat gain
correspond to dw and dq, respectively.

As for rigid body with constant heat capacity, it is clear that

T : D ¼ 0; du ¼ cVdT ð2:55Þ

where cV is the specific heat capacity at constant volume. In this case, rigid body
implies cV ¼ cP, too. Of course, cP is the specific heat capacity at constant pressure.
Then, with the help of Eq. (2.40), Eq. (2.53) becomes

@T
@t

¼ j
qcP

r2T þ r
cP

ð2:56Þ

It is usual that r depends on position and time through temperature. Then, Eq. (2.56)
is a nonlinear equation of temperature because r is proportional to T4 (the Stefan–
Boltzmann law). At a moderate temperature, it is a good approximation the term
involving r is negligible compared with other terms in Eq. (2.56). Then, we obtain a
diffusion equation of temperature such that

@T
@t

¼ j
qcP

r2T ð2:57Þ

120 2 Continuum Thermomechanics



As for deformable body, we need the second law and suitable constitutive equation
for internal energy to derive temperature equation similar to Eqs. (2.56) and (2.57).
This will be discussed when we study irreversible thermodynamics.

2.4 Balance Equations in Terms of Flux

We have derived several balance equations on the basis of the motion of material
particles. The same equations can be derived from another basis called flux (Deen
1998; Bird 2002; De Groot 1984). Although the use of flux in the derivation of
balance equation is easily understood and is made of direct parlance to physical
meaning, physical quantities may need their ways to finding the corresponding
fluxes. Furthermore, it is additionally necessary to consider source term. However,
the use of flux provides a unified way to balance equations of various physical
quantities. Therefore, we give general forms of balance equation in terms of flux
and then interpret the balance equations derived before from the viewpoint of flux.

Consider a physical quantity, say Φ which is defined by

U ¼
ZZZ
bX q/ dbV ð2:58Þ

where bX represents an arbitrary region fixed in space, ϕ is the field such that ρϕ is
the density of Φ, ρ is the mass density, and dbV is the infinitesimal volume element

of bX. Thus, dbV is independent of time. Hence, the rate of Φ is given by

dU
dt

¼
ZZZ
bX

@

@t
q/

� �
dbV ð2:59Þ

Introduction of flux and source gives

dU
dt

¼ �
ZZ
@bX

J/ � bndbSþ ZZZbX
P/dbV ;

@q/
@t

¼ �divJ/ þP/ ð2:60Þ

where J/ is the flux of the physical quantity Φ (or ϕ) andP/ is the source term. The
minus sign of surface integral is originated from the convention that unit normal
vector bn of surface element is given by the outward normal vector. Equation (2.60)
is the general form of balance equations.

Equation (2.4), the balance equation of mass, can be obtained when / ¼ 1 and
the flux and the source are identified by

Jq ¼ qv; Pq ¼ 0 ð2:61Þ
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Since mass is conserved, it is obvious that the source term of mass is zero. When
linear momentum balance is considered, we know that / ¼ v and

Jv ¼ qvv� T; Pv ¼ qb ð2:62Þ

Equation (2.50) leads us to that the energy density is given by

qe ¼ quþ 1
2
q vk k2 ð2:63Þ

Since energy is conserved, it is obvious that the source term of energy must be zero.
Then, the flux and source term of energy are given by

Je ¼ qevþ qT � T � v; Pe ¼ 0 ð2:64Þ

where qT is the total heat flux which includes heat transfer by both conduction and
radiation:

r � qT ¼ r � q� qr ð2:65Þ

From Eq. (2.65), thermal energy density or heat energy density qq can be defined as

Q ¼
ZZZ
X

qq dV ð2:66Þ

and

q
dq
dt

¼ �r � qT ð2:67Þ

Then, energy balance equation can be rewritten by

@qe
@t

þr � Je ¼ 0 ð2:68Þ

or

du
dt

¼ dq
dt

� p̂
dv
dt

þ vT0 : L ð2:69Þ

where v is the specific volume such that v ¼ q�1, p̂ ¼ �1
3tr Tð Þ, and T0 is the

deviatoric stress such that T ¼ �p̂IþT0.
Note that the conservative quantities such as mass and energy have no source

term, whereas the nonconservative quantity such as linear momentum has nonzero
source term. This viewpoint suggests that the entropy of nonequilibrium has the
following formal balance equation:
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q
ds
dt

¼ �r � Js þPs ð2:70Þ

The second law of thermodynamics demands the nonnegativeness of the source
term of entropy: Ps � 0. The essence of irreversible thermodynamics is to find the
formulation of flux and source term of entropy in terms of measurable field vari-
ables. This will be discussed in Sect. 4.

It is noteworthy that the flux of momentum is a second-order tensor and the flux
of mass is a vector, which implies that if a physical quantity is an nth-order tensor,
then the corresponding flux is a tensorial quantity with the order of nþ 1.
Meanwhile, the source term has the same order as the physical quantity.

Problem 2

[1] Derive Eq. (2.29) by use the Reynolds transport theorem.
[2] Derive

q x; tð Þ ¼ ~q ~x; tRð Þ
det Fð Þ ð2:aÞ

where ρ is the mass density field in the current configuration, ~q is the mass
density in the reference configuration, and tR is the reference time.

[3] Derive the equation of motion in terms of Piola–Kirchhoff stress of the first
kind.

[4] The case of T ¼ T11e1e1 þ T22e2e2 þ T12 e1e2 þ e2e1ð Þ is called the state of
plane stress. Suppose that the body is in the state of plane stress and in
equilibrium: r � T ¼ 0. Show the existence of w x1; x2ð Þ such that

@2w
@x22

¼ T11;
@2w
@x21

¼ T22;
@2w

@x1@x2
¼ �T12 ð2:bÞ

[5] Show that

tr T � Lð Þ ¼ tr V�1 � T � dV
dt

� �
ð2:cÞ

[6] Suppose that a material satisfies

df Bð Þ
dt

¼ tr T � Lð Þ ð2:dÞ

Then, show that

T ¼ 2B � @f
@B

ð2:eÞ
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[7] Derive that

tr T � Lð Þ ¼ 1
det Fð Þ tr

eP � dF
dt

� �
ð2:fÞ

[8] Derive Eq. (2.53) by the use of Eqs. (2.60) and (2.64).

3 Classical Constitutive Equations

From the viewpoint of rheology, materials can be classified into four groups: elastic
body; viscous fluid; plastic body; and viscoelastic body. Stress of elastic body is a
function of strain, which means that a current stress is uniquely determined by a
strain at the present time. Viscous fluid is a body whose stress is a function of
deformation rate and independent of strain. Stress of plastic material is determined
by the path of deformation but independent of the deformation rate. This depen-
dence on deformation path implies that different stresses occur when a given strain
is conducted by different paths of deformation. For example, the two deformation
paths such as the twist after an extension and the extension after a twist give
different stresses even if the final strains are same. Since stress of plastic body is
independent of the deformation rate, the same stress is obtained from two defor-
mation histories with the same deformation path but different duration times. Stress
of viscoelastic material is determined by the history of deformation. Hence, stress of
viscoelastic material may depend on both the rate and the path of deformation.
Different from plastic body, stress of viscoelastic body may be different for the
deformation histories with the same deformation path but different duration times.

In this section, we shall introduce three kinds of classical constitutive equations:
those of isotropic linear elastic body; viscous fluid; and linear viscoelastic body.
These examples are helpful to understand more advanced theories of constitutive
equations for polymeric materials. Some of them are practically important, and the
others are conceptually important.

3.1 Elasticity

3.1.1 Constitutive Equation of Linear Elastic Body

Consider only infinitesimal deformation which means that infinitesimal strain is
sufficient in describing stress. Isotropic linear elastic constitutive equation is an
idealization of material. The constitutive equation is based on the assumptions such
that
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[1] Material properties are isotropic.
[2] Stress depends linearly only on current infinitesimal strain.

When stress is a linear function of infinitesimal strain, we can write the stress as
follows:

Tik ¼ Cikmnemn ð3:1Þ

where Tik is the component of the stress tensor, Cikmn is the component of
fourth-order tensor called modulus, and emn is the component of infinitesimal strain.

Although fourth-order tensor has 81 components, the modulus tensor has only 21
independent components for fully anisotropic materials (Sadd 2009). However, the
modulus of isotropic materials has only two independent components. Since material
is isotropic, the modulus tensor must be isotropic fourth-order tensor such as

Cikmn ¼ kdikdmn þG dimdkn þ dindkmð Þþ b dimdkn � dindkmð Þ ð3:2Þ

Application of Eq. (3.2) to Eq. (3.1) gives

Tik ¼ kemmdik þ 2Geik ð3:3Þ

Since eik ¼ eki, the term involving β disappears irrespective of strain tensor. Hence,
isotropic linear elastic body has only two independent modulus components.

3.1.2 Moduli of Isotropic Linear Elasticity

Problem 1 [2] provides that the trace of strain is the volumetric strain. Hydrostatic
pressure Tik ¼ pdik gives only change of volume without shape change. Taking
trace on both sides of Eq. (3.3), we have

3kþ 2Gð ÞeV ¼ Tmm ¼ 3p ð3:4Þ

where eV ¼ emm. Bulk modulus K is defined as the slope in the plot of p as a
function of eV. Then, we have

K ¼ kþ 2
3
G ð3:5Þ

An example of simple shear is x ¼ ~xþ cx2e1. As for this deformation, the
volume does not change, but only the shape of material changes. The infinitesimal
strain for the simple shear is given by

E ¼ c
2

e1e2 þ e2e1ð Þ ð3:6Þ
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Application of Eq. (3.6) to Eq. (3.3) gives

T ¼ s e1e2 þ e2e1ð Þ ð3:7Þ

where

s ¼ Gc ð3:8Þ

Note that γ and τ are called shear strain and shear stress, respectively. Hence, G is
called shear modulus which represents the resistance to shear. Deviatoric strain E0

is defined as

E0 ¼ E� 1
3
tr Eð ÞI ð3:9Þ

Equation (3.9) immediately indicates that the deviatoric strain is traceless:

tr E0ð Þ ¼ 0 ð3:10Þ

Then, Eq. (3.3) can be rewritten in terms of K and G as follows:

T ¼ KeVIþ 2GE0 ð3:11Þ

The isotropic term of Eq. (3.11) corresponds to the stress due to volume change,
while the term of deviatoric strain corresponds to the stress due to shape change.

One of the most convenient test methods for elastic material is simple elonga-
tion. If elongation axis is e1, then only nonzero component of stress is T11. Then, we
have only three nonzero components of strain:

e11 ¼ kþG
G 3kþ 2Gð Þ T11; e22 ¼ e33 ¼ � k

kþG
e11 ð3:12Þ

Young’s modulus is the slope in the plot of T11 against e11. Hence, we have

E ¼ G 3kþ 2Gð Þ
kþG

ð3:13Þ

Simple elongation test provides the measurement of Young’s modulus as well as
Poisson’s ratio defined as

m ¼ � e22
e11

¼ k
2 kþGð Þ ð3:14Þ
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The constitutive equation can be rewritten in terms of E and ν as follows:

e11 ¼ T11 � m T22 þ T33ð Þ
E

; e22 ¼ T22 � m T33 þ T11ð Þ
E

;

e33 ¼ T33 � m T11 þ T22ð Þ
E

; e12 ¼ T12
2G

; e23 ¼ T23
2G

; e31 ¼ T31
2G

ð3:15Þ

Bulk modulus and shear modulus can be expressed in terms of Young’s modulus
and Poisson’s ratio as follows:

K ¼ E
3 1� 2mð Þ ; G ¼ E

2 1þ mð Þ ð3:16Þ

As Poisson’s ratio goes to 1
2
, bulk modulus goes to infinity, which means that

volume cannot be changed for any deformation. However, G goes to 1
3
E as ν

approaches to 1
2
. Hence, a material with K 	 G behaves as incompressible solid.

Rubber has Poisson’s ratio very close to 1
2
.

3.1.3 Positiveness of Moduli

Deformation gives rise to the increase of the internal energy of linear elastic body.
The minimum internal energy must be achieved at E ¼ 0. Strain energy density is
the difference between the internal energies per unit volume of deformed and
undeformed configurations. Then, the strain energy density can be calculated by
integrating the differential equation such as

df ¼ T : dE ð3:17Þ

This is the infinitesimal work per unit volume.
It is a reasonable assumption that higher strain gives rise to higher strain energy

density. Mathematical expression of this notion is

f t1Eð Þ� f t2Eð Þ ð3:18Þ

where E is arbitrary and t1 � t2 are arbitrary positive real numbers. The strain
energy density must be an even function of strain such that f Eð Þ ¼ f �Eð Þ. We can
expand f tEð Þ as follows:

f tEð Þ ¼ f 0ð Þþ t
@f
@E

� �
E¼0

: Eþ t2

2
E :

@2f
@E@E

� �
E¼0

: Eþ � � � ð3:19Þ
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Since Eq. (3.17) implies T ¼ @f =@E, E ¼ 0 implies @f =@Eð ÞE¼0¼ 0. Then, the
inequality of Eq. (3.18) implies that

f t1Eð Þ � f t2Eð Þ ¼ t21 � t22
2

E : C : E� 0 ð3:20Þ

where

@2f
@E@E

� �
E¼0

¼ @f
@eik@emn

� �
E¼0

eiekemen ¼ Cikmneiekemen ¼ C ð3:21Þ

Since t1 [ t2, we have

E : C : E ¼ Cikmneikemn � 0 ð3:22Þ

The inequality must hold for any strain. Note that E is arbitrary. Hence, Eq. (3.22)
implies the modulus tensor is positive definite. Equation (3.22) can be rewritten for
isotropic linear elastic body as follows:

E : C : E ¼ K eVð Þ2 þ 2GE0 : E0 � 0 ð3:23Þ

Note that eVð Þ2 [ 0 and E0 : E0 � 0. Since we can render volume strain to be zero
while deviatoric strain is not zero tensor, the inequality gives G[ 0. Similarly,
isotropic stress such as T ¼ pI gives eV 6¼ 0 and E0 ¼ 0. Then, we have K[ 0.
Then, it is not difficult to show that E[ 0, k[ 0, and

�1\m\1
2

ð3:24Þ

3.1.4 Navier Equation

Modulus of most practical materials is so high that their deformation is nearly
independent of gravitation. Hence, neglection of body force is usually chosen.
When deformed elastic body rests in equilibrium, we have the equilibrium equation
such as

r � T ¼ 0 ð3:25Þ

When deformation is infinitesimal, x � ~x holds. Then, we can use er � r. Hence,
Eq. (1.25) can be rewritten by

E ¼ 1
2

ruþ ruð ÞT� � ð3:26Þ
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Then, we can express the equilibrium equation in terms of displacement vector:

r r � uð Þþ G
kþG

r2u ¼ 0 ð3:27Þ

Equation (3.27) is Navier equation.
If body force is not neglected, then the Navier equation becomes

r2uþ 1
1� 2m

r r � uð Þ ¼ � 2 1þ mð Þ
E

qb ð3:28Þ

Here, λ and G are replaced by E and ν. A vector identity

r r � uð Þ ¼ r2uþr� r� uð Þ ð3:29Þ

gives

r2uþ 1
2 1� mð Þr � r� uð Þ ¼ � 1þ mð Þ 1� 2mð Þ

E 1� mð Þ qb ð3:30Þ

If displacement field u is irrotational, then Eq. (3.30) gives

r2u ¼ � 1þ mð Þ 1� 2mð Þ
E 1� mð Þ qb ð3:31Þ

Equation (3.31) is three independent Poisson’s equations. When body force is
neglected, the Navier equation is reduced to Laplace equation.

Applications of Navier equation to several elastostatic problems are found in
various texts of elasticity such as Sadd (2009) and Landau (1986).

3.1.5 Nonlinear Elasticity

Stress of elastic material is an algebraic function of strain. When deformation is
infinitesimal, it is clear that the stress is a function of infinitesimal strain. However,
there is no obvious reference to choose a finite strain among various finite strains in
nonlinear elasticity. The principle of material frame-indifference, which will be
explained in Sect. 5, might be helpful for this problem. However, for a while, we
assume that appropriate strain measure is B ¼ F � FT . For simplicity, we consider
only isotropic materials.

Since we are interested in only isotropic material, the learning from Sect. 5.3 gives

T ¼ G0IþG1BþG2B2 ð3:32Þ
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where G0, G1 and G2 are functions of principal invariants of B. Cauchy elastic
materials are the ones whose stress is expressed by Eq. (3.32). It is known that the
work done by stress of Eq. (3.32) may depend on deformation path (Ogden 1984).

Consider the stress power shown in Eq. (2.53). We are interested in the condition
that allows the stress power to be time derivative of a scalar function. Exploiting
properties of trace, we have

tr T � Lð Þ ¼ tr T � dF
dt

� F�1
� �

¼ tr T � dV
dt

� V�1
� �

¼ tr V�1 � T � dV
dt

� �
ð3:33Þ

Here, Eq. (1.46) was used. Consider a scalar-valued function of V of Eq. (1.15)
such that

T ¼ V � @U
@V

ð3:34Þ

Since V is symmetric tensor, substitution of Eq. (3.34) into Eq. (3.33) yields

tr T � Lð Þ ¼ @U
@V

:
dV
dt

¼ dU
dt

ð3:35Þ

Thus, Eq. (3.34) is the condition that the stress power must be material time
derivative of a scalar-valued function of V. If the scalar function of Eq. (3.34) is a
function of V, then it is also a function of B ¼ V2 ¼ F � FT . Note that B is much
more convenient than V because B does not require complicate polar decomposi-
tion. Then, Eq. (3.34) becomes

T ¼ 2B � @U
@B

ð3:36Þ

Equations (3.34) and (3.36) are known as the constitutive equations of Green
elasticity or hyperelasticity.

If material is isotropic, the scalar function Φ must be a function of principal
invariants of B. Then, Eq. (3.36) can be rewritten by

T ¼ 2 IIIBU3 þ IIBU2ð ÞIþ 2U1B� 2IIIBU2B�1 ð3:37Þ

where

U1 ¼ @U
@IB

; U2 ¼ @U
@IIB

; U3 ¼ @U
@IIIB

ð3:38Þ
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If material is incompressible, then it is clear that IIIB ¼ 1 and Eq. (3.37)
becomes

T ¼ �pIþ 2
@U
@IB

B� @U
@IB�1

B�1
� �

ð3:39Þ

Note that p cannot be determined by constitutive equation because volume is
preserved. The pressure p can be determined by boundary condition. The Cayley–
Hamilton theorem with IIIB ¼ 1 gives

IB ¼ IIB�1 ; IIB ¼ IB�1 ð3:40Þ

Mechanical behavior of rubber can be approximated to isotropic incompressible
elasticity.

3.2 Viscous Fluids

3.2.1 Constitutive Equation of Viscous Fluids

Normal fluids are isotropic. Since stress of viscous fluid is a function of deformation
rate, the most general form should be

T ¼ boIþ b1Dþ b2D
2 ð3:41Þ

where bk are functions of principal invariants of deformation rate tensor D. The
linearization of Eq. (3.41) gives the constitutive equation of Newtonian fluid.
Although ID ¼ tr Dð Þ ¼ r � v is a linear function of D, the other principal invariants
are not linear functions of D. If b2 6¼ 0, Eq. (3.41) cannot be linearized. Then,
Newtonian fluids are obtained from Eq. (3.41) whenever b2 ¼ 0, b2 � 2gs is a
constant, and bo is given by

bo ¼ �pþgb r � vð Þ ð3:42Þ

Here, pressure p is a function of mass density and temperature, which is given from
the equation of state. Viscosities gb and gs are called, respectively, bulk and shear
viscosities. Finally, the stress of Newtonian fluid is given by

T ¼ �pIþgb r � vð ÞIþ 2gsD ð3:43Þ

Note that the deviatoric stress is given by

T0 ¼ 2gs D� tr Dð Þ
3

I
	 


¼ 2gsD
0 ð3:44Þ
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No flow implies that stress becomes hydrostatic pressure which must be determined
by the equation of the state of the fluid. Hence, p in Eq. (3.43) is the pressure of
equilibrium thermodynamics. All fluid cannot sustain its shape without a container,
and such isotropic term is necessary. The stress without −pI is called extra stress
which is generated by flow. Extra stress is denoted and defined as

Tex ¼ Tþ pI ¼ gb r � vð ÞIþ 2gsD ð3:45Þ

Thermodynamic analysis will show that shear viscosity must be positive, while
the sum of bulk viscosity and two-thirds of shear viscosity must be positive.

3.2.2 Navier–Stokes Equation

Consider only Newtonian fluids. Substitution of Eq. (3.43) into equation of motion
(2.16) yields

q
@v
@t

þ v � rv
� �

¼ �rpþ gb þgsð Þr r � vð Þþgsr2v ð3:46Þ

Equation (3.46) is called Navier–Stokes equation which is actually three nonlinear
partial differential equations with four unknown functions. This equation should be
solved with continuity equation so that the number of equations is equal to that of
unknown functions.

Liquids behave like incompressible fluid in moderate conditions. Hence, it is a
good approximation that

r � v ¼ 0 ð3:47Þ

Application of Eq. (3.47) gives

q
@v
@t

þ v � rv
� �

¼ �rpþgsr2v ð3:48Þ

It is the Navier–Stokes equation of incompressible fluids. Since the density of
incompressible fluid is a constant and the hydrostatic pressure cannot be given from
the equation of state, the four equations of Eqs. (3.47) and (3.48) have four
unknown functions: three components of velocity and hydrostatic pressure.

Since both Eqs. (3.46) and (3.48) are difficult to be solved exactly, several
approximations have been developed. These approximations are based on dimen-
sional analysis because nondimensionalization makes it easier to compare the
magnitudes of various quantities such as velocity, density, viscosity, pressure, and
gravitation. Consider the following nondimensionalizations:
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x ¼ lc�x; r ¼ 1
lc
r; v ¼ vc�v; b ¼ g�b; t ¼ tc�t; p ¼ pc�p ð3:49Þ

where bar and subscript c indicate dimensionless quantity and characteristic
quantity, respectively. Note that g is the acceleration of gravity. Characteristic
quantities are chosen among the quantities to represent the system (Deen 1998).
Then, Eq. (3.48) can be rewritten in terms of dimensionless quantities as follows:

Re
1
St
@�v
@�t

þ �v � r � �v
� �

¼ � lcpc
gsvc

� �
r�pþr2

�vþ Re
Fr

�b ð3:50Þ

where dimensionless numbers Re, Sr, and Fr are defined as

Re ¼ qvclc
gs

; St ¼ tcvc
lc

; Fr ¼ v2c
glc

ð3:51Þ

Note that Re is the Reynolds number which represents the ratio of inertial force to
viscous force, St is the Strouhal number which indicates the ratio of the time
intrinsic for flow to the convection time, and Fr is the Froude number which
corresponds to the ratio of inertial force to gravitational force.

If Sr is much larger than other dimensionless quantities, then the time derivative
term can be neglected. Then, the velocity can be considered as the one independent
of time. If Re is much smaller than Fr, then the effect of body force can be
neglected. The body force is usually neglected in the flow of polymer melts,
because their viscosity is much higher.

There are two ways to select the characteristic pressure: viscous pressure scale
and inertial pressure scale. The former is given by

pc ¼ gsvc
lc

ð3:52Þ

and the latter is given by

pc ¼ qv2c ð3:53Þ

If viscous scale is used, then the incompressible Navier–Stokes equation becomes

@�v
@�t

þ St�v � r � �v ¼ � St
Re

r�pþ St
Re

r2
�vþ St

Fr
�b ð3:54Þ

If the characteristic time tc is chosen as

tc ¼ ql2c
gs

; ð3:55Þ
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then we have

St ¼ Re ð3:56Þ

Hence, Eq. (3.54) becomes

@�v
@�t

þRe �v � r � �v ¼ �r�pþr2
�vþ Re

Fr
�b ð3:57Þ

Taking the limit Re ! 0, we have

@�v
@�t

¼ �r�pþr2
�v ð3:58Þ

This equation is effective for suspensions consisting of tiny particles and incom-
pressible Newtonian fluid. The Stokes flow is the flow that Eq. (3.58) is a good
approximation. Equation (3.58) is a set of linear partial differential equations
because the convection term �v � r�v is removed. Various solution methods for
Eq. (3.58) are found in Kim and Karrila (2005).

3.2.3 Viscous Model for Polymer Melts

Since polymer melts have very high viscosity, it is usual to use Re ¼ 0. However,
the viscosity of polymer melt is not constant even though the temperature depen-
dence of the viscosity is not considered. Shear viscosity of polymer melt is a
function of deformation rate tensor. Since polymer melt is considered as incom-
pressible fluid, the first principal invariant of D is zero. For simplicity, if the third
invariant is neglected, then the viscosity becomes the scalar-valued function of only
the second invariant. It is more convenient to use shear rate _c� 0 defined below
rather than the second invariant:

_c ¼
ffiffiffiffiffiffiffiffiffiffiffi
4 IIDj j

p
ð3:59Þ

Note that in simple shear flow, deformation rate tensor is usually given by

D ¼ g abþ bað Þ ð3:60Þ

where g is a function of position and time, a is the unit vector along the flow
direction, and b is the unit vector in the direction where the magnitude of velocity
varies (Tanner 2002). The direction of b is called gradient direction, and the third
direction other than a and b is called vorticity direction. Then, Eq. (3.59) implies that

_c ¼ gj j ð3:61Þ

Note that shear flow is the one that satisfies a � b ¼ 0.
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In polymer processing, it is usual to use the following viscous fluid model:

T ¼ �pIþ 2g _cð ÞD ð3:62Þ

with

g _c; Tð Þ ¼ go Tð Þ
1þ go Tð Þ _c=ro½ � af gb

ð3:63Þ

Here, the viscosity model (3.63) is called the Carreau–Yasuda model (Bird et al.
1987). The Carreau–Yasuda model has four parameters at constant temperature.
Note that Eq. (3.63) implies that

lim
_c!0

g _c; Tð Þ ¼ go Tð Þ ð3:64Þ

Hence, go is called the zero-shear viscosity. When go _cr
�1
o 
 1, Eq. (3.62) behaves

like the constitutive equation of incompressible Newtonian fluid.
Viscosity of most liquids depends on temperature. The temperature dependence

of liquid agrees well, in most cases, with

go Tð Þ ¼ g1 exp
Ta
T

� �
ð3:65Þ

where both g1 and Ta are positive material parameters. The activation energy of
flow is defined by

Ta ¼ Ea

R
ð3:66Þ

where R is the gas constant whose value is about 8.314 J K−1 mol−1.
Adopting Eq. (3.65), the Carreau–Yasuda model becomes 6-parameter model.

One of the most important features of the Carreau–Yasuda model is temperature–
shear rate superposition. The plot of g=go Tð Þ against _c= _co is nearly independent of
temperature. Note that

_co ¼
ro

go Tð Þ ð3:67Þ

The zero-shear viscosity of polymer melt is also dependent on molecular weight
of polymer. It is known that

go M; Tð Þ
go MC; Tð Þ ¼

M
MC

for M�MC

M
MC

� �3:4
for M�MC

8<: ð3:68Þ
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where MC and M are, respectively, the critical molecular weight and weight-av-
erage molecular weight (Chap. 4). Hence, we can confirm experimentally the T-
M- _c superposition from the plot of g=go Tð Þ against _c= _co. Since the critical
molecular weight depends on kinds of polymers, it can be considered as material
constant. Equation (3.68) is nearly independent of molecular weight distribution.

It is difficult to obtain sufficiently many viscosity data for the identification of
Eq. (3.63). Hence, the use of the above superposition principle is very effective in
the determination of the material parameters. This will be discussed in Part II.

It is difficult to obtain isothermal viscosity data whose shear rates are so wide to
identify Eq. (3.63). Usual range of shear rate is go _cr

�1
o 	 1. In this region of shear

rate, Eq. (3.63) is approximated by

g ¼ K
_cn

ð3:69Þ

This is the two-parameter model called the power law fluid model.
It is worthwhile to mention that shear viscosity of polymer melts or polymer

solutions is calculated by

g ¼ r
_c

ð3:70Þ

where σ is the shear stress measured from steady simple shear flow. There are
several methods to measure the shear viscosity of polymeric fluid, which will be
discussed in Part III. Since shear stress must not be a decreasing function of shear
rate, it is clear that 0\n\1 as well as 0\ab\1. Both Eqs. (3.63) and (3.70)
represent that the shear viscosity is a decreasing function of shear rate. Hence, most
polymeric fluids are shear-thinning fluids.

3.3 Viscoelastic Models

3.3.1 Spring–Dashpot Models

Stress of polymeric materials depends on both strain and strain rate because the
materials are viscoelastic. Before the birth of the society of rheology, the materials
have been studied and modeled. At that time, solids were considered as linear
elastic body (called Hookean body) whose stress is linear function of strain,
whereas fluids were considered as linear viscous fluid (called Newtonian fluid)
whose stress is linear function of strain rate. Since spring can be represented for
linear elastic solids and dashpot for linear viscous fluids, it is a natural way to model
linear viscoelasticity by the combinations of spring and dashpot.
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The Maxwell model is a one-dimensional model that a spring and a dashpot are
connected in a series. When the modulus of the spring is denoted by GM [ 0 and
the viscosity of the dashpot by gM [ 0, the one-dimensional stress σ is given by

r ¼ GMce ¼ gM
dcv
dt

ð3:71Þ

where ce is the strain of the spring and cv is the strain of the dashpot. Since the two
mechanical elements are connected in a series, it is clear that the total strain is given by

c ¼ ce þ cv ð3:72Þ

Combining Eqs. (3.71) and (3.72), we have

dr
dt

þ GM

gM
r ¼ GM

dc
dt

ð3:73Þ

Since the units of GM and gM are Pa and Pa-s, respectively, we can define relax-
ation time such that

kM ¼ gM

GM
ð3:74Þ

The general solution of Eq. (3.73) is given by

rðtÞ ¼ r toð Þ exp � t � to
k

� �
þ
Z t

to

G t � sð Þ dc
ds

ds ð3:75Þ

where the relaxation modulus GðtÞ is defined by

GðtÞ ¼ GM exp � t
kM

� �
ð3:76Þ

If we know the time when stress is zero, say it is to, Eq. (3.75) becomes simpler:

rðtÞ ¼
Z t

to

G t � sð Þ dc
ds

ds ð3:77Þ

However, because stress of viscoelastic material is determined by deformation
history, it is difficult to know when stress is zero. Setting to ! �1, Eq. (3.75)
becomes independent of initial condition:
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rðtÞ ¼
Z t

�1
G t � sð Þ dc

ds
ds ð3:78Þ

Equation (3.78) is valid even if r �1ð Þ 6¼ 0.
Equation (3.78) with Eq. (3.76) is the constitutive equation of the Maxwell

model. If strain is given by cðtÞ ¼ coHðtÞ where HðtÞ is the unit step function
defined by

HðtÞ ¼ 1 for t� 0
0 for t\0

�
ð3:79Þ

The test by the step strain is called stress relaxation. The derivative of the unit step
function is the Dirac delta function:

dH
dt

¼ dðtÞ ð3:80Þ

Then, stress is given by

rðtÞ ¼ GðtÞco ¼ GMco exp � t
kM

� �
ð3:81Þ

Equation (3.81) implies that stress becomes smaller as time increases. This
tendency qualitatively agrees with the experimental results of viscoelastic materials.
Only two material parameters GM and kM cannot fit experimental data.

It is interesting that the stress of Eq. (3.81) at t ¼ �1 is larger than the stress at
t ¼ 0. It is ridiculous because strain was zero for t\0. How can we remove this
contradiction?

In Eq. (3.78), t � s implies the interval between the time at which stress is mea-
sured and the time at which strain was given. Hence, G t � sð Þ represents the weight
of the effect of deformation given before t � s. It is a reasonable reasoning that the
effects from far past must be smaller than those from near past. This notion is called
fading memory. The principle of fading memory insists that relaxation modulus must
be a decreasing function of time. Furthermore, the stress at present time cannot be
affected by the strain which will be given in future. This is called principle of
causality. If t � s is less than zero, then τ is the time of future. The principle of
causality insists that GðtÞ ¼ 0 for t\0. Thus, Eq. (3.76) must be replaced by

GðtÞ ¼ GMe
�t=kMHðtÞ ð3:82Þ

The Voigt model (or Kelvin–Voigt model) is the one in which spring and dashpot
are connected in parallel. Because of parallel connection, both mechanical elements
have the same strain. Then, the total stress is given by

138 2 Continuum Thermomechanics



r ¼ GVcþgV
dc
dt

ð3:83Þ

This one-dimensional constitutive equation easily gives stress when strain is
given. As for stress relaxation test, the stress is easily calculated as follows:

rðtÞ ¼ GVcoHðtÞþgVcodðtÞ ð3:84Þ

Compared with Eq. (3.81), the stress of the Voigt model does not decrease just as that
of elastic material. Only difference from linear elasticity is the last term containing the
Dirac delta function. This term is not detectable in any experiment. At any way,
Eq. (3.84) implies that the relaxation modulus of the Voigt model is given by

GðtÞ ¼ GVHðtÞþgVdðtÞ ð3:85Þ

Equation (3.83) is a linear differential equation of strain. The general solution is
given by

cðtÞ ¼ exp � t � to
sV

� �
c toð Þþ

Z t

to

1
gV

exp � t � s
sV

� �
r sð Þds ð3:86Þ

where the retardation time of the Voigt model sV ¼ gV=GV. Application of inte-
gration by parts gives

cðtÞ ¼ e� t�toð Þ=sV c toð Þ � r toð Þ
GV

	 

þ rðtÞ

GV
�
Z t

to

1
GV

exp � t � s
sV

� �
dr
ds

ds ð3:87Þ

Just as before, we take to ! �1 to remove the effect of initial condition. Then, we
have

c tð Þ ¼
Z t

�1
J t � sð Þ dr

ds
ds ð3:88Þ

where JðtÞ is called creep compliance and is given by

JðtÞ ¼ 1� e�t=sV

GV
HðtÞ ð3:89Þ

The unit step function was introduced to Eq. (3.89) because of the principle of
causality.
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In creep experiment, strain is measured as a function of time under the stress
controlled by rðtÞ ¼ roHðtÞ. When creep test is done, the strain of elastic materials
does not vary, while the strain of the Voigt model depends on time as follows:

cðtÞ ¼ roJðtÞHðtÞ ð3:90Þ

As time goes to infinity, strain of Eq. (3.90) approaches to ro=GV which is the
strain of the spring of the Voigt model when the spring is exerted by the stress ro.
This implies that the growth of the creep strain is retarded. Because of this retar-
dation of strain, the characteristic time in Eq. (3.89), sV, is called retardation time.

Although the Maxwell model and the Voigt model are successful in the
description of a few viscoelastic phenomena, the agreement is qualitative, not
quantitative. Furthermore, the creep behavior of the Maxwell model and the
relaxation behavior of the Voigt model are disappointing. Improvement is expected
when more mechanical elements are involved in modeling.

The standard solid model is the parallel connection of the Maxwell model with a
spring whose modulus is G1. Then, the one-dimensional constitutive equation
becomes

k
dr
dt

þr ¼ g2 1þ G1

G2

� �
dc
dt

þG1c ð3:91Þ

where g2 and G2 are viscosity and modulus of the Maxwell model, respectively.
The differential equation can be replaced again by Eq. (3.78), but the relaxation
modulus is given by

GðtÞ ¼ G1 þG2 exp � t
k

� �h i
HðtÞ ð3:92Þ

with

k ¼ g2

G2
ð3:93Þ

The Jeffreys model is the connection of the Voigt model with a dashpot of g1 in
a series. Then, the one-dimensional constitutive equation is given by

dr
dt

þ G2

g1 þg2
r ¼ g1

g1 þg2
G2

dc
dt

þ g1g2

g1 þg2

d2c
dt2

ð3:94Þ

where g2 and G2 are viscosity and modulus of the Voigt model, respectively. The
Jeffreys model describes the creep behavior of polymeric fluid well, while the
standard solid model describes the relaxation behavior of polymeric solid well. The
creep compliance of the Jeffreys model is given by
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JðtÞ ¼ t
g0

þ 1� e�t=s

G2

� �
HðtÞ ð3:95Þ

where the retardation time is given by

s ¼ g2

G2
ð3:96Þ

3.3.2 Generalization of One-Dimensional Models

However, these two 3-element models still suffer from quantitative disagreement
with experimental data even though a quite large improvement is achieved com-
pared with the 2-element models. The generalized Maxwell model is the parallel
connection of N different Maxwell elements with a single spring. The generalized
Maxwell model gives better fitting of relaxation data as N increases. Similarly,
connection of N different Voigt elements and a single dashpot in a series gives
better fitting of creep data as N increases. This is called the generalized Voigt
model. The relaxation modulus of N-mode Maxwell model is given by

GðtÞ ¼ G1 þ
XN
k¼1

Gke
�t=kk

 !
HðtÞ ð3:97Þ

where kth-mode relaxation time is defined as kk ¼ gk=Gk . The N-mode Voigt
model has the creep compliance such as

JðtÞ ¼ t
go

þ
XN
k¼1

1� e�t=sk

Gk

 !
HðtÞ ð3:98Þ

where kth-mode retardation time is defined as sk ¼ gk=Gk.
The generalized Maxwell and Voigt models can be generalized further by the

introduction of relaxation and retardation spectra. The summation in Eqs. (3.97) and
(3.98) is replaced by integration:

GðtÞ ¼
Z1
�1

H kð Þe�t=kd log k ð3:99Þ

and

JðtÞ ¼
Z1
�1

L sð Þ 1� e�t=s
� �

d log s ð3:100Þ
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Note that these integral equations adopt logarithmic scale to make the relaxation
time spectrum H kð Þ have the dimension of modulus and to make the retardation
time spectrum L sð Þ have the dimension of compliance. The two spectra cannot be
measured directly because they are conceptual quantities. We shall show that the
relaxation time spectrum is uniquely determined in Part II. Similar approaches can
be applied to the uniqueness of retardation time spectrum. Equations (3.99) and
(3.100) are the Fredholm integral equation of the first kind (Arfken 2001). How to
solve this integral equation will be discussed in Part II, too.

From various spring–dashpot models (Tschoegl 1989), we know that all linear
viscoelastic models satisfy Eqs. (3.78) and (3.88). The two equations are known as
the Boltzmann superposition principle. This will be proved in Part II. Then, the
modeling of relaxation modulus or creep compliance is more effective than the
design of multielement spring–dashpot models. A parsimonious modeling is to
model the Laplace transform of creep compliance:

1

seG sð Þ ¼
1
gos

þ J1

1þ s1sð Þa1½ �b1
þ J2

1þ s2sð Þa2½ �b2
ð3:101Þ

where eG sð Þ is the Laplace transform of relaxation modulus (Marin and Graessley
1977). Equation (3.101) agrees very well with experimental data of polymer melts
with narrow molecular weight distribution when b1 ¼ b2 ¼ 1. Another parsimo-
nious model is

GðtÞ ¼ G1 þG1 exp � t
k

� �b� �
ð3:102Þ

It is known as Kohlrausch–Williams–Watts (KWW) equation (Riande 2000).
An interesting generalization is to apply fractional derivative to spring–dashpot

models (Smit and de Vries 1970). Although the spring–dashpot models contain
derivatives of integer order, the fractional models use fractional derivative which is
defined as (Bagley and Torvik 1983)

daf ðtÞ
dta

¼ 1
C 1� að Þ

d
dt

Z t

0

f sð Þ
t � sð Þa ds; 0\a\1 ð3:103Þ

3.3.3 Concept of Internal Variable

Consider the Maxwell model. The strains of the spring and the dashpot cannot be
controlled separately. The mechanical work on the model is stored in the spring
element. The mechanical work per unit volume done on the Maxwell material is
given by
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dW ¼ rdc ¼ rdce þrdcv ð3:104Þ

Hence, we have

dW
dt

¼ GMce
dce
dt

þgM
dcv
dt

� �2

ð3:105Þ

Here, we used r ¼ re ¼ rv and c ¼ ce þ cv. When Ue � 1
2GMc2e , Eq. (3.105)

becomes

dUe

dt
¼ GMce

dce
dt

; ð3:106Þ

Then, for arbitrary interval of time, we have

W �
Z t

to

dW
dt

dt0 ¼ Ue ceðtÞð Þ � Ue ce toð Þð Þþ
Z t

to

gM
dcv
dt0

� �2

dt0 ð3:107Þ

The last term in the right-hand side of Eq. (3.107) is always positive and an
increasing function of time t if viscosity gM is positive. Meanwhile, the first two
terms in the right-hand side represent the difference of a scalar function of strain ce.
Hence, it can be said that a part of mechanical work done on the Maxwell material
is stored. The stored energy can be considered as the increase in the Helmholtz free
energy of the material. Then, one may think that the thermodynamics of the
Maxwell model cannot be described by the use of only strain and temperature.

It was known that irreversible thermodynamics of viscoelastic materials cannot
be described completely by the use of only the state variables of equilibrium
thermodynamics and their gradients. Additional state variables needed for vis-
coelastic materials are called internal variables (Coleman and Gurtin 1967; Maugin
and Muschik 1994; Muschik 1990). The internal variables were motivated from the
internal strain such as spring strain. The irreversible thermodynamics for vis-
coelasticity will be discussed in Sect. 4.

3.3.4 Generalization of Three-Dimensional Model

Linear mechanical behaviors of materials are observed when deformation is
infinitesimal. Then, application of infinitesimal strain and the Boltzmann super-
position principle allows us to write

T ¼
Z t

�1
C t � sð Þ dE

ds
ds ð3:108Þ
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where C is a fourth-order tensor-valued function of time. If the material is isotropic,
the fourth-order tensor, relaxation modulus can be written by

CðtÞ ¼ KðtÞdikdpq þGðtÞ dipdkq þ diqdkp
� �� �

eiekepeq ð3:109Þ

Since KðtÞ the time-dependent version of λ in Eq. (3.3) and GðtÞ corresponds to
time-dependent shearmodulus, we can define time-dependent bulkmodulus andwrite

T ¼
Z t

�1
K t � sð Þ deV

ds
ds Iþ 2

Z t

�1
G t � sð Þ dE

0

ds
ds ð3:110Þ

This is the three-dimensional extension of Eq. (3.78). If we are interested in
incompressible viscoelastic fluids, then Eq. (3.110) can be rewritten by

T ¼ �p Iþ 2
Z t

�1
G t � sð ÞD sð Þds ð3:111Þ

Note that when deformation is infinitesimal, the time derivative of infinitesimal
strain is the deformation rate tensor and the deformation rate tensor of incom-
pressible fluid is traceless.

3.3.5 Generalization of Nonlinear Viscoelasticity

One may figure nonlinear version of the Maxwell model such as

kM
dT0

dt
þT0 ¼ 2gMD; ð3:112Þ

T ¼ �pIþT0 ð3:113Þ

Here, incompressible fluid is assumed. The one-dimensional strain rate is replaced
by deformation rate tensor, and the ordinary time derivative is replaced by the
material time derivative. Although this extension seems plausible, various problems
arise. One of the most important problems is related to the time rate of stress. The
use of the material time derivative gives rise to the ambiguity in physical meaning
of stress rate. Besides, mechanical behavior of material must be independent of
observer. These problems can be solved with the principle of material
frame-indifference which will be discussed in Sect. 5.
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Applying integration by parts, Eq. (3.78) can be rewritten by

rðtÞ ¼
Z t

�1
l t � sð Þc sð Þds ð3:114Þ

where lðtÞ is called the memory function defined as

lðtÞ ¼ � dG
dt

� 0 ð3:115Þ

Then, one may want to replace the one-dimensional strain by the finite strain, say
HðtÞ for convenience:

T ¼ �pIþ
Z t

�1
l t � sð ÞH sð Þds ð3:116Þ

In this approach, we have to determine which strain measure is suitable.
Furthermore, we have to investigate whether the principle of material
frame-indifference is satisfied by Eq. (3.116).

There are two branches in the development of nonlinear viscoelastic constitutive
equations: differential types based on Eq. (3.112) and integral types based on
Eq. (3.116). These will be studied in Part III. When boundary value problem is
considered, the differential-type constitutive equation is more convenient than the
integral-type one in numerical implementation.

Problem 3

[1] From Eq. (3.3), derive

eik ¼ 1
2G

Tik � k
3kþ 2G

Tmmdik

� �
ð3:aÞ

[2] Derive Eq. (3.15)
[3] Show that

E ¼ 9KG
3KþG

; m ¼ 3K � 2G
2 3KþGð Þ ð3:bÞ

[4] Consider a spherical shell whose outer and inner radii are Rout and Rin,
respectively. The shell contains a fluid with pressure of pin. The pressure of
surroundings is pout. Because of symmetry, it can be assumed that the dis-
placement field is given by
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u ¼ u rð Þer ð3:cÞ

where spherical coordinate system is used. Find displacement field and stress
tensor.

[5] Derive the constitutive equation of linear isotropic body, Eq. (3.11), from
that of isotropic hyperelastic body, Eq. (3.36).

[6] Derive Eq. (3.39) from Eq. (3.37) by the use of the Cayley–Hamilton
theorem.

[7] Derive Eq. (3.42).
[8] Derive Eq. (3.50).
[9] Derive Eq. (3.57).

[10] It is known that

seG sð Þ��s¼ix¼ G0 xð Þþ iG00 xð Þ ð3:dÞ

Derive storage and loss moduli, G0 xð Þ and G00 xð Þ from Eq. (3.101) as for
b1 ¼ b2 ¼ 1.

[11] When H sð Þ ¼ Ct sð Þ and lðtÞ ¼ Go=kð Þ exp �t=kð ÞHðtÞ, show that stress of
Eq. (3.116) satisfies

T0 þ k
dT0

dt
� L � T0 � T0 � LT

� �
¼ 2GokD ð3:eÞ

4 Thermodynamics

4.1 Equilibrium Thermodynamics

We shall not treat theories of equilibrium thermodynamics in detail because this
book is not a text of thermodynamics. However, we shall review some features of
equilibrium thermodynamics, which are necessary in the development of vis-
coelastic constitutive equations of polymers. The readers of this book are assumed
familiar with the theory of equilibrium thermodynamics provided in sophomore
courses such as physical chemistry in departments of chemistry and chemical
engineering, thermodynamics in department of mechanical engineering, and ther-
mal physics in department of physics.

146 2 Continuum Thermomechanics



4.1.1 Thermodynamic Space and Processes

Thermodynamics is a macroscopic science of energy transform. Energy transfer
occurs in the form of work and heat. As shown in Sect. 2.3, internal energy can be
considered as an invention for the purpose of energy conservation. Energy transfers
to a system of materials give rise to the changes in two forms of energy: internal
energy and kinetic energy as shown in Eq. (2.53).

Most forms of energy can be related to work. Originally, work is a line inte-
gration of force field over the path on which material particle moves. As a simplified
example, differential work is given by dW ¼ /dn where ϕ is a force field and dξ is
the differential of the coordinate that describes the path. Dividing the differential
work by dt, we can have the equation of power: dW=dt ¼ /v where v ¼ dn=dt.
Then, we can find an analogy from stress power: T : D ¼ TikDik if we match stress
to generalized force and deformation rate to generalized velocity. Then,
component-wise form of differential work can be generalized by

dW ¼
XN
k¼1

/kdnk ð4:1Þ

After kinetic energy is canceled in energy balance equation, the following are left:

dU ¼
XN
k¼1

/kdnk þ dQ ð4:2Þ

where dQ is the differential heat. Equation (4.2) implies that internal energy varies
according to the variation of N generalized coordinates and heat. Hence, one may
imagine that internal energy is determined by N þ 1 independent variables.

It is a traditional notion in physics that physical phenomena can be described
exactly by variables of finite number. The variables are called state variables. It is
believed that a thermodynamic system can be fully identified by a set of state
variables. If a system with a given set of values of state variables comes to have
different set of values of state variables, then the system is said to experience a
thermodynamic process. Then, we can imagine an analogy that a system is
equivalent to a point which moves in the thermodynamic space whose coordinates
are the state variables. A trajectory of the point (the system) is called thermody-
namic process or simply process.

The first law of energy conservation gives us a clue that the number of state
variables might be N + 1. Theory of equilibrium thermodynamics reads that if
Eq. (4.2) holds, then only N + 1 state variables describe the thermodynamic phe-
nomena in equilibrium uniquely. From Eq. (4.2), N generalized coordinates nkf g
can be chosen as state variables. The other state variable, which is related to heat
transfer, could be chosen from the second law of thermodynamics. For a while, we

4 Thermodynamics 147



accept the axiom such that in equilibrium, there are N + 1 state variables even
though the Nþ 1th state variables are not obviously known yet.

In thermodynamics, surroundings are the universe except the system. If we are
interested in surroundings rather than the system, the surroundings can be con-
sidered as a system and then the system can be considered as surroundings. The
distinction depends on our interest. The state of surrounding is called external
condition.

If external condition maintains constant values, then the state variables of the
system approach to certain constant values. Equilibrium state is the state repre-
sented by the constant values of state variables. Relaxation time is the characteristic
time needed for the completion of the variation of state variables. If external
conditions vary from one constant set of values to another constant set of values in a
time, say external time, much longer than the relaxation time, then the changes in
state variables look like immediate transition from one equilibrium to another
equilibrium. If the difference between the two external conditions is infinitesimally
small and if the external time is much longer than the relaxation time, then state
variables change with maintaining equilibrium. The reverse of the process is
believed to restore the states of both the system and its surroundings. Such process
is called reversible process. It is expected that reversible process requires extremely
slow progress. Hence, reversible process is considered as quasi-static process.
Otherwise, a process is called irreversible process.

4.1.2 Existence of Entropy and Absolute Temperature

Consider only reversible processes from a given equilibrium state. Adiabatic pro-
cess is a process without heat transfer. Then, Eq. (4.2) becomes

dU �
XN
k¼1

/kdnk ¼ 0 ð4:3Þ

We can consider a thermodynamic space which is constructed by nkf g and U. Then,
Eq. (4.3) represents a curve in the thermodynamic space. It is natural to adopt U as

the Nþ 1th coordinate. For a given state denoted by xo ¼ U oð Þ; n oð Þ
1 . . .; n oð Þ

N

� �
,

there are infinitely many adiabatic curves passing the state xo. Analogy of state
variables to coordinates in thermodynamic space allows us to rewrite Eq. (4.3) as
follows:

n � dx ¼ 0 ð4:4Þ
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where

n ¼ g;g/1;g/2; . . .;g/Nð Þ ð4:5Þ

and

dx ¼ dU; dn1; dn2; . . .; dnNð Þ ð4:6Þ

Note that η is a function of the state variables. We can imagine a surface element
whose points satisfy Eq. (4.4). Then, the vector n is perpendicular to the surface
element. The surface element can be expressed by a function:

f xð Þ ¼ f U; n1; n2; . . .; nNð Þ ¼ r ð4:7Þ

The variable σ can be determined by the substitution of x0 into Eq. (4.4). Adiabatic
surface is the surface represented by Eq. (4.7). Consider the notions of coordinate
system in Sect. 3. Then, two adjacent adiabatic surfaces must be parallel to each
other because of the parallelism of coordinate. Note that all adiabatic curves passing
xo cannot meet any point on adjacent adiabatic surface. Then, we can take σ as a
new thermodynamic coordinate whenever N coordinates are taken on adiabatic
surface. Furthermore, we can take σ in order to satisfy

@r
@U

� �
nkf g

[ 0 ð4:8Þ

Then, we can find a function such that

U ¼ U r; n1; n2; . . .; nNð Þ ð4:9Þ

We define

s ¼ @U
@r

� �
nkf g

[ 0 ð4:10Þ

The inequality holds because of Eq. (4.8). Note that adiabatic process implies
dr ¼ 0 because of the definition of σ. Then, the total differential of internal energy
is given by

dU ¼
XN
k¼1

/kdnk þ sdr ð4:11Þ

Comparison of Eq. (4.11) with Eq. (4.2) gives

dQ ¼ sdr ð4:12Þ
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It must be noted that Eq. (4.12) holds whenever the process is reversible because
Eq. (4.12) was derived from the assumption that only reversible processes are
considered. Now, it is the time to find the physical meanings of σ and τ.

Consider a system which is the union of two subsystems 1 and 2. As for the two
subsystems, we can define sk and rk with k ¼ 1 and 2. Then, we can also define

/ 1ð Þ
k and n 1ð Þ

k for the subsystem 1 and / 2ð Þ
k and n 2ð Þ

k for the subsystem 2. The
differential heat must satisfy

dQ ¼ dQ1 þ dQ2 ð4:13Þ

where dQ1 and dQ2 are the differential heats given to subsystems 1 and 2,
respectively. Then, the definitions of σ and τ give

dQ ¼ sdr ¼ s1dr1 þ s2dr2 ð4:14Þ

This differential equation means

r ¼ r r1;r2ð Þ ð4:15Þ

Note that r1 depends on fnð1Þk g but is independent of fn 2ð Þ
k g. Similarly, r2 depends

on fn 2ð Þ
k g but is independent of fn 1ð Þ

k g. Equation (4.14) gives

@r
@r1

� �
r2

¼ s1
s
¼ f1 r1;r2ð Þ; @r

@r1

� �
r2

¼ s1
s
¼ f1 r1;r2ð Þ ð4:16Þ

Then, we have

s ¼ s1
f1 r1;r2ð Þ ¼

s2
f2 r1;r2ð Þ ð4:17Þ

We have empirical temperature scale such as Celsius or Fahrenheit scales. Since
σ is related to heat, it is reasonable that σ, r1, and r2 depend on empirical tem-
perature T 0: Then, we can rewrite Eq. (4.15) as follows:

r ¼ r T 0; n 1ð Þ
k

n o
; n 2ð Þ

k

n o� �
ð4:18Þ

When the two subsystems are in thermal equilibrium, we can write

s1 ¼ s1 T 0;r1ð Þ; s2 ¼ s2 T 0;r2ð Þ ð4:19Þ
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It is assumed that the functional relations of the subsystems must hold for the total
system. Then, we have

s ¼ s T 0;r1;r2ð Þ ¼ s T 0;r r1;r2ð Þð Þ ð4:20Þ

Then, Eq. (4.16) gives

f1 r1r2ð Þ ¼ s1 T 0;r1ð Þ
s T 0;rð Þ ; f2 r1r2ð Þ ¼ s2 T 0;r1ð Þ

s T 0;rð Þ ð4:21Þ

It is possible to eliminate T 0 dependence whenever there exists a function of the
empirical temperature T T 0ð Þ such that

s1 ¼ T T 0ð Þw1 r1ð Þ; s2 ¼ T T 0ð Þw2 r2ð Þ; s ¼ T T 0ð Þw rð Þ ð4:22Þ

Consider a monotonically increasing function of σ, say w rð Þ. Then, we can
invent

S ¼ w rð Þ; T ¼ dr
dS

s ð4:23Þ

Then, it is clear that

dQ ¼ sdr ¼ TdS ð4:24Þ

From Eq. (4.10), we know that τ, s1, and s2 are positive. Hence, we can assume
that w rð Þ[ 0, w1 r1ð Þ[ 0, and w2 r2ð Þ[ 0. Then, we have

s1dr1 ¼ T T 0ð ÞdS1; s2dr2 ¼ T T 0ð ÞdS2; sdr ¼ T T 0ð ÞdS ð4:25Þ

where

dS1
dr1

¼ w1 r1ð Þ; dS2
dr2

¼ w2 r2ð Þ; dS
dr

¼ w rð Þ ð4:26Þ

Application of Eq. (4.25) to Eq. (4.14) gives

dS ¼ dS1 þ dS2 ð4:27Þ

If we scale T to make correspondence to ideal gas temperature, then T becomes
the absolute temperature and S can be defined as entropy. However, Eq. (4.27) does
not imply

S ¼ S1 þ S2 ð4:28Þ

If any system has the same entropy at T ¼ 0, which is the third law of equilibrium
thermodynamics, then Eq. (4.28) holds. Equation (4.28) implies that entropy is an
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extensive quantity. Extensive quantity satisfies the definition of the homogenous
function of the first order:

S kU; kn1; kn2; . . .; knNð Þ ¼ kS U; n1; n2; . . .; nNð Þ ð4:29Þ

for any positive real number λ.
The second law is an empirical law. We have derived S and T from the analogy

of state variables to coordinates. The parallelism of coordinates implies that near a
given state, there must be infinitely many states which cannot be connected to the
given state through any adiabatic curve. This is called inaccessible statement of
Caratheodory. The approach introduced above was developed by C. Caratheodory
(Ma 1985). Although the way of Caratheodory shows the existence of entropy in a
generalized manner, it is far from the empirical notion, the maximization of
entropy.

4.1.3 Clausius Inequality

Originally, the Clausius inequality was derived from the Carnot engine. Refer
(Huang 1963) for the detail of the inequality. The inequality states thatI

C

dQ
T

� 0 ð4:30Þ

where the integral symbol represents a cycling process irrespective of reversibility.
This is called the Clausius inequality. In Huang (1963), any cyclic process is
assumed to be decomposed to tiny cyclic processes consisting of isothermal and
adiabatic processes in thermodynamic space. Then, it is questionable what the
absolute temperature T is in an irreversible process. From the original derivation of
Clausius, the temperature T must be the one of the heat reservoirs. A number of
theoretical problems are involved in the inequality. Hence, Callen took the fol-
lowing axioms on entropy (Callen 1985):

[1] Entropy is a concave function of state variables

S ¼ S U; n1; n2; . . .; nNð Þ ð4:31Þ

[2] Partial derivative of entropy with respect to internal energy is positive

@S
@U

� �
nkf g

[ 0 ð4:32Þ

[3] Entropy is a positively homogeneous function of degree 1 as shown in
Eq. (4.29).
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Concave function implies that for any two states x1 and x2,

S tx1 þ 1� tð Þx2ð Þ� tS x1ð Þþ 1� tð ÞS x2ð Þ ð4:33Þ

where t is any real number in the interval of 0� t� 1. Then, it can be proved that
the internal energy U is a positively homogeneous function of degree 1 and /k and
T are positively homogeneous functions of degree 0. Equivalently, temperature and
generalized forces are intensive properties. Concavity of entropy results in con-
vexity of internal energy, too.

4.1.4 Thermodynamic Potentials

Although equilibrium thermodynamics started from imperfect foundation, axio-
matic unification of equilibrium thermodynamics agrees well with experimental
results. Any counter example has not been found. This makes beginners feel much
difficulty in understanding thermodynamics. Hence, we adopt the result of the
Clausius inequality:

dS� dQ
T

ð4:34Þ

Equation (4.2) illustrates that T�1dQ ¼ T�1 dU � dWð Þ. Then, Eqs. (4.2) and
(4.34) give the following inequalities:

dS� dU
T

�
XN
k¼1

/k

T
dnk; ð4:35aÞ

dU� TdSþ
XN
k¼1

/kdnk; ð4:35bÞ

dH � d U �
XN
k¼1

/knk

 !
� TdS�

XN
k¼1

nkd/k; ð4:35cÞ

dF � d U � TSð Þ� � SdT þ
XN
k¼1

/kdnk; ð4:35dÞ

dG � d H � TSð Þ� � SdT �
XN
k¼1

nkd/k ð4:35eÞ

Here, H is the enthalpy, F is the Helmholtz free energy, and G is the Gibbs free
energy. The equalities of Eqs. (4.35a) hold whenever the process is reversible.

4 Thermodynamics 153



Equations (4.35a) illustrate that the Helmholtz free energy is a state function of
system temperature and mechanical coordinates nkf g, while the internal energy is a
state function of entropy and mechanical coordinates. This is the result from
Legendre transform (McQuarrie 2000).

Furthermore, spontaneous process occurs in the direction to the decrease of
system’s Helmholtz energy under the constraint of fixed temperature and
mechanical coordinates. Similar analysis can be done for the internal energy, the
enthalpy, and the Gibbs free energy. Hence, U, H, F, and G can play the role of
entropy, the indicator of spontaneous process under the corresponding constraints.

These thermodynamic functions are called thermodynamic potential because
important thermodynamic properties are obtained from the partial derivatives of
them as shown in Eq. (4.35a). Entropy can be obtained from the partial derivatives
of free energies:

S ¼ � @F
@T

� �
nkf g

¼ � @G
@T

� �
/kf g

ð4:36Þ

Here, it must be noted that the two partial differentiations with respect to temper-
ature are different because different state variables are fixed in the partial deriva-
tives: F for mechanical coordinate and G for generalized forces.

4.2 Classical Irreversible Thermodynamics

4.2.1 Basic Assumptions

Classical irreversible thermodynamics (CIT) is based on local equilibrium
hypothesis, which means every material particles can be considered as a tiny system
in equilibrium (De Groot 1984). This does not mean the equilibrium of the whole
system. Although all material particles are in equilibrium, each material particle
may have different states. Each equilibrium state is assumed to be fully described by
state variables such as strain and internal energy. For isotropic fluids, thermody-
namic space consists of specific volume (volume per unit mass) and internal energy.
Therefore, classical irreversible thermodynamics is founded on the same thermo-
dynamic space of equilibrium thermodynamics.

It was known that classical irreversible thermodynamics is successful in
describing the mechanical phenomena involving classical constitutive equations
such as the Fourier conduction law, viscous fluids, and elastic solids. Since stress of
viscous fluid is independent of current strain except volume change, the thermo-
dynamic state of viscous fluids can be identified by internal energy and specific
volume.

154 2 Continuum Thermomechanics



The specific volume can be replaced by density because �v ¼ q�1. Then, each
material particle is assumed to have entropy field such that

s ¼ ~s ~x; tð Þ ¼ s u; qð Þ for fluidð Þ ð4:37Þ

and

s ¼ s u;Bð Þ for solidð Þ ð4:38Þ

Note that deformation gradient F contains both pure deformation and rigid body
motion of rotation, while B ¼ F � FT or C ¼ FT � F represents only pure defor-
mation. Hence, it is reasonable that B (or C) is more appropriate than F as a
thermodynamic state variable. Fundamentally, the use of B (or C) is supported by
the principle of material frame-indifference, which will be discussed in Sect. 5.

We start from fluid. The local equilibrium hypothesis gives

ds ¼ @s
@u

duþ @s
@q

dq ð4:39Þ

Note that since thermodynamic space is given by u; qð Þ, we do not use the notation
of Eq. (4.36) for convenience if there is no confusion. The total differentials in
Eq. (4.39) are assumed to be replaced by material time derivative. Hence, Eq. (4.39)
can be rewritten by

ds
dt

¼ @s
@u

du
dt

þ @s
@q

dq
dt

ð4:40Þ

From the equilibrium thermodynamics, we know that

@S
@U

� �
V
¼ 1

T
;

@S
@V

� �
U
¼ p

T
ð4:41Þ

Then, local equilibrium hypothesis leads to the use of

@s
@u

¼ 1
T
;

@s
@q

¼ p
q2T

ð4:42Þ

Since both internal energy per unit mass u and mass density ρ are fields, the use
of Eqs. (2.5) and (2.53) gives

q
ds
dt

¼ �r � qþ qrþT : Dð Þ 1
T
� r � vð Þ p

T
ð4:43Þ

where Eq. (4.42) was used. The main purpose of the local equilibrium hypothesis is
to derive an inequality in terms of field variables, which represents the second law.
The inequality is called the Clausius–Duhem inequality.
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As for solid, we can take thermodynamic space as the pair of internal energy and
deformation gradient. Then, similar procedure leads to

q
ds
dt

¼ �r � qþ qrþT : Dð Þ 1
T
þ q

@s
@B

:
dB
dt

ð4:44Þ

4.2.2 Entropy Balance Equation

In order to rewrite the Clausius inequality in terms of field variables, we define
entropy production Sirr such that

dS ¼ dQ
T

þ dSirr ð4:45Þ

Compared with the Clausius inequality Eq. (4.34), it is clear that for any thermo-
dynamic process,

dSirr � 0 ð4:46Þ

The equality holds if and only if the thermodynamic process is reversible.
We consider an arbitrary region Ω of a continuum, and the entropy of the region

is assumed to be calculated by

S ¼
ZZZ
X

qs dV ð4:47Þ

Similarly, we define entropy production per unit mass as

Sirr ¼
ZZZ
X

qsirrdV ð4:48Þ

Then, the differential heat term in Eq. (4.45) can be generalized as follows:

dS
dt

¼ dSirr
dt

�
ZZ
@X

1
T
q � daþ

ZZZ
X

qr
T
dV ð4:49Þ

Differential form of Eq. (4.49) is obtained by the substitution of Eqs. (4.47) and
(4.48) into Eq. (4.49) and application of the Reynolds transport theorem:

q
ds
dt

¼ �r � q
T

� �
þ qr

T
þ q

dsirr
dt

ð4:50Þ
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Note that the first two terms in the right-hand side of Eq. (4.50) correspond to dQ/
T of Eq. (4.34), which can be interpreted as the entropy transfer by heat transfer. On
the other hand, the last term is the entropy production because it was introduced to
make the Clausius inequality be the entropy balance equation. In order to
emphasize this correspondence, we introduce the notation such that

r � js ¼ r � q
T

� �
� qr

T
ð4:51Þ

Here, js is defined as the entropy flux which consists of two fluxes such that

js ¼
q
T
þ jrad ð4:52Þ

where

r � jrad ¼ � qr
T

ð4:53Þ

Although the vector field jrad may not be determined uniquely from the given
density, temperature, and r, it must not give rise to any significant problem because
we will always use jrad only through its divergence.

With the help of Eq. (4.50), theClausius inequality in Eq. (4.46) can be rewritten by

q
dsirr
dt

¼ q
ds
dt

þr � js � 0 ð4:54Þ

Equation (4.54) is called the Clausius–Duhem inequality. Since the entropy pro-
duction is the source term from the flux formalism of balance equation, the second
law is the positiveness of entropy source.

4.2.3 Application of Entropy Balance

If Eq. (4.43) is substituted to Eq. (4.54), then this inequality can be written in terms
of measurable field variables

q
dsirr
dt

¼ 1
T

T : D�r � qþ qrð Þ � r � vð Þ p
T
þr � js � 0 ð4:55Þ

Stress can be decomposed into isotropic and deviatoric parts as follows:

T ¼ T0 þ tr Tð Þ
3

I ð4:56Þ
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Note that tr T0ð Þ ¼ 0. Then, we know that

T : D ¼ T0 : Dþ 1
3
tr Tð Þ tr Dð Þ ð4:57Þ

Since tr Dð Þ ¼ r � v, application of Eq. (4.57) to Eq. (4.55) gives the Clausius
inequality such that

qT
dsirr
dt

¼ T0 : D0 þ r � vð Þ tr Tð Þ
3

þ p

	 

� q � rT

T
� 0 ð4:58Þ

Note that the following identity is used in Eq. (4.58):

T0 : D ¼ T0 : D0 þ 1
3
tr Dð ÞI

h i
¼ T0 : D0 ð4:59Þ

Since rT , D0, and tr Dð Þ ¼ r � v can be given independently, it is obvious that

T0 : D0 � 0 ð4:60Þ

r � vð Þ tr Tð Þ
3

þ p

	 

� 0 ð4:61Þ

and

� q � rT
T

� 0 ð4:62Þ

The constitutive equation of Newtonian fluid is given by Eq. (3.43). Application
of Eq. (3.43) to Eqs. (4.60) and (4.61) results in thermodynamic constraints on the
phenomenological constitutive equation:

gs [ 0;gb [ � 2
3
gs ð4:63Þ

Assuming that heat conduction follows the Fourier law Eq. (2.40), Eq. (4.62) gives

j[ 0 ð4:64Þ

These results illustrate that the constitutive equations of Newtonian fluid and
Fourier conduction law agree with the second law if the material constants satisfy
Eqs. (4.63) and (4.64).
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Now, turn to the case of solid. Substitution of Eq. (4.44) into Eq. (4.51) yields

qT
dsirr
dt

¼ � q � rT
T

þ Tþ 2TB � q @s
@B

� �
: D ð4:65Þ

Here, the following identity was used:

dB
dt

¼ L � BþB � LT ð4:66Þ

Since D and rT can be given independently, Eq. (4.65) implies that

T ¼ �2T B � q @s
@B

ð4:67Þ

and Eq. (4.62). Equation (4.67) implies that if entropy as a function of u and B is
known, then the Cauchy stress can be obtained by the gradient of entropy with
respect to B.

It is noteworthy that @s=@B of Eq. (4.67) is made of partial derivatives at fixed
internal energy. Experiment at a fixed internal energy is extremely difficult to be
implemented, whereas experiment at constant temperature is practical.

4.2.4 The Clausius–Duhem Inequality in Terms of Free Energy

As shown in Eq. (4.35a), the Clausius inequality can be rewritten in terms of
Helmholtz free energy. We define

F ¼
ZZZ
X

qf dV ð4:68Þ

and

f ¼ u� Ts ð4:69Þ

Then, it is not difficult to show that f is a function of temperature and mass density
for fluids. Similarly, as for solid, f is a function of temperature and deformation
gradient. Hence, we have

f ¼ f T ; qð Þ for fluid
f T ;Bð Þ for solid

�
ð4:70Þ
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and the Clausius inequality is given by

qT
dsirr
dt

¼ � q � rT
T

þT0 : D0 þ r � vð Þ pþ tr Tð Þ
3

	 

� 0; ð4:71Þ

qT
dsirr
dt

¼ T� 2B � q @f
@B

� �
: D� q � rT

T
� 0 ð4:72Þ

Note that Eq. (4.71) is identical to Eq. (4.58). Because of the independence of
D and rh, Eq. (4.72) is split into two inequalities and we have

T ¼ 2B � q @f
@B

ð4:73Þ

Note that @f =@B is made of the partial derivatives at constant temperature, while
@s=@B of Eq. (4.67) consists of those at constant internal energy. Therefore, we
have

@f
@B

� �
T
¼ �T

@s
@B

� �
u

ð4:74Þ

It is worthy to compare Eq. (4.73) with the constitutive equation of hyperelas-
ticity, as in Eq. (3.36). The strain energy function U B; Tð Þ is easily identified by
qf B; Tð Þ for incompressible elastic materials. As for compressible elastic body, the
determination of free energy from strain energy function needs some carefulness. It
is reasonable to assume that mass density of homogeneous material is constant at
the reference configuration. Then, we have

@~qf
@B

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Bð Þ

p @U
@B

ð4:75Þ

where Eq. (2.a) and det Fð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
det Bð Þp

were used. Then, Eq. (4.75) provides free
energy from an experimentally determined strain free energy.

4.3 Theory of Internal Variables

4.3.1 General Theory

When thermodynamic state space is identical to that of equilibrium thermody-
namics, it is difficult to describe the irreversible thermodynamics of viscoelastic
material. Although the rational thermodynamics is constructed to describe
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viscoelasticity by introducing the principle of fading memory, it is known that the
rational thermodynamics suffers from a few problems (Jou 1996). In order to
overcome the demerits of the rational thermodynamics, it is necessary to extend the
thermodynamic space of state variables. Extended irreversible thermodynamics is
to adopt the thermodynamic space as the union of the equilibrium thermodynamic
space and fluxes. However, this extended thermodynamic space is not convenient in
the development of viscoelastic constitutive equations. The other extended ther-
modynamic space can be constructed by introducing internal variables.

Consider linear viscoelastic models made of spring and dashpot. As an example,
consider the Maxwell model. The total strain is the sum of strains of spring and
dashpot. It can be said that both strains of spring and dashpot are internal strain or
internal variables. In the principle of the model, if a spring strain is given, then
dashpot strain is determined by the difference between the total strain and the spring
strain and vice versa. However, it is not possible to determine both internal strains
independently by any experiment. Furthermore, it is impossible to control the
internal variables, while the total strain is both measurable and controllable. As for
further information of internal variable, refer to Coleman and Gurtin (1967),
Valanis (1971), and Maugin (1999).

Here, we consider a generalization of internal variables more than the internal
strains of spring–dashpot models. According to Maugin (1999), internal variables
may be measureable but cannot be controlled. This means that we cannot design
any experiment to make the internal variables have desired values at will.
Thermodynamic theory of internal variables provides a way to restrict the forms of
the evolution equations (or kinetic equations) of internal variables as well as any
needed constitutive equations. Basic assumptions of the thermodynamics of internal
variables are listed below:

[1] Thermodynamic space consists of the state variables of equilibrium thermo-
dynamics and the internal variables of finite number.

[2] Each internal variable has its own evolution equation.
[3] Thermodynamic potentials such as free energies are function of state variables

mentioned in [1].
[4] Internal variables are measurable but not controllable.

For simplicity, consider the case that internal variable is a second-order tensor
X. Then, the thermodynamic space is given by u;B;X;rTð Þ for solid. According
to Coleman and Gurtin (1967), it is not necessary to use local equilibrium
hypothesis in the identification of

1
T
¼ @s

@u

� �
B;X;rT

ð4:76Þ

However, the use of the local equilibrium hypothesis does not give rise to signif-
icant difference. The use of T ;B;X;rTð Þ is more convenient than that of
u;B;X;rTð Þ. Then, principle of equipresence (Jou 1996; Truesdell 2004) gives
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f ¼ f T ;B;X;rTð Þ; ð4:77Þ

s ¼ s T ;B;X;rTð Þ; ð4:78Þ

T ¼ T T;B;X;rTð Þ; ð4:79Þ

q ¼ q T;B;X;rTð Þ; ð4:80Þ
dX
dt

¼ G T ;B;X;rTð Þ; ð4:81Þ

Then, the material time derivative of free energy is given by

df
dt

¼ du
dt

� s
dT
dt

� T
ds
dt

¼ @f
@T

dT
dt

þ @f
@B

:
dB
dt

þ @f
@X

:
dX
dt

ð4:82Þ

With the help of Eq. (2.53), we have

qT
dsirr
dt

¼ � q � rT
T

þT : D� q
df
dt

� �
T
� 0 ð4:83Þ

where

q
df
dt

� �
T
¼ 2qB � @f

@B

� �
: Dþ q

@f
@X

: G ð4:84Þ

Smart mathematical trick of Coleman and Gurtin (1967) gives

T ¼ 2qB � @f
@B

; ð4:85Þ

s ¼ � @f
@T

; ð4:86Þ

@f
@rT

¼ 0; ð4:87Þ

and

q
@f
@X

: Gþ q � rT
T

� 0 ð4:88Þ

From Eq. (4.87), it is obvious that free energy, entropy, and stress are independent
of temperature gradient (Coleman and Gurtin 1967). Then, constitutive theory is to
specify the structures of functions such as f T ;B;Xð Þ, G T ;B;X;rTð Þ, and
q T ;B;X;rTð Þ. Equations (4.83) and (4.86) play the role of constraints of the
functions.
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4.3.2 Application to One-Dimensional Model

Consider the Maxwell model. This intuitive model implicitly says that GM [ 0 and
gM [ 0. We shall show that these inequalities hold because of the second law. It is
natural that free energy is related to energy storage. Then, one may think of free
energy as a function of elastic strain such that

f ¼ GM

2
c2e þ fo Tð Þ ¼ GM

2
c� cvð Þ2 þ fo Tð Þ ð4:89Þ

where GM is considered as a function of temperature. There are two cases of
thermodynamic space: T; c; ceð Þ and T ; c; cvð Þ.

As for isothermal deformation, we know that rT ¼ 0. Then, the second law of
Eq. (4.83) becomes

r
dc
dt

� GMce
dce
dt

� 0 ð4:90Þ

or

r
dc
dt

� GM c� cvð Þ dc
dt

� dcv
dt

� �
� 0 ð4:91Þ

One may suggest one of the simplest evolution equations of internal variable as

dcv
dt

¼ ce
kM

¼ c� cv
kM

ð4:92Þ

Equation (4.92) is identical to

dce
dt

¼ dc
dt

� ce
kM

ð4:93Þ

because ce ¼ c� cv.
Substitution of Eq. (4.93) into Eq. (4.90) gives

r� GMceð Þ dc
dt

þ GM

k
c2e � 0 ð4:94Þ

Since dc=dt and ce can be given independently, it can be concluded that

r ¼ GMce ð4:95Þ
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and

GM

kM
[ 0 ð4:96Þ

The same results are obtained by the substitution of Eq. (4.92) into Eq. (4.91).
One-dimensional version of Eq. (4.88) is given by

GM c� cvð Þ dcv
dt

� 0 ð4:97Þ

Substitution of Eq. (4.92) into Eq. (4.97) gives

�GM

kM
c� cvð Þ2 � 0 ð4:98Þ

Then, we obtain Eq. (4.96) again.

4.3.3 Temperature Equation

Energy balance equation, Eq. (2.53), is not convenient to predict temperature field
because it does not contain time derivative of temperature. From equilibrium ther-
modynamics, we know that specific heat capacity at constant volume is given by

cV ¼ �T
@2f
@T2 ð4:99Þ

We can consider entropy as a function of temperature, strain, and internal variables:
s ¼ s T ;B;Xð Þ. Then, we have

ds
dt

¼ cV
T
dT
dt

þ @s
@B

� �
T ;X

:
dB
dt

þ @s
@X

� �
T ;B

:
dX
dt

¼ cV
T
dT
dt

� @

@B
@f
@T

� �
B;X

" #
T ;X

:
dB
dt

� @

@X
@f
@T

� �
B;X

" #
TB

:
dX
dt

ð4:100Þ

Here, Eqs. (4.86) and (4.97) were used. The last two terms of Eq. (4.98) can be
rewritten by

@

@T
df
dt

� �
T

	 

B;X

¼ @

@B
@f
@T

� �
B;X

" #
T ;X

:
dB
dt

þ @

@X
@f
@T

� �
B;X

" #
T B

:
dX
dt

ð4:101Þ
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Then, we can write simply

ds
dt

¼ cV
T
dT
dt

� @

@T
df
dt

� �
T

ð4:102Þ

With the help of Eqs. (4.51), (4.53), and (4.83), Eq. (4.102) can be rewritten by

qcV
dT
dt

¼ �r � qþ qrþT : Dþ qT2 @

@T
1
T

df
dt

� �
T

	 

ð4:103Þ

If f is known as a function of state variables and if the evolution equations of both
B and internal variable X, then Eq. (4.103) allows us to calculate temperature field.

The first and second terms in the right-hand side of Eq. (4.103) represent heat
transfer, and the third term indicates stress power. It can be shown that the last term
is the rate of internal energy at constant temperature (see Problem [1]). Hence,
Eq. (4.103) becomes

qcV
dT
dt

¼ �r � qþ qrþT : D� q
du
dt

� �
T

ð4:104Þ

The stress power can be interpreted as the effect of mechanical work on deformation
of material. The last term of Eq. (4.104) can be interpreted as the rate of energy
storage in the material. Hence, the last two terms imply that temperature is altered
by the part of mechanical work, which is obtained by excluding the kinetic energy
and energy storage in the material from the total mechanical work.

Problem 4

[1] In equilibrium thermodynamics, the following equation is known as the
Gibbs–Helmholtz equation:

U ¼ �T2 @

@T
F
T

� �	 

v
; ð4:aÞ

H ¼ �T2 @

@T
G
T

� �	 

p

ð4:bÞ
Derive Eqs. (4.a) and (4.b).

[2] The van der Waals equation is an empirical equation of state such that

p ¼ RT

V � b
� a

V
2 ð4:cÞ
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where R is the gas constant, V is the molar volume, and a and b are material
parameters. Derive the Helmholtz free energy from Eq. (4.c). Note that the
Helmholtz free energy of ideal gas can be derived by pV ¼ RT as follows:

FIG V ; T ; n
� � ¼ �nRT log T3=2V

� �þ ncIGT ð4:dÞ

where n is the mole number of molecules and cIG is the integration constant.
Eq. (4.d) was derived by the integration of

p ¼ � @FIG

@V

� �
T ;n

ð4:eÞ

[3] Derive Eqs. (4.58) and (4.65)
[4] Derive Eqs. (4.72) and (4.83).
[5] Derive Eqs. (4.103) and (4.104).

5 Principle of Constitutive Equation

5.1 Upper-Convective Maxwell Model

In Sect. 3, it was mentioned that the material time derivative of stress is not
appropriate. Consider that we are interested in the generalization of the
one-dimensional Maxwell model. One may imagine that every material particle is
assigned to identical Maxwell model but different orientation. Here, the orientation
of the Maxwell model implies the principal axis of the stress. As shown in Fig. 2,
the Maxwell element flows along the path of the corresponding material particle.

Reference Configuration

Current Configuration

Fig. 2 Convection of Maxwell element in flow
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The convective motion of the Maxwell element includes translation, rotation, and
pure deformation.

However, the observer cannot see the motion in detail. The observer can detect
only the stress field as a function of time in a fixed frame of coordinate system. The
stress observed at time of t can be written by

TðtÞ ¼ TikðtÞ eiek ð5:1Þ

where the base vectors eif g are those of the fixed frame of coordinate. If the stress is
expressed in terms of the basis imbedded in the convective motion of material
particles, which must be aligned in the orientation of the Maxwell model, then we
have

TðtÞ ¼ eT ikðtÞ giðtÞ gkðtÞ ð5:2Þ

where gif g are the basis imbedded in the flow. The material time derivative of the
stress tensor is given by

dT
dt

¼ dTik
dt

eiek ¼ deT ik

dt
gigk þ eT ik dgi

dt
gk þ eT ikgi

dgk
dt

ð5:3Þ

However, the origin of the stress is the extension of the Maxwell element.
Hence, the Maxwell model must be

kM
deT ik

dt
gigk þ eT ikgigk ¼ 2gMD ð5:4Þ

This is the correct three-dimensional extension of the Maxwell model. We have
to find the basis gif g at each time for using Eq. (5.4), which is not convenient. We
need a translation of the component-wise time derivative in terms of easily mea-
surable field quantities. In order to do that, we have to know how to construct the
convective basis gif g from the orthonormal basis eif g.

The motion of material particles, Eq. (1.1), can be interpreted as a coordinate
transform. The covariant base vector of the reference configuration is given by

~gi ¼
@~x
@~xi

ð5:5Þ

Then, the covariant base vector of the current configuration is given by

gi ¼
@x
@~xi

¼ F � ~gi ð5:6Þ
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As for contravariant basis, we know that

~gi � ~gk ¼ gi � gk ¼ dki ð5:7Þ

Hence, it is obvious that

F ¼ gk~g
k; ð5:8aÞ

F�1 ¼ ~gkg
k ð5:8bÞ

With the help of Eq. (5.8a), we obtain

gk ¼ F�T � ~gk ð5:9Þ

For simplicity, take the Cartesian coordinate system of the observer as the
coordinate system of the reference coordinate system. This simplification gives

~gi ¼ ~gi ¼ ei; ð5:10Þ

gi ¼ F � ei; ð5:11Þ

and

gi ¼ F�T � ei ð5:12Þ

From Eq. (5.3), application of Eq. (5.11) gives

T
r
� deT ik

dt
gigk ¼

dT
dt

� L � T� T � LT ð5:13Þ

Equation (5.13) is the definition of the upper-convective time derivative, and the
modified Maxwell model of Eq. (5.4) is called the upper-convective Maxwell model
(UCM):

kM T
r
þT ¼ 2gMD ð5:14Þ

This is a three-dimensional extension of the Maxwell model. However, this
extension is not general but is a model-based extension. We need more general
principle for constitutive model which is not based on a particular model.

It is noteworthy that the process of reasoning the UCM exploits the notion that
the constitutive equation must be independent of the observer. We need to know
how differently various tensorial quantities are recognized by different observers.

168 2 Continuum Thermomechanics



5.2 Principle of Material Frame Indifference

5.2.1 Change of Observer

Consider two observers: The observer 1 is fixed, while the observer 2 moves with
translation and rotation as shown in Fig. 3. The two observers are assumed to share
the same coordinate system when they see the reference configuration. For sim-
plicity, we consider only Cartesian coordinate system. Since the motion of the
observer 2 is that of rigid body, the origin of the observer 2 can be described by a
vector-valued function cðtÞ, while the basis of observer 2 can be described by

uiðtÞ ¼ QðtÞ � ei ð5:15Þ

where QðtÞ ¼ Qmnemen is an orthogonal tensor which has the initial condition of
Q t ¼ 0ð Þ ¼ I and eif g are the basis of the observer 1.

A material particle is seen as x by the observer 1, while the same material
particle is seen as x� by the observer 2. Then, we have

x� ¼ x� cðtÞ ð5:16Þ

The same material particle has different coordinates depending on the observers as
follows:

Observer 1 xi ¼ ei � x ð5:17Þ

Observer 2 x�i ¼ ui � x� ð5:18Þ

e1

( )tc

∗xx

Observer 1

Observer 2

Current
Conf.

Reference
Conf.

u

u
u

Fig. 3 Two observers
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With the help of Eqs. (5.5) and (5.16), we can find the relation between the two
coordinates

x�i ¼ Qkixk þ�ci ð5:19Þ

Here, we introduced �ci ¼ �Qkick for the simplification of notation. Equation (5.19)
can be rewritten by

x� ¼ QT � xþ�c ð5:20Þ

Note that both xk and x�i are real-valued functions of material coordinates and
time. Here, we introduced the asterisk symbol in order to denote the tensorial
quantity recognized by the observer 2. Since the component of deformation gra-
dient tensor is seen by the observer 1 as Fik ¼ @xi=@~xk , that of deformation gradient
tensor seen by the observer 2 is

F�
ik ¼

@x�i
@~xk

¼ Qmi
@xm
@~xk

¼ QmiFmk ð5:21Þ

Here, Eq. (5.19) was used. Note that F� ¼ F�
ikeiek . Equation (5.21) can be rewritten

by

F� ¼ QT � F ð5:22Þ

From Eq. (5.22), we obtain the following:

B� ¼ QT � B �Q; ð5:23Þ

C� ¼ C ð5:24Þ

From Eq. (5.19), we can calculate the velocity as follows:

v� ¼ d
dt
x�i ei ¼

dQki

dt
xk þQkivk þ d�ci

dt

� �
ei

¼ dQT

dt
� xþQT � vþ d�c

dt

ð5:25Þ

Differentiation of v� with respect to x� gives

L� ¼ QT � L �QþQT � dQ
dt

ð5:26Þ
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Then, we also have

D� ¼ QT � D �Q ð5:27Þ

Because of the identity such that

dI
dt

¼ QT � dQ
dt

þ dQT

dt
�Q ¼ 0 ð5:28Þ

As for spin tensor, we have

W� ¼ QT �W �QþQT � dQ
dt

ð5:29Þ

Infinitesimal difference of x� is given by dx� ¼ x� ~xþ d~x; tð Þ � x� ~x; tð Þ. Then,
Eq. (5.20) gives

dx� ¼ QT � dx ¼ QT � F � d~x ¼ F� � d~x ð5:30Þ

If two arbitrary vectors u and w follow u� ¼ QT � u and w� ¼ QT � w, then it is
obvious that

u� � w� ¼ QT � u� wð Þ ð5:31Þ

and

u�w� ¼ QT � uwð Þ �Q ð5:32Þ

Furthermore, if a tensor A obeys A� ¼ QT � A �Q, then we know that when
w ¼ A � u,

A� � u� ¼ QT � A � uð Þ ¼ w� ð5:33Þ

With the help of Eqs. (1.33), (5.30), and (5.31), the differential area element sat-
isfies the following identity:

da� ¼ QT � da ð5:34Þ

Since the stress vector issuing from a material point, it is obvious that t� ¼ QT � t.
Then, Eq. (5.33) leads to

t ¼ T� � da� ð5:35Þ
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and

T� ¼ QT � T �Q ð5:36Þ

5.2.2 Objective Vector and Tensor

So far, we discussed the consequences of the change of observers. Some vectors
follow the relation u� ¼ QT � u, while others do not. Similarly, some tensors follow
the relation A� ¼ QT � A �Q, while others do not. The Eulerian objective vectors
and tensors are defined as the ones such that

u� ¼ QTðtÞ � u ð5:37Þ

and

A� ¼ QTðtÞ � A �QðtÞ ð5:38Þ

Meanwhile, right Cauchy–Green tensor C and Piola–Kirchhoff stress of the 2nd
kind are invariant for the change of observer. Note that

F�1
� ��¼ F�1 �QðtÞ; F�T

� ��¼ QTðtÞ � F�T ð5:39Þ

Equation (5.39) immediately gives

eT� ¼ det F�ð Þ F�1
� ���T� � F�T

� ��
¼ det Fð ÞF�1 �Q �QT � T �Q �QT � F�T

¼ eT ð5:40Þ

We define Lagrangian objective tensors as A� ¼ A.
The definition of relative deformation gradient tensor, Eq. (1.59), implies that

Ft sð Þ ¼ F sð Þ � F�1ðtÞ ð5:41Þ

The use of Eq. (5.22) gives

F�
t ðsÞ ¼ QT sð Þ � Ft sð Þ �QðtÞ ð5:42Þ

Consequently, Eq. (1.66) gives

B�
t sð Þ ¼ QT sð Þ � Bt sð Þ �Q sð Þ ð5:43Þ
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and

C�
t sð Þ ¼ QTðtÞ � Ct sð Þ �QðtÞ ð5:44Þ

In summary, the objective tensors are Cauchy stress tensor T, left Cauchy–Green
tensor B, right relative Cauchy–Green tensor Ct sð Þ, relative finger tensor C�1

t sð Þ,
and deformation rate tensor D. It is obvious that the identity tensor I is both
Eulerian and Lagrangian objective tensors.

5.2.3 Principle of Material Frame Indifference

Several classical constitutive equations are introduced in Sect. 3. Since Cauchy
stress is an Eulerian objective tensor, the formulation of stress tensor, constitutive
equation, must obey the transform rule of Eulerian objective tensor. Since I, B, and
D are Eulerian objective tensors, it is obvious that the constitutive equations of
Newtonian fluid and hyperelasticity follow the transform rule. The principle of
material frame-indifference states that constitutive formulation must follow the
transform rule (Truesdell and Noll 2004). If Piola–Kirchhoff stress of the 2nd kind
is considered, then the formulation must consist of Lagrangian objective terms.

As for upper-convective Maxwell model, it obeys the principle of material
frame-indifference. To show this, we have to show that the upper-convective time
derivative satisfies

T�r ¼ QTðtÞ � T
r
�QðtÞ ð5:45Þ

Note that

d
dt

QT � T �Q� � ¼ QT � dT
dt

�Qþ dQT

dt
� T �QþQT � T � dQ

dt
ð5:46Þ

and

L � TþT � Lð Þ�¼ QT � L � TþT � Lð Þ �Q� dQT

dt
� T �Q�QT � T � dQ

dt
ð5:47Þ

Here, we used

dQ
dt

¼ �Q � dQ
T

dt
�Q;

dQT

dt
¼ �QT � dQ

dt
�QT ð5:48Þ

Equation (5.45) is immediately obtained by the application of Eqs. (5.46) and
(5.47) to the definition of the upper-convective time derivative. Hence, the UCM
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model follows the principle of material frame-indifference. Such constitutive model
is called objective constitutive equation.

Note that objective time derivatives obey Eq. (5.45). It is known that the fol-
lowing time derivatives are also objective:

T
D
� dT

dt
þLT � TþT � L ð5:49Þ

and

T
O
� dT

dt
�W � TþT �W ð5:50Þ

Equation (5.49) is the lower-convective time derivative, and Eq. (5.50) is the
Jaumann time derivative. Object time derivatives satisfy the principle of material
frame-indifference.

Problem 5

[1] Derive Eqs. (2.a) and (2.b).
[2] Derive Eq. (5.14).
[3] Derive Eq. (5.26).
[4] Derive Eq. (5.39).
[5] Derive Eq. (5.46).
[6] Show that the lower-convective time derivative and the Jaumann time

derivative are objective.
[7] Show that

R� ¼ QT � R; ð5:aÞ

U� ¼ U; ð5:bÞ

V� ¼ QT � V �Q ð5:cÞ

[8] Show that for any tensor field,

A
O
¼ 1

2
A
r
þ A

D
� �

ð5:dÞ

[9] Consider a vector field obeying

du
dt

¼ L � u� fD � u ð5:eÞ
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where ζ is a positive constant. Then, derive that

G
r

þ f D �GþG � Dð Þ ¼ 0 ð5:fÞ

where G ¼ uu.
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Chapter 3
Statistical Mechanics

Abstract This chapter is included because statistical mechanical theories play an
important role in molecular theories of polymer viscoelasticity. Hence, this chapter
is a brief review of statistical mechanics which is focused on the explanation of
stress in terms of molecular interactions. Section 1 addresses probability theory
which will be used in the other sections. Section 2 is devoted to equilibrium
statistical mechanics based on classical mechanics because quantum effect is rare in
polymer viscoelasticity. Section 3 deals with Brownian motion which is the core of
polymer motion in solution and molten states.

Statistical mechanics plays an important role in the development of molecular
theories of polymer rheology. Equilibrium statistical mechanics is necessary for the
molecular theory of rubber elasticity because it is based on the statistical
mechanical theory of chain conformation. Molecular theory of polymer vis-
coelasticity is also based on the statistical mechanics of Brownian motion. Hence,
we shall introduce a brief summary of the statistical mechanical theories for easier
understanding the molecular theory of polymer viscoelasticity.

Statistical mechanics is classified as the background mechanics. If it is based on
classical mechanics, then it is called classical statistical mechanics. On the other
hand, quantum statistical mechanics is based on quantum mechanics. This classi-
fication reflects the main purpose of statistical mechanics that explains the
macroscopic phenomena in terms of molecular motions. Of course, quantum sta-
tistical mechanics is more fundamental than classical statistical mechanics.
Classical statistical mechanics can be considered as a good approximation of
quantum statistical mechanics. However, classical statistical mechanics is sufficient
in this book because the quantum effect is negligible in most of the physical
phenomena related to polymer.

State variables in classical mechanics are positions and momenta of all con-
stituent particles of the system. Here, the particles mean molecules or atoms. These
state variables are called microstate variables compared with the state variables of
thermodynamics, which are macrostate variables. Although the microstate variables
are deterministic from the viewpoint of classical mechanics, extremely large degree
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of freedom can be treated by neither the second law of Newtonian mechanics nor
the Hamilton equation of motion. Hence, statistical mechanics adopts statistical
treatment for motions of the particles. When N-particle system is considered, lack of
information on the microstate variables of the surroundings makes us see the
phenomena occurring in the system as stochastic processes. In addition, it is
practically impossible to specify all initial conditions of the microstate variables of
the system as well as those of the surroundings. Therefore, we need some
knowledge of probability theory which is essential in statistical mechanics. The
readers who want more are recommended to read the textbooks of statistical
mechanics such as Huang (1963), Chandler (1987), McQuarrie (2000), Schwabl
(2006) and Tuckerman (2010). Although analytical mechanics is necessary to
understand classical statistical mechanics, we omit the review of analytical
mechanics such as Lagrangian and Hamiltonian mechanics in this book. If neces-
sary, read Landau and Lifshitz (1976), Thornton and Marion (2004).

1 Probability Theory

Statistical mechanics deals with probability distribution of huge number of state
variables. Let the distribution function denoted byPðfnkgÞ, where fnkg aremicrostate
variables. When N-particle system is considered, we can say that fnkg consists of
3N components of the positions of N particles fr1; r2; . . .; rNg and 3N components of
the momenta of N particles fp1; p2; . . .; pNg. Therefore, the number of microstate
variables is 6N and fnkg ¼ fr1; . . .; rN ; p1; . . .; pNg. The phase space is the 6N-
dimensional space formed by the microstate variables. For simplicity, we use the
notation such that

C ¼ nkf g; dC ¼ dn1dn2. . .dn6N ð1:1Þ

The Hamiltonian of the N-particle system is given by the sum of kinetic and
potential energies of the particles in the system:

H ¼
XN
a¼1

pa � pa
2ma

þU raf gð Þ ð1:2Þ

where ma; pa, and ra are, respectively, mass, momentum, and position of the αth
particle. Note that the Hamiltonian becomes the total mechanical energy when the
potential energy UðfragÞ is not dependent explicitly on time (Landau and Lifshitz
1976; Thornton and Marion 2004). Equation (1.2) is an example that a macroscopic
quantity is a function of microstate variable: E ¼ HðCÞ. Lack of our knowledge on
the initial conditions of the system and surroundings makes fnkg be stochastic
random variables although the evolution of microstate variables is deterministic
according to the Law of Newtonian mechanics. Due to the same reason, the total
mechanical energy E is also a stochastic random variable. The observed mechanical
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energy must be the average of the Hamiltonian Eq. (1.2). If the probability distri-
bution PðC; tÞ is given, the average is calculated by

E tð Þ ¼ H Cð Þh i ¼
Z

H Cð ÞP C; tð ÞdC ð1:3Þ

Similarly, Eq. (1.3) can be applied to the average of any macroscopic quantity
represented by a function of microstate variables:

A tð Þ ¼ A
_

Cð Þ
D E

¼
Z

A
_

Cð ÞP C; tð ÞdC ð1:4Þ

Most interesting macroscopic quantities, say A, have their functions of micro-

state variables, say A
_ðCÞ. Therefore, if we know every thing about the probability

distribution PðC; tÞ; then it can be said that every problem about statistical
mechanics is solved. What is measured by experiment is not the probability dis-
tribution but the average such as Eq. (1.4).

1.1 Moments and Cumulants

Hereafter, we shall introduce the brief summary of probability theory because the
theory is helpful to understand equilibrium statistical mechanics as well as
nonequilibrium statistical mechanics. For simplicity, consider the case of a single
random variable ξ. When dynamics is not interesting, the probability distribution is
expressed by PðnÞ. The nth moment of the probability distribution is defined as

ln � nnh i ¼
Z1
�1

nnP nð Þdn ð1:5Þ

Note that the probability distribution function of Eq. (1.5), called probability
density function, must not be negative for any value of ξ. With the normalization
condition, we know that

P nð Þ� 0; l0 ¼
Z1
�1

P nð Þdn ¼ 1 ð1:6Þ

Equation (1.6) immediately results in

lim
nj j!1

P nð Þ ¼ 0 ð1:7Þ
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Hence, we know that the Fourier transform of the probability distribution exists
as:

P̂ qð Þ ¼ e�iqn� � ¼ Z1
�1

eiqnP nð Þdn ð1:8Þ

The Fourier transform is called the characteristic function. The uniqueness of
the Fourier transform implies that the probability distribution can be uniquely
determined from a given characteristic function. Note that the Taylor series
expansion of the characteristic function is given by

P̂ qð Þ ¼
X1
n¼0

�iqð Þn
n!

nnh i ð1:9Þ

Equation (1.9) implies that if we know every moment, then we can determine the
probability distribution. On the other hand, if we know the characteristic function,
then we can calculate nth moment as follows:

ln ¼ nnh i ¼ in
dP̂
dq

� �
q¼0

ð1:10Þ

Cumulant generating function is defined as

K̂ qð Þ ¼ log P̂ qð Þ ð1:11Þ

Assume that K̂ qð Þ can be expanded as

K̂ qð Þ ¼
X1
n¼0

�iqð Þn
n!

jn ð1:12Þ

where jn is the nth cumulant. According to Pourahmadi (1984), it is known that if
exp

P1
k¼0 akq

k
� � ¼P1

k¼0 ckq
k then

cnþ 1 ¼
Xn
k¼0

1� k
nþ 1

� �
anþ 1�kck; n ¼ 0; 1; 2; . . . ð1:13Þ

Replacing cn by ð�iÞnln=n! and an by ð�iÞnjn=n!, we have

lnþ 1 ¼
Xn
p¼0

n
p

� �
ln�pjpþ 1 ð1:14Þ
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Conversion of Eq. (1.14) gives (Berberan-Santos 2007)

jnþ 1 ¼ lnþ 1 �
Xn�1

p¼0

n
p

� �
ln�pjpþ 1 ð1:15Þ

Note that j0 ¼ 0 while l0 ¼ 1. The first three cumulants are given as:

j1 ¼ l1; j2 ¼ l2 � l21 ¼ r2; j3 ¼ 2l31 � 3l1l2 þ l3 ð1:16Þ

where σ is the standard deviation.

1.2 Statistical Independence

Consider two continuous random variables x1 and x2. We are interested in the
probability that x1 2 I1 ¼ ða1; b1Þ and x2 2 I2 ¼ ða2; b2Þ. Then, the joint proba-
bility density function Pðx1; x2Þ is defined as

Pr x1 2 I1 and x2 2 I2ð Þ ¼
Zb2
a2

Zb1
a1

P x1; x2ð Þdx1dx2 ð1:17Þ

The marginal distribution function is the probability density function defined by

P1 x1ð Þ ¼
Z1
�1

P x1; x2ð Þdx2 or P2 x2ð Þ ¼
Z1
�1

P x1; x2ð Þdx1 ð1:18Þ

Note that P1ðx1Þ is the probability distribution of x1 for any value of x2. The
meaning of P2ðx2Þ is understood in the same way.

The probability of x1 2 I1 whenever x2 2 I2 is a conditional probability such that

Pr x1 2 I1jx2 2 I2ð Þ ¼
R b2
a2

R b1
a1

P x1; x2ð Þdx1dx2R b2
a2

R1
�1 P x1; x2ð Þdx1dx2

¼
R b2
a2

R b1
a1

P x1; x2ð Þdx1dx2R b2
a2

P2 x2ð Þdx2
ð1:19Þ

When we denote the event xk 2 Ik by Ek , Eq. (1.19) can be rewritten by

Pr E1jE2ð Þ ¼ Pr E1\E2ð Þ
Pr E2ð Þ ð1:20Þ

The event EC
k implies xk 62 Ik . Then, it is obvious that PrðEC

k Þ ¼ 1� PrðEkÞ. If
the event of x2 does not influence the event of x1, then the two conditional
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probabilities PrðE1jE2Þ and PrðE1jEC
2 Þ must be same. This case is called statistical

independence of the two random variables. The statistical independence immedi-
ately results in

Pr E1ð Þ � Pr E1\E2ð Þ
1� Pr E2ð Þ ¼ Pr E1\E2ð Þ

Pr E2ð Þ ð1:21Þ

Solving Eq. (1.21) for PrðE1\E2Þ, we have

Pr E1 \E2ð Þ ¼ Pr E1ð Þ Pr E2ð Þ ð1:22Þ

Since Eq. (1.22) holds for arbitrary intervals, statistical independence also results
in

P x1x2ð Þ ¼ P1 x1ð ÞP2 x2ð Þ ð1:23Þ

This can be expanded to the joint probability density function of N random
variables. If N random variables are statistically independent, then factorization of
the joint probability distribution holds the following:

P x1; x2; . . .; xNð Þ ¼
YN
n¼1

Pn xnð Þ ð1:24Þ

Of course, PnðxnÞ is defined as

Pn xnð Þ ¼
YN
k 6¼n

Z1
�1

dxkP x1; x2; . . .; xNð Þ ð1:25Þ

1.3 The Central Limit Theorem

Consider statistically independent N random variables fxkg. Assume that for
1� k�N, all the marginal distributions are identical:

Pk xkð Þ ¼ f xkð Þ ð1:26Þ

We are interested in the probability distribution of y defined as

y ¼ 1ffiffiffiffi
N

p
XN
k¼1

xk ð1:27Þ
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The probability distribution function of y can be calculated from the joint
probability density function by use of the Dirac delta function as follows:

UN yð Þ ¼
Z1
�1

� � �
Z1
�1

d y� 1ffiffiffiffi
N

p
XN
k¼1

xk

 !
P x1; . . .; xNð Þdx1. . .dxN ð1:28Þ

Note that Eq. (1.28) holds irrespective of the statistical independence of the
N random variables. The Dirac delta function extracts the events of Eq. (1.27)
among the whole events of �1\xk\1. This technique is often found in sta-
tistical mechanics and polymer physics. Using Eq. (6.50) in Chap. 1, Eq. (1.28) can
be rewritten by

UN yð Þ ¼ 1
2p

Z1
�1

� � �
Z1
�1

Z1
�1

exp iq y� 1ffiffiffiffi
N

p
XN
k¼1

xk

 !" #
dq

8<:
9=;P x1; . . .; xNð Þdx1. . .dxN

ð1:29Þ

Changing the order of integration and using the statistical independence, we
have

UN yð Þ ¼ 1
2p

Z1
�1

wN qð Þeiqydq ð1:30Þ

where

wN qð Þ ¼
Z1
�1

e�i qxffiffi
N

p
f xð Þdx

24 35N

¼ f̂ N
qffiffiffiffi
N

p
� �

ð1:31Þ

Since f̂ ðqÞ is the characteristic function of f ðxÞ, we can replace f̂ ðqÞ by the
cumulant generating function /ðq) ¼ log f̂ ðqÞ. Then, Eq. (1.30) becomes

UN yð Þ ¼ 1
2p

Z1
�1

eN/ q=
ffiffiffi
N

pð Þeiqydq ð1:32Þ

Equation (1.12) allows us to use

N/
qffiffiffiffi
N

p
� �

¼
X1
n¼1

�ið Þn
n!

jn
Nn=2�1

qn ð1:33Þ
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The coefficients of qn with n[ 2 become negligible as N increases because the
coefficients are proportional to N1�n=2. Then, Eq. (1.33) can be approximated for
large N by

N/
qffiffiffiffi
N

p
� �

� �ilq� r2

2
q2 ð1:34Þ

where μ and σ are, respectively, mean and standard deviation of the distribution
f ðxÞ. Then, Eq. (1.32) can be approximated by

UN yð Þ � 1
2p

Z1
�1

exp i y� lð Þq� r2

2
q2

	 

dq ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

2pr2

r
exp � y� lð Þ2

2r2

" #
ð1:35Þ

It is noteworthy that Eq. (1.35) is based on the arbitrariness of the probability
distribution f ðxÞ. Hence, the central limit theorem is that the normalized sum of the
statistically independent random variables with the identical probability density
function comes to have the Gaussian distribution function of Eq. (1.35) as N is
suitably large.

Consider a random variable x whose probability distribution function is given by
PXðxÞ. We are interested in a new random variable which is defined as y ¼ /ðx),
where the function /ðx) is a monotonically increasing function. Then, it is clear that

Pr a\x\bð Þ ¼ Pr / að Þ\y\/ bð Þð Þ ð1:36Þ

Note that Eq. (1.36) holds for arbitrary reals a and b. From Eq. (1.36), we shall
derive the probability distribution PYðyÞ of the new random variable y. Then,
Eq. (1.36) results in

Zxþ 1
2dx

x�1
2dx

PX nð Þdn¼ PX xð Þdx ¼
Z/ xþ 1

2dxð Þ

/ x�1
2dxð Þ

PY yð Þdy

¼ PY / xð Þ½ � d/
dx

dx ¼ PY yð Þ d/
dx

dx

ð1:37Þ

Then we have

PY yð Þ ¼ PX xð Þ
/0 xð Þ ¼ PX /�1 yð Þ� �

/0 /�1 yð Þ� � ð1:38Þ

where /0ðxÞ ¼ d/=dx and /�1ðyÞ ¼ x are the inverse function of /ðx), which must
exist because /ðx) is a monotonically increasing function.
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When / xð Þ is a monotonically decreasing function, the same procedure gives the
following:

PY yð Þ ¼ PX xð Þ
/0 xð Þj j ¼

PX /�1 yð Þ� �
/0 /�1 yð Þ� ��� �� ð1:39Þ

Return to Eq. (1.27). We are interested in a new random variable z ¼ ffiffiffiffi
N

p
y.

Equations (1.35) and (1.39) give the following:

PN zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2pNr2

r
exp � z� ffiffiffiffi

N
p

l
� �2

2Nr2

" #
ð1:40Þ

This result implies that the sum of N statistically independent random variables
follows the Gaussian distribution whose mean and standard deviation are, respec-
tively,

ffiffiffiffi
N

p
l and

ffiffiffiffi
N

p
r.

The central limit theorem is important in statistics as well as various fields of
physics such as Brownian motion and statistical theory of polymer chain confor-
mation. Hence, it is necessary to study important characteristics of the Gaussian
distribution.

1.4 Gaussian Distribution

The Gaussian distribution of Eq. (1.35) can be extended to n-dimensional case as
follows:

P xð Þ ¼ A exp � 1
2
B�1 : x� �xð Þ x� �xð Þ

	 

ð1:41Þ

where x ¼ ðx1; x2; . . .; xnÞ is a n-dimensional random vector, �x ¼ �x1;�x2; . . .;�xnð Þ is
the mean, B�1 is a positive definite and symmetric n	 n matrix, and A is the
positive constant for the normalization condition:

A�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þndet Bð Þ

q
ð1:42Þ

This can be derived easily by using the diagonalization of B�1 and the Gaussian
integral:

Z1
�1

e�ax2dx ¼
ffiffiffi
p
a

r
ð1:43Þ
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We consider the case of �x ¼ 0 because the following results can be applied to the
case of �x 6¼ 0 by the transform z ¼ x� �x.

The characteristic function of the multivariate Gaussian distribution function is
given by

P̂ qð Þ ¼ e�iq�x� � ¼ exp � 1
2
q � B � q

� �
ð1:44Þ

Any moment of the Gaussian distribution can be calculated from the differen-
tiation of the characteristic function as follows:

xk11 x
k2
2 . . .x

kn
n

� � ¼ Z xk11 x
k2
2 . . .x

kn
n P xð Þdxn ¼ �ið Þm @mP̂ qð Þ

@qk11 . . .@q
kn
n

 !
q¼0

ð1:45Þ

Equation (1.45) is called the Wick’s theorem. Then, it is obvious that

xh i ¼ 0; xxh i ¼ B; xxxh i ¼ 0;

xxxxh i ¼ BijBkl þBikBjl þBilBjk
� �

eiejekel
ð1:46Þ

where ei is the orthonormal n-dimensional vector.
If we use the notation such that xxh i ¼ x2

� �
, xxxh i ¼ x3

� �
, and so on, the

Wick’s theorem gives

x2nþ 1� � ¼ 0 with n ¼ 0; 1; . . . ð1:47Þ

and we know that x2n
� �

is a combination of the components of B.
Consider an analytic function f ðxÞ, where x is the random variable of the

Gaussian distribution of Eq. (1.41) with �x 6¼ 0. Then, we are interested in xf ðxÞh i.
From the definition of the average, we have

xf xð Þh i ¼ x� �xð Þf xð Þh iþ �x f xð Þh i
¼ A

Z
hf xð Þe�1

2h�B�1�hdxþ �x f xð Þh i

¼ AB �
Z

B�1 � hf xð Þe�1
2h�B�1�hdxþ �x f xð Þh i

¼ �AB �
Z

f hþ �xð Þ @

@h
e�

1
2h�B�1�h

� �
dhþ �x f xð Þh i

ð1:48Þ

where

h ¼ x� �x ð1:49Þ
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Note that

@

@h
f hþ �xð Þe�1

2h�B�1�h
h i

¼ @f hþ �xð Þ
@h

e�
1
2h�B�1�h þ f hþ �xð Þ @

@h
e�

1
2h�B�1�h

� �
ð1:50Þ

Application of Eq. (1.50) to Eq. (1.48) yields

xf xð Þh i ¼ �AB �
Z

@

@h
f hþ �xð Þe�1

2h�B�1�h
h i

dhþ �x f xð Þh iþB � @f
@x

� 
ð1:51Þ

Since the first integral of the right-hand side can be replaced by the surface
integral because of n-dimensional divergence theorem, it disappears because
e�1

2h�B�1�h goes to zero as hk k ! 1. Furthermore, if �x 6¼ 0 then

B ¼ hhh i ¼ xxh i � xh i xh i ¼ xxh i � xx ð1:52Þ

Then, we can have a very useful equation such that

xf xð Þh i ¼ �x f xð Þh iþB � @f
@x

� 
ð1:53Þ

Equation (1.53) is very useful in the derivation of the Fokker–Planck equation
from the Langevin equation under the assumption that the random force is governed
by the Gaussian distribution.

Problems 1

[1] Derive Eq. (1.23).
[2] Derive the following integrations for a[ 0

Z1
�1

e�ax2dx ¼
ffiffiffi
p
a

r
ð1:aÞ

Z1
�1

e�ax2 þ bxþ cdx ¼
ffiffiffi
p
a

r
exp

b2

4a
þ c

� �
ð1:bÞ

[3] For the Gaussian distribution [Eq. (1.35)], prove that

xnh i ¼ 0 if n is odd,
rn n� 1ð Þ!! if n is even

�
ð1:cÞ
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where

2k � 1ð Þ!! ¼
Xk
p¼1

2p� 1ð Þ double factorial ð1:dÞ

[4] Derive Eq. (1.43).
[5] Derive Eq. (1.44).
[6] Show that

B �
Z

@

@h
f hþ �xð Þe�1

2h�B�1�h
h i

dh ¼ 0 ð1:eÞ

2 Equilibrium Statistical Mechanics

2.1 Ensemble Theory

Statistical mechanics is to deal with mechanical system in terms of probability
distributions. Consider a thermodynamic system which can be described by ther-
modynamic state variables of finite number. As mentioned before, the thermody-
namic state variables are averages of certain functions of microstates. There is a
huge number of microstates for given macrostates of finite number. Then, it is a
natural question what the probability distribution is like if macrostates are fixed.

2.1.1 Microcanonical Ensemble

Consider the case that the number of molecules N, the volume of the system V, and
the total mechanical energy E are given. It is clear that there are a huge number of
systems that have the fixed values of N, V, and E. Set of such systems is called
microcanonical ensemble. Even though such systems, members of microcanonical
ensemble, share the same values of N, V, and E, they have different microstates
which are points in phase space. Principle of equal a priori probability states that
every point of the microcanonical ensemble has the same probability. Thus, the
probability distribution of microcanonical ensemble is assumed to be uniform.
Unfortunately, there is no mathematical proof of the principle.

The number of members of microcanonical ensemble can be calculated by

X N;V ;Eð Þ ¼ c
Z

dp1. . .
Z

dpN

Z
V

dr1. . .
Z
V

dr1d HN Cð Þ � Eð Þ ð2:1Þ
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where the Hamiltonian in Eq. (2.1) is the one in Eq. (1.2) and c is the proportional
coefficient. The proportional coefficient can be determined from quantum
mechanical principles such as indistinguishability of particles and uncertainty
principle (McQuarrie 2000):

c ¼ 1
h3NN!

ð2:2Þ

where h is the Planck’s constant whose value is 6:626070	 10�34 J s. It is note-
worthy that Eq. (2.1) is proportional to the area of 6N � 1-dimensional surface at
which the Hamiltonian has the same energy of E. It is convenient to absorb the
correction fraction in dC by d~C ¼ ðh3NN!Þ�1dr1 . . . drNdp1 . . . dpN . It is notewor-
thy that the newly defined differential volume of phase space is dimensionless.
Hereafter, we use the notation d~C ¼ ðh3NN!Þ�1dC. If the number of molecules
N should be emphasized, then we use d~CN ¼ ðh3NN!Þ�1dCN .

The function XðN;V ;EÞ is called the sum of state or partition function of
microcanonical ensemble. Since the principle of equal a priori probability means
that any microstate on the equal energy surface is equally probable, the probability
distribution is given by

PMC Cð Þ ¼ d H Cð Þ � Eð Þ
X N;V ;Eð Þ ð2:3Þ

If we consider only microstates of the energy surface as the space for integration,
then Eq. (2.3) can be rewritten by PMCðS6N�1Þ ¼ 1=X, where S6N�1 denotes the
points on the energy surface.

Boltzmann suggested the relation between entropy S and the phase volume Ω:

S ¼ kB logXðN;V ;EÞ ð2:4Þ

where kB is the Boltzmann constant which is the gas constant R divided by the
Avogadro’s number NA. The values of the constants are kB � 1:381	 10�23 J K�1,
R � 8:314 JK�1 mol�1, and NAvo � 6:022	 1023 mol�1. Unfortunately, Eq. (2.4)
was not derived but introduced by genius intuition. However, the validity of
Eq. (1.10) can be proved by its consistency with thermodynamics. Equation (2.4)
satisfies the additivity of entropy and other features.

The total differential of entropy can be expressed from Eq. (2.4) as follows:

dS ¼ @S
@E

� �
N;V

dEþ @S
@V

� �
N;E

dV þ @S
@N

� �
V ;E

dN ð2:5Þ

If internal energy is interpreted by the total mechanical energy of molecules in
the system, then connection of Eq. (2.5) with equilibrium thermodynamics provides
the following:
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1
T
¼ @S

@E

� �
N;V

¼ kB
@ logX N;V ;Eð Þ

@E
;

p
T
¼ @S

@V

� �
N;E

¼ kB
@ logX N;V ;Eð Þ

@V
;

l
T
¼ � @S

@N

� �
V ;E

¼ �kB
@ logX N;V ;Eð Þ

@N

ð2:6Þ

where μ is the chemical potential. Since the partition function XðN;V ;E) is
calculated from molecular structure and motion, Eqs. (2.1), (2.4), and (2.6) provide
the way to calculate macroscopic quantities from molecular motion.

Consider a continuously differentiable function g : RN ! R, where RN is the
N-dimensional Euclidean space and R is the set of real number. The properties of
the Dirac delta function are noteworthy such thatZ

RN

f xð Þd g xð Þ½ �dx ¼
Z

g xð Þ¼0

f xð Þ
rNgk k dS

N�1 ð2:7Þ

where gðxÞ ¼ 0 of the second integral implies that the integral is carried over the
hypersurface gðxÞ ¼ 0 in RN , dSN�1 is the area element on the hypersurface, and

rNgk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

@g
@xk

� �2
vuut with x ¼ ðx1; x2; . . .; xNÞ ð2:8Þ

Note that the dimension of the hypersurface is N � 1. Application of Eq. (2.7) to
the partition function of microcanonical ensemble gives

X ¼
Z

H Cð Þ¼E

d~S6N�1

r6NHk k ð2:9Þ

where d~S6N�1 contains the quantum mechanical correction h3NN!ð Þ�1 and

r6NHk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
k¼1

@H
@rk

���� ����2 þ @H
@pk

���� ����2
" #vuut ð2:10Þ

Now we calculate �kB logPMCh iMC:

�kB logPMCh iMC¼
kB
X

Z
H Cð Þ¼E

logX
r6NHk k d

~S6N�1 ¼ kB logX ¼ S ð2:11Þ
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Equation (2.11) means that the entropy is the ensemble average of the logarithm of
the probability distribution of the ensemble. The formulation S ¼ �kB logPensh iens
will be found in various ensembles. This type of entropy relation was invented from
the research of communication called information theory (Shannon 1948).
Application of information theory to statistical mechanics provides a systematic way
for the description of equilibrium statistical mechanics irrespective of ensemble
(Jaynes 1957a, b).

2.1.2 Canonical Ensemble

Consider the thermodynamic systems defined by N, V, and temperature of T. A
huge number of systems with different microstates satisfy the constraints of N, V,
and T. Set of such systems is called canonical ensemble. Constant temperature
implies that the systems of canonical ensemble exchange energy with their sur-
roundings. Hence, the members of canonical ensemble have different mechanical
energies. We want to find the probability distribution function of canonical
ensemble. Unfortunately, the general derivation has not been found. The most
popular derivation assumes that the surrounding and the system are in thermal
equilibrium which means that both the surrounding and the system of canonical
ensemble have the same temperature. Furthermore, the union of the system and
surrounding is a member of the microcanonical ensemble of N, V, and E. Since the
surrounding is also a system, let the microstates of the system and surrounding be
denoted, respectively, by CA and CB. Then, the union has the probability distri-
bution such as

PMC CA;CBð Þ ¼ d E � HA CAð Þ � HB CBð Þð Þ
X NA þNB;VA þVB;Eð Þ ð2:12Þ

Then, the probability distribution of the system is given by

PC CAð Þ ¼
Z

PMC CA;CBð Þd~CB ¼ XB NB;VB;E � HA CAð Þð Þ
X NA þNB;VA þVB;Eð Þ ð2:13Þ

Assume further that HA 
 E. Then, Taylor expansion gives the following as

logPC CAð Þ ¼ log
XB Eð Þ
X Eð Þ � @ logXB Eð Þ

@E
HA CAð Þ ð2:14Þ

The partial derivative can be replaced by temperature according to Eq. (2.6):

PC CAð Þ ¼ XB Eð Þ
X Eð Þ exp �HA CAð Þ

kBT

	 

ð2:15Þ
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Since PCðCAÞ is a probability density function, it must satisfy the normalization
condition such that Z

PC CAð Þd~CA ¼ 1 ð2:16Þ

Then, it is clear that

PC CAð Þ ¼ e�bHA CAð Þ

Z
ð2:17Þ

where

Z ¼
Z

e�bHA CAð Þd~CA ð2:18Þ

and

b ¼ 1
kBT

ð2:19Þ

Note that the quantum mechanical correction is included in Eq. (2.18). The
normalization factor ZðN;V ; TÞ is called the partition function of canonical
ensemble.

The internal energy of the system of canonical ensemble is interpreted as the
average of Hamiltonian such that

U ¼ H Cð Þh iC�
Z

H Cð ÞPC Cð Þd~C ð2:20Þ

From the definition of the partition function ZðN;V ; TÞ, we have

U ¼ � @

@b
log Z ð2:21Þ

Since b ¼ ðkBTÞ�1, we know that

U ¼ kBT
2 @ log Z

@T

� �
N;V

ð2:22Þ

Equation (2.22) is analogs to the Gibbs–Helmholtz equation [see Eq. (4.a) in
Chap. 1]:

U ¼ �T2 @

@T
F
T

� �
N;V

ð2:23Þ
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Comparison of Eqs. (2.22) and (2.23) yields that Helmholtz free energy F is
related to the partition function of canonical ensemble:

F ¼ �kBT log Z N;V ; Tð Þ ð2:24Þ

Then, the entropy can be calculated by the thermodynamic relation:

S ¼ � @F
@T

� �
N;V

¼ kB log Zþ kBT
@ log Z
@T

� �
N;V

ð2:25Þ

It is interesting that Eq. (2.25) gives

S ¼ �kB logPCh i ¼ �kB

Z
PC Cð Þ logPC Cð Þd~C ð2:26Þ

We found the consistency of the information theory of entropy in canonical
ensemble.

2.1.3 Grand Canonical Ensemble

Now we are interested in the collection of systems defined by volume, temperature,
and chemical potential μ. Such collection of system is called grand canonical
ensemble. Since the system is defined by μ, it can be said that the systems of grand
canonical ensemble can exchange molecules with surrounding.

In order to derive the probability distribution of grand canonical ensemble,
consider a system of canonical ensemble. The system has two subsystems A and B.
Assume that A is much smaller than B:

NA 
 NB and VA 
 VB ð2:27Þ

It is also assumed that the two subsystems can exchange molecules. The
Hamiltonian of the system is the sum of those of subsystems:

H CA;CB;Nð Þ ¼ H CA;NAð ÞþH CB;NBð Þ ð2:28Þ

with N ¼ NA þNB and V ¼ VA þVB. Since there is exchange of molecules, the
partition function is calculated carefully. It is not important which molecule is in VA

or VB. The partition function of the total system must contain the all possible cases
of different NA’s. The partition function is the sum over NA from zero to N. Thus,
we have
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Z N;V ; Tð Þ ¼ 1
h3NN!

XN
NA¼0

N!
NA!NB!

Z Z
e�bH CAð Þe�bH CBð ÞdCAdCB

¼
XN
NA¼0

Z
e�bH CAð Þd~CA

� � Z
e�bH CBð Þd~CB

� �

¼
XN
NA¼0

Z NA;VA; Tð ÞZ N � NA;VB; Tð Þ

ð2:29Þ

Since molecules are not distinguishable, the term N!=ðNA!NB!Þ was included in
the first equality.

Since the probability distribution of the system A is given by the integration of
PCðCA;CBÞ over CB, we have

PG CAð Þ ¼ Z N � NA;VB; Tð Þ
Z N;V ; Tð Þ e�bH CAð Þ ð2:30Þ

From Eq. (2.24), we know that

Z N � NA;VB; Tð Þ
Z N;V ; Tð Þ ¼ exp �b F N � NA;V � VA; Tð Þ � F N;V ; Tð Þ½ �f g ð2:31Þ

Using Eq. (2.27), the following approximation is available:

F N � NA;V � VA; Tð Þ � F N;V ; Tð Þ � �NAlþ pVA ð2:32Þ

Then, we have the probability distribution of the system A:

PG CN
� � ¼ zNe�bpV�bH Cð Þ ¼ ebNl�bH Cð Þ

ebpV
ð2:33Þ

where z is the fugacity defined by

l ¼ kBT log z ð2:34Þ

In Eq. (2.33), we dropped subscripts A, because the subsystem A is the system
that we are interested in. Note that the subsystem A is the system that belongs to
grand canonical ensemble and the subsystem B is the particle reservoir as well as
the heat reservoir. It is easily understood that the ensemble average of a quantity
AðC;NÞ is given by

Ah iG ¼
X1
N¼0

Z
A CN
� � zNe�bH CNð Þ

eb pV
d~C

N ð2:35Þ
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We introduced superscript N for the volume element of phase space, because the
number of momenta and positions changes according to the number of molecules.

Since the distribution PG is the marginal distribution of the distribution PC of the
total system, it is obvious that

X1
N¼0

Z
PG CN
� �

d~C
N ¼ 1 ð2:36Þ

Thus, Eq. (2.33) can be rewritten by

PC CN
� � ¼ zN exp �bH CN

� �� �
N V ; T; lð Þ ð2:37Þ

where NðV ; T ;lÞ is the partition function of grand canonical ensemble defined as

N V ; T; lð Þ �
X1
N¼0

zN
Z

e�bH CNð Þd~CN ð2:38Þ

Comparison of Eqs. (2.33) and (2.38) immediately gives

pV ¼ kBT logN V ; T; lð Þ ð2:39Þ

Theory of equilibrium thermodynamics gives

pV ¼ G� Uþ TS ¼ Nl� Uþ TS ð2:40Þ

and

d pVð Þ ¼ Ndlþ pdV þ SdT ð2:41Þ

Comparison of Eqs. (2.39) and (2.41) gives

@

@V
kBT logNð Þ

	 

l;T

¼ kBT
@ logN
@V

� �
l;T

¼ p; ð2:42Þ

@

@l
kBT logNð Þ

	 

V ;T

¼ kBT
@ logN
@l

� �
V ;T

¼ N; ð2:43Þ

@

@T
kBT logNð Þ

	 

l;V

¼ kB logNþ kBT
@ logN
@T

� �
l;V

¼ S ð2:44Þ

2 Equilibrium Statistical Mechanics 195



From Eq. (2.38), the derivative of logN with respective β gives

@ logN
@b

¼ �kBT
2 @ logN

@T

� �
V ;l

¼ � Hh iG þ l Nh iG ð2:45Þ

Comparison of Eq. (2.45) with Eq. (2.44) gives

� Hh iG þ l Nh iG ¼ pV � TS ð2:46Þ

As before, the ensemble average of Hamiltonian is interpreted again as the
internal energy of the system. Then, comparison of Eq. (2.46) with Eq. (2.40)
implies that the ensemble average of the number of molecules Nh iG can be inter-
preted as N, the number of molecules in equilibrium thermodynamics.

From Eq. (2.38), the derivative with respect to chemical potential gives

kBT
@ logN
@l

� �
V ;T

¼ kBT
N

X1
N¼0

bNzN
Z

e�bH CNð Þd~CN

¼
X1
N¼0

Z
NPG CN

� �
d~CN ¼ Nh iG

ð2:47Þ

which supports the result from Eq. (2.46).
It is interesting that the information theory of entropy is also valid in grand

canonical ensemble:

�kB logPGh iG ¼ � kB
N

X1
N¼0

zN
Z

e�bH CNð Þ N log z� bH CN
� �� logN

� �
d~CN

¼ pV þU � Nl
T

¼ S

ð2:48Þ

2.2 Fluctuations and Equivalence of Ensembles

Various ensembles were addressed above. If different ensembles give different
thermodynamic results, then statistical mechanics cannot be a theory of physics. We
shall show that the various equilibrium ensembles are equivalent to each other
because the fluctuations of thermodynamic quantities from each ensemble are
negligible when the system under consideration is macroscopic.
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2.2.1 Information Theory of Entropy

We have studied the formalism of statistical mechanics that the probability distri-
bution of microcanonical ensemble is based on the principle of equal a priori
probability and the probability distributions of other ensembles are derived from that
of microcanonical ensemble and various approximations. Here, we introduce a new
formalism of classical statistical mechanics based on the information theory (Jaynes
1957a, b). This formalism is more general and systematic than the previous one.

The new formalism starts from the definition of entropy such that

S ¼ �kB logPh i ð2:49Þ

where P is the probability distribution of given ensemble and � � �h i is the average
for the ensemble. Equation (2.49) was derived for microcanonical, canonical, and
grand canonical ensembles: Eqs. (2.11), (2.26), and (2.48). The information theory
states that the probability distribution should be the one that maximizes the entropy
of Eq. (2.49) subjected to some constraints. The constraints are the information of
the probability distribution such as some moments of the probability distribution:

H CN
� �� � ¼X1

N¼0

Z
H CN
� �

P CN
� �

d~C
N
; ð2:50aÞ

Nh i ¼
X1
N¼0

Z
NP CN
� �

d~C
N
; ð2:50bÞ

1 ¼
X1
N¼0

Z
P CN
� �

d~C
N ð2:50cÞ

If the number of molecules N is fixed just as canonical or microcanonical
ensembles, then the second is not necessary because the number of molecules N is
given independent of the probability distributions. Equation (2.50a) is not necessary
for microcanonical ensemble because the energy is given independent of the
probability distribution of microcanonical ensemble. However, the probability
distribution of canonical ensemble needs, instead of Eq. (2.50a), the following:

H Cð Þh iC¼
Z

H CN
� �

PC CN
� �

d~C
N ð2:51Þ

Since the third constraint is the normalization condition of probability distri-
bution function, the probability distributions of all ensembles should satisfy the
constraint Eq. (2.50c).

Maximization or minimization of a function subject to constraints can be solved
systematically by the use of the method of Lagrange multipliers (Marsden and
Tromba 2003; Edgar and Himmelblau 1989). Application of the method of
Lagrange multiplier to the maximization of entropy is given by
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d Sþ cH Hh iþ cN Nh iþ c1
X1
N¼0

Z
P CN
� �

d~C
N

 !
¼ 0 ð2:52Þ

Note that all multiplies such as cH , cN , and c1 are independent of the integration
variables. We recommend Thornton and Marion (2004) and Arfken and Weber
(2001) to the readers who are not familiar to the notation of variation.

In microcanonical ensemble, we consider the space of appropriate variables as
the hypersurface of the same energy. Since N and E are fixed, the only constraint is
the normalization condition:Z

PMC S6N�1� � d~S6N�1

r6NHk k ¼ 1 ð2:53Þ

Then, the variational equation, Eq. (2.52), becomes

d �kB

Z
PMC logPMC

d~S6N�1

r6NHk kþ c1

Z
PMC

d~S6N�1

r6NHk k
� �

¼ 0 ð2:54Þ

Since the variation is originated from that of the probability distribution, note
that

d
Z

PMC logPMC
d~S6N�1

r6NHk k ¼
Z

logPMC þ 1ð ÞdPMC
d~S6N�1

r6NHk k

d
Z

PMC
d~S6N�1

r6NHk k ¼
Z

dPMC
d~S6N�1

r6NHk k

ð2:55Þ

Then, Eq. (2.54) becomes simpler as follows:Z
�kB logPMC � kB þ c1ð ÞdPMC

d~S6N�1

r6NHk k ¼ 0 ð2:56Þ

Since the variation of the probability distribution is arbitrary, we have

PMC ¼ exp
c1 � kB

kB

� �
ð2:57Þ

on the energy surface. To determine the multiplier c1, Eq. (2.57) is substituted to
the normalization condition. Then, we have

PMC ¼ 1
X E;V ;Nð Þ ð2:58Þ
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on the energy surface or

PMC ¼ d H Cð Þ � Eð Þ
X E;V ;Nð Þ ð2:59Þ

in the whole phase space.
In canonical ensemble, the constraints for the maximization of entropy are given

as Z
PC Cð Þd~C ¼ 1;

Z
H Cð ÞPC Cð Þd~C ¼ Hh i ¼ U ð2:60Þ

Then, the variational equation for canonical ensemble is given byZ
�kBd PC logPCð Þþ cHH Cð ÞdPC þ c1dPC½ �d~C ¼ 0 ð2:61Þ

Equation (2.61) gives the probability distribution of canonical ensemble as
follows:

logPC Cð Þ ¼ cHH Cð Þþ c1 � kB
kB

ð2:62Þ

The multiplier cH is determined by the thermodynamic relation as follows:

@U
@S

� �
V ;N

¼ T ¼ � 1
cH

ð2:63Þ

Application of the normalization condition determines the probability
distribution:

PC Cð Þ ¼ e�bH Cð Þ

Z N;V ; Tð Þ ð2:64Þ

where

Z N;V ; Tð Þ ¼
Z

e�bH Cð Þd~C ð2:65Þ

This is the result obtained previously from the union of the system and heat
reservoir.

We will leave the problem for grand canonical ensemble as homework to
the readers. The grand canonical ensemble requires the three constraints of
Eqs. (2.50a–c).
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2.2.2 Fluctuation

The probability distribution of an ensemble provides not only the thermodynamic
properties as ensemble average but also the variances of thermodynamic properties.
This cannot be done by classical thermodynamics which considers thermodynamic
state variables deterministically. The probability distribution of canonical ensemble
gives the variance of energy:

r2
E ¼ E � Eh iC

� �2D E
C
¼ 1

Z

Z
H � Uð Þ2e�bHd~C ¼ kBT

2 @U
@T

� �
V ;N

ð2:66Þ

The second equality is obtained from purely mathematical deduction. From the
thermodynamics, we know that ð@U=@TÞV ;N ¼ CV where CV is the heat capacity at
constant volume. Since variance must not be negative, we have the following
inequality:

kBT
2CV ¼ r2

E � 0 ð2:67Þ

Equation (2.67) shows that the heat capacity is not negative. Thus, the relative
variance (coefficient of variation) is given by

rE
U

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT2CV

p
U

ð2:68Þ

We know that U and CV are extensive properties and T is an intensive property.
In the sequence, the relative variance is order of N�1=2. Thus, in a typical macro-
scopic system, the relative deviation from mean energy is negligibly small. Hence,
the average energy of canonical ensemble is exactly equivalent to the energy of
microcanonical ensemble from the macroscopic viewpoints.

As for grand canonical ensemble, we can calculate the variance of the number of
molecules. The result is

r2
N ¼ kBT

@ Nh iG
@l

� �
V ;T

� 0 ð2:69Þ

From thermodynamics, we know that

@l
@N

� �
V ;T

¼ � V2

N2

@P
@V

� �
N;T

¼ VjT
N2 ð2:70Þ

where jT is the isothermal compressibility which is an intensive property. Then, the
relative deviation from the mean number of molecules is given by
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rN

N
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTjT
V

r
/ 1ffiffiffiffi

N
p ð2:71Þ

Since only V is an extensive property in the right-hand side of Eq. (2.71), the
relative deviation from the mean number of molecules in a macroscopic system is
extremely small, too. This shows the equivalence between the grand canonical and
canonical ensembles.

Although classical equilibrium thermodynamics deals with thermodynamic
quantities deterministically and equilibrium statistical mechanics does them
stochastically, the discrepancy between the two approaches disappears when the
system size is macroscopic, N� 1023. It is said that a system can be considered as a
macroscopic if thermodynamic limit is valid. The thermodynamic limit is that N=V
remains finite as both N and V go to infinite.

2.2.3 The Relations Between Partition Functions

The partition function of any ensemble can be considered as the number of systems
in the ensemble. Since a system of an ensemble corresponds to a point of the phase
space and the representative point is interpreted as microstate, the partition function
is called the sum of states.

Canonical ensemble is the collection of systems with the same temperature while
microcanonical ensemble is the collection of systems with the same energy. Let the
number of systems of the same energy of E in canonical ensemble be NðEÞ. Then,
NðEÞ is proportional to the Boltzmann factor e�bE. Since the partition function of
microcanonical ensemble XðEÞ is equivalent to the number of systems with given
E, N, and V, it can be said that

N E;N;V ; Tð Þ ¼ X E;V ;Nð Þe�bE ð2:72Þ

Summing NðEÞ over for all possible energy E, the partition function of canonical
ensemble is obtained:

Z N;V ;Tð Þ ¼
Z1
0

X E;V ;Nð Þe�bEdE ð2:73Þ

Equation (2.73) implies that the partition function of canonical ensemble is the
Laplace transform of that of microcanonical ensemble. It can be said that the
partition function of microcanonical ensemble generates that of canonical ensemble.
It is interesting that Eq. (2.38) implies that
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N l;V ; Tð Þ ¼
X1
N¼0

zNZ N;V ;Tð Þ ð2:74Þ

Thus, it can be said that the partition function of grand canonical ensemble is
generated from the partition function of canonical ensemble.

2.2.4 Generalized Ensembles

Although the three ensembles are representative and popular, there are a number of
ensembles to be utilized. Here we introduce a generalized way to construct a new
ensemble according to Chandler (1987).

We can summarize the equations of partition function and the probability dis-
tribution for ensembles studied as follows:

S
kB

¼ logPMCh iMC ¼ � logX; ð2:75Þ

S
kB

¼ logPCh iC¼ � log Z � b Hh iC; ð2:76Þ

S
kB

¼ logPGh iG ¼ � logN� b Hh iG �bl Nh iG ð2:77Þ

The three equations seem to be connected by a certain relation. Note that for E,
V, and N, no fluctuation is permitted in microcanonical ensemble, while energy
fluctuation is permitted in canonical ensemble and the number of molecules and
energy can fluctuate in grand canonical ensemble. In the three equations for S=kB,
their first term is the minus of the logarithm of the partition function and the next
terms are the linear combination of the product of the average of fluctuating
quantities and their conjugates. The meaning of the conjugate can be explained in
terms of total differential of S/kB. In thermodynamics, the total differential of
entropy is given by

dS
kB

¼ bdUþ bpdV � bldN ð2:78Þ

Equation (2.78) implies that internal energy U is conjugated with β, V is con-
jugated with βp, and N is conjugated with −βμ. The Legendre transformation of
k�1
B S by the replacement of U with its conjugated variable gives

d
S
kB

� bE

� �
¼ d �bFð Þ ¼ �Edbþ bpdV � bldN ð2:79Þ
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Let PC ¼ k�1
B S� bE and PMC ¼ k�1

B S. Then, compared with Eqs. (2.75)–
(2.77), we have

PMC ¼ S
kB

¼ logX and PC ¼ � F
kBT

¼ log Z ð2:80Þ

The logarithm of the partition function of microcanonical ensemble is the
Legendre transformation of that of canonical ensemble by changing fluctuating
quantity for its conjugate.

We can extend this reasoning from microcanonical ensemble to grand canonical
ensemble. Compared with microcanonical ensemble, grand canonical ensemble
permits the fluctuation of the number of molecules and energy. Consider the
Legendre transformation of the logarithm of microcanonical ensemble from U and
N to their conjugates β and βμ. Then, we have

d logPG ¼ d
S
kB

� bU � blN
� �

¼ d bpVð Þ ¼ d logN ð2:81Þ

From Eqs. (2.75) to (2.77), the logarithm of probability distribution can be
constructed similarly

logPMC ¼ � logX;

logPC ¼ � log Z � bH Cð Þ;
logPG ¼ � logN� bH CN

� �� blN

ð2:82Þ

Now we can apply this reasoning to finding a new ensemble. If we want
the ensemble that permits the fluctuation of volume and energy, then we can
construct the partition function and the probability distribution for the ensemble as
follows:

d logPPV ¼ d
S
kB

� bU � bpV

� �
¼ d �bGð Þ ¼ logH N; p; hð Þ ð2:83Þ

logPPV ¼ � logH� bH Cð Þ � bpV ð2:84Þ

H ¼
Z1
0

Z
e�bH Cð Þ�bpVd~CdV ð12:85Þ

The ensemble is called isothermal–isobaric ensemble (McQuarrie 2000).
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2.3 The Equipartition Theorem and the Virial Theorem

The phase space is a manifold of 6N dimension such that

nkf g ¼ r1; . . .; rN ; p1; . . .; pNf g ð2:86Þ

The probability distribution function of canonical ensemble, say PCðfnkgÞ, is
defined on the manifold. The normalization condition for the probability distribu-
tion can be written by

Z1
�1

� � �
Z1
�1

PC n1; . . .; n6Nð Þdn1. . .dn6N¼ 1 ð2:87Þ

Equation (2.87) implies that for any nk

lim
nkj j!1

PC n1; . . .; n6Nð Þ ¼ 0 ð2:88Þ

Then, we have the identity:

Z1
�1

@

@nk
niPCð Þdnk ¼ niPC n1; . . .; n6Nð Þ½ �nk¼1

nk¼�1¼ 0 ð2:89Þ

The left-hand side of Eq. (2.89) can be rewritten by

Z1
�1

@

@nk
niPCð Þdnk ¼

Z1
�1

dik � bni
@H
@nk

� �
PCdnk ð2:90Þ

The immediate consequence of Eq. (2.90) is given as

ni
@H
@nk

� 
C
¼ kBTdik ð2:91Þ

This is called the equipartition theorem or classical virial theorem. Although we
derive the equipartition theorem in canonical ensemble, the theorem can be derived
in microcanonical ensemble, too (Huang 1963; Tuckerman 2010). From Eq. (1.2),
the average kinetic energy of a molecule is given by

ma

2
va � va

D E
¼ 3

2
kBT ð2:92Þ
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One of the most important postulates in equilibrium statistical mechanics is the
ergodic hyperthesis that in equilibrium, the ensemble average is equal to the time
average such that

A Cð Þh iT ¼
1
Dt

Zto þDt

to

A C tð Þð Þdt ¼ A Cð Þh iensemble ð2:93Þ

where to is arbitrarily given. This is the theoretical basis of molecular dynamics
simulation (Tuckerman 2010). The virial theorem is that the time average of kinetic
energy is given by

Kh iT¼ � 1
2

XN
a¼1

fa � ra
* +

T

ð2:94Þ

where fa is the force exerted on the αth particle and we know that dpa=dt ¼ fa from
the second law of Newtonian mechanics (Goldstein et al. 2001). Here we shall
discuss generalized virial theorem.

To prove the virial theorem, we are interested in a tensor quantity such that

G ¼
XN
a¼1

para ð2:95Þ

The average of the time derivative of G is given by

dG
dt

� 
T
¼

XN
a¼1

papa
ma

* +
T

þ
XN
a¼1

fara

* +
T

ð2:96Þ

The left-hand side of Eq. (2.96) can be written by

dG
dt

� 
T
¼ lim

Dt!1
G to þDtð Þ �G toð Þ

Dt
ð2:97Þ

If the motion is periodic, then the left-hand side would be exactly zero whenever
Dt is the period of the motion. Although the motion is not periodic, if the all
particles remain in a finite region and the total energy is finite, then the time average
vanishes for sufficiently long Dt. Then, the virial theorem of Eq. (2.94) is obtained
by taking trace on both sides of Eq. (2.96).

Consider a material point (or particle) of continuum mechanics (see Chap. 2).
The material point is the notion of macroscopic theory, which contains a huge
number of molecules. However, here it is handled by a region of space with finite
volume of Ω from the microscopic viewpoint. We can still use the assumption of
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dG=dth iT¼ 0. The force exerted on the αth molecule (or microscopic particle) is
specified in detail as follows:

fa ¼
XN
c 6¼a

fac þ ta ð2:98Þ

where fac is the internal force exerted on the αth microscopic particle by the γth
microscopic particle and ta is the force exerted on the αth microscopic particle by
the microscopic particles outside of the volume Ω.

Now we define a tensor quantity such that

G ¼
XN
a¼1

pa ra � ~xð Þ ð2:99Þ

where ~x is the center of mass of the microscopic particles in Ω and it can be
interpreted as the position of the material particle of continuum mechanics. The
time average of the rate of G is given by

dG
dt

� 
T
¼

XN
a¼1

fa ra � ~xð Þ
* +

T

þ
XN
a¼1

papa
ma

* +
T

ð2:100Þ

Note that the time derivative used here is the one along the motion of the
material point ~x. Hence, we know that

d~x
dt

¼ 0 ð2:101Þ

Then, Eq. (2.100) becomes

dG
dt

� 
T
¼ V̂
� �

T þ
XN
a¼1

papa
ma

* +
T

¼ 0 ð2:102Þ

where V̂ is the virial tensor defined as

V̂ ¼
XN
a¼1

fa ra � ~xð Þ ð2:103Þ

Application of Eq. (2.98) allows us to decompose the virial tensor V̂ into two
parts:

V̂in ¼
XN
a¼1

XN
c 6¼a

fac ra � ~xð Þ ð2:104Þ
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and

V̂wall ¼
XN
a¼1

ta ra � ~xð Þ ð2:105Þ

It is assumed that the interaction forces between different microscopic particles
are short-range ones. In other words, the forces ta are effective only at the boundary
of the region Ω. Then, we can introduce stress tensor and stress vector in the
approximation of the wall virial tensor V̂wall as follows:

V̂wall
� �

T �
I
@X

t r� ~xð ÞdS ¼
I
@X

r� ~xð Þ � T � dS ð2:106Þ

Here we used the symmetry of stress n � T ¼ T � n ¼ t (see Chap. 2). Note that
the vector r is on the boundary of Ω and the surface integral of Eq. (2.106) is carried
on r. Then, the divergence theorem and rr r� ~xð Þ ¼ I gives the following:

V̂wall
� �

T ¼
Z
X

r� ~xð Þrr � TdV þ
Z
X

TdV ð2:107Þ

Here the del operatorrr means the differentiation with respect to r. Note that the
size of Ω is sufficiently small from macroscopic viewpoint and the stress is a
macroscopic quantity of continuum mechanics where the spatial variation of
physical quantity has the characteristic length longer than the linear size of Ω.
Hence, we can replace rr by r which is the differential operator with respect to
spatial coordinate of ~x. Then, Eq. (2.107) becomes

V̂wall
� �

T ¼
Z
X

TdV � XT ð2:108Þ

It is because

Z
X

r� ~xð Þrr � TdV �
Z
X

r� ~xð Þr � TdV ¼
Z
X

r� ~xð ÞdV
0@ 1Ar � T ¼ 0 ð2:109Þ

Substitution of Eq. (2.108) into Eq. (2.101) gives

T ¼ � 1
X

XN
a¼1

papa
ma

* +
T

� 1
X

V̂in
� �

T ð2:110Þ

2 Equilibrium Statistical Mechanics 207

http://dx.doi.org/10.1007/978-94-017-7564-9_2


Assume the pair-wise additivity of intermolecular interaction potential
(McQuarrie 2000). Then, the potential of Eq. (1.2) can be expressed by

U raf gð Þ ¼
XN
a¼1

XN
c 6¼a

u rac
� � ð2:111Þ

where

rac ¼ rac
�� ��; rac ¼ ra � rc ð2:112Þ

Then, the intermolecular force fac is given by

fac ¼ � @u rac
� �
@ra

¼ � 1
rac

du
drac

rac ¼ 1
rac

du
drac

rca ¼ �fca ð2:113Þ

Then, the internal virial tensor V̂in is given by

V̂in ¼ 1
2

XN
a¼1

XN
c 6¼a

facrac ¼ � 1
2

XN
a¼1

XN
c6¼a

1
rac

du
drac

racrac ð2:114Þ

Here, we used

XN
a¼1

XN
c 6¼a

fac ¼ 0 ð2:115Þ

Finally we have the following:

T ¼ � 1
X

XN
a¼1

papa
ma

* +
T

þ 1
2X

XN
a¼1

XN
c6¼a

1
rac

du
drac

racrac

* +
T

ð2:116Þ

It is noteworthy that the time average fluctuates vigorously if Ω and Δt is too
small, whereas sufficiently large Ω and Δt give smooth and slow variation.
Equation (2.116) can be used for molecular dynamics simulation. Equation (2.116)
was derived by Swenson (1983).

If we know nonequilibrium probability distribution such that

1
XDt

ZtþDt

t

A C t0ð Þð Þdt0 ¼
Z

A Cð ÞPnoneq C; tð ÞdC � Ah inoneq tð Þ; ð2:117Þ

then the time averages of Eq. (2.116) can be replaced by the nonequilibrium
ensemble averages.
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T ¼ �
XN
a¼1

papa
ma

* +
þ 1

2

XN
a¼1

XN
c6¼a

1
rac

du
drac

racrac

* +
ð2:118Þ

Equation (2.118) is important in rheology because it relates stress with micro-
states and intermolecular interaction potentials. Irving and Kirkwood derived not
only Eq. (2.118) but also various balance equations in terms of microstates from the
Liouville equation (Irving and Kirkwood 1950).

In equilibrium, we can replace the time averages by equilibrium ensemble
averages. The stress tensor of fluid without flow becomes T ¼ �pI. Then, taking
trace on both sides of Eq. (2.118), we have

pV ¼ 1
3

XN
a¼1

pak k2
ma

* +
� 1
6

XN
a¼1

XN
c6¼a

du
drac

rac

* +
ð2:119Þ

Note that no spatial variation of physical quantities in equilibrium allows to use
macroscopic volume V. Since the first ensemble average of Eq. (2.119) is two times
of the ensemble average of kinetic energy, application of the equipartition theorem
gives pressure equation:

pV ¼ NkBT � 1
6

XN
a¼1

XN
c 6¼a

du
drac

rac

* +
ð2:120Þ

Since the ideal gas has no intermolecular potential, Eq. (2.120) becomes the
equation of state of ideal gas when u ¼ 0. If radial distribution function gðrÞ is
known McQuarrie (2000), Eq. (2.120) becomes simpler:

p
kBT

¼ qN � q2N
6kBT

Z1
0

r
du
dr

g rð Þ4pr2dr ð2:121Þ

where qN ¼ N=V . The first term in the right-hand side is the one for the ideal gas
and the second term represents the effect of intermolecular interactions.

Problems 2

[1] The volume of the n-dimensional sphere of radius of r is given by

Vn rð Þ ¼
Z

� � �
Z

r2 [
Pn

k¼1
x2k

dx1. . .dxn ¼ Knr
n ð2:aÞ
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To identify Kn, you can use the following identities

In ¼
Z1
�1

� � �
Z1
�1

exp �
Xn
k¼1

x2k

 !
dx1. . .dxn¼

ffiffiffiffiffi
pn

p
; In ¼

Z1
0

e�r2 dVn

dr
dr

ð2:bÞ

Verify that

Kn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ep
n

� �n
s

ð2:cÞ

[2] For ideal gas, derive

X E;V ;Nð Þ ¼ 2pm 2pmEð Þ3
2N�1

h3NN!C 3
2Nð Þ VN ð2:dÞ

Here, m is the mass of the ideal gas.
[3] Derive the equation of state for ideal gas from Eq. (2.d).
[4] When the Hamiltonian of N-particle system is given by

H ¼
XN
k¼1

p2k
2m

þU rnf gð Þ ð2:eÞ

Show that

Z N;V ; Tð Þ ¼ Q N;V ; Tð Þ
k3NN!

ð2:fÞ

Where

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2

2pmkBT

s
ð2:gÞ

and

Q N;V ; Tð Þ ¼
Z
V

� � �
Z
V

e�bUdr1. . .drN ð2:hÞ

[5] When UðfrkgÞ ¼ 0 in Eq. (2.e) implies ideal gas. Derive the partition function
Z of ideal gas and calculate the entropy.

[6] Diatomic molecule might be considered as two spheres that are connected as
rigid body. Assume that the two spheres have the same mass of m and the
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distance between them is fixed as a. Then, the Hamiltonian of the rigid dia-
tomic molecule is given by

H ¼
XN
k¼1

p2k
4M

þ 1
2I

p2h;k þ
p2/;k
sin2 h

 !" #
ð2:iÞ

whereM is the total mass,M ¼ 2m, and I is the moment of inertia, I ¼ ma2=2.
Show that

Z ¼ 2pMkBTð Þ3N=2 8p2IkBT
� �N

VN ð2:jÞ

Show that this ideal gas follows:

U ¼ 5N
2

kBT ; p ¼ NkBT
V

ð2:kÞ

[7] Derive the Helmholtz free energy of ideal gas from the equation of state and
compare it with the solution of Problem [5].

3 Brownian Motion

Consider a small particle with the diameter of a is suspended in fluid. Ceaseless
motion of the molecules of the fluid makes them frequent random collision with the
particle. The average magnitude of the force due to a single collision may be
proportional to kBT . This small force could give rise to motion of the particle if the
mass of the particle is quite small. However, if the size of the particle is large
enough to suffer from a number of almost simultaneous collisions in random
directions, then the net force exerted on the particle could be canceled. On the other
hand, if the size is also small enough, then the net force could not be canceled and
the collisions could give rise to random motion of the particle. This random motion
is called Brownian motion.

3.1 Langevin Equation

Mechanics of Brownian motion is important because it can be applied to various
fields of physics including polymer rheology. It can explain diffusion phenomena as
the consequence from thermal motion of molecules.

If the fluid is Newtonian fluid, then the motion of the particle suffers from the
resistance force due to the viscosity of the fluid. Stokes calculated the friction force:
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fvis ¼ �fv ð3:1Þ

where v is the velocity of the Brownian particle and the friction coefficient is given
by

f ¼ 6pga ð3:2Þ

where η is the viscosity of the Newtonian fluid. Then, the equation of motion for the
Brownian particle is given by

m
dv
dt

¼ �fvþ fR tð Þ ð3:3Þ

where fR represents the impact force due to thermal motion of the fluid molecules.
Equation (3.3) is called the Langevin equation. The random force fR must be a
random variable. If a random variable is a function of time, then it is called a
stochastic variable. Since the direction of the random force must be random, it is a
reasonable to assume that

fR tð Þh i ¼ 0 ð3:4Þ

Since the magnitude of fRðtÞ is not zero, it is clear that fRðtÞfRðt0Þh i 6¼ 0. We are
interested in the correlation tensor fRðtÞfRðt0Þh i. To specify the tensor, we need
some assumptions. It is a reasonable assumption that the random variables fRðtÞ and
fRðt0Þ are statistically independent if t 6¼ t0. Then, the consequence of the statistical
independence is fRðtÞfRðt0Þh i ¼ 0 for t 6¼ t0. It is a daring assumption. However, if
observation timescale is much longer than the average interval between the colli-
sions, then this assumption is plausible. Then, we assume that

fRðtÞfRðt0Þh i ¼ Bd t � t0ð ÞI ð3:5Þ

where B corresponds to the square of the average magnitude of the random force
and I is the identity tensor.

Since we modeled the correlation tensor for the random force, we are now
interested in the correlation tensor of the velocity vector of the Brownian particle.
The general solution of Eq. (3.3) is given by

v tð Þ ¼ 1
m

Z t

�1
e�f t�sð Þ=mfR sð Þds ð3:6Þ

Then, the velocity correlation tensor for t ¼ t0 is given by

v tð Þv tð Þh i ¼ 1
m2

Z t

�1

Z t

�1
e�f 2t�s�s0ð Þ=m fR sð ÞfR s0ð Þh idsds0¼ B

2mf
I ð3:7Þ
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Application of the equipartition theorem gives

tr v tð Þv tð Þh ið Þ ¼ 3kBT
m

¼ 3B
2mf

ð3:8Þ

Hence, we know that

B ¼ 2fkBT ð3:9Þ

This result is called the fluctuation-dissipation theorem because B is the strength
of fluctuating force (random force) and ζ represents the dissipation by the viscosity
of the medium fluid (Zwanzig 2001).

For different times, the velocity correlation tensor is given by

v tð Þv t0ð Þh i ¼ kBT
m

e�f t�t0j j=mI ð3:10Þ

The absolute term t � t0j j is originated from the order of integrations.
Now we are interested in mean square distance (MSD) of Brownian particle. Let

the position of Brownian particle at time of t be denoted by xðtÞ. Then, the position
vector is related to the velocity vector of Eq. (3.6) as follows:

x tð Þ ¼ x 0ð Þþ
Z t

0

v sð Þds ð3:11Þ

MSD is calculated from Eq. (3.11):

x tð Þ � x 0ð Þk k2
D E

¼
Z t

0

Z t

0

v sð Þ � v sð Þh idsds ¼ 3kBT
m

Z t

0

Z t

0

e�f s�sj j=mdsds

¼ 6kBT
f

t � 6kBTm

f2
1� e�ft=m
� � ð3:12Þ

Note that for large time, we have

x tð Þ � x 0ð Þk k2
D E

¼ 6Dt ð3:13Þ

where

D ¼ kBT
f

¼ kBT
6pga

ð3:14Þ

We will show that D in Eq. (3.14) is the diffusion constant and Eq. (3.14) is
called the Stokes–Einstein equation which relates the diffusion constant with the
viscosity of the medium.
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3.2 Diffusion Equation

The random force of the Langevin function is a time-dependent random variable and
the random variable is an indexed collection of random variable called stochastic
process. Since the velocity of Brownian particle is a linear functional of the random
force, Eq. (3.6), the velocity is also a stochastic random variable. Because of
Eq. (3.11), the position of Brownian particle is also a stochastic variable.

Let the probability distribution of the position of Brownian particle be denoted
by Pðx; tÞ. We start from the Chapman–Kolmogorov equation to derive the prob-
ability distribution Pðx; tÞ:

P x; tþDtð Þ ¼
Z

T r; x� r;Dtð ÞP x� r; tð Þdr ð3:15Þ

where transition probability distribution Tðr; x;DtÞ represents the probability that a
Brownian particle at x is moved by the displacement of r irrespective of the present
time. Hence, Eq. (3.15) implies that the probability of the event of ðx; tþDtÞ can be
determined from the probability of the event of ðx� r; tÞ and the transition prob-
ability distribution. Equation (3.15) also implies that future probability can be
determined by the present probability without the knowledge of the whole history.
To use Eq. (3.15), we need to know the function Tðr; x;DtÞ.

Since the random force is not correlated for two different times, it is reasonable
to assume that the transition probability depends on only displacement vector:
Tðr; x;DtÞ ¼ Tðr;DtÞ. Since the diffusing medium is isotropic, there is no preferred
orientation of displacement. Then, we can reduce the function as
Tðr;DtÞ ¼ Tð rk k;DtÞ. Since Tðr;DtÞ is a probability distribution, the normaliza-
tion condition is assumed. As for arbitrary function f ðrÞ, we define the transition
average as

f rð Þh iT¼
Z

f rð ÞT r;Dtð Þdr ð3:16Þ

Then, the Taylor series expansion of Eq. (3.15) is given as

P x; tð Þþ @P
@t

Dt ¼ P x; tð Þ � rP � rþ 1
2
rr : rrP

� 
T

¼ P x; tð Þ 1h iT� rh iT �rPþ 1
2

rrh iT : rrP

ð3:17Þ

Since TðrÞ is a scalar-valued isotropic function of vector, it is obvious that

1h iT ¼ 1; rh iT¼ 0; rrh iT ¼
b2 Dtð Þ

3
I ð3:18Þ
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where

b2 Dtð Þ ¼ tr rrh iT
� � ¼ r � rh iT ¼ 4p

Z1
0

r4T r;Dtð Þdr[ 0 ð3:19Þ

Arrangement of Eq. (3.17) gives

@P
@t

¼ b2 Dtð Þ
6Dt

r2P ð3:20Þ

Note that the square of the characteristic length of diffusion b2ðDtÞ is assumed as
a linear function of Dt:

D ¼ b2 Dtð Þ
6Dt

ð3:21Þ

Note that the constant D is the diffusion constant.
A suspension of Brownian particles is assumed as the collection of statistically

independent Brownian particles. Then, the number concentration cðx; tÞ is given by

c x; tð Þ ¼ 1
V

XN
i¼1

Pi x; tð Þ ð3:22Þ

where V is the volume of the diffusion medium and Piðx; tÞ is the probability
distribution of the ith Brownian particle which is represented by the diffusion
constant Di Then, the number concentration obeys the diffusion equation:

@c
@t

¼ Dr2c ð3:23Þ

where

D ¼
XN
i¼1

Di ð3:24Þ

Note that Eq. (3.23) is the diffusion equation for molecules that follows Fick’s
diffusion law.

Equation (3.19) immediately consequences that the MSD follows

x tð Þ � x 0ð Þk k2
D E

¼ 6Dt ð3:25Þ

Therefore, the Stokes–Einstein equation, Eq. (3.14), holds.
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3.3 Liouville Equation

When the phenomena of Brownian motion were found, the size of the Brownian
particle is much larger than those of the fluid molecules. The explanation why
Brownian motion occurs does not exclude the Brownian motion of a particle whose
size is comparative with molecular size. Extension to such molecular entity, we
need to know the origin of the random force.

Individual system of an ensemble is represented by a single point in 6N-di-
mensional phase space. The point moves in phase space according to the law of
mechanics. We know the law of mechanics which is represented by a set of dif-
ferential equations, called the equations of motion. The equations of motion in the
Newtonian mechanics are the second-order ordinary differential equations. Any
second-order ordinary differential equation can be split into two first-order ordinary
differential equations. As for the Hamiltonian of Eq. (1.2), the equations of motion
can be expressed as

@H
@pa

¼ dra
dt

;
@H
@ra

¼ � dpa
dt

ð3:26Þ

We are interested in finding an evolution equation (kinetic equation) of the
probability distribution function of an ensemble from Eq. (3.26).

Consider a system which belongs to an ensemble at time t. Is it possible that the
microstate of the system will not be in the ensemble at tþ dt? As for micro-
canonical ensemble, representative point of the system is still in 6 N-dimensional
phase space and the positions of molecules are still in V, the volume of the system.
It is not difficult to show that the Hamiltonian of Eq. (1.2) conserves the total
mechanical energy. Hence, if the microstate of the system was in the region of the
ensemble, then the microstate always satisfies the conditions of microcanonical
ensemble during the motion according to Eq. (3.26). This is true for other
ensembles. Therefore, it can be said that any microstate of an ensemble (or any
phase point of an ensemble) maintains in the ensemble. Then, the number of
microstates of the ensemble is conserved and so is the probability distribution. This
gives the analogy between the mass density of continuum mechanics and the
probability distribution of ensemble. Such analogy gives the Liouville equation
(Goldstein et al. 2001):

@P
@t

þ
XN
a¼1

@

@ra
� dra

dt
P

� �
þ @

@pa
� dpa

dt
P

� �	 

¼ 0 ð3:27Þ

Use of Eq. (3.26) and arrangement gives

dP
dt

¼ @P
@t

þ
XN
a¼1

@H
@pa

� @P
@ra

� @H
@ra

� @P
@pa

� �
¼ 0 ð3:28Þ
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The analogy of the Liouville equation to the mass balance equation of incom-
pressible fluid becomes clearer if we define the flux of probability by

j6N ¼ u6NP C; tð Þ ¼ dr1
dt

; . . .;
drN
dt

;
dp1
dt

; . . .;
dpN
dt

� �
P C; tð Þ ð3:29Þ

and the gradient of probability distribution by

r6NP ¼ @P
@r1

; . . .;
@P
@rN

;
@P
@p1

; . . .;
@P
@pN

� �
ð3:30Þ

The innerproduct of two 6N-dimensional vectors is defined as

a6N � x6N ¼
XN
a¼1

aa � xa þ ba � yað Þ ð3:31Þ

where

a6N ¼ a1; . . .; aN ; b1; . . .; bNð Þ; x6N ¼ x1; . . .; xN ; y1; . . .; yNð Þ ð3:32Þ

Then, Eq. (3.27) can be rewritten by

@P
@t

þr6N � j6N ¼ @P
@t

þr6N � u6NPð Þ ¼ @P
@t

þ u6N � r6NP ¼ 0 ð3:33Þ

Here, it is used that r6N � u6N ¼ 0, which can be easily proved by the equation
of motion, Eq. (3.26). It is noteworthy that the steady-state solution of the Liouville
equation is the probability distribution function in equilibrium.

The Liouville equation provides a clue to calculate nonequilibrium probability
distribution and a belief for the existence of the nonequilibrium ensemble average of
Eq. (2.118). However, it is known that solving the Liouville equation is equivalent
to solving the whole set of equations of motion which consists of 3N ordinary
differential equations of second order. Unfortunately, no irreversibility is found in
the evolution equation of logPh i derived from the Liouville equation. Although
both classical and quantum mechanics are time-reversal, macroscopic phenomena
are observed irreversible. This discrepancy is one of the most important mysteries
in statistical mechanics and irreversible thermodynamics (Zuvarev 1974).

From Eq. (3.28), we can define the Liouville operator as follows:

L ¼
XN
a¼1

@H
@pa

� @

@ra
� @H
@ra

� @

@pa

� �
ð3:34Þ
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Then, Eq. (3.28) can be expressed in a simpler way:

@P
@t

¼ �LP ð3:35Þ

Equation (3.35) is the first-order differential equation for time. Just as the
exponential function of tensor was defined in Sect. 5 in Chap. 1, we can define

etL ¼
X1
n¼0

tn

n!
Ln ð3:36Þ

Note that L0 ¼ I is the identity operator such that for any function f, If ¼ f .
Then, it is obvious that

P C; tð Þ ¼ e�tLP C; 0ð Þ ð3:37Þ

Note that Eq. (3.37) is a formal solution, which means that Eq. (3.37) does not
give the mathematical structure of PðC; tÞ although it satisfies the Liouville equa-
tion. To obtain the general solution of the Liouville equation is to solve
3N second-order differential equations which are equations of motion.

The Liouville operator is also found in the total time derivative of a dynamic
function AðC; tÞ:

dA
dt

¼ @A
@t

þ
XN
a¼1

@A
@ra

dra
dt

þ @A
@pa

dpa
dt

� �

¼ @A
@t

þ
XN
a¼1

@H
@pa

� @A
@ra

� @H
@ra

� @A
@pa

� �
¼ @A

@t
þ LA

ð3:38Þ

With the help of Eq. (3.33), use of divergence theorem for 6N-dimensional space
gives the following identities: Z

LB dC ¼ 0 ð3:39aÞ
Z

PLAdC ¼ �
Z

ALPdC ð3:39bÞ

where A and B are dynamic variables and

lim
rak k!1

B Cð Þ ¼ lim
pak k!1

B Cð Þ ¼ 0 for any a ð3:40Þ

Note that the probability distribution PðC; tÞ satisfies Eq. (3.40).
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3.4 Generalized Langevin Equation

Consider a Brownian particle imbedded in a heat bath which consists of
N molecules. Then, for the N þ 1 molecules, the Hamiltonian is given by

H ¼ HB þHo ð3:41Þ

where

HB ¼ p2

2m
ð3:42Þ

and

Ho ¼
XN
a¼1

p2a
2ma

þV r; r1; . . .; rNð Þ ð3:43Þ

Here, r, p, and m without subscript indicate position, momentum, and mass of
the Brownian particle while quantities with subscript are those of the molecules of
the heat bath. Then, it is clear that

dr
dt

¼ p
m
;

dp
dt

¼ f ð3:44Þ

where the force exerted on the Brownian particle is given from the gradient of the
coupling potential Uc as follows:

f ¼ � @V
@r

ð3:45Þ

On the other hand, the equations of motion for the molecules of the heat bath are
given by

dra
dt

¼ pa
ma

;
dpa
dt

¼ � @V
@ra

ð3:46Þ

Equation (3.46) cannot be solved analytically in general because of the com-
plexity of potentials V. To simplify the problem, assume that

@V
@ra

¼ 0 at ra ¼ �ra;
@V
@r

¼ 0 at r ¼ �r ð3:47Þ
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Then, the Taylor expansion of the potentials is given by

V r; r1; . . .; rNð Þ ¼ V r; r1; . . .; rNð Þþ 1
2

r� �rð Þ �G00 � r� �rð Þ

þ
XN
a¼1

ra � �rað Þ �Ga0

" #
� r� �rð Þ

þ 1
2

XN
a¼1

XN
b¼1

ra � �rað Þ �Gab � rb � �rb
� �

ð3:48Þ

where

Gab ¼ @2V
@ra@rb

� �
r;raf g¼ �r;�raf g

¼ Gba with a; b ¼ 0; 1; . . .;N ð3:49Þ

In Eq. (3.49), we consider r ¼ r0. The symmetric second-order tensors Gab are
constant tensors. Now we can simplify the equations of motion, Eqs. (3.44) and
(3.46), as follows:

m
d2x
dt2

¼ �G00 � x�
XN
a¼1

Ga0 � xa ð3:50Þ

ma
d2xa
dt2

¼ �Ga0 � x�
XN
b¼1

Gab � xb ð3:51Þ

Since �r and �ra are constant vectors, we defined x ¼ r� �r and xa ¼ ra � �ra.
To solve Eq. (3.51), we need to express Eq. (3.51) in components. Let us use

following notations:

Gab ¼ maG
ik
abeiek; xa ¼ xkaek; x ¼ xkek ð3:52Þ

Here we use summation convention for i and k which represent the components
of the vector and tensor under consideration. Then, Eq. (3.51) becomes

d2xia
dt2

¼ �Gik
a0x

k �
XN
b¼1

Gik
abx

k
b ð3:53Þ

To make it simpler, we introduce

n3 a�1ð Þþ k ¼ xka; C3 a�1ð Þþ i
3 b�1ð Þþ k ¼ Gik

ab; Ck
3 a�1ð Þþ i ¼ Gik

a0 for 1� a;b�N

ð3:54Þ
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Then, Eq. (3.53) becomes

d2nA
dt2

¼ �Ck
Ax

k �
X3N
B¼1

CB
AnB ð3:55Þ

Since Gab ¼ GT
ab ¼ Gba, it is obvious that CB

A ¼ CA
B. Then, the 3N 	 3N sym-

metric matrix C ¼ CB
A

� �
can be diagonalized by

C ¼ Q�1 �W �Q ð3:56Þ

where

W ¼
x2
1 0 � � � 0
0 x2

2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � x2
3N

26664
37775 ð3:57Þ

We apply the vector notation to Eq. (3.55) again as follows:

d2n
dt2

¼ �c� C � n ð3:58Þ

where c ¼ Ck
1x

k;Ck
2x

k; . . .;Ck
3Nx

k
� �T

. Using Eq. (3.56), we have

d2a
dt2

¼ �g�W � a ð3:59Þ

where

a ¼ Q � n; g ¼ Q � c ð3:60Þ

Then, taking Laplace transform, we have

~aI sð Þ ¼ 1
s2 þx2

I
_aI 0ð Þþ s

s2 þx2
I
aI 0ð Þ � 1

s2 þx2
I
~gI sð Þ ð3:61Þ

Where the summation convention for I is not used. Inversion of the transform
gives

aI tð Þ ¼ � gI tð Þ
x2
I

þ
Z t

0

sinxI t � sð Þ
x2
I

dgI
ds

ds

þ aI 0ð Þ 1þ 1
x2
I

� �
cosxI tþ _aI 0ð Þ

xI
sinxI t

ð3:62Þ
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Equation (3.62) gives

n tð Þ ¼ �C�1 � c tð Þþ
Z t

0

Q�1 �W�1 � S t � sð Þ �Q � dc
ds

ds

þQ�1 � C tð Þ �Q � n 0ð ÞþQ�1 �W�1=2 � S tð Þ � _n 0ð Þ
ð3:63Þ

where

C tð Þ½ �IK¼
x2
I þ 1
x2
I

cosxI tdIK ; S tð Þ½ �IK¼ sinxI tdIK ; W�n½ �IK¼
dIK
x2n
I

ð3:64Þ

Further conversion processes from nðtÞ to xaðtÞ and substitution to Eq. (3.50)
gives generalized Langevin equation (GLE) such that

m
dv
dt

¼ � @U
@r

�
Z t

0

Z t � sð Þv sð Þdsþ fR tð Þ ð3:65Þ

where v ¼ dr=dt. Note that the random force fRðtÞ is originated from the second
and third terms of the right-hand side of Eq. (3.63) and the gradient of U is orig-
inated from the first term.

It is very tedious and complicate to derive UðrÞ, ZðtÞ, and fRðtÞ in terms of the
molecules of the heat bath (Tuckerman 2010). When the medium is isotropic the
friction tensor ZðtÞ becomes fðt)I. It can be derived that the random force fRðtÞ
satisfies the following:

fR tð Þh i ¼ 0; fR tð ÞfR 0ð Þh i ¼ 2kBhZ tð Þ ð3:66Þ

Note that the average means

fR tð ÞfR 0ð Þh i ¼
Z

fR tð ÞfR 0ð ÞP Cð ÞdC ð3:67Þ

where the probability distribution follows the Liouville equation and the domain of
the integration is the phase space of the molecules of the heat bath.

Hence, the phenomenological Langevin equation has molecular basis. When the
potential UðrÞ is zero and ZðtÞ ¼ fdðt)I, the original Langevin equation (Eq. 3.3) is
recovered. Furthermore, the above derivation implies that the GLE is effective even
if the size of the Brownian particle is comparative with those of the molecules of the
liquid medium. More generalized derivation can be done by the use of projection
operator formalism (Zwanzig 2001). The GLE can be applied to any function of
dynamic variables of n Brownian particles. In Part II, we will study that the GLE is
applicable to linear viscoelasticity of the medium liquid through the optical mea-
surement of the MSD of a Brownian particle.
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3.5 The Fokker–Planck Equation

The Langevin equation is the equation of motion for the dynamic variables of the
Brownian particles. Although the original Langevin equation was given by intuition
not based on fundamental theory of physics, we have learned that the theory of
GLE renders molecular basis to the original one. Now we become interested in the
probability distribution of the Brownian dynamic variables. The Fokker–Planck
equation is the time-evolution equation of the probability distribution. Diffusion
Eq. (3.20) is one of the simplest forms of the Fokker–Planck equation.

In the derivation of the Fokker–Planck equation, there are two approaches: one is
to use the transition probability which is not given rather than is desired and the
other is to use the Langevin equation. As for the former, see McQuarrie (2000).
Here, we shall introduce the latter approach (Zwanzig 2001).

3.5.1 General Case

Consider a_ðtÞ as the n-dimensional vector representing dynamics of Brownian
particles. Then, the Langevin equation for a_ðtÞ can be represented by

da_

dt
¼ �u a_

� �
þ fR tð Þ ð3:68Þ

where uða_Þ is a mapping from n-dimensional vector to n-dimensional vector and the
random force fRðtÞ is also a n-dimensional vector.

Although the random force is considered as a stochastic variable, it is not easy to
find its probabilistic characteristics in terms of the ensemble probability distribution
which obeys the Liouville equation. As shown in Eq. (3.63), the random force is
originated from the contributions of a huge number of the molecules in medium
liquid. Hence, reminding the central limit theorem, it is a reasonable approximation
to consider the probabilistic characteristics of the random force as the Gaussian:

fR tð Þh i ¼ 0; fR tð ÞfR t0ð Þh i ¼ Bd t � t0ð Þ ð3:69Þ

where B is a symmetric positive definite matrix.
Since the random force is a stochastic variable, the GLE implies that the

dynamic variable a_ is also a stochastic variable. Then, we are interested in
the probability distribution function of a_. The dynamic variable is a function of the
momentum and position of Brownian particle. Then, the probability distribution can
be defined by

P a; tð Þ ¼ d a� a_ tð Þ
� �D E

eq
ð3:70Þ
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where

a_ tð Þ ¼ a_ p tð Þ; r tð Þ½ � ð3:71Þ

Since the random force depends on Γ, Eq. (3.67) implies that a_ðtÞ also depends
on Γ while a is independent of Γ.

Extension of Eq. (6.50 in Chap. 1) to n-dimension, we have

d a� a_ tð Þ
� �

¼ 1
2pð Þn

Z
e�iq � a�a

_
tð Þð Þdq ð3:72Þ

Differentiation of Eq. (3.71) with respect to time gives

d
dt
d a� a_ tð Þ
� �

¼ � da_

dt
� @
@a

d a� a_ tð Þ
� �

¼ � @

@a
� da_

dt
d a� a_ tð Þ
� �" #

ð3:73Þ

Then, differentiation of Eq. (3.70) gives

@

@t
P a; tð Þ ¼ � @

@a
� da_

dt
d a� a_ tð Þ
� �* +

eq

¼ @

@a
� u a_

� �
d a� a_ tð Þ
� �D E

eq
� @

@a
� fR tð Þd a� a_ tð Þ

� �D E
eq

¼ @

@a
� u að Þd a� a_ tð Þ

� �D E
eq
� @

@a
� fR tð Þd a� a_ tð Þ

� �D E
eq

¼ @

@a
� u að ÞP a; tð Þ½ � � @

@a
� fR tð Þd a� a_ tð Þ

� �D E
eq

ð3:74Þ

Here, we assume that we can replace the average in Eq. (3.74) by the average
with respect to the probability distribution of the random force. Since the random
force is the result from the chaotic motion of a huge number of molecules in the
liquid medium, the probability distribution can be considered as the Gaussian.

Then, we can exploit Eq. (1.52) by replacing x and f by fRðtÞ and dða� a_ðtÞ),
respectively. Then, we have

fR tð Þd a� a_ tð Þ
� �D E

eq
¼ B � d

dfR tð Þ d a� a_ tð Þ
� �� 

¼ �B � da_ tð Þ
dfR tð Þ �

@

@a
d a� a_ tð Þ
� �* + ð3:75Þ
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where we introduced functional derivative which is the derivative of functional
with respect to a function (Schwabl 2006). As for functional derivative, see
appendix.

Functional is a mapping from function to real number or function. A function
can be considered as a special functional. Hence, it is clear that

dg tð Þ
dg sð Þ ¼ d t � sð Þ; dfR tð Þ

dfR sð Þ ¼ d t � sð ÞI ð3:76Þ

where I is the n-dimensional identity matrix. To calculate the last term of random
force, we need the solution of the Langevin equation (3.68). Formally, we know
that

a_ tð Þ ¼ a_ 0ð Þ �
Z t

0

u a_ sð Þ
� �

dsþ
Z t

0

fR sð Þds ð3:77Þ

This is a linear functional of fRðtÞ. Hence, we have

da_ tð Þ
dfR tð Þ ¼

Z t

0

dfR sð Þ
dfR tð Þ ds ¼

Z t

0

d s� tð Þds ¼ 1
2

ð3:78Þ

Finally, we have

@P a; tð Þ
@t

¼ @

@a
� u að ÞP a; tð Þ½ � þ 1

2
@

@a
� B � @

@a
P a; tð Þ ð3:79Þ

If the flux of the probability distribution Pða; tÞ is given by jp, then the con-
servation of probability implies that

@P
@t

¼ � @

@a
� jp ð3:80Þ

The probability flux is given by jp ¼ vfPða; t), where vf is defined by the flux
velocity of probability distribution and then the arrangement of Eq. (3.79) implies
that

vf ¼ �u að Þ � 1
2
B � @logP

@a
ð3:81Þ

Analogy of Eq. (3.81) to the GLE of Eq. (3.68) reminds us that the gradient of
the logarithm of probability distribution is related to the random force.
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3.5.2 Free Brownian Particle

Note that Eq. (3.68) is a formal Langevin equation. In practice, we can apply
Eq. (3.3) to the derivation of the Fokker–Planck equation. Then, we have

a ¼ v; u að Þ ¼ f
m
v; B ¼ 2fkBTI ð3:82Þ

and the Fokker–Planck equation is given by

@P v; tð Þ
@t

¼ f
m

@

@v
� vP v; tð Þ½ � þ fkBT

m2

@

@v
� @
@v

P v; tð Þ ð3:83Þ

The probability flux is given by

jp ¼ � f
m
P v; tð Þ vþ kBT

m
@

@v
logP v; tð Þ

	 

ð3:84Þ

Equilibrium condition is @P=@t ¼ 0. This immediately means that jp ¼ 0 and

@

@v
logPeq vð Þ ¼ � m

kBT
v ð3:85Þ

Integration of Eq. (3.85) gives the Maxwell distribution:

Peq vð Þ / exp � m
2kBT

v � v
� �

ð3:86Þ

3.5.3 Brownian Particle in a Force Field

Consider a Brownian particle in a force field. Then, the Langevin equation of the
Brownian particle is given by

m
d2r
dt2

¼ �f
dr
dt

þ fE þ fR tð Þ ð3:87Þ

where it is assumed that the force field is conservative:

fE ¼ � @V
@r

ð3:88Þ
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Of course, V is a potential on the Brownian particle. Then, we define the
probability distribution as

P x; v; tð Þ ¼ d x� rð Þd v� dr
dt

� �� 
ð3:89Þ

Similar procedure gives

@P
@t

þ v � @P
@x

þ 1
m
fE � @P

@v
¼ f

m
@

@v
� vPþ kBT

m
@P
@v

� �
ð3:90Þ

This is called the generalized Fokker–Planck equation or the Chandrasekhar
equation (McQuarrie 2000). Note that fE ¼ �rV in Eq. (3.90).

If the inertia force is negligibly small compared with other forces on the
Brownian particle, then the Langevin equation can be approximated by

dr
dt

¼ � 1
f
@V
@r

þ 1
f
fR tð Þ ð3:91Þ

From Eq. (3.91), we can derive a special Fokker–Planck equation called the
Smoluchowski equation:

@P x; tð Þ
@t

¼ � @

@x
� fE

f
P x; tð Þ � kBT

f
@P x; tð Þ

@x

	 

ð3:92Þ

In this case, the probability flux is given by

jp ¼ �P x; tð Þ
f

@

@x
V xð Þþ kBT logP x; tð Þ½ � ð3:93Þ

If we consider an analogy of the potential energy to the internal energy per
Brownian particle and use the concept of information theory on entropy, then the
flux velocity can be said to be given from the gradient of the Helmholtz free energy
per Brownian particle:

vf ¼
jp

P x; tð Þ ¼ � 1
f
@F

_

@x
ð3:94Þ

where

F
_ ¼ V � TS ¼ V þ kBT logP x; tð Þ ð3:95Þ
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Here, we used F
_

instead of F because we did not take any ensemble average.
When V ¼ 0, the Smoluchowski equation becomes the diffusion Eq. (3.20).
Furthermore, it is obvious that the equilibrium probability distribution is given by

Peq xð Þ / exp �V xð Þ
kBT

� �
ð3:96Þ

Problems 3

[1] As for free Brownian particle, prove that

D ¼
Z1
0

v tð Þ � v 0ð Þh idt ð3:aÞ

[2] Consider a free Brownian particle in a bath with memory:

m
dv
dt

¼ �
Z t

0

A
k
e� t�sj j=kv sð Þdsþ fR tð Þ ð3:bÞ

where A and λ are positive constants. Using equipartition theorem, determine
the diffusion constant in terms of the parameters in Eq. (3.b).

[3] Show that r6N � u6N ¼ 0.
[4] Consider a Smoluchowski equation for P x1; . . .; xn; tð Þ:

@P
@t

¼
Xn
a¼1

Xn
b¼1

@

@xa
Lab kBT

@P
@xb

� @U xkf gð Þ
@xb

P

� �
ð3:cÞ

where n	 n matrix Lab is symmetric and positive definite. Show that

dF
dt

� 0

where F is the functional defined by

F P½ � ¼
Z1
�1

dx1. . .
Z1
�1

dxn kBT logPþUð ÞP ð3:dÞ

See Doi and Edwards (1986)
[5] Consider a Langevin equation such that

du
dt

¼ �fuþ fR tð Þ; ð3:eÞ
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where ζ is a positive constant and fRðtÞh i ¼ 0; fRðtÞfRðsÞh i ¼ Bdðt � sÞ where
B is a constant second-order tensor. The probability distribution of the
Brownian particle is defined by Pðv; t) ¼ dðv� uðtÞ)h i. The characteristic
function of the probability distribution function is given by

P̂ðq; t) ¼ eiq�u tð Þ
D E

ð3:fÞ

Derive the Fokker–Planck equation by using

@P̂ q; tð Þ
@t

Dt ¼ eiq� u tð ÞþDu½ �
D E

� eiq�u tð Þ
D E

¼ eiq�Du � 1
� �

eiq�u tð Þ
D E

ð3:gÞ

Du ¼
ZtþDt

t

du
dt0

dt0 ¼ �fuDtþw t;Dtð Þ ð3:hÞ

w t;Dtð Þ ¼
ZtþDt

t

fR sð Þds ð3:iÞ

See Onuki (2004).
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Chapter 4
Polymer Physics

Abstract This chapter is focused on the brief review of general aspects of polymer
science and some important molecular theories related with polymer rheology. This
chapter must be necessary for the readers who have weak basis of polymer science,
while it can be omitted by polymer scientists and engineers. The first three sections
describe polymer structure and the basics of polymer identification. The last section
addresses molecular and phenomenological theory of rubber elasticity. The last
section demands the knowledge of Chaps. 2 and 3. Further study is available in
Strobl (The Physics of Polymers, 2nd edn. Springer, Berlin, 1997), Ward and
Sweeney (An Introduction to Mechanical Properties of Solid Polymers, 2nd edn.
Wiley, New York, 2004), Sperling (Introduction to Physical Polymer Science, 4th
edn. Wiley Interscience, New York, 2006), and Rubinstein and Colby (Polymer
Physics, Oxford University Press, Oxford, 2003).

1 Polymer Structure

1.1 Definition of Polymer

Polymer is a molecule which consists of a number of monomeric units which are
connected by covalent bonds in a manner of chain. The connection of monomeric
units can be linear or nonlinear. Monomeric units of linear polymer are connected in
analogy to a line or chain, while nonlinear polymer has at least one junction point at
which more than two linear polymers are covalently bonded.

Most man-made polymers consist of repeating units which are groups of atoms.
Usually the repeating units are originated from one or more chemical species called
monomer. As for polyethylene (PE), it is a successive linkage of chemical groups, –
CH2–. However, it is conventional that the repeating unit of PE is considered as –
CH2CH2– because it is polymerized from ethylene, CH2=CH2. Ethylene is the
monomer of PE, and styrene is the monomer of polystyrene (PS). The constituent of
polymer is called repeating unit or monomeric unit or segment. Although the three
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terminologies have subtly different meanings, these differences are often neglected
by polymer researchers with weak basis of chemistry. For simplicity, polymer is
understood as a high molecular weight molecule which has a chain-like shape.

Natural polymers are protein, DNA, cellulose, and so on. Some natural polymers
such as protein and DNA have no repeating units but sequence of several mono-
mers, while other natural polymers have repeating units. Cellulose has repeating
unit called glucose unit.

The number of the constituents, exactly saying the monomeric units, is the
degree of polymerization. Note that degree of polymerization is proportional to
molecular weight of polymer.

As increase of degree of polymerization N, most physical properties of linear
polymers increase and become saturated as shown in Fig. 1. Because of this feature
of polymer, linearly connected ethylene units with different molecular weight share
the same name, polyethylene. However, there is still ambiguity because it is not
obvious which molecular weight is the minimum for the definition of polymer.

One of the important features of polymers is very high molecular weight, usually
higher than thousands grams per mole. Such high molecular weight results in no
vaporization in moderate conditions: Degradation occurs at temperatures lower than
boiling point. Polymer is a representing material showing viscoelasticity.

Polymer is synthesized under the influence of various factors which usually give
rise to the distribution of molecular weight. Hence, polymer is a mixture of
homologous molecules. Some physical properties of polymer are sensitive to
molecular weight distribution (MWD) even though an average molecular weight is
identical. Other physical properties are relatively insensitive to MWD.

N
0 20 40 60 80 100

P

0

20

40

60

80

100Fig. 1 Schematic illustration
of molecular weight
dependence of most physical
properties of polymer. N, the
degree of polymerization is
used instead of molecular
weight. It must be noted that
every physical property
follows this tendency.
Zero-shear viscosity increases
monotonically as molecular
weight
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1.2 Structure of a Single Polymer Chain

A group of polymers has the structure of monomer –CH2CHR– where R is a group
of atoms. R is called pendent group. The pendent group of PE is hydrogen, while
the pendent group of PS is phenyl group. Carbon atom has four single covalent
bonds. If the four bonds are represented by segments of straight lines, the angle
between adjacent two line segments is about 109°. The second carbon of
–CH2CHR– has two C–C bonds, one C–H bond and one C–R bond. There are three
types of arrangements of pendent group as shown in Fig. 2. These types are called
tacticity. If all pendent groups are positioned in the same side, the tacticity is called
isotactic. Alternative arrangement is called syndiotactic, and random arrangement is
called atactic. Tacticity is determined by the polymerization conditions, especially
by the catalyst.

In solid state, some polymers can form crystalline phase, while the others cannot.
Even crystalline polymer cannot achieve 100 % crystallinity. Hence, the word
“semicrystalline” is used. Every polymer has amorphous phase which can be
considered as supercooled liquid structure. PE, PP, PET, and Nylon are represen-
tative crystalline polymers, while PS and PMMA are known as amorphous polymer
because they cannot form crystalline phase. However, there is an exception.
Although atactic PS cannot form crystalline phase, syndiotactic PS can form
crystalline phase because of its stereoregularity. Hence, in solid state, mechanical
properties of syndiotactic PS is superior to those of atactic PS. Note that com-
mercialized PS is atactic. The effect of tacticity on rheological properties of polymer
melt is usually weak.
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Fig. 2 Tacticity of polymer chain. All the perdent groups R of isotactic chain are located at the
same side of the backbone while those of syndiotactic chain are located alternatively. There is not
any regularity in the position of the pendent groups of atactic chain
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Polyethylene is one of the most widely used polymers. High-density poly-
ethylene (HDPE) has linear structure, while linear low-density polyethylene
(LLDPE) and low-density polyethylene (LDPE) have nonlinear structures as shown
in Fig. 3. Since HDPE is a linear chain, it has high crystallinity (weight fraction of
crystalline). However, both LLDPE and LDPE have branch chain, their crys-
tallinities are lower than that of HDPE because the branches prevent crystallization.
The length of branch chain of LLDPE is shorter than that of LDPE. LDPE has
long-chain branch which affects strongly on viscoelasticity. Polymer cannot have
100 % crystallinity. Note that the higher the crystallinity, the higher the density.

Polymer can be synthesized by two kinds of monomers in various ways.
Copolymers are polymers polymerized by two or more kinds of monomers. Consider
a copolymer consisting of two monomers A and B. The sequence of A and B is
random, and the copolymer is called random copolymer. If the sequence is alternative,
� � �ABABAB � � �, then the copolymer is called alternating copolymer. If the sequence
is a combination of blocks of single monomers such as � � �AAAAA � � �BBBBBB � � �,
then the copolymer is called block copolymer. Compared with copolymer,
homopolymer is a polymer consisting of a single kind of monomer.

Since most polymers consist of single covalent C–C bonds (σ bonds) which can
rotate due to thermal energy, polymer chains can have a huge number of confor-
mations. Consider pentane chains as shown in Fig. 4. Pentane is a linear hydro-
carbon with 5 carbons. Hence, it can be considered as a small scale version of PE.
Pentane has 4 C–C σ bonds. Figure 4a is the all-trans conformation which is the
maximum extended conformation. The numbers running from 0 to 4 in Fig. 4a
indicate the carbons in the all-trans conformation. The first bond is the one con-
necting 0-carbon with 1-carbon. The second bond rotates about the first bond as
shown in Fig. 4b. The third bond rotates about the second bond, and the fourth bond
rotates about the third bond. The twisting angle of ith bond is defined as the angle
denoted by /i in Fig. 4b. The conformation of Fig. 4c can be obtained by the
rotation indicated by the torsion angle of Fig. 4b.

HDPE LLDPE LDPE

E E 
E 

E 
E E E 

E 
E 

E 
E 

E E E 
E 

E 
E 
E 

E 
E E E E 

E 
E 

E 
E 

E 

E E 

E E 
E 

E 
E E E 

E 
E 

E 
E 

E E E 
E 

E 
E 
E 

E 
E E E E 

E 
E 

E 
E 

E E E 

E E 
E E 

E 

E 
E 

E E 
E E 

E 
E 
E 

E 
E E 

E 
E 

E 
E 

E E 
E 

E 
E 

E 
E 
E 

E E 
E 

E E 

E 
E 

E 
E 
E E 

E 

E E 
E 

Fig. 3 Chain architecture of polyethylene
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Let the positions of carbons be denoted by ri with i ¼ 0; 1; 2; 3; 4. Then, we can
define bond vectors as follows:

bi ¼ ri � ri�1 ð1:1Þ

Assume that bond length is constant, say b. When the orientation of the first
bond vector is fixed, the conformation of pentane depends on three twisting angles
/2;/3 and /4. Extending this notation to PE with degree of polymerization of N,
the conformation of the PE depends on N � 1 twisting angles.

Because of steric hindrance, three values of each twist angle are preferred and
they are called trans, gauchy+ and gauchy−. Then, the number of frequently
observed conformations of PE (or PP or PS) with N bond vectors is given by
Nconf ¼ 3N�1. Commercially produced PS has usually degree of polymerization of
N � 2000, which is the number of C–C bonds. Then, the number of favorable
conformations is about Nconf � 10954. This means that the longest conformation of
such polymer is hard to be observed. Then, new quantities are necessary in order to
characterize the size of a single polymer chain of high molecular weight. This will
be discussed in Sect. 2 in detail.

Fig. 4 Conformation
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1.3 Structure of Assembly of Polymer Chains

As mentioned earlier, some polymers are crystalline polymers, while others are
amorphous polymers. It is nearly impossible that crystalline polymer becomes
100 % crystalline material just as metallic materials. It is because the constituents of
polymer crystalline are part of polymer chains (partial chains), while those of
metallic crystalline are atoms which is much smaller than partial chains. Hence,
crystalline polymers in solid state have two distinct phases: crystalline and amor-
phous phases. It is natural to think of the amount of crystalline phase and the size of
crystalline in order to characterize the structure of the assembly of crystalline
polymers.

Crystallinity or degree of crystallization is the ratio of the amount of crystalline
phase to the total amount of the polymer assembly. Crystallinity can be measured
by mass or by volume. X-ray analysis such as WAXS (wide angle X-ray scattering)
may give how many partial chains are in a repeating cell of the polymer crystallite
and geometric information of the crystallite. Then, the density of crystalline phase
can be calculated from the data of WAXS. When the masses of crystalline and
amorphous phases are denoted by WC and WA, respectively, the mass-based
crystallinity, XM , is given by

XM ¼ WC

WC þWA
¼ qC

q
q� qA
qC � qA

ð1:2Þ

where ρ is the mass density of the polymeric material, qC is the mass density of the
crystalline phase, and qA is the mass density of the amorphous phase. When the
volume of crystalline and amorphous phases are denoted by VC and VA, respec-
tively, the volume-based crystallinity, XV , is given by

XV ¼ VC

VC þVA
¼ q� qA

qC � qA
ð1:3Þ

Hence, crystallinity can be obtained from volumetric data which can be mea-
sured by dilatometer. Only crystalline phase issues heat of fusion at melting point,
and calorimetric data can provide crystallinity. Conventional method is to use
differential scanning calorimetry (DSC). Analysis of peaks of X-ray diffraction can
also provide the data for crystallinity.

The size of crystallite depends on crystallization conditions such as temperature
and pressure as functions of time. The existence of impurity is also important
because impurity plays the role of nucleation agency.

Crystallite is anisotropic. Since there are a number of crystallites in crystalline
polymer, the orientation of crystallites plays affects the physical properties of
crystalline polymers.

Amorphous phase of polymer is similar to supercooled liquid phase of polymer
melts. Although crystalline phase has orderliness in structure, it is difficult to find
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any regularity in the amorphous structure. Even mass density of amorphous phase
depends on the route of formation such as temperature and pressure profile for the
treatment of the sample. Amorphous phase of polymeric material has a mysterious
transition which is similar to the second-order transition in equilibrium thermo-
dynamics. The transition of amorphous polymer is called glass transition. The glass
transition temperature, Tg, depends on both the measurement conditions and the
history of the sample preparation. Phenomenologically, thermal expansion coeffi-
cient of the amorphous phase changes near glass transition temperature as shown in
Fig. 5a.

Figure 5 shows schematic illustration for features of glass transition temperature.
When volumetric data are used, the glass transition is considered as the transition
point of the thermal expansion coefficient:

a ¼ 1
V

@V
@T

� �
p

ð1:4Þ

Note that thermal expansion coefficient is the second-order partial derivative of
free energy. Figure 5a implies that there is a temperature at which the second
derivative of free energy becomes discontinuous. However, glass transition is not
the second-order transition because the transition point varies according to both the
conditions of sample treatment and measurement.
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Fig. 5 Schematic illustration of glass transition: a Specific volume as a temperature; b heat
capacity as a function of temperature. The slope of specific volume with respect to temperature
changes at glass transition temperature. However, the glass transition temperature determined by
the volumetric data varies according to sample treatment. Similar phenomena are observed for
different methods for glass transition. In DSC test for heat capacity, cooling rate for sample
preparation gives different behavior of heat capacity
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Figure 5b illustrates how heat capacity of polymer changes as temperature. The
profiles of heat capacity shown in Fig. 5b represent those of the samples prepared
from different cooling rates. As cooling rate decreases, the overshoot disappears.
Glass transition temperature is considered as the midpoint of the transition of heat
capacity. Such glass transition temperature varies even for the cooling rates without
overshoot.

Such variation related with glass transition temperature may be explained by the
structure of amorphous phase of polymers. Since amorphous phase of polymer is
analogous to supercooled liquid, the distribution of atoms of polymers in amor-
phous phase is not in thermodynamic equilibrium. It is not in the minimum of
energy (or free energy). Such nonequilibrium distribution of atoms consequently
implies that the mass density of amorphous phase is less than hypothetical equi-
librium density because minimization of energy means dense packing of atoms.

Kinetic behaviors of volume and heat capacity are deeply related with glass
transition. It is the problem of irreversible thermodynamics. The studies of the
themes are called volume relaxation and enthalpy relaxation, respectively. Further
information is in Donth (1992), Strobl (1997), Chow (2000) and Gedde (2001).

Problem 1

[1] A certain polymer is known to show molecular weight dependences of some
physical properties as follows:

Zero-shear viscosity go ¼ KMa ð1:aÞ

Yield stress rY ¼ r1
Y � k

Mb
ð1:bÞ

where K, α, r1
Y , k, and β are positive constants and M is molecular weight.

Determine the optimum molecular weight.
[2] Crystallinity of a polymer can be controlled by cooling conditions because the

crystallization rate of polymer is very slow. DSC measurements gave the
following data of the crystallinity of the polymer in weight.

Density (g/cm3) 1.349 1.374 1.398 1.426

XM 0.116 0.322 0.529 0.736

Estimate the densities of the crystalline and amorphous phases.
[3] Derive Eqs. (1.2) and (1.3). Describe the assumptions needed to do that.
[4] Derive the following equations

a ¼ 1
V

@

@T
@G
@p

� �
T

� �
p

ð1:cÞ
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cp ¼ �T
@2G
@T2

� �
p

ð1:dÞ

2 Chain Conformation and Size of Polymer Chain

2.1 Size of Polymer Chain

2.1.1 End-to-End Distance

As mentioned before, polymer chains in molten state or in solution are hard to be in
fully extended conformation because of ceaseless rotation of σ bonds. The shape of
polymer chain is often called coil. The size of polymer chain may be quantified by
the end-to-end distance. Numbering the segments in a polymer chain from zero to
N, the end-to-end vector is given by

h ¼ rN � r0 ð2:1Þ

Bond vector is defined as

bi ¼ ri � ri�1 with i ¼ 1; 2; . . .;N ð2:2Þ

Then, it is obvious that

h ¼
XN
i¼1

bi ð2:3Þ

Since the total number of conformation of the chain with Nþ 1 segments is
extremely high, we use the notation such that � � �h i represents the average over the
whole conformations. Under the assumption that bond vectors have the same
length, it is clear that

bik k2
D E

¼ b2 for all i ð2:4Þ

where b is the length of bond. Ceaseless rotation of bond vectors allows us to
assume that

bih i ¼ 0 for all i ð2:5Þ

However, it does not mean bi � bkh i ¼ 0 for any pair of i and k. Because of local
structure of polymer chain, it is a reasonable assumption that
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bi � bkh i ¼ b2C i� kj jð Þ ð2:6Þ

where the function CðxÞ must be a decreasing function and

lim
n!1CðnÞ ¼ 0; Cð0Þ ¼ 1 ð2:7Þ

The meaning of the function CðxÞ is the correlation of the orientation of bond
vectors. Hence, we call the function bond correlation function. It is straightforward
that the correlation between two bond vectors becomes smaller and smaller as the
two bond vectors are separated further and further along the contour of the polymer
chain. The correlation function depends on valance angles between monomeric
units and steric hindrance. Such local interactions between adjacent monomeric
units are called short-range interactions. The word “short” implies short distance
along the contour of the polymer chain rather than the real distance between a pair
of monomeric units. It may happen that a monomer unit become close to other
monomer which is separated far along the chain contour. Such interaction is called
long-range interaction. Here, again, long means long distance along the chain
contour. The long-range interaction prohibits the overlap of any pair of two
monomeric units in the polymer chain. Hence, the result from long-range interac-
tion is called excluded volume effect. When short-range interactions are only
considered, the chain model is called ideal chain. Meanwhile, long-range interac-
tion is considered, and the chain model is called real chain. We consider only ideal
chain for a while.

From Eq. (2.5), it is obvious that hh i ¼ 0 because of Eq. (2.3). However, we
have

h � hh i ¼
XN
i¼1

XN
k¼1

bi � bkh i ¼ b2
XN
i¼1

XN
k¼1

C i� kj jð Þ ð2:8Þ

One of the simplest cases of Eq. (2.7) is

C i� kj jð Þ ¼ dik ð2:9Þ

Equation (2.9) implies the orientations of bond vectors are not correlated. We
shall show later that Eq. (2.9) corresponds to freely jointed chain model.

Then, Eq. (2.8) gives the end-to-end distance:

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h � hh i

p
¼ b

ffiffiffiffi
N

p
ð2:10Þ

Although use of Eq. (2.9) looks like unrealistic, the relation R� ffiffiffiffi
N

p
is also

found for more realistic models of polymer chain. The origin of such universal
relation is the central limit theorem (Sect. 1) in Chap. 3. Thus, we recognize that the
probability distribution of h can be approximated by the Gaussian distribution
whose mean and standard deviation are given, respectively, by 0 and b

ffiffiffiffi
N

p
.
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2.1.2 Radius of Gyration

When polymer is not a linear chain, end-to-end distance cannot be calculated
because the polymer has more than two end segments. See Fig. 3 where the LDPE
has five end segments. To define the size of chain conformation irrespective of
chain topology, consider the center of mass of a polymer such that

rC � 1
N þ 1

XN
k¼0

rk ð2:11Þ

Then, we can define the radius of gyration as follows:

R2
G � 1

Nþ 1

XN
k¼0

rk � rCk k2
* +

ð2:12Þ

From Eq. (2.12), we know that the radius of gyration is the average distance
from the center of mass to segments.

Using the definition of bond vectors, we obtain the following:

rn ¼ r0 þ
Xn
k¼1

bk; ð2:13Þ

rC ¼ r0 þ 1
Nþ 1

XN
n¼1

Xn
k¼1

bk ð2:14Þ

Then, Eqs. (2.13) and (2.14) immediately give

rn � rCk k2
D E

¼ b2n� 2b2

Nþ 1
nN � nðnþ 1Þ

2

� �
þ b2Nð2Nþ 1Þ

6ðN þ 1Þ ð2:15Þ

where bi � bkh i ¼ dik was used. Substitution of Eq. (2.15) into Eq. (2.12) yields

R2
G ¼ b2N

6
3� 6

N
Nþ 1

þ 2
N þ 1

2

Nþ 1
þ 1

N þ 1
þ 2

N N þ 1
2ð Þ

Nþ 1ð Þ2
" #

ð2:16Þ

If N is much larger than unity, then Eq. (2.16) becomes

R2
G � b2N

6
¼ 1

6
R2 ð2:17Þ

As for linear chain, the end-to-end distance is equivalent to the radius of
gyration. However, the end-to-end distance cannot be defined for nonlinear chain.
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For branched polymer, branching parameter is a useful measure for the charac-
terization of nonlinear chain (Teraoka 2002). The branching parameter is defined by

g ¼ R2
Gb

R2
Gl

ð2:18Þ

whereRGb is the radius of gyration for branched chain andRGl is the radius of gyration
for the linear chain whose molecular weight equals to that of the branched chain.

2.2 Chain Models and Universality

In this section, we shall introduce some chain models which are simplification of
polymer chain. The freely jointed chain model (FJC) is assumed that all bond
vectors can have any orientation. The freely rotating chain model (FRC) is the one
that all torsion angles are independent and take any value in the interval of
0�/i\2p. The hindered-rotation chain model (HRC) is the one that torsion angle
has statistical weight, which represents the steric hindrance. After comparison of the
three models for ideal chain, we shall introduce Gaussian chain which is an abstract
generalization of ideal chain.

2.2.1 Freely Jointed Chain

In Sect. 2.1, the size of polymer chains depends on the distribution of bond vectors.
Because the bond length is fixed, kth bond vector can be described by two angles as
follows:

bk ¼ b cos/k sin hke1 þ sin/k sin hke2 þ cos hke3ð Þ ð2:19Þ

where /k corresponds to torsion angle, while hk corresponds to valance angle.
Hence, the freely joint chain (FJC) model does not consider the restriction on
valance angle, and the two angles can take the intervals such that

0�/k\2p; 0� hk\p ð2:20Þ

Since all values of /k and hk in the ranges of Eq. (2.20) are equally possible, the
probability distribution of kth bond vector is given by

pðbkÞ ¼ 1
4p

ð2:21Þ

And the probability distribution is identical to any bond vector. Assumption of
statistical independent of bond vectors results in that the probability distribution for

242 4 Polymer Physics



all bond vectors is the product of the probability distributions of individual bond
vector:

Pbond b1; b2; . . .; bNð Þ ¼
YN
i¼1

pðbiÞ ¼ 1

ð4pÞN ð2:22Þ

Since the length of bond vector is fixed by b, the average of an arbitrary function
of bond vectors gðb1; b2; . . .; bNÞ is given by

g b1; b2; . . .; bNð Þh i ¼ 1

4pð ÞN
I
X1

dX1

I
X2

dX2. . .

I
XN

dXNg b1; b2; . . .;bNð Þ ð2:23Þ

where the differential solid angle is given by

dXk ¼ sin hkdhkd/k ð2:24Þ

Note that

I
X

dX ¼
Z2p
0

Zp
0

sin hdhd/ ¼ 4p ð2:25Þ

It is not difficult to obtain

bi � bkh i ¼ b2dik ð2:26Þ

and bkh i ¼ 0 for any k. Then, it is obvious that

R ¼ b
ffiffiffiffi
N

p
ð2:27Þ

2.2.2 Freely Rotating Chain

Consider a chain which consists of N þ 1 segments as before. Freely rotation chain
(FRC) can be obtained by giving some constraints to FJC. The constraints are
bkk k ¼ b and bk � bkþ 1 ¼ b2 cos h. The constraints mean that N bond vectors have

the same magnitude of b and N � 1 adjacent bond vectors maintain constant
valance angle θ. The number of constraint equations is, therefore, given by

Nconstraint ¼ 2N � 1 ð2:28Þ

Since positions of Nþ 1 segments can be described by 3ðN þ 1Þ real numbers
(coordinates), the degree of freedom of the freely rotating chain is given by
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Nf ¼ 3ðN þ 1Þ � ð2N � 1Þ ¼ N þ 4 ð2:29Þ

The position of the first segment can describe the translational motion of the
chain, and the orientation of the first bond is freely given. The orientation of the first
bond vector represents the rotation of the whole chain. Hence, 5 is given to the
external degree of freedom which is assigned to rigid body motion of the whole
chain, while Nconf � N � 1 is given to the internal degree of freedom which rep-
resents the conformation of freely rotating chain. The internal degree of freedom can
be assigned to torsion angles f/kg of N � 1 bond vectors except the first bond
vector.

Consider coordinate systems assigned to every bond vector. The coordinate
system for the ith bond vector is defined by orthonormal basis such as

e ið Þ
1 ¼ 1

b
bi ð2:30Þ

The other two base vectors e ið Þ
2 and e ið Þ

3 are chosen in order to make the ith
coordinate system be a right-handed one.

Figure 6 shows the geometry of the rotation of bond vectors. The iþ 1th bond
vector rotates by torsion angle /iþ 1 about the ith bond vector. Rotation about a unit
vector u can be represented by an orthogonal tensor such as

Rð/Þ ¼ ð1� cos/Þuuþ cos/Iþ sin/ðwv� vwÞ
¼ uuþ cos/ðvvþwwÞþ sin/ðwv� vwÞ ð2:31Þ

θ

( )i
i b 1eb =

1+ib

( )i
3e

( )i
2e

θ

iφ

1−ib

1−φi

Fig. 6 Geometry of the
rotation of bond vectors
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where u, v, and w form an orthonormal basis and ϕ is the rotation angle. The
right-handed coordinate system implies that u� v ¼ w. Then, we can consider the
following two orthogonal tensors such that

Qi ¼ e ið Þ
3 e ið Þ

3 þ cos h e ið Þ
1 e ið Þ

1 þ e ið Þ
2 e ið Þ

2

� �
þ sin h e ið Þ

2 e ið Þ
1 � e ið Þ

1 e ið Þ
2

� �
ð2:32Þ

and

Ri ¼ e ið Þ
1 e ið Þ

1 þ cos si e ið Þ
2 e ið Þ

2 þ e ið Þ
3 e ið Þ

3

� �
þ sin si e ið Þ

3 e ið Þ
2 � e ið Þ

2 e ið Þ
3

� �
ð2:33Þ

Use of Eqs. (2.32) and (2.33) allows us to take

biþ 1 ¼ Ti � bi ð2:34Þ

where

Ti ¼ Ri �Qi ¼ Tab
i e ið Þ

a e ið Þ
b

¼ cos he ið Þ
1 e ið Þ

1 þ cos/i cos he
ið Þ
2 e ið Þ

2 þ cos/ie
ið Þ
3 e ið Þ

3

� sin he ið Þ
1 e ið Þ

2 þ cos/i sin he
ið Þ
2 e ið Þ

1 � sin/ie
ið Þ
2 e ið Þ

3

þ sin/i sin he
ið Þ
3 e ið Þ

1 þ sin/i cos he
ið Þ
3 e ið Þ

2

ð2:35Þ

In Eq. (2.35), summation convention is effective only on Greek indices.
Hereafter, we keep using such summation convention. Equation (2.34) implies that

bnþ 1 ¼ Tn � Tn�1. . .T2 � T1 � b1 ð2:36Þ

From Eqs. (2.30) and (2.34), we can set

e iþ 1ð Þ
1 ¼ Ti � e ið Þ

1 ¼ 1
b
biþ 1 ð2:37Þ

Similarly, we can define

e iþ 1ð Þ
a ¼ Ti � e ið Þ

a for a ¼ 1; 2; 3 ð2:38Þ

And we know that

e iþ 1ð Þ
a � e iþ 1ð Þ

b ¼ e ið Þ
a � e ið Þ

b ¼ dab ð2:39Þ

Equation (2.39) is valid because Ti is an orthogonal tensor.
From Eqs. (2.35) and (2.39), it is clear that
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Tab
i ¼ e ið Þ

a � e iþ 1ð Þ
b ð2:40Þ

Then orthogonality of Ti gives

Tn � Tn�1 ¼ Tab
n e nð Þ

a e nð Þ
b

� �
� Tve

n�1e
n�1ð Þ
v e n�1ð Þ

e

� �
¼ Tab

n Tve
n�1 e n�1ð Þ

v � e nð Þ
b

� �
e nð Þ
a e n�1ð Þ

e

¼ Tae
n e nð Þ

a e n�1ð Þ
e

ð2:41Þ

Note that

e nð Þ
a ¼ Tn�1 � e n�1ð Þ

a ¼ Tnw
n�1e

n�1ð Þ
n e n�1ð Þ

w

� �
� e n�1ð Þ

a ¼ Tna
n�1e

n�1ð Þ
n ð2:42Þ

Applying Eq. (2.40) into Eq. (2.41) gives

Tn � Tn�1 ¼ Tna
n�1T

ae
n e n�1ð Þ

n e n�1ð Þ
e ¼ Tac

n�1T
cb
n e n�1ð Þ

a e n�1ð Þ
b ð2:43Þ

Repetition of similar procedure gives

Tn � Tn�1. . .Tm ¼ Tac
m Tce

mþ 1. . .T
gr
n�1T

rb
n e mð Þ

a e mð Þ
b ð2:44Þ

Substitution of Eq. (2.44) into Eq. (2.36) with m ¼ 1 yields

bnþ 1 ¼ bTac
1 Tce

2 . . .Tgr
n�1T

r1
n e 1ð Þ

a ð2:45Þ

Furthermore, it is not difficult to derive

bnþ 1 ¼ bTac
m Tce

mþ 1. . .T
gr
n�1T

r1
n e mð Þ

a ð2:46Þ

Then, Eq. (2.46) allows us to have

bi � biþ n ¼ b2e1 � T /ið Þ � T /iþ 1

	 

. . .T /iþ n�1

	 
 � e1 ð2:47Þ

where

Tð/Þ ¼ cos he1e1 þ cos/ cos he2e2 þ cos/e3e3
� sin he1e2 þ cos/ sin he2e1 � sin/e2e3
þ sin/ sin he3e1 þ sin/ cos he3e2 ð2:48Þ

Since all torsion angles are statistically independent and torsion angle can have
any value of the interval of 0�/i\2p with the same probability, it is obvious that
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bi � biþ nh i ¼ b2

2ð Þn e1 �
Z2p
0

d/iþ 1. . .

Z2p
0

d/iþ nT /ið Þ
8<:
�T /iþ 1

	 

. . .T /iþ n�1

	 
) � e1 ð2:49Þ

Note that

1
2p

Z2p
0

T /ð Þd/ ¼ cos he1e1 � sin he1e2 � �T ð2:50Þ

It is because

cos/h i ¼ 1
2p

Z2p
0

cos/d/ ¼ 0; sin/h i ¼ 1
2p

Z2p
0

sin/d/ ¼ 0 ð2:51Þ

Applying Eq. (2.50) gives

bi � biþ nh i ¼ b2e1 � �Tn � e1 ð2:52Þ

Note that

�T2 ¼ cos h�T ð2:53Þ

Then, it is not difficult to derive

bi � biþ nh i ¼ b2 cosn h ð2:54Þ

The assumption of N 	 1 gives

R � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos h
1� cos h

r ffiffiffiffi
N

p
ð2:55Þ

Equation (2.55) can be obtained by the substitution of Eq. (2.54) into Eq. (2.8).
Just as Eq. (2.27), we have the relation R / ffiffiffiffi

N
p

again. We can define the
effective segment length of FRC as follows:

bFRC ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos h
1� cos h

r
ð2:56Þ

2 Chain Conformation and Size of Polymer Chain 247



2.2.3 Hindered-Rotation Chain

Rotation of bond vector is hindered by the existence of atomic groups of adjacent
segments. This gives rise to nonuniform probability distribution of torsion angle.
Hence, the hindered-rotation chain model (HRC) has nonzero averages of cos/ and
sin/, because it includes the interaction between adjacent segments. Then for any
n, we can introduce

cos/nh i ¼ v; sin/nh i ¼ r ð2:57Þ

Then, Eq. (2.57) gives

�T ¼ cos he1e1 þ v cos he2e2 þ ve3e3
� sin he1e2 þ v sin he2e1 � re2e3
þr sin he3e1 þr cos he3e2 ð2:58Þ

Long calculation gives

R ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos h
1� cos h

r ffiffiffiffiffiffiffiffiffiffiffi
1þ v
1� v

s ffiffiffiffi
N

p
ð2:59Þ

Once more, we obtain the relation R / ffiffiffiffi
N

p
. The effective segment length of

HRC is given as

bHRC ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos h
1� cos h

r ffiffiffiffiffiffiffiffiffiffiffi
1þ v
1� v

s
ð2:60Þ

2.2.4 Real Chain

For n� mj j 	 1, the nth and mth segments in the same chain can meet each other
in space. In other words, it happens that rn � rmk k\b. This case is not excluded in
the ideal chain model. However, this case must be excluded in the conformations of
real chain. Complicate theory (Doi and Edwards 1986) gives the end-to-end dis-
tance of real chain such that

R ¼ bNm m � 0:588ð Þ ð2:61Þ

It is obvious that m[ 1
2, since the exclusion of the case rn � rmk k\b expands

the size of chain. The segment length in Eq. (2.61) can be considered as an effective
length of segment.

The value of exponent m � 0:588 is observed for the polymers in good solvent,
while m ¼ 1

2 is also observed when certain conditions for solvent and polymer are
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satisfied. A polymer solution may show the exponent of ideal chain at a temperature
called Θ-temperature which depends on kinds of solvent and polymers. It is
interesting that polymer chains in molten state obey m ¼ 1

2 (see Rubinstein and
Colby (2003) for further information). In summary, we can measure the polymer
size which follows the relation of ideal chain. Such size is called unperturbed size
and denoted by RH.

2.2.5 Equivalent Chain

From the chemical structure of polymer, we can calculate the maximum length of
polymer chain which corresponds to all-trans conformation. When the length is
denoted by L, it is obvious that

L ¼ boNo ð2:62Þ

where bo is the segment length determined from the chemical structure and No is the
number of the segment. From the learning from the three models of ideal chain, it
can be said that

R2
H ¼ C1b2oNo ð2:63Þ

where C1 is a number called the characteristic ratio which depends on chemical
structure of the segment.

We can consider successive λ segments as an equivalent segment called Kuhn’s
segment; then, the orientation of the effective segment is almost random. Let the
average length of the Kuhn’s segment be denoted by b. Then, we can imagine that
the new chain consisting N ¼ No=k Kuhn’s segments behaves as a FJC in the
Θ-condition. Then, we have

L ¼ bN; R2
H ¼ b2N ð2:64Þ

Since we can determine L and R2
H from the chemical structure and experiment,

respectively, we can determine b and N as follows:

b ¼ R2
H

L
; N ¼ L2

R2
H

ð2:65Þ

Since we know No from the chemical structure, we also determine λ by

k ¼ No

N
ð2:66Þ

Then, polymer chain can be considered as a freely jointed chain in molten state
or in Θ-solution.
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2.3 Size Distribution

2.3.1 Size Distribution of Ideal Chain

From the notion of equivalent chain, we can calculate the distribution function of
end-to-end vector easily from freely jointed chain model. When the probability
distribution of all bond vectors is known, all possible events that end-to-end vector
is a certain vector can be extracted by the integration of the product of the Dirac
delta function as shown in Eq. (2.67) and bond probability distribution over the
whole space of bond vectors. Since the end-to-end vector h is a function of bond
vectors as shown in Eq. (2.3), the probability distribution of h is given by

Pðh;NÞ ¼ d h�
XN
k¼1

bk

 !* +
ð2:67Þ

To make the mathematics simpler, we replace Eq. (2.21) by

pðbÞ ¼ 1
4pb2

d bk k � bð Þ ð2:68Þ

and replace Eq. (2.23) by

g bnf gð Þh i ¼
Z

db1

Z
db2. . .

Z
dbNg bnf gð ÞPbond bnf gð Þ ð2:69Þ

Use of the Dirac delta function made the replacement of the integration over
solid angle by easier integration over the whole space of bond vectors.

Using Fourier transform, the Dirac delta function can be expressed by

d h�
XN
k¼1

bk

 !
¼ 1

2pð Þ3
Z

exp iq � h�
XN
k¼1

bk

 !" #
dq ð2:70Þ

Substitution of Eq. (2.70) into Eq. (2.67) gives

Pðh;NÞ ¼ 1

2pð Þ3
Z

eiq�h p̂ qð Þ½ 
Ndq ð2:71Þ
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where

p̂ðqÞ ¼
Z

p bð Þe�iq�bdb ¼ 1
4pb2

Z2p
0

d/
Z2p
0

sinhdh
Z1
0

dbd bk k � bð Þe�iqb cos h

¼ sin qb
qb

ð2:72Þ

where q ¼ qk k. For sufficiently large N, we can use the following approximation:

p̂ qð Þ½ 
N¼ sin qb
qb

� �N

� exp �N
q2b2

6

� �
ð2:73Þ

This approximation can be understood easily by looking at Fig. 7.
Substitution of Eq. (2.73) into Eq. (2.71) becomes the Gauss integral, it can be

easily calculated, and we have

Pðh;NÞ � 3
2pNb2

� �3=2

exp � 3h � h
2Nb2

� �
ð2:74Þ

Use of Eq. (2.27) gives

Pðh;NÞ ¼ 3
2pR2

� �3=2

exp � 3h � h
2R2

� �
ð2:75Þ

Note that the approximation is valid when N is large and hk k � bN. Although
Eq. (2.75) describes the case of hk k[ bN, it is impossible because bN is the
maximum length of chain. Exact distribution is found in Yamakawa (1971):

Pðh;NÞ ¼ 1

2pNb2ð Þ3=2
sinh L�1ð~hÞ

L�1ð~hÞ exp ~hL�1ð~hÞ� �( )N

� L�1ð~hÞ� �2
~h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� L�1ð~hÞcosech L�1ð~hÞ� �2q ð2:76Þ

where

~h � hk k
Nb

ð2:77Þ

and L�1ð~hÞ is the inverse Langevin function. The Langevin function is given by
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Lð~hÞ ¼ coth ~h� 1
~h

ð2:78Þ

As for other chain models, it is extremely difficult to calculate the distribution
function of end-to-end vector analytically. However, computer simulation makes it
easy to be implemented. Random generation of N bond vectors according to the
chain model gives a single sample of polymer chain. From the data of the bond
vectors, end-to-end vector and radius of gyration can be calculated. Repeating these
procedure M times, we can obtain distribution of end-to-end distance if M is suf-
ficiently large. Figure 8 shows the distribution of the end-to-end distance for FJC
and FRC.

Note that Eq. (2.74) is the distribution of end-to-end vector. Since end-to-end
distance is independent of the orientation of end-to-end vector, all the vectors
corresponding to the points on the surface of the sphere with radius of h have the
same value of end-to-end distance. Hence, the distribution of end-to-end distance
h is the product of the surface area of the sphere and the distribution of end-to-end
vector:
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Fig. 7 Illustration of the approximation of Eq. (2.73)
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Pðh;NÞ ¼ 4ph2Pðh;NÞ ð2:79Þ

The notion of equivalent chain illustrate that the plot of P=Pmax against
h=ðb ffiffiffiffi

N
p Þ must be independent of chain model whenever N is sufficiently large. Of

course, b must be the length of Kuhn’s segment.

2.3.2 Gauss Chain

When the number of segments N is large enough, the probability distribution of
end-to-end distance vector is approximately Gaussian. Since the Kuhn segment
contains several monomers, it is convenient in theoretical study of polymer physics
to use the Gaussian chain model whose bond vector follows a Gaussian
distribution:

pðrÞ ¼ 3
2pb2

� �3=2

exp � 3r � r
2b2

� �
ð2:80Þ

where b is the length of the Kuhn segment. Because of the properties of Gaussian
distribution, it is obvious that the probability distribution of the set of position
vectors frng ¼ r0; r1; . . .; rNð Þ is given by

h/(bN 0.5)
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distribution of end-to-end
distance
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PðfrngÞ ¼ 3
2pb2

� �3N=2

exp � 3
2b2

XN
n¼1

rn � rn�1k k 2

 !
ð2:81Þ

This is the Gaussian chain model. This model has an important property that the
probability distribution of the vector rm � rn is also Gaussian:

P rm � rn;m� nð Þ ¼ 3
2pb2 m� nj j
� �3=2

exp � 3 rm � rnk k2
2 m� nj jb2

 !
ð2:82Þ

Although the Gaussian chain model is oversimplified, it satisfies the conditions
of equivalent chain and has very convenient mathematical properties which allow
us to calculate easily various features of long linear polymers. Hence, this model
provides the platform for more advanced problems of polymer physics such as
self-avoiding chain, the dynamics of flexible linear chain, and molecular theories of
polymer viscoelasticity. It is noteworthy that Eq. (2.82) is the solution of diffusion
equation.

2.4 Molecular Weight and Molecular Weight Distribution

2.4.1 Average Molecular Weight

Polymer chain is synthesized by the chemical reaction of monomers. The chemical
reaction forming polymer is called polymerization. There are several reaction
mechanisms in polymerization. Representative polymerizations are addition poly-
merization and condensation polymerization. PE, PP, PS, and PMMA are poly-
merized by the addition polymerization, while PET and Nylon66 are polymerized
by the condensation polymerization. The overall polymerization consists of a
number of elementary reactions which are coupled with each other. Since such
elementary reactions have different rates and various factors influence polymer-
ization, all the polymer chains in the reactor do not have the same number of
monomers. Therefore, polymer has MWD and several kinds of average molecular
weight are considered in polymer chemistry.

When monomer has the molecular weight of Mo, a polymer chain formed by Ni

monomers has the molecular weight of Mi ¼ MoNi. Suppose that there are ni moles
of polymer chains whose molecular weight is Mi and the total number of polymer
chains is nT in mole. Then, the mole fraction of polymers with Mi is given by
fi ¼ ni=nT . If there are Nmax of ni ’s, then we know that

nT ¼
XNmax

i¼1

ni ð2:83Þ
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Then, the number-average molecular weight �Mn is defined as

�Mn ¼
XNmax

i¼1

Mifi ð2:84Þ

Since the weight fraction of polymer chains with Mi is given by

wi ¼ niMiPNmax
k¼1 nkMk

ð2:85Þ

the weight-average molecular weight �Mw is defined as

�Mw ¼
XNmax

i¼1

Miwi ð2:86Þ

Most measurement devices for molecular weight provide weight fraction rather
than mole fraction, and the relation between fi and wi is useful:

fi ¼
�Mn

Mi
wi ð2:87Þ

From the definition of mole fraction, it is clear that

1
�Mn

¼
XNmax

i¼1

wi

Mi
ð2:88Þ

Hence, the number-average molecular weight is the harmonic mean with respect
to weight fraction.

Since polymer has MWD, we need a representative value for wideness of MWD.
Most widely used one is the polydispersity index (PI) which is defined as

PI ¼
�Mw

�Mn
ð2:89Þ

Consider the identity such that

1
�Mn

XNmax

i¼1

Mi � �Mnð Þ2fi � 0 ð2:90Þ

The equality holds whenever every chain has the same molecular weight.
Equation (2.90) immediately gives

PI� 1 ð2:91Þ
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2.4.2 Molecular Weight Distribution

If a polymer sample has PI ¼ 1, then the sample is called monodisperse polymer.
Otherwise, the sample is called polydisperse polymer. It is extremely difficult to
polymerize monodisperse polymer. Anionic polymerization, which is a kind of
addition polymerization, produces polymer samples which have PI very close to
unity. Conventional polymer with PI\1:1 is called monodisperse polymer.
Monodisperse polymer, in conventional sense, is very important in studying vis-
coelasticity of polymers because most molecular theories are based on the
assumption of monodispersity and because viscoelasticity of polydisperse polymer
can be understood easily from that of monodisperse polymers. Monodisperse
polymer is also used for the standard material for the calibration of various mea-
suring devices. However, commercially produced polymers are polydisperse ones
whose PI ranges from 2 to 10, usually. The wideness of MWD is an important
factor controlling rheological properties of polymers. Even polymers with the same
average molecular weight may show different viscoelastic behaviors depending on
MWD.

MWD depends largely on types and conditions of polymerization. As for con-
densation polymerization, analysis of chemical kinetics gives the following MWD
(Rubinstein and Colby 2003):

wðMÞ ¼ M
�M2
n
exp � M

�Mn

� �
ð2:92Þ

Since range of molecular weight is wide, continuous distribution wðMÞ is pre-
ferred to discrete one such as wi. Note that wðMÞ is the continuous counterpart of
discrete weight fraction. Hence, it is obvious that

Z1
0

wðMÞdM ¼ 1 ð2:93Þ

Addition polymerization is a kind of chain reaction (Silbey et al. 2005). Chain
reaction consists of several elementary reactions such as initiation, propagation,
branching, and termination. If the probability of termination is very low and the rate
of propagation is faster than that of initiation, anionic polymerization usually sat-
isfies this condition, and then PI of the polymer follows

PI ¼ 1þ Mo
�Mn

ð2:94Þ

However, such ideal conditions are not available for most addition polymer-
ization because of considerably high rate of termination. Including the effect of
termination, the Shultz MWD is known valid for addition polymerization
(Rubinstein and Colby 2003):
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wðMÞ ¼ Mo

�MnC sð Þ
M
�Mn

s

� �s

exp � M
�Mn

s

� �
ð2:95Þ

where s is a model parameter and Cðs) is the Gamma function which is defined as

CðsÞ ¼
Z1
0

e�xxs�1dx ð2:96Þ

Logarithmic normal distribution is usually used for any type of polymers:

wðMÞ ¼ 1ffiffiffiffiffiffi
2p

p
r
exp � 1

2r2 log
M

Mmax

� �2
" #

ð2:97Þ

where Mmax is the molecular weight at which wðMÞ becomes the maximum and

r2 ¼ log PI ð2:98Þ

2.4.3 Measurement of Molecular Weight

Methods of measuring molecular weight are classified into two kinds: absolute and
relative methods. Absolute method can measure molecular weight without the help
of any auxiliary samples, while relative method demands standard sample for
calibration. End-group analysis, osmometry, cryoscopy, and light scattering belong
to the absolute method, while gel permeation chromatography (GPC) and intrinsic
viscosity belong to relative method.

Light scattering measures weight-average molecular weight as well as the radius
of gyration. Although GPC is a relative method, it is very convenient and provides
MWD.

2.4.4 Intrinsic Viscosity and Hydrodynamic Radius

Isolation of a molecule is carried out by vaporization. However, polymer cannot be
vaporized since polymer has very high molecular weight. Before vaporization, it
becomes decomposed to small molecules which can be gas. Dissolution of polymer
in a solvent at very low concentration can isolate individual polymer chain. Hence,
dilute solution is frequently used in analysis of polymers. GPC also use dilute
polymer solution.

A polymer chain exists as a coil in dilute solution. The coil shape can be
considered as a small sphere whose radius is close to RG. Hence, dilute solution can
be considered as a suspension of spheres. The radius of the hypothetical sphere is

2 Chain Conformation and Size of Polymer Chain 257



called hydrodynamic radius RH . The viscosity of a dilute suspension is known by
Einstein equation such that

g ¼ gs 1þ 5
2
/

� �
ð2:99Þ

where solvent is considered as a Newtonian fluid of viscosity gs and ϕ is the
volume fraction of the sphere.

The mass concentration of the suspension c is related with the volume fraction as
follows:

/ ¼ c
q

ð2:100Þ

where ρ is the density of the sphere. The density ρ can be estimated in terms of
monomer characteristics. Usually, the monomer of conventional polymer is in
liquid state in moderate temperature. When molar volume of the monomer liquid is
known as vo, then the density can be estimated by Mo=vo. Then, Eq. (2.100) can be
rewritten as follows:

/ ¼ vo
Mo

c ð2:101Þ

When the number of sphere is given by Ns, the volume fraction can be expressed
by

/ ¼ 4p
3
NsR3

H

V
ð2:102Þ

where V is the volume of the solution. Note that the number of the spheres is the
number of polymer chains in the dilute solution. Hence, we have

Ns ¼ wP

M
ð2:103Þ

where wP is the mass of the polymer in the dilute solution and M is the molecular
weight of the polymer under the assumption of monodisperse polymer. From the
definition of mass concentration, it is clear that

c ¼ wP

V
ð2:104Þ

Finally, the volume fraction can be expressed in terms of polymer
characteristics:
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/ ¼ 4p
3
R3
H

M
c ð2:105Þ

It is noteworthy that mass concentration is more convenient and available than
the volume fraction although most theories are based on the volume fraction.

Intrinsic viscosity is defined as

g½ 
 � lim
c!0

g� gs

gsc
ð2:106Þ

Applying Eqs. (2.99) and (2.105) gives

g½ 
 ¼ 10p
3M

R3
H ð2:107Þ

or

RH ¼ 3
10p

½g
M
� �1

3

ð2:108Þ

If the radius of gyration is considered as the hydrodynamic radius, then
Eq. (2.17) allows us to use

RH ¼ kMm ð2:109Þ

where m ¼ 1
2 for Θ-solvent and m � 0:588 for good solvent. The constant k is a

material constant. Substitution of Eq. (2.109) into Eq. (2.107) gives

½g
 ¼ KMa ð2:110Þ

where a ¼ 3m� 1 and K ¼ 10p
3 k

3. Equation (2.110) is called the Mark–Houwink
equation. The constants α and K depend on polymer, solvent, temperature, and
pressure. Hence, if samples of several molecular weights are available, then mea-
surement of intrinsic viscosity at the same conditions determines the constants α
and K. With the help of the standard samples, we can determine the molecular
weight of arbitrary sample. Hence, measurement of intrinsic viscosity is a relative
method for molecular weight.

Problem 2

[1] Derive Eqs. (2.15) and (2.16).
[2] Show that the tensor Ti of Eq. (2.35) is an orthogonal tensor.
[3] Derive Eqs. (2.54) and (2.55).
[4] Derive Eq. (2.59).
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[5] Derive Eq. (2.74) using Eq. (2.73).
[6] Derive Eq. (2.74) using ~h � 1 from Eq. (2.76).

3 Polymer Solution

This book is focused on viscoelasticity of polymers. Although viscoelasticity of
mixtures of polymers depends on phase separation dynamics, we will not deal with
thermodynamics of polymer blends and polymer solutions. It is because this book
does not contain the viscoelasticity of polymer systems with phase separation.
However, it is important to know how configuration of polymer chains changes
according to the polymer concentration because such changes influence vis-
coelasticity of polymer solution without phase separation.

3.1 Polymer Concentration

One of the most important differences between polymer melts and solutions is
existence of solvent molecules. As a polymer concentration, volume fraction of
polymer is convenient in theoretical studies, while it is not convenient for experi-
ment. Volume fraction of polymer is defined by

/ ¼ Vp

V
ð3:1Þ

where Vp is the volume of the polymer and V is the volume of the polymer solution.
Exactly saying, Vp must be the partial molar volume of the polymer which can be
determined by the consideration of solution thermodynamics. If the Flory–Huggins
theory of polymer solution is valid for the polymer solution under the consideration,
the partial molar volume can be replaced by the molar volume of the pure polymer
because the Flory–Huggins theory does not consider the volume change in mixing.
However, it is difficult to measure the molar volume of the pure polymer in liquid
state at the temperature of the polymer solution because the polymer is usually in
solid state at the solution temperature.

If the polymer is glassy one which cannot form any crystallite in solid state and
if its monomer is in liquid state at the solution temperature, then we can replace the
polymer volume in the solution by the molar volume of the liquid monomer. As for
polyethylene (PE), the polymer is crystalline polymer which consists of both
amorphous and crystalline parts. Furthermore, as the monomer of polyethylene,
ethane is a gas at most temperatures. In this case, we have to find the oligomer of
PE which is in liquid state at the solution temperature.
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In this section, it is assumed that there is a substitute for the polymer which is
suitable for estimation of the density of the polymer in the solution. Then, the
volume of the polymer can be estimated by

Vp ¼ wp

qm
ð3:2Þ

where wp is the weight of the polymer and qm is the density of the substitute such as
the liquid monomer. When change of volume in mixing is not significant, we have

/ ¼ wp

wp þ rws
ð3:3Þ

where ws is the weight of solvent and r is the ratio of density:

r ¼ qm
qs

ð3:4Þ

where qs is the density of the solvent.
In experiment, weight concentration is more convenient than volume fraction.

The weight concentration is defined by

c ¼ wp

V
ð3:5Þ

It is obvious that

c ¼ qm/ ð3:6Þ

Note that weight concentration c can be easily determined experimentally, and
we can calculate volume fraction ϕ from c, if we are equipped with appropriate qm.

3.2 Concentration Regimes

When concentration is extremely low, it is obvious that individual polymer chain is
separated from each other. Because of the thermal motion, polymer chains have coil
conformations. Hence, we can imagine a sphere that envelops a single chain whose
radius is close to the radius of gyration of the chain. As discussed in Sect. 2.4, the
viscosity of the solution in this concentration regime is proportional to the con-
centration. This concentration regime is called the dilute regime.

As concentration increases, the blobs of polymer chains become to contact. The
overlap concentration is the concentration at which the blobs become to contact.
Since the blobs of polymer chains pervade the whole space of the polymer solution,
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the polymer concentration almost equals to that of the blob. The volume of the blob
is approximately given by

Vblob � 4p
3
R3
G ¼ 4p

3
N2mb2

6

� �3=2

/ b3N3m ð3:7Þ

where exponent ν is 1/2 for θ-solution and about 0.6 for good solution. Since a
single blob contains a single chain, the overlap concentration in volume fraction is
given by

/ ¼ Nvm
Vblob

/ N1�3m ð3:8Þ

where vm is the volume of the Kuhn segment. It is obvious that the volume of the
Kuhn segment is proportional to b3. Hence, N is large, the overlap occurs at very
low concentration which corresponds to the concentration of the dilute solution of a
solute of low molecular weight. Because of such low value of the overlap con-
centration, the concentration regime higher than the overlap concentration is called
semi-dilute regime. This reasoning is visualized in Fig. 9.

In the semi-dilute regime, the viscosity of polymer solution increases steeply as
concentration increases. As for θ-solution, it is known that

g� gs / /2 ð3:9Þ

Hence, the overlap concentration can be determined by measuring viscosity as a
function of concentration. For wide range of concentration, it is observed that

∗< ∗ ∗>cc cc cc

Fig. 9 Graphical illustration of chain distributions depending on concentration. The left
represents a dilute solution, the middle a solution at the overlap concentration c*, and the right
a semi-dilute or concentrated solution
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where the exponents α and β depend on solution characteristics. It is known that
a ¼ 2 and b ¼ 14=3 � 4:7 for θ-solution. Figure 10 shows a schematic illustration
of Eq. (2.10) for θ-solution.

The concentration /e in Eq. (2.10) is found from experiments if N is sufficiently
large. It is called entanglement concentration at which motion of a chain is influ-
enced largely by neighbor chains. The problem of interaction between chains was
solved using tube concept (Rubinstein and Colby 2003). The diameter of the
hypothetical tube is known to be proportional to b

ffiffiffiffiffiffiffiffiffiffiffiffi
Ne 1ð Þp

in molten state where
Neð1Þ is interpreted as the number of Kuhn’s segments in an entanglement subchain
in molten state. It is a material constant of polymer. Here, Neð1Þ is the notation
which emphasizes that melt can be considered as / ¼ 1.
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Fig. 10 Schematic
illustration of Eq. (3.10) for
θ-solution
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An example of θ-solution is an aqueous solution of polyethylene oxide (PEO) at
the room temperature. If molecular weight is not extremely high, for example,
M * 5000 kg/mol for PEO, it is difficult to expect a sharp transition as shown in
Fig. 10. Readers can find experimental data corresponding to Fig. 10 in Rubinstein
and Colby (2003). As shown in Fig. 10, both overlap and entanglement concen-
trations can be determined experimentally as the concentrations at which the slope
d loggo=d log/ changes abruptly. However, the two characteristic concentrations
can be estimated by molecular theory. As for overlap concentration, although
molecular theory provides an equation more detail than Eq. (2.8), such equation
requires material information such as radius of gyration which can be measured by
light scattering. Radius of gyration depends on polymer and solvent as well as
temperature.

3.3 Entanglement

Entanglement in linear polymer is the notion originated from various experimental
results and geometric features of flexible polymer chain. Since viscoelastic behavior
of polymer dramatically changes at a certain molecular weight, polymer scientists
have tried to explain the transition in viscoelastic behavior by the concept of
entanglement which is inspired from network structure of rubber. Entanglement has
been considered as a result from temporary network compared with rubber structure
which is a permanent network. This analogy was made because viscoelastic
behaviors of high polymer look like those of rubber. This viewpoint produces
entanglement molecular weight Með1Þ which is the molecular weight of the sub-
chain between adjacent junction points of the temporary network. If the molar mass
of Kuhn segment is denoted by Mo, then we know that Með1Þ ¼ MoNeð1Þ. From
this crude definition of entanglement molecular weight, it can be said that polymer
chains with M[ 2Með1Þ can form entanglement.

It might be impossible to express rigorously multi-chain interactions in a closed
form. To make it simpler, a mean field approach was invented by de Gennes. He
suggested a hypothetical tube envelop a chain. The tube represents the mean
interaction of the tagged chain with environmental chains because repulsive
interaction is dominant between chains in melt and solution. Introduction of tube
makes the multi-chain problem simpler single-chain problem. Advocates of tube
theory assume that the diameter of the tube a is about the end-to-end distance of
entangled subchain:

a ¼ b
ffiffiffiffiffi
Ne

p ð3:11Þ

From this viewpoint, entanglement is a geometric metaphor of mean interaction
between chains.

One of the important problems on entanglement is how to measure the entan-
glement molecular weight. Statistical mechanical theory of rubber elasticity
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provides an equation which relates the initial modulus of rubber with the molecular
weight between permanent junction points (see Sect. 4). Although polymer melts do
not have permanent junction bonds, their viscoelastic behaviors in certain range of
time (or frequency) look like those of rubber. In this range, the plateau modulus can
be defined and considered as the rubber modulus. Then, the equation provides the
entanglement molecular weight as the molecular weight of subchains between
temporal junction points. This method for the determination of entanglement is
based on the first viewpoint on entanglement: temporal network. However, tube
theories based on Eq. (2.11) give consistency with the first viewpoint.

Solvent molecules between polymer chains give wider spacing between junction
points. Hence, addition of solvent molecules increases the entanglement molecular
weight. In molten state, polymers with N\2Neð1Þ cannot form entanglement.
Hence, such short polymer chain cannot form entanglement in solution at any
concentration. Scaling theory (Rubinstein and Colby 2003) gives the following
equation under the assumption that N 	 2Neð1Þ:

/e �
Neð1Þ
N

h i 3m�1ð Þ
� Neð1Þ

N

h i0:76
for an athermal solution

Neð1Þ
N

h i3=4
for h-solution

8><>: ð3:12Þ

According to Heo and Larson (2008), viscoelasticity of polymer solution of
/ 	 /e is nearly identical to that of molten polymer if relaxation times and
modulus are scaled in a suitable manner.

It is noteworthy that Fetters et al. (1994) suggested a method to determine
entanglement molecular weight in terms of the characteristic ratio, the length and
the mass of monomer and melt density. This calculation is not based on the concept
of temporal network. They showed that their calculation is equivalent to the results
from temporal network.

To understand the viscoelasticity of high-mass polymer chains, entanglement
concept is very important and we need to study the rubber elasticity to understand
entanglement. Reversely, viscoelasticity plays the main role in understanding
entanglement. In Chap. 9, we shall revisit the entanglement concept.

Equation (3.12) is very useful because only molecular weight and entanglement
molecular weight are necessary. Furthermore, the exponent 3m� 1 indeed becomes
close to that of θ-solution (0.76 ≈ 3/4). Although the calculation of overlap con-
centration needs consideration of solvent effects, that of entanglement concentration
does not. We can use Eqs. (3.6) and (3.12) in the calculation of ce.

Figure 11 shows zero-shear viscosities of polystyrene solutions as functions of
normalized concentration c=ce where ce was calculated (Kim 2007). Note that
compared with solvent viscosity, the zero-shear viscosity of polymer solution is
much higher. Hence, the experimental data of Fig. 11 look like Fig. 10. The two red
dotted lines indicate that the calculated entanglement concentration is lower than
the experimentally determined one, the cross point at which the two regression lines
meet. However, the two concentrations are very close. Different from monodisperse
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PS, polydisperse PS does not show any sharp transition of slope. Furthermore, the
zero-shear viscosity of polydisperse PS is lower than that of monodisperse polymer.

Problem 3

[1] Derive

c � 1
½g
 ð3:aÞ

[2] It is a reasonable assumption that solution properties are dependent on the
number and size of Kuhn monomer as follows:

~P � P
P ¼ ~f ðN; b;uÞ ð3:bÞ

Here, P is a physical property of solution, P is the characteristic quantity
having the same dimension of P, and φ is the number of Kuhn monomer per
unit volume. Dimensional analysis (Barenblatt 1996) results in
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Fig. 11 Zero-shear viscosity
of solution of PS in
ethylbenzene as a function of
normalized concentration.
Indicator m implies
monodisperse and p implies
polydisperse. Molecular
weights are 415 kg/mol for
m415 K, 785 kg/mol for
m785 K, 1210 kg/mol for
m1210, and 350 kg/mol ( �Mw)
for p350 K. The data are from
Kim (2007)
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~P ¼ ~g N; b3u
	 
 ¼ ~f N; b;uð Þ ð3:cÞ

It is well known that physical properties depending on chain conformation
obey the self-similarity which means that Eq. (3.c) is invariant with respect to
the following transformation:

N ! N
s
; b ! bsm; u ! u

s
ð3:dÞ

where s is any real number and ν is the exponent of Eq. (2.61). Show that the
osmotic pressure Π of solution obeys

P ¼ u
N
kBT~h

c
c
� �

ð3:eÞ

where ~hð�Þ is a dimensional function.
[3] When c[ c, it is a reasonable assumption that osmotic pressure is inde-

pendent of N. Assume that ~hðxÞ ¼ xz. Then derive that

P / c9=4 ð3:fÞ

[4] Aqueous PEO solution at the room temperature is known as a θ-solution. It is
also known that Mo ¼ 137 g/mol and Me ¼ 2000 g/mol. Calculate /e of PEO
with M ¼ 1000 kg/mol.

4 Rubber Elasticity

Rubber is a polymer network that polymer chains are covalently connected in a
three-dimensional manner. The constituent polymer chains called subchains have
glass transition temperature much lower than room temperature. Hence, the sub-
chains move like those of polymer melts. However, difference from the melt of
linear polymer, the subchains cannot flow because of the three-dimensional network
structure. These special features of rubber structure allow it to behave like elastic
solid. Different from most elastic material such as metal and plastics, rubber shows
much wider strain range of elasticity. After loading rubber up to several times of the
original length, unloading gives immediate recover of the original length without
any permanent deformation. Although this behavior makes rubber called elastomer,
exactly saying, rubber is also viscoelastic material. Loading and unloading shows a
very narrow loop. Such small hysteresis might be neglected and rubber is
approximately considered as finite elastic material.

In this section, we shall study thermodynamic aspect of rubber elasticity and
then introduce rubber elastic models: molecular and phenomenological models. As
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for the general aspects of rubber elasticity, Treloar (1975) is recommendable for
reading. Ogden’s book (Ogden 1984) is recommendable for nonlinear mechanics of
elasticity as well as his review paper (Ogden 1986).

4.1 Thermodynamics of Rubber

Here, we shall discuss the origin of rubber elasticity through thermodynamic
considerations. For simplification, we consider one-dimensional deformation.
Suppose that force f gives rise to extension of length by dL. One of the most
important features of rubber is volume preservation during any deformation because
shear modulus is much smaller than bulk modulus. Then, the differential of the
Helmholtz free energy is given by

dF ¼ �SdT þ f dL ð4:1Þ

The Maxwell relation gives

@f
@T

� �
L
¼ � @S

@L

� �
T

ð4:2Þ

Since f ¼ @F=@Lð ÞT , the force can be decomposed to

f ¼ @U
@L

� �
T
�T

@S
@L

� �
T

ð4:3Þ

Here, @U=@Lð ÞT is the force due to change of internal energy, while the second
term is the force due to change of entropy. Substitution of Eq. (4.2) into Eq. (4.3)
gives

f ¼ fE þ T
@f
@T

� �
L

ð4:4Þ

where fE ¼ @U=@Lð ÞT . Rearrangement of Eq. (4.4) gives

fE
f
¼ 1� @ log f

@ log T

� �
L

ð4:5Þ

Although the measurement of @S=@Lð ÞT is not easy, it is easy to measure the
force change due to temperature change at constant length. Experimental results
show that fE=f is very low for wide range of temperature. Then, it can be concluded
that the force of rubber is mainly originated from change of entropy. Since glass
transition temperature of rubber is much lower than the room temperature, polymer
chains in rubber take coil conformation. However, deformation on rubber restricts
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the variety of the conformations of the polymer chains. Then, the reduction of
entropy appears and the resistance of rubber results in force. Since glass transition
temperature is very low, interactions between segments of subchains render neg-
ligible effects on the rotation of bonds. Hence, the force from energy change is
negligible compared to that from entropy change (Treloar 1975).

4.2 Statistical Mechanical Theory

4.2.1 Force on a Single Chain

From thermodynamic experiment, we assume that the stress of rubber is generated
by only entropy. Before the derivation of the stress equation of rubber, we need to
study the force exerted on a single chain. From Eq. (4.3), we know that

f ¼ �T
@S
@h

� �
T
¼ @F

@h

� �
T

ð4:6Þ

where h is the end-to-end vector. Since the internal energy is independent of
conformation change, the second equality holds. The entropy of a single chain can
be calculated by the Boltzmann equation for entropy, Eq. (2.4). The phase volume
of Ω can be interpreted by the number of all possible conformations at a given
end-to-end vector. If we denote Xtotal as the total number of all possible confor-
mations of a chain with N segments, then we have

Xðh;NÞ ¼ XtotalPðh;NÞ ð4:7Þ

where Pðh;NÞ is the Gaussian distribution of Eq. (2.74). Then, the conformation
entropy is given by

S ¼ kB logXðh;NÞ ¼ � 3kB
2Nb2

h � hþ So ð4:8Þ

where So is the term independent of h. Substitution of Eq. (4.8) into Eq. (4.6) gives

f ¼ 3kBT
Nb2

h ð4:9Þ

Gaussian distribution cannot reflect the limitation of extension because of finite
contour length of polymer. Although the exact distribution function is Eq. (2.76)
(Yamakawa 1971), it is too complicate to calculate the force. Alternative approx-
imation is to use the canonical ensemble. According to Rubinstein (2003), the
relation between the magnitudes of force and the end-to-end vector is given by
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f ¼ kBT
b

L�1 h
Nb

� �
ð4:10Þ

The inverse Langevin function is so complicate as shown in Eq. (2.78). The
Maclaurin series of the inverse Langevin function is known as

L�1ðxÞ ¼ 3xþ 9
5
x3 þ 297

175
x5 þ 1539

875
x7 þ 126117

67375
x9 þ � � � ð4:11Þ

Comparison of Eq. (4.9) with Eq. (4.11) implies that the force from Gaussian
distribution is the first-order approximation of more advanced theory.

The force on a single chain is important because it can be applied to the
development of nonlinear viscoelastic constitutive equation of polymers. Hence,
approximations of the inverse Langevin function have been suggested. One of them
is the FENE (finitely extensible nonlinear elastic) model (Bird et al. 1987):

L�1ðxÞ ¼ 3x
1� x2

ð4:12Þ

4.2.2 Ideal Network

One of the simplest theories for the free energy of rubber is based on the following
assumptions:

[1] All subchains are statistically independent.
[2] All subchains are identical—the same number of segments.
[3] Free energy of the rubber is the sum of those of subchains.
[4] In the reference configuration, the orientation of subchain is isotropic.
[5] Deformation of rubber does not alter the volume.
[6] Deformation is affine.

From the assumptions, the end-to-end vector after deformation is given by

h ¼ F � ~h ð4:13Þ

where F is the given deformation gradient and ~h is the end-to-end vector in the
reference configuration. Furthermore, F, the free energy per unit volume is given by

F ¼ qc

Z
3kBT
2Nb2

C : ~h~hP ~h;N
	 


d~h ð4:14Þ

where qc is the number of subchains per unit volume and C ¼ FT � F is the right
Cauchy–Green tensor (Eq. 1.17b in Chap. 2). Note that the free energy of a single
chain is given by
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Fsingle ¼ 3kBT
2Nb2

F � ~h	 
 � F � ~h	 
 ¼ 3kBT
2Nb2

~h � FT � F � ~h ð4:15Þ

To evaluate the integration, we use the change of variable such that ~h ¼ F�1 � h.
Then, we have

F ¼ qc
3kBT
2Nb2

3
2pNb2

� �3=2Z
h � h exp � 3

2Nb2
h � B�1 � h

� �
det F�1	 
 dh ð4:16Þ

where B ¼ F � FT is the left Cauchy–Green tensor (Eq. 1.17a in Chap. 2). Using the
property of the Gaussian distribution gives

F ¼ qc
3kBT
2Nb2

tr
Nb2

3
B

� �
¼ qckBT

2
tr(BÞ ð4:17Þ

Here, we used the assumption (Blatz et al. 1974) which means that det(F�1) ¼
detðBÞ ¼ 1 and omitted irrelevant terms.

Since Eq. (4.17) implies incompressible hyperelasticity, we can calculate stress
using Eq. (3.39) in Chap. 2:

T ¼ �pIþ qckBTB ð4:18Þ

For uniaxial elongation, we know that

F ¼ ke1e1 þ 1ffiffiffi
k

p e2e2 þ e3e3ð Þ; B ¼ k2e1e1 þ 1
k

e2e2 þ e3e3ð Þ ð4:19Þ

where λ is the draw ratio. Since nonzero stress component of uniaxial elongation is
only T11, we know that

T22 ¼ T33 ¼ �pþ qckBT
k

¼ 0 ð4:20Þ

and

T11 ¼ qckBT k2 � 1
k

� �
ð4:21Þ

The Young’s modulus is given by the differentiation of T11 with respect to λ:

E ¼ qckBT 2kþ 1

k2

� �
k¼1

¼ 3qckBT ð4:22Þ

Because of no change in volume, it is obvious that the Poisson ratio of rubber ν
is approximately 1/2. Then, Eq. (3.16) in Chap. 2 gives shear modulus of rubber:
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G ¼ 1
3
E ¼ qckBT ð4:23Þ

The number density of subchain is related with mass density of rubber ρ and
molecular weight of subchain Mx:

qc ¼
q

Mx=NA
ð4:24Þ

where NA is the Avogadro’s number. Then, Eq. (4.23) becomes

G ¼ qRT
Mx

ð4:25Þ

where R is the gas constant. Equation (4.25) means that measurement of initial
shear modulus and density gives the average molecular weight of the subchain
between adjacent junction points.

4.3 Phenomenological Models

Although statistical mechanical theory achieved successful results at moderate
range of strain, most molecular constitutive equations fail in description in high
strain range. Even if a molecular constitutive equation has a success in simple
elongation, it is usual that the constitutive equation cannot fit simple shear or other
experimental data with the parameters determined from the simple elongation.
Hence, there have been a number of efforts to develop phenomenological model
which can fit almost deformation data by a single set of material parameters. One of
the successful phenomenological models is the Ogden model (Treloar 1975).

4.3.1 Mooney–Rivlin Model

Most phenomenological models are to develop strain potential of Eq. (3.36) in
Chap. 2. Mooney and Rivlin used the Taylor expansion of the strain potential with
respect to the principal invariants of B Mooney (1940), Rivlin (1948). Then, the
strain potential is given by

U IB; IIBð Þ ¼ G0
1 IB � 3ð ÞþG1

0 IIC � 3ð Þ
þG0

2 IB � 3ð Þ2 þG2
0 IIC � 3ð ÞþG1

1 IB � 3ð Þ IIB � 3ð Þþ � � �
ð4:26Þ

Here, IIIB is not considered because IIIB ¼ det(B) ¼ 1 is usually assumed in
rubber elasticity.

When truncating the series up to the first order, the stress is given by
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T ¼ �pIþ 2G0
1B� 2G1

0B
�1 ð4:27Þ

This is the Mooney–Rivlin model or the neo-Hookean model. Applying
Eq. (4.27) to uniaxial elongation, the axial stress T11 is given by

T11 ¼ 2G0
1 k2 � 1

k

� �
� 2G1

0
1

k2
� k

� �
ð4:28Þ

Because rubber is incompressible, the ratio of cross-sectional area is k�1. Then,
the engineering stress rE ¼ f =Ao is calculated from Eq. (4.28) as follows:

rE ¼ T11
k

¼ 2 G0
1 þ

G1
0

k

� �
k� 1

k2

� �
ð4:29Þ

Equation (4.29) implies that the plot of rE=ðk� k�2Þ against k�1 allows us to
determine the moduli because the plot for experimental data is a straight line such
that the intersection is 2G0

1 and the slope is 2G1
0. Such plot is called the Mooney–

Rivlin plot. It is found in Dossin and Graessley (1979) that the Mooney–Rivlin plot
is valid for 1\k\1:4.

Compared with metallic material, 1\k\1:4 is very wide range of elastic
deformation, and the Mooney–Rivlin model is not a good constitutive equation if
wide range of elastic deformation such as 1\k\7 is considered. Hence, we need
more advanced models.

4.3.2 Valanis–Landel Hypothesis

Since we consider rubber as incompressible hyperelastic material, the strain
potential can be considered as a function of the eigenvalues of B instead of principal
invariants. Note that detðBÞ ¼ 1 implies that k21k

2
2k

2
3 ¼ 1 where k2k are the eigen-

values of B. Then, we know that

IB ¼ k21 þ k22 þ
1

k21k
2
2

; IIB ¼ 1

k21
þ 1

k22
þ k21k

2
2 ð4:30Þ

Then, the strain potential of the Mooney–Rivlin model can be rewritten as

U ¼ G0
1 IB � 3ð ÞþG1

0 IIB � 3ð Þ ¼
X3
k¼1

w kkð Þ ð4:31Þ
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where

wðxÞ ¼ G0
1ðx2 � 1ÞþG1

0
1
x2

� 1
� �

ð4:32Þ

The Valanis–Landel hypothesis (Valanis and Landel 1967) is the generalization
of Eq. (4.31) that strain potential can be expressed by the sum of identical function
of extension ratio. All analytical functions UðIB; IIB) cannot be expressed by a
function wðxÞ such that

U IB; IIBð Þ ¼
X3
k¼1

w kkð Þ ð4:33Þ

Rivlin and Sawyer (1976) derived a necessary and sufficient condition for
Eq. (4.33):

@

@IB

@2U
@I2B

þ IB
@2U

@IB@IIB

� �
¼ � @

@IIB

@2U
@II2B

þ IIB
@2U

@IB@IIB

� �
ð4:34Þ

Valanis and Landel (1967) also suggested the form of wðxÞ from the analysis of
experimental data:

dw
dx

� w0ðxÞ ¼ 2G log x ð4:35Þ

where G is the initial shear modulus.
Assume that strain potential satisfies Eq. (4.33). Note that chain rule for dif-

ferentiation gives

@U
@k1

¼ @IB
@k1

@U
@IB

þ @IIB
@k1

@U
@IIB

;
@U
@k2

¼ @IB
@k2

@U
@IB

þ @IIB
@k2

@U
@IIB

ð4:36Þ

Solving Eq. (4.36), we can express @U=@IB and @U=@IIB in terms of @U=@k1:
and @U=@k2 as follows:

@U
@IB

¼ 1
D

@IIB
@k2

@U
@k1

� @IIB
@k1

@U
@k2

� �
;

@U
@IIB

¼ � 1
D

@IB
@k2

@U
@k1

� @IB
@k1

@U
@k2

� �
ð4:37Þ

where

D ¼ @IB
@k1

@IIB
@k2

� @IB
@k2

@IIB
@k1

ð4:38Þ

Because of Eq. (3.40), substitution of Eq. (4.37) into Eq. (3.39) gives
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T ¼ �pIþ 2
D

@IIB
@k2

@U
@k1

� @IIB
@k1

@U
@k2

� �
Bþ 2

D
@IB
@k2

@U
@k1

� @IB
@k1

@U
@k2

� �
B�1 ð4:39Þ

Note that the eigenvalues of B are k21; k
2
2 and k�2

1 k�2
2 , those of B�1 are k�2

1 ; k�2
2

and k21k
2
2 and

@U
@k1

¼ w0 k1ð Þ � k2
k23

w0 k3ð Þ; @U
@k2

¼ w0 k2ð Þ � k1
k23

w0 k3ð Þ ð4:40Þ

Since B and B�1 are coaxial, the eigenvalues of the stress are given by

rk ¼ �pþ kk
@U
@kk

¼ �pþ kkw
0 kkð Þ ðk ¼ 1; 2; and 3; no sum on kÞ ð4:41Þ

where k3 ¼ k�1
1 k�1

2 . This calculation requires tedious arithmetic manipulations. See
Valanis and Landel (1967) and Rivlin and Sawyer (1976) for the details of the
derivation. See problem (Dossin and Graessley 1979).

As for the uniaxial elongation along e1, the principal axes of B are e1; e2, and e3.

As before, we know that r2 ¼ r3 ¼ 0 and k2 ¼ k3 ¼ k�1=2
1 . Hence, we have

r1 ¼ kw0ðkÞ � 1ffiffiffi
k

p w0 1ffiffiffi
k

p
� �

with k1 ¼ k ð4:42Þ

The analogy of Eq. (4.29) gives

rE ¼ w0ðkÞ � 1

k
ffiffiffi
k

p w0 1ffiffiffi
k

p
� �

ð4:43Þ

Note that clarification of the mathematical form of w0ðkÞ is the identification of
the model based on the Valanis–Landel hypothesis. Hence, it can be said that the
Valanis–Landel hypothesis is more convenient to determine strain potential from
experimental data than the use of UðIB; IIB). One the other hand, the strain potential
of the Valanis–Landel hypothesis is not more convenient than that of principal
invariants in solving boundary problems of hyperelasticity because we need to know
the change of principal axis of general deformation at every step of calculation.

4.3.3 Phenomenological Models of Hyperelasticity

Phenomenological models of hyperelasticity are the ones whose strain potentials are
determined from experimental data with minimized number of material parameters.
Since the Valanis–Landel hypothesis is very useful in the identification the strain
potential from experiment, several authors have used the hypothesis to develop a
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new strain potential. One of the most successful models is the Ogden model (Ogden
1972) which has the strain potential such that

U ¼
Xn
k¼1

lk
ak

kak1 þ kak2 þ kak3 � 3
	 


with k1k2k3 ¼ 1 ð4:44Þ

It is usual that any set of experimental data can be fitted very accurately with
n� 3. Ogden applied Eq. (4.44) to Treloar’s data (1944) with n ¼ 3, and the Ogden
model fits three kinds of experimental data (uniaxial extension, pure shear, and
equibiaxial tension) with a single set of parameters:

a1 ¼ 1:3; a2 ¼ 5:0; a3 ¼ �2:0;
l1 ¼ 6:3 kg/cm2; l1 ¼ 0:012 kg/cm2; l1 ¼ �0:1 kg/cm2 ð4:45Þ
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Fig. 12 Comparison of three hyperelastic models. The data were measured by Treloar (1944) and
obtained by the digitalization of Fig. 4 of Ogden (1972). a Ogden model, b VL model, c BST
model
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The Ogden model needs 6 material parameters to fit Treloar’s data (Fig. 12a),
while the Valanis–Landel model, Eq. (4.35) of a single parameter cannot fit high
extension regime. Blatz et al. (1974) proposed a four-parameter model which is
based on generalized strain such that

U ¼ 2G
n

IE þBImE ð4:46Þ

where

IE ¼ tr Eð Þ; E ¼ 1
n

Bn � Ið Þ ð4:47Þ

Note that when bk are the normalized eigenvectors of B, the generalized strain
E is given by

E ¼ k2n1
n

b1b1 þ k2n2
n

b2b2 þ k2n3
n

b3b3 � 1
n
I ð4:48Þ

Connecting with the single-chain statistics of finite chain length, Arruda and
Boyce (1993) proposed the 8-chain model. Although the strain potential of the
8-chain model needs only two parameters, the model cannot fit the three homo-
geneous deformations by a single set of parameter values. It may be guessed the
discrepancy is originated from that the strain potential is a function of only IB:

U ¼ G
2

IB � 3ð Þþ 1
10N

I2B � 32
	 
þ 11

525N2 I3B � 33
	 
þ 19

3500N3 I4B � 34
	 
þ � � �

� �
ð4:49Þ

We shall compare the Ogden, the Valanis–Landel (VL), and the Blatz, Sharda,
and Tschoegl (BST) by use of Treloar’s data (1944). In order to do that, we need
the following:

[1] Uniaxial Extension

k1 ¼ k; k2 ¼ k3 ¼ 1ffiffiffi
k

p ; ð4:50aÞ

rE ¼ r1

k
; r2 ¼ r3 ¼ 0 ð4:50bÞ

The Ogden model

rE ¼
X3
k¼1

lk kak�1 � k�
1
2ak�1	 
 ð4:50cÞ
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The VL model

rE ¼ 2G 1þ 1

2k
ffiffiffi
k

p
� �

log k ð4:50dÞ

The BST model

rE ¼ kn�1 � k�
1
2n�1	 
 2G

n
þmBIm�1

E

� �
ð4:50eÞ

where

IE ¼ kn þ 2k�
1
2n � 3

n
ð4:50fÞ

[2] Pure Shear

k1 ¼ k; k2 ¼ 1; k3 ¼ 1
k
; ð4:51aÞ

rE ¼ r1

k
; r3 ¼ 0 ð4:51bÞ

The Ogden model

rE ¼
X3
k¼1

lk kak�1 � k�ak�1	 
 ð4:51cÞ

The VL model

rE ¼ 2G 1þ 1

k2

� �
log k ð4:51dÞ

The BST model

rE ¼ kn�1 � k�n�1	 
 2G
n

þmBIm�1
E

� �
ð4:51eÞ

where

IE ¼ kn þ k�n � 2
n

ð4:51fÞ
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[3] Equibiaxial Extension

k1 ¼ k2 ¼ k; k3 ¼ 1

k2
; ð4:52aÞ

rE ¼ r1

k
; r1 ¼ r2; r3 ¼ 0 ð4:52bÞ

The Ogden model

rE ¼
X3
k¼1

lk kak�1 � k�2ak�1	 
 ð4:52cÞ

The VL model

rE ¼ 2G 1þ 2

k3

� �
log k ð4:52dÞ

The BST model

rE ¼ kn�1 � k�2n�1	 
 2G
n

þmBIm�1
E

� �
ð4:52eÞ

where

IE ¼ 2kn þ k�2n � 3
n

ð4:52fÞ

Here, it is noteworthy that pure shear is different from simple shear because
simple shear is the composition of rotation and pure shear which is extension in one
direction and compression in the direction perpendicular to the direction of the
extension.

As shown in Fig. 12, both the Ogden and the BST models fit experimental data
very well, while the VL model has the limitation ðk\3Þ. Such limitation of the VL
model seems to be originated from smaller number of material parameters com-
pared to other models. The BST model is better than the Ogden model because it
has smaller number of parameters and better quality of fitting. However, it is
noteworthy that the mathematical form of the Ogden model is simpler than that of
the BST model.

As for solving a boundary value problem, these three models require the cal-
culation of principal axis at every calculation step because these models are based
on principal axis. Strain potential of principal invariants is more convenient than the
three models. However, it is rare to find such strain potential which can fit
experimental data over wide range of extension.
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Problems 4

[1] As for FENE model, the force vector on a single chain can be written as

f ¼ � @/ h;N; bð Þ
@h

ð4:aÞ

Find the potential / h;N; bð Þ
[2] Derive the free energy of Eq. (4.17) by replacing the single-chain free energy

of Eq. (4.15) by / h;N; bð Þ of the problem [1].
[3] Apply a simple shear F ¼ Iþ ce1e2 to Eq. (4.18) and calculate the stress in

terms of shear strain γ.
[4] Derive Eqs. (4.27), (4.28), and (4.29).
[5] Derive Eq. (4.41).
[6] As for strain potential of principal invariants, derive the principal stress

components in terms of the derivatives of the strain potential with respect to IB
and IIB and extension ratios.

[7] Variational method for the determination of principal stress components
For incompressible elastic material, strain potential should satisfy

@U
@ki

� fi

� �
dki ¼ 0 ð4:bÞ

subject to the incompressible condition d k1k2k3ð Þ ¼ 0. Then, the hydrostatic
pressure p can be used as a Lagrangian multiplier. Here, the force fi is related
with principal components of stress by

fi ¼ rikmkn with i 6¼ m 6¼ n ð4:cÞ

Derive the following by using Lagrangian multiplier method:

ri ¼ �pþ ki
@U
@ki

ðno sum on iÞ ð4:dÞ
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Chapter 5
Theory of Linear Viscoelasticity

Abstract This chapter mainly introduces theories of one-dimensional linear vis-
coelasticity based on Boltzmann superposition and the concept of linear response.
The second section deals with measurement of linear viscoelasticity (experimental
aspects), and the third section deals with phenomenological models such as spring–
dashpot and parsimonious models. The last section is devoted to molecular theories
of polymer viscoelasticity in linear regime.

For mathematical simplicity, we consider mainly one-dimensional case such as
simple shear. If necessary, we shall provide three-dimensional extension. This
chapter consists of phenomenological theory, linear viscoelastic measurements and
data processing, phenomenological models, and molecular theories.

1 Fundamental Theory

Phenomenological theory, here, is the one that expresses mathematically the
experimental observation without molecular considerations. Hence, the parameters
of phenomenological theory of linear viscoelasticity cannot tell us their relations to
molecular structure of polymers by the theory itself. However, experimental results
for well-designed samples may give the relations. Although phenomenological
theory cannot give detail information, it is more general and exact in some aspects
that molecular theory because almost molecular theories are approximations
derived from fundamental equations. Here, we shall study phenomenological theory
of linear viscoelasticity that must be obeyed.

1.1 The Origin of Viscoelasticity

As mentioned in the head of Sect. 3 in Chap. 2, viscoelastic material can be defined
as the one whose stress depends on deformation history: both deformation path and

© Springer Science+Business Media Dordrecht 2016
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deformation rate. Hence, this definition allows the set of viscoelastic materials to
include elastic bodies, viscous fluids, and elastoplastic materials as special subsets.
Consider only materials which do not belong to such special subsets.

It is found that polymeric materials show time-dependent stress when a given
strain is given as cðtÞ ¼ coHðtÞ where HðtÞ is the unit step function defined in
Eq. (3.79) in Chap. 2 and co is a constant. From experience, we know that stress is a
monotonically decreasing function of time for any value of co. What is the origin of
this phenomenon?

We have seen that stress is a functional of the configuration of molecules in
Sect. 2.3 in Chap. 3 (see Eq. 2.118 in Chap. 3). As for constant strain of coHðtÞ, it is
expected that the material goes to an equilibrium state complying the constant
strain. This implies the configuration of molecules changes to the equilibrium
configuration. If the characteristic time needed for the new equilibrium, λ, is much
shorter than the observation time, tobs, then the stress looks like a constant. If the
characteristic time is sufficiently longer than the observation time, then
time-dependent stress is observed. We define the Deborah number such that

De ¼ k
tobs

ð1:1Þ

It is the ratio of material-dependent time to the minimum time for detecting a
rheological phenomenon. The extreme case that De ! 0 corresponds to elastic and
viscous materials because elastic material shows nonzero constant stress, while
viscous fluid shows zero stress. Then, it can be said that both elastic and viscous
materials are the limiting cases of viscoelastic materials.

For the strain of cðtÞ ¼ coHðtÞ, stress response of viscoelastic material rðtÞ is a
decreasing function of time and experimental results let us know that

lim
t!1r t; coð Þ ¼ r1 coð Þ ¼ 0 for fluid

r1 coð Þ[ 0 for solid

�
ð1:2Þ

Equation (1.2) is a classification of solid and fluid. Then, we can express the stress
formally as follows:

r t; coð Þ ¼ ro coð Þ/kðtÞþr1 coð Þ½ �HðtÞ ð1:3Þ

where

d/k

dt
� 0 ; /k 0ð Þ ¼ 1 ; lim

t!1/kðtÞ ¼ 0 ; r 0; coð Þ ¼ ro coð Þþr1 coð Þ ð1:4Þ

The subscript λ indicates that whenever t � k, /kðtÞ � 0. Equation (1.3) includes
the stress behavior of elastic, viscous, and narrow-meaning viscoelastic materials
when strain is given by cðtÞ ¼ coHðtÞ. A representative example of /kðtÞ may be
expð�t=kÞ. From this viewpoint, viscous fluid is the limiting case that k ! 0 and
r1 coð Þ ¼ 0 and elastic solid is the limiting case that k ! 1 and r1 coð Þ[ 0. This
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picture means that De ! 0 makes viscoelastic material look like viscous fluid and
De ! 1 makes viscoelastic material look like elastic solid. This is the key point of
the Pipkin diagram (Pipkin 1972). The Pipkin picture looks like contradiction to the
aforementioned statement that De ! 0 gives both viscous and elastic materials. The
characteristic time λ of the Pipkin picture is called relaxation time.

A concrete example of elastic solids is crystalline of atoms. Only nearest neighbor
atoms interact through harmonic potential. As a toy model, consider one-dimensional
array of atoms connected with harmonic potential. Long-wavelength approximation of
this discrete system gives linear elastic materials (Kardar 2007). In this model, cðtÞ ¼
coHðtÞ gives rise to wave of displacement of atoms from the original equilibrium
positions. The propagation speed of the wave can be estimated by the sonic speed
c. Then, the characteristic time for new equilibrium can be estimated by k ¼ L=c
where L is the linear dimension of elastic solid. When t\L=c, the wave propagation
makes stress fluctuate, and when t[ L=c, the kinetic energy and potential energy of
each atom become equal (equipartition of energy), and neglecting fast oscillation
around new equilibrium positions of atoms, we observe that macroscopic stress field
is uniform over the whole specimen (Toda 1988). Although equipartition of energy
is not found in one-dimensional crystal with harmonic potential, it is believed that
equipartition of energy appears in three-dimensional harmonic lattice (Toda 1988).
Then, we can modify the function /kðtÞ as the one that behaves like a bounded wave
packet when 0\t � k and /kðtÞ � 0 for t[ k. Then, observed equilibrium stress
becomes r1 coð Þ. Here, we need to distinguish the characteristic time k ¼ L=c from
the relaxation time. In this picture, ro coð Þ cannot be defined clearly because it
includes fluctuating nature of microstate (see Chap. 3). Since rheology is a macro-
scopic theory of physics, we will follow mainly the Pipkin picture.

In summary, most materials are viscoelastic and limiting cases are elastic and
viscous materials.

1.2 The Boltzmann Superposition Principle

We can give a stimulus to a system in order to understand the structure of the
system through the analysis of the response of the system. Here, we consider only
linear systems which have a linear relation between the stimulus and the response of
the system.

Both strain cðtÞ and stress rðtÞ can be used as stimulation for a rheological
system. Both quantities are considered as functions of time t. When strain is given
as a stimulus, stress is measured as the response and vice versa. The relation
between stress and strain can be expressed formally by

rðtÞ ¼ >½cðtÞ� ð1:5Þ
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where >½cðtÞ� represents a suitable functional because both stress and strain are
functions of time. Since we consider only linear rheological systems, the functional
must satisfy the following for any real numbers and functions of time:

>½ac1ðtÞþ bc2ðtÞ� ¼ a> c1ðtÞ½ � þ b> c2ðtÞ½ � ð1:6Þ

To identify the linear viscoelastic system, we need to express any strain function as

cðtÞ ¼
Z t

�1

dc sð Þ
ds

H t � sð Þ ds ð1:7Þ

where it is assumed that c �1ð Þ ¼ 0. Since integration is a summation over infi-
nitely many terms indexed by the dummy variable of the integration, substitution of
Eq. (1.7) into Eq. (1.5) gives

rðtÞ ¼
Z t

�1
G t � sð Þ dc

ds
ds ð1:8Þ

where

GðtÞ ¼ >½HðtÞ� ð1:9Þ

Note that the functional >½�� maps a function of τ to a function of t as shown in
Eq. (1.8). The linearity of the functional results in Eq. (1.8). Equation (1.8) is the
Boltzmann superposition principle.

The function GðtÞ represents the response of the rheological system, which can
be determined by the measurement of the response driven by the stimulation of the
unit step function. Since strain is used as the stimulation, the dimension of the
response function GðtÞ is that of modulus. Hence, we call GðtÞ relaxation modulus.
Relaxation modulus can be determined experimentally by the use of strain of
cðtÞ ¼ coHðtÞ. This experiment is called stress relaxation test. However, it must be
noticed that Eq. (1.8) is valid for any strain although relaxation modulus is deter-
mined by the strain of the unit step function.

It must be recognized that the response function GðtÞ is a monotonic decreasing
function of time such that

dG
dt

� 0 for any t ð1:10Þ

Consider the case that cðtÞ ¼ coHðtÞ where co is a constant. Substitution of this
function of time into Eq. (1.5) gives

rðtÞ ¼ coGðtÞ ð1:11Þ
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If dG=dt[ 0 for any time, even an infinitesimally small strain makes the material
break because at constant strain stress increases infinitely. Thus, the function GðtÞ
must be bounded:

0�GðtÞ�Gmax ð1:12Þ

The lower bound of zero is needed because it cannot be imagined that the direction
of stress is reverse to that of strain. If G 0þð Þ\Gmax, then there must exist an
interval of time. Assume that the material breaks at r[rB. Then, we can adjust
strain amplitude co to make coGmax be larger than the breaking stress rB. This
allows an impossible situation that at constant strain, the material breaks after the
time tmax at which G tmaxð Þ ¼ Gmax. Hence, we can conclude that

dG
dt

� 0 ; GðtÞ	 0 for any t[ 0 ð1:13Þ

Since elastic material has stress as a function of current strain, constant strain
implies constant stress. Then, it is obvious that the relaxation modulus of elastic
material is a positive constant. Since the stress of Newtonian fluid is linearly
proportional to strain rate, Eq. (1.8) implies that the relaxation modulus is pro-
portional to the Dirac delta function. Definition of solid and fluid in Eq. (1.2) gives

lim
t!1GðtÞ	 0 ð1:14Þ

Since relaxation modulus is a monotonic decreasing function of time, Eq. (1.8)
implies that the strain given at far past gives smaller effect on current stress than that
given at near past. Because of the principle of causality, we can say that strain to be
given at future cannot influence current stress. Then, we can impose additional
condition on the mathematical form of relaxation modulus:

GðtÞ ¼ GðtÞ	 0 t	 0
0 t\0

�
ð1:15Þ

Then formally, relaxation modulus can be expressed formally as follows:

GðtÞ ¼ G1 þ Go � G1ð Þ/ðtÞ½ �HðtÞ ð1:16Þ

where

/ðtÞ	 0 ; / 0ð Þ ¼ 1 ; lim
t!1/ðtÞ ¼ 0 ;

d/
dt

� 0 ð1:17Þ

and Go [G1 	 0 and G1 ¼ 0 for fluid and G1 [ 0 for solid, respectively. Note
that /ðtÞ is a dimensionless function.
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Similarly, we can apply the same reasoning to the case that stress is given and
strain is measured. Then, the Boltzmann superposition is expressed by

cðtÞ ¼
Z t

�1
J t � sð Þ dr

ds
ds ð1:18Þ

where the response function JðtÞ is called creep compliance and

JðtÞ ¼ >�1½HðtÞ� ð1:19Þ

Creep compliance can be determined by the experiment which uses stress input of
rðtÞ ¼ roHðtÞ. Such experiment is called creep test.

Experimental observation tells us that creep compliance is a monotonically
increasing function of time. Then, we know that

JðtÞ ¼ JðtÞ	 0 t	 0
0 t\0

;
dJ
dt

	 0 for t[ 0
�

ð1:20Þ

Equation (1.20) includes the principle of causality, too.
Note that the functional >�1½�� is the mapping from stress to strain and it is the

inverse of >½��. Then, it can be said that when strain is given by cðtÞ ¼ JðtÞHðtÞ,
stress must be the unit step function:

HðtÞ ¼
Z t

�1
G t � sð Þ dJ sð Þ

ds
ds ð1:21Þ

Because of the principle of causality, dJ=ds ¼ 0 for s\0. Then, Eq. (1.21) can be
rewritten by

HðtÞ ¼
Z t

0

G t � sð Þ dJ
ds

ds ð1:22Þ

The right-hand side is the convolution of relaxation modulus and the derivative of
creep compliance. Application of Laplace transform gives

eGðsÞ eJðsÞ ¼ 1
s2

ð1:23Þ

and Z t

0

G t � sð Þ J sð Þ ds ¼
Z t

0

G sð Þ J t � sð Þ ds ¼ t ð1:24Þ

290 5 Theory of Linear Viscoelasticity



We now can derive mathematical form of creep compliance from the formal
expression of relaxation modulus. Application of Eq. (1.16)–(1.23) gives

seJðsÞ ¼ 1

G1 þ Go � G1ð Þ s e/ðsÞ ð1:25Þ

The initial value theorem of Laplace transform (see Problem 6, Baumgärtel et al.
1990) gives

J 0þð Þ ¼ lim
s!1

1

G1 þ Go � G1ð Þ s e/ðsÞ ¼ 1
Go

ð1:26Þ

Here, we used

/ 0þð Þ ¼ lim
s!1 s e/ðsÞ ¼ 1 ð1:27Þ

The final value theorem of Laplace transform (see Problem 6, Baumgärtel et al.
1990) gives

lim
t!1 JðtÞ ¼ lim

s!0

1

G1 þ Go � G1ð Þ s e/ðsÞ ¼ 1
G1

ð1:28Þ

Here, we used

lim
t!1/ðtÞ ¼ lim

s!0
s e/ðsÞ ¼ 0 ð1:29Þ

Equation (1.28) implies that the creep compliance of fluid becomes infinite because
fully relaxed modulus of fluid is zero: G1 ¼ 0. Hence, we are interested in the
asymptotic behavior of dJ=dt. Applying the final value theorem of Laplace trans-
form to the Laplace transform of dJ=dt, we have

lim
t!1

dJ
dt

¼ lim
s!0

s seJðsÞ � J 0þð Þ� � ¼ 1

Go
e/ 0ð Þ

for fluid

0 for solid

8<: ð1:30Þ

Note that

e/ 0ð Þ ¼
Z1
0

/ðtÞ dt ¼ 1
Go � G1

Z1
0

GðtÞ � G1½ � dt[ 0 ð1:31Þ
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Since e/ 0ð Þ is a positive constant, it can be said that for viscoelastic fluid, we know that

JðtÞ / t for large t ð1:32Þ

Figure 1 shows a schematic illustration of viscoelastic fluid and solid in terms of
creep compliance and relaxation modulus.

Since creep compliance is an increasing function of time, we can formally
express the creep compliance as follows:

JðtÞ ¼
1
Go

þ JrWðtÞþ t
go

h i
HðtÞ for fluid

1
Go

þ JrWðtÞ
h i

HðtÞ for solid

8<: ð1:33Þ

where dimensionless function WðtÞ satisfies

W 0ð Þ ¼ 0 ; lim
t!1WðtÞ ¼ 1 ;

dW
dt

	 0 ð1:34Þ

As for solid, it is obvious that

1
G1

¼ 1
Go

þ Jr ð1:35Þ

As for fluid, asymptotic equation for creep compliance is given by

JðtÞ ¼ Joe þ
t
go

for large t ð1:36Þ
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Fig. 1 Schematic illustration of viscoelastic fluid and solid
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The steady-state compliance Joe is related to Jr by

Joe ¼ 1
Go

þ Jr ð1:37Þ

In Eq. (1.33), we introduced a new quantity called the zero-shear viscosity:

go ¼ Go

Z1
0

/ðtÞ dt ð1:38Þ

Since the zero-shear viscosity appears in viscoelastic fluid, Eq. (1.38) can be
rewritten by

go ¼
Z1
0

GðtÞ dt ð1:39Þ

1.3 Dynamic Experiment

Both stress relaxation and creep tests are called static experiment because stimu-
lation is constant for t[ 0. Static experiments are not easy to implement because
we cannot generate the unit step function perfectly. On the other hand, it is
experimentally easy to generate sinusoidal stimulation. Such experiment is called
dynamic experiment. If we can generate sinusoidal stimulation without any limi-
tation of frequency, then the response function from dynamic test is more accurate
than that from static experiment. It is because the response functions from static
experiments are not reliable at short-time regime in which implementation of the
unit step function is not exact.

For simplicity, we consider only the case of G1 ¼ 0. The case of G1 [ 0 can
be easily recovered if replacing GðtÞ by GðtÞ � G1 in the following equations. See
Problems 1.

Consider strain can be generated by cðtÞ ¼ co sinxt where co is the strain
amplitude and ω is the angular frequency. Then, the Boltzmann superposition
principle gives

rðtÞ ¼ cox
Z t

�1
G t � sð Þ cosxs ds ð1:40Þ

Changing variable by n ¼ t � s and using formula of trigonometric functions,
we have
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rðtÞ ¼ G0ðxÞ cðtÞþ g0ðxÞ _cðtÞ ð1:41Þ

where cðtÞ ¼ co sinxt, _cðt) ¼ dc=dt, and

G0ðxÞ 
 x
Z1
0

GðtÞ sinxt dt; g0ðxÞ 

Z1
0

GðtÞ cosxt dt ð1:42Þ

If G0ðxÞ ¼ 0, then Eq. (1.41) is analogous to the constitutive equation of viscous
fluid because rðtÞ ¼ g0ðxÞ _cðtÞ. If g0ðxÞ ¼ 0, then Eq. (1.41) is analogous to the
constitutive equation of elastic solid because rðtÞ ¼ G0ðxÞ cðtÞ. Elastic solid stores
energy, while viscous fluid dissipates mechanical energy. Hence, G0ðxÞ is called
storage modulus, and loss modulus is defined by

G00ðxÞ ¼ xg0ðxÞ ¼ x
Z1
0

GðtÞ cosxt dt ð1:43Þ

Both storage and loss moduli are called dynamic moduli. Note that Eq. (1.41) holds
for strain of cðtÞ ¼ co sin xtþ/ð Þ for any real number /:

rðtÞ ¼ G0ðxÞ cðtÞþ G00ðxÞ
x

dc
dt

ð1:44Þ

In summary, storage modulus represents elastic characteristics of viscoelastic
material, while loss modulus represents viscous characteristics.

1.3.1 Complex Notation

Every measurable quantity is real number. However, the use of complex numbers is
very convenient in the description of the results of dynamic tests. Adopting com-
plex strain such as c�ðtÞ ¼ co exp ixtð Þ, Eq. (1.8) can be rewritten by

r�ðtÞ ¼ ixco

Z t

�1
G t � sð Þ eixsds ¼ G�ðxÞ c�ðtÞ ð1:45Þ

where complex modulus G�ðxÞ is defined as

G�ðxÞ 
 ix
Z1
0

GðtÞ e�ixtdt ð1:46Þ
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Applying Euler’s formula such as eih ¼ cos hþ i sin h, Eq. (1.46) can be
rewritten by

G�ðxÞ ¼ G0ðxÞþ iG00ðxÞ ð1:47Þ

Since dc�=dt ¼ ixc�ðtÞ, Eq. (1.45) can be rewritten by

r�ðxÞ ¼ g�ðxÞ dc
�ðtÞ
dt

ð1:48Þ

where complex viscosity is defined by

g�ðxÞ ¼ G�ðxÞ
ix

ð1:49Þ

The immediate consequences of Eq. (1.49) are

g0ðxÞ 
 G00ðxÞ
x

; g00ðxÞ 
 G0ðxÞ
x

ð1:50Þ

If we replace iω by s, then Eq. (1.46) can be rewritten in terms of Laplace
transform:

G�ðxÞ ¼ seGðsÞ
h i

s¼ix
ð1:51Þ

As for Eq. (1.49), we have

g�ðxÞ ¼ eG ixð Þ ð1:52Þ

From the properties of relaxation modulus, we know that there exists the Fourier
transform of relaxation modulus. The principle of causality gives

ĜðxÞ ¼
Z1
�1

GðtÞ e�ixtdt ¼
Z1
0

GðtÞ e�ixtdt ¼ eG ixð Þ ¼ g�ðxÞ ð1:53Þ

Then, replacement of v0ðxÞ and v00ðxÞ of Eq. (6.44) in Chap. 1 by g0ðxÞ and
g00ðxÞ, respectively, gives

GðtÞ ¼ 2
p

Z1
0

g0ðxÞ cosxt dx ¼ 2
p

Z1
0

g00ðxÞ sinxt dx ð1:54Þ

This is the consequence from the inverse Fourier transform of complex viscosity.
See Sect. 6 in Chap. 1.
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Equation (1.54) says that relaxation modulus can be determined by the mea-
surement of dynamic moduli. On the other hand, Eqs. (1.42) and (1.43) imply that
the measurement of relaxation modulus allows us to determine dynamic moduli.
Therefore, these equations show that dynamic experiment is equivalent to static
experiments. However, the use of Eqs. (1.42), (1.43), and (1.54) is not effective
because experimental data are obtained in a finite range of time or frequency.

If we apply r�ðtÞ ¼ ro exp ixtð Þ to Eq. (1.18), then we can define complex
compliances such that

J�ðxÞ ¼ ix
Z1
0

JðtÞ e�ixtdt ð1:55Þ

Since JðtÞ is an increasing function of time, it is difficult to complex compliance by
the use of Eq. (1.55) directly. Analogy to Laplace transform is easier:

J�ðxÞ ¼ seJðsÞ� �
s¼ix ð1:56Þ

With the help of Eq. (1.23), it is easy to derive

J�ðxÞ ¼ 1
G�ðxÞ ð1:57Þ

Analogous to dynamic moduli, we define storage and loss compliances as the real
and imaginary parts of complex compliance:

J�ðxÞ ¼ J 0ðxÞ � iJ 00ðxÞ ð1:58Þ

Then, we have the relations:

J 0ðxÞ ¼ G0ðxÞ
G0ðxÞ½ � 2 þ G00ðxÞ½ � 2 ; J 00ðxÞ ¼ G00ðxÞ

G0ðxÞ½ � 2 þ G00ðxÞ½ � 2 ð1:59Þ

1.3.2 Terminal Behavior

When frequency is extremely low, we can use the approximations such that

sinxt � xt ; cosxt � 1 ð1:60Þ

Then, dynamic moduli are approximated at extremely low frequencies as follows:

G0ðxÞ � x2
Z t

0

tGðtÞ dt ; G00ðxÞ � gox ð1:61Þ

296 5 Theory of Linear Viscoelasticity



Here, we used Eq. (1.39). Equation (1.61) implies

Z t

0

tGðtÞ dt ¼ lim
x!0

G0ðxÞ
x2 ;

Z t

0

GðtÞ dt ¼ lim
x!0

G00ðxÞ
x

ð1:62Þ

As for dynamic compliances, we have

lim
x!0

J 0ðxÞ ¼ 1
g2
o

Z1
0

tGðtÞ dt ; lim
x!0

1
xJ 00ðxÞ ¼ go ð1:63Þ

As for dynamic viscosities, we have

lim
x!0

g0ðxÞ ¼ go; lim
x!0

g00ðxÞ
x

¼
Z t

0

tGðtÞ dt ð1:64Þ

Note that all these equations hold when G1 ¼ 0.
Asymptotic behavior (Eq. 1.36) gives the Laplace transforms of creep compli-

ance and relaxation modulus as follows:

seJðsÞ ¼ Joe þ
1
gos

; seGðsÞ ¼ gos
1þ Joegos

ð1:65Þ

Then, we have asymptotic dynamic moduli:

G0ðxÞ ¼ Joeg
2
ox

2

1þ Joegox
� �2 ; G0ðxÞ ¼ gox

1þ Joegox
� �2 ð1:66Þ

It is interesting that dynamic moduli of Eq. (1.66) are those of the Maxwell model
such that Go ¼ 1

	
Joe and ko ¼ Joego. Dynamic moduli of Eq. (1.66) give the fol-

lowing terminal behavior:

Z t

0

tGðtÞ dt ¼ Joeg
2
o;

Z t

0

GðtÞ dt ¼ go ð1:67Þ

Note that the asymptotic behavior is the result from neglecting detailed behavior at
low-frequency regime.

Equation (1.67) allows us to define mean relaxation time k as follows:

k ¼ Joego ¼
R t
0 tGðtÞ dtR t
0 GðtÞ dt

ð1:68Þ
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Equation (1.68) illustrates the reason why we call Joego mean relaxation time. This
is the characteristic time scale of stress relaxation.

1.4 The Kramers–Kronig Relations

Storage and loss moduli can be calculated from relaxation modulus as shown in
Eqs. (1.42) and (1.43). Therefore, storage modulus is not independent of loss
modulus. The Kramers–Kronig relations allow us to calculate storage modulus
from loss modulus and vice versa. The relations were originally derived by the use
of Cauchy’s residue theorem for complex integration. However, we shall use
Laplace transform in order to minimize the knowledge of complex analysis.

We start from Eq. (1.54). Taking Laplace transform on both sides of Eq. (1.54),
we have

seGðsÞ ¼ 2
p

Z1
0

G0 wð Þ s
s2 þw2 dw ð1:69Þ

and

seGðsÞ ¼ 2
p

Z1
0

G00 wð Þ
w

s2

s2 þw2 dw ð1:70Þ

Note that complex notation for dynamic moduli gives

G0ðxÞ ¼ Re ixeG ixð Þ
n o

; G00ðxÞ ¼ Im ixeG ixð Þ
n o

ð1:71Þ

Then, we replace s by iω and obtain

G0ðxÞ ¼ 2x2

p

Z1
0

G00ðwÞ=w
x2 � w2 dw; G00ðwÞ ¼ 2x

p

Z1
0

G0ðxÞ
w2 � x2 dw ð1:72Þ

or

g0ðxÞ ¼ 2
p

Z1
0

wg00 wð Þ
w2 � x2 dw ; g00ðxÞ ¼ 2x

p

Z1
0

g0 wð Þ
x2 � w2 dw ð1:73Þ

Since both storage and loss moduli are simultaneously measured in dynamic
experiment, the Kramers–Kronig relations are not frequently used. Hence, in usual
case, it is not necessary to determine one dynamic modulus from the data of the
other dynamic modulus. However, as for reactive systems such as polymer under
curing reaction, one of the dynamic moduli is not precisely measured because the
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material undergoes transition from fluid to solid. If solid-like feature is stronger than
fluid-like feature, then storage modulus is more precisely measured than loss
modulus and vice versa. However, since the frequency range of such experiment is
very narrow, direct use of Eq. (1.72) is not effective. Booij and Thoone (1982)
invented an effective approximation of the Kramers–Kronig relations.

1.5 Thermodynamic Analysis

As for elastic solid, thermodynamic state can be described by strain. Since stress is
determined by the current strain, the work is a function of strain. As shown in
Eqs. (4.65) and (4.72) in Chap. 2, no heat flux gives no entropy production in
elastic solid. On the other hand, Eqs. (4.58) and (4.71) in Chap. 2 imply that viscous
fluid can generate entropy production without heat flux. Without heat flux, the
temperature Eq. (4.104) in Chap. 2 becomes

qcV
dT
dt

¼ T : Dþ qT2 @

@T
1
T

df
dt


 �
T

� 
ð1:75Þ

As for elastic body, the right-hand side is canceled. Hence, no temperature rise
occurs in elastic body without heat transfer. As for viscous fluid, f ¼ f q; Tð Þ and

df
dt


 �
T
¼ @f

@q


 �
T

dq
dt

¼ r � v
q

@f
@m


 �
T
¼ � p r � vð Þ

q
ð1:76Þ

Substitution of Eq. (1.76) to Eq. (1.75) gives

qcV
dT
dt

¼ 2gsD
0 : D0 þgb r � vð Þ2�qT

@

@T
p
q


 �
ð1:77Þ

where the constitutive equation of Newtonian fluid, Eq. (3.43), in Chap. 2 was used.
Thus, flow induces temperature rise of the viscous fluid. In summary, it can be said
that the work given to elastic body cannot be transformed to heat without heat flux,
while the work given to viscous fluid is transformed to heat without heat flux.

Then, we can guess that if we can decompose the work given to viscoelastic
material to elastic and viscous parts, then the partial work due to viscous stress is
transformed to heat. It is practically impossible to do such decomposition for
general deformation processes. However, in linear viscoelasticity, the use of
Eq. (1.44) gives

W ¼
Z t

0

r t0ð Þ dc
dt0

dt0 ¼ G0ðxÞ
2

c2ðtÞ � c2 0ð Þ� �þ G00ðxÞ
x

Z t

0

dc
dt0


 �2

dt0 ð1:78Þ
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The first term can be considered as the strain energy potential whose modulus is
storage modulus, and the second term is not negative for any time. If t is the period
of strain t ¼ 2p=x, then the elastic term disappears and the viscous term is given by

W
2p
x


 �
¼ pG00ðxÞ c2o ð1:79Þ

The above analysis tells us that elastic energy stored in the material can be rep-
resented by G0ðxÞ and energy dissipation by G00ðxÞ. Then, we can define the ratio
of loss of energy to stored energy by

tan dðxÞ ¼ G00ðxÞ
G0ðxÞ ð1:80Þ

It is called loss tangent. The meaning of phase angle dðxÞ can be easily understood
if we take strain as cðtÞ ¼ co sinxt. Then, Eq. (1.44) can be rewritten by

rðtÞ ¼ G�ðxÞj j co sin xtþ dðxÞ½ � ð1:81Þ

where

G�ðxÞj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0ðxÞ½ � 2 þ G00ðxÞ½ � 2

q
ð1:82Þ

Problem 1

[1] When relaxation modulus is given by

GðtÞ ¼
ffiffiffiffiffi
ko
t

r
exp � t

kR


 �
HðtÞ ð1:aÞ

Find JðtÞ, G0ðxÞ, and G00ðxÞ.
[2] For an analytic function H kð Þ	 0, suppose a material whose relaxation

modulus is given by

GðtÞ ¼
Z1
0

H kð Þ
k

exp � t
k

� �
dk ð1:bÞ

Find dynamic moduli.
[3] Derive Eq. (1.41) for cðtÞ ¼ co sin xtþ/ð Þ by the use of the Boltzmann

superposition principle.
[4] When the Fourier transform of shear stress is denoted by r̂ðxÞ, derive

r̂ðxÞ ¼ ixĜðxÞ ĉðxÞ ð1:cÞ
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where ĜðxÞ and ĉðxÞ are, respectively, Fourier transforms of relaxation
modulus and strain.

[5] Derive Eq. (1.63).
[6] Using Eq. (1.8), calculate the stress from the strain of cðtÞ ¼ _cot where _co is

a constant.
[7] Calculate steady-state compliance and mean relaxation time by using the

following data:

ω (rad/s) 0.100 0.200 0.398 0.794 1.58 3.16 6.31

G′(Pa) 0.0360 0.142 0.543 1.86 4.79 8.00 9.98

G″(Pa) 0.633 1.25 2.40 4.16 5.54 5.20 4.48

[8] Consider a viscoelastic material whose creep compliance is given by

JðtÞ ¼ Jg þ Jr 1� e�t=s
� �þ t

gN

� 
HðtÞ ð1:dÞ

Impose the stress of ro HðtÞ �H t � tRð Þ½ � on the material and calculate the
strain. Note that all parameters are positive constants.

[9] Calculate the zero-shear viscosity and steady-state compliance of the material
which can be described by Eq. (1.d).

[10] Calculate dynamic moduli of the material such that

seJðsÞ ¼ Jg þ Jr
1þ ffiffiffiffi

ss
p þ 1

gNs
ð1:eÞ

[11] When G1 [ 0, show that

G0 xð Þ ¼ G1 þx
Z1
0

G tð Þ � G1½ � sinxt dt;

G00 xð Þ ¼ x
Z1
0

G tð Þ � G1½ � cosxt dt;
ð1:fÞ

G tð Þ ¼ G1 þ 2
p

Z1
0

G0 xð Þ � G1
x

sinxt dx;

G tð Þ ¼ G1 þ 2
p

Z1
0

G00 xð Þ
x

cosxt dx;

ð1:gÞ
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[12] When G1 [ 0, how can we define the characteristic time scale for stress
relaxation?

[13] Show that for G1 ¼ 0

G 
 1
Joe

� 2
p

Z1
0

g0ðxÞ dx ð1:hÞ

[14] Show that the following are valid in the terminal region:

logG0ðxÞ � 2 logG00ðxÞþ log Joe ð1:iÞ

2 Measurement of Linear Viscoelasticity

We shall study experimental aspects of linear viscoelasticity of polymer by focusing
on rotational rheometer and data processing in this section.

2.1 Devices and Instruments

Rheometer is an instrument designed to measure viscoelastic properties of mate-
rials. Commercialized rheometers can measure not only linear viscoelastic prop-
erties but also nonlinear ones. Rheometer consists of units for controlling
stimulation and measuring material responses.

Rotational rheometer is classified into two types: stress-controlled and strain-
controlled rheometers. The former controls stress as stimulation and measures strain
as the response of the material, while the latter controls strain and measures stress. As
for stress-controlled rheometer, strain is measured by an optical device which is firmly
fixed in the machine. Hence, it is not often to make some damage on the measuring
device when the specimen is loaded in the rheometer. On the other hand, the sensor
for stress measuring in strain-controlled rheometer can be damaged often during
sample loading. In principle, stress-controlled rheometer cannot be used for stress
relaxation experiment, while strain-controlled rheometer cannot be used for creep
experiment. Both types of rheometers can be applied to dynamic test. Although
strain-controlled rheometer is free from inertia problem, stress-controlled rheometer
suffers from inertia problem because the torque applied by the rheometer gives rise to
both the stress due to material and the acceleration of the fixture which has nonzero
moment of inertia. Although the inertia effect of the fixture can be removed in
dynamic test of linear viscoelasticity, it could not be removed in creep test until Kim
et al. (2015) developed a method using Laplace transform. The inertia effect remains
still unsolved in large-amplitude oscillatory shear (LAOS), a nonlinear dynamic test.
Hence, we have to make a caution on types of rotational rheometers.
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There are several fixtures used in both types of rotational rheometers. As for
polymer melts and polymer solutions with high viscosity, cone-and-plate and
parallel plate fixtures of various sizes are popularly used. Figure 2 shows the two
representative fixtures. Cup-and-bowl or other fixtures may be adopted for
low-viscosity samples.

In parallel plate fixture, strain rate varies along the distance from the rotational
axis, while strain is almost constant everywhere in cone-and-plate fixture. Detailed
kinematic analysis is found in Macosko (1994). Although cone-and-plate fixture
looks like better than parallel plate fixture because of homogeneity of strain, it is
difficult to load high elastic material in cone-and-plate fixture. Parallel plate fixture
gives acceptable results in linear viscoelastic tests with easy sample loading.

2.2 Preliminary Tests

In order to measure linear viscoelastic response functions, the linearity conditions
must be checked. Even if linearity is valid, there are a number of things to be taught
to reduce errors in measurements. Examples are sample preparation, temperature
calibration, thermal expansion of fixture, alignment of rotating axis of fixture,
thermal stability of materials, and so on. There is a review paper recommendable for
the readers interested in error sources in rotational rheometer (Stadler 2014). This
paper is focused on practical aspects in linear viscoelastic experiments. This sub-
section mainly deals with preliminary test methods and related mathematical
principles.

2.2.1 Linearity Experiments

Consider the case of stress relaxation first. To check the linearity of material, one
has to choose several strain amplitudes. For n strain amplitudes of
c1\c2\ � � �\cn, the set n stress functions r1ðtÞ; r2ðtÞ; . . .;rnðtÞ would be
measured. If all strain amplitudes satisfy the linearity conditions, then we would

Fixed Part

Rotation Part

Cone -and -Plate Fixture Parallel Plate Fixture

Fig. 2 Fixtures of rotational rheometers
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have G1ðtÞ ¼ G2ðtÞ ¼ � � � ¼ GnðtÞ where GkðtÞ ¼ rkðtÞ=ck . There is upper bound
of strain amplitude such that linearity holds if and if ck\cmax. Assume that

c1\ � � �\ck\cmax\ckþ 1\ � � �\cn ð2:1Þ

Then, for k strain amplitudes, identical relaxation modulus is obtained, while dif-
ferent relaxation moduli are obtained for i[ k. If strain amplitude is too small, then
stress signal is apt to be lower than the lower bound of the torque sensor of
strain-controlled rheometer. Thus, it is usual to choose strain amplitude as ck or
ck�1. Figure 3 illustrates schematically how strain amplitude is chosen. The figure
shows that strain amplitudes higher than 0.4 give nonlinear results.

Similar test must be done for creep and dynamic tests. By varying the amplitude
of stimulation, we have to found the region of stimulation amplitude where
superposition of the response functions as shown on the right graph in Fig. 3. As for
dynamic test, linearity checking can be done by amplitude sweep test which is the
test at a fixed frequency with varying stimulation amplitude. Here, stimulation
amplitude is strain amplitude for strain-controlled rheometer and stress amplitude
for stress-controlled rheometer.

If a strain amplitude belongs to linear regime, then dynamic moduli at the same
frequency must be identical. As shown in Fig. 4, as strain amplitude increases,
storage modulus becomes to show bigger deviation from a constant value. The
upper bound of strain amplitude for linearity depends on frequency as shown in
Fig. 4. Hence, if one wants to frequency sweep test for xmin �x�xmax with
strain-controlled rheometer, then strain amplitude sweep test must be done, at least,
two times for the two frequencies xmin and xmax. We select the optimum amplitude
for frequency sweep test as the minimum of the two upper bounds.
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Fig. 3 Schematic illustration for linearity check in stress relaxation
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2.2.2 Waiting Time for Dynamic Test

Consider a dynamic test by strain-controlled rheometer. When strain is given by
cðtÞ ¼ co sinxt, transient response of stress is observed in short-time region as
shown in Fig. 5. After a certain time is passed, stress amplitude is nearly inde-
pendent of time. This is the stationary response. From the signal of stress as a
function of time, the rheometer can determine the stress amplitude ro ¼ G�ðxÞj j co
and phase difference dðxÞ. Then, storage and loss moduli are calculated by

G0 co;xð Þ ¼ ro co;xð Þ
co

cos d co;xð Þ; G00 co;xð Þ ¼ ro co;xð Þ
co

sin d co;xð Þ ð2:2Þ

Assume that linearity check was done. If measurement is not taken for sufficiently
long time, that is, stationary response is not obtained, then the use of Eq. (2.2) is
erroneous.

Equation (1.44) can be interpreted geometrically. Consider the
three-dimensional space of r; c; x�1 _cð Þ. Then, Eq. (1.44) is the equation for a
plane passing the origin of the space. The orientation of the plane is represented by

the vector G0; G00; 1ð Þ. Since c2 þ x�1 _cð Þ2¼ c2o, an ellipse on the plane is formed
by the data of dynamic test at a fixed frequency and a fixed strain amplitude. The
ellipse is the projection of the circle in the plane of r ¼ 0 on the incline plane of
Eq. (1.44). Then, the Lissajou curve on the left of Fig. 6 is the projection of the
ellipse to the plane x�1 _c ¼ constant and that on the right is the projection to the
plane c ¼ constant. This geometric interpretation was developed first by Cho et al.
(Cho et al. 2005). Storage modulus is the slope of the longest axis of the slope in the
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Fig. 4 Strain sweep test for PEO solution (Cho et al. 2010)
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Lissajou plot of stress against strain and loss modulus can be identified in the same
way for the Lissajou plot of stress as a function of strain rate/ω. As shown in Fig. 6,
stationary response forms an elliptical loop in linear viscoelastic regime. Hence,
Lissajou plot lets us recognize transient and stationary responses explicitly.

The waiting time necessary for stationary state can be estimated by the use the
Maxwell model. When strain is given by cðtÞ ¼ co sinxt, the stress is given by

r tð Þ ¼ r toð Þ � G0 xð Þ c toð Þ � G00 xð Þ
x

_c toð Þ
� 

e� t�toð Þ=k þG0 xð Þ c tð Þþ G00 xð Þ
x

_c tð Þ

ð2:3Þ

The first term is the transient response, and the last two terms are stationary
response. We are interested in frequency sweep test. Let r toð Þ be the stress in

Fig. 5 Schematic illustration
of dynamic test

Fig. 6 Lissajou plots of linear viscoelasticity
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stationary state at the frequency xo. This means that frequency is changed from xo

to x at time of to. Then, the initial stress is given

r toð Þ � G0 xoð Þ c toð Þþ G00 xoð Þ
xo

_c toð Þ ð2:4Þ

and Eq. (2.3) can be rewritten by

r tð Þ ¼ G0 xoð Þ � G0 xð Þ½ � c toð Þþ g0 xoð Þ � g0 xð Þ½ � _c toð Þf g e� t�toð Þ=k

þG0 xð Þ c tð Þþ G00 xð Þ
x

_c tð Þ
ð2:5Þ

If t � to ¼ 3k, then the transient stress is reduced to 0.05 of the value at to. Thus,
data sampling must be done by waiting for a time longer than several times of
relaxation time λ after changing frequency. Since we cannot know the mean
relaxation time of the sample before measurement, we need a preliminary test for
determination of waiting time.

2.2.3 Time Sweep Test

Consider a material whose mean relaxation time is λ. We are interested in frequency
sweep test which consists of n frequencies, x1\x2\ � � �\xn. Assume that mk is
chosen as the waiting time and stationary stress of a single cycle is necessary for
accurate determination of stress amplitude and phase angle. Then, the total time for
experiment is given by

tex ¼
Xn
k¼1

2p
xk

þ n� 1ð Þmk ð2:6Þ

Polymer is very weak at high temperature if oxygen is diffused in the sample.
Degradation of polymer can be prevented by the use of small amount of antioxidant
or the use of inert gas such as nitrogen. If material starts degradation after a certain
time td when it is loaded in an experimental condition, then reliable data can be
obtained whenever tex\td. Hence, both calculation of tex and determination of td.
Time sweep test is necessary to determine degradation time, td.

Time sweep test is the dynamic test at a fixed frequency and a fixed amplitude. If
material is stable, the dynamic modulus does not vary for long time. If dynamic
modulus starts to increase or decrease at a time, the time is the degradation time.

2.2.4 Creep Recovery Test

In stress relaxation test, relaxation modulus at long time is not reliable when stress
becomes outside of the lower bound of torque sensor. Because of the imperfection
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of the unit step function in experiment, relaxation modulus at short time is not
reliable, neither. This limitation of stress relaxation test can be overcome when
time–temperature superposition is available. When time–temperature superposition
is not available, long-time viscoelasticity can be measured by creep test. It is
because the strain of creep test increases as time. However, stress-controlled
rheometer has mainly two problems: residual torque and inertia effect. The inertia
problem shall be discussed in separate subsections.

We shall use the first equation of Eq. (1.33). It is usual that G�1
o � 10�9 Pa�1 for

most polymers because Go corresponding to the modulus of the polymer at a
temperature much below the glass transition temperature. Hence, it is usually called
glassy modulus and neglected in creep experiment at temperatures higher than the
glass transition temperature. Creep recovery test is necessary to determine exactly
Jr and the creep function WðtÞ. Extrapolation of long-time data is not accurate
because of the effect of residual torque which is originated from the bearing system
of the stress-controlled rheometer.

Creep recovery test is done by the use of stress profile such that

rðtÞ ¼ ro HðtÞ �H t � toð Þ½ � ð2:7Þ

where to [ 0 is called creep time. Then, the response from the stress is given by

cðtÞ
ro

¼ JðtÞ � J t � toð Þ ð2:8Þ

Substitution of Eq. (1.33) into Eq. (2.8) yields

cðtÞ
ro

¼ to
go

H t � toð Þþ Jr WðtÞHðtÞ �W t � toð ÞH t � toð Þ½ �

þ 1
Go

þ t
go


 �
HðtÞ �H t � toð Þ½ �

ð2:9Þ

For t[ to, Eq. (2.9) becomes simpler as follows:

cðtÞ
ro

¼ Jr WðtÞ �W t � toð Þ½ � þ to
go

ð2:10Þ

Note that when t ¼ to, we have

c toð Þ
ro

¼ JrW toð Þþ to
go

ð2:11Þ

because W 0ð Þ ¼ 0 from the definition of the creep function.
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We define creep recovery compliance (shortly recovery compliance) by

JRðtÞ ¼ c toð Þ � cðtÞ
ro

ð2:12Þ

Note that for t	 to, JRðtÞ	 0. From the definition of recovery compliance, we have

JR tRð Þ ¼ Jr W toð Þ �W to þ tRð Þ½ � þ JrW tRð Þ ð2:13Þ

where we defined recovery time as tR ¼ t � to. If creep time to is sufficiently large,
then W toð Þ � W to þ tRð Þ � 1. Remind the properties of the creep function. Then,
the recovery compliance is given by

JR tRð Þ � JrW tRð Þ ð2:14Þ

To help understanding, model calculation was done with

JðtÞ ¼ 1
Go

þ Jr 1� e�t=s
� �þ t

go
ð2:15Þ

where s ¼ 102 s, Go ¼ 108 Pa, Jr ¼ 10�5 Pa�1, and go ¼ 107 Pa s. Figure 7 shows
JðtÞ � J t � toð Þ with various creep time and recovery compliance as functions of
time. As creep time increases, recovery compliance converges to
JrwðtR) ¼ Jr 1� e�tR=s

� �
.

Note that the recovery compliance on the right graph looks different from the
broken lines of the left graph because the graphs are double logarithmic plots.
Figure 7 indicates that creep time must be sufficiently larger than the retardation
time.
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Fig. 7 Simulation of creep recovery experiment
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Residual torque deteriorates the horizontal region where tR [ s in real experi-
ment. The effect of residual torque can be corrected by

JRðtÞ ¼ JuncorrR ðtÞ � Ct ð2:16Þ

where C is the correction constant which can be determined by the constant slope of
JuncorrR at long-time regime (see inset of Fig. 8). Note that t in Eq. (2.16) is the
recovery time. Figure 8 shows the recovery compliance of LLDPE with long-chain
branch and it is Fig. 6 of (Stadler 2014).

2.3 Inertia Effect in Stress-Controlled Rheometer

Stress-controlled rheometer applies torque (machine torque) to the fixture, the
fixture transfers stress to specimen, and specimen generates material torque.
However, the mass of the fixture generates additional torque called inertia torque.
Then, the torque balance equation affects the relation between stimulation and
material response. If the torque balance equation is translated to stress balance form
(Baravian and Quemada 1998), then we have

l
d2c
dt2

þrðtÞ ¼ rmðtÞ ð2:17Þ

where μ is the constant depending on the geometry of the fixture, called the inertia
coefficient, σ is the material stress, and rm is the machine stress which is applied by
the rheometer. Hence, the stimulation is rm rather than σ. When the inertia term is
negligible, machine stress equals to material stress. However, inertia effect exists
always because fixture has mass. When the inertia effect is significant, strain is no

Fig. 8 Example of a
correction for residual torque.
Filled symbols are
uncorrected JuncorrR ðtÞ, and
open symbols are corrected
recovery compliance (Stadler
2014)
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longer a monotonic function of time and oscillates with decreasing amplitude as
shown in Fig. 9. This phenomenon is called creep ringing. Figure 9 is adopted from
(Baravian et al. 2007).

Here, we will study how to extract material response functions by the use of
Eq. (2.17). Note that the value of μ is given by the makers of rheometers. The machine
stress is assumed to be given by rm ¼ rof ðtÞHðtÞ. The function f ðtÞ is unity for
creep experiment and sinxt for dynamic experiment. Then, it is obvious that cðtÞ ¼
0 for t\0. Then, the Boltzmann superposition principle can be rewritten by

rðtÞ ¼
Z t

0

G t � t0ð Þ dc
dt0

dt0 ð2:18aÞ

cðtÞ ¼
Z t

0

J t � t0ð Þ dr
dt0

dt0 ð2:18bÞ

It is the convolution of relaxation modulus and strain rate. Hence, applying Laplace
transform to Eq. (2.17) gives

ls2ecðsÞ � lsc 0ð Þ � _c 0ð Þþ seGðsÞecðsÞ � eGðsÞc 0ð Þ ¼ ermðsÞ ð2:19Þ

Kim et al. (2015) derived the initial condition

c 0ð Þ ¼ _c 0ð Þ ¼ 0 ð2:20Þ

by the use of Eq. (2.18b). Then, Eq. (2.19) becomes simpler:

ecðsÞ ¼ ermðsÞ
ls2 þ seGðsÞ ð2:21Þ

Fig. 9 Creep ringing of
0.075 wt% Carbopol 940. The
model is the Jeffreys model.
Adopted from Baravian et al.
(2007)
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or

seGðsÞ ¼ ermðsÞ � ls2ecðsÞecðsÞ ð2:22Þ

We know ermðsÞ and ecðsÞ can be calculated numerically from the measured data
cðtÞ. Then, we need numerical method for inverse Laplace transform. As for
numerical inversion of Laplace transform, there have been hundreds of papers
published (Cohen 2007). Finally, we can obtain relaxation modulus from the
numerical inversion of Laplace transform.

As for dynamic test, we are interested in stationary response. After sufficiently
long time, we can assume that strain and material stress are sinusoidal functions like
machine stress. Then, we can use the following complex notation:

c�ðtÞ ¼ coðxÞ ei xt�/ðxÞð Þ; r�ðtÞ ¼ G�ðxÞ c�ðxÞ ; r�
mðtÞ ¼ roe

ixt ð2:23Þ

Substitution of Eq. (2.23) to Eq. (2.17) gives

G�ðxÞ ¼ ro

coðxÞ
ei/ðxÞ þ lx2 ð2:24Þ

Since both strain amplitude coðxÞ and phase difference /ðxÞ can be determined
from the measured data of strain, Eq. (2.24) gives dynamic moduli as follows:

G0ðxÞ ¼ ro

coðxÞ
cos/ðxÞþ lx2; G00ðxÞ ¼ ro

coðxÞ
sin/ðxÞ ð2:25Þ

Occurrence of creep ringing can be understood by the equation of motion
Eq. (2.17) similar to the equation of vibration. As for the Voigt model, Eq. (2.17)
becomes

l
d2c
dt2

þgo
dc
dt

þGoc ¼ rmðtÞ ð2:26Þ

This is analogous to forced oscillation of the mass μ supported by spring and
damper. There have been studies on creep ringing by the use of spring–dashpot
models (Baravian and Quemada 1998; Jaishankar et al. 2011).

Baravian and Quemada (1998) derived ringing criteria for the Maxwell–Jeffreys
and the Voigt models. On the other hand, Kim et al. (2015) developed numerical
methods to extract viscoelastic response functions such as dynamic moduli and
continuous relaxation spectrum. It will be studied what is relaxation spectrum and
how relaxation spectrum is used in the calculation of various viscoelastic response
functions in Chap. 7. The approach of Kim et al. requires numerical method to
calculate the Laplace transform of strain data. The numerical method is also
important in diffusion wave spectroscopy (DWS).
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It is still an important research theme to derive ringing criteria from viscoelastic
response function such as relaxation modulus or creep compliance without
depending on spring–dashpot models. From Eq. (2.26), we can guess that if viscous
stress (represented by go) is weaker than elastic stress (represented by Go), then
creep ringing occurs.

2.4 Diffusion Wave Spectroscopy

Mason and Weitz developed a new method to measure linear viscoelasticity (Mason
and Weitz 1995). It is called DWS and is to measure the mean square distance of
Brownian particle which moves in viscoelastic medium. Using the generalized
Langevin equation, the mean square distance can be related to the Laplace trans-
form of the relaxation modulus of the viscoelastic medium.

Since the viscoelastic medium has memory, the generalized Langevin equation
is given by

m
dv
dt

¼ fRðtÞ �
Z t

0

f t � sð Þ v sð Þ ds ð2:27Þ

where m is the mass of the Brownian particle, v is the velocity, fRðtÞ is the random
force, and fðtÞ is the friction function which represents the memory effect of the
viscoelastic medium. As learned in Sect. 3.4 in Chap. 4, we know that

fRðtÞh i ¼ 0 ; fRðtÞ � fR 0ð Þh i ¼ 3kBTfðtÞ ð2:28Þ

In order to connect fðtÞ with the viscoelastic response function of the medium,
Mason and Weitz generalized the Stokes equation, Eq. (3.2), in Chap. 3 as follows:

egðsÞ ¼ efðsÞ
6pa

ð2:29Þ

Here, Laplace transform is applied in order to make complicate time dependence
simpler. A question occurs on the definition of egðsÞ. The answer may be
Eqs. (1.49) and (1.51). Then, we have

egðsÞ ¼ eGðsÞ ð2:30Þ

Note that the dimension of the Laplace transform equals that of viscosity.
Mason and Weitz (1995) applied Eqs. (2.29) and (2.30) to the generalization of

the Stokes–Einstein equation, Eq. (3.14) in Chap. 3, and the relation between
diffusion constant and the mean square distance, Eq. (3.13) in Chap. 3:
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seGðsÞ ¼ kBT
pa

1
s Der2ðsÞh i �

m
6pa

s2 ð2:31Þ

where Der2ðsÞ� �
is the Laplace transform of the mean square distance

Dr2ðtÞ� � 
 xðtÞ � x 0ð Þk k 2
D E

ð2:32Þ

The second term represents inertia effect and can be neglected except at high
s. Then, Eq. (2.31) becomes

seGðsÞ ¼ kBT
pa

1
s Der2ðsÞh i ð2:33Þ

If Eq. (1.23) is applied to Eq. (2.33), we get

eJðsÞ ¼ pa
kBT

Der2ðsÞ� � ð2:34Þ

This implies that the mean square distance is proportional to creep compliance.
From Eq. (2.33), the use of Fourier transform or Laplace transform gives

G�ðxÞ ¼ kBT
pa

1

ix F̂ Dr2ðtÞh i½ � ¼
kBT
pa

1
ix Der2 ixð Þh i ð2:35Þ

According to Mason (2000), dynamic modulus can be calculated by fast Fourier
transform (FFT) or Laplace transform through numerical integration. Evans et al.
(2009) used discrete Fourier transform in order to convert creep compliance data to
dynamic moduli. Although the conversion is plausible compared with measured
dynamic moduli, it was nosy and needs a smoothing process. Hence, Mason used
power law approximation for Laplace transform because both integral transforms
suffer from the finite range of data (Mason 2000). His method fitted effectively the
data of storage modulus which was measured by rotational rheometer. The method
underestimated loss modulus. Hence, further research is demanded on better
numerical method to convert the mean square distance to dynamic moduli.

Mason and Weitz opened a new field called microrheology: measurement of
mean square distance and its conversion to linear viscoelasticity. From the working
principle of DWS, the inertia effect of DWS seems to be smaller than that of creep
experiment. Hence, DWS is better than creep experiment, especially when the
material shows creep ringing. As for creep-ringing materials, strain data from creep
test should be processed by a suitable method such as (Kim et al. 2015) in order to
eliminate inertia effect. Creep ringing is often found in biopolymer solutions
because of higher elasticity than viscosity. Further information on microrheology is
available in some review papers such as Waigh (2005) and Squires and Mason
(2010).
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Problem 2

[1] Derive Eq. (2.3).
[2] Derive Eq. (2.13).
[3] Derive the initial condition c 0ð Þ ¼ _c 0ð Þ ¼ 0, Eq. (2.20), by the use of

Eq. (2.18b) (Kim et al. 2015).
[4] Derive Eq. (2.24).
[5] Derive ringing condition for Eq. (2.26) (Baravian and Quemada 1998).
[6] If the scale factor p a= kBhð Þ in Eq. (2.34) is not acceptable, then how can you

determine an appropriate scale factor? (Mason 2000).
[7] A quarter cycle of stationary state in dynamic test is given in the table below.

Calculate dynamic moduli by the use of multilinear regression with respect to
Eq. (1.44).

t/ s 0.5984 1.1968 1.7952 2.3936 2.9920 3.5904

cðtÞ 0.0782 0.0975 0.0434 −0.0434 −0.0975 −0.0782

rðtÞ/Pa 0.7799 −0.0275 −0.8142 −0.9877 −0.4175 0.4671

[8] Consider the Jeffreys model such that

g0G1
dc
dt

þg1g0
d2c
dt2

¼ g1 þg0ð Þ dr
dt

þG1r ð2:aÞ

Derive that the ringing compliance is given by

JðtÞ ¼ cðt)
ro

¼ t
g0

� Aþ e�t=s A cosx tþ A� s
g0


 �
sinx t
sx

� 
ð2:bÞ

where

A ¼ l g0 þg1ð Þ
g0G1

2
sg0

� 1
l


 �
ð2:cÞ

s ¼ 2l g0 þg1ð Þ
lG1 þg0g1

ð2:dÞ

and

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g0G1

l g0 þg1ð Þ �
1
s2

s
ð2:eÞ

See Baravian et al. (2007).
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3 Phenomenological Models

3.1 Spring–Dashpot Models Revisited

We have studied spring–dashpot models in 3.4 in Chap. 2. Although the Maxwell
model and the Voigt model give qualitatively correct description of linear vis-
coelasticity, they cannot fit experimental data of linear viscoelasticity of polymers.
There have been efforts to develop a realistic model of spring and dashpot
(Tschoegl 1989). For simplicity, we consider only fluid models. One of the most
representative models is the generalized Maxwell model which is a parallel con-
nection of N Maxwell elements with different relaxation times and moduli. Then, it
is easy to calculate the relaxation modulus of the model:

GðtÞ ¼
XN
k¼1

Gke
�t=kk ð3:1Þ

Here, we omitted the unit step function for simplicity. Without loss of generality,
we choose 0\k1\k2\ � � �\kN . The model can be characterized a set of
parameters Gn; kn ; Nf g. The plot of Gn against kn gives us an insight that
relaxation times are distributed. Hence, the set is called discrete relaxation time
spectrum or discrete relaxation time distribution. Shortly, we call it discrete
relaxation spectrum. Increasing imagination, one may invent continuous relaxation
spectrum H kð Þ such that

GðtÞ ¼
Z1
�1

HðkÞe�t=kd log k ð3:2Þ

Note that integration in logarithmic scale is introduced in order to make the
dimension of H kð Þ equal to that of relaxation intensities Gk of discrete relaxation
spectrum.

Another generalized spring–dashpot model is the series connection of N � 1
Voigt models with different retardation times and compliances and a single
Maxwell model of viscosity gM and modulus GM ¼ 1=JM . This model has creep
compliance such as

JðtÞ ¼ JM þ t
gM

þ
XN�1

k¼1

Jk 1� e�t=sk
� � ð3:3Þ

The set Jk; sk; N � 1f g is called discrete retardation time spectrum or shortly
discrete retardation spectrum. Without loss of generality, we assume that
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s1\s2\ � � �\sN�1. Similar to Eq. (3.2), we can define continuous retardation
spectrum L sð Þ as follows:

JðtÞ ¼ JM þ t
gM

þ
Z1
�1

L sð Þ 1� e�t=s
� �

d log s ð3:4Þ

Both Eqs. (3.1) and (3.3) are a kind of one-dimensional constitutive equation.
A good constitutive equation is the one that can fit experimental data as well as the
one whose parameters can be easily determined from experimental data. How to
determine relaxation spectrum will be learned in Chap. 6. Here, we shall introduce
the concept of relaxation and retardation time spectra and conditions that the two
models are identical. The two models are depicted in Fig. 10.

Taking Laplace transform on both sides of Eq. (3.1), we have

seGðsÞ ¼
XN
k¼1

Gk
kks

1þ kk
¼ QNðsÞ

PNðsÞ ð3:5Þ

Since we can obtain seGðsÞ from experiment such as DWS (see Sect. 2.4), regres-
sion of experimental data by Eq. (3.3) is a way to identify the discrete model.
However, it is questionable whether the regression gives positive coefficients of
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Fig. 10 Spring–dashpot models for viscoelastic fluids: Eqs. (3.1) and (3.3). Note that
kk ¼ gM

k

	
GM

k , Gk ¼ GM
k , s

V
k ¼ gV

k

	
GV

k , and Jk ¼ 1
	
GV

k

3 Phenomenological Models 317

http://dx.doi.org/10.1007/978-94-017-7564-9_6


PNðsÞ and QNðsÞ. Hence, it is necessary to analyze the coefficients of the polyno-
mials. The polynomials of Nth order are given by

PNðsÞ ¼
YN
n¼1

1þ knsð Þ ¼ 1þ
XN
k¼1

kk

 !
sþ � � � þ

YN
k¼1

kk

 !
sN ð3:6Þ

and

QNðsÞ ¼
XN
n¼1

Gnkns
PNðsÞ
1þ kns

¼ go sþgo

XN
k¼1

kk � goJ
o
e

 !
s2 þ � � � þGo

YN
k¼1

kk

 !
sN

ð3:7Þ

where

Go ¼ G 0ð Þ ¼
XN
n¼1

Gn ð3:8Þ

The zero-shear viscosity go and the steady-state compliance Joe can be expressed in
terms of the model parameters. The terminal behavior of the model gives

go ¼ lim
x!0

Im ixeG ixð Þ
n o

x
¼
XN
k¼1

Gkkk ð3:9Þ

and

g2
oJ

o
e ¼ lim

x!0

Re ixeG ixð Þ
n o

x2 ¼
XN
k¼1

Gkk
2
k ð3:10Þ

Then, the polynomial QNðsÞ can be factorized as follows:

QNðsÞ ¼ gosHN�1ðsÞ ð3:11Þ

where

HN�1ðsÞ ¼ 1þ
XN
k¼1

kk � goJ
o
e

 !
sþ � � � þ Go

go

YN
k¼1

kk

 !
sN�1 ð3:12Þ
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From Eqs. (3.9) to (3.10), we know that

XN
k¼1

kk � goJ
o
e ¼

XN
k¼1

kk 1� pkð Þ[ 0 ð3:13Þ

where

0\pk ¼ Gkkk
go

\1 ;
XN
k¼1

pk ¼ 1 ð3:14Þ

Returning to Eq. (3.3), we take Laplace transform and have

seJðsÞ ¼ JM þ 1
gMs

þ
XN�1

k¼1

Jk
1þ sks

ð3:15Þ

It can be rewritten as a rational function of s as follows:

seJðsÞ ¼ RNðsÞ
gMsWN�1ðsÞ ð3:16Þ

where

RNðsÞ ¼ 1þ JMgMsð ÞWN�1ðsÞþ
XN�1

k¼1

Jk
WN�1ðsÞ
1þ sks

ð3:17Þ

and

WN�1ðsÞ ¼
YN�1

k¼1

1þ sksð Þ ð3:18Þ

The zero-shear viscosity and the steady-state compliance of the model (3) are,
respectively, given by

go ¼ lim
x!0

1

xIm ixeJ ixð Þ� � ¼ gM ð3:19Þ

and

Joe ¼ lim
x!0

Re ixeJ ixð Þ� � ¼ JM þ
XN�1

k¼1

Jk ð3:20Þ
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We know that both Eqs. (3.1) and (3.3) represent viscoelastic fluid. Then, it is
natural to investigate the conditions that the two models become identical. If the
two models are identical, then it is obvious that seGðsÞ seJðsÞ ¼ 1. This immediately
results in that

HN�1ðsÞ ¼
YN�1

n¼1

1þ snsð Þ ¼ WN�1ðsÞ ð3:21Þ

Determination of sn is to find the zeros of N � 1th-order polynomial HN�1ðsÞ.
From the convolution, Eq. (1.23), the Laplace transform of the creep compliance

of the model, Eq. (3.1), is given by

seJðsÞ ¼ PNðsÞ
QNðsÞ ¼

1
gosHN�1ðsÞ

YN
n¼1

1þ knsð Þ ð3:22Þ

Partial fraction gives

seJðsÞ ¼ Jg þ 1
gos

þ
XN�1

n¼1

Jn
1þ sns

ð3:23Þ

where Jg is determined by the initial value theorem of Laplace transform:

Jg ¼ J 0þð Þ ¼ lim
s!1 seJðsÞ ¼ 1

Go
ð3:24Þ

Comparison of Eq. (3.23) with Eq. (3.15) gives Jg ¼ JM ¼ G�1
o ¼ G�1

M . The
identification of the two models also gives

Jn ¼ lim
s!�s�1

n

1þ snsð Þ seJðsÞ ¼ � sn
go

QN
k¼1 1� kk

sn

� �
QN�1

k 6¼n 1� sk
sn

� � [ 0 ð3:25Þ

This is the result of partial fraction, and the inequality must hold for realistic model.
Now, we will prove the following inequality by the use of the inequality of

Eq. (3.25):

k1\s1\k2\s2\ � � �\sN�2\kN�1\sN�1\kN ð3:26Þ
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To prove the inequality, assume the existence of km\sn\kmþ 1. Then, we know
that

YN
k¼1

1� kk
sn


 �
¼ �1ð ÞN�m

YN
k¼1

1� kk
sn

���� ���� ð3:27Þ

and

YN�1

k 6¼n

1� sk
sn


 �
¼ �1ð ÞN�n�1

YN�1

k 6¼n

1� sk
sn

���� ���� ð3:28Þ

The positive Jn implies that n� m must be an even integer. The simplest case is
n ¼ m. The cases of kN\sn and sn\k1 imply that the sign of Jn equals �1ð ÞN�n

and �1ð Þn, respectively. Since Jn [ 0 must hold irrespective of n and N, we have to
exclude the cases of kN\sn and sn\k1. If km\sn\snþ 1\kmþ 1, then
JnJnþ 1\0. Therefore, the inequality of Eq. (3.26) must hold.

Direct regression of seGðsÞ by the use of the rational approximation is not reliable
because the condition of Eq. (3.21) may not be valid. Although it happens to give
acceptable results, it is apt to give undesirable results if the range of s is wide.
Simhambhatla and Leonov developed the extended Padé–Laplace method which
determines the Taylor coefficients of eGðsÞ systematically and obtains the rational
approximation from the Taylor coefficients Simhambhatla and Leonov (1993).
However, the method suffers from high-frequency data and needs determination of
poles. Malkin and Masalova found negative results for the uniqueness of discrete
relaxation spectrum (Malkin and Masalova 2001). In this respect, modeling by
spring and dashpot model is not fundamental, but it is sometimes convenient
because of reduction of computation time. On the other hand, it was proven by
Fuoss and Kirkwood that continuous spectra can be determined uniquely, at least,
in principle (Fuoss and Kirkwood 1941). We shall deal with both mathematical and
numerical aspects of relaxation and retardation spectra in Chap. 6 in detail.

3.2 Parsimonious Models

To fit data of wide range of time or frequency, Eq. (3.1) [or (3)] needs a number of
relaxation (or retardation) times. Hereafter, we shall deal with linear viscoelastic
models with a few numbers of parameters. It is interesting that most parsimonious
models in this section are originated from dielectric relaxation of organic materials
(Riande and Díaz-Calleja 2004). We changed terminologies of dielectrics to those
of rheology. There are a number of analogies between viscoelasticity and dielec-
trics. It is easy to implement high frequencies of the order of MHz at a fixed
temperature in dielectrics experiments, while such high frequency is practically
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impossible in rheology. This may be the reason why a number of parsimonious
models were developed in dielectrics. Note that the analogy to dielectrics gives
direct correspondence of dielectric permittivity to recovery compliance rather than
relaxation modulus.

3.2.1 The Cole–Cole Model and Modifications

We start from the dynamic response functions of the Maxwell and the Voigt
models:

The Maxwell model

G�ðxÞ ¼ GM
ikMx

1þ ikMx

G0ðxÞ ¼ GM
k2Mx

2

1þ k2Mx
2
; G00ðxÞ ¼ GM

kMx

1þ k2Mx
2

ð3:29aÞ

The Voigt model

J�ðxÞ ¼ JV
1þ isVx

J 0ðxÞ ¼ JV
1þ s2Vx

2
; J 00ðxÞ ¼ JV

sVx

1þ s2Vx
2

ð3:29bÞ

Elimination of frequency in Eqs. (3.29a) and (3.29b) gives the equations for circles:
The Maxwell model

G0ðxÞ � GM

2

�  2

þ G00ðxÞ½ � 2¼ GM

2


 �2

ð3:30aÞ

The Voigt model

J 0ðxÞ � JV
2

�  2

þ J 00ðxÞ½ � 2¼ JV
2


 �2

ð3:30bÞ

Figure 11 shows the plots of loss components versus storage components:
Eqs. (3.30a) and (3.30b). This plot is called the Cole–Cole plot.

Although the simple models show semicircle in the Cole–Cole plot, experi-
mental data show distorted and rotated ellipse. Hence, Cole and Cole suggested

J�ðxÞ ¼ Jg þ 1
igox

þ Jr
1þ isxð Þ a ð3:31Þ

322 5 Theory of Linear Viscoelasticity



This is called the Cole–Cole model (Cole and Cole 1941). Note that Cole and Cole
originally considered dielectric relaxation rather than linear viscoelasticity. After
the Cole–Cole, there have been developed the following modifications:

The Davidson–Cole model (Davidson and Cole 1951)

J�ðxÞ ¼ Jg þ 1
igox

þ Jr
1þ isxð Þ b

ð3:32Þ

The Havriliak–Negami model (1967)

J�ðxÞ ¼ Jg þ 1
igox

þ Jr

1þ isxð Þ a½ � b
ð3:32Þ

The equations for complex compliance can be rewritten by the Laplace transform as
follows:

The Cole–Cole model

seJðsÞ ¼ Jg þ 1
gos

þ Jr
1þ ssð Þa ð3:33Þ

The Davidson–Cole model

seJðsÞ ¼ Jg þ 1
gos

þ Jr
1þ ssð Þb

ð3:34Þ

The Havriliak–Negami model

seJðsÞ ¼ Jg þ 1
gos

þ Jr

1þ ssð Þa½ � b
ð3:35Þ

where 0\a; b\1.
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the Maxwell and the Voigt
models
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Although there is an analytic method to convert Laplace transform to the original
function, it is not easy to find JðtÞ as a closed analytical form from Eqs. (3.33) to
(3.35). The use of Euler’s formula eih ¼ cos hþ i sin h can give real and imaginary
parts of the complex compliances. Here, we shall show such decomposition for the
Cole–Cole model. Note that i ¼ exp ip=2ð Þ. Then, we know that

ixsð Þa¼ e
1
2pixs

� � a
¼ xasaei/ ð3:36Þ

where / ¼ 1
2 pa. Substitution of Eq. (3.36) to Eq. (3.31) gives

J 0ðxÞ ¼ Jg þ Jr
1þ z cos/

1þ 2z cos/þ z2
; J 00ðxÞ ¼ 1

gox
þ Jr

z sin/
1þ 2z cos/þ z2

ð3:37Þ

where z ¼ saxa. Dynamic moduli are calculated by

G0ðxÞ ¼ J 0ðxÞ
J 0ðxÞ½ � 2 þ J 00ðxÞ½ � 2 ; G00ðxÞ ¼ J 00ðxÞ

J 0ðxÞ½ � 2 þ J 00ðxÞ½ � 2 ð3:38Þ

Marin and Graessley (1977) found that linear viscoelasticity of monodisperse
polymer melts can be described quite accurately by the extended Cole–Cole model
such that

J�ðxÞ ¼ Jg þ 1
igox

þ J1
1þ is1xð Þ a1 þ

J2
1þ is2xð Þa2 ð3:39Þ

Without loss of generality, we set s1\s2. Figure 12 show the application of
Eq. (3.39) to the dynamic data of polybutadiene (PBD) which was measured by
Stadler and Ruymbeke. The molecular weight of PBD is 430 kg/mole. Detailed
information is available in Stadler and van Ruymbeke (2010). The data were
obtained from time–temperature superposition which will be given in Chap. 7.

PBD 430kg/mole
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Fig. 12 Application of the
extended Cole–Cole model to
nearly monodisperse
polybutadiene melt. Values of
parameters are in Eq. (3.40).
Note that aTx is the
equivalent frequency from
time–temperature
superposition (see Chap. 7)
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The parameters are determined from the Laplace transform seJðsÞ which can be
obtained from loss modulus data (Chap. 8). The numerical method will be intro-
duced in Chap. 8. The values are

go ¼ 2:658� 106 Pa s, J1 ¼ 1:162� 10�6 Pa�1

J2 ¼ 7:274� 10�7 Pa�1; Jg ¼ 1:004� 10�9 Pa�1

s1 ¼ 2:136 s, s2 ¼ 2:482� 10�7 s
a1 ¼ 0:3605; a2 ¼ 0:7835

ð3:40Þ

It is amazing that only 8 parameters fit the dynamic data whose frequency range is
about 14 decades. Note that the maximum value of parameter is the order of 106,
while the minimum value of parameter is the order of 10−9.

3.2.2 Model for Relaxation Spectrum

If we know relaxation spectrum, then relaxation modulus can be calculated by
Eq. (3.2) easily. Application of Laplace transform to Eq. (3.2) gives

seGðsÞ ¼
Z1
�1

ks
1þ ks

H kð Þ d log k ð3:41Þ

Replacing s by ix, we have

G0ðxÞ ¼
Z1
�1

k2x2

1þ k2x2
H kð Þ d log k ; G00ðxÞ ¼

Z1
�1

kx

1þ k2x2
H kð Þ d log k

ð3:42Þ

Application of Eq. (3.42) to Eq. (1.59) yields dynamic compliances. It is known that
Eq. (3.42) is better than Eqs. (1.42) and (1.43) when data range is finite. If one
wants to convert dynamic modulus to relaxation modulus, then it is known that
Eq. (3.2) is better than Eq. (1.54). Relaxation spectrum is the most versatile vis-
coelastic function in linear viscoelasticity. Hence, it is natural to model relaxation
spectrum.

Baumgärtel et al. (1990) suggested a model for the relaxation time spectrum of
nearly monodisperse polymer melt such that

H kð Þ ¼ Hek
ne þ Hg

kng k1\k\kmax

0 otherwise

�
ð3:43Þ

This is called the BSW spectrum which was invented from the discrete spectra that
were calculated by the algorithm of (Baumgärtel and Winter 1989). This model of
relaxation spectrum fits dynamic data very accurately (Baumgärtel et al. 1992).
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However, the spectrum of (3.43) is not the correct spectrum of monodisperse
polymer melt because more advanced algorithms of continuous relaxation spectrum
calculate more complicate but nearly identical spectra from the dynamic data of
monodisperse polymer melts (Honerkamp and Weese 1993; Cho and Park 2013;
Cho 2013; Bae and Cho 2015). Hence, it can be said that Eq. (3.43) is a simple but
effective approximation of realistic spectrum. The ill-posedness of spectrum
problem is the reason why such simple approximation gives accurate dynamic
modulus (Davies and Anderssen 1997).

Baumgärtel and Winter (1992) extended the BSW spectrum by introducing a
stretched exponential cutoff at a characteristic relaxation time kmax as follows:

H kð Þ ¼ neG
o
N

k
ke


 �ne

þHg
ke
k


 �ng� 
exp � k

kmax


 �b
" #

for MW � Me

ð3:44Þ

This model can be applied to polydisperse polymer melt whose weight-average
molecular weight is much higher than entanglement molecular weight Me.

3.2.3 The KWW Model

In Sect. 3.3 in Chap. 2, various parsimonious models for linear viscoelasticity were
introduced. The Kohlrausch–Williams–Watts (KWW) Eq. (3.102) in Chap. 2 is a
stretched exponential function whose Fourier transform must be calculated by a
numerical method or series approximation. Hence, its applicability is restricted to
only relaxation modulus or recovery compliance. Equation (3.102) in Chap. 2 is
effective in the description of the relaxation modulus of polymers at near glass
transition temperature (Riande et al. 2000).

Originally, KWW equation is analogous to recovery compliance. Hence, we can
model creep compliance of viscoelastic fluid as follows:

JðtÞ ¼ Jg þ t
go

þ Jr 1� e� t=sð Þb
h i� �

HðtÞ ð3:45Þ

Then, the series expansion of complex compliance is given by

J�ðxÞ ¼ Jg � i
gox

þ Jr
X1
k¼1

�1ð Þk�1

sxð Þbk
C bkþ 1ð Þ
C kþ 1ð Þ exp i

p
2
bk

� �
ð3:46Þ

where C xð Þ is the gamma function.
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3.3 Models Based on Fractional Derivatives

Some viscoelastic materials show power law–like behavior in dynamic moduli.
Representative examples are rubber-like materials. However, even polymer melts
show such behavior in some intervals of frequency as shown in Fig. 12 (see the
interval of 8\ log10 aTx\10). A number of elements of spring and dashpot are
necessary if one wishes to fit such viscoelastic behaviors by conventional vis-
coelastic models based on ordinary springs and dashpots. Hence, various parsi-
monious models have been developed. Models based on fractional derivatives are
the ones replacing ordinary time derivatives of spring–dashpot models by fractional
derivatives. One may call the models based on fractional derivatives the fractional
spring–dashpot models or the generalized spring–dashpot models. Since there are
infinitely many ways to construct spring and dashpot elements, it can be said that
the use of fractional spring and dashpot elements is easier to develop a new con-
stitutive equation than the modification of the complex plane model such as the
Cole–Cole model.

3.3.1 Fractional Derivatives

In this section, we study how fractional derivatives are defined and mathematical
consequences from the definition. At first, consider integration operator defined as

eI f ðtÞ½ � ¼
Z t

0

f sð Þ ds ð3:47Þ

Repetition of this operator on a continuous function gives

eI 2 f ðtÞ½ � 
 eI eI f ðtÞ½ �� � ¼ Z t

0

Zs
0

f nð Þ dn
24 35 ds ¼

Z t

0

t � sð Þ f sð Þ ds ð3:48Þ

Then, for arbitrary positive integer n, we have the Cauchy formula for repeated
integration:

eI n f ðtÞ½ � ¼ 1
n� 1ð Þ !

Z t

0

t � sð Þn�1f sð Þ ds ð3:49Þ
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If we are interested in the replacement of n by a noninteger α, then the factorial in
Eq. (3.49) can be replaced by the gamma function. Then, we have a generalized
operator of repeated integration as follows:

eIa f ðtÞ½ � ¼ 1
C að Þ

Z t

0

t � sð Þa�1f sð Þ ds ð3:50Þ

where α is a positive real number. This definition results in that for a[ 0 and b[ 0

eIa eIb f ðtÞ½ �� � ¼ eIb eIa f ðtÞ½ �� � ¼ eIaþb f ðtÞ½ � ¼ 1
C aþ bð Þ

Z t

0

t � sð Þaþb�1f sð Þ ds

ð3:51Þ

Here, we used a mathematical identity such that

Z1
0

1� xð Þa�1xb�1dx ¼ C að ÞC bð Þ
C aþ bð Þ ð3:52Þ

Hereafter, we consider only the function which is vanishing for t\0 whenever
fractional calculus such as Eq. (3.50) is considered.

The notion of fractional integration, Eq. (3.50), is apt to be extended to that of
fractional derivative of order a[ 0 by the replacement of α in Eq. (3.50) by �a.
However, this generalization may give rise to a problem of integral convergence as
well as problems of preserving properties of ordinary derivative of integer order.
Note that the gamma function has poles at 0, �1, �2, and so on. We denote the
operator of fractional derivative by eDa ¼ da=dta. If m� 1\a�m for a natural
number m, then we define

eDa ¼ dm

dtm
eIm�a f ðtÞ½ � ¼ 1

C m� að Þ
dm

dtm

Z t

0

f sð Þ
t � sð Þaþ 1�m ds ð3:53Þ

When 0\a� 1, Eq. (3.53) becomes Eq. (3.103) in Chap. 2. This definition of
fractional derivative is called the Riemann and Liouville derivative. This fractional
derivative for 0\a\1 has been popularly used in rheology (Bagley and Torvik
1983, 1986; Palade et al. 1996; Song and Jiang 1998; Wharmby and Bagley 2013).
On the other hand, some researchers (Jaishankar and McKinley 2013) have used the
Caputo derivative which is defined by
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eDa
� ¼ eIm�a dm

dtm
f ðtÞ

� 
¼ 1

C m� að Þ
Z t

0

1

t � sð Þaþ 1�m

dmf sð Þ
dsm

ds ð3:54Þ

where m� 1\a�m and m is a positive integer. This definition requires the
integrability of the mth-order derivative. The relation between the two fractional
derivatives is found as

eDaf ðtÞ ¼ eDa
� f ðtÞþ

Xm�1

k¼0

tk�a

C k � aþ 1ð Þ f
kð Þ 0þð Þ ð3:55Þ

where f ðkÞðtÞ ¼ dkf
	
dtk. Hereafter, it is assumed that m� 1\a�m whenever a

positive integer m appears in fractional derivative. A number of definitions of
fractional derivative found are found in Dalir and Bashour (2010).

Laplace transform of fractional derivative is important in linear viscoelasticity.
Note that

eL eDaf ðtÞ� � ¼ saef ðsÞ �Xm�1

k¼0

dk

dtk
eIm�a f ðtÞ½ �

� �
t¼0þ

sm�1�k ð3:56Þ

As for the Caputo derivative

eL eDa
� f ðtÞ

� � ¼ saef ðsÞ �Xm�1

k¼0

f kð Þ 0þð Þ sa�1�k ð3:57Þ

3.3.2 The Fractional Models

Before considering fractional models, it is necessary to describe their original
counterparts. Here, we consider the Maxwell, the Voigt, the Zener (standard solid
model), and the Jeffreys models. The Zener model is the parallel connection of
Hookean spring and the Maxwell model, and the Jeffreys model is the series
connection of the Voigt model and Newtonian dashpot.

The Maxwell model

rþ kM
dr
dt

¼ gM
dc
dt

with gM ¼ kMGM ð3:58aÞ

GðtÞ ¼ GM exp � t
kM


 �
ð3:58bÞ

JðtÞ ¼ 1
GM

þ t
gM

ð3:58cÞ
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The Voigt model

rðtÞ ¼ GVcðtÞþgV
dc
dt

with gV ¼ sVGV ð3:59aÞ

GðtÞ ¼ GV þgVdðtÞ ð3:59bÞ

JðtÞ ¼ 1
GV

1� exp � t
sV


 �� 
ð3:59cÞ

The Zener model

rþ kM
dr
dt

¼ GHcþ kM GM þGHð Þ dc
dt

ð3:60aÞ

GðtÞ ¼ GH þGM exp � t
kM


 �
ð3:60bÞ

JðtÞ ¼ 1
GM þGH

þ 1
GH

1� exp � t
sZ


 �� 
ð3:60cÞ

sZ ¼ kM 1þ GM

GH


 �
ð3:60dÞ

The Jeffreys model

rþ kJ
dr
dt

¼ gN
dc
dt

þgNsV
d2c
dt2

ð3:61aÞ

GðtÞ ¼ gN
sV
kJ

dðtÞþ gN

kJ
exp � t

kJ


 �
ð3:61bÞ

JðtÞ ¼ t
gN

þ kJ � sV
gN

1� exp � t
sV


 �� 
ð3:61cÞ

kJ ¼ gN

GV
1þ gV

gN


 �
ð3:61dÞ

Note that GH , GM , and GV are moduli of the Hookean solid, the Maxwell fluid, and
the Voigt solid, respectively; gN is the viscosity of Newtonian fluid; kM is the
relaxation time of the Maxwell fluid; and sV is the retardation time of the Voigt
solid. The constitutive Eqs. (3.58a), (3.59a), (3.60a), and (3.61a) are expressed in a
unified manner:

rþ
Xn
k¼1

kkð Þkd
kr
dtk

¼ G1cþ
Xm
k¼1

Gk skð Þkd
kc
dtk

ð3:62Þ
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where kk are relaxation times; sk are retardation times; and Gk are moduli. We
followed the framework of Mainardi and Spada (2011) by emphasizing the physical
meaning of parameters.

The fractional counterparts of the four models are the ones to be obtained by the
replacement of the ordinary time derivatives by fractional ones. Mainardi and Spada
suggested fractional version of Eq. (3.62) as follows:

rþ
Xn
k¼1

kk
� �ak eDakr ¼ G1cþ

Xm
k¼1

Gk skð Þak eDakc ð3:63Þ

where ak ¼ aþ k � 1 with 0\a\1. Then, the relaxation modulus and creep
compliance of the model are calculated as

GðtÞ ¼ G1 þ
X
k¼1

GkEa � t
kk


 �a� 
þ GN

C 1� að Þ
t
kN


 ��a

ð3:64Þ

and

JðtÞ ¼ Jg þ
X
k¼1

Jk 1� Ea � t
sk


 �a� � �
þ JP

C 1þ að Þ
t
sP


 �a

ð3:65Þ

where Ea xð Þ is the Mittag–Leffler function which is defined by

Ea xð Þ ¼
X1
k¼0

xk

C akþ 1ð Þ ð3:66Þ

Note that in general kk 6¼ kk; sk 6¼ sk and the parameters of Eqs. (3.64) and (3.65)
can be expressed in terms of those of Eq. (3.63).

We know that the original Maxwell and Jeffreys models are viscoelastic fluids
and the original Voigt and Zener models are viscoelastic solids. As for viscoelastic
fluid, it is known that at long-time regime, JðtÞ / t. However, the fractional models
cannot describe such long-term behavior. Similar trends are found in dynamic
moduli. Jaishankar and McKinley (2013) summarized the asymptotic behavior of
the dynamic moduli of the fractional Maxwell model.

A strong point of fractional models is to predict the power law behavior of
complex materials (Bagley and Torvik 1983; Friedrich 1991; Song and Jiang 1998;
Jaishankar and McKinley 2013; Wharmby and Bagley 2013). Unfortunately, these
papers deal with experimental data measured over three decades or more. As shown
in Fig. 12, power law behavior appears locally in the viscoelastic data of even a
monodisperse polymer melt whenever the measurement is sufficiently extended. As
for network-like materials such as gel, such power law behavior is usual and the
measurement is restricted in comparatively small interval of frequency or time.
Hence, in order to fit wide experimental data over ten decades, hybrid-type model
might be required. An example is the work of Palade, Verney, and Attane, which fit
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wide viscoelastic data of polybutadiene by adopting fractional model only for
high-frequency region (Palade et al. 1996). In this respect, the author prefers the
Cole–Cole-type models to fractional models because of easy mathematics.

Problem 3

[1] Derive Eq. (3.30) as for complex viscosity.
[2] Derive storage and loss compliances of the Davidson–Cole model, Eq. (3.34).
[3] Derive relaxation modulus, creep compliance, and dynamic moduli of

Eq. (3.62).
[4] Derive storage and loss compliances of the Havriliak–Negami model,

Eq. (3.35).
[5] As for viscoelastic fluid, the Cole–Cole plot is the plot of J 00ðxÞ � goxð Þ�1

versus J 0ðxÞ � Jg. Draw the Cole–Cole plots for the Cole–Cole, the
Davidson–Cole, and the Havriliak–Negami models with various values of
parameters.

4 Molecular Theories

4.1 Dynamic Equation

Here, we consider the situation where every single polymer chain is separated far
from other chain by the distance much longer than the size of polymer chain.
A dilute polymer solution is a representative example. When molecular weight is
lower than the critical molecular weight, polymer chains in molten state behave
approximately as an isolated chain. A simple criterion for dilute polymer solution is
that mass concentration of polymer (polymer weight per volume of polymer
solution) is smaller than the intrinsic viscosity (Larson 2005).

In a dilute solution, motion of a segment is influenced by various interactions
such as the interaction with adjacent segments of the same chain, the interaction
with segments other than adjacent segments, and the interaction with solvent
molecules. The former interaction can be simplified by the introduction of Kuhn
monomer which is a collection of a few real monomers. A hypothetical chain
consisting of Kuhn monomers, called equivalent chain, behaves like the Gaussian
chain. Then, the interaction between adjacent Kuhn monomers in the same chain
can be modeled by the entropic spring of Eq. (4.9) in Chap. 4. Then, the potential is
given by

UC r1; � � � ; rNð Þ ¼ 3kBT
2b2

XN�1

c¼1

rcþ 1 � rc
� � � rcþ 1 � rc

� � ¼ 3kBT
2b2

XN
b¼1

XN
c¼1

Abcrb � rc

ð4:1Þ
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where

Aab ¼ 2dab 1� d1;b þ dN;b
2


 �
� daþ 1;b � da�1;b

Aab

� � ¼

1 �1 0 0 0 � � � 0

�1 2 �1 0 0 � � � 0

0 �1 2 �1 0 . .
.

0

0 0 �1 2 �1 . .
. ..

.

0 ..
. . .

. . .
. . .

. . .
.

0

..

.
0 � � � 0 �1 2 �1

0 0 � � � 0 0 �1 1

266666666666664

377777777777775

ð4:2Þ

From this potential, we know the force acting on the αth Kuhn segment is given by

f Cð Þ
a ¼ � @UC

@ra
¼ � 3kBT

b2
XN
c¼1

Aacrc ¼ � 3kBT
b2

2ra � raþ 1 � ra�1ð Þ ð4:3Þ

The second interaction is called exclusive volume interaction. Any two Kuhn
monomers far from each other along the chain connection can be close to each other
spatially. Since the exclusive volume interaction prevents the overlap of two dif-
ferent Kuhn monomers, the potential of exclusive volume is approximated by Doi
and Edwards (1986)

UEV ¼ kBTve
XN
a¼1

XN
b¼1

d ra � rb
� � ð4:4Þ

where ve is the exclusive volume of Kuhn monomer and modeled by

ve ¼ v 0ð Þ
e 1� TH

T


 �
ð4:5Þ

where TH is the theta temperature of the solution which depends on the chi
parameter of the solution (Rubinstein and Colby 2003). Since Eq. (4.4) includes the
Dirac delta function, it is difficult to express the force due to exclusive volume
effect. Hence, it may be replaced by (Doi and Edwards 1986)

UEV ¼ kBTve
XN
a¼1

c2 rað Þ ð4:6Þ

where c rð Þ is the local concentration of Kuhn monomer.
The effects of solvent molecules are modeled by two contributions: stochastic

force and dissipative force. The stochastic force is the random force acting on Kuhn
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monomer and is the key point of the Langevin equation. We denote the random
force by f Rð Þ

a . The dissipative force is the friction force due to difference between
velocities of the Kuhn monomer and ambient solvent molecules. Then, the use of
Stokes Eq. (3.2) in Chap. 3 gives the friction force acting on the αth Kuhn monomer:

f Fð Þ
a ¼ �f

dra
dt

� v rað Þ

 �

with f ¼ 6pgsb ð4:7Þ

where gs is the viscosity of the pure solvent liquid and v rað Þ is the solvent velocity
near the αth Kuhn monomer. The velocity of the solvent is usually modeled by

v rað Þ ¼ L � ra �
XN
b¼1

Hab � f Fð Þ
b ð4:8Þ

where L is the velocity gradient defined in continuum mechanics and Hab is the
mobility tensor. The mobility tensor gives the velocity perturbation due to the
motion of other Kuhn monomer (Doi and Edwards 1986). This interaction is called
the hydrodynamic interaction. The tensor Hab can be calculated by solving the
Stokes equation with Fourier transform (Doi and Edwards 1986; Deen 1998):

Hab ¼ 1
8pgsrab

Iþ rabrab
r2ab

 !
ð4:9Þ

where

rab ¼ ra � rb
�� �� ; rab ¼ ra � rb ð4:10Þ

Note that since the motion of a Kuhn monomer cannot influence that of the Kuhn
monomer itself through the perturbation of solvent motion, it is obvious to define
Hab ¼ 0 whenever a ¼ b.

Arrangement of Eq. (4.7) givesXN
c¼1

Mbc � f Fð Þ
c ¼ �f

drb
dt

� L � rb

 �

ð4:11Þ

where

Mbc ¼ dbcIþ fHbc ð4:12Þ

Let the inverse of Mab be denoted by M�1
ab then Eq. (4.11) becomes

f Fð Þ
a ¼ �f

XN
b¼1

M�1
ab � drb

dt
� L � rb


 �
ð4:13Þ
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It is difficult to calculate the inverse of Mab exactly. For two-particle chain
(dumbbell model), the exact equation is found in Pokrovskii (2000).

As for polymer melts with molecular weight less than the critical molecular
weight, it is known that chain conformation is equivalent to that in theta solution. It
is the Flory theorem that conformation of polymer chains in molten state is
equivalent to that of ideal chain (De Gennes 1979). Hence, in such polymer melts, it
is not necessary to consider the interaction of exclusive volume effect. Since there is
no solvent in molten polymer with short chain, it is not necessary to consider
hydrodynamic interaction, neither. Then, Eq. (4.13) becomes for melt of short
chains:

f Fð Þ
a ¼ �f

dra
dt

� L � ra

 �

ð4:14Þ

Although there are no solvent molecules in such melt with short chains, contact of
the pervade volumes of different chains might result in stochastic random force.

In semi-dilute solution without entanglement, it is known that the hydrodynamic
interaction is strong within the length scale called the hydrodynamic screening
length nh which approximately equals the static correlation length ξ (Rubinstein and
Colby 2003). Since n � b/�m= 3m�1ð Þ, both exclusive volume and hydrodynamic
interactions in melt disappear because / ¼ 1 and n � b (Rubinstein and Colby
2003).

In polymer melt with entanglement, interactions with other segments become
important. We shall express the force due to surrounding segments by fðsÞa . Since the
force fðsÞa depends on the conformation changes of surrounding chains, modeling
fðsÞa is really difficult. The tube model is to replace fðsÞa by the reptation of chain in a
hypothetical tube. Then, the many-chain problem due to fðsÞa can be reduced to a
single-chain problem.

In summary, the dynamic equation of Kuhn monomer can be expressed formally
by the Langevin equation:

l
d2ra
dt2

¼ f Cð Þ
a þ f EVð Þ

a þ fðsÞa þ f Fð Þ
a þ f Rð Þ

a ðtÞ ð4:15Þ

where μ is the mass of Kuhn monomer and f EVð Þ
a is the force due to the exclusive

volume effect. Because hydrodynamic interaction covers the exclusive volume
effect (Rubinstein and Colby 2003), Eq. (4.15) can be rewritten by

l
d2ra
dt2

¼ f Cð Þ
a þ fðsÞa þ f Fð Þ

a þ f Rð Þ
a ðtÞ ð4:16Þ

where the friction force f Fð Þ
a includes the hydrodynamic interaction through Eq. (4.13).
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In dilute solution, Eq. (4.15) becomes

l
d2ra
dt2

¼ � 3kBT
b2

XN
c¼1

Aacrc � f
dra
dt

� L � ra

 �

þ f Rð Þ
a ðtÞ ð4:17Þ

and

l
d2ra
dt2

¼ � 3kBT
b2

XN
c¼1

Aacrc � f
XN
b¼1

M�1
ab � drb

dt
� L � rb


 �
þ f Rð Þ

a ðtÞ ð4:18Þ

Equation (4.17) is the one without hydrodynamic interaction, while Eq. (4.18) is the
one with hydrodynamic interaction.

Most solvents for polymer have the viscosity whose order of magnitude is about
10�3 Pa s, the size of Kuhn monomers of most polymers have the order of mag-
nitude of 10�9 m, and the mass of Kuhn monomers is of the order of 10�24 kg.
Hence, using the Stokes Eq. (3.2) in Chap. 3, the order of ζ is about 10�11 Nm�1 s.
If the room temperature is assumed, then we know that the inertia term is negligible
because

l
f
� 10�13;

kBT
fb2

� 108 ð4:19Þ

Then, Eqs. (4.17) and (4.18) can be approximated by

dra
dt

¼ L � ra � k
f

XN
c¼1

Aacrc þ gaðtÞ ð4:20Þ

and

dra
dt

¼ L � ra � k
f

XN
b¼1

XN
c¼1

AbcMab � rc þ
XN
b¼1

Mab � gbðtÞ ð4:21Þ

where

k ¼ 3kBT
b2

; ga ¼
1
f
fa ð4:22Þ

Note that

gaðtÞh i ¼ 0 ; gaðtÞgb t0ð Þ� � ¼ 2kBT
f

dabd t � t0ð Þ I ð4:23Þ
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The dynamic equation of entangled system must be different from Eqs. (4.20) to
(4.21) because the surrounding effect fðsÞa will be replaced by the tube. Dynamic
equation of entangled system will be discussed separately later.

4.2 The Stress of Polymeric Fluid

Stress of simple fluid has been derived in Eq. (2.118) in Chap. 3 where the first term
can be reduced isotropic pressure, while the second term represents the effect of
molecular interaction. Similar equation can be obtained from the Chandrasekhar
Eq. (3.90) in Chap. 3 by deriving momentum balance equation. Similar approach
for polymeric fluid is found in Pokrovskii (2000). Simpler derivation of polymer
stress is found in Doi and Edwards (1986) and Doi (1996). The Doi’s approach is to
consider only chain connecting force f Cð Þ

a . This is the most dominant contribution to
the stress of polymeric fluid. Hence, we will follow the approximation because it is
simple as well as because it agrees well with experimental data.

From the analysis in Sect. 2.3 in Chap. 3, we know the polymer stress is the
ensemble average of the internal virial tensor V̂in:

V̂in ¼ 1
2

XL
a¼1

XL
c6¼a

facrac ð4:24Þ

In Eq. (4.24), particles are Kuhn monomers of various chains and solvent mole-
cules. Hence, a rigorous approach needs to use new notations for particle identi-
fication. However, we will follow Doi’s approach such that only a single chain is
considered and only nonzero forces among fac are

fa;aþ 1 ¼ �k ra � raþ 1ð Þ and fa;a�1 ¼ �k ra � ra�1ð Þ ð4:25Þ

Then, Eq. (4.24) is given by

V̂in ¼ �k
XN�1

a¼1

ra � raþ 1ð Þ ra � raþ 1ð Þ ð4:26Þ

With the help of Eq. (2.90) in Chap. 3, we have the stress of a single polymer chain:

T ¼ �pI� 1
X

V̂in
� � ¼ �pIþ k

X

XN�1

a¼1

raþ 1 � rað Þ raþ 1 � rað Þh i ð4:27Þ

where the momentum term of Eq. (2.110) in Chap. 3 is replaced by the hydrostatic
pressure. If all chains are assumed to contribute to stress independently, then Eq. (4.
27) becomes
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T ¼ �pIþ qnum
N

k
XN�1

a¼1

raþ 1 � rað Þ raþ 1 � rað Þh i ð4:28Þ

where qnum is the number density of Kuhn monomers and N is the number of Kuhn
monomers in a single chain. Equation (4.28) is the stress equation derived by Doi
(1996). Note that the total number of chains in the volume Ω is qnumX=N.

It must be noted that Eq. (4.28) does not consider any effect of neighbor chains.
Hence, nematic effect is neglected in Eq. (4.28). The validity of Eq. (4.28) is
discussed in Doi and Edwards (1986), Doi (1996), and Watanabe (1999).

4.3 The Rouse Model

The Rouse model is the first molecular theory which describes experimental data
quite successfully when hydrodynamic interaction is negligible (Rouse 1953). The
Rouse model is given by Eq. (4.20). We need to integrate Eq. (4.20) in order to
derive the linear viscoelastic functions of the Rouse model. This is a system of
linear ordinary differential equations. To solve this, we have to use the normal
coordinate which makes the second term of the right-hand side of Eq. (4.20)
diagonalized. This approach needs a long algebraic calculation. This approach is
found in Pokrovskii (2000), Lin (2003), and Teraoka (2002). Since Eq. (4.28) is a
rough approximation, it is convenient to use continuous monomer index instead of
discrete index α. Then, we adopt the transform such that raðtÞ ! r n; tð Þ and
ga ! g n; tð Þ. The dynamic equation of the Rouse model becomes

@r
@t

¼ k
f
@2r
@n2

þL � rþ g n; tð Þ ð4:29Þ

Note that we used

XN
c¼1

Aacrc ¼ 2ra � raþ 1 � ra�1 ! @2r
@n2

ð4:30Þ

The continuous index runs from 0 to N. For n ¼ 0 and n ¼ N, we know that

dr0
dt

¼ k
f

r1 � r0ð ÞþL � r0 þ g0

drN
dt

¼ k
f

rN�1 � rNð ÞþL � rN þ gN

ð4:31Þ
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Adding hypothetical Kuhn monomers such as

r�1 ¼ r0; rNþ 1 ¼ rN ð4:32Þ

Equation (4.31) can be transformed to Eq. (4.29). The boundary condition of
Eq. (4.32) is transformed to

@r
@n

¼ 0 at n ¼ 0 and n ¼ N ð4:33Þ

Note that the continuous transform for monomer index transforms, Eq. (4.28), as
follows:

T ¼ �pIþ qnumk
N

XN
n

@r
@n

@r
@n

� �
ð4:34Þ

The use of continuous monomer index is to see a flexible chain as a continuous
curve with the parameter of n. This is called the continuous chain model. Just as the
discrete Rouse model, the continuous Rouse model can be solved by the use of a
normal coordinate which is a finite Fourier transform. The normal coordinate is
defined as

xpðtÞ ¼ 1
N

ZN
0

cos
ppn
N

r n; tð Þ dn ð4:35Þ

This technique for solving linear partial differential equation is explained in detail in
Deen (1998). Note that

1
N

ZN
0

cos
ppn
N

@2r
@n2

dn ¼ � pp
N

� �2
xpðtÞ ð4:36Þ

where we used integration by parts twice and the boundary condition, Eq. (4.33).
The boundary condition indicates why we used cos p pn=Nð Þ instead of
sin p pn=Nð Þ. Application of the finite Fourier transform to Eq. (4.29) gives

dxp
dt

¼ � kp
fp

xp þL � xp þ ĝp ð4:37Þ

where

f0 ¼ Nf ; fp ¼ 2Nf ; kp ¼ 2p2p2k
N

¼ 6p2kBh
Nb2

p2 ð4:38Þ
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and

ĝp ¼
1
N

ZN
0

cos
ppn
N

g n; tð Þ dn ð4:39Þ

From Eq. (4.23), we have

ĝpðtÞ
� � ¼ 0 ; ĝpðtÞĝq t0ð Þ� � ¼ 2

kBT
fp

dpqId t � t0ð Þ ð4:40Þ

With the help of the finite Fourier transform, Eq. (4.34) can be rewritten by

T ¼ �pIþ c
N

X
p

kp xpðtÞxpðtÞ
� � ð4:41Þ

Consider simple shear L ¼ _cðtÞ e1e2 in order to calculate the linear viscoelastic
function of the Rouse model. Then, Eq. (4.37) can be rewritten in a
component-wise manner:

dxp1
dt

¼ � kp
fp

xp1 þ _cxp2 þ ĝp1; ð4:42aÞ

dxp2
dt

¼ � kp
fp

xp2 þ ĝp2; ð4:42bÞ

dxp3
dt

¼ � kp
fp

xp3 þ ĝp3 ð4:42cÞ

Integrating Eqs. (4.42a, b) and taking the ensemble average, we have

T12ðtÞ ¼
Z t

�1
G t � t0ð Þ _c t0ð Þ dt0 ð4:43Þ

where

GðtÞ ¼ qnum
N

kBT
X1
p¼1

exp � 2t
kp


 �
ð4:44Þ

Note that

kp ¼ kR
p2

ð4:45Þ
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where

kR ¼ 1
p2

fN2

k
¼ fb2N2

3p2kBT
ð4:46Þ

Since kR ¼ k1 [ k2 [ � � �, we have

X1
p¼1

e�t=kp ¼ e�t=kR
X1
p¼1

exp � 2p2 � 1
kR

t


 �
� Ne�t=kR

Z1
0

exp � 2t
ko

x2

 �

dx

¼ N
2

ffiffiffiffiffiffiffi
pko
2t

r
e�t=kR

ð4:47Þ

where ko ¼ kRN�2, dx ¼ N�1, x ¼ p=N and 1
	
N2 � 0 was used. Then, we can

replace the infinite series by a closed expression:

GðtÞ � /
kBT
b3

ffiffiffiffiffi
ko
t

r
exp � t

kR


 �
for t[ ko ð4:48Þ

where / is the volume fraction of polymer, which can be calculated by b3qnum ¼ /
under the assumption that the volume of Kuhn monomer is approximately b3.
Equation (4.48) is the approximation obtained by Rubinstein and Colby using
similarity (Rubinstein and Colby 2003).

In order to calculate dynamic moduli, we rewrite Eq. (4.48) as follows:

GðtÞ ¼ /
kBT
b3N

ffiffiffiffiffi
kR
t

r
exp � t

kR


 �
ð4:49Þ

where we used ko ¼ kRN�2. The Laplace transform of the relaxation modulus is
calculated

seGðsÞ ¼ /
kBT
b3N

s
Z1
0

ffiffiffiffiffi
kR
t

r
exp � t

kR
� st


 �
dt ¼ ffiffiffi

p
p

/
kBT
b3N

kRsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ kRs

p ð4:50Þ

Here, we used variable transforms such as t ¼ kRs and x ¼ ffiffiffi
s

p
. Substitution of

s ¼ ix gives

G�ðxÞ ¼ ffiffiffi
p

p
/
kBT
b3N

ikRxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ikRx

p ¼ ffiffiffi
p

p
/
kBT
b3N

kRx
sin 1

2 h
� �þ i cos 1

2 h
� �

1þ k2Rx
2

� �1=4 ð4:51Þ
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where h ¼ arctan kRx. Note that

sin
h
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2Rx

2
q

� 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2Rx

2
q

vuuut ; cos
h
2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2Rx

2
q

þ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2Rx

2
q

vuuut ð4:52Þ

The use of Eq. (4.52) gives the dynamic moduli of the Rouse model as follows:

G0ðxÞ �
ffiffiffi
p
2

r
/
kBT
b3N

k2Rx
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ k2Rx
2

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2Rx

2
q
 �s ;

G00ðxÞ �
ffiffiffi
p
2

r
/
kBT
b3N

kRx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2Rx

2
q
1þ k2Rx

2

vuut
ð4:53Þ

for x\k�1
o .

The zero-shear viscosity can be calculated by the use of (1.64):

go ¼ lim
x!0

G00ðxÞ
x

¼
ffiffiffi
p
2

r
/
kBT
b3N

kR ¼
ffiffiffi
p
2

r
/
kBT
b3

koN ð4:54Þ

The steady-state compliance can be calculated by

Joe ¼ 1
g2
o
lim
x!0

G0ðxÞ
x2 ¼

ffiffiffi
2
p

r
b3

/kBT
N ð4:55Þ

The Rouse model predicts that both zero-shear viscosity and steady-state compli-
ance are proportional to molecular weight. Equations (4.54) and (4.55) imply that
the mean relaxation time is k ¼ kR / N2.

Figure 10 shows the comparison of Eq. (4.53) with experimental data which
were measured for cellulose solutions whose concentrations are slightly higher than
the overlap concentration. The data were obtained from Fig. 6 of Lu et al. (2013).
Figure 10 shows that both G0ðxÞ and G00ðxÞ are proportional to x2 in
high-frequency regime.

Equation (4.50) does not give the conventional form of the Laplace transform of
the creep compliance of viscoelastic liquid such that

seJðsÞ ¼ Jg þ 1
gos

þ Jrs eWðsÞ ð4:56Þ
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It is because Eq. (4.49) shows that relaxation modulus goes to infinite as time goes
to zero. Hence, we modify Eq. (4.49) as follows:

GðtÞ ¼
Go exp � ko

kR

� �
0\t\ko

Go

ffiffiffiffi
ko
t

q
exp � t

kR

� �
ko\t

8<: ð4:57Þ

where

Go ¼ /
kBT
b3N

ð4:58Þ

Then, we have

seG sð Þ ¼ Go

s
e�ko=kR 1� e�kos

� �þ ffiffiffi
p

p
Gokos

Erfc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kosþ k�1

R

q
 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kosþ k�1

R

q ð4:59Þ

The reciprocal of Eq. (4.59) obeys Eq. (4.56). However, Eq. (4.59) is too
complicate, while the Rouse model itself is a rough approximation. One may cal-
culate Jg, Jr, and go from Eq. (4.59) with the help of theorem of the initial and final
values for Laplace transform. Most theories of viscoelastic constitutive equations
have the common features:

[1] Stress is derived from given deformation field.
[2] The models deal with a finite range of frequency (or time) and are not valid for

the whole frequency (or time).

We will learn the Doi–Edwards theory later, which is valid in lower-frequency
range and cannot be applied to the frequency range of the Rouse model. On the
other hand, the Rouse model is not valid for lower-frequency range. Each model
describes local behaviors rather than the global behaviors. Most papers on
molecular simulation of polymer viscoelasticity are based on the assumption that
the whole viscoelasticity might be the sum of the modulus of the two models
(Benallal et al. 1993; Pattamaprom et al. 2000; Pattamaprom and Larson 2001):
additivity of stresses of the two regimes. A question arises: What is the foundation
of such assumption? One may think that when a constant stress is given, fast mode
of molecular motion gives rise to deformation first in short-time regime and then
slow mode adds further deformation. This picture of viscoelasticity of polymeric
fluid might be represented by the modified Cole–Cole model, Eq. (3.39), if the third
term is considered as the slow mode and the fourth term as the fast mode. Further
research is necessary for this argument.
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4.4 The Zimm Model

Although the Rouse model predicts k� kR / N2, experimental data reveal that
k / N3m where m � 3=5 for good solvent and m ¼ 1=2 for Θ-solvent. The origin of
the deviation was thought as the absence of hydrodynamic interaction. Hence,
Zimm introduced the hydrodynamic interaction and tried to calculate Eq. (4.21).
However, it is very difficult to solve the equation without any approximation. If
preaverage was applied, then the relaxation modulus of the Zimm model is given by

GðtÞ � /
kBT
b3

ko
t


 � 1
3m

exp � t
kZ


 �
for t[ ko ð4:60Þ

where

kZ ¼ koN
3m ð4:61Þ

Then, counterpart of Eq. (4.53) is given by

G0ðxÞ � /
kBT
b3N

kZx sin 1� 3mð Þ�1
� �

arctan kZxð Þ
h i
1þ kZxð Þ2
h i 1

2 1� 3mð Þ�1ð Þ ;

G00ðxÞ � /
kBT
b3N

kZx cos 1� 3mð Þ�1
� �

arctan kZxð Þ
h i
1þ kZxð Þ2
h i 1

2 1� 3mð Þ�1ð Þ

ð4:62Þ

for x\k�1
o .

Readers interested in more detailed calculation are recommended to refer to Doi
and Edwards (1986), Doi (1996), and Lin (2003). If interested in physical inter-
station, refer to Rubinstein and Colby (2003).

4.5 The Doi–Edwards Model

Linear viscoelasticity of polymeric fluid consisting of linear polymers changes
dramatically if entanglement occurs. As for polymer melts, zero-shear viscosity
increases as M3:50:1 when molecular weight M is higher than the critical molecular
weight MC as mentioned in Eq. (3.68) in Chap. 2. This phenomenon has been a
mystery for a long time until the Doi–Edwards model was developed (Doi and
Edwards 1986).
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4.5.1 Basic Concepts

When temperature is sufficiently high, dominant molecular interaction is repulsive
one rather than attractive one. The repulsive interaction is mediated by the collision
of molecules. When a small molecule collides with one another, the collision makes
them apart faraway. On the other hand, collision between two segments of poly-
meric chains cannot separate the two segments to a far distance because the seg-
ments are connected with the segments of their chains. A single collision cannot
alter the conformation of the whole chain to which the segments belong. Hence, the
two adjacent chains contact persistently during the time whose order is approxi-
mately equivalent to L2

	
D where L is the characteristic size of the chain and D is the

diffusion constant for the motion of polymer chain. Hence, the influence of neighbor
chains on a chain’s motion can be approximated as that of fixed obstacles. The tube
model is to consider the obstacles as a tube enveloping the tagged chain. The Doi–
Edwards model is a mean field theory which replaces multichain problem by the
single-chain problem that the interaction of neighbor chains is modeled by the tube.

If the diameter of the tube is ξ, then the tagged chain in the tube can be divided
as the series of blobs whose size is ξ as shown in Fig. 13. Let the number of Kuhn
segments in the blob be denoted by Ne. Then, the blob size ξ can be expressed by

n ¼ b
ffiffiffiffiffi
Ne

p ð4:64Þ

Fig. 13 Illustration of the
tube model. The envelop of
the series of blobs is the tube.
The blobs can be considered
as a newly scaled segments
whose diameter is ξ. The
motion of the subchain in the
blob can be considered as a
Rouse chain because the
subchain is free from
neighbor chains. The
primitive chain is the line
passing the centers of the
blobs
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If the chain of the blobs is considered as an equivalent chain discussed in Sect. 2.2
in Chap. 4, then the contour length of the tube L should satisfy

L ¼ n
N
Ne

¼ b
Nffiffiffiffiffi
Ne

p ð4:65Þ

Here, the number of blobs is obviously Nb ¼ N=Ne where N is the number of Kuhn
segments in the tagged chain.

The positions of the blobs can be considered to be on the centeroidal curve
passing the tube. This curve is called the primitive chain. That is, the blob is
indicated by a continuous variable s which is the parameter representing the curve.
This coarse graining is based on the assumption that the time scale of the obser-
vation is sufficiently longer than that of the motion of segments in the blobs. Hence,
the detailed mechanics in the blobs appears as averaged.

4.5.2 Dynamics and Stress

Then, the position vector is a function of s and time t: r s; tð Þ. The range of s should
be 0� s� L. Since the chain moves along the tube, the dynamics is simply given by

r s; tþDtð Þ ¼ r sþ mðtÞ; tð Þ ð4:66Þ

where mðtÞ is assumed as a stochastic variable following the Gaussian process such
that

mðtÞh i ¼ 0 ; m2ðtÞ� � ¼ 2DcDt ð4:67Þ

and the probability distribution is given by

P mð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDcDt

p exp � m2

4DcDt


 �
ð4:68Þ

The curvilinear diffusion constant Dc should be determined in an appropriate
manner.

Since Eq. (4.65) implies @s=@n ¼ L=N, the stress of Eq. (4.34) can be rescaled:

T ¼ �pIþ qnumk
N

L
N

ZL
0

@r
@s

@r
@s

� �
ds ð4:69Þ
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Since polymeric liquid can be considered an incompressible fluid, the integrand can
be replaced by the equivalent traceless tensor such that

T ¼ �pIþ qnumk
N

L
N

ZL
0

Y s; tð Þ ds ð4:70Þ

where

Y s; tð Þ 
 u s; tð Þu s; tð Þh i � 1
3
I ð4:71Þ

and

u ¼ @r
@s

ð4:72Þ

It is noteworthy that the second-order tensor Y is proportional to optical anisotropy
tensor (Watanabe 1999). The proportionality between stress and optical anisotropy
is called the stress-optical rule. The experimental conformity of the stress-optical
rule supports the validity of Eq. (4.69). Since we take s as the arc length of the tube,
it is obvious that the tangent vector u is a unit vector (O’Neill 2006).

4.5.3 Solution of Stress Relaxation

Consider stress relaxation test where deformation field is given by

F t; exð Þ ¼ FHðtÞ ð4:73Þ

where F is a constant second-order tensor. It is one of the simplest assumptions that
the tangent vector at t ¼ 0þ is given by

u t ¼ 0þð Þ ¼ F � eu
F � eu�� �� ð4:74Þ

where eu is the tangent vector at the reference configuration. Then, deformed Y at
t ¼ 0þ is given by

Y t ¼ 0þð Þ ¼ F � eu� �
F � eu� �

C : eueu
� �

0
� 1
3
I 
 Z F

� � ð4:75Þ
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where C is the right Cauchy–Green tensor: C ¼ F
T � F (see Sect. 7 in Chap. 1). The

average of Eq. (4.75) can be obtained by the assumption that the orientation of eu is
isotropic:

F � eu� �
F � eu� �

C : eueu
� �

0
¼ 1

4p

Z2p
0

Zp
0

F � eu� �
F � eu� �

C : eueu sin ehdehde/ ð4:76Þ

where

eu ¼ cos e/ sin eh e1 þ sin e/ sin eh e2 þ cos eh e3 ð4:77Þ

is considered.
Since the chain moves along the tube, the dynamics of the unit tangent vector

obeys

u s; tþDtð Þ ¼ u sþ mðtÞ; tð Þ ð4:78Þ

Application of the Taylor expansion gives

@u
@t

Dt ¼ @u
@s

mþ 1
2
@2u
@s2

m2 ð4:79Þ

And Eq. (4.71) gives

@Y
@t

¼ Dc
@2Y
@s2

ð4:80Þ

Note that all directions are equivalent at the both ends of the primitive chain, and
the following boundary conditions are available

Y 0; tð Þ ¼ Y L; tð Þ ¼ 0 ð4:81Þ

The solution of Eq. (4.80) subject to the boundary conditions of Eq. (4.81) can be
obtained by the finite Fourier transform (Deen 1998). Consider base functions such
as

WmðsÞ ¼ sin
mps
L

with m ¼ 1; 2; . . . ð4:82Þ

Note that the base functions satisfy

Wm 0ð Þ ¼ Wm Lð Þ ¼ 0 ð4:83Þ
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and

2
L

ZL
0

WmðsÞWnðsÞ ds ¼ dmn ð4:84Þ

Assume that the solution is given by

Y s; tð Þ ¼
X1
m¼1

TmðtÞWmðsÞ ð4:85Þ

Substitution of Eq. (4.85) into Eq. (4.80) gives

X1
m¼1

dTm

dt
WmðsÞ ¼ �Dc

X1
m¼1

mp
L

� �2
TmðtÞWmðsÞ ð4:86Þ

Application of the orthogonal properties of the base function gives

dTm

dt
¼ �Dc

mp
L

� �2
TmðtÞ ð4:87Þ

The general solution of Eq. (4.87) is given by

TmðtÞ ¼ Tm 0ð Þ exp � t
km


 �
ð4:88Þ

where

km ¼ kmax

m2 with kmax ¼ L2

p2Dc
ð4:89Þ

Finally, we have

Y s; tð Þ ¼
X1
m¼1

Tm 0ð Þ e�t=km sin
mps
L

ð4:90Þ

Equation (4.75) implies that

Z F
� � ¼X1

m¼1

Tm 0ð Þ sinmps
L

ð4:91Þ
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Since the left-hand side of Eq. (4.91) is independent of s, it is obvious that

Tm 0ð Þ ¼
4
pm

Z F
� �

for odd m

0 for even m

8<: ð4:92Þ

Then, we have

Y s; tð Þ ¼ Z F
� � X1

m¼odd

4
pm

e�t=km sin
mps
L

ð4:90Þ

and Eq. (4.70) becomes

T ¼ �pIþ qnumk
L
N


 �2

Z F
� �

/ðtÞ ð4:91Þ

where

/ðtÞ ¼
X1
m¼odd

8
p2m2 e

�t=km ð4:92Þ

We are interested in simple shear flow which can be represented by

F ¼ ce1e2 þ I ð4:93Þ

Substitution of Eq. (4.93) into Eq. (4.74) gives

u t ¼ 0þð Þ ¼ euþ ceu2e1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffieu1 þ ceu2ð Þ2 þ eu22 þ eu23q ð4:94Þ

where euk is the kth component of eu. Then, we have

Z F
� � ¼ eueuþ ceu2 e1euþ eue1ð Þþ c2eu22e1e1

1þ 2ceu1eu2 þ c2eu22
� �

0

� 1
3
I ð4:95Þ

When c � 1, we have

Z12 ¼ c
5

ð4:96Þ

Then, shear stress is given by

T12ðtÞ ¼ 3qnumkBT
5Ne

c/ðtÞHðtÞ ð4:97Þ

Remind Eq. (4.22) for k.
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4.5.4 Linear Viscoelasticity

Equation (4.97) gives relaxation modulus:

GðtÞ ¼ 3qnumkBT
5Ne

/ðtÞHðtÞ ð4:98Þ

Now, we return to the curvilinear diffusion constant Dc. Since the chain moves in
the tube like the Rouse chain, Dc can be modeled by

Dc ¼ kBT
Nf

ð4:99Þ

The use of Eq. (4.99) gives the zero-shear viscosity:

go ¼
Z1
0

GðtÞ dt ¼ p2

20
qnumkBT

Ne
kd ð4:100Þ

where disentanglement time kd is defined as

kd ¼ 1
p2

fN3b2

NekBT
¼ kmax ð4:101Þ

On the other hand, we have

Joeg
2
o ¼

Z1
0

tGðtÞ dt ¼ p4

200
qnumkBT

Ne
k2d ð4:102Þ

and

k ¼ Joego ¼
R1
0 tGðtÞ dtR1
0 GðtÞ dt ¼

p2

10
kd � 0:987 kd ð4:103Þ

For these calculations, we need to solve Problem 22 (Baumgärtel et al. 1992).
Dynamic modulus can be calculated from Eq. (4.98) by the use of Eqs. (1.42)

and (1.43):

G0ðxÞ ¼ 8Ge

p2
X1
m¼odd

1
m2

k2mx
2

1þ k2mx
2
; G00ðxÞ ¼ 8Ge

p2
X1
m¼odd

1
m2

kmx

1þ k2mx
2

ð4:104Þ
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where

Ge 
 3qnumkBT
5Ne

ð4:105Þ

It is well known that as for the Maxwell model (see Eq. 3.29a), the following
identity holds:

GM ¼ 2
p

Z1
0

G00ðxÞ
x

dx ð4:106Þ

The plateau modulus Go
N can be defined by analogy with Eq. (4.106):

Go
N 
 2

p

Z1
0

G00ðxÞ
x

dx ð4:107Þ

Then, Eq. (4.107) gives the plateau modulus of the Doi–Edwards model given by

Go
N ¼ Ge ¼ 3qRT

5Me
ð4:108Þ

Here, we used that R ¼ kBNA and Me ¼ NAmKuhnNe where R is the gas constant, ρ
is the mass density, NA is the Avogadro’s number, and mKuhn is the mass of the
Kuhn monomer. Statistical theory of rubber elasticity reads that the shear modulus
of polymer network is given by

G ¼ qRT
Mx

ð4:109Þ

This is Eq. (4.25) in Chap. 4, and Mx is the average molecular weight of the
subchains between adjacent junction points. By analogy with Eq. (4.109), Me can
be considered as the average molecular weight between physical junction points if
entangled chains are considered as a temporary network.

Equation (1.16) is the general form of relaxation modulus. If G1 ¼ 0, Eq. (1.16)
is the model for viscoelastic fluid. As mentioned in Problem 19 (Cole and Cole
1941), the inverse of steady-state compliance is almost same with the plateau
modulus defined by Eq. (4.107). However, the Doi–Edwards model gives
2Joe ¼ G�1

e .
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Equation (4.101) implies that the zero-shear viscosity is proportional to N3. This
result is slightly different from experimental observation Eq. (3.68) in Chap. 2. Doi
and Edwards (1986) explain this deviation due to the fluctuation of the tube length
L. Including contour length fluctuation (CLF), Doi and Edwards showed that

kd � 1
p2

fN3b2

NekBT
1� 1:3

ffiffiffiffiffi
Ne

N

r !2

ð4:110Þ

Equation (4.110) behaves like kd / N3:50:1 for 10Ne\N\100Ne, while kd
becomes proportional to N3 as N goes infinite. Experimental verification of the
Doi–Edwards fluctuation model is found in Fig. 9.21 and 9.24 of Rubinstein and
Colby (2003).

4.6 Modification of the Doi–Edwards Model

Although the original Doi–Edwards theory unveils the mystery of entanglement,
the linear viscoelasticity from the model shows nontrivial deviation from experi-
mental data. To remove the deviation, a number of modifications have been
developed. CLF and constraint release (CR) are some of the ramification. Detailed
comparison of these efforts for improvement of the original theory is found in
Benallal et al. (1993), Watanabe (1999), Pattamaprom et al. (2000), Pattamaprom
and Larson (2001), and Leygue et al. (2006).

Contour length fluctuation is to render variation to tube length, while constraint
release is the effects of the relaxation of the surrounding chains. Double reptation is
considered as a simplification of constraint release. In order to introduce these
modifications of tube models, it is necessary to mention mathematical formalism of
relaxation modulus of the tube-based theories. The tube-based theories consider that
the relaxation modulus is proportional to the average tube survival probability along
the chain:

GðtÞ ¼ Go
N

2

Z1
�1

P es; tð Þ des ð4:111Þ

where the plateau modulus is used as the scale factor for the relaxation modulus, es
is the dimensionless position of the segment of the primitive chain, and P es; tð Þ is
the probability for a segment of the primitive chain at es to survive between the
initial time 0 and time t. The probability P es; tð Þ obeys
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@P
@t

¼ @

@es eDCLF esð Þ @P
@es

� 
þBP ð4:112Þ

P t;1ð Þ ¼ 0 for t[ 0 ð4:113Þ

and

P 0; sð Þ ¼ 1 for � 1\s\1 ð4:114Þ

where es-dependent diffusion constant eDCLF esð Þ represents the contour length fluc-
tuation and B is a functional of P es; tð Þ, which can represent constraint release as
well as contour length fluctuation depending on its mathematical form (Bae and
Cho 2015). As for the original Doi–Edwards theory, it is obvious that eDCLF is
constant and B ¼ 0. Since Eq. (4.112) is a nonlinear diffusion equation, it is hard to
expect analytical solution. Hence, improved versions of the Doi–Edwards model
need numerical method.

This approach is effective only for low-frequency region such as aTx\102 for
the case of monodisperse polybutadiene in Fig. 12. In order to extend the effective
range of frequency, fast mode of relaxation such as the Rouse model should be
included:

GRouseðtÞ ¼ Go
N

X1
n¼Zþ 1

1
Z
exp � n2

kR
t


 �
þ 1

3

XZ
n¼1

1
Z
exp � n2

kR
t


 �" #
ð4:115Þ

where Z is the closest integer to M=Me ¼ N=Ne and kR is the Rouse time of
Eq. (4.46). Equation (4.115) is called fragmented Rouse model which was sug-
gested by Milner and McLeigh (1998).

Even though several relaxation mechanisms other than pure reptation have been
introduced, the frequency regions of aTx[ 108 in Fig. 12 cannot be predicted. This
region of frequency may be called glassy region. Benallal et al. (1993) added a
phenomenological model such as the Davidson–Cole model for the glassy region.

Although the original Doi–Edwards theory deals with only monodisperse linear
polymer, great progression in the tube-based theory opened ways to predict linear
viscoelasticity of polydisperse polymers. Effect of molecular weight distribution
can be described by the quadratic mixing rule (des Cloizeaux 1988; Tsenoglou
1991). When relaxation modulus of monodisperse polymer melt of Mk is denoted
by Gm t; Mkð Þ, the mixing rule addresses that the relaxation modulus of the poly-
disperse polymer melt with molecular weight distribution of wk is given by
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ffiffiffiffiffiffiffiffiffi
GðtÞ

p
¼
XNchain

k¼1

wk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm t; Mkð Þ

p
ð4:116Þ

This mixing rule is known to hold whenever Mk � Me for all k.
Recent progression in molecular theory makes it possible to predict viscoelas-

ticity of nonlinear polymers which have divergent branch chains.

Problem 4

[1] Consider Eq. (4.20). Assume that L ¼ 0. When bond vector ba is defined as

ba ¼ raþ 1 � ra for a ¼ 1; 2; . . .;N � 1 ð4:aÞ

Show that Eq. (4.20) can be rewritten in terms of bond vectors as follows:

dba
dt

¼ � 3kBT
fb2

XN�1

b¼1

A0
abbb þ gaþ 1ðtÞ � gaðtÞ ð4:bÞ

where the Rouse matrix A0
ab is defined as

A0
ab ¼ 2dab � daþ 1; b � da�1; b ð4:cÞ

[2] Show that the eigenvalues of the Rouse matrix are given by

ab ¼ 4 sin2
bp
2N

for b ¼ 1; 2; . . .;N � 1 ð4:dÞ

See Lin (2003).
[3] Consider Stokes equation

gr2vþrp ¼ �g ð4:eÞ

where g xð Þ is a vector field. Assume the fluid is incompressible:

r � v ¼ 0 ð4:fÞ

The boundary condition of velocity field is given by

lim
xk k!1

v xð Þ ¼ 0 ð4:gÞ

When the Fourier transform is defined as
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v̂ kð Þ ¼
Z

v xð Þ eik xdx ð4:hÞ

Show that Eqs. (4.e) and (4.f) are rewritten by

g k � kð Þ v̂þ ikp̂ ¼ ĝ; k � v̂ ¼ 0 ð4:iÞ

[4] Show that the solution of Eq. (4.e) is given by

v xð Þ ¼
Z

H x� rð Þ � g rð Þ dr ð4:jÞ

where H rð Þ is the Oseen tensor defined as

H rð Þ ¼ 1
8pg rk k Iþ rrð Þ ð4:kÞ

See Doi and Edwards (1986) or Deen (1998).
[5] For the purpose of calculation of Eqs. (4.100), (4.102), and (4.103), it is

necessary to be familiar with some properties of the Riemann zeta function
which is defined as

f xð Þ ¼
X1
n¼1

1
nx

We are interested in integer values of x larger than unity. As for the interval of
�p\x\p, the Fourier series of x2 is known as

x2 ¼ p2

3
þ 4

X1
k¼1

�1ð Þkcos kx
k2

If we set x ¼ p, then we have

f 2ð Þ ¼ p2

6

Prove that

f 4ð Þ ¼ p4

90
; f 6ð Þ ¼ p6

945

See the Chap. 5 of Arfken and Weber (2001).
[6] It is obvious that

X1
n¼odd

1
nx

¼
X1
n¼1

1
nx

�
X1

n¼even

1
nx

¼ 1� 1
2x


 �
f xð Þ
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Calculate the following infinite series:

X1
m¼odd

1
nk

for k ¼ 2; 4; and 6
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Chapter 6
Numerical Methods

Abstract One of the important features of the book is the numerical algorithms for
the viscoelastic identification of polymeric materials. Hence, this chapter introduces
the numerical methods which are necessary for the algorithms. Different from
conventional text books of numerical methods, this chapter deals with some
numerical methods for experimental data which inevitably contain errors. The first
three sections are devoted to regressions. The other sections deal with numerical
methods which is necessary for the conversion of viscoelastic data of a viscoelastic
function to those of another viscoelastic function: numerical integration and dif-
ferentiation and Fourier transform.

We need to analyze viscoelastic data through various numerical methods in order to
characterize and identify arbitrary polymeric systems. Representative examples are
relaxation time spectrum and time temperature superposition. In this section, we
shall introduce regression methods, numerical integration and differentiation, and
discrete Fourier transform (DFT). Regression for polynomial and general nonlinear
functions is important in both model fitting and the calculation of continuous
spectrum. Since the polynomial regression by the Chebyshev polynomial is a key to
facilitate the quantitative analysis of large amplitude oscillator shear (LAOS), it will
be treated again in the part III. Numerical integration and differentiation are helpful
for interconversion of linear viscoelastic functions. Different from ordinary text-
books on numerical analysis, this chapter is focused on the integration and differ-
entiation of experimental data which always contain statistical errors. Discrete
Fourier transform is applicable to the conversion of static viscoelastic functions
such as relaxation modulus and creep compliance to dynamic moduli and com-
pliances. Furthermore, it is more important in quantitative analysis of LAOS such
as FT-rheology. This chapter is mainly related to Chaps. 7–9 and 11.
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1 Polynomial Regression

1.1 Basics

According to the Weierstrass theorem (Atkinson and Han 2000), a continuous
function defined on a closed interval can be expressed by an infinite series such that

f ðxÞ ¼
X1
n¼0

anx
n ð1:1Þ

If the convergence rate of the infinite series is fast enough, then one can obtain an
acceptable approximation for a finite positive integer N, as follows

f ðxÞ �
XN
n¼0

anx
n � PNðxÞ ð1:2Þ

We have used this for approximation of a mathematically defined function in
Sect. 2.4 in Chap. 1.

Since any measurable quantity is experimentally obtained in a finite closed
interval of the controllable variable on which the measurable quantity depends,
Eq. (1.2) is applicable to most experimental data under the assumption that the
measurable quantity is continuously dependent on its independent variable.
Suppose that measured data can be expressed by

ya ¼ f xað Þþ ea ð1:3Þ

for every pair of ðxa; yaÞ. Here, ea is the experimental error imposed on the αth data
point. The errors are usually regarded as statistical entities such that

eah i ¼ 0; eaeb
� � ¼ r2dab ð1:4Þ

These characteristics of errors mean statistical independence.
For M data, the sum of square errors can be obtained as follows

XM
a¼1

e2a ¼
XM
a¼1

ya � f xað Þ½ �2 ð1:5Þ

Taking expectation on both sides of Eq. (1.5), Eq. (1.4) gives

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
a¼1

ya � f xað Þ½ �2
D Evuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
a¼1

ya � f xað Þ½ �2
vuut ð1:6Þ
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Hence, the root-mean-square error (RMSE) estimates the expectation of the
amplitude of experimental error. It is obvious that the better approximation
Eq. (1.2) is, the smaller RMSE is expected. However, any approximation cannot
make it smaller than σ. The best choice of the coefficients an is to minimize

v2 �
XM
a¼1

ya �PN xað Þ½ �2 ð1:7Þ

This is the reason why regression is usually called the least square method.
Note that v2 is a quadratic function of fang. Hence, v2 has the unique minimum

at the values of the coefficients which satisfy

@v2

@an
¼ 0 ð1:8Þ

These are Nþ 1 linear equations for the coefficients. This system of linear equations
is called the normal equations:

S � a ¼ b ð1:9Þ

Here, vector notation was used and we know that

Snk ¼
XM
a¼1

xnþ k
a ¼ Skn ð1:10Þ

and

bn ¼
XM
a¼1

xnaya ð1:11Þ

Of course, an is the nth component of the vector a. It should be noted that the matrix
S might be singular when the number of coefficients is larger than the number of
data. If N þ 1 ¼ M, then the problem becomes that of interpolation. Since the
matrix S is not a diagonal-dominant one, it is apt to be singular or ill-conditioned if
N is large. If more information is necessary, refer to Lawson and Hanson (1995).

1.2 Use of Orthogonal Polynomials

Although the matrix S is symmetric and invertible, it is apt to be an ill-conditioned
matrix when N is sufficiently large. Hence, when higher-order polynomial is nec-
essary, an alternative is needed. We have seen that orthogonal polynomials make
the matrix S diagonal when a mathematical function is considered instead of
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experimental data (see Sect. 2.4 in Chap. 1). Since Nth order polynomial can be
replaced by orthogonal polynomials as follows

PNðxÞ ¼
XN
n¼0

a0n/nðxÞ ð1:12Þ

Then, the normal equation becomes S0 � a0 ¼ b0 where

S0nk ¼
XM
a¼1

/n xað Þ/k xað Þ; b0n ¼
XM
a¼1

/n xað Þya ð1:13Þ

It must be noted that although S0nk 6¼ 0 for n 6¼ k, the matrix is a diagonal-dominant
one:

S0nn
�� ��� S0pq

��� ��� with p 6¼ q ð1:14Þ

Although there are a number of orthogonal polynomials, one of the most popular
orthogonal polynomials is the Chebyshev polynomial of the first kind, TnðxÞ. Since
TnðxÞ is defined on ½�1; 1�, for the data given for the interval of xmin; xmax½ �, the
transform is required such as

n ¼ 2x� xmax þ xminð Þ
xmax � xmin

ð1:15Þ

The same transform is also used for the Legendre polynomial PnðxÞ. Thus, we will
use

PNðxÞ ¼
XN
n¼0

cnTn nð Þ ð1:16Þ

or

PNðxÞ ¼
XN
n¼0

c0nPn nð Þ ð1:17Þ

As for the Legendre polynomial, its orthogonality explains Eq. (1.14) because

XM
a¼1

Pn nað ÞPk nað Þ �
Z1
�1

Pn nð ÞPk nð Þdn ð1:18Þ

However, the weight function of the Chebyshev polynomial is not unity. Because of
Eq. (2.34 in Chap. 1),
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XM
a¼1

Tn nað ÞTk nað Þ ¼
XM
a¼1

Tn cos hað ÞTk cos hað Þ ¼
XM
a¼1

cos nhað Þ cos khað Þ

�
Zp
�p

cos nh cos kh dh

ð1:19Þ

Here, we considered na ¼ cos ha because �1� na � 1. The orthogonality of cosine
functions explains the reason why Eq. (1.14) is valid.

The Chebyshev polynomials Tn nð Þ are known to satisfy a discrete orthogonality
such that if na (a ¼ 1; . . .;M) are the M zeros of TM nð Þ, then for any m; n\M
(Press et al. 2002)

XM
a¼1

Tm nað ÞTn nað Þ ¼
0 for m 6¼ n
1
2M for m ¼ n ¼ 0
M for m ¼ n 6¼ 0

8<: ð1:20Þ

The M zeros of TM nð Þ are called the Chebyshev nodes and are given by

na ¼ cos
p a� 1

2ð Þ
M

with a ¼ 1; . . .;M ð1:21Þ

When cn is determined by solving the normal equation, it is not guaranteed that
an of Eq. (1.2) can be determined robustly from cn for any N. The problem of
ill-conditioned matrix remains because the conversion from ξ to x may give rise to
another problem when N is large.

Figure 1 shows the reason why orthogonal polynomials are used in polynomial
regression. The data are y ¼ e�x=5 sin 3x with statistical error of 2 %. As for simple
polynomial, RMSE becomes minimum at N ¼ 11. On the other hand, RMSE
decreases monotonically as N when the Chebyshev polynomial is used. Hence, it
can be said that simple polynomial regression cannot fit the data, while the use of
the Chebyshev polynomial can do.

x
0 2 4 6 8 10

y

-1.0

-0.5

0.0

0.5

1.0 data
Chebyshev Polynomial, N = 21
Simple Polynomial, N = 11

Fig. 1 Comparison of the
methods of polynomial
regression
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1.3 B-Spline Regression

It must be noted that although polynomial regression is very powerful, sometimes it
gives rise to the Runge phenomenon that further increase of the degree of the
polynomial deteriorates the regression result, especially near the boundary of the
interval (Süli and Mayers 2003). To prevent such oscillatory failures, piecewise
polynomials are recommended. The whole interval of the independent variable is
divided into L subintervals, and then, each of the partitioned data is fitted by a
polynomial of low degree. Since the whole interval is divided, we have to impose
constraints that polynomials of adjacent subintervals are smoothly connected.
Smooth connection of adjacent polynomials implies that

P nþ 1ð Þ
N xnð Þ ¼ PðnÞ

N xnð Þ; dPðnþ 1Þ
N xnð Þ
dx

¼ dPðnÞ
N xnð Þ
dx

ð1:22Þ

where P nþ 1ð Þ
N ðxÞ and PðnÞ

N ðxÞ are, respectively, the Nth order polynomials on the
subintervals Inþ 1 ¼ xjxn � x\xnþ 1f g and In ¼ xjxn�1 � x\xnf g. Here, Lþ 1 xn
(n ¼ 0; 1; . . .; L) are called node points that define the partitioning of the interval.
Since each polynomial has N þ 1 coefficients and the constraints of Eq. (1.22) are
2 L� 1ð Þ equations, the degree of freedom of this regression problem, F, is
N � 1ð Þ Lþ 2. Hence, it is usual to choose N as 2 or 3. When the number of data is
given by M, M ¼ F means interpolation. Hence, we are interested in the case of
M[F.

As for interpolation, cubic Hermite polynomial is commonly used because the
polynomial of third degree for each subinterval is formulated in terms of the values of
the function and the derivative at both ends of the subinterval. However, if cubic
Hermite polynomial is used for regression, then the normal equations are apt to be
ill-conditioned. Hence, we prefer cubic B-splines which are nearly identical peak-like
functions consisting of four cubic polynomials. The letter “B” stands for basis
because the base functions BmðxÞ are designed to satisfy BmðxÞBnðxÞ ¼ 0 whenever
m� nj j[ 3 (decoupling property). Furthermore, every base function BmðxÞ is also
designed as piecewisely continuous cubic polynomial whose derivatives are con-
tinuous at any order. Hence, a function f ðxÞ can be approximated by

f xð Þ �
XLþ 1

k¼�1

ckBk xð Þ ð1:23Þ

The index k runs from −1 to L + 1 because the base functions are constructed over
four subintervals:
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BkðxÞ ¼

t3 t � x� nk�2

nk�1 � nk�2
and nk�2 � x� nk�1

1þ 3tþ 3t2 � 3t3 t � x� nk�1

nk � nk�1
and nk�1 � x� nk

1� 3tþ 3t2 þ 3t3 t � x� nkþ 1

nkþ 1 � nk
and nk � x� nkþ 1

�t3 t � x� nkþ 2

nkþ 2 � nkþ 1
for nkþ 1 � x� nkþ 2

0 otherwise

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð1:24Þ

where nk (k ¼ 0; 1; . . .; L) are node points which define subintervals

In ¼ xjnn�1 � x� nnþ 1

� � ð1:25Þ

Note that nonzero values of B�1ðxÞ are defined only over the interval IL as

B�1ðxÞ ¼ � x� n1
n1 � n0

� 	3

ð1:26Þ

and B�1ðxÞ ¼ 0 otherwise. Figure 2 illustrates the base functions. It can be rec-
ognized that B0ðxÞ is not zero only in the interval of I1[I2. For 0� k� L, BkðxÞ are
peak functions that have their maxima at x ¼ nk.

Decoupling property of the base functions makes it easier to solve normal
equation because the matrix of the normal equation is very similar to a diagonal
one. Hence, the regression by cubic B-spline is as accurate as that by orthogonal
polynomials. Furthermore, since the regression results are equivalent to locally
polynomial of third order, it is nearly free from the Runge phenomenon. This merit
of B-spline allows the applications to numerical differentiation of experimental data
and inferring continuous relaxation spectrum by

ξ0 ξ1 ξ2 ξL−2 ξL−1 ξL

( )xB0

( )xB1

( )xB 1−

( )2 ( )xB xB3

( )L 1+

( )

xB

xBL

( )L 1−( ) xBxBL 2−

2I1I 3I LI

Fig. 2 Illustration of the base functions of cubic B-spline
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HðkÞ ¼ exp
XL
k¼�1

ckBk log kð Þ
" #

ð1:27Þ

Bae and Cho (2015) applied cubic B-spline of Eq. (1.27) to the calculation of
continuous relaxation spectrum.

Problem 1

[1] Precision of regression can be indicated by the coefficient of determination
which is defined by

R2 ¼ 1� SSE
SST

ð1:aÞ

where

SSE ¼
XM
a¼1

ya � f xað Þ½ �2; SST ¼
XM
a¼1

ya � 1
M

XM
b¼1

yb

 !2

ð1:bÞ

SSE is called sum of square error and SST is called the total sum of squares.
Show that 0\R2 � 1.

[2] Derive the base functions BkðxÞ for quadratic B-spline.

[3] Denote kth base function of nth order by BðnÞ
k ðxÞ. Show that if

Bð1Þ
k ðxÞ ¼ 1 for nk � x\nkþ 1

0 otherwise



ð1:cÞ

then

BðnÞ
k ðxÞ ¼ x� nk

nkþ nþ 1 � nk
Bðn�1Þ
k ðxÞþ nkþ n � x

nkþ n � nkþ 1
Bðn�1Þ
kþ 1 ðxÞ ð1:dÞ

[4] Show that any Nth order polynomial PNðxÞ on the interval of [0, 1] can be
represented by a linear combination of the Bernstein basis polynomials of
degree N which are defined by

bðNÞk ðxÞ ¼ N
k

� 	
xk 1� xð ÞN�k; k ¼ 0; 1; . . .;N ð1:eÞ

[5] For a given continuous function f on the interval of [0, 1], the Bernstein
polynomial of the function f is defined by
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BðNÞ
f ðxÞ ¼

XN
k¼0

f
k
N

� 	
bðNÞk ðxÞ ð1:fÞ

When f ðxÞ ¼ PNðxÞ, show that BðNÞ
PN

ðxÞ ¼ PNðxÞ.

2 Nonlinear Regression

2.1 Basics

Consider a case that polynomial approximation of Eq. (1.2) can be replaced by a
function, fLðxÞ, which contains small number of parameters, p1; . . .; pL. For a good
model, the number of parameters L should be much smaller than the order of
polynomial approximation N if f ðxÞ � fLðxÞk k ¼ f ðxÞ �PNðxÞk k where �k k is a
norm defined on the function space under consideration. In order to determine the
parameters pkf g, we need to minimize the sum of square error

v2 ¼
XM
a¼1

ya � fL xað Þ½ �2 ð2:1Þ

Of course, v2 is usually a nonlinear function of the parameters fpkg. Different
from polynomial regression, the nonlinear function may have several minima.
Existence of several local minima makes the determination of the parameters dif-
ficult. Most algorithms for minimization are to use the gradient of the objective
function (v2). In this case, regression results are largely dependent on the initial
values of the parameters. If an initial guess of the parameters is not appropriate, then
the algorithm gives undesirable results such as no convergence in even a high
iteration number and ridiculous values of the parameters. We shall introduce some
methods based on gradient.

The parameters to be determined are one of the points in parameter space which
satisfy @v2=@pk ¼ 0. These nonlinear normal equations can be rewritten in detail by

XM
a¼1

fL xað Þ @fL
@pi

¼
XM
a¼1

ya
@fL
@pi

for i ¼ 1; 2; . . .; L ð2:2Þ

Since @fL=@pi involves not only xa but also fpkg, Eq. (2.2) must be solved by a
numerical method in most cases. There are several algorithms for simultaneous
nonlinear equations: the gradient descent method, the conjugate gradient method,
the Newton method, and so on. However, it is known that the Levenberg–
Marquardt method (LM) is one of the most stable and reliable methods for most
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cases of nonlinear regression. Most commercial programs for scientific graph such
as SigmaPlotTM adopt the Levenberg–Marquardt method as the algorithm of non-
linear regression.

2.2 The Levenberg–Marquardt Algorithm

In vector notation, Eq. (2.1) can be rewritten as v2 ¼ y� fL pð Þk k2 where

y ¼
y1
y2
..
.

yM

26664
37775; fL ¼

fL x1; pð Þ
fL x2; pð Þ

..

.

fL xM ; pð Þ

26664
37775; p ¼

p1
p2
..
.

pL

26664
37775 ð2:3Þ

Note that both y and fL are M-dimensional vectors, while p is an L-dimensional
vector. We are interested in an iterative equation for the parameter vector pr where
r is the iterative number. We want y� fL prð Þ ¼ 0 for r[N. One of the simplest
iterative equations may be given by

prþ 1 ¼ pr þB � y� fL prð Þ½ � ð2:4Þ

where B is an L × M matrix which must be chosen to make the iterative equation
result in the desirable solution. Various algorithms might be suggested depending
on how to choose the matrix B. See a textbook of numerical method if the condition
of B is interesting. Here, it is sufficient to say that if y� fL prð Þ ¼ 0, then pN ¼ pr
for any N larger than r.

The Levenberg–Marquardt algorithm starts from

fL pþ dpð Þ ¼ fLðpÞþ J � dp ð2:5Þ

where J is the Jacobian matrix of fL: J ¼ @fLðpÞ=@p. The iterative equation of the
Levenberg–Marquardt algorithm is obtained from @ y� fL pþ dpð Þk k2=@dp ¼ 0.
This gives

JT � J � dp ¼ JT � y� fLðpÞ½ � ð2:6Þ

Introduction of dp ¼ prþ 1 � pr with p ¼ pr gives

prþ 1 ¼ pr þ JT � J� ��1�JT � y� fL prð Þ½ � ð2:7Þ

This iterative equation implies that if y� fL prð Þk k ! 0 as iteration number r in-
creases, then pr converges to a certain vector as r ! 1. We expect that the further
iteration makes the parameter vector closer to the optimum at which y� fL prð Þk k2
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is minimized. If the sum of square error has the global minimum, then the sequence
of pr goes to the optimum vector irrespective of the initial guess. However, if
y� fL pð Þk k2 has multiple minima, then the iterative equation gives the correct

answer whenever the initial guess is close to the global minimum. Equation (2.7)
breaks down if the square matrix JT � J is singular. To prevent such a bad case, the
Levenberg–Marquardt algorithm uses

prþ 1 ¼ pr þ JT � Jþ jrI
� ��1� JT � y� fL prð Þ½ � ð2:8Þ

where jr [ 0. It is well known that JT � Jþ jrI is not singular. It is an example of
Tikhonov regularization (Kirsch 2010). The choice of jr is somewhat heuristic. See
a textbook of numerical analysis (Press et al. 2002).

2.3 Example I

It is well known that shear viscosity of polymer melt is a function of both shear rate
and temperature. One of the most popular models for shear viscosity is the Carreau–
Yasuda model (Bird et al. 1987) such that

g _c; Tð Þ ¼ go Tð Þ
1þ go Tð Þ _c=ro½ � af g b ð2:9Þ

where

goðTÞ ¼ K exp
TA
T

� 	
ð2:10Þ

Note that a, b, ro, K, and TA are positive real numbers to be determined by
nonlinear regression. Experimental data may consist of three columns of numbers
such as _c1; _c2; . . .; _cM½ �T , T1; T2; . . .; TM½ �T and g1;g2; . . .;gM½ �T . The regression
based on least square is to minimize

v2 ¼
XM
a¼1

ga � g _ca; Tað Þ½ �2 ð2:11Þ

Since commercial softwares such as SigmaPlotTM are equipped with the LM
algorithm, it seems trivial to determine the parameters. However, it is not trivial
because viscosity and shear rate vary in logarithmic scale and the order of mag-
nitude of parameters varies very widely. Parameters a and b are in (0, 1), while TA
varies from hundreds to thousands in Kelvin and K and ro vary in logarithmic scale
depending on materials. Since most algorithms of nonlinear regression largely
depend on initial guess of parameters, most novices of regression often give up the

2 Nonlinear Regression 371



regression after hundreds of trial and errors in guessing initial values of parameters.
An expert may guess appropriate initial values if experimental data are sufficiently
large for recognizing the outline shape of Eq. (2.9) for all temperatures under
consideration. In this fortunate case, the expert determines the zero-shear viscosities
first at a few temperatures, say T1; T2; . . .; Tnf g. Then, we can extract a data set
consisting two column vectors T1; T2; . . .; Tn½ �T and go T1ð Þ;go T2ð Þ; . . .;go Tnð Þ½ �T
from the original data set. This reduced set of data can be applied to Eq. (2.10) by
changing variables as follows

loggo ¼ logKþ TA
T

ð2:12Þ

A linear regression gives the values of log K and TA. Then, the number of
parameters to be determined is reduced from 5 to 3. The initial value of ro can be
guessed by the shear rate at which viscosity changes from Newtonian to power law
types. As for a and b, the value of ab can be guessed by the slope of the plot of
log g with respect to log _c in the power law region of shear rate. Then, the LM
method immediately gives the optimum values of all parameters.

Unfortunately, no rheometer allows us to measure the viscosity data for suffi-
ciently wide range of shear rate. Figure 3 represents simulated data. Note that only
270 °C data show Newtonian region. Since there is a limit of shear rate for any
rheometer, Fig. 3 can be considered to represent one of usual cases. To make the
order of magnitudes of parameters normalized, we use

ea ¼ a; eb ¼ b; eTA ¼ log TA; eK ¼ logK; ero ¼ logro;eT ¼ log T; g ¼ log _c
ð2:13Þ
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Fig. 3 Simulated data of
shear viscosity and regression
results
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Then, Eq. (2.9) becomes

logg ¼ eK þ e
eTA�eT þ b log 1þ exp a eK þ e

eTA�eT � ero þ g

� 	 �
 �
ð2:14Þ

As the first guess, set a ¼ 1, b ¼ 0:5, eTA ¼ 10, eK ¼ �10, and ero ¼ 10. Then,
regression for Eq. (2.14) gives

a ¼ 1; b ¼ 0:3747; TA ¼ 9928K;

K ¼ 5:323	 10�6 Pa s; ro ¼ 2553 Pa
ð2:15Þ

with the coefficient of determination R2 ¼ 0:9996. The lines in Fig. 3 represent the
results of the regression. Note that a ¼ 1 is fixed, while other parameters are
determined by the minimization of Eq. (2.11). If one of a and b is not fixed by 1,
then it is usual that unrealistic exponents are obtained. Since R2 ¼ 0:9996 is very
close to unity, it is sufficient to use a ¼ 1.

Another method to fit the data of Fig. 3 is to use superposition. Since ro is
independent of temperature, Eq. (2.9) can be rewritten as

eg � g c; Tð Þ
go Tð Þ ¼ 1

1þ eg=roð Þa½ �b
� 1 ð2:16Þ

where eg � go Tð Þ _c. This equation implies that a temperature function BT / go Tð Þ
makes a master curve such that

g _c; Tð Þ
BT

¼ ho

1þ c BT _cð Þ a½ �b
ð2:17Þ

It is possible to determine shift factor BT without the knowledge of go by the
procedure similar to those of time–temperature superposition. Set the reference
temperature, for example, Tref ¼ 270 
C as for the data of Fig. 3. In the double
logarithmic plot of viscosity against shear rate, seek B250 which makes the plot of
g _c; 250ð Þ=B250 against B250 _c superposed on the plot of g _c; 270ð Þ against _c.
Repetition of this procedure for other temperatures gives a master curve as shown in
Fig. 4. Then, we can form a data set such as 190; 210; 230; 250; 270½ �T and
B190;B210;B230;B250;B270 ¼ 1½ �T . Then, it follows that

BT ¼ exp
TA
T

� TA
Tref

� 	
ð2:18Þ

Regression of Eq. (2.18) gives TA. Regression of Eq. (2.17) for the master curve
gives
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ho ¼ K exp
TA
Tref

� 	
; c ¼ K

ro
exp

TA
Tref

� 	 �a
ð2:19Þ

The problem is how to make such superposition. We shall deal with numerical
methods for superposition by vertical and horizontal shifting in the section for
time–temperature superposition.

2.4 Example II

Another example of model fitting is the determination of the parameters of linear
viscoelastic model. Marin and Graessley (1977) showed that dynamic moduli of
monodisperse polymermelts are describedwell by themodifiedCole–Colemodel such as

J� xð Þ ¼ 1
igox

þ Jg þ J1
1þ it1xð Þa1 þ

J2
1þ it2xð Þa2 ð2:20Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit, go is the zero-shear viscosity, Jg is the
compliance of the glassy region, J1, J2, t1, t2, a1, and a2 are positive constants, and
J� xð Þ ¼ J 0 xð Þ � iJ 00 xð Þ is the complex compliance. Without loss of generality, we
choose t1 [ t2, which corresponds to the retardation times for the relaxations in
molten and glassy states, respectively. Note that the terms of longer time t1 includes
reptation and the Rouse mode. Then, J1 and J2 are corresponding compliances. The
exponents, a1 and a2, characterize the retardation spectrum.

However, fitting experimental data with respect to Eq. (2.20) is too complicate
because Eq. (2.20) is the equation of complex variables. Tediously, long manipu-
lation of algebra gives

10 -3 10 -2 10 -1 10 0 10 1 10 2

η/
B

T

10 3

10 4

10 5

190oC

210oC

230oC

250oC

270oC

TB

Fig. 4 Master curve from the
data of Fig. 3
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J 0 xð Þ ¼ Jg þ
X2
k¼1

Jk
1þ zk cos hk

1þ 2zk cos hk þ z2k
ð2:21aÞ

J 00 xð Þ ¼ 1
gox

þ
X2
k¼1

Jk
zk sin hk

1þ 2zk cos hk þ z2k
ð2:21bÞ

where

hk ¼ pak
2

; zk ¼ tkxð Þak ; k ¼ 1 or 2 ð2:22Þ

Here, we used ix ¼ x exp 1
2p ið Þ and aei/

� �m¼ ameim/ ¼ am cosm/þ i sinm/ð Þ.
Although 0� ak\1, other parameters vary in logarithmic scale. Hence, we have to
adopt the technique used for shear viscosity again. However, Eqs. (2.21a, b) are
more complicate than Eq. (2.9). To simplify the problem, we exploit

J� xð Þ ¼ seJ sð Þ� �
s¼ix) seJ sð Þ ¼ 1

gos
þ Jg þ J1

1þ t1sð Þa1 þ
J2

1þ t2sð Þa2 ð2:23Þ

where eJ sð Þ is the Laplace transform of creep compliance. If we can convert
dynamic data to the Laplace transform of creep compliance, we can use

logP rð Þ ¼ log e�r�ho þ ej1

1þ ea1 rþet1� � � b1
þ ej2

1þ ea2 rþet2� � � b2
þ ejg

8>>><>>>:
9>>>=>>>;
ð2:24Þ

where P rð Þ ¼ seJ sð Þ with r ¼ log s and

ho ¼ loggo; jk ¼ log Jk; etk ¼ log tk; k ¼ 1; 2 or g ð2:25Þ

Then, the problem to be solved is how to obtain the Laplace transform seJ sð Þ
from the data of G0 xð Þ and G00 xð Þ. Numerical Laplace transform of experimental
data usually faces the problem of finite window. Experimental data are essentially
measured in a finite range of test conditions. We shall deal with how to obtain
reliable Laplace transform from experimental data later. For a while, it is assumed
that such Laplace transform is available. We shall show how to do it later.

Remind Fig. 12 in Chap. 5 which is the dynamic modulus of monodisperse
polybutadiene measured by Stadler (Stadler and van Ruymbeke 2010). Figure 5 is
obtained by the application of the method of numerical Laplace transform to the
data of Fig. 12 in Chap. 5. The lines in Figs. 12 in Chap. 5 and 5 are calculated by
the values of the parameters as follows
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go ¼ 2:658	 106 Pa s, J1 ¼ 1:162	 10�6 Pa�1

J2 ¼ 7:274	 10�7 Pa�1; Jg ¼ 1:004	 10�9 Pa�1

t1 ¼ 2:136 s, t2 ¼ 2:482	 10�7 s

a1 ¼ 0:3605; a2 ¼ 0:7835

ð2:26Þ

It must be mentioned that the use of Eq. (2.24) gives more precise values of the
parameters than those of Eqs. (2.21a, b) and (2.23).

In summary, logarithmic scaling of parameters of viscoelastic model makes
initial guess of parameters much easier. Without such scaling, a number of trail and
errors are necessary to have an acceptable fitting.

Problem 2

[1] Fixed-point iteration is a method to compute the solution of nonlinear equa-
tions in an iterative manner. Fixed-point iteration can be written formally

xrþ 1 ¼ T xrð Þ ð2:aÞ

where xr is an N-dimensional vector and TðxÞ is a mapping from N-
dimensional vector space V to the same vector space. The vector space V is
assumed to be the complete metric space. Suppose that for any two vectors
x and y, there exists a positive constant 0� L\1 such that

T xð Þ � T yð Þk k� L x� yk k ð2:bÞ

Then, the mapping T is called contraction map. Show that the contraction map
T admits a unique fixed point x� in V (Atkinson and Han 2000).

[2] If y ¼ fL xð Þ[ 0 for a given interval and we are interested in nonlinear
regression for the same interval, then instead of Eq. (2.1), one may be inter-
ested in the minimization of

log10s
-2 0 2 4 6 8 10 12

-10

-9

-8

-7

-6

-5

-4

lo
g 10

sJ
(s

)

Fig. 5 The Laplace transform
of creep compliance seJðsÞ.
Symbols are calculated from
loss modulus of Fig. 12 in
Chap. 5 and line is the curve
fitting by Eq. (2.24)
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v2Rel ¼
XM
a¼1

1� fL xað Þ
ya

 �2
ð2:cÞ

What would be the merit of the use of Eq. (2.c)?
[3] Derive Eqs. (2.21a) and (2.21b).
[4] Some nonlinear function can be linearized by transform of variables. One of

the simplest examples is y ¼ A exp kxð Þ. If taking ey ¼ log y and ex ¼ x, then we
have ey ¼ aexþ b where a ¼ k and b ¼ logA. Then, find the transforms for the
following relations:

y ¼ exp
c1x

c2 þ x

� 	
; ð2:dÞ

y ¼ 1
1þ e�b1�b2x

: ð2:eÞ

3 Padé Approximation

3.1 Basics

We know that p � 3:141592. The three-digit approximation by decimal notation is
3.14, while three-digit approximation by rational number is 22/7. It is interesting to
compare 1� 3:14=pj j � 5:07	 10�4 with 1� 22=ð7pÞj j � 4:03	 10�4. The
rational approximation is better than decimal approximation!

Then, one must be interested in which is better among the two following
approximations:

f xð Þ �
XMþN

n¼0

cnx
n ð3:1Þ

and

f xð Þ �
PM

k¼0 akx
k

1þ PN
n¼1 bnx

n
� RM=N xð Þ ð3:2Þ

Note that both approximations have the same number of coefficients to be deter-
mined, MþN þ 1. Under the assumption of b0 6¼ 0, Eq. (3.2) is obtained by
dividing both numerator and denominator by b0. The rational approximation,
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Eq. (3.2), is called Padé approximation. Although the authors have found no
mathematical proof, there are a number of examples that Padé approximation is
better than polynomial ones. One of demerits of the Padé approximation is that the
denominator happens to be zero at some values of x. There is no systematic way to
prevent such a bad case.

Suppose that the coefficients an of Eq. (3.1) are given. Then, comparing Eq. (3.1)
with Eq. (3.2), we obtain

c0 þ c1xþ � � � þ cNþMx
N þM

� �
1þ b1xþ � � � þ bNx

N
� � ¼ a0 þ a1xþ � � � aNxN

ð3:3Þ

The left hand side of Eq. (3.3) can be expanded by

c0 þ c0b1 þ c1ð Þ xþ c0b2 þ c1b1 þ c2ð Þ x2 þ � � � þ cNþMbMx
Nþ 2M ð3:4Þ

Comparison of Eq. (3.4) with the right-hand side of Eq. (3.3) gives a system of
linear equations which assume coefficients fang and fbmg as unknowns. The
system of linear equations can be constructed in a systematic manner (Press et al.
2002). As for M ¼ N, the system of linear equations is given by

XN
m¼1

bmcN�mþ k ¼ �cN þ k; k ¼ 1; 2; . . .;N ð3:5aÞ

Xk
m¼0

bmck�m ¼ ak; k ¼ 1; 2; . . .;N ð3:5bÞ

After bk is obtained from Eq. (3.5a), ak can be determined from bk through
Eq. (3.5b).

These identity equations hold even if we replace the simple polynomials of
Eq. (3.3) by orthogonal polynomials. Instead of Eq. (3.1), we can fit experimental
data by

f xð Þ �
XMþN

k¼0

ckTk nð Þ ð3:6Þ

where ξ is the normalized variable of Eq. (1.15). Such polynomial regression gives
ckf g for even high MþN. Solving Eqs. (3.5a) and (3.5b) gives

f xð Þ �
PM

k¼0 akTk nð Þ
1þ PN

n¼1 bnTn nð Þ ð3:7Þ
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3.2 Application to the FENE Model

Statistical mechanical theory gives the magnitude of force exerted on a single
polymer chain as follows

f ¼ kBT
b

L�1 r
Nb

� �
ð3:8Þ

where f is the magnitude of the force, kB is the Boltzmann constant, T is absolute
temperature, r is the root mean square of end-to-end distance, N is the number of the
Kuhn’s segments (Rubinstein and Colby 2003), b is the length of the Kuhn’s
segment, and L�1ðxÞ is the inverse Langevin function such that

LðxÞ ¼ coth x� 1
x

ð3:9Þ

It is known that the inverse Langevin function becomes infinite as x approaches to
unity. The Maclaurin series of L�1ðxÞ is known as

L�1ðxÞ ¼ 3xþ 9
5
x3 þ 297

175
x5 þ 1539

875
x7 þ 126;117

67;375
x9 þ � � � ð3:10Þ

Finitely extensible nonlinear elastic (FENE) model (Bird et al. 1987) is the
approximation such that

L�1ðxÞ ¼ 3x
1� x2

ð3:11Þ

Equation (3.11) is called the Warner’s approximation which seems to be based on
the following features of the inverse Langevin function:

L�1 �xð Þ ¼ �L�1ðxÞ; ð3:12aÞ

L�1ðxÞ � 3x for xj j � 1; ð3:12bÞ

lim
x!1

L�1ðxÞ ¼ 1 ð3:12cÞ

However, applications of Eq. (3.10) to R2=2ðxÞ and R3=3ðxÞ give, respectively

L�1 xð Þ � 3x
1� 3

5x2
ð3:13Þ
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and

L�1ðxÞ � 3x� 36
35x

3

1� 33
35x

2 ð3:14Þ

For simplicity, Cohen (1991) adopted

L�1ðxÞ � 3x� x3

1� x2
ð3:15Þ

Figure 6 compares the ninth order Taylor series (Eq. 3.10), the Warner
approximation (Eq. 3.11), and the Cohen approximation (Eq. 3.15) with the inverse
Langevin function. It is obvious that Eq. (3.15) is the best among the three
approximations.

3.3 Application to Discrete Spectrum

We have learned that the Laplace transforms of spring–dashpot models are
expressed by rational functions. So do both dynamic moduli and compliances. If we
know the Taylor expansion coefficients of seG sð Þ, then the use of Eq. (3.1) gives the
coefficients of numerator and denominator. We shall learn how to determine the
Taylor expansion coefficients of seG sð Þ in Chap. 7 (Padé–Laplace method).
Nonlinear regression by the Levenberg–Marquardt algorithm can also determine all
the coefficients of the Padé approximation.

x
0.0 0.2 0.4 0.6 0.8 1.0

−1
( x

) 
an

d 
A

pp
ro

xi
m

at
io

ns

0

5

10

15

9th order Appr.
Warner Appr.
Cohen Appr.

−1(x)

Fig. 6 Comparison of
various approximations of the
inverse Langevin function
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It is necessary to mention some characteristics of the problem to infer discrete
spectrum. The multimode Maxwell model reads

eG sð Þ ¼
XN
k¼1

Gk

sþ k�1
k

¼ Q0 þQ1sþ � � � þQN�1sN�1

1þP1sþ � � � þPNsN
ð3:16Þ

Since all Gk and kk are positive, it is obvious that all coefficients Pk and Qk must
be positive too. Hence, nonlinear regression should be done under the constraints of
Pk [ 0 and Qk [ 0. To avoid the use of auxiliary constraints, reformulation of
Eq. (3.16) is needed:

eG sð Þ ¼ eq0 þ eq1sþ � � � þ eqN�1sN�1

1þ ep1sþ � � � þ epN sN
ð3:17Þ

where pk ¼ logPk and qk ¼ logQk. However, this approach is not successful even
if the range of s is not too wide.

Even if all the coefficients of the rational approximation of eGðsÞ are determined,
inferring the discrete spectrum can be completed by the determination of Gk and kk
from the coefficients of the Padé approximation. Relaxation times kk can be
determined by the algorithms for roots of polynomial (Press et al. 2002). If kk is
determined, then the relaxation intensities Gk are determined by

Gk ¼ sþ k�1
k

� �Q0 þQ1sþ � � � þQN�1sN�1

1þP1sþ � � � þPNsN

 �
s¼�k�1

k

ð3:18Þ

Problem 3

[1] Derive

e�x � 840� 360xþ 60x2 � x3

840þ 480xþ 120x2 þ 16x3 þ x4
ð3:aÞ

[2] Derive

arctan x � xþ 7
9x

3 þ 64
945x

5

1þ 10
9 x

2 þ 5
21x

4 ð3:bÞ

[3] When a function f ðxÞ can be expressed by

f ðxÞ ¼
X1
k¼0

akTkðxÞ with � 1� x� 1 ð3:cÞ
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one may think the Chebyshev–Padé approximation such as

f xð Þ �
PN

k¼1 bkTk xð ÞPM
k¼0 ckTk xð Þ ð3:dÞ

Consider the identity such that

Tm xð ÞTn xð Þ ¼ Tmþ n xð Þþ T m�nj j xð Þ
2

ð3:eÞ

Then, you can determine the coefficients fbkg and fckg from fakg by using

X1
k¼0

akTk xð Þ
" # XM

k¼0

ckTk xð Þ
" #

�
XN
k¼0

bkTk xð Þ ¼ 0 ð3:fÞ

Find fbkg and fckg of f ðxÞ ¼ e�x with M ¼ 2 and N ¼ 3:

4 Numerical Integration and Differentiation

Most readers of this book are assumed to be familiar with numerical integration and
differentiation of sophomore course in engineering college:

Numerical Integration (Trapezoidal Rule)

Zb
a

f xð Þ dx � b� a
N

f að Þ
2

þ
XN�1

k¼1

f aþ k
b� a
N

� 	
þ f bð Þ

2

" #
ð4:1Þ

Numerical Differentiation

f xkð Þ � f xkþ 1ð Þ � f xkð Þ
xkþ 1 � xk

� f xkð Þ � f xk�1ð Þ
xk � xk�1

� f xkþ 1ð Þ � f xk�1ð Þ
xkþ 1 � xk�1

ð4:2Þ

However, this section is devoted to the numerical integration and differentiation of
experimental data. Since any experimental data are contaminated by experimental
error, some cautions must be necessary.
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4.1 Error Analysis of Integration of Experimental Data

We are interested in numerical integration and differentiation of experimental data
rather than given functions. The basic assumption is that the αth data, xa and ya,
satisfy

ya ¼ f xað Þþ ea ð4:3Þ

where ea is the error involved in the αth data, whose expectations satisfy

eah i ¼ 0; eaeb
� � ¼ r2dab ð4:4Þ

The second condition implies that errors are statistically independent. For numerical
integration and differentiation, it is usually assumed that xaþ 1 � xaj j is sufficiently
small. For simplicity, assume equally spaced xa such that irrespective of α,
xaþ 1 � xa � h[ 0, and h � 1:

When trapezoidal method is applied to the data, the numerical integration is
given by

I ¼ h
2

XM�1

a¼1

yaþ 1 þ yað Þ ¼ h
2

XM�1

a¼1

faþ 1 þ fað Þþ ea þ eaþ 1ð Þ½ � ð4:5Þ

where fa ¼ f xað Þ. Then the expectation of the numerical integration is given by

Ih i ¼ h
2

XM�1

a¼1

fa þ faþ 1ð Þ ð4:6Þ

On the other hand, the variance of the integral is given by

I2
� �� Ih i2¼ h2

4

XM�1

a¼1

XM�1

b¼1

ea þ eaþ 1ð Þ ebþ 1 þ eb
� �* +

¼ r2h2

4
M � 3

2

� �
ð4:7Þ

The ratio of standard deviation to mean is called coefficient of variation (CV),
which is an important measure of precision. Equation (4.7) gives the coefficient of
variation:

CV I½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2h i � Ih i2

q
Ih i � r

ffiffiffiffiffi
M

pPM�1
a¼1 fa þ faþ 1ð Þ �

r

2y
ffiffiffiffiffi
M

p ¼ CV y½ �
2
ffiffiffiffiffi
M

p ð4:8Þ
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where we used

y ¼ 1
M

XM
a¼1

fa � yh i � 1
2M

XM�1

a¼1

fa þ faþ 1ð Þ ð4:9Þ

Equation (4.8) implies that the CV of integration is much smaller than that of experi-
mental data. Hence, the numerical integration of experimental data becomesmore stable
for the errors in the data as the number of data,M increases. xa is sufficiently narrow.

For sufficiently small h, it is known that

df xað Þ
dx

� faþ 1 � fa
h

ð4:10Þ

This is the forward numerical differentiation of function f ðxÞ. Application of the
numerical differentiation to the data of Eq. (4.3) gives

y0a � yaþ 1 � ya
h

¼ faþ 1 � fa
h

þ eaþ 1 � ea
h

ð4:11Þ

Taking expectation on both sides of Eq. (4.11), we have

y0a
� � ¼ faþ 1 � fa

h
ð4:12Þ

Similar to the variance of the numerical integration, we have

y0a
� �2D E

� y0a
� �2¼ y0a

� �2 þ 2r2

h2
ð4:13Þ

Then, the CV of numerical differentiation is given by

CV y0a
� �� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
h2

CV y½ �f g2
r

[CV y½ � ð4:14Þ

Equation (4.14) implies that the smaller the h is, the larger the variation occurs in
the numerical differentiation of Eq. (4.11). On the other hand, the smaller the h is,
the higher the precision is achieved for the numerical differentiation of the exact
function: Eq. (4.2). It can be said that errors in raw data are magnified by numerical
differentiation. Therefore, it is usual that numerical differentiation of experimental
data, Eq. (4.11), gives undesirable result. It is the ill-posedness of the numerical
differentiation of experimental data.

Figure 7 shows stability of numerical integration of experimental data. Here,

dY=dx ¼ y ¼ 1þ x2ð Þ�1 and Y = arctan x. We add Gaussian error ε whose mean is

zero and standard deviation σ is unity, that is, y ¼ 1þ x2ð Þ�1 1þ 0:1eð Þ. Hence, it
can be said that CV½y� ¼ 0:1. This contaminated data are used to calculate Y by
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Y xnð Þ ¼ arctan �2ð Þþ h
2

Xn
a¼2

ya�1 þ yað Þ ð4:15Þ

Figure 7 illustrates that numerical integration gives a reliable result because of
mutual canceling of statistical errors, while numerical differentiation is a kind of
ill-posed problem.

4.2 Numerical Differentiation with Regularization

We have learned that numerical differentiation is very unstable for experimental
error, while numerical integration is very stable. Since numerical integration is
stable, we shall show an approach that considers numerical differentiation as the
inverse problem of numerical integration (Cullum 1971).

4.2.1 The IIR Algorithm

Without loss of generality, we consider two functions such that

df
dx

¼ gðxÞ; f ð0Þ ¼ 0 ð4:16Þ

Here, we consider that data are ya ¼ f xað Þþ ea and y0a ¼ g xað Þ. Using the trape-
zoidal rule for numerical integration, we have

x
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y 
=

 d
Y

/d
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1.0

1.5(a) (b)

Fig. 7 Stability of numerical integration. Symbols represent hypothetical experimental data and
their numerical integration of them and lines are exact ones
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ya �
Xa�1

b¼0

hb y0a þ y0aþ 1

� � ð4:17Þ

where ha ¼ 1
2 xa � xa�1ð Þ. Then, Eq. (4.17) can be rewritten as

ya ¼
XN
b¼0

Aaby
0
b 0\a�N; f0 ¼ 0 ð4:18Þ

where

Aab ¼
h1 for b ¼ 0
hb þ hbþ 1 for 0\b\a
ha for b ¼ a
0 otherwise

8>><>>: ð4:19Þ

As an example, we know that

y1
y2
y3
y4

2664
3775 ¼

h1 h1 0 0 0
h1 h1 þ h2 h2 0 0
h1 h1 þ h2 h2 þ h3 h3 0
h1 h1 þ h2 h2 þ h3 h3 þ h4 h4

2664
3775

y00
y01
y02
y03
y04

266664
377775 ð4:20Þ

Since we are interested in an algorithm stable for experimental error, the
introduction of the Tikhonov regularization (Kirsch 2010) is to minimize

v2 ¼
XN
a¼1

ya �
XN
b¼1

Aaby
0
b

 !2

þ q
XN
a¼1

y02a ð4:21Þ

This is very similar to the linear regularization algorithm for continuous relaxation
spectrum (Honerkamp and Weese 1989). Numerical differentiation is obtained by

y0 ¼ AT � Aþ qI
� ��1�AT � y ð4:22Þ

For convenience, we call this method the inverse integration with regularization
(IIR) to compare with cubic B-spline method which will be introduced later. The
matrix A can be changed if we adopt other integration algorithms different from the
trapezoidal rule.

Now, it is necessary to explain the reason why the regularization parameter ρ is
introduced. When the regularization parameter is not used: q ¼ 0, Eq. (4.22) can be
rewritten as

y0 ¼ AT � A� ��1�AT � y ð4:23Þ
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If an M 	 N matrix A is given, then the theorem of singular value decomposition
(Lawson and Hanson 1995) reads that

A ¼ U � E � V ð4:24Þ

where U is an M 	M orthogonal matrix, E is an M 	 N diagonal matrix whose
diagonal components are nonnegative real numbers, and V is an N 	 N orthogonal
matrix. Substitution of Eq. (4.24) into Eq. (4.23) gives

y0 ¼ VT � ET � E � V� ��1�VT � ET � UT � y ð4:25Þ

Since Eq. (4.20) implies that M\N, E should have M nonnegative diagonal
components, ri  0 and the N 	 N diagonal matrix D � ET � E has M nonnegative
diagonal components

Dik ¼
r2
i for i ¼ k�M

0 for i ¼ k[M
0 for i 6¼ k

8<: ð4:26Þ

where ri are called singular value of the matrix A, which is very similar to the
eigenvalue of a square matrix. Hence, D is singular, and VT � ET � E � V ¼ AT � A is
also singular. It is impossible to obtain numerical differentiation with q ¼ 0 as the
inverse of integration. On the other hand, with q[ 0, it is clear that

AT � Aþ qIN ¼ VT � Dþ qINð Þ � V ð4:27Þ

is not singular because

Dþ qINð Þ�1
h i

ik
¼

r2
i þ q

� ��1 [ 0 for i ¼ k�M
q�1 [ 0 for i ¼ k[M
0 for i 6¼ k

8<: ð4:28Þ

Note that IN is the N 	 N identity matrix. Furthermore, the inverse matrix of
Eq. (4.27) is given by

AT � Aþ qIN
� ��1¼ VT � Dþ qINð Þ�1�V ð4:29Þ

This is called pseudo-inverse matrix of AT � A.
If we denote the numerical differentiation of Eq. (4.22) by y0r qð Þ, then Eq. (4.18)

gives yrðqÞ ¼ A � y0rðqÞ. Then, the norm y� yr qð Þk k should be very small for the
validity of y0rðqÞ as a good approximation of differentiation. It is usual that if ρ is
sufficiently small, then so is y� yr qð Þk k but calculated differentiation becomes
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noisy. On the other hand, the calculated differentiation becomes smoother as ρ
increases. Hence, it is of importance to determine the optimum value of ρ.
However, determination of the optimum ρ is heuristic.

Figure 8 shows the comparison of conventional numerical differentiation (for-
ward scheme) with the inverse integration with regularization. The regularization
parameter is chosen as q ¼ 6:4	 10�3. The original data are y ¼ x= 1þ x2ð Þ with
1 % errors. The errors are generated from the normal distribution with mean of 0
and standard deviation of 1. As shown in Fig. 8, the IIR algorithm is superior to the
conventional one (forward scheme) because conventional ones are not equipped
with suppression of error effect. As for error-contaminated data, higher-order
derivatives are not reliable even if any error-suppression algorithm is applied. It is
noteworthy that the recovered function from the numerical derivative of IIR is
nearly indistinguishable from the exact function y ¼ x= 1þ x2ð Þ.

4.2.2 The Error-Suppression Mechanism of Regularization

The error-suppression mechanism of the inverse integration with regularization can
be understood by the use of the theorem of singular value decomposition. The
experimental data y can be decomposed into the exact and error parts: y ¼ ŷþ e.
Then, Eq. (4.22) can be rewritten as

y0 ¼ VT � Dþ qINð Þ�1�ET � UT � ŷþ eð Þ ð4:30Þ
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Fig. 8 Comparison of algorithms of numerical differentiation: the inverse integration with
regularization and conventional forward scheme
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where ŷ0 is the derivative from exact function ŷ:

ŷ0 ¼ VT � Dþ qINð Þ�1�ET � UT � ŷ ð4:31Þ

and y0e is the error originated from e:

y0e ¼ VT � Dþ qINð Þ�1�ET � UT � e ð4:32Þ

Because the expectation of e is zero, we know that

y0 � y0h i ¼ ŷ0 � ŷ0� �þ y0e � y0e
� � ð4:33Þ

Note that

ŷ0 � ŷ0� � ¼XM
k¼1

r2
k

r2
k þ q

� �2 ŷ02k ð4:34aÞ

and

y0e � y0e
� � ¼XM

k¼1

r2
k

r2
k þ q

� �2 e2k
� � ð4:34bÞ

where ek is the kth component of the M-dimensional vector e ¼ UT � e. Since U is
an M 	M orthogonal matrix, it is obvious that if eiekh i ¼ r2dik, then eiekh i ¼
r2dik where ek is the kth component of the M-dimensional error vector e. Then, we
have

y0e � y0eh i ¼ r2
XM
k¼1

rk

r2
k þ q

� 	2

ð4:35Þ

Note that

Rk � rk

r2
k þ q

� 	2

� 1
4q

ð4:36Þ

Then,

y0e � y0eh i� Mr2

4q
ð4:37Þ

Furthermore, note that the maximum value of Rk occurs at q ¼ r2
k and it decreases

steeply as log r2
k=q

� ��� �� increases. Since all singular values cannot be the same, it
can be said that
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y0e � y0e
� �� r2

4q
ð4:38Þ

Hence, the errors in the numerical derivative are in the same order of the raw data.
This is the error-suppressing effect of the Tikhonov regularization.

4.2.3 Numerical Differentiation by Cubic B-Spline

Although the inverse integration method is effective, it still gives rise to a noisy
shape for jxj[ 1. Smoother derivative is expected if appropriate regression is
combined with numerical differentiation. One of the most versatile regressions is
polynomial regression. As the shape of a function becomes more complicate,
higher-order polynomial is required. Since the Runge phenomenon appears usually
in derivative, cubic B-spline is better than higher-order polynomial. To enhance
smoothness of the derivative, coefficients of B-spline may be determined by the
minimization of

v2 ¼
XM
a¼1

ya �
XLþ 1

k¼�1

ckBk xað Þ
" #2

þ q
XM
a¼1

XLþ 1

k¼�1

ckB
00
k xað Þ

" #2
ð4:39Þ

where B00
k xð Þ ¼ d2Bk=dx2. If the coefficients ck are determined by the minimization

of v2, then it is obvious that

y0a ¼
XLþ 1

k¼�1

ck
dBk

dx

� 	
x¼xa

ð4:40Þ

Figure 9 shows the result from the application of cubic B-spline (q ¼ 10�3 and
L ¼ 9) to the data of Fig. 8. Partitioning of data was done by the same length of
subintervals. Comparison with the inverse integration method (IIR) reveals that cub
B-spline is superior. Regression by cubic B-spline depends on both the number of
subintervals and how to partition the whole interval. Determination of them seems
to be heuristic.

A reliable algorithm for numerical differentiation is important for showing the
validity of time–temperature superposition, which will be discussed in Chap. 8.
Another application of numerical differentiation is to calculate probability density
function from the cumulative distribution function obtained from experiment.
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Problem 4

[1] Derive that the error of the trapezoidal rule for exact function is given by

Zxmax

xmin

f xð Þ dx� h
f xmaxð Þþ f xminð Þ

2
þ
XN�1

k¼1

f xmin þ khð Þ
" #

¼ � xmax � xminð Þ3
12N2 f 00 nð Þ ð4:aÞ

where h ¼ xmax � xminð Þ=N and xmin � n� xmax:
[2] A set of experimental data ta;Gað Þf g is given with tmin � ta � tmax. We are

interested in the numerical Laplace transform of the experimental data.
Assume that Ga ¼ G tað Þþ ea and G tð Þ have the asymptotic behavior such that

GðtÞ� exp � t
k

� �
with tmin\k\tmax ð4:bÞ

What are the conditions for s and GðtÞ in order that the following is an
acceptable approximation:

eG sð Þ �
XN�1

a¼1

taþ 1 � ta
2

e�staGa þ e�staþ 1Gaþ 1ð Þ ð4:cÞ

[3] Calculate the singular values of the matrix A of Eq. (4.20) under the
assumption that hk ¼ h for all k.
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Fig. 9 Numerical
differentiation by cubic
B-spline (q ¼ 10�3, L ¼ 9).
Regularization (triangle) is
the derivative obtained from
inverse integration with
q ¼ 6:4	 10�3
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[4] What is the reason why the numerical differentiation by cubic B-spline is
superior to the inverse integration with regularization?

[5] Derive

dB nð Þ
k xð Þ
dx

¼ n� 1ð Þ B n�1ð Þ
k xð Þ

nkþ n�1 � nk
� B n�1ð Þ

kþ 1 xð Þ
nkþ n � nkþ 1

 !
ð4:dÞ

where B nð Þ
k xð Þ is the nth order basis function of B-spline.

5 Discrete Fourier Transform

5.1 Fourier Series

Fourier series of a periodic function defined in the interval of �L; Lð Þ is given by

f ðxÞ ¼ a0
2

þ
X1
n¼1

an cos
np x
L

þ bn sin
np x
L

� �
ð5:1Þ

where the Fourier coefficients an and bn are

an ¼ 1
L

ZL
�L

f xð Þ cos npx
L

dx; bn ¼ 1
L

ZL
�L

f xð Þ sin npx
L

dx ð5:2Þ

Using Euler’s formula, Eq. (5.1) can be rewritten in complex notation as follows

f xð Þ ¼
X1
n¼�1

ĉne
inpx=L ð5:3Þ

where

ĉn ¼ 1
2L

ZL
�L

f xð Þ e�inpx=L ð5:4Þ

with

ĉn ¼ an � ibn
2

; ĉ�n ¼ an þ ibn
2

for n[ 0 ð5:5Þ
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and

c0 ¼ a0
2

ð5:6Þ

This is an approximation method for a function in terms of trigonometric
functions which satisfy orthogonality

1
2L

ZL
�L

eimpx=Leinpx=Ldx ¼ 0 for m 6¼ �n
1 for m ¼ �n



ð5:7Þ

Hence, Fourier series is equivalent to series approximation by orthogonal polyno-
mials. When it is necessary to find an approximate equation for experimental data,
Eq. (5.1) implies that trigonometric functions are used for base function just as
Eq. (1.23). Then, a better choice of base function type depends on the number of
base functions is needed for the description of the experimental data when truncated
series is considered. In other words, the better choice depends on how fast the series
converges.

5.2 Discrete Fourier Transform

Nowadays, most measuring instruments are equipped with computer, and the
analogy signal from sensor is converted to the digital signal and the digital signal is
stored in the memory system of the computer. For simplicity assume that the
measured quantity is a function of time. Taking creep experiment as an example,
rheometer measures strain as a function of time. When rheometer measures strain
from t ¼ 0 to t ¼ T , data storage is carried at

tk ¼ T
2N

k; k ¼ 0; 1; 2; . . .; 2N � 1 ð5:8Þ

Hence, the sampling interval is given by Dt ¼ 1
2T=N: The rheometer also stores

compliance data Jk which is measured at t ¼ tk.
To define discrete Fourier transform (DFT), we define frequencies as follows

xn ¼ 2pn
T

; n ¼ 0; 1; 2; . . .; 2N � 1 ð5:9Þ

Analogous to continuous Fourier transform, we define discrete Fourier transform of
fk ¼ f tkð Þ as follows

f̂n ¼ f̂ xnð Þ ¼ 1
2N

X2N�1

k¼0

fke
�ixntk ð5:10Þ
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In vector notation, Eq. (5.10) can be rewritten as

f̂ ¼ 1
2N

F � f ð5:11Þ

where Fnk ¼ exp �ixntkð Þ. It is not difficult to prove discrete orthogonality relation
(Arfken and Weber 2001):

1
2N

X2N�1

n¼0

e�ixntkeixntm ¼ dkm ð5:12Þ

The use of Eq. (5.12) gives

fk ¼
X2N�1

n¼0

f̂ne
ixntk ð5:13Þ

In vector notation, Eq. (5.13) is rewritten as

f ¼ F � f̂ ð5:14Þ

where Fkn ¼ exp ixntkð Þ. Hence, it is obvious that

F � F ¼ F � F ¼ 2N I ð5:15Þ

Equations (5.10) and (5.13) are discrete Fourier transform pair, which is analogous
to Eq. (6.33 in Chap. 1).

It must be noted that although the discrete Fourier transform pair is exact, when
N is not sufficiently large, aliasing becomes a significant problem. When

tk ¼ 0;
p
2
; p;

3p
2

ð5:16Þ

cos tk ¼ 1
2 cos tk þ cos 3tkð Þ holds for the four times.

Computation of Eq. (5.14) demands about N2 multiplications. Hence, if
N ¼ 210 ¼ 1024, the number of multiplications becomes about 220 � 106. The fast
Fourier transform (FFT) algorithm reduces the number of multiplications to
N log2 N � 104. The FFT algorithm is to exploiting factoring and rearrangement of
the terms in Eq. (5.11).

Dynamic moduli (dynamic compliances) can be calculated from relaxation
modulus (or creep compliance) by Fourier transform instead of Laplace transform
and substitution of s ¼ ix. Evans et al. (2009) applied DFT to creep compliance
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data in order to obtain dynamic moduli. However, their method suffers from
high-frequency noises because of finite data and experimental error. On the other
hand, Kim et al. (2015) used fitting of the Laplace transform of creep compliance by
a suitable model and converted it to dynamic moduli analytically. Their results were
very smooth. However, the use of a model is not a direct method which should be
influenced by the model used. Hence, for smooth dynamic moduli, it is recom-
mendable to use relaxation spectrum.

Problem 5

[1] Prove Eq. (5.15).
[2] A physical quantity P is expected to be a periodic function of time such that

PðtÞ ¼
X5
k¼0

1

ð2kþ 1Þ2 sin ð2kþ 1Þx t½ � ð5:aÞ

where the period is known as T ¼ 2p=x. Assume that the quantity is measured
with the sampling times:

ta ¼ T
100

a with a ¼ 0; 1; . . .; 99 ð5:bÞ

Apply the DFT to the data generated by Eq. (5.b) in order to identify Pk ¼
ð2kþ 1Þ�2 and calculate the error.

[3] Instead of DFT, apply regression to the Problem [2].
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Chapter 7
Viscoelastic Spectrum

Abstract This chapter deals with the mathematical fundamentals and numerical
algorithms of relaxation and retardation spectra. The first section consists of the
importance of spectrum, the Fuoss–Kirkwood relations, the ill-posedness in infer-
ring viscoelastic spectra and some mathematical formulas related with the spectra.
The second and third sections are the introduction to the algorithms of continuous
and discrete spectra, respectively.

1 Fundamentals

1.1 Importance of Spectrum

We have introduced relaxation and retardation spectra in Sect. 3 in Chap. 5 where
we studied the multimode Maxwell model. Hence, the origin of the spectra is
hypothetical, which means that spectra cannot be measured directly. However, both
relaxation and retardation spectra are important because they provide a very
powerful tool to convert a viscoelastic response function to another if they are
determined. Furthermore, spectrum gives a new insight on molecular processes in
rheology. Somebody may think that studies on spectrum are already old and are not
useful because of brightly developing molecular theories. However, all molecular
theories are not so rigorous because almost all of them are based on Brownian
motion and rough approximations. Theories based on Brownian motion (the
Langevin or Fokker–Planck equation) are seen as phenomenological ones com-
pared with more rigorous ones based on atomic scales. They also contain phe-
nomenological parameters such as friction coefficient f. Nevertheless, molecular
theories are superior to phenomenological ones because they allow us to relate
independent experimental results through molecular structure. If spectrum can be
determined uniquely from experimental data, then it must be a severe method to
check the validity of a molecular theory.

For a long time, a number of researchers tried to calculate spectrum from
measured data of viscoelasticity (Ferry 1980; Tschoegl 1989). In the author’s
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opinion, remarkable achievements in this field appear since 1978: Wiff (1978),
Honerkamp and Weese (1989), Baumgärtel and Winter (1989) and Honerkamp and
Weese (1989) recognized that calculation of continuous relaxation spectrum is an
ill-posed problem and suggested regularization as a breakthrough. Because of the
ill-posedness, some of the researchers have doubted the uniqueness of spectrum.
However, the uniqueness of continuous spectrum had been proved already by Fuoss
and Kirkwood in 1941. They focused on the relaxation spectrum of dielectrics
rather than viscoelasticity. Fourier transform was used to derive the relation
between dielectric permittivity and dielectric relaxation function. Note that Fourier
transform is uniquely determined. However, the uniqueness of discrete spectrum is
still doubted (Malkin and Masalova 2001) and the authors do not believe the
uniqueness of discrete spectrum. Since discrete spectrum is an approximation of
continuous one, it is not a significant problem to prove the uniqueness of discrete
spectrum. In summary, continuous spectrum is unique, but it is necessary to
develop an appropriate method to calculate the spectrum from experimental data
which inevitably contain experimental errors.

This chapter is devoted mainly to algorithms for relaxation and retardation
spectra. In this section, we will study fundamental aspects of spectrum such as the
relations between spectrum and other viscoelastic functions.

1.2 The Fuoss–Kirkwood Relations

Although Fuoss and Kirkwood derived the Fuoss–Kirkwood relation (FK relation)
long time ago, a number of literatures in rheology have not recognized their
achievements. Here, we shall derive the FK relations and their consequences.

1.2.1 Derivation of the FK Relations

The definition of continuous relaxation spectrum is given in Eq. (3.2) in Chap. 5.
Since the FK relation is the one between relaxation spectrum and dynamic moduli,
we take Laplace transform on both sides of Eq. (3.2) in Chap. 5; then, we have

s~G sð Þ ¼
Z1
�1

H kð Þ k s
1þ k s

d log k ð1:1Þ

Substitution of s ¼ ix gives

G0ðxÞ ¼
Z1
�1

HðkÞ k2x2

1þ k2x2
d log k; G00ðxÞ ¼

Z1
�1

HðkÞ kx

1þ k2x2
d log k ð1:2Þ
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Since both frequency and relaxation time vary in logarithmic scale, we introduce
the notation such that

m ¼ logx; l ¼ � log k ð1:3Þ

The notation allows us to use

H kð Þ ¼ H e�lð Þ ¼ h lð Þ; G xð Þ ¼ G emð Þ ¼ g mð Þ ð1:4Þ

where G xð Þ means G0 xð Þ or G00 xð Þ depending on the context. Then, Eq. (1.2) can be
rewritten by

g0 mð Þ ¼
Z1
�1

K 0 m� lð Þh lð Þdl; g00 mð Þ ¼
Z1
�1

K 00 m� lð Þh lð Þdl ð1:5Þ

where

K 0 nð Þ ¼ 1þ tanhn
2

¼ x2

1þ x2
; K 00 nð Þ ¼ 1

2
sechn ¼ x

1þ x2
ð1:6Þ

Here, we used n ¼ log x. Note that the kernel function K 0 nð Þ is a monotonic
increasing function converging to unity as its argument increases, while the kernel
function K 00 nð Þ is a peaklike function that has the maximum value of 1=2 at n ¼ 0.

Since Eq. (1.5) is the convolution of Fourier transform, it is obvious that

ĝ00 qð Þ ¼
Z1
�1

g00 mð Þe�iqmdm ¼ K̂ 00 qð Þĥ qð Þ ð1:7Þ

and

K̂ 00 qð Þ ¼ p
2
sech

p
2
q

� �
ð1:8Þ

Equation (1.7) gives

ĥ qð Þ ¼ ep q=2 þ e�p q=2

p
ĝ00 qð Þ ð1:9Þ

and inversion of the Fourier transform gives

h mð Þ ¼ 1
p

g00 mþ i
p
2

� �
þ g00 m� i

p
2

� �h i
ð1:10Þ
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To obtain (1.10), we need

g00 m� p
2
i

� �
¼ 1

2p

Z1
�1

ĝ00 qð Þ exp i m� p
2
i

� �
q

h i
dq ð1:11Þ

and

log �ixð Þ ¼ logx� p
2
i ¼ m� p

2
i ð1:12Þ

With the help of (1.4), we recover continuous spectrum as follows:

H
1
x

� �
¼ G00 ixð ÞþG00 �ixð Þ

p
ð1:13Þ

If a physical quantity is measurable as a function of other controllable variable, it
is really rare to find a reason to object to the analyticity of the function. Hence, we
assume that dynamic moduli are analytic functions. Then, we can write

G00 zð Þ ¼
X1
n¼0

cnz
n ð1:14Þ

where z is a complex variable, but all coefficients cn are real because loss modulus
is real whenever z is real. Then, it is obvious that

Re G00 ixð Þf g ¼ G00 ixð ÞþG00 �ixð Þ
2

; Im G00 ixð Þf g ¼ G00 ixð Þ � G00 �ixð Þ
2i

ð1:15Þ

Finally, we have

H
1
x

� �
¼ 2

p
Re G00 ixð Þf g ð1:16Þ

This is the FK relation for loss modulus.
We can apply these calculations to storage modulus, too. The success of (1.16) is

originated from the feature of the kernel function K 00 xð Þ. Hence, we modify the
equation for storage modulus of (1.5) as follows:

g mð Þ ¼
Z1
�1

K 00 m� lð ÞW lð Þdl ð1:17Þ
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where

g mð Þ ¼ G0 xð Þ
x

; W lð Þ ¼ kH kð Þ ð1:18Þ

Since (1.17) is also the convolution equation, we have

e�mH e�mð Þ ¼ 1
x
H

1
x

� �
¼ 1

p
G0 ixð Þ
ix

� G0 �ixð Þ
ix

� �
ð1:19Þ

Then, we have

H
1
x

� �
¼ 2

p
Im G0 ixð Þf g ð1:20Þ

The Laplace transform is one of the useful viscoelastic functions even though
DWS is not considered. We shall introduce how the Laplace transform is used in
viscoelastic characterization of polymeric materials in Chap. 8. Here, we shall
derive the FK relation of ~G sð Þ. Dividing both sides of (1.1) by

ffiffi
s

p
, we have

ffiffi
s

p
~G sð Þ ¼

Z1
�1

ffiffiffiffiffiffi
k s

p

1þ k s

ffiffiffi
k

p
H kð Þd log k ð1:21Þ

To exploit the feature of K 00 xð Þ, we introduce

2r ¼ log s; 2h ¼ � log k ð1:22Þ

Then, we can deal with the following functions:

ffiffi
s

p
~G sð Þ ¼ er~g erð Þ ¼ U rð Þ;

ffiffiffi
k

p
H kð Þ ¼ 1

eh
~h

1
eh

� �
¼ Q hð Þ ð1:23Þ

The use of (1.23) gives

U rð Þ ¼ 2
Z1
�1

K 00 r� hð ÞQ hð Þdh ð1:24Þ

and similar procedures used before give

Q rð Þ ¼ 4
p
Re i

ffiffi
s

p
~g i

ffiffi
s

p	 
� � ð1:25Þ
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and

H
1
s

� �
¼ 4

p

ffiffi
s

p
Re i

ffiffi
s

p
~g i

ffiffi
s

p	 
� � ¼ � 4
p
sIm ~g i

ffiffi
s

p	 
� � ð1:26Þ

Note that ~G sð Þ ¼ ~g
ffiffi
s

pð Þ and H sð Þ ¼ ~h
ffiffi
s

pð Þ.
When available data are in compliance, then we can apply the FK relation for

retardation spectrum. The definition of the retardation spectrum is shown in Eq. (3.4)
in Chap. 5 which implies that the spectrum is related to recovery compliance:

Jr tð Þ ¼ J tð Þ � Jg � t
go

¼
Z1
�1

L sð Þ 1� e�t=s
	 


d log s ð1:27Þ

Taking the Laplace transform, we have

s~Jr sð Þ ¼ s~J sð Þ � Jg � 1
gos

¼
Z1
�1

L sð Þ
1þ s s

d log s ð1:28Þ

Equation (1.28) implies that for viscoelastic fluids,

J 0 xð Þ � Jg ¼
Z1
�1

L sð Þ
1þ s2x2 d log s; J 00 xð Þ � 1

gox
¼
Z1
�1

L sð Þ sx
1þ s2x2 d log s

ð1:29Þ

Since viscoelastic solid is the case of infinite zero-shear viscosity, it is not
difficult to imagine the corresponding Eq. (1.29). Here, we consider only the case of
viscoelastic fluid. Since the kernel function for loss compliance is identical to that
of Eq. (1.2) for loss modulus, we have the FK relation such that

L
1
x

� �
¼ 2

p
Re J 00 ixð Þ � 1

igox

 �
¼ 2

p
Re J 00 ixð Þf g ð1:31Þ

If we define R sð Þ ¼ s�1L sð Þ, then modification of the first equation of (1.39)
gives

x J 0 xð Þ � Jg
� � � Z1

�1
R sð Þ sx

1þ s2x2 d log s ð1:32Þ
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The FK relation from Eq. (1.32) is given by

L
1
x

� �
¼ � 2

p
Im J 0 ixð Þf g ð1:33Þ

Although the FK relations are exact, it must be recognized that if we do not
know the exact functions of measurable quantities such as dynamic moduli and the
Laplace transform of the relaxation modulus, we cannot determine relaxation
spectrum. If someone wants to develop an algorithm for relaxation spectrum by the
use of the FK relation, an effective approximation can describe the experimental
data of corresponding measurable viscoelastic functions. Cho and coworkers (2015)
used the Chebyshev polynomials as follows:

G mð Þ � exp
XN
n¼0

gnTn ~mð Þ
" #

with ~m ¼ 2m� mmax þ mminð Þ
mmax � mmin

ð1:34Þ

Detailed numerical methods will be given in Sect. 2.3 in Chap. 7.

1.2.2 Cautions for the Use of the FK Relations

It must be mentioned that the derivation of Eqs. (1.16), (1.20), (1.26), (1.31), and
(1.32) omitted to check the convergence of the integration of Fourier transforms.
Hence, the five equations are not mathematically exact. Although all viscoelastic
functions can be assumed to be analytic on the linear line of their arguments, the
analyticity cannot guarantee the analyticity on imaginary axis. First of all, since
storage modulus is an increasing function of frequency and is expected to have a
constant value at infinite frequency, the existence of the Fourier transform of
storage modulus is questionable. Note that Eq. (6.21) in Chap. 1 is one of the
conditions for ordinary Fourier transform, while storage modulus does not satisfy
this condition. Thus, the Fourier transforms used above are not the Fourier trans-
forms of ordinary functions but those of distributions (Zemanian 1987). The exact
equations for the generalized FK relations are given by

H
1
x

� �
¼ lim

e!0

2
p
Im G0 ixþ eð Þf g ¼ lim

e!0

2
p
Re G00 ixþ eð Þf g ð1:35Þ

H
1
s

� �
¼ � lim

e!0

4
p
sIm ~g i

ffiffi
s

p þ e
	 
� � ð1:36Þ

and

L
1
x

� �
¼ lim

e!0

2
p
Re J 00 ixþ eð Þf g ¼ � lim

e!0

2
p
Im J 0 ixþ eð Þf g ð1:37Þ
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As an example, consider the Maxwell model of a single relaxation time kM . The
dynamic moduli are given by

G0 xð Þ ¼ GM
k2Mx

2

1þ k2Mx
2
; G00 xð Þ ¼ GM

kMx

1þ k2Mx
2

ð1:38Þ

Hence, it is obvious that the relaxation spectrum is H kð Þ ¼ GMd k� kMð Þ. If the
simple substitution of x ! ix is done, then we have useless results such that

Im G0 ixð Þf g ¼ Im GM
k2Mx

2

k2Mx
2 � 1

( )
¼ 0

Re G00 ixð Þf g ¼ Re GM
ikMx

1� k2Mx
2

( )
¼ 0

ð1:39Þ

On the other hand, the use of Eq. (1.35) gives

lim
e!0

2
p
Re G00 ixð Þf g ¼ lim

e!0

2
p
GMRe

kMeþ ikMx

1þ kMeþ ikMxð Þ2
( )

¼ lim
e!0

2
p
GM

kMe

kMeð Þ2 þ kMx� 1ð Þ2
kMeð Þ2 þ kMxð Þ2 þ 1

kMeð Þ2 þ kMxþ 1ð Þ2
ð1:40Þ

Note that the Dirac delta function can be defined by

d xð Þ ¼ 1
p
lim
e!0

e
e2 þ x2

ð1:41Þ

Furthermore, it is obvious that for any continuous function f xð Þ

f xð Þ d x� xoð Þ ¼ f xoð Þ d x� xoð Þ ð1:42Þ

Application of both Eqs. (1.41) and (1.42) gives

lim
e!0

2
p
Re G00 ixþ eð Þf g ¼ GMd

1
x
� kM

� �
ð1:43Þ

The simple substitution of x by ix as shown Eq. (1.16) often happen to give the
same results which can be obtained from the limit process shown in Eqs. (1.35)–
(1.37). However, the simple substitution sometimes gives useless results. Hence,
Eqs. (1.35)–(1.37) are recommendable in general. However, we will use the
notation of simple substitution because of simplicity.
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1.2.3 The Relation Between Relaxation and Retardation Spectra

We shall derive the relation between relaxation and retardation spectra by the use of
the FK relations. We start from Eq. (1.33). Substitute Eq. (1.59) in Chap. 1 to Eq.
(1.33) with the replacement of frequency by iω. Long algebraic manipulation gives

L x�1
	 
 ¼ H x�1ð Þ

Re G0 ixð Þf g � Im G00 ixð Þf g½ � 2 þ p2H2 x�1ð Þ ð1:44aÞ

or

L sð Þ ¼ H sð Þ
Re G0 is�1ð Þf g � Im G00 is�1ð Þf g½ � 2 þ p2H2 sð Þ ð1:44bÞ

Similar equation is found in (Ferry 1980):

L sð Þ ¼ H sð Þ
P2 sð Þþ p2H2 sð Þ ð1:45Þ

where

P sð Þ ¼
Z1
�1

kH kð Þ
k� s

d log k ð1:46Þ

With the help of Eq. (1.2), it is easy to show that

P2 sð Þ ¼ Re G0 is�1	 
� �� Im G00 is�1	 
� �� � 2 ð1:47Þ

Equation (1.59) in Chap. 1 is equivalent to

G0 xð Þ ¼ J 0 xð Þ
J 0 xð Þ½ � 2 þ J 00 xð Þ½ � 2 ; G00 xð Þ ¼ J 00 xð Þ

J 0 xð Þ½ � 2 þ J 00 xð Þ½ � 2 ð1:48Þ

Hence, substitution of Eq. (1.48) to the corresponding FK relation gives

H x�1	 
 ¼ L x�1ð Þ
Re J 0 ixð Þf gþ Im J 00 ixð Þf g½ � 2 þ p2L2 x�1ð Þ ð1:49aÞ

or

H kð Þ ¼ L kð Þ
Re J 0 ik�1	 
� �þ Im J 00 ik�1	 
� �� � 2 þ p2L2 kð Þ

ð1:49bÞ
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Similar equation is found in Ferry (1980), too:

H kð Þ ¼ L kð Þ
X2 kð Þþ p2L2 kð Þ ð1:50Þ

where

X kð Þ ¼ Jg þ
Z1
�1

kL sð Þ
k� s

d log s� k
go

ð1:51Þ

It is not difficult to show that

X2 kð Þ ¼ Re J 0 ik�1	 
� �þ Im J 00 ik�1	 
� �� � 2 ð1:52Þ

Use of Eqs. (1.44a) and (1.44b) require to learn how to calculate real functions
such as Re G0 ixð Þf g and Im G00 ixð Þf g. Since we can consider dynamic moduli as
analytical functions, we can express them as follows:

G0 xð Þ ¼ eP
0 xð Þ; G00 xð Þ ¼ eP

00 xð Þ ð1:53Þ

where

P0 xð Þ ¼
X1
n¼0

c0n logxð Þn; P00 xð Þ ¼
X1
n¼0

c00n logxð Þn ð1:54Þ

Then, we know that

Re G0 ixð Þf g ¼ exp Re P0 ixð Þf g½ � cos Im P0 ixð Þf g½ �
Im G00 ixð Þf g ¼ exp Re P00 ixð Þf g½ � sin Im P00 ixð Þf g½ � ð1:55Þ

We shall illustrate how to implement Eq. (1.55) effectively in Sect. 2.4 in this
chapter. Note that the pole of the kernel function in Eq. (1.46) makes the evaluation
of the integral difficult. On the other hand, regression of experimental data by Eq.
(1.53) is easier.

1.3 Ill-Posedness of Spectrum

Consider the second of Eq. (1.5). This is an integral equation called the Fredholm
integral equation of the 1st kind. Linear operator theory of inverse problem refers to
the ill-posed problem of the integral equation as the discontinuity of the inverse
operator (Kirsch 2010). This theory is based on the functional analysis, and most
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rheologist and engineers are not familiar with the mathematical theory. Hence, the
effect of ill-posedness is explained by using the FK relation.

Addition of small perturbation in a relaxation spectrum h sð Þ ¼ h� sð Þþ dh sð Þ
results in g00 mð Þ ¼ g00� mð Þþ dg00 mð Þ, and we know that when dh sð Þ ¼ e sin ks with
k[ 0 and e[ 0, the perturbation in modulus is given by

dg00 ¼ p
2
sech

pk
2
e sin km ð1:56Þ

Equation (1.56) implies that the perturbation of modulus is negligible for large k,
while it is comparative to that of the spectrum. Even if the amplitude of the
perturbation is considerably high, the error in modulus dg00 seems to be negligible if
1
2pk � 1. In this case, it is interesting that h sð Þ looks very different from h� sð Þ,
while g00 mð Þ � g00� mð Þ.

To show this effect, consider the two spectra, the original and perturbed spectra:

Ho kð Þ ¼ exp � log kð Þ2
10

" #
; HE kð Þ ¼ Ho kð Þþ e sin k log kð Þ ð1:57Þ

Figure 1 shows the two spectra and dynamic moduli calculated from them. Here,
we used e ¼ 0:1 and k ¼ 2. We used linear scale for dynamic moduli to emphasize
that the two calculation results are nearly identical.

On the other hand, if dg00 mð Þ is given by dg00 mð Þ ¼ e sin km, the FK relation gives

dh ¼ 2
p
cosh

pk
2
e sin km ð1:58Þ
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Fig. 1 A model spectrum and its perturbed spectrum [Eq. (1.57)] give nearly identical moduli.
Here, the amplitude of the perturbation ε is 0.1, and the wave number k is 2.0
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Hence, if the wave number k is large, a small error in modulus data results in a
huge error in the spectrum. Since an experimental error can be considered as a
linear combination of sinusoidal waves with various wave numbers, a component of
high k could magnify the error of the spectrum enormously. Because of this, the
problem of relaxation spectrum is called ill-posed problem. On the other hand,
calculation of modulus for a given spectrum does not suffer from this problem.
Therefore, it is difficult to infer an acceptable spectrum from experimental data.

There is another problem in spectrum calculation. Some algorithms result in
negative value of spectrum (Wiff 1978; Honerkamp and Weese 1989), which is
unrealistic because of the definition of continuous spectrum.

Therefore, a good algorithm for continuous spectrum should satisfy the fol-
lowing conditions:

1. The effect of experimental errors in the data must be suppressed.
2. The calculated spectrum must not be negative at any relaxation time (or retar-

dation time).
3. The shorter the computation time, the better the algorithm.

1.4 Some Important Equations and Inequalities

The use of relaxation spectrum or retardation spectrum allows us to know some
important inequalities among viscoelastic functions. A look at experimental data of
G0 xð Þ and G tð Þ in double logarithmic plots gives an insight that if relaxation
modulus is plotted by x�1 instead of t, then the shapes of the two plots of G0 xð Þ and
G x�1ð Þ look similar. Using relaxation spectrum, we have

G0 xð Þ � G
1
x

� �
¼
Z1
�1

H kð Þ k2x2

1þ k2x2
� e� kxð Þ�1

� �
d log k ð1:59Þ

Note that for x[ 0

x2

1þ x2
� e�1=x [ 0 ð1:60Þ

Since H kð Þ	 0 for any k[ 0, it is obvious that

G0 xð Þ[G
1
x

� �
; G0 1

t

� �
[G tð Þ ð1:61Þ
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Similarly, we can have

J 0 xð Þ[ J
1
x

� �
� 1
gox

; J 0
1
t

� �
[ J tð Þ � t

go
ð1:62Þ

Combination of Eqs. (1.61) and (1.62) gives

J 0 xð Þ\ 1
G0 xð Þ ; G0 1

t

� �
\

1
J 0 t�1ð Þ ð1:63Þ

The viscoelastic constants in the terminal regime can be calculated from relax-
ation spectrum. Using Eqs. (1.67), (1.68) and (3.2) in Chap. 5, we can express the
zero-shear viscosity, the steady state compliance and the mean relaxation time in
terms of relaxation spectrum as follows

go ¼
Z1
�1

kH kð Þd log k ¼
Z1
0

H kð Þdk ð1:64Þ

Joe ¼ 1
g2
o

Z1
�1

k2H kð Þd log k ¼ 1
g2
o

Z1
0

kH kð Þdk ð1:65Þ

�k ¼
R1
�1 k2H kð Þd log kR1
�1 kH kð Þd log k ¼

R1
0 kH kð ÞdkR1
0 H kð Þdk ð1:66Þ

Problem 1

[1] Derive Eqs. (1.1), (1.2), and (1.3).
[2] Show that the Havriliak–Negami equation has the retardation spectrum such

that

s~Jr sð Þ ¼ 1

1þ sosð Þa½ �b
) L sð Þ ¼ 1

p
s=soð Þabsin bh

s=soð Þ2a þ 2 s=soð Þacos paþ 1
h ib=2

ð1:aÞ

where

h ¼ arctanX sð Þ if X sð Þ[ 0
pþ arctanX sð Þ if X sð Þ
 0


; X sð Þ ¼ sin pa

s=soð Þa þ cos pa
ð1:bÞ
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[3] Derive Eqs. (1.31) and (1.33).
[4] Derive

lim
e!0

2
p

k2 ixþ eð Þ2
1þ k2 ixþ eð Þ2

( )
¼ d

1
x
� k

� �
ð1:cÞ

[5] Derive Eqs. (1.44a, b) and (1.49a, b).
[6] Derive Eqs. (1.56) and (1.57).
[7] Prove Eq. (1.59).
[8] Derive Eqs. (1.63), (1.64), and (1.65).
[9] Derive

dg
dm

¼
Z1
�1

K m� lð Þ dh
dl

dl ð1:dÞ

[10] From the FK relation, derive the following (Anderssen et al. 2014):

h �mð Þ ¼ 2
p

X1
n¼0

�1ð Þn
2nþ 1ð Þ!

d2nþ 1g0 mð Þ
dm2nþ 1

p
2

� �2nþ 1
¼ 2

p

X1
n¼0

�1ð Þn
2nð Þ!

d2ng00 mð Þ
dm2n

p
2

� �2n
ð1:eÞ

[11] Prove that storage modulus is an increasing function of frequency.
[12] As for most monodisperse polymer melts, loss modulus increases as G00 / x

in the terminal regime and then decreases as G00 / x�1=4 (Liu et al. 2006).
Then, one may approximate this behavior as

G00 xð Þ ¼ Go
N

kmaxx

1þ kmaxxð Þ5=4
ð1:fÞ

Show that Eq. (1.f) gives

H kð Þ ¼ 2Go
N

p

kmax=kð Þ9=4sin p
8

1þ 1þ cos p8
	 


kmax=kð Þ5=4
ð1:gÞ
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2 Algorithms for Continuous Spectrum

Before the appearance of the regularization method, most researchers of relaxation
spectrum may have been unaware of ill-posedness of the problem. Since Eq. (3.2)
in Chap. 5 looks like a Laplace transform between spectrum and relaxation mod-
ulus, early works of this field seem to be focused on the inversion of Laplace
transform. Most classical methods in (Tschoegl 1989) applied the Post–Widder
formula (Cohen 2007):

f tð Þ ¼ lim
k!1

�1ð Þk
k!

skþ 1 d
k~f sð Þ
dsk

� �
s¼k=t

ð2:1Þ

Since higher-order numerical differentiation of experimental data is very
unstable because of another ill-posedness, we shall not introduce the classical
works. As for the readers interested in the classical works on relaxation spectrum,
(Tschoegl 1989) and (Ferry 1980) are recommendable.

2.1 Regularization Method

Wiff (1978) and Honerkamp and Weese (1989) adopted the regularization method
in inferring continuous relaxation spectrum. Although most monographs on regu-
larization exploit functional analysis, we shall explain the method from the view-
point of linear regression for the case where the number of parameters is larger than
the number of data. It is noteworthy that we already explained regularization
method by the use of singular value decomposition when we deal with numerical
differentiation as an inverse problem in Sect. 4.2 in Chap. 6. Although this approach
is well explained in Honerkamp and Weese (1989), further detailed information is
found in Lawson and Hanson (1995).

Although we are interested in continuous spectrum, we have to start from dis-
crete spectrum in order to make the explanation of regularization easier. Consider
the case that dynamic moduli are measured at M frequencies xaf g. Then, the
dynamic moduli at xa must follow

G0 xað Þ ¼
XN
k¼1

K 0 kkxað Þhk; G00 xað Þ ¼
XN
k¼1

K 00 kkxað Þhk ð2:2Þ

where

K 0 xð Þ ¼ x2

1þ x2
; K 00 xð Þ ¼ x

1þ x2
ð2:3Þ
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For simplicity, it is assumed that for any k, log kkþ 1=kkð Þ ¼ 2Dl. Since the
number of relaxation times N is sufficiently large, small Dl guarantees

hk � H kkð Þ
2Dl

�
Zlog kk þDl

log kk�Dl

H kð Þd log k ð2:4Þ

This is the consequence from the mean value theorem. Hence, if hk are deter-
mined from dynamic moduli data, then the continuous spectrum can be constructed
if N is sufficiently large and Dl is sufficiently small.

Note that all experimental data have errors. Hence, to determine hk, the least
squares should be used. The relative sum of square is popularly used because
moduli are positive and vary in logarithmic scale:

v2 ¼
XM
a¼1

G0
a �

XN
k¼1

K 0
akhk

 !2

þ
XM
a¼1

G00
a �

XN
k¼1

K 00
akhk

 !2

ð2:5Þ

where Ga is the modulus data at frequency xa and Kak ¼ K 0 kkxað Þ or
Kak ¼ K 00 kkxað Þ. Since Eq. (2.5) is a quadratic function of hkf g, the minimization
of v2 is to solve the following set of linear equations:

XN
i¼1

Sikhk ¼ �gi or S � h ¼ �g ð2:6Þ

where

Sik ¼
XM
a¼1

K 0
iaK

0
ka þK 00

iaK
00
ka

	 

or S ¼ K �KT ð2:7Þ

�gi ¼
XM
a¼1

K 0
iaG

0
a þK 00

iaG
00
a

	 

or �g ¼ K � g ð2:8Þ

K ¼
K 0 k1x1ð Þ � � � K 0 k1xMð Þ K 00 k1x1ð Þ � � � K 00 k1xMð Þ

..

. . .
. ..

. ..
. . .

. ..
.

K 0 kNx1ð Þ � � � K 0 kNxMð Þ K 00 kNx1ð Þ � � � K 00 kNxMð Þ

264
375 ð2:9Þ

and

h ¼ h1 h2 � � � hN½ �T ; g ¼ G0
1 G

0
2 � � � G0

M G00
1 G

00
2 � � � G00

M

� �T ð2:10Þ

Note that the matrix S is N � N symmetric and K is an N × 2M matrix. The
column vector h can be determined uniquely if S is nonsingular. However,
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nonsingularity of S may not guarantee in general and especially when N[ 2M.
Thus, we need an alternative method to determine h.

For any N � 2M matrix K, the theorem of singular value decomposition
(Lawson and Hanson 1995) reads that

K ¼ U � E � V ð2:11Þ

where U is a N � N orthogonal matrix, E is a N � 2M rectangular diagonal matrix,
and V is a 2M � 2M orthogonal matrix. As examples, if E is a 3� 4 matrix, then

E ¼
r1 0 0 0
0 r2 0 0
0 0 r3 0

24 35 ð2:12Þ

and if E is a 3� 2 matrix, then

E ¼
r1 0
0 r2

0 0

24 35 ð2:13Þ

Here, rk are singular values of K. Then, from the definition of S, we have

S ¼ U � E � ET � UT ð2:14Þ

If D ¼ E � ET is invertible, then

S�1 ¼ U � D�1 � UT ð2:15Þ

Then, we can determine h without any problem:

h ¼ U � D�1 � E � V � g ð2:16Þ

This is a fortunate case. However, N[ 2M is usual for the purpose of Eq. (2.2)
and the matrix S is singular.

The regularization method is to replace S ¼ K �KT by S ¼ qIþK �KT . Here,
I is the N � N identity matrix. The parameter ρ is called the regularization
parameter which is usually small positive real number. It is clear that as ρ goes to
zero, the original matrix S is recovered. It is interesting that qIþK �KT is non-

singular even if K �KT is singular. Hence, qIþK �KT
	 
�1

is called
pseudo-inverse. It is also interesting that the minimization of

v2q ¼ v2 þ q
XN
k¼1

h2k ð2:17Þ
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is reduced to

qIþK �KT
	 
 � h ¼ K � g ð2:18Þ

It is usual to determine the regularization parameter ρ as the one which makes v2

minimized. This is the Tikhonov regularization used in inverse integration with reg-
ularization (Sect. 4.2) inChap. 6.This algorithmworkswell even ifN[M.Hence,we
can increase the number of relaxation times of the discrete spectrum at will in order to
increase the accuracy of the conversion from the discrete spectrum to the continuous
one by the mean value theorem (Eq. 2.4). Honerkamp andWeese (1989) showed that
the continuous spectrum is nearly independent of the number of relaxation times N.

Error suppression of the regularization method is easily understood by the
analysis done in Sect. 4.2 in Chap. 6. We will not repeat it. However, the regu-
larization algorithm cannot prevent the occurrence of negative H kkð Þ in principle.
Therefore, Honerkamp and Weese (1993) developed a modified version of regu-
larization method called nonlinear regularization (NLREG). This is the mini-
mization of

v2 qð Þ ¼
XM
a¼1

G0
a �

Z1
�1

K 0 kxað Þeh kð Þd log k

24 352

þ
XM
a¼1

G0
a �

Z1
�1

K 0 kxað Þeh kð Þd log k

24 352

þ q
Z1
�1

d2h kð Þ
dk2

� �2
d log k

ð2:19Þ

Even if h kð Þ\0, the spectrum remains as positive, H kð Þ ¼ eh kð Þ [ 0.

2.2 Fixed-Point Iteration

Cho and Park (2013) developed a simple algorithm based on fixed-point iteration. If
we know the variation of spectrum, dH kð Þ in terms of modulus data, then we have

dH kð Þ ¼ H rþ 1ð Þ kð Þ � H rð Þ kð Þ ¼ C G xð Þ;H rð Þ kð Þ
h i

ð2:20Þ

where r denotes the iteration step. However, it is difficult to find a functional C ½ �.
Cho and Park noticed that the kernel function of loss modulus K 00 kxð Þ is a peaklike
one. The kernel may be considered as a broadened delta function. They replaced the
functional C ½ � by the difference of modulus data and calculated modulus from the
inferred spectrum:
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H rþ 1ð Þ kð Þ ¼ H rð Þ kð ÞþG00 1
k

� �
�
Z1
�1

H rð Þ lð ÞK 00 l
k

� �
d log l ð2:21Þ

Discretized version of Eq. (2.21) is

h rþ 1ð Þ ¼ h rð Þ þ g� S � h rð Þ ð2:22Þ

where h, g, and S are those defined in the previous subsection. This linear iteration
scheme cannot prevent the occurrence of negative components of h. Hence, they
replace Eq. (2.22) by

log h rþ 1ð Þ
n ¼ log h rð Þ

n þ log gn � log
XN
k¼1

Snkh
rð Þ
k

 !
ð2:23Þ

where

Snk ¼
XM
a¼1

K 00
naK

00
ka; gn ¼

XM
a¼1

K 00
naG

0
a ð2:24Þ

This is equivalent to

h rþ 1ð Þ
n ¼ h rð Þ

n
gnPN

k¼1 Snkh
rð Þ
k

ð2:25Þ

This is the iteration equation of the fixed-point iteration (FPI).

If the initial spectrum is positive, h 0ð Þ
k [ 0 for any k, then h rð Þ

k [ 0 at any step
because all components of gn and Snk are positive. Since every singular values of
K are in the denominator of the right-hand side, error can be stabilized by the

similar mechanism in the regularization method. If h rð Þ
k is the exact spectrum, then

the denominator equals the numerator and h rþ 1ð Þ
k ¼ h rð Þ

k .
For better spectrum, Cho and Park considered the minimization of

v2 ¼
XM
a¼1

1� 1
G00

a

XN
k¼1

K 00
kahk

 !2

ð2:26Þ

This gives the normal equation S � h ¼ g, but

Snk ¼
XM
a¼1

K 00
na

G00
a

K 00
ka

G00
a
; gn ¼

XM
a¼1

K 00
na

G00
a

ð2:27Þ
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This modification gives the better spectrum. Note that the singular values of
K 00
na

�
G00

a appears in the numerator of Eq. (2.25) and the linear combination of the
squares of the singular variables is also in the denominator. This feature of the
modified FPI enhances the stabilization of error more compared to the original FPI.

One of the demerits of FPI is that application of FPI to storage modulus data
gives poor results because the kernel of storage modulus is not a peak. However, we
can use storage modulus effectively if we modify Eq. (1.2) as follows:

G0 xð Þ
x

¼ g00 xð Þ ¼
Z1
�1

K 00 kxð ÞW kð Þd log k ð2:28Þ

where W kð Þ ¼ kH kð Þ is called the weighted relaxation spectrum. Then, the same
iterative equation can be applied to elastic viscosity g00 xð Þ, and we can obtain the
relaxation spectrum from the calculated W kð Þ. Kwon (2012) applied this modifi-
cation of FPI to immiscible polymer blends because the relaxation of interface is
mainly related to storage modulus rather than loss modulus.

Kim et al. (2015) modified FPI to calculate relaxation spectrum from the Laplace
transform of relaxation modulus, s~G sð Þ, which requires numerical differentiation of
s~G sð Þ with respect to s. As we have seen in Chap. 6, numerical differentiation is apt
to be unstable for any error in the data.

One of the most important merits of FPI is fast convergence to an acceptable
spectrum which is very similar to that of the nonlinear regularization of Honerkamp
and Weese. Of course, FPI is independent of both initially guessed spectra and the
number of relaxation times N.

2.3 Power Series Approximation

2.3.1 Algorithm

There is no reason why we deny that viscoelastic functions are not analytical. It is
usual to draw viscoelastic data in double logarithmic scale. Therefore, we can write
formally

G0 xð Þ ¼ exp
X1
k¼0

c0km
k

 !
; G00 xð Þ ¼ exp

X1
k¼0

c00km
k

 !
ð2:29Þ
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where m ¼ logx. From experience, most data of dynamic moduli can be described
accurately by

G0 xð Þ ¼ exp
XN
k¼0

c0km
k

 !
; G00 xð Þ ¼ exp

XN
k¼0

c00km
k

 !
ð2:30Þ

Since dynamic moduli are analytic, for h ¼ p=2, we have

G mþ ihð Þ ¼
X1
n¼0

gn mþ ihð Þn ¼
X1
n¼0

X1
k¼n

k
n

� �
gkm

k�n

" #
ihð Þn ð2:31Þ

It is assumed that the order of summation is interchangeable. Then, we also have

Re G mþ ihð Þf g ¼
X1
n¼0

�1ð Þn
X1
k¼2n

k
2n

� �
gkm

k�2n

" #
h2n ð2:32Þ

Im G mþ ihð Þf g ¼
X1
n¼0

�1ð Þn
X1

k¼2nþ 1

k
2nþ 1

� �
gkm

k�2nþ 1

" #
h2nþ 1 ð2:33Þ

Note that it is a reasonable assumption that modulus is an infinitely differentiable
function of ν, and then, the following series are convergent:

1
2nð Þ!

d2nG mð Þ
dm2n

¼
X1
k¼2n

k

2n

� �
gkm

k�2n

1
2nþ 1ð Þ!

d2nþ 1G mð Þ
dm2nþ 1 ¼

X1
k¼2nþ 1

k

2nþ 1

� �
gkm

k�2nþ 1

ð2:34Þ

Then, the FK relation gives

H
1
x

� �
¼ 2

p

X1
n¼0

�1ð Þn
2nþ 1ð Þ!

d2nþ 1G0 mð Þ
dm2nþ 1

p
2

� �2nþ 1
ð2:35Þ

and

H
1
x

� �
¼ 2

p

X1
n¼0

�1ð Þn
2nð Þ!

d2nG00 mð Þ
dm2n

p
2

� �2n
ð2:36Þ

Although Eqs. (2.35) and (2.36) are exact, it is difficult to implement
higher-order numerical differentiation for experimental data. Furthermore, the
derivation of them is based on the two assumptions mentioned above, which are
equivalent to the assumptions used by Anderssen et al. (2014). They derived
Eqs. (2.35) and (2.36) in a standard way and applied them in inferring relaxation
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spectrum. They adopted the Gureyev iteration in order to avoid the problem of
numerical differentiation of higher order.

On the other hand, it can be assumed that relaxation spectrum is also an analytic
function in order to avoid the problem of numerical differentiation:

H en
	 
 ¼X1

n¼0

hnn
n with n ¼ log k ð2:37Þ

It is obvious that Eq. (2.30) can be rewritten by

G0 xð Þ ¼
X1
n¼0

g0nm
n; G00 xð Þ ¼

X1
n¼0

g00nm
n ð2:38Þ

Substitution of Eqs. (2.37) and (2.38) to Eqs. (2.35) and (2.36) gives

hn ¼ �1ð Þn
n!

dnH
dmn

� �
m¼0

¼
X1
p¼0

�1ð Þpþ n 2pþ 1þ n
n

� �
p
2

� �2p
g02pþ 1þ n ð2:39Þ

and

hn ¼
X1
p¼0

�1ð Þpþ n 2pþ n
n

� �
p
2

� �2p�1
g002pþ n ð2:40Þ

The problem to be solved is how to calculate g0n and g00n from c0n and c00n of
Eq. (2.30). Pourahmadi (1984) developed a simple equation such that

gnþ 1 ¼
Xn
k¼0

1� k
nþ 1

� �
cnþ 1�kgk; n ¼ 0; 1; 2; . . . ð2:41Þ

with g0 ¼ exp c0ð Þ. Although the number of cn is Nþ 1, Eq. (2.41) allows us to
calculate gn for any n, if we set cm ¼ 0 for m[N.

When very large N is necessary in order that Eq. (2.30) fits experimental data
accurately, orthogonal polynomials such as the Chebyshev polynomial should be
used:

G xð Þ ¼ exp
XN
n¼0

cnTn ~mð Þ
" #

ð2:42Þ

where

~m ¼ 2m� mmax þ mminð Þ
mmax � mmin

; mmin 
 m
 mmax ð2:43Þ
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Here, the normalization of m ¼ logx is used by Eq. (2.43) because the
Chebyshev polynomials should be defined in the interval of [−1, 1]. Therefore, the
use of Eq. (2.42) makes it difficult to obtain cn from cn. To solve this problem,
regression can be done by the partition of data with a polynomial of low order,
which is the regression of partitioned data chosen NS near ma ¼ logxa with respect
to Eq. (2.30) with N\10. Since the sampled data have considerably narrow range
of frequency, lower-order polynomial is sufficient to fit the sampled data precisely.
Then, we can use

G mð Þ � exp
XN
k¼0

c að Þ
k m� mað Þk

" #
ð2:44Þ

for the sampled data. Then, Eq. (2.41) gives g að Þ
k and Eqs. (2.39) or (2.40) gives

h að Þ
k . Then, finally we can calculate

H �mað Þ ¼ h að Þ
0 ; H �ma þDmð Þ ¼

XN
k¼0

h að Þ
k Dmð Þk ð2:45Þ

where Dm can be chosen arbitrarily, but Dmj j � 1 usually gives rise to poor results.

2.3.2 Error Analysis

Here, it is assumed that the effect of experimental errors is sufficiently eliminated by
a suitable regression. Because of the analyticity of modulus, we can write

G xð Þ ¼ exp
X1
n¼0

cn m� mcð Þn
" #

ð2:46Þ

where mc can be arbitrarily chosen. The double logarithmic power series of modulus
should be valid in the interval of m� mcj j\RG. The convergence radius of modulus,
RG, cannot be determined from experimental data because we do not know the
exact equation of modulus. However, it is obvious that there exists 0\RG\1.
Only available information from experimental data is that experimental data can be
fitted very accurately by

GN xð Þ ¼ exp
XN
n¼0

cn m� mcð Þn
" #

� exp PN mð Þ½ � ð2:47Þ
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where PN mð Þ is the Nth-order polynomial. This implies that there exists a small
positive number δ such that

1� GN xð Þ
G xð Þ

���� ����\d � 1 for m� mcj j\RG ð2:48Þ

If experimental data for the regression have the interval of ma � mcj j\RE, then it
is a reasonable assumption that RE 
RG.

Using the theory of the Taylor series, we can relate Eqs. (2.46) with (2.47) as
follows:

G xð Þ ¼ GN xð Þ exp RN mð Þ½ � ð2:49Þ

where RN mð Þ is the remainder of the Taylor series:

RN mð Þ ¼ �cNþ 1 m� mcð ÞNþ 1 ð2:50Þ

with

�cNþ 1 �
1

Nþ 1ð Þ!
@Nþ 1 logG
@mNþ 1

����
m¼nN

ð2:51Þ

Note that nN is a real number in the interval of m� mcj j\RG. Immediate con-
sequences of Eq. (2.48) are

RN mð Þj j ¼ CNþ 1j j m� mc
RG

���� ����Nþ 1

\ CNþ 1j j\d for m� mcj j\RG ð2:52Þ

where

CNþ 1 ¼ �cNþ 1R
Nþ 1
G ð2:53Þ

As an example, we consider the case of loss modulus. Using the FK relation, we
have

H
1
x

� �
¼ 2

p
exp P0

N mð ÞþR0
N mð Þ� �

cos P00
N mð ÞþR00

N mð Þ� � ð2:54Þ

where

P0
N mð Þ ¼ Re PN mþ p

2
i

� �n o
; P00

N mð Þ ¼ Im PN mþ p
2
i

� �n o
;

R0
N mð Þ ¼ Re RN mþ p

2
i

� �n o
; R00

N mð Þ ¼ Im RN mþ p
2
i

� �n o ð2:55Þ
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Note that the approximate spectrum is given by

HN
1
x

� �
¼ 2

p
Re G00

N ixð Þ� � ¼ 2
p
exp P0

N mð Þ� �
cos P00

N mð Þ� � ð2:56Þ

As for the remainder, we can write

RN mþ p
2
i

� �
¼ CN þ 1 hþ i/ð ÞNþ 1

¼ CN þ 1qN hð Þ cos hN hð Þþ i sin hN hð Þ½ �
ð2:57Þ

where

h ¼ m� mc
RG

; / ¼ p
2RG

; qN ¼ h2 þ/2	 
Nþ 1
2 ; hN ¼ Nþ 1ð Þarctan/

h
ð2:58Þ

Since it is usual that the interval of experimental data is larger than a few decades,
we can assume that 1

2p\RE 
RG. Then, it is obvious that /\1 and qN\1.
Substitution of Eq. (2.57) to (2.54) gives

H
1
x

� �
� edHN

1
x

� �
� 2
p
dedIm G00

N ixð Þ� � ð2:59Þ

Note that the last term of Eq. (2.59) is

2
p
dedIm G00

N ixð Þ� � ¼ dedHN
1
x

� �
tanP00

N mð Þ ð2:60Þ

Up to the first order, we know that ed ¼ 1þ d. Then, we have

1� HN x�1ð Þ
H x�1ð Þ

���� ���� � d 1þ tanP00
N mð Þ�� �� for log

x
xc

���� ����\RG ð2:61Þ

Equation (2.47) indicates that if P00
N mð Þ�� �� is not too large, then HN kð Þ is a good

approximation of a spectrum.
The limiting behaviors of R0

N and R00
N are important in error analysis. If the order

of polynomial N is even, then

lim
h!0

R0
N mð Þ ¼ 0; lim

h!0
R00
N mð Þ ¼ �1ð Þ Nþ 1ð Þ=2½ �CNþ 1/

Nþ 1 ð2:62Þ

If N is odd, then

lim
h!0

R0
N mð Þ ¼ �1ð Þ Nþ 1ð Þ=2½ �CNþ 1/

Nþ 1; lim
h!0

R00
N mð Þ ¼ 0 ð2:63Þ
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This implies that

H
1
xc

� �
�

1� d tanP00
N mcð Þ� �

HN
1
xc

� �
for evenN

1þ dð ÞHN
1
xc

� �
for oddN

8<: ð2:64Þ

where mc ¼ logxc. This error analysis shows that whenever N is odd,

1� HN x�1
c

	 

H x�1

c

	 
�����
����� � d

1þ d

���� ���� � d for 0\d � 1 ð2:65Þ

Note that the δ-term for even N of Eq. (2.64) fluctuates depending on the value
of P00

N mcð Þ. Hence, it can be said that the use of odd N infers spectrum with the error
order of δ.

2.3.3 Comparison with the Original Version of PSA

This approximation of a spectrum is an improved version of the power series
approximation (improved PSA) developed byCho (2013). In the old version of power
series approximation, the relation between gn and hn is gn-explicit form, while
Eqs. (2.39) and (2.40) are hn-explicit form. The relation is a system of linear equations
which are derived from substitution of the Taylor expansion of the spectrum to

G mð Þ ¼
Z1
�1

K nð ÞH n� mð Þdn ð2:66Þ

Since gn is determined by the regression of partitioned data with respect to
Eq. (2.38), the old version of power series approximation gives the poor spectrum
in terminal region. On the other hand, the improved power series approximation
gives the better spectrum because Eq. (2.30) is very powerful in fitting any
experimental data of dynamic moduli.

2.4 Other Algorithms

Remarkable algorithms and mathematical theorems have been developed by Davies
and Anderssen (1997, 1998), Anderssen and Davies (2001), Davies and Goulding
(2012), and Anderssen et al. (2014). Their algorithms and underlying mathematical
theories are based on the FK relation and functional analysis. Here, we shall
introduce the wavelet method (Davies and Goulding 2012) and the derivative-based
method (Anderssen et al. 2014) briefly.
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The wavelet method is to assume that relaxation spectrum is a linear combi-
nation of peaklike functions. To avoid the occurrence of negative coefficient, they
used sparse approximation. However, it is doubted that such approximation is
always valid for fitting arbitrary modulus data. Fitting modulus data by the wavelet
functions is equivalent to the calculation of discrete spectrum. The nonlinear
regression might give rise to another ill-posed problem. In the author’s opinion, this
algorithm requires that users have high-level knowledge on spectrum.

The derivative-based method is to exploit Eqs. (2.35) and (2.36). To avoid
higher derivatives of modulus, they used the Gureyev iteration which is a succes-
sive application of convolution. This algorithm needs 10–50 convolution integrals.
Although numerical integral is well posed, fifty integrals are time-consuming
procedures compared to the improved power series approximation.

Stadler and Bailly (2009) developed a new algorithm which exploits the cubic
Hermite spline (CHS). The algorithm needs a discrete spectrum for the determi-
nation of the knots of the CHS. The algorithm adjusts iteratively the knots until the
root mean square between data and calculated modulus arrives at a certain value.
Hence, this algorithm is like a brutal searching method and very slow, although the
algorithm can fit some special spectra whose derivative has discontinuity, for
example, a box-shaped spectrum. However, it is believed that experimental data
have a smooth spectrum whose derivatives are also continuous.

Since most viscoelastic functions vary in logarithmic scale, it is a very natural attempt
to describe viscoelastic functions as a logarithmic power series such as Eq. (2.29). Bae
and Cho (2015) applied this mathematical form to relaxation spectrum, too:

H kð Þ ¼ exp
XN
k¼0

ĥnn
k

 !
with n ¼ log k ð2:67Þ

Then, Eq. (1.2) can be rewritten as

exp
XN
n¼0

c0nm
n

 !
¼ 1

2

Z1
�1

1þ tanh mþ nð Þ½ � exp
XN
n¼0

ĥnn
n

 !
dn

exp
XN
n¼0

c00nm
n

 !
¼ 1

2

Z1
�1

sech mþ nð Þ exp
XN
n¼0

ĥnn
n

 !
dn

ð2:68Þ

Since the coefficients c0n and c00n can be determined by the regression of data, Bae
and Cho tried to determine ĥn by the use of the Levenberg–Marquardt method. It is
known that simple polynomial regression is not stable when N is large (Sokolnikoff
and Redheffer 1958). This problem can be solved by the use of orthogonal poly-
nomials instead of simple polynomial. However, Runge’s phenomenon cannot be
avoided whenever N is large (Trefethen and Weideman 1991). Hence, Bae and Cho
adopted cubic B-spline and obtained successful results. They applied this calcula-
tion scheme not only to dynamic modulus but also to the Laplace transform of
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relaxation modulus. We call this method BLM because the algorithm exploits
B-spline and the Levenberg–Marquardt method.

It is noteworthy that Runge’s phenomena is not significant when fitting modulus
data but is significant when spectrum is calculated from modulus data. Hence, it is
difficult to give up using Eq. (1.34). Lee et al. (2015) developed an algorithm
exploiting Eq. (1.34) and the FK relation. We shall call the method CFK
(Chebyshev–Fuoss–Kirkwood).

If the approximation of Eq. (1.34) can fit experimental data in sufficient preci-
sion, then the spectrum can be determined by the use of the FK relation. Note that

G ixð Þ ¼ exp
XN
k¼0

gnTn ~mþ i/ð Þ
" #

¼ eR mð Þ cosX mð Þþ ieR mð Þ sinX mð Þ ð2:69Þ

where ~m is normalized one so that �1
 ~m
 1 as shown in Eq. (2.43),

/ ¼ p
mmax � mmin

ð2:70Þ

and

R mð Þ ¼ Re
XN
k¼0

gnTn ~mþ i/ð Þ
( )

¼
XN
k¼0

gnRe Tn ~mþ i/ð Þf g

X mð Þ ¼ Im
XN
k¼0

gnTn ~mþ i/ð Þ
( )

¼
XN
k¼0

gnIm Tn ~mþ i/ð Þf g
ð2:71Þ

Then, the FK relation gives

H
1
x

� �
¼ 2

p
exp

XN
k¼0

g0kRe Tk ~mþ i/ð Þf g
" #

sin
XN
k¼0

g0kIm Tk ~mþ i/ð Þf g
" #

¼ 2
p
exp

XN
k¼0

g00kRe Tk ~mþ i/ð Þf g
" #

cos
XN
k¼0

g00k Im Tk ~mþ i/ð Þf g
" # ð2:72Þ

Equation (2.71) becomes available if we find a systematic method to calculate
real and imaginary parts of the Chebyshev polynomials Tk ~mþ i/ð Þ. For conve-
nience, we introduce the notation

T 0
k ~mð Þ ¼ Re Tk ~mþ i/ð Þf g; T 00

k ~mð Þ ¼ Im Tk ~mþ i/ð Þf g ð2:73Þ

Since T0 xð Þ ¼ 1 and T1 xð Þ ¼ x, it is obvious that

T 0
0 ~mð Þ ¼ 1; T 00

0 ~mð Þ ¼ 0; T 0
1 ~mð Þ ¼ ~m; T 00

1 ~mð Þ ¼ / ð2:74Þ
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Then, the recursion equation of the Chebyshev polynomial, Eq. (2.32) in Chap.
1, gives

T 0
nþ 1 ~mð Þ ¼ 2~mT 0

n ~mð Þ � 2/ T 00
n ~mð Þ � T 0

n�1 ~mð Þ
T 00
nþ 1 ~mð Þ ¼ 2~mT 00

n ~mð Þþ 2/ T 0
n ~mð Þ � T 00

n�1 ~mð Þ ð2:75Þ

for n	 1. The recursive equation allows us to calculate Eq. (2.72). For some
experimental data, the second equation of Eq. (2.72) gives fairly a good spectrum,
while the first one does not. Even if regression of modulus by Eq. (1.34) may not
give rise to Runge’s phenomena, Eq. (2.72) is not free from Runge’s phenomena.
Hence, with low N, partitioned regression gives a good spectrum just as the
improved PSA does.

2.5 Comparison of Algorithms

2.5.1 How to Test Algorithms

To test how well an algorithm works, it is necessary to generate modulus data from
a model spectrum through Eq. (1.2). One of the most popular model spectra is the
asymmetric double-peak model which is the sum of two lognormal distributions.
An example is given by

H kð Þ ¼ H1 exp � 1
w1

log10
k
k1

� �2
" #

þH2 exp � 1
w2

log10
k
k2

� �2
" #

ð2:76Þ

To enhance the precision of modulus data, the frequency range is taken shorter
than that of relaxation time. If simulated modulus data are wished to be generated
over xmin\x\xmax, then the numerical integration of the modulus should be done
over 10�n=xmax 
 k
 10n=xmin where n[ 1.

On the other hand, when modulus data over xmin\x\xmax are used in infer-
ring relaxation spectrum, the calculated spectrum is reliable in a shorter interval of

ep=2

xmax

 k
 e�p=2

xmin
ð2:77Þ

This inequality was derived by Davies and Anderssen (1997). Equation (2.77) is
called the Davies and Anderssen limit (DA limit).

2.5.2 Comparison with Simulated Data

It is a difficult work to test a number of algorithms made by several research groups
for the same data. From this viewpoint, the work of Dealy and coworkers is
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valuable (McDougall et al. 2014). They compared three algorithms of continuous
spectrum (FPI, NLREG, and CHS) and an algorithm of discrete spectrum
[IRIS (Baumgärtel and Winter 1989)]. To test the three algorithms, they used
the model spectrum given as the sum of two logarithmic Gaussian functions
with different centers with the same width and height. The model spectrum will
be called symmetric double peak (SDP). Dealy and coworkers used

H1 ¼ H2 ¼ 2
ffiffiffiffiffiffi
2p

p	 
�1
;w1 ¼ w2 ¼ 2, k1 ¼ 0:05 and k2 ¼ 5.

Within the Davies and Anderssen limit, the three algorithms of continuous spec-
trum agree well with the model spectrum of SDP when data are generated from the
model spectrum. Outside the DA limit, NLREG is the best, CHS is the second, and the
FPI is the last. On the other hand, in theValley region, FPI andCHS are similarly close
to the model spectrum, while NLREG overestimates the spectrum (Fig. 2).

2.5.3 Comparison with Experimental Data

Figure 3 shows the relaxation spectrum from the data of PBD 430K (Fig. 12) in
Chap. 5 by various algorithms such as FPI, improved PSA with 3rd order polynomial
and data partitioning, CFK with 21st order Chebyshev polynomial without data
partitioning, BLM with M ¼ 40 and CHS. As for CHS, the spectrum was obtained
from Fig. 1 of (Stadler and van Ruymbeke 2010) by the use of digitization of the
graph.

Fig. 2 Comparison of calculated spectra from four algorithms: FPI is the fixed-point iteration
(FPI), IRIS is the discrete algorithm of Baumgärtel and Winter (1989), NLREG is the nonlinear
regularization, and spline is the cubic Hermite spline (CHS). This is Fig. 6 of McDougall et al.
(2014). It must be noted that the modulus data for this calculation were generated with 4 % random
error [see Fig. 2 of McDougall et al. (2014)]
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Although all algorithms give almost same spectra within the Davies–Anderssen
limit, both spectra from PSA and BLM are wavier than others in long time regime.

Problem 2

[1] Derive the normal equation @v2q

.
@hk ¼ 0 from Eq. (2.17).

[2] For m� n matrix K, the theorem of singular value decomposition reads

K ¼ U � E � VT ð2:aÞ

where U is an m� m orthogonal matrix such that U � UT ¼ Im and V is an n� n
orthogonal matrix such that V � VT ¼ In. The m-dimensional and n-dimensional

orthonormal bases are denoted by e mð Þ
k and e nð Þ

i , respectively. Show that

K �KT � uk ¼ r2
kuk; KT �K � vi ¼ r2

i vi ð2:bÞ

where uk ¼ U � e mð Þ
k , vi ¼ V � e nð Þ

i , and ri are singular values of K.

[3] Derive Eq. (2.56).
[4] Derive Eq. (2.59) from Eq. (2.32) in Chap. 1.

3 Algorithms for Discrete Spectrum

3.1 Nonlinear Least Squares

Discrete spectrum is a set of parameters Gkf g; kkf g and N. From Eq. (3.1) in Chap.
5, we have

9

8
FPI
PSA, N = 3

N

H
(

)/
P

a

6

7
, N =21

BLM, M = 40
CHS

lo
g 10

5

-12 -10 -8 -6 -4 -2 0 2
3

4

log10 /sλ
λ

CFK

Fig. 3 Comparison of five
algorithms for continuous
spectrum. Modulus data of
Fig. 12 in Chap. 5 are used.
The modulus data were kindly
provided by Professor Stadler
(Stadler and van Ruymbeke
2010)

2 Algorithms for Continuous Spectrum 427

http://dx.doi.org/10.1007/978-94-017-7564-9_1
http://dx.doi.org/10.1007/978-94-017-7564-9_5
http://dx.doi.org/10.1007/978-94-017-7564-9_5


G0 xð Þ ¼
XN
k¼1

Gk
k2kx

2

1þ k2kx
2
; G00 xð Þ ¼

XN
k¼1

Gk
kkx

1þ k2kx
2

ð3:1Þ

Thus, determination of discrete spectrum is the minimization of

v2 ¼
XM
a¼1

G0 xað Þ �
XN
k¼1

Gk
k2kx

2
a

1þ k2kx
2
a

" #2
þ
XM
a¼1

G00 xað Þ �
XN
k¼1

Gk
k2kxa

1þ k2kx
2
a

" #2
ð3:2Þ

If kkf g are given, then the problem becomes linear regression. Hence, one may
choose N relaxation times in the interval x�1

max 
 kk 
x�1
min with satisfying

log
kkþ 1

kk
¼ Dl for 1
 k
N � 1 ð3:3Þ

Then, the problem can be solved by the linear regularization method (LREG)
developed by Honerkamp and Wesse (1989). However, this algorithm does not give
a parsimonious spectrum because the algorithm is not equipped with any mathe-
matical device to determine the number of relaxation times and because the loca-
tions of relaxation times are not optimized (uniformly distributed relaxation times).
If non-uniform spacing of relaxation is introduced to the LREG, then the problem
becomes the one of nonlinear regression. Hence, the sum of square error must not
have the global minimum. Nonlinear regression cannot guarantee the exclusion of
the occurrence of negative relaxation intensities Gk\0.

Baumgärtel and Winter (1989) replaced the sum of squares of Eq. (3.2) by

v2 ¼
XM
a¼1

1� 1
G0 xað Þ

XN
k¼1

Gk
k2kx

2
a

1þ k2kx
2
a

" #2
þ
XM
a¼1

1� 1
G00 xað Þ

XN
k¼1

Gk
k2kxa

1þ k2kx
2
a

" #2
ð3:4Þ

and took not only Gk but also kk as adjustable parameters to minimize the relative
sum of square error, as in Eq. (3.4). When N is large, it is probable to find negative
Gk. Therefore, they made a strategy to start from small N. They chose N to make the
density of relaxation time be between 1 and 2 relaxation times per decade. As
increasing N, they eliminated irrelevant mode which may be suffered from negative
relaxation intensity. Since they did not describe the algorithm in detail (Baumgärtel
and Winter 1989), it is difficult to analyze why the algorithm is successful. The
algorithm was commercialized and is called IRIS. The performance of the algorithm
is also found in (McDougall et al. 2014).

Since Eq. (3.4) is so complicated, one may guess that there are so many local
minima in the parameter space. Although a brutal searching may be applicable for
small N, it takes too long computation time to be applied to the case of large
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N. Hence, Jensen applied simulated annealing (SA) to this problem (Jensen 2002).
SA is originated in thermodynamics and is a heuristic method. The more infor-
mation on SA is found in Press and Teukolsky (2002).

3.2 The Padé–Laplace Methods

Both IRIS and SA determine the number of relaxation modes by trial error. The
optimum number of relaxation modes is determined as the one at which significant
decrease of v2 is not shown as increasing the number of the modes further. Hence,
there have been efforts to determine N on a mathematical foundation. The Pade–
Laplace method has been applied to discrete spectrum (Fulchiron et al. 1993;
Simhambhatla and Leonov 1993).

Note that the Laplace transform of relaxation modulus is expressed in terms of
discrete spectrum as follows:

s~G sð Þ ¼
XN
k¼1

gks
1þ kks

¼ PN sð Þ
QN sð Þ ð3:5Þ

where gk ¼ Gkkk. If Eq. (3.5) is expressed by the reduction to common denomi-
nator, then it is a rational function such that both denominator and numerator are
polynomials of Nth order. Fitting the Laplace transform of relaxation modulus
determines the coefficients of the two polynomials. Relaxation times are determined
from the poles of the denominator which are the zeroes of the polynomial QNðsÞ.
After the determination of relaxation times, relaxation intensity can be determined
by

Gk ¼ lim
s!�1=kk

1þ kksð Þ s
~G sð Þ
kk

ð3:6Þ

Even if N increases, the number of poles of the denominator does not increase in
principle. Hence, the Padé–Laplace transform method determines the number of
relaxation times on the mathematical foundation.

The success of the Padé–Laplace method depends on how precisely all the
coefficients of polynomials can be determined. Fulchiron et al. (1993) used stress
relaxation data for the Laplace transform, while Simhambhatla and Leonov (1993)
used dynamic data. Simhambhatla and Leonov suggested a method to determine the
coefficients of the Taylor series of ~G sð Þ by the use of the following exact equations:

~G sð Þ ¼
X1
k¼0

ck s� soð Þk ð3:7Þ
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with

ck ¼ 1
k!

Z1
0

�tð ÞkG tð Þe�sotdt

¼ 2
p

Z1
�1

�1ð ÞkG0 xð Þ
s2o þx2
	 
 kþ 1ð Þ=2 sin kþ 1ð Þarctan x

so

� �
d logx

¼ 2
p

Z1
�1

�1ð ÞkG00 xð Þ
s2o þx2
	 
 kþ 1ð Þ=2 cos kþ 1ð Þarctan x

so

� �
d logx

ð3:8Þ

Since the integrands of Eq. (3.8) decay to zero very fast as logxj j ! 1, the
integrations of Eq. (3.8) can be replaced by the ones over the frequency interval of
experimental data. However, the center of Taylor expansion, so, should be deter-
mined empirically. If ck are determined up to a certain order of polynomial, N, then
it is not difficult to determine the polynomials of the denominator and numerator.
Details are shown in Sect. 2.3 in Chap. 1.

It is interesting that one may apply Padé approximations to dynamic moduli
because of Eq. (3.1). Malkin and Kuznetsov (2000) invented this idea to calculate
discrete spectrum. This algorithm seems to be simpler than that of Simhambhatla
and Leonov.

Since rational function approximation may not be effective for the viscoelastic
data with wide frequency range, both the Padé-Laplace method and the method of
Malkin and Kuznetsov must have some weak point for wide-frequency data. It is
because viscoelastic functions vary in logarithmic scale. The studies using Padé–
Laplace methods deal with the data defined on 4–5 decades of frequency (or time).
Simhambhatla and Leonov used the Levenberg–Marquardt algorithm jointly for the
supplement to the Padé–Laplace method.

3.3 Approximation from Continuous Spectrum

Malkin and Masalova (2001) tested several algorithms of discrete spectrum and
concluded that the unique relaxation time spectrum cannot be determined [see
Fig. 4 which is Fig. 2 of Malkin and Masalova (2001)]. However, their conclusion
is only valid for discrete spectrum. They tested only algorithms of discrete spec-
trum. Then, a question arises: Why is not discrete spectrum unique? The answer
might be that a discrete spectrum is an approximation of the corresponding con-
tinuous spectrum.

If a discrete spectrum is an approximation of the unique continuous one, then
what is the condition that the discrete spectrum should satisfy? The author thinks
that IRIS is one of the most reliable algorithms for discrete spectrum because the
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discrete spectrum of IRIS agrees with continuous spectrum in shape as shown by
Dealy and coworkers (McDougall et al. 2014). Simhambhatla and Leonov (1993)
tested their algorithm for modulus data generated from a continuous spectrum and
confirm that their discrete spectrum lies on the original continuous one. This implies
that relaxation intensities of the discrete spectrum should satisfy

Gk ¼ rH kkð Þ ð3:9Þ

where H kð Þ is the unique continuous spectrum and σ is the scale factor which must
depend on the number of relaxation modes. If the scale factor σ, the number of
relaxation modes N, and the continuous spectrum are given, then the determination
of discrete spectrum is reduced to the determination of N relaxation times to
experimental data.

Equation (3.9) implies that

Z1
�1

H kð Þd log k ¼
XN
k¼1

Gk ¼ r
XN
k¼1

H kkð Þ ð3:10Þ

Since we can obtain the continuous spectrum from various algorithms, we
replace Eq. (3.10) by

Zlog kmax

log kmin

H kð Þd log k ¼ r
XN
k¼1

H kkð Þ ð3:11Þ

Fig. 4 Discrete relaxation spectra obtained from four different algorithms: A is the algorithm using
linear regression with relaxation times assigned uniformly along log-frequency range, B is the one
using linear regression with relaxation times assigned by power law, C is the algorithm of Malkin
and Kuznetsov (2000), and D is IRIS (Baumgärtel and Winter 1989). This is Fig. 2 of (Malkin and
Masalova 2001). Note that gn and sn are Gk and kk of Eq. (3.1), respectively
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Since we can determine the left-hand side of Eq. (3.11), denoting it by g, we
have

r ¼ g

,XN
k¼1

H kkð Þ ð3:12Þ

Choosing node points by

log10 tk ¼
k
N
log10

xmin

xmax
� logxmax with k ¼ 0; 1; . . .;N ð3:13Þ

Assign N relaxation times to be located as

tk�1 
 kk 
 tk with k ¼ 1; 2; . . .;N ð3:14Þ

We are looking for the optimum relaxation times by varying kk in the intervals
of Eq. (3.14). The optimum relaxation times are defined as the ones minimizing

v2 ¼
XM
a¼1

1� g
G0

a

XN
k¼1

~H kkð Þ k2kx
2
a

1þ k2kx
2
a

" #2
þ
XM
a¼1

1� g
G00

a

XN
k¼1

~H kkð Þ kkxa

1þ k2kx
2
a

" #2
ð3:15Þ

where

~H kkð Þ ¼ H kkð ÞPN
n¼1 H knð Þ ð3:16Þ

This is a nonlinear regression problem which may be solved by the Levenberg–
Marquardt method. Hence, we shall call this algorithm DLM (discrete algorithm
using LM method). Since H kð Þ can be determined by an algorithm of continuous
spectrum, we can express H kð Þ by a simple equation such as Eq. (2.51).

Bae (2015) tested this method for the extraction of relaxation times. As iter-
ation of the Levenberg–Marquardt algorithm progresses, the sum of square error
v2 decreases monotonically. The sum of square error also decreases as the number
of relaxation modes N for a given iteration number. After the minimum, higher
N does not show significant change of v2. Hence, the optimum number of relax-
ation modes N� can be determined, too. It is interesting that as for N[N�,
kk � ffiffiffiffiffiffiffiffiffiffiffi

tk�1tk
p

: almost equal spacing between adjacent relaxation times in logarith-
mic scale. This implies that if a continuous spectrum is given and the optimum
number of relaxation modes is determined, then the discrete spectrum can be easily
determined by
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log10 kk ¼
k � 1

2

N
log10

xmin

xmax
� logxmax with k ¼ 1; 2; . . .;N ð3:17Þ

and

Gk ¼ g~H kkð Þ ð3:18Þ

It is interesting that the discrete relaxation spectrum from IRIS shows similar
behavior. From this, one may think that allocation of equally spaced relaxation
times in logarithm scale and linear regression may give the same result. However,
this allocation method happens to give negative relaxation intensities because of the
ill-posedness and Eqs. (3.17) and (3.18) show slight deviation of calculated mod-
ulus from the data at the boundary of the frequency range. Furthermore, the relation
kk � ffiffiffiffiffiffiffiffiffiffiffi

tk�1tk
p

is not valid always.
Figure 5 shows the calculated discrete spectra from the dynamic moduli data

which is shown in Fig. 2. For easy comparison with the model spectrum of
Eq. (2.76), all discrete spectra of Fig. 5 are normalized to be close to the continuous
model spectrum which is also normalized by the maximum of the original one. Note
that we fixed the number of relaxation times as N ¼ 7. As shown in Fig. 5, both
DLM and IRIS give discrete spectra consistent with the continuous model spec-
trum. However, DLM shows higher consistency than IRIS because of the principle
of DLM.
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Fig. 5 Comparison of two
discrete algorithms: DLM and
IRIS. To check the
consistency of the model
continuous spectrum, all
spectra are normalized

3 Algorithms for Discrete Spectrum 433



Problem 3

[1] Derive Eq. (3.6).
[2] What is the merit of Padé approximation compared to Taylor expansion?
[3] What is the disadvantage of Padé approximation?
[4] For a given polynomial of Nth order, how can we determine the zeroes of the

polynomial numerically?
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Chapter 8
Time-Temperature Superposition

Abstract This chapter consists of three sections: the fundamentals, the geometric
interpretation, and the algorithms of time-temperature superposition. The first
section deals with the phenomenology, mathematical formulas, models for hori-
zontal shift factor, and molecular explanation of time-temperature superposition.
The second section is devoted to a new insight on time-temperature superposition,
the so-called geometric interpretation which provides new methods for the analysis
of the viscoelastic data measured at various temperatures. The last section intro-
duces two numerical algorithms for time-temperature superposition.

The time-temperature superposition (TTS) is an empirical principle. This principle
is valid for most polymer melts in linear viscoelastic regime as well as in nonlinear
regime. The core of the principle is that long-time relaxation at lower temperature is
equivalent to short-time relaxation at higher temperature. Hence, this principle
opens a way to predict viscoelastic phenomena at very long-time regime (or very
short-time regime) by the measurements at various temperatures. Since every
rheometer has a finite range of measurement, this principle is also the way to
expand our horizons on viscoelasticity of polymer. In this chapter, we shall
introduce the phenomenology, mathematical relations, and validity of TTS. These
are easily found in other textbooks of rheology or polymer physics, too. However,
this chapter deals with a new interpretation and numerical algorithms of TTS.

1 Fundamentals of TTS

1.1 Phenomenology of TTS

Before the publication of the Williams–Landel–Ferry equation (WLF equation)
(Williams et al. 1955), there have been a number of reports on the superposition of
viscoelastic data (Tobolsky and McLouglin 1952; Ferry 1950; Ferry et al. 1953;
Leaderman et al. 1954). When viscoelastic data measured at a temperature different
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from the reference temperature is plotted as a function of frequency or time in
double logarithmic scale, the horizontal and vertical shifts of the data to those at the
reference temperature give a single superposed curve called the master curve. This
superposition of viscoelastic data is called the principle of time-temperature
superposition (TTS). Since the distance of the shifting depends on the temperature,
the horizontal and vertical shift factors are denoted by aT and bT , respectively.

Figure 1 shows a set of hypothetical data of creep compliance which illustrates
what is TTS. When data of higher temperature are moved to right, the creep data of
six different temperatures form a single smooth curve. This interesting phenomenon
has been observed for various viscoelastic materials not only for creep compliance
but also for other linear viscoelastic functions (Ferry 1980).

1.1.1 Mathematical Relations

Since the data on the left-hand side graphs can be on a single smooth curve by both
horizontal and vertical shifting, the mathematical expression for the creep com-
pliance of Fig. 1 is given by:

Jðt; TÞ ¼ 1
bT

J
t
aT

; Tref

� �
ð1:1Þ

t [s]
10 -2 10 -1 10 0 10 1

J
( t

) 
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a
−1

]
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t /aT [s]
10 -2 10 -1 10 0 10 1 10 2 10 3 10 4
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T1
T2
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T4
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Fig. 1 Schematic illustration of the phenomena of time-temperature superposition. Temperatures
have the order: Tref\T1\ � � �\T5
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where Tref is the reference temperature and aT and bT are, respectively, the hori-
zontal and vertical shift factors which are functions of the temperature difference
T � Tref . As for homopolymer melts, it is often observed that bT � 1.

Similarly, TTS is valid for relaxation modulus, too. It is not difficult to recognize
that

Gðt; TÞ ¼ bTG
t
aT

; Tref

� �
ð1:2Þ

This is consistent with Eq. (1.24) in Chap. 5. Equations (1.42) and (1.43) in
Chap. 5 immediately result in:

G0ðx; TÞ ¼ bTG
0ðaTx; TrefÞ; G00ðx; TÞ ¼ bTG

00ðaTx; TrefÞ ð1:3Þ

From Eq. (1.59) in Chap. 5, we also know that

J 0ðx; TÞ ¼ 1
bT

J 0ðaTx; TrefÞ; J 00ðx; TÞ ¼ 1
bT

J 00ðaTx; TrefÞ ð1:4Þ

Further application of TTS gives the following mathematical relations:

Hðk; TÞ ¼ bTH
k
aT

; Tref

� �
ð1:5Þ

Lðs; TÞ ¼ 1
bT

L
s
aT

; Tref

� �
ð1:6Þ

tan dðx; TÞ ¼ tan dðaTx; TÞ ð1:7Þ

goðTÞ ¼ aTbTgoðTrefÞ ð1:8Þ
�kðTÞ ¼ aT�kðTrefÞ ð1:9Þ

and

Joe ðTÞ ¼
1
bT

Joe ðTrefÞ ð1:10Þ

1.1.2 Shift Factor

Equations (1.8) and (1.10) imply that if we can measure the zero-shear viscosity and
the steady-state compliance at various temperatures, we can determine the tem-
perature dependence of shift factors aT and bT :
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aT ¼ goðTÞJoe ðTÞ
goðTrefÞJoe ðTrefÞ

¼
�kðTÞ
�kðTrefÞ

ð1:11Þ

and

bT ¼ Joe ðTrefÞ
Joe ðTÞ

ð1:12Þ

Compared with the molecular theory (Ferry 1980), the vertical shift factor bT is
considered as

bT ¼ qrefTref
qT

ð1:13Þ

When bT � 1; Eq. (1.11) becomes simpler as follows:

aT � goðTÞ
goðTrefÞ

ð1:14Þ

It is usually hard to measure zero-shear viscosity at any desired temperature
when molecular weight of polymer is high. Hence, one of the most common
methods for shifting factor is to choose the optimum shift factor which gives the
best superposition. This procedure has been done by eye inspection. However, the
eye inspection gives different shift factors depending on the inspectors. For the
purpose of objective TTS, several algorithms have been developed. We shall
introduce some algorithms in Sect. 3.

1.1.3 Checking the Validity of TTS

Although TTS is valid for most polymeric systems, there are some exceptions.
Representative examples of breakdown of TTS are some miscible polymer blends
(Colby 1989) and block copolymers (Han and Kim 1993). If a set of data includes
the temperature of phase transition or degradation, the failure of TTS is observed.
Before seeking shift factor, the validity of TTS for the given data must be checked.

One of the simplest methods is to plot loss modulus as a function of storage
modulus. It is not difficult to show that storage modulus is a monotonic increasing
function of frequency [Problem 1 in Chap. 6 (Ferry 1950)]. Then, we can invert
frequency as a function of storage modulus. Substitution of frequency as a function
of storage modulus to loss modulus gives a relation between storage and loss
modulus. If bT ¼ 1; the relation is independent of the horizontal shift factor. In other
words, the plot of loss modulus as a function of storage modulus is independent of
temperature. Analogous to the Cole–Cole plot, the plot of logG00 versus logG0 is
called the modified Cole–Cole plot. Figure 2 shows the modified Cole–Cole plots of
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a monodisperse polystyrene melt (mPS6) measured by Schausberger et al. (1985)
and a polydisperse polystyrene melt measured by Bae (2010).

Since homopolymer shows bT � 1; the modified Cole–Cole plots of different
temperatures align on a single curve. The terminal regime is the low-G0 region
where the curve approaches a straight line with the slope of 1/2. Since monodis-
perse polymers show a local minimum in the plot of logG00 as a function of logx;
the modified Cole–Cole plot of monodisperse polystyrene of high molecular weight
shows a sharp valley at G0ðxÞ � 2� 105 Pa. On the other hand, that of polydisperse
polystyrene does not show sharp valley because molecular weight distribution
screens the local minimum.

As for monodisperse polymers, it is known that the steady-state compliance is
nearly independent of molecular weight if the molecular weight is much larger than
three times of the critical molecular weight which can be determined from
zero-shear viscosity (Cho et al. 2004). When molecular weight is smaller than a
certain value, the steady-state compliance of monodisperse polymer is proportional
to molecular weight (Doi 1986). The molecular weight at such a transition of
steady-state compliance is called the secondary critical molecular weight and
denoted by M0

C.
The terminal behavior of polymer can be expressed by:

logG00 ¼ 1
2
logG0 � 1

2
log Joe ð1:15Þ

Figure 3 shows that the terminal regimes of monodisperse polymers of high
molecular weight (PS4–PS6) merge to a straight line with the slope of 1/2, whereas
those of polymer of low molecular weight (PS1–PS3) are represented by three
parallel straight lines with the slope of 1/2.
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Fig. 2 Modified Cole–Cole plots of monodispersed and polydispersed polystyrene melts (mPS6,
M = 3000 kg/mol; pPS, M = 350 kg/mol). The data of mPS6 are that of PS6 measured by
Schausberger et al. (1985)

1 Fundamentals of TTS 441



1.2 Temperature Dependence of Shift Factor

1.2.1 The WLF Equation

It is important to know the mathematical form of aT . Williams et al. (1955) adopted
the viscosity model of Doolittle (1951) which is a phenomenological model of
viscosity.

Doolittle assumed that the logarithm of the viscosity of glassy material is
reciprocally proportional to free volume fraction f. Free volume Vf is the difference
between the whole volume where molecules occupy, V and the core volume of
molecules, Vc. Then, f ¼ ðV � VcÞ=V , and viscosity is given by:

g ¼ A exp
B
f

� �
ð1:16Þ

Doolittle further assumed that the free volume fraction has linear dependence on
temperature as follows:

f ¼ fg þ afðT � TgÞ for T [ Tg ð1:17Þ

where fg is the free volume fraction at glass transition temperature Tg and af is the
expansion coefficient. Applying Eq. (1.17) to Eqs. (1.14) and (1.16) gives

log aT ¼ B
fg þ afðT � TgÞ �

B
fg þ afðTref � TgÞ ð1:18Þ

The use of the notation such that

c1 ¼ B
fg þ afðTref � TgÞ ; c2 ¼

fg
af

þ Tref � Tg ð1:19Þ
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Fig. 3 Modified Cole–Cole
plot of monodisperse
polystyrene melts. It was
drawn by the use of numeric
data in (Schausberger et al.
1985). Molecular weights of
polymers are PS1
(39 kg/mol), PS2 (70 kg/mol),
PS3 (128 kg/mol), PS4
(275 kg/mol), PS5
(770 kg/mol), and PS6
(3000 kg/mol)
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gives the celebrated WLF equation:

log aT ¼ �c1ðT � TrefÞ
c2 þ T � Tref

ð1:20Þ

It must be noted that the WLF equation itself cannot explain why TTS is valid
for polymer melts. The WLF equation gives just only mathematical expression of
the temperature dependence of horizontal shift factor. Furthermore, the equation
was derived in a phenomenological way. To the author’s knowledge, no body has
succeeded in deriving aT from the fundamental laws of physics.

1.2.2 The Arrhenius Equation

The most popular model for temperature dependence of viscosity might be

gðTÞ ¼ A exp
E
RT

� �
ð1:21Þ

where A is the front factor, E is the activation energy, R is the gas constant, and T is
the absolute temperature. To the author’s knowledge, Eq. (1.21) was first derived
by Eyring (1936) from the notion of the absolute reaction rate. More pedagogic
derivation of Eq. (1.21) is found in the textbook of transport phenomena (Bird et al.
2002). From Eq. (1.21), one-parameter model for horizontal shift factor is given by

log aT ¼ E
R

1
T
� 1
Tref

� �
ð1:22Þ

This is called the Arrhenius equation. Note that absolute temperature must be
used in Eq. (1.22), while temperature in Celsius scale can be used in Eq. (1.20).

To compare the two viscosity models, the Doolittle and the Eyring model, we
adopt the Doolittle parameters of polystyrene:

fg
B
¼ 0:033;

af
B

¼ 6:9� 10�4 K�1; Tg ¼ 100 oC ð1:23Þ

The Eyring model cannot fit the viscosity data generated from the Doolittle
model for a wide range of temperature. However, the Eyring model can fit the data
at sufficiently high temperatures. The symbols shown in Fig. 4 represent the vis-
cosity of the Doolittle model and the shift factor of the WLF equation, while the
lines are the Eyring viscosity and the shift factor of Arrhenius type. Good agree-
ment of the two models for viscosity and shift factor is found in high temperature
regime, while significant deviation is found in low temperature regime. It is known
that the WLF equation can describe the horizontal shift factor very well for wide
range of temperatures. Hence, it can be said that the Arrhenius equation, Eq. (1.22),
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is applicable at temperatures much higher than the glass transition temperature Tg.
Figure 4 illustrates these features.

Some relaxation modes in solid polymers are known to obey the shift factor of
Arrhenius type rather than the WLF (Ward and Sweeney 2004). As for molten
polymers such as polyolefin with long-chain branches, the Arrhenius-type shift
factor is often used (Stadler et al. 2008; Kessner et al. 2010).

1.2.3 Determination of Model Parameters of Shift Factor

Before studying how to determine the shift factor, we shall explain how to deter-
mine the model parameters of shift factor under the assumption that data of shift
factor is determined as a function of temperature for a given reference temperature.
One must find out which model is better among the WLF and the Arrhenius. As
shown in Fig. 4, the values of shift factor at 220, 230, 240, and 250 °C look like
satisfying both the models. The plot of shift factor as a function of temperature is
not effective in the selection of the model of shift factor. We need a new plot which
is effective in finding better model for a given data.

As for the Arrhenius model of shift factor, the plot of log aT as a function of T�1

is the best choice to check whether the data of shift factor satisfy the model or not,
because a straight line is observed whenever the data follow the Arrhenius model.
The WLF model can be rewritten as follows: (Schausberger et al. 1985)

DT
log aT

¼ � c2
c1

� DT
c1

ð1:24Þ

where DT ¼ T � Tref . Thus, the data appropriate for the WLF equation form a
straight line in the plot of DT= log aT as a function of ΔT.
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Fig. 4 Comparison of models of viscosity and shift factor
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Sometimes, one may want to know the shift factors with respect to a new
reference temperature when the shift factors are given with respect to the old
reference temperature. Let the old reference temperature be denoted by Told and the
new one by Tnew. Similarly, we also use aoldT and anewT . Using Eq. (1.14), we have

anewT ¼ goðTÞ
goðTnewÞ

¼ goðTÞ
goðToldÞ

goðToldÞ
goðTnewÞ

¼ aoldT

aoldTnew

ð1:25Þ

Applying Eq. (1.25) to the WLF equation gives

log anewT ¼ �cold1 ðT � ToldÞ
cold2 þ T � Told

þ cold1 ðTnew � ToldÞ
cold2 þ Tnew � Told

¼ �cnew1 ðT � TnewÞ
cnew2 þ T � Tnew

ð1:26Þ

Equation (1.26) immediately gives

cnew1 ¼ cold1 cold2

cold2 þ Tnew � Told
; cnew2 ¼ cold2 þ Tnew � Told ð1:27Þ

Since the Arrhenius equation has only a single parameter, E=R; it is obvious that
we do not have to consider the relation between old and new parameters.

1.3 Molecular Explanation of TTS

We shall begin with a speculation on stress relaxation from the viewpoint of
molecular motion. How can a material reduce the stress when strain is fixed?
Although atoms in metallic materials ceaselessly move (vibration), the range of
motion of each atom is equal to or less than the order of atomic size. Averaging out
the fast vibration, atoms in metal look like fixed in their sites in crystalline lattice.
Hence, stress relaxation in metal is hardly observed. On the other hand, even if the
segments of polymer chains in molten state move in the range whose linear
dimension is order of the segment size, the accumulation of individual segmental
motion gives a big change in chain conformation. Since the stress in polymer
largely depends on chain conformation, stress relaxation is observed. In summary,
stress relaxation takes into account the total effect of motions of individual
segments.

The speed of stress relaxation, therefore, depends on how fast segment motion is.
As temperature increases, molecular motion becomes rapider. The timescale for the
molecular motion is the relaxation times. Then, the higher the temperature is, the
shorter the relaxation time is. Since this means that relaxation time is a decreasing
function of temperature, TTS implies that viscoelastic quantities measured at higher
temperature at a short time (high frequency) correspond to those measured at a
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lower temperature at longer time (or low frequency). In mathematical language, we
can write

T � Tref ) aT � 1 and T\Tref ) aT [ 1 ð1:28Þ

The molecular theory of relaxation modulus can be expressed formally as
follows:

GðtÞ ¼ qRT
M�

X1
k¼1

hk exp � t
kk

� �
with kkðTÞ ¼ bkk�ðTÞ ð1:29Þ

where ρ is density, R is the gas constant, M� is a characteristic molar mass of the
polymeric fluid, both hk and bk are dimensionless numbers dependent on index k,
and kmaxðTÞ is the maximum relaxation time which is proportional to T�1fðTÞ (see
Sect. 4 in Chap. 5). Since every relaxation time kk has the identical temperature
dependence of T�1fðTÞ; it is clear that Eq. (1.29) obeys the time-temperature
superposition and we have

aT ¼ Tref
T

fðTÞ
fðTrefÞ ð1:30Þ

Unfortunately, no molecular theory manifests the temperature dependence of the
friction coefficient fðTÞ because it is a phenomenological quantity.

Problem 1

[1] From Eq. (1.2), derive Eqs. (1.3)–(1.10).
[2] As for a polymeric material, the WLF parameters are determined as c1 ¼ 10

and c2 ¼ 50 with respect to Tref ¼ 170 oC. Calculate the WLF parameters with
respect to Tref ¼ 200 oC.

[3] It is well known that the loss modulus of monodisperse polymer melt shows a
local maximum at a certain frequency which is higher than the frequencies
which belong to the terminal regime. Let the frequency be denoted by xmax.
Because of TTS, we recognize that xmax is a function of temperature at which
loss modulus is measured. Show that if bT ¼ 1 then

aT ¼ xmaxðTÞ
xmaxðTrefÞ ð1:aÞ

[4] Consider the following model for linear viscoelastic fluid:

seJðsÞ ¼ Jg þ 1
gos

þ Jr
1þðssÞa½ 	 b

ð1:bÞ

Express the temperature dependence of parameters Jg, Jr, go, τ, a, and b under
the assumption that the fluid obeys TTS.
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[5] If relaxation modulus is given by Gðt; TÞ ¼ G½t=kðTÞ	, then show that

aT ¼ kðTÞ
kðTrefÞ ð1:cÞ

[6] Define

g0ðx; TÞ 
 G0ðx; TÞ
g2
oJ

o
ex

2 ; g00ðx; TÞ 
 G0ðx; TÞ
gox

ð1:dÞ

Show that

g0ðx; TÞ ¼ g0ðaTx; TrefÞ; g00ðx; TÞ ¼ g00ðaTx; TrefÞ ð1:eÞ

2 Geometric Interpretation

2.1 Geometric Analogy to TTS

In this section, we shall introduce a geometric viewpoint on TTS, which is not new,
but an illustration of TTS geometrically. Consider an insect such as ant whose
motion becomes faster as temperature increases. Assume that the insect moves on a
two-dimensional curve. Suppose that an observer has a weak vision sensor which
works during the time interval of tmin � t� tmax. The hypothetical observer looks at
the motion of the insect at temperatures T1\T2\ � � �\TN . Assume further that the
seed of the insect is constant when temperature is fixed and that the observations are
repeated for a fixed curve. The record of the motion at a temperature of Tk can be
expressed by xðt; TkÞ and yðt; TkÞ. Since the observations are repeated for the same
curve, the position of the insect at t ¼ 0 is independent of temperature. Let it can be
denoted as x0 and y0. How can we know the whole path on which the insect moves
from the only data measured by the hypothetical observer?

Since the path of the insect is fixed, we know that collecting position data at
various temperatures gives the whole path if they are plotted in the x-y plane. Since
the speed of the insect decreases as temperature decreases, the starting point of the
path is given by

x0 ¼ lim
T!0

xðtmin; TÞ; y0 ¼ lim
T!0

yðtmin; TÞ ð2:1Þ

Figure 5 is a graphical illustration of this thought experiment. The left-hand side
two graphs are raw data for the position of the insect, while the right-hand side is
the contour of the path.

It is not difficult for a believer of TTS to recognize that coordinates xðt; TkÞ and
yðt; TkÞ correspond to dynamic moduli G0ðx; TkÞ and G00ðx; TkÞ and t is analogous to

1 Fundamentals of TTS 447



frequency ω. The plot of y as a function of x is analogous to the modified Cole–Cole
plot. As for viscoelastic fluid, it is obvious that the fixed point of ðx0; y0Þ corresponds
to ðG0;G00Þ ¼ ð0; 0Þ. We shall proceed the reasoning with the assumption of bT ¼ 1.
The modified Cole–Cole plot of Fig. 6 is the direct translation of Fig. 5 to vis-
coelastic language. Figure 6 is the duplication of mPS6 of Fig. 2.

2.2 New Master Curve

Any parameterized curve can be reparameterized by its arc length. If two mea-
surable quantities are dependent on two independent variables, say t and T, and they
obey the superposition of Fig. 5, then we can write
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xðt;TÞ ¼ n½lðt; TÞ	; yðt; TÞ ¼ w½lðt; TÞ	 ð2:2Þ

where the arc length l is defined as

lðt; TÞ ¼
Z t

0

vðs; TÞds ð2:3Þ

with

vðs; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@xðs; TÞ

@s

� � 2

þ @yðs; TÞ
@s

� � 2
s

ð2:4Þ

Since the path of the insect is fixed, it is obvious that if lðta; TiÞ ¼ lðtc;TkÞ, then

xðta; TiÞ ¼ xðtc; TkÞ; yðta; TiÞ ¼ yðtc; TkÞ ð2:5Þ

We can apply the concept of arc length to the data of dynamic moduli. The arc
length can be approximated by

l� lmin ¼
ZlogG0

logG0
min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @ log G00

@ log G0

� �2
s

d logG0 �
XN�1

a¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

G0
aþ 1

G0
a

� �2

þ log
G00

aþ 1

G00
a

� �2
s

ð2:6Þ

where dynamic moduli at different frequencies and temperatures are sorted in the
order of ascending storage modulus because storage modulus is an increasing
function of frequency. Here, G0

min is the minimum value among fG0
ag.

Figure 7 shows that the plots of dynamic moduli as functions of the arc length
are independent of temperature.

G0ðx; TÞ ¼ C0½lðx; TÞ	 ¼ G0ðaTx; TrefÞ
G00ðx; TÞ ¼ C00½lðx; TÞ	 ¼ G00ðaTx; TrefÞ

ð2:7Þ

Note that the conventional TTS by using aT does not adopt a different function,
while the TTS by the use of the arc length lðx; TÞ needs to use a different function
C0ð�Þ and C00ð�Þ (Cho 2009).

Combining the definition of lðx;TÞ with the conventional TTS, we have the
following equations for the arc length:

lðx; TÞ ¼ lðaTx; TrefÞ ð2:8Þ
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and

@l
@x

� 0 ð2:9Þ

These properties are also satisfied by the storage modulus. There are a number of
ways to invent a function of frequency and temperature, which satisfy both
Eqs. (2.8) and (2.9). As for loss angle dðx; TÞ ¼ arctan G00=G0ð Þ; the intrinsic phase
angle (Cho 2012) can be defined as follows:

mðx; TÞ ¼
Zx
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@

@w
sin dðw; TÞ

� �2
þ @

@w
cos dðw; TÞ

� �2s
dw ð2:10Þ
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Fig. 7 Comparison of conventional master curve with the master curve with respect to the arc
length of Eq. (2.6). The material is polydisperse PS of �Mw ¼ 350 kg/mol
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This is the arc length of the plot of sin dðx; TÞ as a function of cos dðx;TÞ. Since
sin2 dþ cos2 d ¼ 1; it is clear that

mðx; TÞ ¼
Zx
0

@dðw; TÞ
@w

���� ����dw ð2:11Þ

From problem 26 (Cho 2012), it is obvious that dðx; TÞ ¼ d½kðTÞx	. As for
viscoelastic fluid, it is also obvious that dð0; TÞ ¼ p=2 and as frequency increases,
dðx; TÞ decreases. At a frequency x1ðTÞ; the first crossover frequency, the phase
angle increases as frequency. Hence, we can write
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Fig. 8 Comparison of conventional master curve with the master curve with respect to the arc
length of Eq. (2.11). The material is monodisperse PS6 of (Schausberger et al. 1985)
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m ¼
1
2 p� dðx; TÞ 0�x\x1ðTÞ
1
2 p� 2dðx1 Tð Þ; TÞþ dðx; TÞ x1ðTÞ\x

�
ð2:12Þ

If there is another crossover frequency, x2ðTÞ[x1ðTÞ, then we have

m ¼
1
2 p� dðx; TÞ 0�x\x1ðTÞ
1
2 p� 2dðx1; TÞþ dðx; TÞ x1ðTÞ�x\x2ðTÞ
1
2 p� 2dðx1; TÞþ 2dðx2; TÞ � dðx; TÞ x2ðTÞ�x

8<: ð2:13Þ

The intrinsic phase angle is also a kind of arc length and can be calculated more
easily than the arc length lðx; TÞ of Eq. (2.6). Note that although the arc length
approach does not provide a way to determine the shift factor aT ; the plots of
viscoelastic functions with respect to the arc length give a master curve. It should be
noted that the new master curve emphasizes the local minimum and maximum of
loss modulus as shown in Fig. 8. As for conventional master curve, a small devi-
ation from TTS is not difficult to be found. However, such a tiny discrepancy is
amplified in the plot of the new master curve. Hence, the new master curve is
comparative to the plot of van Gurp and Palmen (Trinkle and Friedrich 2002;
Trinkle et al. 2002).

Compared with the phase angle of Eq. (2.11), the arc length of Eq. (2.6) suffers
from the arbitrariness of lmin because the logarithms of dynamic moduli become
minus infinity as frequency goes to zero.

2.3 Application of Numerical Differentiation

However, the modified Cole–Cole plot allows one to check the validity of TTS for
experimental data without the determination of horizontal shift factor aT ; whenever
bT ¼ 1. When bT 6¼ 1; we need a different method for checking TTS.
Equation (1.3) can be rewritten as follows:

logG0ðx; TÞ ¼ logG0ðlog aTx; TrefÞþ log bT
logG00ðx; TÞ ¼ logG00ðlog aTx;TrefÞþ log bT

ð2:14Þ

Then it is obvious that

uE 
 @ logG0ðx; TÞ
@ logx

¼ @ logG0ðaTx; TrefÞ
@ log aTx

;

uV 
 @ logG00ðx; TÞ
@ logx

¼ @ logG00ðaTx; TrefÞ
@ log aTx

ð2:15Þ

Since the gradients are independent of temperature, the plot of uE versus uV is
invariant with respect to temperature.
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Numerical differentiation of experimental data is largely affected by the exper-
imental error. We have learned the ill-posedness of numerical differentiation in
Chap. 6. Figure 9 shows the feature of numerical differentiation. Figure 9a shows
the whole result of numerical differentiation by the use of B-spline regression, while
Fig. 9b shows the result excluding unrealistic values of differentiation.

Note that the limit point of the plot of uE versus uV is the point of (2, 1) which
corresponds to zero frequency.

Problem 2

[1] What is the advantage of the new master curve of Fig. 8?
[2] Invent a new arc length from any viscoelastic function.
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Fig. 9 Locus of gradients of dynamic moduli: a the whole data; b collection of relevant values
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[3] Assume that bT ¼ 1. If dynamic modulus has a characteristic frequency which
corresponds to a frequency intrinsic to the shape of the conventional master,
then derive

dxc

dT
¼ d log aT

dT
ð2:aÞ

3 Algorithms for TTS

Time-temperature superposition could be implemented by eye inspection. However,
this method is apt to give the results depending on the persons who conduct TTS.
A reliable numerical method is needed to avoid the obscurity. Here, a few algo-
rithms are addressed.

3.1 Nonlinear Regression Method

Honerkamp and Weese (1993) developed an algorithm for TTS based on nonlinear
regression. Consider Eq. (1.2). Since viscoelastic data are nonnegative and vary in
logarithmic scale, it is convenient to use the notation such that

g ¼ logGðt; TÞ; s ¼ log t; A ¼ log aT ; B ¼ log bT ð3:1Þ

Applying Eq. (3.1) to Eq. (1.2) gives

gðs; TÞ ¼ gðsþA; TrefÞþB ð3:2Þ

Assume that

gðs; TrefÞ �
XN
k¼0

cks
k ð3:3Þ

If the relaxation modulus is measured at M temperatures and at Ma times, then
the nonlinear regression method is to minimize the following sum of square:

v2 ¼
XM
a¼1

XMa

b¼1

gab �
XN
k¼1

ckðsab þAaÞk � Ba

" #2

ð3:4Þ

Here, index α indicates temperature and β indicates time. Hence, sab ¼ log tab
and gab ¼ logGðtab; TaÞ.
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This method is needed to determine the optimum order of the polynomial, say
N*. It is expected that if N is larger than N*, then both Aa and Ba are nearly
independent of the order of the polynomial. Depending on the size of the whole
data, N is apt to be the order of 10.

3.2 Minimization of Arc Length

When we consider two sets of data measured at two different temperatures, T0 and
T1; unacceptable guess of shift factor gives Fig. 10a while proper shift factor gives
Fig. 10b. If we calculate the sum of distances between two adjacent data points,
then imperfect superposition gives longer distance than the perfect superposition as
shown in Fig. 10. The sum of the distances, say arc length, can be calculated by the
use of the Pythagoras theorem, and we have
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S ¼
XN�1

k¼1

sk ¼ f aT1 ; aT2 ; . . .; aTM�1ð Þ ð3:5Þ
where N is the total number of data and M is the number of temperatures, and it is
assumed that T0\T1\ � � �\TM�1. Of course, T0 is considered as the reference
temperature. Then, it is obvious that

aTM�1\aTM�2\ � � �\aT1\1 ð3:6Þ

Keeping this order, we guess the values of shift factors and calculate the S after
sorting the N data in the order of the reduced frequency (for dynamic moduli).
Repeating this procedure until the minimum of S, we will have the optimized shift
factors. This is the method of arc length minimization (Cho 2009). The algorithm
requires sorting of data in the order of aTx at every step of the calculation of the arc
length.

Problem 3

[1] Derive the normal equation for Eq. (3.4).
[2] What is the reason why loss tangent is used for the horizontal shift factor

rather than storage or loss moduli?
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Chapter 9
Applications to Polymer Systems

Abstract The previous chapters of the second part deal with various theories and
numerical methods of linear viscoelasticity of polymer system. This chapter is their
applications to the characterization of polymer systems such as the interconversion
of viscoelastic functions, the rheological characterization of monodisperse polymer
melts, the effect of molecular weight distribution on the linear viscoelasticity of
polydisperse polymer melts, and the viscoelasticity of polymer solutions and
blends.

1 Interconversion of Various Experimental Data

Conversion of linear viscoelastic data is important because every experimental
method has its own merits and demerits. This was discussed in Chap. 5 already. To
enlarge the range of viscoelasticity, it is necessary to combine various types of
viscoelastic measurements. One of the most reliable and versatile methods is to
calculate the relaxation time spectrum (or retardation time spectrum). Other
methods are mostly based on integral transforms such as Laplace and Fourier
transforms.

1.1 Static Data to Dynamic Data

There are two static tests: stress relaxation and creep. Before discussion for the
conversion of static data to dynamic ones, it is noteworthy that long-time data of
relaxation modulus is less reliable than that of creep compliance. Furthermore,
asymptotic behavior of creep compliance is more convenient than that of relaxation
modulus. Hence, we shall focus on creep data mainly.
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1.1.1 From Creep Compliance to Dynamic Modulus

The first step for the conversion of creep compliance data to dynamic moduli is to
use the Laplace transform of relaxation modulus, seGðsÞ ¼ 1

�½seJðsÞ�. One may
think that the following steps are the conversion from the Laplace transform to
relaxation modulus and use of cosine and sine transform of the relaxation modulus
(Eqs. 1.42 and 1.43 in Chap. 5). This scheme demands numerical inversion of
Laplace transform. However, we shall introduce simpler scheme which uses the
relation between complex modulus and the Laplace transform of relaxation mod-
ulus: G�ðxÞ ¼ ixeGðixÞ:

Before learning how to calculate seJðsÞ from the experimental data of JðtÞ, we
have to see the bird’s eye photograph of creep compliance. Consider Eq. (1.33) in
Chap. 5 for viscoelastic fluid:

JðtÞ ¼ 1
Go

þ Jrwðt)þ t
go

for t[ 0 ð1:1Þ

The creep function JrwðtÞ is a monotonically increasing function of time:

JrwðtÞ ¼
Z1
�1

LðsÞ 1� e�t=s
� �

d log s ð1:2Þ

where L sð Þ is the retardation time spectrum. Equation (1.2) immediately gives

Jr _wð0Þ ¼ Jr
dw
dt

� �
t¼0

¼
Z1
�1

LðsÞ
s

d log s � Jr
sH

[ 0 ð1:3Þ

and wð0Þ ¼ 0: Since wðtÞ ! 1 for t ! 1, we know that

Jr ¼
Z1
�1

LðsÞ d log s ð1:4Þ

Hence, the meaning of sH appears in the equation of

sH ¼
R�1
�1 LðsÞ d log sR�1

�1 s�1LðsÞ d log s ð1:5Þ
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It is the harmonic mean retardation time. Note that if LðsÞ has finite width, then the
harmonic mean is always smaller than the arithmetic mean which is defined as

s ¼
R�1
�1 sLðsÞ d log sR�1
�1 LðsÞ d log s ð1:6Þ

From experience, one may find the following inequality

sH
GoJr

\sH\s\k ð1:7Þ

Note that GoJrð Þ�1 � 10�4 for most polymer melts because Go � 109 Pa and
Jr � 10�5 Pa�1. A careful look at Eq. (1.1) reveals that

JðtÞ �

1
Go

t\ sH
GoJoe

1
Go

þ Joe
sH
t � Joe

sH
t sH

GoJoe
\t\sH

Joe sH\t\k � Joego
Joe þ t

go
k ¼ Joego\t

8>>><>>>: ð1:8Þ

Here, we replace Jr by Joe because of Eq. (1.37) in Chap. 5.
This schematic equation is important because experimental data of creep com-

pliance is measured always in a finite range of time: tmin � t� tmax, while Laplace
transform is the integration over the infinite range of time: 0\t\1. Most creep
experiments have tmin � 10�2 s because for t\10�2 the stress is far from step
functions. The Laplace transform seJðsÞ can be divided into three parts:

seJðsÞ ¼ s
Ztmin

0

JðtÞ e�stdtþ s
Ztmax

tmin

JðtÞ e�stdtþ s
Z1
tmax

JðtÞ e�stdt ð1:9Þ

Since the second integral can be replaced by numerical integration, the first and the
last integral must be estimated using the approximations of Eq. (1.8). Since
tmin � 10�2 s and JðtÞ for the interval of the first integration is smaller than those of
other integrations, the contribution of the first integral is relatively small. However,
creep compliance is an increasing function of time, and the third integral must be
estimated. In order to do that, tmax must be much larger than k ¼ Joego.

Assume that there are sufficiently many data available in the interval of
k\t\tmax. Then, the third integral can be estimated by

s
Z1
tmax

JðtÞ e�stdt �
e�stmax

s
1þ stmax

ĝo
þ Ĵoe s

� �
for fluid

Ĵoe e
�stmax for solid

(
ð1:10Þ
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where both Ĵoe and ĝo can be determined by the linear regression of long-time data
of JðtÞ for k\t\tmax. Of course we know that Ĵoe � Joe and ĝo � go. The trape-
zoidal rule is sufficient for the calculation of the second integration:

s
Ztmax

tmin

JðtÞ e�stdt � s
2

XM�1

a¼0

taþ 1 � tað Þ Jaþ 1e
�staþ 1 þ Jae

�stað Þ ð1:11Þ

The estimation of the first integral depends on tmin. If tmin\sH GoJoe
� ��1, then

s
Ztmin

0

JðtÞ e�stdt � 1� e�stmin

Go
ð1:12Þ

If sH GoJoe
� ��1\tmin\sH then

s
Ztmin

0

JðtÞ e�stdt �
_Jo
s

1� e�stmin 1þ stminð Þ½ � ð1:13Þ

where _Jo � Jr=sH can be determined by the linear regression for the first few data
(ta [ tmin).

Now, we are equipped with algorithm for conversion of creep data to the Laplace
transform seJðsÞ. If a model for seJðsÞ is available, then nonlinear regression on seJðsÞ
gives the values of the parameters and analytical calculation produces dynamic
compliance. This was discussed in Sect. 3.2 in Chap. 5 and in Sect. 2.2 in Chap. 7.
If no model is not available, then we can use the approximation such that

seJðsÞ ¼ exp
XN
k¼0

jkTkðerÞ
" #

¼ 1

seGðsÞ ð1:14Þ

where

er ¼ log s� log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smaxsmin

p

log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smax=smin

p ð1:15Þ

Equation (1.15) guarantees �1� er� 1: We used also the notation r ¼ log s as
before.
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After the determination of the Chebyshev coefficients ck, we will use Eq. (1.56)
in Chap. 5. Note that for s ! ix, we know that er ! emþ i/ where

em ¼ logx� log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smaxsmin

p

log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
smax=smin

p ð1:16Þ

and

/ ¼ p
log smax=sminð Þ ð1:17Þ

Then, we can use the calculation method which was used in the calculation of
relaxation spectrum through the FK relation. Reminding Eqs. (2.69) and (2.71) in
Chap. 7, we have

J 0ðxÞ ¼ exp
XN
k¼0

jkT
0
kðemÞ

" #
cos

XN
k¼0

jkT
00
k ðemÞ

" #
ð1:18Þ

and

J 00ðxÞ ¼ exp
XN
k¼0

jkT
0
kðemÞ

" #
sin

XN
k¼0

jkT
00
k ðemÞ

" #
ð1:19Þ

Similarly, use of seGðsÞ ¼ 1
�
seJðsÞ
 �

gives

G0ðxÞ ¼ exp
XN
k¼0

gkT
0
kðemÞ

" #
cos

XN
k¼0

gkT
00
k ðemÞ

" #
ð1:20Þ

and

G00ðxÞ ¼ exp
XN
k¼0

gkT
0
kðemÞ

" #
sin

XN
k¼0

gkT
00
k ðemÞ

" #
ð1:21Þ

where gk ¼ �jk .
To test this algorithm, we generate creep compliance data by using a simple

model such that

JðtÞ ¼ Jg þ t
go

þ Jr 1� e�t=s
� �� 

HðtÞ ð1:22Þ
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We adopt parameters as follows:

Jg ¼ 10�9 Pa�1; Jr ¼ 10�5 Pa�1;

go ¼ 5	 105 Pa s; s ¼ 0:1 s
ð1:23Þ

For this model, we know that

seGðsÞ ¼ 1

Jg þ gosð Þ�1 þ Jrð1þ sÞ�1 ð1:24Þ

and

J 0ðxÞ ¼ Jg þ Jr
1þ s2x2 ; J 00ðxÞ ¼ 1

gox
þ Jr

sx
1þ s2x2 ð1:25Þ

Then dynamic moduli can be calculated by using Eq. (1.59) in Chap. 5.
We calculate seGðsÞ using the above equations for seJðsÞ. Figure 1 shows that

addition of 2 % statistical error cannot prevent recovery of high accurate seGðsÞ.
This is the error-suppression effect of numerical integration as mentioned in Sect. 2
in Chap. 7. In the generation of compliance data, we adopted tmin ¼ Dt ¼ 0:01 s
and ta ¼ tmin þ aDt with a ¼ 0; 1; . . .;M and tM ¼ tmax.

Since the simulated creep data shown in Fig. 1 imply sH GoJoe
� ��1\tmin\sH ,

Eq. (1.13) was used for the estimation of the first integral of Eq. (1.9). The
parameter _J0 is determined by the linear regression of the first four data. The
simulated creep data have linear region for k\t\tmax. Hence, we determined ĝo

and Ĵoe by the linear regression for the last 300 data. Because of the error, suffi-
ciently many data are necessary in accurate determination of ĝo and Ĵoe .
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Fig. 1 Simulated data of creep compliance from Eq. (1.22) with 2 % error addition (left) and the
Laplace transform of relaxation modulus seG sð Þ (right). Equations (1.9) and (1.24) were used for
the symbol (numerically recovered) and line (exact one), respectively
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Dynamic moduli are calculated using Eqs. (1.20), (1.21), and (1.59) in Chap. 5.
Figure 2 compares calculated moduli of 0 and 2 % errors with exact ones. Loss
modulus looks perfect, while storage modulus shows big deviation at
high-frequency region. It can be explained by the inaccuracy of the correction term
for t\tmin in Eq. (1.9). On the other hand, the extrapolation using JðtÞ ! Ĵoe þ t=ĝo
in long-time region is very stable for error.

A careful look at the high-s region of the left-hand side of Fig. 1 finds that
numerically obtained seGðsÞ slightly deviates from the exact one at high s which
corresponds to high-frequency ω. Figure 2 shows that this negligibly small devi-
ation becomes significant in storage modulus at high frequency. This error in
storage modulus becomes more significant as the error in creep compliance
increases.

It is of importance to compare the regression of the Laplace transform with the
DFT method of Evans et al. (2009). The core of the methods of Evans et al. is as
follows:

ix
G�ðxÞ ¼ ix J0 þ 1� eix tmin

� � J1 � J0
tmin

þ
XM
a¼1

Ja � Ja�1

ta � ta�1
e�ix ta�1 � e�ix ta
� �þ e�ix tmax

ĝo

ð1:26Þ

The summation term involves conventional differentiation which is weak for
experimental error, while integration can suppress the error effect. Figure 4 of
Evans et al. (2009) shows considerable noisy for the frequencies higher than the
crossover point. This noisy region of frequency corresponds to the first three terms
of Eq. (1.14), while smooth region of frequency is the terminal region which
depends largely on the precision of ĝo term. Meanwhile, the regression method is
very stable for the experimental error, while it depends on the correction for t\tmin.
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Fig. 2 Effect of error on the
conversion to dynamic
modulus
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The correction for initial stage of creep can be changed depending on the creep
data. The creep data used by Evans et al. show JðtÞ ! J0 instead of JðtÞ ! _Jot: It
should be recognized that the J0 of Evans et al. is not Jg. It is because J�1

0 � Go
N.

If Eq. (1.14) is sufficiently accurate then Eqs. (1.18) and (1.19) are not negative.
However, negative value of dynamic modulus happens to appear at the ends of
frequency range.

1.1.2 From Relaxation Modulus to Dynamic Modulus

When relaxation modulus is given as an available data, the Laplace transform of
relaxation modulus may be obtained by the trapezoidal method as follows:

seGðsÞ � s
2

XM�1

a¼0

Gaþ 1e�staþ 1 þGae�stað Þ taþ 1 � tað ÞþE ð1:27Þ

where Ga ¼ GðtaÞ and tmin ¼ t0\t1\ 
 
 
\tM ¼ tmax. Hence the correction term
E is given by

E ¼ s
Ztmin

0

GðtÞ e�stdtþ s
Z1
tmax

GðtÞ e�stdt ð1:28Þ

As for viscoelastic fluid, it is obvious that in long-time regime

GðtÞ � 1
Joe

exp � t

k

� �
ð1:29Þ

where k ¼ Joego is the mean relaxation time. The last integral of Eq. (1.17) can be
estimated by

s
Z1
tmax

GðtÞ e�stdt � 1
Joe

ks

1þ ks
exp � tmax

k
1þ ks
� �� 

ð1:30Þ

If tmax � k, then this term should be negligible irrespective of the value of s. On the
other hand, the first term can be estimated by

G tminð Þ 1� e�stminð Þ� s
Ztmin

0

GðtÞ e�stdt�G 0þð Þ 1� e�stminð Þ ð1:31Þ

If stmin � 1, then this term may be negligible. Hence, finite range of relaxation
modulus data restricts the range of s. Once the Laplace transform seGðsÞ is obtained,
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then the same method used above can be applied for the determination of dynamic
moduli.

1.2 Laplace Transform from Dynamic Data

Consider the dynamic modulus data whose frequency range is given by
xmin �x�xmax. Under the assumption that g0 xminð Þ � go, we can obtain the
Laplace transform from dynamic moduli as follows:

eGðsÞ ¼
Z1
0

e�st 2
p

Z1
0

G00ðxÞ
x

cosx t dx

24 35 dt ¼ Z1
0

e�st 2
p

Z1
0

G0ðxÞ
x

sinx t dx

24 35 dt

ð1:32Þ

Change in the order of integration gives

eGðsÞ ¼ 2
p

Z1
0

g00ðxÞ x
s2 þx2 dx ¼ 2

p

Z1
0

g0ðxÞ s
s2 þx2 dx ð1:33Þ

where g0ðxÞ ¼ x�1G00ðxÞ and g00ðxÞ ¼ x�1G0ðxÞ. To make the numerical inte-
gration more effective, consider the following change of variables:

r ¼ log s; m ¼ logx ð1:34Þ

Then, the second integral of Eq. (1.33) can be rewritten by

eGðrÞ ¼ 1
p

Z1
�1

g0ðmÞ
cosh m� rð Þ dm ð1:35Þ

Since sech(xÞ ¼ 1=coshðxÞ shows a peak at x ¼ 0 and decays exponentially as
jxj ! 1, numerical integration of Eq. (1.35) is very reliable compared with its
counterpart using g00ðmÞ. Although experimental data are obtained in a finite range
of frequency, the assumption of go � g0 xminð Þ allows us to write

eGðrÞ �
Zmmin

�1

go

coshðm� rÞ dmþ
Zmmax

mmin

g0ðmÞ
coshðm� rÞ dm ð1:36Þ

Note that for m[r, sech(m� rÞ is a steeply decreasing function and g0ðmÞ is also a
decreasing function of v. Hence, it is reasonable to assume that
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Z1
mmax

g0ðmÞ
coshðm� rÞ dm � 0 ð1:37Þ

Then, Eq. (1.36) becomes

eGðrÞ � go

p
p
2
þ 2 arctan tanh

mmin � r
2

� �h i
þ 1

2p

XM�1

k¼0

mkþ 1 � mkð Þ g0 mkð Þ
cosh mk � rð Þ þ

g0 mkþ 1ð Þ
cosh mkþ 1 � rð Þ

�  ð1:38Þ

The summation of Eq. (1.38) is the numerical integration over mmin � m� mmax.
After obtaining eGðsÞ, the Laplace transform of creep compliance eJðsÞ can be
determined by the relation between them:

eJðsÞ eGðsÞ ¼ 1
s2

ð1:39Þ

Equation (1.36) was used to calculate seJðsÞ of Fig. 5 in Chap. 6.

Problem 1

[1] Generate seJðsÞ using the Cole–Cole model of Eq. (2.23) in Chap. 6 and apply
Eq. (1.14) and calculate dynamic compliances and compare the exact ones of
Eqs. (2.21a, b) in Chap. 6.

[2] Generate dynamic moduli from the Cole–Cole model of Eq. (2.23) in Chap.
6 and convert them to seJðsÞ.

[3] Derive Eq. (1.24).
[4] You can find numeric data of dynamic moduli of 6 monodisperse PS’s in

Schausberger et al. (1985). Calculate seJðsÞ of PS6.
[5] Using the data of Schausberger et al. (1985), find the parameters of the Cole–

Cole model.

2 Polymer Melts and Solutions

2.1 Monodisperse Linear Polymer in Molten State

2.1.1 Characteristic Relaxation Times

Viscoelastic data of monodisperse linear polymers is very important in developing
molecular theory of polymer viscoelasticity. When molecular weight is sufficiently
high (M � Me), one can find three phenomenological times of two local maxima
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and one local minimum of loss modulus: kð1Þmax [ kmin [ kð2Þmax (Fig. 3). We can
assign molecular meaning to the four characteristic times: the reptation time, krep;
the Rouse time of the whole chain, kR; the Rouse time of the subchain between
entanglement, ke; and relaxation time of monomer, ko.

As shown in Fig. 3, krep � kð1Þmax; ko � kð2Þmax; ke\kmin\kR. Molecular theory
(Rubinstein and Colby 2003) gives

ke ¼ koN
2
e ð2:1Þ

kR ¼ koN2 ¼ ke
N
Ne

� �2

ð2:2Þ

and

krep ¼ 6ko
N3

Ne
¼ 6ke

N
Ne

� �3

¼ 6kR
N
Ne

ð2:3Þ

where N ¼ M=Mo; Ne ¼ Me=Mo; M is the molecular weight; Me is the entangle-
ment molecular weight; and Mo is the molecular weight of the Kuhn monomer. The
exponent 3 of Eq. (2.3) holds when M is extremely large. When M is intermediate
but sufficiently higher than the entanglement molecular weight, the exponent value
is about 3.4.

2.1.2 Plateau Modulus

Hence, as N becomes larger, both krep � kR and kR � ke becomes larger. Similarly,

kð1Þmax � kmin and kmin � k 2ð Þ
max become larger. Since storage modulus between

x ¼ 1
�
krep and x ¼ 1=ke is nearly constant, this region of frequency is called

plateau region. This tendency is clearly shown in Fig. 4. It is known that the
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entanglement molecular weight of polystyrene is about 16,000 g/mol and molecular
weight of Kuhn monomer is about 720 g/mol. Although PS4, PS5, and PS6 show
clear local minimum of loss modulus, PS3, PS2, and PS1 do not. This implies that
plateau region appears, at least, when M[ 8Me.

Interpretation of entanglement as a temporary network implies the existence of
the plateau modulus such that

Go
N ¼ qRT

Me
ð2:4Þ

However, as shown in Fig. 4, storage modulus slowly increases as frequency in the
plateau region. Although experimental data do not show a constant value of storage
modulus in this frequency, Fig. 1.3, in Chap. 8, indicates that the value of storage
modulus at the local minimum of loss modulus is nearly independent of both
temperature and molecular weight. Figure 1.2 in Chap. 8 makes us recognize that
the curves of Fig. 1.3 in Chap. 8 consist of data of various temperatures. If the
plateau modulus is defined as the storage modulus at the local minimum of loss
modulus, then Eq. (2.4) implies that temperature dependences of qRT and Me are
mutually canceled. Fetters et al. investigated in detailed the determination of plateau
modulus and entanglement molecular weight (Fetters et al. 1994).

2.1.3 Zero-Shear Viscosity

It is well known that zero-shear viscosity of linear polymer melt is proportional to
3.4 power of molecular weight when molecular weight is larger than the critical
molecular weight which is about two times of the entanglement molecular weight.
Figure 5 shows the collection of experimental data from various papers. These
experimental data are PS/S from Schausberger et al. (1985); PS/M from Marin and
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Graessley (1977); PMMA from Fuchs et al. (1996); and PBD from Colby et al.
(1987). As shown in Fig. 5, the slopes of the double logarithmic plot of zero-shear
viscosity versus weight-average molecular weight is approximately 3.4. The critical
molecular weight is defined as the molecular weight at which the slope changes
dramatically. One of the successes of the Doi–Edwards theory is the prediction and
explanation of the behavior of zero-shear viscosity as shown in Fig. 5.

It is interesting that this molecular weight dependence of zero-shear viscosity
holds for polydisperse polymers, too. In industries, melt flow index (MI) is more
popular than zero-shear viscosity because of its convenience in measurement. If the
weight for the measurement of MI is not too heavy, then the inverse of MI is nearly
proportional to zero-shear viscosity.

2.1.4 Characteristic Molecular Weights

There are three characteristic molecular weights of linear monodisperse polymers:
entanglement, the first critical, and the second critical molecular weights. The first
critical molecular weight MC is defined in Eq. (3.68) in Chap. 2:
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goðMÞ ¼
go MCð Þ M

MC
for M�MC

go MCð Þ M
MC

� �3:4
for MMC

8<: ð2:5Þ

Polybutadiene data of Fig. 5 quantitatively follow Eq. (2.5). While the exponent for
M[MC is approximately 3.4, the exponent for M\MC deviates from unity. The
deviation seems to be originated from the lack or the imprecision of low-viscosity
data. The second critical molecular weight is the molecular weight at which the
steady-state compliance of monodisperse polymer melts changes its molecular
weight dependency as follows:

Joe ðMÞ � Joe M0
C

� �
M
M0

C

� �
for M�M0

C

Joe M0
C

� �
for MM0

C

(
ð2:6Þ

This relation does not hold for polydisperse polymers.
It is observed that for any polymers, Me\MC\M0

C. Determination of critical
molecular weight using Eq. (2.5) or (2.6) requires a group of monodisperse poly-
mers whose molecular weights should be the one such that Mmin\MC and
Mmax [MC. It is usual that low-viscosity samples suffer from imprecision of
measurement, while considerably more accurate measurements are performed for
moderately high-viscosity samples. As for samples of M[MC, we can observe
local maximum and minimum of loss modulus in usual range of frequency. Let the
two characteristic times be denoted by kmax ¼ 1=xmax and kmin ¼ 1=xmin. Note that
we mean kmax ¼ kð1Þmax. Similar to Eqs. (2.1)–(2.3), we can assume that

kmin ¼ kE
M
M00

C

� �a

; kmax ¼ kE
M
M00

C

� �b

ð2:7Þ

Samples with M[MC are sufficient to determine the parameters of Eq. (2.7). Cho
et al. (2004a) analyzed linear viscoelastic data measured by various researchers and
found that Eq. (2.7) gives the determination of the critical molecular weight from
loss modulus data. Figure 6 shows the result. It is interesting that kE � ke and
M00

C � 2Me. Some literatures show that the critical molecular weight from
zero-shear viscosity deviates from the relation MC � 2Me. Hence, it can be said that
use of Eq. (2.7) is more efficient than use of Eq. (2.5) in determining the critical
molecular weight.
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2.2 Polydisperse Polymer Melts

2.2.1 Mixing Rule

It is an interesting research theme to formulate viscoelastic functions of polydis-
perse polymer melt in terms of those of monodisperse polymers and molecular
weight distribution. Bright progress in molecular theory makes it possible to fit
experimental data of monodisperse polymers only a few number of parameters such
as the plateau modulus Go

N and the relaxation time at which the effect of entan-
glement starts, ke. The molecular theory addresses that the same function is applied
to the relaxation modulus of monodisperse linear polymer of any molecular weight
M. Then, it is a reasonable assumption that the relaxation modulus of polydisperse
linear polymer melt is given by

G tð Þ½ � 1=l¼
Z1

Mmin

w Mð Þ Gm t; Mð Þ½ � 1=ldM ð2:8Þ

where w Mð Þ dM is the weight fraction of chains with molecular weight ranges from
M � 1

2 dM to Mþ 1
2 dM and Gm t; Mð Þ is the relaxation modulus of the monodis-

perse polymer with molecular weight of M.
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Des Cloizeaux (1988) derived Eq. (2.8) with l ¼ 2 using double reptation. The
same equation was derived by Tsenoglou (1991) by the application of detailed
balance to the dynamics of temporary network. These theories seem to be valid
whenever Mmin [MC. Since l ¼ 2, Eq. (2.8) can be rewritten by

G tð Þ ¼
Z1

Mmin

Z1
Mmin

w Mð Þw M0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm t; Mð ÞGm t; M0ð Þ

p
dM0 dM ð2:9Þ

Equation (2.9) is called quadratic mixing rule. Validity of Eq. (2.9) could be tested
if accurate equation of Gmono was equipped. Approximate consequences of
Eq. (2.9) are as follows:

go � 2
Z1

Mmin

Z1
Mmin

w Mð Þw M0ð Þ gm
o Mð Þgm

o M0ð Þ
gm
o Mð Þþgm

o M0ð Þ dM
0 dM ð2:10Þ

G0 xð Þ � Go
N

Z1
Mmin

Z1
Mmin

w Mð Þw M0ð ÞGE x; M; M0ð Þ dM0 dM ð2:11Þ

and

G00 xð Þ � Go
N

Z1
Mmin

Z1
Mmin

w Mð Þw M0ð ÞGV x; M; M0ð Þ dM0 dM ð2:12Þ

where

GE x; M; M0ð Þ ¼ 1þ 1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Go

N

G0
m x; Mð Þ

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Go

N

G0
m x; M0ð Þ

s !2
24 35�1

ð2:13Þ

and

GV x; M; M0ð Þ ¼ Cþ 1
C

� ��1

ð2:14Þ

with

C ¼ Go
N � G0

m x; Mð Þ
2G00

m x; Mð Þ þ Go
N � G0

m x; M0ð Þ
2G00

m x; M0ð Þ ð2:15Þ

Note that super- or subscript m denotes monodisperse.
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Tsenoglou (1991) showed that the approximate Eqs. (2.10)–(2.12) agree with
experimental data. Although direct verification can be done using the data of
relaxation modulus, the author has not find any literature which tests the mixing
rule in terms of the data of relaxation modulus. It is guessed that technical difficulty
in measurement of relaxation modulus prevents such approach. Bae and Cho (2015)
converted dynamic modulus to relaxation modulus for various monodisperse
polymers and their mixtures and tested the mixing rule of Eq. (2.8). The conversion
was done by the BLM method for continuous relaxation spectrum (Fig. 7).

Since the ingredient polystyrenes are monodisperse ones, Bae and Cho (2015)
used discrete version of Eq. (2.9) such that

G tð Þ ¼
XM
i¼1

XM
k¼1

/i/k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm t; Mið ÞGm t; Mkð Þ

p
ð2:16Þ
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meaning of legends can be
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that / is the volume fraction
(=weight fraction w) of
ingredients of the mixtures:
a binary mixture; b quartic
mixture (Bae and Cho 2015)
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where /i is the volume fraction of the chains of the molecular weight of Mi. Note
that as for the mixture of the same kind of polymers, volume fraction is equivalent
to weight fraction. As for binary mixture, generalized mixing rule of Eq. (2.8) is
rewritten by

G tð Þ ¼ /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm t; M1ð Þl

p
þ 1� /ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm t; M2ð Þl

ph il
ð2:17Þ

where /1 ¼ / and /2 ¼ 1� /. Bae and Cho calculated the optimum exponent μ
which minimizes the sum of square of the difference between given data of G tð Þ
and the calculated modulus according to the generalized mixing rule Eq. (2.17).
Similar method can be applied to quartic mixture. This calculation gives 2.18 for
binary mixture and 2.15 for quartic mixture. These values of μ is very close to the
one predicted from molecular theories.

On the other hand, Maier et al. (1998) calculated the optimum exponent l ¼ 3:84
for binary mixtures of PS with various compositions. Different from Bae and Cho,
they used continuous version of generalized mixing rule. They obtained molecular
weight distribution of monodisperse ingredients from size exclusion chromatography
(SEC). Even a monodisperse sample with PDI = 1.05 shows considerably wide peak
of molecular weight distribution. It is because most molecular weight distributions of
polymers follow lognormal distribution. Assume that there exists a hypothetical
polymer sample with exactly PDI = 1 although there is not such sample in reality. This
means the MWD is proportional to the Dirac delta function. SEC measures weight
fraction of a molecular weight through refractive index as a function of elution time.
Even a perfect monodisperse polymer cannot give a single elution time. Hence,
MWD from SEC is an approximation. Hence, this may explain the difference in the
optimum exponents from the two research groups. However, it is noteworthy that the
calculation of Bae and Cho agrees with the molecular theories.

2.2.2 Calculation of MWD

If the exponent μ is given as a correct one and accurate model of Gm t; Mð Þ is
available, then Eq. (2.8) implies that we can predict viscoelasticity of polydisperse
polymer. Reversely, if we know G tð Þ and want to find MWD, then it is to solve the
Fredholm integral equation of the first kind. It is an inverse problem just as
relaxation time spectrum. In this inverse problem,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gm t; Mð Þl

p
is the kernel

function which should be given by a model, while the kernel of relaxation spectrum
is exact. Furthermore, there are other problems in inferring MWD from rheological
data except numerical method to solve the integral equation.

After the Doi–Edwards theory, there have been a number of advances in
molecular model for linear viscoelasticity of linear monodisperse polymers. Some
examples are Benallal et al. (1993), Guzmán et al. (2005), Léonardi et al. (2000),
Pattamaprom and Larson (2001), Pattamaprom et al. (2008), and Pattamaprom et al.
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(2000). Some of them provide Gm t; Mð Þ by solving nonlinear diffusion equation
numerically. Others give Gm t; Mð Þ including an integration of a given function.
Leonardi et al. (2000) decomposed relaxation modulus of monodisperse polymer
into five parts: the slowest mode corresponding to krep (GC t; Mð Þ); the Rouse mode
of full chain corresponding to kR (GB t; Mð Þ); the Rouse mode of the subchain
between entanglement points, which corresponds to ke (GA tð Þ); the high-frequency
mode corresponding to ko (GHF tð Þ); and the Rouse mode of unentangled chains
(GR t; Mð Þ). It is assumed that GC follows the quadratic mixing rule, and GB and GR

follow the linear mixing rule. On the other hand, GA and GHF are independent of
molecular weight. Note that GC is effective for the chains whose molecular weight
is larger than the critical molecular weight MC � 2Me, while GR is effective for the
chains with M\MC. Then, Leonardi et al. used the following mixing rule:

GðtÞ ¼
Z1
MC

wðMÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GCðt;MÞ

p
dM

264
375

2

þ
Z1
0

wðMÞGBðt;MÞ dM

þ
ZMC

0

wðMÞGRðt;MÞ dMþGAðtÞþGHFðtÞ

ð2:18Þ

Equation (2.18) looks plausible, and experimental data agree well with Eq. (2.18).
However, it is raised that chains with M\MC may play the role of solvent which
widens the tube size or reduces constraints on long chains. Hence, better mixing
rule is still demanded.

2.3 Polymer Solution

Polymer solution has been used in polymer process such as solution spinning and
film casting. These polymer processes require solidification after shape forming.
Evaporation of solvent thickens the polymer solution and results in solid film.
Although low concentration is better for shape forming process, the concentration
lower than entanglement concentration gives rise to fracture of film when the
polymer solution is solidified. When polymer has very high molecular weight, both
overlap and entanglement concentrations are too low [see Eqs. (3.8) and (3.12) in
Chap. 4]. As shown in Fig. 3.3 in Chap. 4, the increase of concentration over ce
results in explosive increase in viscosity, which makes shape process very difficult.
Because of this reason, electronics industries usually use polymer solutions with
reactive polymers which become polymer network through curing reaction and
evaporation of solvent. Sufficiently low viscosity of the reactive polymer solution
helps the shape process, and curing reaction overcomes the fracture due to the lack
of entanglement. Since curing reaction increases molecular weight of the polymer
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and solvent evaporation increases the concentration of the solution, it is necessary
to investigate the relation between the rheology and the concentration of polymer
solution.

When concentration is sufficiently high to form entanglement, it is known that
Ne, the number of Kuhn monomers in subchain between entanglement points fol-
lows (Rubinstein and Colby 2003)

Ne /ð Þ
Ne 1ð Þ ¼

/� 1
3m�1 for an athermal solution

/�4
3 for a h-solution

(
ð2:19Þ

where Ne 1ð Þ ¼ Me=Mo is the entanglement number in molten state. The following
relations are also known:

Go
N /ð Þ

Go
N 1ð Þ ¼ /

3m
3m�1 for an athermal solution

/
7
3 for a h-solution

(
ð2:20Þ

krep /ð Þ
ko

¼ N3

Ne 1ð Þ
/

3 1�mð Þ
3m�1 for an athermal solution

/
7
3 for a h-solution

(
ð2:21Þ

go /ð Þ
gsolvent

¼ N3

Ne 1ð Þ½ � 2
/

3
3m�1 for an athermal solution

/
14
3 for a h-solution

(
ð2:22Þ

Note that if m ¼ 0:588, then 3m= 3m� 1ð Þ � 2:3 � 7=3. Hence, the plot of plateau
modulus versus concentration cannot detect the difference between a thermal and
theta solutions. It is reported that linear viscoelasticity of semi-dilute solutions can
be superposed if dynamic moduli are normalized by the plateau modulus and
frequency is normalized by appropriate relaxation time irrespective of molecular
weight and concentration (Cho et al. 2015; Heo and Larson 2008).

On the other hand, viscoelasticity of dilute polymer solutions follows the Zimm
model or the Rouse model if solvent effect is removed (Rubinstein and Colby
2003). When solvent viscosity is denoted by gs, the following normalization of
dynamic moduli is expected to give superposed plots:

eG0 ¼ M
cRT

G0; fG00 ¼ M
cRT

G00 � gsxð Þ ð2:23Þ

Frequency should be normalized by kRx or kZx where kZ is the Zimm relaxation
time.
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Problem 2

[1] As for monodisperse polymer melts, Cho et al. (2004b) defined

g0 ¼ G0

Joeg
2
ox

; g00 ¼ G00

gox
ð2:aÞ

and showed that the plot of g0 as a function of g00 can be superposed by the
shifting defined by

g0 ! g0

K1:56 ; g00 ! g0

K
ð2:bÞ

where

K ¼ K0
M
Me

� ��2:91

ð2:cÞ

You can find numeric data of dynamic moduli of 6 monodisperse PS’s in
Schausberger et al. (1985). Determine K0.

[2] Using the data of Schausberger et al. (1985), determine the material param-
eters kE, M00

C, α and β of Eq. (2.7).
[3] Derive Eqs. (2.10)–(2.12).
[4] Dyneema is a super strong fiber made of polyethylene with ultra-high

molecular weight. It is known that the entanglement molecular weight of PE is
about 1000 g/mol. Calculate the entanglement concentration of PE solution if
M ¼ 6000 kg/mol. What information is needed?

[5] In dilute regime, intrinsic dynamic moduli is defined as

G0½ � ¼ lim
c!0

M
cRT

G0; G00½ � ¼ lim
c!0

M
cRT

G00 � gsxð Þ ð2:dÞ

Explain the reason why the limits of Eq. (2.d) exist.

3 Immiscible Blend of Polymers

When two immiscible fluids are blended, there exists interface. Deformation of the
interface is usually accepted as elastic one. Hence, even if two immiscible
Newtonian fluids are mixed, then viscoelasticity is found in the mixture because of
the existence of the interface. If one of two components has low volume fraction,
then the minor component forms a spherical phase surrounded by the major
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component in equilibrium. The phase of the minor component is called dispersed
phase, while that of major component is called matrix phase.

If the concentration of minor component increases, the morphology of the
mixture gets to lose characteristic length because cocontinuous structure becomes
developed. Then, the rheological properties of the mixture change dramatically.
This section will be focused on the mixture whose minor component forms
spherical dispersed phase. Such a system can be called emulsion.

3.1 Mixture of Newtonian Fluids

As for immiscible mixture of two Newtonian fluids, the work of Choi and
Schowalter (1975) is remarkable. Since their calculation starts from the Navier–
Stokes equation, the theory can be applied to nonlinear flow. Neglecting nonlinear
terms, Scholz et al. (1989) calculated dynamic moduli as follows:

G0 xð Þ ¼ go

k1
1� k2

k1

� �
k21x

2

1þ k21x
2
; G00 xð Þ ¼ go

k2
k1

xþ go

k1
1� k2

k1

� �
k1x

1þ k21x
2

ð3:1Þ

where

go ¼ gmatrix 1þ 5kþ 2
2 kþ 1ð Þ/þ 5 5kþ 2ð Þ2

8 kþ 1ð Þ2 /2

" #
ð3:2Þ

k1 ¼ k0 1þ 5 19kþ 16ð Þ
4 kþ 1ð Þ 2kþ 3ð Þ/

� 
ð3:3Þ

k2 ¼ k0 1þ 3 19kþ 16ð Þ
4 kþ 1ð Þ 2kþ 3ð Þ/

� 
ð3:4Þ

k0 ¼ gmatrixR
a

19kþ 16ð Þ 2kþ 3ð Þ
40 kþ 1ð Þ ð3:5Þ

and

k ¼ gdisperse

gmatrix
ð3:6Þ

Here, R is the radius of the disperse phase, α is the interfacial tension, and / is the
volume fraction of the disperse phase.
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Note that Eq. (3.2) is the zero-shear viscosity of the mixture. As for the case of
k ! 1 and / � 1, Eq. (3.2) becomes the Einstein equation of suspension:

go

gmatrix
� 1þ 5

2
/ ð3:7Þ

Equation (3.1) is the sum of the Newtonian and the Maxwellian models. Note that
the effect of interface (represented by the term of R=a) appears only in the
Maxwellian model. Hence, it can be understood that the relaxation of the interface
is governed by the timescale of k1 which depends on /.

3.2 The Gramespacher and Meissner Model

Gramespacher and Meissner (1992) applied the Choi and Schowalter model (CS
model) to the linear viscoelasticity of immiscible blend of polymers:

G� xð Þ ¼ /G�
dis xð Þþ 1� /ð ÞG�

mat xð ÞþG�
int xð Þ ð3:8Þ

where G� ¼ G0 þ iG00, dis and mat represent disperse and matrix, and G�
int is the

Maxwellian model of Eq. (3.1). Equation (3.8) is the sum of the arithmetic mean of
the linear viscoelasticity of the matrix and disperse phases and that of interface.

Although the Gramespacher and Meissner model (GM model) is a simple
extension of the CS model, it agrees quite well with experimental data. Since
Eq. (3.8) is considerably simple, it is easy to estimate R=a by fitting experimental
data. Furthermore, since the interfacial modulus is Maxwellian, it is obvious that the
relaxation spectrum of G�

int is given by

Hint kð Þ ¼ go

k1
1� k2

k1

� �
d log k� log k1ð Þ ð3:9Þ

Since Eq. (3.8) implies that H ¼ /Hdis þ 1� /ð ÞHmat þHint, Gramespacher and
Meissner (1992) also calculated the relaxation time spectrum using the nonlinear
regularization developed by Honerkamp and Weese (1993). They found that the
plot of kH kð Þ is better than that of H kð Þ in recognizing that the spectrum of the
mixture consists of three parts. The spectrum kH kð Þ is called weighted spectrum. It
is because the weighted spectrum as function of log λ looks like peaks. This feature
of the weighted spectrum was also used by Shaayegan et al. (2012) in the study of
linear viscoelasticity of immiscible polymer blends.

Figure 8 shows linear viscoelasticity of PP/PS blends. Loss moduli of mixtures
vary between those of pure ingredients, while the blends having interface show
storage moduli which are absolutely different from those of pure ingredients. This
agrees with the expectation that the relaxation of interface is mainly elastic.
Although the storage modulus is better than the loss modulus in detection of the
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effect of interface, Fig. 8c shows that additional peak at long-time regime varies
according to the amount of disperse phase in a systematic way. Hence, it can be said
that the picture of Gramespacher and Meissner, Eq. (3.8) and the use of weighted
spectrum, is very effective in characterize immiscible blends of polymers. Note that
the spectrum was calculated by a modified version of fixed-point iteration of Cho
and Park (2013) [see Eq. (2.28) in Chap. 7].
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Fig. 8 Dynamic moduli and weighted spectrum of PP/PS blends. Pure PP and PS have
weight-average molecular weights of 340 and 350 kg/mol, respectively. The mixtures were
blended in an internal mixer at 200 °C and 50 rpm with the addition of 0.15 phr antioxidant
(Irganox 1076) for 5 min. The same thermal history was given to neat PS and PP. The weight
fractions in the legend are those of PP (disperse phase). The rheological measurement was done at
250 °C in the atmosphere of N2 (Kwon and Cho 2016)
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3.3 The Palierne Model

Although the GM model agrees with experimental data quite well, there is not clear
reason why Eq. (3.8) is valid. The formulation of Eq. (3.8) is ad hoc. Two years
before the GM model, Palierne (1990) developed a model for the dynamic modulus
of the mixture of viscoelastic materials on more rigorous theoretical foundation.
The Palierne model is given by

G� xð Þ ¼ G�
mat xð Þ 1þ 3

P
i /iP

�
i xð Þ

1� 2
P

i /iP
�
i xð Þ ð3:10Þ

where /i is the volume fraction of disperse phases whose radius is Ri and

P�
i xð Þ ¼ 4 a

Ri
2G�

mat xð Þþ 5G�
dis xð Þ
 �� G�

mat xð Þ � G�
dis xð Þ
 �

16G�
mat xð Þþ 19G�

dis xð Þ
 �
40 a

Ri
G�

mat xð ÞþG�
dis xð Þ
 �þ 3G�

mat xð Þþ 2G�
dis xð Þ
 �

16G�
mat xð Þþ 19G�

dis xð Þ
 �
ð3:11Þ

Although the original Palierne model considers the distribution of the size of
disperse phases as shown in Eq. (3.10), it is difficult to infer the distribution from
rheological data. Hence, it is more convenient to use the average value of the size of
disperse phase:

G� xð Þ ¼ G�
mat xð Þ 1þ 3/P� xð Þ

1� 2/P� xð Þ ð3:12Þ

where P� xð Þ has the same mathematical form of Eq. (3.11) instead of use of
R instead of Ri

Compared with the GM model, it is extremely complicate to evaluate the
dynamic moduli of the Palierne model. However, the Palierne mode does not need
the identification of the zero-shear viscosities of pure ingredients, which requires
the data of the terminal region.

3.4 Comparison of the GM and the Palierne Models

Note that the GM model is simple but is not as rigorous as the Palierne model.
However, the prediction powers of the two models are almost equivalent. Using the
experimental data of pure PP and PS shown in Fig. 8, one may calculate dynamic
moduli of PP/PS mixtures with varying both / and a=R. Figure 9 compares the
simulated data of storage modulus from the Palierne and the GM models. As shown
in Fig. 9, both two models are nearly identical.

Figure 10 shows the comparison of the two models in terms of weighted
spectrum with fixing the value of a=R as 1000 Pa. As volume fraction of dispersed
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phase increases, both models predict that the height of interfacial peak increases.
The weighted spectra of two models look same. Hence, it can be said that the two
models behave almost equal. Figure 11 compares the two models in terms of
weighted spectrum with fixing volume fraction of dispersed phase, / ¼ 12 vol:%.
Here, Hint is defined as
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Fig. 9 Comparison of the GM and the Palierne models in terms of storage modulus: a various
volume fractions of PP at a fixed value of a=R ¼ 1000 Pa; b various values of a=R at a fixed
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Both two models behave similarly. The height of interfacial peak increases as the volume fraction
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Hint kð Þ ¼ H kð Þ � /Hdis kð Þ � 1� /ð ÞHmat kð Þ ð3:13Þ

This definition of interfacial spectrum is based on Eq. (3.8) of the GM model. As
shown in Fig. 11, both the height and the width of interfacial peak are nearly
independent of a=R, while the center of the interfacial peak moves shorter time.

Here, we have found the importance of relaxation spectrum because it gives
better and clear understanding than dynamic moduli.

Problem 3

[1] Sketch the plot of the center of interfacial peak as a function of the volume
fraction of disperse phase. Assume that k ¼ 1.

[2] Explain why weighted relaxation spectrum looks like a peak, while the
original spectrum does not.

[3] Explain why the distribution of R cannot be determined by the Palierne model
although the model includes the distribution.

[4] What is the condition that the Palierne model can be applied to the suspension
of solid particle in a viscoelastic fluid.
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Part III
Nonlinear Viscoelasticity



Chapter 10
Nonlinear Constitutive Equations

Abstract This chapter deals with how to measure nonlinear viscoelastic functions
and various nonlinear viscoelastic constitutive equations. Since there have been
developed a number of constitutive equations which cannot be included in a single
chapter, this chapter considers only a few popularly used ones, which are classified
to four groups: the models based on mathematical approximations; the models
obtained from the generalization of linear viscoelastic models; the models based on
the simplification of polymer structure; and the Leonov model which is a class of
constitutive equations based on irreversible thermodynamics.

A polymeric fluid shows various flow phenomena which cannot be described by
viscous fluid models. Such phenomena are abnormal die swell, nonzero normal
stress difference in shear flow, rod climbing, and so on (Bird et al. 1987b; Tanner
2002). We have discussed the problem which appears from the 3D extension of
linear viscoelastic models such as the Maxwell or the Jeffreys models [see Sect. 5 in
Chap. 2]. Since the birth of the Society of Rheology, development of admissible
constitutive equation has been one of the most important themes of rheology. In this
chapter, we shall survey formulation of nonlinear viscoelastic constitutive
equations.

1 Rheometrics

Rheological measurements are usually based on fluid mechanical calculations
which are solving the set of partial differential equations such as balance equations
and constitutive equations. It is extremely difficult to find the exact solution of the
set of nonlinear partial differential equations. Furthermore, for most cases, we do
not know whether the exact solution is unique or not. For some simple problems,
the symmetry of the flow geometry allows us to recognize a rough mathematical
form of the velocity field. This form is nearly independent of constitutive equation
and is very helpful to make the problem simpler. Hence, before studying
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formulation of nonlinear viscoelastic constitutive equations, it is necessary to study
kinematics of flow, which is helpful for understanding the physical meanings of the
parameters of the constitutive equations as well as identification of the parameters.
Rheometrics is the study on how to measure rheological properties of materials with
minimizing the information on constitutive equation.

We can form curves which are tangent to the velocity vector of the flow at a
given time. A collection of such curves is called streamlines. We consider the case
that streamlines do not intersect. An example is laminar flow in which the space of
the flow consists of parallel layers of the same velocity. Then, we can construct a
curvilinear coordinate system which has the coordinate line of n1 as the streamlines.
We know that the general form of velocity field can be expressed by

v x; tð Þ ¼ m x; tð Þa ð1:1Þ

Here, we defined the unit vector a by

a ¼ g1
g1k k ð1:2Þ

Note that the unit vector a represents the flow direction and the base vector g1
was defined in Eq. (3.15). Then, the scalar function mðx; tÞ is the magnitude of the
velocity field.

If mðx; tÞ is independent of the coordinate n1, then it can be said that the mag-
nitude of velocity field varies in a direction perpendicular to the flow direction. It is
obvious that m x; tð Þ ¼ �m n2; n3; t

� �
. Such flow is called shear flow. If

m x; tð Þ ¼ �m n1; t
� �

, then the flow is called extensional flow.
Since a polymeric fluid can be approximated as incompressible one, it is basi-

cally assumed that velocity field satisfies r � v ¼ 0.

1.1 Shear Flow

1.1.1 Generalized Shear Flow

We are interested in the velocity field such that

v ¼ m n2; n3; t
� �

a ð1:3Þ

Of course, a is the unit vector defined by Eq. (1.2). The definition of shear flow
and the incompressibility condition gives the following equations:

a � rm ¼ 0 ð1:4Þ
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and

r � a ¼ 0 ð1:5Þ

Equation (1.4) can be understood easily by the consequence of Eq. (1.3):

rm ¼ @m

@n2
g2 þ @m

@n3
g3 ð1:6Þ

Since a is a unit vector, it is obvious that

rða � aÞ ¼ 2a � ðraÞT ¼ 0 ð1:7Þ

If we define

b ¼ rm
rmk k ; c ¼ a� b ð1:8Þ

then the three unit vectors form an orthonormal basis. Then, the deformation rate
tensor of Eq. (1.3) is given by

D ¼ rmk k
2

abþ bað Þþ m
2

raþ rað ÞT
h i

ð1:9Þ

Simple geometry of a shear flow is very helpful for easy measurement of rhe-
ological quantities such as shear viscosity and normal stress difference. The simple
shear flow may be expressed by

v ¼ _c b � xð Þa ð1:10Þ

where a and b are mutually orthogonal and constant unit vectors and _c is a positive
function of time. In this case, the deformation rate tensor is given by

D ¼ _c
2

abþ bað Þ ð1:11Þ

This agrees with the definition of shear rate Eq. (3.59) in Chap. 2. Tanner (2002)
roughly defined viscometric flow which has the deformation rate tensor like Eq. (1.
11). Several examples are listed in Tanner (2002).

1.1.2 Simple Examples of Viscometric Shear Flows

The parallel flow is the one that has the slip surface m x; y; tð Þ ¼ constant. Slip
surface is the surface on which the same velocity is assigned. If all slip surfaces are
parallel to e3, then the velocity field is given by
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v ¼ m x; y; tð Þe3 ð1:12Þ

In this case, shear rate is given by

_c ¼ rvk k ð1:13Þ

and the deformation rate tensor is given by Eq. (1.11). Note that a ¼ e3, and b is the
unit vector in the direction of rm. Note that ra ¼ 0 in this case.

For circular geometry, one may find the following velocity field such that:

v ¼ rX r; z; tð Þe/ ð1:14Þ

In this case, a ¼ e/ and we have

re/ þ re/
� �T¼ � 1

r
e/er þ ere/
� � ð1:15Þ

It is interesting that the deformation rate tensor is given by

D ¼ r rXe/ þ e/rX
� � ð1:16Þ

Note that if we set b ¼ rX= rXk k instead of b ¼ rm= rmk k, then Eq. (1.16)
has the form of Eq. (1.11) with

_c ¼ r rXk k ð1:17Þ

The Poiseuille flow is the pressure-driven shear flow whose velocity field is
given by

v ¼ m r; tð Þe3 with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
ð1:18Þ

In this case, we know that a ¼ e3 and b ¼ er. Here, we use the cylindrical
coordinates. Then, the deformation rate tensor is given by

D ¼ _c e3er þ ere3ð Þwith _c ¼ @m
@r

���� ���� ð1:19Þ

1.1.3 Stresses in Steady Viscometric Flows

In simple shear flow, deformation gradient of the flow is given by F ¼ Iþ ce1e2
where I is the identity tensor. Change in the coordinate system does not alter
physical phenomena. Consider a physical process that is described by two coor-
dinate systems such that

e01 ¼ �e1; e02 ¼ �e2; e03 ¼ e3 ð1:20Þ
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Because of the symmetry of the simple shear flow, the deformation gradient of
the simple shear is invariant over the transform of Eq. (1.20):

F ¼ Iþ ce1e2 ¼ Iþ c0e01e
0
2; c ¼ c0 ð1:21Þ

Since the stress of simple shear flow depends on the deformation history, the
symmetry of the simple shear flow leads to

T ¼ Tikeiek ¼ T 0
ike

0
ie
0
k ¼ Tike0ie

0
k

T11 ¼ T 0
11; T22 ¼ T 0

22; T33 ¼ T 0
33;

T12 ¼ T 0
12; T23 ¼ �T 0

23; T31 ¼ �T 0
31

ð1:22Þ

Thus, only nonzero components of stress tensor are diagonal components and
T12:

T ¼ T11e1e1 þ T22e2e2 þ T33e3e3 þ T12 e1e2 þ e2e1ð Þ ð1:23Þ

Equation (1.23) is valid for most shear flows whose deformation rate tensor is
given by Eq. (1.11).

Now consider the case of replacement of γ by �c. Then, the deformation gra-
dient and the deformation rate are replaced by

F ¼ I� ce1e2; D ¼ � _c
2

e1e2 þ e2e1ð Þ ð1:24Þ

Equation (1.24) is equivalent to the result from the change of coordinates:

e01 ¼ �e1; e02 ¼ e2; e03 ¼ e3 ð1:25Þ

Application of the transform of Eq. (1.25) to Eq. (1.23) gives

T 0
11 ¼ T11; T 0

22 ¼ T22; T 0
33 ¼ T33; T 0

12 ¼ �T12 ð1:26Þ

Since the change of the sign of shear strain is equivalent to the change of
coordinate, we obtain

T11 c; _cð Þ ¼ T11 �c;� _cð Þ; T22 c; _cð Þ ¼ T22 �c;� _cð Þ;
T33 c; _cð Þ ¼ T33 �c;� _cð Þ ; T12 c; _cð Þ ¼ �T12 �c;� _cð Þ ð1:27Þ

In steady state, the stress of the shear flow becomes a function of shear rate.
Hence, Eq. (1.27) implies that normal stress is an even function of shear rate, while
shear stress is an odd function of shear rate.

The definition of the steady shear viscosity is g _cð Þ � T12= _c: Hence, steady shear
viscosity is an even function of shear rate. Furthermore, this symmetry analysis
reveals that the response function g _cð Þ must be positive for any shear rate. Since
normal stresses are even functions of shear rate, it is obvious that normal stress
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differences are also even functions. The first normal stress difference, N1, is defined
as the difference between the normal stresses in the flow direction (a) and in the
gradient direction (b). The second normal stress difference, N2, is defined as
the difference between the normal stresses in the gradient direction (b) and in the
vorticity direction (c). Hence, we know that

N1 _cð Þ ¼ T11 _cð Þ � T22 _cð Þ ¼ N1 � _cð Þ ;
N1 _cð Þ ¼ T22 _cð Þ � T33 _cð Þ ¼ N2 � _cð Þ ð1:28Þ

The symmetric features of normal stresses allow us to define normal stress
coefficients such that

N1 _cð Þ ¼ _c2w1 _cð Þ; N2 _cð Þ ¼ _c2w2 _cð Þ ð1:29Þ

This definition results in that normal stress coefficients are even functions of
shear rate. Whenever _c ¼ 0, normal stresses become the hydrostatic pressure.
Hence, we know that N1ð0Þ ¼ N2ð0Þ ¼ 0.

Steady shear viscosity and normal stress coefficients are material functions. The
stress tensor of steady shear flow can be expressed in terms of the material functions
as follows (Tanner 2002)

T ¼ TccIþ _cg abþ bað Þþ N1 þN2ð ÞaaþN2bb ð1:30Þ

where Tcc ¼ c � T � c.

1.2 Measurement of Steady Viscoelastic Functions

Here, we consider only three most popular shear flows in rheology. These are shear
flows in parallel plates and cone and plate of rotational rheometer and the Poiseuille
flow in capillary rheometer.

1.2.1 Parallel-Plate Rheometer

Parallel-plate fixture [Fig. 2 in Chap. 5] is one of the most popular fixtures of
rotational rheometer, because of the convenience in sample loading. When the
fixture rotates at the angular velocity of x0, the velocity field in the fixture is given
by

v ¼ rx0z
h

e/ ð1:31Þ
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where h is the gap between the two plates. Note that Eq. (1.31) is equivalent to the
case of X ¼ x0z=h when it is compared with Eq. (1.14). In this case, we also know
that

a ¼ e/; b ¼ ez; _c ¼ r
h
x0: ð1:32Þ

Assume that the flow is steady, laminar, and isothermal. If the viscosity of the
sample is sufficiently high, then body force can be neglected. Furthermore, it does
not deteriorate the results significantly to neglect the effect of cylindrical edge.
Then, the equations of motion reduce to

@T/ z

@z
¼ 0;

@Tzz
@z

¼ 0; � @p
@r

þ 1
r
@

@r
rT 0

rr

� �� T 0
//

r
¼ �q

v2/
r

ð1:33Þ

Note that T 0
zz; T

0
rr and T 0

// are components of the extra stress, while
Tzz ¼ �pþ T 0

zz. Note that Eq. (1.33) agrees with Eq. (1.30). The first equation of
Eq. (1.33) implies that both T/ z and Tzz depend on only r. In the derivation of
Eq. (1.33), we used the assumptions that any quantity in the equations of motion is
independent of ϕ.

Rotational rheometer measures the torque M and the normal force Fz. These
measurable quantities are related with stress components as follows

M ¼
Z

rT/ zda ¼ 2p
ZR
0

r2T/ z rð Þdr ð1:34Þ

and

Fz ¼ �
Z

Tzzda ¼ �2p
ZR
0

Tzzrdr ð1:35Þ

where R is the radius of the circular disk.
With the help of Eq. (1.30), Eq. (1.34) can be rewritten as

M ¼ 2p
ZR
0

g _cð Þ _cr2dr ð1:36Þ

Since _c ¼ rx0=h, we can replace r by shear rate:

m � M
2pR3 ¼

1

_c3R

Z_cR
0

g _cð Þ _c3d _c ð1:37Þ
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where _cR ¼ Rx0=h: If the torque at steady state is measured as a function of angular
velocity x0, then we can obtain the plot of m as a function of _cR. Numerical
differentiation of the plot gives the shear viscosity:

g _cRð Þ ¼ m
_cR

3þ d logm
d log _cR

� �
ð1:38Þ

Note that Eq. (1.38) can be obtained by the differentiation of both sides of
Eq. (1.37) with respect to _cR.

Neglecting the inertia term (qv2u=r � 0), the third equation of Eq. (1.33) can be
rewritten as

dTrr
dr

¼ N1 þN2

r
ð1:39Þ

Since Trr ¼ Tzz � N2, we have

dTzz
dr

¼ dN2

dr
þ N1 þN2

r
ð1:40Þ

Using the boundary conditions TzzðRÞ ¼ TrrðRÞ ¼ 0, integration of Eq. (1.39)
gives

Tzz rð Þ ¼ N2 rð Þ �
ZR
r

N1 fð ÞþN2 fð Þ
f

df ð1:40Þ

Substitution of Eq. (1.40) to Eq. (1.35) gives

Fz ¼ �2p
ZR
0

rN2drþ 2p
ZR
0

rU rð Þdr ð1:41Þ

where

U rð Þ �
ZR
r

N1 fð ÞþN2 fð Þ
f

df ð1:42Þ

Application of integration by parts to Eq. (1.41) gives

Fz ¼ �2p
ZR
0

rN2drþ p r2U rð Þ� 	 r¼R

r¼0�p
ZR
0

r2
dU
dr

dr ð1:43Þ
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Note that

dU
dr

¼ �N1 rð ÞþN2 rð Þ
r

ð1:44Þ

Substitution of Eq. (1.44) to Eq. (1.43) gives

Fz ¼ p
ZR
0

N1 rð Þ � N2 rð Þ½ �rdr ð1:45Þ

Changing the variable from r to _cR and differentiating in a suitable way, we have
finally

N1 _cRð Þ � N2 _cRð Þ ¼ Fz

pR2 2þ d logFz

d log _cR

� �
ð1:46Þ

1.2.2 Cone-and-Plate Rheometer

The geometry of cone-and-plate fixture is described in Fig. 2 in Chap. 5. Note that
we need spherical coordinate system in order to treat the kinematics. Figure 1 is
helpful for more easily understanding the kinematics:

v ¼ m r; hð Þe/ ð1:47Þ

R

M

Fz

T

0, 

r

Fig. 1 The geometry of
cone-and-plate rheometer
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The symmetry of the geometry implies that any quantity in the equations of
motion is independent of ϕ. Then, the equations of motion become simpler as
follows

qm2

r
¼ � @p

@r
þ 1

r2
@

@r
r2T 0

rr

� �� T 0
hh þ T 0

//

r
;

0 ¼ � 1
r
@p
@h

þ 1
r sin h

@ T 0
hh sin h

� �
@h

� T 0
hh cot h
r

0 ¼ 1
r

@T 0
h/

@h
þ 2T 0

h/ cot h

r

ð1:48Þ

The boundary conditions are given by

m r;
p
2


 �
¼ 0; m r;

p
2
� b


 �
¼ rx0 sin

p
2
� b


 �
ð1:49Þ

Note that the angle β is very small (b\0:1 rad). Then, the last equation in
Eq. (1.49) can be simplified as

m r;
p
2
� b


 �
¼ rx0 ð1:50Þ

From the geometry, we know that the latitude angle has the range of

p
2
� b\h\

p
2

ð1:51Þ

Since the range of the latitude angle is very small, we can use the following
approximation:

cot h ¼ cot
p
2
� bþ 0


 �
� tan b� 0ð Þ � b� 0 ð1:52Þ

where 0\0\b. Use of this approximation allows us to assume that

m r; hð Þ � rx0

b
p
2
� h


 �
ð1:53Þ

Then, we have

_c � x0

b
ð1:54Þ

This result is very important because shear rate is nearly constant over the whole
region of sample.
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It is not difficult to calculate the torque M in terms of shear stress T/h:

T/h ¼ 3M

2pR3 sin2 h
� 3M

2pR3 ð1:55Þ

Hence, the steady shear viscosity is given by

g ¼ 3b
2pR3

M
x0

ð1:56Þ

The normal force exerted on the fixture can be calculated by

Fz ¼ �2p
ZR
0

Thh r;
p
2


 �
rdr ð1:57Þ

Hence, we need to integrate the first equation of Eq. (1.48). As before, we
neglect the inertia term. Then, we have

@Trr
@r

¼ N1 þ 2N2

r
ð1:58Þ

Since Thh ¼ N2 þ Trr , Eq. (1.58) can be rewritten as

@Thh
@r

¼ @N2

@r
þ N1 þ 2N2

r
ð1:59Þ

Note that viscoelastic functions such as η, N1, and N2 depend on only shear rate
which is independent of r in this case. Hence, we have

@Thh
@r

¼ N1 þ 2N2

r
ð1:60Þ

Application of integration by parts to Eq. (1.57) and use of Eq. (1.60) gives

Fz

pR2 ¼
N1 þ 2N2

2
� Thh R;

p
2


 �
ð1:61Þ

Since the normal stress on free surface is zero if surface tension is negligible, we
know that Trr R; 12pð Þ ¼ 0 and N2 ¼ Thh R; 12pð Þ. Then, we finally have

N1 ¼ 2Fz

pR2 ð1:62Þ

Rotational rheometer is apt to suffer from the effects of inertia, secondary flow,
and edge effect whenever shear rate is sufficiently high. The correction is discussed
in Münstedt and Laun (1981).
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1.2.3 Capillary Rheometer

Rotational rheometer is a convenient device for rheological properties because it
works for oscillatory shear flow as well as steady shear flow. Furthermore, it can be
used for the measurement of extensional viscosity if some special fixture such as
SERTM is applied. However, centrifugal problem prevents from the measurement of
steady shear viscosity at high shear rate. If steady shear viscosity at high shear rate
is necessary, alternative is capillary rheometer. Capillary rheometer consists of
reservoir, capillary die, speed controllable piston, and pressure sensor (see Fig. 2).

Capillary rheometer controls the speed of the piston V. Then, the flow rate is
given by Q ¼ VA where A is the cross-sectional area of the reservoir containing
polymer melt. The pressure sensor located at the bottom of the reservoir measures
pressure difference Δp of the polymer melt from ambient pressure. We shall show
that Q and Δp are used for the calculation of shear rate and shear stress at the wall of
the capillary die, respectively. The dimension of the capillary die is represented by
the length and the diameter.

Because of high viscosity of the polymer melt, the flow by only gravitation is
hard to occur. Hence, we can neglect the effect of body force. Because of circular
symmetry, the velocity field in the capillary die at steady state is given by

v ¼ m rð Þez ð1:63Þ

Note that any quantity in the equations of motion is independent of azimuthal
angle ϕ again. Then, we have to consider only a single equation of motion:

@p
@z

¼ 1
r
d
dr

rT 0
rz

� � ð1:64Þ

Fig. 2 Schematic description
of capillary rheometer
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Note that equations of other directions give @p=@/ ¼ @p=@r ¼ 0. Since the
left-hand side of Eq. (1.64) is a function of z, the right hand is a function of r. This
implies that @p=@z must be a constant:

@p
@z

¼ Dp
L

ð1:65Þ

where L is the length of the capillary die. Integration of Eq. (1.64) gives

T 0
rz ¼

Dp
2L

r ð1:66Þ

It must be noted that Eq. (1.66) is valid for any viscoelastic fluid. Since the shear
stress on the wall of the capillary die is

Tw � T 0
rz Rð Þ ¼ Dp

2L
R ð1:67Þ

it is convenient to use

T 0
rz ¼

Tw
R

r ð1:68Þ

The volume flow rate can be calculated easily:

Q ¼ 2p
ZR
0

m rð Þrdr ð1:69Þ

Nonslip assumption gives m Rð Þ ¼ 0. Application of integration by parts gives

Q ¼ �p
ZR
0

r2
dv
dr

dr ð1:70Þ

Using Eq. (1.68), we will change the variable from r to Tw. Then, we have

3T2
wQ

pR3 ¼ �
ZTw
0

s2
dv
dr

ds ð1:71Þ

Differentiation with respect to Tw gives

3T2
wQ

pR3 þ T3
w

pR3

dQ
dTw

¼ T2
w _cw ð1:72Þ
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where

_cw ¼ �dv
dr

����
Tw

ð1:73Þ

Note that the minus sign is introduced to Eq. (1.73) because dm=dr\0 and shear
rate is defined to be positive. Rearrangement of Eq. (1.72) gives the Weissenberg–
Rabinowitsch equation:

_cw ¼ _cA
4

3þ d logQ
d log Tw

� �
ð1:74Þ

where _cA is the apparent shear rate which is defined as

_cA ¼ 4Q
pR3 ð1:75Þ

Since Q is controlled by V and Tw is determined by the measurement of pressure
difference Δp, numerical differentiation of the data determines d logQ=d log Tw.
Finally, shear viscosity is obtained by

g ¼ Tw
_cw

¼ pR4Dp
2QL

n
3nþ 1

ð1:76Þ

where

n � d logDp
d logQ

ð1:77Þ

Note that when n ¼ 1, Eq. (1.76) becomes the equation for a Newtonian fluid.
Capillary rheometer is powerful when viscosity at high shear rate is necessary.

However, the rheometer suffers from several problems. Because of viscoelasticity
of polymer melt, the pressure gradient @p=@z is not constant. Experimental
observation shows that Dp at the exit of the capillary die is not zero. Furthermore,
there is an abrupt drop of pressure at the entrance of the capillary die. To remove
this discrepancy, the Bagley correction is necessary. The Bagley correction can be
done by the measurement at various L/R. When L/R is sufficiently large, the effect
of abnormal drop of pressure becomes negligible. If shear rate exceeds certain
value, then the nonslip condition does not hold. Then, flow instability, called melt
fracture, occurs. Since polymer melt has high viscosity, viscous heating is also a
problem which occurs at high shear rate. Viscous heating breaks the assumption of
isothermal condition. Note that steady shear viscosity of polymer melt depends on
both shear rate and temperature.

Another demerit of capillary rheometer is the inability to measure shear viscosity
at shear rates lower than 0.1 s−1. It is interesting that smooth superposition is
usually found between the plots of steady shear viscosity measured by different
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rheometers such as rotational and capillary rheometers (Macosko 1994).
Furthermore, the plot of complex viscosity as a function of frequency is also
superposed on the plot of steady shear viscosity. It is surprising superposition
because steady shear viscosity is a nonlinear viscoelastic function, while complex
viscosity is a linear viscoelastic function. This superposition of viscosity data is
called the Cox–Merz relation.

1.3 Simple Elongational Flow

Consider a circular rod made of incompressible material. Simple elongation is a
homogeneous deformation such that

r ¼ ~rffiffiffi
k

p ; / ¼ ~/; z ¼ k~z ð1:78Þ

where λ is a function of time. Deformation gradient is given by

F ¼ kezez þ 1ffiffiffi
k

p erer þ e/e/
� � ð1:79Þ

and velocity gradient is given by

L ¼ rvð ÞT¼ d log k
dt

ezez � 1
2

erer þ e/e/
� �� 

¼ D ð1:80Þ

Because of symmetry, it is obvious that stress is given by

T ¼ Tzzezez þ Trr erer þ e/e/
� � ð1:81Þ

Since the lateral surface of the rod is free, it is obvious that er � T � er ¼ 0 on the
free surface. This means that T 0

rr ¼ �p. Thus, it can be said that

Tzz � Trr ¼ f
A

ð1:82Þ

where f is the force on the both ends of the rod and A is the cross-sectional area of the
rod. Because the material is incompressible, the area A is related to the initial area by

A ¼ Ao

k
ð1:83Þ

Extensional viscosity is defined as

gE _e; tð Þ ¼ Tzz � Trr
_e

ð1:84Þ
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where

_e ¼ d log k
dt

ð1:85Þ

If we set _e a constant, then the draw ratio is given by integration of Eq. (1.85):

k tð Þ ¼ exp _etð Þ ¼ L tð Þ
Lo

ð1:86Þ

where L tð Þ is the length of the rod at time t and Lo is the initial length. Since we can
measure force f and control L by Eq. (1.86), we can determine extensional viscosity
gE by experiment.

Implementation of the elongational experiment is not easy because the length of
the sample should be increased exponentially as shown in Eq. (1.86). Even a tiny
inhomogeneity in the radius of the rod is apt to result in significant errors in
extensional viscosity. Hence, reproducibility of the experiment is considerably
lower than that of any other rheological measurement.

If the rod is not broken, the extensional viscosity may approach to a limit value
called steady extensional viscosity gE _e;1ð Þ: For simplicity, we will denote the
steady extensional viscosity as g1

E _eð Þ: As for a Newtonian fluid, the extensional
viscosity is three times of the shear viscosity. This relation is called the Trouton
relation. It can be extended to viscoelastic fluid by

lim
_e!0

g1
E _eð Þ
go

¼ 3 ð1:87Þ

Laun and Münstedt (1978) compared steady shear viscosity of LDPE with its
steady extensional viscosity as shown in Fig. 3. At low _e, the zero-extensional
viscosity agrees with the Trouton relation.

It is interesting that steady extensional viscosity shows overshot at high exten-
sional rate _e[ 0:001 s�1, while steady shear viscosity shows shear thinning. It can
be expected that linear viscoelasticity is valid in the region of deformation rate at
which both steady viscosities in shear and extension follow those of Newtonian
fluid.

It is well known that extensional viscosity is an indicator of long chain branch.
When extensional viscosity is plotted as a function of time, LDPE (having long
chain branch) shows strong strain hardening behavior as shown in Fig. 4. Strain
hardening means that extensional viscosity increases steeply at a certain time which
becomes shorten as extensional rate increases. HDPE has no long chain branch and
shows weaker strain hardening.

Problems 1

[1] Show that if velocity field is given by v ¼ u zð Þe1 þ m zð Þe2, then stress tensor is
given by
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T ¼ �pIþg
dv
dz

e3 þ e3
dv
dz

� �
þ w1 þw2ð Þ dv

dz
dv
dz

þw2
dv
dz

���� ���� 2

e3e3 ð1:aÞ

See Tanner (2002).
[2] Derive Eq. (1.33).
[3] Derive Eq. (1.38).
[4] Derive Eqs. (1.45) and (1.46).

Fig. 3 Comparison of steady extensional viscosity with steady shear viscosity. The graph is the
Fig. 5 of Laun and Münstedt (1978)

Fig. 4 Typical behavior of
extensional viscosity of
polyethylene as a function of
time. The graph is the Fig. 10
of Münstedt and Laun (1981)
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[5] Derive Eq. (1.48).
[6] Consider the Poiseuille flow of a power law fluid such that

T ¼ �pIþK _cm rvþ rvð ÞT� 	 ð1:bÞ

where 0\m\1 and K[ 0. Calculate d logDp=d logQ.
[7] Derive Eqs. (1.79) and (1.80).
[8] Derive Eq. (1.81) by use of symmetry analysis.

2 Models Based on Expansion

2.1 Rivlin–Ericksen Expansion

The constitutive equation of Newtonian fluid is based on the intuition that the extra
stress of the fluid is a linear function of deformation rate tensor. It is one of the most
natural ways of developing a constitutive equation to expand a general but formal
equation from the well-known previous one. Assume that polymeric fluids are
incompressible. Since the stress of a viscoelastic fluid depends on deformation
history, the stress can be written formally by

Tþ pI ¼ T
s¼t

s¼�1½Ctðx; sÞ� ð2:1Þ

where the right-hand side is the extra stress and a tensor-valued functional which
involves the effect of deformation at all possible pasts. The effect of past defor-
mation should be smaller if the past time is older. If the observation time is much
longer than the material time, low Debora number, then the right-hand side of
Eq. (2.1) can be replaced by a proper algebraic function. Assume that the function
can be expanded by the Taylor expansion. In Sect. 7 in Chap. 2, we have studied
that relative strain measure Ctðx; sÞ can be expanded by

Ctðx; sÞ ¼ Iþ
X1
n¼1

ðs� tÞn
n!

An ð2:2Þ

where An is the nth order Rivlin–Ericksen tensor.
Before the Taylor expansion, substitution of Eq. (2.2) into Eq. (2.1) gives

Tþ pI ¼ G A1;A2; . . .ð Þ ð2:3Þ

where Gð�Þ is an isotropic tensor-valued function. Here, the terms ðs� tÞn were
integrated to material constants. Hence, we want to develop a constitutive equation
for slow flow. The series expansion of Eq. (2.3) is given by
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Tþ pI ¼
X1
k¼1

bkAk þ
X1
k¼1

X1
n¼1

bknAk � An þ � � � ð2:4Þ

Here, bk , bkn, and so on are called retarded-motion parameters which are functions
of the invariants of the Rivlin–Ericksen tensors. Setting all retarded-motion con-
stants zero except b1, Eq. (2.4) becomes the incompressible Newtonian fluid. The
second-order fluid is defined by

T ¼ �pIþ b1A1 þ b11A1 � A1 þ b2A2 ð2:5Þ

It should be note that the Rivlin–Ericksen tensors are objective tensors.
For simplicity, consider the simple shear flow of v ¼ _cye1 where _c is a constant.

As for the shear flow, the Rivlin–Ericksen tensors for the second-order fluid are
given by

A1 ¼ 2D ¼ _c e1e2 þ e2e1ð Þ ð2:6Þ

and

A2 ¼ 2 _c2e2e2 ð2:7Þ

Then, Eq. (2.5) gives

T ¼ �pIþ b11 _c
2 I� e3e3ð Þþ 2b2 _c

2e2e2 þ b1 _c e1e2 þ e2e1ð Þ ð2:8Þ

Since the shear viscosity is defined as the shear stress over shear rate, we know
that

g ¼ b1 ð2:9Þ

Although normal stress differences of Newtonian fluid are zero, those of the
second-order fluid are given by

N1 � T11 � T22 ¼ �2b2 _c
2 ð2:10Þ

and

N2 ¼ T22 � T33 ¼ b11 þ 2b2ð Þ _c2 ð2:11Þ

Then, the constitutive equation of the second-order fluid can be rewritten in
terms of material functions as follows:

T ¼ �pIþgA1 � 1
2
w1A2 þ w1 þw2ð ÞA2

1 ð2:12Þ

Here, the material functions η, w1, and w2 can be considered as functions of
shear rate if the flow under consideration is a viscometric flow. The shear rate can
be obtained from

2 Models Based on Expansion 509



_c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
tr A2

1

� �r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
tr A2ð Þ

r
ð2:13Þ

Hence, the second-order fluid agrees with experimental data of nonzero normal
stress difference. On the other hand, the model for the generalized viscous fluid
Eq. (3.41) in Chap. 2 cannot describe nonzero normal stress difference. However, it
is known that the second-order fluid is unstable in unsteady flows (Tanner 2002).

2.2 Green–Rivlin Expansion

Green–Rivlin expansion (1957) is another expansion of Eq. (2.1) such that

T ¼ �pIþ
Z t

�1
l1 t � t1ð Þ Ct t1ð Þ � I½ �dt1

þ
Z t

�1

Z t

�1
l2 t � t1; t � t2ð Þ Ct t1ð Þ � I½ � � Ct t2ð Þ � I½ �dt1dt2þ � � �

ð2:14Þ

This is the Taylor expansion of stress functional [see appendix]. For this
expansion, the first-order kernel l1ðtÞ corresponds to the derivative of the linear
relaxation modulus:

l1ðtÞ ¼ � dG
dt

ð2:15Þ

On the other hand, higher-order kernels are difficult to be evaluated from
experimental data.

For the simple shear flows of v ¼ _cye1 with constant shear rate, we know that

CtðsÞ ¼ Iþ _cðs� tÞ e1e2 þ e2e1ð Þþ _c2ðs� tÞ2e2e2 ð2:16Þ

When the first integral is considered only, the solution of the model for the
simple shear flow is given by

T12 ¼ � _c
Z1
0

slðsÞds ¼ _c
Z1
0

GðsÞds ¼ go _c ð2:17Þ

N1 ¼ � _c2
Z1
0

s2l1ðsÞds ¼ 2 _c2
Z1
0

sGðsÞds ¼ 2Joeg
2
o _c

2 ð2:18Þ
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and

N2 ¼ �N1 ð2:19Þ

Since experimental data usually show N2=N1j j 	 1, the consequences from the
single integral model are not realistic. This discrepancy seems to be originated from
neglecting higher-order integrals.

Consider the first-order Green–Rivlin expansion with

l1ðtÞ ¼
Go

k
exp � t

k


 �
ð2:20Þ

Then, the material time derivative of the extra stress is given by

dT0

dt
¼ �T0

k
þ
Z t

�1
l1ðt � sÞ dCtðsÞ

dt
dt ð2:21Þ

Note that

dCtðsÞ
dt

¼ �LTðtÞ � CtðsÞ � CtðsÞ � LðtÞ ð2:22Þ

Substitution of Eq. (2.22) to Eq. (2.21) gives

kT0D þT0 ¼ �2goD ð2:23Þ

where go ¼ Gok. Note that the definition of the lower-convected time derivative is
given by

T0D � dT0

dt
þLT � T0 þT0 � L ð2:24Þ

Lower-convected time derivative is an objective time derivative.
This is the differential constitutive equation of the first-order integral. However,

this model gives unrealistic behavior. The Lodge equation (Larson 1988) is the
first-order integral model with replacement of CtðsÞ by the Finger tensor C�1

t ðsÞ:

T ¼ �pIþ
Z t

�1

Go

k
e� t�sð Þ=k C�1

t ðsÞ � I
� 	

ds ð2:25Þ
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Differentiation of the extra stress of Eq. (2.25) gives the upper-convected
Maxwell model (UCM):

kT0r þT0 ¼ 2goD ð2:26Þ

Derivation of Eq. (2.26) from Eq. (2.25) is very similar to that of Eq. (2.23). The
Lodge equation is one of the simplest cases of the K-BKZ model which will be
given in the next section.

Problems 2

[1] Show that the following tensor-valued function is an isotropic function.

G A1;A2ð Þ ¼ b1A1 þ b11A1 � A1 þ b2A2 ð2:aÞ

[2] Consider the deformation gradient tensor such that

F ~x; tð Þ ¼ kðt)e1e1 þ 1ffiffiffiffiffiffiffiffi
k tð Þp I� e1e1ð Þ ð2:bÞ

Calculate A1;A2;CtðsÞ and C�1
t ðsÞ.

[3] The deformation gradient tensor for equibiaxial extension is given by

F ~x; tð Þ ¼ kðtÞ I� e3e3ð Þþ 1

k2ðtÞ e3e3 ð2:cÞ

Calculate A1;A2;CtðsÞ and C�1
t ðsÞ.

[4] The deformation gradient tensor for pure shear is given by

F ~x; tð Þ ¼ kðtÞe1e1 þ e2e2 þ 1
kðtÞ e3e3 ð2:dÞ

Calculate A1;A2;CtðsÞ and C�1
t ðsÞ.

[5] When stress is given by Eq. (2.25), calculate steady extensional viscosity and
steady shear viscosity.

[6] Consider a functional which is a mapping from CtðsÞ to extra stress tensor
such that

T0 ¼ T
s¼t

s¼�1 CtðsÞ½ � ð2:eÞ

with

T
s¼t

s¼�1½I� ¼ 0 ð2:fÞ

Assume that the tensor-valued functional is isotropic. Then, show that Eq. (2.14)
is the Taylor expansion of the functional.
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3 Generalization of Linear Viscoelastic Models

3.1 Oldroyd Generalization

Oldroyd revealed that the principle of material frame-indifference does not hold
when the stress, the time derivative of stress, and the strain rate of the linear model
from the combination of spring and dashpot are replaced by extra stress tensor, the
material time derivative of the extra stress tensor, and the deformation rate tensor,
respectively. We have discussed this problem in Sect. 5.1 in Chap. 2. In Chap. 11,
we focused on objective time derivatives of tensor, which satisfy the principle of
material frame-indifference. In addition, when converting various spring–dashpot
models, we need a time derivative of deformation rate tensor which satisfies the
principle of material frame-indifference, too. Equation (1.81) in Chap. 2 implies that
the lower-convected time derivative of deformation rate tensor is the second-order
Rivlin–Ericksen tensor:

A2 ¼ 2D
D

ð3:1Þ

Oldroyd generalization is to replace the time derivatives of stress rate and strain
rate by an objective time derivative of them.

As an example, consider a parallel combination of a Maxwell model and a
viscous element. The linear model of the combination of spring and dashpot is
given by

k1
dr
dt

þr ¼ g1 þg2ð Þ dc
dt

þ k1g2
d2c
dt2

ð3:2Þ

The Oldroyd generalization is the transform such that

dr
dt

! T0D or T0r ;
dc
dt

! A1 ¼ 2D;
d2c
dt2

! A2 ¼ 2D
D

ð3:3Þ

and the generalized constitutive equation is

T0 þ k1 T0D ¼ go A1 þ k2A2ð Þ ð3:4aÞ

or

T0 þ k1 T0r ¼ go A1 þ k2A2ð Þ ð3:4bÞ

where go ¼ g1 þg2 and k2 ¼ k1g2=go.
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Use of this reasoning, Oldroyd suggested his eight-constant model:

T0 þ k1 T0D þ lo
2
tr T0ð ÞA1 � l1

2
T0 � A1 þA1 � T0ð Þ þ a1

2
tr T0 � A1ð ÞI

¼ go A1 þ k2A2 � l2A1 � A1 þ a2
2
tr A1 � A1ð ÞI

h i ð3:5Þ

As for this complicate model, viscometric functions g _cð Þ;w1 _cð Þ and w2 _cð Þ are
given by

g _cð Þ ¼ go
1þ k1 _c

2

1þ k2 _c
2 ð3:6Þ

w1 _cð Þ ¼ 2gok1
g _cð Þ
go

� k2
k1

� 
ð3:7Þ

and

w2 _cð Þ ¼ 2k2 � l2ð Þgo � 2k1 � l1ð Þg _cð Þ ð3:8Þ

where

k1 ¼ k1 l1 � a1ð Þþ lo l1 � k1 � 3a1
2

� �
þ l1 k1 þ a1 � l1ð Þ;

k2 ¼ k1 l2 � a2ð Þþ lo l2 � k2 � 3a2
2

� �
þ l1 k2 þ a2 � l2ð Þ

ð3:9Þ

Since steady shear stress is a monotonic increasing function of shear rate, we have

d
d _cg

_cð Þ
 0 ð3:10Þ

Application of Eq. (3.6) to the inequality gives

k2 
 k1
9

[ 0 ð3:11Þ

Since the steady shear viscosity at infinite shear rate is g1 ¼ k1=k2, the inequality
of Eq. (3.11) can be replaced by

g1
go


 1
9

ð3:12Þ
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However, experimental data of a polymeric fluid often show that g1 	 0:1go.
Thus, the eight-constant model cannot describe the shear viscosity data of real
polymeric fluids.

3.1.1 The Upper-Convected Maxwell Model

When lo ¼ l2 ¼ k2 ¼ a1 ¼ a2 ¼ 0 and l1 ¼ 2k1, the eight-constant model
becomes the upper-convected Maxwell model:

T0 þ kT0r ¼ 2goD ð3:13Þ

Under the assumption that stress is homogeneous ðrT0 ¼ 0Þ, Eq. (3.13) can be
rewritten as

@T0

@t
� L� 1

2k
I

� �
� T0 � T0 � L� 1

2k
I

� �T

¼ 2
go

k
D ð3:14Þ

If L is a constant tensor, then Eq. (3.14) corresponds to Eq. (5.83) in Chap. 1 and
the general solution is given by

T0ðtÞ ¼ etH � T0ð0Þ � etHT þ 2go

Z t

0

e�ðs�tÞH � D � e�ðs�tÞHT
ds ð3:15Þ

where H ¼ L� ð2kÞ�1I. As for steady simple shear, we know that

H ¼ � 1
2k

Iþ _ce1e2 ð3:16Þ

and

2D ¼ _c e1e2 þ e2e1ð Þ ð3:17Þ

Since

Hn ¼ � 1
2k

� �n

I� 2nk _ce1e2ð Þ ð3:18Þ

we know that

exH ¼ e�x=ð2kÞIþ _cxe�x=ð2kÞe1e2; exH
T ¼ e�x=ð2kÞIþ _cxe�x=ð2kÞe2e1 ð3:19Þ
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Application of Eqs. (3.16)–(3.19) to Eq. (3.15) gives

T0ðtÞ ¼ go _c 1� e�t=k
� �

e1e2 þ e2e1ð Þþ 2
go

k
k_cð Þ2 1� tþ k

k
e�t=k

� �
e1e1 ð3:20Þ

Here, we used the initial condition of T0ð0Þ ¼ 0. Equation (3.20) implies that

gð _cÞ ¼ lim
t!1

go _c 1� e�t=k
� �

_c
¼ go

w1ð _cÞ ¼ 2 lim
t!1

go

k
k _cð Þ2
_c2

1� tþ k
k

e�t=k

� �
¼ 2gok

w2 _cð Þ ¼ 0

ð3:21Þ

Hence, steady shear viscosity is a constant. This is clearly unrealistic for polymeric
fluids.

As for simple elongational flow, similar calculation can be done for the UCM.
The result is

g1
E _eð Þ ¼ 3go

1þ k_eð Þ 1� 2k_eð Þ ð3:22Þ

This result implies that steady extensional viscosity diverges as _e approaches to
ð2kÞ�1. Hence, this is also unrealistic.

3.2 K-BKZ Model

The Boltzmann superposition principle of Eq. (1.8) in Chap. 5 can be rewritten as

rðt) ¼
Z t

�1
lðt � sÞcðsÞds ð3:23Þ

where lðt) ¼ �dG=dt
 0 is the memory function. As for incompressible nonlinear
elastic materials, we have learned that stress can be expressed by Eq. (3.39) in
Chap. 2:

T ¼ �pIþ 2
@U
@IB

B� @U
@IB�1

B�1
� �

ð3:24Þ

Equation (3.23) is for linear viscoelastic material, while Eq. (3.24) is for nonlinear
elastic material. Kaye (1962) combined the Boltzmann superposition with hyper-
elastic formalism and suggested
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T ¼ �pIþ 2
Z t

�1

@U
@IC�1

t ðsÞ
C�1

t ðsÞ � @U
@ICtðsÞ

CtðsÞ
" #

ds ð3:25Þ

where the potential Φ is a function such that

U ¼ U IC�1
t ðsÞ; ICtðsÞ; t � s


 �
ð3:26Þ

Equation (3.25) is called K-BKZ model because Bernstein et al. (1963) developed
the model independently. This is an integral-type constitutive equation, while the
nonlinear viscoelastic models based on the Oldroyd generalization belong to dif-
ferential type.

Equation (1.j) in Chap. 2 implies that the upper-convected time derivative of
C�1

t ðsÞ is zero tensor, so is that ofBðtÞ ¼ FðtÞ � FTðtÞ. This is the reason whyB of Eq.
(3.24) is replaced by C�1

t ðsÞ in Eq. (3.25) in order to include deformation history.
Laun (1978) and Osaki et al. (1982) found nonlinear relaxation modulus of

polymeric fluids can be factorized to the product of linear relaxation modulus and
the damping function which is a function of shear strain:

Gðc;t) ¼ GðtÞhðcÞ for t[ kX ð3:27Þ

Note that for t\kX , the time–strain separability breaks. This experimental
observation suggests the time–strain separable K-BKZ model such that

T ¼ �pIþ
Z t

�1
lðt � sÞ h1 IC�1

t ðsÞ; ICtðsÞ

 �

C�1
t ðsÞþ h2 IC�1

t ðsÞ; ICtðsÞ

 �

CtðsÞ
h i

ds

ð3:28Þ

The nonlinear viscoelastic constitutive equation of the Doi–Edwards theory
(1986) belongs to the time–strain separable K-BKZ model. Although the intro-
duction of time–strain separability gives rise to the instability of the K-BKZ model
(Kwon and Cho 2001), the separable K-BKZ model is useful in the interpretation of
experiments of nonlinear viscoelasticity. Hence, we shall focus on the separable
K-BKZ model.

3.2.1 Simple Shear Flow

In simple shear, the deformation gradient is given by FðtÞ ¼ Iþ cðtÞe1e2. Hence,
we have

FtðsÞ ¼ Iþ cðsÞ � cðtÞ½ �e1e2 ð3:29Þ
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CtðsÞ ¼ I� ½cðt)� cðsÞ� e1e2 þ e2e1ð Þþ cðtÞ � cðsÞ½ �2e2e2 ð3:30Þ

C�1
t ðsÞ ¼ Iþ ½cðtÞ � cðsÞ� e1e2 þ e2e1ð Þþ ½cðsÞ � cðtÞ�2e1e1 ð3:31Þ

and

ICtðsÞ ¼ IC�1
t ðsÞ ¼ 3þ ½cðtÞ � cðsÞ�2 ð3:32Þ

Then we can rewrite Eq. (3.28) as follows

T ¼ �pþ
Z t

�1
l t � sð Þ ~h1 c2t;s


 �
þ ~h2 c2t;s


 �h i
ds

8<:
9=;I

þ
Z t

�1

~h1 c2t;s


 �
c2t;sds

8<:
9=;e1e1 þ

Z t

�1

~h2 c2t;s


 �
c2t;sds

8<:
9=;e2e2

þ
Z t

�1
l t � sð Þ ~h1 c2t;s


 �
� ~h2 c2t;s


 �h i
ct;sds

8<:
9=; e1e2 þ e2e1ð Þ

ð3:33Þ

where ct;s ¼ cðtÞ � cðsÞ and

~hk c2t;s


 �
¼ hk IC�1

t ðsÞ; ICtðsÞ

 �

in simple shear ð3:34Þ

If we use the definition such that

hðxÞ ¼ ~h1ðxÞ � ~h2ðxÞ ð3:35Þ

shear stress and the first normal stress difference can be written, respectively, by

T12 ¼
Z t

�1
lðt � sÞh c2t;s


 �
ct;sds ð3:36Þ

and

N1 ¼
Z t

�1
lðt � sÞh c2t;s


 �
c2t;sds ð3:37Þ

Of course, the second normal stress difference of the K-BKZ model is zero.
As for stress relaxation test, we know that cðtÞ ¼ coHðtÞ where co is constant

and is called the strain amplitude. Then, it is obvious that t[ 0 and s� t.
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The definition of ct;s implies that it is the constant co whenever s\0 and zero
otherwise. Then, the integral of Eq. (3.36) can be rewritten as

T12 ¼ coh c2o
� � Z0

�1
lðt � sÞds ð3:38Þ

Since G 1ð Þ ¼ 0 for a viscoelastic fluid, the definition of the memory function
gives

GðtÞ ¼
Z0
�1

lðt�sÞds ð3:39Þ

Finally, we recognize that the function h c2o
� �

is the damping function of
Eq. (3.27). This implies that nonlinear stress relaxation test identifies the damping
function.

Popularly used form of damping functions is

h c2
� � ¼ 1

1þ c=cCð Þ2 ð3:40aÞ

h c2
� � ¼ exp �n cj jð Þ ð3:40bÞ

and

h c2
� � ¼ / exp �n1 cj jð Þþ ð1� /Þ exp �n2 cj jð Þ with 0\/\1 ð3:40cÞ

The Doi–Edwards theory predicts Eq. (3.40a), while the last two is obtained
empirically.

If nonlinear relaxation test confirms the damping function, then the K-BKZ
model can calculate shear stress and the first normal stress difference for any
function of cðtÞ. It is remarkable that Laun (1978) showed that nonlinear shear
behavior of LDPE agrees well with the time–strain separable K-BKZ model. When
the damping function of Eq. (3.40b) is chosen, steady shear viscosity and steady
normal stress difference are given by Laun (1978)

g _coð Þ ¼
XN
k¼1

Gkkk
1þ nkk _coð Þ2 ð3:41Þ

and

w1 _coð Þ ¼ 2
XN
k¼1

Gkk
2
k

1þ nkk _coð Þ3 ð3:42Þ

where Gk; kkf g is the discrete relaxation spectrum of the fluid.
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3.2.2 Simple Elongational Flow

As for simple elongational flow, the relative deformation gradient is given by

FtðsÞ ¼ kðsÞ
kðtÞ e3e3 þ

ffiffiffiffiffiffiffiffiffi
kðtÞ
kðsÞ

s
I� e3e3ð Þ ð3:43Þ

Then, we have

CtðsÞ ¼ kðsÞ
kðtÞ
�  2

e3e3 þ kðtÞ
kðsÞ I� e3e3ð Þ ð3:44Þ

C�1
t ðsÞ ¼ kðtÞ

kðsÞ
� 2

e3e3 þ kðsÞ
kðtÞ I� e3e3ð Þ ð3:45Þ

ICtðsÞ ¼
kðsÞ
kðtÞ
� 2

þ 2
kðtÞ
kðsÞ ð3:46Þ

and

ICtðsÞ ¼
kðtÞ
kðsÞ
� 2

þ 2
kðsÞ
kðtÞ ð3:47Þ

Substitution of Eqs. (3.44)–(3.47) to Eq. (3.28) gives

r ¼ T33 � T11

¼
Z t

�1
lðt�sÞ ~h1 kt;s

� �
k2t;s �

1
kt;s

� �
þ ~h2 kt;s

� � 1

k2t;s
� kt;s

 !" #
ds

ð3:48Þ

where

kt;s ¼ kðtÞ
kðsÞ ð3:49Þ

and

~hk kt;s
� � ¼ h IC�1

t ðsÞ; ICtðsÞ

 �

ð3:50Þ

In this case, the measurement of axial stress (or elongational viscosity) has to
determine two functions ~h1ðxÞ and ~h2ðxÞ, while the measurement of shear stress
considers only damping function. Hence, it is very difficult to identify the two
functions h1 I1; I2ð Þ and h2 I1; I2ð Þ by only two types of experiments. A better
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constitutive equation is the one whose identification is easier if its agreement with
experimental data is as precise as the others. In the next two sections, we will meet
constitutive equations whose identification is easier than the K-BKZ model.

Problems 3

[1] The Oldroyd B model is the parallel combination of a Maxwell model and a
Newtonian fluid. Express the constitutive equation in tensor notation.

[2] Calculate steady shear and extensional viscosities of the Oldroyd B model.
[3] Corotational Maxwell model is given by

T0 þ kT
O
¼ 2goD ð3:aÞ

Calculate steady shear viscosity and normal stress difference coefficients.
[4] Derive Eqs. (3.6)–(3.8).
[5] Derive Eq. (3.12).
[6] As for the damping function of Eq. (3.40a), calculate g _coð Þ and w1 _coð Þ:
[7] Using Eq. (3.41), discuss whether the time–strain separable K-BKZ model

obeys the Cox–Mertz rule.
[8] As for Eq. (3.25), one may consider the following potential

U ¼ lðt � sÞ IC�1
t ðsÞ � 3


 �
ð3:bÞ

Calculate viscometric material functions.

4 Models Based on Speculation of Structure

4.1 Spring-Dumbbell Models

This subsection involves a lot of complicate equations which are mainly related
with the theory of Brownian motion. Hence, this subsection can be understood
easier if the readers remind the contents of Sect. 3 in Chap. 3 Brownian Motion and
Sect. 4 in Chap. 5 Molecular Theories.

4.1.1 Langevin Equations

Since a polymer chain is too complicate to develop a constitutive equation from the
motion of the segments in the polymer chain, a daring simplification of the chain
has been investigated. The simplification is the two mass points connected by a
spring (Fig. 5).
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Let the two points have the same mass m and their positions be r1 and r2. It is the
spring-dumbbell model. Then, the equations of motion for the model are given by

m
d2r1
dt2

¼ �ffM�1 � dr1
dt

� L � r1
� �

� f12 þ fð1ÞR

m
d2r2
dt2

¼ �ffM�1 � dr2
dt

� L � r2
� �

� f21 þ fð2ÞR

ð4:1Þ

The first terms including friction coefficient ζ represent drag force due to the
friction with neighbor molecules. Reminding Eq. (4.13) in Chap. 5, we know thatfM is dimensionless mobility tensor. The force f12 and f21 represents the interaction

between the two mass points, and f kð Þ
R is the random force exerting on the kth mass

point. Because of the third law of Newtonian mechanics, it is obvious that
f12 ¼ �f21.

To make the two-body problem easier, it is conventional to use the following
variables:

rc ¼ 1
2

r1 þ r2ð Þ; h ¼ r1 � r2 ð4:2Þ

Note that rc is the center of mass and h is the bond vector. Using Eq. (4.2), the
equations of motion become

m
d2rc
dt2

¼ �ffM�1 � drc
dt

� L � r
� �

þ fcR

m
d2h
dt2

¼ �ffM�1 � dh
dt

� L � h
� �

� 2f12 þ fhR

ð4:3Þ

Fig. 5 Schematic illustration of spring-dumbbell
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It is usually assumed that the interaction force f12 is a central force such that

f12 ¼ kðhÞh ð4:4Þ

where h ¼ hk k.
Dimensional analysis gives neglecting of inertia effect because of high viscosity

of a polymeric fluid:

drc
dt

¼ L � rc þ 1
f
fM � fcR ð4:5Þ

and

dh
dt

¼ L � h� 2
kðhÞ
f
fM � hþ 1

f
fM � fhR ð4:6Þ

As for the random forces, the following relations are assumed:

fcRðtÞ
� � ¼ 0; fcRðtÞfcRðt0Þ

� � ¼ d t � t0ð ÞBc

fhRðtÞ
� � ¼ 0; fhRðtÞfhRðt0Þ

� � ¼ d t � t0ð ÞBh
ð4:7Þ

Note that the two second-order tensors Bc and Bh are determined by the equipar-
tition theorem (see Chap. 3). Additional assumption on the random forces is that
they are mutually independent:

fcRðtÞfhRðtÞ
� � ¼ 0 ð4:8Þ

Since the two equations of Eq. (4.3) are decoupled to Eqs. (4.5) and (4.6), we will
focus on the evolution of the bond vector h. It is because stress is mainly dependent
on h.

4.1.2 Smoluchowski Equation

Since h is a stochastic variable, it is natural to consider the probability distribution
function P h; tð Þ which satisfies the normalization condition:Z

P h; tð Þd3h ¼ 1 ð4:9Þ

Note that the integration covers the whole space of h. The existence of the
normal condition immediately implies that
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lim
hk k!1

Pðh; tÞ ¼ 0 ð4:10Þ

Since Eq. (4.9) implies the conservation of probability, similarity to mass con-
servation, we have

@P
@t

þ @

@h
� dh

dt
P

� �
¼ 0 ð4:11Þ

Here, @=@h is a short notation such that

@

@h
¼ rh ¼ ek

@

@hk
ð4:12Þ

where hk is the kth component of h. The notation dh=dt does not imply that h is a
function of the t which is an argument of the probability distribution P. Although
Eq. (4.6) is derived from micromechanics, the timescale of P is much longer than
the timescale of random fluctuation. Note that the correlation functions of random
forces are approximated by the Dirac delta function in Eq. (4.7). Hence, we call the
mechanics in terms of P mesoscopic mechanics rather than micromechanics.
Mesoscopic is the intermediate scale regime between microscopic and macroscopic.

With the help of Eqs. (4.6) and (4.11), the evolution equation of the probability
distribution function is given by

@P
@t

¼ � @

@h
� L � h� 2k

f
fM � h

� �
P

� 
� 1

f
@

@h
� fM � fhRP

 �

ð4:13Þ

Since we are interested in mesoscopic mechanics, we have to average out the rapid
fluctuation due to the random force. The formal solution of Eq. (4.13) can be
expressed in terms of operator:

P h; tð Þ ¼ e�t<̂P h; 0ð Þ �
Z t

0

ds e� t�sð Þ<̂ @

@h
� fM � fhR sð ÞP h; sð Þ
h i

ð4:14Þ

where the linear operator <̂ is defined as

<̂P � � @

@h
� L � h� 2k

f
fM � h

� �
P

� 
ð4:15Þ

Note that if function is considered as a vector of the vector space of the functions
which obey certain conditions, then the linear differential (or integral) operators can
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be considered as second-order tensors. Then, the notation exp x<̂

 �

can be

understood [see Eq. (5.76) in Chap. 1]. Further information is found in Zwanzig
(2001). Substitution of Eq. (4.14) to Eq. (4.13) gives

@P
@t

¼ <̂P� 1
f
@

@h
� fM � fhR tð Þe�t<̂P
h i

þ 1
f
@

@h
� fM � fhR tð Þ

Z t

0

dse� t�sð Þ<̂ � @

@h
� fM � fhz sð ÞP
h i8<:

9=;
ð4:16Þ

Note that the random force is independent of h. Taking ensemble average, Eq. (4.7)
gives

@P
@t

¼ <̂Pþ 2kBT
f

@

@h
� fM � @

@h
� fMP

 �� �� � �

ð4:17Þ

Here, we used

Bh ¼ 2kBT I ð4:18Þ

Equation (4.17) is the Smoluchowski equation of the spring-dumbbell model.
This equation can ramify to several branches depending on the modeling of k hð Þ
and fM hð Þ. If the dimensionless mobility tensor is taken as the identity tensor:fM ¼ I, then we have

@P
@t

¼ � @

@h
� L � h� 2k hð Þ

f
h

� �
P

� 
þ 2kBT

f
@

@h
� @P
@h

ð4:19Þ

4.1.3 Constitutive Equation

The Smoluchowski equation is not a constitutive equation. To obtain the consti-
tutive equation, we have to relate the vector h with stress. Molecular theories
usually model the stress as follows [see the molecular theory of viscoelasticity,
Chaps. 3, 4, and 5]:

T ¼ �pIþ qNk hh ið Þ hhh i � hhh ieq

 �

ð4:20Þ

where qN is the number density of the spring-dumbbell molecules. Distinguish qN
from qnum of Sect. 4 in Chap. 5, which is the number of segments per unit volume.
Different from Eqs. (4.28), (4.41), and (4.69) in Chap. 4, the isotropic term hhh ieq is
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introduced in Eq. (4.20) in order to make the extra stress become zero in equilib-
rium (no flow). This does not give rise to any problem because the hydrostatic
pressure p of incompressible fluid is mainly dependent on the boundary condition
rather than material property. Equation (4.20) is a preaverage model. In Eq. (4.20),
we used

hh i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr hhh ið Þ

p
ð4:21Þ

Then, it is important to derive the evolution equation of the tensor hhh i. We
define

hhh i ¼
Z

hhP h; tð Þd3h ð4:22Þ

To obtain the kinetic equation of hhh i, it is necessary to investigate the math-
ematical properties of the last term of Eq. (4.17):

fM � @

@h
� fMP

 �� �� 

¼fM � @

@h
�fMþfM � @ logP

@h

� �
P ð4:23Þ

Here, we used the symmetry of the mobility tensor. Then, the evolution equation
of P can be rewritten as

@P
@t

¼ � @

@h
� jPPð Þ ð4:24Þ

where

jP ¼ L � h� 2k
f
fM � h� 2kBT

f
fM � @

@h
�fM� �

� 2kBT
f
fM2 � @ logP

@h
ð4:25Þ

The vector jP can be interpreted as the flux of probability distribution. The first
term of Eq. (4.25) is due to the convection of the flow, the second term due to the
connection between the mass points, the third term due to the anisotropy of the
mobility tensor, and the last term due to the effect of the random force or diffusional
motion of the molecule.

The kinetic equation of hhh i is given by

d
dt

hhh i ¼
Z

hh
@P
@t

d3h ¼ �
Z

hh
@

@h
� jPPð Þd3h ð4:26Þ

Note that
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hh
@

@h
� jPPð Þ ¼ @

@h
� jPPð Þ

� 
hh

¼ @

@h
� jPhhPð Þ � jP �

@hh
@h

� �
P

¼ @

@h
� jPhhPð Þ � jPhþ hjPð ÞP

ð4:27Þ

If taking integral on both sides of Eq. (4.27), then the divergence theorem
converts the integral containing divergence to the surface integral. See Problem [4]
and [5]. Because of Eq. (4.10), the surface integral vanishes. Then, we finally have

d
dt

hhh i ¼ jPhþ hjPh i ð4:28Þ

Substitution of Eq. (4.25) to Eq. (4.28) gives

hhh i
r

¼ � 2
f

k fM � hhþ hh �fM
 �D E
� 2kBT

f
fM � @

@h
�fM� �� 

hþ h fM � @

@h
�fM� �� � �

þ 4kBT
f

fM2
D E

þ 2kBT
f

@

@h
�fM2

� �
hþ h

@

@h
�fM2

� �� � ð4:29Þ

See Problem [6] to understand the treatment of the term of @ log P=@h.
Combining Eq. (4.20) with Eq. (4.29), one can derive the evolution equation of the
extra stress which is the constitutive equation.

The symmetric tensor hhh i represents the state of conformation of polymer chain
because h corresponds to the end-to-end vector of a real polymer chain. In equi-
librium, it is straightforward that hhh i becomes an isotropic tensor:

hhh ieq¼
h2o
3
I with ho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h � hh ieq

q
¼ b

ffiffiffiffi
N

p
ð4:30Þ

where b and N are, respectively, the size and the number of Kuhn segment. Then,
one may invent a symmetric and positive definite tensor which represents the
conformation state of polymer as follows

Ĉ � 3
h2o

hhh i ð4:31Þ

The scale factor 3
�
h2o makes the conformation tensor Ĉ become the identity tensor

in equilibrium state. We will use the notation Ĉ for the conformation tensor in order
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to distinguish it from the right Cauchy–Green tensor. Then, Eq. (4.20) can be
rewritten in terms of the conformation tensor as follows

T ¼ �pIþ qNh
2
ok hh ið Þ
3

Ĉ� I

 �

ð4:32Þ

Furthermore, depending on the model offM hð Þ, most branches of Eq. (4.29) can be
expressed in terms of Ĉ in a closed form. Thus, the constitutive equation of the
spring-dumbbell model consists of the evolution equation of Ĉ with stress equation
such as Eq. (4.32). The same formalism is found in various modeling theories of
polymer viscoelasticity. Now, we shall move to the discussion on the cases with
several models of mobility tensor and spring coefficient.

4.1.4 FENE-P Model

First, we consider the case of isotropic mobility tensor. When fM ¼ I, Eq. (4.29)
becomes dramatically simple:

hhh i
r

¼ 4kBT
f

I� 4
f

k hð Þhhh i ð4:33Þ

Here, we adopted preaverage decoupling:

k hð Þhhh i ¼ k hh ið Þ hhh i ð4:34Þ

In equilibrium, the left-hand side of Eq. (4.33) should be zero. Then, we have

k hh ieq

 �

hhh ieq¼ kBT I ð4:35Þ

Taking trace on both sides of Eq. (4.35), we have

k hh ieq

 �

¼ 3kBT
h � hh ieq

� ko ð4:36Þ

It is reasonable to assume that

h � hh ieq¼ Nb2 ð4:37Þ

where N is the number of Kuhn segment in a polymer chain and b is the size of the
Kuhn segment. Equation (4.36) agrees with Eq. (4.9) in Chap. 4.
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If FENE spring is adopted [see Eq. (4.12) in Chap. 4], then the spring coefficient
is given by

k hð Þ ¼ ko
1� tr hhð Þ�h2max

ð4:38Þ

Using the nonlinear spring and isotropic mobility tensor, a phenomenological
equation can be obtained as follows

Ĉ
r
þ 1

kFENE�P
zĈ� I

 �

¼ 0 ð4:39Þ

z ¼ b

b� tr Ĉ

 � ð4:40Þ

and

T ¼ �pIþGFENE�Pz Ĉ� I

 �

ð4:41Þ

where β, kFENE�P, and GFENE�P are material constants whose physical meanings are
understood by the correspondence of Ĉ/ hhh i. This constitutive equation is called
FENE-P (finite extensible nonlinear elasticity preaverage) Bird et al. (1987a)

4.1.5 Upper-Convected Maxwell Model

As the simplest case, consider that the spring coefficient is a constant. This is the
Gaussian chain. Then, we do not have to use preaverage process because k is a
constant. Equation (4.20) becomes

T ¼ �pIþ 3
qNkBT
Nb2

hhh i � hhh ieq

 �

ð4:42Þ

and Eq. (4.33) becomes

hhh i
r

¼ 4kBT
f

I� 12kBT
fNb2

hhh i ð4:43Þ

With the help of Eq. (4.35), we have

hhh i ¼ Nb2

3qNkBT
T0 þ Nb2

3
I ð4:44Þ

Substitution of Eq. (4.44) to Eq. (4.43) gives
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kM T0r þT0 ¼ 2gMD ð4:45Þ

where

kM ¼ fNb2

12kBT
; gM ¼ qNfNb

2

12
ð4:46Þ

and we used

I
r
¼ �2D ð4:47Þ

It is interesting that the spring-dumbbell model with linear spring results in the
upper-convected Maxwell model. It is also noteworthy that this approach does not
consider any interaction between different spring-dumbbell molecules. This means
the dilute case. Hence, the FENE-P model seems not to be suitable for polymer
melts or concentrated solutions although the model introduces nonlinearity to the
chain extension. Extension of chain to the contour length occurs due to the inter-
chain interactions such as entanglement. Another interesting feature of this meso-
scopic approach is that upper-convected time derivative appears naturally without
relying on the principle of material frame-indifference.

4.1.6 Giesekus Model

Giesekus model (1966, 1982) was developed in order to describe the interchain
interactions. The idea is that the mobility tensor is not proportional to the identity
tensor due to the effect of the environment of the spring-dumbbell molecule. The
constitutive equation of the Giesekus model is expressed in terms of extra stress as
follows

kG T0r þT0 þ a
GG

T02 ¼ 2gGD ð4:48Þ

Since gG ¼ GGkG, the mode has three independent material parameters. The range
of dimensionless parameter α is from 0 to 1.

Since the anisotropy arises due to the extra stress, Giesekus used

fM ¼ Iþ a
qNkBT

T0 ð4:49Þ

Note that the parameter α is a dimensionless one and qNkBT has the dimension of
stress. Since the last term of Eq. (4.49) represents the deviation from isotropic
mobility tensor, it is guessed that α is a small positive number. With the help of
Eq. (4.20), Eq. (4.48) is equivalent to
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fM ¼ Iþ a Ĉ� I

 �

¼ 1� að ÞIþ a Ĉ ð4:50Þ

Hence, Eq. (4.48) is to use preaverage approach. Using this mobility tensor model,
Eq. (4.48) can be derived by substitution of Eq. (4.48) to Eq. (4.29).

On the other hand, one might consider the mobility tensor model such as

fM ¼ Iþ 3a
h2o

hh� h2o
3
I

� �
ð4:51Þ

This model looks like more microscopic than its preaverage version. Another
candidate of the mobility tensor might be

fM ¼ auuþ b I� uuð Þ ð4:52Þ

where

u ¼ h
hk k ð4:53Þ

This model implies that if applied force f is proportional to h, then the velocity is
given by v ¼ a=fð Þf, while if applied force is perpendicular to h, then the velocity
is given by v ¼ b=fð Þf.

It is interesting that the two models of mobility tensor, Eqs. (4.51) and (4.52),
cannot result in the term of T02 of Eq. (4.48) because of the cancelation of the
coefficients of hh � hhh i. Read Bird et al. (1987a) if the consequence of (4.52) in
Chap. 1 is interesting.

Substitution of Eq. (4.49) to Eq. (4.29) yields Eq. (4.48) with

kG ¼ f h2o
12 1� að ÞkBT ; GG ¼ qNkBT ; gG ¼ kGGG ð4:54Þ

Since relaxation time λ must be positive, it is obvious that 0� a\1. If a ¼ 0, then
the Giesekus model becomes the upper-convected Maxwell model.

Consider the simple shear flow of L ¼ _c tð Þe1e2. Because of the strong nonlin-
earity of the Giesekus model, it is hard to obtain viscometric material functions
analytically. However, as for the stress relaxation (L ¼ cod tð Þe1e2), Holz et al.
(1999) calculated analytically nonlinear relaxation modulus:

G t; coð Þ ¼ GG

et=kG þ 2a2c2o 1� cos h t=kGð Þ½ � þ ac2o et=kG � 1ð Þ ð4:55Þ

This equation of relaxation modulus does not show time–strain separability when
t\kG. Hence, the Giesekus model may be classified as a non-separable constitutive
equation (Larson 1988). However, if t[ kG, Eq. (4.55) can be approximated by
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G t; coð Þ � G tð ÞhG coð Þ ð4:56Þ

where the damping function of the Giesekus model is given by

hG coð Þ ¼ lim
t!1

G t; coð Þ
G t; 0ð Þ ¼ 1

1þ a 1� að Þc2o
ð4:57Þ

4.2 Temporary Network Approaches

To describe concentrated polymer solutions and melt, concept of temporary net-
work has been used for long time. The concept seems to be originated from
molecular theories of rubber which is a network of polymer chains connected by
permanent covalent bonds. Temporary network is a metaphor for the permanent
network of rubber. Although the permanent network does not allow any relaxation
processes, temporary network permits creation and annihilation of substrands
between adjacent junctions in order to describe stress relaxation. Figure 6 illustrates
the concept of temporary network.

Green and Tobolsky (1946) proposed a constitutive equation based on the
simplest model of temporary network:

T ¼ �pIþ GGT

kGT

Z t

�1
exp � t � s

kGT

� �
C�1

t sð Þds ð4:58Þ

This equation is known equivalent to the upper-convected Maxwell model.
Yamamoto (1956) developed the kinetics of creation and annihilation of tem-

porary network in a generalized manner. However, the work of Yamamoto is not
constitutive equation. Phan-Thien and Tanner (1977) proposed a nonlinear

Fig. 6 Schematic illustration
of temporary network
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viscoelastic constitutive equation which is based on the theory of Yamamoto. The
model will be denoted by the PTT model (Phan-Thien and Tanner model).

Let the probability distribution function of substrand vector h be P h; tð Þ. Then,
one may imagine the equation of probability preservation Eq. (4.11). Different from
the spring-dumbbell model, the temporary network does not have detailed
micromechanics. A formal kinetic equation of P h; tð Þ may be given by

@P
@t

þ _h � @P
@h

¼ c hk kð Þ � a hk kð ÞP ð4:59Þ

where c hk kð Þ is the creation rate and a hk kð Þ represents annihilation rate. It is not
easy to find clear reason why creation rate should be anisotropic function of h. On
the other hand, annihilation mechanism should be related to stress which must be
anisotropic. Hence, it can be said that a hk kð ÞP h; tð Þ may be one of the simplest
forms of annihilation rate. These two functions must be modeled as well as _h.

As for the time derivative of h, Gordon and Schowalter (1972) suggested
non-affine formulation such that

dh
dt

¼ L � h� 1
5kPTT

h� nD � h ð4:60Þ

where kPTT and ξ are positive constants. Multiplying hh on both sides of Eq. (4.59)
and integration gives

d
dt

hhh i � L� nDð Þ � hhh i � hhh i � L� nDð ÞT þ 1
kPTT

hhh i

¼
Z

c hk kð Þhh d3h� a hk kð Þhhh i
ð4:61Þ

Since the function c hk kð Þ is an isotropic function of h, it is not difficult to show that
the integral of creation rate should be proportional to the identity tensor. Actually,
Phan-Thien and Tanner modeled the term as followsZ

c hk kð Þhh d3h ¼ vc tr hhh ið Þ
kPTT

I ð4:62Þ

As for the annihilation term, preaverage approximation can be applied as follows

a hk kð Þhhh i � a hk kh ið Þ hhh i ¼ va tr hhh ið Þ
kPTT

hhh i ð4:63Þ

Since this approximation should meet the equilibrium condition, we have
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1
kPTT

hhh ieq¼
vc tr hhh ieq

 �
kPTT

I�
va tr hhh ieq

 �
kPTT

hhh ieq ð4:64Þ

If Eq. (4.30) is adopted again and the result is extended to non-equilibrium (flow
situation), then we have

3
h2o

vc tr hhh ið Þ ¼ 1þ va tr hhh ið Þ ð4:65Þ

Just like Eqs. (4.32) and (4.42), the extra stress can be formulated by

T0 ¼ GPTT Ĉ� I

 �

ð4:66Þ

With the help of Eq. (4.31), (4.61) is transformed to that of extra stress as follows

kPTT
DT0

Dt
þ 1þ vað ÞT0 ¼ 2gPTT 1� nð ÞD ð4:67Þ

where gPTT ¼ GPTTkPTT and we define a new objective time derivative:

DT0

Dt
� dT0

dt
� L� nDð Þ � T0 � T0 � L� nDð ÞT ð4:68Þ

The function 1þ va can be replaced by Phan-Thien and Tanner (1977) and Phan–
Thien (1978)

/ trT0ð Þ ¼ 1þ e
G
tr T0ð Þ or exp

e
G
tr T0ð Þ

h i
ð4:69Þ

4.3 Multimode Versions

Consider Nþ 1 mass points of the same mass which are connected by N linear
springs of the same spring coefficient. This is the discrete Rouse chain. Similar
approaches of Sect. 4.1 in Chap. 10 can be applied to this system. Since detailed
calculation is found in Huilgol and Phan-Thien (1997), we write the results here as
follows:

T ¼ �pIþ
XN
k¼1

T0
k ð4:70Þ
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and

kk T0
k

r
þT0

k ¼ 2gkD ð4:71Þ

Note that kk and Gk ¼ gk=kk obey the discrete relaxation time spectrum of the
Rouse model (see Sect. 4.3 in Chap. 5).

The constitutive models previously discussed do not contain any distribution of
relaxation times. Such models are called a single-mode model. To increase
agreement with experimental data, the effect of relaxation spectrum should be
included in the nonlinear viscoelastic models. Multimode versions of the Giesekus
and the PTT models are, respectively, given by

kk T0
k

r
þT0

k þ
ak
Gk

T02
k ¼ 2gkD ð4:72Þ

and

kk
DT0

k

Dt
þ/ ek

trT0
k

Gk

� �
T0
k ¼ 2gkD ð4:73Þ

Of course, we know that gk ¼ Gkkk .
Thus, these nonlinear constitutive equations have two types of material

parameters: linear and nonlinear parameters. The linear parameters are discrete
relaxation spectrum, and nonlinear ones are ak, nk and ek. We have learned how to
determine relaxation time spectrum from linear viscoelastic data. However, it is not
easy to determine the distribution of the nonlinear parameters from nonlinear vis-
coelastic data. Consider the multimode version of the nonlinear relaxation modulus
of the Giesekus model:

G t; coð Þ ¼
XN
k¼1

Gk

et=kk þ 2a2kc
2
o 1� cosh t=kkð Þ½ � þ akc2o et=kk � 1ð Þ ð4:74Þ

Even if the linear parameters are known, it is doubt that nonlinear regression of
Eq. (4.74) could give ak robustly. It is also curious whether experimental data can
be fitted by assigning nonlinear parameters to single value but maintaining distri-
bution of linear parameters. However, there is a report that the nondistributive
nonlinear parameter can fit experimental data quite well (Simhambhatla and Leonov
1995; Bae and Cho 2015).

Problems 4

[1] Using the equipartition theorem, derive Eq. (4.18).
[2] Derive Eq. (4.16).
[3] Derive Eq. (4.17).
[4] Consider the divergence theorem
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Z
@

@h
� v hð Þd3h ¼

I
v hð Þ � n dah ð4:aÞ

where n is the outward unit normal vector of the boundary of the domain of
h and dah is the differential element of the boundary surface. Show that for
any h-dependent vector a and tensor B, the followings holdZ

@

@h
� aBPð Þd3h ¼

I
n � að ÞBP dah ð4:bÞ

and Z
@

@h
� BaPð Þd3h ¼

I
n � að ÞBP dah ð4:cÞ

[5] Show that

jP �
@hh
@h

¼ jPhþ h � jP ð4:dÞ

[6] Show that

hB � @ logP
@h

� �
¼ � h

@

@h
� BT

� �� �
� BT� � ð4:eÞ

and

B � @ logP
@h

h
� �

¼ � @

@h
� BT

� �
h

� �
� Bh i ð4:eÞ

[7] Express the FENE-P model in terms of extra stress.
[8] Derive the evolution equation of the conformation tensor for the linear spring

and mobility tensor of Eq. (4.51).
[9] Using Eqs. (4.59) and (4.60), derive Eq. (4.61).

[10] For any function c hk kð Þ which satisfiesZ
hk k2c hk kð Þd3h\1 ð4:fÞ

Show that Z
hhc hk kð Þd3h\ 1

3

Z
hk k2c hk kð Þd3h

� 
I ð4:gÞ

[11] Show that the time derivative of Eq. (4.68) is objective.
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5 Thermodynamic Theory

Constitutive equation is the relation between macroscopic quantities such as stress,
deformation gradient, and time derivatives of deformation gradient. Thermody
namics is a macroscopic science on transform of energy and its direction. Hence, it
can be said that any proper constitutive equation must satisfy the second law of
thermodynamics. However, constitutive equations introduced in previous sections
have been developed without the consideration of the second law. Here, we shall
introduce a constitutive model which has been developed from the basis of irre-
versible thermodynamics of internal variable: the Leonov model. It is interesting
that some of constitutive equations in previous sections satisfy the second law, too.
After the introduction to the Leonov model, we shall move to the thermodynamic
analysis of other models.

5.1 Leonov Model

In theory of metal plasticity, when strain is infinitesimal, it is supposed to be
decomposed into elastic and plastic ones. Plastic strain represents permanent
deformation when loading exceeds yield condition. However, this infinitesimal
plasticity theory cannot be applied to finite deformation. Lee (1969) proposed
multiplicative decomposition of deformation. The Leonov model is based on the
multiplicative decomposition as well as thermodynamics.

Fig. 7 Schematic illustration of plastic and elastic deformation
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The decomposition theory assumes an intermediate configuration which could
be observed if elastic unloading is done after the given deformation. Figure 7
illustrates this. If the intermediate configuration be denoted by x̂, then we have
relations such that

dx ¼ F � d~x; dx̂ ¼ F�1
e � dx ð5:1Þ

This immediately means that

F ¼ Fe � Fp ð5:2Þ

Here, Fp represents the deformation gradient for the permanent deformation of
Fig. 7.

Using Eq. (1.46) in Chap. 2, the multiplicative decomposition yields

L ¼ dFe

dt
� F�1

e þFe � dFp

dt
� F�1

p � F�1
e ð5:3Þ

Since L ¼ _F � F�1, the first term can be considered as elastic velocity gradient.
Then, we can define

Le ¼ dFe

dt
� F�1

e ; Lp ¼ Fe � dFp

dt
� F�1

p � F�1
e ; L ¼ Le þLp ð5:4Þ

Analogy to deformation rate and vorticity tensors gives

2De ¼ Le þLT
e ; 2We ¼ Le � LT

e ;

2Dp ¼ Lp þLT
p ; 2Wp ¼ Lp � LT

p

ð5:5Þ

Because of Eq. (5.4), we also know that for incompressible fluids,

trDe þ trDp ¼ 0 ð5:6Þ

From this kinematic analysis, it is obvious that

detF ¼ q
qref

¼ 1; detFe ¼
qp
q
; detFp ¼ qref

qp
ð5:7Þ

where qref , qp, and ρ represent, respectively, densities of the reference, intermediate,
and current configurations. Further assumption of q ¼ qp gives

detFe ¼ detFp ¼ 1 ð5:8Þ
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According to Leonov (1976), trD ¼ 0 and Eq. (5.8) gives

trDp ¼ trDe ¼ 0 ð5:9Þ

Analogous to the left Cauchy–Green tensor B, we can define conformation
tensor as follows

Be � Fe � FT
e � Ĉ ð5:10Þ

The definition of elastic velocity gradient Eq. (5.4) implies that

dĈ
dt

� Le � Ĉ� Ĉ � LT
e ¼ 0 ð5:11Þ

This form is identical to that of B:

dB
dt

� L � B� B � LT ¼ 0 ð5:12Þ

Since incompressible hyperelastic material has the stress such that

T ¼ �pIþ 2q
@f
@IB

B� @f
@IB�1

B�1
� �

ð5:13Þ

Maxwellian fluid can be defined by the fluid whose stress is given by

T ¼ �pIþ 2q
@f
@IĈ

Ĉ� @f
@I

Ĉ
�1
Ĉ

�1

 !
ð5:14Þ

Thus, the free energy of the Maxwellian fluid depends on only the elastic strain Ĉ
and temperature:

f ¼ f IĈ; IIĈ; T
� � ð5:15Þ

Leonov used the second law of Eq. (4.83) in Chap. 2 in order to make Eq. (5.9)
become the closed form. As for isothermal process, Eq. (4.83) in Chap. 2 can be
rewritten as

T : D� q
df
dt

� �
T

 0 ð5:16Þ

Here, the conformation tensor is the internal variable and free energy per unit mass
is a function of the conformation tensor Ĉ and temperature T. Then, we have
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q
df
dt

� �
T
¼ q

@f
@IĈ

@IĈ
@Ĉ

þ @f
@IIĈ

@IIĈ
@Ĉ

� �
:
dĈ
dt

¼ 2qtr
@f
@IĈ

Ĉþ @f
@IIĈ

IĈĈ� Ĉ
2


 �� 
� De

� � ð5:17Þ

With the help of the Cayley–Hamilton theorem, we know that when detFe ¼ 1

IĈ ¼ II
Ĉ

�1 ; IIĈ ¼ I
Ĉ

�1 ð5:18Þ

and

IĈĈ� Ĉ
2 ¼ IĈI� Ĉ

�1 ð5:19Þ

Because of Eqs. (5.9), (5.17) can be rewritten as

q
df
dt

� �
T
¼ �2q

@f
@IĈ

Ĉ� @f
@I

Ĉ
�1
Ĉ

�1

 !
: De ¼ T0 : De ð5:20Þ

Finally, the Clausius-Duhem inequality becomes simpler

T0 : D� Deð Þ ¼ T0 : Dp ¼ T0 : Lp 
 0 ð5:21Þ

Note that we used trD ¼ 0 for the isotropic part of stress. Equation (5.21) implies
that the second law holds irrespective of Wp. Hence, we can set

Wp ¼ 0 ð5:22Þ

If the plastic deformation rate is proportional to the extra stress, then the inequality
holds. More general form of the plastic deformation rate tensor may be

Dp ¼ M : T0 ¼ Lp ð5:23Þ

where M is a positive definite fourth-order tensor. As simpler form, we consider

Dp ¼ b1 Ĉ� 1
3
IĈI


 �
� b2 Ĉ

�1 � 1
3
I
Ĉ

�1I

 �

ð5:24Þ

where b1 and b2 are functions of the principle invariants of the conformation tensor:

bk ¼ bk IĈ; IĈ�1


 �
ð5:25Þ
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The simplest one may be

Dp ¼ 1
4kL

Ĉ� 1
3
IĈI

� �
� Ĉ

�1 � 1
3
I
Ĉ

�1I
� �� 

ð5:26Þ

Now, we shall move to the evolution equation of the conformation tensor.
Equation (5.11) can be rewritten as

Ĉ
r
þLp � Ĉþ Ĉ � LT

p ¼ 0 ð5:27Þ

Here, we used Le ¼ L� Lp. Since Lp ¼ Dp and Eq. (5.24) means that

Dp � Ĉ ¼ Ĉ � Dp, the evolution equation of the conformation tensor can be rewritten
as

Ĉ
r
þ 2Ĉ � Dp ¼ 0 ð5:28Þ

The Leonov model is not a single constitutive equation. The model can have
various ramifications depending on how plastic deformation rate tensor and stress
are modeled.

5.2 Thermodynamic Analysis of Other Models

It is interesting that the Leonov, the spring-dumbbell, and the PTT models can with
n ¼ 0 be expressed by the common form such that

Ĉ
r
þ 1

k
Ŝ Ĉ

 �

¼ 0 ð5:29Þ

and

T ¼ 2qĈ � @f
@Ĉ

ð5:30Þ

Here, SðĈÞ is a tensor-valued function of the conformation tensor. Because of
Eq. (5.30), these models may be called the Maxwellian fluid models.
Equations (5.29) and (5.30) are called the canonical equations. The Leonov model
itself was derived in the form of the canonical equation:

1
k
Ŝ Ĉ

 �

¼ 2Ĉ � Dp ð5:31Þ
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We shall find the condition that the Maxwellian fluids satisfy Eq. (5.16). With
the help of Eqs. (5.29) and (5.30), we have

T : D� q
df
dt

� �
¼ q

k
tr

@f

@Ĉ
� Ŝ

� �

 0 ð5:32Þ

Various models have the free energy of

q f ¼ G
2
IĈ ð5:33Þ

Then, the second law becomes

tr ðŜÞ
 0 ð5:34Þ

As for the PTT model with n ¼ 0, we know that

Ŝ ¼ / Ĉ� I

 �

with/ IĈ
� �

[ 0 ð5:35Þ

If IĈ 
 3, the PTT model with n ¼ 0 satisfies the second law.

Problems 5

[1] Derive Eq. (5.17).
[2] Find ŜðĈÞ of the Giesekus and the PPT models with n ¼ 0.
[3] Derive Eq. (5.32)
[4] Consider the nonlinear viscoelastic models: the separable K-BKZ, the

Giesekus, the PTT, and the Leonov models. Using these models, explain why
experimental data (Laun 1978) show the time–temperature superposition such
that

g _c; Tð Þ
aT

¼ fg aT _cð Þ; w1 _c; Tð Þ
a2T

¼ fw1
aT _cð Þ ð5:aÞ

Note that Eq. (5.a) assumes bT ¼ 1.
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Chapter 11
Large Amplitude Oscillatory Shear

Abstract This chapter includes a short review of large amplitude oscillatory shear
(LAOS), the details on the analysis methods for LAOS, and the fluid mechanics of
LAOS. The first section is the short review of LAOS. The second one deals with
analysis methods for the interpretation of LAOS data such as FT-rheology and
stress decomposition. The third one introduces how to calculate the analytical
solution of LAOS for various constitutive models and the problems involved in the
analytical solutions. The last one introduces semi-analytical method for LAOS
which is a trial to overcome the limitation of the analytical approaches.

One of the most important themes in polymer rheology is to identify polymeric
materials through rheological measurements. For the identification, the measure-
ment must be precise, reproducible, and convenient. Furthermore, the measurement
must be able to provide plentiful information of material. Large amplitude oscil-
latory shear (LAOS) is one of the most powerful methods of rheological mea-
surement from the viewpoint of these conditions. Although LAOS is very similar to
its linear version small amplitude oscillatory shear (SAOS), it can provide the
information of nonlinear viscoelasticity of polymers.

1 Introduction to LAOS

1.1 Phenomenology of LAOS

Consider a usual dynamic experiment of linear viscoelasticity. To determine the
linear regime, a strain sweep test is used at a fixed frequency with varying strain
amplitude if strain-controlled rheometer is available. As shown in Fig. 4 in Chap. 5,
the storage modulus provided from the rheometer software decreases as strain
amplitude increases although the storage modulus remains constant in the region of
low strain amplitude. The region of low strain amplitude is called SAOS, while
LAOS is the region of strain amplitude where linearity does not hold any more.
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Although stress as a function of time is sinusoidal just as the strain given as the
input, the stress signal of LAOS is no longer sinusoidal.

One may apply Fourier analysis to the shear stress signal of LAOS and obtain
Fig. 1 which implies that

rðtÞ ¼
X1
n¼0

I2nþ 1 co;xoð Þ sin 2nþ 1ð Þxotþ d2nþ 1 co;xoð Þ½ � ð1:1Þ

where co and xo are, respectively, the amplitude and the angular frequency of
applied strain: cðtÞ ¼ co sinxot: This phenomenon gives rise to several questions.

[1] Why are only odd harmonics dominant?
[2] What are the mechanical meanings of I2nþ 1 and d2nþ 1?
[3] How can we determine these material functions from experimental data?
[4] How can we use the information from LAOS in the identification of polymeric

materials?

These questions will be answered in this chapter.
Figure 4 in Chap. 5 is not unique LAOS behavior of polymeric fluids. Hyun

et al. (2002) found that dynamic moduli of some materials increase as strain
amplitude as shown in Fig. 2. They classified LAOS behaviors of polymeric fluids
to four types and specified structural origins. Figure 2 is a representative example
which inspired many researchers to find a rheological fingerprint of structures of
complex fluids. Such fingerprints may give only qualitative analysis. However, we
need quantitative methods for the analysis of LAOS behavior to identify complicate
structure of polymeric materials which cannot be unveiled by any linear viscoelastic
identification.

1.2 Overview of LAOS Research

1.2.1 Data Acquisition and Rheometers

To the author’s knowledge, Payne (1962) might be the first researcher who studied
LAOS. From 1960 to 1990s, a lot of experimental researches have done for
polymeric materials. Historical survey is well summarized in the review paper of
Hyun et al. (2011). When Pilippoff (1966) measured LAOS, stress and strain data
were treated in an analog way: use of oscilloscope. He recognized the increase of
third harmonic response using of an analog computer which was replaced by a
digital computer long time ago. Although an analog instrument gives graphical
output such as Lissajous–Bowditch loop (LB loop), quantitative analysis has been
done by Matsumoto et al. (1973) in analog age. Even after the birth of a digital
computer, digital data acquisition was not popular in early 1990s. Giacomin and
Oakley (1993) developed a numerical method to obtain Fourier series from the
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Lissajous–Bowditch loop. Before the use of analog-to-digital converter (AD con-
verter) in earnest, Lissajous–Bowditch loop, plot of stress versus strain or plot of
stress versus strain rate, has been the major tool of LAOS analysis (Giacomin et al.
1989; Tee and Dealy 1975).

Invent of AD converter made quantitative analysis of LAOS easier. Wilhelm and
coworkers (Van Dusschoten et al. 2001; Wilhelm et al. 1998, 1999, 2000) opened a
new era of LAOS research by adopting AD converter technology which acquits a
long time series of stress data.

In 1960s and 1970s, LAOS of high-viscosity fluids such as molten polymers was
very difficult to measure. This problem was firstly tried to break by Giacomin et al.
(1989). Progress in rotational rheometer also contributed to the measurement of
high-viscosity fluids. Nowadays, LAOS measurements can be conducted easily
using of strain-controlled rheometers. Rotational rheometer becomes the main
rheometer for LAOS after the work of Wilhelm and coworkers. Recently Läuger
and Stettin (2010) showed the possibility of the use of stress-controlled rheometer.
This is due to the progress in electric control. However, stress-controlled rheometer
suffers from an inertia problem which becomes significant as stress amplitude
increases. The work of Cho and coworkers (Bae et al. 2013) may be the support to
the work of Läuger and Stettin.

1.2.2 Analysis Methods

As mentioned before, the main analysis method for LAOS data was Lissajous–
Bowditch loop before the use of AD converter. Use of AD converter made Fourier
analysis become the main tool of LAOS analysis (van Dusschoten et al. 2001;
Neidhöfer et al. 2003; Sim et al. 2003; Wilhelm et al. 1998, 1999, 2000). Hence, the
word “Fourier Transform Rheology (FT-Rheology)” was born.

Although Fourier transform must be an effective method for quantitative analysis
of LAOS, it has a distance from mechanics. Mechanistic analysis could be done
after the stress decomposition (SD) method developed by Cho et al. (2005). Stress
decomposition is to decompose the shear stress of LAOS into elastic, and viscous
parts just as the shear stress of SAOS can be decomposed to elastic and viscous
parts. Cho and coworkers (Kim et al. 2006) showed that SD is mathematically
equivalent to FT-rheology. Ewoldt et al. (2008) introduced Chebyshev polynomial
to LAOS analysis. Chebyshev polynomial is a natural way to connect SD with
FT-rheology. Yu et al. (2009) generalized SD to normal stress of LAOS. Hyun and
Wilhelm (2009) invented a nonlinear material function named Q from the experi-
mental observation that I3=I1 is proportional to the square of strain amplitude. They
applied this material function to identify branched polymers.

Principle of stress decomposition can be applied to stress-controlled rheometer
through a little bit modification. Such modification can be called strain decompo-
sition. Application of strain decomposition was studied by Cho and coworkers (Bae
et al. 2013) and Ewoldt and coworkers (Dimitriou et al. 2013; Ewoldt and
Bharadwaj 2013; Ewoldt 2013).
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LAOS measurement is limited in the ranges of both frequency and strain
amplitude. Cho et al. (2010) invented an empirical scaling relation which is com-
parative with time–temperature superposition. The scaling relation is that dimen-
sionless LAOS variables follow strain-frequency superposition (SFS). This scaling
is expected to extend the ranges of frequency and strain. Wyss et al. (2007) sug-
gested similar scaling relations called strain-rate frequency superposition (SRFS)
which plays a similar role.

Rogers et al. (2011) suggested a new qualitative analysis (sequence of physical
processes: SPP) which is effective for a yield stress fluid. Rogers (2012) developed
this qualitative analysis further by combining differential geometric considerations.

1.2.3 Fluid Mechanics of LAOS

If a constitutive equation is proper, then the calculation of the LAOS behavior of
the model should agree with experimental data. Such model calculation must be
helpful to understand LAOS behavior of complex fluids. There are two efforts of
fluid mechanics of LAOS: numerical simulation and analytical solution.

As for the efforts to find analytical solution of LAOS, Pearson and Rochefort
(1982) and Helfand and Pearson (1982) calculated an analytical solution of LAOS
for the Doi–Edwards model. Giacomin et al. (2011) calculated analytical solution of
LAOS for the co-rotational Maxwell model and Gurnon and Wagner (2012) for the
Giesekus model. However, these approaches are limited to 3rd-order harmonics. An
exceptional case is the co-rotational Maxwell model. Giacomin and coworkers
(2015) succeeded in the calculation of the exact analytic solution for the
co-rotational Maxwell model. Hence, the analytical solutions can be applied to
middle range of strain amplitude. Such range is called middle amplitude oscillatory
shear (MAOS). Furthermore, such an approach is too complicated and requires
tedious perturbation calculation. Bae and Cho (2015) developed a semi-analytical
method to extend applicable range of strain amplitude. A similar approach was
done by Giacomin and coworkers (2015). They derived Pade approximants from
the exact analytical solution of the co-rotational Maxwell model. As the low fre-
quency limit, Bharadwaj and Ewoldt (2014) calculate the analytical solution for the
fourth-order Rivlin–Ericksen fluid.

Since an analytical solution cannot be obtained for all nonlinear constitutive
equations and such calculation is based on the assumption of spatially homoge-
neous stress, numerical simulation has been investigated for various models (Calin
et al. 2010; van Dusschoten et al. 2001; Hyun et al. 2013; Isayev and Wong 1988;
Sim et al. 2003; Wagner et al. 2011).

In simple shear flow, normal stress difference is an obvious evidence of non-
linear viscoelasticity. However, it is rare to find literatures on normal stress of
LAOS (Nam et al. 2008, 2010).
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1.2.4 Applications to Material Characterization

LAOS methodology becomes popular in various fields of material characteriza-
tions. Nonlinear architecture of polymer chain or long chain branching is found in
Hyun et al. (2006, 2007), Kempf et al. (2013), Vittorias et al. (2007). Applications
to yield stress fluid are found in Boisly et al. (2014), Ewoldt et al. (2010).
Applications to other materials are found in Gong et al. (2012), Lim et al. (2013), Li
et al. (2009), Papon et al. (2012), Park and Song (2010), Senses and Akcora (2013),
and Salehiyan et al. (2014). Applications to colloidal systems are found in Renou
et al. (2010), Swan et al. (2014).

2 Methods of Analysis

2.1 FT-Rheology

Consider material as a black box. When a sinusoidal strain is given as an input,
measured stress is the response of the black box. Since the input is sinusoidal with a
period of P, the output becomes a periodic function with constant amplitude and the
same period P after sufficiently long time when the transient effect disappears.
When transient effect disappears completely, we call the state stationary one. Note
that since the material is still excited periodically, the stationary output remains a
function of time.

2.1.1 Fourier Series and Fourier Transform

The stress as a function of time does not have to be a sinusoidal function. If the
stress is sinusoidal, then the material is linear. If the stress is not sinusoidal, then the
material is nonlinear.

If a function f ðtÞ is a periodic function whose period is P, then the following
Fourier series converges to the function:

f ðtÞ ¼ a0
2

þ
X1
k¼1

ak cos
2kpt
P

þ
X1
k¼1

bk sin
2kpt
P

ð2:1Þ

where

ak ¼ 2
P

ZcþP

c

f ðtÞ cos 2kpt
P

dt; bk ¼ 2
P

ZcþP

c

f ðtÞ sin 2kpt
P

dt k ¼ 0; 1; 2; . . . ð2:2Þ
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where c is an arbitrary real number. Note that if the angular frequency of strain
input is xo, then P ¼ 2p=xo. Consider the application of this theorem to LAOS, we
have

rðtÞ ¼ r0
0

2
þ

X1
k¼1

r0
k cos kxotþ

X1
k¼1

r00
k sin kxot ð2:3Þ

or

rðtÞ ¼ r0
0

2
þ

X1
k¼1

rk sin kxotþ dkð Þ ð2:4Þ

where

rk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0
k

� �2 þ r00
k

� �2q
ð2:5Þ

and

tan dk ¼ r0
k

r00
k

ð2:6Þ

Application of Fourier transform to Eq. (2.3) gives the train of the Dirac delta
functions such as

r̂ðxÞ ¼ pr0
0dðxÞþ p

X1
k¼1

r0
k d x� kxoð Þþ d xþ kxoð Þ½ �

� pi
X1
k¼1

r00
k d x� kxoð Þ � d xþ kxoð Þ½ � ð2:7Þ

Let the conjugate of r̂ðxÞ be denoted by r̂ xð Þ. If we define

ÎðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂ðxÞr̂ðxÞ

q
ð2:8Þ

then we have

ÎðxÞ
p

¼ r0
0

�� ��dðxÞþ X1
k¼1

rkd x� kxoð Þþ
X1
k¼1

rkd xþ kxoð Þ ð2:9Þ

Equation (2.9) implies that the plot of ÎðxÞ in the range of x[ 0 is the train of
spikes that have the intensity of Îk � prk at x ¼ kxo. Hence, Figs. 1b and 2 can be
understood mathematically.
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We call Ik the Fourier intensity of the kth harmonic. Figure 1b is the Fourier
intensity plot which shows only odd harmonics. To explain this, Wilhelm et al.
(1998) used a simple relation r ¼ gð _cÞ _c where viscosity gð _cÞ is an even function
of strain rate _c. This simple model implies that only odd harmonics appear in the
plot of ÎðxÞ. However, it is not general. The reason of disappearance of even
harmonics could be proved by the stress decomposition theory (Cho et al. 2005).

AD converter recodes stress as a time series rk ¼ r kDtð Þþ ek with
k ¼ 0; 1; . . .;Ndata. Here, Δt is the interval of sampling time and ek is the experi-
mental error at the kth sampling time. Modern instrument technology gives the
order of Δt submillisecond. Application of discrete Fourier transform is available to
the stress data. Even if no error is assumed, such discrete Fourier transform leaves
numerical error. The numerical error decreases as the number of data. The ratio of
signal to noise should be maximized by taking long observation time
tmax ¼ NdataDt. It should be notified that the initial time of data acquisition to ¼ 0 is
the time when the transition effect fades away sufficiently. Although fast Fourier

Fig. 1 Measured stress
response (a) and its
normalized amplitude of
Fourier transform (b). This
graph is Fig. 2 of Wilhelm
et al. (1998)
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transform (Chap. 6) is very rapid, the LAOS investigation based on the FT-rheology
is time-consuming because it takes long experimental time.

2.1.2 Q-Variable

The supporters of FT-rheology prefer to use I3=1 � Î3
�
Î1 as an indicator of material

nonlinearity. Because Îk has the same dimension irrespective of k, I3=1 is a

dimensionless quantity. Note that Îk co;xð Þ must be a nonlinear quantity even for
k ¼ 1 if strain amplitude co is sufficiently high. Hyun and Wilhelm (2009) invented
Q-variable which is defined as

Q co;xð Þ ¼ I3=1 co;xð Þ
c2o

ð2:10Þ

Note that ω is the angular frequency of strain. This definition originated from the
tendency of Fourier intensity such that

Îk co;xð Þ / cko for co\cC ð2:11Þ

The critical strain amplitude cC depends on materials. Validity of Eq. (2.11) is
supported by a lot of experimental and computational results (Bae and Cho 2015;

Fig. 2 Four types of LAOS behavior. This figure is Fig. 9 of Hyun et al. (2002). a Strain thinning;
b strain hardening; c weak strain overshoot; d strong strain overshoot. This is the Fig. 9 of Hyun
et al. (2002)
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Cho et al. 2010; Gurnon and Wagner 2012; Hyun and Wilhelm 2009; Pearson and
Rochefort 1982).

Since Q co;xð Þ becomes a function of only frequency as strain amplitude
decreases, Hyun and Wilhelm (2009) defined a material function of frequency such
that

QoðxÞ � lim
co!0

Q co;xð Þ ð2:12Þ

The definition of Qo has given rise to a warm debate that Qo is a linear quantity
rather than an indicator of nonlinearity. Stress decomposition and SFS (Cho et al.
2010) implies that

QoðxÞ ¼ Ho cos2 dðxÞ ð2:13Þ

where dðxÞ is the phase angle of linear viscoelasticity:

tan d xð Þ ¼ G00 xð Þ
G0 xð Þ ð2:14Þ

However, the proportional coefficient Ho cannot be determined by any linear
viscoelastic test. Wagner et al. (2011) showed that

Ho / a� b ð2:15Þ

where α and β are nonlinear material parameters of the molecular stress function
model (MSF model) (Wagner et al. 2001). This result clarifies the nonlinearity
feature of Qo.

Wilhelm, Hyun, and their coworkers have published a number of papers using
Qo for material characterization. However, it is questionable how convenient and
precise Qo is. In order to determine QoðxÞ, one must do a lot of LAOS experiments
with varying frequency and strain amplitude. The main objective of the LAOS tests
is to determine I1 and I3, which takes a long measurement time to reduce the noise
effect in FFT. As shown in Eq. (2.13), nonlinear information is concentrated on the
proportional constant Ho which cannot separately determine α and β. If the fre-
quency dependence of Qo is tried to characterize material, then Eq. (2.13) implies
that linear viscoelasticity can play the same role.

2.2 Stress and Strain Decomposition

2.2.1 Symmetry Analysis

If a material is under stationary state of oscillatory simple shear, then the shear
stress must be a function of strain and its time derivatives:
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rðtÞ ¼ S cðtÞ; dc
dt

;
d2c
dt2

; � � �
� �

ð2:16Þ

Since strain is a sinusoidal function with frequency of ω, it is obvious that

dnc
dtn

¼ ð�1Þkx2kcðtÞ for n ¼ 2k
ð�1Þkx2k _cðtÞ for n ¼ 2kþ 1

	
with k ¼ 0; 1; 2; . . . ð2:17Þ

Since only two functions cðtÞ and _cðtÞ ¼ dc=dt are independent, Eq. (2.16) can
be rewritten by

rðtÞ ¼ r cðtÞ; _cðtÞð Þ ð2:18Þ

Similar reasoning can be applied to the normal stress of LAOS:

NðtÞ ¼ N cðtÞ; _cðtÞð Þ ð2:19Þ

From the symmetry analysis, we had Eq. (1.27) in Chap. 10. Application of Eq.
(1.27) in Chap. 10 gives

rðc; _cÞ ¼ �rð�c;� _cÞ ð2:20Þ

and

N c; _cð Þ ¼ N �c;� _cð Þ ð2:21Þ

Any function can be decomposed into odd and even parts. Hence, we have

rðt) ¼ rOE(t)þrEO(t) ð2:22Þ

where

rOE(t) ¼ r c; _cð Þþr c;� _cð Þ
2

; rEO(t) ¼ r c; _cð Þ � r c;� _cð Þ
2

ð2:23Þ

Similarly, we have

NðtÞ ¼ NEEðtÞþNOOðtÞ ð2:24Þ

where

NEEðtÞ ¼ N c; _cð ÞþN c;� _cð Þ
2

; NOOðtÞ ¼ N c; _cð Þ � N c;� _cð Þ
2

ð2:25Þ

The subscript OE means that the function is odd for the first argument and even
for the second. Subscript EO, EE, and OO can be interpreted similarly.
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The symmetry of Eq. (2.20) means that the Lissajous–Bowditch loop for σ and γ
has two points for a given γ. These two points correspond to ðc; _cÞ and c;� _cð Þ.
Hence, the stress rOE is the mean of the two stresses at the two deformation states
c; _cð Þ and c;� _cð Þ. If we gather the mean stresses for all strain �co � c� co, then
the locus implies that rOE is a single-valued function of γ. Similar discussion can be
done for rEO. Figure 3 shows the meaning of the decomposition of Eq. (2.23)
graphically. Since rOE is a single-valued function of γ and rEO is a single-valued
function of _c, it can be said that rOE is the elastic component and rEO is the viscous
component.

Stress decomposition can be explained algebraically. Assume that the function
of Eq. (2.18) allows the Taylor expansion for the two arguments. Then, we have

rðtÞ ¼
X1
m¼0

X1
n¼0

gmnðxÞcmðtÞ _cnðtÞ ð2:26Þ

Note that the case of m ¼ n ¼ 0 should be excluded.
If the material is linear, then allowed indices are ðm; nÞ ¼ ð1; 0Þ and

ðm; nÞ ¼ ð0; 1Þ. As for linear viscoelastic material, we have

r tð Þ ¼ G0 xð Þ c tð Þþ G00 xð Þ
x

_c tð Þ ð2:27Þ

Obviously, we know that

G0 xð Þ ¼ g10 xð Þ; G00 xð Þ ¼ x g01 xð Þ ð2:28Þ

Equation (2.27) means that elastic component is a linear odd function of strain
and viscous component is a linear function of strain rate.

The symmetrical constraint of Eq. (2.20) implies that the exponents of Eq. (2.26)
should satisfy the condition that mþ n must be odd. The condition for exponent is

(a) (b) (c)
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.

Fig. 3 Schematic illustration of stress decomposition: a stress wave; b the Lissajous–Bowditch
loop of stress and strain; c the Lissajous–Bowditch loop of stress and strain rate. All quantities are
normalized. The lines of (b) and (c) are, respectively, σOE and σEO
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divided to two cases: (Bharadwaj and Ewoldt 2014) m is odd and n is even; (Bae
and Cho 2015) m is even and n is odd.

Since strain is sinusoidal, we know that

c2 þ _c
x


 �2

¼ c2o ð2:29Þ

Equation (2.29) allows us to use the following conversions:

_c2kðtÞ ¼ x2k c2o � c2ðtÞ�  k
; c2k ¼ c2o �

_cðtÞ
x2

� � 2

ð2:30Þ

Then, Eq. (2.26) can be decomposed to two parts:

rðtÞ ¼
X1
k¼0

GE
2kþ 1 co;xð Þc2kþ 1ðtÞþ

X1
k¼0

GV
2kþ 1 co;xð Þ
x2kþ 1

_c2kþ 1ðtÞ ð2:31Þ

Note that GE
2kþ 1 and GV

2kþ 1 can be determined from gmnðxÞ. Since the
decomposition of Eq. (2.22) is unique, we know that

rOE ¼
X1
k¼0

GE
2kþ 1 co;xð Þc2kþ 1ðtÞ; rEO ¼

X1
k¼0

GV
2kþ 1 co;xð Þ
x2kþ 1

_c2kþ 1ðtÞ ð2:32Þ

2.2.2 Numerical Method for SD

Suppose that we have LAOS data measured at fixed frequency and strain amplitude.
It is a reasonable assumption that the truncated series of Eq. (2.31) could be a good
approximation. Then, the determination of the coefficients G0

2kþ 1 and G00
2kþ 1 can be

done by a polynomial regression. For symmetrical notation, Cho et al. (2005) used
notation such that

xðtÞ ¼ cðtÞ; yðtÞ ¼ _cðtÞ
x

; zðtÞ ¼ rðtÞ ð2:33Þ

This notation gives

r �
XN
k¼0

GE
2kþ 1x

2kþ 1 þ
XN
k¼0

GV
2kþ 1y

2kþ 1 ð2:34Þ

We have learned that when N is not much large, simple polynomial regression is
effective. However, if we want to know high harmonics, then orthogonal polyno-
mial should be used:
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r ¼
XN
k¼0

s02kþ 1 co;xð ÞT2kþ 1ð~xÞþ
XN
k¼0

s002kþ 1 co;xð ÞT2kþ 1ð~yÞ ð2:35Þ

where

~x ¼ xðtÞ
co

¼ cðtÞ
co

; ~y ¼ yðtÞ
co

¼ 1
cox

dc
dt

ð2:36Þ

Since we have the data set of ðx;rÞ, it is not difficult to extend the data set to
~x;~y;rð Þ. Detained description of the polynomial regression is found in Appendix C
of Cho et al. (2010) as well as in Sect. 1 of Chap. 6.

2.2.3 Equivalence to FT-Rheology

If cðtÞ ¼ co sin xt, then it is obvious that ~x ¼ sin xt and ~y ¼ cos xt. As for
odd-order Chebyshev polynomial, the following identities hold:

T2kþ 1ðcos x tÞ ¼ cos 2kþ 1ð Þxt½ � ; T2kþ 1ðsin xtÞ ¼ ð�1Þk sin 2kþ 1ð Þxt½ �
ð2:37Þ

Using Eqs. (2.35) and (2.37), we get

r ¼
XN
k¼0

ð�1Þks02kþ 1 sin 2kþ 1ð Þxt½ � þ
XN
k¼0

s002kþ 1 cos 2kþ 1ð Þxt½ �

¼
XN
k¼0

I2kþ 1 sin 2kþ 1ð Þxtþ d2kþ 1½ � ð2:38Þ

where

I2kþ 1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s022kþ 1 þ s0022kþ 1

q
ð2:39Þ

and

s02kþ 1 ¼ �1ð ÞkI2kþ 1cos d2kþ 1; s002kþ 1 ¼ I2kþ 1sin d2kþ 1 ð2:40Þ

Chebyshev polynomial proves the equivalence between SD and FT-rheology.
Although this equivalence was recognized first by Kim et al. (2006), Ewoldt et al.
(2008) introduced Chebyshev polynomial firstly to LAOS analysis.
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2.2.4 Geometry of LAOS

The notation of Eq. (2.33) implies that Eq. (2.27) is the equation for the flat plane in
the three-dimensional space of ðx; y; zÞ. For a fixed frequency, collecting LAOS
data with various strain amplitudes forms a curved surface in the three-dimensional
space. Equation (2.18) is the surface equation. Cho et al. (2005) invented 3D LAOS
plot which is a 3D locus of stress at constant frequency and strain amplitude as
shown in Fig. 4.

The 3D LAOS plot explains why the Lissajous–Bowditch loop has such various
shapes depending on the frequency and strain amplitude. We call the Lissajous–
Bowditch loop for σ–x elastic LB loop and that for σ–y viscous LB loop. As shown
in Fig. 4, the elastic Lissajous–Bowditch loop is the projection of 3D LAOS plot on
the plane of σ–x and viscous one is the projection of 3D LAOS plot on the plane of
σ–y. The projection on the plane of x–y is the circle of radius of co.

It is noteworthy that the viscous LB loop of PEO aqueous solution of Fig. 4
shows secondary loop. The secondary loop implies the existence of self-intersection
points. A study on the secondary loop and self-intersection points is found in
(Ewoldt and McKinley 2010). Such phenomena are found not only in experimental
data but also numerical simulation of nonlinear viscoelastic models. Ewoldt and
McKinley derived the condition for the self-intersection points:

rEOðyÞ ¼ 0 and y 6¼ 0 for elastic LB loop
rOEðxÞ ¼ 0 and x 6¼ 0 for viscous LB loop

ð2:41Þ

(a) (b)

Fig. 4 3D LAOS plot and its geometrical meaning. a 3D LAOS plots of various strain amplitude
forms the stress surface. b The projection of 3D LAOS plot on the plane of σ–x is the elastic
Lissajous–Bowditch loop, the projection on the plane of σ–y is the viscous Lissajous–Bowditch
loop, and the projection of the plane of x–y is the circle whose radius is the strain amplitude. When
strain amplitude belongs to linear regime, the collection of 3D LAOS plots forms a flat plane
whose normal vector is proportional to G0;G00; 1ð Þ. The polymeric fluid of the data is PEO aqueous
solution [molecular weight is 1000 kg/mol and concentration is 7 wt% (Cho et al. 2010)]
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The existence of secondary loop is thought as the indicator of strong nonlinearity
(Ewoldt and McKinley 2010). However, it is forthcoming to unveil the relation
between the secondary loop and structural features of complex fluids.

2.2.5 Elastic and Viscous Stresses

Stress decomposition theory decomposes shear stress into rOE and rEO. Because
rOE is a single-valued function of strain and rEO is a single-valued function of
strain rate, can we call rOE elastic stress and rEO viscous stress? Of course, these
are parts of the conditions of elastic and viscous stresses. We shall show more
evidence.

In an oscillatory simple shear flow, the stress power is given by

tr T � Dð Þ ¼ tr
r _c
2

e1e1 þ e2e2ð Þ
� �

¼ r _c ð2:42Þ

It is interesting that normal stress does not contribute to stress power. From
Eq. (2.53) in Chap. 2, stress power is related to the time derivative of internal
energy:

q
du
dt

¼ �r � qþ q rþ r _c ð2:43Þ

Assumption of spatial homogeneity of internal energy gives

qDuðtÞ ¼ HT þ uE xðtÞ½ � � uE x toð Þ½ � þ
X1
k¼0

GV
2kþ 1 co;xð Þ
x2kþ 1

Z t

to

dc
dt

dc
dt


 �kþ 1

dt

ð2:44Þ

where Du ¼ u to þ 2p=xð Þ � u toð Þ, HT is the term due to heat transfer and

duE
dx

¼ rOE xðtÞ½ � ð2:45Þ

If t � to ¼ 2p=x, then the term rOE disappears because of the periodicity of
strain and we have

qDu ¼ p
2

X1
k¼0

2kþ 2ð Þ!
22k kþ 1ð Þ! kþ 1ð Þ!G

V
2kþ 1 co;xð Þc2 kþ 1ð Þ

o þHT ð2:46Þ

If there is no change of internal energy, then the first term of the right-hand side
of Eq. (2.46) is canceled by the heat transfer term, HT. This means that the work
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done by rEO dissipates through heat transfer. Because of this, one may call rEO

viscous stress.
Cho et al. (2010) calculated rOE and rEO for the separable K-BKZ model. The

shear stress of the K-BKZ model is given by

rðtÞ ¼
Z t

�1
l t � sð Þh C t; sð Þ½ �C t; sð Þds ð2:47Þ

where lðtÞ is the memory function, hðxÞ is the damping function, and

Cðt; sÞ ¼ cðtÞ � cðsÞ ¼ co sinxt � sinxsð Þ ð2:48Þ

Since damping function is an even function, we can use

hðcÞ ¼
X1
k¼0

h2kc
2k ð2:49Þ

Substitution of Eqs. (2.48) and (2.49) to Eq. (2.47) yields

rðtÞ ¼
X1
n¼0

Xn
k¼0

h2nc
2nþ 1
o A2nþ 1

2kþ 1ðxÞ~x2kþ 1ðtÞþB2nþ 1
2kþ 1ðxÞ~y2kþ 1ðtÞ�  ð2:50Þ

Note that

A2nþ 1
2kþ 1 xð Þ ¼

X2nþ 1

m¼1

pmn;kG
0 mxð Þ; B2nþ 1

2kþ 1 xð Þ ¼
X2nþ 1

m¼1

qmn;kG
00 mxð Þ ð2:51Þ

where pmn; k and qmn; k are rational numbers. Some examples of A2nþ 1
2kþ 1 and B2nþ 1

2kþ 1 are

A1
1 xð Þ ¼ G0 xð Þ; B1

1 xð Þ ¼ G00 xð Þ; ð2:52aÞ

A3
1 xð Þ ¼ 3

4
G0 xð Þþ 2G0 2xð Þ � G0 3xð Þ½ �;

A3
3 xð Þ ¼ 3G0 xð Þ � 3G0 2xð ÞþG0 3xð Þ;

B3
1 xð Þ ¼ 3

4
5G00 xð Þ � 4G00 2xð ÞþG00 3xð Þ½ �;

B3
3 xð Þ ¼ �3G00 xð Þþ 3G00 2xð Þ � G00 3xð Þ ð2:52bÞ

Equation (2.50) implies that rOE contains only storage modulus, while rEO

contains only loss modulus. This calculation supports that rOE and rEO are elastic
and viscous stresses, respectively.
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A similar approach can be applied to the first normal stress difference. Note that
for the K-BKZ model, we know that

N1ðtÞ ¼
Z t

�1
l t � sð Þh C t; sð Þ½ �C2 t; sð Þds ð2:53Þ

We can decompose the first normal stress difference as follows

NEE ¼
X1
k¼0

Xk
p¼0

h2kC
2kþ 2
2pþ 2ðxÞc2kþ 2

o T2pþ 2ð~xÞ;

NOO ¼ ~x~y
X1
k¼0

Xk
p¼0

h2kD
2kþ 2
2pþ 2ðxÞc2kþ 2

o T2pþ 2ð~xÞ ð2:54Þ

where

�C2kþ 2
2nþ 2 xð Þ ¼

X2kþ 2

m¼1

cmk; nG
0 mxð Þ; �D2kþ 2

2nþ 2 xð Þ ¼
X2kþ 2

m¼1

dmk; nG
00 mxð Þ ð2:55Þ

Note that cmk; n and dmk; n are rational numbers. It is interesting that NEE contains
only storage modulus, while NOO contains only loss modulus. Since dissipation
analysis seems not to be applied to NEE and NOO, it is difficult to insist that NEE is
elastic and NOO is viscous.

2.2.6 Strain Decomposition

For linear viscoelasticity, we know that the shear stress can be expressed by

rðtÞ ¼ G0ðxÞ cðtÞþ G00ðxÞ
x

d c
dt

¼ G0ðxÞ xðtÞþG00ðxÞ yðtÞ � nðsÞ ð2:56Þ

Differentiation gives

wðtÞ � 1
x
dr
dt

¼ �G00ðxÞ xðtÞþG0ðxÞyðtÞ ð2:57Þ

Solving Eqs. (2.56) and (2.57), we have

cðtÞ ¼ J 0 xð ÞnðtÞ � J 00 xð ÞwðtÞ; yðtÞ ¼ J 00 xð ÞnðtÞþ J 0 xð ÞwðtÞ ð2:58Þ

This agrees with the calculation using the Boltzmann superposition principle.
Then, we can assign elastic and viscous strain by
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cE tð Þ ¼ cOE tð Þ ¼ J 00 xð Þr tð Þ; cV tð Þ ¼ cEO tð Þ ¼ J 00 xð Þ
x

dr
dt

ð2:59Þ

Just like shear stress, shear strain generated by oscillatory shear stress follows
the symmetry:

c �r;� dr
dt


 �
¼ �c r;

dr
dt


 �
ð2:60Þ

Then, we can decompose nonlinear shear strain as follows

cðtÞ ¼ cOE � cEO ð2:61Þ

where

cOE ¼ c r; _rð Þþ c r;� _rð Þ
2

; cEO ¼ � c r; _rð Þ � c r;� _rð Þ
2

ð2:62Þ

Here, we change the sign of cEO in order to make Eq. (2.61) agree with
Eq. (2.58). Then, the analysis done for LAOS data of strain-controlled rheometer
can be applied to the LAOS data of stress-controlled rheometer. However, it is not
easy to find the inversion from strain to stress or vice versa, which can be done for
linear viscoelasticity as shown in Eq. (2.58).

Consider the case that stress is given by r ¼ ro sinxt. Then, we can find that

cOE �
XN
k¼0

J 02kþ 1 ro;xð Þr2kþ 1ðtÞ; cEO �
XN
k¼0

J 002kþ 1 ro;xð Þ
x2kþ 1

dr
dt


 �2kþ 1

ð2:63Þ

If LAOS data are obtained from an ideal stress-controlled rheometer which is
free from machine inertia, then we can determine J 02kþ 1 and J 002kþ 1. Assume that we
can generate this strain signal in strain-controlled rheometer. Then can the stress
response be r ¼ ro sinxt? Bae et al. (2013) tested this for the third harmonic
approximation and found that when inertia effect is negligible (maybe MAOS), the
stress measured from strain-controlled rheometer is nearly sinusoidal. It is difficult
to extend this experiment to sufficiently high stress amplitude because of both
inertia effect and the limitation of the software equipped in commercial
strain-controlled rheometer (ARES™). What Bae et al. want to prove is the exis-
tence of the functional relation:

co sinxt ¼ S�1 rðtÞ; dr
dt

;
d2r
dt2

; � � �
� �

ð2:64Þ

where rðtÞ is a nonsinusoidal periodic function which can be obtained for
Eq. (2.16) when cðtÞ ¼ co sinxt is substituted to Eq. (2.16).
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It is interesting and concise naming to call the LAOS with strain as input
LAOStrain and to call the LAOS with stress as input LAOStress (Ewoldt and
Bharadwaj 2013). We shall use the terminology of Ewoldt and Bharadwaj.
Compared with LAOStrain, LAOStress is not still practical because of the inertia
problem. We need a theory to extract pure material property from the raw data of
LAOStress.

2.3 Scaling Theory of LAOS

2.3.1 Basics

When the input of LAOS is restricted to a sinusoidal function of time, all material
functions of the LAOS are functions of frequency and input amplitude. Since we
shall consider only LAOStrain, any material function can be expressed byP co;xð Þ.
It is a two-variable function. As for linear viscoelasticity, time–temperature
superposition makes the two-variable functions of linear viscoelasticity to
single-variable functions. Cho et al. (2010) thought that there may be a scaling rule
such that

~P � P co;xð Þ
PlinearðxÞ ¼

~f ðfÞ ð2:65Þ

where P co;xð Þ is a LAOStrain material function, PlinearðxÞ is the linear counter
part of P co;xð Þ with the same dimension and ζ is a function of both strain
amplitude and frequency. Cho et al. (2010) found that the scaling function is the
product of strain amplitude and function of frequency such as

f ¼ co cos d xð Þ ¼ G0 xð Þ
G0 xð Þ½ � 2 þ G00 xð Þ½ � 2 co ð2:66Þ

Cho et al. (2010) thought that ζ must be the product of strain amplitude and a
dimensionless function of frequency. They tried to find such dimensionless function
of frequency among linear viscoelastic function. Most possible candidates are tanδ,
cosδ, and sinδ. They found that only cosδ satisfies the superposition. Their scaling
rule is found valid for most LAOStrain material functions (Cho et al. 2010, 2015)
and for some LAOStress material functions (Bae et al. 2013). We shall call this
scaling strain-frequency superposition (SFS).

Similar thought was done by Weitz and coworkers (2007). Their scaling is called
strain-rate frequency superposition (SRSF). They measured dynamic moduli at
fixed frequency with varying strain amplitude up to LAOS regime. They considered
storage and loss modulus as a functions of frequency and strain rate amplitude
_co � cox. SRFS is expressed by
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G0 co;xð Þ
a _coð Þ ¼ C0 x

b _coð Þ
� �

;
G00 co; xð Þ

a _coð Þ ¼ C00 x
b _coð Þ

� �
ð2:67Þ

It must be noted that the definition of nonlinear dynamic moduli are not clear.
They used the dynamic moduli calculated from the software of commercial
rheometer when strain sweep test is assumed. Shift factors a _coð Þ and b _coð Þ were
determined by the optimized superposition without any underlying theory. It is
interesting that they guessed that

G0 xð Þ � C0 xð Þ; G00 xð Þ � C00 xð Þ ð2:68Þ

This daring assumption was tested by rheologists. Erwin et al. (2010) found that
C0ðxÞ and C00ðxÞ do not satisfy the Kramers–Kronig relation which must be obeyed
if the new dynamic moduli are genuine linear dynamic moduli (see Sect. 4). In the
author’s opinion, the use of SRFS is not positive.

2.3.2 Scaling of Amplitudes of Elastic and Viscous Stresses

Cho et al. (2010) define nonlinear dynamic modulus as the ratio of the amplitudes
of elastic and viscous stresses to strain amplitude:

GE co;xð Þ � rmax
OE co;xð Þ

co
; GV co;xð Þ � rmax

EO co;xð Þ
co

ð2:69Þ

It must be noted that

lim
co!0

GE co;xð Þ ¼ G0 xð Þ; lim
co!0

GV co;xð Þ ¼ G00 xð Þ ð2:70Þ

Then, reduced amplitudes for elastic and viscous stresses are defined according
to Eq. (2.65) as follows:

~GE co;xð Þ ¼ GE co;xð Þ
G0 xð Þ ; ~GV co; xð Þ ¼ GV co;xð Þ

G00 xð Þ ð2:71Þ

These can be interpreted as dimensionless nonlinear dynamic moduli, too.
Figure 5 supports the assumption of Eq. (2.65) nicely. One may doubt that the

dimensionless dynamic moduli may also be superposed when ζ is replaced by cox
or co sin dðxÞ. However, such candidates failed the superposition. Of course, there
is no theoretical foundation for the validity of Eq. (2.66). Although Fig. 5 is the
superposition for PEO aqueous solution of 1000 kg/mol and 7 wt%, Cho et al.
(2010) found that SFS holds irrespective of concentration and molecular weight.
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They also found that all PEO solutions they used follow the empirical equation:

~GE ¼ exp k ~GV � 1
� �� 

; ~GV ¼ exp � f
fC


 �
ð2:72Þ

where k � 3 and fC � 5. Note that all PEO solutions are semi-dilute ones such that
c=ce [ 3. The second equation of Eq. (2.72) implies that f\ fC then nonlinearity is
negligible because ~GV � 1. If ~GV � 1, then the first equation also indicates ~GE � 1.
Hence, the plot of ~GE as a function of ~GV maps the whole linear regime to a single
point of (1, 1) in the plane of ~GV ; ~GE

� �
.

Figure 6 shows the validity of Eq. (2.72). The solid lines are Eq. (2.72). Note
that 400 K, 600 K, and 1 M denote molecular weights of PEO and the last numbers
after the molecular weight in the sample code denote the concentration ratio to
entanglement concentration. Hence, the scaling looks valid irrespective of con-
centration, molecular weight, frequency, and strain amplitude.
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Fig. 5 Dimensionless
nonlinear dynamic moduli as
functions of ζ show SFS. The
sample is PEO aqueous
solution (1M6.8). This figure
is Fig. 7 of Cho et al. (2010)
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Eq. (2.72). This figure is
Fig. 10 of Cho et al. (2010)
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2.3.3 Scaling of Fourier Intensities

Cho et al. (2010) found that SFS also holds for Fourier intensities. Since the
dimension of In is that of stress, we adopt the following normalization:

Jn co;xð Þ ¼ In co;xð Þ
G�ðxÞj jco

ð2:73Þ

As for PEO aqueous solution, J1 follows the same equation of N ¼ 3:

J1 co;xð Þ ¼ exp � f
fC


 �
with fC ¼ 5 ð2:74Þ

Figure 7 shows that SFS holds for J3 and J5, too. For these higher harmonics, we
observe

J2kþ 1 co;xð Þ ¼ J12kþ 1
f=f2kþ 1ð Þ2

1þ f=f2kþ 1ð Þ2 k ¼ 1; 2; . . . ð2:75Þ

It is interesting that the PEO aqueous solution 1M6.8 has f3 ¼ f5 ¼ 1. The lines
in Fig. 7 are Eqs. (2.74) and (2.75).

The supporters of FT-rheology prefer to use I3=1 rather than J3. Using Eqs. (2.74)
and (2.75), I3=1 can be expressed by

I3=1 ¼ J3
J1

¼ J13 ef=fC
f=f3ð Þ2

1þ f=f3ð Þ2 ð2:76Þ
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Fig. 7 Dimensionless Fourier
intensities as functions of ζ.
The lines are Eqs. (2.74) and
(2.75). The sample is 1M6.8
of Cho et al. (2010). This
figure is Fig. 12 of Cho et al.
(2010)
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If f\f3\fC, then Eq. (2.76) becomes

I3=1 � J13
f=f3ð Þ2

1þ f=f3ð Þ2 �
J13
f23

c2o cos
2 dðxÞ / c2o ð2:77Þ

We can apply Eq. (2.76) to Qo of Hyun and Wilhelm (2009):

Qo � J13
f23

cos2 dðxÞ ¼ J13
f23

G0ðxÞ½ � 2
G0ðxÞ½ � 2 þ G00ðxÞ½ � 2 ð2:78Þ

This implies that frequency dependency of Qo is linear viscoelastic, while its
scale factor is the genuine nonlinear parameter J13

�
f23.

To check the validity of Eq. (2.76), Cho et al. (2010) used the data of
Hyun (2005). Figure 8 compares Eq. (2.76) with the data of Hyun (PP melt,
Mw = 240 kg/mol, PDI = 4.8, T = 180 °C) (Fig. 8).

As for Fourier coefficients s0n and s00n , SFS does not hold except s001. According to
Cho et al. (2010), dimensionless s001 of the PEO aqueous solution follows

s001
G00ðxÞco

¼ exp � f
fC


 �
with fC ¼ 5 ð2:79Þ

Cho and coworkers (2015) tested SFS to other polymeric fluids. They tested
polyvinyl alcohol (PVA) dissolved in dimethyl sulfoxide (DMSO), polyvinyl
acetate (PVAc) in DMSO and PVA aqueous solution with borax. The molecular
weight of PVA in the solution of PVA/DMSO is sufficiently high for entanglement,
while that of PVA in the aqueous solution with borax is too low to form any
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I 3 / 
I 1
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2

10-1 100 101
10-4

Fig. 8 Validity of Eq. (2.76).
The sample is PP melt
measured at 180 °C. The
regression results are
J13 ¼ 0:029, fC ¼ 7:46, and
f3 ¼ 2:49. This figure is
Fig. 13 of Cho et al. (2010)
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entanglement. Although PVA/DMSO and PVAc/DMSO behave similarly to PEO
aqueous solutions, the PVA aqueous solution with borax behaves in absolutely
different manners. According to the classification of Hyun et al. (2002), the former
three polymer solutions belong to strain-thinning fluid, while PVA aqueous solution
with borax belongs to strain-hardening fluid.

Figure 9 shows that PVAc/DMSO and PVA/DMSO follow Eq. (2.74) quite well,
while PVA aqueous solution with borax behaves differently. The slope of the plot
of log J1 versus ζ is positive for the strain-hardening fluid. As for strain-thinning
fluids, they look like J1 � e�f=5. On the other hand for strain-hardening fluids, we
can use J1 � ef=5 for small ζ. For the whole data of PVA aqueous solution with
borax, we can use

J1 � exp
f
5
þ 4:338

f
5


 �2
" #

ð2:80Þ

On the other hand, strain-hardening and strain-thinning cannot be distinguished
by J3 as shown in Fig. 10. The third harmonic intensities of both kinds of fluids
behave like Eq. (2.75). Then, we can expect that both strain-hardening and
strain-thinning fluids give the same behavior of Qo, Eq. (2.78) in the range of
MAOS.

0 1 2 3 4

1e

e0

Fig. 9 Comparison of strain-thinning and strain-hardening fluids in terms of dimensionless
Fourier intensity of the first harmonic. The dimensionless Fourier intensity of strain-thinning fluid
is a decreasing function of ζ while that of strain-hardening fluid is an increasing function. The
empirical equations in the figure indicate that J1 � 1 for f 	 5. This figure is the summary of
Fig. 8 of Cho et al. (2015)
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2.3.4 SFS for LAOStress

It is questionable whether LAOStress data follow SFS, too. Since ro cos dðxÞ is
not a dimensionless quantity, we have to find dimensional quantity which is pro-
portional to stress amplitude. Note that

roJ
0ðxÞ ¼ roG0ðxÞ

G�ðxÞj j2 ¼
ro

G�ðxÞj j cos dðxÞ ¼ co cos dðxÞ ¼ f ð2:81Þ

Here, we adopted ro ¼ G�ðxÞj jco. See Problem 2 (Ewoldt and Bharadwaj
2013). As for LAOStress, important dimensionless quantities are dimensionless
nonlinear compliances and dimensionless Fourier intensity:

~JE ¼ cmax
E ro;xð Þ
J 0ðxÞro

; ~JV ¼ cmax
V ro;xð Þ
J 00ðxÞro

ð2:82Þ

and

~Hn ¼ In ro;xð Þ
J�ðxÞroj j ð2:83Þ

Bae et al. (2013) showed that the above dimensionless quantities behave as
functions of roJ 0ðxÞ. However, the quality of superposition is worse compared
with LAOStrain.
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Fig. 10 Comparison of strain-thinning and strain-hardening fluids in terms of dimensionless
Fourier intensity of the third harmonic. All fluids follow Eq. (2.75). This figure is redrawn from the
data of Fig. 9 of Cho et al. (2015)
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Problem 1

[1] Show that

F̂½1� ¼ 2pdðxÞ
F̂ cosxot½ � ¼ p d x� xoð Þþ d x� xoð Þ½ �
F̂ sinxot½ � ¼ �pi d x� xoð Þ � d x� xoð Þ½ � ð2:aÞ

[2] It is obvious that d x� xið Þ d x� xkð Þ ¼ dikd x� xið Þ. Then derive
Eq. (2.9).

[3] If oscillatory simple shear flow is considered, then shear stress of a vis-
coelastic material can be expressed by

r ¼ r c;
dc
dt

;
d2c
dt2

; . . .


 �
ð2:bÞ

If the material is linear, then Eq. (2.b) becomes simpler

rðt) ¼ c0cðt)þ
X1
k¼1

ck
dkc
dtk

ð2:cÞ

Show that G0ðxÞ ¼ G0ð�xÞ and G00ð�xÞ ¼ �G00ðxÞ.
[4] Show that

rOE ¼ r c; _cð Þþr �c; _cð Þ
2

ð2:dÞ

[5] Derive the second equation of Eq. (2.37) from the first equation of Eq. (2.37).
[6] Derive Eq. (2.41).
[7] Show that

Z2p
0

cos2n t dt ¼
Z2p
0

sin2n t dt ¼ pð2nÞ!
22n�1n!n!

ð2:eÞ

[8] Derive Eq. (2.46).
[9] Derive Eq. (2.50). See Cho et al. (2010).

[10] Derive Eq. (2.54). See Cho et al. (2010).
[11] Show that for linear viscoelasticity of stress-controlled rheometer, the

amplitude of strain is given by co ¼ ro G�ðxÞj j�1.
[12] Show that stress decomposition results in that decomposed normal stresses

can be expressed by
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NEEðx; yÞ ¼
X1
k¼0

mEX2k co;xð Þx2kðtÞ ¼
X1
k¼0

mEY2k co;xð Þy2kðtÞ ð2:fÞ

and

NOOðx; yÞ ¼ yðtÞ
X1
k¼0

mOX2kþ 1 co;xð Þx2kþ 1ðtÞ ¼ xðtÞ
X1
k¼0

mOY2kþ 1 co;xð Þy2kþ 1ðtÞ

ð2:gÞ

[13] When LAOStrain gives

rOE ¼ GE
1 co;xð ÞxðtÞþGE

3 co;xð Þx3ðtÞþGE
5 co;xð Þx5ðtÞþ � � � ;

rEO ¼ GV
1 co;xð ÞyðtÞþGV

3 co;xð Þy3ðtÞþGV
5 co;xð Þy5ðtÞþ � � � ð2:hÞ

one may consider Padé approximants such that

rOE � a00 þ a01xþ a02x
2 þ a03x

3

1þ b01xþ b02x2
; rEO � a000 þ a001yþ a002y

2 þ a003y
3

1þ b000yþ b002y2
ð2:iÞ

Find the relation between Padé coefficients of Eq. (2.i) and those of Eq. (2.h).

3 Analytical Solution of LAOS

We shall explain how to calculate analytical solutions of LAOS for various non-
linear constitutive equations. The analytical solution is important in the identifi-
cation of nonlinear viscoelastic materials.

It seems impossible to obtain the exact solution of LAOS from any nonlinear
constitutive equation in a closed form. Only possible analytical solution has the
form of power series. Most researchers have obtained power-series approximations
for various nonlinear constitutive equations. An exceptional case is the co-rotational
Maxwell model for which Saengow et al. (2015) obtained the exact solution as
power series. The objectives of this section are introduction to analytical methods
for various constitutive equations and to test the conjecture such that decomposed
stresses of LAOS have the following forms:

rOE ¼ P1
k¼0

GNE
2kþ 1 co;xð Þx2kþ 1ðtÞ; rEO ¼ P1

k¼0
GNV

2kþ 1 co;xð Þy2kþ 1ðtÞ;

NEE ¼ P1
k¼0

ENE
2k co;xð Þx2kðtÞ; NOO ¼ xðtÞ P1

k¼0
ENV
2kþ 1 co;xð Þy2kþ 1ðtÞ

ð3:1Þ
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where

GNE
2nþ 1 co;xð Þ ¼ f ES2nþ 1 co;G

0ðxÞ;G0ð2xÞ;G0ð3xÞ; . . .½ �;
GNV

2nþ 1 co;xð Þ ¼ f VS2nþ 1 co;G
00ðxÞ;G00ð2xÞ;G00ð3xÞ; . . .½ �;

ENE
2n co;xð Þ ¼ f EN2n co;G

0ðxÞ;G0ð2xÞ;G0ð3xÞ; . . .½ �;
ENV
2n co;xð Þ ¼ f VN2n co;G

00 xð Þ;G00 2xð Þ;G00 3xð Þ; . . .½ �

ð3:2Þ

In other words, frequency dependences of rOE and NEE are represented by only
storage modulus, while those of rEO and NOO are represented by only loss modulus.
We shall show that this conjecture is valid for time–strain separable constitutive
equations such as separable K-BKZ model and convected Maxwell models.

Most analytical methods found in previous researches are power-series
approximation (Giacomin et al. 2011; Gurnon and Wagner 2012; Helfand and
Pearson 1982; Pearson and Rochefort 1982). When power-series solution is con-
sidered, of importance are the radius and speed of convergence. However, most
papers, except those on co-rotational Maxwell model, deal with lower-order power
series which are not available for convergence analysis. Even co-rotational Maxwell
model requires order of power series higher than 30 (Saengow et al. 2015). It is
usual that third harmonic is the maximum order of most power-series solutions. It is
because power-series approaches require tremendously long calculations. Third
harmonic approximation is available for the data with co\2. This upper bound of
strain amplitude corresponds to the MASO regime of most polymeric fluids.

To overcome this limit, Bae and Cho (2015) developed semi-analytical method
which extracts closed-form equations for material functions of LAOS from
numerical solutions using of the strain-frequency superposition of Cho et al. (2010).
Their equations are useful in identification of nonlinear parameters of constitutive
equations.

3.1 Convected Maxwell Models

3.1.1 Integrating Factor Approach

There are three kinds of convected Maxwell models: upper-convected,
lower-convected, and co-rotational Maxwell models. The three models can be
expressed in terms of extra stress as follows:

DnT0

Dt
þ 1

k
T0 ¼ 2GD ð3:3Þ
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where

DnT0

Dt
¼ dT

dt
� Wþ nDð Þ � T0 � T0 � Wþ nDð ÞT ð3:4Þ

Note that Eq. (3.3) becomes the upper-convected Maxwell model (UCM) when
n ¼ 1, the lower-convected Maxwell model (LCM) when n ¼ �1, and the
co-rotational Maxwell model (CRM) when n ¼ 0. For simplicity, we define

H � Wþ nD� 1
2k

I ð3:5Þ

Then, Eq. (3.3) can be rewritten by

dT0

dt
�H � T� T0 �HT ¼ 2GD ð3:6Þ

This is very similar to Eq. (5.83) in Chap. 1. Although H is a constant tensor in
steady simple shear, we are interested in more general case, LAOS.

LAOS is a simple shear flow, but shear rate is not constant. In this case, the H
tensor is given by

H ¼ 1
2
dc
dt

1þ nð Þe1e2 � 1� nð Þe2e1½ � � 1
2k

I ð3:7Þ

Here, we considered the deformation gradient of F ¼ Iþ cðtÞe1e2. In order to
use the tensorial integral factor, we define

P ¼ c
2

nþ 1ð Þe1e2 þ n� 1ð Þe2e1½ � þ 1� t
2k

� �
I ð3:8Þ

Then, we know that if cð0Þ ¼ 0, then Pð0Þ ¼ I and

dP
dt

¼ H ð3:9Þ

and P and H are commutative:

P �H ¼ H � P ð3:10Þ

Equations (3.9) and (3.10) give

d
dt

e�P � T0 � e�PT
� �

¼ e�P � dT0

dt
�H � T0 � T0 �HT


 �
� e�PT ð3:11Þ
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Then, we know that Eq. (3.6) is equivalent to

dK
dt

¼ 2Ge�P � D � e�PT ð3:12Þ

where

K ¼ e�P � T0 � e�PT ð3:13Þ

For simplicity, we assume that cð0Þ ¼ 0. This initial condition can be used for
LAOS without loss of generality. Since the initial condition for the extra stress
could be T0ð0Þ ¼ 0 if the fluid were in equilibrium before flow, integration of
Eq. (3.12) gives

T0ðtÞ ¼ G
Z t

0

ePðtÞ � e�PðsÞ � S � e�PTðsÞ � ePTðtÞ dc
ds

ds ð3:14Þ

where S is the constant symmetrical tensor defined as

S ¼ e1e2 þ e2e1 ð3:15Þ

If we know the tensor exp PðtÞ½ �, then Eq. (3.14) immediately gives analytical
solution. We introduce the constant tensor defined as

J � 1
2

nþ 1ð Þe1e2 þ n� 1ð Þe2e1½ � ð3:16Þ

Then, the tensor P can be expressed in simpler form:

PðtÞ ¼ cðtÞJþ bI ð3:17Þ

where

b ¼ 1� t
2k

ð3:18Þ

Note that

eP ¼ ebI � ecJ ¼ ebI � ecJ ¼ ebecJ ð3:19Þ
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and

J2 ¼ n2 � 1
22

U; J3 ¼ n2 � 1
22

J;

JT
� �2¼ n2 � 1

22
U; JT

� �3¼ n2 � 1
22

JT
ð3:20Þ

where

U ¼ e1e1 þ e2e2 ¼ I� e3e3 ð3:21Þ

is the two-dimensional identity tensor such that U � X ¼ X � U ¼ U for arbitrary
two-dimensional tensor

X ¼ X11e1e1 þX22e2e2 þX12e1e2 þX21e2e1 ð3:22Þ

Equation (3.20) implies that for k ¼ 1; 2; . . .

J2kþ 1 ¼ n2 � 1
� �k

22k
J; J2k ¼ n2 � 1

� �k
22k

U;

JT
� �2kþ 1¼ n2 � 1

� �k
22k

JT; JT
� �2k¼ n2 � 1

� �k
22k

U

ð3:23Þ

Then, we have

ecJ ¼ Iþ 2
X1
k¼0

n2 � 1
� �k
2kþ 1ð Þ !

c
2

� �2kþ 1
" #

Jþ
X1
k¼1

n2 � 1
� �k

2kð Þ!
c
2

� �2k
" #

U;

ecJ
T ¼ Iþ 2

X1
k¼0

n2 � 1
� �k
2kþ 1ð Þ !

c
2

� �2kþ 1
" #

JT þ
X1
k¼1

n2 � 1
� �k

2kð Þ !
c
2

� �2k
" #

U ð3:24Þ

Now we are equipped with sufficient tools for the calculation of the extra stress of
simple shear. Note that when n ¼ 
1, the calculation becomes dramatically simple:

ecJ ¼ Iþ cJ ¼ F ¼ Iþ ce1e2 for n ¼ 1
F�T ¼ I� ce2e1 for n ¼ �1

	
ð3:25Þ

On the other hand, for n ¼ 0, we have

ecJ ¼ sin
c
2
Aþ cos

c
2
Uþ e3e3 ð3:26Þ

where

A ¼ e1e2 � e2e1 ð3:27Þ
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3.1.2 Upper-Convected Maxwell Model

The stress tensor of the UCM is calculated as follows:

T0ðtÞ ¼ G
Z t

0

e�ðt�sÞ=k dc
ds

Sþ 2Cðt; sÞe1e1½ �ds ð3:28Þ

where

Cðt; sÞ ¼ cðtÞ � cðsÞ ð3:29Þ

When strain is given by cðtÞ ¼ _cot where _co is a constant, shear stress is cal-
culated as follows:

r ¼ G _co

Z t

0

e�ðt�sÞ=kds ¼ Gk _co 1� e�t=k
� � ð3:30Þ

Thus, the steady shear viscosity of UCM is a constant g ¼ Gk. Because of
Eq. (3.28), it is obvious that only the first normal stress is nonzero:

N1 ¼ 2G _c2o

Z t

0

ðt � sÞe� t�sð Þ=kds ¼ 2Gk2 _c2o 1� 1þ t
k

� �
e�t=k

h i
ð3:31Þ

Thus, the steady normal stress difference coefficient is a constant:

w1 ¼
N1

_c2o
¼ 2Gk2 ð3:32Þ

As mentioned before, UCM cannot describe shear-thinning behavior of poly-
meric fluids.

As for LAOS, strain is cðtÞ ¼ co sinx t. As shown in Eq. (3.28), shear stress
depends linearly on shear rate. Hence, shear stress of UCM is linear and cannot
agree with LAOS data of most polymeric fluids. Equation (3.28) for LAOS gives

rðtÞ ¼ G0ðxÞcðtÞþ G00ðxÞ
x

dc
dt

� G00ðxÞcoe�t=k ð3:33Þ
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and

N1 ¼ 2G0ðxÞ � G0ð2xÞ
2

� �
x2ðtÞþ G0ð2xÞ

2
y2ðtÞþ 2G00ðxÞ � G00ð2xÞ½ �xðtÞyðtÞ

� 2G00ðxÞcocðtÞþ
G0ð2xÞ

2
c2o

� �
e�t=k ð3:34Þ

where G0ðxÞ and G00ðxÞ are dynamic moduli of the linear Maxwell model such that

G0ðxÞ ¼ G
k2x2

1þ k2x2
; G00ðxÞ ¼ G

kx

1þ k2x2
ð3:35Þ

and Eq. (3.33) is the definitions of x and y.
The first two terms of Eq. (3.34) are NEE, the third term is NOO, and the last term

is transient one which disappears after a long time. It is interesting that NEE contains
only storage modulus, while NOO contains only loss modulus. As for simple shear,
it is difficult to assign dissipation to any component of normal stresses because
stress power is independent of normal stress. This will be found again in other
models.

3.1.3 Lower-Convected Maxwell Model

With the help of Eqs. (3.14) and (3.25), stress of LCM is given by

T0ðtÞ ¼ G
Z t

0

e� t�sð Þ=k dc
ds

S� 2Cðt; sÞe2e2½ �ds ð3:36Þ

The shear stress and the first normal stress difference are not different from those
of UCM, while LCM shows nonzero second normal stress difference:

N2 ¼ �N1 ð3:37Þ

These relations hold for both steady and oscillatory shear flows. Note that the
normal stress differences of most polymeric fluids satisfy N2=N1j j 	 1. Hence,
LCM is not adequate for nonlinear viscoelasticity of polymeric fluid, neither.
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3.1.4 Co-rotational Maxwell Model

Again, Eqs. (3.14) and (3.26) give stress of CRM as follows:

T0ðtÞ ¼ G
Z t

0

e� t�sð Þ=k dc
ds

cosC t; sð ÞSþ sinCðt; sÞ e1e1 � e2e2ð Þ½ �ds ð3:38Þ

Then, shear stress and normal stress differences are given by

rðtÞ ¼ G
Z t

0

e� t�sð Þ=k cosCðt; sÞ dc
ds

ds ð3:39Þ

N1 ¼ 2G
Z t

0

e� t�sð Þ=k sinCðt; sÞ dc
ds

ds ð3:40Þ

and

N2 ¼ � 1
2
N1 ð3:41Þ

Equations (3.39) and (3.40) are very similar to Eqs. (3.47) and (3.53) which are
shear and the first normal stress difference of K-BKZ model.

For steady shear, we have

rðtÞ ¼ Gk_co
1þ k _coð Þ2 þ e�t=k Gk_co

1þ k _coð Þ2 cos _cotð Þþ k_co sin _cotð Þ½ � ð3:42Þ

and

N1ðtÞ ¼ G k _coð Þ2
1þ k_coð Þ2 � e�t=k Gk _co

1þ k _coð Þ2 k_co cos _cotð Þþ sin _cotð Þ½ � ð3:43Þ

It is interesting that both shear viscosity and 1st normal stress coefficient show
shear-thinning behavior:

g koð Þ ¼ Gk

1þ k _coð Þ2 ; w1 _coð Þ ¼ Gk2

1þ k _coð Þ2 ð3:44Þ
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As for LAOS, Eqs. (3.39) and (3.40) look like not permitting an exact analytical
solution. Series expansions of cosine and sine terms give power-series solutions of
shear and normal stress. Giacomin et al. (2011) used this method. We shall show
the series expansion of normal stress difference. For shear stress, read Giacomin
et al. (2011).

If we take the initial time as to ¼ �1 when integrating Eq. (3.12), then we have

rðtÞ ¼ G
Z t

�1
e� t�sð Þ=k cosCðt; sÞ dc

ds
ds ð3:45Þ

and

N1 ¼ 2G
Z t

�1
e� t�sð Þ=k sinCðt; sÞ dc

ds
ds ð3:46Þ

This removes the transient behavior which is the effect of initial time. The
definition of Cðt; sÞ and cðtÞ ¼ co sin x t imply that

@

@s
sinCðt; sÞ ¼ � dc

ds
cosCðt; sÞ; @

@s
cosCðt; sÞ ¼ dc

ds
sinCðt; sÞ ð3:47Þ

Substitution of Eq. (3.47) to Eqs. (3.45) and (3.46) and integration by parts yield

r ¼ G
k

Z t

�1
e� t�sð Þ=k sinCðt; sÞds ð3:48Þ

and

N1 ¼ �2
G
k

Z t

�1
e� t�sð Þ=k cosCðt; sÞds ð3:49Þ

Change of variables such as f ¼ ðt � sÞ=k gives

r ¼ Ĝ sinC t; t � kfð Þ½ � ð3:50Þ

and

N1 ¼ �2Ĝ cosC t; t � kfð Þ½ � ð3:51Þ
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where Ĝ �½ � is a linear integral transform defined as

Ĝ f ðfÞ½ � � G
Z1
0

e�ff ðfÞdf ð3:52Þ

This integral transform is very useful to obtain LAOS solution of Eqs. (3.48) and
(3.49) in power-series forms. Hence, it is necessary to know some properties of the
integral transform:

Ĝ½1� ¼ G
Z1
0

e�fdf ¼ G ¼ lim
x!1G0ðxÞ ð3:53Þ

Ĝ Qn½ � ¼ G
Z1
0

e�f 1� cos nkxfð Þdf ¼ G0
n ð3:54Þ

Ĝ Pn½ � ¼ G
Z1
0

e�f sin nkxfdf ¼ G00
n ð3:55Þ

Ĝ QnPk½ � ¼ G00
k �

G00
kþ n þG00

k�n

2
ð3:56Þ

Ĝ P2
n

�  ¼ Ĝ 1� cos2 nkxf
�  ¼ Ĝ 1� 1� Qnð Þ2

h i
¼ Ĝ

Q2n

2

� �
¼ G0

2n

2
ð3:57Þ

where

Qn ¼ T0 cos kxfð Þ � Tn cos kxfð Þ ¼ 1� Tn cos kxfð Þ ð3:58Þ

Pn ¼ sin nkxf ð3:59Þ

and

G0
n � G

ðnkxÞ2
1þðnkxÞ2 ; G00

n � G
nkx

1þðnkxÞ2 ð3:60Þ

Application of the Taylor series expansions of trigonometric functions to
Eqs. (3.50) and (3.51) gives

rOEðx; yÞ ¼
X1
m¼0

X1
n¼0

ð�1Þmþ nx2mþ 1y2n

2mþ 1ð Þ! 2nð Þ! G Q2mþ 1
1

Q2

2


 �n� �
ð3:61Þ
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rEOðx; yÞ ¼
X1
m¼0

X1
n¼0

ð�1Þmþ nx2my2nþ 1

ð2mÞ!ð2nþ 1Þ! G Q2m
1

Q2

2


 �n

P1

� �
ð3:62Þ

NEEðx; yÞ ¼ �2
X1
m¼0

X1
n¼0

ð�1Þmþ nx2my2n

ð2mÞ!ð2nÞ! G Q2m
1

Q2

2


 �n� �
ð3:63Þ

and

NOOðx; yÞ ¼ �2
X1
m¼0

X1
n¼0

ð�1Þmþ nx2mþ 1y2nþ 1

ð2mþ 1Þ!ð2nþ 1Þ! G Q2mþ 1
1

Q2

2


 �n

P1

� �
ð3:64Þ

Now, we shall show that the integral transforms of Eqs. (3.61)–(3.63) can be
expressed as linear combinations of G0

n and G00
n .

Note that the Chebyshev polynomials of the first kind obey

TmðxÞTnðxÞ ¼
Tmþ nðxÞþ T m�nj jðxÞ

2
ð3:65Þ

Then, the definition of Qn gives

QmQn ¼ Qm þQn �
Qmþ n þQ m�nj j

2
ð3:66Þ

This implies that there exists relations such that

QM
1 Q

N
2 ¼

XMþ 2N

k¼1

qkQk ð3:67Þ

Equations (3.54), (3.56), and (3.67) immediately imply that rOE and NEE consist
of linear combinations of G0

n

� �
and that rEO and NOO consist of linear combina-

tions of G00
n

� �
. These results are consistent with that rOE is elastic and rEO is

viscous. Along this line of reasoning, one may think that NEE is elastic and NOO is
viscous. However, it is difficult to connect normal stresses of shear flow with energy
dissipation because of Eq. (3.42) which shows that stress power of shear flow is
independent of normal stresses. Similar analysis can be done for time–strain sep-
arable K-BKZ model, too.
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3.2 Time–Strain Separable K-BKZ Model

LAOS behavior of time–strain separable K-BKZ model can be described easily if a
suitable damping function is known. Equations (3.40a, c) in Chap. 10 do not allow
power series such as

hðcÞ ¼
X1
k¼0

hncn ð3:68Þ

However, it is easy to show that Eq. (3.40c) in Chap. 10 is equivalent to

hðcÞ ¼ 1� 2
p

ð1� /Þ arctan c
cC1


 �2

þ/ arctan
c
cC2


 �2
" #

ð3:69Þ

This allows the power-series approximation:

hðcÞ ¼ 1� 2
p

X1
n¼0

ð�1Þn
2nþ 1

ð1� /Þ c
cC1


 �4nþ 2

þ/
c
cC2


 �4nþ 2
" #

ð3:70Þ

From Eqs. (3.36) and (3.37) in Chap. 10, we know that

rOE ¼
X1
n¼0

Xn
k¼0

2nþ 1
2k


 �
hnx

2 ðn�kÞþ 1 c2o � x2
� �k

Ĝ Q2ðn�kÞþ 1
1

Q2

2


 �k
" #

ð3:71Þ

rEO ¼
X1
n¼0

Xn
k¼0

2nþ 1
2kþ 1


 �
hn c2o � y2
� �

y2kþ 1 Ĝ Q2ðn�kÞ
1

Q2

2


 �k

P1

" #
ð3:72Þ

NEE ¼
X1
n¼0

Xn
k¼0

2n
2k


 �
hnx

2ðn�kÞy2k Ĝ Q2ðn�kÞ
1

Q2

2


 �k
" #

ð3:73Þ

and

NOO ¼
X1
n¼0

Xn
k¼0

2nþ 1
2kþ 1


 �
hnx

2 ðn�kÞy2kþ 1 Ĝ Q2ðn�kÞ
1

Q2

2


 �k

P1

" #
ð3:74Þ

Comparing Eqs. (3.61)–(3.64), it is obvious that separable K-BKZ model also
follows the same stress decomposition of convected Maxwell models which are
also time–strain separable constitutive equation. The above analysis is also valid
multimode versions. Then, it is questionable whether nonseparable constitutive
equations (Larson 1988) obeys the conjecture that rOE and NEE contain only
storage moduli of G0

n while rEO and NOO contain only loss moduli of G00
n .
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3.3 Nonseparable Maxwell Models

Equations (3.36) in Chap. 10, (3.28), (3.36), and (3.38) imply that nonlinear
relaxation modulus is the product of linear relaxation modulus and the damping
function. These constitutive equations are classified to separable constitutive
equations. On the other hand, the Leonov, the Giesekus and PTT models do not
allow such factorization of relaxation modulus. These nonlinear constitutive
equations are classified to nonseparable constitutive equations (Larson 1988). Here,
we shall devote an analytical method to the LAOS behavior of the PTT and the
Giesekus models.

3.3.1 Perturbation Method

The PTT and the Giesekus models are expressed in terms of extra stress as follows:

T0r þ 1
k
exp

a
G
tr(T0Þ

h i
T0 ¼ 2GD ð3:75Þ

and

T0r þ 1
k
T0 þ a

kG
T0 � T0 ¼ 2GD ð3:76Þ

Here, α is the nonlinear parameter of the two models. Note that these equations
are reduced to UCM if a ¼ 0. Since α is positive and less than unity, we can take
perturbation parameter as

e ¼ a
G

ð3:77Þ

Then, it is a reasonable assumption that the extra stress can be expressed as the
power series of the perturbation parameter:

T0 ¼ T0 þ eT1 þ e2T2 þ � � � ð3:78Þ

where T0 is the solution of UCM.
Substitution of Eq. (3.78) to Eq. (3.75) gives

kT1

r
þT1 ¼ �tr T0ð ÞT0 � �RPTT

1 ð3:79aÞ

kT2

r
þT2 ¼ �tr T1 þ 1

2
T0

� �
T0 � tr T0ð ÞT1 � �RPTT

2 ð3:79bÞ
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kT3

r
þT3 ¼� tr T2 þ 1

2
T1 þ 1

6
T0

� �
T0 � tr T1 þ 1

2
T0

� �
T1 � tr T0ð ÞT2

�� RPTT
3

ð3:79cÞ

and so on. Substitution of Eq. (3.78) to Eq. (3.76) yields

kT1

r
þT1 ¼ �T2

0 � �RG
1 ð3:80aÞ

kT2

r
þT2 ¼ �T0 � T1 � T1 � T0 � �RG

2 ð3:80bÞ

kT3

r
þT3 ¼ �T0 � T2 � T2 � T0 � T2

1 � �RG
3 ð3:80cÞ

and so on. We can obtain higher-order equations as we want. Since we know the
solution of UCM, it is obvious that the first-order stress T1 can be calculated
analytically using the integrating factor method. The same procedure can be applied
to the second-order stress after calculation of the first-order stress. This procedure
can be extended to higher-order stresses as we want. However, this calculation is
tedious and time-consuming.

Using the integrating factor method to nth-order stresses, we have the general
solution such that

TnðtÞ ¼ � 1
k

Z t

�1
e� t�sð Þ=k � FðtÞ � F�1ðsÞ � RnðsÞ � F�TðsÞ � FTðtÞds ð3:81Þ

Note that

FðtÞ � F�1ðsÞ ¼ IþC t; sð Þ e1e2 ¼ F�TðsÞ � FTðtÞ� T ð3:82Þ

Then, use of Eq. (3.82) gives

�GkTnðtÞ ¼ Ĝ Rn t � kfð Þ½ � þ e2 � Ĝ C2 t; t � kfð ÞRn t � kfð Þ�  � e2n o
e1e1

þ e1e2 � Ĝ C t; t � kfð ÞRn t � kfð Þ½ � þ Ĝ C t; t � kfð ÞRn t � kfð Þ½ � � e2e1
ð3:83Þ
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If we denote the components of Rn by r nð Þ
ik , then Eq. (3.83) becomes

TnðsÞ ¼ � 1
Gk

Ĝ rðnÞ11 ðsÞþ 2Cðt; sÞr nð Þ
12 ðsÞþC2 t; sð Þr nð Þ

22 ðsÞ
h i

e1e1

� 1
Gk

Ĝ rðnÞ22 ðsÞ
h i

e2e2 � 1
Gk

Ĝ rðnÞ33 ðsÞ
h i

e3e3

� 1
Gk

Ĝ rðnÞ12 ðsÞþCðt; sÞrðnÞ22 ðsÞ
h i

e1e2 þ e1e2ð Þ ð3:84Þ

where s ¼ t � kf. Note that Eq. (3.84) consists of integration transforms such as

Ĝ xMðsÞyNðsÞ½ �, Ĝ Cðt; sÞxMðsÞyNðsÞ½ � Ĝ Cðt; sÞxMðsÞyNðsÞ½ � and Ĝ C2ðt; sÞxMðsÞyNðsÞ� 
.

3.3.2 Systematic Evaluation of the Integral Transforms

In order to calculate the integral transforms of Eq. (3.84) systematically, we need tofind
formulas for the integral transform of xMðt � kfÞyNðt � kfÞ. It is helpful to know that

xðsÞ ¼ xðt � kfÞ ¼ xðtÞ cos kxf� yðtÞ sin kxf;
yðsÞ ¼ yðt � kfÞ ¼ xðtÞ sin kxfþ yðtÞ cos kxf ð3:85Þ

This equation is the rotation of coordinates xðtÞ; yðtÞ½ � by an angle of h ¼ kxf.
For easy calculation, we introduce the complex-valued function of time such that

zðtÞ � xðtÞþ iyðtÞ ¼ icoe
�ix t ð3:86Þ

Use of this complex notation gives

z t � kfð Þ ¼ eikxfzðtÞ ¼ icoe
ikxfe�ix t ð3:87Þ

We shall denote the conjugate of zðtÞ by �zðtÞ. Then, it is obvious that

xðtÞ ¼ zðtÞþ�zðtÞ
2

; yðtÞ ¼ zðtÞ � �zðtÞ
2i

ð3:88Þ

The integral transform of the product zM t � kfð Þ�zN t � kfð Þ is immediately
calculated as follows:

Ĝ zM t � kfð Þ�zN t � kfð Þ�  ¼ gM�Nz
MðtÞ�zNðtÞ ð3:89Þ

where

gn � G� G0ðnxÞþ iG00ðnxÞ ¼ G� G0
n þ iG00

n ð3:90Þ
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It should be noted that

zðtÞ�zðtÞ ¼ x2ðtÞþ y2ðtÞ ¼ c2o ð3:91Þ

and

g0 ¼ G; g�n ¼ �gn ð3:92Þ

Note that

Ĝ x2n t � kfð Þ�  ¼ 1
22n

2n
n


 �
Gc2no þ 1

22n�1

Xn�1

k¼0

2n
k


 �
c2ko Re g2 n�kð Þz

2 n�kð ÞðtÞ
n o

ð3:93Þ

where we used Eqs. (3.91) and (3.92) and

N
k


 �
¼ N

N � k


 �
ð3:94Þ

For odd power of x t � kfð Þ, we have

Ĝ x2nþ 1 t � kfð Þ�  ¼ 1
22n

Xn
k¼0

2nþ 1
n� k


 �
c2 n�kð Þ
o Re g2kþ 1z

2kþ 1ðtÞ� � ð3:95Þ

Similar procedure can be applied to the integral transform of yN t � kfð Þ:

Ĝ y2n t � kfð Þ�  ¼ 1
2n

2n
n


 �
Gc2no þ 1

2n�1

Xn�1

k¼0

2n
k


 �
ð�1Þn�k Re g2 n�kð Þz

2 n�kð ÞðtÞ
n o

ð3:96Þ

and

Ĝ y2nþ 1 t � kfð Þ�  ¼ ð�1Þn
22n

Xn
k¼0

2nþ 1
k


 �
ð�1Þkc2ko Im g2 n�kð Þþ 1z

2 n�kð Þþ 1ðtÞ
n o

ð3:97Þ

The calculation of Ĝ xM t � kfð ÞyN t � kfð Þ½ � can be reduced to that of

Ĝ xn t � kfð Þ½ � whenever N is even because

Ĝ xM t � kfð Þy2n t � kfð Þ�  ¼ Ĝ xM t � kfð Þ c2o � x2 t � kfð Þ� �n�  ð3:98Þ
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When M ¼ 2m, the calculation becomes that of Ĝ yn t � kfð Þ½ � because

Ĝ x2m t � kfð ÞyN t � kfð Þ�  ¼ Ĝ c2o � y2 t � kfð Þ� �m
yN t � kfð Þ�  ð3:99Þ

Hence, it is sufficient to consider Ĝ xn t � kfð Þ y t � kfð Þ½ �. Then, the same pro-
cedure gives

Ĝ x2m t � kfð Þy t � kfð Þ� 
¼ Ĝ c2o � y2 t � kfð Þ� m

y t � kfð Þ� 
¼

Xm
n¼0

m

n


 � ð�1Þn
22n

Xn
k¼0

2nþ 1

n� k


 �
ð�1Þkc2 m�kð Þ

o Im g2kþ 1z
2kþ 1 tð Þ� �

ð3:100Þ

and

Ĝ x2mþ 1 t � kfð Þy t � kfð Þ�  ¼ 1
22mþ 1

Xm
k¼0

2mþ 1

m� k


 �
c2 m�kð Þ
o Im g2 kþ 1ð Þz

2 kþ 1ð ÞðtÞ
n o

� 1
22mþ 1

Xm
k¼0

2mþ 1

m� k


 �
c2 m�kþ 1ð Þ
o Im g2kz

2kðtÞ� �
ð3:101Þ

The integration transform including Cðt; sÞ is calculated by

Ĝ C t; sð ÞxMðsÞyNðsÞ�  ¼ xðtÞĜ xMðsÞyNðsÞ� � Ĝ xMþ 1ðsÞyNðsÞ�  ð3:102Þ

and

Ĝ C2 t; sð ÞxMðsÞyNðsÞ�  ¼ x2ðtÞĜ xMðsÞyNðsÞ� � 2xðtÞĜ xMðsÞyNðsÞ� 
þ Ĝ xMþ 2ðsÞyNðsÞ�  ð3:103Þ

It is obvious that all integration transforms needed for the perturbation calcu-
lation are expressed by linear combination of Re gnz

nðtÞf g or Im gnz
nðtÞf g. Hence,

we have to express them in terms of xðtÞ and yðtÞ. Equations (3.86) and (3.90) give

Re g2nz
2nðtÞ� � ¼ ð�1Þn G� G0

2n

� �
c2no cos 2nx t

þð�1ÞnG00
2nc

2n
o sin 2nx t

ð3:104aÞ

Im g2nz
2nðtÞ� � ¼ ð�1Þng002nc2no cos 2nx t

� ð�1Þn G� G0
2n

� �
c2no sin 2nx t

ð3:104bÞ
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Re g2nþ 1z
2nþ 1ðtÞ� � ¼ ð�1Þn G� G0

2nþ 1

� �
c2nþ 1
o sinð2nþ 1Þx t

� ð�1ÞnG00
2nþ 1c

2nþ 1
o cosð2nþ 1Þx t ð3:105aÞ

and

Im g2nþ 1z
2nþ 1ðtÞ� � ¼ ð�1ÞnG00

2nþ 1c
2nþ 1
o sinð2nþ 1Þx t

þð�1Þn G� G0
2nþ 1

� �
c2nþ 1
o cosð2nþ 1Þx t ð3:105bÞ

Although Eqs. (3.104a) and (3.105a) are convenient to obtain a perturbation
solution, they are not convenient to check the validity of the conjecture. For this
purpose, we can use

g2nz
2nðtÞ ¼ G� G0

2n

� �þ iG00
2n

� 
xðtÞþ iyðtÞ½ �2n

¼ G� G0
2n

� �þ iG00
2n

� Xn
k¼0

2n

2k


 �
ð�1Þkx2 n�kð ÞðtÞy2kðtÞ

þ �G00
2n þ i G� G0

2n

� �� Xn�1

k¼0

2n

2kþ 1


 �
ð�1Þkx2 n�kð Þ�1ðtÞy2kþ 1ðtÞ

ð3:106Þ

which results in

Re g2nz
2nðtÞ� � ¼ G� G0

2n

� �Xn
k¼0

2n

2k


 �
ð�1Þkx2ðn�kÞðtÞy2kðtÞ

� G00
2n

Xn�1

k¼0

2n

2kþ 1


 �
ð�1Þkx2ðn�kÞ�1ðtÞy2kþ 1ðtÞ ð3:107aÞ

and

Im g2nz
2nðtÞ� � ¼ G00

2n

Xn
k¼0

2n

2k


 �
ð�1Þkx2ðn�kÞðtÞy2kðtÞ

þ G� G0
2n

� �Xn�1

k¼0

2n

2kþ 1


 �
ð�1Þkx2ðn�kÞ�1ðtÞy2kþ 1ðtÞ

ð3:107bÞ
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Similarly, we have

g2nþ 1z
2nþ 1ðtÞ ¼ G� G0

2nþ 1

� �þ iG00
2nþ 1

� 
xðtÞþ iyðtÞ½ �2nþ 1

¼ G� G0
2n

� �þ iG00
2n

� Xn
k¼0

2nþ 1

2k


 �
ð�1Þkx2ðn�kÞþ 1ðtÞy2kðtÞ

þ �G00
2n þ i G� G0

2n

� �� Xn
k¼0

2nþ 1

2kþ 1


 �
ð�1Þkx2ðn�kÞðtÞy2kþ 1ðtÞ

ð3:108Þ

Re g2nþ 1z
2nþ 1ðtÞ� � ¼ G� G0

2nþ 1

� �Xn
k¼0

2nþ 1

2k


 �
ð�1Þkx2ðn�kÞþ 1ðtÞy2kðtÞ

� G00
2nþ 1

Xn
k¼0

2nþ 1

2kþ 1


 �
ð�1Þkx2ðn�kÞðtÞy2kþ 1ðtÞ

ð3:109aÞ

and

Im g2nþ 1z
2nþ 1ðtÞ� � ¼ G00

2nþ 1

Xn
k¼0

2nþ 1

2k


 �
ð�1Þkx2ðn�kÞþ 1ðtÞy2kðtÞ

þ G� G00
2nþ 1

� �Xn
k¼0

2nþ 1

2kþ 1


 �
ð�1Þkx2ðn�kÞðtÞy2kþ 1ðtÞ

ð3:109bÞ

Now we are equipped with formulas necessary for perturbation calculation.

3.3.3 First-Order Approximation of PTT Model

It is not difficult to show that the second normal stress difference of the PTT model
is zero. From Eqs. (3.33) and (3.34), we know that T0 is given by

T0 ¼ N0ðx; yÞe1e1 þr0ðx; yÞ e1e2 þ e2e1ð Þ ð3:110Þ

where

N0ðsÞ ¼ G0
2

2
c2o þ 2G0

1 � G0
2

� �
x2ðsÞþ 2G00

1 � G00
2

� �
xðsÞyðsÞ ð3:111aÞ
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and

r0ðsÞ ¼ G0
1xðsÞþG00

1yðsÞ ð3:111bÞ

Then, Eq. (3.79a) means that

R1ðsÞ ¼ N2
0ðsÞe1e1 þN0ðsÞr0ðsÞðe1e2 þ e2e1Þ ð3:112aÞ

rð1ÞPTT11 ðsÞ ¼ G0
2

2


 �2

c4o þ 2G00
1 � G00

2

� �2 þG0
2 2G0

1 � G0
2

� �h i
c2ox

2ðsÞ

þ 2G0
1 � G0

2

� �2� 2G00
1 � G00

2

� �2h i
x4ðsÞþG0

2 2G00
1 � G00

2

� �
c2oxðsÞyðsÞ

þ 2 2G0
1 � G0

2

� �
2G00

1 � G00
2

� �
x3ðsÞyðsÞ ð3:112bÞ

rð1ÞPTT12 ðsÞ ¼ G0
1G

0
2

2
þG00

1 2G00
1 � G00

2

� �� �
c2oxðsÞ

þ G0
1 2G0

1 � G0
2

� �� G00
1 2G00

1 � G00
2

� �� 
x3ðsÞ

þ G0
1G

0
2

2
þG0

1 2G00
1 � G00

2

� �þG00
1 2G0

1 � G0
2

� �� �
c2oyðsÞ

� G0
1 2G00

1 � G00
2

� �þG00
1 2G0

1 � G0
2

� �� 
y3ðsÞ ð3:112cÞ

and

r 1ð Þ
22 ¼ r 1ð Þ

33 ¼ r 1ð Þ
31 ¼ r 1ð Þ

23 ¼ 0 ð3:112dÞ

Substitution of Eq. (3.112a) to Eq. (3.84) gives

r1ðtÞ ¼ � 1
Gk

Ĝ rðnÞ12 ðsÞ
h i

ð3:113Þ

and

N1ðtÞ ¼ � 1
Gk

Ĝ r nð Þ
11 ðsÞþ 2C t; sð Þ r nð Þ

12 ðsÞ
h i

ð3:114Þ

With the help of Eq. (3.112c), Eq. (3.113) becomes

rPTT
1 ðtÞ ¼ A1 G0

1 � G
� �þ 3

4A3 G0
1 � G0

3

� �
Gk

c2o xðtÞ

� A1G00
1 þ 3

4A3 G00
3 � 2G00

1

� �
Gk

c2o yðtÞ

� A3 G� 3
4G

0
1 � 1

4G
0
3

� �
Gk

x3ðtÞþ A3G00
3c

2
o

Gk
y3 ðtÞ ð3:115Þ
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where

A1 ¼ G0
1G

0
2

2
þG00

1 2G00
1 � G00

2

� �
; A3 ¼ G0

1 2G0
1 � G0

2

� �� G00
1 2G00

1 � G00
2

� � ð3:116Þ

Equation (3.112b) gives

NPTT
1 ¼ � 2

Gk

c2o yðtÞ G� G0
1

� �þ xðtÞG00
1

� �
2G0

1 � G0
2

� �
G00

1 þ G0
2G

00
1

2 þG0
1 2G00

1 � G00
2

� �� �
þ xðtÞ G� G0

1

� �� yðtÞG00
1

� � G0
1G

0
2

2 þ c2oG
00
1 2G00

1 � G00
2

� �� �
þ �2G0

1G
0
2G

00
1 � G0

1 2G00
1 � G00

2

� �� �
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4
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þ 3
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x
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Equations (3.115) and (3.116) show that the conjecture of Eq. (3.2) does not
hold for nonseparable constitutive equation although the zeroth-order solution
satisfies the conjecture. Similar calculation can be done for the Giesekus model.
However, the calculation gives too long equation.

We have applied a perturbation method to nonseparable Maxwell models.
Gurnon and Wagner (2012) calculated the power-series solution of the Giesekus
model by substitution of assumed solution to the constitutive equation. Their cal-
culation is reduced to solve a set of nonlinear equations of the coefficients of
Eq. (3.1). On the other hand, the perturbation method needs not solve a set of
nonlinear equations. Hence, it can be said that the perturbation method is more
systematic. However, it must be mentioned that both analytical methods give
truncated power-series solution whose convergence radius is restricted to small
strain amplitude.

Problem 2

[1] Derive Eq. (3.12).
[2] Derive Eqs. (3.21)–(3.24).
[3] Derive Eqs. (3.31) and (3.32).
[4] Derive Eqs. (3.37) and (3.38).
[5] Derive Eqs. (3.51)–(3.55).
[6] Derive Eqs. (3.59)–(3.62).
[7] Derive Eqs. (3.63) and (3.64).
[8] Determine the coefficients of Eq. (3.65) for N ¼ 3 and M ¼ 0.
[9] Show that Eq. (3.40c) in Chap. 10 is equivalent to Eq. (3.67).

[10] Derive Eqs. (3.69)–(3.72).

4 Semi-analytical Method for LAOS

The analytical methods introduced in previous sections have the limitation in the
order of series expansion. Most analytical functions have finite range of conver-
gence. For example, f ðxÞ ¼ arctan x can be expanded as follows:

f ðxÞ ¼
X1
k¼0

�1ð Þk
2kþ 1

x2kþ 1 ð4:1Þ

However, this series converges only for xj j\1. Hence, we are worry about the
series solutions of the previous section might have a narrow radius of convergence.
If our concern is valid, then the analytical solution cannot predict the LAOS
behavior of high strain amplitude.

If the purpose of an analytical solution is to use it for the identification of
nonlinear parameter of the constitutive equation, then it is sufficient to find the
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analytical equations of Fourier coefficients as functions of strain amplitude and
frequency. Bae and Cho (2015) invented an idea that circumvents the problem.
Their method is a semi-analytical method to find such equations from numerical
solutions for various conditions by using the scaling relation addressed in Sect. 2.
They checked whether single-mode Giesekus and PTT models obey the
strain-frequency superposition or not. They found that s01 and s001 of the two models
obey the superposition when kx\1. This condition agrees with the time–strain
separability condition of nonlinear relaxation moduli of the models. Figure 11
indicates that single-mode Giesekus and PTT models show nice superposition when
s01
�
coG

0ð Þ (or s001
�
coG

00ð Þ) is plotted as a function of
ffiffiffi
a

p
f. The superposition is

independent of strain amplitude, frequency, and the nonlinear parameter α if
kx\1. It is not difficult to find the following approximation functions from the
superposed data:

s01;sg ¼
coG

0
s kxð Þ

1þ 1:5
ffiffiffi
a

p
fs kxð Þ½ �1:7

; s001;sg ¼
coG

00
s kxð Þ

1þ 0:72
ffiffiffi
a

p
fs kxð Þ½ �1:4

ð4:2Þ

and

s01;spt ¼
coG

0
s xð Þ

1þ 1:4
ffiffiffi
a

p
fs kxð Þ½ �1:6

; s001;spt ¼
coG

00
s xð Þ

1þ 0:61
ffiffiffi
a

p
fs kxð Þ½ �1:4

ð4:3Þ

Here, sg and spt imply the single-mode Giesekus and the single-mode PTT
models, respectively, and we used the following notations:

Fig. 11 Superposition of normalized Fourier coefficient of the first harmonic. The lines are
Eqs. (4.2) and (4.3), and symbols are numerical solutions. This figure is redrawn from Bae and Cho
(2015)
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G0
s kxð Þ ¼ G

k2x2

1þ k2x2
; G00

s kxð Þ ¼ G
kx

1þ k2x2
ð4:4Þ

and

fs ¼ co cos d xð Þ ¼ co
G0

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G0

s

� �2 þ G00
s

� �2q ð4:5Þ

Then, the multimode versions are easily obtained as follows:

s01;R co;xð Þ ¼
XN
k¼1

s01; s co; kkx;Gkð Þ; s001;R co;xð Þ ¼
XN
k¼1

s001;s co; kkx;Gkð Þ ð4:6Þ

Bae and Cho applied Eq. (4.6) to the experimental data of PEO aqueous solution
to determine the nonlinear parameter α. Before the fitting, they determined discrete
relaxation time spectrum kk ,Gk ,Nf g. It is interesting that both numerical solution
and semi-analytical equation of Eq. (4.6) for multimode satisfy the strain-frequency
superposition of Cho et al. (2010) as shown in Fig. 12.

To check the validity of this semi-analytical method, Bae and Cho compare the
Pipkin diagram of the numerical solutions with the values of nonlinear parameter
determined from Fig. 12 with experimental data. Figures 13 and 14 are the com-
parison. As shown in the figures, the semi-analytical method is very effective in
determination of the nonlinear parameters of both the Giesekus and the PTT
models.

Fig. 12 Superposition of normalized multimode Fourier coefficient of the first harmonic. The
lines are Eq. (2.6), and symbols are experimental data of Cho et al. (2010). This figure is redrawn
from Bae and Cho (2015)
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Fig. 13 Comparison of experimental data of PEO aqueous solution and numerical solution of the
Giesekus model calculated by the value of a ¼ 0:54. This is Fig. 21 of Bae and Cho (2015)
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Fig. 14 Comparison of experimental data of PEO aqueous solution and numerical solution of the
PTT model calculated by the value of a ¼ 0:14. This is Fig. 23 of Bae and Cho (2015)
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Appendix
Functional Derivative

Appendix A: Calculus of Variation

Consider a mapping from a vector space of functions to real number. Such mapping
is called functional. One of the most representative examples of such a mapping is
the action functional of analytical mechanics, A ,which is defined by

A x tð Þ½ � �
Zt2
t1

L x tð Þ; v tð Þ½ �dt ðA:1Þ

where t is the independent variable, x tð Þ is the trajectory of a particle, v tð Þ ¼ dx=dt
is the velocity of the particle, and L is the Lagrangian which is the difference of
kinetic energy and the potential:

L ¼ m
2
v2 � u xð Þ ðA:2Þ

Calculus of variation is the mathematical theory to find the extremal function
�x tð Þ which maximizes or minimizes the functional such as Eq. (A.1).

We are interested in the set of functions which satisfy the fixed boundary con-
ditions such as x t1ð Þ ¼ x1 and x t2ð Þ ¼ x2. An arbitrary element of the function space
may be defined from �x tð Þ by

x tð Þ ¼ �x tð Þþ eg tð Þ ðA:3Þ

where ε is a real number and g tð Þ is any function satisfying g t1ð Þ ¼ g t2ð Þ ¼ 0. Of
course, it is obvious that �x t1ð Þ ¼ x1 and �x t2ð Þ ¼ x2. Varying ε and g tð Þ generates
any function of the vector space. Substitution of Eq. (A.3) to Eq. (A.1) gives

a eð Þ � A �x tð Þþ eg tð Þ½ � ¼
Zt2
t1

L �x tð Þþ eg tð Þ; d�x
dt

þ e
dg
dt

� �
dt ðA:4Þ
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From Eq. (A.4), we know that the extremal condition of Eq. (A.1) is equivalent
to

da
de

� �
e¼0

¼ 0 ðA:5Þ

Hence, the introduction of Eq. (A.3) reduces the problems of extremal condition
over a function space to those over real number.

Evaluation of Eq. (A.5) can be done by the use of integration by parts:

da
de

� �
e¼0

¼
Zt2
t1

L1 �x tð Þ;�v tð Þ½ �g tð Þþ L2 �x tð Þ;�v tð Þ½ � dg
dt

� �
dt

¼
Zt2
t1

L1 �x tð Þ;�v tð Þ½ � � d
dt
L2 �x tð Þ;�v tð Þ½ �

� �
g tð Þdt

ðA:6Þ

where

L1 ¼ @

@x
L x; v½ �; L2 ¼ @

@v
L x; v½ � ðA:7Þ

Since the test function g tð Þ is arbitrary, it is clear that Eq. (A.5) implies

d
dt

@

@v
L x; v½ �

� �
¼ @

@x
L x; v½ � ðA:8Þ

This is the Euler–Lagrange equation. Substitution of Eq. (A.2) gives

m
dv
dt

¼ � du
dx

ðA:9Þ

This is the equation of motion in Newtonian mechanics.
When a binary mixture of fluid is considered, the free energy functional is given

in terms of concentration profile / xð Þ as follows:

F / xð Þ½ � ¼
Z
X

f / xð Þ½ � þ c
2

r/k k2dV ðA:10Þ

where f /ð Þ is the free energy per unit volume for homogeneous mixture and γ is the
material constant representing interfacial tension. Note that if / xð Þ is the concen-
tration of one component, then that of the other component is 1� / xð Þ.
Thermodynamic theory addresses that the equilibrium concentration minimizes the
free energy functional. It is the problem of calculus of variation to determine the
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equilibrium concentration profile. As before, we define possible concentration fields
by the equilibrium concentration and the test function:

/ xð Þ ¼ �/ xð Þþ eg xð Þ ðA:11Þ

The test function g xð Þ is zero on the boundary @X of the domain of the mixture
fluid. Substitution of Eq. (A.11) to Eq. (A.10) and differentiation with respect to ε
give

@

@e
F �/ xð Þþ eg xð Þ� 	� �

e¼0
¼

Z
X

df
d/

g xð ÞdV þ c
Z
X

r/ � rg dV ¼ 0 ðA:12Þ

Application of the divergence theorem to Eq. (A.12) gives

Z
X

df
d/

� cr2/

� �
g xð ÞdV ¼ 0 ðA:13Þ

Since this equality must be hold for arbitrary domain, we have

df
d/

¼ cr2/ ðA:14Þ

This is the Euler–Lagrange equation for scalar field.
It is more convenient to use the notation such that dx tð Þ � eg tð Þ for Eq. (A.3) or

d/ xð Þ � eg xð Þ for Eq. (A.11). This notation is called variational notation. Consider
a functional defined by

A ¼
Zt2
t1

L t; q1 tð Þ; . . .; qn tð Þ; _q1 tð Þ; . . .; _qn tð Þ½ �dt ðA:15Þ

where _qk tð Þ ¼ dqk=dt. The variation of the functional is defined as

dA ¼ A q tð Þþ dq tð Þ; _q tð Þþ d _q tð Þ½ � � A q tð Þ; _q tð Þ½ � ðA:16Þ

where q tð Þ ¼ q1 tð Þ; . . .; qn tð Þ½ � and _q tð Þ ¼ _q1 tð Þ; . . .; _qn tð Þ½ � are short notation. It is
implied that

d _qk ¼ ddqk
dt

ðA:17Þ
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Then, Eq. (A.16) implies that

dA ¼
Zt2
t1

L t; q tð Þþ dq tð Þ; _q tð Þþ d _q tð Þ½ � � L t; q tð Þ; _q tð Þ½ �f gdt

¼
Xn
k¼1

Zt2
t1

@L
@qk

dqk þ @L
@ _qk

d _qk

� �
dt

ðA:18Þ

Application of the integration by parts to the second integration gives

dA ¼
Xn
k¼1

@L
@ _qk

dqk

� �t¼t2

t¼t1

þ
Xn
k¼1

Zt2
t1

@L
@qk

� d
dt

@L
@ _qk

� �
dqkdt ðA:19Þ

Here, we again use the boundary conditions for the variations such that
dqk t1ð Þ ¼ dqk t2ð Þ ¼ 0 for any k. Then, Eq. (A.19) becomes

dA ¼
Xn
k¼1

Zt2
t1

@L
@qk

� d
dt

@L
@ _qk

� �
dqkdt ðA:20Þ

Since we can take dqk independently, dA ¼ 0 implies that for any k,

@L
@qk

� d
dt

@L
@ _qk

¼ 0 ðA:21Þ

For a multivariable function f x1; . . .; xnð Þ, the differential of the function is
given by

df ¼
Xn
k¼1

@f
@xk

dxk ðA:22Þ

The stationary condition for the function is that for any k,

@f
@xk

¼ 0 ðA:23Þ

Equation (A.20) is very similar to Eq. (A.22), and the Euler–Lagrange equation
(A.21) is also similar to Eq. (A.23). Hence, it can be said that the Euler–Lagrange
equation is the condition that the derivative of the functional A becomes zero. This
analogy provides a clue to define functional derivative. We shall introduce a gen-
eralized derivative called the Gâteaux derivative which is a generalization of
directional derivative.
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Appendix B: Gâteaux Derivative

Derivative can be considered a linear mapping from the infinitesimal variation of
domain to that of image. Consider a real-valued function whose domain is real
number, y ¼ f xð Þ. From elementary calculus, we know that

dy ¼ f 0 xð Þdx ðB:1Þ

Note that dy is the infinitesimal variation of image, while dx is that of domain. If
domain is position vector and image is scalar field, we know that when y ¼ f xð Þ,

dy ¼ rf � dx ðB:2Þ

The gradient rf is the derivative of f xð Þ. As for vector field, v ¼ v xð Þ, we know
that

dv ¼ rvð ÞT � dx ðB:3Þ

Then, the tensor rvð ÞT is the derivative of the vector field v. In Sect. 5.3, we
learned the relation between directional derivative and gradient. Remember that

d
dt
f xþ thð Þ






t¼0

¼ rf � h ðB:4Þ

and

d
dt
v xþ thð Þ






t¼0

¼ rvð ÞT � h ðB:5Þ

Consider a vector space with a suitable norm which corresponds to the mag-
nitude of vector. The vector space can be a set of numbers, vectors, tensors, or
functions. For a mapping F from vector space X to vector space Y, the Gâteaux
derivative of the mapping is defined as

dGF x; hð Þ ¼ lim
e!0

F xþ e hð Þ � F xð Þ
e

¼ @

@e
F xþ e hð Þ

� �
e¼0

ðB:6Þ

where x 2 X, h 2 X , and F xð Þ 2 Y. If x is a position vector and the image of F
is a real number, then Eq. (B.6) implies the directional derivative in the direction to
h. Higher-order Gâteaux derivative can be defined by

d2GF x; h1; h2ð Þ ¼ @2

@e1@e2
F xþ e1h1 þ e2h2ð Þ

� �
e1¼e2¼0

ðB:7Þ
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If F is a mapping from function to real number, the Gâteaux derivative is related
to the functional derivative. As for the functional of Eq. (A.1), the Gâteaux
derivative is given by

dGA x tð Þ; dx tð Þ½ � ¼
Zt2
t1

dA
dx tð Þ dx tð Þdt ðB:8Þ

where we used the following notation:

dA
dx tð Þ � �u0 x tð Þ½ � � m

d2x

d2t
with u0 nð Þ ¼ du nð Þ

dn
ðB:9Þ

Analogy to Eqs. (B.4) and (B.5), it can be said that dA x �ð Þ½ �=dx tð Þ is the
functional derivative. Hence, calculus of variation is to find the functional deriva-
tive. Then, using this notation, we have

d2GA x tð Þ; dx tð Þ½ � ¼
Zt2
t1

Zt2
t1

d2A
dx tð Þdx t0ð Þ dx tð Þdx t0ð Þdt dt0 ðB:10Þ

Note that a function can be considered as a special case of functional. Using the
Dirac delta function, a function f tð Þ can be represented by

f tð Þ ¼
Z1

�1
f sð Þd s� tð Þds � F f tð Þ½ � ðB:11Þ

Application of the Gâteaux derivative gives

dF f tð Þ½ �
df sð Þ ¼ df tð Þ

df sð Þ ¼ d t � sð Þ ðB:12Þ

As for the derivative of a function, we know that

Z1

�1
f sð Þd0 s� tð Þds ¼ �

Z1

�1
f 0 sð Þd s� tð Þds ðB:13Þ

We have
df 0 tð Þ
df sð Þ ¼ �d0 t � sð Þ ðB:14Þ
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With the help of Eqs. (B.12) and (B.13), it is obvious that

d2A
dx tð Þdx t0ð Þ ¼ �u00 x tð Þð Þd t � t0ð Þ � md00 t � t0ð Þ ðB:15Þ

Equation (B.6) implies that when x 2 X and h 2 X

F xþ hð Þ ¼ F xð Þþ
Z1

0

dGF xþ th; hð Þdt ðB:16Þ

Then, the use of Eq. (B.16) gives the Taylor expansion of F such that

F xþ hð Þ ¼ F xð Þþ dGF x; hð Þþ 1
2!
d2GF x; hð Þþ � � � þ 1

n!
dnGF x; hð ÞþRnþ 1 ðB:17Þ

where

Rnþ 1 � 1
n!

Z1

0

1� tð Þndnþ 1
G F xþ th; hð Þdt ðB:18Þ

Consider the functional of Eq. (2.1) in Chap. 10. Assume that the functional of
Eq. (2.1) in Chap. 10 has the following form:

ei � T
s¼t

s¼�1 Ct x; sð Þ½ � � ek ¼
Z t

�1
Pik Ct x; sð Þ½ �ds � Sik Ct x; sð Þ½ � ðB:19Þ

where Pik X½ � is the ikth component of a tensor-valued function of a tensor X. We
know that

dGSik X sð Þ; dX sð Þ½ � ¼
Z t

�1

dSik

dXab sð Þ dXab sð Þds

d2GT
0
ik X sð Þ; dX sð Þ½ � ¼

Z t

�1

Z t

�1

d2Sik

dXab sð ÞdXcd s0ð Þ dXab sð ÞdXcd sð Þds ds0

..

.

ðB:20Þ
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Then, the Taylor expansion of Sik Ct x; sð Þ½ � about I ¼ Ct x; tð Þ is given by

Sik Ct x; sð Þ½ � �
Z t

�1

dSik

dXab sð Þ Cab
t x; sð Þ � dab

� 	
ds

þ 1
2

Z t

�1

Z t

�1

d2Sik

dXab sð ÞdXcd s0ð Þ Cab
t x; sð Þ � dab

� 	
Ccd
t x; sð Þ � dcd

� 	
ds ds0

þ � � �
ðB:21Þ

This is the derivation of Eq. (2.4) in Chap. 10.
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Contact force, 112
Continuous retardation spectrum, 317
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Creep compliance, 139, 290
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Creep test, 290
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D
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Dirac delta function, 138
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Equal a priori probability, 188
Equipartition theorem, 204
Ergodic hyperthesis, 205
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547
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Fractional models, 142
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Gâteaux derivative, 605
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H
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Hindered rotation chain model (HRC), 242
Hookean body, 136
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I
Ideal chain, 240
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Infinitesimal strain, 99
Information theory, 191
Internal energy, 119
Internal variables, 143, 161
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386
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Jaumann time derivative, 174
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K
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Kohlrausch-Williams-Watts (KWW) equation,
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Kronecker's delta, 8
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Lagrangian description, 95
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N
Navier equation, 129
Navier-Stokes equation, 132
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Nonlinear regularization, 414
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O
Objective time derivatives, 174
Ogden model, 277
Orthogonal tensor, 61
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P
Pade approximation, 378
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Partition function, 189
Phase angle, 300
Phase space, 178
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Piola-Kirchhoff stress of the 2nd kind, 117
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Secondary critical molecular weight, 441
The second order fluid, 509
Sharda model, 277
Shear flow, 492
Shear modulus, 126
Shear rate, 134
Shear stress, 126
Shear-thinning fluids, 136
Short-range interaction, 240
Simple elongation, 126
Simple shear, 125
Singular value, 387
Singular value decomposition, 387, 413
Small amplitude oscillatory shear (SAOS), 545
Smoluchowski equation, 227, 525
Spatial description, 95
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Specific heat capacity, 120
Spin tensor, 103
Standard solid model, 140
State variables, 147
Statistical independence, 182
Steady-state compliance, 293
Stokes-Einstein equation, 213
Stokes flow, 134
Storage modulus, 294
Strain-frequency superposition (SFS), 548, 563
Strain-rate frequency superposition (SRFS),

548, 563
Streamlines, 492
Stress, 112
Stress-controlled and strain-controlled

rheometers, 302
Stress decomposition (SD), 547
Stress-optical rule, 348
Stress power, 120
Stress relaxation test, 288
Stress vector, 112, 114
Strouhal number, 133
Sum of state, 189

T
Tangent base vectors, 29
Thermodynamic limit, 201
Thermodynamic process, 147
Tikhonov regularization, 371, 386, 414
Time-strain separable K-BKZ model, 517
Time-temperature superposition, 438

Trouton relation, 506
True stress, 117
Tschoegl model, 277

U
Unit step function, 138
Upper-convective Maxwell model, 168, 512
Upper-convective time derivative, 168

V
Valanis-Landel hypothesis, 274
Valanis-Landel model, 277
Velocity gradient, 102
Viscometric flow, 493
Viscous pressure scale, 133
Voigt model, 138
Vorticity direction, 134

W
Warner's approximation, 379
Weight-average molecular weight, 136
Weissenberg-Rabinowitsch equation, 504
Wick's theorem, 186

Y
Young's modulus, 126

Z
Zero-shear viscosity, 135, 293
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