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Preface

The Diffusion Gradients in Thin films (DGT) technique is an advanced sediment
sampler, which can measure concentration and flux of pollutants in porewater on
high spatial resolution. DGT has the functions as following, (1) in situ measure-
ment; (2) time-averaged concentration; (3) the speciation of analyte (labile species);
(4) bioavailability (effective concentration); (5) concentrations in solution and pore
water in sediment/soil; (6) kinetic or thermodynamics parameter; (7) the mea-
surement at high spatial resolution (<1 mm); (8) 2-dimensional concentration
image; (9) DIFS (DGT-induced fluxes in sediment) model. However, the previous
DGT papers have seldom researched P-release across sediment/water interface
(SWI) or P-transfer across sediment/root interface, and the conventional research
methods (linear distribution coefficient (K,), a non-linear adsorption isotherm
(Freundlich or Langmuir), or sequential extraction procedures) cannot perform
in situ measurement of elements at environmental interface with high spatial res-
olution or reveal the “real” kinetic P-release or bioavailability at microzone. In this
book, DGT and the related techniques have been developed in order to reveal the
P-transfer and the kinetic exchange at SWI (Dianchi lake) or sediment/root interface
(Erhai lake). Dianchi is an eutrophic lake and the extensive blue algal blooms have
happened frequently since 1993. The nutrient level of Erhai lake is changing from
mesotrophication to eutrophication in recent years. “Internal P-loading” in Dianchi
lake, can engender P-release from the sediment and increase total dissolved P in
overlying water and porewater regardless of “external P-loading.” So, it is impor-
tant to research the mechanism of “internal P-loading” and the geochemical reac-
tions for P-release. The roots of aquatic plants play a key role for the uptake of
appreciable quantities of nutrient from sediments. The new technique in the field of
ecological engineering—the cultivation of aquatic plants has been used for the
ecological restoration of lake eutrophication in Erhai lake. So, it is significant to
research the P-uptake mechanism of roots and P-transfer across sediment/root
interface. In this DGT research for lake interfaces, DGT and the related techniques
have been developed in order to perform the following tasks: (1) the simultaneous
measurement of P and the related elements (Fe and S(-II)) at fine scales at SWI,
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(2) the numerical simulation of kinetic exchange of P across DGT/porewater/
sediment interface, (3) the measurement of S(-II)- and Fe- microniches, (4) the DGT
test at rhizosphere of aquatic plants, and (5) the assessment of mechanism of
“internal P-loading” (Dianchi lake) or P taken up by roots (Erhai lake).

DGT technique and the related methods (the multi-layer-binding gel DGT,
DIFS-DGT Induced Fluxes in Sediments, CID—computer imaging densitometry,
LA-ICP-MS-laser ablation inductively coupled plasma mass spectrometry and DGT
method for rhizosphere), were used to solve the following problems related to
P-release and -transfer across SWI or sediment/root interface, including: (1) What
geochemical reactions determine the “internal P-loading” and P-release in sediment;
(2) How do the kinetic parameter and sediment-P pool determine P-release/-diffu-
sion across DGT/porewater/sediment interface? (3) How are Fe- or S(-II)-micro-
niche in sediment microzone measured for the prediction of the P-release or the
coupled Fe-S(-II)-P reaction? (4) DGT’s function to mimic P taken up by roots.
Using DGT probes and the related methods, the above questions have been
answered perfectly. This book consists of four parts, including the following con-
tents: Part I The Basic Theory and Methodology, mainly introducing the basic
theory of P-process at SWI in lake, the eutrophic problem; the DGT techniques
used in this book (multi-layer-binding-gel DGT probe, DIFS, CID, LA-ICP-MS,
DGT test method at SWI and rhizosphere), and the element uptake mechanism by
plant root; Part II “Internal P-Loading” at SWI, mainly introduces the P-process at
SWI of lake, the assessment of “internal P-loading,” kinetic P-exchange across
DGT/porewater/sediment, S(-II)- and Fe-microniches assessment for the prediction
of P-release; Part III The P Behavior at the Sediment/Root Interface of Aquatic
Plants, mainly introducing the DGT test in situ at rhizosphere and in rhizobox; and
DGT as a surrogate to mimic P taken up by plant root; The Conclusion and Prospect
(Chap. 9), mainly introducing the main conclusions about “internal P-loading”
mechanism, geochemical reactions for P-release, the calculation for kinetic
P-release at SWI, the assessment for “internal P-loading,” Fe- and S(-II)-microniche
for the prediction of the P-release and the coupled Fe-S(-II)-P reaction, the
assessment of DGT as a surrogate to predict P-uptake by root and P-content in plant
tissues, and the prospect for the sensing techniques such as: DGT-optode sandwich
sensors for the images with multi-parameters in sediment microzone or rhizosphere.

The DGT investigate for lake interfaces in this book should reflect the latest
research advances for P-transfer across SWI or sediment/root interface and
assessment methods for “internal P-loading” of eutrophic lake, and may develop the
new directions for the research of the mobility of P and other elements in lake
interfaces or chemical images of solutes in sediments.

All chapters were subject to the peer-reviewing and revision processes. We
would like to thank the following researchers because of their helps for the research
or writing for this book, including: Prof. Hao Zhang in “Lancaster Environment
Centre, Lancaster University” for the production of DGT assemblies and the sug-
gestion for DGT research; Mingyue Hu, Linghao Zhao and Dongyang Sun in
“Institute of National Research Center for Geoanalysis of China” for LA-ICP-MS
analysis; Gengtian Ma in “the Institute of Geophysical and Geochemical
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Exploration of China” for HR-ICP-MS analysis; Prof. Fengchang Wu, Lixin Jiao,
Wenbin Liu, Yuanzhi Xu, Haichao Zhao, Yanping Li, Li Zhang, Yanli Yang, Junli
Zhou and Zhaokui Ni in “Research Center of Lake Eco-environment, Chinese
Research Academy of Environmental Sciences” for the experiment in Dianchi and
Erhai lakes and writing; Prof. Mengchang He in “School of Environment, Beijing
Normal University, Beijing, P. R. China” for the suggestion about writing this
book.

The DGT research in this book was sponsored by the National Natural Science
Foundation of China (No. U1202235), National High-level Personnel of Special
Support Program (10000 people plan, No. 2012002001), the National Critical
Patented Project for Water Pollution Control and Management (2012Z2X07102-004),
and the China Postdoctoral Science Foundation (2013M541002).

Please forgive us due to the time constraints for writing. If the reader has found
anything that needs to be improved in the book, please propose the valuable
suggestion

Beijing, People’s Republic of China Shengrui Wang
October 2015 Zhihao Wu
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Abstract

The P-process and the mechanism of P-transfer at sediment/water interface
(SWI) based on DGT (Diffusive Gradients in Thin Films) technique at two lakes
(Dianchi and Erhai lakes) are investigated in this book. In general, the main
research content includes the basic theory and methodology of DGT technique for
P-process in lake sediment; “internal P-loading” at SWI investigated by DGT
technique (Dianchi lake); the P-behavior at the sediment/root interface of aquatic
plants (Erhai lake); and the research conclusion and prospect for DGT technique.
Using DGT technique and the related methods (the multi-binding-layer DGT for
SWI, DIFS-DGT Induced Fluxes in Sediments, CID—computer imaging densito-
metry, LA-ICP-MS-laser ablation inductively coupled plasma mass spectrometry
and DGT method for P-process at rhizosphere in lake), P-release mechanism and
the quantification for “internal P-loading” of lake sediment, the kinetic P-exchange
across DGT/porewater/sediment interface, sulfide image at fine scale for sulfide
microniche and Fe-S(-II)-P geochemical reaction for P-release, Fe-image at fine
scale for the verification of existence of Fe microniche and the prediction of
P-release from Fe microniche, and DGT assembly for the measurement at rhizo-
sphere, which is a surrogate for the assessment of P-uptake by aquatic plant root,
can be investigated in detail. DGT technique, a powerful tool with multi-functions,
and its significance for the research of P-transfer and kinetic process at sediment
microzone and rhizosphere, has also been discussed and assessed.

Keywords Sediment/water interface (SWI) - Diffusive gradients in thin films
(DGT) technique - Internal P-loading - DIFS-DGT-induced fluxes in sediments and
soils « CID—computer imaging densitometry - LA-ICP-MS-laser ablation induc-
tively coupled plasma mass spectrometry - Rhizosphere - Microniche
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Part 1
The Basic Theory and Methodology



Chapter 1

The Basic Theory of P-process
at Sediment/Water Interface (SWI) in Lake

Element distributions in porewater provide the considerable information about the
intensities of physical, chemical, and biological processes in sediments, while
sediments are the principal sink/sources for metals, sulfide, or phosphorus in lake.
In many studies, the sediment/water exchange has been proved to play a dominant
role in the ecological cycle of phosphorus (P), sulfide (S), or metal. The mea-
surement method for contaminants in sediments, and the assessment of P-release
risk or sediment reactivity using DGT technique have been researched for the
objectives of the determination of the extent to which the sediments are either a
source or a sink for contaminants or the evaluation of the effects of these con-
taminants on the eutrophic status of water body. Moreover, DGT can also be used
to mimic the element-uptake by plant root. In two Chinese lakes (Dianchi and Erhai
lakes), the determination of multi-kinds of elements at the same location in sedi-
ment profile, the kinetic process of P at sediment/water interface (SWI), DGT image
for S(-II) or Fe for the coupled reaction for P-release, the assessment of DGT as the
proxy of root of aquatic plant for P-uptake, and the investigation of the mechanism
of “internal P-loading” and P-transfer across sediment/root interface would be
introduced in the next chapters. In this Chapter, the “internal P-loading,” P-release
mechanism, DGT technique for SWI of lake, and P-uptake by root investigated by
DGT technique are summarized and discussed.

1.1 “Internal P-loading” and P-release Mechanisms
in Lake Sediments

In China, there are a lot of lakes with the total reservoir capacity of 6.38 X 10'' m’
and 2300 lakes have the area of more than 1 km? (Chinese Research Academy of
Environmental Sciences 2014). Lakes are the main sources of water supply for
inland water, and fifty percent of the drinking water source is from lakes. However,

© Springer Science+Business Media Singapore 2016 3
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the water quality of fifty-seven percent of the state control key lakes and reservoirs
belong to V class and substandard V class. Among those water bodies, in Taihu
Lake, Dianchi Lake and Chao Lake, the extensive blue algal blooms have occurred
frequently in recent years and the degeneration of aquatic ecosystem becomes
serious. The lake pollution, especially lake eutrophication, has become the main
problem in the field of lake environment (Chinese Research Academy of
Environmental Sciences 2014).

Phosphorus (P) is the limiting factor for the lake eutrophication, and there are
two kinds of the sources of P in lakes, including “external P-loading” and “internal
P-loading.” Even if the “external P-loading” is controlled, the “internal P-loading”
can still influence the extent of lake eutrophication (Jin et al. 2008). The internal
loading of lakes includes “internal P-loading” in water body (biological internal
loading, especially algal) and in sediments. Sediment is the important pool for lake
nutrients and the main source of the internal P-loading of lakes. The physico-
chemical properties and the environmental process of P and related elements such
as metals can have important influences on the P-release from sediments. So, the
investigation of P-transfer and P-transformation across SWI plays an important role
on the controlling lake eutrophication (David 1998).

P is an important nutrient element and is one of the limiting elements for the
occurrence of algal blooms in lakes. In the eutrophic lake Dianchi (the southeast of
China), the controlling methods for P eutrophication include the controlling tech-
nique for the P discharge into lake and the improvement of treatment methods for
wastewater containing P. Despite the mentioned strategies for the control of P
pollution, the extensive blue algal blooms have still occurred frequently in recent
years and the algae biomass was 4.24 X 10° to 1.04 X 10° cell L' in 2013
(Chinese Research Academy of Environmental Sciences 2014). Dianchi Lake has
failed to recover from eutrophic status partially because of P-release from the
sediment (“internal P-loading”). The reason is that sediments are both the sink and
the pool for P in water body and play an important role for P cycle in water
ecological system in lakes. At SWI, the continuous transfer and transformation
occur frequently. In certain environmental condition, P in sediments can be released
into overlying water and have the important influence on water quality and
eutrophic status in lakes. So, the understanding of the mechanism of “internal
P-loading” is the important scientific problem for the controlling lake eutrophica-
tion and the restoration of ecological water system.

The interface between the sediment and the overlying water is the locus of
activity which, in principal, determines most of the postdepositional static and
dynamic behavior of the entire sediment down to depths at which the geothermal
and geochemical diagenetic processes become substantial (Kennett 1982; Parsons
and Sclater 1977; Hulbert et al. 2002). However, the knowledge of the interface
characteristics and processes at SW1 is so fragmentary that we can use it, at best, to
create only a rudimentary description of the properties and environmental behavior
at the interface and sediment. Both the observational data and the theoretical
framework characterizing the interface and the environmental processes which
occur there are deficient (Hulbert et al. 2002). P forms in sediments as inorganic
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(PO4*>~, Pi) or organic (R-C-O-PO;*>~ of R-PO5;>~, Porg) are associated with
minerals (Fe—P, Al-P, or Ca—P) and the organic P. The remobilization of P from
sediment was influenced by redox conditions, pH, P speciation in sediment, Fe
(IIT) hydroxyoxide, and sulfate-reduction. Under anaerobic condition, soluble
reactive phosphorus (SRP) can be released from inorganic P in sediments through
the reduction of Fe (IIT) hydroxyoxide. The P-release from algae biomass or organic
matter can also contribute to “internal P-loading.” The P-release from bottom
sediment into water column can engender “internal P-loading” (Cook et al. 2010;
Wu et al. 2015a, b, c¢) and lake eutrophication (Palmer-Felgate et al. 2011).
Moreover, researchers such as Roden and Edmonds (1997) and Ding et al. (2012)
have revealed an indirect reduction mechanism for P-release, which is due to
P-release from Fe (III) hydroxyoxide and the enhanced formation of insoluble FeS
because of sulfide-reducing bacteria. “Internal P-loading” happens if the environ-
mental conditions within sediments of a lake allow for P-release into the water
column, thereby increases the TP (specifically available or reactive P (RP)) in the
water column, regardless of the decrease of “external P-loading.”

The schematic graphics for the sorption/desorption process or P-process across
the sediment/water interface (SWI) are indicated in Figs. 1.1 and 1.2, in turn.

1.2 Diffusive Gradients in Thin Films (DGT) Technique
and the Development Trend for the Application
at SWI or Rhizosphere

DGT (diffusive gradients in thin films) technique is a passive sampling method, which
has been applied widely in the fields of environmental science and analytical chem-
istry. This technique was invented by Davison et al. (1994) in Lancaster University and
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Fig. 1.2 The P-process at the sediment/water interface (SWI)

used for the test of trace metals in seawater initially. One year later, DGT was used for
the measurement of trace metals at the high spatial resolution in sediments. The
schematic graph for the DGT probe and piston devices is indicated in Fig. 1.3. DGT
technique is developed based on DET (diffusive equilibration in thin films) technique,
while DET technique was invented in 1991 (Davison et al. 1991). DET assembly
consists of a thin film of hydrogel containing 95 % water in probe framework, which is
inserted into sediments. Solute equilibration between the water within the gel and the
porewater occurs. Normally, the DET or DGT probe can be retrieved after
24 h-deployment in sediments. Then, the DGT-binding gel or DET hydrogel can be
eluted by elution solution, which is analyzed by instruments (Zhang et al. 1995; Fones
etal. 2004). Initially, DET/DGT assembly can be used for the determination of solutes
with high concentrations, including Fe and Mn (Fones et al. 2004; Davison et al. 1994),
the major anions (Osterlund et al. 2010) and major cations (Zhang and Davison 1999).
But, DET technique is difficult to analyze elution solutions from small volumes of gel.
The continued improvement in analytical technique, particularly inductively coupled
plasma mass spectrometry (ICP-MS), made it possible to measure trace metals by DET
in some studies (Docekalova et al. 2002; Morford et al. 2003; Leemakers et al. 2005). In
the improved DGT assembly, one binding gel layer is introduced behind the diffusive
layer of hydrogel, which allows trace solutes, such as metals to accumulate progres-
sively with time, greatly improving the detection limits compared to DET.

The basis of the technique is fundamentally changed from the simple equili-
bration of DET to a dynamic measurement of a flux of the solute. DGT perturbs
environment medium and removes solute. The subsequent measurement method
determines the accumulated mass for the exposure area of DGT window in a given
time, which is the time-averaged flux of DGT. The magnitude of flux depends on
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Fig. 1.3 The schematic graph for the DGT probe and piston devices (Reprinted from Arch.
Environ. Con. Tox., published online (doi:10.1007/s00244-015-0184-1), Wu, Z.H., Jiao, L.X.,
Wang, S.R., Xu, Y.Z., Multi-metals Measured at Sediment—Water Interface (SWI) by Diffusive
Gradients in Thin Films (DGT) Technique for Geochemical Research, copyright (2015), with the
permission from Springer; Reprinted from Anal. Chim. Acta., 368, 243-253, Chang, L.Y., Davison,
W., Zhang, H., Kelly, M., Performance characteristics for the measurement of Cs and Sr by
diffusive gradients in thin films (DGT), copyright (1998), with the permission from Elsevier;
Reprinted (adapted) with permission from (Environ. Sci. Technol., 45: 6080-6087, Williams, P.N.,
Zhang, H., Davison, W., Meharg, A.A., Norton, G.J., Organic matter—solid Phase interactions are
critical for predicting Arsenic release and plant uptake in Bangladesh paddy soils), copyright
(2011), American Chemical Society)

the response of dynamic response of the medium to the perturbation of solute
removal. When DGT assembly is deployed in sediment/soil, it can give the
information of solute supply. The dynamic interaction between DGT and
sediment/soil can be explained by numerical model, which is helpful to a full and
quantitative understanding of the theory of DGT test (Harper et al. 1998).

DGT can determine trace inorganic matter (metals, cations, and anions) in
surface water (river, lake, and sea) and porewater in sediment/soil, which can be
used for the research of bioavailability and environmental process. It has been
widely used in the research institutions of the world and the reliable functions have
been verified (User’s guide to DGT technique 2003). DGT can determine 55 ele-
ments and among them, the measurement of 24 elements is accurate and reliable
absolutely (Garmo et al. 2003). DGT has the functions as following: (1) in situ
measurement; (2) time-averaged concentration; (3) the speciation of analyte (labile
species); (4) bioavailability (effective concentration); (5) concentrations in solution
and porewater in sediment/soil; (6) kinetic or thermodynamics parameter; (7) the
measurement at high spatial resolution (<1 mm); (8) two-dimensional concentration
image (Ding et al. 2012); and (9) DIFS (DGT-induced fluxes in sediments) model
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(User’s guide to DGT technique 2003). DGT is a passive sampling technique,
which has been used for the measurement of trace elements in water and porewater
in soil or sediment. It determines the solute mass which diffuses through diffusive
gel and filter and forms the diffusive gradient. The solute can be bound by binding
gel after it diffuses through diffusive gel. The binding gel behind the diffusive gel
can remove solutes continuously and keep the concentration gradient during
deployment time (Fig. 1.4). The designation of the structure of DGT enables the
calculation of time-averaged flux (F) toward the DGT resin and the time-averaged
concentration (Cpgr) in the interface of DGT/solution. The calculation equations
are as follows:

F = M/At (1.1)
CpgT = MAg/DAt (12)

where deployment time is #; exposure area is A; the diffusive coefficient in diffusive
layer is D; the thickness of diffusive layer is Ag (omitting the diffusive boundary
layer-DBL); and the mass accumulated on binding gel is M. Typically, M is the
measured solute mass after the gel elution. D can be determined by diffusion cell
(Zhang and Davison 1999), and the D values of some solutes as the function of
temperature can be found in one reference (User’s guide to DGT technique 2003).
Typically, Chelex-100 (Bio-Rad, Hercules, CA), Agl, and ferrihydrite gels in DGT
devices can be used for the measurements of polyvalent metal cations, inorganic
sulfide, and P, in turn (User’s guide to DGT technique 2003).

For the measurement at the high spatial resolution by DGT probe, some methods
have been used to determine metals or P, including slice and elution for binding gel
and subsequent ICP-MS analysis (1 mm-resolution); PIXE (Davison et al. 1997) or
Laser-ablation-ICP-MS (Santner et al. 2010; Warnken et al. 2004). The sulfide
bound by Agl gel can be determined by gray-scan method (Teasdale et al. 1999).
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The methods mentioned above can achieve the spatial resolution of 100 um (PIXE,
Laser-ablation-ICP-MS, and Agl gel).

When DGT is deployed in sediment, DGT as a sink for solute depletes the
porewater adjacent to DGT window and the labile species in particles of sediment
can supply for this depletion. The ratio of the average concentration at the DGT
surface to the concentration in the bulk porewater, C,,, measured by other tech-
niques, is given as R. Three cases may arise related to the DGT-induced flux and the
interfacial concentration (Fig. 1.5), including: (a) fully sustained (R > 0.95);
(b) diffusion only (R < 0.10); and (c) partially sustained (0.10 < R < 0.95) (User’s
guide to DGT technique 2013). R is the indicator of the extent of the depletion of
sediment solution concentration at the DGT/sediment interface.

“The environmental process at SWI” is the research focused in the field of sed-
imentology and aquatic science. So, it is necessary to research the element-transfer at
SWI, the kinetic process of sorption/diffusion, the mechanism and source for
element-release, and the effect of microorganism activity and physical perturbation
on element-release at environmental interface. The dynamic condition of elements at
SW1 is significant, and the nonstable condition and the steep chemical gradient can
be formed. The techniques for the accurate determination of the steep concentration
profile are required because of the most importance of measuring accurate con-
centration gradient and flux at SWI. The composition of porewater in sediments is
perhaps the most sensitive indicator of the types and the extent of reactions that take
place between the pollutant-loaded sediment particle and the aqueous phase that
contacts it (Forstner 2004). However, the porewater is customarily recovered from
sediments by leaching (Forstner 2004; Ruban et al. 2001; Tessier et al. 1979),

resin layer

Concentration

AR Distance into sediment

Fig. 1.5 The schematic graph for the representation of the concentration of labile element in a
DGT piston and adjacent porewater during deployment. Fully sustained (case a), partially
sustained (case c), or diffusion only (case b) by resupply from the solid phase in sediment
(Reprinted from Environ. Pollu., 159: 1123-1128, Wu, Z.H., He, M.C., Lin, C.Y., In situ
measurements of concentrations of Cd, Co, Fe and Mn in estuarine porewater using DGT,
copyright (2011), with the permission from Elsevier)
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centrifugation or squeezing (Bender et al. 1987), coring, and centrifugation
(Hamilton-Taylor and Morris 1985) or sippers (Watson and Frickers 1990), and the
measurement results using those methods are not perfect. Squeezing of sediment
core can engender porewater passing through different layers of sediment where
artificial reaction may occur. Centrifugation, in particular, often requires rigorous
care to ensure all handling is carried out in an anoxic atmosphere. Dialysis peepers
(centimeter to subcentimeter resolution) usually require typically days/weeks and
often modify the redox state of the system during deployment.

DGT measurement can reflect the horizontal and vertical distribution at high
spatial resolution of millimeter or submillimeter in sediment porewater (Zhang et al.
1995; Davison et al. 1997). The seasonal change of the chemical gradient of trace
elements in porewater and the measurement at fine spatial scale can be used to
determine the detailed site, the coupled reaction, and the microorganism activity
(Wu et al. 2015a, b, ¢). DGT has been used for the measurement of multi-elements,
and based on the measurement results, the microenvironmental condition, and the
sediment property, the geochemical process of elements at SWI can be investigated.
For example, Zhang et al. (2002) have investigated the geochemical reactions of Fe,
Mn, Co, Ni, and As at SWI of Loch Duich off the west coast of Scotland; Naylor
et al. (2004) have investigated the simultaneous release of Fe, Mn, Ni, Zn, and S(-
I) in sediments at Fleetwood, Lancashire, United Kingdom, using the coupled
Chelex/AgI-DGT probes. Gao et al. (2010) have investigated the mobility of **°Ra
using MnO,-resin DGT in sediments of the Winterbeek. Monbet et al. (2008) have
used DET and DGT for the investigation of DRP (dissolved reactive phosphorus)
profiles in sediment porewater in two lagoons of the Gippsland Lakes
(SE Australia) and the reactivity kinetics for P-release using dynamic numerical
model. Chang et al. (1998) and Garmo et al. (2006) have investigated radioactive
rare elements and lanthanide. Davison et al. (1997), Warnken et al. (2004), Santner
et al. (2010), Ding et al. (2012, 2013), and Gao et al. (2015) have investigated the
chemical images at ultra-high spatial resolutions of metals, sulfide, and P in sedi-
ment porewater. Ernstberger et al. (2002) have conducted the numerical calculation
for the environmental process of metals at microinterface of DGT/sediment. The
preparation methods for the binding gel with new types and the new measurement
methods have also been developed in recent years (Lucas et al. 2012; Bennett et al.
2011; Panther et al. 2010, 2012; Docekalova and Divi§ 2005; Ding et al. 2012;
Moorleghem et al. 2011).

The biogeochemical reaction in sediment porewater (adsorption and release) in
sea, lake, and river can be investigated by element profiles and flux in sediment
porewater profiles (Hamilton-Taylor and Morris 1985). Hydrogen sulfide in sedi-
ment can be engendered under anoxic conditions and by the microbially mediated
reactions. Beside the large proportion of reoxidized H,S, a part of sulfide reacts and
metal sulfides such as pyrite (FeS,) are formed in marine or estuarine environment.
Moreover, other metals can also form metal sulfides and trace metals can be
coprecipitated or adsorbed on minerals such as iron sulfides (Morse and Luther
1999; Rickard 1997).
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The electron acceptors (O, S04, Fe3+, Mn4+, and NO3 ™) play an important role
in the oxidation process of organic matter in sediments (Zhang et al. 1995; Tessier
1992). The reduction of solid Fe or Mn oxides to the reduced and dissolved Fe** or
Mn?* can induce the release of other trace metals adsorbed or bound to them. The
decomposition of labile organic matter can engender inorganic N, P, and metals. So,
the biogeochemical reactions of organic matter can bring out the interrelated
chemical gradients in the SWI under redox condition. The redox sensitive metals are
commonly Fe and Mn (Fones et al. 2004). The oxidation species Mn>* and Mn** can
be formed under conditions of high pH and Eh. Mn** can be formed under low pH
and Eh. Mn redox cycling responses to Eh conditions in sediment layer and Mn
reduction are mainly by bacterial reduction of Mn oxides, which includes two types
of reduction processes (indirect and direct) (Myers and Nealson 1993).

Lake sediments can act as both a sink and a source of P and are comprised of
complex mineral aggregates, water, and in(organic) components. P can be sorbed to
Fe, Mn, and Al hydroxyoxide minerals in sediments and be permanently or tem-
porarily removed from water. The physical, chemical, and biological processes,
inducing P-release from sediment, include desorption, ligand exchange, particle
dissolution, mineralization, and the release from living cells (Christophoridis and
Fytianos 2006). Physicochemical parameters such as temperature, pH, redox
potential, nitrates, sulfates, bioturbation, and the presence of Ca, Mn, Fe, Al, and
Mg have been found to control or play a role in P-release.

P exists in sediments as a soluble anion (orthophosphate, PO4>~), a precipitated
phosphate salt, or as part of a mineral or organic compound. Possible phosphate
minerals in lake sediments include stregnite [FePO4-2H,0], vivianite
[Fe3(PO,4),-8H,0], hydroxyapatite [Cas(PO4)3;(OH)], monelite [CaHPO,], and
variscite [AIPO4-2H,0]. The redox reactive components in sediments in addition to
pH fluctuations and equilibrium gradients are the primary chemical controls of P
cycling in sediments.

The insoluble Fe (IIT) hydroxyoxide can be reduced to soluble Fe(Il) and P can
be released from the Fe-bound P into surrounding water (Bostrom and Pettersson
1982; Christophoridis and Fytianos 2006). The simultaneous release of DIP
(PO,>7) and Fe* in equivalent concentrations under anoxic condition has been
revealed by a benthic chamber in sediment layer in Gullmarsfjorden, Sweden
(Sundby et al. 1986). An indirect P-release mechanism of the coupled reactions
(Fe—-S—-P) has also been discovered by Roden and Edmonds (1997). This mecha-
nism attributes the P-release from Fe (III) hydroxyoxide to the formation of
insoluble FeS caused by sulfate-reducing bacteria. The measurement of P/Fe/sulfide
at SWI and the investigation of P-transfer across SWI are important to reveal
biogeochemical reactions. Moreover, in the microenvironment with the reactive
organic matter, the geochemical behavior in this microzone is obviously different
from bulk environment at the same depth in sediment (Stockdale et al. 2010). In a
microscopic study of marine sediments, Johnson (1974) identified possible food
sources with diameters ranging from 5 um to 1.9 mm. Jergensen (1977) estimates a
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detrital particle scale range from 1 pm to several millimeters/centimeters. The
microniche may exist in sediment microzone with such particles.

DGT measurement induces the minor disturbance to be controlled in sediments
and the result of the measurement reflects the response of DGT to this disturbance.
DGT measurement can derive the information about metal species in seawater
(Davison et al. 1994), the remobilization flux with high spatial resolutions in
sediments (Zhang et al. 1995), the DGT analysis at the ultra-high spatial resolution
(100 pm) in microbial mat in sediments (Davison et al. 1997), and remobilization
flux in sediments (Zhang et al. 1998). The main methods for the mentioned DGT
tests are based on DGT theory and the subsequent measurement techniques are
applied, such as PIXE (proton-induced X-ray emission), LA-ICP-MS (laser ablation
inductively coupled plasma mass spectrometry), 2D slicing for binding gel, and
mixed-binding gel and combined DGT probe. Based on the DGT experimental
results, the environmental condition (pH and Eh) and the theory of biogeochemical
reactions, and the remobilization process and release mechanism of metals, sulfide,
and P in sediments can be investigated. DGT is an advanced passive sampling
technique for the measurements of multi-kinds of labile elements in water, sedi-
ment, and soil. It has the advantages, such as (1) the simple instrument framework
with multi-layers and easy to operate; (2) the quantification method to calculate
time-averaged concentration (Cpgr) based on the mass accumulated on binding gel
(Mpgr); (3) the sample contamination with very low level; and (4) high sensitivity
(ultra-trace analysis) and dynamic measurement. DGT can accomplish the fol-
lowing tasks, including water quality monitoring (Sangi 1998; Munksgaard and
Parry 2003); chemical speciation in solution (Li et al. 2005; Aung et al. 2008;
Jansen et al. 2001); sediment geochemistry (Zhang et al. 2002; Fones et al. 2004);
dynamic processes in waters (Levy et al. 2012; Garmo et al. 2006) and soils
(Ernstberger et al. 2002, 2005), and bioavailability in waters (Nierop et al. 2002;
Meylan et al. 2004; Roulier et al. 2008) and soils (Cattani et al. 2008).

The DGT method for plant rhizosphere in soils has been developed for the elements
(metal or P) taken up by plant roots. Environmental risk assessment connected with
heavy metal contamination in soils is not easy to research. For most ecological risk
investigation, the toxicity of heavy metals is normally related to total content or
mechanically extracted species (McLaughlin et al. 1998; Zhang et al. 2001). Though
some legislation or guidelines for heavy metals in soil or sediment are based on the total
content, the researchers have realized that some fractions in the total metal content are
unavailable to plants, microorganisms, or soil fauna. The extraction method for soil or
sediment divides the aquatic phase and the plant root or microorganisms and only free
ion in soil/sediment solution can reflect the “real”-metal availability (Vulkan et al.
2000; Sauvé et al. 1996; McGrath et al. 1994; Zhang et al. 2001). However, the normal
measurement in soil or sediment solution does not consider the element-release from
solid phase to resupply the solution due to the depletion by root uptake. The method
mentioned above cannot assess element bioavailability to plant effectively because
many processes can influence the supply of element to plant, such as diffusional and
convective transfer to root, the fresh root surface in sediment or soil due to plant
growth, the rhizosphere microenvironment, and root exudates. DGT method for
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rhizosphere is based on the diffusional transfer and the resupply from solid phase
(Zhang et al. 2001). Labile element fraction can be released from sediment/soil, if root
uptake is rapider than diffusional supply. Then, the depletion of element concentration
in sediment/soil solution near the root surface can induce the element-transfer from
solid into porewater. The element fraction in sediment/soil contributes to plant root
uptake and can be transferred from solid into solution. The element fraction in solid
phase is believed to be kinetically labile. Nutrients such as Fe, Cu, and Zn can be
mobilized from solid into solution by plant root uptake due to the depletion in
sediment/soil solution. The potential hazard of a soil/sediment with metals or P can be
assessed by the characterization of soil/sediment/root properties. The resupply of
elements from sediment pool other than porewater has been realized and the research
on the intensity, quantity, and capacity in the initial 60 s in sediment/soil pool has been
conducted (Barber 1995; Beckett 1964; Zhang et al. 2001).

The hazard assessment for contaminated soil/sediment has not been improved
significantly because of the lack of a simple procedure to assess the kinetic release
of element from soil/sediment and the supply to root. Extraction method for
soil/sediment justly provides a mechanical classification of element fractions in
sediment/soil (Tessier et al. 1979); however, this method is based on the reaction
between chemical reagent and solid phase, rather than a real reflection of element
lability. The placement DGT resin in soil/sediment can lower element concentration
in porewater, and like root, the DGT assembly in soil/sediment can take up the
element in soil/sediment (Skogley and Dobermann 1996; Lee et al. 1996; Zhang
et al. 2001). Placement of DGT resin in soil/sediment lowers element concentration
and it can mimic root uptake (Skogley and Dobermann 1996; Lee et al. 1996;
Zhang et al. 2001). A layer of diffusion gel between the resin and the soil/sediment
can allow ion and the complexes diffuse freely and limit the uptake rate. DGT
calculation method ensures the precise flux and concentration. The DGT mea-
surement for rhizosphere is based on kinetic rather than equilibrium principle
(Davison et al. 1994; Zhang et al. 1998). DGT assembly can locally lower element
concentrations in porewater and induce element supply from labile fractions and the
reactive pool in solid phase (Zhang et al. 2001). The measurement in soil/sediment
using DGT technique can derive a new parameter-effective concentration (Cg).

During the period for DGT devices deployment in soil/sediment, soluble labile
elements are accumulated in the resin. The mass accumulated in resin-M can be
measured. A full numerical model (1D or 2D) for DGT deployment in sediments
with various properties has been invented and introduced in detail (Harper et al.
1998, 2000). The numerical model, named DIFS (DGT-induced fluxes in sedi-
ments), can be freely available in Web site: http://www.es.lancs.ac.uk/wdgroup/
aquach.htm.

The effective concentration (Cg) is the hypothetical porewater concentration that
would be needed to accumulate the observed amount of one element on the resin if
there was only diffusional supply. The schematic graph of (Cg) related to (Cpgr) is
indicated in Fig. 1.6.
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Fig. 1.6 The schematic graph of Cg related to Cpgr in soil/sediment solution (Reprinted
(adapted) with permission from (Environ. Sci Technol, 45: 6080-6087, Williams, P.N, Zhang, H.,
Davison, W., Meharg, A.A., Norton, G.J., Organic matter—solid Phase interactions are critical for
predicting Arsenic release and plant uptake in Bangladesh paddy soils), copyright (2011),
American Chemical Society)

The effective concentration (Cg) differs from Cpgr with a factor that depends on
the geometry of the device, deployment time, and soil tortuosity. The DGT mea-
sured concentration in a sediment Cpgr can be converted to (Cg) using Eq. (1.3).

Cg = Cpar/Raitr (1.3)

where Rg;g is the ratio of Cpgr to the sediment solution concentration when supply
to the DGT device is only by diffusion. It was calculated using the numerical model
of the DGT-sediment system 2D DIFS (DGT-induced fluxes in sediments). It is
freely available in two-dimensional form, via the Internet (http://www.es.lancs.ac.
uk/wdgroup/aquach.htm).

Ds (the diffusion coefficient in sediment) was calculated using Egs. (1.4-1.6):

Pc=m/V (1.4)

¢ = dp/(Pc+dp) (L5)
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Ds = Dy/(1 —1In ¢) (1.6)

where m is the total mass of soil particles, V is the porewater volume in a given
volume of soil, and dp is the density of the soil particles, which in this model was
assumed to be 2.65 g cm . The term Dy, refers to the diffusion coefficient in water.
The ratio (R) of the DGT measured concentration (Cpgt) to the bulk concentration
in soil solution (Cy,) reflects the extent to which there is dynamic resupply from the
soil solid phase (Eq. 1.7):

R = C/Cpgrsol (1.7)

This DGT function has been used for the research of the uptake of metals or P and
bioavailability. Mason et al. (2010) have investigated “available P” in soils of
Australia using DGT technique, anion exchange resin membrane, and the traditional
bicarbonate extraction method of Colwell. The research result indicated that the DGT
method predicted plant (wheat) responsiveness to applied P more accurately than
Colwell P and resin P, and the measured concentration in soils at the DGT surface,
Cpgr, explained 74 % of the variation in response to both early dry matter and grain.
Williams et al. (2012) have applied DGT in the rice paddy soils in “cancer village” in
Southern China from industrial zones impacted by mining waste and assessed the Cd
concentrations in rice grain. DGT piston tests (in situ and in laboratory) were con-
ducted in the rice rhizosphere and the results indicated that laboratory- and
field-deployed DGT assays and porewater measurements were linearly related to
grain concentrations in all but the most contaminated samples where plant toxicity
occurred. The laboratory DGT assay was the best predictor of grain Cd concentra-
tions, accommodating differences in soil Cd, pollutant source, and the ratios of Cd/Zn.

1.3 The Uptake and Accumulation Mechanisms
for Elements at the Rhizosphere of Aquatic Plant
in Lake

The nutrient level of Erhai Lake (southeast of China) is changing from
mesotrophication to eutrophication in recent years. The new technique in the field
of ecological engineering, the cultivation of aquatic plants for the control of lake
eutrophication, has been used for the ecological restoration of Erhai Lake. P can be
removed by biomass and harvest. In the unharvested system, immobilization by
sorption/precipitation is the other P-removal mechanism. Chemical and physical
composition results in the efficiency of the removal process. The limiting nutrient
concept has been developed to describe the photosynthesis and its stoichiometry.
Redfield et al. (1963) have investigated the reaction of photosynthesis and given the
Redfield ratios for composition of biomass, which are indicated as follows:
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106 CO,(,) 4+ 16 NO3~ +HPO,>™ + 18H ™ + 122 H,0
> Cro6H2630110N16P + 13805 (1.8)

The Redfield ratio is the indication for the judgment of whether N or P is
potentially limiting for growth. The molar ratio of 16N:1P corresponded with about
7N:1P (mass ratio) is usually used as this judgment criterion. According to the
theory introduced by Rast et al. (1989), in the short time (days), only inorganic
species can be taken up by plants. Moreover, several environmental factors,
including insolation, temperature, and biomass density, can also influence macro-
phyte growth. The main carbon source for submersed plants is dissolved carbon
dioxide and carbonates can also be taken up by some macrophytes. Carbon hardly
ever limits plant growth. The inorganic phosphate, (PO43_, or one or its analogs,
HPO,*~ or H,PO, "), is taken up by the primary producers, while nitrate (NO3 ") or
ammonia (NH4 ") is taken up by macrophytes. P can be released as phosphate,
nitrogen as ammonia, or nitrate during the degradation of organic matter.

Macrophytes can create a favorable environment with the chemical and biological
processes for the P-uptake. Ligand exchange of soluble P with Al, Fe, Ca, and clay
minerals is the main important P-removal process in macrophyte rhizosphere. The
physicochemical properties of the sediment can influence the mobility and bioavail-
ability of P in the rhizosphere. Eh and pH gradients play an important role on the
mobility and the uptake of P in the rhizosphere. The phosphate-binding capacity can
be increased due to the low pH and the protonation of Fe and Al surfaces. Moreover,
under the low Eh, the reduction of Fe** to Fe** can induce the high P content in
sediment solution. The mobility and bioavailability of P at root/porewater/sediment
interface are influenced by organic ligand, P concentration, pCO,, and PO, in the
rhizosphere. The sediment chemistry in lakes can be changed by the oxygen release
from aquatic macrophyte roots and the alternation of pH and oxidation-reduction
reaction. The O, released from roots at scales from millimeter to micron at rhizosphere
microzone can engenders Fe plagues surrounding the roots of macrophytes. The Fe
plagues can reduce P-release intensity and P concentration in porewater, which is due
to the P bound by Fe (IIT) hydroxyoxide (Christensen 1997; Christensen et al. 1998).
The O, released from aquatic plant root can engender the oxidation of Fe** and form
Fe (III) hydroxyoxide, which deposit on the root surface and enwrap the root. The
reaction for the formation of Fe-plaque is as follows:

4Fe; + O, + 10H,0 = 4Fe(OH), + 8H™" (1.9)

Armstrong (1978) and Gambrell and Patrick (1978) suggested that the formation of
Fe-plaque on roots served as a sink for metals and was consequently a hindrance to
nutrient uptake by wetland plants. The formation of Fe-plaque on roots of Oryza
sativa (Lee et al. 2003), Cymodocea serrulata (Povidisa et al. 2009), rhizophoraceae
(Machado et al. 2005), isoetid (S@ndergaard and Leegaard 1977; Farmer 1985) and
the effect on biogeochemical process in the rhizosphere have been researched.
However, only few papers reported the quantitative research of plagues on aquatic
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plant roots collected in field such as Vallisneria americana michx. and Heteranthera
dubia (Jacq.) macm. (St-Cyr and Campbell 1996), Littorella uniflora (L.) aschers.
and Isoetes lacustris L. (Christensen et al. 1998). Moreover, the oxidative status in
macrophyte rhizosphere can protect against toxicity of metals because of the decrease
of the reduced Fe or Mn contents in rhizosphere sediment (Armstrong 1979).

The free element ion is the main fraction for the uptake of elements by plant
roots. When the element-transfer across root membrane is slower than diffusional
transfer in sediment/porewater and the concentration of labile soluble element is
high, the equilibrium status of the porewater is perturbed very little by root uptake
and the concentration in plant tissue is related to free element ion in porewater
adjusted due to the competitive binding effects of other ions (Luo et al. 2010). This
case of “plant limiting uptake” can be simulated by the biotic ligand model (BLM).
The dynamic plant uptake model (DPUM) (Lehto et al. 2006), a mathematical
model, presented as Fig. 1.7 has been developed for the simulation of the element
process at the sediment/porewater/root interface. The parameters for Fig. 1.7 are
indicated in Tables 1.1 and 1.2. Soil parameters used in this model were measured
under the similar conditions to those that DGT deployment for the prediction of root
uptake. This model can be used to research “diffusion limitation” type for
element-uptake, when transport across root membrane is faster than diffusion
process and the free ion concentration in porewater is low (Luo et al. 2014). Like
roots, DGT can locally deplete element concentrations in porewater and respond to
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Fig. 1.7 The conceptual model about the DPUM (Reprinted from Plant and Soil, 282:227-238,
Lehto, N.J., Davison, W., Zhang, H., Tych, W., Analysis of micro-nutrient behaviour in the
rhizosphere using a DGT parameterised dynamic plant uptake model, copyright (2006), with the
permission from Springer)
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Table 1.1 Values and ranges of input and derived parameters used within the DPUM for
simulating the uptake of zinc by two plants

Parameter Description Thlaspi Thlaspi
arvense caerulescens

Input parameters

Co Initial soil solution concentration 10710 10710
(mol cm™3)

Dy Diffusion coefficient of the metal in 587 x 10°° 587 x 10°°
water (cm® s~ 1)

\%0] Rate of water movement in the soil 107 to 1073 1077 to 107°
toward the root (cm? s™1)

Pc Particle concentration (g s ') 2 2

Tor Tortuosity 2.125 2.125

Kp Solid-phase labile metal reservoir size 1-100,000 1-100,000
s

Tc Soil response time (s) 1-100,000 1-100,000

Linax Maximum flux of metal into the plant 111 x 107%3 5% 1071
(mol cm? s 1)

Km Michaelis—Menten coefficient 1 6x107° 8 x 1077
(mol cm®)

Derived parameters

Cs o= Co X Kp | Initial solid-phase concentration 10%tw010* [10%tw0 107
(mol kg™

D, = Dy/T,, Diffusion coefficient of the metal in soil 2.76 X 10°° 2.76 X 10°°
solution (cm? s™1)

ke = (1T, Sorption rate constant shH 1-107* 1-107*

ky =1/ Desorption rate constant s™hH 0.5— 0.5-

(Kp X P. X T.) 5x107° 5% 107°

Reprinted from Plant and Soil, 282:227-238, Lehto, N.J., Davison, W., Zhang, H., Tych, W.,
Analysis of micro-nutrient behaviour in the rhizosphere using a DGT parameterised dynamic.
Plant uptake model., copyright (2006), with the permission from Springer

Table 1.2 Initial and boundary conditions for the DPUM plant model

Conditions for x, ¢ Location
Initial conditions
C(x, 0) = Cy xXo < x < xy Soil
Cy(x, 0) = Co X Kp X0 <x <y Soil
Boundary conditions
C(0, 1) = Inax X G/ \%3 Root-Soil interface
(Km + C)
VC(n, ) =0 vVt Furthest point in sediment
VCy(xp, 1) =0 vVt Solid phase at root—soil interface
VCy(xp, 1) =0 \%3 Solid phase at furthest point in sediment

Reprinted from Plant and Soil, 282:227-238, Lehto, N.J., Davison, W., Zhang, H., Tych, W.,
Analysis of micro-nutrient behaviour in the rhizosphere using a DGT parameterised dynamic plant
uptake model., copyright (2006), with the permission from Springer
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element resupplied from labile species in soil/sediment solution and labile element
pool in solid phase. The size of the solid-phase reservoir and the rate at which the
solid-phase reservoir responds to element depletion in the solution phase are
important to determine the soil solution concentration at which the plant uptake
kinetics begin to limit the uptake of the element. DGT technique has been used for
the root/soil system, including Zn taken up by Lepidium sativum (Zhang et al.
2004); Cu taken up by Lepidium heterophyllum (Zhang et al. 2001); and Ni and Cd
taken up by Radish (Luo et al. 2014). These papers indicate DGT is likely to behave
as a reliable surrogate for the element-transfer and element-release processes that
affect plant uptake.

1.4 Summary

This chapter introduced the theory of “internal P-loading” in eutrophic lakes, DGT
theory and methods for measurement and element-release assessment at SWI in
lake, and the element-transfer and uptake mechanism in rhizosphere of aquatic
plants. Nutrient loading to lake systems can be from external or internal sources.
Where “external P-loading” has contributed to the internal P-store in the reservoir,
the reduction in external supply through management can increase the importance
of “internal P-loading” from the sediment (Van der Molen and Boers 1994). The
processes influencing phosphorus release from the sediment have been extensively
summarized. The physicochemical processes and the properties of sediments
influence the P-release and include: temperature, pH, redox potential, element in
sediments: Fe, sulfide/sulfate, Al, Ca and OM, P fractions, and chlorophyll a (Chl
a). Fe-reduction and P-release from Fe-bound P is the main reason for P-release
from lake sediments. Ca- and Al-bound P are nonavailable. Organic P is partly
available, and the exact nature of this complex fraction is not precisely known. The
coupled Fe—-S—P geochemical process is the minor sediment-P-release mechanism.
DGT as a passive sampler has been used widely in water, soil, sediment, and
rhizosphere. The DGT device passively accumulates labile species from solution;
while deployed in situ and therefore the contamination problems associated with the
conventional water collection and filtration procedures are eliminated. The theory
behind DGT technique is based on the diffusional characteristics of elements in a
hydrogel and an element-binding resin. Specifically, the technique utilizes a
hydrogel layer to control the diffusive transport of elements in solution to a binding
resin. In addition, since the resin used in DGT is selective for labile species, it
provides a proxy for the bioavailability of elements in solution. The usage of DGT
assembly in sediment has provided the new in situ method for the measurement of
metals, P, and S(-II), which is the base for geochemical reactions for P-release.
Moreover, DGT calculation method, element-release/element-diffusion process
across DGT/sediment interface, DGT parameters, new DGT techniques for element
image in sediment microzone, a numerical model (DIFS) for the
diffusion/sorption/desorption process during DGT deployment in sediment, and
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DGT deployment in the rhizosphere as the simulation method for metal-uptake by
root system have also been introduced. The ecological restoration of eutrophic lakes
by aquatic vegetation has been investigated by many researchers. The roots of
aquatic plants play a key role for the uptake of appreciable quantities of nutrient
from sediments. In order to reveal the element-uptake and the transfer mechanism
across sediment/root interface, the influencing factors of the physicochemical
properties of the sediment on the mobility and bioavailability of elements in the
rhizosphere, the Fe plague surrounding the root, and the mathematical model of
micronutrient uptake by plant have been introduced and commented.
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