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  Pref ace   

 There is no doubt that glycoside chemistry continues to be a dynamic and exciting 
fi eld of organic chemistry. Within sugar chemistry, glycosides are of special interest 
not only because of the challenges represented by their synthesis and structural 
characterization, but also due to their important biochemical relevance, and hence 
their applications in a number of essential disciplines, such as pharmaceuticals, 
food, and biotechnology. 

 Important biomolecules such as DNA and RNA, or cofactors such as ATP and 
NAD are some of the natural glycosidic structures that play key roles at a biochemi-
cal level. Also, a considerable number and variety of natural and synthetic glyco-
sides are being extensively used as antibiotics, antiviral, and antineoplastic agents. 

 There are also a signifi cant number of chromophoric glycosides being used in 
molecular biology as substrates for detection of enzymatic activity of gene markers. 

 Solid-phase oligosaccharide synthesis despite the great progress recently 
reported by different groups continues to be a challenging task considering the 
diversity and complexity of glycosides, especially those present in cellular mem-
branes. However, based on the satisfactory evolution of this approach, there is con-
fi dence that many complex molecules will be prepared just in the same way that 
solid-phase chemistry is currently used to prepare oligopeptides and 
oligonucleotides. 

 The aim of this book is to provide methods and strategies for the formation of 
glycosides, illustrated by the synthesis of important biologically active glycosides, 
and also to present an overview of the basic tools needed for the characterization of 
glycosides through NMR spectroscopy, X-ray diffraction, and mass spectrometry. 

 From the overwhelming number of excellent articles related to glycoside chem-
istry, it has not been an easy task to select those that are biologically important, and 
perhaps most importantly serve as didactic models for understanding more about 
the process of glycoside bond formation. 
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 The book should also serve as a helpful guide to those professionals interested in 
sugar chemistry, especially regarding the design of synthetic routes, by evaluating 
suitable protecting and leaving groups, and the best reaction conditions needed for 
the preparation of glycosides.  

  la Laguna Ticomán cp., Mexico     Marco     Brito-Arias     

Preface
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  Preface for S econd Edition   

 The second edition is designed to serve as a textbook on glycoside chemistry with 
the main goal to provide updated information about the methods considered classi-
cal or of primary signifi cance as well as novel variations or new methods for achiev-
ing glycosylation processes. This applies to glycosyl donors, promoters or activators, 
and protecting groups that have been currently reported as more effi cient or with 
signifi cance for preparing active substances of glycosidic nature with important 
implications in pharmaceutical, food, environmental, and biotechnological related 
disciplines. The second edition provides updated information on chemical shifts, 
and coupling constant data for complete structure assignment of glucopyranoses 
and pyranosyl disaccharides, as well as the main fragmentation pattern observed in 
mass spectrometry. I hope this new edition will expand its usefulness to those 
professionals involved in glycoside chemistry and will provide support in design of 
suitable methodologies in a novel or more effi cient way. Finally the author would be 
grateful for receiving any comment intended to improve the quality of the material 
included.  
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    Chapter 1   
 Glycosides, Synthesis and Characterization                     

1.1                Introduction 

  Monosaccharides   are generally defi ned as  aldoses   and  ketoses   connected to a 
polyhydroxylated skeleton [ 1 ]. In an aqueous solution, monosaccharides are subject 
to internal nucleophilic addition to form cyclic hemiacetal structures. When addi-
tion occurs between -OH at C(4) or -OH at C(5), and the carbonyl group, a fi ve- or 
a six-member ring is formed called a furanose or a pyranose respectively. It is also 
known that an equilibrium exists between the open and the cyclic form, being dis-
placed to the latter by more than 90 %. Therefore, in aqueous solution, it is more 
accurate to consider that most sugars are present as cyclic molecules and behave 
chemically as hemiacetals. 

 The  Haworth structure   is a useful way to represent sugars. However, as it is 
known that for any six-membered rings a nonplanar conformation is assumed. 
The conformation exclusively preferred is called chair and the two possible confor-
mations are  4 C 1  and  4 C 1 . The fi rst conformation is used for the  D  enantiomeric form 
and the second for the  L  form (Scheme  1.1 ).

   On a chair conformation type  4 C 1 , an α anomeric hydroxyl group is positioned in 
the axial orientation while a β hydroxyl lies equatorial (Scheme  1.2 ).

   As a result of this reversible ring formation process, a diastereomer mixture of 
anomers  α  and  β  is produced as indicated in Table  1.1  for some of the most common 
 monosaccharides   [ 1 ,  2 ].

   The pioneering work in 1890 by  Fischer   [ 3 ] allowed him to determine the rela-
tive confi guration and the synthesis of the most known aldohexoses. Based on the 
assumption that in   D -glyceraldehyde  , the hydroxyl group is placed to the right, he 
proposed correctly the structure of tetroses, pentoses, and aldohexoses 
(Scheme  1.3 ). The relative confi guration of  D -glyceraldehyde was later confi rmed 
by X-ray diffraction by Bijvoet in 1951. Consequently, all the resulting biologi-
cally active distereoisomeric aldoses derived from  D -glyceraldehyde conserve 
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  Scheme 1.1    α- D - 
glucopyranose- 4 C 1  and 
α- L -glucopyranose- 1 C 4        

always the secondary alcohol next to the primary one to the right side in the 
Fischer projection. Ketoses with 3–6 carbons are naturally produced from 
 1,3-dihydroxyacetone  , according to the tree shown in Scheme  1.4 .

1.2          Reactions of    Monosaccharides    

 Carbohydrates own their reactivity to the hemiacetalic center and to the hydroxyl 
groups, with the primary group being more reactive than the secondary group. 
Aldoses and ketoses are susceptible to nucleophilic addition and the latter is less 
reactive due to steric hindrance. The cyclic forms are adopted when the hydroxyl 
group positioned at C-5 verifi es an intramolecular nucleophilic addition to the car-
bonyl group producing an anomeric mixture of pyranosides (Scheme  1.5 ).

1.3        Chemical Modifi cations 

 The classical reactions on monosaccharides are used initially for identifi cation or 
sugars or to distinguish between aldoses and ketoses. They are also very useful for 
preparing key intermediates in the construction of glycosides. Some of the common 
reactions used to identify monosaccharides are: 

1.3.1      Oxidations   

 The oxidation of non-protected aldoses may result in carboxylic acid formation 
depending on the reaction conditions. Thus, with aqueous bromine a monocarbox-
ylic acid (aldonic acid) is formed, whereas with nitric acid a dicarboxylic acid is 
favored (aldaric acid) (Scheme  1.6 ).
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  Scheme 1.2    Fischer projections, Haworth structures, and  4 C 1  chair conformation of  D -aldohexoses         
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 Carbohydrate 

 % Pyranose  % Furanose 

  α    β    α    β  

 Glucose  38  62  0.1  <0.2 
 Galactose  30  64  3  4 
 Mannose  65.5  34.5  0.6  0.3 
 Rhamnose  65.5  34.5  0.6  0.3 
 Fructose  2.5  65.0  6.5  25 
 Ribose  21.5  58.5  6.4  13.5 
 Xylose  36.5  63.0  0.3  0.3 

   Table 1.1    Distribution of  α β  
of some  D -monosaccharides 
in solution at 31 °C   

Scheme 1.3 (continued)
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1.3.2        Periodate Oxidation 

 Periodic acid is an strong oxidizing agent and is capable of breaking 1,2-cis diols to 
generate carbonyl fragments after cleavage of the C–C bond (Scheme  1.7 ).

1.3.3         Tollens   Reaction 

 This classical reaction is very useful for aldose identifi cation and consists in the 
oxidation of the aldehyde function with a moderate oxidative agent (a silver ammo-
nium salt) to form the glucuronide ammonium salt and metallic silver which pro-
duce the silver mirror effect (Scheme  1.8 ).

1.3.4         Benedict   and  Fehling   Test 

 The test consist in the use of a copper citrate (Benedict reagent) or copper tartrate 
complex (Fehling reagent), which upon treatment with the sugar under study pro-
duces the glucuronide ion along with copper (I) oxide which is detected as a brick- 
red precipitate (Scheme  1.9 ).
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  Scheme 1.6    Oxidative aldose transformation into monocarboxylic and dicarboxylic acids       
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  Scheme 1.8    Tollens reaction       
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   Based on Tollens, Benedict, or Fehling test, sugars are classifi ed into reducing 
when positive or non-reducing sugars if negative. Reducing sugars are hemiacetals 
in equilibrium with small amounts of open forms. Under basic conditions, aldoses 
and ketoses are positive for Tollens and/or Benedict/    Fehling   test as result of an 
aldose–ketose equilibrium via enediol intermediates.  

1.3.5     Nucleophilic Addition 

 Aldoses and ketoses may react with a variety of nucleophiles, giving rise to addi-
tion/elimination products such as  osazones   and oximes, or addition products such as 
reduced derivatives when reacted with hydrides. 

 The reaction that allowed E. Fischer to determine the structure of common 
aldoses is the osazone formation and consisted in the reaction between hydrazine 
and aldoses (Scheme  1.10 ) to yield crystalline derivatives that can be identifi ed 
through their melting point values.

   The carbonyl group can be reduced by hydrogenation or hydride addition to 
produce corresponding  alditols   (Scheme  1.11 ). These reduced sugars are present in 
various fruits such as cherries, pears, and apples and are used as sugar substitutes for 
diabetics.
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  Scheme 1.9    Benedict and Fehling test       
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1.3.6        Enediol  Rearrangement   

 This transformation occurs in a basic medium and allows the conversion of  epimers  , 
defi ned as isomeric forms that differ in the position of the hydroxyl group at C-2. 
In this way it is possible to transform glucose to mannose through the enediol interme-
diate and vice versa (Scheme  1.12 ).

   Another important isomerization process through the enediol rearrangement is 
the interconversion of glucose and fructose. Thus, the enolization proceeds by 
migration of proton at position 2, to carbon at 1 (Scheme  1.13 ).

1.3.7         Kiliani–Fischer Synthesis   

 This sequence was used to increase the number of carbons in a sugar. The reaction 
involves cyanohydrin formation by nucleophilic addition of cyanide to the alde-
hyde. The diastereoisomeric mixture  of   cyanohydrins obtained is partially reduced 
to produce the epimeric forms (Scheme  1.14 ).
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  Scheme 1.11    Carbonyl 
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1.3.8         Ruff Degradation   

 The process of reducing the monosaccharide skeleton in one carbon is known as 
Ruff degradation and consists in the oxidation of the aldehyde to the carboxylic acid 
through the use of calcium salt and subsequent peroxide treatment in the presence 
of ferric salts to produce the aldose reduced in one carbon (Scheme  1.15 ).

1.3.9         Amadori Rearrangement   

 This reaction occurs between an unprotected aldose such as  D -glucose and suitable 
amines, producing 1-amino-1-deoxy ketoses as a mixture of anomers. When the 
amino group comes from an amino acid the reaction is known as the Maillard 
reaction, which is an important modifi cation in food science (Scheme  1.16 ) [ 4 ].
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  Scheme 1.14    Kiliani–
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1.3.10        Conversion to Furfural  Derivatives   

 Pentoses subjected to high acid concentrations can be transformed to furfural in 
quantitative yields. The sequence involves a tautomeric keto-enol equilibrium, 
dehydration, and intramolecular nucleophilic addition of the primary alcohol to the 
aldehyde to generate furfural (Scheme  1.17 ).

   The main pentose source used for preparing furfural is xylose which under acidic 
medium is subjected series of dehydrations, enolization and intramolecular cycliza-
tion as shown in Scheme  1.18 . Some of the conditions reported for preparing furfural 
are described in Table  1.2 .

  Scheme 1.16    Amadori rearrangement       
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  Scheme 1.17    Conversion of pentoses to furfural       

  Scheme 1.18    Conversion of xylose to furfural       
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1.3.11         Preparation of 5-Hydroxymethylfurfural (HMF) 

 This valuable derivative is subjected to intensive studies since it can be used in the 
preparation of pharmaceuticals, liquid fuels, plastics, and other fi ne chemicals. The 
common sugar source is fructose and glucose, although starch, cellulose, and sucrose 
have been examined as a natural source for the preparation of HMF (Table  1.3 ) 
[ 11 ,  12 ]. The mechanism involves enol formation after the fi rst dehydration, and two 
further dehydrations to furnish the furan ring (Scheme  1.19 ).

1.4           Biosynthesis   of Sugars 

 Synthesis of carbohydrates in plants occurs through a mechanism of carbon dioxide 
fi xation, and was understood through the use of long-lived radioactive isotope of 
carbon  14 C. After considerable investigations it was found that the initial CO 2  acceptor 

  Table 1.2    Reaction 
conditions for preparation of 
furfural  

 Sugar source  Catalyst  Reference 

 Xylose  Solid acid/ZrO 2 –Al 2 O 3   [ 5 ] 
 Xylose  Atmospheric pressure by dilute 

sulfuric 
 [ 6 ] 

 Xylose  Halides in dilute aqueous acidic  [ 7 ] 
 Xylose  Vanadyl pyrophosphate  [ 8 ] 
 Xylose  Formic acid  [ 9 ] 
 Pentosan  Acid hydrolysis  [ 10 ] 

   Table 1.3    Reaction conditions for the preparation of hydroxymethylfurfural   

 Sugar source  Catalyst  Reference 

 Starch-rich acorn biomass  Chromium halides  [ 13 ] 
 Rice straw  Single-phase and biphasic systems  [ 14 ] 
 High fructose  Ionic liquids  [ 15 ] 
 Fructose  Inorganic salt in alcohol  [ 16 ] 
 Fructose and sucrose  Protic ionic liquids  [ 17 ] 
 Fructose or glucose  Imidazolium ionic liquids with and without a catalyst  [ 18 ] 
 Alditols and ketohexoses  Polymer-mediated cyclodehydration  [ 19 ] 
 Fructose  Acidic resin-catalyzed  [ 20 ] 
 Glucose  Co-catalysts and solvents  [ 21 ] 
 Fructose  Phosphorous pentoxide in ionic liquid  [ 22 ] 
 Cellulose  Zinc chloride, MW  [ 23 ] 
 Sucrose  Ammonium halides  [ 24 ] 
 Fructose  Mesoporous SBA-15-SO 3 H in ionic liquid BmimCl  [ 25 ] 
 Glucose  SnCl 4 -tetrabutyl ammonium bromide  [ 26 ] 
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was the fi ve-carbon compound ribulose 1,5-bis-phosphate (RuBP) which after 
incorporation of carbon dioxide produces a six-carbon molecule. The resulting 
molecule is fragmented into two molecules of 3-phosphoglycerate (PGA) that is 
one of the intermediates of glycolysis. This transformations takes place in the chlo-
roplast by a large multisubunit enzyme, ribulose bisphosphate carboxylase 
“Rubisco.” The following reaction sequence is cyclic and constitutes what is called 
the Calvin cycle which consists in formation glyceraldehyde 3-phosphate (G3P), 
and regeneration of RuBP. The overall process requires six CO 2  molecules fi xed, 
12 molecules of G3P produced which rearrange to regenerate six molecules of the 
fi ve-carbon CO 2  acceptor RuBP (Scheme  1.20 ).

  Scheme 1.19    Conversion of xylose to furfural       
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  Scheme 1.20    Carbohydrate synthesis from CO 2  fi xation       
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1.4.1       Sugars as Energy Sources 

 Metabolically the main monosaccharide useful for the production of energy is 
glucose. During glycolysis process glucose is enzymatically transformed and 
degraded to pyruvate which is membrane permeable and further introduced into the 
Krebs cycle. 

 Carbohydrates are responsible of several biological events mainly related with 
the storage and production of energy, as metabolic intermediates and signal mole-
cules. They are also constitutive structural units of essential biomolecules such as 
polysaccharides (starch, glycogen, cellulose), glycoproteins, glycolipids, and nucle-
otides. The process by which glucose is used as an energy source, to produce ATP 
and pyruvate is known as  glycolysis   and consists in a series of events represented in 
Scheme  1.21 
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    The second cycle of glycolysis is divided into four steps.   

1.5     Synthesis of  Carbohydrates   

 The chemical synthesis of carbohydrates can be accomplished by chemical, enzy-
matic, or combined approach (chemoenzymatic). Their preparation by either of the 
mentioned methods has received considerable attention especially because they can 
be used as starting materials for the synthesis of biologically active carbohydrate 
derivatives known as mimetics or the synthesis of complex molecules such as oligo-
saccharides or glycopeptides. 
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1.5.1     Chemical Synthesis 

 Access to potentially useful sugars or congeners can be obtained from natural sugars 
such as arabinose and mannose [ 27 ]. Thus, convenient routes have been implemented 
for the preparation of KDN from  D -mannose [ 28 ], 3-deoxy- D -manno-2-octulosonic 
acid (KDO) from 2,3:4,5-di- O -isopropylidene- D - arabinose [ 29 ],  D - glycero - D -ga-
lacto-heptose from  D -arabinose [ 30 ], and KDN from  D -mannose [ 31 ] (Scheme  1.22 ).

   Different approximations for the preparation of  monosaccharides   from other 
sources have been reported. One method consists in the asymmetric synthesis of 
  D -galactose   via an iterative  syn -glycolate aldol strategy. The general method is 
shown in Scheme  1.23  [ 32 ].

   A promising and simple concept based on a two-step reaction sequence for pre-
paring  monosaccharides   via the enantioselective organocatalytic direct aldol reac-
tion of α-oxyaldehydes is recently described. The summarized sequence is illustrated 
in Scheme  1.24  [ 33 ].

   An interesting strategy for preparing KDO and 2-deoxy-KDO from 
2,3- O -isopropylidene- D -glyceraldehyde was reported, based on a hetero Diels–
Alder reaction, followed by pyranoside ring formation. Diol formation and double 
inversion at C-4 and C-5 produced the target molecules (Scheme  1.25 ) [ 34 ].

   C-methylheptoses were suitable prepared from nonracemic butenolide as start-
ing material. Asymmetric conjugate addition provided protected lactone which by 
methylation provided α-methyl lactone. Each of them under DIBALH treatment, 
produced C-methylheptoses (Scheme  1.26 ) [ 35 ].
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  Scheme 1.21     Glycolysis   pathway       
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  Scheme 1.22    Chemical synthesis of sugar congeners from natural sugars         
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  Scheme 1.23    Asymmetric synthesis of  D -galactose       
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   Naturally occurring  sugar amino acids   are another class of interesting modifi ed 
carbohydrates found as structural components in nucleoside antibiotics. Most of 
them consist of  N - and  O -acyl derivatives of  neuraminic acids  , while others are 
found in the form of ipso-hydantoin furanosides (Scheme  1.27 ) [ 36 ].

   Some of these sugars amino acids have been synthesized via azide furanosides 
[ 37 ,  38 ], as it was the case for β-sugar amino acids shown in Scheme  1.28  [ 36 ].
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  Scheme 1.25    Synthesis of protected KDO and 2-deoxy-KDO       
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  Scheme 1.26    Synthesis of methylheptoses       

 

 

1 Glycosides, Synthesis and Characterization



19

O
OH

R1

CO2HR5

R4
R3

R2

glucosaminuronic acid

galactosaminuronic acid

monnosaminuronic acid

4-amino-4-deoxy-glucuronic acid

R1 R2 R3 R4 R5

NH2 H OH OH H

NH2 H OH H OH

H NH2 OH OH H

OH H OH NH2 H

O

COOH

OH
HO

H2N
HO

OHOH

Neuraminic acid

OHO
NH

HN

O

O
OH OH

Hydantocidin

NH

CO2H

NHAc

HO

OH

Siastatin B

  Scheme 1.27    Naturally occurring sugar amino acids       
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  Scheme 1.28    Synthesis of protected sugar amino acids       
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1.5.2          C -glycosyl Amino Acids   

 It has been mentioned that natural glycopeptides are classifi ed into  O -glycopeptides 
when the sugar residue establishes an  O -glycosyl linkage with  l -serine or  l - threonine 
and  N -glycopeptides if the linkage is with asparagine. There has been an increasing 
interest for preparing unnatural  C -glyco amino acids as a potential building block in 
the assembly of modifi ed glycopeptides that may serve in preparing therapeutically 
useful mimetics, displaying higher resistance to hydrolytic enzymes and also 
superior properties of the natural ones. 

 A recent review describes methods for the preparation of C-glycosyl glycines, 
alanines, serines, asparagines, tyrosines, and tryptophans [ 39 ]. 

 For instance the synthesis of ribofuranosyl glycine was described under Strecker 
conditions, starting from 2-(2,3,5-tri- O -benzyl-β- D -ribofuranosyl)-1,3- 
diphenylimidazolidine which was after hydrolysis tosylated and reacted with cya-
nide and peroxide to give the α-hydroxy amide as a racemic mixture. The anomers 
were separated as  O -mesyl derivatives which were transformed to azides and further 
reduced to the corresponding ribofuranosyl glycines (Scheme  1.29 ) [ 40 ].

   A method reported for  the   preparation of  C -glycosyl alanines involves the use of 
(R)-methyleneoxazolidinone which was linked to the peracetylated iodosugars 
under promoted radical additions. The α-linked  C -glycoside was subjected to 
hydrogenolysis to give α- D -galactosyl  D -alanine and the α- D -glucosyl isomer 
(Scheme  1.30 ) [ 41 ].

   C-analogs of glycosyl serines have been prepared by a number of methods and 
among them Strecker, Wittig, and Sharpless asymmetric aminohydroxylation reac-
tions [ 42 ]. One of them describes their synthesis via coupling of anomeric pyridyl 
sulfone with an electrophiles center under samarium catalysis. The resulting 
C-glycosylation proceeds with α-selectivity (3.3:1). Final deprotection produced 
the C-glycosyl serine analog in good yield (Scheme  1.31 ) [ 43 ].
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  Scheme 1.29    Synthesis of anomeric ribofuranosyl glycines       
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   More recently, the stereoselective synthesis of a  C -glycoside analog N-fmoc- 
serine β- N -acetylglucosaminide has been described  employing   the Ramberg–
 Bäcklund   (RB) rearrangement. This procedure involves the coupling reaction 
between isothiourea and protected iodide to produce thioglycoside in good yield. 
Oxidation to the sulfone was followed by the RB conditions KOH/Al 2 O 3  in tBuOH/
(CBrF 2 ) 2  at 50 °C providing the exoglycal derivative. The fi nal step which involves 
hydrogenolysis, deprotection, and oxidation provided the desired C-glycosyl analog 
(Scheme  1.32 ) [ 44 ].
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  Scheme 1.30    Synthesis of α- D -galactosyl  D -alanine and the α- D -glucosyl isomers       
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  Scheme 1.31    Synthesis of C-glycosyl serine analog       
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  Scheme 1.32    Synthesis of C-glycoside serine analog by Ramberg–Bäcklund rearrangement       

  Scheme 1.33    Synthesis of C-glycosyl amino acids via oxazinone intermediate       
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   Alternatively C-glycosyl amino acids can be prepared by coupling reaction 
between α-Gal iodide and oxazinone under basic medium to provide the C-glycoside 
heterocycle which was fi nally deprotected to provide the C-linked  D - glucopyranosyl 
and  D -galactopyranosyl  L -serines in 70 % yield (Scheme  1.33 ) [ 45 ].

   Also the successful cross-metathesis/cyclization strategy has been implemented 
for preparing C-glycosyl amino acids, by using gluco-heptenitol with partner, allyl 
glycine in the presence of Grubbs catalyst (Scheme  1.34 ) [ 46 ].

   A protocol based on α-amination  of   C-glycosylalkyl aldehydes leading to axially 
and equatorially linked C-glycosyl α-amino acids (glycines, alanines, and CH 2 - 
serine isosteres) with either S or R is introduced via hydrazino alcohol intermedi-
ates which are subjected to hydrogenolysis and Jones oxidation to provide the 
desired C-glycosyl amino acids (Scheme  1.35 ) [ 47 ].

  Scheme 1.34    Synthesis of C-glycosyl amino acids via cross-metathesis/cyclization strategy       

  Scheme 1.35    Synthesis of C-glycosyl amino acids from C-glycosylalkyl aldehydes       
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1.5.3        Enzymatic Synthesis 

 The enzymatic synthesis of  monosaccharides   and carbohydrates mimetics by enzyme 
catalysts is performed mainly by a group of lyases known as  aldolases  . This enzymes 
effects the conversion of hexoses from their three-carbon components via an aldol 
condensation [ 48 ]. There are over 30 aldolases identifi ed and isolated, and classifi ed 
into two types depending on the mechanism involved: Aldolase type 1 and type 2 
which is Zn-dependent. The general reaction that they catalyze is the stereospecifi c 
addition of a ketone donor to an aldehyde acceptor (Scheme  1.36 ).

   The aldolases used for synthetic purposes are classifi ed into fi ve groups depending 
on the ketone donor and the products formed:

   Dihydroxyacetone phosphate (DHAP) aldolase  
  Pyruvate aldolase  
  2-deoxyribose 5-phosphate aldolase  
  Glycine aldolase.  
  Other aldolases    

 Examples of each of them are indicated in fi gure: 
 Aldolases have been also very useful for the preparation of a variety of common 

and uncommon monosaccharides. Fructose-1,6-diphosphate (FDP) aldolase effects 
the conversion of dihydroxyacetone phosphate (DHAP) and glyceraldehyde- 3- 
phosphate (G3P) to  D -fructose-1,6-diphosphate (FDP). Table  1.4  summarizes the 
natural substrates, de donors and the products obtained through this reaction. Broken 
lines indicate the bond formed or broken [ 49 ].

   DHAP aldolases catalyze the reversible asymmetrical aldol condensation of 
DHAP to  L -lactaldehyde or  D -glyceraldehyde 3-phosphate (G3P). There are four 
types of DHAP aldolases which are classifi ed based on the condensation product 
formed:  D -fructose 1,6-diphosphate ( D -FDP) aldolase, which condenses DHP with 
G3P;  D -tagatose 1,6-diphosphate (TDP) which utilizes the same substrates; fucu-
lose 1-phosphate, catalyzing the condensation reaction between DHAP and  L - 
lactaldehyde to produce  L -fucolose 1-phosphate; and  L -rhamnulose 1-phosphate 
aldolase which recognizes the same substrates to produce  L -rhamnulose 1- phosphate 
(Scheme  1.37 ) [ 49 ].
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  Scheme 1.36    General scheme of enzymatic-mediated aldol condensation       
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  Table 1.4    Natural substrates for aldolases  
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   Likewise, DHAP-dependent aldolases are involved in the incorporation of 
dihydroxyacetone phosphate (DHAP) on pentose and hexose phosphate introduc-
ing consequently three carbons and two chiral centers (Scheme  1.38 ) [ 50 ].

   Another enzymatic aldol type reaction takes place on   N -acetylneuraminic acid   
also known as sialic acid which after a reversible aldol reaction of  N -acetyl- D - 
mannosamine and pyruvate produces  N -acetyl-5-amino-3,5-dideoxy- D -glycero- D - -
galacto-2-nonulosonic acid (NeuAc) (Scheme  1.39 ) [ 51 ].

   Ketoses can be transformed to aldoses through the use of isomerases [ 52 ]. In this 
way glucose derivatives can be obtained from fructose as shown in Scheme  1.40  [ 53 ].
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  Scheme 1.39    Enzymatic preparation of sialic acid analogs       

HO

O

R1

OH

R2

R3

H

OH

R1

OH

R2

R3

O

R1 = OH; R2 = H; OH

R3 = H; OH; OCH3; F; N3i) glucose isomerase

i
  Scheme 1.40    Enzymatic 
isomerization of fructose 
to glucose derivatives       

 

 

 

1.5  Synthesis of  Carbohydrates  



28

1.5.4        Chemoenzymatic Synthesis 

 The chemoenzymatic approach is a combination of the chemical and the enzymatic 
methodologies and intends to explode the versatility and availability of the chemical 
reagents with the high stereoselectivity and regioselectivity of the enzymes when 
they act as catalysts. 

 For instance the enzymatic synthesis of dihydroxyacetone phosphate (DHAP) is 
too expensive on large scale, and therefore the combined approach becomes the best 
choice. The reported procedure consist in the phosphorylation of dihydroxyacetone 
dimer with (PhO) 2 POCl followed by hydrolysis of the dimer to generate dihydroxyac-
etone phosphate in 61 % yield [ 54 ]. The chemically prepared DHAP is then used as an 
important material for the synthesis of natural monosaccharides and carbohydrates 
mimetics (Scheme  1.41 ).
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  Scheme 1.41    Chemoenzymatic preparation of glucose       
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1.6         Synthesis of  Carbohydrates Mimetics   

1.6.1      Iminosugars    

 This class of isosteric sugars also recognized as aza  sugars   has been the subject of 
intense study because their signifi cant activity as α-glycosidase inhibitor, which is a 
promising strategy in the treatment against diabetes mellitus type II and other gly-
cosidase associated disorders. It is believed that the mechanism for glycosidase 
inhibition and to some extend for glycosyltransferases involves the binding of the 
aza sugars to the active site by charge–charge and hydrogen bond interactions [ 55 ]. 
A signifi cant variety and diversity of naturally occurring and synthetic aza sugars 
with glycosidase and glycosyltransferase inhibition activity have been reported 
[ 56 – 59 ]. The common feature of these derivatives is the replacement by chemical or 
enzymatic methods of the cyclic oxygen by a nitrogen atom. The representative 
example is known as deoxynojirimycin (Scheme  1.42 ) which has shown strong 
inhibition against a variety of α-glycosidases.

   Representative examples of natural and synthetic aminoglycosides implicated in 
infl ammation, metastasis, and blocking infection processes are depicted in Scheme  1.43 .
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  Scheme 1.43    Representative aminosaccharides       
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   A series of 1- N -iminosugars including  D -glucose-type,  D -galactose-type, 
 L -fucose-type,  D -glucuronic acid-type, and  D -xylose-type was synthesized and 
evaluated as glycosidase inhibitors (Scheme  1.44 ).

   A general procedure for the preparation of 1- N -iminosugars consisted in the 
azido substitution of a 5-tosyl-1- O -benzoate, followed by aldol reaction, Pearlman 
hydrogenation, and cyclization (Scheme  1.45 ) [ 60 ].

   Another chemical approach described for the preparation of iminosugars con-
sisted in the use of protected  L -serine which was subjected to Wittig elongation, diol 
formation, and 2-lithiothiazole treatment, to produce a common thiazole derivative. 
This intermediate under the appropriate conditions will give rise to  L -(−)-nojirimycin 
or L-(–)-mannonojirimycin (Scheme  1.46 ) [ 61 ].

   Chemoenzymatic preparation of glycosidase inhibitors  deoxynojirimycin   and 
deoxymannojirimycin was described by using RAMA-aldolase for the aldol condensa-
tion and hydrogenolysis for azide reduction and ring formation (Scheme  1.47 ) [ 62 ].

   Signifi cant achievements have been made for the synthesis of aza sugars based 
on aldolase reactions particularly fructose-1,6-diphosphate [ 30 ], 2-deoxyribose- 5-
phosphate [ 63 ], fuculose-1-phosphate [ 64 ], sialic acid aldolase, and Pd/C-mediated 
reductive amination (Scheme  1.48 ).

1.6.2        Amino  Sugars   

 Amino sugars are another class of naturally and non-naturally sugars which might 
be considered distinct from the previous class in that the nitrogen is exocyclic. 
Their signifi cance is clearly seen in a family of aminoglycoside antibiotics such as 
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  Scheme 1.44    Series of 1- N -iminosugars       

O
OH

OH
HO

HO

O
O O

OBz

TsO O
O O

OH

N3

NHHO
HO

OH

OH

i ii iii,iv

OH

NBzO
BzO

OBz

OH
Boc NH.HClHO

HO

OH

+
NH.HCl

OH
HO

OH

v vi

i) a) Me2CO, H2SO4. b) TsCl/Py, 0oC to r.t. c) BzCl/Py. ii) NaN3/DMSO, 100oC.
iii) a) NaOMe/MeOH. b) K2CO3/HCHO-MeOH. iv) a) H2 Pd(OH)2/MeOH. b) 1N HCl.
v) a) Boc2O/Et3N/MeOH. b) BzCl/Py. vi) a) MeOCOCOCl/DMAP/CH3CN. b) Bu3SnH
VAZO/CH3Ph. c) SiO2-iPrOH/H2O/NH2OH.

  Scheme 1.45    Synthesis of 1- N  iminosugars       
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  Scheme 1.46    Chemical synthesis of  L -(−)-nojirimycin and  L -(−)mannonojirimycin       
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neomycin, kanamycin which are widely used against both gram-positive and gram- 
negative bacteria. Although there is no unifi ed protocol for the synthesis of amino 
sugars, they have been roughly classifi ed into (a) non-azido (Scheme  1.49 ) and (b) 
azido approaches (Scheme  1.50 ) [ 65 ].

     (a)    The non-azido methodologies usually involves the introduction of an amino 
group at C-2, and glycals are usually the starting materials.   

   (b)    The azido approach is a more common procedure for amino introduction on 
sugars due to its relative stability, good solubility in organic media, and easy 
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conversion to amines through catalytic hydrogenolysis. Some of the methods 
reported involve the use of glycals, or protected saccharides containing free 
primary or secondary alcohols.    

  Epimerization of hydroxyl  groups   can be achieved by following an oxidation–
reduction sequence in which a secondary alcohol is converted into a keto group, 
followed by stereoselective hydride reduction and nucleophilic substitution. It has 
been observed that epimerization by following the Mitsunobu protocol has not been 
satisfactory due to steric hindrance of the secondary hydroxyl groups on the pyra-
nose ring [ 65 ].  

1.6.3     Thiopyranoside Monosaccharides 

  Thiosugars   are another class of interesting carbohydrate mimetics. The synthesis of 
these derivatives can be achieved by using aldolases RAMA for the aldol condensa-
tion reaction. The following reaction sequence was used successfully for the prepa-
ration of deoxygluco, manno, galacto, and altropyranosides (Scheme  1.51 ) [ 75 ]. 
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  Scheme 1.49    Non-azido methods for the preparation of aminosaccharides [ 66 – 68 ]       
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Another strategy for the synthesis of thiosugars involves the replacement of one of 
the oxygen atoms at the anomeric carbon of the glycoside by a sulfur atom leading to 
two distinctly different thiosugars, namely a 5-thioglycoside and a 1- thioglycoside [ 76 ].

1.6.4         Carbapyranoside-Saccharides   

 More recently this type of sugar mimics have received increasing attention since 
some of them present α-glucosidase activity and therefore considered for therapies 
for non-insulin dependent diabetes mellitus. Also they have been found to be active 
as agricultural antibiotics, and because of their recognition by glycosidases and 
glycosyltransferases as substrates and stability against enzymatic degradation, they 
have been used also to study oligosaccharide-chain biosynthesis [ 77 ,  78 ,  181 ]. The 
pseudotetrasaccharide  Acarbose   (Scheme  1.52 ) has been the fi rst α-glucosidase 
inhibitor to be explored in humans as an antidiabetic agent along with the amino 
sugar 1-deoxynojirimycin  Miglitol  .

   The  chemical   synthesis of carbamaltose, carbacellobiose, and related carbadi-
saccharides of biological interest according to the pathway indicated in Scheme  1.53  
has been described [ 79 ].
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  Scheme 1.51    Synthesis of thiomonosaccharides       
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   Pseudo- N -acetyllactosaminides were found to be acceptors substrates for human- 
milk α-(1 → 3/4)-fucosyltransferase. A small scale reaction of the mentioned pseu-
dodisaccharides with GDF-fucose resulted in conversion to pseudotrisaccharides 
(Scheme  1.54 ) [ 77 ].
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  Scheme 1.53    Synthesis of carbapyranoside-disaccharides       
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1.7         Glycoside Reactivity 

 The reactivity for the  anomeric carbon   C(1) is the typical for acetals and therefore 
the nucleophilic addition may occur. On the other hand, the other hydroxyl groups 
behave typically for alcohols. For coupling reaction with sugars the anomeric car-
bon is involved to produce a  glycosidic bond  , and usually must be activated with a 
good leaving group in order to form a new linkage (Scheme  1.55 ).

   A  glycoside   is formed when the anomeric carbon of a sugar is connected through 
an heteroatom (except with  C -glycosides) with an aliphatic or aromatic fragment 
known as aglycon. 

 The glycosidic bond is formed when a nucleophile (alcohol, amine, thiol or 
carbanion) substitutes the hydroxyl group at the anomeric position, which has been 
previously substituted by a good leaving group. Therefore when the nucleophiles 
are an alcohol, amine or carbanion,  O -,  N -, or  C -glycosides are generated as result, 
as can be observed in Scheme  1.56 .
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  Scheme 1.54    Chemoenzymatic synthesis of pseudotrisaccharides       
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1.8        The  Leaving Groups   

 As mentioned above, the anomeric hydroxyl group can be replaced under suitable 
conditions with a good leaving group. Initially, the use of halogens such as fl uorine, 
chlorine, and bromine is the strategy of choice, and particularly the latter since it 
presents the best balance between reactivity and stability and this is why it has been 
extensively used for preparing glycosides. However, halides are in most cases labile 
and undergo decomposition. Consequently a number of other leaving groups have 
been designed for glycoside chemistry, and among them, imidates, sulfur, sulfonates, 
silyl groups, phosphates, and acetates are equally important alternatives. The use of 
iodide has been restricted due to its low reactivity and fl uoride although limitedly has 
been more used for preparation of some α-glycosides [ 80 ,  81 ]. It has been found that 
in the absence of selective conditions, a leaving group can be found as a mixture of 
anomers, as in the case of the acetates. However, some others such as bromide and 
imidate can be introduced preferentially at the α-position (Scheme  1.57 ).

   A well accepted hypothesis that explains the α-stereoselective preference 
assumed by the leaving group (halogens and imidate) is based on the anomeric 
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effect, consisting in the electronic effect produced by the ring oxygen which gives 
rise to a repulsive effect between one of the oxygen lone pairs and the leaving group, 
forcing the latter to assume such a position [ 82 ] (Scheme  1.58 ).

1.9         Glycosyl Donors   

 This term is used to defi ne a glycosidic moiety that contains a leaving group at the 
anomeric position. When a glycosyl donor is reacted in the presence of a catalyst 
(also known as promoter) with a free alcohol called glycosyl acceptor, it will produce 
an  O -glycosidic linkage. The fi rst glycosyl donors developed and used specifi cally 
for glycoside formation were the glycosyl halides. As mentioned above, glycosyl 
bromide and chloride are the most widely used halides, and are the glycosyl donors 
used for the preparation of  O -glycosides according to the methods reported by 
Michael, Koenigs–Knorr, and Helferich (see  O -glycoside formation); however, 
iodide and fl uorine glycosyl donors are gaining increased attention in the synthesis 
of  O -glycosides. 

1.9.1     Glycosyl Halides 

 2,3,4,6-tetraacetyl-α- D -glucopyranosyl bromide also known as  acetobromoglucose   
is one of the most extensively used sugar intermediates for preparing glycosides 
derived from glucose [ 83 ]. The preparation involves the initial peracetylation of 
glucose with acetic anhydride in the presence of a catalyst, commonly pyridine, 
triethylamine, and dimethylaminopyridine, or sodium acetate and zinc chloride, in 
dichloromethane as solvent. 

 The resulting 1,2,3,4,6-pentaacetyl-α,β- D -glucopyranoside (as a mixture of ano-
mers) is treated with a 33 % solution of HBr-acetic acid in dichloromethane at 5 °C 
during 12 h. The fi nal product is obtained after crystallization from isopropyl ether 
to yield acetobromoglucose as a white solid. For sugar containing acid sensitive 
groups such as benzylidine, bromotrimethylsilane (TMS-Br) is used as an alternative 
(Scheme  1.59 ) [ 84 ,  85 ].

   The  1 H NMR spectrum  of   acetobromoglucose shows signals for each of the ring 
protons, as well as for the primary alcohol and acetates. The well-defi ned spectrum 
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  Scheme 1.58    Anomeric effect on halogens       
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allows the net identifi cation of each proton, starting from the anomeric proton at  δ  6.60 
shifted downfi eld due to the presence of the halogen, with coupling constant of 4 Hz 
indicating an equatorial–axial interaction with H-2. Diaxial interactions are evident as 
triplets for H-3 and H-4, and axial–equatorial as double of double for H-2 (Scheme  1.60 ).

   In the case of chlorine this can be suitable prepared by treatment of peracetylated 
saccharide with thionyl chloride in tin (IV) chloride at room temperature or boron 
chloride at 0 °C (Scheme  1.61 ) [ 86 ,  87 ].

   Other conditions reported with  sugars   bearing sensitive groups such as azide 
group employs trimethylsilyl chloride, phosgene in DMF, or titanium(IV) chloride 
(Scheme  1.62 ) [ 84 ,  87 ,  88 ].

   Another possibility used in the synthesis of branched sugars transform peracetylated 
nitro azide disaccharides with tetraethyl ammonium chloride at room temperature 
(Scheme  1.63 ) [ 89 ].

   Iodine glycosyl donors once considered unstable glycosyl donors are having 
increasing participation as glycosyl donors, as it can be observed in studies for 
either armed or disarmed approaches. The common methods for preparing glycosyl 
iodides consist in the reaction peracetylated saccharide with hydrogen iodide in 
acetic acid, iodo trimethylsilane (TMSI) in toluene, and hexamethyldisilane 
(HMDS) with molecular iodine (Scheme  1.64 ) [ 90 – 92 ]

   Likewise interconversion of glycosyl bromide to iodide can be accomplished by 
treatment with sodium iodide in acetone (Scheme  1.65 ).

  Scheme 1.59    Standard conditions for preparation of acetobromoglucose       
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   Also protected pivaloate glucuronide α-iodide donors can be suitably prepared 
by using hexamethyldisilane–I 2  mixture which generates Me 3 SiI in situ in high 
yield (Scheme  1.66 ) [ 93 ].

   On the other hand,    protected per- O -TBS-β- D -galactofuranose was submitted to 
iodination under TMSI to furnish the corresponding galactofuranosyl iodide with 
1,2-trans selectivity, and user further as glycosyl donor in the preparation of S- and 
C-galactofuranosides (Scheme  1.67 ) [ 94 ].

   Glycosyl fl uorides are used as glycosyl donors in the synthesis of various glycosides, 
and also are useful substrates for glycoside hydrolases and glycosyltransferases [ 96 ]. 
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  Scheme 1.60     1 H NMR of acetobromoglucose       

  Scheme 1.61    Synthesis of α-glycosyl chloride from peracetylated sugars       
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They are considered thermally and chemically stable in relation to other glycosyl 
halides and also allows purifi cation prior to the moisture-sensitive glycosylation 
reactions. Typical protocols for preparing glycosyl fl uorides involves the conversion 
of glycosyl chlorides or bromides with fl uorine salts such as AgF, AgBF 4 , or ZnF 2  
[ 97 ]. Another approach involves the use of diethylaminosulfurtrifl uoride (DAST), 
however DAST-promoted fl uorination of thioglycoside requires higher reaction 
temperatures, suggesting that the electrophilicity of the DAST- derived reactive spe-
cies is rather low [ 98 ]. Additionally other fl uorinated reagents such as XtalFluor 
[ 97 ] and HF-pyridine [ 99 ] have been proposed as useful alternative glycosyl donors 
for the preparation of glycosyl fl uorides (Scheme  1.68 ).
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  Scheme 1.64    Preparation of glycosyl iodides from peracetylated sugars [ 95 ]       

  Scheme 1.65    Preparation of glycosyl iodides from acetobromopyranosides       

  Scheme 1.66    Preparation of α-glucuronopyranoside iodides from pivaloate glucuronide       

  Scheme 1.67    Preparation of furanosyl and iodide as a glycosyl donors       
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1.9.2        Glycosyl Donor Interconversion 

 Besides their extensive use in the preparation of glycosides, glycosyl bromide can also be 
useful for conversion to other suitable  glycosyl donors    (Scheme  1.69 ), such as glycals 
[ 100 ,  182 ,  183 ], orthoesters [ 101 ,  184 ], and thiols [ 102 ]. Also, the glycosyl halides 
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can be transformed to glycosyl imidate through the anomeric hydroxyl formation 
[ 103 ], or to amines via a reaction with azide salt and hydrogenolysis [ 78 ,  181 ].

   Glycosyl acetates are also important glycosyl donors and can be used directly under 
the fusion strategy for the preparation of  O - and  N -glycosides. The fusion method con-
sists in the reaction between the glycosyl acetate as glycosyl donor and the glycosyl 
acceptor in the presence of a Lewis acid as a promoter to generate the corresponding 
glycoside. Likewise, acetates can also be suitable precursors for the preparation of 
glycosyl donors such as halides, thiols [ 104 ], and imidates, the latter by a two-step 
process. The fi rst step involves the removal of the anomeric acetate with a base; 
hydrazine, benzylamine, ammonia, and piperidine are the most preferred. 

 The resulting hydroxyl group is obtained as a mixture of anomers, and is subse-
quently used for the preparation of the glycosyl imidate (see Imidate Method). 
Another use of glycosyl acetates, is the transformation into anomeric amines, 
through the introduction of the azide group with trimethylsilyl azide under a Lewis 
acid catalyst, and further hydrogenolysis [ 71 ]. This reaction is useful for the prepa-
ration of some glycopeptides. Likewise 2-thiophenyl glycosides of Neu5Ac are 
suitably obtained by treatment of 2- O -acetyl, 2-chloro, or 2-chloro Neu5Ac glyco-
syl donors with PhSH in the presence of NIS/TfOH as promoter system 
(Scheme  1.70 ). Other activated agents for preparing S-alkyl and S-aryl glycosyl 
donors are methyl trifl uoromethanesulfonate (MeOTf), dimethyl(methylthio)sulfo-
nium trifl uoromethanesulfonate (DMTST), iodo dicollidine perchlorate (IDCP), 
and phenyl selenyl trifl uoromethanesulfonate (PhSeOTf) [ 105 ].

   Thioglycosyl donors (e.g., -Sme, -SEt, -STol) may also be obtained from per-  O - 
acetylated glycopyranosyl iodides with 1.2 M equiv. of the respective thiols with 
complete anomeric selectivity and in very good yield [ 91 ]. 

  Thioglycosides   are stable glycosyl donors widely used for the preparation of gly-
cosides. The usual conditions for achieving this goal are the glycosyl acceptor and 
 N -iodosuccinimide (NIS), or NIS-TfOH as promoter. Thioglycosides are also impor-
tant starting material for the preparation of other glycosyl donors such as acetates, 
fl uorine [ 104 ], chlorine [ 111 ], sulfoxides [ 112 ], or anomeric alcohols (Scheme  1.71 ).

    Glycals   are becoming potentially useful glycosyl donors, and an increasing num-
ber of simple and complex glycosides have been reported. For this purpose the gly-
cal is usually transformed to the oxirane. and immediately coupled with the glycosyl 
acceptor in the presence of a Lewis acid (see The Glycal Method). Moreover, gly-
cals are also suitable intermediates for the preparation of a variety of glycosyl 
donors (Scheme  1.72 ) such as phosphates and thiophosphates [ 113 ], deoxysugars 
[ 114 ], Diels–Alder adducts [ 115 ], allyl glycosyl donors [ 116 ], and imidates [ 117 ].

1.10          Protecting Groups   

 An important additional requirement for achieving glycosidic coupling reactions, 
besides the fact that a good leaving group should be present, is the appropriate use 
of protecting groups. Their function is to shield those groups (particularly 
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  Scheme 1.70    Miscellaneous approaches for the preparation of glycosyl donors [ 106 – 110 ]         
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Scheme 1.70 (continued)
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heteroatoms) that are wanted to keep unaltered during the coupling reaction and 
then release them under mild conditions that do not affect the glycosidic bond 
(Scheme  1.73 ).

   A signifi cant number of protecting groups [ 118 ] have been used and combined 
for pursuing the synthesis of complex natural products including glycosides. 

 Due to its acetal character, the glycosidic bond is hydrolyzed under acidic conditions, 
and is signifi cantly more resistant to base, hydride reduction, or hydrogenolysis. 

 The use of ethers such as methyl ether (-O-CH 3 ), methoxymethyl ether 
(-O-CH 2 OCH 3 , MOM), 2-methoxyethoxymethyl ether (-O-CH 2 OCH 2 CH 2 OCH 3 , 
MEM), and tetrahydropyranyl ether (-O-2-c-C 5 H 9 O, THP) have been widely used for 
protection of alcohols. However, in glycoside synthesis attention has to be paid since 
deprotection is carried out under acidic conditions, which might be hazardous for the 
glycosidic bond. Silyl derivatives are also another important choice for protection of 
hydroxyl groups [ 105 ]. Some of the most accepted silyl derivatives for carbohydrate 
hydroxyl protection are  tert -butyl dimethylsilyl (TBDMS), triisopropylsilyl (TIPS), 
 tert -butyl diphenylsilyl (TBDPS), and triethylsilyl (TES) ethers. Quantitative 
cleavage is usually achieved upon treatment with tetrabutylammonium fl uoride 
(TBAF) or HF/pyridine. 

 The conventional protecting groups for the preparation of glycosides are the 
affordable acetates, benzoates, and benzyl protecting groups since they can be 
removed under basic and later neutral conditions, the best conditions for preserving 
the glycosidic bond. The standard conditions for either installing and removing the 
most common protecting group described are:

     Acetate    ( Ac -). The standard procedure involves the use of acetic anhydride in the 
presence of pyridine or triethylamine as acid scavenger, and 4-(dimethylamino) 
pyridine (DMAP) that improves the rate of reaction. The cleavage of acetates 
proceeds smoothly with NaOMe solution also known as Zemplen conditions. 
Acetates are stable at pH from 1 to 8 and can be cleaved with lithium aluminum 
hydride (Scheme  1.74 ) [ 91 ].

       Benzoyl    ( Bz -): This protecting group is more stable to hydrolysis than acetates 
and may resist a pH up to 10. The conditions for protection of alcohols are 
shown in Scheme  1.75  and involves the use of benzoyl chloride in pyridine or 
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  Scheme 1.73    Schematic representation of protecting group applicability       
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triethylamine [ 119 ,  185 ]. It is stable to hydrogenolysis and borohydrides but 
not to lithium aluminum hydride. The cleavage is usually achieved in 1 % 
NaOMe-MeOH solution.

       Pivaloyl    ( Pv -): This protecting group, which is also known as trimethylacetyl 
chloride, is used for protection of primary and secondary alcohols in yield. 
An example of the use of this group is the protection of the hydroxyl group at 
position 2 of fucose derivative [ 120 ]. The standard conditions for protection are 
pivaloyl chloride in pyridine or DMAP and the cleavage is performed with 
Bu 4 N +− OH at 20 °C (Scheme  1.76 ).

       Trityl    ( Tr -): This bulky protecting group is selective for primary alcohols 
(Scheme  1.77 ). The protecting reaction proceeds in pyridine or DMAP-DMF 
[ 121 ]. The cleavage can be performed under neutral conditions with 1 % iodide 
in methanol, or weakly acidic in formic acid–ether solution.

  Scheme 1.74    Standard protocol for the preparation of peracetylated sugars       
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       Benzyl    ( Bn -): This protecting group when attached with alcohol generates an ether 
(Scheme  1.78 ). However, unlike common ethers, this can be cleaved under neu-
tral condition by hydrogenolysis. The usual conditions for attachment are NaH, 
THF, and benzyl bromide or chloride [ 122 ]. The conditions for removing this 
group are hydrogen, Pd/C 10 % or Pd(OH) 2 /C 10 % in ethanol or ethyl acetate.

      p -  Methoxybenzyl    ( PMB -): This benzyl derivative is installed by reacting the free 
alcohol with PMB-Cl under NaH, DMF conditions at 0 °C [ 123 ]. An example of 
its applications can be seen in the protection at the second position of acetonide 
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thioglycoside shown in Scheme  1.79 . Deprotection is carried out under neutral 
conditions with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), in CH 2 Cl 2  
and H 2 O (20:1), 1 h, at 25 °C, in a 91 % deprotection yield.

       Acetonide    (( CH   3  )  2   C ( O )  2  -): This protecting group is useful for protection of  cis  
diols (Scheme  1.80 ) and the conditions are acetone, 2,2-dimethoxypropane, and 
 p -toluenesulfonic acid or camphorsulfonic acid as catalyst [ 124 ]. Acetonides are 
usually stable at a pH between 4 and 12, and the regeneration of the diol can be 
achieved by treatment with aqueous acid.

       Benzylidene    ( PhCH ( O )  2  -): This classical protecting group is usually selected for 
protection of position 6 and 4, allowing the remaining positions to be modifi ed. 
The benzylidene is attached under mild conditions and are useful for either –OH 
(4) in axial or equatorial positions (Scheme  1.81 ). Deprotection can be effected 
under different conditions, such as acid conditions, hydrogenolysis, and hydrides 
such as BH 3 NMe 3 , AlCl 3 , THF, 60 °C, 1 h [ 125 ].

       Carbonate    ( O = C ( O )  2  -): This group is suitable for protection of  cis  diols, and it has 
been used in the synthesis of complex oligosaccharides and also in solid-phase 
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oligosaccharide synthesis. The reagents and conditions used for protection are 
phosgene in pyridine at 0 °C during 1 h (Scheme  1.82 ), and the yield reported is 
around 70 % [ 126 ]

       Boronate    ( PhB ( O )  2  -): This group has been proposed in solid-phase oligosaccha-
ride synthesis [ 127 ] for simultaneous protection of 4,6-OH groups (Scheme  1.83 ). 
Deprotection is achieved with IRA-743 resin [ 128 ].

       Tert - butyldimethylsilyl    ( TBS ): More recently introduced for protection of primary 
and secondary alcohols with reported yield protection around 90 % (Scheme  1.84 ). 
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The standard conditions are  tert -butyldimethylsilyltrifl ate in pyridine [ 129 ], and 
deprotection is usually achieved with butyl ammonium fl uoride (Bu 4 NF) in THF.

       tert - butyldiphenylsilyl    ( TBDPS -): This protecting group is specifi c for primary alcohols 
and the yields reported are quantitatives (Scheme  1.85 ). This bulky silylated group 
has been used for the assembly of oligosaccharide libraries and has been compatible 
with the use of other highly selective groups [ 130 ]. The standard protection condi-
tions are TBDPS-Cl, imidazole, DMF, or THF. Deprotection is achieved with 
hydrogen fl uoride-pyridine or TBAF, cat. AcOH, THF, and a yield of 87 %.

1.11           Selective  Protections   (Scheme  1.86 ) 
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  Scheme 1.85    Protection 
of primary alcohols with 
TBDPS protecting group       
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  Scheme 1.86    Miscellaneous selective protections [ 119 ,  123 ,  125 ,  129 ,  131 – 156 ]                   
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i) Pyr SO3, Pyr, 69%
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Scheme 1.86 (continued)
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1.12          Selective Deprotections   (Table  1.5 , Scheme  1.87 ) 

   Table 1.5    Summary of common protecting and cleavage conditions   

 Protecting group  Protection conditions  Cleavage conditions 

 Acetyl (Ac-)  Ac 2 O, Et 3 N, DMAP, CH 2 Cl 2   NaOMe-MeOH 
 Benzoyl (Bz-)  Bz-Cl, Py  NaOMe-MeOH 
 Pivaloyl (Pv-)  Pv-Cl, Py, DMAP  Bu 4 NOH 
 Trityl (Tr-)  Tr-Cl, DMAP, DMF  1 % I 2 -MeOH 
 Benzyl (Bn-)  Bn-Br, NaH, THF  H 2 -Pd(OH) 2 -EtOH 
  p -Methoxybenzyl (PMB-)  PMB-Cl, NaH, THF  DDQ, CH 2 Cl 2 -H 2 O 
 Acetonide ((CH 3 ) 2 C(O) 2 -)  (CH 3 ) 2 CO, 2,2-DMP,  p -TsOH  AcOH-H 2 O 
 Benzylidene (PhCH(O) 2 -)  PhCH(OCH 3 ) 2 ,  p -TsOH, CH 3 CN  AcOH-H 2 O, or 

H 2 -Pd(OH) 2  
 tert-butyldimethylsilyl (TBS-)  TBS-OTf-Py  Bu 4 NF-THF 
 tert-butyldiphenylsilyl (TBDPS-)  TBDPS-Cl-imidazole, DMF  HF-Py 

1.12   Selective Deprotections  
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  Scheme 1.87    Miscellaneous selective deprotections [ 120 ,  137 ,  152 ,  156 – 180 ]                   
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Scheme 1.87 (continued)
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Scheme 1.87 (continued)
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    Chapter 2   
  O -glycoside Formation                     

2.1                General Methods 

 When a monosaccharide (or a sugar fragment of any size) is condensed with either an 
aliphatic or aromatic alcohol, or another sugar moiety through oxygen, a glycoside 
bond is formed. General examples of   O -glycosides   are shown in Scheme  2.1 .

   The most common coupling reaction methodologies used for preparing the vast 
majority of  O -glycosides known thus far are as follows: [ 1 ]

   Michael reaction  
  Fischer reaction  
  Koenigs–Knorr reaction  
  Helferich reaction  
  Fusion method  
  Imidate reaction  
  Glycal reaction  
  Sulfur reaction  
  Armed–disarmed approach  
  Unprotected anomeric carbon  
  Unprotected glycosylations  
  Miscellaneous leaving groups  
  Solid phase approach    
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2.1.1     Michael  Reaction   

    

+ ArOH
promoter

X = Br, Cl

O

XPO

P = protecting group

O

ORPO

  

 Promoter  Conditions 

 NaH  THF 
 K 2 CO 3 , NaOH  Acetone 

   This pioneering methodology for  O -glycosylation consists of the condensation 
reaction between 2,3,4,6-tetraacetyl-α- D -glucopyranosyl chloride and potassium 
phenoxide to generate the acetylated derivate that undergoes basic hydrolysis to 
give phenyl-β- D -glucopyranoside (Scheme  2.2 ). Since its original methodology, 
some modifi cations have been introduced especially for aromatic glycosides.
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  Scheme 2.1    Examples of  O -glycosides       
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  Scheme 2.2    Synthesis of paranitrophenyl-β- D -glucopyranosyl tetraacetate       
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   Some of the main features associated with this methodology are:

   Preserves the pyranose or furanose ring  
  Drives the addition of the aromatic aglycon to the anomeric position  
  Uses protecting groups which are easily removed in basic medium  
  Produces exclusively the β- O -glycoside as a result of neighboring group 

participation    

 This reaction has been employed for the preparation of  O -glycosides that are 
used as substrates for detection and measurement of enzymatic activity of most of 
the known glycosidases. 

 Using this methodology, several  chromophores   have been attached to most of the 
common monosaccharides. After  O -glycoside cleavage by the enzyme, the release 
of the chromophore will indicate the sites and eventually will quantify the enzy-
matic activity. Some of the chromophores currently used for these purposes are 
represented in Scheme  2.3 .

   The highly fl uorescent  O -glycoside substrate 7-hydroxy-4-methylcoumarin-β- D -
glucopyranose is prepared by condensation between acetobromoglucose and 4-meth-
ylumbelliferone in the presence of potassium carbonate in acetone. The intermediate 
is deacetylated under basic conditions to form  umbelliferyl β- D - glucopyranoside   
(Scheme  2.4 ).

   Anderson and Leaback [ 2 ] were able to prepare 5-bromo indoxyl-β- D - N -
acetylglucopyranoside, a histochemical substrate for enzymatic detection of chitin-
ase by condensing 3,4,6-triacetyl-β- D - N -acetylglucopyranoside chloride with 
5-bromo-hydroxy- N  acetyl indole at 0 °C under nitrogen atmosphere (Scheme  2.5 ).

   An alternative method for preparing the indoxyl glycosides was described more 
recently consisting in the coupling reaction between fucosyl bromide donor and 
indoxylic acid allyl ester under basic medium providing the  O -glycosides in 84 % 
yield as β-anomer. This protocol was extended in the synthesis of sialic acid indoxyl 
glycosides (Scheme  2.6 ) [ 3 ].
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  Scheme 2.3     O -glycoside 
chromophores used for 
enzymatic detection       
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  Scheme 2.4    Michael approach for preparation umbelliferyl- O -glycoside       
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  Scheme 2.5    Synthesis of  indole  O -glycoside   derivative       

2.1.2         Fischer Reaction   

      

 Promoter  Conditions 

 HCl gas  CH 2 Cl 2 , r.t. 
 pTsOH  CH 2 Cl 2 , r.t. 

   This straightforward strategy is used specially for the preparation of simple 
 O -glycosides and the advantage of this methodology is that it does not require the 
use of protecting groups and simply by combining the free sugar with an alcohol 
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under acidic condition we furnish the corresponding  O -glycoside. However, 
contrary to the previous method, this procedure is not stereo selective and therefore 
it provides a mixture of anomers. Also it has been found satisfactory only for small 
aliphatic alcohols (Scheme  2.7 ).

   The addition of a controlled stream of dry HCl during a period of around 10 min 
at room temperature generally is the condition of choice. However, the use of Lewis 
acid, ion exchange resin and more recently trifl ic acid have been also reported 
providing good yields [ 4 ]. 

 It is worth mentioning that besides the main product, a mixture of isomers has 
been detected, suggesting that a rather complex mechanism is involved. It is also seen 
that the amount of these isomers depends importantly on the condition reactions 
employed (Scheme  2.8 ).

   The Fischer methodology has  been   applied successfully for the synthesis of benzyl 
 O -glycosides.   L -Fucose   was converted into benzyl fucopyranoside [ 5 ] by treatment 
with benzyl alcohol under saturation with HCl at 0 °C, to furnish the α and β anomers 
(ratio 5:1) in 80 % yield (Scheme  2.9 ).

  Scheme 2.6    Alternative method for preparing the indoxyl glycosides       
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2.1.3        Koenigs–Knorr  Reaction   

      

 Promoter  Conditions 

 Ag 2 CO 3   PhH, drierite (drying agent), I 2  
 Ag 2 O  s-collidine (acid scavenger). 

 CH 2 Cl 2 , 23 °C, borinic ester, ref. [ 6 ] 
 AgNO 3   HgO (acid scavenger) 
 AgClO 4   Ag 2 ClO 3  (acid scavenger), THF or toluene, r.t. 
 AgOTf  CH 2 Cl 2 , r.t. 
 Silver silicate  CH 2 Cl 2 , 4 Å MS, −60 °C ref. [ 7 ] 

   This reaction reported in 1901 is still one of the most useful reactions for preparing 
a wide variety of  O -glycosides [ 8 ]. It is useful for coupling reactions with either 
alkyl or aromatic alcohols as well as for coupling between sugars. The methodology 
requires silver salts as catalyst and among them the oxide, carbonate, nitrate, and 
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  Scheme 2.8    Fischer  O -glycoside isomers       
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trifl ate silver salts are the most commonly employed (Scheme  2.10 ). Also a drying 
agent such as calcium sulfate (drierite), calcium chloride, or molecular sieves is 
recommended. Improved yields are obtained with iodide, vigorous stirring, and 
protection against light during the course of the reaction.

   The stereochemistry observed is 1,2 trans type  in   most of the cases reported, as a 
consequence of neighboring group participation. When the protecting group is ace-
tate at C (2), there is an intra molecular nucleophilic displacement of the leaving 
group, generating an orthoester [ 9 ]. This intermediate is responsible for the incor-
poration of the alcohol on the β-position (Scheme  2.11 ). Only until recently a 
method for preparing 1,2-cis glycosides has been developed involving the use of 
(1S)-phenyl-2-(phenylsulfanyl)ethyl moiety at C-2 of a glycosyl donor to give a 
quasi-stable anomeric sulfonium ion. The sulfonium ion is formed as a trans- decalin 
ring system. Displacement of the sulfonium ion by a hydroxyl leads to the stereose-
lective formation of α-glycosides [ 10 ].

   This versatile methodology can be applied for preparation of alky, aryl, and oli-
gosaccharide  O -glycosides. A steroidal glycoside cholesterol absorption inhibitor 
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  Scheme 2.10    Koenigs–Knorr reaction       
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was prepared by condensation between acetobromocellobiose and (3β,5α, 25R)-3- 
hydroxyspirostan- 11-one with anhydrous ZnF 2  as catalyst in acetonitrile to provide 
the steroidal glycoside in 93 % yield (Scheme  2.12 ) [ 11 ].

   The  steroidal glycoside   estrone-β- D -glucuronide was prepared by condensation 
between methyl tri- O -glucopyranosylbromide uronate and estrone, employing 
cadmium instead of silver carbonate (Scheme  2.13 ) [ 12 ]. For recent developments 
for the synthesis of  O -glucuronides [ 13 ].
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  Scheme 2.12    Synthesis of steroidal glycoside       
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   The syntheses of various disaccharides have been reported under Koenigs-Knorr 
conditions.  Gentobiose   octaacetate was prepared through condensation of acetobro-
moglucose with 1,2,3,4-tetra- O -acetyl- O -trityl-β- D -glucopyranose in nitromethane 
using silver perchlorate as catalyst (Scheme  2.14 ) [ 14 ].

   Bächli and Percival [ 15 ] reported the synthesis of  laminaribiose   by reacting 
1,2,5,6-diisopropylidenglucose with  acetobromoglucose   in the presence of silver 
carbonate, iodine, and drierite to produce an  acetonide   intermediate which upon 
treatment with oxalic acid and sodium methoxide furnished the 1,3-disaccharide 
(Scheme  2.15 ).

   The synthesis of various disaccharides containing  N -acetylneuraminic acid 
(Neu5Ac) was achieved by using acetochloro and acetobromo neuraminic acids as 
 glycosyl donors   with active glycosyl acceptors under Ag 2 CO 3 -promoted reactions 
conditions (Scheme  2.16 ) [ 16 ,  17 ].

   These conditions are also suitable  for   preparing short oligosaccharides such as 
the one presented in Scheme  2.17 . The donor sugar acetobromogentobiose is cou-
pled to the acceptor intermediate using silver trifl ate as glycosidation catalyst [ 18 ].

   Total synthesis of  bleomycin   group antibiotic has been achieved by Katano and 
Hecht [ 19 ]. Thus, glycoside coupling reaction of protected disaccharide glycosyl 
donor with histidine derivative using silver trifl ate as glycoside promoter provided 
bleomycin key intermediate in 21 % (Scheme  2.18 ).
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   O-glycosidation reactions promoted via silver N-heterocyclic carbene complexes 
formed in situ in ionic liquids have been implemented. Good to excellent yields 
were obtained using Ag–NHC complexes derived from imidazolium halide salts to 
promote the glycosidation reaction (Scheme  2.19 ) [ 20 ].
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  Scheme 2.16    Silver carbonate promoted synthesis of Neu5Ac(2 → 6) disaccharides       
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  Scheme 2.17    Synthesis of tetrasaccharide       
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   On the other hand it has been found that 1,2-cis glycosides can be synthesized 
from α-glycosyl bromide with aliphatic alcohols in the presence of tetraethylam-
monium bromide, under mild conditions reporting high yields. The α-stereoselectivity 
can be explained by an equilibrium between the glycosyl bromide promoted by the 
tetraethylammonium bromide and the nucleophilic attack on the oxonium ion gen-
erated during the interconversion (Scheme  2.20 ) [ 21 ].
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  Scheme 2.18    Glycosylation reaction for preparation of bleomycin precursor       

  Scheme 2.19    O-glycosidation reactions promoted via silver N-heterocyclic carbene complexes       
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   Deoxy aceto chloro glucose has been also used as  glycosyl donors   under silver 
oxide conditions providing disaccharides in high yields. Moreover, the use of 
borinic acid derived catalyst enhance the regioselective and β- selective   reactions 
with acceptors having unprotected cis-1,2- and 1,3-diol groups (Scheme  2.21 ) [ 22 ].

2.1.4         Helferich Reaction   

      

 Promoter  Conditions 

 Hg(CN) 2   CH 3 CN 
 HgBr 2   CH 3 CN 
 HgI 2   CH 3 CN 
 ZnI 2   MS, CH 2 Cl 2  

   This methodology is considered a modifi cation of the previous one, and the main 
change being the use of mercury and zinc salts instead of silver. Also more polar 
solvents are used such as acetonitrile or nitromethane (Scheme  2.22 ). The yields 
reported for this reaction are up to 70 %, or higher; however, a mixture of anomers 
is often observed.

  Scheme 2.20    Preparation of α-glycosyl bromide with aliphatic alcohols in the presence of tetra-
ethylammonium bromide       

  Scheme 2.21    Glycosylation reaction in the presence of silver oxide and borinic acid derived 
catalyst       
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   By following this strategy, Umezawa et al. [ 23 ,  159 ,  160 ] prepared kanamycin  A   
by condensing 6- O -[2- O -benzyl-3-(benzyloxycarbonylamino)-3-deoxy-4,6- O - 
isopropylidene-α- D -glucopyranosyl]- N  ,  N  ′-di(benzoyloxycarbonyl)-2- 
deoxyestreptamine, as glycosyl acceptor with 2,3,4-tri- O -benzyl-6-
( N -benzylacetamido)-6-deoxy-α- D -glycopyranosyl chloride, as glycosyl donor. 
The catalyst employed was mercury (II) cyanide (Scheme  2.23 ).

   The antitumoral  O -glycoside  epirubicine    was   prepared under Helferich condi-
tions [ 24 ] using the acetonide form of adriamycinone and 2,3,6-trideoxy-3- 
trifl uoroacetamido-4- O -trifl uoroacetyl-α- L -arabinohexopyranosyl chloride, and a 
mixture of mercury (II) oxide and bromide as shown in Scheme  2.24 .

   Other coupling reactions between sugars under Helferich conditions have been 
as well described [ 25 ]. For example the case of trisaccharide  raffi nose   prepared by 
condensation between tetra- O -benzyl-α- D -galactopyranosyl chloride as donor and 
2,3,4,1′,3′,4′,6′-hepta- O -acetyl sucrose as acceptor (Scheme  2.25 ).
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  Scheme 2.22    Helferich 
general reaction       

O
O
ZHN

OR
O

O
OR

ZHN NHZ

OH
O

Cl
RO

OAcRHN

OR

NHR

+

i-v

i) Hg(II)CN2, CaSO4/dioxane, PhH. ii) MeONa/MeOH. iii) AcOH. iv) H2, Pd-C.

Z = PhCH2COO-

R = PhCH2-

O
HO

H2N
OH

O

HO
OH

H2N NH2

O
O

HO

OHH2N

OH

NH2
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   Helferich conditions have been used for preparing disaccharides containing 
Neu5Ac(2 → 6)Gal and Glc in good yields, although with low stereocontrol ( α : β  3:4) 
(Scheme  2.26 ).
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  Scheme 2.24    Synthesis of epirubicin       
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  Scheme 2.25    Synthesis of raffi nose derivative       

O

Cl

CO2Me

OAc

AcO
OAc

OAc
AcO + O

O
OBn

BnO OBn

OBn
O

CO2Me

OAc

AcO
OAc

OAc
AcO

i

84%

O

OH
OBn

BnO OBn

OBn

i) Hg(CN)2/HgBr2 (3:1)
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2.1.5        Acetate  Donors    

      

 Promoter  Conditions 

 ZnCl 2   Heat, or MW 
 ZnCl 2   120 °C 
 SnCl 4   5–10 °C 
 TsOH  120 °C 

   This method has been used for preparing long chain and aromatic glycosides under 
different acid promoters such as ZnCl 2 , SnCl 4 , FeCl 3 , TsOH, or zeolite. Particularly 
the use of ZnCl 2  as promoter has been successfully utilized to attach long chain 
alcohol to peracetate saccharides with moderate heating or microwave conditions to 
produce amphipathic glycosides in moderate to good yields as mainly the 1,2- trans - 
glycosides or as a mixture of anomers (Scheme  2.27 ) [ 26 ,  27 ].

   A one-step procedure for the preparation of α- O -glycosamine pentaacetylated 
glycosides with yields up to 70 % and high α-stereoselectivity was achieved by con-
densation between commercially available  D -glycosamine pentaacetates and 
 fl uorogenic coumarins, substituted phenols, and protected serine acceptors under 
ferric chloride conditions (Scheme  2.28 ) [ 28 ].

100%

80%

60%

40%

20%

0%
0.5 1.0 2.0 3.0 4.0 5.0 7.0 9.0 10.0 11.0 min

Yields

Hexanol
Octanol
Decanol
Dedecanol
Hexadecanol

  Scheme 2.27    Preparation of long chain and aromatic glycosides under different acid promoters       
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   Another simple method for  O -glycosidation under SnCl 4  or silver trifl ate an 
SnCl 4  is described reporting high yields as a mixture of anomers depending on the 
as bulkiness, presence of electron-withdrawing groups or polyethoxy motifs 
(Scheme  2.29 ) [ 29 ].

   The application of zeolites as heterogeneous catalysts for the preparations of 
alkyl glycosides is an alternative method due to the acid strength and larger pore 
openings and channel intersections. Thus, the Fe-β zeolite gave the maximum yield 
of 63 % of cetyl galactopyranoside as a mixture of anomers (Scheme  2.30 ) [ 30 ].

   This methodology has been also useful to synthesize 1-naphthyl 2,3,4,6-tetra- O - 
acetyl-α,β- L -idopyranoside by mixing 1,2,3,4,6-penta-O-acetyl-α-L-idopyranose, 
1-naphthol, zinc chloride and heating up to 120 °C during 1 h (Scheme  2.31 ) [ 31 ].

  Scheme 2.28    Preparation of α- O -glycosamine pentaacetylated glycosides       

  Scheme 2.29    O-glycosidation protocol under SnCl 4  or silver trifl ate an SnCl 4  conditions       

  Scheme 2.30    Heterogeneous catalysts for the preparations of alkyl glycosides       
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2.1.6         Imidate Reaction   

      

 Imidate  Promoter  Conditions 

 OC(NH)CCl 3   AgOTf  CH 2 Cl 2 , 0 °C → r.t. 
 OC(NH)CCl 3   TMSOTf  CH 2 Cl 2  or MeCN, 0 °C 
 OC(NH)CCl 3   BF 3 -OEt 2   CH 2 Cl 2  or MeCN, −20 °C 
 OC(NH)CCl 3   NaH  CH 2 Cl 2  
 OC(NH)CCl 3   PhBF 2   CH 2 Cl 2 , −78 °C, ref. [ 32 ] 
 OC(NH)CCl 3   Chiral Brønsted acid catalyst  toluene ref. [ 33 ] 
 OC(NH)CCl 3   2 mol% Pd(PhCN) 2 Cl 2 , 4 mol% AgOTf  CH 2 Cl 2 , −78 °C, ref. [ 34 ] 
 OC(NPh)CF 3   TBSOTf  4 Å MS, toluene, −40 °C 

   This protocol is attributed  to   Schmidt and coworkers [ 35 ,  161 ] who introduced 
trichloroacetimidate as a good leaving group for preparation of  O -glycosides. 
A signifi cant number of simple and complex  O -glycosides involving the imidate 
coupling reaction have been described. This strategy involves the use of trichloro-
acetonitrile that in the presence of a base is incorporated on the anomeric hydroxyl 
group to generate trichloroacetimidate (Scheme  2.32 ). It should be noted that the 
resulting imidate derivative is air sensitive and should be used in coupling reactions 
immediately following preparation. Imidate formation might be spectroscopically 
detected by  1 H NMR through a signal appearing down fi eld at 6.2 ppm [ 36 ].

   Once the imidate if formed, it can be subjected to nucleophilic attack to provide 
the corresponding  S -,  N -,  C -, or  O -glycoside, depending on the chosen nucleophile. 
The use of a catalyst such as BF 3 .OEt 2 , TMSOTf, or AgOTf is necessary to carry out 
the reaction to completion (Scheme  2.33 ). Although the unquestionable applicability 
of this approach, an undesirable side reaction has been encountered with glycosyl 
trichloroacetimidates in the presence of Lewis acid catalysis via the Chapman 
rearrangement [ 35 ,  161 ].
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   Hasegawa et al. [ 37 ] has prepared the ganglioside shown in Scheme  2.34  using 
2,3,4,6-tetrabenzylglucopyranosyl-α-acetimidate with the lipophilic alcohol, to 
generate a  ganglioside  .

   The  total   synthesis of  calicheamicin   α and  dynemicin A   has been described by 
Danishefsky’s group [ 38 ], and involves glycosylation of calicheamicinone conge-
ner with the complex glycosyl imidate using BF 3 .OEt 2  as Lewis acid catalyst 
(Scheme  2.35 ).

   Naturally occurring herbicides known as  tricolorin   A, F and G were isolated from 
the plant  Ipomoea tricolor  and since then synthesized involving glycoside coupling 
reactions. The fi rst total synthesis of tricolorin A was performed by Larson and 
Heathcock [ 39 ], involving three coupling reactions steps with imidate intermediates 
used  as   glycosyl donors (Scheme  2.36 ). The lactonization key step for the prepara-
tion of the synthesized tricolorins has been achieved either under macrolactonization 
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conditions reported by Yamaguchi [ 40 ,  41 ] and also under ring closure methathesis 
conditions [ 36 ].

   Another hetero-trisaccharide resin glycoside of jalapinolic acid known as tricol-
orin F has been synthesized involving coupling reactions with imidates as glycosyl 
donors. In this way disaccharide and trisaccharide were prepared sequentially. The 
resulting tricoloric acid C derivative was deprotected and subjected to lactonization 
under Yamaguchi conditions to produce protected macrolactone. Final removal of 
acetonide and benzyl protecting groups provided Tricolorin F (Scheme  2.37 ) [ 41 ].

   A  convergent   approach for obtaining a tumoral antigen fragment of Lewis X  has 
been developed by Boons et al. [ 42 ,  162 ] Condensation of the imidate glycosyl 
donor and the trisaccharide glycosyl acceptor provided the hexasaccharide, which 
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  Scheme 2.33    Nucleophilic displacement of imidate leaving group       

O
OBn

BnO
BnO OBnO

NH

CCl3
+ C13H27HO

N3

OBz

i

O
OBn

BnO
BnO OBn

C13H27O

N3

OBz

i) NaH, CH2Cl2.

  Scheme 2.34    Coupling reaction for the preparation of ganglioside       

 

 

2.1 General Methods



100

was further allowed to react with trichloroacetimidate to generate a hexasaccharide 
glycosyl donor. The fi nal coupling reaction with the disaccharide using BF 3 .OEt 2 , 
furnished the tumoral fragment  Lewis X    (Scheme  2.38 ).

    Selectins   (E, P, and L) are mammalian C-type lectins involved in the recognition 
process between blood cells or cancer cells and vascular endothelium. L-selectins 
plays a key role in the initial cell-adhesive phenomena during the infl ammatory 
process, whereas E-selectins binds strongly to sialyl Lewis A  and Lewis X  [ 43 ,  44 , 
 163 – 165 ]. It has been found that the tetrasaccharide sialyl Lewis X  is the recognition 
molecule and the preparation of sialyl Lewis X  confi rmed the hypothesis that sulfa-
tion increase the affi nity for L-selectins [ 45 ]. The chemical synthesis of 3e- and 
6e-monosulfated and 3e,6e-disulfated Lewis X  pentasaccharides has been prepared 
according to the Scheme  2.39 .

   Likewise, thioaryl donors can also be suitably converted to acetimidates for 
performing glycoside coupling reactions. This is the case of arabinosyl thio derivative 
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which is deprotected under NBS-pyridine conditions forming the lactol in 80 % 
yield as a mixture of anomers (2:1). Treatment with NaH, followed by addition of 
Cl 3 CCN provided the desired trichloroacetimidate intermediate. This strategy has 
been successfully applied in the syntheses of cytotoxic marine natural products 
 eleutherobin   (Scheme  2.40 ) [ 46 ].

   Fluorogenic aglycones such as 4-methylumbelliferyl  have   been attached to per-
acetylated imidates providing the alpha anomer only when TMSOTf was used as 
promoter at −20 °C (Scheme  2.41 ). The resulting glycoside was further used for 
preparing a 4-MU α-T-anitgen [ 47 ].

   In order to understand the α-stereoselectivity the authors proposed that the imi-
dates in the presence of TMSOTf generate an oxocarbenium trifl ate ion pair which 
in turn will accept the nucleophilic attack, favoring an alpha glycoside formation 
due to the extra stability arising from through-space electrostatic interaction between 
the axially disposed C-4 acetyl function and ring oxygen atom of the corresponding 
α-glycosyl oxonium ion (Scheme  2.42 ).

  Scheme 2.37    Synthesis of tricolorin F         
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   Another approach leading to the preparation of amino acid glycosides with 
enhanced α-stereoselectivity was described involving trichloroacetimidate donors 
with non-participating protecting groups with protected amino acids using the het-
erogeneous catalyst, HClO 4 –SiO 2 , reporting high yields (Scheme  2.43 ) [ 48 ].

   An additional utility of trichloroacetimidates as leaving group is its ability to be 
transformed to ureas with α-stereoselectivity via nickel-catalyzed [1,3]-rearrange-
ment and subsequent treatment with secondary amines under the conditions 
described in Scheme  2.44  [ 49 ].

   Another approach involving imidates was assayed with trifl uoroacetimidate as 
leaving group and a disaccharide acceptor, using CH 2 Cl 2  as solvent and TBSOTf as 
the promoter. Under these conditions different  α : β  ratios were observed, however by 
lowering the temperature from −20 °C to −40 °C and improved  α : β  ratio was 
obtained while keeping the good yields (Scheme  2.45 ) [ 50 ].
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  Scheme 2.41    Synthesis of α-4-methylumbelliferyl glycosides       

  Scheme 2.42    Proposed oxocarbenium trifl ate ion intermediates leading to α-stereoselectivity       
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   Likewise, fructofuranosides having  N -phenyl trifl uoroacetimidate as leaving 
group formed α- O -glycosides for different aglycons such as admantanol, protected 
sugars, phenols, and fl avonoids, when TMSOTf is used  as   promoter at low tempera-
ture (Scheme  2.46 ) [ 51 ].

  Scheme 2.43    Preparation of α-amino acid glycosides from imidates       

  Scheme 2.44    Preparation of glycosyl ureas from imidates       

  Scheme 2.45    Synthesis of tetrasaccharides from phenyl trifl uoroacetimidate as glycosyl donor       
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2.1.7         Sulfur Reaction   

      

 Promoter  Conditions 

 NIS-TfOH  0 °C → r.t. 
 HgCl 2   CH 2 Cl 2  or MeCN, 0 °C 
 CuBr 2 -Bu 4 NBr- AgOTf  CH 2 Cl 2  or MeCN, −20 °C 
 MeOTf  Et 2 O, r.t. 
 MeSOTf  Et 2 O, r.t. 
 AgOTf-Br 2   CH 2 Cl 2  
 DMTST  MeCN, −15 °C 
 NBS-TfOH  EtCN, −78 °C 

      

 Promoter  Conditions 

 NIS/TfOH  MeCN 
 NBS  CH 2 Cl 2 , r.t. 
 BSP  CH 2 Cl 2 , MS, r.t 
 DMTST  CH 2 Cl 2  
 MeOTf  CH 2 Cl 2  
 MeSOTf  CH 2 Cl 2  
 (a) Ph 2 SO, Tf 2 O (b) TBAI  CH 2 Cl 2 , MS, −78 °C, ref. [ 52 ] 
 NIS, AgOTf  CH 2 Cl 2 , MS, −45 °C ref. [ 53 ] 

    Thioglycosides   are  useful   glycosyl donors widely used in the preparation of 
 O -glycosides. An example of their applicability for the preparation of saccharide 
synthesis is represented in Scheme  2.47 . Thus, the synthesis of trisaccharide interme-
diate was obtained by combining the thioglycoside donor with a monosaccharide 

  Scheme 2.46    Preparation of fructofuranosyl glycosides from  N -phenyl trifl uoroacetimidate as 
leaving group       

 

2.1 General Methods



108

acceptor in the presence of methyltrifl ate, to provide the target trisaccharide in 72 % 
yield [ 54 ].

   A convergent synthesis of the trisaccharide unit belonging to an antigen polysac-
charide from streptococcus has been performed by Ley and Priepke [ 55 ]. In this 
approach rhamnosylalkylsulfur was used as the glycosyl donor, and cyclohexane- 
1,2-diacetal as the protecting group (Scheme  2.48 ).

   Thioalkyl donors are also  useful   derivatives for the preparation of biologically 
important natural sugars known as  sialic acids   [ 23 ,  159 ,  160 ]. An effi cient proce-
dure for introducing thioalkyl groups as leaving groups involves the conversion of 
acetate into thiomethyl by treatment with methylthiotrimethylsilane in the presence 
of TMS-trifl ate.  O -glycosylation reaction proceeds between the thioglycosylsialic 
donor and a glycosyl acceptor (bearing an -OH group available), using a catalyst 
such as  N -iodosuccinimide-TfOH as promoter (Scheme  2.49 ) [ 56 ].

   The synthesis of aryl 2-deoxy- D -glycopyranosides from 2-deoxy-1- 
thioglycosides and differently substituted phenols and naphthols under 
 N -iodosuccinimide/trifl ic acid conditions is reported. The analysis of the reaction 
mixtures was followed by HPLC technique showing that the α-anomers are the 
major product (Scheme  2.50 ) [ 57 ].

   2-thiophenyl glycosides were used as glycosyl donor for preparing complex oli-
gosaccharides containing sialyl moieties. A remarkable convergent approach was 
described for preparing a sialyl octasaccharide consisting in the initial glycosidic 
reaction between 2-thiophenyl Neu5Ac donor and trisaccharide intermediate to pro-
duce the expected tetrasaccharide in 45 % having an α(2 → 6)-linkage. The resulting 
tetrasaccharide was coupled with dimeric sialyl donor to yield hexasaccharide in 
42 %. Acetal hydrolysis was followed by coupling reaction with Neu5Acα(2 → 3)
GalSMe donor to give the octasaccharide in 85 % yield (Scheme  2.51 ) [ 58 ].
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   Crich and Li [ 59 ] introduced the use of 1-(Benezenesulfi nyl)piperidine/trifl ic 
anhydride  as   promoter conditions for preparing  O -glycosides from thioglycoside 
donors. These conditions were applied for preparing Salmonella type E1 core trisac-
charide (Scheme  2.52 ). This method has been adopted as an alternative approach 
known as “iterative or preactivation” glycosylation which consist in treatment of 
the thioglycoside with 1-benzenesulfi nyl piperidine (BSP) or morpholine analog 
(BSM) and trifl ic anhydride at low temperature, and the resulting “glycosyl trifl ate” 

  Scheme 2.48    Synthesis of an antigen polysaccharide fragment         
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  Scheme 2.50    Synthesis of aryl 2-deoxy- D -glycopyranosides from 2-deoxy-1-thioglycosides       

  Scheme 2.51    Convergent synthesis of sialyl oligosaccharide         
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Scheme 2.51 (continued)
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intermediate treated with a thioglycosides acceptor having a free alcohol suitable 
for attachment [ 60 ].

   This method has been extended as an alternative approach known as “iterative or 
preactivation” glycosylation which consist in the treatment of the thioglycoside 
with 1-benzenesulfi nyl piperidine (BSP) or morpholine analog (BSM) and trifl ic 
anhydride at low temperature, and the resulting “glycosyl trifl ate” intermediate 
treated with a thioglycosides acceptor having a free alcohol suitable for coupling 
reaction (Scheme  2.53 ) [ 60 ,  61 ].

   Highly fl uorinated thiols have been developed and used as donors in the prepara-
tion of disaccharides. The reactivity of these novel fl uorinated thiols were examined 
using different acceptors. Thus, disaccharide formation under glycosidic conditions 
provided the disaccharides in high yields (Scheme  2.54 ) [ 62 ].

   Thioglycosides have been used as donor models for glycosylations with 
imidazolium- based ionic liquids promoters under  N -iodosuccinimide conditions. 
Thus it was observed that tetra- O -benzyl-1-thio-β- D -glucopyranoside as donor and 
1,2:3,4-di- O -isopropylidene-α-D-galactopyranose as glycoside acceptor gave the 
disaccharide in almost 1:1  α / β  ratio in 84 % yield. This methodology claims to have 
the ability of recycling the ionic liquid promoter which make it attractive as a cost 
effective protocol (Scheme  2.55 ) [ 63 ].

   An study using protected thio gluco and galactoside bearing and acetate group at 
6-position was conducted to determine the infl uence of solvent in the stereoselectiv-
ity of the glycosylation reaction with small and reactive acceptors has been carried 

  Scheme 2.53    Iterative or preactivation protocol       
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out, observing a high α-stereoselectivity when using NIS/TfOH as activator and 
ethyl ether as the solvent at −60 °C. Other solvents did not improve the  α / β  ratio, 
although yields were high (Scheme  2.56 ) [ 64 ].

   Fully substituted and deoxy thioglycoside donors were converted to cholesterol 
and disaccharide  O -glycosides by reaction with an air- and water-stable iodonium 
salt phenyl(trifl uoroethyl)-iodonium trifl imide as an activator for glycosylation 
reporting 68–97 % yield as a mixture of isomers (Scheme  2.57 ) [ 65 ].

   Thioperoxide in combination with trimethylsilyl trifl uoromethanesulfonate 
(TMSOTf) was designed as thioglycosides activators as it can be seen in the 
 O -glycoside synthesis of disaccharides reporting high yields and β stereoselectivity 
or as a mixture of anomers (Scheme  2.58 ) [ 66 ].

  Scheme 2.55    glycosylations with imidazolium-based ionic liquids promoters under  N -iodosuccinimide       

  Scheme 2.56    α-stereoselectivity under NIS/TfOH activation       

  Scheme 2.57     O -glycoside formation with an air- and water-stable iodonium salt       

  Scheme 2.58    O-glycosylation under thioperoxide-TMSOTf conditions       
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   Another report for preparing 1,2-cis-R- glycosides   from thioglycosyl donors 
without directing groups involved activating conditions of Ph 2 SO/Tf 2 O at low tem-
perature. It was observed that the use of tetrabutylammonium iodide (TBAI) and 
 N -methylmaleimide leds to a increase of yield accompanied by high 1,2-cis stere-
oselectivity (Scheme  2.59 ) [ 67 ].

   Toluylglycoside was chosen as a glycosyl donor for preparing glycosyl sulfo-
nium ions, via electrochemically generated glycosyl trifl ate, which in turn served 
for preparing β-disaccharides from moderate to good yields depending on the tem-
perature at which glycosylation was performed (Scheme  2.60 ) [ 68 ].

2.1.8        Unprotected  Glycosylations   

 Attempts for preparing straight glycosylations using unprotected sugars with a variety 
of aglycons such as aliphatic, aromatic and other sugars have been implemented in the 
presence of different promoters. For instance simple benzyl glycosides and disaccha-
rides of glucose, mannose and  N -acetylgalactosamine were obtained in 1-ethyl-3-me-
thylimidazolium benzoate with Amberlite IR-120 (H+) resin or  p - toluenesulfonic 
acid as promoters in modest yields (Scheme  2.61 ) [ 69 ].

  Scheme 2.59    1,2-Cis glycosylation under Ph 2 SO/Tf 2 O conditions       

  Scheme 2.60    O-glycosylation method via electrochemically generated glycosyl trifl ate       

  Scheme 2.61    Unprotected glycosylation in the presence of acidifi ed liquid ion solvents       
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   Brønsted acid ionic liquids (BAILs) have been designed as promoters for glyco-
sylations of unprotected sugars due to their ability to adjust solubility properties by 
different cation–anion combinations. Under these conditions the yields reported 
range from 19 to 67 depending on the alcohol assayed, providing mainly the 
α-anomer. It has been observed that the reaction between different aldose monosac-
charides and octanol produces a mixture of pyranosides and furanosides as a mix-
ture of anomers (Scheme  2.62 ) [ 70 ].

   Glycosylation of  unprotected   ribose with a variety of alcohols, have been carried 
out by following a variation of the Apple reaction which substitute a hydroxyl group 
by a bromine in situ, under triphenylphosphine and tetrabromomethane conditions. 
An improvement in the reaction was observed when lithium perchlorate was used in 
arabinose, xylose, and lyxose providing good yields although the glycosides were 
obtained in the pyranoid form with different  α / β  ratios (Scheme  2.63 ) [ 71 ].

   Previously this group was able to prepare isopropyl glycosides by direct glycosyl-
ation reaction of unprotected riboside with isopropanol in the presence of mandelic 
acid and titanium tert-butoxide [ 72 ]. On the other hand, Meng et al. [ 73 ] reported the 
1,2-cis-alkyl glycosidation protocol with unprotected phenyl 1- thioglycosyl donors 
with a variety of alcohol acceptors under the activation of  N -iodosuccinimide–
trimethylsilyl trifl ate (although other Lewis acids such as TfOH or BF 3 .OEt 2  provide 
good yields). The desired product was obtained in 75–76 % yields and with high α 
stereoselectivity (Scheme  2.64 ).

  Scheme 2.62    Unprotected glycosylation in the presence of Brønsted acid ionic liquids (BAILs)       

  Scheme 2.63    Unprotected glycosylation via the Apple reaction       
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   Another protecting group free glycosidations was proposed by using  p - 
toluenesulfonylhydrazide as leaving group followed by coupling reaction with alco-
hols in the presence of NBS in DMF at room temperature, providing the  O -glycoside 
in good yields 70–87 % mainly as a β-isomer (Scheme  2.65 ) [ 74 ].

   Gold (III) activation  of   unprotected glycosyl donors bearing 2-butynyl as leaving 
group has been used in combination with primary alcohols and protected saccha-
rides as acceptors, providing the corresponding  O -glycosides as a mixture of ano-
mers in moderate yields (Scheme  2.66 ) [ 75 ].

2.1.9        Armed–Disarmed  Method   

 This versatile approach has been attributed to Mootoo and Fraiser-Reid [ 76 ], and 
considers the use of a glycosyl donor in the classical sense coined with the term 
“armed saccharide” (because the reducing end is armed for further coupling reac-
tion), and an acceptor in this case “disarmed saccharide” which contains both a free 
alcohol and a leaving group suffi ciently resistant for the ongoing coupling reaction. 
The resulting disaccharide now becomes and armed disaccharide which in turn is 

  Scheme 2.64    Unprotected glycosylation with unprotected phenyl 1-thioglycosyl donors       

  Scheme 2.66    Unprotected glycosylation from 2-butynyl glycosyl donors in the presence of gold 
(III) activation       

  Scheme 2.65    Unprotected glycosylation by using  p -toluenesulfonylhydrazide as donor       
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reacted with another glycosyl acceptor or disarmed sugar to produce the oligosaccharide 
chain elongation (Scheme  2.67 ).

   This method was fi rst implemented in the preparation of 1–6 linked trisaccharide 
shown in Scheme  2.68 . As it can be observed the disarmed sugar intermediates 
function as glycosyl acceptor bearing the hydroxyl group at position 6 available for 
establishing a glycosidic linkage with the armed unit.
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   Despite the usefulness of pentenyl as protecting group, clear preference in the 
use of thioglycoside donors as armed and disarmed donors is often observed 
(Scheme  2.69 ) [ 77 ].

   This concept was applied successfully in the stereocontrolled synthesis of Le x  
oligosaccharide derivatives by using two glycosylation steps as described by Yoshida 
et al. [ 78 ]. The fi rst coupling between “armed” thiophenyl fucopyranosyl derivative 
and “disarmed” thiophenyl lactose derivative under NIS-TfOH conditions provided 
trisacccharide which was subjected without purifi cation to second condensation with 
different acceptors, one of which is indicated in Scheme  2.70 .

   The construction of α-linked mannoside disaccharide was achieved under the 
armed–disarmed approach by using armed thiogalactoside donor activated by 
BSP/Tf 2 O and condensed with disarmed thiomannoazide intermediate bearing a 
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free hydroxyl group. Addition of triethyl phosphate prior to the aqueous work up led 
to the generation of the expected α-linked disaccharide in 74 % (Scheme  2.71 ) [ 77 ].

   Recently S-benzoxazol thio glycoside (SBox)  was   synthesized and introduced 
as alternative glycosyl donor for preparing disaccharides under the armed–dis-
armed approach. Thus, the SBox glycosyl donor was used as armed donor and 
condensed with disarmed thioglycoside to provide the target disaccharide 
(Scheme  2.72 ) [ 79 ].
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2.1.10         Glycal Reaction   

      

 Promoter  Conditions 

 ZnCl 2   THF 

   The glycals are unsaturated sugars with a double bond located between C1 and C2. 
These useful intermediates were discovered by Fischer and Zach in 1913 [ 80 ] and 
their utility in the preparation of building blocks for oligosaccharide synthesis is 
increasingly important. Different routes for the preparation of triacetyl glucals have 
been examined by Fraser-Reid et al. [ 81 ], involving the Ferrier rearrangement. 
Moreover, a suitable one-pot preparation of glucals has been more recently 
described, starting from reducing sugars by Shull et al. [ 82 ] The general procedure 
for preparing these valuable intermediates is based on the reductive removal of a 
halogen and neighboring acetate group through the use of zinc in acetic acid 
(Scheme  2.73 ). The completion of this reaction can be followed by  1 H NMR, where 
the presence of a signal around 6.3 ppm as double of double with  J  1,2  = 6.2 Hz, 
 J  1,3  = 0.3 Hz is expected for H-1, and a multiple shifted upfi eld for H-2.

   More recently the use of alternative catalysts such as titanium complex, Li/NH 3 , 
Sodium, Cr (II) and vitamin B-12 as catalysts has been described as improved 
method, for preparing especially acid sensitive glycals. 

 As for any double bond, these unsaturated sugars may undergo electrophilic 
addition, which takes place at the C2 position leaving a positive charge at C1, which 
instantly reacts with the conjugate base. This reaction is particularly useful for the 
preparation of 2-deoxypyranosides (Scheme  2.74 ).

   A more extended application for glycoside bond formation has been developed 
recently. Such strategies consist of the conversion of glycals into Brigl’s epoxide, 
and then further treatment with nucleophiles to effect ring opening. The oxidation 
of the double bond has been successfully achieved with dimethyl dioxirane (DMDO) 
in acetone (Scheme  2.75 ).

   The standard procedure  for   generation of DMDO was developed by Murray and 
Jeyaraman [ 83 ], and optimized by Adam et al. [ 84 ]. Such procedure involves the use 
of potassium monoperoxysulfate as oxidizing agent, and the reaction conditions 
require temperatures below 15 °C and effi cient stirring. The DMDO–acetone solu-
tion generated must be immediately distilled under moderate vacuum. The concen-
trations of DMDO are in the order of 0.09–0.11 M (5 %), and it is used as acetone 
solution. The transformation of the glycal to the epoxide can be verifi ed by  1 H NMR, 
where it is observed the disappearance of the signal at 6.3 ppm for H-1 double bond, 
and it is expected the presence of a signal at 5.0, as double for H-1 and at 3.1 as 
double of double for H-2 (Scheme  2.76 ).
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   The stereo selectivity of epoxide formation is protecting group dependent, 
observing in the case of acetate protecting group a mixture of epoxide anomers, and 
preferentially the α-anomers if the protecting groups are benzyl, or methyl groups 
( α : β  ratio 20:1). As expected, the epoxide ring opening by nucleophiles occurs with 
inversion of confi guration, providing β-glycosides exclusively (Scheme  2.77 ).

   Likewise, alternative epoxide conditions from glycals have been assayed besides 
DMDO treatment. Among them, cyclization of a bromohydrin [ 85 ],  m - 
chloroperoxybenzoic acid-potassium fl uoride complex oxidation of the glycal 
[ 86 ], and potassium tertbutoxide oxidation of fl uoride glycosyl donor [ 87 ] has been 
described (Scheme  2.78 ).

   The potential of 1,2-anhydro sugars as glycosyl donor for the preparation of 
β-linked saccharides was established by Halcomb and Danishefsky [ 88 ] and such 

  Scheme 2.76     1 H NMR spectra of 1,2-anhydro-3,4-di- O -benzyl-α- D -fucopyranose (and traces 
of acetone)       
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strategy consist in the treatment of the glucal having available a hydroxyl group at 
position 6, with the sugar epoxide under Lewis acid conditions (ZnCl 2 ) at low tem-
perature. The resulting glucal disaccharide generated as a single coupling product 
was further converted to the epoxide which eventually lead to the next coupling 
reaction with another glucal acceptor (Scheme  2.79 ).

   The tetrasaccharide Cap Domain of  the   antigenic lipophosphoglycan of 
 Leishmania donovani  has been prepared under the glycal approach by Upreti and 
Vishwakarma [ 89 ]. Thus, the preparation of the hexa- O -benzyl-lactal under stan-
dard procedures was followed by oxirane formation with dimethyl dioxirane to gen-
erate the corresponding oxirane. Methanolysis ring opening and gluco → manno 
conversion generated the disaccharide intermediate. This was coupled to the man-
nobiose donor to produce the tetrasaccharide, which after deprotection lead to the 
tetrasaccharide Cap domain (Scheme  2.80 ).

   Brigl’s epoxide has been exploited successfully for the preparation of glycosyl-
ated peptides such as collagen type II derived glycosides carrying β-Gal and αGlc- 
1,2-βGal side chains [ 90 ,  166 ]. Galactosyl glycal is reacted with DMDO–acetone 
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  Scheme 2.79    Epoxide glycal as glycosyl donors       
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solution and the resulting epoxide reacted with hydroxylysine and ZnCl 2  as promoter 
(Scheme  2.81 ). General procedures for preparation of glycosidic bond of glycopep-
tides can be reviewed in the comprehensive study reported by Kunz [ 91 ].

   A Gold (I)-catalyzed glycosidation approach was developed by reaction of 
anhydro glycals with protected sugar acceptors or cholesterol, using as promoter 
Ph 3 PAuNTf 2  producing the glycosylation product as a mixture of anomers in 
moderate to good yields (Scheme  2.82 ) [ 92 ].

   Glycals can lead to 2-deoxy- O -glycosides by treatment of protected  D -glucal and 
 D -galactal with the alcohol in the presence of trimethylsilyl iodide and triphenylphos-
phine to produce the  O -glycoside favoring the α-selectivity (Scheme  2.83 ) [ 93 ].

   Likewise the preparation of unsaturated  O - and  S -glycosides can be accom-
plished properly by glycosidic reaction of glycal triacetate with alcohol or thiol 
under erbium trifl ate-catalysis, observing that in dry CH 3 NO 2  during 2 h the higher 
yields of the Ferrier product (90 %) mainly as the α-isomer (Scheme  2.84 ) [ 94 ].
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  Scheme 2.82    O-glycosylation from anhydro glycals promoted by gold complex       

 

 

2  O -glycoside Formation



127

   This methodology has been extended for the preparation of E-selectin ligand 
tetrasaccharide sialyl Lewis X  (SLe x ), which is located at the terminus of glycolipids 
present on the surface of neutrophils. The chemoenzymatic  sequence   consisted in 
the reaction of the 6-acetylated glucal with β-galactosidase transferase to produce 
disaccharide which was subjected to further transformations according to the pathway 
presented in Scheme  2.55  (Scheme  2.85 ) [ 95 ].

2.1.11         Fluorine Reaction   

      

 Promoter  Conditions 

 SnCl 2 -AgClO 4   Et 2 O, −15 → r.t. 
 Cp 2 HfCl 2 - AgOTf  CH 2 Cl 2 , −25 °C 
 SnCl 2 -AgOTf  CH 2 Cl 2 , 0 °C 

   Fluorine is considered a poor leaving group, and its use for glycoside bond forma-
tion has been more restricted than chlorine and bromine, although display higher 
thermal and chemical stability. Nonetheless several  O -glycoside synthesis involving 

  Scheme 2.83    Preparation of 2-deoxy- O -glycosides from glycals promoted by TMSI-PPh 3        

  Scheme 2.84    Preparation of unsaturated  O - and  S -glycosides under erbium trifl ate-catalysis       
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glycosyl donors with fl uorine as leaving group has been described, specially for the 
preparation of α- O -glycosides with high stereoselectivity [ 96 ]. 

 Based in the use of fl uorine glycosyl donors, the synthesis of the marine algae 
 α-agelaspines   was carried out through the condensation of perbenzylated galactopy-
ranosyl fl uorine as anomeric mixture with the long chain alcohol in the presence of 
a mixture of SnCl 2  and AgClO 4  as catalyst (Scheme  2.86 ) [ 97 ].

   A general procedure for the preparation of ribofuranosyl fl uorides and their use 
as  glycosyl donors   for  O -glycosylation with α-stereocontrol was developed by 
Mukaiyama et al. [ 98 ], and consist in the conversion of 2,3,5-tri- O -benzyl- D - -
ribofuranoside that react under mild conditions with 2-fl uoro-1-methylpyridinium 
tosylate at room temperature to give an anomeric mixture ( α : β  58:42) in 84 % 
yield. These two fl uorines could be either separate or interconverted by treating 
the α-anomer with boron trifl uoride etherate in ether at room temperature 
(Scheme  2.87 ).

   It has been observed that the glycosylation reaction between the glycosyl fl uo-
rine and different alcohols under Lewis acid conditions provides mainly 
α-riboglucosides in high yield as it is shown in Scheme  2.88 
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   Sulfated Le x  and Le a - type   oligosaccharide selectin ligands were synthetically 
prepared as described below. Thus, glycosyl donor and acceptor were condensed 
under Mukaiyama conditions (AgClO 4 -SnCl 2 ) to form the β-glycoside in 90 % yield. 
The sulfated tetrasaccharide was formed by reaction of tetrasaccharide acceptor with 
SO 3 .NM 3  complex in anhydrous pyridine (Scheme  2.89 ) [ 99 ].
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2.1.12         Iodine Reaction   

      

 Promoter  Conditions 

 NBS (1.2), TMSOTf (0.4), TMU (0.2)  5 °C to rt, 4 h 
 ZnCl 2  (1.4)  rt, 12 h 

i) SnCl2, Ph3CClO4, Et2O, MS 4A, 93%
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 Promoter  Conditions 

 NBS (1.2), Cu(OTf)2 (0.12)  5 °C to rt, 28 h 
 Bu 4 NI  DIPEA, PhH, 4 Å MS 
 NIS, I 2 , TMSOTf  3 Å MS, DCE 

   Glycosyl iodides have been increasingly adopted as glycosyl donors for the synthe-
sis of  O -,  S , and  C  glycosides, on one side because of the introduction of suitable 
reagents for iodination such as iodotrimethylsilane (Me 3 SiI), and hexamethyldisi-
lane (HMDS) with molecular iodine, and on the other because of the feasibility for 
generating either α and β glycosides (Scheme  2.90 ) [ 100 ].

   In general the stereocontrol on glycosylations depends on a combination of fac-
tors mainly the protecting group at C-2 position, the nature of the leaving group and 
the promoter conditions. It is well accepted that there are two possible mechanism 
S N 1-like and S N 2-like which defi ne the fi nal  α / β  ratio or the major anomer produced. 
Usually the intermediate oxacarbenium ion has poor stereochemical control, 
because it can be attacked from both the α- and β-side while in the S N 2-type the 
protected glycosyl donor is activated by an electrophile and the leaving group is 
displaced by the nucleophile being in this case the sugar acceptor or any other agly-
cone (Scheme  2.91 ) [ 101 – 103 ].

   The nature of the aglycones linked  to   glycosyl iodide donors are diverse and among 
them morphine, uridine diphosphate, and steroidal alcohols have been glycosylated 
with promoters such as and Bu 4 NF, NBS-I 2 -TMSOTf (Scheme  2.92 ) [ 104 – 108 ].

  Scheme 2.90    O-glycosylation from protected glycosyl iodides under NBS-ZnI 2  conditions       

  Scheme 2.91    Schematic representation of α-glycosylation stereocontrol involving glycosyl 
iodides       
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  Scheme 2.92    Example of  O -glycosylations from glycosyl iodides in the presence of different 
promoters         

.  
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2.1.13         Silyl Reaction   

     

 R  Promoter  Conditions 

 Me 3 Si  TMSOTf or BF 3 .Et 2 O  CH 2 Cl 2 , −5 °C 
  t BuMe 2 Si  TMSOTf  CH 2 Cl 2 –acetone, −35 °C 

   Silyl groups are best known as versatile protecting groups, and their use as leaving 
groups for glycoside bond formation has been more limited. An example of glyco-
side formation involving a silyl group as leaving group is reported for the preparation 
of  luganol  O -glycoside   [ 109 ]. In this work, the glycosyl donor is combined with 
luganine in the presence of trimethylsilyltrifl ate at low temperature (Scheme  2.93 ). 
It is worth mentioning that stereoselectivity is dependent on C-2 neighboring group 
participation. When acetate is the C-2 protecting group, the β-anomer is obtained, 
while if the protecting group is benzyl, the α-anomer is preferred.
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  Scheme 2.93    Sialyl derivatives as glycosyl donors       
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2.1.14         Phosphate Reaction   

      

 R  Promoter  Conditions 

 P(=O)(OPh) 2   TMSOTf  CH 2 Cl 2 , −5 °C 
 P(=S)(Me) 2   TrClO 4  
 P(=O)(NMe 2 ) 2   TMSOTf  CH 3 CN, −40 °C 
 P(=NTs)(NMe 2 ) 2   BF 3 - Et 2 O  CH 2 Cl 2  

   Phosphorous glycosyl donors  are   another option for preparing oligosaccharides. 
These donors have been used for the preparation of sialyl oligosaccharides however 
the yield reported were moderate. This is the case of the preparation of sialyl tetrasac-
charide derivative which was carried out by condensation between sialyl phosphate 
and trisaccharide acceptor under TMSOTf as catalyst (Scheme  2.94 ) [ 110 ,  111 ].

2.1.15         Pool Strategy   

 This term applies to defi ne a one-step reaction used to build up two β-linkages 
simultaneously from three sugar intermediates [ 112 ]. This approach has been 
described for the preparation of the glycosyl ceramide Globo H hexasaccharide 
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  Scheme 2.94    Phosphorous glycosyl donors for oligosaccharide synthesis       
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identifi ed as an antigen on prostate and breast cancer cells. The synthesis consisted 
in the initial synthesis of the trisaccharide building block from the one-pot reaction 
of the three suitable sugar intermediates under  N -iodosuccinimide and trifl ic acid 
conditions in 67 % yield (Scheme  2.95 ).

2.1.16         Enzymatic Approach   

 Enzymes in organic chemistry has become an essential tool for the synthesis of 
important target molecules and in many cases they are considered the fi rst choice 
specially for those key steps involving stereospecifi cally controlled reaction condi-
tions. In general enzymes are considered effi cient catalysts which perform the desired 
transformation under mild conditions with high selectivity and specifi city, usually 
avoiding epimerization, racemization and rearrangements processes. Besides there is 
a current need of developing economical and environment friendly processes for 
synthesis. However still some aspects needs close attention in order to fulfi ll thor-
oughly the requirements specially for high scale production. Thus, many enzymes 
are unstable, high cost, diffi cult to handle, and requires expensive cofactors. 

  Glycosyltransferases   are important enzymes involved in essential processes 
related to oligosaccharide biosynthesis and they have found also very useful as 
biocatalyst for the chemoenzymatic synthesis of interesting oligosaccharides and 
nucleotides [ 113 ,  114 ]. They have been classifi ed as Leloir if they are involved in 
the biosynthesis of most of N- and O-linked glycoproteins in mammalians, and 
require monophosphates and diphosphates as glycosyl donors, and non-Leloir 
enzymes which utilize sugar phosphates as substrates. 

 Glycosylations with galactosyltransferases can  be   performed through the use of 
glucose-1-phosphate as donor. A general sequence consists in the conversion by using 
UDP-Glc pyrophosphorylase to give UDP-glucose. Epimerization with UDP- glucose 
epimerase forms UDP-galactose which is used for glycosylation with galactosyltrans-
ferase (Scheme  2.96 ) [ 115 ].
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   The use of phosphorylase enzymes emerge as a potentially useful enzymatic tool 
for glycosylation, and an array of these enzymes such as glucan, sucrose, glucosyl 
glycerol, laminaribiose, nigerose, and maltose phosphorylases, have been isolated 
and identifi ed from different microorganisms and considered for synthesis even at 
industrial scale synthesis [ 116 ]. 

 Several chemoenzymatic synthesis of α(2 → 6) and α(2 → 3)-oligosaccharides 
have been reported through the use of sialyltransferases for glycosidic coupling 
reactions. One described approach involves the in situ regeneration of CMP- 
Neu5Ac, requiring catalytic amount of CMP-Neu5Ac (Scheme  2.97 ) [ 117 ].

   Sialyltransferases also proved to be effi cient biocatalysts in the preparation of 
gangliosides, being involved in (2 → 6) linkage formation between the tetrasaccha-
ride ceramide and CMP-Neu5Ac (Scheme  2.98 ) [ 118 ].

   Glucosamine may be enzymatically transformed to glucosamine 6-phosphate by 
treatment with hexokinase from yeast, and ultimately to glucosamine 1-phosphate 
by the action of phosphoglucomutase (Scheme  2.99 ) [ 119 ].

   UDP-glucuronic acid was prepared from UDP glucose by the action of UDP-Glc 
dehydrogenase along with NAD. This cofactor was regenerated with lactate dehy-
drogenase in the presence of pyruvate (Scheme  2.100 ) [ 120 ].

   CMP-N-acetylneuraminic acid has  been   prepared form CTP and NeuAc under 
catalysis by CMP-NeuAc synthetase. In a cascade representation, it is observed that 
CTP is synthesized from CMP with adenylate kinase and pyruvate kinase 
(Scheme  2.101 ) [ 121 ].
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2.1.16.1       Enzymatic Synthesis of Oligosaccharides 

 Mutated glycosidase also known as glycosynthase AbgGlu358Ala in combination 
with activated glycosyl donors and suitable acceptors can generate synthetic oligo-
saccharides. Thus, for this transformation the conditions selected were α-glycosyl 
fl uoride as glycosyl donor and  p -nitrophenyl as glycosyl acceptor in the presence of 
ammonium bicarbonate buffer. The proposed mechanism of glycosynthase- 
catalyzed reaction is illustrated in Scheme  2.102  [ 122 ].

   The Regioselective preparation of α-1,3 and α-1,6 disaccharides by using 
α-glycosidase as biocatalyst has been described. Thus, by combining 
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 p -nitrophenyl- α-galactose functioning as glycosyl donor, with the glycosyl acceptor 
methoxygalactose, the expected 1,3- and 1,6-disaccharide were obtained in the 
form of α- and β-anomers (Scheme  2.103 ) [ 123 ].

   A  transglycosylation   reaction mediated by α- L -fucosidase from  Alcaligenes  sp. 
was performed by combination of  p -nitrophenylglycosides donors, with different 
acceptors such as  N -acetylglucosamine, lactose,  D -GlcNAc, and  D -Glc, providing 
the corresponding  p -nitrophenyl glycosides of disaccharides and trisaccharides 
containing a (1 → 2)-, (1 → 3)-, (1 → 4)-, or (1 → 6)-linked to the α- L -fucosyl group. 
In the general procedure illustrated in Scheme  2.76  the  p -nitrophenyl fucoside 
donor was combined with  p -nitrophenyl lactosamine acceptor, being incubated 
with α- L - fucosidase at 50 °C to produce the 2- and 3-linked trisaccharides 
(Scheme  2.104 ) [ 124 ].

   Sulfotransferases provides a versatile method for the preparation of glycoside 
sulfates. A recent report describes the use of 3′-phosphoadenosine-5′-phosphosulfate 
(PAPS), and GlcNAc-6-sulfotransferase as catalyst (Scheme  2.105 ) [ 125 ].
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   A chemoenzymatic synthesis of rhodiooctanoside isolated from Chinese medicines 
was described. The synthesis was carried out by direct β-glucosidation between 
1,8-octanediol and  D -glucose using immobilized β-glucosidase from almonds with 
the synthetic propolymer ENTP-4000 to generate the glycoside in 58 % yield 
(Scheme  2.106 ) [ 126 ].

    Lactosamine   was prepared using and enzymatic approach consisting in the 
preparation of UDP glucose and condensation with  N -acetyl glucosamine (GlcNAc) 
in the presence of galactosyl transferase (Scheme  2.107 ) [ 127 ].

   Unprotected glycosyl fl uorides also have been used as donors for the enzymatic 
synthesis of disaccharides. For instance, glycosynthase and glycosidase mutants 
obtained from  Thermotoga maritima  and  Thermus thermophilus  have been used 
effectively for the regioselective synthesis of disaccharides (1 → 3) in higher of 80 % 
yield (Scheme  2.108 ) [ 128 ].
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  Scheme 2.104    Transglycosylation reaction for the preparation of 2- and 3-linked trisaccharides       

O
OH

HO
HO

NHAc

OR
O

OSO3
2-

HO
HO

NHAc

OR

GlcNAc-6-sulfotransferase

N

NN

N

NH2

O

2-O3PO OH

OP

O

O-
OS-O

O

O
N

NN

N

NH2

O

2-O3PO OH

OP

O

O-

-O

PAPS 3',5'-ADP

  Scheme 2.105    Transfer of the sulfuryl group from PAPS to the glycoside       

 

 

2  O -glycoside Formation



141

   Another example of enzymatic glycosylation using unprotected fl uorides donors 
was achieved by using α- D -glucuronyl fl uoride with engineered  Escherichia coli  
glucuronylsynthase, providing β-glucuronides in moderated to good yield depending 
on the alcohol acceptor employed (Scheme  2.109 ) [ 129 ].
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2.1.17         Solid Phase Methodology 

 Perhaps what remains as the most challenging task for sugar chemistry is the synthesis 
of complex oligosaccharides such as that found in bacterial membranes or wall 
cells, and that are usually in the form of glycopeptides. Different types of monosac-
charides can be present as constitutive parts such as glucose, galactose, mannose, 
 N -acetylglucosamine, sialic acid and  L -fucose. Also, the order of linkage and stere-
oselectivity between them is rarely conserved. 

 The different nature, stereoselectivity and linkage sequence have been a formi-
dable obstacle for the development of general procedures of the type used for pep-
tides and oligonucleotides which can be prepared on machine synthesizers with 
high effi ciency. 

 The main advantage of the solid phase methodology is the coupling of sugar 
units to the resin, which allows easy washing away of the non reacted reagents, 
avoiding tedious purifi cations steps. 

 Nonetheless despite the diffi culties, interesting progress has been made for pre-
paring oligosaccharides [ 130 ,  167 ,  168 ], and glycopeptides [ 131 ], suggesting that in 
the solid phase technology for complex sugars will be affordable. 

 The  solid phase   approach involves three elements namely the glycosyl donor, 
glycosyl acceptor and the resin which is properly activated with a group susceptible 
for attachment either with the glycosyl donor or acceptor depending on the strategy 
of choice. Although it appears obvious, it is important to remain that the linkage 
between the resin and the sugar should be easily cleaved under compatible conditions 
for the glycoside bond. 

 According to a comprehensive review [ 132 ], the synthetic strategies are classi-
fi ed into: (a) donor-bound, (b) acceptor-bound, and (c) bidirectional Strategies. 

 One general approach involves the initial attachment of a glycosyl donor (halides, 
trichloroacetimidate, sulfoxides,  phosphate  (one is repeated), thio, allyl and  gly-
cals) to the resin (polystyrene-base). The attached sugar is selectively deprotected 
depending on the required position (1,2- 1,3- 1,4- 1,6-), transforming the resin–
sugar complex in a sugar acceptor which will be coupled to the next glycosyl donor 
to produce a second linkage. By repeating this sequence an elongated chain is 
obtained. The fi nal release and full deprotection will produce the free oligosaccharide 
(Scheme  2.110 ) [ 133 ].

  Scheme 2.109    Enzymatic glycosylation from unprotected glycosyl fl uorides       
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   An example of the donor bound strategy is the bounding of sulfur glycoside to 
polystyrene resin to form a sulfur linkage between the donor and the resin 
(Scheme  2.111 ). Suitable hydroxyl group from the donor will serve as linkage site 
with de next sugar unit for chain elongation.

   It should be noted that the glycosyl donor also contains a position available for 
the linkage with the next sugar. In other words the glycosyl donor once attached to 
the resin becomes a glycosyl acceptor, as can be seen for the next coupling sequence 
(Scheme  2.112 ) [ 132 ].
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   The synthesis of β-(1 → 6) gentotetraose was accomplished by using a benzoyl 
propionate as resin linker. The glycosyl donor chosen was acetobromoglucose func-
tionalized with trichloroacetate group as a temporary protecting group at position 5. 
Glycosylation reactions were effected under Helferich conditions and cleavage 
from resin was performed with hydrazinium acetate (Scheme  2.113 ).

   Polymer solid phase has been also exploited successfully by Crich et al. [ 134 ], 
for the synthesis of sensitive β-mannosides, using a variation of sulfhoxide method, 
consisting in the transformation of sulfoxide to trifl ic group as leaving group. 
The subsequent addition of alcohol acceptor to the donor attached to the  Wang resin   
will result in the glycoside β-mannoside formation (Scheme  2.114 ).

   The  N -phenyl trifl uoroacetimidate donor was incorporated as a building block 
for solid-phase assembly as described in Scheme  2.115 , starting from the coupling 
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with a resin under TfOH conditions, and subsequent condensation with 
S-phenylglucuronic acid, to furnish dimer which was transformed into imidate 
donor until reaching a building block at multigram scale (Scheme  2.115 ) [ 135 ].

   The enzymatic solid-phase oligosaccharide synthesis relies mainly by the use of 
glycosyltransferases, glycosidases, and glycosynthases. By taking advantage on 
their high stereoselectivity and regioselectivity, various oligosaccharides and glyco-
peptides have been prepared usually under mild conditions without the need of 
using protecting groups. Unfortunately the enzymatic approach is still in some cases 
unaffordable due to its high cost for large scale processes, lower yields provided and 
their limited capability for recognizing a broad range of sugars specially those not 
common. Two general approaches have been proposed for the preparation of oligo-
saccharides through the solid-phase approach (Scheme  2.116 ) [ 136 ].

   A solid-phase enzymatic approach for extending the oligosaccharide chain was 
described by Gijsen et al. [ 136 ] in which a disaccharide-linker fragment attached to 
a resin was coupled with the glycosyltransferases UDP-galactose and CMP-NeuAc 
in the presence of galactosyltransferases and sialyltransferase as enzymatic catalyst. 
Final treatment with hydrazine was used to release the tetrasaccharide from the 
solid support (Scheme  2.117 ).
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  Scheme 2.115    Solid-phase assembly by using  N -phenyl trifl uoroacetimidate donors       
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2.1.18        Miscellaneous Glycosylations 

2.1.18.1     Selenosyl Donors 

 The use of  selenoglycosides   as glycosyl donors and acceptor in glycosylation reactions 
has also been described by Metha and Pinto [ 137 ]. A typical glycosidation procedure 
with phenylselenoglycoside donors involves the glycosyl acceptor, 4-Å molecular 
sieves, silver trifl ate, and potassium carbonate in dichloromethane (Scheme  2.118 ).

2.1.18.2        Tetrazol as Leaving Group 

 Tetrazol has also been tested as a leaving group for the preparation of an antibiotic 
fragment [ 138 ]. A coupling reaction with the methoxyphenyl glycosyl acceptor was 
catalyzed with (Me 3 ) 3 OBF 4  as shown in Scheme  2.119 .
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2.1.18.3        Sigmatropic Glyosylations 

 2-aminodisaccharides were obtained by an elegant [3,3] sigmatropic rearrange-
ment, by Takeda et al. [ 139 ] The addition of thiophenol to an unsaturated C-1 in the 
presence of Lewis acid, was followed by a sigmatropic rearrangement with an imi-
date group which migrates from C-4 to C-2. Disaccharide formation was catalyzed 
with Pd(CH 3 CN) 2 -AgOTf complex in dichloromethane (Scheme  2.120 ).

2.1.18.4        Zinc Promoted Glycosylation 

 The total synthesis of the cyclic glycolipid  arthrobacilin A  , a cell growth inhibitor 
was achieved by Garcia and Nizhikawa [ 140 ], under zinc  p - tert -butylbenzoate salt 
as glycoside catalyst, obtaining the β-galactoside glycoside in 73 % along with 
α-isomer in 27 % (Scheme  2.121 ).
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2.1.18.5        Heterogenous Catalysis 

 Stereocontrolled α- and β-glycosylations by using environmentally benign heterog-
enous catalyst has been developed as a novel approach for stereoselective formation 
of β- O -glycosidic linkages. Polymeric materials such as montmorillonite K-10 
[ 141 ], heteropoly acid (H 4 SiW 12 O 40 ) [ 142 ], sulfated zirconia (SO 4 /ZrO 2 ) [ 143 ], and 
perfl uorinated solid-supported sulfonic acids (Nafi on resins) [ 144 ] have been 
assayed successfully providing series of stereocontrolled  O -glycosides in high yield 
(Scheme  2.122 ).

   Glycosyl  N -trichloroacetylcarbamate obtained from reaction of tetrabenzyl 
glucopyranoside hemiacetals with trichloroacetyl isocyanate was used as glycosyl 
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donors. Various Lewis acids were tested for α-selective glycosylation observing that 
the promoters TMSOTf and TMSClO 4  yield the best results (Scheme  2.123 ) [ 145 ].

    N -Sulfonyl imidazole has been used as activating agent for preparing 2-deoxy 
monosaccharides through deprotonation of the anomeric hydroxyl group with 
KHMDS at low temperature. Further reaction with  N -sulfonyl imidazole resulted in 
the glycosyl sulfonates intermediate generated in situ which was fi nally reacted 
with the desired nucleophile to produce the β-glycoside in moderate to good yields 
(Scheme  2.124 ) [ 146 ,  147 ].

   On the other hand 1,2-cyclopropaneacetylated sugar has been proposed as 
glycosyl donors for O-glycosylations, allowing stereoselective control depending 
on the catalyst employed. Thus, β-anomeric products were obtained with BF 3 .OEt 2  
as catalyst, whereas TMSOTf-catalyzed glycosylation prefers the α-anomeric products 
(Scheme  2.125 ).

  Scheme 2.123    O-glycosylation via  N -trichloroacetylcarbamate       

  Scheme 2.124    Preparation of β-glycosides via glycosyl sulfonate formation       
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   Gem-dimethyl 4- n -pentenyl glycosides were proposed as glycosyl donors for 
glycosylation and hydrolysis of the anomeric carbon when using NBS as the sole 
stoichiometric activator with yield reported around 80 % mainly with β selectivity 
(Scheme  2.126 ) [ 148 ].

2.1.19         Cyclic Oligosaccharides 

 The synthesis of cyclic oligosaccharides involves the preparation of linear saccharides 
which ultimately are joined together to form a cyclic macromolecule. There are two 
main approaches proposed based on the cycloglycosylation step. The fi rst involves 
the preparation of a long chain having and each end the donor and acceptor 
functionalities that will be interconnected through a glycosidic bond at a fi nal step, 
and the second involving the polycondensation of smallest repeating unit called 
“saccharide monomers.” It has been observed that the latter strategy is considered 
less laborious; however, it produces cyclic oligomers of different size since under 
these conditions the ring formation step is not controllable. 

  Scheme 2.125    Stereocontrolled glycosylations from 1,2-cyclopropaneacetylated sugar as glyco-
syl donors       

  Scheme 2.126    Preparation of protected β-1,6 disaccharide form Gem-dimethyl 4- n -pentenyl 
glycosides       
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 The chemical synthesis of cyclic oligosaccharides has been mainly driven to 
obtain cyclic (1 → 4)-linked oligopyranosides, however (1 → 3), and (1 → 6) linked 
cycloforms are also described. In the case of (1 → 2)-linked oligosaccharides, 
the ring closure require about 17 or more glucopyranoside residues because 
(1 → 2)-linkage composed of pyranoside connected by one equatorial and one axial 
bond assumes rigid conformations and cannot cyclize [ 149 ]. 

 The pioneering total synthesis of cyclic oligosaccharide  α-Cyclodextrin   was 
carried out by Ogawa’s group in 1985 [ 150 ] and since then alternative chemical or 
enzymatic methodologies appeared for preparing cyclic oligosaccharides. Nowadays 
the industrial production of cyclodextrins relies on the enzymatic conversion of 
prehydrolyzed starch into a mixture of cyclic and acyclic oligomers. 

 A full report about cyclic oligosaccharides [ 150 ] proposes four approaches to the 
synthesis of cyclic oligosaccharides developed during the last 10 years. (1) the stepwise 
preparation of a linear precursor that is subjected to cycloglycosylation; (2) the one-pot 
polycondensation/cycloglycosylation of a small “oligosaccharide monomer” typically, 
a disaccharide or trisaccharide that can yield a range of macrocycles of different sizes; 
(3) the enzyme-assisted synthesis of natural or unnatural cyclic oligosaccharides; (4) 
the ring opening of cyclodextrins followed by oligosaccharide chain elongation and 
cycloglycosylation (Scheme  2.127 ).

   Despite the signifi cant advances observed in cyclic oligosaccharide synthesis, 
their preparation is time consuming, producing the target compounds with low regi-
oselective and stereoselective in low yields. The total synthesis of α-CD and γ-CD 
was described according to Scheme  2.128  [ 151 ,  152 ].

   In 1990, the chemical synthesis of β-(1 → 3) linked hexasaccharide was 
reported. The chemical approach involved the glycosidic reaction between ben-
zylidene acceptor and protected glycosyl bromide as glycosyl donor, under silver 
trifl ate- promoter conditions. As it can be seen in Scheme  2.89 , the construction of 
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  Scheme 2.128    Chemical synthesis of cyclic α(1 → 4)-oligosaccharide γ-CD         
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the linear oligosaccharide and its fi nal cycloglycosylation was performed by using 
glycosyl bromides which were prepared by photolytic brominolysis of 
1,2- O -benzylidene glucose with BrCCl 3  (Scheme  2.129 ) [ 153 ].

   The formation of (1 → 6)-glycopyranosidic linkages might produce cyclic disac-
charides, trisaccharides, and tetrasaccharides. An early synthesis of β-(1 → 6)-glucopy-
ranan under Helferich conditions, generated along with the linear oligomer, a cyclic 
disaccharide and tetrasaccharide in 12 % and 6 % respectively (Scheme  2.130 ) [ 154 ].

  Scheme 2.129    Synthesis of cyclic β-(1 → 3)-linked oligosaccharide         
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   An improved synthesis of cyclotetraoside was described by the same group 
10 years later, consisting in the preparation from the peracetylated tetrasaccharide 
into the tetrasaccharide derivative having both the acceptor and the donor compo-
nents. The fi nal cyclization was performed under Helferich conditions providing a 
mixture of trisaccharide and tetrasaccharide in 22 % and 25 % yield respectively 
(Scheme  2.131 ) [ 118 ,  155 ].
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2.1.19.1        Chemoenzymatic and Enzymatic Synthesis   

 The use of enzyme is as mentioned for many  O - or  N -glycosides the parallel 
possibility for preparing cyclic oligosaccharides. The limitation continue to be the 
availability and affordability; however, some enzymes such as glycosidases and 
cycloglycosyltransferases (CGTases) which are involved in the preparation of 
cyclodextrins from starch and other α-(1 → 4)-glucans are accessible and more 
versatile [ 155 ]. 

 The feasibility of the chemoenzymatic approach was established in the preparation 
of cyclic β(1 → 4) hexasaccharides, heptasaccharides, and octasaccharides, from 
6- O -methylmaltosyl fl uoride when incubated with CGTase. Thus, a mixture of 6 I , 6 III , 
6 V -tri- O -methyl-α-CD (42 %), 6 I , 6 III , 6 V -tetra- O -methyl-γ-CD (16 %) and in less 
proportion 6 I , 6 III , 6 V -tri- O -methyl-β-CD were obtained (Scheme  2.132 ) [ 136 ,  156 ].
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   Furthermore, under the same conditions it was possible to prepare from the 
maltotriosyl fl uoride the cyclic α(1 → 4) hexasaccharide (6 I , 6 II -dideoxy-6 I ,6 II - 
diiodo- α-CD) in 38 % (Scheme  2.133 ) [ 118 ,  157 ].

   An alternative option for the enzymatic preparation of cyclic oligosaccharides 
besides CGTases is glycosidases which exerts its action on polysaccharides. 
This possibility is exploited in the preparation of cyclic fructins by conversion of 
β-(1 → 2)-fructofuranan by bacterial fructotransferases isolated from  Bacillus circu-
lans  (Scheme  2.134 ) [ 158 ].
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2.1.19.2        Summary for Preparing Conventional Glycosyl Donors 
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    Chapter 3   
  N -glycosides                     

             N -glycosides are generated when a sugar component is attached to an aglycon, 
through a nitrogen atom, establishing as a result a C–N–C linkage. Nucleosides are 
among the most relevant  N -glycosides since they are essential components of DNA, 
RNA, cofactors, and a variety of antiviral and antineoplastic drugs. 

 Usually for  nucleosides  , a pyrimidine or purine base is linked to the anomeric car-
bon of a furanoside ring. The nucleosides responsible for the formation of the genetic 
material DNA and RNA are: adenine, guanine, cytosine, and thymine, the latter 
replaced with uracil in the case of RNA (Scheme  3.1 ). Nucleosides can be classifi ed 
into natural nucleosides such as those involved in the genetic storage of information, 
naturally modifi ed nucleosides, and synthetic nucleosides.

   Naturally  modifi ed nucleosides   include a signifi cant and diverse number of com-
pounds, some of them with slight changes mostly at the base, or major structural 
modifi cations done by enzymes. So far most of them have unknown biochemical 
function [ 1 ], nonetheless they have been strongly associated with antiviral, antitu-
moral, and growth regulation processes (Scheme  3.2 ).

   Representative examples of natural modifi ed nucleosides include  queuosine   (Q) 
and  Wye base   (W) which have been found in the tRNA of some plants and bacteria, 
and they play an important role in the inhibition of tumor processes. Derived from 
this relevant biological function the total synthesis of these unique  nucleosides   has 
been reported for Q [ 2 – 4 ] and W [ 5 ]. 

 Moreover, the synthesis of complex  nucleoside antibiotics   has been reviewed 
[ 6 ,  7 ]. The analysis was focused on the challenging synthetic methods for carbohy-
drate and nucleoside chain elaboration, glycosidation, methods for controlling ste-
reochemistry and for joining subunits. As a result, the total synthesis of  polyoxin J   
[ 8 ],  sinefungin   [ 9 ],  thuringiensin   [ 10 ],  tunicamycin V   [ 11 ],  nikkomycin B,   [ 12 ] 
 octosyl acid A   [ 13 ],  hikizimycin   [ 14 ], and  capuramycin   [ 15 ] was completed 
(Scheme  3.3 ).

   Important cofactors playing a key rule as biological catalysts required by the 
enzymes for the optimal performance of biochemical transformations are nucleotides. 
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Such is the case of  Adenosine triphosphate   ATP and  Nicotinic acid adenine dinucle-
otide   NAD that are constituted by an adenosine nucleoside combined with phos-
phate for the former, and phosphate and nicotinamide for the latter (Scheme  3.4 ).

3.1        Nucleoside Formation   

 Considering a disconnection analysis there are two major general routes for nucleo-
side syntheses [ 16 ]. The fi rst is based on the attachment between the aglycon base 
and the protected sugar activated with a good leaving group at the anomeric posi-
tion. Under these conditions, the  stereoselectivity   is conditioned by the protecting 
group attached at position 2. The second general procedure considers the coupling 
reaction between a base precursor and the sugar derivative which contains the free 
amine linked to the anomeric carbon. The ring closure generally takes place after 
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the glycosidation reaction and the confi guration is predetermined by the nitrogen 
attached to the anomeric carbon. The latter approach has been most effi ciently used 
for preparing carbocyclic nucleosides (Scheme  3.5 ).

3.2         Protecting Groups   

 It has been mentioned in the previous chapter that  protecting groups   are important 
components for most of the general methodologies designed for establishing glyco-
sidic bonds. Usually the methods for glycoside formation require prior protection of 

  Scheme 3.2    Naturally modifi ed nucleosides         
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those elements (usually heteroatoms) within the molecule that are needed to remain 
unaltered. Also important is the fact that the cleavage of the protecting group should 
be carried out under preferentially mild conditions and in the case of complex nucle-
osides the installation and removal of the protecting groups for nitrogen, oxygen, 
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and sulfur should be accomplished under compatible conditions. The protection and 
deprotection of nucleosides can be done by chemical or enzymatic means. Some of 
the most commonly used protecting groups used in the preparation of  O -glycosides 
are also useful in the synthesis of nucleosides (Scheme  3.6 ).

3.2.1        Ribofuranoside Protecting Groups   

 Enzymes have been found to be interesting alternatives for installing protecting 
groups on nucleosides. Some of the enzymes used for this purpose are  subtilisin  
mutant (8350) [ 18 ,  19 ] and lipases mainly from  Pseudomonas  and  Candida  strains 
[ 20 ,  21 ]. Representative protections of purine and pyrimidine nucleosides are indi-
cated in Scheme  3.7 .
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  Scheme 3.6    Common ribose protecting groups [ 17 ]           
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   By using the appropriate lipase it is possible to achieve regioselective acyl pro-
tections on nucleosides. For instance, the enzymatic transesterifi cation reaction of 
5′-fl uorouridine with n-octanoic anhydride catalyzed with  Candida Antarctica  
(CAL),  Pseudomonas  sp. (PS), (KIWI-56), and  Mucor javanicus  (M) lipases was per-
formed, producing 5′-, 3′-, and 2′-acylnucleosides, respectively (Scheme  3.8 ) [ 22 ].

   Regioselective removal of certain protecting groups such as acetates attached to 
the ribosyl moiety of nucleosides might be carried out by enzymes. For instance 
 subtilisin  strain selectively hydrolyzes the 5′-position of purine and pyrimidine tri- 
 O - acylated esters to produce 2′,3′-di- O -acylribonucleosides in 40–92 % 
(Scheme  3.9 ) [ 23 ].

   On the other hand, diastereoselective deacetylation of peracetylated 2′-deoxyri-
bofuranosyl thymine was carried out using wheat germ lipase (WGL) and porcine 
liver esterase (PLE), forming pure β-anomer thymidine in 29 % and 31 %, respec-
tively (Scheme  3.10 ) [ 24 ].

   When  porcine pancreas lipase (PPL)   in phosphate buffer is used for deacety-
lation of 3′,5′-di- O -acetylthymine, the removal of the acetyl group at the 5′- posi-
tion is achieved, leading to the 3′- O -acetylthymidine (Scheme  3.11 ) [ 25 ].
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Scheme 3.6 (continued)
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   Other suitable selective protections and deprotections useful for chemical manip-
ulations which might occur at the ribosyl moiety are illustrated in Scheme  3.12 .

   Regioselective protections and deprotections is often a critical step especially for 
the preparation of complex nucleosides. Some suitable deprotections of complex 
nucleosides which do not alter the original composition of the structure have been 
described (Scheme  3.13 ) [ 6 ,  7 ].
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  Scheme 3.12    Miscellaneous chemical protection and deprotection [ 25 – 29 ]         
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3.3         General Methods 

 –     Michael reaction  
 –   Fischer–Helferich reaction  
 –   Davol–Lowy reaction  
 –   Silyl mediated reaction  
 –   Sulfur mediated reaction  
 –   Imidate mediated reaction  
 –   Mitsunobu reaction  
 –   Palladium mediated reaction  
 –   Microbial/enzymatic approach    

3.3.1     Michael Reaction 

3.3.1.1     General Scheme and Conditions 
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 K 2 CO 3   DMF 
 KOH- TBA  CH 2 Cl 2  

   It is a classical procedure for preparing nucleosides, and it can be considered a 
modifi ed  O -glycoside approach. In this way, the sugar derivative is an R- O -furanosyl 
halide where R can be acyl, benzoyl, benzyl, tosyl, or silyl, and the halogen is com-
monly chlorine instead of bromine, since it has proved to be more stable for fura-
nose derivatives than its counterpart. The nitrogen base (purine or pyrimidine) is 
reacted under basic conditions, usually NaH or K 2 CO 3  in DMF (Scheme  3.14 ).

   A variety of antibiotics have been prepared according to this method, as in the 
case of the nucleoside known as  methyltubercidine  . For achieving this goal, the 
7-deazaguanine was used as nitrogen base which was condensed to 2,3,5-tri- O - 
benzylribofuranosyl bromide under NaH/DMF conditions to form a 1:1 anomeric 
mixture of  N -glycosides (Scheme  3.15 ) [ 30 ].

   More recently Battaharya [ 31 ] reported the synthesis of fl uoroarabinotubercidine, 
 toyocamicine  , and  sangivamicine  , under the current  N -glycoside formation proce-
dure. Other  deazapurines   have been described by Seela et al. [ 32 ] involving the con-
densation between the purine base and protected ribosyl halides under basic conditions. 

3.3  General Methods
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According to Seela [ 33 ] and Kazimierczuk [ 34 ] the stereoselective glycosylation of 
the sodium salts of halopurines, with 2-deoxy-3,5-di- O - p -tolouyl-α- D -  erytro - 
pentofuranosyl chloride gave β-nucleosides via Walden inversion. This was demon-
strated in the preparation of 2-amino 2′-desoxytubercidine and 2- aminotubercidine 
by condensation of 3,5-di- O -( p -tolyl)-α- D - pentafuranosylchloride and 5- O -[(1,1-
d i m e t h y l e t h y l ) d i m e t h y l s i l y l ] - 2 , 3 -  O  - ( 1 -  m e t h y l e t h y l i d e n ) - α -  D  -
ribofuranosylchloride with the halopurine under Michael conditions. Final ammonia 
treatment provided the target deazanucleoside (Scheme  3.16 ).
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   The 7-deazapurine nucleoside  cadeguomycin   isolated from strain of the actino-
mycete culture fi ltrate  Streptomyces hygroscopicus  was also synthesized under this 
approach. Thus, coupling reaction between protected 7-deazapurine derivative and 
1-chloro-2-deoxy-3,5-ditoluyl-α- D -erythro-pentofuranose was effected with prefer-
ence for the β-isomer. Subsequent transformations provided the target molecule 
2′-deoxycadeguomycin (Scheme  3.17 ) [ 35 ].

3.3.2          Fischer–Helferich Reaction   

3.3.2.1     General Scheme and Conditions 
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  Scheme 3.16    Synthesis of 2-aminotubercidine and 2-amino-2′-deoxytubercidine       
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   This general procedure consists in the use of an acylfuranoside or acylpyranoside, 
which is reacted with the silver or mercury salts of a nitrogen base. The original 
reaction involves the condensation between silver salt of  theophylline   and aceto-
bromoglucose in hot xylene, giving preferentially the N-7 regioisomer 
(Scheme  3.18 ).

   The feasibility of this method is observed in the synthesis of adenosine and gua-
nosine by condensation of tri- O -acetyl-α- D -ribofuranosyl chloride with the silver 
salt of 2,8-dichloroadenine to generate an intermediate which under the conditions 
described below can generate either adenosine or guanosine (Scheme  3.19 ) [ 36 ].

   The stereochemistry of this reaction can be predicted by applying the “ trans rule  ” 
proposed by Tipson [ 37 ,  38 ] and extended by Baker. The rule establishes that the 
condensation between the purine or pyrimidine salt and the acyl- O -glycosyl halide 
will generate a nucleoside with C1-C2 trans confi guration regardless of the initial 
confi guration of C1-C2 of the sugar. 
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  Scheme 3.17    Synthesis of 7-deazapurine nucleoside 2-deoxycadeguomycin       
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 The trans rule is demonstrated in the preparation of thymidine acetoglucopyranose 
and mannopyranose, where -OH at position 2 for the former is equatorial, and for the 
latter axial. By following the rule, the coupling reaction generates β- and α-anomers, 
respectively, both of them having a trans disposition between substituents at 
positions 1 and 2 (Scheme  3.20 ).
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  Scheme 3.18    Fischer–Helferich method       

N

N

NH2

Cl N
H

N

Cl

Ag

+
iO

AcO

Cl

OAcOAc

O
AcO

OAcOAc

N

N

NH2

Cl N

N

Cl

ii,iii

ii,iv,v

O
HO

OHOH

HN

N

O

H2N N

N
O

HO

OHOH

N

N

NH2

N

N

i) xylene. ii) MeONa/MeOH. iii) H2,Pd-C. iv) HNO2. v) NH3.

  Scheme 3.19    Synthesis of adenosine and guanosine       

 

 

3.3 General Methods



188

3.3.3         The  Davol–Lowy Reaction   

3.3.3.1     General Scheme and Conditions 
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   This method has been also considered a modifi ed Fischer–Helferich procedure and 
involves the use of mercury chloride instead silver salts. Under these conditions the 
useful intermediate  chloropurine nucleoside   has been prepared under mild conditions 
(Scheme  3.21 ).

   The nature of the glycosyl halide is important for determine the regioselectivity 
of the glycosidic linkage. If the condensation reaction occurs between purines and 
acetobromoglucose the N-7 regioisomer is obtained preferentially. On the other 
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  Scheme 3.20    Tipson’s trans rule       
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hand, if acetoribosyl chloride is condensed with the same purine, the N-9 regioisomer 
is the major product observed (Scheme  3.22 ).

   Another purine nucleoside prepared under these conditions is shown in 
Scheme  3.23 , consisting in the coupling reaction between protected guanine and 
protected furanosyl chloride in nitromethane under refl uxing conditions produced 
the corresponding  N -glycoside in 50 % yield [ 39 ].
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  Scheme 3.21  
  Davol–Lowy method       
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3.3.4          Silyl Coupling Reaction   

3.3.4.1     General Scheme and Conditions 
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   Various types of  silyl agents   have been tested as either protecting groups and or 
 N -glycoside promoters. Among them trimethylsilyl chloride (TMS-Cl), 
bis(trimethylsilyl) acetamide, trimethylsilyltrifl ate, and hexamethyldisilazane are 
representative examples. 

 De Clercq et al. [ 40 ] prepared purine and pyrimidine α- D -lyxofuranosylnucleosides 
employing HMDS, TMS, and TMSF as silyl coupling agents. Nucleoside α- D - 
lyxofuranosyl thymine was prepared by condensation between 1,2,3,5-tetra- O - 
acetyl-α- D -lyxose and thymine in the presence of HMDS-TMSCl mixture 
(Scheme  3.24 ).

   Likewise cytidine has been synthesized in 95 % through condensation of silyl 
cytidine obtained from cytosine with bis [trimethylsilyl] acetamide, and sugar deriv-
ative 2,3,5-tri- O -benzoylribose, as represented in Scheme  3.25 .
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  Scheme 3.23    Glycosidation reaction for preparation of guanine derivative       
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   Hilbert and Johnson [ 41 ] developed a procedure for preparing nucleosides 
employing a mixture of hexamethyldisilane (HMDS), trimethylsilane chloride and 
potassium nonafl ate. According to this procedure 5-methoxyuridine was prepared by 
condensing 5-methoxyuracil, with 1- O -acetyl-2,3,5-tri- O -benzoyl-β- D -ribofuranose 
(Scheme  3.26 ).

   A widespread silyl-based methodology was developed by Vorbrüggen [ 42 ,  43 ] 
which is based in the use of persilylated purines or pyrimidines, which are condensed 
with peracylated sugars in the presence of Lewis acid catalysis. Usually silylation of 
the base is achieved with  hexamethyldisilazane (HMDS)   or N,O- bis(trimethylsilyl)
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  Scheme 3.24    Preparation of α- D -lyxofuranosyl thymine and guanine protected nucleosides       

N

N

NHTMS

TMSO

+

O
BzO

OH

OBzOBz

i,ii
N

N

NH2

O

O
HO

OHOHi) (CH3Si)2NAc. ii) Ba(OH)2/MeOH.

  Scheme 3.25    Silyl mediated coupling reaction       

 

 

3.3 General Methods



192

acetamide, the latter less diffi cult to remove during the workup process. Among the 
Lewis acids employed as catalysts, trimethylsilyl trifl ate (TMSOTf) has been the 
most suitable condensing agent for this reaction. 

 AZT alkylthioanalogs have been synthesized under the method reported by 
Vorbrüggen. This condition requires hexamethyldisilane for activation of the anomeric 
center, and trimethylsilyltrifl ate as condensing agent (Scheme  3.27 ).

   Vörbruggen-type coupling reaction has been method of choice in the 
 N -glycoside bond formation of various complex nucleosides such as octosyl acid 
A, tunicaminyl- uracil, sinefungin, and hikizimycin. Some of the general condi-
tions reported for the accomplishment of the mentioned synthesis are described in 
Scheme  3.28  [ 6 ,  7 ].

   Likewise by following a variant of this protocol Wang et al. were able to prepare 
2′-deoxy-2′-fl uoro-2′-C-methylcytidine (PSI-6130), a potent and selective inhibitor 
of HCV NS5B polymerase. Thus, the N-glycosylation step was carried out by cou-
pling reaction between 2′-deoxy-2′-fl uoro-2′-methyl ribose acetate and silylated 
 N -benzoylcytosine tin(IV) chloride as a catalyst (Scheme  3.29 ) [ 44 ].

   The N-glycosylation of protected (triethylsilyl)ethynyl furanoside with 
2- fl uoroadenine to produce after deprotection and 2-deoxygenation the remarkably 
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  Scheme 3.29    Synthesis of antiviral 2′-deoxy-2′-fl uoro-2′-C-methylcytidine (PSI-6130)       
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potent anti-HIV nucleoside 4′-ethynyl-2-fl uoro-2′-deoxyadenosine (EfdA) was 
performed with TMSOTf and DBU in MeCN. Another approach for preparing this 
modifi ed nucleoside was described by following a 12-step sequence starting from 
(R)-glyceraldehyde acetonide in 18 % overall yield (Scheme  3.30 ) [ 45 ,  46 ].

  Scheme 3.30    Methods for preparing anti-HIV 4′-Ethynyl-2-fl uoro-2′-deoxyadenosine (EfdA)       
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3.3.5          Sulfur Mediated Reaction   

3.3.5.1     General Scheme and Conditions 
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   Derived from their extensive use in the preparation of  O -glycosides, the sulfur 
glycosyl donors have become another standard procedure for N-glycosylations. 
The conditions reported for the coupling reactions involves the sulfur glycosyl 
donor, the silyl protected heterocycle acceptor and usually  N -iodosuccinimide, trifl ic 
acid as catalyst (Scheme  3.31 ) [ 47 ].
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3.3.6         Imidate Mediated Reaction 

 The imidate reaction is by far a method established for preparation of  O -glycosides; 
however, some N-glycosylation has been achieved by following this protocol. An inter-
esting novel step is the incorporation of N,O-bis(trimethylsilyl)trifl uoroacetamide 
(BSTFA) as a silylating reagent when glycosyl trifl uoroacetimidates were used as 
donors, providing the β-nucleoside in 80 % yield (Scheme  3.32 ) [ 48 ].

3.3.7         Mitsunobu Reaction      

 This reaction has been selected as another strategy for preparing N- and carbocyclic 
nucleosides. The mechanism involves a nucleophilic substitution displacement with 
inversion of the confi guration between species bearing poor leaving groups with 
nucleophiles. The reaction mechanism involves the initial reaction of triphenylphos-
phine (Ph 3 P) with diethylazodicarboxylate (DEAD) to produce a dipolar intermedi-
ate which will react with an alcohol to form an alkoxy phosphonium salt and diimide. 
Then the nucleophile will displace triphenylphospine oxide to give the substitution 
product (Scheme  3.33 ) [ 49 ].

  Scheme 3.32    Synthesis o glucopyranosyl pyrimidine from glycosyl trifl uoroacetimidates       
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   This procedure was used successfully for preparing the  N -glycoside shown in 
Scheme  3.34  by reacting 2,3,4,6-tetraacetyl glucose with the heterocyclic base 
under the Mitsunobu conditions [ 50 ].

3.3.8         Palladium Mediated Reaction   

  Palladium catalysis   is a well-established and versatile methodology for the preparation 
of nucleosides. Also known as the Heck reaction, it was developed initially for C–C 
bond formation and consists in the coupling of an aryl halide with activated olefi n 
in the presence of palladium (0) as catalyst (Scheme  3.35 ) [ 51 ].

   More recently other palladium mediated reaction have been developed with 
great potential for heterocycle coupling reaction with furanosides, to produce an 
interesting variety of nucleosides. The group of reactions includes the Suzuki 
(organoboranes) [ 52 ], Stille (organostannanes) [ 53 ], Negishi (zincated) [ 54 ], 
Sonogashira (alkyne-CuI) [ 55 ], Hiyama (organosilicon) [ 56 ], and Tsuji–Trost 
[ 57 ,  58 ] (Scheme  3.36 ).

   Early reports in the use of Heck-type reactions for the preparation of nucleosides 
were described by Bergstrom [ 59 – 61 ]. More recently a comprehensive overview 
about palladium mediated reactions for  N -glycoside bond formation or modifi ca-
tions at the base or the sugar moieties were described. A general scheme summariz-
ing such possibilities is shown in Scheme  3.37  [ 62 ].

O

OH

AcO
AcO

OAc

OAc

N
OO

CH3

N
H

N
N
Boc O

OAc
OAc

OAcAcO

N
OO

CH3

N
N

N
Boc

i) DEAD, Ph3P, THF, -78oC, 61%

i
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   Palladium-catalyzed reaction was applied for a N-heterocyclic glycosylation, by 
using glycal type donors with methyl isatin through a classic Ferrier rearrangement, in 
the presence of dppb ligand which improved the yield to 50 % (Scheme  3.38 ) [ 63 ].

3.3.9        Ortho- alkynylbenzoates Protocol   

 This method consist in the coupling reaction between ribofuranosyl ortho- 
alkynylbenzoate as donor and purines or pyrimidines in the presence of Ph 3 PAuNTf 2  
providing the  N -glycosides in high β-selectivity. This method can be successfully 
applied in the preparation of complex nucleosides such as antibiotic A201A, and 
tunicamycin (Scheme  3.39 ) [ 64 ,  65 ].

Ar Br + Ar B(OH)2 Ar Ar
Pd(0)

Suzuki reaction

R

OTf

+

Stille reaction

R
PdL4

R'

SnR3R''
R'

R'

Negishi reaction

R Br + R2' Zn R R'
Pd(0)

Hiyama reaction

R Br + R3' Si R R'
Pd(0)

Pd(0)
R

X

+ RH
CuI

R

R

Sonogashira reaction

Pd(0)
R +

X

R

Pd
X

Nu R

Nu

Tsuji-Trost reaction
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3.3.10         Microbial/Enzymatic Approach   

 The synthesis of nucleosides by enzymatic methods is another extended possibility, 
and for this purpose the enzyme nucleoside phosphorylase has been selected as one 
of the most appropriate one. Usually the conversion proceeds by the reversible 
formation of a purine or pyrimidine nucleoside and inorganic phosphate from 
ribose- 1- phosphate (R-1-P) and a purine or pyrimidine base. The general approach 
consists in the reaction of R-1-P as glycosyl donor which is condensed with purine 
or pyrimidine analogs. Following this method any heterocycle recognized by this 
enzyme can be glycosylated (Scheme  3.40 ).

   The enzyme synthetase phosphoribosyl pyrophosphate PRPP was used for 
nucleotide synthesis of UMP. The sequence involves the conversion of ribose- 6- 
phosphate with PRPP synthetase to produce phosphoribosyl pyrophosphate which 

OAcAcO OOP

Heterocycle coupling

"Pd" Tsuji-Trost Heck

OP

Heterocycle modification

N

NH

X

O

O
HO

OH OH

N

NH

X

O

O
HO

OH OH

R

"Pd"
various

Heck, Stille

Negishi

"Pd" Tsuji-Trost
"Pd" Sonogashira

N

NH

X

O

O
HO

Me

N

NH

X

O

O
HO

Me
RSugar modification

  Scheme 3.37    Palladium-assisted modifi cations       

 

3.3 General Methods



200

was condensed with orotate in the presence of O5P-Pyrophosphorylase to yield the 
nucleotide intermediate orotidine 5′-phosphate which after decarboxylation pro-
duced by the action of O 5P-decarboxylase the nucleotide Uridine monophosphate 
(Scheme  3.41 ) [ 66 ].

   Bacterial α- D -glucopyranosyl-1-phosphate thymidylyltransferase was assayed as 
a catalyst for the synthesis of furanosyl nucleotides. Thus, fi ve furanosyl-1- 
phosphates were evaluated as potential substrates for the bacterial thymidylyltrans-
ferase to produce only the β-anomer (1,2- cis -phosphate) of the sugar nucleotide as 
confi rmed by proton NMR (Scheme  3.42 ) [ 67 ].

  Scheme 3.38    Synthesis of glycosyl isatin through a classic Ferrier rearrangement       

  Scheme 3.39    Ortho-alkynylbenzoates method catalyzed by gold complex       

O B1HO

OH X

O

O-PO3
2-

HO

OH X

O B2HO

OH X
X = H, OH

i i

B2

O B1HO

OH X

O B2HO

OH X

ii

i) nucleoside phosphorilase. ii) trasribosylase.

  Scheme 3.40    General scheme for enzyme-mediated nucleoside synthesis       

 

 

 

3  N -glycosides



201

3.4          Oligonucleotide Synthesis   

 Deoxyribonucleic acid (DNA) and Ribonucleic acid (RNA) are very important 
natural polymers responsible for the processing of the genetic information of all 
organisms. 

 The basic repetitive unit known as nucleotide is composed of a nucleotide base, a 
sugar moiety, and a phosphate. The combinatorial pattern of the four different nucle-
osides constituted by the heterocyclic bases cytosine, thymine, guanine, and adenine 
is the base of DNA structure. In RNA strands uracil replace thymine and the furano-
side is ribose instead of 2-deoxyribose. The phosphate group is attached at position 
3′ of one sugar unit and the 5′ position of the next one forming a 3′–5′ elongation 
chain (Scheme  3.43 ).
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  Scheme 3.41    Enzyme catalyzed synthesis of nucleotide       

  Scheme 3.42    Enzyme catalyzed synthesis of nucleotide by thymidylyltransferase       
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    Oligonucleotide synthesis   does not involve  N -glycoside bond formation, but 
requires the design of nucleoside donors and nucleoside acceptors, following the 
same principle that applies for glycoside coupling reactions where suitable protecting 
groups, glycosyl donors and acceptors are required. 

 Solid phase procedures appear to be of great advantage for the coupling of nucle-
osides, and unlike for oligosaccharide solid phase chemistry, the attachment posi-
tions are always the same (3′ and 5′). The sequence of reactions that occurs in 
oligonucleotide synthesis starts on the attachment of 3′-OH position of 5′-protected 
nucleoside to a resin. Next, is deprotection of 5′-OH and subsequent attachment 
to a nucleoside donor which contains a phosphate precursor which in turn will be 
converted to phosphate group. 

 There are mainly two procedures for oligonucleotide synthesis: The  phosphorami-
dite   and the  phosphonate   method [ 16 ,  68 ]. 
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3.4.1      Phosphoramidite Method   

 This methodology involves the use of the air-sensitive reagent 2-cyanoethyl tetrai-
sopropylphosphorodiamidite {[(CH 3 ) 2 CH] 2 N}POCH 2 CH 2 CN or 2-cyanoethyl  N , N - 
diisopropylchlorophosphoramidite (iPr) 2 NP(Cl)OCH 2 CH 2 CN for activation of 
nucleoside donor [ 69 ]. This intermediate can be obtained by treatment of PCl 3  with 
2 eq of diisopropylamine, and 1 eq of cyanoethylethanol. The general phosphorami-
dite approach, is outlined in Scheme  3.44 , and begins with a nucleoside previously 
protected at the 5′-OH position with 4,4′-dimethoxytrityl group (Tr-), also attached 
to a silica support. The trityl group is then removed from the 5-OH position and 
allowed to react with a nucleoside donor protected at position 5-OH with trityl 
group and activated at position 3′ with 2-cyanoethyl diisopropylphophoroamidite. 
The coupling reaction being the critical step is catalyzed by tetrazol, and the process 

  Scheme 3.44    Phosphoramidite oligonucleotide strategy         

(EtO)2Si(CH2)NH2
(CH2)3NH2

HO2CCH2CH2CO2H

(CH2)3NHCOCH2CH2CO2H CO2H

CO2H
OB1 OTr

OH

+

OB1 OTr

O

O

OB1 OH

O

O

i

OB2 OTr

O

PN
O

CN

ii
OB1 O

O

O

OB2 OTr

O

P
O

CN iii

 

3.4 Oligonucleotide Synthesis



204

is repeated for the installation of subsequent nucleoside unit. Once the oligonucleotide 
chain is formed, the phosphoramidite group is transformed to phosphate with I 2 -H 2 O 
and released from resin with ammonia.

3.4.2         HOBt Solid Phase Synthesis   

 This protocol involves the initial attachment of a deoxy nucleoside with a highly cross-
linked polystyrene resin and then reacted with a second phosphoramidite nucleoside in 
the presence of 1-hydroxybenzotriazole (HOBt) as the promoter to the solid-phase 
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synthesis. Further deprotection with I 2 -MeOH, tricholoracetic acid, and ammonia 
provides the desired oligonucleotides in good yields (Scheme  3.45 ) [ 70 ,  71 ].

3.4.3         Phosphonate Method   

 In this method the nucleoside donor is functionalized as a phosphotriester sugar 
derivative which reacts with nucleoside acceptor at 5-OH position which is avail-
able for linkage. An advantage of this method is the possibility of introducing sub-
stituents to the phosphate position giving place to the preparation of modifi ed 
oligonucleotides Scheme  3.46 .

  Scheme 3.45    HOBt solid phase synthesis       
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3.4.4         Phosphorimidazolides Method   

 This method propose a coupling reaction between a phosphate nucleoside attached to 
a resin and adenosine 5′-phosphorimidazolidate, to produce the corresponding pro-
tected AppDNA, which if fi nally debenzoylated with ammonia (Scheme  3.47 ) [ 72 ].

   Another example on the applicability of this method is observed in the solid- 
phase preparation of the solid-phase dinucleotide triphosphate. This report con-
sisted in the treatment of resin bounded phosphoramidite dinucleoside with a 
solution of diphenyl phosphite in pyridine, followed by hydrolysis, forming the 
solid-supported Hp-ON. Next the intermediate was oxidized to an activated 5′-phos-
phoroimidazolidate and subsequently treated with excess of (tri- n -butylammonium) 
pyrophosphate forming solid-phase nucleoside triphosphate (Scheme  3.48 ) [ 73 ].

3.4.5        Modifi ed Oligonucleotides 

 Modifi ed  oligonucleotides   are another important application of solid phase oligo-
nucleotide synthesis. It is known that natural oligonucleotides used as therapeutic 
strategy against viral infections as  antisense  for targeting RNA sequences may 
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undergo enzymatic hydrolysis by endonucleases. Series of modifi ed oligonucle-
otides carrying the modifi cation either on the base, sugar or phosphate moiety pro-
vides ideally endonuclease resistance as well as high affi nity for complementary 
RNA sequences. 

  Phosphodiester bond   is the primary target for endonuclease breakage; therefore, 
the effort has been focused mainly on the modifi cation of this segment of the chain. 
As a result of this, a fi rst generation of modifi ed phosphorous oligonucleotides such 
as phosphorothioates, methylphosphonates, phosphoramidates, phosphotriesters, 
and phosphodithioates were synthesized. Although these phosphorous derivatives 
showed increased resistance to endonuclease activity, the affi nity for complemen-
tary sequences was decreased [ 74 – 76 ] For instance the synthesis of the antisense 
oligomer phosphorothioate analog of a 28-nucleotide homo-oligodeoxycytidine 
(S-dC 28 ) was achieved, and tested as a potent inhibitor of HIV in vitro, showing 
signifi cant inhibition of reverse transcriptase activity and syncytium formation 
between HIV-1 producing cells and CD4 +  [ 77 ]. 

 A second generation proposed the replacement of phosphodiester group by a 
bioisoster such as amides, urea, and carbamate (Scheme  3.49 ). In general the obser-
vations reveal better enzymatic hydrolysis resistances, but again poor affi nity toward 
RNA complementary sequences.

   Alternatively Dempcy et al., [ 78 ] reported the synthesis of modifi ed guanidine–
thymidine oligonucleotide following the procedure depicted in Scheme  3.50 . The 
reactions involved are the condensation between 3′-amino-5′- O -trityl-3′-
deoxythymidine and 3′-azido-5′-isothiocyano-3′,5′-deoxythymidine, to generate 
5′ → 3′ thiourea–nucleoside dimer. Reduction followed by coupling reaction of 
dimer with the latter nucleoside produced a chain elongation reaction. Guanidine 
conversion was done with aminoiminosulfonic acid and ammonium hydroxide, 
forming guanidinium thymidyl pentamer.

   Another type of modifi ed oligonucleosides more recently described correspond 
to the oligoribonucleoside phosphorothioates (PS-ORNs) which were prepared by 
using ribonucleoside 3′- O -oxazaphospholidine derivatives as monomer unit and 
submitted to react under activating conditions with protected 5′-OH nucleoside 
anchored to a highly cross-linked polystyrene (Scheme  3.51 ) [ 79 ].
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   The unit assemble for oligoribonucleotide synthesis is to some extend similar to 
deoxyribonucleotides synthesis; however, an additional consideration should be 
taken into account, which is the suitable protection of position 2-OH of ribose. The 
use of silyl protecting group, is one of the best choices so far reported, in particular 
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the hindered  tert -butyldimethyl silyl (TBDS) group. The protection of tritylribonu-
cleoside produced a mixture of isomers, being the 2-OH silyl derivative generated 
in between 50 and 90 % yield. Final removal of this protecting group is usually 
achieved with 1 M tetrabutylammonium fl uoride in THF (Scheme  3.52 ).

   Some other choices for 2-OH protection are: tertahydropyran-1-il, 
4- methoxytetrahydropyran-4-il and modifi ed ketal of 1-(2-fl uorophenyl)-4- 
methoxypiperidin- 4- il (Fpmp); however, it has been found that acid conditions for 
removal of these protecting groups are not compatible with trityl protecting group. 

  Scheme 3.51    Preparation of oligoribonucleoside phosphorothioates (PS-ORNs)       
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 Simultaneous protection of position 3′ and 5′ can be achieved by using the silyl 
protecting group tetraisopropyldisiloxychloride (TIPS-Cl) in pyridine. This type of 
protection has been useful in the conversion of adenosine to 2′-deoxyadenosine 
under the conditions reported by Barton and McCombie [ 80 ] (Scheme  3.53 ).
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    Chapter 4   
 Nucleoside Mimetics                     

            Modifi ed nucleosides are useful therapeutic agents being currently used as antitu-
mor, antiviral, and antibiotic agents. Despite the fact that a signifi cant variety of 
modifi ed nucleosides display potent and selective action against cancer, viral and 
microbial diseases, the challenge still attracts full attention since most of them do 
not discriminate between normal and tumor cell and in viral infections resistant 
strains usually appear during the course of the treatment. 

 Synthetic acyclic and carbocyclic  C -nucleosides and modifi ed  N -nucleosides 
have shown remarkable action against AIDS, Hepatitis, and herpes infections 
among others. Some of the nucleosides used as approved  drugs   are: acyclovir, car-
bovir being the treatment of choice against herpes, AZT, ddI, ddC, ddG, abacavir, 
which in combination with protease inhibitors are indicated in the treatment against 
HIV, and  C -nucleoside ribavirin in the treatment against hepatitis [ 1 ,  2 ]. 

 Representative examples of  chemotherapeutic agents   modifi ed at the heterocy-
clic base, the sugar fragment,  L  and  C -nucleosides, carbocyclic and acyclic nucleo-
sides are depicted in Scheme  4.1 .

   A signifi cant number of synthetically modifi ed nucleosides have been designed 
as antiretroviral drugs in the therapy of human immunodefi ciency virus (HIV) 
infection. During retroviral infection, the viral RNA is used as template for proviral 
DNA synthesis, a process mediated by viral DNA polymerase better known as 
reverse transcriptase. Thus, the process involves the initial formation of a RNA–
DNA  hybrid   which is then degraded by an RNAse to release the DNA strand that 
will be the template for the synthesis of the double stranded viral DNA, a process 
also catalyzed by reverse transcriptase [ 3 ]. 

 The proposed mechanism of action of modifi ed agents such as AZT during viral 
infection involves the interruption of the  viral replication process   that occurs 
between the virus and host, particularly the replication inhibition inside T cells, 
monocytes, and macrophages. 
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  Scheme 4.1    Representative synthetically modifi ed nucleosides           
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 When the modifi ed nucleoside is introduced into the cell, a sequential 5′-phos-
phorylation process mediated by kinases occurs on the furanoside ring which is 
subsequently incorporated into the DNA as triphosphate (Scheme  4.2 ).

   An important collection of active nucleosides mimetics has been synthesized and 
classifi ed for better understanding as follows: [ 4 ]

   Modifi ed  N -nucleosides  
   L -nucleosides ( D -isomers)  
   C -nucleosides  
  Carbocyclic nucleosides  
  Acyclic nucleosides  
  Thionucleosides    

4.1     Modifi ed  N -nucleosides 

 A broad number of  modifi ed  N -nucleosides   have been developed and tested on clinical 
trials, some of them being highly promising. The chemical manipulations have been 
made at the heterocyclic base, the sugar of both. Some representative examples of 
chemical modifi cations leading to key intermediates or active nucleosides are: 
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4.1.1     Heterocycle Modifi cations 

4.1.1.1      C-5 Substituted Pyrimidines   

 Several nucleoside analogs bearing modifi cations at the 5-position have been found 
to be active as antiviral and anticancer drugs. Examples of this are BVDU, IDU, and 
FIAU (Scheme  4.3 ) [ 5 ].

    Palladium mediated transformations   are a suitable strategy for introducing sub-
stituents at C-5. Some of the reactions implemented for this purpose are the 
Sonogashira [ 6 ,  7 ], Stille [ 8 ,  9 ], Heck [ 10 ,  136 ], and Hiyama [ 11 ] (Scheme  4.4 ).
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4.1.1.2         C-6 Substituted Pyrimidines   

 By following  palladium-mediated substitutions  , a more limited number of C-6 sub-
stituted pyrimidines have been described in comparison with C-5. For instance, by 
applying the Stille reaction it has been possible to prepare C-6 substituted aryl, 
vinyl, alkynyl derivatives (Scheme  4.5 ) [ 12 ].
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  Scheme 4.4    Palladium mediated substitutions at C-5 pyrimidine position       

4.1.1.3         Purine Formation   

 The conventional methods of preparation of C-C purines are based on heterocycli-
zation [ 13 ,  14 ]. The classical procedures involve:

    (a)    2-C-C-purines cyclization of 4-aminoimidazole-5-carboxamides or nitriles 
with carboxylic acid equivalents.   

   (b)    8-C-C-purines from 5,6-diaminopyrimidines and carboxylic acid derivatives; 
and for 6-C-C-purines from 4-alkyl or 4-aryl-substituted 5,6- diaminopyrimidines 
(Scheme  4.6 ) [ 15 ].
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       Other explored methods involve radical [ 16 ,  17 ] or nucleophilic substitution 
[ 18 ], sulfur extrusion [ 19 ], and Wittig type reactions [ 20 ,  21 ]. Despite their usefulness, 
other methods based on the use of organometallic complex are getting particular 
signifi cance especially in the synthesis of substituted purines (Scheme  4.7 ) [ 15 ].
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   Usually the cross-coupling reactions involving organometallic compounds 
includes organolithium [ 22 ], magnesium [ 23 ], aluminum [ 24 ], cuprates [ 25 ], zinc 
[ 26 ], stannanes [ 27 ], and boron [ 28 ] reagents, in the presence of palladium catalyst 
and the purine base bearing a good leaving group usually halides or tosyl (Scheme  4.8 ).

    Deazapurines   are pyrrolo[2,3]pyrimidines of natural or synthetic source with 
signifi cant antitumor, antiviral and antibacterial activities. Some compounds 
included in this class are tubercidin, toyocamycin, sangivamycin, and the hyper-
modifi ed nucleoside queuosine. A fl exible route for the preparation of pyrrolo[2,3]
pyrimidines (7-deazapurines) has been developed, consisting in the condensation of 
protected uracil with ethyl  N -( p -nitrophenethyl)glycinate and subsequent treatment 
with acetic anhydride and amine base with heating to provide 5-(acetyloxy)
pyrrolo[2,3-d]-pyrimidine-2,4-dione in 74 % yield (Scheme  4.9 ) [ 29 ].

4.1.2         Sugar Modifi cations 

4.1.2.1     2′-3′- dideo  xysugars 

 A signifi cant number of saturated and unsaturated dideoxysugars have been synthe-
sized and tested as antiviral or anticancer drugs. Remarkably, ddI and ddC are 
approved drugs for the treatment of AIDS [ 3 ], and others such as d4T being currently 
under clinical studies (Scheme  4.10 ) [ 30 ,  31 ].
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   A method for preparing ddC was described involving  bromoacetylation   with 
HBr in acetic acid of N 4 -acetylcytidine followed by reductive elimination with 
zinc–cooper couple in acetic acid to provide the corresponding 2′3′-unsaturated 
derivative. Final hydrogenation over 10 % palladium on charcoal gave ddC in 95 %.
accompanied by some N-C cleavage in 5 % (Scheme  4.11 ) [ 32 ]. Similar reaction 
conditions were used for preparing 2′3′-dideoxyadenosine in 81 % yield from ade-
nosine [ 33 ].

   The design and synthesis of potent inhibitors for human hepatitis B Virus (HBV) 
2′,3′-dideoxy-2′3′-didehydro-β- L -cytidine (β- L -d4C) and 2′,3′-dideoxy-2′3′-
didehydro-β- L -5-fl uorocytidine (β- L -Fd4C) nucleosides was carried out according 
to the pathway shown in Scheme  4.12  [ 34 ]. The key starting material 
 3′,5′-dibenzoyl- 2′-deoxy-β- L -uridine was submitted to transglycosilation reaction 
with silylated 5-fl uorouracil using TMSOTf as catalyst, providing an anomeric mix-
ture separated by chromatography. After benzoyl deprotection, the anomeric nucle-
osides were treated with mesyl chloride followed by base to form cyclic ethers. 
Further transformation at the pyrimidine ring was followed by potassium  tert -
butoxide treatment to furnish β- L -d4C and β- L -Fd4C.

   Other methods designed for the preparation of 2′3′-unsaturated and saturated 
deoxyfuranosides are based on: (a) Corey–Winter reaction involving cyclic thiono-
carbonate; [ 35 – 37 ], (b) Eastwood olefi nation process in which a fi ve-membered 
cyclic orthoformate suffer a fragmentation to give in the presence of acetic anhy-
dride the desired olefi n (successfully applied in the preparation of ddU) [ 38 ,  39 ], 
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and (c) Barton deoxygenation involving the cyclic thionocarbonate or the bisxanthate, 
and then treated with tributyltin hydride [ 40 ,  41 ], or alternatively diphenylsilane 
[ 42 ] (Scheme  4.13 ).

   The synthesis of modifi ed nucleosides from natural nucleosides is another useful 
alternative for preparing pharmaceutically active dideoxy nucleosides. The potent 
antiviral inhibitors ddC, ddG, d4C, and d4G have been obtained from the corre-
sponding protected natural nucleosides, as shown in Scheme  4.14  [ 43 ].

   The  chemoenzymatic approach   has been also explored for the synthesis of 2′,3′ 
dideoxynucleosides. Such is the case of the antiviral 2′,3′-dideoxyguanosine which 
was synthesized from guanosine in 40 % overall yield using as a key step the com-
mercially available mammalian  adenosine deaminase (ADA)   (Scheme  4.15 ) [ 44 ].

   An strategy for preparing  D - and  L -2′-fl uoro-2′3′-unsaturated nucleosides has 
been described and their anti-HIV activity evaluated. This approach requires 1- acet
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yl- 5- O -benzoyl-2,3-dideoxy-3,3-difl uoro- D -ribofuranose as key starting material 
which was condensed under Vörbruggen’s conditions with purines and pyrimidines 
to provide the corresponding nucleosides. The resulting nucleosides were subjected 
to β-elimination to generate the fl uoro unsaturated nucleosides (Scheme  4.16 ) [ 45 ].

4.1.2.2        2′-deoxynucleosides 

 The  Barton deoxygenation   provides another useful method for preparing 2′- and 
3′-deoxynucleosides (obtained as a mixture), and involves as a key step the 
hydride reduction of the cyclic thionocarbonate with tributyltin hydride [ 42 ]. On 
the other hand, 2′-monotosylate nucleoside when treated with excess of lithium 
triethylborohydride produces the 2′-deoxy-3′β-hydroxy nucleoside in high yield 
(Scheme  4.17 ) [ 46 ].

    2′-deoxynucleosides   have been obtained from starting materials of different 
composition such as α,β-unsaturated aldehydes [ 47 ] chiral epoxy alcohols [ 48 ], 
butenolides [ 49 ,  50 ] and polyfunctionalized acetals among others [ 51 ]. 

 The remarkable 2′-deoxynucleoside AZT widely prescribed as anti-AIDS drug 
was originally prepared from thymidine by Horwitz and coworkers [ 52 ], and since 
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then, several other synthesis have been developed, some of them starting with either 
a nucleoside, or a sugar derivative [ 53 – 56 ], and others relaying on the use of non-
carbohydrate starting materials [ 56 ,  57 ]. 

 The procedure developed by Chu et al. [ 50 ] consisted in the use of mannitol as 
staring material which was subsequently transformed to provide the protected key 
intermediate 3′-azide-2′-deoxyribofuranose. The next step involved the coupling 
reaction with silylated thymine under Vörbruggen’s conditions to produce an ano-
meric mixture of nucleosides in 66 %. Final desilylation and separation by chroma-
tography column provided AZT in overall yield of 25 % from the furanoside 
intermediate (Scheme  4.18 ).

   Another possibility was described by Hager and Liotta involving the coupling 
reaction between the azido diol intermediate and silylated thymine under Vörbruggen 
conditions to yield a diastereomeric mixture of  azido diol nucleoside  . Finally when 
exposed to concentrated acidic conditions the open form is converted into the 
β-anomer of AZT in 67 % yield (Scheme  4.19 ) [ 57 ].
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    Transglycosidic reaction   mediated by a deoxyribosyl transferase obtained from 
 E. coli  has been used in the synthesis of 3′-azido-2′,3′-dideoxyguanosine. The enzy-
matic reaction occurs between AZT which acts as glycosyl donor and substituted 
2-amino-6-purines to generate the desired purine nucleoside and thymine as by- 
product (Scheme  4.20 ) [ 58 ].

4.1.2.3        3′-deoxynucleosides 

 These deoxynucleosides may be readily  pre  pared from 3′- O -tosylate via a 
[1,2]-hydride shift from C3′ to C2′ position with accompanying inversion of the C2′ 
center providing a 3′-ketone which was stereoselectively reduced by the hydride to 
produce 3′-deoxynucleoside (Scheme  4.21 ) [ 2 ,  46 ].

   Also 3′-deoxyguanosine was synthesized by an enzymatic transglycosylation of 
2,6-diaminopurine using 3′-deoxycytidine as a donor of the sugar moiety. The 
diaminopurine nucleoside was transformed to 3′-deoxyguanosine by the action of 
adenosine deaminase (Scheme  4.22 ) [ 59 ].

   Lodenosine [9-(2,3-dideoxy-2-fl uoro-β- D -threo-pentofuranosyl)] adenine (FddA) 
is a reverse transcriptase inhibitor with activity against HIV. This purine analog was 
evaluated as one of the most selective inhibitors in a series of 2′3′-dideoxyadenosines, 
although less active than ddA. An effi cient method was developed starting from 
chloropurine riboside which was tritylated and selectively benzoylated at 3′-position. 
Before fl uorination the 2′-hydroxyl group was converted to imidazolesulfonate or 
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  Scheme 4.18    Synthesis of AZT from mannitol       
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trifl uoromethanesulfonate. Fluorination proceeds smoothly with 6 equiv. of Et 3 N. 3 HF 
at refl ux in 88 % yield. Simultaneous 6-amination and 3′-debenzoylation was done 
with ammonia in high yield. Elimination of the 3′-hydroxy group was carried out 
under the Barton-McCombie procedure involving the formation of the 
3′-O-thiocarbonyl followed by silane treatment. Final removal of trityl group pro-
vided FddA (Scheme  4.23 ) [ 60 ].
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  Scheme 4.19    Synthesis of AZT from azido diol intermediate       
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  Scheme 4.20    Enzymatic synthesis of 3′-azido-2′,3′-dideoxyguanosine       
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4.1.2.4        4′-substituted Nucleosides 

  4′-substituted nucleosides   have attracted much attention because of the discovery of 
potent anti-HIV agents 4′-azido- and 4′-cyano thymidine (Scheme  4.24 ).

   One procedure involves the epoxidation of the exoglycal with dimethyldioxirane 
and ring opening of the resulting 4′,5′-epoxynucleosides to produce with high 
stereoselectivity the 4′-C-branched nucleosides (Scheme  4.25 ) [ 61 ].

   Likewise, others 4′-substituted nucleosides such as 4′-C-Ethynyl-β- D -arabino- 
and 4′-C-Ethynyl-2′-deoxy-β- D -ribopentofuranosyl pyrimidines have been reported 
by a different approach outlined in Scheme  4.26  [ 62 ].
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  Scheme 4.21    Method for preparation of  3′-deoxynucleoside         
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  Scheme 4.22    Enzymatic synthesis of  3′-deoxyguanoside         
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  Scheme 4.23    Preparation of  antiviral 2′3′-fl uoro dideoxyadenosine FddA         
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4.1.3         Complex Nucleosides 

 The hypermodifi ed Q base Queuine found in tRNA of plants and animals has been 
strongly associated with tumor growth inhibition. Three different approaches for pre-
paring queuine have been described [ 63 – 65 ], the more recent in 11 steps from ribose. 
Completion of the synthesis involved the condensation of bromo aldehyde interme-
diate with 2,3-diamino-6-hydroxypyrimidine to give the desired heterocyclic product 
in 45 %. Final removal of protecting groups provided Q base (Scheme  4.27 ).

    Capuramycin   is a complex nucleoside antibiotic isolated from  Streptomyces griseus  
446-S3, which exhibit antibacterial activity against  Streptococcus pneumoniae  and 
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  Scheme 4.26    Synthesis of 4′-C-Ethynyl-β- D -arabino- and 4′-C-Ethynyl-2′-deoxy-β- D - ribopen-
tofuranosyl pyrimidines       
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  Scheme 4.25    Ring opening of  4′,5′-epoxynucleosides         

 

 

4 Nucleoside Mimetics



235

 Mycobacterium smegmatis  ATCC 607. The total synthesis was reported by Knapp 
and Nandan [ 66 ] consisting in the glycosylation reaction between the key thiogly-
coside donor and silylated pyrimidine to produce the corresponding  L - talo - uridine. 
The next glycosidic coupling reaction was carried out with  L - talo -uridine and imi-
date glycosyl donor under TMS-OTf conditions to provide the disaccharide nucleo-
side. Further transformations lead to the target molecule (Scheme  4.28 ).

   Due its promising role as anti-tuberculosis drug, further efforts for preparing 
capuramycin and other analogs have been deployed as described in a more recent 
concise total synthesis [ 67 ]. 

 Moreover,  capuramycin   has been also chemically transformed in an attempt to 
extend the antibacterial spectrum. Thus, radical oxygenation gave unexpected lac-
tone in moderate yield via an intramolecular radical Ar-C glycosylation- lactonization 
reaction (Scheme  4.29 ) [ 68 ].

   Synthestic studies of unique class tunicamycin antibiotics leading to the prepara-
tion of (+)-tunicaminyluracil, (+)-tunicamycin-V, and 5′- epi -tunicamacyn-V were 
described by Myers et al. [ 69 ] The key features are the development and application 
of a silicon-mediated reductive coupling of aldehydes, the allylic alcohols to con-
struct the undecose core of the natural product, and the development of an effi cient 
procedure for the synthesis of the trehalose glycosidic bond within the antibiotic 
(Scheme  4.30 ).
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  Scheme 4.27    Synthesis of  hypermodifi ed base Queuine         
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   An alternative approach for the synthesis of tunicamycins is reported in a stere-
oselective approach, the key reactions being the Mukaiyama aldol reaction, intra-
molecular acetal formation, gold(I)-catalyzed O- and N-glycosylation, and fi nal 
N-acylation (Scheme  4.31 ) [ 70 ].

4.1.3.1        Fused Heterocyclic Nucleosides   

 Selective and potent anti- Varicella Zoster Virus (VZV)   bicyclic furanopyrimidine 
deoxynucleosides were synthesized. The bicyclic formation was performed by 
palladium- catalyzed coupling of aryl acetylenes with 5-iodo-2′-deoxyridine provid-
ing the desired fused furan nucleoside (Scheme  4.32 ) [ 71 ].

    Triciribine   is a tricyclic nucleoside with antineoplastic and antiviral properties, 
synthesized in an improved fashion from 6-bromo-5-cyanopyrrolo [2,3-d] pyrimidin- 
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  Scheme 4.28    Synthesis of Capuramycin       
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4-one intermediate. A series of transformations including  N -glycoside coupling 
reaction provided 4-amino-5-cyano-7-[2,3,5-tri- O -benzoyl-β- D -ribofuranosy] pyr-
rolo [2,3-d] pyrimidine that was then converted to the desired tricyclic nucleoside 
(Scheme  4.33 ) [ 72 ].

4.2            C -nucleosides   

 These modifi ed nucleosides are structurally distinct to their counterparts 
 N -nucleosides because of the presence of a C-C linkage instead of C-N between the 
furanoside and the heterocyclic aglycon. Their source could be either naturally 
occurring (pyrazomycin, showdomycin, formycin) or synthetic (thiazofurin), 
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  Scheme 4.29    Chemical transformations of  capuramycin         
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  Scheme 4.30    Key step for the synthesis of  Tunicamycin antibiotic         

having in either case signifi cant antitumor and antiviral activity. Also, some of them 
have been found in tRNA codons (pseudouridine) and others (tiazofurin and oxazo-
furin) designed as competitive inhibitor of cofactor nicotinamide adenine dinucleo-
tide (Scheme  4.34 ).

   An early approximation for the preparation of  C -nucleosides proposed two basic 
possibilities depending on the nature of the atoms surrounding the C–C bond 
(Scheme  4.35 ) [ 73 ].

     (a)    If there is one heteroatom adjacent to the  C -glycosidic bond, for example tiazo-
furin, formycin, Pyrazomycin.   

   (b)    If there is no heteroatom adjacent to the  C -glycosidic bond.    

 

4 Nucleoside Mimetics



239

  Scheme 4.31    Synthesis of  tunicamycins   mediated by gold complex catalysis         

  Alternatively other authors consider three general pathways for preparing 
 C -nucleosides depending on the precursor employed as starting material [ 74 ]. 

 An early synthesis of modifi ed  C -nucleoside from naturally occurring pseudouri-
dine was carried out via ring opening with ozone to generate intermediate which 
was treated with thiosemicarbazone to provide 6-azathiopseudouridine. Treatment 
with iodomethane in acid medium produces the desired  C -nucleoside as shown in 
Scheme  4.36  [ 75 ].
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  Scheme 4.32    Synthesis of  bicyclic furano pyrimidine         
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Scheme 4.31 (continued)
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   The synthesis of the   C -nucleoside pseudouridine   was reported by Asburn and 
Binkley [ 76 ], involving the condensation between 5- O -acetyl-2,3- O -isopropylidene- 
 D -ribonolactone and 2,4-dibenzyloxypyrimidin-5-il lithium to provide the conden-
sation product which was subjected to hydride reduction and hydrogenolysis to 
yield pseudouridine (Scheme  4.37 ).

    Antitumor  C -nucleoside   tiazofurin was synthesized by Robins et al. [ 77 ], from 
2,3,5-tri- O -benzoyl-β- D -ribofuranosyl cyanide which undergoes ring closure under 
conditions described in Scheme  4.38 .

   A new report for the synthesis of  Tiazofurin   is described, avoiding the use of 
H 2 S gas which is unsafe on large-scale production. The synthesis initiate with the 
preparation of 1-cyano-2,3- O -isopropylidene-5- O -benzoyl-β- D -ribofuranose 
which was reacted with cysteine ethyl ester hydrochloride to give thiazoline 
derivative in 90 %. Further steps including oxidative aromatization under MnO 2  in 
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  Scheme 4.33    Synthesis of tricyclic nucleoside Triciribine       
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benzene and acetonide deprotection with iodide in methanol produced the desired 
 C -nucleoside (Scheme  4.39 ) [ 78 ].

   Another biologically important  C -nucleoside known as showdomycin was 
prepared by Trumnlitz and Moffat [ 79 ]. The aldehyde used as starting material was 
converted fi rst to an α-hydroxyacid and then to α-ketoacid. Wittig reaction on this 
intermediate and Lewis acid catalysis produced ring closure (Scheme  4.40 ).

    Pyrazine riboside   derivative was synthesized by treatment of glycine riboside 
with formaldehyde and cyanide (Strecker conditions) to generate cyanide intermedi-
ate as a mixture of isomers. Sulfenylation and sodium methoxide treatment produce 
the  C -nucleoside (Scheme  4.41 ) [ 80 ].
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   Analogs of antiviral  C -nucleoside  Formycin   have been synthesized by using the 
palladium-mediated glycosidic reaction between the furanoid glycal and the iodin-
ated heterocycle. Similar conditions were used for preparing the pyrimidine analogs 
(Scheme  4.42 ) [ 81 ].

   Radical cyclization of ribo-phenylselenoglycoside tethered with propargyl moi-
eties on C-5 hydroxyl group provided cyclic intermediates potentially useful for the 
synthesis of  C -nucleoside derivatives. Propargyl intermediate was prepared from 
ribo-phenylselenoglycoside via two-step sequence and then under radical reaction 
conditions (Bu 3 SnH/AIBN) transformed to the cyclic intermediates in high yields. 
Further ring opening produce aldehyde intermediate which was subjected to cou-
pling reaction with 1,2-phenylenediamine to produce the pyrazine  C -glycoside 
(Scheme  4.43 ) [ 82 ].

    Polyhalogenated quinoline  C -nucleosides   were synthesized as potential antiviral 
agents. The key step reaction for quinolin-2-one ring formation consisted in the 
condensation between 2-aminophenoneallose derivative and keteneylidene(triphenyl)-
phosphorane in benzene under refl ux to provide the desired 6,7-dichloroquinolin- 2-
one nucleoside in 50 % yield (Scheme  4.44 ) [ 83 ].
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   The novel bicyclic  C -nucleoside malayamycin A from  Streptomyces malaysien-
sis  was elegantly synthesized from  D -ribonolactone which was transformed to the 
target molecule according to the pathway indicated in Scheme  4.45  [ 84 ].

4.3         Carbocyclic Nucleosides   

 This class of modifi ed nucleosides in which the furanose ring has been replaced by 
a cycloalkane ring (mainly cyclopentane) has been prepared by chemical or enzy-
matic methods. Besides their potent antitumor and antiviral activity for some of 
them, they have also shown high resistance to phosphorylases. 

 The use of enzymes particularly lipases for protections and deprotections is an 
important strategy for preparing carbocyclic nucleosides. This approach has been 
advantageous especially for the resolution of enantiomeric forms, leading to high 
enantiomeric purity. Constrained three [ 85 ] and four [ 86 ] member ring carbocyclic 
nucleosides have been obtained by applying chemoenzymatic methodologies 
involving lipase for enantiomeric resolution and stereoselective deprotections. In 
the case of more abundant fi ve member rings the use of lipases for enzymatic reso-
lution and regioselective deprotections have been under intense study. Special atten-
tion has been paid to cyclopentenyl diacetates which have been used as building 
blocks for the preparation of important carbocyclic nucleosides such as Neplanocin 
and Aristeromycin. To achieve this goal, the hydrolase enzyme acetyl- cholinesterase 
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  Scheme 4.45    Total synthesis of   C -nucleoside Malayamycin A           
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  Scheme 4.46    Enantiomeric resolution of  prochiral cyclopentene diacetate         

(EEAC) [ 86 ] showed high effi ciency for obtaining the desired enantiomer (1R,4S)-
4-hydroxy-2-cyclopentenyl derivative in enantiomeric excess (ee) up to 96 % 
(Scheme  4.46 ) [ 87 – 89 ].

    Racemic cyclopentenyl   derivatives have been used as starting material in the 
preparation of the antiviral carbocyclic nucleoside (−)-5′-deoxyaristeromycin. The 
key step reaction was the enzymatic resolution with  Pseudomonas  sp. lipase (PSL) 
of the racemic mixture providing the (+)-enantiomer which was transformed chemi-
cally to the desired carbocyclic nucleoside (Scheme  4.47 ).

   The separation of racemic carbocyclic nucleosides by enzymatic means has been 
reported as an alternative approach. Thus, racemic aristeromycin was treated with 
adenosine deaminase (ADA) to give (−)-carbocyclic inosine and pure dextrorota-
tory enantiomer (Scheme  4.48 ) [ 90 ].

OPh OAc
i

OPh OAc

(+)

Me A

OH OH
(-)-5-Deoxyaristeromycin

i) PSL, buffer.

(±)

  Scheme 4.47    Enzymatic resolution of  racemic cyclopentene   building blocks       
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4.3.1        Cyclopropane Carbocyclic Nucleosides   

 Conformationally constrained cyclopropane nucleosides have been prepared fol-
lowing a chemoenzymatic approach [ 85 ]. Thus, the racemic resolution of  trans -1-
(diethoxyphosphyl)difl uoromethyl-2-hydroxymethylcyclopropane followed by 
acetate hydrolysis was carried out with porcine pancreas lipase (PPL) to yield (+)- 
and (−)-cyclopropanes in high enantiomeric excess. Further transformation lead to 
the preparation of the target cyclopropane nucleoside (Scheme  4.49 ).

4.3.2         Cyclobutane Carbocyclic Nucleosides   

 Lubocavir is a synthetic potent inhibitor of DNA polymerase, active against cyto-
megalovirus [ 91 ] (Scheme  4.50 ).
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   The carbocyclic four-membered  C -nucleoside cyclobut-A was prepared following 
the Barton decarboxylation method. The method is based on the reaction between 
carboxylic acids and heteroaromatic compounds (Scheme  4.51 ) [ 92 ].

   Other carbocyclic oxetanocin analogs have been prepared from oxetanocin A 
[ 93 ] 3,3-diethoxy-1,2-cyclobutanedicarboxylate [ 94 ], and enantiomeric cyclobutanone 
intermediates [ 95 ] as starting materials.  

4.3.3      Cyclopentane Carbocyclic Nucleosides   

 The Mitsunobu reaction has become a valuable alternative approach for preparing 
cyclopentane carbocyclic nucleosides. This has been demonstrated in the prepara-
tion of conformationally locked carbocyclic AZT triphosphate analogs under these 
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versatile conditions [ 96 ]. The standard procedure usually takes place with diethyl or 
diisipropylazocarboxylate (DEAD or DIAD) with triphenylphosphine (Ph) 3 P in 
THF to yield carbocyclic purines or pyrimidines nucleosides in high yield 
(Scheme  4.52 ) [ 97 ].

   Another example on the applicability of this method was observed in the prepara-
tion of the carbocyclic thymidine nucleoside. It is worth mentioning that the desired 
stereochemistry of the hydroxyl group is obtained also through the Mitsunobu 
reaction (Scheme  4.53 ) [ 98 ].

4.3.4        Palladium Mediated 

 Based on the widespread  palladium-coupling methodologies  , several dideoxy, car-
bocyclic and  C -nucleosides have been effi ciently prepared. For instance the antivi-
ral  C -nucleosides 2′-deoxyformycin B was prepared by condensation reaction 
between the heterocycle iodide intermediate and the glycal, under Pd(dba) 2  as 
palladium catalyst in 62 % yield (Scheme  4.54 ) [ 99 ].

   Solid phase synthesis of carbovir analogs under palladium catalysis was recently 
reported [ 100 ]. The carbocyclic derivative was linked to the Wang resin and then 
coupled with chloropurines under Pd(0) catalyst (Scheme  4.55 ).
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   The  Tsuji-Trost approach   was used to prepare (−)-neplanocin A and its analog [ 101 ]. 
This synthesis proceeds via an allylic rearrangement of the hydroxyl group from the 
(+)-allylic alcohol to the (−)-allylic acetate (Scheme  4.56 ).
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  Scheme 4.55    Solid-phase synthesis of carbocyclic nucleosides under palladium catalysis       
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    Carbocyclic nucleoside   aristeromycin with antitumor and antiviral activity was 
prepared by condensation of the carbocyclic diacetate intermediate with the sodium 
salt of adenosine base under Pd(0) in 75 % yield (Scheme  4.57 ) [ 102 ].

   Palladium mediated coupling of purine base with carbocyclic acetates, carbon-
ates or benzoates lead to a mixture of N-7 and N-9 isomers. The regioselectivity of 
purine alkylations depends on the size and nature of the ligands, the most typical 
being Ph 3 P, BINAP, P(OMe) 3 , P(OiPr) 3 , P(OPh) 3  (Scheme  4.58 ) [ 103 ].

   Another straightforward methodology for preparing carbocyclic nucleosides 
involves the direct condensation of mesylated carbocyclic intermediate with the het-
erocyclic base in the presence of potassium carbonate and crown ethers as coupling 
conditions (Scheme  4.59 ) [ 104 ].
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  Scheme 4.57    Palladium catalyzed synthesis of  aristeromycin         
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4.3.5        Enzymatic Synthesis 

 Likewise,  carbocyclic nucleosides   aristeromycin and neplanocin A can be biosyntheti-
cally prepared by using a mutant strain of  S. citricolor  as it is observed in Scheme  4.60 .

   The cyclopropylamino carbocyclic nucleosides (–)-abacavir is a potent anti-HIV 
with promising results on clinical trials [ 105 ]. An improved synthesis has been 
described by Crimmins et al. [ 106 ], involving the treatment of key carbocyclic 
2-amino-6-chloropurine intermediate with cyclopropylamine producing Abacavir 
along its parent anti-HIV carbocyclic nucleoside (−)-Carbovir (Scheme  4.61 ).
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4.3.5.1       Base Ring Formation 

 Another useful strategy used for preparing carbocyclic nucleosides involves the use 
of intermediates in which the amino group is already attached to the sugar moiety 
and once the coupling reaction is achieved, a ring closure process takes place to 
generate the expected nucleoside. According to this procedure Roberts et al. [ 107 ] 
prepared the potent antiviral inhibitor (−)-carbovir which posses similar activity 
than AZT against HIV in MT-4 cells. Thus, the starting material (±)-2-azabiciclo 
[2.2.1] hept-5-en-3-one was submitted to microbial treatment with  Pseudomonas 
solanacearum  to provide enantiomerically pure (−) isomer. The enantiomerically 
pure carbocyclic amine was then conjugated to 2-amino-4,6-dichloropyrimidine to 
produce the carbocyclic precursor which was ultimately cyclized to provide the 
desired (−)-carbovir (Scheme  4.62 ).

   Antileukemia carboxylic nucleoside  Neplanocin A   has been synthesized by 
Marquez et al., using the ring closure approach mentioned above. Thus, condensation 
of pyrimidine intermediate with isopropylideneaminocyclopentenediol furnished an 
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intermediate which was further cyclized to the purine base with triethylorthoformate. 
Final conversion to adenine ring with ammonia and protecting group removal gave 
rise to neplanocin A (Scheme  4.63 ) [ 108 ].

   Likewise, this procedure was applied for the preparation of the close related 
pyrimidine analog by condensation of the previous carbocyclic amine with the 
unsaturated ether to produce the pyrimidine precursor who was transformed to 
thiopyrimidine and then to carbocyclic cytosine as it can be observed in 
Scheme  4.64 . This compound has been found to be active against leukemia type 
L1210 in vivo [ 109 ].

   An antiviral carbocyclic purine nucleoside was also reported [ 110 ] by following 
a ring closure step for purine formation. Condensation between pyrimidine interme-
diate and carbocyclic amine provided condensation product which is activated with 
diazonium salt for amino introduction. Ring closure was achieved with triethyl 
orthoformate in acid medium (Scheme  4.65 ).

4.3.6          Carbocyclic  C -nucleosides   

 This class of  C -nucleosides in which a methylene group replaces the furan oxygen 
ring has not shown signifi cant biological activity so far; however, there is an interest 
to synthesize  C -nucleoside with natural heterocycle moieties in a stereocontrolled 
fashion. A recent stereocontrolled synthesis of carbocyclic  C -nucleosides has been 
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  Scheme 4.62    Synthesis of (−)-carbovir       
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proposed involving as key starting material the cyano carbocyclic intermediate 
which was condensed to 9-deazapurine to produce saturated and unsaturated carbo-
cyclic 9-deazapurine nucleosides (Scheme  4.66 ) [ 111 ].

4.4          Acyclic Nucleosides   

 Since the discovery of acyclovir as an anti-herpes drug, important efforts have been 
made toward the synthesis of analogs of acyclovir and other acyclic nucleosides. 
A comprehensive review made by Chu and Cutler [ 112 ] summarizes the major 
achievements carried out for preparing acyclonucleosides defi ned as those heterocy-
clic compounds containing one or more hydroxyl groups on the alkyl side chain. 

 At least three representative synthesis of acyclovir have been made, the fi rst by 
Schaeffer et al. [ 113 ] involving a condensation reaction of dichloropurine with 
ether chloride intermediate, and further purine transformation to generate 
9-(2- hydroxyethoxymethyl)guanine (acyclovir) (Scheme  4.67 ).

   An improved version introduced by Barrio et al. [ 114 ,  115 ] consists in the initial 
reaction of 1,3-dioxolane with trimethylsilyl iodide to produce the side chain which 
was then condensed with the halogenated purine, to yield after hydrolysis and 
ammonolysis the target acyclovir (Scheme  4.68 ).
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   Robins and Hatfi eld [ 116 ] employed a chemoenzymatic approach for preparing acy-
clovir consisting initially in the use of mercury salts and hexamethyldisilane (HMDS) 
and in the fi nal step an enzymatic conversion. Thus, the procedure involves the conden-
sation between 2,6-dichloropurine and the bromoether, providing  regioisomer N-7 
shown in Scheme  4.69 . Further amination and fi nal transformation to guanine with the 
enzyme adenosin-deaminase produces the desired antiviral compound.

   The phosphonate acyclic nucleoside 9-(2-phosphonomethoxyethyl)adenine 
(PMEA) was found to be a good antiviral analog with prolonged action [ 117 ]. 
A regio-defi ned synthesis base on the purine ring formation was described involving 
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  Scheme 4.68    Improved synthesis of  acyclovir         
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the initial attachment of the phosphonate amine intermediate by nucleophilic 
substitution to the 5-amino-4,6-dichloropyrimidine base, and then ring formation 
followed by amination to produce the desired phosphonate acyclic adenine PMEA 
(Scheme  4.70 ) [ 118 ].
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   The effectiveness of acyclovir as antiviral drug encouraged different group to 
synthesize more potent acyclic analogs. As a result of this efforts, the acyclic nucle-
oside 9-[(1,3-dihydroxy-2-prpoxy)methyl]guanine (DHPG) [ 119 ] was prepared and 
tested as antiviral nucleoside, showing similar potency as acyclovir against simple 
herpes but stronger against encephalitis and vaginitis herpes. 

 Various report of DHPG were described, one of them involving the use of 
hexamethyldisilazane (HMDS) as condensing agent (Scheme  4.71 ) [ 112 ].

   An alternative route for preparing DHPG involved the condensation reaction of 
acetylguanine base and triacetate derivative in the presence of ethanesulfonic acid, 
at temperatures ranging from 155 to 160 °C. As result two regioisomers were 
obtained from which one of those was converted to the desired antiviral compound 
Scheme  4.72  [ 112 ].

4.5         Thionucleosides   

 Nucleosides having the sugar ring oxygen replaced by sulfur are known as thionu-
cleosides. The synthesis and therapeutic evaluation mainly as antiviral and antican-
cer drugs of these nucleoside mimics has been reviewed [ 120 ]. A comparative 
analysis of thionucleosides and nucleosides showed that sulfur replacement in some 
cases produced equivalent or higher potency [ 9 ,  121 ], and do not undergo enzymatic 
cleavage of the glycosidic bond, although it has been also observed increased toxicity 
as in the case of β-4′-thiothymidine [ 122 ] Some thionucleosides displaying antiviral 
and/or anticancer activity are shown in Scheme  4.73 .
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   Based on their structural features  N -thionucleosides defi ned also as thioribosyl 
sugars are classifi ed into four groups (Scheme  4.74 ):
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4.5.1       Preparation of Thioribofuranosyl Intermediates 

 A number of approaches oriented to replace or insert a sulfur atom instead or besides 
the cyclic oxygen into the ribose ring have been described. One of the earliest methods 
for preparing thioribosyl acetates was described by Reinst et al. [ 123 ,  124 ] involving 
as key steps the conversion of the 4-thiobenzoyl pyranoside into the thioribofuranosyl 
acetate (Scheme  4.75 ).

   Short time later another report introduced the use of sodium in liquid ammonia 
followed by benzoylation to yield tribenzoylated thioribofuranoside as a mixture of 
anomers ( α : β , 1:3) (Scheme  4.76 ) [ 125 ].

   The thioribosyl derivative benzyl 3,5-di- O -benzyl-2-deoxy-1,4-dithio- D - erythro -
pentofuranoside has been prepared and used as glycosyl donor in various thionucleo-
side synthesis [ 125 – 127 ]. The synthesis started from 2-deoxy ribose which was 
transformed to the methylbenzyl derivative by following a standard procedure and 
then treated with benzylmercaptan in acid to produce the dithiobenzylated derivative. 
Next, was to invert the hydroxyl group at 4-position by using the Mitsunobu protocol 
to generate the intermediate with the desired stereochemistry. Final tosyl protection 
and NaI-BaCO 3  treatment provided the desired thiosugar (Scheme  4.77 ) [ 126 ].
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4.5.2         Glycosidic Bond Formation   

 The general methods for preparing  N -thionucleosides are similar as for  N -nucleosides; 
however, variations from slight to signifi cant can be found specially in the prepara-
tion of four ring thietanocin or thiolane analogs [ 127 ,  128 ] Thus, according to a 
comprehensive review [ 120 ], the earliest reports for  N -thionucleoside formation used 
chloromercury salt of purine and chlorine or benzoyl thioriboside as glycosyl donor, 
while more recently the silyl approach has been preferred (Scheme  4.78 ).

4.5.2.1       Chloromercuration Promoted Coupling Reactions 
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  Scheme 4.78    Common glycosylation reactions for the preparation of thionucleosides [ 122 , 
 129 – 132 ]         
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    Ref. [ 123 ].

   

+

S
AcO

OAcOAc

Cl N

N N

N

Cl

HgCl

i) toluene, heat, 37%.

S
AcO

OAcOAc

N

N N

N

Cl

  

    Ref. [ 129 ].

   

+
S

BzO

OBz

OBz
S

BzO

OBz

N

N N

N

NHR

HgCl

N

N N

N

NHR

i

i)TiCl , EtCl ,  heat.4 2   

    Ref. [ 130 ].  

4.5.2.2     Silyl-Mediated Coupling Reactions 

 The preparation of potential anti-HIV  N -isothionucleosides was described starting 
from glucose. The key coupling reaction proceeds in low yield between the pyrimi-
dine base and the mesyl tetrahydrothiophene derivative under potassium conditions 
(Scheme  4.79 ) [ 133 ].
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  Scheme 4.79    Preparation of   N -isothionucleoside         
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     N -thioxonucleosides   are another class of  N -thionucleosides tested as anti-HIV 
agents. The conditions employed for performing the coupling reaction were 
TMSOTf as Lewis acid catalyst, providing a mixture of anomers ( α : β , 1:2) in 64 % 
(Scheme  4.80 ) [ 134 ].

    Thietane nucleoside   was synthesized starting from the benzoyl thietane deriva-
tive which prior to the coupling reaction was treated with peroxide to produce the 
sulfoxide derivative. Then under Lewis acid conditions a Pummerer rearrangement 
process takes place to produce in the presence of thymine the expected thietane 
nucleoside (Scheme  4.81 ) [ 128 ].

   More recently the  stereoselective synthesis   of β-4′-thionucleosides based on 
electrophilic glycosilation of 4-thiofuranoid glycals has been described. Thus, the 
condensation of TBDMS-4-thioglycal with silylated uracil in the presence of 
PhSeCl as electrophile furnished thionucleosides in 88 % as a mixture of anomers 
( α : β ; 1:4) (Scheme  4.82 ) [ 135 ].

   The thio analog of antiviral DHPG with comparable activity to DHPG against 
HSV-1 and human cytomegalovirus was synthesized according to the scheme shown 
below (Scheme  4.83 ) [ 112 ].
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    Chapter 5   
  C -glycosides                     

             C -glycosides have attracted much attention, considering that many of them have 
demonstrated their effectiveness as therapeutic agents. The increasing signifi -
cance of  C -glycosides is that the conformational differences compared to  O - or 
 N -glycosides are minimal, and that they are resistant to enzymatic or acidic hydro-
lysis since the anomeric center has been transformed from acetal to ether [ 1 ]. A 
glycoside is defi ned as  C -glycoside when what is supposed to be the anomeric 
carbon of a sugar is interconnected to the aglycon, generating a new C–C bond. 
According to Levy and Tang [ 2 ] the term  C -glycoside describes those structures 
in which a common structural motifs the presence of carbon functionality at what 
would otherwise be the anomeric position of a sugar or derivative. Structurally 
 C -glycosides can be constituted by aliphatic, or aromatic aglycon, and the sugar 
can be pyranose or furanose. A variety of natural product  C -glycosides have been 
described. Examples of  C -glycosides isolated from different plant genera or 
insects and characterized spectroscopically are: Carminic acid (cochineal)   , Aloin 
(Aloe vera)   , Scoparin ( Cytisus scoparius )   , Saponarin ( Saponaria offi cinalis ), fl a-
vonoid phytoalexins such as Cucumerins ( Cucumis sativus ) and Naringenin 
(grapefruit),    [ 3 ]  C -glucosyl xanthones [ 4 ], and complex benzoquinone Altromycin 
B [ 5 ] (actinomycetes)   , among others (Scheme  5.1 ).

   Moreover, much effort and creativity have been devoted to the preparation of 
complex  C -glycosides with potent antibiotic activity. That is the case of  Aurodox   
[ 6 ],  Lasalocid A   [ 7 ],  Herbicidin   [ 8 ], and the hyperfunctionalized molecules 
 Spongistatin   [ 9 ], and  Palytoxin   [ 10 ] (Scheme  5.2 ).
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  Scheme 5.1    Some naturally occurring  C -glycosides         
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5.1       Synthetic Approaches for the Preparation 
of  C -Glycosides 

 Based on comprehensive studies [ 2 ,  11 – 14 ], the general strategies for  C -glycosides 
can be overviewed as follows:

•    Electrophilic glycosyl donors  
•   Concerted reactions  
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•   Wittig approximation  
•   Palladium mediated reactions  
•   Mitsunobu reaction  
•   Nucleophilic sugars or anomeric anions intermediates.  
•   Cross-metathesis reaction  
•   Samarium promoted reaction  
•   Ramberg–Bäcklund reaction  
•   Free radical approaches  
•   Exoglycals  
•   The tether approach

 –    With unprotected sugars       

  Scheme 5.2    Complex  C -glycoside antibiotics           
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5.1.1      Electrophilic Glycosyl Donors   

5.1.1.1     Glycosyl Donors Bearing Good Leaving Groups 

    

O

PO

P = protecting group

X

X = leaving group (I, Cl, Br, imidate, acetate and Lewisacid)

R-M O

PO
R

M = Li, MgBr, SnBu3

  

    A general approach for the  C -glycosidic bond formation is based on nucleophilic 
carbon addition on the electrophilic center of a glycosyl donor. The most exten-
sively used glycosyl donors divided in four main groups (good leaving groups, 
sugar lactones, glycals, and 1,2 anhydrosugars) are used as electrophilic donors to 
generate  C -glycosidic bonds when reacted with organocuprates, organotin, organoz-
inc, cyanide, allylic Grignard, vinyl silyl reagents, and activated aromatic com-
pounds among others [ 11 ]. 

 Some of the reactions described that have been used for preparing useful inter-
mediates or  C -glycosides are shown in Scheme  5.3 

   It is worth mentioning that for aryl C-glycosylations, there is a dependence on the 
electron density of the aromatic ring and the protecting groups at the glycosyl moiety 
[ 18 ]. Moreover, depending on the reaction conditions, there is a competing parallel 
process that ultimately will drive the reaction either to the  O - or to the C-glycoside 
formation. This affi rmation was demonstrated in the preparation of  C - and  O -fl avonoid 
glycosides by Oyama et al., which treated glycosyl fl uoride with fl avan under Lewis 
acid conditions. It was observed that BF 3 .ET 2 O and 2,6-di-tert- butyl-4-methyl pyri-
dine (DTBMP) resulted predominantly in the formation of the 5- O -β-glycoside, 
while if the reaction is carried out only with BF 3 -Et 2 O, the  C -glycoside is obtained 
(Scheme  5.4 ).

5.1.1.2        Other  Electrophilic Glycosyl Donors   

 Additionally, the introduction of other electrophilic centers at the anomeric position 
has extended the possibilities for preparation of  C -glycosides by using electrophilic 
sugars. Some of these  electrophilic sugars   are: lactols, anomeric esters, glycals, 
anhydrides, and lactones.

   

O
PO

OR O
PO

O

R = TMS

Lewis acid
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  Scheme 5.3    Preparation of  C -glycosides or intermediates from electrophilic glycosyl donor with 
good leaving groups [ 15 – 17 ]         
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    Some of the reactions carried out for preparing  C -glycoside intermediates involving 
these alternative glycosyl donors are shown in Scheme  5.5 . In 1,2- anhydrosugars 
the stereoselectivity is 1,2-trans type and involves a typical S N 2 process. On the 
other hand glycals exhibit high stereoselectivity, and in glycosyl acetates the stereo-
control relies on the electronic and steric properties of the nucleophiles.

5.1.2         Concerted Reaction and Ring Formation 

 This type of reactions include sigmatropic rearrangements and cycloaddition 
transformations. As an example of the applicability of the sigmatropic rearrange-
ment for preparation of  C -glycosides, Ireland [ 7 ] reported the synthesis of Lasalocid 
A, consisting in the coupling of acid derivative with protected glycal as a result of 
enolate addition and Claisen rearrangement. A transformation series of this precursor 
will give rise to Lasalocid A (Scheme  5.6 ).

   To exemplify the effectiveness of cycloadditions for preparation of  C -glycosides, 
Schmidt et al. [ 23 ] prepared  p -methoxyphenyl 2,3,4,6-tetraacetyl  C -glucopyranose, 
by following a Diels– Alder   approach. The reaction between heterodiene and dieno-
phile produced cycloadduct that was successively transformed to give the desired 
product (Scheme  5.7 ).

   Protected  monosaccharide   is reacted with  Wittig ilide   to produce a ring opening 
unsaturated intermediate, which was cyclized to produce a mixture of α,β 
 C -glycosides. The α form could be converted to the β form under sodium methoxide 
conditions (Scheme  5.8 ) [ 24 ].

   Cation-mediated cyclization reactions of  silyl enols   ether-containing thiogly-
cosides give bicyclic ketotetrahydrofurans. Treatment with sodium amalgam in 
buffered methanol yields the expected dihydropyran which was transformed to 
the diol intermediate, and after separation converted to the bis-acetonides 
(Scheme  5.9 ) [ 25 ].

   Ring closure of polyalcohol has been proposed as a suitable strategy for prepar-
ing  C -glycosides [ 26 ]. Condensation between iodine pyranoside intermediate and 
an aldohexose will result in the condensation product which undergoes cyclization 
to give the mixture of  C -disaccharides showed in Scheme  5.10 .
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5.1.3         Palladium Mediated Reactions   

  Heck type reactions   have been successfully assayed for preparing interesting 
 C -glycosides. Such is the case of vineomycinone  B2   prepared by palladium cata-
lyzed condensation between TBS protected glycal with anthracene derivative [ 27 ]. 
Further transformations will generate  C -glycoside vineomycinone B2 (Scheme  5.11 ).

  Scheme 5.5     C -glycoside formation with electrophilic sugars [ 19 – 22 ]         
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  Scheme 5.9    Formation of tetrahydrofurans and application to the synthesis of 2-octulopyranosides       
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  Scheme 5.11    Synthesis of vineomycinone B2 methyl ester       
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   The synthesis of (1 → 6)-linked  C -glycosidic disaccharides were suitably pre-
pared starting from glucal trifl ate as glycosyl donor which was coupled with alkynyl 
glycosides under palladium mediated conditions, generating the pseudodisaccha-
rides which was reduced with Raney-nickel under hydrogen atmosphere and the 
glycal epoxidated with dimethyldioxirane and fi nally transformed to the pyranoside 
ring by hydride reduction (Scheme  5.12 ) [ 28 ].

   Other palladium-mediated coupling includes Stille (palladium-catalyzed vinyl 
substitution) [ 29 ], and Suzuki cross-coupling reactions [ 30 ].  

5.1.4      Mitsunobu Reaction   

 Mitsunobu reaction is an additional useful reaction for preparing  C -glycosides 
(Scheme  5.12 ). When tetra- O -methyl glucopyranose is reacted with 1-naphthol in 
the presence of Mitsunobu conditions (diethylazidodicarboxylate and triphe-
nylphosphine), the resulting product is the  O -glycoside which is rearranged with 
BF 3 -Et 2 O to the corresponding  C -glycoside (Scheme  5.13 ) [ 31 ].

5.1.5         Nucleophilic Sugars   

 Anomeric carbons are considered electrophilic sites by nature, however it is possible 
to invert this reactivity by using metallic bases. The resulting carbanion character is 
known as   umpolung  reactivity   and allows the species to behave as nucleophiles. 

  Scheme 5.12    Synthesis of (1 → 6)-linked  C -glycosidic disaccharides from glucal trifl ate       
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A variety of glycosyl donors have been converted to lithium or stannane glycosyl 
anions (Scheme  5.14 ) [ 11 ].

   By using this possibility, the synthesis of the  C -glycosyl asparagine analog has 
been completed by Kessler and coworkers [ 32 ]. The transformation of the stannane 
to the lithium donor was followed by the coupling reaction with the aldehyde glu-
tamic acid derivative to provide the β- D -linked  C -glycoside. Removal of Boc pro-
tecting group and dehydroxylation reaction under Barton–McCombie condition 
provided the target molecule (Scheme  5.15 ).

   Another accomplishment following this umpolung strategy was the preparation of 
the aromatic  C -glycoside shown in Scheme  5.16 . Hence,  lithium glycal   (obtained from 
glycal treatment with lithium diisopropylamide) was reacted with quinolic ketal to 
yield addition product, which was transformed to the aromatic  C -glycal [ 12 ,  14 ,  33 ].

   Aldol condensations between glycosyl donors containing active methylene 
carbons and glycosyl acceptors has been also proposed as a suitable approach for 
preparing  C -disaccharides. Martin et al. [ 34 ] described a procedure for preparing 
(1,6)- and (1,1)-linked  C -disaccharides based on the nitroaldol condensation 
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between the glycosylnitromethane peracetate and the galactose-derived aldehyde to 
provide after dehydration, reduction of the double bond and radical denitration the 
desired  C -disaccharide (Scheme  5.17 ).

5.1.6        Cross-Metathesis Reaction 

 Cross-metathesis reaction is an emerging methodology for C–C bond formation. 
The air stable Grubbs ruthenium complex [ 35 ,  36 ] has become an attractive catalyst 
for the olefi n cross-metathesis reactions and has been also applied successfully for 
the preparation of pseudosaccharides. The coupling reaction between C-allyl α- D -
galactopyranoside and 4-acetoxystyrene led to the formation of the cross- metathesis 
product (Scheme  5.18 ) [ 37 ].

5.1.7         Samarium   Promoted Reaction 

 The synthesis of a  C -glycoside analog of α-1,3-mannobiose has been reported via 
SmI 2 -promoted C-glycosilation. The general approach is based on the  Barbier-type 
coupling   [ 38 ] and involves the use of pyridyl sulfone glycosyl donor with a sugar alde-
hyde in the presence of SmI 2  as catalyst. This procedure has been exploited success-
fully for the preparation of disaccharides under the tether approach (Scheme  5.19 ) [ 39 ].
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  Scheme 5.18    Cross-metathesis reaction for  C -glycoside formation       
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5.1.8        The Ramberg–Bäcklund  Reaction      

 This novel procedure introduced by Franck et al. is becoming a practical and versa-
tile approach for the preparation of biologically active  C -glycosides such as aro-
matic [ 5 ], amino acids [ 40 ,  41 ] or glycerolipids [ 42 ]. The reaction sequence for 
 C -glycoside formation consist in the initial  S -glycoside formation, transformation 
to the sulfone derivative, Ramberg–Bäcklund rearrangement involving sulfone 
extrusion, and hydrogenolysis (Scheme  5.20 ).
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   Another  C -disaccharide was prepared by transformation of benzylated exo- 
glycal to the iodide derivative, which in turn was coupled with the sulfur glycosyl 
donor. Further transformation to the sulfone and Ramberg–Bäcklund rearrangement 
produced the unsaturated disaccharide which was fi nally reduced under Pearlman 
conditions to provide disaccharide in 70 % yield (Scheme  5.21 ) [ 43 ].

5.1.9         Free Radical Approach      

 This approach is based on the generation of free radical at the anomeric carbon by 
using glycosyl donors which are subjected to stannous treatment of free radical 
conditions which in turn will react with mainly exoglycals to produce a  C -glycosidic 
linkage. The general methods leading to anomeric radicals formation are summa-
rized in Scheme  5.22  [ 44 ].

   The coupling reaction between acetobromoglucose and the unsaturated lactone 
shown in Scheme  5.23  will result in the  C -disaccharide formation, where a free 
radical mechanism promoted by a mixture of AlBN-Bu 3 SnH is involved [ 45 ].

   Anomer radicals may also generate rearranged products as a result of 1,2- migration 
particularly for the case of acetoxy and phosphate groups. This  feature has been 
exploited successfully for preparing 2-deoxy sugars from commercially available 
sugars (Scheme  5.24 ) [ 46 ].

5.1.10        Exoglycals 

  Exo-glycals   have been described as another possibility for preparing  C -glycosyl 
derivatives. The term exo-glycal is given to those unsaturated sugars with exocyclic 
double bonds. The most representative of these compounds are 1,2- and 5-6- unsaturated 
sugars (Scheme  5.25 ) [ 47 ].
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   They were fi rst prepared by reacting lactones with ethyl isocyanoacetate and 
subsequent hydrogenolysis [ 48 ,  49 ] (Scheme  5.26 ). This reaction has not been 
exploited extensively due to sugar oxazole formation.

   More recently two methods have been reported for direct olefi nation of lactones. 
One is based on phosphorous Wittig type reaction [ 50 ] and the other by direct meth-
ylenation using the Tebbe reagent [ 51 ] (Scheme  5.27 ).

   Alternative methods for the preparation of exo-glycals include β-elimination of 
halides [ 52 ,  53 ], dehydration (Grignard nucleophilic addition, sulfone extrusion 
(Ramberg–Bäcklund olefi nation) [ 54 ], and tosyl hydrazones (Bamford–Stevens 
conditions) [ 55 ] among others (Scheme  5.28 ).
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  Scheme 5.26    First synthesis of 1,2-unsaturated sugar       
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   The synthesis of several  C -disaccharides by using exo-glycals has been described. 
Such is the case of the preparation of  C -disaccharide by reaction of two molecules 
of the  C -methylene intermediate under Lewis acid conditions (Scheme  5.29 ). 
The reaction was proposed to proceed via oxonium cation [ 56 ].

   A 1,3-dipolar cycloaddition of exo-methylene sugar with glycosyl nitrone has 
been proposed as an approach for the formation of amino- C -ketosyl disaccharides 
(Scheme  5.30 ) [ 57 ].
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5.1.11        The  Tether Approach   

 Various approaches for  C -glycoside construction are comprehensively reviewed 
focusing mainly on the methylene formation [ 58 ]. The strategies presented are based 
on the concept that a nucleophilic anomeric donor is condensed with an exometh-
ylene sugar to produce a  C -disaccharide linkage [ 59 ]. According to this strategy 
methyl α- C -isomaltoside was prepared from the silaketal connected precursor as 
shown in Scheme  5.31 .

   The tether approach considers the preliminary formation of a temporary attach-
ment usually involving a silyl protecting group, as tether which is cleaved after 
formation of he desired C–C bond. The general conditions involve the use of sele-
noglucopyranosides [ 60 ] or phenylsulfoxides [ 45 ,  61 ] as glycosyl donors. An 
important application of this methodology can be seen in the preparation of O-C 
mixed sulfated trisaccharide (Scheme  5.32 ) [ 13 ].

5.1.12        Unprotected Sugars 

 Direct coupling reaction between unprotected aldoses and aglycones such as dibenzo-
ylmethane gave aryl ketone β- C -glycosides in good yields when treated with sodium 
bicarbonate base and a mixture of ethanol and water and subjected to microwave 
irradiation (Scheme  5.33 ) [ 62 ].
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  Scheme 5.30    Dipolar cycloaddition of exo-glycals       
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  Scheme 5.32    Preparation of sulfated  C -trisaccharide under the tether methodology       

  Scheme 5.33    Synthesis of aryl ketone β- C -glycosides under microwave irradiation       
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   The  C -glycoside fl avonoid Vicenin-3 was prepared with high regioselectivity by 
condensation of naringenin with unprotected  D -glucose and  D -xylose in the pres-
ence of scandium trifl uoromethanesulfonate although providing moderate yields 
(Scheme  5.34 ) [ 63 ].
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    Chapter 6   
 Glycoconjugates                     

            Carbohydrates covalently attached to proteins and lipids constitute three types of 
glycoconjugates: proteoglycans, glycoproteins, and glycolipids. Although in the 
fi rst two cases the types of linkages are the same, chemically proteoglycans behave 
as polysaccharides and glycoproteins having much less carbohydrate content as 
proteins. The third important class of glycoconjugates, where carbohydrate residues 
are covalently attached to a lipidic component, has been classifi ed into four types 
depending on the lipidic nature: glycoglycerol, glycosyl polyisoprenol pyrophosphates, 
fatty acid esters, and glycosphingolipids [ 1 ]. 

 The most common monosaccharides residues found in glycoconjugates are 
 D -galactose,  D -mannose,  N -acetyl- D -glucosamine,  N -acetyl- D -galactosamine, 
 L -fucose,  D -xylose, and sialic acids (Scheme  6.1 ).

6.1       Biological Function and Structural Information 

  Glycoproteins and glycolipids   are major components of the outer surface of 
mammalian cells. The former has been implicated in several essential events such as 
immune defense, viral replication, cell–cell adhesion, infl ammation, and cell growth, 
while the latter has been implicated in cell–cell recognition, growth, differentiation, 
and interaction with proteins of viral and bacterial pathogens. 

 The fi rst recognition of carbohydrates as biological signals is attributed to the dis-
covery of hepatic Gal/GalNAc-binding receptor [ 2 ]. Subsequently Man-6- phosphate 
receptor for lysosomal enzymes and Man-receptor from alveolar macrophages were 
reported and investigated [ 3 ,  4 ]. 

 In cellular immune system, some specifi c glycoproteins are implicated in the 
folding, quality control, and assembly of peptide-loaded major histocompatibility 
complex antigens and the T cells receptor complex. Furthermore, the oligosaccha-
rides linked to glycoproteins provide protease protection, ER-associated retrograde 
transport of misfolded proteins, loading of antigenic peptides into MHC class I, and 
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  Scheme 6.1    Monosaccharides residues of glycoproteins       

infl uence the range of antigenic peptides generated in the endosomal pathway for 
presentation by MHC class II [ 5 ]. 

 In addition, enveloped viruses such as human immunodefi ciency virus (HIV) 
evade immune response by exploiting the host glycosylation machinery to protect 
potential antigenic epitopes [ 6 ]. They also use the host secretory pathway to fold 
and assemble their often heavily glycosylated coat proteins. 

 Another important fact to mention is that normal cells and tumor cells have 
evident differences in glycoprotein content of their cell membranes. Altered glycopro-
teins of the tumor membranes such as  Thomsen–Friedenreich (T antigen)   are tumor-
associated antigens and belong to the class of  O -glycoproteins [ 7 – 9 ]. 

6.1.1      Classifi cation   of Glycocoproteins 

 Based on the type of the glycosidic bond formed between the sugar and the protein 
residues, glycoproteins are divided into N- and O-glycans. The fi rst type involves a 
glycosidic linkage between asparagine and  N -acetylglucosamine and the second 
involves an  O -glycosidic linkage between the sugar residue (fucose, galactose, 
 N -acetylgalactosamine, and  N -acetylglucosamine) and the oxygen in the side chain 
serine, threonine, or hydroxyl lysine. 

 

6 Glycoconjugates



313

 It is known that N-linked glycans contain the pentasaccharide Manα1-6(Manα1-3)
Manβ1-4GlcNAcβ1-4GlcNAc as a common core, and they have been classifi ed into 
four main groups on the basis of the structure and the location of glycan residues 
added to the trimannosyl core: oligomannose, complex, hybrid, poly- N - 
acetylglucosamine (Scheme  6.2 ) [ 10 ].

   O-glycans do not present common core structures and until now they have 
been classifi ed into at least six groups according to different core structures 
(Scheme  6.3 ).

  Scheme 6.2    Four groups of N-linked glycans       
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  Scheme 6.3    Core structures in O-linked glycans       

6.1.2         Recognition Sites   

 There are two main classes of glycosidic linkage depending on the type of glycosidic 
bond formed between the sugar residue and the protein: the O-linked glycans 
involving the amino acids serine, threonine, and hydroxyl lysine, and N-linked gly-
cans involving the amino acid asparagine in the form of tripeptide with sequence 
AsnXSer (where X is any amino acid except proline). 

 Thorough studies with sugar analogs indicate that presumably the most impor-
tant of the substituents is the equatorial OH-group on carbon 3. Also important is 
the OH-group on carbon 4 which can be either axial or equatorial depending on the 
type of glycoprotein. Regarding C-2, there is certain tolerance; however, the size of 
the group should not be too large. Finally C-6 and the anomeric carbon apparently 
do not play a signifi cant role in the binding (Table  6.1 ) [ 11 ].

6.1.3        Structural Information of Glycoproteins 

 A better understanding about the conformation of glycoproteins has been reached 
by using NMR,  molecular dynamics (MD),   and in some cases X-ray diffraction 
techniques. The high motion of oligosaccharides mainly across the glycosidic 
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   Table 6.1    Sugar requirements for three different glycoproteins   

 Rat hepatic  Chicken hepatic  MBP-A 

 1  α ≈ β large substituents tolerated, negative group 
 Detrimental  Enhancing  Tolerable 

 2  Eq. N-Ac enhance 
binding 

 Eq. N-Ac enhance binding  No effect by N-Ac 

 3  Eq. OH required 
 4  Axial OH required  Eq. OH required  Eq. OH required 
 5  Large substituents accepted 

linkage (Scheme  6.4 ) has limited the unambiguous conformational determinations 
in glycoproteins; however, the conformations from the MD simulations are in 
good agreement with the values from NMR studies. It has been observed that 
ω-angle prefers  Gauche  conformation by solvation effects with ϕ-angle largely 
determined by the anomeric effect, and the ψ-angle highly infl uenced by non-bonded 
interactions [ 12 ].

   The linkage between the sugar residue and the amino acid asparagine (N-linked 
glycans) is planar along the C1-NH-C=O glycosidic linkage and fl exible along the 
CO-CH 2 -CH- bonds (Scheme  6.5 ).

   Based on the considerations that  N -glycosidic linkage is rigid for the amide 
group and fl exible for the side chain angles, the conformational motion of the gly-
coproteins depends on the fl exibility of the asparagine side chain. This fl exibility 
will have considerable effect on the volume occupied by the sugar and the shielding 
effects of the carbohydrate over the protein surface. 
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 Hydrogen bond and van der Waals interactions showed for some cases stacked 
conformations, and distances across a carbohydrate residue (from O-1 to O-4) of 
5.4 Å and for the fi rst three residues of the core of an N-linked oligosaccharide 
extend to approximately 16 Å from head to tail [ 12 ].   

6.2     Carbohydrate-Binding Proteins 

  Carbohydrate-binding proteins   are defi ned as those proteins that interact through 
non-covalent bonds with carbohydrates. Of particular interest are lectins which bind 
reversibly to monosaccharides and oligosaccharides with high specifi city, and are 
apparently devoid of  catalytic   activity [ 13 ]. 

 Carbohydrate-binding proteins are widespread macromolecules found in viruses, 
bacteria, plants, and animals and act as recognition determinants including clearance 
of glycoproteins from the circulatory system, control of intracellular traffi c of glyco-
proteins, recruitment of leukocytes to infl ammatory sites, adhesion of infectious 
agents to host cells, and cell interactions in the immune system in malignancy and 
metastasis [ 13 ]. 

 Depending on the affi nity showed toward the type of monosaccharide they can 
be classifi ed into mannose, galactose/ N -acetylgalactosamine,  N -acetylglucosamine, 
 L -fucose, and  N -acetylneuraminic acid. Due to their high specifi city, lectins specifi c 
for galactose do not recognize glucose or mannose, nor  N -acetylglucosamine with 
 N -acetylgalactosamine, but mannose-specifi c animals lectins do recognize fucose. 

  Lectins   also exhibit high specifi city for disaccharides, trisaccharides, and tetra-
saccharides and some interact only with oligosaccharides. Moreover different lectins 
specifi c for the same oligosaccharide may recognize different regions of its surface. 
Some of the lectins and their affi nity ligands are shown in Table  6.2 .

   High resolution studies involving the protein sequence determination and three- 
dimensional analysis have given insight about the structure and molecular  interaction 
between the sugar ligands and the proteins. As result of this structural analysis, it 
has been observed on the basis of common structural features that lectins fall into 
three main categories:

    (a)    Simple   
   (b)    Mosaic or multidomain   
   (c)    Macromolecular assemblies     

 Simple lectins are most of known plant lectins (legumes, cereals, Amaryllidaceae, 
Moraceae, Euphorbiaceae), animal lectins (galectins or formerly S-lectins), and 
Pentraxins, and contains a small number of nonidentical subunits of molecular 
weight below 40 kDa. 

 Mosaic or multidomain lectins include viral hemagglutinins and animal lectins C 
(endocytic lectins, collectins, selectins), P, and I types. Their molecular weight is 
variable and they are formed by different protein domains, only one of them with 
the carbohydrate binding site. 
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  Macromolecular assemblies   are common in bacteria and usually present in the 
form of fi mbriae which are fi lamentous, heteropolymeric organelles present on the 
surface of bacteria [ 14 ]. 

 Most plants lectins recognize and interact with terminal nonreducing units of 
oligosaccharides and polysaccharides, glycoproteins, and glycolipids. Anomeric pref-
erence is an important fi nding observed for different carbohydrate-binding proteins; 
for instance all mannose/glucose binding lectins display great preference for the 
α-anomeric forms [ 15 ]; however, lectins from  Ricinus communis  bind preferentially 
to β-galactosidases, while other lectins show no difference in binding to anomers of 
GalNAc and GlcNAc. A considerable amount of structural information about car-
bohydrate-binding proteins such as the complete amino acid sequences for various 
lectins is available [ 13 ,  16 ]. 

6.2.1     Combining Sites 

  Lectins combine   with carbohydrates mainly through weak forces such as hydrogen 
bonding, coordination with metal ions and hydrophobic interactions. The hydrogen 
bridge interaction is established between the carbohydrate hydroxyl groups and the 

   Table 6.2     Lectins and affi nity ligands     

 Family  Lectin  Abbreviation  Ligand 

 Legumes (plant 
lectins) 

 Concanavalin  ConA  MeαMan 
 MeαGlc 
 Manα3(Manα6)Man 

  Erythrina corallodendron   EcorL  Galβ4Glc 
 Fava bean  Favin  MeαMan 
  Griffonia simplicifolia   GSIV  Fucα2Galβ3(Fucα4)GlcNAc 
 Red kidney bean  PHA  Complex pentasaccharide 
  Lathyrus ochrus   LOL I,II  Manα3Manβ4GlcNAc, complex 

octasaccharide 
 Lentil  LCL  MeαMan, MeαGlc 
 Pea  PSL  Manα3(Manα6)Man 
 Peanut  PNA  Galβ4Glc 
 Soybean  SBA  Biantennary pentasaccharide 

 Cereals  Wheat germ  WGA  NeuAc(α2-3)Galβ4Glc 
 GlcNAcβ4GlcNAc 
 sialoglycopeptide 

  Amaryllidaceae   Snow drop  GNA  MeαMann 
 mannopentaose 

  Moraceae   Artocarpus integrifolia  Jacalin  MeαGal 
 Galectins 
(animal lectins) 

 Human hart  Galectin 1  Galβ4GlcNAc 
 octasaccharide 

 Rat liver  Galectin 2  Galβ4Glc 

6.2 Carbohydrate-Binding Proteins
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amino groups. Additionally, contacts between the carbohydrate and the protein are 
mediated by water bridges (Scheme  6.6 ) [ 17 ].

   Although carbohydrates are essentially polar molecules, there is a signifi cant 
share of nonpolar or hydrophobic interactions which occur between the  N -acetyl 
group of amino sugars and the glycerol moiety of neuraminic acid, and the aromatic 
amino acids phenylalanine, tyrosine, and tryptophan. In the combining site of wheat 
germ agglutinin with sialyllactose several van der Waals contacts stabilize the ori-
entation of the sugar ring through nonpolar stacking interactions with the aromatic 
side chain of Tyr64, and Tyr66 that interacts through non-polar with the glycerol tail 
of the  N -acetyl neuraminic acid (Scheme  6.7 ) [ 18 ].
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   Several classes of lectins are ion dependent for their functional interaction with the 
ligands. Divalent ions such as calcium and manganese participate in the stabilization of 
the amino acid positions that interact with the sugars. The Ca 2+  ion establishes a coor-
dination bond with the carbonyl group of asparagine and with one carboxylate oxygen 
of an acidic amino acid. The Mn 2+  does not coordinate any residues that interact directly 
with the protein, but is involved in fi xing the Ca 2+  position (Scheme  6.8 ) [ 16 ,  19 ].

   In the interaction of concanavalin A with the branched trisaccharide Man(α1-6)
[Man(α1-3)]Man, several hydrogen bond contacts between the hydroxyl group of 
the sugar and the amino acid residues are observed. Some of these interactions are 
bifurcated or involve water and contribute importantly to the recognition process 
(Scheme  6.9 ) [ 13 ,  20 ].

    Carbohydrate-binding proteins   are classifi ed into two types: calcium dependent 
(C-type glycoproteins), and thiol reagent dependent (S-type). The former are struc-
turally more diverse (although the binding region known as carbohydrate recogni-
tion domain CRD is highly conserved) and more specifi c to organs and tissues, 
while the latter are structurally more conserved and are more widespread among the 
organs and tissue examined [ 21 ]. Other carbohydrate-binding proteins that do not 
fall into these two categories are fi bronectin and laminin, serum immunoglobulins, 
mannose-phosphate receptor, viral hemagglutinins, and serum amyloid protein. 

 Another important class of carbohydrate binding proteins are known as  selectins  
(classifi ed as E-, P-, and L-selectins) and are defi ned as nonenzymatic and nonim-
mune proteins involved in the leukocyte recruitment to sites of infl ammation [ 22 ,  23 ]. 
It has been found that the tetrasaccharide sialyl Lewis X  is the recognition molecule 
and the use of synthetic sialyl Lewis X  confi rmed the hypothesis that sulfation increase 
the affi nity for L-selectins [ 24 ].   

6.3      Glycopeptide Synthesis   

 The design of glycopeptides requires a combination of sugar and peptide chemistry, 
a substantial part being the installation of the  O - or  N -glycosidic bond [ 25 ,  26 ] 
The synthetic approach is in principle designed on the basis of the glycosidic bond 
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required. Thus, while in the case of  O -glycopeptides, the synthetic methods relies 
on the common strategies for the preparation of  O -glycosides, for the preparation of 
 N -glycopeptides the strategy of choice involves the coupling between the amino 
glycosyl donor with aspartate in the presence of a condensing agent or by enzymatic 
catalysis. 

 Compatibility between the protecting groups and the glycosidic bond when they are 
subjected to different reaction conditions such as acid or base conditions is a sensitive 
issue. For instance it is known that the glycosidic bond in acetals is acid sensitive; how-
ever, in the case of  O -glycosyl serine and threonine they conversely present base-sen-
sitivity. The introduction of selective protecting groups for amino acid functionalities 
which can be cleaved under mild conditions without affecting the glycoside bond or 
protecting groups attached to the sugar moiety is a feasible approach. Widely employed 
protecting groups for this purpose are the Fmoc protecting group (9-fl uorenyl)methoxy-
carbonyl), Pyroc (2-(pyridyl)ethoxycarbonyl), and Aloc (allyloxycarbonyl) for the 
peptide and MPM (4-methoxy-benzyl ether) for the sugar region. The conditions 
needed for the cleavage of the mentioned protecting group in the presence of other 
functionalities are indicated in Scheme  6.10  [ 27 ,  28 ].

   The synthesis of N-α-FMOC amino acid glycosides was carried out with 
O’Donnell Schiff bases or with N-α-FMOC amino protected serine or threonine and 
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the appropriate glycosyl bromides under Koenigs–Knorr modifi ed conditions [ 29 ]. 
The α-FMOC-protected glycosides were incorporated into 22 enkephalin glycopep-
tides analogs (Scheme  6.11 ).

    Pyroc   is another protecting group useful in peptide chemistry. It is stable to acids, 
bases, and hydrogenolysis, but sensitive to morpholine. The allylic protecting group 
Aloc is also stable to acids, bases and can be removed under of Pd(0) catalysis or 
weak base as morpholine [ 28 ]. 

 A tumor associated antigen Lewis a  was synthesized by applying a combination 
of compatible sugar and peptide protecting groups. For this method the azide group 
was used as anomeric amine precursor (Scheme  6.12 ) [ 29 ].

   Enzymes have been useful for peptide elongation using an engineered  subtilisin  and 
disaccharide bond formation with glycosyltransferase as shown in Scheme  6.13  [ 30 ].

   A novel  chemoenzymatic synthesis   of eel calcitonin glycopeptide analog having 
natural N-linked oligosaccharides such as disialo biantennary complex-type as 
model compound for glycoproteins has been described. Natural oligosaccharides 
are added by a transglycosylation reaction using endo-β- N -acetylglucosaminidase 
from  Mucor hiemalis  (Scheme  6.14 ) [ 31 ].

   According to Sears and Wong [ 32 ] there are three basic approaches for preparing 
glycopeptides with complex glycans. (1) A converged method consisting in the 
independent preparation of the sugar and peptide components, and later assembled. 
(2) The preparation of the sugar attached to an amino acid using glycopeptide 
chemistry and simultaneously peptide linked to a glycal. (3) Solid-phase synthesis 
of the glycopeptide and chemoenzymatic elaboration of the glycal (Scheme  6.15 ).
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6.4         Glycoprotein Synthesis   

 Glycoproteins are essential macromolecules involved in a wide range of functions 
related to cellular recognition processes. Natural glycoproteins usually exist as a 
mixture of glycoforms, and have been found diffi cult to isolate for their structural 
characterization and for understanding more about their function [ 33 ,  34 ]. 

 As mentioned, glycoproteins can be obtained by fermentation process; however, 
this natural approximation produces a population of many different glycoforms as 
result of the participation of many glycosidases and transferases for a given protein, 
although the mixture can be useful for preparing a homogeneous core which in turn 
might be re-elaborated enzymatically [ 32 ]. The synthetic preparation of glycopro-
teins can be considered to some extent in glycopeptide chemistry, although the com-
plexity is undoubtedly superior. The synthesis of glycoproteins has received a 
considerable attention, resulting in studies involving a combination of chemical and 
enzymatic methods [ 34 – 40 ]. 

 A general strategy proposed by Duus et al. [ 41 ] considers the assembly of 
glycosylated amino acid building blocks in solid-phase peptide synthesis according 
to the general scheme shown in Scheme  6.16 .
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   According to a comprehensive review the strategies described so far for chemical 
glycoprotein synthesis are: (a) indiscriminate glycosylation, (b) chemoselective and 
site-specifi c glycosylation, and (c) site-selective glycosylation [ 42 ,  43 ]. 

6.4.1      Indiscriminate Glycosylation   

 This nonselective approach consists in the preparation of sugars bearing functional-
ities that under proper conditions may react with a protein. Some of the sugar deriv-
atives used for this purpose are shown in Scheme  6.17 .

6.4.2        Chemoselective and Site-Specifi c Glycosylation 

 This approach intends to direct selectively the glycosidic linkage by using chemical 
and enzymatic tools. Such selectivity has been attempted under a strategy termed 
chemoselective ligation, and some enzymes involved in this strategy are galactose 
oxidase [ 53 ], horseradish peroxidase. Examples of these step reactions are indicated 
in Scheme  6.18 .

6.4.3        Site-Selective  Glycosylation   

 This possibility implies the choice of site selectivity on the glycan. In order to reach 
this goal a combined site-directed mutagenesis and chemical modifi cation has been 
performed [ 62 ,  63 ]. This strategy involves the introduction of cysteine as chemose-
lective tag at preselected positions within a given protein and then reaction of its 
thiol group with glycomethanethiosulfonate (Scheme  6.19 ).

6.4.4         Lansbury Aspartylation   

 This reaction describes a nucleophilic attack of an amino saccharide with an unpro-
tected amino saccharide. During the course of this reaction, cyclic aspartimides are 
also formed depending on the peptide sequence [ 64 ].
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  Scheme 6.17    Indiscriminate glycoprotein syntheses [ 44 – 52 ]         

OAcO

Br

a)
(i) (H2N)2CS

(ii) ClCH2CN

OAcO
S CN

OAcO
S

OMe

NH

(CH2)4H2N
Protein

Lys

OAcO
S

N
H

NH
(CH2)4 Protein

Lys

MeO-

(CH2)4H2N
Protein

Lys

OHHO
N

(CH2)4 Protein

Lys

H

OHO

OH

b)

NaBH3CN

OHO
c)

O NH2

HNO2
OHO

O N2

+

Tyr
Protein

HO OHO

O N

HO

N

Protein

Tyr

OHO
d)

O NH2

(Im)2CS OHO

O NCS

(CH2)4H2N
Protein

Lys

OHO

O N
H

N
H

S

(CH2)4 Protein

Lys

OHO

OH

e)
L-Glu-pNA OHO

H
N pNA

O

HO

O (i) BOP, imd
(ii) Pd, H2

(iii) as for (d)

N

O

OHO

NC6H4NCSO

(CH2)4H2N
Protein

Lys

N

O

OHO

NC6H4NHO
N
H

S

(CH2)4 Protein

Lys

 

6 Glycoconjugates



327

OHO
O

(CH2)8COR

N2H4

f)
R = OMe

R = NHNH2

HNO2 OHO
O

(CH2)8CON3

(CH2)4H2N
Protein

Lys

OHO
O

(CH2)8

O

H
N

(CH2)4

Lys

Protein

OHO (CH2)4H2N
Protein

Lys

g)

(i) Hal oxidation

OH

(ii) NaOH(aq.)
OHHO

O

O-Na+

O Cl

O

Et3N

OHHO

O

(CH2)4
NH

Protein

Lys

OHO

OH
NH2

(CH2)4 Protein

Lys

HO

O

EDC

OHO

OH
HN (CH2)1,2 Protein

Asp, Glu

O

h)

OHO (CH2)4H2N
Protein

Lys

i)
R = OMe

NH2(CH2)2NH2

O
(CH2)8COR R = NH(CH2)2NH2

O O

OEtEtO

OHO

O
(CH2)8

O

NH(CH2)2

O O

N
H

HN
(CH2)4 Protein

Lys

Scheme 6.17 (continued)

6.4 Glycoprotein Synthesis



328

  Scheme 6.18    Chemoselective and site specifi c glycoprotein syntheses [ 54 – 62 ]         
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6.4.5          Guanylation Reaction   

 This method considers the coupling of a glycosyl donor bearing an  S -alkyl- 
isothiourea as a leaving group with a free amine attached at the peptide moiety 
under silver promoted condition, producing as a result a guanidine group between 
the sugar and the peptide [ 65 ].
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6.4.6          Enzymatic Synthesis   

 Three basic strategies are considered for obtaining glycoproteins following an 
enzymatic approach: elaboration of glycans through the use of glycosyltransfer-
ases [ 66 – 69 ], trimming of glycans by purifi cation of glycoform mixtures through 
selective enzymatic degradation [ 70 ], and alteration of glycans or glycoprotein 
remodeling, consisting in combined trimming of existing glycan structures fol-
lowed by elaboration to alternative ones. Theses methods were used for preparing 
an unnatural glycoform of ribonuclease B by using endoH degradation and elabo-
ration with galactosyltransferase, fucosyltransferase, and sialyltransferase system 
to construct an sLex glycoform [ 71 ]. Other approaches for the assembling of pep-
tides are “native peptide ligation” [ 72 ] and endoglycosidase-catalyzed transglyco-
sylation [ 31 ]. 

 Recent advances on glycoprotein synthesis proposes an in vitro approach 
involving the following sequential steps, (a) remodeling of recombinant glyco-
proteins by using glycosidases and glycosyltransferases, (b) ligation of synthetic 
glycopeptides by enzymatic or chemical methods, (c) intein-mediated coupling 
of glycopeptides to larger proteins expressed as intein-fusion proteins, (d) liga-
tion of glycopeptides to larger proteins containing N-terminal cysteine expressed 
as TEV protease cleavable fusion proteins, (e) in vitro translation, and (f) path-
way reengineering in yeast system to produce human type N-linked glycoforms 
(Scheme  6.20 ) [ 73 ].
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6.5         Synthesis of Antigenic Glycoconjugates 

 The preparation of complex glycoconjugates has been a current strategy for the design 
of synthetic vaccines, and usually involves the preparation of the oligosaccharide moi-
ety which provides the immune specifi city by chemical or enzymatic methods, and 
further attachment through a linker with an immunogenic protein. There has been a 
continuous effort for developing glycoconjugates containing antigens such as MBr1 
antigen Globo-H, the blood group determinant and ovarian cancer antigen Lewis y , N3 
antigens associated with gastrointestinal cancer, the adenocarcinoma antigen KH-1, 
and the small cell lung carcinoma antigen fucosyl GM1 among others (Scheme  6.21 ) 
as a promising alternative to develop potentially useful carbohydrate-based anticancer 
vaccines accessible for clinical program. The synthetic approach becomes justifi ed if 
we consider that cancer and normal cells growing in tissue culture generally show 
minimal level of expression of such antigens [ 33 ].

6.5.1        Glycosphingolipid and Gangliosides   

6.5.1.1     Synthesis of Glycosphingolipid and Gangliosides 

 The chemical synthesis of most of these complex oligosaccharides represent a for-
midable challenge, and requires a convenient combination of strategies that allows 
suitable manipulations using appropriate protecting groups, glycosyl donors, accep-
tors, and coupling reactions conditions. 

  Scheme 6.20    Strategies for  glycoprotein synthesis   in vitro       
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 For instance the synthesis of glycolipid KH-1 was achieved by Desphande et al. 
[ 33 ] based on the glycal methodology (Scheme  6.22 ).

   Likewise, the synthesis of the water-soluble galactosphingolipid analog that 
binds specifi cally to recombinant gp 120 was prepared by condensation of 
 C -glucosyl aldehyde with Wittig reagent providing the oxazolidone which was 
transformed into the  C -glycosylamino acid. By following a subsequent standard 
protocol represented in Scheme  6.23  the target glycolipid was constructed [ 34 ].

    Glycoside ceramides   are important molecules involved in apoptosis or active cell 
death. In leukemia cell lines C2 ceramide induces apoptosis via sphingomyelin 
pathway. It has been observed that α-galactosylceramides having more than ten 
carbons in fatty acid chain have immune stimulatory activities. Thus, the α-Gal-C2 
was synthesized by direct glycosylation of C2-Cer with galactosyl fl uoride donor in 
the presence of silver perchlorate as condensing agent (Scheme  6.24 ) [ 74 ].

   The convergent synthesis is a procedure consisting in the parallel preparation of 
fragments or building block that will be connected through a coupling reaction, 
prior to deprotection. This procedure was applied successfully for preparation of 
glycosylphosphatidyl inositols (GPI) which are involved in the attachment of glyco-
proteins with eukaryotic cells (Scheme  6.25 ) [ 36 ].

   The potential of carbohydrates as antibiotics, antiviral and anticancer sub-
stances has been established [ 37 ,  38 ]. Besides, their involvement in fertilization, 
embryogenesis, regulation of the immune system tissue repair, neuronal development, 

  Scheme 6.21    Carbohydrate structures of tumor associated antigens         
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intracellular pathways, and cancer transformation among others has been demon-
strated [ 12 ]. There is an increasing understanding of how carbohydrates behave 
biologically between normal and disease states and with this accurate informa-
tion, novel carbohydrates and therapeutic approaches are developed [ 37 ]. For 
instance novel glycoside sulfates have been reported as novel potentially useful 
drugs (Scheme  6.26 ) [ 37 ,  38 ].
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   A variety of glycosphingolipid have been synthesized such as galacturonic 
sphingolipid from  Sphingomonas yanoikuyae  [ 75 ], immunostimulant 
C-glycosphingolipid [ 76 ],  Mycobacterium tuberculosis  sulfolipids SL-1, Ac2SGL 
analogs [ 77 ] and pentasaccharide moieties of ganglioside GAA-7 [ 78 ] and ganglio-
side GM3 [ 79 ].
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6.5 Synthesis of Antigenic Glycoconjugates



338

  Scheme 6.25    Retrosynthesis for the preparation of GPI-anchored peptide using convergent 
synthesis         
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    Scheme: Synthesis of antigenic glycosphingolipids and ganglioside   
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6.6           Glycopeptoids 

  Glycopeptoids   correspond to sugar moieties linked to short peptides which eventu-
ally can function as linkers for proteins. In cells the glycosylation of proteins is a 
posttranslational process with a number of important implications such as protein 
folding, stabilization, traffi cking, recognition, immune defense, cell growth, infl am-
mation, metastasis, bacterial and viral infections. It is known that aberrant glycosyl-
ation of cell surface glycoproteins is a common feature on numerous tumor cell 
types and they may undergo adaptive regulation of their cell surface through glyco-
sylation in order to acquire a survival advantage. 

 A number a glycopeptoids have been prepared by using different approaches 
such as click chemistry [ 80 ,  81 ], chemoselective chemistry [ 82 ,  83 ], orthogonal 
native chemical ligation [ 84 ], metal-promoted glycosylative ligation [ 85 ], stereose-
lective synthesis [ 86 ], and cross-metathesis assisted solid-phase synthesis [ 87 ].

    Scheme: Some approaches for the synthesis of glycopeptoids   
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6.7         Synthetic Vaccines 

 Recent developments on carbohydrate chemistry made possible the design and 
escalation of new immunogenic carbohydrates. A newly developed synthetic carbo-
hydrate attached to a protein carrier was reported by Verez-Bencomo and Fernández- 
Santana, and currently administered against  Haemophilus infl uenzae  type b disease. 
The chemical synthesis of oligomeric polyribosylribitol phosphate is described in 
Scheme  6.27  [ 88 ].

   Another alternative therapeutic strategy for inducing immune response through the 
use of synthetic carbohydrate vaccines has been proposed by Danishefsky et al., involv-
ing the attachment of different tumor antigenic agents (Globo H, STn, Tn, Lewis y ,) 
coupled to a linker, and the linked antigens to a protein carrier (Scheme  6.28 ) [ 89 ].

   It has been mentioned that carbohydrate based agents such as glycoproteins and 
polysaccharides obtained from synthetic routes constitute an emerging and promis-
ing strategy for the preparation of vaccines [ 39 ,  40 ,  90 ,  91 ]. This possibility has 
become available due to the remarkable progress in the chemical and enzymatic 
preparation of oligosaccharides. 

 Other synthetic glycoproteins described are mucin MUC1 which strongly 
induces immune response against breast tumor tissues [ 92 ], glycosylated erythro-
poietin (EPO) [ 93 ,  94 ], enteropathogenic  Escherichia coli  (EPEC) type III [ 95 ,  96 ], 
and human interleukin-2 [ 97 ] among others. The methods employed for the attach-
ment between the glycosyl and the peptide fragments were done by using solid- 
phase synthesis, native chemical ligation (NCL) [ 98 ], disulfi de-linked precursors 
through a desulfurization process [ 99 ], Fmoc-modifi ed amino acids, thiazolidine 
protection of the N-terminal, and reverse polarity protection strategy (Scheme  6.29 ) 
[ 64 ,  100 – 105 ].
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  Scheme 6.29    Examples of synthetic immunogenic glycoproteins [ 93 – 97 ]           
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    Chapter 7   
 Hydrolysis of Glycosides                     

            The glycosidic bond might be degraded  by   chemical and/or enzymatic agents. 
Comparative studies revealed that chemical hydrolysis is nonspecifi c and on the other 
hand the enzymatic is regiospecifi c and stereospecifi c. The glycosides are chemically 
susceptible to acid conditions and only in some cases to basic conditions. In general 
the acid sensitivity is attributed to the sugar moiety and the basic non-stability to the 
aglycon nature. 

7.1      Acidic Hydrolysis   

 When a glycoside is subjected to acid conditions, a process called  acetolysis   takes 
place. This phenomenon is more clearly seen on  O -glycosides where even weak 
acid conditions can be suffi cient for  O -glycoside breakage. Some simple glycosides 
such as β methyl-2,3,4,6-tetra- O -methyl- D -glucopyranose are hydrolyzed under 
diluted HCl conditions to yield a hydroxy-2,3,4,6-tetra- O -methyl- D -glucopyranose. 
Likewise β ethyl-glucopyranose is hydrolyzed to a mixture of anomers (Scheme  7.1 ).

   In general  S -glycosides are more resistant than their counterparts  O -glycosides 
to acidic medium; however, the former can be hydrolyzed under the conditions 
described in Scheme  7.2 .

   Disaccharides can be  readily   hydrolyzed under weak acidic conditions, produc-
ing their constitutive monomers in equivalent quantities (Table  7.1 ).

   Depending on the strength of  the   hydrolytic conditions, polysaccharides undergo 
fragmentation, producing oligosaccharides, disaccharides, and monomers. The deg-
radation degree relies on acid concentration, branching, and solubility. Thus, cellu-
lose, being the most abundant natural polysaccharide in nature, requires high acid 
concentrations in order to be fully degraded to glucose. On the contrary some other 
polysaccharides at lower acid concentrations produce dimers and monomers 
(Table  7.2 ).



356

   Partial hydrolysis is important in certain cases in which disaccharides are not 
either affordable materials or easily obtained ones through synthetic means. Such is 
the case of 1,3-laminaribiose synthetically obtained in poor yields (9.5 %) [ 1 ], but 
readily available from polysaccharide curdlan [ 2 ]. 

 Lewis acid hydrolysis of cellulose and methyl glycosides has been explored usually 
accompanied by heating. Thus, the conditions founded for achieving this goal were 
magnesium chloride in water with heating at 105 °C in either sealed or open vial [ 3 ].  

  Table 7.1    Acid hydrolysis of 
 disaccharides    

 Disaccharide  Hydrolysis product 

 (+)-Sucrose   D -(+)-glucose 
  D -(−)-fructose 

 (+)-Lactose   D -(+)-glucose 
  D -(+)-galactose 

 (+)-Cellobiose   D -(+)-glucose 
  D -(+)-glucose 

   Table 7.2    Acid hydrolysis of  polysaccharides     

 Polysaccharide  Partial hydrolysis  Total hydrolysis 

 Cellulose  1,4-cellobiose   D -glucose 
 Laminarin  1,3-laminaribiose   D -glucose 
 Curdlan  1,3-laminaribiose   D -glucose 
 Chitin  1,4- N -acetyl glucosamine  2-amino-2-deoxy- D -glucose 
 Mannan  1,4-mannobiose   D -glucose 
 Pullulan  1,4-maltotriose   D -glucose 
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  Scheme 7.1    Acid hydrolysis of simple  O -glucosides       
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7.2     Basic Hydrolysis 

 Some glycosides have been shown to be partially sensitive against basic conditions, 
besides their naturally high acid sensitivity. It is been experimentally founded that 
three classes of  O -glycosides might be subject to basic  hydrolysis   [ 4 ].

    (a)    Phenolic glycosides   
   (b)    Enolic glycosides   
   (c)    β-substituted alcohol glycosides    

7.2.1       Phenolic Glycosides   

 A typical example of phenolic glycoside decomposition under basic conditions is 
observed in the treatment of salicin with barium hydroxide giving as result a cyclic 
acetal and the release of the aglycon (Scheme  7.3 ).

7.2.2         Enolic Glycosides   

 Within this type of glycosides, there are three varieties to be considered, which are: 
(a) 4-hydroxycoumarins, (b) purine and pyrimidine glycosides, and (c) simple enols 
(Scheme  7.4 ).

7.2.3         β-substituted Alcohol Glycosides   

 Glycoside picrocine is hydrolyzed  in   diluted potassium hydroxide solution, through 
a mechanism that involves a intermediate carbanion formation to give a conjugated 
unsaturated product and glucose as breakage product (Scheme  7.5 ).
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  Scheme 7.3    Basic hydrolysis of phenolic glycosides       
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   Contrary to acid hydrolysis of disaccharides where degradation products are their 
constitutive units, in most of the cases for basic conditions, non-sugar derivatives 
are produced (Table  7.3 , Scheme  7.3 ).
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  Scheme 7.4    Basic hydrolysis of enolic glycosides       
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  Scheme 7.5    Basic hydrolysis of β-substituted alcohol glycosides       

   Table 7.3    Degradation products of disaccharides under basic conditions   

 Disaccharide 
 Hydrolysis conditions 
(KOH) (N)  Temperature (°C)  Product 

 Cellobiose  1.5  50  Lactic acid 
 Gentobiose  2  50  Lactic acid 
 Lactose  0.2  100   D -galactose 
 Maltose  0.15  25  Phenylhydrazone of  D -mannose 
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7.3          Enzymatic Hydrolysis   

 β-glycosides are the natural substrates for hydrolytic enzymes known as β-glycosidases. 
So far, at biochemical level, the rule of most glycosidases is not totally well under-
stood; however, some of them have been related to feeding, detoxifi cation processes 
or even as a defense mechanism against herbivorous pathogens through release of 
thiocyanates, cyanides, and phytohormones. It has been established that there is a 
specifi c glycosidase for each aldopyranose, the sugar composition being responsible 
for the recognition pattern. Some of the best studied hydrolyses are the β-glycosidases 
and among them β-glucosidases, β-glucuronidases, β-glucanases, β-chitinases, all of 
them with important biological and  economical   implications [ 5 ]. 

7.3.1      β-glucosidases   

 There is strong evidence indicating that their action is mainly directed toward the 
defense mechanism and growth regulation. For instance cyanogenic glycosides are 
hydrolyzed, for the releasing of cyanide ions as a defense mechanism against ani-
mals. In humans the equivalent of β-glucosidase is called glucocerebrosidase (with 
low genomic homology to the plant counterpart) and catalyzes the degradation of 
glucosylceramide inside lysosome. The lack or defi ciency of this enzyme produces 
the Gaucher disease characterized by accumulation of glucosylsphingosine and   
glucosylceramides.  

7.3.2     β-glucanases, β- chitinases   

 The natural substrates for  these   oligosaccharide hydrolytic enzymes are laminarin 
and chitin, respectively, being present in fungi, yeast, and insects. Some of the pro-
cesses related to the activity of these enzymes are: seed degradation, cellular elon-
gation control, growth regulation, pollen growth regulation, digestion, and 
fertilization. Moreover, within the context of the defense mechanisms, these 
enzymes can be able to digest the fungi cellular wall, and also to release oligosac-
charides that induce the production of antimycotic substances called phytoalexins.  

7.3.3      β-cellulase   

 Cellulose is the most abundant natural polysaccharide on earth. Cellulytic enzymes 
particularly cellobiohydrolases CBHI, CBHII, EGI, and EGII found in fungi 
 Trichoderma reesei  have been thoroughly studied for determining the three- dimensional 
structure, the genomic sequence, receptors, and substrate specifi city.  

7.3 Enzymatic Hydrolysis
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7.3.4      β-glucuronidase   

 In animals this enzyme is responsible for the detoxifi cation processes, coupling 
mainly aromatic compounds and eliminating them as glucuronides. In plants there 
is not detectable β-glucuronidase activity; however, the development of the GUS 
gene fusion containing  E. coli  β-glucuronidase has been widely used as a gene 
marker [ 6 ]. Transgenic plants containing exogenic information fused to the 
β-glucuronidase gene marker can be conveniently monitored  by   using fl uorogenic 
histochemical glucuronides.  

7.3.5      Glycosidase   Enzymatic Activity Detection 

 Detection can be achieved not  only   qualitatively, but also quantitatively, and for 
doing so high and low molecular weight substrates have been designed. Claeyssens 
[ 7 ] demonstrated hydrolytic specifi city of cellulases CBH I and CBH II through the 
use of synthetic fl uorogenic substrates containing the highly fl uorescent coumarin 
umbelliferone or  p -nitrophenol, in the form of  O -glucosides. The cleavage of the 
glycoside releases the chromophore which can be easily measured in a fl uorometer 
or spectrophotometer. The synthetic design of monosaccharides, disaccharides, 
trisaccharides, and tetrasaccharides attached to the mentioned chromophores has 
been of great advantage to determine the specifi city during enzymatic cleavage 
(Scheme  7.6 ).

CBH I and CBH II

= 1,4-glucopyranosyl

= hydrolyticsite

= 1,4-galactopyranosyl

= reduction terminal

  Scheme 7.6    Enzymatic specifi city on low molecular weight substrates       
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7.3.6        β-1,4- glucanases   

 The utilization of polysaccharides covalently attached to dyes has been reported. 
The complex  Ostatin Brilliant Red-hydroxyethylcellulose (OBR-HEC))   is applied 
as a specifi c substrate for EG,  Remazol Brilliant Blue-xylan (RBB-X))   the specifi c 
substrate for β-1,4-xylanases. 

 Likewise  β-1,3-glucanases   are detected by using an electrophoresis technique on 
polyacrylamide gels utilizing laminarin as substrate. The generated fragments are 
reacted further with azoic stain 2,3,5-triphenyltetrazolium to produce a color com-
plex [ 8 ]. Despite their high sensitivity, this method cannot distinguish between 
endoglucanase and exoglucanase.  

7.3.7     Fluorescent  O -Glycosides 

 As mentioned before, fl uorogenic aglycons are very useful molecules to monitor 
enzymatic activity. In principle, the fl uorescent compound does not exhibit fl uores-
cence in the glycoside form, and exerts its fl uorescence when released as a result of 
the enzymatic activity (Scheme  7.7 ). Some of the fl uorescent compounds widely 
used for enzymatic detections are: umbelliferone, fl uorescein, and resorufi n, having 
been coupled to most of the biologically important sugars as  O -glycosides.
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  Scheme 7.7    Fluorescent  O -glycosides and fl uorescence emission after hydrolysis for ( a ) umbel-
liferone, ( b ) fl uorescein, ( c ) resorufi n       
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   The  generated    fl uorescence   is quantifi ed in fl uorometers constituted basically by a 
radiation source, and two monochromatic mirrors (f1 and f2). The fi rst one selects the light 
for producing fl uorescence activation, and the second transmits selectively fl uorescence 
emission. A detector will measure the intensity of the fl uorescence generated (Scheme  7.8 ).

7.3.8         O -glycosides Measured by Absorption 

 Quantifi cation of enzymatic activity following absorption detection is based in the use of 
synthetic  p -nitrophenol in the form of  O -glycosides as substrate (Scheme  7.9 ). The releasing 
of the aglycon from the sugar moiety produces slight yellow color measured as absorbance.

7.3.9         Histochemical  O -Glycosides   

 Generally a histochemical substrate to be consider as a good candidate, should be such 
that in the form of  O -glycosides it is water soluble and when the enzyme hydrolyzes 
the glycosidic bond releases the aglycon, which precipitates immediately. A compound 
that closely fulfi lls these requirements is 5-bromo-4-chloro- N -  acetyl-3-indoxyl 
(X-gal, X-gluc, etc.) which has been attached to most of the biologically important 
monosaccharides, commonly identifi ed as X-gal, X-gluc, etc. (Scheme  7.10 ).

   These chromophoric  O -glycosides has been extensively used for detection of 
hydrolase activity and in molecular biology as screenable gene markers used to 

detector

f2

sample
f1

source  Scheme 7.8    Basic 
diagram of a  fl uorometer         

ORO2N
  Scheme 7.9     Absorption 
glycosides         
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determine if a sequence has been successfully inserted in a cell known as the lacZ 
gene which encodes for β-galactosidase (Scheme  7.11 ). Although this is commer-
cially available it is highly sensitive producing and easily detectable blue precipi-
tate, it shows some diffusion before the monomers undergo dimerization in the 
presence of oxygen, to produce the blue indigo precipitate.

    Alternatively  , phenylazo naphthol  O -glycosides (Scheme  7.12 ) known as Sudan 
glucuronides have been tested as a histochemical substrate for enzymatic detection 
of gene marker β-glucuronidase in transgenic plants [ 9 ,  10 ].
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  Scheme 7.10    5-bromo-4-chloro-indoxyl aldopyranose hydrolysis       

  Scheme 7.11    Genetically 
transformed bacteria cells 
containing lacZ gene 
expressing for 
β-galactosidase activity 
detected with X-Gal       
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   The water-soluble  Sudan   glucuronide releases the phenylazo naphthol stain after 
enzymatic hydrolysis which can be seen in the sites of enzymatic activity as red 
crystals (Scheme  7.13 ). The mechanism and stereochemistry of enzymatic hydroly-
sis may occur with either inversion or retention of the confi guration at the anomeric 
center. The fi rst type of hydrolysis is carried out by the so-called inverting glycosi-
dase, and the second by retaining glycosidase, with the vast majority of β-glucosidases 
being of the latter type. This has been proved through NMR studies, by measuring 
the chemical shift and magnitude of the coupling constant of the anomeric carbon. 
The most accepted mechanism involves protonation of substrate, participation of 
carboxylate attached to enzyme, glycoside–enzyme intermediate formation, and 
displacement as shown in Scheme  7.15  [ 12 ].
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  Scheme 7.12    Phenylazo naphthol glucuronides as histochemical substrates       
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Conditions and reagents : (i) NaNO2, AcOH, H2O-THF, oC 30 min, then rt 1h. (iii) MeONa/MeOH,
rt 30 min.

  Scheme 7.14    General method for the preparation of  azoic glycosides         

  A suitable method for preparing azoic glycosides from aminophenyl glyco-
side precursor was performed under mild diazonium salt conditions, providing 
the corresponding protected azoic glycoside which after fi nal deacetylation pro-
duce the azoic glycoside (Scheme  7.14 ) which was evaluated as substrates for 
detection of enzyme activity showing two maximum absorptions at 410 and 
455 nm [ 11 ].

    The partially water soluble Sudan glucuronide, releases the fenilazo naphthol 
stain after enzymatic hydrolysis which can be seen in the sites of enzymatic activity 
as red crystals. The mechanism and stereochemistry of enzymatic hydrolysis may 
occur with either inversion or retention of the confi guration at the anomeric center. 
The fi rst type of hydrolysis is carried out by the called inverting glycosidase, and the 
second by retaining glycosidase, being the vast majority of β-glucosidases of the 
later type. This has been proved through NMR studies, by measuring the chemical 
shift and magnitude of the coupling constant of the anomeric carbon. The most 
accepted mechanism involves, protonation of substrate, carboxylate participation 
attached to enzyme, intermediate formation glycoside-enzyme, and displacement as 
shown in Scheme 7.15 [ 12 ].

 

7.3 Enzymatic Hydrolysis
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Chapter 8
Nuclear Magnetic Resonance of Glycosides

8.1  NMR of Glycosides

Nuclear magnetic resonance (1H, 13C NMR), X-ray diffraction, and mass spectrometry 
are considered the most important analytical methods for structural elucidation. 
Characterization by means of 1H, 13C NMR, monodimensional and bidimensional 
spectroscopy is a powerful tool for structural assignment of simple and complex 
glycosides. Pioneering studies [1–4, 48–50] on simple monosaccharides were 
essential for understanding, through the chemical shifts and coupling constants, the 
conformational behavior of sugars.

Some basic considerations derived from the studies mentioned above that apply 
to simple saccharides are:

Pyranoside rings of the d-series generally prefer to assume conformation 4C1 and 
those of the l-series the conformation 1C4. The anomeric proton usually resonates at 
lower field than methine protons, whereas methylene protons resonate at somewhat 
higher fields.

In d-pyranoses with 4C1 conformation, the α-anomer resonance is downfield 
compared to the β-anomer, and the value of the coupling constant between H-1 and 
H-2 at three bond distance 3J1-2 determine if the anomeric proton is equatorial or axial, 
and therefore if the glycoside is α or β. Usually for axial–axial interactions the 
observed values are 8–10 Hz and for axial–equatorial or equatorial–equatorial 2–3 Hz. 
Thus for β-glucose, 3J1,2 = 8 Hz, 3J2,3 = 3J3,4 = 3J4,5 = 10 Hz, H-1 appears as doublet, and 
H-2, H-3, H-4 appear as 10 Hz triplets, and H-5 appears as double double doublet as 
it is coupled to the two H6s.

The α-galactose presents 3J1,2 = 3 Hz, 3J2,3 = 10 Hz, 3J3,4 = 4 Hz, 3J4,5 < 1 Hz. H-1 
appears as 3 Hz doublet, H-2 and H-3 as double of doublets, H-4 as doublet, and 
H-5 as triplet for coupling with two H6s. The different possible arrangements are 
for better understanding represented in Newman projection (Scheme 8.1).

Equatorial protons are positioned at lower field than chemically equivalent axial 
protons except in those cases were there is a carbonyl group adjacent to H-equatorial, 
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or when there is a synaxial interaction with H-axial, in which a deshielding effect is 
observed [49].

The magnitude of coupling constant 3JH-H besides torsion angle dependence may 
be affected by other factors such as substituent electronegativity, bond length, and 
bond distance. Solvent effects on 3J(HH) appear to be relatively minor, except in cases 
where solvent-induced conformational changes occur [5].

The 13C chemical shift may also reveals along with de 1H NMR the anomeric con-
figuration, but the one bond 13C-1H coupling constants can be remarkably useful to 
determine the anomeric configuration in pyranoses. For instance, the 1JCH for the 
α-anomer is 170 Hz and for the β-anomer 160 Hz, and for the l-isomer the reverse [6].

The chemical shift values of the ring protons are dependent of the groups attached 
to the hydroxyl groups. For instance a characteristic shift of ring-proton resonances to 
lower field occurs when the hydroxyl group is esterified with acetyl, sulfate, or phos-
phate where normally downfield shifts ~0.2–0.5 ppm are observed. If the protecting 
group is acetate, for non-aromatic solvents C-6 resonates at lower field, followed by 
C-2, C-4 and at highest field the 3-acetoxyl signal [4]. The proton magnetic resonance 
of 4,6-O-benzylidene pyranosides have been measured and the values of the coupling 
constants J1,2, J1,3, J2,3, and J3,4 support the assignment of the chair conformation to the 
pyranoid ring [2].

The coupling constants 3JH-H values on saturated systems can be predicted by 
applying the Karplus equation [7], which correlate the dihedral angle θ values with 
the magnitude of the coupling constant 3JH-H.

 
3 2J A B CH H = + +cos cosq q  

where θ is the dihedral angle between H1-C1-C2-H2, A = 4.22, B = −0.5, and 
C = 4.5 Hz for C–C bond distance 1.543 Å.
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Scheme 8.1 Newman projections showing the arrangements of hydrogens in 4C1 and 4C1 chair 
conformations and the expected coupling constants
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Coupling constants for vicinal protons at three bond distances are two or three 
times bigger when they are eclipsed or antieclipsed (0° or 180°) to each other than 
when they are synclinal or gauche (60°) (Scheme 8.2).

Karplus analysis is more accurate when comparative studies are performed between 
structurally similar compounds. For the study of conformational differences between 
structurally similar molecules the Karplus equation adopts the form of:

 
3 2J KH H = cos q  

Where K is dependent on H1-C1-C2-H2 fragment, when θ is having values between 
50 and 70°, or 110 and 130°, slight variations are observed, while for values close 
to 0, 90, and 180°, no observable changes are detected.

The effect of the relative orientation and electronegativity of substituents on the 
magnitude of 3J(aa), 3J(ae), and 3J(ee) has been predicted by a simple set of additivity 
constants. The step followed in the derivation of the additivity constants considers 
that antiperiplanar substituents exert a negative and gauche substituents a positive 
effect on J. The resulting data were fitted equation 3J = 3J0 + ΣΔJ(x) where 3J0 
represents the reference value. Some of the additivity constants ΔJ(x) for a given 
substituent are given in Table 8.1 [5].

A computer program known as ALTONA was developed for the calculation of 
dihedral angles from 1H NMR. This program calculates plots of H-C-C-H dihedral 
angles from proton-proton NMR vicinal coupling constants using an empirically 
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generalized Karplus-type equation, which takes into account the electronegativity 
and the orientation of the substituents attached to the considered fragment [8].

The Complete assignment of the 1H and 13C NMR spectra of fully acetylated α and 
β glucopyranosides was determined and the 1H chemical shifts and proton–proton 
coupling constants were refined by computational spectral analyses (Table 8.2) [9].

Also 1-thioaldopyranosides having the configurations β-d-xylo, α-l-arabino, 
β-d-ribo, β-d-gluco, and β-d-galacto were determined in different solvents, observ-
ing that the H-1 signal in these derivatives appears ~0.35 ppm to higher field than its 
position in the 1-oxygenated analogs [10].

Also detailed studies of 1H NMR spectra of a series of hexopyranosyl halides 
have been accomplished. The first order assignments revealed several stereospecific 
dependencies, mainly upon the orientation of the halogen substituent with respect to 
the pyranose ring and the relative orientation of other substituents attached to the 
ring [11, 12, 50].

1H and 13C chemical shifts and J-coupling patterns for common d-aldohexoses, 
d-aldopentoses and some methyl monosaccharides are described in Tables 8.3, 8.4, 
and 8.5 [13, 14].

A wide number and variety of O-glycosides and to a less extent C-glycosides 
islolated from natural sources have been reported and their NMR analysis described. 

Table 8.1 Additivity constants ΔJ(x) for a substituent X

X Σ ΔJ(ae)(x) or ΣΔJ (ee)(x) ΣΔJ(aa)(x)

X anti X gauche X gauche

H,C 0.0 0.0 0.0

I,S −0.3 +0.1 −0.3

Br −0.9 +0.3 −0.7

N −1.1 +0.3 −0.6

N3 −1.4 +0.4 −1.1

Cl −1.2 +0.4 −1.0

O −1.8 +0.5 −1.4

F −2.5 +0.7 −2.0

Table 8.2 1H chemical shifts and couplings (3JH-H) of peracetylated α- and β-d-glucopyranoses 
measured in CDCl3 at 30 °C

Compound H-1 H-2 H-3 H-4 H-5 H-6a H-6b

α-glucopyranosyl pentaacetate 6.33 5.10 5.47 5.14 4.11 4.09 4.26

3.71 10.29 9.49 10.35 2.32, 4.14

β-glucopyranosyl pentaacetate 5.71 5.13 5.25 5.12 3.83 4.11 4.28

8.33 9.58 9.39 10.11 2.25, 4.57

C-1 C-2 C-3 C-4 C-5 C-6

α-glucopyranosyl pentaacetate 92.77 72.15 73.43 70.32 72.10 61.27

β-glucopyranosyl pentaacetate 96.59 74.81 76.43 70.27 76.61 61.42

8 Nuclear Magnetic Resonance of Glycosides
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The chemical shifts and coupling constants of some of them are described just as 
representative examples in Table 8.6.

Nuclear Overhauser effects (NOE) is a dipole-dipole relaxation experiment and 
has been one of the most useful experiments for the structural assignments of glyco-

Table 8.3 1H chemical shifts and couplings (3JH-H) of d-aldohexoses and aldopentoses measured 
at 400 MHz in D2O

Compound H-1 H-2 H-3 H-4 H-5 H-6a H-6b

α-glucose, Ref. [8] 5.09 3.41 3.61 3.29 3.72 3.72 3.63

3.6 9.5 9.5 9.5 3.81 2.8 5.7, 12.8

5.21 3.51 3.69 3.93 2.3, 5.4 3.82 3.74

3.8 9.8 9.1 9.9

β-glucose, Ref. [8] 4.51 3.13 3.37 3.30 3.35 3.75 3.60

7.8 9.5 9.5 9.5 3.44 2.8 5.7, 12.8

4.62 3.22 3.46 3.38 2.2, 5.9 3.87 3.70

7.9 9.4 9.1 9.9

α-galactose 5.16 3.72 3.77 3.90 4.00 3.70 3.62

3.8 10.0 3.8 1.0 6.4 6.4

β-galactose 4.48 3.41 3.56 3.84 3.61 3.70 3.62

8.0 10.0 3.8 1.0 3.8 7.8

α-mannose 5.05 3.79 3.72 3.52 3.70 3.74 3.63

1.8 3.8 10.0 9.8 2.8 6.8, 12.2

β-mannose 4.77 3.85 3.53 3.44 3.25 3.74 3.60

1.5 3.8 10.0 9.8 2.8 6.8, 12.2

Table 8.4 1H chemical shifts and couplings (3JH-H) of d-aldopentoses measured 
at 400 MHz in D2O

Compound H-1 H-2 H-3 H-4 H-5a H-5b

α-xylose 5.09 3.42 3.48 3.52 3.58 3.57

3.6 9.0 9.0 7.5 7.5

β-xylose 4.47 3.14 3.33 3.51 3.82 3.22

7.8 9.2 9.0 5.6 10.5, 11.4

α-arabinose 4.40 3.40 3.55 3.83 3.78 3.57

7.8 9.8 3.6 1.8 1.3, 13.0

β-arabinose 5.12 3.70 3.77 3.89 3.54 3.91

3.6 9.3 9.8 2.5 1.7, 13.5

α-ribose 4.75 3.71 3.83 3.77 3.82 3.50

2.1 3.0 3.0 5.3 2.6, 12.4

β-ribose 4.81 3.41 3.98 3.77 3.72 3.57

6.5 3.3 3.2 4.4 8.8, 11.4

α-lyxose 4.89 3.69 3.78 3.73 3.71 3.58

4.9 3.6 7.8 3.8 7.2, 12.1

β-lyxose 4.74 3.81 3.53 3.73 3.84 3.15

1.1 2.7 8.5 5.1 9.1, 11.7

8.1 NMR of Glycosides
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sides on the basis of shielding and deshielding effects [20]. Glycosylation sites can 
be identified by comparison of 1H NMR spectral data of the peracetylated and the 
nonprotected sugar, since free OH groups causes significant downfield shift (in the 
range of 1–0.5 ppm) The approach known as “structural-reporter-group” has been 
introduced to identify individual sugars or sequences of residues and can be used to 
identify structural motifs or specific sugars and linkage compositions found in relevant 
databases [14].

For complex molecules the interpretation is often problematic, especially due to 
the presence of internal motion. Some of the difficulties encountered for NMR 
structural assignment for oligosaccharides are: [21]

The limited number of C,H dipolar couplings measured across a single bond.
The distribution of C,H bond vectors is not isotropic due to the geometry of the 

pyranose ring.
Due the flexibility of the glycosidic bond that connects the different sugars moieties, 

different alignment tensors can be observed.

More recently the use of a novel procedure known as “residual dipolar coupling” 
has been introduced by Tian and Prestegard as an alternative approach for studying 
the conformational and the motional properties of oligosaccharides [22]. The 
approach is based on the solution for each ring of an order matrix that combines 
different types of couplings, 1DCH, 2DCH, and DHH.

Dipolar coupling arise from through space spin–spin interactions and is depen-
dent of both internuclear distance (r) and an angle between the magnetic field and 
the internuclear vector (θ) as described by the equation

 

D rij ij=
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è
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ø
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Where ξij is a constant that depends on the properties of nuclei i and j.

Table 8.5 13C chemical shifts of some aldoses

Compound C-1 C-2 C-3 C-4 C-5 C-6

α-glucose, Ref. [8] 92.9 72.5 73.8 70.6 72.3 61.6

92.77 72.15 73.43 70.32 72.10 61.27

β-glucose, Ref. [8] 96.7 75.1 76.7 70.6 76.8 61.7

96.59 74.81 76.43 70.27 76.61 61.42

α-galactose 93.2 69.4 70.2 70.3 71.4 62.2

β-galactose 97.3 72.9 73.8 69.7 76.0 62.0

α-mannose 95.0 71.7 71.3 68.0 73.4 62.1

β-mannose 94.6 72.3 74.1 67.8 77.2 62.1

α-arabinose 101.9 82.3 76.5 83.8 62.0

β-arabinose 96.0 77.1 75.1 82.2 62.0

α-ribose 97.1 71.7 70.8 83.8 62.1

β-ribose 101.7 76.0 71.2 83.3 63.3
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Direct measurements of dipolar interactions can be achieved by dissolving 
molecules in oriented media such as crystals composed of bicelles or phage. Despite 
the fact that molecular tumbling remains fast in these media, the sampling of orien-
tations is no longer isotropic, and consequently the dipolar coupling do not average 
to zero and splittings are observed between the dipolar coupled spin pairs.

The knowledge of the molecular geometry of a fragment and the measurement of 
five or more interdependent residual couplings from the fragment allows the deter-
mination of the Saupe order matrix elements (Sij) from a set of linear equations 
relating dipolar couplings to the known geometry factors and the unknown order 
tensor elements.

 

D S
ij

ij i jresid µå cos cosq q
 

Where θij are the angles between the internuclear vectors.
Determination of the Saupe order matrices for individual rigid fragments of a 

molecule allow both structural characterization and assessments of internal motions 
between fragments [11].

NMR studies carried out by De Bruyn [23], using as models series of disaccharides 
provided valuable information about conformational behavior from the  chemical 
shifts and the torsion angles present around the glycosidic bond (Scheme 8.3). Also 
it has been reported that the 13C chemical shifts for the glycoside and the aglycone 
carbon can be directly correlated with one of the torsion angles psi (ψ) defined by 
the bonds C(1)-O(1)-C(4)-H(4) [20].

The sign of θ and ψ has been previously calculated through the method known as 
hard sphere exoanomeric effect [24] which predicted the relative stability of the 
different conformers around the torsion angles, considering the bond length, bond 
angle and atomic size. It has been observed that for a number of disaccharides there 
is a variation of the chemical shifts as a function of ψ, compared with the values of 
their corresponding monosaccharides (Table 8.7).

The development of Karplus relationship for three-bond C-O-C-C spin-coupling 
constants by Bose et al. [25], suggest that 3JCOCC obeys a Karplus relationship 
similar to that observed for 3JHH,3JHC, and other vicinal spin-coupling constants. 
However the precise form of this relationship that is the shape and amplitude of the 
Karplus curve is unknown. Also in this work, 3JCOCH values have been measured to 
asses the phi (ϕ) and the psi (ψ) torsion angles (Scheme 8.4) and Karplus relation-
ships have been reported for this vicinal coupling [26].

Another report describes the calculation of 2JHH, 3JHH, 1JCH, 2JCH, 3JCH, 1JCH, for the 
exocyclic CH2OH group and the 3JCXCH for the X-glycosidic linkage, as a function 

O
O O

q y

Scheme 8.3 Torsion 
angles around the 
glycosidic bond
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of ω, θ, and glycosidic torsion angle ϕ (Scheme 8.5). The glycosidic torsion angles 
ϕ and ψ are usually determined from NOE measurements between protons near to 
the linkage (H1 and H3′).

The 1H–13C coupling constants of methyl α- and β-pyranosides of d-glucose and 
d-galactose were measured by one-dimensional and two-dimensional 1H–13C 
heteronuclear zero and double quantum, phase sensitive J-HMBC spectra, in order 
to assign the complete set of coupling constants (1JCH, 2JCH, 3JCH, 2JHH, and 3JHH) 
within the exocyclic hydroxymethyl group. As a result of this spin–spin couplings 
constants of α- and β-pyranosides of d-glucose and d-galactose were generated as 
shown in Table 8.8 [27].

 

Comparative conformational studies using a combination of NMR spectroscopy 
and molecular mechanics of lactose disaccharide (βGal[1–4]Glc) and its C-analog 
showed that for the former the population in solution is about 90 % syn and 10 % 
anti, while for the latter the conformation is more flexible in the forms 55 %, 40 %, 
and 5 % syn, anti, and gauche-gauche, respectively [28].

1H NMR spectra of oligosaccharides follow in many cases complex patterns due 
to extensive overlap within the region δ 3.0–4.2; however, the use of pyridine-d5 
improves the signal dispersion, increasing the resolution especially in overcrowded 
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3
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Scheme 8.4 Couplings 
sensitive to ϕ and ψ torsion 
angles

Scheme 8.5 The 
glycosidic torsion angles ϕ 
and ψ in disaccharides
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regions. The localization of anomeric protons is a valuable tool for recognizing the 
number of monosaccharide residues.

A number of one- and two-dimensional methods provides thorough information 
to assert the complete assignment unambiguously. One-dimensional NMR analysis 
provides useful information about the chemical shifts and scalar couplings of well 
resolved signals such as anomeric protons (δ 4.4–5.6) and methyl groups for 
6-deoxy monosaccharides (fucose, quinovose, rhamnose) at (δ 1.1–1.3). The effect 
on the proton chemical shift of glycosylation is a typical deshielding of the proton 
across the glycosidic bond and the two neighboring positions of the aglycone. This 
behavior is due to repulsion between hydrogens and due to the effect of the lone pair 
of the oxygen to the hydrogens [29].

Conformational analysis on more complex glycosides is based mainly on the 
inter-residue 1H-1H Nuclear Overhauser effects (NOE) [30]. and also 13C-1H long- 
range coupling constants across the glycosidic linkage for studying the preferred 
conformation of oligosaccharides in solution. Selective irradiation of the anomeric 
proton reveals inter-residual contacts with aglycone protons. In this way 1 → 2, 
1 → 3, 1 → 4, and 1 → 6 combinations as well as α and β linkages may be determined 
[31, 51–53]. Long-range 1H-1H couplings involving four bonds between anomeric 

Table 8.8 Experimental 1H–1H and 13C–1H spin–spin couplings constants

Coupling β-d-methyl glucose α-d-methyl glucose β-d- methyl galactose
α-d-methyl 
galactose

3JH1,H2 8.0 3.8 7.9 3.9
3JH2,H3 9.4 9.8 9.9 10.3
3JH3,H4 9.2 9.1 3.5 3.5
3JH4,H5 9.7 10.0 1.1 1.2
3JH5,H6R 6.0 5.4 7.9 8.2
3JH5,H6S 2.3 2.3 4.4 4.2
3JH6R,H6S −12.3 −12.3 −11.8 −11.7
1JC4,H4 144.8 144.4 146.2 146.5
1JC5,H5 141.7 144.3 140.8 143.5
1JC6,H6R 143.2 143.2 145.5 145.1
1JC6,H6S 144.5 144.2 142.9 142.5
2JC4,H3 −4.7 −4.7 1.6 1.6
2JC4,H5 −2.8 −2.9 3.3 3.0
2JC5,H4 −4.0 −3.8 1.0 1.1
2JC5,H6R −2.5 −1.9 −5.0 5.1
2JC5,H6S −1.1 −1.4 0.4 1.0
2JC6,H5 −2.3 −1.4 −5.5 −5.2
3JC4,H2 1.1 1.0 0.7 0.9
3JC4,H6R 1.0 1.1 1.9 1.0
3JC4,H6S 2.4 2.9 4.0 3.7
3JC5,H3 1.1 1.0 – 0.5
3JC6,H4 3.6 3.6 1.0 1.0
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and aglycone protons (4JHCOCH) are usually very small that could be detected but not 
measured [32, 54].

Two-dimensional NMR is a reliable method for determining inter-ring connec-
tivity. Through space dipolar interactions between the anomeric and the trans gly-
cosidic proton can be detected in the form NOE signals and represent the basis for 
linkage and sequence analysis [33], also the interglycosidic connectivities are 
established on the basis of long-range (3JCH) by HMBC studies [27]. The usefulness 
of this method has been later demonstrated in a number of structural elucidations 
[34, 55–58].

Bidimensional homonuclear techniques such as TOCSY experiment have been 
useful for the NMR characterization of the naturally occurring complex glycosides 
such as glycoresin tricolorin E [35, 59], allowing the total assignment of the sugar 
region, including the anomeric protons for each of the four monosaccharides estab-
lished (Scheme 8.6).

Likewise, the complete 1H and 13C assignments of a synthetic octasaccharide 
fragment of the O-specific polysaccharide of Shigella dysenteriae type 1 by using 
2D TOCSY at 600 MHz was described. In the contour plot it is possible to observe 
the connectivity between the sugar units and the detailed assignment of the protons 
[36]. Moreover, a 2D selective TOCSY-DQFCOSY experiment for identification of 
individual sugar components in oligosaccharides is described, assuming that unam-
biguous sequential assignment of the proton signals for individual components is 
reached [37].

High resolution 1H NMR spectroscopy has been applied in the structural analysis of 
glycoproteins. The initial efforts to assign all the anomeric and non anomeric protons 
were done by using spin decoupling and nuclear Overhauser spectroscopy [38].

Nuclear magnetic resonance of carbohydrate related to glycoconjugates have 
been analyzed. One of the first high resolution studies was reported back in 1973 on 
intact glycolipids in a 220-MHz magnet [39]. Subsequent studies on underivatized 
and permethylated glycosphingolipids in dimethylsulfoxide-d6 and chloroform, 
respectively, allowed to assign all the anomeric protons and a number of nonano-
meric proton resonances [40, 60].

Early studies on high resolution NMR spectra of glycans chain in D2O allowed 
to assign the anomeric and non anomeric protons as well as the coupling constants 
of sugar residues found in glycoproteins [38, 41]. More recently the complete reso-
lution of acetyl protected sialic acid glycopeptides was achieved by using NOESY 
and DQF-COSY technique [6].

For the NMR-analysis of carbohydrate-protein complexes the transfer nuclear 
overhauser effect (trNOE) experiment seems to be a promising alternative [42, 61]. 
Recent advances on conformational analysis of oligosaccharides allows to deter-
mine the interresidue interactions based on the dihedral angles ϕ and ψ along the 
interglycosidic linkage [43, 62]. In this connection, recent conformational advances 
on E-selectin-sialyl Lewisx complex has led to the determination of the bioactive 
conformation of the silayl Lewisx tetrasaccharide [44].

NMR spectroscopy of glycoproteins has been achieved by using a combination 
of homo- and heteronuclear experiments at natural abundance [45, 63, 64]. Increased 
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refinement is possible when a 15N-labeled sample was used and the mobility of the 
glycan chain could be assesed by the measurements of 13C line widths obtained fro 
the high resolution HSQC spectra [43, 62].

8.2  NMR of N-glycosides

The conformational analysis of N-glycosides has been extensively studied on the 
basis of chemical shifts and coupling constant determinations mainly around the 
C-N linkage. Torsion angles symbolized as χ for furanosides rings, are also depen-
dent on the Karplus equation, and similarly plays an important rule for the confor-
mational analysis of five member rings [46]. For purines the angle χ is formed 
between O4′-C1-N9-C4 atoms, and O4′-C1-N1-C2 for pyrimidines. When torsion 
angles O4′-C1 N9-C4 for purines, and O4′-C1-N1-C2 for pyrimidines are eclipsed, 
then χ = 0°. Positive angles of χ occur for rotation clockwise for N9-C4 for purines 
and N1-C2 for pyrimidines. The conformation syn in nucleosides, correspond to the 
angle χ = 0 ± 90°, and anti to 180 ± 90° (Scheme 8.7).

Regarding furanoside rings, there are different non planar conformation possibly 
assumed in terms of five endocyclic torsion angles symbolized as νo, ν1, ν2, ν3, ν4, 
corresponding to the bonds O4′-C1′, C1′-C2′, C2′-C3′, C3′-C4′, and C4′-O4′. The 
two most common conformations founded are the envelope (E), referring to four 
atoms on the plane, and twist (T) for three atoms on the plane. The puckering of the 
furanoside rings of nucleosides is explained by Sorenssen et al. [47] Unmodified 
nucleosides are present as an equilibrium between the C-3′-endo conformation, 
located around P = 18°, and the C-2′-endo conformation centered around P = 162° 
(Scheme 8.8).

Besides the torsion angle described for the N-glycosidic bond, there are for the 
case of oligosaccharides, additional torsion angles symbolized as ω,ω′,ϕ,ϕ′,ψ, and 
ψ′ corresponding to the bonds P-O5, P-O3′, O5′-C5′, O3′-C3′, C5′-C4′, C4′-O3′ 
respectively (Scheme 8.9).
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Scheme 8.7 Syn-anti conformations for purines and pyrirmidines
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The vicinal coupling constants at 3 bond distance are dependent of the dihedral 
angle θ, and the relationship determined by the Karplus equation.

 
3 2J A B CH H = - +cos cosq q

 

Where A, B and C are constants and their values are given in Table 8.9.
The exchange of –OH for -OPO3, does not affect sensibly the Karplus relation-

ship, therefore the values are valid for both nucleosides or oligonucleosides, how-
ever, as mentioned, 3J there is a dependence of other factors such as bond length, 
bond angle, electronegativity, and substituent orientation. Some of the values 
reported for ribose and deoxyribose are presented in Table 8.10.

The analysis of the C-nucleosides β-pseudouridine (β-ψ) and α-pseurouridine 
(α-ψ) in aqueous solution has been described and the observed coupling constants 
given in Table 8.11 [48].
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    Chapter 9   
 X-Ray Diffraction of Glycosides                     

            X-ray crystallography is a powerful tool for obtaining molecular information 
regarding bond lengths, bond angles, hydrogen bond interactions, and torsion 
angles, which are necessary elements for understanding the conformation of glyco-
sides. Improved diffractometers, faster computational processors, and mathematical 
programs have made possible the structural resolution of simple and complex sub-
stances of glycosidic nature particularly those with noncentrosymmetric space 
groups. 

 Early studies on simple glycosides allowed to confi rm that the sugar residue is 
pyranoid (and not acyclic), assuming two possible chair conformations ( 4 C 1  and 
 4 C 1 ), usually orienting the substituent to the equatorial position [ 1 ,  2 ]. 

 In hydrogen bond interactions on pyranoid residues some of the invariable facts 
are: (a) the ring-oxygen atom is always a hydrogen bond acceptor; (b) each hydroxyl 
group is associated with two hydrogen bonds, one as the donor and one as the accep-
tor; (c) in disaccharides there might be intramolecular hydrogen bonding between 
two residues; (d) the hydrogen bond O-O distance has values around 2.68–3.04 Å. 

 Crystallographic observations on the anomeric effect demonstrated that the bond 
shortening and preferred  gauche  conformation of the glycosidic bonds in pyranoses 
are a consequence of an electronic distribution in the hemiacetal and acetal moiety 
of these molecules [ 3 ]. 

 On the other hand, the primary alcohols can be present in three staggered orienta-
tions, defi ned as gg, gt, and tg referring to torsion angles O5-C5-C6-O6 and the 
second to C4-C5-C6-O6 [ g  ≫ ±60°,  t  ≫ 180°]. An alternative nomenclature refers to 
O5-C5-C6-O6 as + g  =  gt , − g  =  gg ,  t  =  tg . 

 The general standard molecular dimensions for pyranosides are described in 
Table  9.1 , with the C-C bond length being in the range of 1.523–1.526, C-C-C 
angles 110.4–110.5°, and usually shorter glycosidic bond 1.398 for axial and 1.385 
for equatorial disposition (Table  9.1 ) [ 4 ].

   The distortion degree from the ideal chair conformation has been studied by 
Cremer and Pople [ 5 ], who by following a mathematical approximation were 
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able to propose three puckering parameters described as spherical polar set  Q  
(total puckering amplitude), and the angles  θ  and  ϕ , describing the distortion 
suffered by six-member rings from the ideal chair conformation. The chair corre-
sponds to  θ  = 0°,  ϕ  = 0°; boat for  θ  = 90°,  ϕ  = 0°; and twist boat for  θ  = 90°,  ϕ  = 90° 
(Scheme  9.1 ). The pyranoside ring varies slightly and in terms of Cremer and 
Pople puckering parameters, the range of values is  Q  = 0.55–0.58 Å with  θ  within 5° 
of 0 or 180° [ 4 ].

    Table 9.1    Standard molecular dimensions for  4 C 1  chair conformations in pyranosides   

 Bond type 

 Bond 
lengths 
(Å) 

 Bond 
lengths 
(Å)  Angle type 

 Bond 
angle (°) 

 Bond 
angle (°) 

 4-atom 
ring 

 Torsion 
angles (°) 

 C-C ring  1.526  1.523  C-C-C ring  110.4  110.5 
 C-C exo  1.516  1.514  C-C-C exo  112.5  112.7 
 C-O exo  1.420  1.426  C-C-O ring  110.0  110.0 

 C-C-O exo  109.7  109.6 
 C5-O5 axial  1.434  1.436  C5-O5-C1  114.0  114.0  C-C- C-C  53 
 C1-O5 axial  1.419  1.419  O5-C1-O1  112.1  111.6  C-C- C-O  56 
 C1-O1 axial  1.398  1.415  C5-O5-C1  112.0  112.0  C-C- O-C  60 
 C5- O5 eq.  1.426  1.436  O5-C1-O1  108.0  107.3  C-C- C-C  53 
 C1- O5 eq.  1.428  1.429  C-C- C-O  57 

pole

φ

θ

Q

equator

HC

B TB

HB

C

  Scheme 9.1    One octant of the sphere on which the conformations of six-membered rings can be 
mapped for a constant  Q        
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9.1       X-ray Diffraction of  O -Glycosides 

 One of the pioneering studies about sugar X-ray analysis was presented by Levy and 
Brown [ 6 ] reporting the structure of sucrose, and sucrose NaBr.H 2 O. Through these 
studies it was observed that although they were energetically equivalent, their chair 
conformations were different, due to slight hydrogen bridge interactions on the 
 furanoside moiety   (Scheme  9.2 ).

   Another disaccharide characterized by X-ray crystallography was  octa- O -acetyl- 
β- D -cellobiose   which presents space group P2 1 ,2 1 ,2 1 , with both pyranoside residues 
in  4 C 1  chair conformation slightly more distorted in comparison with cellobiose. 
Moreover, the torsion angles determined were −77° for O5-C1-C4′, and 104° for 
C1-O1-C4-C5 (Scheme  9.3 ). The sign value indicates according with the Klyne and 
Prelog notation to the right if positive and to the left if negative [ 7 ].

   The crystal structure of benzyl 2,3,4-tri- O -acetyl-β- D -fucopyranoside is 
described [ 8 ], presenting a monoclinic system, space group P2 1 , with bond  distances 
C-O 1.423 Å, C-C 1.513 Å, and shorter C-O 1.380 Å for equatorially anomeric 
bond. The angle disposition for the endocyclic bond C1-O5-C5 is of 112.4 (3)°, 
with this value being typical for chair conformation  4 C 1  in pyranoside with substitu-
ents positioned at equatorial positions. The perspective view of the molecule shows 
equatorial disposition for all substituents except position 4 that remains axial 
(Scheme  9.4 ).

    Disaccharide phenylmethyl- O -(2,3-di- O -acetyl-4,6- O -benzylidene-β- D - 
glucopyranosyl)  -(1 → 2)-3,4- O -isopropylidene-β- D -fucopyranoside shows for 

  Scheme 9.2    X-ray diffraction of sucrose and sucrose NaBr.H 2 O       
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fucopyranoside moiety a distorted chair due to the fi ve-member ring acetonide at 
O3 and O4 positions, with Cremer and Pople puckering parameters of  Q  = 0.556 (3), 
 θ  = 159.9 (3)°, and  ϕ  = 220.8 (8)°. In contrast for the glucopyranosyl moiety with a 
six-member ring benzylidene ring attached at positions O4 and O6, the chair con-
formation is less distorted with Cremer and Pople puckering parameters of  Q  = 0.597 
(3),  θ  = 170.5 (3)°, and  ϕ  = 156.0 (16)° (Scheme  9.5 ) [ 9 ].

   The solid state crystal structure of glycoresin  tricolorin      A was solved by using an 
intense synchrotron radiation to collect data. The crystals belong as usual to the P2 1  
having cell dimensions  a  = 14.025(1),  b  = 33.337(1),  c  = 25.512(1) Å,  β  = 91.07(1)°. 
The energy maps were calculated as a function of two glycosidic linkage torsion 
angles defi ned as  ϕ  = Θ (O5-C1-O1-Cx) and  ψ  = Θ (C1-O1-Cx-C(x + 1)), indicating 
a higher level of conformational freedom along  ψ  axis. 

 The size of the crystal unit cell demonstrates the presence of four independent 
 tricolorin   A molecules per asymmetric unit and the refi ned structure showed the 
presence of 18 water molecules forming a channel along the hydrophilic region 
(Scheme  9.6 ) [ 10 ].

   Other selected pyranosides analyzed by X-ray diffraction and their parameters 
determined are shown in Table  9.2 .

9.2        X-ray Diffraction of  Nucleosides   

 A number of  N -glycosides and  C -glycosides has been solved by X-ray analysis, 
presenting as common features space group P2 1 2 1 2 1  or P2 1 , the furanoside ring in 
the twist conformation, and symmetric system monoclinic or orthorhombic. 

 For instance the hypermodifi ed nucleoside queuosine presents a space group 
P2 1 2 1 2 1 , cell dimensions  a  = 26.895,  b  = 7.0707,  c  = 23.883 Å, and symmetric system 

  Scheme 9.3    Chair conformation for octa- O -acetyl-β- D -cellobiose       
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orthorhombic (Scheme  9.7 ). The three-dimensional structure determined by X-ray 
has been also helpful to understand the recognition process at the tRNA level. 
Thus, based on this information it is possible to determine that the bulky group 
cyclopentenediol due to the trans disposition assumed is not involved in any 
codon–anticodon interaction, therefore suggesting that another type of interaction 
has taken place [ 19 ].

  Scheme 9.4    Thermal ellipsoid drawing and packing diagram showing the hydrogen bonding 
along [001] of phenyl methyl 2,3,4,-tri- O -acetyl-β- D -fucopyranoside       
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   The unusual conformation of α- D  anomer of 5-aza-7-deaza-2′-deoxyguanosine 
has been reported by Seela et al. [ 20 ] In this work it is described that the title com-
pound adopts a high-anti conformation with the C1′-C2′ and N9-C8 bonds nearly 
eclipsed with torsion angle C1′-C2′-N9-C8 = 30.3 (4)°. It can be also observed that 
for 2′-deoxy-α- D -ribonucleosides the C2′ endo sugar puckering with either a half 
chair or envelope conformation is preferred (Scheme  9.8 ).

   The solid-state conformation of constrained carbocyclic nucleosides 
(N)-methano-carba-AZT and N-(S)-methano-carba-AZT was determined by X-ray 
diffraction. As expected with the prediction, their thermal ellipsoid presented a rigid 
pseudoboat conformation for the bicycle [3.1.0] hexane system, which makes them 
assume nearly perfect  2 E and  3 E envelope conformations in the pseudorotational 
cycle (Scheme  9.9 ) [ 21 ].

   Other selected  N - nucleosides   that have been analyzed by X-ray diffraction and 
their parameters determined are shown in Table  9.3 .

  Scheme 9.5    Perspective Ortep view of phenylmethyl glucosyl fucopyranosyl derivative showing 
the distortion degree between 5- and 6-member fused rings on chair conformation       
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  Scheme 9.6    ORTEP representation of tricolorin A and graphical representation of the unit cell       
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   Table 9.2    X-ray diff raction parameters of some selected pyranosides   
 Structure  Symmetry cell  Symmetry space  Conformation  Ref 

  

O

OMe

OH
OPiv

HO
PivO

    

 Orthorhombic  P 2 1  2 1  2 1    4 C 1   [ 11 ] 

  

O

PhH2COCO OMe

OCOCH2Ph

N
H

O

PhH2COCO

    

 Monoclinic  P 2 1    4 C 1   [ 12 ] 

  

OO
O

PhO2S
HN

Ph
OMe

Ph

    

 Monoclinic  P2 1   Chair for α-anomer 
and boat β-anomer 

 [ 13 ] 

  

O

OAc

AcO
AcO

OAc
S

S
N
N

Ph

    

 Orthorhombic  P 2 1  2 1  2 1    4 C 1   [ 14 ] 

  

O

NH

OAc

OAc

OAc

N

N

O

O Me

MeOOC

MeO

    

 Monoclinic  C 2   4 C 1   [ 15 ] 

  

O

OH

O
OH

OHOHOH     

 Orthorhombic  P 2 1  2 1  2 1    4 C 1   [ 16 ] 

  

O O
O

OH
OMe

HOOH
Me

OH
OH

OH

. 5 H2O

    

 Monoclinic  C 2   4 C 1   4 C 1   [ 17 ] 

  
O

O
O

OH
OMe

HO
HO

OH

OH

MeOH

OH

OH

    

 Monoclinic  P2 1    4 C 1   4 C 1   [ 18 ] 
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  Scheme 9.7    Perspective 
view of hypermodifi ed 
nucleoside queuosine       

  Scheme 9.8    Perspective view of α- D  anomer of 5-aza-7-deaza-2′-deoxyguanosine       
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   Table 9.3      N -glycosides   and their X-ray diffraction parameters   

 Structure 
 Symmetry 
cell 

 Symmetry 
space 

 Sugar 
puckering  Conformation  Ref 

  

O

O

O

N
N

HO

HN

HO

F

    

 Monoclinic  P 2 1    3 T 2    anti  
[ χ  = −125.37 
(13)°] 

 [ 22 ] 

  

O

H
H2N

·H2O

HO

HO

H

H

N

NN

N

    

 Orthorhombic  P 2 1  2 1  2 1   Unsymmetrical 
twist 

  anti   [ 23 ] 

  

F

O

NH2

HO

HO

N

N N

    

 Orthorhombic  P2 1  2 1  2 1    2 T 3    anti  and high 
 anti  
[ χ  = −101.1 
(3)°] 

 [ 24 ] 

(continued)
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  Scheme 9.9    X-ray 
structure of 
(N)- methano -carba-AZT       

 

9 X-Ray Diffraction of Glycosides



 Structure 
 Symmetry 
cell 

 Symmetry 
space 

 Sugar 
puckering  Conformation  Ref 

  

Mc–C=C NH2

N

NN

O
HO

HO OH

N

-CH3OH

    

 Orthorhombic  P2 1  2 1  2 1    3 T 2    anti  and 
high- anti  
[ χ  = −101.8 
(5)°] 

 [ 25 ] 

  

O

H2N

O

N N

HN

HO

HO     

 Orthorhombic  P2 1  2 1  2 1    3 T 4    anti  
[ χ  = −106.5 
(3)°] 

 [ 26 ] 

  

N

N

O
HO

HO

N

N

NH

H2N

Br

    

 Orthorhombic  P2 1  2 1  2 1    3 T 2    anti   [ 27 ] 

  

O
HO

HO OH

N

N

N
N N

N

    

 Orthorhombic  P2 1  2 1  2 1    3 T 2    anti  and high 
 anti  
[ χ  = −103.5 
(3)°]. 

 [ 28 ] 

  

C=CMeO

O

HN

HO

HO

N NH2N

    

 Monoclinic  P 2 1    2 T 3    anti  
[ χ  = −117.1 
(5)°] 

 [ 29 ] 

  

HO

HO

O

F

OH     

 orthorhombic  P 2 1  2 1  2 1   C1′- exo , 
C2′- endo  twist 
and C2′- endo  
envelope 

  anti   [ 30 ] 

  

O

N

N

NO2

HO

HO     

 Orthorhombic  P2 1  2 1  2 1   S-type   anti  [torsion 
angle = −105.3 
(2)°] 

 [ 31 ] 
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    Chapter 10   
 Mass Spectrometry of Glycosides                     

            High-resolution mass spectrometry has become another valuable tool for character-
ization of simple and complex glycosides. The method is based on the collision of a 
high-energy electron against a sample under study producing as result a cation radi-
cal fragment known as the molecular ion, which should match with the molecular 
weight of the molecule. The mass spectrum also registers a number of fragments 
with the most intense base peak assigned a relative intensity of 100. Mass spectrom-
etry can be applied as high and low ionization experiments, the former the most 
suitable for glycosides electron impact and the latter for  fast atom bombardment 
(FAB)   and electrospray ionization routine experiments for characterization of gly-
cosides. In terms of sensitivity of the measurement this instrumental method requires 
a small amount of sample, even in the order of nanogram quantities. 

 The fragmentation patterns of acetyl protected pentoses and hexoses were stud-
ied and their main  m / z  fragment established. For instance for methyl-β- D - 
xylopyranoside triacetate the main fragment follows the two alternative routes 
shown in Scheme  10.1  [ 1 ].

   High ionization experiments such as electron impact have been found to be a 
suitable approach for the determination of molecular weights through their corre-
sponding molecular ions of protected glycosides such as peracetylated  O -glycosides 
of low molecular weight. For instance, by using electron impact it was possible to 
determine the molecular weight, and the common fragmentation patterns of  m / e  331 
and 169 (100) of the phenylazo naphthol-β- D -glucopyranoside pentaacetate 
(Scheme  10.2 ) [ 2 ].

   However, for most of non-protected glycosides high ionization does not provide 
reliable information and commonly decomposition is observed due to thermal 
unstability. The introduction of shift ionization techniques such as fast atom bom-
bardment (FAB) and  electrospray ionization   has produced great progress for the 
structural characterization of simple and complex glycosides. This important ana-
lytical procedure is specially useful for determining the molecular weight through 
detection of the molecular ion, as well as sugar sequencing. The choice of the matrix 
and the solubility of the sample are essential aspects to consider for obtaining the 
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best resolution. Glycerol is the matrix most commonly used, and it is the best choice 
for underivatized carbohydrates and glycopeptides. Some other matrices used alter-
natively for hydrophobic samples are thioglycerol, tetraethyleneglycol, and trietha-
nolamine [ 3 ]. 

 The use of derivatives also plays an important rule and may improve the spectral 
interpretation and the sensitivity. The most commonly used derivatives are the per- 
 O - acetyl and the per- O -methyl. Usually for the former the fragmentation pathways 
are less specifi c and furnish more information, although the spectrum is more dif-
fi cult to interpret. 

 For the assignment of the molecular ion it is important to recognize the pseudo-
molecular ions produced during a FAB experiment, which can be positive-ion and 
negative-ion mode. In the positive-ion mode the usually present signals are [M + H] + , 
[M + NH 4 ] + , [M + Na] + , and [M + K] + , and for the negative [M − H] − , and for those 
molecules that cannot lose a proton [M + Cl] − , or [M + SCN] − . 

 Some of the most common fragmentation pathways produced by polysaccha-
rides and glycoconjugates are represented in Scheme  10.3  [ 4 ]:

10.1        FAB   Fragmentation Patters 

 Likewise, application of different ionization techniques in the study of natural gly-
cosides has been performed and consequently it has been possible to assign the 
main potential fragmentation sites in  O - and  C -glycosides (Scheme  10.4 ) [ 5 ].

   Negative ion FAB-MS in triethanolamine of synthetically prepared glycoresin 
composed by fucose, glucose, and quinovose attached to jalapinolic acid 
(Scheme  10.5 ), shows [M − H] −  peak ( m / z  1216) in agreement with the expected 
molecular weight [ 2 ].

   Mass spectrometry has been also applied successfully for glycoprotein structural 
determination of primary structure. The fi rst glycoprotein primary structure was 
determined through electron impact and chemical ionization [ 6 ]; however, soft ion-
ization methods of fast atom bombardment (FAB), electrospray (ES), or matrix- 
assisted laser desorption ionization (MALDI) are used in most of the glycoprotein 
structural determinations. 

 FAB is particularly useful for analyzing the permethyl derivatives of oligosac-
charides released from glycoproteins by chemical or enzymatic methods. When the 
atom or ion beam collides with the matrix, a substantial number of sample mole-
cules are ionized producing positively charged species called quasimolecular ions 
[M + H] +  and [M + Na] +  [ 7 ]. 

 In order to optimize fragment ion information of glycoproteins, three approaches 
are currently being used: inducing fragmentation by collisional activation, monitoring 
natural ionization-induced fragmentation, and selecting derivatives that enhance and 
direct fragmentation. 

 During collisional activation of collected fractions from an enzymatic digest, the 
fi rst step is to identify in the MS mode the fractions containing sugar fragment-ions. 

10.1 FAB Fragmentation Patters
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Then switching to the MS/MS mode of a doubly or triply charged ion a composite 
spectrum containing fragmentation of saccharide and peptide is obtained. Since gly-
cosidic bonds are weaker than peptide bonds, the basic oligosaccharide sequence is 
determined [ 8 ]. 

 The natural fragmentation approach relies on the fragmentation created by inter-
nal energy transfer to the ion during the ionization process, and now it is becoming 
most limited in use that the previous one [ 4 ]. 

  Derivatization methods   are likewise divided into tagging of reducing ends and 
protection of most of all of the functional groups. The fi rst type facilitates chro-
matographic purifi cations and enhances the formation of reducing end fragment 
ions. The second type involves primarily the permethylation, which form abundant 
fragment ions arising from cleavage on the reducing side of each HexNAc residue. 

 The permethylation of  Tamm–Horsfall glycoprotein   was effected and the FAB 
mass spectrum obtained, showing molecular ions for core 2-type structures carrying 
up to three sialyl Lex moieties (Scheme  10.6 ) [ 9 ].

  Scheme 10.6    Partial FAB mass spectrum of permethylated  O -oligosaccharides from glycoprotein 
uromodulin       
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  Scheme 10.7     Domon–Costello types   of carbohydrate fragmentation.       

  Scheme 10.8    Genesis of  Bi and Yj ions   in the positive ion mode.       

   A mass spectra pattern known as Domon–Costello (Scheme  10.7 ) was introduced 
to describe the ion fragments observed in glycoconjugates (glycosphingolipids, 
glycopeptides, glycosides, and carbohydrates). Thus, Ai, Bi, and Ci labels were 
used to designate fragments containing a terminal (nonreducing end) sugar unit 
(Scheme  10.8 ), whereas Xj, Yj, and Zj represent ions (Scheme  10.9 ) still containing 
the aglycone (or the reducing sugar unit). In addition, subscripts indicate the position 
relative to the termini analogous to the system used in peptides, and superscripts 
indicate cleavages within carbohydrate rings [ 10 ].
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  Scheme 10.9    Negative ion geneses of (a) Bi and Yj, and (b) Ci and Zj.       
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  Scheme 10.10    The MALDI/TOF mass spectra of maltohexaose       

10.2          The Domon–Costello Fragmentation 

 The  Domon–Costello nomenclature   was successfully applied to determine the ion 
fragments generated after a single collision of a dextran sample formed by six glu-
cose molecules. The MALDI/TOF singly charged showed besides the [M + Na] +  
ion, the most intense Y-ions, less intense B-ions, and several other fragments 
(Scheme  10.10 ) [ 10 ].

   Other ion fragments found in FAB, ESI, and in MALDI-TOF mass spectra of the 
[M + Na] +  mode not described previously were described by Spina et al., derived 
from six-atom ring rearrangements named as E, F, and G ions (Scheme  10.11 ) [ 11 ].

   The usefulness of this analytical tool has been established in the sequence 
 determination of oligosaccharides present in human milk LNFP I–IV, having a 
sequence fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glc by using MALDI-TOF/TOF-MS/
MS (Scheme  10.12 ) [ 12 ]. Also, a number  oligosaccharides and glycoconjugates 
from different biological source  have been analyzed by ESI and MALDI mass 
 spectrometry as shown in Table  10.1 .

 

10.2 The Domon–Costello Fragmentation



414

  Scheme 10.11    Six-atom ring rearrangement E, F, G ions       

  Scheme 10.12    MALDI-MS/MS spectrum of [M + Na] +  ion of LNFP I       
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