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Preface

The mainstream of econometric research has been mostly devoted to linear models.
Exceptions are mainly due to the need of addressing the issue of non-normality, and
it has generally taken the form of assuming random jumps among different regimes
describing different linear dynamics and different values of the parameters (typi-
cally again from a linear model) in different scenarios, to induce asymmetries in the
distribution of variables or to model the tails properly. A notable exception to this
general approach is the use of nonparametric tools in the specification of the
dynamics of variables, and particularly the use of copula functions. This tool
represents a natural way to address the non-normal distribution at the multivariate
level, by separating a multivariate distribution in the specification of the marginal
distributions and their dependence structure. Actually, copula functions have
mostly been used for the study of cross-section dependence and they have become
the dominant tool in fields like the analysis of credit risk for portfolios. There has
also been a lively stream of applications to the econometrics of time series, even
though it has not had the same success as in the risk management field. The aim of
this book is to gather the main concepts of copula function theory that can be
fruitfully applied to the analysis of time series, and some new ideas, linked to
copulas, that represent promising developments. The cornerstone of the applications
of copula functions to time series goes back to the beginning of the 1990s and it is
the work by Darsow, Nguyen and Olsen, that we call the DNO theorem. The key
finding is that there is a one-to-one relationship between copula functions and
Markov processes. On the one side, given every Markov process, we can separate
the marginal distributions and the temporal dependence structure between the
variable at different points in time. On the other side, given a sequence of copula
functions and a sequence of marginal distributions we can build a Markov process.
Notice that the structure of this finding is parallel to the Sklar theorem, that started
the literature on copula functions, and that established a one-to-one relationship
between copula functions and multivariate distributions. The Sklar and the DNO
theorems also share the same flaw, i.e., some complexity to extend the analysis to
arbitrary large dimensions. In both cases, the extension beyond the bivariate
application is quite complex, unless for very specific kinds of dependence, mainly
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elliptical or exchangeable, so imposing relevant limits to high dimension applica-
tions. The crucial difference is that the multivariate extension is a mandatory
requirement for time series applications, in which clearly it makes no sense at all to
restrict the analysis to the bivariate level. This problem gives rise to questions that
are very difficult to answer in full generality and that yet are unavoidable for time
series applications. For example, if one finds some kind of dependence at the daily
level, which dependence should one expect to find at the monthly level? Moreover,
if the dependence between two variables of a time series is represented by a
bivariate copula, the dependence among all the variables of the time series are
represented by the multivariate extension of the same copula? Or, at least, can the
multivariate copula be written in analytical form, or can it be only simulated? All
these questions have curbed the diffusion of copula applications to time series
analysis. These problems have not been solved yet, and the compounded problem
of multivariate time series has not been even addressed yet, apart from very isolated
contributions. There is another problem that has not been addressed in the literature
and is crucial for time series applications: the convolution problem. In the devel-
opment of a time series, two consecutive variables Yt�1 and Yt are linked together
by a specific copula function that emerges from a convolution operator. Namely, the
distribution of Yt is the convolution of the initial level Yt�1 and the increment
between t � 1 and t. In standard econometric applications, the increments are
assumed independent, and this makes the distribution of Yt a convolution in the
standard definition of the concept. The definition can be extended to what we have
called C-convolution if the initial level and the increment are dependent, where the
C term in the definition stands for the copula function representing this dependence.
In any case, the dependence structure between Yt�1 and Yt is represented by a
copula that is induced by the convolution. These copulas are called
“convolution-based” and, differently from standard copula functions, are deter-
mined by the distributions of their arguments, i.e., the increments and the initial
levels. In this book, we explore the use of convolution-based copulas for the
analysis of time series. Because of the complexity of the subject, we limit our
analysis to the univariate setting and the standard first-order Markov process, that is
the AR(1) model. The plan of our work is the following. In Chap. 1 we show how
to use non parametric analysis that are typical of copula function applications to
detect nonlinearities in a time series model. In Chap. 2 we go over the main
concepts of copula functions, with a focus on the estimation issue. In Chap. 3 we
address the DNO approach and the issue of representation and estimation of
Markov processes with copula functions. In Chap. 4 we develop our theory of
convolution-based copulas in full generality, and we show how to estimate and
simulate copulas of this kind. In Chap. 5 we finally present an application to a topic,
in which nonlinear and non-Gaussian dynamics has been studied by many authors,
i.e., the analysis of the dynamics of the short-term interest rate.

Bologna, Italy Umberto Cherubini
August 2016 Fabio Gobbi

Sabrina Mulinacci
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Chapter 1
The Dynamics of Economic Variables

In 1957 Pablo Picasso painted a series of interpretations of an old and famous paint-
ing by Velázquez of 1656 called Las Meninas, portraying the court of the Infanta
Margarita Teresa. He reinterpreted, partitioned, and distorted the image of the paint-
ing in many new images. In this book we are trying the same attempt with a famous
model of dynamics used in time series econometrics, and particularly used for the
study economic and financial variables. In its simplest form, this is the autoregressive
process of order 1, AR(1), denoted as

Yt = α + βYt−1 + εt , (1.1)

where (Yt )t is a stochastic process in discrete time, that is a sequence of random
variables indexed by the integer-valued time index t ,α andβ are constant parameters,
and (εt )t is a sequence of random variables, providing what is called the set of
innovations (or shocks) to the stochastic process.

In standard econometrics textbooks, this basic model is based on the linear rep-
resentation and assumptions about the distribution of innovations. In this book we
attempt an interpretation and extension of time series models like this based on the
concepts of copulas and convolution.

Going back to our comparison with Picasso’s project, in this chapter we will
provide different representations and particulars of the autoregressive model, mainly
using graphical representations. All the pictures will be producedwith the same set of
randomly generated numbers. In other terms, 1000 random numbers were generated
only once, turned into standard normal numbers, and used throughout this chapter to
provide sequences of innovatios, with different volatility assumptions, and different
assumptions concerning the parameters. Then, using this same random material, we
willmake pictures of our autoregressivemodels fromdifferent perspectives and under
different modifications and distortions of the parameters. Our pictures, that will be

© The Author(s) 2016
U. Cherubini et al., Convolution Copula Econometrics,
SpringerBriefs in Statistics, DOI 10.1007/978-3-319-48015-2_1
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2 1 The Dynamics of Economic Variables

Fig. 1.1 Standard regression scatter plot

far less than the 58 Picasso’s remakes of Las Meninas, will have the same target of
exploring the inner nature of the classical painting, that in standard econometrics
is the regression scatter depicted in Fig. 1.1. We will portrait the model, and its
extensions and distortions, beyond the standard representation, using rank scatters,
Kendall functions and the like.

While most of the analysis in this chapter will be, just like Picasso and Velazquez,
the comparison of two paintings, namely the standard autoregressive models and
their distorted, or we could say “cubist,” versions, in the end we will introduce real
world data. Here we will see that opposite to what happens in paintings, real world
data are much closer to the “cubist” vision than to the traditional representation of
it offered by the standard linear time series econometrics. This will make clear the
main motivation for going on looking through this book, investigating the stochastic
processes by non standard tools, namely copula functions and convolution.

1.1 The Standard Linear Autoregressive Model

The philosophy behind the standard autoregressive model in Eq. (1.1), and the vast
majority of the models applied in time series econometrics, is to provide a specifi-
cation of the analytical relationships among the variables constituting the stochastic
process. The specification used is the simplest one, that is linear.
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As for the main features of this linearity specification, it is well known that a
crucial role is played by the autoregressive parameter β. If β < 1, the system is
called “stationary” in the econometric literature (with a somewhat different meaning
with respect to the use of the term in the literature of stochastic processes), meaning
that the impact of a shock does not remain forever in the history of the process.
Put in other terms, the long run behaviour of the process does not depend on initial
conditions: one may start the process from any arbitrary value and, if no other shocks
occur, the process will eventually converge to the same steady state (or stationary
value), that is Ȳ = α/(1− β).

The case of β greater than 1 is of no use, since in that case any shock will
cause the variable to increase or decrease without bounds, putting the process on a
diverging path. Different is the case in which β = 1. This process is called integrated
or nonstationary, or unit root process. In this case every shock remains forever in the
history of the process, and its impact never fades away: for this reason the model is
also deemed persistent. In this case the parameter α is called “drift,” and represents
the expected change of the process per unit of time. The case α = 0 yields the
world-famous random walk model.

Stationary autoregressive processes have been used extensively to model the
dynamics of several variables of the financial market. The most famous application
is represented by mean-reverting models of the short term interest rates, that corre-
sponds to the Vasicek and Cox–Ingersoll–Ross (CIR) models in continuous time (see
Vasicek 1977 and Cox et al. 1985) The mean-reverting assumption was also used as
a representation device for the volatility dynamics of stock market returns, that are
typically modeled borrowing the same techniques used for interest rates.

On the contrary, mean-reversion evidence has been rarely tested on stock market
returns, while the random walk model, first introduced by Bachelier in his thesis
at Sorbonne university in the year 1900, was refined in the 1960s to what is called
the Efficient Market Hypothesis. Here, the idea of persistence is spelled in terms of
unpredictability of future market movements based on current available information.

Finally, the unit root hypothesis reached macroeconomics in the 1980s when
Nelson and Plosser in a pioneering paper showed that most macro variables, starting
from Gross Domestic Product (GDP), followed the dynamics of a unit root process.
They found that a relevant part of the innovation reaching these variables was per-
sistent, and that this part was explaining most of the volatility of the innovations.
In the field of macroeconomic variables, this discovery was obviously less welcome
than in the financial market, because its meaning was that most of the variation of
macroeconomic variables could not be predicted by economic models, with little
improvement over the forecast represented by their own current values. A stream of
literature then extended these findings to a multivariate setting, investigating whether
the same permanent shock was responsible for changes in different processes. In
other words, the question was whether a set of different variables were sharing the
same integrated processes, so that the system would be called cointegrated. The first
technique addressing this problem was due to Granger and Engle.
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1.2 Modeling Innovations

If one considers a simple linear model, with constant parameters, as that in Eq. (1.1),
the distribution of each variable Yt in the stochastic process is completely determined
by the choice of the distribution of the innovations εt . A crucial point to remind
throughout this book is that this choice is crucial if one wants to endow the process
with some useful feature, such as for example requiring that all the variables in
the stochastic process Yt be represented by distributions of the same type. In the
first place, in order to enforce this, one would quite naturally require to assume the
innovation process to be i.i.d., that is to be composed of independent variables with
the same distribution. But this would not be enough: in principle, since the analytical
relationship defining the process is linear, by definition only choosing the class of
stable distributions for the innovations would maintain the same kind of distribution
for the variables in the stochastic process Yt . In particular, the natural choicewould be
to assume normal omoschedastic innovations, so that the elements of the stochastic
process would be also normal.

It is well known that assuming the normal distribution for the process may be
unrealistic for many economic variables, and it is certainly so for financial variables.
If this is the case, a linear model with gaussian innovations would not do the job.
One natural choice in order to preserve the closure of the model with respect to the
distribution of the innovations would be to assume a α-stable distribution with α
parameter strictly lower than 2, so that the variance of the process would not be
defined. By the definition of stability, this would imply that the stochastic process Yt
would be part of the α-stable family.

An alternative route in order to overcome the gaussian distribution of the variables
Yt is provided by the so-called GARCH processes. This second solution is by far
the most common one, particularly for applications to financial markets. The idea
is that the variance of the variables is itself a stochastic process, driven by the same
innovations. So, in the example of the GARCH(1,1) process, we have

ht = ω + γht−1 + δε2t−1, (1.2)

where ω, γ and δ are constant parameters, and ht is the variance of innovation εt .
So, the disturbances in the model are not i.i.d, since the variance of the distribution
changes from one period to the other. It may be proved that because of this change in
variance, the unconditional distribution of the variable is leptokurtic, that is it exhibits
fat tails. As for the dynamics of the variable that represents its second moment, it
may also be stationary or integrated, depending on whether the sum γ + δ is strictly
lower than or equal to 1. Likewise, also in this case this means that shocks reaching
the variance may fade away or remain forever in the history of variance. As of today,
the GARCH approach is so common that it is used, as we will see, simply as a
preliminary filter to reduce the nonnormality of the process.

For the analysis that follows, we generated two series of innovations, built on
the same random draw of standard normal innovations. In one case, we assume i.i.d.
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Fig. 1.2 Probability densities of the innovation processes

normal innovationswith standard deviation of 0.10% (keeping inmind an application
to interest rates). In the other case, we consider a GARCH(1,1) dynamics of volatility
as in Eq. (1.2), with γ = 0.7 and δ = 0.1, which implies a quite high persistence,
while the ω parameter was chosen in such a way that the steady state value of the
volatility was the same as that chosen for the normal model, that is 0.1%. Figure 1.2
reports the probability density of the two innovation processes.

1.3 A Non-linear Modification of the Model

Here we try a somewhat unusual modification making the autoregressive model non-
linear. We may assume that the persistence parameter may change with the process.
Generally speaking, one could think of changing Eq. (1.1) as follows

Yt = α + ψ (Yt−1) Yt−1 + εt , (1.3)

where ψ(x) is a function from the positive line to the unit interval. In this model, the
degree of persistence of the shocks changes with different levels of the process. The
first example that comes to mind is

Yt = α + exp (−βYt−1) Yt−1 + εt (1.4)
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in which the degree of persistence decreases exponentially with rising levels of the
process. So, if the process were a short term interest rate, this would imply that the
mean-reversion forcewould be higher the higher the level of of the interest rate, while
it would become more persistent when the interest rate is near to the zero bound.

A simple extension of this idea would be to define a positive level of the process
when the autoregressive coefficient reaches 1, while letting the coefficient to decrease
when the process drifts further and further away from this level. An idea to design
this dynamics is reported in the equation below

Yt = α + exp
(
−β(Yt−1 − Ŷ )2

)
Yt−1 + εt (1.5)

Intuitively, the persistence parameter should increase when the level of the process
gets closer to a level Ŷ . From the opposite point of view, the mean-reversion force
would get stronger the further the level of the process from level Ŷ .

In what follows, we will analyze the impact of the two different models above
on the distribution of the process, and more to the point of the dependence structure
between Yt and Yt−1. In particular, we will refer to three model specifications. In all
cases, we maintain α = 0, 20% as in the persistent linear model, and in all cases we
recover the parameter β in such a way to ensure that 2% be a stationary point. For
the rest, the models are defined as follows:

• model 1: Eq. (1.4)
• model 2: Eq. (1.5) with Ŷ = 0
• model 3: Eq. (1.5) with Ŷ = 1%

In practice, model 1 and 2 differ for the linear and quadratic shape of the function in
the exponential, while model 2 and 3 differ because in the latter case the unit root is
reached in the interior of the domain of the function.

In Fig. 1.3 we report the density function of the process in the three models,
compared with the standard linear autoregressive models.

Of course, one can observe that the specifications applied are quite arbitrary and
ad hoc. This is exactly the argument that motivates this book. In general nonlinear
autoregressive processes of the kind described in Eq. (1.3) are not known in structural
form, meaning that we are not given an analytical shape for function ψ(x). In all
these cases, when the structural relationship is not known and the linear relationship
is not borne out by the data, the only tools available will be those of the dependence
analysis described in this book.

1.4 Copula Function Representation

We now provide pictures of the models sketched above using different graphical
tools, representing the non parametric techniques available to design the dependence
structure. These techniques refer to copula function theory, that enables to study
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Fig. 1.3 Probability densities of the three models compared with the standard linear autoregressive
model

the dependence structure among variables by getting rid of the parametric structure
of marginal distributions. Marginals are turned into uniform distributions and the
dependence structure is studied among these transformed variables.

Before going through this, we have to discuss another important property of the
model specifications used in this chapter, andmaintained inmost of this book. This is
the Markov property. We do not give the formal definition, that will be addressed in
future chapters, but we describe the meaning of the concept, and the implication for
the copula representation. A stochastic process is endowed with theMarkov property
if past information of the process does not provide any help over current information
in order to forecast its future developments. In other words, the value Yt is all that is
needed to forecast Yt+1 and beyond.

Intuitively, the Markov process enables a substantial simplification of the repre-
sentation of the dependence structure of the process. In fact, in general the copula
representation of an arbitrary stochastic process is given by a copula of the same
dimension of the process. So, if one wants to represent an n-dimensional stochastic
process {Y0,Y1, . . . ,Yt , . . . ,Yn}, in general onewould need an n-dimensional copula
C(u0, u1, . . . , ut , . . . , un}, where ut denotes the uniform distribution corresponding
to the variable Yt of the process. It is evident that if the process is endowed with the
Markov process this representation is redundant and too general. If all one needs to
forecast Yt is information about Yt−1 it is clear that the dependence structure of the
system can be represented by a sequence of bivariate copula functions Ct (ut−1, ut ).
In case one makes the usual assumption that the dependence structure is not
time dependent, one could represent all the process by a single copula function C .
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The way in which these bivariate copula functions can be combined together to yield
the n-dimensional copula representing the system was first analyzed by Darsow
et al. (1992), and will be covered in Chap. 3. For what matters here, this provides
the justification of why here we describe a whole stochastic process by bivariate
representations.

In what follows we portray the bivariate dependence structure of the autoregres-
sive processes described above using two typical techniques of the copula function
approach: the rank scatter diagram and the Kendall function representation.

1.4.1 Rank Scatter Diagrams

Since every bivariate relationship can be represented by changing the two marginal
distributions, a simple portrait of the dependence function linking the variables can
be obtained by transforming the variables into ranks, and reporting the ranks in a
scatter diagram.

In Fig. 1.4 we report the scatter diagrams of the linear autoregressive model (1.1).
The figure represents rank scatter diagrams of Yt−1 and Yt for three increasing levels
of persistence and with normal and GARCH innovations.

Going from top to bottom, the persistence parameter β in Eq. (1.1) increases from
0.5 to 0.9, and finally to 1, that is the unit root model. Notice that the increase of
persistence is captured by the increase in dependence, with the scatters that concen-
trate around the diagonal more and more while the degree of persistence increases.
On the left-hand side of the panel we report models with normal innovations, and
on the right we have the dependence structure with GARCH innovations. Notice
that the diagrams are almost indistinguishable, except maybe for the unit root case.
Moreover, it is clear, and can be easily verified, that increasing the size of volatility,
which turns into the increase in the shocks, does not change the ranks. So, it seems
that in the world of linear autoregressiveMarkov processes, the degree of persistence
could be simply gauged by looking at the rank scatter diagram.

Theworld of non-linearmodels is less obvious, andmore interesting. If we assume
that the data generating process be like the three nonlinear models described above,
one would recover the three scatter diagrams reported in Fig. 1.5. Notice that in this
case of course the meaning of our scatter is that of an average dependence in the
process. In a real-world applications, dependence would change from pair to pair,
but we would not be allowed to discover the rule that generates the dependence of
each pair, unless we observe the data generating structure. Remember that real world
can be even worse: we are lucky here that at least we are allowed to know for sure
that the system is Markov. If this were a case of an actual observed process, we could
only describe it by this average representation, in the hope that the ergodic structure
could ensure that the same average dependence would show up in the future data. In
no case would it be possible to trace back the structure to the three nonlinear dynamic
models. Figure 1.5 shows that the scatters dispersion increases from model 1 to 2
and 3. This would point out to lower persistence.

http://dx.doi.org/10.1007/978-3-319-48015-2_3
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Fig. 1.4 Scatter diagrams of the linear autoregressive model

Fig. 1.5 Scatter dispersion for the models 1, 2 and 3

1.4.2 Kendall Functions

Another non parametric representation of dependence that is quite common in the
copula literature is the so-called Kendall function, which represents the probability
associated to the joint distribution, just like the uniform distribution is known to
represent the probability of univariate distributions. The empirical Kendall function
can be easily retrieved from samples of data, and under some calibration procedures



10 1 The Dynamics of Economic Variables

Fig. 1.6 Kendall functions of the dependence relationship betweenYt−1 andYt in the autoregressive
model

it is also used to select the copula function that provides the best fit. It also provides
a reference graph for the degree of dependence in the data and how it changes across
the whole distribution. The extreme cases are perfect dependence, in which the
Kendall function coincides with the uniform distribution and represents the diagonal
line in the cartesian diagram of the unit square, and the case of independence, that
corresponds to a curved line defined by

K (x) = x − ln(x)x (1.6)

In Fig. 1.6 we report the Kendall functions of the dependence relationship between
Yt−1 and Yt , in the autoregressivemodels considered. On the left-hand side, we report
the linear models with normal disturbances, and on the right side the three nonlinear
models considered. In the linear models picture, the Kendall functions are ordered
according to the degree of persistence, with the higher persistence model closer and
closer to the diagonal. The Kendall function corresponding to the unit root case is
almost indistinguishable from the diagonal. As for the nonlinear models, the Kendall
functions are very close together and do not discriminate very much among the three
models.

In order to provide further investigation of the models, Kendall functions can
be applied to appraise differences in ergodic behavior. In ergodic processes, the
dependence between future values of the process and the current level will be weaker
for observations further in the future. In other words, there will be a time in the future
in which future and current values will be independent. Of course, models can differ
for the amount of time needed to reach such independence. Somewill need oneweek,
others one month, and some may need even more. Some may need such a very long
time that they are hardly distinguishable from integrated processes: they are called
long memory processes.

In Fig. 1.7 we report the Kendall functions for different time differences of the
process. Namely, in each graph we report the Kendall functions of the dependence
between the current value of the process and one period, five and twenty periods later.
In the idea of application to a daily time series of interest rates or prices of financial
markets this can be approximately considered as the dependence on a day, a week
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Fig. 1.7 Kendall functions for different time differences of the process

or a month of trading. The four pictures refer to the nonlinear models and the linear
model, with high persistence (β = 0.9), which is reported for comparison. Reading
the set of pictures clockwise we may compare the linear model and the nonlinear
ones, from model 1 to model 3. Now we see some differences in the nonlinear
models. For all of them the Kendall function at one month is undistinguishable from
that corresponding to independence. But for all of them the degree of dependence at
one week is lower than that one of the linear persistent model. Moreover, the time to
reach independence decreases from model 1 to model 3. More precisely, with model
3 dependence evaporates in just one week.

1.5 Convolution Representation

While the copula based representation of Markov processes goes back to the early
1990s, here we propose a new approach, which gives the title to this book, that
suggests a strategy to calibrate the copula representation discussed above. The idea
is very simple, and is based on a trivial rewriting of the standard autoregressive
process in Eq. (1.1):

�Yt = (β − 1)Yt−1 + εt , (1.7)

where �Yt = Yt − Yt−1 is the difference operator. This rewriting in first differences
suggests to represent the process in terms of dependence between Yt−1 and �Yt , that
is between levels and increments of the process. Notice that while in the analytical
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Fig. 1.8 Dependence structure of levels and increments for the linear and non linear models

representation of the model this rewriting makes no difference, in the language of the
analysis of dependence it makes a radical difference from the copula representation.
While the copula approach builds Markov processes from the dependence structure
among levelsYt−1 andYt , herewe start one step behind.Wefirst study the dependence
between Yt−1 and�Yt , and from that (and an assumption about the probability distri-
bution of innovations) we have the problem of recovering the dependence structure
between the levels (and the probability distribution of Yt ). So, we somewhat depart
from the standard copula approach in which marginal distributions are given and the
dependence structure is represented with copulas. Here the distribution of innova-
tions and the copula function linking levels and increments, generate the sequence of
dependence structures Ct (ut−1, ut ) and the sequence of marginal distributions of Yt .

Notice that in the representation of dependence between levels and increments, the
implications of persistence is opposite to what happens in the relationship between
levels. Namely, now independent increments are evidence of integrated process,
while negative dependence structures point out to mean-reverting behavior, with
lower persistence the higher the strength of the negative relationship. Figure1.8
reports the dependence structure for the linear and nonlinear models considered.

1.6 Cointegration

While most of our book will be devoted to univariate time series analysis, it is easy
to see how the same techniques based on copulas could be applied to a multivariate
setting. In particular, it is easy to see how our Kendall function copula could be
applied to verify whether a system of time series is cointegrated.

The concept of cointegration was first introduced by Engle and Granger (1987),
and it is very easy to define. A set of integrated processes is said to be cointegrated
if there exist linear combinations of such variables that are stationary. From another
viewpoint, cointegrated means that the same permanent shocks affect the processes
in the system, so that one can find opportune combinations of the processes in which
the permanent shocks balance each other, and are cleared out.
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Fig. 1.9 Rank scatter diagram of each variable its lagged variable

In order to make the discussion more precise, without getting into the detailed
proof, we may say that a set of n integrated processes may admit r , r = 1, 2, . . . ,
n − 1 cointegrating vectors. If the cointegrated systemadmits r cointegrating vectors,
this means that the system is driven by n − r stochastic trends, that is n − r different
common sources of permanent shocks.

While the theory of cointegration is well known, here we are interested in showing
how cointegrated systems can be represented and evaluated with our tools of rank
scatter plots and Kendall functions. Of course we built our cointegrated system using
the same material that we used in the rest of this chapter. Our cointegrating system
is composed by 2 integrated time series, with cointegrating system given by {1,−1}.
Again, the inspiration comes from the interest rate dynamics literature, in which
some economic theories predict that spreads of interest rates should be stationary.

In Fig. 1.9 we report the rank scatter diagram of each variable and its lagged
variable. The left and center panels refer to the two cointegrated series, while the
third is related to the so called cointegration residual, that is the inner product of
the time series and the cointegrating vector. In our case, this is simply the difference
of the two variables, or the spread, if the variables were interest rates. Applying
the same principles as above, we observe that dependence is very high for the two
variables, while is much lower for the residuals.

We know that this means high persistence for the variables and low persistence
for the residuals. What we cannot say is whether the variables of the system are
integrated and whether the third variable is actually stationary, meaning that it truly
is the cointegrating residual of the system. Figure 1.10 provides a check of this using
the Kendall function.

As we did before, in Fig. 1.9. we study persistence in the two variables and the
cointegration residuals. Namely, we study the dependence of each time series over
one, five and twenty day horizons, and we check whether the Kendall functions head
toward independence. We see that this is not the case for either of the two variables,
for which the degree of dependence decreases by a limited amount. Actually, if
we were to measure the dependence over an even longer horizon, the dependence
picture would not change any further. Opposite to that, for the residuals dependence
decreases rapidly, reaching already almost independence at the five day horizon level.

The behavior of the scatter diagrams and Kendall functions is very easy to under-
stand ifwe explain howwebuild our cointegrated system.We simply took the average
of the same random walk process and two different low persistence processes. This
explains that, as we increase the time horizon, the serial dependence explained by
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Fig. 1.10 Kendall function and cointegration residuals

the low persistence processes disappears, while the integrated part of the process
prevents the serial correlation to decrease beyond that limit. Moreover, it is clear that
if the persistent part is erased in the cointegration residuals, the serial correlation
quickly fades away as we increase the horizon.

1.7 Higher Order Markov Processes

Here we briefly touch upon the extension of the model to other lags, behind t − 1.
Even in this case, the extensionwill not bemuch addressed in this book.Nevertheless,
it may be useful to remind the basic principles of this extension, and show that the
same rank analysis could be performed in higher dimensions, even though it would
be less straightforward. It is also important, since here we addressed the difference
between integrated and stationary processes, how the theory is extended to higher
order Markov processes.
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The extension is very easily explained if we use the so-called lag operator L ,
defined by L j xt = xt− j . We can then build a higher order Markov process defining

(1− β1L)(1− β2L) . . . (1− βmL)Yt = α + εt (1.8)

Using this factorized representation it is very easy to gauge the requirements for
stationarity. Namely, all the parameters βi , i = 1, 2, . . . ,m must be strictly smaller
that 1. If instead a number k of such parameters is equal to 1, we say that the system
has k unit roots, or that it is integrated of order k.

Of course, when we estimate the system, we do not estimate the βi parameters
directly, but

Yt − θ1Yt−1 − θ2Yt−2 − . . . θmYt−m = α + εt , (1.9)

where the parameters θi are obtained by computing the product in the factorized
version (1.8). Then, the same argument on stationarity versus unit roots can be
restated saying that the number of unit roots in the system depend on how many
roots of the characteristic equation

1− θ1z − θ2z
2 − . . . θmz

m = 0 (1.10)

lye on the unit circle.
The meaning of order of the Markov process and integration order is now quite

clear. The order of the Markov process ism, meaning thatm past observations of the
process are needed to forecast its future values. As for the integration order, if we
assume that it is 1, it means that only one parameter is equal to 1. Say it is β1 = 1.
Then, observing that (1− L)Yt = �Yt , that is the first difference of the process, we
may rewrite the process as

(1− β2L) . . . (1− βmL)�Yt = α + εt (1.11)

and the first difference of the process is stationary by hypothesis. Extending the
argument, the meaning of the integration order is quite clear: it is the number of
times that we must differentiate the process to make it stationary (Fig. 1.11).

1.8 An Application to Interest Rates Modeling

In this chapter we have introduced a set of techniques to retrieve nonlinearity and
nonstationarity in the analysis of time series. This entire book is devoted to techniques
that can be used to investigate and estimate these phenomena.
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Fig. 1.11 Kendall function analysis of interest rate stationarity

A good training set for our analysis is the dynamics of the interest rates, partic-
ularly those for short-term maturities. Short-term interest rates, in fact, are strongly
affected by changes in monetary policy, and are subject to structural breaks and
changes of regime. Moreover, the problem is ideal for the application of our tech-
niques because the typical dynamics investigated in the literature for this variable is
the simple AR(1) model that we are studying in this book.

So, to conclude this chapter, we show a real-world application of one of our tools,
namely the Kendall’s function between the first difference of the interest rate and its
lagged value, that we have called the convolution representation. These are real data,
even if we are not disclosing the nature of the data yet. We leave this as a secret until
the end of this book, when we will apply our estimation procedures to this data set.
For the time being, it is sufficient to disclose that we are dealing with four subperiods
of a series of short term rates.

We check that in two cases there is visual evidence of a random walk behaviour,
since the increments of the interest rates are independent of its lagged level. In two
cases we have instead that the interest rate dynamics is mean reverting, since the
empirical Kendall’s function lies above the curve denoting independence. Increase
of the short term interest rates for this period are negatively associatedwith the lagged
interest rate. This is true across the board, but it looks stronger in the upper tail, that
is for higher values of the interest rates. This is actually consistent with evidence
that was often reported for variables like this: the mean reversion typically is higher
when the interest rates are higher. Our rough first evidence confirms this finding. We
wait for the reader at the end of the book to check if there may be more regularities
to discover.
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Chapter 2
Estimation of Copula Models

2.1 Copula Functions

In this chapter, we introduce copula functions and their main properties. For a more
detailed study,we refer the interested reader to Joe (1997),Nelsen (2006) andDurante
and Sempi (2015).

Let (�,F ,P) be a probability space andX = (X1, . . . , Xd) a randomvector there
defined with cumulative distribution function F .

It is a known fact that, given a real-valued continuous random variable X , with
cumulative distribution function FX , the random variable FX (X) is uniformly dis-
tributed in [0, 1] (X ∼ U ([0, 1])): FX (X) is called the integral transform of X . If
U ∼ U ([0, 1]), then, for every cumulative distribution function F , if

F←(t) = inf{u ∈ R : F(u) ≥ t}

is the quantile function (or pseudo-inverse) associated with F , then the random
variable F←(U ) is distributed according to F .

The integral transformation of each of the components of the random vector
X brings to the concept of copula functions. In fact, if X = (X1, . . . , Xd) so that
the random variables Xi have continuous cumulative distribution functions Fi , for
i = 1, . . . , d, applying the integral transform to each Xi , that is setting Ui = Fi (Xi )

for i = 1, . . . , d, we get

F(x) = P(X1 ≤ x1, . . . , Xd ≤ xd) =
= P(F1(X1) ≤ F1(x1), . . . , Fd(Xd) ≤ Fd(xd)) =
= P(U1 ≤ F1(x1), . . . , Ud ≤ Fd(xd)) =
= C(F1(x1), . . . , Fd(xd))

(2.1)

whereC is thed-variate cumulative distribution functionof (U1, . . . , Ud) = (F1(X1),

. . . , Fd(Xd)).
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Definition For every d ≥ 2, a d-dimensional copula is a d-dimensional distribution
function whose univariate marginals are uniformly distributed on [0, 1].
Equation (2.1) shows that any multivariate cumulative distribution can be written as
a copula having as arguments the marginal cumulative distribution functions. This
is formalized by Sklar’s theorem:

Theorem 2.1.1 (Sklar 1959)
Let X = (X1, . . . , Xd) be a random vector with joint cumulative distribution func-
tion F and univariate marginals F1, F2, . . . , Fd. Then, there exists a d-dimensional
copula function C : [0, 1]d → [0, 1], such that, for all x = (x1, . . . , xd) ∈ R

d ,

F(x) = C(F1(x1), F2(x2), . . . , Fd(xd)).

C is uniquely determined on Range(F1) × · · · × Range(Fd) and, hence, it is unique
when F1, . . . , Fd are continuous.

From Sklar’s theorem it immediately follows that the copula C associated with a
joint distribution function F , having continuous marginal distributions, is given by

C(u) = F(F←
1 (u1), . . . , F←

d (ud)).

Sklar’s theorem allows to decompose a multivariate distribution in its implicit con-
tributors: the marginal distributions and the copula function that links them and that,
as a consequence, represents the dependence structure. It gives also a strategy to
construct multivariate parametric distributions, starting from the building blocks,
by: (i) selecting a parametric family for each marginal distribution Fi (·;αi ), for
i = 1, . . . , d; (ii) selecting a parametric copula family Cθ; (iii) combining every-
thing according to Sklar’s theorem to obtain the parametric multivariate distribution

F(x;θ,α1, . . . ,αd) = Cθ(F1(x1;α1), . . . , Fd(xd;αd)).

The following result is an immediate consequence of Sklar’s theorem:

Proposition 2.1.2 (Rank-invariance property) Let X be a random d-vector with
continuous cumulative distribution function F, univariate marginals F1, . . . , Fd,
and copula C. Let, for k = 1, . . . , d, gk : R → R be strictly increasing functions.
Then, the random vector,

(g1(X1), . . . , gd(Xd))

admits the same copula C.

Being a copula C a multivariate cumulative distribution function it is said absolutely
continuous if it admits a density, that is
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C(u) =
∫∫

[0,u]
c(t)dt

for a suitable integrable function c : [0, 1]d → R+.
Similarly as for any multivariate cumulative distribution function, in order to

guarantee that a generic function C : [0, 1]d → [0, 1] is a copula, some suitable
condition must be assumed. To analytically characterize copula functions, let us first
introduce the concept of C-volume.

For a function C : [0, 1]d → [0, 1], the C-volume VC of the rectangle [a,b] =
[a1, b1] × [a2, b2] × · · · × [ad , bd ] (with ak ≤ bk , k = 1, . . . , d) is defined by

VC([a,b]) =
∑
v

sign(v)C(v),

where the sum is taken over the 2d vertices v of the rectangle [a,b] and

sign(v) =
{
1, if v j = a j for an even number of indices,
1, if v j = a j for an odd number of indices.

Theorem 2.1.3 (Characterization of a d-copula)
C : [0, 1]d → [0, 1] is a copula if and only if the following properties hold:

1. C(1, . . . , 1, u j , 1, . . . , 1) = u j for every j = 1, . . . , d;
2. C(u1, . . . , u j−1, 0, u j+1, . . . , ud) = 0;
3. C is d-increasing, i.e., the C-volume of every rectangle [a,b] ⊂ [0, 1]d is non-

negative.

2.1.1 Examples of Copula Functions

The Comonotone Copula
It is the copula

Md(u) = min(u1, u2, . . . , ud), u ∈ [0, 1]d

and it is the cumulative distribution function of the random vector U = (U, . . . , U ),
with U ∼ U ([0, 1]).

The continuous random variables X1, . . . , Xd are called comonotonic if they
admit as copula Md : they have the same joint distribution as the random vari-
ables (g1(W ), . . . , gd(W )) for some random variable W and increasing functions
gk : R → R, for k = 1, . . . , d.

The Product or Independence Copula
It is the copula

�d(u) =
d∏

i=1

ui , u ∈ [0, 1]d
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and it is the cumulative distribution function of the randomvectorU = (U1, . . . , Ud),
with U1, . . . , Ud independent and uniformly distributed on [0, 1].
The 2-Dimensional Countermonotone Copula

It is the copula

W2(u1, u2) = max{0, u1 + u2 − 1}, (u1, u2) ∈ [0, 1]2

and it is the cumulative distribution function of the random vector U = (U, 1 − U )

with U ∼ U ([0, 1]).
Two continuous random variables X1 and X2 are called countermonotonic if

they admit as copula W2: in this case X2 ∼ h(X1) for some decreasing function
h : R → R.

Fréchet Bounds

The following result points out the two bounds between which any copula lies:

Theorem 2.1.4 For all u ∈ [0, 1]d ,

Wd(u) ≤ C(u) ≤ Md(u)

where

Wd(u) = max

(
d∑

i=1

ui − d + 1, 0

)

The upper bound is the comonotonic copula representing perfect positive depen-
dence. The lower bound Wd is a copula only for d = 2. Hence in the case d = 2 we
have

W2(u) ≤ C(u) ≤ M2(u)

and the bounds represents the perfect negative and positive dependence, respectively.

2.2 Copula Families

2.2.1 The Fréchet Family

This family is obtained through a convex combination (notice that the set of copulas
is closed under convex combinations) of the product copula and the comonotonic
copula, that is

C(u) = θ�d(u) + (1 − θ)Md(u), u ∈ [0, 1]d

and θ ∈ [0, 1] represents a dependence parameter.
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2.2.2 The Farlie–Gumbel–Morgenstern Family

Let P∗ be the class of subsets of {1, 2, . . . , d} with at least two elements. To each
S ∈ P∗ we associate a real number θS so that

1 +
∑
S∈P∗

θS

∏
j∈S

z j ≥ 0

for any z j ∈ {−1, 1}: as a consequence |θS| ≤ 1, for all S ∈ P∗.
A Farlie–Gumbel–Morgenstern copula is defined as

C(u) =
d∏

i=1

ui

⎛
⎝1 +

∑
S∈P∗

θS

∏
j∈S

(1 − u j )

⎞
⎠ , u ∈ [0, 1]d

and the coefficients θS represent the dependence parameters.
Any member of this family is absolutely continuous with density

c(u) = 1 +
∑
S∈P∗

θS

∏
j∈S

(1 − 2u j ).

In the particular case of d = 2

C(u, v) = uv + θuv(1 − u)(1 − v), (u, v) ∈ [0, 1]2

where θ ∈ [−1, 1].

2.2.3 The Archimedean Family

Copulas in this family are represented through a generator which has to satisfy some
suitable assumptions (see McNeil (2009)).

We call Archimedean generator any decreasing and continuous function
ψ : [0,+∞) → [0, 1] such that

• ψ(0) = 1;
• lim

t→+∞ ψ(t) = 0

• it is strictly decreasing on [0, inf{t : ψ(t) = 0}).
ψ is invertible on [0, inf{t : ψ(t) = 0}): by convention, we set ψ−1(0) = inf{t ≥ 0 :
ψ(t) = 0}.

An Archimedean generator ψ is said d-monotone if its restriction to (0,+∞) is
d-monotone, that is,

• ψ is differentiable up to the order d − 2 in (0,+∞) and the derivatives satisfy
(−1)kψ(k)(t) ≥ 0 for k ∈ {0, 1, . . . , d − 2} for every t > 0,

• (−1)d−2ψ(d−2) is decreasing and convex in (0,+∞).
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A d-dimensional copula C is called Archimedean if it admits the representation

Cψ(u) = ψ(ψ−1(u1) + ψ−1(u2) + · · · + ψ−1(ud)), u ∈ [0, 1]d

for some d-monotone Archimedean generator ψ.

Gumbel Copula
It is characterized by the generator ψ(t) = exp(−t

1
θ ), for θ ≥ 1, from which we get

Cθ(u) = exp

⎛
⎝−

(
d∑

i=1

(−log ui )
θ

) 1
θ

⎞
⎠ , θ ≥ 1

For θ = 1 we obtain the independence copula as a special case.

Clayton Copula
It is characterized by the generator ψθ(t) = (max{1 + θt, 0})− 1

θ , for θ ∈ [ −1
d−1 ,+∞)

\ {0}, from which we get

Cθ(u) =
(
max

{
d∑

i=1

u−θ
i − (d − 1), 0

})− 1
θ

, θ ≥ −1

d − 1
, θ �= 0

The limiting case θ = 0 corresponds to the independence copula.

Frank Copula
It is characterized by the generator ψθ(t) = − 1

θ
log(1 − (1 − e−θ)e−t ), θ > 0. from

which we get

Cθ(u) = −1

θ
log

(
1 +

∏d
i=1(e

−θui − 1)

(e−θ − 1)d−1

)
, θ > 0

The limiting case θ = 0 corresponds to the independence copula.
For d = 2, ψθ(t) = − 1

θ
log(1 − (1 − e−θ)e−t ) is 2-monotone also for θ < 0 and

the 2-dimensional Frank copula si defined for all θ ∈ R \ {0}.

2.2.4 The Elliptical Family

A random vector Y is said to have an elliptical distribution with parameters a d-
dimensional vector μ and a positive definite d × d matrix � if

Y ∼ μ + r AU
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withUuniformlydistributedon theunit sphere surfaceofRd , A givenby theCholesky
decomposition of � (that is � = AA′) and r a random variable independent of U
with support on [0,+∞). This distributions admit a density of the form

f (x) = 1

det (�)−1/2
g((x − μ)′�−1(x − μ)), x ∈ R

d.

for some suitable non-negative function g. The normal distribution is easily recov-
ered by taking g(t) = 1

(2π)d/2 e−t/2 and the Student’s t distribution with m degrees of

freedom by taking g(t) = �( m+t
2 )

(πm)d/2�( m
2 )

(
1 + t

m

)− m+d
2 . Thanks to Sklar’s Theorem, the

so called elliptical copula is:

C(u) =
∫ F−1

Y1
(u1)

−∞
· · ·

∫ F−1
Yd

(ud )

−∞
1

det (�)−1/2
g((x − μ)′�−1(x − μ)) dx1 . . . dxd .

2.3 Dependence Measures

2.3.1 Kendall’s Function

We already know that given a continuous random variable X with cumulative distri-
bution function F , its integral transform is the uniformly distributed random variable
F(X). The same approach, applied to random vectors of dimensions d ≥ 2 is less
trivial (see for details Nelsen 2006; Genest and Rivest 2001; and Nelsen et al. 2003,
among the others).

Let X be a d-dimensional random vector with cumulative distribution function F
and associated copula function C . The multivariate integral transform is defined as
the random variable

W = F(X) = C(U) = C(U1, . . . , Ud),

where Ui is the integral transform of Xi . This random variable is in general no more
uniformly distributed and its cumulative distribution function

KC(t) = P(F(X) ≤ t) = P(C(U) ≤ t)

is called Kendall’s function.
If C1(U) ≥ C2(u) for all u ∈ [0, 1]d , then KC1(t) ≤ KC2(t) for all t ∈ [0, 1], that

is, concordance ordering induces an opposite ordering in the Kendall’s function.

Example 2.3.1 (Fréchet copulas) Let Cθ be the Fréchet copula

C(u, v) = θuv + (1 − θ)min(u, v), (u, v) ∈ [0, 1]2, θ ∈ [0, 1].
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Then the Kendall’s function is

Kθ(t) = t − t log{tθhθ(t) + (1 − θ)t} − t log{hθ(t)}

where hθ(t) = θ−1+
√

(1−θ)2+4tθ
2θ .

Example 2.3.2 (Archimedean copulas) Let C be the Archimedean copula given by

Cψ(u, v) = ψ(ψ−1(u) + ψ−1(v)).

The Kendall’s function is

Kψ(t) = t − ψ−1(t)ψ′(ψ−1(t)).

More specifically, we have

• Kθ(t) = t − t
θ
log t in the Gumbel case;

• Kθ(t) = t + tθ+1

θ

(
t−θ − 1

)
in the Clayton case;

• Kθ(t) = t − 1−eθt

θe−θt log
1−e−θt

1−e−θ in the Frank case.

In the d > 2-dimensional case (see, for example, Genest and Rivest 2001),

Kψ(t) = t +
d−1∑
i=1

(−1)i (ψ
−1(t))i

i ! fi−1(t)

where fi (t) = di+1

dvi+1 ψ(v) evaluated at v = ψ−1(t) under the assumption that
lim

t→0+
(ψ−1(t))i fi−1(t) = 0 for all i ≤ d − 1.

2.3.2 Kendall’s Tau

Roughly speaking, two random variables are concordant if small (large) values of
one of the two are likely to be associated with small (large) values of the other.

More precisely, let (xi , yi ) and (x j , y j ) be two observations from a vector (X, Y )

of continuous random variables. Then, (xi , yi ) and (x j , y j ) are concordant if (xi −
x j )(yi − y j ) > 0 and discordant if (xi − x j )(yi − y j ) < 0.

Given a random sample of observations from a random vector (X, Y ), the sam-
ple version of the Kendall’s tau measure of concordance is given by the difference
between the ratio of the concordant pairs and the ratio of discordant pairs. Driven
by the same reasoning, the population version of the Kendall’s tau is defined as the
probability of concordance minus the probability of discordance. More precisely,
let (X1, Y1) and (X2, Y2) be independent and identically distributed random vectors.
The population version of Kendall’s tau is defined by
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τ = P((X1 − X2)(Y1 − Y2) > 0) − P((X1 − X2)(Y1 − Y2) < 0).

It can be proved that (see Nelsen 2006), if C is the copula of (Xi , Yi ), then

τ = 4
∫∫

[0,1]2
C(u, v)dC(u, v) − 1 = 4E[C(U, V )] − 1 (2.2)

and τ = τC only depends on the copula C .
Another equivalent expression of the Kendall’s tau is given by:

τC = 1 − 4
∫∫

[0,1]2
∂C(u, v)

∂u

∂C(u, v)

∂v
dudv.

If C is absolutely continuous, then

τC = 4
∫∫

[0,1]2
C(u, v)c(u, v)dudv − 1.

It can be trivially checked that τM2 = 1, τ�2 = 0 and τW2 = −1 and thanks to the
Fréchet bounds −1 ≤ τC ≤ 1 for any bivariate copula C .

It can be easily checked that the Kendall’s tau is related to the Kendall’s function
via

τC = 3 − 4
∫ 1

0
KC(t)dt. (2.3)

This allows to easily compute the Kendall’s tau, when the Kendall’s function is know.

Example 2.3.3 Let Cθ be the Fréchet copula of Example 2.3.1. The Kendall’s tau
for Cθ is given by

τθ = (1 − θ)(3 − θ)

3
.

Example 2.3.4 (Farlie–Gumbel–Morgestern copulas)LetCθ be theFarlie–Gumbel–
Morgestern copula

C(u, v) = uv + θuv(1 − u)(1 − v), (u, v) ∈ [0, 1]2, θ ∈ [−1, 1].

The value of Kendall’s tau for Cθ is given by

τθ = 2

9
θ.

Example 2.3.5 Let C be the Archimedean copula given in Example 2.3.2. The value
of Kendall’s tau for Cψ is given by
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τ (ψ) = 1 + 4
∫ 1

0
ψ−1(t)ψ′(ψ−1(t))dt.

In particular,

• τ (θ) = θ−1
θ

for Gumbel copula and
• τ (θ) = θ

θ+2 for Clayton copula.

Through (2.2) the definition ofKendall’s tau can be generalized to higher dimensions,
that is (see Joe 1990)

τC = 2d E[C(U)] − 1

2d−1 − 1
.

2.3.3 Spearman’s Rho

Let (X1, Y1), (X2, Y2) and (X3, Y3)be independent and identically distributed pairs of
continuous random variables. The population version of Spearman’s rho ρ is defined
to be proportional to the probability of the concordance minus the probability of
discordance of the two vectors (X1, Y1) and (X2, Y3). Explicitly

ρ = 3 {P((X1 − X2)(Y1 − Y3) > 0) − P((X1 − X2)(Y1 − Y3) > 0)} .

It can be easily shown that the Spearman’s rho only depends on the copula functionC
that represents the dependence structure of each vector (Xi , Yi ). In fact, the following
equivalent representations of ρ = ρC can be easily obtained

ρC = 12
∫∫

[0,1]2
C(u, v)dudv − 3 =

= 12
∫∫

[0,1]2
uvdC(u, v) − 3 =

= 12E[U V ] − 3 =
= 12

∫∫

[0,1]2
(C(u, v) − uv)dudv

In particular, considering the representation

ρC = 12E[U V ] − 3,

since E[U ] = E[V ] = 1
2 and V ar(U ) = V ar(V ) = 1

12

ρC = 12E[U V ] − 3 = E[U V ] − 1/4

1/12
= E[U V ] − E[U ]E[V ]√

V ar(U )V ar(V )
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and Spearman’s rho is the Pearson’s correlation coefficient of the integral transforms
of the original random variables.

Example 2.3.6 Let Cθ be the Fréchet copula of Example 2.3.1, then the value of the
Spearman’s rho is

ρθ = 1 − θ.

Considering the representation

ρC = 12
∫∫

[0,1]2
(C(u, v) − uv)dudv

and the fact that the Spearman’s rho of the comonotone copula is ρM2 = 1, we have

ρC =
∫∫

[0,1]2(C(u, v) − uv)dudv∫∫
[0,1]2(M2(u, v) − uv)dudv

that allows to interpret ρC as the normalized average difference between the copula
C and the independence one (that is �2).

Example 2.3.7 Let Cθ be the Farlie–Gumbel–Morgstern copula of Example 2.3.4,
then the value of the Spearman’s rho is given by

ρθ = θ

3
.

As shownby the above examplesKendall’s tau andSpearman’s rho associate different
values to the same copula. However, they cannot be too far each other: in fact, they
are linked by the following relation

−1 ≤ 3τC − 2ρC ≤ 1.

Other relations between them are

1 + ρC

2
≥

(
τC + 1

2

)2

and
1 − ρC

2
≥

(
1 − τC

2

)2

.

Combining all these relations we get the following inequalities

3τC − 1

2
≤ ρC ≤ 1 + 2τC − τ 2

C

2
, τC ≥ 0
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and
τ 2

C + 2τC − 1

2
≤ ρC ≤ 1 + 3τC

2
, τC ≤ 0

see Theorems 5.1.10 and 5.1.11 and Corollary 5.1.12 in Nelsen (2006).
Starting from the abovedifferent representations of theSpearman’s rho coefficient,

many multivariate extensions have been proposed in literature:

ρ̂C = h(d)

(∫∫

[0,1]d

C(u)du − 1

)
, see Ruymgaart and Zuijlen (1978)

ρ∗
C = h(d)

(
2d

∫∫

[0,1]d

�d(u)dC(u) − 1

)
, see Joe (1990)

ρ̄C = h(2)

(
4

∑
k<l

(
d
2

)−1 ∫∫

[0,1]2
Ckl(u, v)dudv − 1

)
, see Kendall (1938)

whereh(x) = x+1
2x −1−x andCkl is the bivariatemarginal copula ofC which corresponds

to l-th and k-th marginals.
It can be easily proved that

ρ̂C = h(d)

(
2d

∫∫

[0,1]d

C(u)du − 1

)
=

∫∫
[0,1]d (C(u) − �d(u)) du∫∫

[0,1]d (Md(u) − �d(u)) du
.

2.3.4 Tail Dependence Parameters

Tail dependence parameters represent a measure of the dependence among two
random variables in the upper-right quadrant and in the lower-left quadrant of
[0, 1] × [0, 1]. In particular, the upper tail dependence parameter λU it is defined as

λU = lim
u→1−

P (V > u|U > u) = 2 − lim
u→1−

1 − C(u, u)

1 − u

while the lower tail dependence parameter λL as

λL = lim
u→0+

P (V ≤ u|U ≤ u) = lim
u→0+

C(u, u)

u

If λU ∈ (0, 1] then C has upper tail dependence while if λU = 0 C has no upper tail
dependence (the same for λL ).

As for Archimedean copulas, Clayton copula with parameter θ > 0 has lower tail
dependence, since λL = 2−1/θ, and no upper tail dependence; Gumbel copula has
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upper tail dependence, since λU = 2 − 21/θ, and no lower tail dependence; Frank
copula has neither lower neither upper tail dependence.As for the bivariate Student’s t

copula of Sect. 2.2.4, λU = λL = 2tm+1

(
−

√
m+1

√
1−ρ√

1+ρ

)
, where tm+1 is the univariate

t-student distribution with m + 1 degrees of freedom and ρ is off-diagonal element
of

∑
.

2.4 Conditional Sampling

In this section, we describe a useful technique in order to generate random pairs
from a copula function.We start with elliptical copulas, the Gaussian and the Student
copulas, since the simulation technique is very simple. So, letC(u, v; R)be a centered
bivariate Gaussian copula with correlation matrix R. The simulation method is given
by the following algorithm.

• Find the Cholesky decomposition D of the correlation matrix R.

• Generate 2 independent random numbers z = (z1, z2) from N (0, 1), (z1, z2)
i.i.d.∼

N (0, 1).
• Set x = Dz.
• Set u = �(x1) and v = �(x2) where � is the standard normal distribution.
• (u, v) is the desired pair.

Figure2.1 shows scatter plots of simulations from a gaussian copula with four differ-
ent levels of correlations, ρ = −0.5, 0.1, 0.5, 0.9 obtained by using this algorithm.
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Fig. 2.1 Simulation from a Gaussian copula with a ρ = −0.5, b ρ = 0.1, c ρ = 0.5, d ρ = 0.9
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Analogously, if C(u, v; R, ν) is a centered bivariate Student copula with corre-
lation matrix R and degrees of freedom ν, the simulation method is very similar to
the previous one and algorithm is the following.

• Find the Cholesky decomposition D of the correlation matrix R.

• Generate 2 independent random numbers z = (z1, z2) from N (0, 1), (z1, z2)
i.i.d.∼

N (0, 1).
• Generate s ∼ χν independent of z.
• Set y = Dz.
• Set x = D

√
ν
s z.• Set u = Tν(x1) and v = Tν(x2) where Tν denotes the Student’s t distribution with

d.o.f. ν.
• (u, v) is the desired pair.

Figure2.2 shows scatter plots of simulations from a Student copulawith two different
levels of correlations, ρ = 0.5 and ρ = 0.9 and two different degrees of freedom
ν = 3 and ν = 30, obtained by using this algorithm. The parameter ν is a measure
of tail dependence. This dependence is higher for small values of ν.

The most useful technique to simulate pairs from an Archimedean copula C(u, v)

is the conditional sampling method. The method is based on the property that if
(U, V ) are U (0, 1) distributed r.vs. whose joint distribution is given by C , the con-
ditional distribution of V given U = u is the first partial derivative of C
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Fig. 2.2 Simulation from a Student copula with a ρ = 0.5, ν = 3, b ρ = 0.9, ν = 3, c ρ = 0.5,
ν = 30, d ρ = 0.9, ν = 30
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Fig. 2.3 Simulation from a Gumbel copula with a θ = 1(τ = 0), b θ = 2(τ = 50%), c θ = 5(τ =
80%), d θ = 15(τ = 93%)

P(V ≤ v|U = u) = D1C(u, v) = cu(v),

which is a nondecreasing function of v. With this result in mind the simulation of a
pair (u, v) from C is obtained in the following two steps.

1. Generate two independent r.vs. (u, z) from a U (0, 1) distribution: (u, z)
i.i.d.∼

U (0, 1).
2. Compute v = c−1

u (z), where c−1
u (·) is the quasi-inverse function of the first partial

derivative of the copula.
3. (u, v) is the desired pair.

Figures2.3 and 2.4 report scatter plots of simulations from a Gumbel and Clayton
copulas obtained by using the conditional sampling algorithm. The Gumbel copula
(Fig. 2.3) is a symmetric copula, exhibiting greater dependence both in the upper
and lower tails. This effect increases with the parameter value. In particular, the
figure shows four different level of dependence expressed in terms of Kendall’s
τ coefficient (0, 50, 80 and 93%). Figure2.4 refers to the Clayton copula, which
provides an asymmetric dependence, exhibiting greater dependence in the negative
tails than in the positive. The figure shows scatter plots of simulations relative to four
different levels of dependence expressed in terms of Kendall’s τ coefficient (4.75,
33, 72 and 88%).
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Fig. 2.4 Simulation from a Clayton copula with a θ = 0.1(τ = 4.75%), b θ = 1(τ = 33%), c
θ = 5(τ = 72%), d θ = 15(τ = 88%)

2.5 Inference for Margins Estimation

We briefly present the statistical inference theory applied to copula models. Copulas
provide a useful tool to tackle the problem of how to describe a joint distribution
because the researcher may deal separately with the needs of marginal and joint
distribution modeling. At the same way, from an econometric point of view, a copula
model can be estimated in two steps: in the first, one can choose for each data series
the marginal distribution that best fits the sample, in the second, one estimates the
copula function with desirable properties.

The estimation technique is the maximum likelihood. It is important to remark
that in the most cases the maximization procedure requires a numerical optimization
of the objective function because a copula is intrinsically a multivariate model and
its likelihood involves mixed derivatives.

LetX = (X1, . . . , Xd) be a d-dimensional continuous random vector whose joint
distribution function is described by the a copula function C and denote by Fk ,
k = 1, . . . , d the marginal distributions. Therefore, thanks to Sklar’s theorem, the
joint distribution G of (X1, . . . , Xd) is

G(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).
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Now, the likelihood function of the model is obtained from the joint density function
of the sample (x1,i , . . . , xd,i )i=1,...,n generated by (X1, . . . , Xd). Let g be such a joint
density. Since g is the d-th partial derivative of G we get

g(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))

d∏
k=1

fk(xk),

where c is the copula density and fk , k = 1, . . . , d, denotes the marginal density of
Fk . Suppose thatφk , k = 1, . . . , d, represents the vector of parameters of themarginal
distribution Fk and θ represents the vector of copula parameters. Therefore, the log-
likelihood function of the copula model is

�((x1,i , . . . , xd,i )i=1,...,n;φ1, . . . ,φd , θ) =

=
n∑

i=1

ln c(F1(x1,i ; φ1), . . . , Fd (xd,i ;φd ); θ) +
n∑

i=1

ln f1(x1,i ; φ1) + · · · +
n∑

i=1

ln fd (xd,i ; φd ).

This log-likelihoodhas to bemaximizedwith respect to all parameters (φ1, . . . ,φd , θ)
and that could be very computationally intensive especially in the case of a high
dimension. To overcome this problem, Joe and Xu (1996) observed that the log-
likelihood function is composed by two positive terms: the first involving the copula
density and its parameter

�c((x1,i , . . . , xd,i )i=1,...,n; φ1, . . . , φd , θ) =
n∑

i=1

ln c(F1(x1,i ; φ1), . . . , Fd (xd,i ; φd ); θ)

and the second involving the margins and their parameters

�k((xk,i )i=1,...,n;φk) =
n∑

i=1

ln fk(xk,i ;φk), k = 1, . . . , d

So, they proposed a new estimation technique consisting in two steps:

1. firstly, we estimate the parameters of the margins φk , k = 1, . . . , d by maximum
likelihood

φ̂k,n = argmax
�k

�k((xk,i )i=1,...,n;φk),

where �k is the marginal parameter space;
2. second, given φ̂1,n, . . . , φ̂d,n , we estimate the copula parameter θ by maximizing

the copula log-likelihood

θ̂n = argmax
�

�c((x1,i , . . . , xd,i )i=1,...,n; φ̂1,n, . . . , φ̂d,n, θ),

where � is the copula parameter space.
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This estimation technique is called inference for the margins (IFM) and the vector
η̂n = (φ̂1,n, . . . , φ̂d,n, θ̂n) is the IFM estimator. Joe (1997) proves that under some
regularity conditions the IFM estimator is asymptotically gaussian and more specif-
ically √

n(η̂n − η0)
d→ N (0,G−1(η0)),

where η0 is the true parameters vector and G(η0) is known as Godambe information
matrix. G(η0) is given by

G(η0) = A−1V (A−1)T ,

where A = E

[
∂s(η)

∂η

]
and V = E[s(η)(s(η))T ] where s(η) is the score function

s(η) =
(

∂�1
∂φ1

, . . . , ∂�d
∂φd

, ∂�c
∂θ

)
.

2.6 Copulas and Time Series

The estimation technique introduced in the previous section is devoted to applications
where the data could be considered independent and identically distributed.However,
this assumption has to be rejected for almost every economic time series where the
sample are realization of stochastic processes. In this framework the estimation of
parameters of the model is obtained by the maximization of the quasi-likelihood
functions. Before introducing this methodology the concept of conditional copula
has to be presented.

2.6.1 Conditional Copula

The conditional copula was introduced by Patton (2001, 2006a, b) in order to handle
conditioning variables in the analysis of time-varying conditional dependence and
for multivariate density modeling. The theoretical framework is the following: X and
Y are the variables of interest and Z is the conditioning variable. Let FXY Z be the
distribution of the random vector (X, Y, Z), FXY |Z be the conditional distribution
of (X, Y ) given Z and FX |Z and FY |Z be the conditional marginal distributions of
X given Z and of Y given Z , respectively. The conditional bivariate distribution of
(X, Y ) given Z can be derived from the unconditional joint distribution of (X, Y, Z)

as follows

FXY |Z (x, y|z) = fZ (z)−1 ∂FXY Z (x, y, z)

∂z
,

where fZ is the unconditional density of Z . The conditional copula of (X, Y ) given
Z cannot be derived from the unconditional copula of (X, Y, Z): further information
is required. Patton defines the conditional copula as follows:
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Definition The conditional copula of (X, Y ) given Z = z, where X given Z =
z has distribution FX |Z (·|z) and Y given Z = z has distribution FY |Z=z(·|z), is
the conditional distribution function of U ≡ FX |Z (X |z) and V ≡ FY |Z (Y |z) given
Z = z.

Let Z be the support of Z . So, an extension of Sklar’s theorem for conditional
distributions shows that a conditional copula has the properties of an unconditional
copula for each z ∈ Z .

Theorem 2.6.1 Let FX |Z (·|z) be the conditional distribution of X given Z = z,
FY |Z (·|z) be the conditional distribution of Y |Z = z, FXY |Z (·, ·|z) be the joint con-
ditional distribution of (X, Y ) given Z = z and Z be the support of Z. Assume that
FX |Z (·|z) and FY |Z (·|z) are continuous in x and y for all z ∈ Z . Then, there exists a
unique conditional copula C(·|z) such that

FXY |Z (x, y|z) = C(FX |Z (x |z), FY |Z (y|z)|z), ∀(x, y) ∈ R
∗ × R

∗, ∀z ∈ Z. (2.4)

Conversely, if we let FX |Z (·|z) be the conditional distribution of X given Z = z,
FY |Z (·|z) be the conditional distribution of Y given Z = z and {C(·, ·|z)} be a family
of conditional copulas that is measurable in z, then the function FXY |Z (·, ·|z) defined
by Eq. (2.4) is a conditional bivariate distribution function with conditional marginal
distributions FX |Z (·|z) and FY |Z (·|z).
The key point in this ‘conditional’ version of Sklar’s theorem is that the conditioning
variable Z must be the same for both marginal distributions and the copula and this
is a fundamental condition.

Thanks to the notion of conditional copula we can address the problem of esti-
mation of copula-based multivariate time series. From a general point of view, when
considering copula-based models for multivariate time series we assume that the
marginal distributions are of the form (Patton 2012)

Xkt = μk(Zt−1; η) + σk(Zt−1; η)εkt , k = 1, . . . , d,

where
Zt−1 ∈ Ft−1, εkt |Ft−1 ∼ Fkt

(ε1t , . . . , εdt )|Ft−1 ∼ Ct (F1t , . . . , Fdt ),

whereCt is a d-dimensional conditional copula. In practice, wewill allow each series
to have potentially time-varying conditional mean and variance each parametrically
modeled and we will assume that the standardized residuals εkt has a conditional
distribution Fkt which may be both parametric and nonparametric. In the parametric
case, it may be modeled as time-varying and its parameters will become part of the
vector η.

The hypothesis of time-varying was confirmed in recent econometric literature
which contains a preponderance of evidence that the conditional volatility of eco-
nomic time series changes through the time, see, among others, Andersen et al.
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(2006). This motivate the researchers to consider whether the conditional depen-
dence structure also varies through time (see, for example, Rémillard 2010 which
considers a test for a one-time change in the conditional copula).

2.6.2 Multi-stage Quasi-maximum Likelihood Estimation

When all components of the copula-based multivariate model are parametric, the
most efficient estimation method is maximum likelihood. Under regularity condi-
tions, see White (1994) among others, standard results for parametric time series
models may be used to show that the maximum likelihood estimator η̂n is

√
n-

consistent and asymptotically gaussian. The drawback of this standard approach is
that the number of parameters to be estimated simultaneously can be large, in partic-
ular, when the model is of high dimension. To overcome this computational problem
it is available an alternative approach which consists in estimating the model in more
stages. This requires that the parameters vector can be separated in parameters for
the d margins and the conditional copula. This condition is satisfied for the most
models used in practice. The estimation procedure consists in a first stage where
one can estimate the parameters of the marginal distributions (more precisely we
have d stages for a d dimensional model) and a second stage which consists in esti-
mating the copula parameter conditioning on the estimated marginal distributions
parameters. This estimation procedure is known as multistage maximum likelihood
estimation. White (1994) proves the asymptotic properties of this estimator. In this
paragraph, we present a brief summary of these results. From an econometric point
of view time series are realizations of a stochastic process on some suitable proba-
bility space. Formally, the observed data is generated by the (multivariate) stochas-
tic processX = {(X1t , . . . , Xdt ) : � → R

d , t = 1, 2, . . .} on a complete probability
space (�,F ,Ft ,P), where Ft denote the filtration of the model. In a similar frame-
work, the joint densities of a time series have to be considered conditional to Ft−1

and the likelihood functions are “quasi” likelihood. For more details the reader may
consult the book of White (1994).

In a copula model for time series the data generating process contains a con-
ditional copula and d conditional marginal distributions. Let Ct be the conditional
copula of (X1t , . . . , Xdt )|Ft−1 and Fkt be the conditional marginal distribution of
Xkt |Ft−1. So by the conditional version of Sklar’s theorem the joint distribution
of (X1t , . . . , Xdt )|Ft−1 is given by Gt (x1t , . . . , xdt ) = Ct (F1t (x1t), . . . , Fdt (xdt )).
Suppose that φk , k = 1, . . . , d, is the vector of parameters of Fkt and θ is the vector
of parameters of the conditional copula. Therefore, the parameter of the model is the
vector η = (φ1, . . . ,φd , θ) and the joint density function of (X1t , . . . , Xdt )|Ft−1 is

gt (x1t , . . . , xdt ; η) = ct (F1t (x1t ;φ1), . . . , Fdt (xdt ;φd); θ)

d∏
k=1

fkt (xkt ;φk).
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Now, let xn
k = (xkt )t=1,...,n be the time series generated by the k-th component Xkt

with k = 1, . . . , n. The quasi log-likelihood function of the model, denoted by �n , is
then

�n((xn
1 , . . . , xn

d )); η) =

=
n∑

t=1

ln ct (F1t (x1t ;φ1), . . . , Fdt (xdt ; φd ); θ) +
n∑

t=1

ln f1t (x1t ; φ1) + · · · +
n∑

t=1

ln fdt (xdt ; φd ).

In the same spirit of the IFM estimation we proceed to the estimation in d + 1
steps because the quasi log-likelihood function is obtained by the sum of d marginal
quasi-likelihoods

�n
k ((xn

k ;φk) =
n∑

t=1

ln fkt (xkt ;φk), k = 1, . . . , d

and a copula quasi-likelihood

�n
c ((xn

1 , . . . , xn
d )); η) =

n∑
t=1

ln c(F1t (x1t ;φ1), . . . , Fdt (xdt ;φd); θ).

The multistage quasi-maximum likelihood estimator (MSQMLE) is the vector η̂n =
(φ̂n

1, . . . , φ̂
n
d , θ̂

n) whose components are

φ̂n
k = argmax

�k

�n
k ((xn

k ;φk)

and
θ̂n = argmax

�
�n

c ((xn
1 , . . . , xn

d ); φ̂n
1, . . . , φ̂

n
d , θ).

White (1994) proves that under some regularity conditions the multistage quasi-
maximum likelihood estimator is asymptotically gaussian (see Theorem 6.11 in
White 1994) and in particular

(B̄0
n )−1/2 A0

n

√
n(η̂n − η0)

d→ N (0, I ),

where η0 = (φ0
1, . . . ,φ

0
d , θ

0) is the true value of the parameter and A0
n = E[H 0

n ],
where H 0

n is a block hessian matrix of the type

H0
n =

⎛
⎜⎜⎝

∇φ1φ1�
n
1(Xn

1 ; φ01) 0 . . . 0
0 ∇φ2φ2�

n
2(Xn

2 ; φ02) . . . 0
. . . . . . . . . . . .

∇φ1θ�
n
c ((Xn

1 , . . . , Xn
d ); η0) ∇φ2θ�

n
c ((Xn

1 , . . . , Xn
d ); η0) . . . ∇θθ�

n
c ((Xn

1 , . . . , Xn
d ); η0).

⎞
⎟⎟⎠
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Moreover, B̄0
n = E[B0

n ], where

B0
n =

⎛
⎜⎜⎜⎝

1
n

∑n
t=1[s01t · (s01t )

′] 1
n

∑n
t=1[s01t · (s02t )

′] . . . 1
n

∑n
t=1[s01t · (s0ct )

′]
1
n

∑n
t=1[s02t · (s01t )

′] 1
n

∑n
t=1[s02t · (s02t )

′] . . . 1
n

∑n
t=1[s02t · (s0ct )

′]
. . . . . . . . . . . .

1
n

∑n
t=1[s0ct · (s01t )

′] 1
n

∑n
t=1[s0ct · (s02t )

′] . . . 1
n

∑n
t=1[s0ct · (s0ct )

′]

⎞
⎟⎟⎟⎠ ,

where
s0kt = ∇φk ln fkt (xkt ;φ0

k), k = 1, . . . , d,

and
s0ct = ∇θ ln ct (F1t (x1t ;φ0

1), F2t (x2t ;φ0
2), F3t (x3t ;φ0

3); θ0)

are the score functions (see White 1994 and Patton 2006a, b for more details). Gobbi
(2014) proposes the problem of estimation of a convolution-based time series with
the same technique proving that the same asymptotic results can be reached.
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Fig. 2.5 Simulation of a time-varying correlation coefficient of a Gaussian copula with margins
given by Garch(1,1) processes. The dynamics follows Eq. (2.5). a α = 0.2, β = 0.2, γ = 0.6;
b α = 0.2, β = 0.5, γ = 0.6; c α = 0.2, β = 0.7, γ = 0.6. The solid line is the average value
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Example 2.6.1 In this example, we propose a simulation experiment based on Patton
(2006a, b). In that paper the author assumes a bivariate copula-based time series
where the conditional marginal distributions are both conditionally gaussian with the
same Garch(1,1) specifications whose parameters are designed to reflect the highly
persistence conditional volatility. In particular, the specification of the margins is as
follows

Xt = μX + ht et

h2
t = α0 + α1(Xt−1 − μX )2 + α2h2

t−1

et |Ft−1
i id∼ N (0, 1),

Yt = μY + kt qt

k2
t = β0 + β1(Yt−1 − μY )2 + β2k2

t−1

qt |Ft−1
i id∼ N (0, 1).

with μX = μY = 0.01, α0 = β0 = 0.05, α1 = β1 = 0.1 and α2 = β2 = 0.85. The
time-dependent correlation coefficient is constructed according to two different
dynamics, which are the following
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Fig. 2.6 Simulation of a time-varying correlation coefficient of a Gaussian copula with margins
given by Garch(1,1) processes. The dynamics follows Eq. (2.6). a α = 0.2, β = 0.2, γ = 0.6;
b α = 0.2, β = 0.5, γ = 0.6; c α = 0.2, β = 0.7, γ = 0.6. The solid line is the average value
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ρt = 	
(
α + βρt−1 + δ

[
�−1(ut−1)�

−1(vt−1
])

, (2.5)

ρt = 	
(
α + βρt−1 + δ

[
�−1(ut−1)�

−1(vt−1) + �−1(ut−2)�
−1(vt−2

])
, (2.6)

where �−1(·; ν) is the inverse cdf of a standard gaussian distribution, ut = N (μ, ht )

and vt = N (μ, kt ). The function 	(·) is a modified version of the logistic function
	(x) = (1 − e−x )/(1 + e−x ) and it ensures that correlation coefficients ρt remain
in the interval (−1, 1) at all times. In practice, we set correlation coefficients at time
t as a function of a constant, correlation coefficients at time t − 1 and some other
variable which allows us to consider the time evolution in the dependence structure.
The variables�−1(ut−1)�

−1(vt−1) and�−1(ut−2)�
−1(vt−2) deal with the influence

of the twovariables on their correlation coefficient. For our simulationwefixα = 0.2,
γ = 0.6 and β = 0.2, 0.5, 0.7 for both dynamics and we generate 500 sample points.
Figures2.5 and 2.6 display the simulated paths of the correlation coefficients.
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Chapter 3
Copulas and Estimation
of Markov Processes

3.1 Copulas and Markov Processes: The DNO Approach

In this section, we briefly introduce a central result due toDarsow,Nguyen, andOlsen
(seeDarsowet al. 1992 for the original and complete result) that allows to characterize
a Markov process through the dependence structure of the finite dimensional levels
independently of their marginal distributions.

3.1.1 Markov Processes

Here we remind the definition of Markov process in discrete time and its main
features.

Definition (Markov Process) Let (�,F , (Ft )t∈N, P) be a filtered probability space
and X = (Xt )t∈N be an adapted stochastic process. X is a Markov process if and
only if

P (Xt ≤ x |Xt−1, Xt−2, . . . , X0) = P (Xt ≤ x |Xt−1) . (3.1)

Moreover, we call X a Markov process with respect to the filtration (Ft )t∈N if

P (Xt ≤ x |Fs) = P (Xt ≤ x |Xs) , s < t. (3.2)

For every Borel set A, we set P(s, x, t, A) = P(Xt ∈ A|Xs = x) the so-called tran-
sition probabilities.

It is a well-known fact (whose proof is a trivial check) that if X is a Markov process,
than its transition probabilities satisfy the Chapman–Kolmogorov equation:

P(s, x, t, A) =
∫ +∞

−∞
P(u, ξ, t, A)P(s, x, u, dξ), s < u < t.

© The Author(s) 2016
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The first important result provided by Darsow, Nguyen, and Olsen consists in rewrit-
ing the Chapman–Kolmogorov equation in terms of copula functions. In order to
do this, we need to introduce a suitable operation among bivariate copula functions.
Nevertheless, Chapman–Kolmogorov equations are only a necessary condition for
a process to be Markov. In order to state also a sufficient condition we need to
introduce a further operator among multivariate copula functions. We devote next
subsection to introduce these operators.

3.1.2 The ∗ and �-Product Operators

Definition Let A and B be two bivariate copula functions. For x, y ∈ [0, 1], the ∗
product operation is defined as follows:

(A ∗ B)(x, y) =
∫ 1

0
D2 A(x, t)D1B(t, y)dt, (3.3)

where Di C(·, ·), i = 1, 2 denotes the partial derivative of copula C(·, ·) with respect
to the the i-th argument.

We leave to the reader the check that (A ∗ B)(x, y) is again a copula. The only
nontrivial point is the proof of the 2-increasing property. But

V(A∗B) ([x1, x2], [y1, y2]) =
∫ 1

0
D2[A(x2, t) − A(x1, t)]D1[B(t, y2) − B(t, y1)]dt

(3.4)

and the result follows from the standard finding that both D2[A(x2, t) − A(x1, t)]
and D1[B(t, y2) − B(t, y1)] are nonnegative (see Lemma 2.1.3 in Nelsen 2006).

One important property of the ∗ operator is that it is associative, that is

A ∗ (B ∗ C) = (A ∗ B) ∗ C for all A, B, C ∈ C,

for whose proof we refer to the original Darsow et al. (1992) paper. Conversely, the
following properties are left to the reader as exercises:

C ∗ � = � ∗ C = �, C ∗ M = M ∗ C = C,

while

C ∗ W (u, v) = u − C(1 − u, v), W ∗ C(u, v) = v − C(1 − u, v)

and
W ∗ W = M.
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For other properties of the ∗-product, we also refer the reader to Cherubini et al.
(2012).

Let us introduce another operator among copulas, that is a generalization of the
one just introduced.

Definition Let A be an m-copula and B an n-copula. The �-product operation is
defined as follows:

(A � B)(u1, . . . , um+n−1) =
=

∫ xm

0
Dm A(u1, . . . , um−1, ξ)D1B(ξ, xm+1, . . . , xm+n−1)dξ,

where we remind that Di C denotes the partial derivative of copula C with respect to
the the i-th argument.

By arguments similar to those used for the ∗ product it is easily verified that A � B
is an (n + m − 1)-copula and satisfies the same properties listed above.

Notice that A ∗ B(x, y) = A � B(x, 1, y) implies that the �-product is indeed a
generalization of the ∗-product.

3.1.3 The Darsow, Nguyen, and Olsen Theorem

We are now ready to introduce the main results of Darsow et al. (1992) paper; we
refer the reader to the original paper for the detailed proofs.

The first one introduces a characterization of the Chapman–Kolmogorov equation
in terms of the ∗-product among copula functions.

Theorem 3.1.1 Let (Xt )t∈N be a real stochastic process, and for each s, t ∈ N let Cst

denote the copula of the random variables Xs and Xt . The following are equivalent:

(i) The transition probabilities P(s, x, t, A) = P(Xt ∈ A|Xs = x) of the process
satisfy the Chapman–Kolmogorov equations

P(s, x, t, A) =
∫ +∞

−∞
P(u, ξ, t, A)P(s, x, u, dξ),

for all Borel sets A, for all s < u < t in N and for almost all x ∈ R.
(ii) For all s < u < t in N

Cst = Csu ∗ Cut . (3.5)

Next one is the main result, where the Markov property is characterized through the
�-product.
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Theorem 3.1.2 A real valued stochastic process (Xt )t∈N is a Markov process if and
only if for all positive integers n and for all t1, . . . , tn ∈ N satisfying tk < tk+1, k =
1, . . . , n − 1,

Ct1...tn = Ct1t2 � Ct2t3 � . . . � Ctn−1tn , (3.6)

where Ct1...tn is the copula of Xt1 , . . . , Xtn and Ctk tk+1 is the copula of Xtk and Xtk+1 .

3.1.4 Building Technique of Markov Processes

The results presented in the previous subsection suggest a technique to construct
Markov processes. The procedure consists in: (a) specifying a family of bivariate
copulas satisfying the ∗-product closure condition (3.5); (b) specifying the marginal
distributions.

More precisely, let
(
Ci,i+1

)
i∈N be a set of bivariate copula functions defining the

dependence between the state of the process at time ti and time ti+1. Then, for i ∈ N

and k ≥ 2, consider the copulas

Ci,i+k = Ci,i+1 ∗ Ci+1,i+2 . . . ∗ Ci+k−1,i+k .

Obviously, the class so defined is closed with respect to the ∗-product by definition.
In particular, if Ci,i+1 ≡ C for any i ,

Ci,i+k = C ∗ C ∗ . . . ∗ C = Ck

is the k-fold ∗-product of C .
Since, the copulas Ci,i+k are uniquely determined after having specified the start-

ing family Ci,i+1, we are interested in analyzing the particular dependence structure
that they induce on bivariate realizations on the process (Xt )t∈N they are specifying.
In particular we question if, assuming that the Ci,i+1 belong to the same family of
copulas, so the induced Ci,k do.

The Gaussian Family

The Gaussian family is closed with respect to the ∗-product. More precisely,

Ci,i+1(u, v) =
∫ u

0
�

⎛
⎝�−1(v) − ρi,i+1�

−1(w)√
1 − ρ2i,i+1

⎞
⎠ dw, ρi,i+1 ∈ [−1, 1]. (3.7)

We have that
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Ci,i+k(u, v) =
∫ u

0
�

⎛
⎝�−1(v) − ρi,i+k�

−1(w)√
1 − ρ2i,i+k

⎞
⎠ dw

with

ρi,i+k =
k−1∏
j=0

ρi+ j,i+ j+1.

For a proof of this fact, see Cherubini et al. (2012), Sect. 3.2.3.
If |ρi,i+1| ≤ ρ ∈ (0, 1) (this happens, for example, in the stationary case ρi,i+1 ≡

ρ̂ for all i’s), we get lim
k→+∞ρi,i+k = 0, which is the dependence structure tends to

independence.

The α-Stable Family

Let Z be a standard α-stable random variable, that is we assume that Z has a char-
acteristic function of type

φZ (t) = e−|t |α ,

with α ∈ (0, 2]. As shown Example 3.4.6 in Cherubini et al. (2012), if �Z is the
cumulative distribution function of Z , then

Cρ(u, v) =
∫ u

0
�Z

(
�−1

Z (v) − ρ�−1
Z (w)

(1 − ρα)
1
α

)
dw, ρ ∈ (0, 1)

is a copula function and for any ρ1, ρ2 ∈ (0, 1)

Cρ1 ∗ Cρ2 = Cρ1ρ2 .

It follows that, if

Ci,i+1(u, v) =
∫ u

0
�Z

(
�−1

Z (v) − ρi,i+1�
−1
Z (w)

(1 − ρα
i,i+1)

1
α

)
dw, ρ ∈ (0, 1),

then

Ci,i+k(u, v) =
∫ u

0
�

⎛
⎝�−1(v) − ρi,i+k�

−1(w)
(
1 − ρα

i,i+k

) 1
α

⎞
⎠ dw,

with

ρi,i+k =
k−1∏
j=0

ρi+ j,i+ j+1
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As in the Gaussian case (that is a included in the present one when α = 2), if
|ρi,i+1| ≤ ρ ∈ (0, 1), we get lim

k→+∞ρi,i+k = 0, that is the dependence structure tends

to independence.

The Farlie–Gumbel–Morgenstern Family

Now we assume

Ci,i+1(u, v) = uv + θi,i+1uv(1 − u)(1 − v), θi,i+1 ∈ [−1, 1]. (3.8)

We have that
Ci,i+k(u, v) = uv + θi,i+kuv(1 − u)(1 − v),

with

θi,i+k = 3−k+1
k−1∏
j=0

θi+ j,i+ j+1.

For a proof of this fact, see Cherubini et al. (2012), Sect. 3.2.3.

Since |θi,i+k | ≤ 1
3k−1 , we have that lim

k→+∞θi,i+k = 0, that is the dependence struc-

ture tends to independence.

Fréchet Dynamics

In this case

Cα,β = αW + βM + (1 − α − β)�, α,β, 1 − α − β ∈ [0, 1]

and
Cα,β ∗ Cα̂,β̂ = Cαβ̂+βα̂,αα̂+ββ̂ .

If
Ci,i+1 = αi,i+1W + βi,i+1M + (1 − αi,i+1 − βi,i+1)�,

then
Ci,i+k = αi,i+k W + βi,i+k M + (1 − αi,i+k − βi,i+k)�

with

βi,i+k =
k−1∏
j=0

αi+ j,i+ j+1 +
k−1∏
j=0

βi+ j,i+ j+1

and αi,i+k can be recursively obtained from

αi,i+k = αi,i+k−1βi+k−1,i+k +
k−1∏
j=0

αi+ j,i+ j+1 + αi+k−1,i+k

k−2∏
j=0

βi+ j,i+ j+1. (3.9)
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If αi,i+1 ≤ α ∈ (0, 1) and βi,i+1 ≤ β ∈ (0, 1), we get lim
k→+∞βi,i+k = 0 and

lim
k→+∞αi,i+k = 0. This fact is obvious for βi,i+k . As for αi,i+k , from (3.9) we get

αi,i+k ≤ αi,i+k−1β + αk + αβk−1.

Through recursion we get

αi,i+k ≤ αi,i+1β
k−1 +

k∑
j=2

(α j + αβ j−1)βk− j

from which

αi,i+k ≤ αi,i+1β
k−1 + α2

β − α
βk−1 − α2

β − α
αk−1 + α(k − 1)βk−1

from which trivially follows that lim
k→+∞αi,i+k = 0.

3.2 Copula-Based Markov Processes: Estimation, Mixing
Properties, and Long-Term Behavior

From an econometric point of view, copula-basedMarkov processes was introduced,
discussed, and estimated in a seminal paper by Chen and Fan in 2006. Here the
authors give a formal definition and establish some assumptions necessary to obtain
asymptotic results relative tomaximum likelihood estimators of the parameters. Their
approach is semiparametric since whereas the copula function which describes the
temporal dependence belongs to a parametric family the marginal distributions are
given by empirical distribution functions.

A copula-based stationary Markov process is a first-order Markov process gen-
erated by a copula function which captures the temporal dependence of the process.
More precisely, the process X = (Xt )t≥0 is characterized by {G(·, η), C(·, ·; θ)},
where G is the invariant distribution of Xt for all t with parameter (or vector of
parameters) η and C is the copula function of (Xt−1, Xt ) for all t and with para-
meter θ. In order to highlight the dynamic properties of a stationary copula-based
Markov process, we present a simulation of trajectories with two types of temporal
dependence structure given by two of the most used copula functions: Clayton and
Frank.

Example 3.2.1 In this example, we show a simulation experiment to generate tra-
jectories, denoted by x = (x)t=1,...,n , from a strictly stationary copula-based Markov
process characterized by the pair {G(·, η), C(·, ·; θ)} where G is a Student’s t dis-
tribution with η degrees of freedom, whereas C is both a Clayton copula and a
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Fig. 3.1 Simulated trajectories from a copula-based Markov process when C is a Clayton copula
and G ∼ t(5). a τ = 0.2 (θ = 0.5); b τ = 0.5 (θ = 2); c τ = 0.8 (θ = 8)

Frank copula with parameter θ. The simulation procedure is the dynamic version
of the conditional sampling method introduced in Sect. 2.4. First, we generate n iid
U (0, 1) samples (ζ1, . . . , ζn) and then for each t we solve ut = h−1(ζt |ut−1), where
h(ut |ut−1) ≡ D1C(ut−1, ut ). The desired sample is (u1, . . . , un). To simulate the
copula-based Markov time series (x)t=1,...,n suffices to apply a generalized inverse
of the stationary distribution G, that is xt = G−1(ut ), t = 1, . . . , n. We use a Stu-
dent’s t distribution with 5 degrees of freedom as invariant distribution.Moreover the
parameters of the Clayton copula and of the Frank copula are chosen in such a way
that they are consistent with three different levels of Kendall’s τ : 0.2, 0.5 and 0.8.
Figures 3.1 and 3.2 present time series plots. We notice the asymmetric dependence
structure of the time series which becomes stronger as τ increases.

3.2.1 Semiparametric Estimation

This section introduces semiparametric estimators of a copula-based Markov model
and establishes their asymptotic properties under easily verifiable condition. The
main contribution is due toChen andFan (2006) (whereas an extension tomultivariate

http://dx.doi.org/10.1007/978-3-319-48015-2_2
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Fig. 3.2 Simulated trajectories from a copula-basedMarkov process when C is a Frank copula and
G ∼ t(5). a τ = 0.2 (θ = 1.86); b τ = 0.5 (θ = 5.74); c τ = 0.8 (θ = 18.19)

contexts can be find inRemillard et al. 2012). In that paper, the authors study a class of
univariate copula-based semiparametric stationary Markov models in which copulas
are parameterized but the invariant marginal distributions are left unspecified. In
these models there are only two parameters: the copula dependence parameter θ
and the invariant marginal distribution function G(·) which can be estimated by a
nonparametricmethod, i.e., the empirical distribution functionor the kernel smoothed
estimator.

Let X = (Xt )t∈Z be a stationary Markov process generated by {G∗(·, η∗),
C∗(·, ·; θ∗)}, where G∗ denotes the true invariant marginal distribution and C∗ is
the true copula function which describes the temporal dependence structure. Let
H∗(x, y) be the joint distribution function of Xt−1 and Xt . We know that H∗ com-
pletely determines the probabilistic structure of X . If C∗ is the copula between Xt−1

and Xt , we model a stationary Markov process by specifying the marginal distrib-
ution of Xt and the copula C∗ instead of the joint distribution H∗, which will be
H∗(x1, x2) = C∗(G∗(x1), G∗(x2); θ).

The conditional density of Xt given Xt−1 is given by

h∗(Xt |Xt−1) = g∗(Xt )c(G
∗(Xt−1), G∗(Xt ); θ∗), (3.10)
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where c(·, ·; θ∗) is the copula density and g∗(·) is the density of the true invariant
distribution G∗(·).

A semiparametric copula-based time series model is completely determined by
(G∗, θ∗). The unknown invariant marginal distribution G∗ can be estimated by Gn(·),
the rescaled empirical distribution function defined as

Gn(x) = 1

n + 1

n∑
t=1

1{Xt ≤x}. (3.11)

Since the log-likelihood function is given by

�(θ) = 1

n

n∑
t=1

log g∗(Xt ) + 1

n

n∑
t=1

log c(G∗(Xt−1), G∗(Xt ); θ),

ignoring the first term and replacing G∗ with Gn we obtain the semiparametric
estimator θ̃ of θ∗

θ̃ = argmax
θ

L̃(θ), L̃(θ) = 1

n

n∑
t=1

log c(Gn(Xt−1), Gn(Xt ); θ).

The main difficult in establishing the asymptotic properties of the semiparametric
estimator θ̃ is that the score function and its derivatives could blow up to infinity near
the boundaries. To overcome this difficulty, Chen and Fan (2006) first established
convergence of Gn(·) in a weightedmetric and then use it to establish the consistency
and asymptotic normality of θ̃. Let Ũn(z) = Gn(G∗−1(z)), z ∈]0, 1[ and letw(·) be a
continuous function on [0, 1]which is strictly positive on ]0, 1[ symmetric at z = 1/2
and increasing on ]0, 1/2] and suppose that Xt is β-mixing (see Sect. 3.2.2), then
(Chen and Fan 2006, Lemma 4.1)

sup
z∈[0,1]

∣∣∣∣∣
Ũn(z) − z

w(z)

∣∣∣∣∣ = oa.s(1), sup
y

∣∣∣∣
Gn(y) − G∗(y)

w(G∗(y))

∣∣∣∣ = oa.s(1),

provided βt = O(t−b) for some b > 0 and
∫ 1
0

1
w(z) log(1 + 1

w(z) )dz < ∞. Weight

functions of the form w(z) = [z(1 − z)]1−ξ for all z ∈]0, 1[ and some ξ ∈]0, 1[
approach zero when z approaches 0 or 1. Hence such results allow us to handle
unbounded score functions.

The maximum likelihood estimator θ̃ is consistent and asymptotically Gaussian
with rate of convergence

√
n (Chen and Fan 2006, Propositions 4.2 and 4.3). In partic-

ular, let l(u, v; θ) = log c(u, v; θ) and denote lθ(u, v; θ) = ∂l(u,v;θ)
∂θ

, lθ,θ(u, v; θ) =
∂2l(u,v;θ)

∂θ∂θ
, lθ,u(u, v; θ) = ∂2l(u,v;θ)

∂θ∂u , and lθ,v(u, v; θ) = ∂2l(u,v;θ)
∂θ∂v

. Then, two conclu-
sions hold
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1. under some regularity conditions (C1–C2 and C4–C5 in Chen and Fan 2006, pp.
317–318) and if Xt is β-mixing with mixing decay rate βt = O(t−b) for some
b > 0 we have ‖θ̃ − θ∗‖ = op(1);

2. under some regularity conditions (A1–A3 and A5–A6 in Chen and Fan 2006,
pp. 318–319) and if Xt is β-mixing with mixing decay rate βt = O(t−b) for
some b > γ/(γ − 1) with γ > 1 we have

√
n(θ̃ − θ∗) → N (0, B−1�B), where

B = −E[lθ,θ(Ut−1, Ut ; θ∗)] and � = limn→∞ V ar(
√

n A∗
n), where

A∗
n = 1

n − 1

n∑
t=2

[lθ(Ut−1, Ut ; θ∗) + W1(Ut−1) + W2(Ut )],

W1(Ut−1) =
∫ 1

0

∫ 1

0
[1{Ut−1 ≤ u − u}]lθ,u(u, v; θ∗)c(u, v; θ∗)dudv,

W2(Ut ) =
∫ 1

0

∫ 1

0
[1{Ut ≤ v − v}]lθ,v(u, v; θ∗)c(u, v; θ∗)dudv,

where Ut = G∗(Xt ).

The assumption ofβ-mixing condition can be replacedwith a so-called strongmixing
condition but in this case the existence of finite higher order moments of the score
function and its partial derivatives will be stronger than those for β-mixing processes.
As many copula models have score functions blowing up at a fast rate, it is essential
to maintain minimal requirements for the existence of finite higher order moments
and this is a sufficient motivation to assume β-mixing instead of strong mixing.

An alternative estimation procedure for the copula parameter θ∗ and the invariant
distribution G∗ is proposed by Chen et al. (2009). They call it sieve maximum
likelihood estimation and it consists in approximating the unknownmarginal density
by a flexible parametric family of densities with increasing complexity (sieves) and
then maximizing the joint likelihood w.r.t. the unknown copula parameter and the
sieve parameters of the approximating marginal density. The sieve MLE of any
smooth functionals of (θ∗, G∗) are root-n consistent, asymptotically normal, and
efficient.

We write the true conditional density of Xt given Xt−1 as in (3.10). Let

h(Xt |Xt−1; g, θ) = g(Xt )c(G(Xt−1), G(Xt ); θ),

denote any candidate conditional density of Xt given Xt−1. Here, the parameters are
g and θ. The log-likelihood associated to h(Xt |Xt−1; θ, g) is given by

l(θ, g; Xt , Xt−1) = log g(Xt ) + log c(G(Xt−1), G(Xt ); θ)

≡ log g(Xt ) + log c

(∫
1{y ≤ Xt−1}g(y)dy,

∫
1{y ≤ Xt }g(y)dy; θ

)
,
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and the joint log-likelihood function of the data {Xt , t = 1, . . . , n} is

Ln(θ, g) = 1

n

n∑
t=2

l(θ, g; Xt , Xt−1) + 1

n
log g(X1).

Let � be the parameter space for the copula parameter θ and let G be the parameter
space for g. Then, the approximate sieve MLE γ̂n = (θ̂n, ĝn) is defined as

Ln(θ̂n, ĝn) ≥ max
θ∈�,g∈Gn

Ln(θ, g) − Op(δ
2
n),

where δn is a positive sequence such that δn = o(1) andGn denote the sieve space (i.e.,
a sequence of finite dimensional parameter spaces that becomes dense as n → ∞
in G). The sieves used by Chen et al. (2009) for approximating the invariant density
function are linear. Two examples are given by

Gn =

⎧
⎪⎨
⎪⎩

gKn ∈ G : gKn =
⎛
⎝

Kn∑
k=1

ak Ak(y)

⎞
⎠
2

,

∫
gKn (y)dy = 1

⎫
⎪⎬
⎪⎭

, Kn → ∞,
Kn

n
→ 0,

to approximate a square root density, and

Gn =
{

gKn ∈ G : gKn = exp

( Kn∑
k=1

ak Ak(y)

)
,

∫
gKn (y)dy = 1

}
, Kn → ∞,

Kn

n
→ 0,

to approximate a log-density, where {Ak : k ≥ 1} consists of known basis functions
and {ak : k ≥ 1} is the collection of unknown sieve coefficients.

We conclude this section with the two main Theorems concerning consistency
and asymptotic normality.

Theorem 3.2.1 (Chen et al. 2009) Under some regularity conditions (Assumptions
3.1 and 3.2 in Chen et al. 2009), if Kn → ∞ and Kn

n → 0we have ‖γ̂n − γ‖ = op(1).

Let ρ : � × G → R be a smooth functional and ρ(γ̂n) be the plug-in sieve MLE of
ρ(γ).

Theorem 3.2.2 (Chen et al. 2009) Under some regularity conditions (Assumptions
4.1–4.7 in Chen et al. 2009), if Xt is strictly stationary β-mixing we have

√
n(ρ(γ̂n) −

ρ(γ)) →d N (0, ‖ ∂ρ(γ∗)
∂γ

‖2).

3.2.2 Mixing Properties

As discussed in the previous section consistency and asymptotic normality of esti-
mators of copula functions and their parameters are obtained under assumptions of
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weak dependence in the time series considered. Among other results, Beare (2010),
Chen et al. (2009), and Ibragimov and Lentzas (2009) provide a study of persis-
tence properties of of stationary copula-based Markov processes. For a wide review
on mixing conditions see Bradley (2007). The most important dependence property
of copula-based Markov processes is the β-mixing. In this subsection, we briefly
discuss this notion.

Definition The β-mixing coefficients {βk : k ∈ N} corresponding to the sequence
of random variables {Xt } are given by

βk = 1

2
sup
m∈Z

sup
{Ai },{B j }

I∑
i=1

J∑
j=1

|P(Ai ∩ B j ) − P(Ai )P(B j )|,

where the second supremum is taken over all finite partitions {A1, . . . , AI } and
{B1, . . . , BJ } of � such that Ai ∈ Fm−∞ for each i and B j ∈ F∞

m+k for each j .
The ρ-mixing coefficients {ρk : k ∈ N} are given by

ρk = sup
m∈Z

sup
f,g

|Corr( f, g)|,

where the second supremum is taken over all square integrable random variables f
and g measurable w.r.t.Fm−∞ andF∞

m+k respectively, with positive and finite variance
and where Corr( f, g) denotes the correlation between f and g.

The α-mixing coefficients {αk : k ∈ N} are given by

αk = sup
m∈Z

sup
A∈Fm−∞,B∈F∞

m+k

|P(A ∩ B) − P(A)P(B)|.

The definition of β-mixing coefficients is taken from Beare (2010) and an equivalent
form was originally stated by Volkonskii and Rozanov (1959). The second definition
of ρ-mixing appeared for the first time in Kolmogorov and Rozanov (1960), whereas
the α-mixing coefficients are commonly attributed to Rosenblatt (1956). The rela-
tionships among those dependence conditions were investigated in recent papers,
see among the others Chen and Fan (2006), Chen et al. (2009) and Beare (2010).
α-mixing is a weaker dependence condition than both β- and ρ-mixing

βk → 0 or ρk → 0 ⇒ αk → 0, k → ∞.

This is guaranteed by the fact that 2αk ≤ βk and 4αk ≤ ρk (Bradley 2007). On
the other hand, neither of the β- and ρ-mixing conditions is implied by the other:
βk → 0 � ρk → 0 and ρk → 0 � βk → 0.

The link between copula-based Markov processes and mixing properties was
profitably investigated by Beare (2010). In particular, the author proves sufficient
conditions for a geometric rate of mixing in this class of models. Geometric
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β-mixing is established under a rather strong condition that rules out asymmetry
and tail dependence in the copula function.

For the next theorem is necessary to introduce the concept of maximal correlation.
The maximal correlation ρC of the copula C is defined as

ρC = sup
f,g

∣∣∣∣
∫ 1

0

∫ 1

0
f (u)g(v)C(du, dv)

∣∣∣∣ ,

where the supremum is taken over all f, g ∈ L
2([0, 1]) such that

∫ 1
0 f (u)du =∫ 1

0 g(u)du = 0 and
∫ 1
0 f 2(u)du = ∫ 1

0 g2(u)du = 1.

Theorem 3.2.3 (Beare 2010) If the copula C is symmetric and absolutely continuous
with square integrable density c and moreover if ρC < 1 then there exists A < ∞
and γ > 0 such that βk ≤ Ae−γk for all k.

The condition ρC < 1 is satisfied for all absolutely continuous copulas with square
integrable density such that c is positive a.e. on [0, 1] as stated in Beare (2010). Com-
monly used parametric copula functions satisfying this condition include the FGM,
Frank, and Gaussian copulas. Copulas exhibiting upper or lower tail dependence will
not admit, in general, square integrable density and the theorem cannot directly be
applied. However, Chen et al. (2009) show that Markov processes generated via tail
dependent copulas such as Clayton, Gumbel, and Student’s t are geometricβ-mixing.

As for geometric ρ-mixing Beare (2010) obtained a weaker condition that permits
both asymmetry and tail dependence as stated in the next theorem.

Theorem 3.2.4 (Beare 2010) If ρC < 1, then there exist A < ∞ and γ > 0 such
that ρk ≤ Ae−γk for all k.

A simple condition to verify that ρC < 1 for a specific copula function is provided
(Beare 2010): the density of the absolutely part of C must be bounded away from
zero on a set of measure one. Two examples of copulas satisfying this condition are
given by the t-copula and Marshall-Olkin copula.

3.2.3 Long-Term Behavior

The analysis of long-term properties of a copula-based Markov time series is very
significant in econometrics. StationaryMarkov processes are regarded as examples of
short-memory processes because the value of such process at a given time depends
only on the value at the previous time and the analysis of how the properties of
the copula function which generates the process affect the long-term behavior is
very interesting. This class of models deals with nonlinear dependencies because
as many authors observed (see, among others, Embrechts et al. 2002; McNeil et al.
2005; Granger 2003) the autocorrelation function is problematic in many settings,
including the departure from Gaussianity and elliptic distributions that is common
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in financial market data and they are not appropriate in describing persistence in
unconditional distributions.

The definition of long memory process (Xt )t is given by Granger (2003). He uses
the (copula-linked) Hellinger measure of dependence H(t, h) = HXt ,Xt+h between
r.vs. Xt and Xt+h

H(t, h) = 1 −
∫ +∞

−∞

∫ +∞

−∞
f 1/2Xt ,Xt+h

(x, y) f 1/2Xt
(x) f 1/2Xt+h

(y)dxdy

where fXt ,Xt+h is the joint density of (Xt , Xt+h) and fXt , fXt+h are the corresponding
marginal densities.

Definition A process (Xt )t is a long memory process if for some constant A > 0

H(t, h) ∼ Ah−p, h → ∞,

where p > 0; it is a short memory process if

H(t, h) = O(e−Ah), h → ∞.

Ibragimov and Lentzas (2009) study the long memory properties of copula-based
stationary Markov processes using a number of dependence measures between Xt

and Xt+h expressed in terms of their copulaCt,t+h(u, v)which is obtained by iterating
the product copula Ct,t+h = Ct,t+1 ∗ Ct,t+h−1 = C ∗ Ct,t+h−1, h = 2, . . . , where C
is the invariant copula between two consecutive r.v.s of the process Xt and Xt+1

for any t . Since the copula-based Markov process is stationary every measure of
temporal dependence is a function of h only. For a copula-based Markov process
the authors give the definition of Hellinger measure of dependence in terms of the
copula between Xt and Xt+h which is

H(h) = HXt ,Xt+h = 1

2

∫ 1

0

∫ 1

0
[c1/2t,t+h − 1]2(u, v)dudv − 1

where ct,t+h is the copula density associated to (Xt , Xt+h). The main conclusion of
Ibragimov and Lentzas (2009) is that there exist Clayton copula-based stationary
Markov processes that exhibit long memory on the level of copulas. In contrast,
Gaussian, and EFGM copulas produce short-memory.

3.3 k-th Order Markov Processes

The definition of Markov process can be extended to k-th order Markov process. In
this Section, we will present the main results of the paper of Ibragimov and Lentzas
(2009), where the k-th orderMarkov processes are studied and characterized in terms
of the associated finite-dimensional copula functions
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Definition (k-order Markov Process) Let (�,F , (Ft )t∈N, P) be a filtered probability
space and X = (Xt )t∈N be an adapted stochastic process. X is a Markov process of
order k ≥ 1 if and only if

P (Xt ≤ x |Xt−1, Xt−2, . . . , X0) = P (Xt ≤ x |Xt−1, . . . , Xt−k) (3.12)

In what follows, we assume that all copulas considered are absolutely continuous
and the processes under study have continuous univariate cumulative distribution
functions.

In order to state themain result, we need to introduce some concepts and notations.

Let m, n ≥ k ≥ 1 and A and B be, respectively, m- and n-dimensional copulas.
Set

A1,...,m|m−k+1,...,m(u1, . . . , um−k, ξ1, . . . , ξk) =
∂k A(u1,...,um−k ,ξ1,...,ξk )

∂ξ1,...,∂ξk

∂k A(1,...,1,ξ1,...,ξk )

∂ξ1,...,∂ξk

, and

B1,...,n|1,...,k(ξ1, . . . , ξk, um+1, . . . , um+n−k) =
∂k B(ξ1,...,ξk ,um+1,...,um+n−k )

∂ξ1,...,∂ξk

∂k B(ξ1,...,ξk ,1,...,1)
∂ξ1,...,∂ξk

.

Recall that, if (Y1, . . . , Yn) is a random vector with associated copula function
C(u1, . . . , un) and margins Fi for i = 1, . . . , n,

P (Y1 ≤ y1, . . . , Yn−k ≤ yn−k |Yn−k+1 = yn−k+1, . . . , Yn = yn) =

=
∂k C(F1(y1),...,Fn−k (yn−k ),Fn−k+1(yn−k+1),...,Fn(yn))

∂un−k+1···∂un

∂k C(1,1,...,1,Fn−k+1(yn−k+1),...,Fn(yn))

∂un−k+1···∂un

,

that is

P (Y1 ≤ y1, . . . , Yn−k ≤ yn−k |Yn−k+1 = yn−k+1, . . . , Yn = yn) =

= C1,...,n|n−k+1,...,n(F1(y1), . . . , Fn(yn))

and, similarly,

P (Yk+1 ≤ yk+1, . . . , Yn ≤ yn |Y1 = y1, . . . , Yk = yk) = C1,...,n|1,...,k(F1(y1), . . . , Fn(yn)).

Definition If A(1, . . . , 1, ξ1, . . . , ξk) = B(ξ1, . . . , ξk, 1, . . . , 1) = C(ξ1, . . . , ξk),
where C is k-variate copula, we define the �k-product of the copulas A and B as
the copula D = A �k B : [0, 1]m+n−k → [0, 1] given by



3.3 k-th Order Markov Processes 59

D(u1, . . . , um+n−k) =
∫ um−k+1

0
· · ·

∫ um

0
A1,...,m|m−k+1,...,m(u1, . . . , um−k , ξ1, . . . , ξk)·

· B1,...,n|1,...,k(ξ1, . . . , ξk , um+1, . . . , um+n−k)dC(ξ1, . . . , ξk).

The �k-operator is a generalization of the �-operator considered in Darsow et al.
(1992); in fact, the Darsow et al. (1992) �-operator is the �k operator when k = 1.
In particular, the �k operator satisfies the same properties as �. An analogous of
Theorem 3.1.2 holds for k-th order Markov processes.

Theorem 3.3.1 A real-valued stochastic process (Xt )t∈N is a Markov process of
order k, k ≥ 1, if and only if for all ti ∈ N, i = 1, . . . , n, n ≥ k + 1, such that t1 <

· · · < tn,
Ct1,...,tn = Ct1,...,tk+1 �k Ct2,...,tk+2 �k · · · �k Ctn−k ,...,tn .

We refer the interested reader to Ibragimov and Lentzas (2009) for the proof.
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Chapter 4
Convolution-Based Processes

4.1 The C-Convolution and Convolution-Based Copulas

In what follows, we consider a random vector (X,Y ) and we study the distribution
of X + Y and the copula associated to the random vector (X, X + Y ). Since this
represents the basic concept of the book, we include proofs, even if they are also
presented in Cherubini et al. (2012) (see also Cherubini et al. 2011).

In the sequel, we assume continuous and strictly increasing marginal cumulative
distribution functions.

Proposition 4.1.1 Let X and Y be two real-valued random variables on the same
probability space (�,�,P) with corresponding copula CX,Y and marginals FX and
FY . Then,

CX,X+Y (u, v) =
∫ u

0
D1CX,Y

(
w, FY (F−1

X+Y (v) − F−1
X (w))

)
dw (4.1)

and

FX+Y (t) =
∫ 1

0
D1CX,Y

(
w, FY (t − F−1

X (w))
)
dw. (4.2)

Proof
FX,X+Y (s, t) = P (X ≤ s, X + Y ≤ t) =

=
∫ s

−∞
P (X + Y ≤ t |X = x) dFX (x) =

=
∫ s

−∞
P (Y ≤ t − x |X = x) dFX (x) =

=
∫ s

−∞
D1CX,Y (FX (x), FY (t − x)) dFX (x) =

=
∫ FX (s)

0
D1CX,Y

(
w, FY (t − F−1

X (w))
)
dw,

© The Author(s) 2016
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where we made the substitution w = FX (x) ∈ (0, 1).

Then, the copula function linking X and X + Y is

CX,X+Y (u, v) = FX,X+Y
(
F−1
X (u), F−1

X+Y (v)
) =

=
∫ u

0
D1CX,Y

(
w, FY (F−1

X+Y (v) − F−1
X (w))

)
dw.

Moreover,

FX+Y (t) = lim
s→+∞FX,X+Y (s, t) =

∫ 1

0
D1CX,Y

(
w, FY (t − F−1

X (w))
)
dw.

�

The above result allows to introduce the notion of C-convolution.

Definition Let F , H be two cumulative distribution functions and C a copula func-
tion. We define the C-convolution of H and F the cumulative distribution function

H
C∗ F(t) =

∫ 1

0
D1C

(
w, F(t − H−1(w))

)
dw.

Notice that we recover the standard notion of convolution if C ≡ �.

An interesting property of the C-convolution, it is that it is closed with respect to
mixtures of copula functions. In fact, if C(u, v) = λA(u, v) + (1 − λ)B(u, v) for
λ ∈ [0, 1] and A and B copula functions, then, for all c, H and F ,

H
C∗ F = H

λA+(1−λ)B∗ F = λH
A∗ F + (1 − λ)H

B∗ F.

Another important consequence of the above Proposition is the introduction of the
Convolution-based copula function.

Definition Let F and H be two cumulative distribution functions andC(·, ·) a copula
function. Then

Ĉ(u, v) =
∫ u

0
D1C

(
w, F

(
(H

C∗ F)−1(v) − H−1(w)

))
dw.

is called the Convolution-based copula function.

If F and C are absolutely continuous and f and c are their corresponding densities,

gC(t) =
∫ 1

0
c
(
w, F(t − H−1(w))

)
f
(
t − H−1(w)

)
dw
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is the density of H
C∗ F provided that the above integral exists. Moreover, if gC is

positive,

ĉ(u, v) = c

(
u, F

(
(H

C∗ F)−1(v) − H−1(u)

)) f

(
u, F

(
(H

C∗ F)−1(v) − H−1(u)

))

gC
(

(H
C∗ F)−1(v)

)

is the density of Ĉ .

Example 4.1.1 Archimedean Copulas

1. The Clayton Copula

C(u, v) = max
([u−θ + v−θ − 1]−1/θ, 0

)
θ ∈ [−1,∞) \ {0}.

Since D1C(u, v) = max
([u−θ + v−θ − 1]−1/θ−1u−1−θ, 0

)

H
C∗ F(t) =

∫ 1

0
max

([w−θ + F(t − H−1(w))−θ − 1]−1/θ−1w−1−θ, 0
)
dw

and

Ĉ(u, v) =
∫ u

0
max

(
[w−θ + F((H

C∗ F)−1(v) − H−1(w))−θ − 1]−1/θ−1w−1−θ, 0

)
dw.

2. The Gumbel Copula

C(u, v) = uv exp(−θ ln u ln v), θ ∈ (0, 1].

Since D1C(u, v) = (1 − θ)v exp(−θ ln u ln v)

H
C∗ F(t) = (1 − θ)

∫ 1

0
F(t − H−1(w)) exp(−θ lnw ln F(t − H−1(w)))dw

and

Ĉ(u, v) = (1 − θ)

∫ u

0
F((H

C∗ F)−1(v) − H−1(w))

exp(−θ lnw ln F((H
C∗ F)−1(v) − H−1(w)))dw.
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3. The Frank Copula

C(u, v) = −1

θ
ln

(
1 + (e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ R \ {0}.

Since D1C(u, v) = e−θu(e−θv−1)
e−θ−1+(e−θu−1)(e−θv−1)

H
C∗ F(t) =

∫ 1

0

e−θw(e−θF(t−H−1(w)) − 1)

e−θ − 1 + (e−θw − 1)(e−θF(t−H−1(w)) − 1)
dw

and

Ĉ(u, v) =
∫ u

0

e−θw(e−θF((H
C∗F)−1(v)−H−1(w)) − 1)

e−θ − 1 + (e−θw − 1)(e−θF((H
C∗F)−1(v)−H−1(w)) − 1)

dw.

Clearly, in none of the above examples theC-convolution-based copula can be explic-
itly computed and, in particular, none is of the same family of the starting cop-
ula C. Hence, both the C-convolution and the C-convolution-based copula, can be
only numerically estimated or their induced distribution be simulated. So, a discrete
approximation by numerical integration is necessary. Among several methods of
numerical integration, the simplest way is the following: given a sufficiently dense
partition {w0, . . . , wn} of the interval [0, 1] such that 0 ≤ w0 ≤ · · · ≤ wn ≤ 1, a
simple approximation of gC at the point x is given by

gC(x) 	
n∑

i=1

c(wi−1, F(t − H−1(wi−1))) f (x − H−1(wi−1))(wi − wi−1).

The approximation improves as n increases. Figure4.1 displays the density of the
C-convolution in the case whereC is Frank or Clayton and the marginal distributions
are standard normal and compares the shape of the C-convolution when the level of
dependence, measured by Kendall’s τ coefficient, varies in a range from 0.25 to 0.75.
As expected, the Frank copula affects the tails of the distribution of the sum, whereas
the Clayton copula affects the skewness. Figure4.2 depicts the same C-convolution
density when the second marginal distribution, F , is a Student’s t with 3 degrees
of freedom. The copula function in this case is the Frank copula with two levels of
dependence (0.25 and 0.75).

4.1.1 Closure of C-Convolution

In this section we analyze those families of copulas in which, at least under suitable
and very restrictive assumptions, the C-convolution operation is closed.
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Fig. 4.1 Numerical approximation of the density of the C-convolution, gC , when the marginal
distribution F and H are standard Gaussian and the copula C is: a the Frank copula, b the Clayton
copula
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Fig. 4.2 Numerical approximation of the density of the C-convolution, gC , when the marginal
distribution H is standard Gaussian, the marginal distribution F is both standard Gaussian and
Student’s t with 3 degrees of freedom and the copulaC is the Frank copula with level of dependence
τ = 0.25 (panel (a)) and τ = 0.75 (panel (b))
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The Gaussian Case

Let us assume that the copula C is gaussian, that is,

C(u, v) =
∫ u

0
�

(
�−1(v) − ρ�−1(w)√

1 − ρ2

)
, ρ ∈ (−1, 1),

where � is the standard normal cumulative distribution function.

Since D1C(u, v) = �

(
�−1(v)−ρ�−1(u)√

1−ρ2

)
, we get

H
C∗ F(t) =

∫ 1

0
�

(
�−1(F(t − H−1(w))) − ρ�−1(w)√

1 − ρ2

)
dw

and

Ĉ(u, v) =
∫ u

0
�

⎛
⎝�−1(F((H

C∗ F)−1(v) − H−1(w))) − ρ�−1(w)√
1 − ρ2

⎞
⎠ dw.

Obviously, in general, Ĉ is no more gaussian, unless we assume that F and H
are normally distributed. In fact, in such a case, C(H(x), F(x)) is the distribution
function of a random vector (X,Y ) normally distributed with margins H and F ,
respectively. It is a known fact that the random vector (X, X + Y ) is again normally
distributed; hence, the distribution of X + Y is normal and the associated copula
Ĉ is of gaussian type. More precisely, if H ∼ N (μ,σ2) and F ∼ N (m, s2), then

H
C∗ F ∼ N (μ + m,σ2 + s2 + 2σsρ) and

Ĉ(u, v) =
∫ u

0
�

(
�−1(v) − ρ̂�−1(w)√

1 − ρ̂2

)
,

where ρ̂ = Cov(X,X+Y )

σXσX+Y
= σ+sρ√

σ2+s2+2σsρ
.

The Elliptical Case

Let us assume now that the copula C is elliptical. We remind that C is the copula
associated to a random vector (X,Y ) having a bivariate elliptical distribution with
margins G1 and G2, respectively. Formally,

C(u, v) =
∫ G−1

1 (u)

−∞

∫ G−1
2 (v)

−∞

√
ac − b2g(as2 + 2bst + ct2) ds dt, (4.3)

where we assumed, without any loss of generality, that both G1 and G2 define distri-
butions with zero mean. Recall that the parameters a, b, c are so that the symmetric
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matrix�−1 =
(
a b
b c

)
is positive definite. The elliptical copulas set contain gaussian

copulas and Student’s t copulas as particular cases. It is trivial to check that gaussian
copulas can be recovered by considering

g(z) = 1

2π
e− z2

2 .

Student’s t with m degrees of freedom copulas are those copulas of type (4.3) with

g(z) = �(m+2
2 )

πm�(m2 )

(
1 + z

m

)− m+2
2

.

Since

D1C(u, v) =
√
ac − b2

1

g1(G
−1
1 (u))

∫ G−1
2 (v)

−∞
g(aG−1

1 (u)2 + 2bG−1
1 (u)t + ct2) dt,

H
C∗ F(r) =

√
ac − b2

∫ 1

0

1

g1(G
−1
1 (w))

∫ G−1
2 (F(r−H−1(w)))

−∞
g(aG−1

1 (w)2 + 2bG−1
1 (w)t + ct2) dtdw

and

Ĉ(u, v) =
√
ac − b2

∫ u

0

1

g1(G
−1
1 (w))

∫ G−1
2 (F(H

C∗F−1(v)−H−1(w)))

−∞
g(aG−1

1 (w)2 + 2bG−1
1 (w)t + ct2) dtdw.

If H = G1 and F = G2, then, Ĉ and H
C∗ F are the copula function associated to

(X, X +Y ) and the distribution of X +Y . It is a known fact, that (X, X +Y ) is again
elliptically distributed. More precisely

G1
C∗ G2(r) =

√
ac − b2

∫ 1

0

1

g1(G
−1
1 (w))

∫ G−1
2 (G2(r−H−1(w)))

−∞
g(aG−1

1 (w)2 + 2bG−1
1 (w)t + ct2) dtdw =

=
√
ac − b2

∫ −∞

+∞

∫ r−x

−∞
g(ax(w)2 + 2bxt + ct2) dtdx
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and

Ĉ(u, v) =
√
ac − b2

∫ u

0

1

g1(G
−1
1 (w))

∫ (G1
C∗G2)

−1(v)−G−1
1 (w)

−∞
g(aG−1

1 (w)2 + 2bG−1
1 (w)t + ct2) dtdw =

=
√
ac − b2

∫ G−1
1 (u)

−∞

∫ (G1
C∗G2)

−1(v)−s

−∞
g(as2 + 2bst + ct2) dtdw =

=
√
ac − b2

∫ G−1
1 (u)

−∞

∫ (G1
C∗G2)

−1(v)

−∞
g(as2 + 2bs(t̂ − s) + c(t̂ − s)2) dtdw =

=
√
ac − b2

∫ G−1
1 (u)

−∞

∫ (G1
C∗G2)

−1(v)

−∞
g((a + c − 2b)s2 + 2t̂ s(b − c) + ct̂2) dtdw

and this is of the same type as (4.3) with associated matrix

(
a + c − 2b b − c

b − c c

)
.

4.2 Processes with Dependent Increments: Construction
and Simulation

We are now ready to apply the C-convolution technique to build stochastic processes.
Let Xi with marginal distribution Hi , Yi+1 with distribution Fi+1 and Ci be the

copula associated to (Xi ,Yi+1). Then, we may recover the distribution of Xi+1 =
Xi + Yi+1 as

Hi+1(x) =
∫ 1

0
D1Ci

(
w, Fi+1(x − H−1

i (w))
)
dw.

and the copula Ci,i+1(u, v) associated to (Xi , Xi+1) as

Ci,i+1(u, v) =
∫ u

0
D1Ci

(
w, Fi+1(H

−1
i+1(v) − H−1

i (w))
)
dw.

Then, the copula Ci,i+1(u, v) can be applied in the DNO approach to construct a
Markov process. Notice that, unlike in the classical approach presented in Sect. 3.1.4,
herewe are free to specify the distribution of the starting level X0 and the distributions
of the increments of the process. Then the distributions of the levels are automatically
determined.

http://dx.doi.org/10.1007/978-3-319-48015-2_3
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The simulation of Markov processes with dependent increments is based on the
technique of conditional sampling, as described in the quasi-algorithm reported
below. The input is given by a sequence of distributions of increments that for the
sake of simplicity we assume stationary Fi = F and a temporal dependence struc-
ture that we consider stationary as well, CXi ,Yi+1(u, v) = C(u, v). We also assume
X0 = 0. We describe a procedure to generate a iteration of a n-step trajectory.

1. i = 1
2. Generate u from the uniform distribution
3. Compute Xi = F−1(u)

4. Use conditional sampling to generate v from D1C(u, v)

5. Compute Yi+1 = F−1(v)

6. Xi+1 = Xi + Yi+1

7. Compute the distribution Hi+1(t) by C-convolution
8. Compute u = Hi+1(Xi+1)

9. i = i+1
10. If i < n + 1 go to step 4, Else End.

4.3 C-Convolution-Based Autoregressive Processes

A possible application of the C-convolution-based processes is in the study of the
behavior of an autoregressive process of order 1 (AR(1) process) Xt = φXt−1 + εt
when Xt−1 and εt are not independent as in the standard case but linked by some
copula Ct . For a detailed discussion on autoregressive processes, we refer the reader
to the manuals of Hamilton (1994) and of Brockwell and Davis (1991).

Recall that if the copula Ct is the independent copula, that is, Ct (u, v) = uv, the
C-convolution coincides with the standard convolution and we obtain the standard
AR(1) process. In this section we consider aC-convolution-based first-order autore-
gressive process, C-AR(1), by imposing a dependence structure between Xt−1 and
εt . The distribution of Xt = φXt−1 + εt is given by the C-convolution between the
distribution of φXt−1 and the distribution of εt . Suppose that X1 has distribution F1.
Then, the distribution of Xt is

Ft (xt ) = FφXt−1

Ct∗ Fεt (xt ) =
∫ 1

0
D1Ct (w, Fεt (xt − φF−1

t−1(w)))dw, t = 2, 3, . . .

Moreover, the dependent structure between two subsequent observations is

CXt−1,Xt (u, v) =
∫ u

0
D1Ct (w, Fεt (F

−1
t (v) − φF−1

t−1(w)))dw, t = 2, 3, . . .
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4.3.1 The Gaussian Case

Inmost cases, the above integrals cannot be expressed in closed form and they have to
be evaluated numerically. Simulations of a C-AR(1) process is not simple in general.
However, as seen in Sect. 4.1.1, the Gaussian family is closed under C-convolution.
In order to use this fact, suppose that the following conditions hold:

1. the initial distribution is Gaussian

X1 ∼ N (μ1,σ1)

and the distribution of innovations is Gaussian and stationary

εt ∼ N (0,σε);

2. the copula function linking Xt−1 andεt isGaussian and stationary, i.e.,Ct (u, v) =
G(u, v; ρ), where G(·, ·; ρ) is the Gaussian copula with parameter ρ.

In this framework, by iterating the previous result to our C-AR(1) process we get

Xt ∼ N (μt , V
2
t ), (4.4)

where
μt = E[Xt ] = φt−1μ1, t = 2, . . . , (4.5)

V 2
t = Var(Xt ) = φ2(t−1)V 2

1 +
(

t−1∑
i=1

φ2(i−1)

)
σ2

ε + 2ρσε

t−1∑
i=1

φ2i−1Vt−i , t = 2, . . .

(4.6)
Moreover, the copula between Xt−1 and Xt is Gaussian with parameters

ρXt−1,Xt = φVt−1 + ρσε

Vt
, t = 2, . . . ,

where V1 = σ1.
Notice that the stationarity conditions on Fε and Ct are not necessary to preserve

the normality of the distribution of Xt .
An interesting question is to study the behavior of μt and V 2

t when t → +∞. As
regards μt we have as t → +∞

μt −→
{
0, if |φ| < 1;
(+∞)(μ1), if φ = 1.

The limiting behavior of the standard deviation Vt depends on φ. We distinguish the
case where φ is strictly less than 1 in absolute value (stationary case in the standard
AR(1)) from the case where φ is equal to 1 (unit root case in the standard AR(1)).
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1. |φ| < 1. Vt = (
φ2V 2

t−1 + σ2
ε + 2ρφσεVt−1

)1/2 = h(Vt−1) is a first-order nonlinear
difference equation. We know that Vt → Ṽ as t → +∞ if |h ′

(V )| < 1 for V
sufficiently close to Ṽ and Ṽ = h(Ṽ ). First, we compute Ṽ . By some algebra

Ṽ = σε(ρφ + (
ρ2φ2 + 1 − φ2

)1/2
)

1 − φ2
.

Moreover, it is not hard to prove that the condition |h ′
(V )| < 1 is satisfied for all

ρ ∈ (−1, 1).
2. φ = 1. In this case with the same approach we obtain

Vt −→
{− σε

2ρ , if ρ ∈ (−1, 0);
+∞, otherwise.

The dependence structure between Xt and Xt+k can be determined by using the prod-
uct copula operator. In fact, by ∗ product G(u, v; ρ1)∗G(u, v; ρ2) = G(u, v; ρ1ρ2).
Therefore, since

CXt ,Xt+k = CXt ,Xt+1 ∗ CXt+1,Xt+2 ∗ · · · ∗ CXt+k−1,Xt+k

the copula between Xt and Xt+k is gaussian with parameter

ρXt ,Xt+k =
k−1∏
s=0

φVt+s + ρσε

Vt+s+1
,

which represents the autocorrelation function of a C-AR(1) process.
We wonder if ρXt ,Xt+k tends to zero as the lag k approaches to infinity. We study

the case where φ = 1. We know that if |ρXt ,Xt+1 | ≤ H < 1 then ρXt ,Xt+k → 0 as
k → +∞. But ρXt ,Xt+1 = Vt+ρσε

Vt+1
and Vt → − σε

2ρ as t → +∞ means that there exists

t̃ such that for any t < t̃ we have Vt ≤ − σε

2ρ = σε

2|ρ| . Therefore

∣∣∣∣
Vt + ρσε

Vt+1

∣∣∣∣ ≤ Vt + |ρ|σε

Vt+1
≤

σε

2|ρ| + ρσε

Vt+1
.

Moreover, since Vt+1 = V 2
1 + tσ2

ε + ∑t
i=1 Vt+1−i ≥ V 2

1 + tσ2
ε we can write

∣∣∣∣
Vt + ρσε

Vt+1

∣∣∣∣ ≤
σε

2|ρ| + ρσε

V 2
1 + tσ2

ε

,

which approaches to zero when t → +∞. This implies that there exists ˜̃t such that

if t > ˜̃t
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σε

2|ρ| + ρσε

V 2
1 + tσ2

ε

≤ H < 1.

This yields the result.

4.3.2 An Alternative Representation

The dependence structure of the C-convolution-based autoregressive process can be

obtained modeling the innovations εt as εt = αt Xt−1 + ut , where (ut )
i.i.d.∼ N (0,σu)

and Xt−1 is independent of ut for all t ≥ 2. αt is a time-dependent autoregressive
coefficient,whose expression is consistentwith the fact that the correlation coefficient
between Xt−1 and εt is equal to ρ for all t . We have

Cov(Xt−1, εt ) = E[Xt−1εt ] = E[αt X
2
t−1 + Xt−1ut ] = αt V

2
t−1,

then, αt must satisfy the condition

ρ = αt V 2
t−1

Vt−1σεt

= αt Vt−1(
α2
t V

2
t−1 + σ2

u

)1/2 ,

since σ2
εt

= α2
t V

2
t−1 + σ2

u . We obtain

αt = ρσu

Vt−1(1 − ρ2)1/2
.

The variance of the innovation is then

σ2
εt

= α2
t V

2
t−1 + σ2

u = ρ2σ2
u

V 2
t−1(1 − ρ2)

V 2
t−1 + σ2

u = σ2
u

1 − ρ2
,

which is constant for all t . It follows that the C-AR(1) process Xt = φXt−1 + εt can
be equivalently written

Xt = φt Xt−1 + ut ,

where φt = 1 + αt = 1 + ρ
(1−ρ2)1/2

σu
Vt−1

. As for the limiting behavior of the autore-
gressive coefficient, we distinguish two cases according to the value of φ. If |φ| < 1

φt −→ 1 + ρ

(1 − ρ2)1/2
σu(1 − φ2)

σε(ρφ + (
ρ2φ2 + 1 − φ2

)1/2
)
,

since Vt −→ σε(ρφ+(ρ2φ2+1−φ2)
1/2

)

1−φ2 , whereas if φ = 1 and ρ < 0 we have
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φt → 1 − 2ρ2, t → +∞,

since Vt−1 → − σε

2ρ = − σu
2ρ(1−ρ2)1/2

.
On the other hand, we can consider the opposite case where the correlation coef-

ficient is time-dependent but αt = α for all t . In this framework, the time-dependent
correlation coefficient is given by

ρt = αVt−1√
σ2
u + α2V 2

t−1

whereas the expression of the variance of Xt as a function of α is V 2
t = φ2V 2

t−1 +
σ2

ε + 2φαV 2
t−1.

4.4 Simulation Study

In this section,wepresent aMonteCarlo simulation study to compare someproperties
of a gaussian C-AR(1) process with a standard (and gaussian) AR(1) process. In
particular we are interested in capturing the impact of the dependence between Xt−1

and εt on the autocorrelation function and on the behavior of the Dickey–Fuller unit
roots test.

4.4.1 Simulation Algorithm for a C-AR(1) Process

The simulation of a gaussian C-AR(1) process may be obtained by applying the
technique of conditional sampling as described in the quasi-algorithm reported below.
The input is given by a sequence of gaussian distributions of innovations that we
assume stationary, Fεt ∼ N (0,σε), and a temporal dependence structure that we
consider gaussian and stationary aswell,CXt−1,εt (u, v) = G(u, v; ρ).We also assume
X1 ∼ N (μ1, V1). The procedure to generate a trajectory of n points from theC-AR(1)
process is the following:

1. t = 1.
2. Generate u from a uniform distribution.
3. Use conditional sampling to generate v from D1C(u, v).
4. Compute εt+1 = F−1

ε (v).
5. Compute Xt+1 = φXt + εt+1.
6. Compute the distribution of Xt+1, Ft+1(y), by (4.4)–(4.6).
7. Compute u = Ft+1(Xt+1).
8. t = t + 1.
9. If t < n + 1 go to step 4, else End.
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With this algorithm,we can study the autocorrelation function through aMonte Carlo
simulation. We generate 5000 trajectories of a gaussian C-AR(1) process with two
different values of the autoregressive coefficient φ = 0.8 and φ = 0.95 and three
different values of the gaussian copula parameter ρ = −0.5, 0.5, 0.8. We compute
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Fig. 4.3 Monte Carlo autocorrelation function. a StandardAR(1) withφ = 0.8. Convolution-based
AR(1) with φ = 0.8 and b ρ = −0.5; c ρ = 0.5; d ρ = 0.8
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Fig. 4.4 Monte Carlo autocorrelation function. a Standard AR(1) with φ = 0.95. Convolution-
based AR(1) with φ = 0.95 and b ρ = −0.5; c ρ = 0.5; d ρ = 0.8
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the average autocorrelation function and we report the dynamics in Figs. 4.3 and
4.4. For the sake of comparison, we also display the autocorrelation function of the
standard AR(1) process with φ = 0.8 and φ = 0.95. As we can observe the presence
of negative correlation between Xt−1 and εt pushes the process to the absence of
memory as if it behaved as a moving average process of order 1 in the case of
φ = 0.8 and of order 2 in the case of φ = 0.95. Incidentally, let us observe that a
correlation of −0.5 is rather unrealistic in observed time series. When ρ is positive,
the autocorrelation function decreases much more slowly than in the standard AR(1)
model.

4.4.2 Small Sample Properties of OLS Estimator

In this section, we study the small samples properties of OLS estimator of the autore-
gressive coefficient φ for a C-AR(1) model for a number of different levels of depen-
dency between Xt−1 and εt . Currently asymptotic results are not available and we
do not know the limit distribution of this estimator. Our Monte Carlo simulation is
based on the algorithm introduced in the last subsection. We generate 5000 trajecto-
ries of 250 points of twelve different models obtained by choosing four values of the
autoregressive coefficient φ, that are, 0.5, 0.8, 0.95, and 0.99 and six values of the
correlation coefficient ρ, that are, −0.10, −0.05, −0.03, 0.03, 0.05, 0.10. For each
trajectories we compute the OLS estimator φ̂n of φ given by

φ̂n =
∑n

t=2 xt xt−1∑n
t=2 x

2
t−1

.

Table4.1 reports the results of the simulation. We can infer that for negative values
of the correlation coefficient ρ the OLS estimator underestimates the parameter sys-
tematically. It is quite clear the presence of a negative bias which depends on ρ. The
accuracy of the estimate is good and improves as φ grows and as ρ approaches zero.
As expected, for positive values of ρ the estimator has a positive bias and in general
the estimates are slightly more accurate. The histograms of the estimates for two
simulated cases are reported in Figs. 4.5 and 4.6

4.4.3 Dickey–Fuller Unit Root Test

An interesting topic to investigate is how the Dickey–Fuller unit root test (Dickey
and Fuller 1979; Hamilton 1994) performs in the case of a unit root C-AR(1)
process. In other words, our data generating process is a modified unit root process
Xt = Xt−1 + εt where the state variable Xt−1 and the disturbance εt are linked by
a gaussian copula with correlation coefficient ρ. We will show that the test does not
perform well at all, when rho is just slightly negative.
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Table 4.1 Least squares estimates by Monte Carlo simulation and relative root mean square error
(in percentage value). The second number in brackets indicates the percentage of underestimates

ρ = −0.10 ρ = −0.05 ρ = −0.03

φ = 0.5 φ̂n = 0.4082
(11.11%)(95.16%)

φ̂n = 0.4502
(7.51%)(79.94%)

φ̂n = 0.4702
(6.39%)(69.40%)

φ = 0.8 φ̂n = 0.7258
(8.62%)(97.06%)

φ̂n = 0.7628
(5.54%)(81.52%)

φ̂n = 0.7754
(4.76%)(71.60%)

φ = 0.95 φ̂n = 0.9003
(5.74%)(98.78%)

φ̂n = 0.9247
(3.57%)(85.02%)

φ̂n = 0.9324
(2.99%)(75.03%)

φ = 0.99 φ̂n = 0.9537
(4.20%)(99.84%)

φ̂n = 0.9746
(2.55%)(90.62%)

φ̂n = 0.9769
(2.10%)(80.84%)

ρ = 0.03 ρ = 0.05 ρ = 0.10

φ = 0.5 φ̂ = 0.5208
(5.76%)(32.60%)

φ̂ = 0.5377
(6.57%)(23.18%)

φ̂ = 0.5788
(9.39%)(6.70%)

φ = 0.8 φ̂ = 0.8104
(3.93%)(35.54%)

φ̂ = 0.8214
(4.26%)(26.12%)

φ̂ = 0.8459
(5.69%)(9.82%)

φ = 0.95 φ̂ = 0.9513
(2.15%)(39.54%)

φ̂ = 0.9563
(2.11%)(31.22%)

φ̂ = 0.9664
(2.46%)(15.92%)

φ = 0.99 φ̂ = 0.9865
(1.42%)(48.94%)

φ̂ = 0.9888
(1.33%)(39.72%)

φ̂ = 0.9923
(1.26%)(27.04%)
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Fig. 4.5 Histogram of Monte Carlo least square estimates of the autocorrelation coefficient when
the true model is C-AR(1) with φ = 0.95 and ρ = −0.10

There are many versions of the Dickey–Fuller test and each of them has its own
critical value which depends on the size of the sample. In each case, the null hypoth-
esis is that there is a unit root, i.e., the true process is a unit root process. The tests
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have low statistical power in that they often cannot distinguish between true unit root
processes and near unit root processes.

The intuition behind the test is as follows. If the time series (Xt )t is stationary,
then it has a tendency to return to a constant mean. Therefore, large values will tend
to be followed by smaller values and small values by larger values. Accordingly, the
level of the series will be a significant predictor of next period’s change, and will
have a negative coefficient. Suppose the true process is a unit root C-AR(1) process
with a correlation coefficient between Xt−1 and εt given by ρ, and suppose that we
estimate by ordinary least squares (OLS) the autoregressive coefficient based on a
sample of size n, say φ̂n . We apply two different versions of the Dickey–Fuller test.
We denote by d f1,n and d f2,n the test statistics of the test whose expressions are given
by

d f1,n = n(φ̂n − 1),

and

d f2,n = φ̂n − 1

σ̂φ̂n

,

where σ̂φ̂n
is the standard error of the OLS estimator. There exist exact asymptotic

distributions of d f1,n and d f2,n , whereas in small samples only approximate distrib-
utions for different values of the sample size are available (Fuller 1976).

These tables report the critical values of the distribution of d f1,n and d f2,n for
which, if the test statistics is less or equal to them, at a fixed level of significance,
the null hypothesis of unit root can be rejected. For example, for d f1,n the critical
value is −13.6 at 1% level of significance and −8 and at 5% level of significance if
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Fig. 4.6 Histogram of Monte Carlo least square estimates of the autocorrelation coefficient when
the true model is C-AR(1) with φ = 0.95 and ρ = 0.10
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Table 4.2 Percentage of rejection of the null hypothesis in which the true process is a unit root
process using the two Dickey–Fuller test statistics

ρ = −0.03 ρ = −0.05 ρ = −0.30

α = 1% d f1,n 1.50% 2.14% 9.42%

d f2,n 1.56% 2.16% 9.52%

α = 5% d f1,n 7.68% 11.10% 33.92%

d f2,n 7.78% 11.24% 33.68%

the sample size is n = 250. As regards d f2,n the critical values are −2.58 and −1.95
respectively (Fig. 4.6).

Our purpose is to capture the impact of the presence of ρ on the performance of
the Dickey–Fuller test. In this regard, we simulate 5000 trajectories of 250 points
of a gaussian unit root C-AR(1) process with three different levels of correlation
ρ = −0.03,−0.05,−0.10 by using the algorithm presented in Sect. 4.1.1. For each
simulated trajectory we compute d f1,n and d f2,n . We compare the simulated values
of the test statistics with the critical values at 1 and 5% level of significance of the
standard Dickey–Fuller test. Table4.2 reports the results. As we can argue, in the
presence of a negative correlation between the state variable and the disturbance, the
test statistics is characterized by strong negative skewness greater than in the standard
case. In other words, we need a value of the test statistics much more negative than
in the independent case since the presence of negative correlation “retrieves a bit of
stationary.” This effect is stronger with increasing level of significance.
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Chapter 5
Application to Interest Rates

5.1 Nonlinear Behavior in Interest Rates: A Review

There is a large literature investigating the nonlinear dynamics of the short-term rate.
It mainly dates back to the last decade of the last century. Most of this literature
was about persistence or mean reversion, linearity or nonlinearity, Gaussian or non-
Gaussian innovations.Moreover, it is all about extensions and distortions of the linear
AR(1) model, that is the subject addressed in this book. It is then the appropriate
application to show how our approach works in practice, and maybe to stimulate
new research on the subject. This would also be particularly welcome in view of the
puzzles offered by the interest rate markets in the aftermath of the crisis of 2007–
2008, when the interest rates began to decrease dramatically, eventually reaching the
negative territory.

The research on the dynamics of the interest rates began between the 1980s and
the 1990s, with the first task of estimating and validating the continuous time models
that had been proposed for the determination of the term structure and the pricing
of bonds and interest rate derivatives. The models, originally defined in continuous
time, can be transposed in the discrete time in the general form

rt − rt−1 = a + brt−1 + εt (5.1)

where rt denotes the time series of the short-term interest rate, a and b are parameters
and εt is a sequence of random innovations. Themodels proposed in the term structure
literature based on the spot rate typically include mean reversion, corresponding to a
parameter b < 1, and different assumptions about the distribution of the innovations
εt . In the two most famous models, the innovations are Gaussian or heteroschedastic.
In Vasicek (1977) the innovations are Gaussian and the conditional distribution of the
future spot rates is normal. In Cox et al. (1985) (CIR) the innovation is not Gaussian,
and the variance of the rate grows linearly with the level of interest rates: in this case,
the conditional distribution of future spot rates is non-central chi-square. The first

© The Author(s) 2016
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econometric works investigating whether these theoretical models where borne out
by the data, and which of them provided the best fit were carried out by Marsh and
Rosenfeld (1983) and Chan et al. (1992).

Beyond the task of selecting models, further research was directed to analyze the
presence of nonlinearities in the dynamics of interest rates, both in the drift and the
volatility of the process. Several indications of nonlinear dynamics were found, and
different approaches were suggested to model these nonlinearities. Among all these
papers we remind of the switching regime model proposed by Hamilton (1988), the
analysis of asymmetric responses to shocks of different sign found in Kozicki (1994)
and the autoregressive threshold model applied in Pfann et al. (1996).

Concerning the main issues investigated in the literature, a crucial question is
whether the shocks to interest rates are permanent or transitory, that is the topic of
mean reversion. In most of the literature, shocks to the short-term interest rates are
found to be highly persistent, apart from nonlinear effects that will be discussed
below. The non-stationary behavior is also consistent with the usual evidence that
most of the changes in the term structure consist of parallel shifts. In fact, according
to the “expectations hypothesis”, long-term interest rates are equal to the average
of future expected short rates. This implies that if the shock reaching the short-term
rates is permanent, the shock to the average, that is the long-term rate, should be
the same. If instead the shock were mean reverting, the impact on long-term rates
should be smoothed out, and the impact on the term structure should be a change
of slope, that is a “twist”. The usual evidence is that “twists” account for a much
smaller percentage of changes in the term structure.

Concerning nonlinearities, the main finding is that the mean reversion feature
may change with the level of the interest rates, so that shocks are found to be highly
persistent when the interest rates are low, while there is evidence of mean reversion
only when interest rates are very high. The behavior is then in a sense asymmetric
because the interest rates quickly revert to the mean when they are in double digits,
while when they are very low they crawl around zero, or below zero as in these days.
There is also substantial evidence of nonlinearity in the volatility figure, but this is
mainly used to model non-Gaussian innovations.

Another issue that is usually found in all the empirical work on interest rate
dynamics, and that in some sense is linked to the nonlinearity effects reported above
is the parameter instability and the presence of structural breaks. This is quite typical
because short-term interest rates are strongly dependent on the monetary policy. In
fact, in the typical literature, that is mostly devoted to the US market, the break is
found in the change inmonetary policy that took place between 1979 and 1982, when
the Federal Reserve switched its policy from the management of interest rates to the
control of monetary aggregates. We are not aware, to the best of our knowledge, of
any such analysis concerning the period of the recent crisis. In that period, monetary
policy both in the US and Europe had to resort to nonstandard tools, such as the
so-called “Quantitative Easing” programs. It would then be a very interesting and
original task to start an analysis of the structural breaks and nonlinearities present in
this period.
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5.2 Nonlinear Drift Models

In Chap.1 we proposed threemodels of nonlinear drift, that could be usefully applied
to provide a contribution the literature above. We report here the models for the ease
of the reader

• model 1: Yt = α + exp (−βYt−1) Yt−1 + εt
• model 2: Yt = α + exp

(−βY 2
t−1

)
Yt−1 + εt

• model 3: Yt = α + exp
(
−β(Yt−1 − Ŷ )2

)
Yt−1 + εt , with Ŷ = 1%.

The models above represent a departure from the random walk dynamics that was
found typical of interest rates movements in applied analysis, as well as from the
linearmean reversion dynamicswhich is often used in theoreticalmodels of the short-
term rates. Figures 5.1, 5.2 and 5.3 report a Monte Carlo simulation which shows the
changes in paths that could be generated by dynamic models like those proposed in

this chapter. In the simulation we assume that (εt )t
i.i.d.∼ N (0,σ). Moreover, we have

set α = 0 and σ = 1.5% and we have highlighted the effect of β on the dynamics.
We see that all the models actually induce mean reversion and the path is described
by a concave trajectory. Moreover, the path seems to converge towards something
similar randomwalk when interest rates are sufficiently low. The trajectories are very
similar, even though for model 1 the decrease looks more persistent, while for the
other two models after a period of sudden decrease the path seems to float around a
flat (or very slowly decreasing) level.
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Fig. 5.1 Simulation of paths relative to model 1 for different level of the parameter β
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Fig. 5.2 Simulation of paths relative to model 2 for different level of the parameter β
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Fig. 5.3 Simulation of paths relative to model 3 for different level of the parameter β

5.3 An Analysis of the Short-Term Rate

It is now time to disclose the time series of short -term rates thatwe used as a reference
from real world in Chap. 1, and to apply our convolution analysis to estimate the
models above. Figure5.4 reports the dynamics of this crucial economic variable,
on a daily time series covering from January 2001 to May 2010, for a total of 2433
observations. Right from the visual inspection of the data,1 it emerges clearly that the

1Source Thomson Reuters Datastream.

http://dx.doi.org/10.1007/978-3-319-48015-2_1
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Fig. 5.4 Three month Euribor rate
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Fig. 5.5 Three month Euribor rate. a First period: from January 2001 to May 2003. b Second
period: from June 2003 to October 2005
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behavior of the short-term rate was quite different across the sample. In particular,
we may identify four different periods (Figs. 5.5 and 5.6). The first period saw a
steady decrease of the rate from 2001 to 2003, following the introduction of the Euro
as a new currency and what was called the “convergence game”, that is a general
downward trend of the interest rates in all the European countries around the level
of the most virtuous ones, particularly Germany. This was followed by a period of
stationary floating around a level roughly above 2%, with marked variation and a
deep fall in 2004. Then, following the worldwide business cycle, in the third period
the drift turned positive, causing the interest rate to rise from 2 to 5% from end of
2005 to October 2008, at the end of “subprime” crisis in the US. In the last period,
when the crisis migrated to Europe and joined with sovereign crisis, the interest rate
dramatically changed its direction, reaching below the 1% barrier in less than two
years.

We may now disclose that these four subperiods were actually those used in
Chap.1 to illustrate how to gauge the presence of a unit root using non-parametric
methods, and namely the Kendall function of the association of the increments of the
interest rate in each period and its level at the beginning of the period. We remind
that we found evidence of mean reversion only in the third and fourth period, that is
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Fig. 5.6 Threemonth Euribor rate. a Third period: fromNovember 2005 to October 2008. b Fourth
period: from November 2008 to May 2010
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from 2006 to the end of the sample, with the evidence of the mean reversion stronger
in the last period, that is after 2008.

Given these preliminary results, we are now going to check if our model above, in
its different specifications, can provide additional information on the mean reversion
dynamics. Given those evident changes of dynamics, it makes sense to ask whether
some nonlinearities are involved, or whether all these changes can be traced back
to a random walk. Below, we are going to investigate if our models can be used to
explain this dynamics. The questions that we are going to address are two. First,
we ask whether there exists some parameter set that enables to explain the different
dynamics in the subperiods. Second, if this is not true, we address the question if
some nonlinearities are present at least in some of the subperiods.

5.4 Estimation and Results

In this section we present a maximum likelihood estimation of the parameters of
the three models proposed above. Before doing that, however, those models must be
extended in such away that the standard linearmean reversion or randomwalkmodels
could be nested in our estimation. It is quite clear that the random walk dynamics
is already nested in our models in the case with ψ(Yt−1) = 1. On the contrary, the
linear mean reversion model is not nested, unless include one parameter more. We
then use the general specification

Yt = α + γψ (Yt−1) Yt−1 + εt

where the scale parameter γ enables to take into account of a standard linear mean
reverting AR(1) model when ψ(Yt−1) = 1 and γ < 1.

We then perform the MLE estimation of the parameters α, β, γ and σ for the
three models proposed. The method (Hamilton 1994) is based on the conditional

distribution of Yt given Yt−1 = yt−1. In fact, if (εt )t
i id∼ N (0,σ) then the conditional

distribution of Yt given Yt−1 = yt−1 is given by

Yt |yt−1 ∼ N (α + γψ (yt−1) yt−1,σ) .

It is then easy to write the log-likelihood function of the time series generated by the
three models proposed with different specifications for ψ(yt−1).

Our estimation strategy was to perform first the linear model, setting β = 0. The
results obtained were consistent with the nonparametric results quoted in Sect. 5.1.
The model data showed mean reversion both in the third and the fourth subperiods,
while confirming the evidence of a random walk dynamics in the first two.

Then, we applied our three models to explore nonlinearities in the data. The
results are reported in Table 5.1. In all the models, we are particularly interested in
checking if γ is statistically lower than 1 and if β is significantly different from 0.
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Table 5.1 Maximum likelihood estimation of parameters. The asterisk denotes the parameters
which are significantly different from zero at the 5% level. The double asterisk denotes when the
parameter γ is significantly lesser than 1

Model 1

Parameter Full data Period 1 Period 2 Period 3 Period 4

α̂ −0.0011 −0.0155 – –0.0065 0.0145∗

β̂ −6.7333×10−5 8.8365 × 10−4 – 0.0012 −0.0021∗

γ̂ 0.9999 1.0065 – 1.0076 0.9780∗∗

σ̂ 0.0173∗ 0.0240∗ – 0.0149∗ 0.0110∗

Model 2

Parameter Full data Period 1 Period 2 Period 3 Period 4

α̂ −0.0014 −0.0114 – –0.0021 0.0131∗

β̂ −2.9146×10−6 7.5925 × 10−4 – 1.1683× 10−4∗ −3.1808×10−4∗

γ̂ 1.0002 1.0032 – 1.0035 0.9813∗∗

σ̂ 0.0173∗ 0.0240∗ – 0.0149∗ 0.0110∗

Model 3

Parameter Full data Period 1 Period 2 Period 3 Period 4

α̂ −0.0016∗ −0.0114 −0.0030 0.0107∗ 0.0118∗

β̂ 1.6509 × 10−5 1.7937 × 10−4 –0.0889∗ 1.1683× 10−4∗ −5.4839×10−4∗

γ̂ 1.0003 1.0004 1.0014 0.9985 0.9829∗∗

σ̂ 0.0173∗ 0.0240∗ 0.0049∗ 0.0149∗ 0.0110∗

The latter term controls for nonlinearity, while the former, if the hypothesis β = 0 is
not rejected, provides a test of linear mean reversion versus a random walk model.
A look at the first column of the table, where we report the estimation for the whole
period, shows that the three models reject both the hypothesis of mean reversion and
that of nonlinearity. In all themodels, the estimates are consistent with a randomwalk
model. The only difference is that in model 3 the constant is significantly negative,
implying a negative drift.

But, as we said, the estimation of the whole sample did not look promising already
from a look at the graph. So, the analysis of subperiods unveils more interesting
results. In the first period the evidence of the three models completely agree with
a unit root model. The drift is slightly negative, but not significant. The drift was
significantly negative in the linear estimate. For the second period, the estimation
failed to converge in model 1 and 2, while it provided evidence consistent with a
random walk for model 3. Actually the nonlinear parameter turns out significantly
negative, implying an explosive behavior, with a tendency to drift away faster for
levels higher and lower than 1%. In preliminary estimates in which the γ parameter
was set equal to 1, the nonlinearity parameter was found not statistically significant.
In that case, the pure random walk model was also confirmed for models 1 and
2, for which in that case the estimation reached convergence. The pure random
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walk hypothesis then emerges as the largely dominant evidence, consistent with the
nonparametric evidence of Chap. 1 and the linear model estimates.

While our models only provided a confirmation of standard linear model, they
reveal important differences in the third and fourth period. The third period is themost
interesting. We remind that for this period the linear model would estimate a mean
reversion model, with mean reversion parameter equal to −0.0017 and significantly
different from zero, and with a parameter of the lagged interest rate equal to 0.9983.
In all our nonlinear models, instead, we find that γ is not significantly different from
1, while there is slight evidence of nonlinearity, even thought the parameter is very
low, β = 0.000163. This produces values very close to the 1 for all the plausible
values of the interest rate, but always strictly lower than 1. The model seems then
consistent with some kind of long memory behavior, which is quite different from
that predicted by the linear model. The only point of weakness of this evidence is
that the parameters are not significant for model 1.

Finally, the fourth period offers another instance of our models. All the three
models find that the parameter γ is significantly lower than 1, so that the evidence
is strongly in favor of mean reversion. The parameter, ranging between 0.978 and
0.983, only slightly lower that the value estimated in the linear model, that is 0.987.
The evidence in favor of mean reversion is highly significant, at the 1% probability
level in all the models. There is also evidence of some nonlinearity: the β parameter
is significantly different from zero, and it is negative. So, there is evidence that the
parameter of the lagged variable is actually increasing with the level of the interest
rate. However, the size of the parameter is so small that the mean reversion parameter
can be considered constant across the relevant spectrum of values of the variable
for all practical purposes: for interest rate values ranging from 0.50 to 5.50% the
parameter remains the same up to the sixth digit.

Wemay then conclude that our convolution approach allows us to find evidence of
nonlinear behavior in the drift of the short-term interest rates. In some instance, this
nonlinearitymay not have practical relevance, and the linearmodel can bemaintained
as a good representation of the dynamics of the variable. But there are cases in which
the nonlinearity designs an alternativemodelwith respect to the linear estimation. It is
the case when the parameter of the lagged variable is kept very close to 1, but strictly
lower than that, and with the mean reversion effect increasing, very smoothly, with
higher levels of the short term rate. This would naturally give rise to a long memory
effect in the dynamics of the variable. Apart from the convolution technique that was
applied, then, our approach looks like a promising model to investigate the dynamics
of the short rate. More research should be carried out on this topic, particularly with
the new situation of negative interest rates: for example, models 1 and 2would clearly
behave in opposite directions with negative rates. For model 3 one could conceive
to select a level below zero where the autoregressive parameter is set equal to 1,
or else the level could be estimated from the data. It is only the beginning of the
possible models that the convolution approach can implement, and we hope that the
techniques explained in this book could be useful for this purpose.

http://dx.doi.org/10.1007/978-3-319-48015-2_1
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