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Preface

You are reading the next, most current volume of “Practical Aspects of Compu-
tational Chemistry” book series. Four volumes published since 2012 augmented by
an initial book: the “Practical Aspects of Computational Chemistry” published in
2009 have established five volume series devoted to the various aspects of com-
putational chemistry that we (Jerzy Leszczynski and Manoj Shukla) are pleased to
bring to you over the last few years. This volume covers recent developments and
current applications covering nanomaterials, hydrogen-bonded clusters, semiem-
pirical local coupled-cluster theory, charge-transfer coupling, ro-vibrational energy
levels, relativistic effects and quantum electrodynamics in chemistry,
mechanochemistry, passivation on metal oxide surfaces, and nano-QSAR. The
state-of-the-science research reviews covering the current volume are distributed in
12 chapters.

Chapter 1 contributed by Barysz provides an overview of applications of rela-
tivistic effects and quantum electrodynamics in solving chemical problems such as
predicting reliable X-ray spectra. Chapter 2 discusses an efficient algorithm to
locate global energy minima of hydrogen-bonded clusters containing up to 55 water
molecules and is written by Kazachenko and Thakkar. In Chap. 3, Zakharov et al.
have discussed the development and application of semiempirical coupled-cluster
theory to calculate optical parameters such as polarizabilities and hyperpolariz-
abilities of fragments of conjugated polymers. Ramos et al. have reviewed methods
to compute charge-transfer couplings efficiently and accurately in Chap. 4. Car-
rington has reviewed methods to compute ro-vibrational energy levels of small
polyatomic molecules in Chap. 5.

The effectively unpaired electron theory for singlet states and its application
extending from diatomic to graphene nanoclusters have been reviewed by Luzanov
in Chap. 6. Bobadilla and Seminario have discussed the application of computa-
tional chemistry methods in designing of carbon-based nanodevices in Chap. 7.
There is a growing interest in the area of computational mechanochemistry and it
has been reviewed by Dopieralski and Latajka in Chap. 8. The mechanisms of
different types of Lewis acid–Lewis base interactions have been discussed in Chap.
9 by Grabowski and results of computational modeling of iodine-containing drugs

v

http://dx.doi.org/10.1007/978-1-4899-7699-4_1
http://dx.doi.org/10.1007/978-1-4899-7699-4_2
http://dx.doi.org/10.1007/978-1-4899-7699-4_3
http://dx.doi.org/10.1007/978-1-4899-7699-4_4
http://dx.doi.org/10.1007/978-1-4899-7699-4_5
http://dx.doi.org/10.1007/978-1-4899-7699-4_6
http://dx.doi.org/10.1007/978-1-4899-7699-4_7
http://dx.doi.org/10.1007/978-1-4899-7699-4_8
http://dx.doi.org/10.1007/978-1-4899-7699-4_9


have been reviewed by Yuldasheva et al. in Chap. 10. Rybakov et al. have dis-
cussed atomistic modeling of Si(110) passivation by atomic layer deposition of
Al2O3 in Chap. 11. The last chapter contributed by Toropov et al. deals with the
development of nano-QSAR.

We would like to take this opportunity to thank all contributors for devoting their
time and hard work to make this project a success. We acknowledge the excellent
support from the Presidium of the European Academy of Science as well as Editors
at Springer. Of course, many thanks go to our family and friends without their
support the realization of the book would not have been possible.

Jackson, MS, USA Jerzy Leszczynski
Manoj K. Shukla
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Chapter 1
Relativistic Effects and Quantum
Electrodynamics in Chemistry

Maria Barysz

Abstract In this chapter I discuss some aspects of relativistic theory, the accuracy of

the infinite order two-component relativistic IOTC method and its advantage over the

infinite order Douglas-Kroll-Hess (DKHn) theory, in the proper description of the

molecular spectroscopic parameters and the potential energy curves. Spin-free and

spin dependent atomic mean filed (AMFI) two-component theories are presented.

The importance of the quantum electrodynamics (QED) corrections and their role

in the correct description of the spectroscopic properties of many-electron atoms

for the X-ray spectra is discussed as well. Some examples of the molecular QED

calculations will be discussed here as well.

1.1 Introduction

In the last decades we have seen intense development of experimental techniques

to study molecular systems and this means that we get more accurate results of

these experiments. This means that we also need more and more accurate theo-

retical methods to calculate these properties. The ab initio calculations based on

Schrödinger equation have been a routine way to study a molecular electronic struc-

ture and properties in chemical laboratory or in biological systems. Nonrelativistic

Schrödinger quantum mechanics provides a consistent picture on numerous phenom-

ena in the atomic and molecular domain. However the description of physical phe-

nomena based on nonrelativistic quantum mechanics is incomplete. The descrip-

tion of phenomena at high energies requires the investigation of relativistic wave

equations. This means equations which are invariant under the Lorentz transforma-

tions. The central theme in relativity is that the speed of light, c, is constant in all

inertia frames (coordinate systems that move with respect to each other). Together

with the requirement that physical lows should be identical in such frames, this

has a consequence that time and space coordinates become equivalent. The fun-

damental structure of the Schrödinger equation is not invariant under the Lorentz
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2 M. Barysz

transformation and is therefore not relativistic correct. Traditionally, the relativistic

theory is first developed for one electron (particle) and leads to what is known as the

Dirac equation which is relevant substitute for the Schrödinger equation. Although

Dirac introduced special relativity into quantum mechanics in 1929, and the exten-

sion to many-electron systems was made by Breit soon after, the importance of rel-

ativistic corrections in molecular quantum chemistry was not fully appreciated until

the 1980s. The Dirac equation describes both electrons (positive energy solutions)

and positrons (negative energy solutions) and explicitly includes spin. For a given

potential and chosen charge q = −e, both positive and negative energy solutions of

the Dirac equation correspond to the electronic and positronic states. The excitation

energy between positive and negative states is of the order 2mc2 ≈ 1MeV. Thus in

low energy processes, one can proceed by ignoring the lower continuum. In the non-

relativistic limit, the lower positive energy solutions go to zero, whereas the upper

part reduce to a spin orbital in which the spatial part of the wave function solves

the nonrelativistic Schrödinger equation. The upper and lower two components of

the Dirac wave function are generally referred to as the large and small component,

respectively [1]. The relativistic effects can be analysed in terms of direct and indi-

rect effects. The direct relativistic effects originates in the immediate vicinity of the

nucleus, the indirect relativistic effects is influenced by the outer core orbitals.The

direct relativistic effects are responsible for the radial contraction and energetic sta-

bilization of the s1∕2 and p1∕2 shells as well as for the spin-orbit splitting of shells

l > 0 into sub shells with j = l − 1∕2 and j = l + 1∕2. The SO splitting for the same l
decreases with increasing number of sub shells i.e., it is much stronger for inner shells

than for outer shells. The SO splitting decreases with increasing l for the same prin-

cipal quantum number i.e. the np1∕2 − np3∕2 splitting is larger than the nd3∕2 − nd5∕2
and both are larger than the nf3∕2 − nf5∕2. The indirect relativistic effects are con-

sequences of a more efficient screening of the d and f shells accompanied by their

energetic destabilization (cited from [1–3]). The nature is relativistic and it does not

distinguish between relativistic and nonrelativistic effects and only theory allows to

distinguish these effects. The values of the relativistic effects for a given quantity

X are usually calculated as a difference between the relativistic and nonrelativistic

values of this quantity, i.e. 𝛥X = Xrel − Xnrel calculated at the same level of theory.

Calculations using relativistic quantum mechanics are becoming more routine nowa-

days and theoretical methods more and more accurate.

However, already in 1930s deviations were observed between the results of pre-

cision spectroscopy and the Dirac theory for simple atomic systems, primarily for

the hydrogen atom. The existence of negative-energy states in the solutions of Dirac

equation is the mathematical but not the physical grounds of the existence of parti-

cles and antiparticles (electrons and positrons). Besides, the velocity of light is finite.

For an complete model we must turn to quantum field theory and quantum electro-

dynamics (QED) [4].

Dirac himself was not convinced of the importance of relativistic effects, which

he declared would be of no importance in the consideration of atomic and molecular

structure and ordinary chemical reactions. We know that he wasn’t right. Are QED

effects important in chemistry. Full answer to this question is not yet known.
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The chapter consists of two parts. In the first part I discuss some aspects of

relativistic theory, the accuracy of the infinite order two-component relativistic IOTC

method and its advantage over the infinite order Douglas-Kroll-Hess (DKHn) the-

ory, in the proper description of the molecular spectroscopic parameters. Spin-free

and spin dependent atomic mean filed (AMFI) theory is presented. Additionally, the

accuracy of the relevant potential energy curves is discussed as well. In the second

part I show the role of the QED corrections and that they are necessary for the cor-

rect description of the spectroscopic properties of atoms for the X-ray spectra. Some

examples of the molecular QED calculations will be discussed here as well.

1.2 The Infinite Order IOTC and DKHn Theories

The four-component relativistic Dirac wave function contains information about pos-

itive and negative-energy states of the system. In chemical applications, one is usu-

ally concerned with the electronic (or positive-energy) states only. Therefore, some

reduction of the four-component wave function seems to be preferred. The history

of this reduction goes back to the period before the Dirac equation. The first step in

this direction appears to have been made by Pauli in the form of a quasi-relativistic

Hamiltonian known as the Pauli Hamiltonian. This Hamiltonian can be approxi-

mately derived from the Dirac Hamiltonian by using the fact that in the nonrelativis-

tic limit the large (the upper) 2-vector part of the Dirac 4-spinor becomes the elec-

tronic (positive energy) solution with spin. On this basis one could expect that there

is some representation of the Dirac Hamiltonian which completely separates the pos-

itive and negative energy spectra and permits to focus all attention on the electronic

part only. The exact separation of the two spectra would be equivalent to the trans-

formation of the Dirac 4-spinors into either electronic or positronic 2-spinors. Alter-

natively, this means that the 4 × 4 Dirac Hamiltonian is to be block-diagonalized, i.e.

brought into the form of the Direct sum of 2 × 2 matrix Hamiltonian’s one of them

corresponding to the electronic spectrum and the other one referring solely to the

positronic eigenvalues. Once this is achieved most problems of relativistic quantum

chemistry can be formulated solely in terms of electronic 2-spinors. The positronic

solutions can be simple abandoned. In practice it means that we have to find the

unitary transformation which diagonalize Dirac Hamiltonian.

H = 
†HDirac , (1.1)

with

HDirac =
(

V c𝝈p
c𝝈p V − 2c2

)
, (1.2)



4 M. Barysz

and

H =
(
h+ 0
0 h−

)
. (1.3)

The potential energy operator V is assumed here to correspond to the electron–

nucleus Coulomb attraction. Atomic units are used throughout this paper, c is the

velocity of light, c = 137.03599 a.u.

The unitary transformation U can be determined as the product of two transfor-

mations U0U1. The first transformation U0 is the free-particle Fouldy–Wouthuysen

transformation and leads to the approximate separation of the electronic and

positronic spectra H1 = U†
0H0U0. The second unitary transformation U†

1H1U1 is

based on the idea of Heully et al. and is determined in terms of the auxiliary operator

R [5]. The infinite–order (or exact) solution of the block-diagonalization problem is

then reduced to the solution of the following operator equation:

R = [(H1)22]−1[−(H1)21 + R(H1)11 + R(H1)12R] (1.4)

Once the solution R of Eq. (1.4) is known, the exact two-component “electronic”

Hamiltonian h+ becomes:

h+ = 𝛺
†
+(H1)11𝛺+ +𝛺

†
+R

†(H1)21𝛺+ +𝛺
†
+(H1)12R𝛺+ +𝛺

†
+R

†(H1)22R𝛺+ (1.5)

where the 𝛺 operator is defined through the R operator [6, 7].

The operator Eq. (1.4) is not easy to solve since it involves terms which are linear

in 𝝈p [7]. One of the possible way to solve the Eq. (1.4) is by means of some iterative

scheme. It can be made through some odd powers of 𝛼, say 𝛼
2k−1

, k= 2, 3, . . . (with

𝛼 denoting the fine structure constant, 𝛼 = 1∕c). Then, the unitary transformation

U will be exact through the same order in 𝛼. Simultaneously, this will lead to the

approximate form h2k, k= 2, 3, . . . of h+. Thus the method leads to a series of two-

component relativistic Hamiltonians whose accuracy is determined by the accuracy

of the iterative solution for R. In each step of the iteration the analytical form of the

R operator (Eq. (1.4)) and the Hamiltonian h+ (Eq. (1.5)) have to be derived.

The above idea was the basis of the BSS method formulated by Barysz and Sadlej

[8]. The BSS method has its roots in the historically earlier Douglas-Kroll-Hess

(DKH2 and DKH3) [9, 10] approximation. In the BSS approximation the fine struc-

ture constant 𝛼 is the perturbative parameters and it differs from the DKH method

where the potential V is used as the perturbation. Formally the BSS and DKH meth-

ods are of the infinite order in 𝛼 or V . However, the necessity to define the analytical

form of the R operator and the Hamiltonian h+ in each step of the iteration, makes

the accuracy of both methods limited to the lowest order in 𝛼 or V .

The break through of the above limitation came in 2002 when Barysz and Sadlej

[7] found the way to exact solution of the R operator equation Eq. (1.4). In this new

two-component infinite-order (IOTC) method the analytical form of the R operator

equation is formulated only once and the iterative procedure is defined inside of
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the molecular code. The solution is exact in the given basis set. This is the main

advantage of the IOTC method in comparison to the BSS or DKH methods.

After the IOTC method has been formulated, the so called infinite order DKHn

method has been also defined [11–13]. The DKHn approximation is the general-

ization of the original DKH theory which enables to achieve the higher orders of

the h+ Hamiltonian. Unfortunately, the necessity to formulate the analytical form

of the h+ Hamiltonian in each order of perturbation V is still the basis of the

DKHn method. The order of the DKHn approximation must be defined prior to any

quantum-chemical calculations. The DKHn method is very well defined but it is only

the approximation of the IOTC method which is exact.

There are a lot of mistakes in understanding and distinctions among the BSS, the

IOTC and the DKHn methods and that is the reason we make a comment on it in

this chapter.

For the lightest elements all the methods should give very similar results. The

differences will appear for the heavier elements.

In the present work we will focus mainly on the infinite order two-component

method, IOTC. However, some comparison between the IOTC and DKHn meth-

ods will be also presented. So far the discussion has been focus on the block–

diagonalization of the one–electron Dirac Hamiltonian. For the N electron system a

Hamiltonian may be written as the sum of the one-electron transformed Dirac Hamil-

tonian plus the Coulomb electron-electron interaction and it is commonly used form

of the relativistic Hamiltonian.

1.3 Potential Energy Curves in the Spin-Free Relativistic
DKHn and IOTC Theory

The electronic and spectroscopic properties of small dimers have been the topics

of many experimental and theoretical studies in recent years [14–17]. The intense

theoretical and experimental activity in this area resulted in a huge amount of results

on the spectroscopic properties and potential curves of many dimers. Investigation

of such species provide details on the low- and high-lying electronic states and the

nature of the atom-atom bonds. Theoretical ab initio calculations on such dimers

are on the increase due to advances in theoretical methods and yield information of

significance to experimentalists and are of great value in enhancing our knowledge

of bonding in these systems. Theoretical calculations have also become valuable

in designing new experiments. Due to intense development of relativistic methods

in recent years, special interest are in dimers of heavy atoms. The nonrelativistic

Schrödinger theory is not able to properly described such dimers. The relativistic

theory has to be applied instead [18].

The nature is relativistic. One can not receive the correct potential energy curve

without taking into account the relativistic effects. To show the difference between

the nonrelativistic and relativistic theory, the results of theoretical calculations for
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the ground
1
𝛴

+
and two

3
𝛱r and

1
𝛱 excited states of SiAu+ molecule are pre-

sented in Table 1.1. All calculations were carried out with the complete active space

CASSCF method followed by the second-order single state multireference perturba-

tion, CASPT2 scheme [19–22].

The POL and POL.DK Gaussian basis sets have been used in the nonrelativis-

tic and spin-free relativistic CASSCF/CASPT2 calculations. Gaussian basis sets

Table 1.1 Calculated CASSCF/CASPT2 bond lengths, Re (in pm), De dissociation energies (in

eV) and 𝜔e spectroscopic constants (in cm
−1

) for the ground and excited states of SiAu
+

cation, in

the IOTC and DKHn methods

Method Re De 𝜔e
1
𝛴

+

DKH2 2.1876 3.7870 459

DKH3 2.1856 3.8099 461

DKH4 2.1859 3.7708 460

DKH5 2.1858 3.8079 461

DKH6 2.1858 3.8073 460

DKH7 2.1858 3.8074 460

DKH8 2.1858 3.8074 460

IOTC 2.1858 3.8076 460

NR 2.5214 2.9057 367

3
𝛱r

DKH2 2.2772 1.9822 339

DKH3 2.2749 1.9848 340

DKH4 2.2752 1.9845 340

DKH5 2.2749 1.9849 340

DKH6 2.2751 1.9846 340

DKH7 2.2751 1.9846 340

DKH8 2.2751 1.9846 340

IOTC 2.2751 1.9848 340

NR 2.6607 1.3179 180

1
𝛱

DKH2 2.3480 1.4920 299

DKH3 2.3470 1.4963 299

DKH4 2.3471 1.4956 299

DKH5 2.3471 1.4956 299

DKH6 2.3471 1.4958 299

DKH7 2.3471 1.4958 299

DKH8 2.3471 1.4958 299

IOTC 2.3471 1.4960 299

NR 2.6813 1.5001 167
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[13s10p4d/7s5p2d] and [21s17p11d9f/13s11p7d4f] have been used in the

calculations for Si, and Au respectively [23]. The basis set used differ a bit from those

used earlier in our calculations [24], and they lead to slightly different values of the

total energy. All calculations have been carried out in C2v symmetry. The partition

of the orbital space used in CASSCF calculation is (0.0.0.0/20.10.10.4/3.1.1.0;5el).

In the CASPT2 method the partition is (17.8.8.3/3.2.2.1/3.1.1.0;5el).

The spin-free IOTC results have been compared with different DKHn approxima-

tions n = 2, 3, 4,…8 and with the nonrelativistic (NR) data. Analyzing the results of

the calculations, one can observe a quite large role of the relativistic effect. For exam-

ple, the calculated IOTC dissociation energies for the ground
1
𝛴

+
and

3
𝛱r excited

states are 3.8076 and 1.9848 eV, the corresponding nonrelativistic values are 2.9057

Table 1.2 The comparison of the CASSCF/CASPT2 DKHn (n − 2, 3, 4,…8) and the IOTC

energies (in a.u.) at the equilibrium distance Re for the ground and excited states of SiAu+ molecule

State Method Energy

1
𝛴

+ DKH2 −19282.10072357

DKH3 −19301.90094796

DKH4 −19299.16552475

DKH5 −19300.60487817

DKH6 −19300.08950129

DKH7 −19300.24097799

DKH8 −19299.99193999

IOTC −19299.97359888

NR −18154.11091612

3
𝛱r DKH2 −19282.03278623

DKH3 −19301.83227194

DKH4 −19299.09695943

DKH5 −19300.33822623

DKH6 −19299.82285485

DKH7 −19299.97432997

DKH8 −19299.92334410

IOTC −19299.90500105

NR −18154.10095727

1
𝛱 DKH2 −19282.01523132

DKH3 −19301.81477198

DKH4 −19299.07945149

DKH5 −19300.32072159

DKH6 −19299.80534885

DKH7 −19299.95682437

DKH8 −19299.90583836

IOTC −19299.88749478

NR −18154.07492452
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and 1.3179 eV. The relativistic IOTC equilibrium distances Re are about 0.3–0.4∀
shorter than the nonrelativistic values for all states. Similarly, the significant differ-

ences can be observed for the harmonic frequency 𝜔e. The calculated spectroscopic

parameters by the IOTC method and the DKHn approximations are similar in both

methods, and starting from the n = 3–4 DKHn order they are practically the same.

To plot the whole potential energy curve one needs a total energy values. The

relativistic spin-free IOTC and DKHn values of the total energies for the
1
𝛴

+
,
3
𝛱r

and
1
𝛱 states at the equilibrium distance Re are shown in the Table 1.2 Accord-

ing to the calculations the total energies obtained in the Douglas-Kroll-Hess method

strongly depends on the used approximations. The perturbative DKHn results (n =
2, 3, 4…8) converge nicely to the IOTC energy. They go a little bellow the IOTC

value. It should be noted however, that the parametrization implemented in the

DKHn approximation does not affect the DKHn Hamiltonian up to the fourth order

only. Therefore, as long as one runs calculations with DKHn Hamiltonian below

5th order may use any parametrization as they would all yield the same results.

Higher order DKHn Hamiltonian depend slightly on the chosen parametrization of

the unitary transformation applied to decouple the Dirac Hamiltonian. Nonrelativis-

tic energy values are about 1146 a.u. above the relativistic values, for all states.

1.4 Electronic States in the Spin Dependent
Relativistic Theory

We do not receive a full description of excited states and potential energy curves

without the spin-orbit terms. Spin-orbit effect arises due to the interaction of the

magnetic dipole of the electronic spin and the movement of electrons in its orbit.

For the nonrelativistic case, angular momentum 𝐥 and spin 𝐬 are normal constants of

motion and they both commute with the nonrelativistic Hamiltonian. For the rela-

tivistic case and the Dirac equation neither 𝐬 nor 𝐥 are normal constants of motion

for this case, but the total angular momentum operator j = l + s is.

For the orbital angular momentum 𝐥, the effect of a rotation by an angle 𝜙 about

the z axis is the effect of a rotation by an angle 𝜙 about z axis is [25]

Rz(𝜙)|l,ml >= eiml𝜙|l,ml > (1.6)

where |l,ml > is an eigenfunction of 𝐥𝟐 and 𝐥𝐳.
For the angular momentum j, the effect of a rotation by an angle 𝜙 about z axis is

[25]

Rz(𝜙)|j,mj >= eimj𝜙|j,mj > (1.7)
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In particular, if we rotate through an angle of 2𝜋, we get

Rz(2𝜋)|j,mj >= eimj2𝜋|j,mj >= (−1)2mj |j,mj > (1.8)

For orbital momentum l, this result was not a problem because ml is always integer,

and thus a rotation by 2𝜋 brings any physical system back to itself, and amounts to

be an identity operator. However, mj may assume half integer, and a rotation by 2𝜋
changes the sign of the function.

In general, for functions describing systems with half integer spin, the function

must change sign under a rotation by 2𝜋. This operation is given a special symbol,

R, and is interpreted as rotation by an angle 2𝜋 around an arbitrary axis. This has

consequences in the description of the symmetry of atomic and molecular system [2,

26]. For molecules described in the nonrelativistic theory, the symmetry is described

by the point groups, which do not contain the operation R. We would expect these

groups to require the addition of R in order to describe the relativistic symmetry of

molecules. In order to define the double groups, we introduce that the molecule is

to go into itself not upon a rotation by 2𝜋 around an axis, but only upon a rotation

by 4𝜋. The double groups are usually denoted in terms of the nonrelativistic point

group symmetry with some specific superscript. Throughout the manuscript the ∗
symbol is used. For example, the relativistic counterpart of the C1(E) and C2(E,C2)
point groups would be C∗

1(E,R) and C∗
2(E,C2,R,RC2) respectively [2, 25, 26].

The potential energy term in the Hamiltonian for an atom is spherically sym-

metric. The formation of a diatomic molecules leads to the lowering of the spherical

symmetry and the Hamiltonian has only cylindrical symmetry and hence any angular

momentum, rotational and electronic, are meaningful, but only the electronic angu-

lar momentum L can have a component along the bond axis. Since the energy of the

molecule is the same regardless of whether the projection is positive or negative, we

usually use the quantum number 𝛬 = |ML|, i.e. the absolute value of ML to charac-

terize the system. We can also define two further quantum numbers, 𝛴 = |MS| and

𝛺 = 𝛴 + 𝛬, which describe the projection of the spin angular momentum and total

electronic angular momentum, respectively, onto the internuclear axis. The possible

𝛺 states could be obtained by combining 𝛬 with spin or directly from the individual

j states, 𝛺 = MJ1 +MJ2 .

The correspondence of the notation of the irreducible representations of the dou-

ble group 𝛴
+
, 𝛴

−
,𝛱, 𝛥,𝛷, 𝛤 ,E1∕2,E3∕2,E5∕2,En∕2 and the nonrelativistic 𝛺 states

are 0+, 0−, 1, 2, 3, 4, 1∕2, 3∕2, 5∕2 and n∕2, respectively. The direct product for the

irreducible representations of the double groups need to be defined so that one could

use the double-group theory to derive relativistic electronic states from the non-

relativistic states. For example the direct product 𝛴
+
⊗𝛴

+
has irreducible repre-

sentation 𝛴
+

and the corresponding 𝛺 state is 0+, the direct product 𝛱 ⊗ 𝛥 has

irreducible representation 𝛷⊗𝛱 what corresponds to 3, 1 𝛺 states. Similarly, the

direct product 𝛴
+
⊗𝛱 gives the 𝛱 irreducible representation and corresponds to 1

𝛺 state. More details can be found in [2, 26].
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The next thing one needs to establish is how the spin multiplets Ds
(s here denotes

the total spin of the state) correlate with the irreducible representation of the double

group. The transformation of Ds
is isomorphic with the transformation of the rota-

tion state j, denoted as Dj
, in molecular spectroscopy. The irreducible representation

s spanned by the Ds
representation of the spin multiplet with quantum number s,

are determined once the characters for various operations in the double group are

obtained. The appropriate formulas can be found in [2] One can find that in D∗
∞h or

C∗
∞v double groups, D0

(s= 0) corresponds to 𝛴
+

irreducible representation, D1∕2

and D2
corresponds to E1∕2 and (𝛴

+
+ 𝛱 + 𝛥) irreducible representations, respec-

tively.

The determination of a relativistic state arising from a given non-relativistic state

involves two steps. Firstly, the irreducible representations spanned by the spin mul-

tiplets using double group correlation (as discussed above) are found out. These

irreducible representations are then multiplied with the spatial symmetry of the non-

relativistic state in the next step. The resulting set of the irreducible representations

is then transformed to the 𝛺 state. As an example, for the nonrelativistic
3
𝛱

+
r state of

the studied SiAu+ cation, s = 1 and hence D1
corresponds to 𝛴

−
and 𝛱 irreducible

representations. The direct products:

𝛴
−(spin)⊗𝛱(spatial) = 𝛱 (1.9)

𝛱(spin)⊗𝛱(spin) = 𝛴
− + 𝛴

+ + 𝛥 (1.10)

Thus the
3
𝛱

+
r nonrelativistic state yields 𝛱 , 𝛴

−
, 𝛴

+
, and 𝛥 states and their

assignments according to 𝛺 quantum numbers are 1, 0+, 0−, and 2. The above dis-

cussion gives only some background to further studies.

1.5 Spin-Dependent Two-Component Theories

In the last two decades, the two-component approaches for treatment relativistic

effects in atoms and molecules has proven to lead to highly accurate results compared

both to experiment and four-component calculations. It is practical, and the usual

way, to separate operators that do not explicitly depend on the spin and to define

a one-component (scalar) relativistic approximation, resulting in one-component

equations of the type used in the usual non-relativistic approach. This separation is

possible in a rigorous manner for the Dirac-Coulomb equation. Spin-orbit interaction

can either be neglected (which is often a good approximation) or be treated by means

of perturbation theory. While most of the relativistic effects at the spin-free level are

well described using only one-electron relativistic terms and the Coulomb interac-

tions, this is not true for spin-orbit coupling. As example all splittings in
3
𝛴 states can

only be described by second-order perturbation contribution. However, the computa-

tion of the two-electron contributions by the spin-orbit operator requires a substantial
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effort due to the lower symmetry compared to the standard two-electron integrals and

the necessity to calculate three different spin-orbit two-electron files. The demands

on both CPU time and storage facilities become considerable. A method which over-

comes this problem has been proposed already in 1996–1998 and is known under the

name ‘spin-orbit mean field integrals’ (AMFI) [27–29]. It is based on the Breit-Pauli

Hamiltonian but for the study of spin-orbit contributions, a suitable starting point is

obtained by retaining only those terms that involve direct coupling between spin and

orbital motion. The Breit-Pauli spin-orbit Hamiltonian has the following form:


SO = 1

22c2
∑
i

∑
𝛼

Z
𝛼
s⃗i

(
r⃗i𝛼
r3i𝛼

× p⃗i

)
(1.11)

− 1
22c2

∑
i≠j

(
r⃗ij
r3ij

× p⃗i

)(
s⃗i + 2s⃗j

)

The two-electron spin-orbit 
SO

integrals contribute to the spin-orbit matrix ele-

ment between Slater determinants which are singly or double excited relative to one

another. The matrix elements between singly excited determinants can, just like in

the Hartree-Fock equations, be written as a pseudo one-electron integral. One of the

key aspects of a mean-field theory is to neglect interactions between double excited

states and to include all two-electron integrals in pseudo one-electron integrals.

The matrix element of the spin-orbit operator between a pair of Slater determi-

nants differing by a single valence spin orbital excitation i → j is given by

⟨
𝛷|SO|𝛷j

i

⟩
=

⟨
i|SO(1)|j⟩ (1.12)

+ 1
2
∑
k
nk

(⟨
ik|SO(1, 2)|jk⟩ −

⟨
ik|SO(1, 2)|kj⟩ −

⟨
ki|SO(1, 2)|jk⟩)

where nk denotes the occupancy of orbitals common to the determinant on the left-

and right-hand sides, k runs over all occupied spin orbitals common to the determi-

nants.

In the independent-particle model, Eq. (1.12) describes valence electrons (from

orbitals i and j) moving in a field generated by the electrons in orbitals k (which

includes the valence space). In other words, Eq. (1.12) defines a matrix element of a

Fock operator for a one-determinant approximation with a certain occupancy. Based

on this observation, we define an approximate spin-orbit operator by

Hmean−field
ij =

⟨
𝛷|SO|𝛷j

i

⟩
(1.13)

+ 1
2
∑
k
nk

(⟨
ik|SO(1, 2)|jk⟩ −

⟨
ik|SO(1, 2)|kj⟩ −

⟨
ki|SO(1, 2)|jk⟩)
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Table 1.3 Kr, Xe and Rn—np 1
2
− np 3

2
splittings of the energy levels (eV)

Method 2p 1
2
− 2p 3

2
3p 1

2
− 3p 3

2
4p 1

2
− 4p 3

2
5p 1

2
− 5p 3

2
6p 1

2
− 6p 3

2

Kr AMFI 51.00 7.48 0.62 – –

Kr exp. 52.50 7.8 0.65 – –

Xe AMFI 306.72 58.88 11.25 1.20 –

Xe exp. 320.15 62.12 12.37 1.33 –

Rn AMFI 2492.85 571.03 142.91 28.31 3.39

Rn exp. – – – – –

The IOTC CASSCF/CASPT2 method

In Eq. (1.13) the orbitals |k > are taken from spin-free atomic or molecular cal-

culations. It was additionally assumed, in order to make the mean-field method

efficient, that all two-electron integrals between basis functions centred on differ-

ent centres could be neglected.

Since the mean-field spin-orbit integrals have been defined and implemented to

molecular codes (Dalton, Molcas etc.), hundreds or more successful molecular and

atomic applications have been performed with the accuracy comparable to the exper-

imental results.

As an illustration of the performance of the AMFI approximation I present the

results of calculations of the np 1
2

and np 3
2

atomic splittings of the noble gases Kr,
Xe and Rn elements Table 1.3. The scalar spin-free IOTC complete active space

CASSCF/CASPT2 method was used followed by the restricted active space state-

interaction (RASSI) method with the use of the atomic mean-filed spin-orbit (SO)

integrals AMFI.

1.6 Quantum Electrodynamic

In the previous section we discussed how to calculate the spin-orbit splittings of

atomic and molecular states. The effect of spin-orbit coupling was introduced via

the restricted active space interaction (RASSI) method with the use of the atomic

mean-field AMFI integrals. It appears however, that the discrepancies between the

experimental and calculated values of energies can be still quite big.

To explain these differences the quantum electrodynamic corrections have to be

implemented. The velocity of light is finite and this means retardation of the inter-

particle interactions. This means that the Dirac-Coulomb Hamiltonian has to be cor-

rected by further expressions.

One of the most important physical corrections to the Dirac-Coulomb Hamil-

tonian is the replacement of the nonrelativistic Coulomb repulsion,
1
rij

in with a

covariant expression derived from QED [30–32].
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The precise form of this correction depends upon the gauge condition used to

describe the electromagnetic field. In the Coulomb gauge, which has been employed

more often in relativistic atomic structure, the electron-electron interactions come

from one-photon exchange process and is sum of instantaneous Coulomb interaction

and the transverse photon interaction.

Hij =
N∑
i<j

1
rij

+ Htrans (1.14)

where

Htrans = −
N∑
i<j

[+
𝛼i𝛼j

rij
+ (𝛼i ⋅ ▽i)((𝛼j ⋅ ▽j)

cos𝜔ijrij
𝜔
2
ijrij

] (1.15)

𝜔ij is the wave number of the photon being transferred, 𝛼i is the Dirac alpha matrix

for particle “i”. In the low-frequency limit (𝜔ij → 0) the Eq. (1.15) reduces to the

Breit interaction,

𝐇𝐇𝐁𝐫𝐞𝐢𝐭 = −
N∑
i<j

[+
𝛼i𝛼j

2rij
+ (𝛼𝐢 ⋅ 𝐫𝐢𝐣)(𝛼j ⋅ 𝐫𝐢𝐣)

1
2r3ij

] (1.16)

where the first term is the correction due to two-electron magnetic interaction and

represents so called Gaunt interaction, The second term is the correction due to retar-

dation resulting from the finite velocity propagation of the interaction.

Both corrections form the Breit interaction. The fact that this is the limit of

(1.15) as 𝜔ij → 0 means that it must not be used for describing the interaction of

orbitals with large energy differences. A method of derivation of the Breit interac-

tion assumes
1
c
Z ≪ 1, where c is the velocity of light.

The Dirac-Coulomb-Breit Hamiltonian is derived perturbationally and thus it is

frequently suggested that the Breit correction to the Coulomb interaction should be

considered in the perturbation framework and evaluated as the first–order contribu-

tion to the energy which follows from the Dirac-Coulomb calculations, and this is

the way how it is done, as example, in the atomic GRASP2K package.

The Breit corrections are sometimes classified as nonradiative effects in contrary

to the radiative affects which are ‘true’ quantum-electrodynamical effects due to the

electron self energy and vacuum polarization [30–32].

The effect of the Breit and Gaunt interactions has been investigated in many

atomic systems and as will be demonstrated later in this chapter, it is known that

they are very important in high-resolution atomic X-ray spectroscopy.

Some examples of the molecular calculations are known as well. For instance,

the effect of the magnetic electron-electron Gaunt interaction on bond length as been

demonstrated in reference is: CH4 [0.0 pm]; SiH4 [0.0 pm]; GeH4 [0.1 pm, 326 ppm];
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SnH4 [0.1 pm, 514 ppm]; PbH4 [0.2 pm, 962 ppm]—the difference in bond lengths

compared to a calculation with only Coulomb interaction energy operators is given

in pm in brackets and the percentage of the change compared to the absolute val-

ues of the bond length is given in parts per million (ppm); the wave function was

approximated by a singly determinant. The effect of the Gaunt interaction on bind-

ing energies in CH4 is about 0.3 kJ mol
−1

and increases in the case of PbH4 to about

2.1 kJ mol
−1

.

It is a common way to expand the Coulomb-Breit Hamiltonian in the perturbation

series in 1∕c parameter. Then the one- and two-electron Breit-Pauli Hamiltonian for

the N-electron system is obtained and can be written as

̂HBP = HNR + HR + HFS (1.17)

and is the sum of the nonrelativistic many-electron Hamiltonian HNR, the relativistic

operator HR and the fine-structure operator HFS [33]. The relativistic operator can be

written as

ĤR = HMC + HD1 + HD2 + HOO + HSSC (1.18)

where HMC is the mass velocity term attributed to relativistic correction arising from

the variation of the mass of the electron with its speed.

HMC = − 1
8c2

N∑
i=1

∇4
i (1.19)

and HD1 and HD2 are the one- and two-body Darwin Terms

HD1 = − Z
8c2

N∑
i
∇2

i (
1
ri
) (1.20)

HD2 = − 1
4c2

N∑
i<j

∇2
i (

1
rij
) (1.21)

The Darwin correction, is a relativistic correction attributed to the electron’s

Zitterbewegung. It arises from the smearing of the charge of the electron due to

its relativistic motion.

HSSC is the spin-spin contact term

HSSC = − 8𝜋
3c2

N∑
i<j

(𝐬𝐢 ⋅ 𝐬𝐣𝛿(ri ⋅ rj)) (1.22)



1 Relativistic Effects and Quantum Electrodynamics in Chemistry 15

and finally HOO is the orbit-orbit term

HOO = − 1
2c2

N∑
i<j

[
𝐩𝐢 ⋅ 𝐩𝐣
rij

+
rij(rij ⋅ pi)pj

r3ij
(1.23)

The fine-structure operatorHFS describes interactions between the spin and orbital

angular momentum of the electrons. The fine structure operator consists of three

terms

̂HFS = HSO + HSOO + HSS (1.24)

Here HSO is the spin-orbit term describing the interaction of the electron spin with

the magnetic field generated by its own movement.

̂HSO = Z
2c2

N∑
i=1

1
r3i
𝐥𝐢 ⋅ si (1.25)

HSOO is the spin-other-orbit term

HSOO = − 1
2c2

N∑
i<j

rij × pi
r3ij

(𝐬𝐢 + 2sj) (1.26)

The last two terms HSO and HSOO have been discussed already earlier in this

chapter. HSS is the spin-spin term

ĤSS = − 1
c2

N∑
i<j

1
r3ij
[𝐬𝐢 ⋅ sj − 3

(si ⋅ rij)(sj ⋅ rij)
r2ij

] (1.27)

Already in the 1930s deviations were observed between the results of precision

spectroscopy and the Dirac or Dirac-Coulomb-Breit theory for simply atomic sys-

tems. Primarily this deviation was observed for the hydrogen atom. This is due to

the fact, that the Dirac equation for the hydrogen atom does not contain radiative

and other corrections that are of quantum-electrodynamic origin. Exact Dirac equa-

tion of the hydrogen atom do not differentiate between 2S1∕2 and 2P1∕2 states of the

hydrogen atom for a given n quantum number, thus the degeneracy is not completely

removed. High-resolution experimental studies show that the energy levels corre-

sponding to 2S1∕2 and 2P1∕2 atomic states are not identical. In Dirac’s theory, pairs

of levels with l = j ± 1
2

for the same j values are degenerate.

Emission and absorption of a virtual photon on the same electron is an effect that

is not included in the Dirac theory and it is known as the electron self-energy (SE).

This forms the major part of the Lamb shift, discovered experimentally by Lamb

and Rutherford in 1947. This was the starting point for the development of modern

quantum electrodynamic. The second most important part of the Lamb shift is the
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vacuum polarization (VP) [4]. The field near the atomic nucleus can give rise to a

polarization effect in the form of the creation of electron-positron pairs, an effect

referred as the vacuum polarization. The self-energy and the vacuum polarization

effects give the leading contribution to the Lamb shift.

Both, SE and VP, corrections are calculated, in the GRASP2K code, as the first

order contributions to the Dirac-Fock-Coulomb energy.

The corresponding expressions are given by (1.28) and (1.29), respectively,

ESE = (Z4
𝛼
3∕𝜋)

∑
a
Fa(Z𝛼)qa∕n3a (1.28)

EVP =
∑
a
qa

∫

∞

0
[P2

a(r) + Q2
a(r)]VVP(r)dr (1.29)

where the sums run over all occupied orbitals, 𝛼 is the fine-structure constant, qa is

the occupation number of the orbital, na is its principle quantum number, Pa(r) and

Qa(r) are large and small radial components of Dirac orbital, and VVP is the vacuum

polarization potential described by Fullerton and Rinker. The values of Fa(Z𝛼) are

calculated using an interpolation procedure of Grant [31].

1.7 X-Ray Spectroscopy and the Relativistic and QED
Corrections

A very good illustration of the importance of QED effects (and relativistic) is the X-

ray spectroscopy. Although the data showed in this section refers to atomic spectra,

the similar relationships will apply to molecular spectroscopy. X-ray photoelectron

spectroscopy (XPS) called ESCA (Electron Spectroscopy for Chemical Analysis) is

a good tool to study atomic and molecular structure. It provides an information on

atomic core electron binding energies (CEBE) and is closely related to the local elec-

tronic structure at the atom on which the localized ionization takes place. Already

in 1960s Kai Siegbahn et al. showed that inner shell ionization energies depend on

the chemical state (environment) of the atom from which the electron is ionized [34,

35]. The photoelectron X-ray technique can also be used in the study of the electron

properties of new materials.

The most advanced relativistic approach in relativistic calculations of X-ray spec-

tra, is most likely that based on the Dirac-Coulomb-Breit Hamiltonian and quan-

tum electrodynamic contributions accounted for. In addition, one should also carry

out the corresponding correlated-level calculation within these relativistic formal-

ism. To illustrate the role and size of relativistic and QED corrections the core and

valence ionisation potentials and excitation energies of noble gases are shown. The

relativistic IOTC CASSCF/CASPT2 method together with the restricted active space
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state interaction, RASSI [36], method combined with the atomic mean field integrals

method, AMFI [37], has been used to take spin-orbit (SO) effects into account. One

electron part of AMFI code has been used only. It gives approximate spin-dependent

corrections and the np 1
2

and np 3
2

splittings. The two-electron part of SO corrections

were included after adding the Breit expressions. The most important, the Breit and

quantum electrodynamic (QED) corrections have been taken into account after the

IOTC/RASSI calculations.

To calculate Breit and low order QED corrections is a rather routine procedure

in atomic codes. In the molecular calculations it is not an easy task and it is prac-

tically impossible to do it. But the goal of this discussion is to show the accuracy

of molecular methods and the estimation of the size of the QED corrections that

are not included in these codes. The two-component infinite order, IOTC, method is

designed for the molecular calculations and, has been implemented in the Molcas,

Gamess and Dirac codes, and it does not allow to calculate the QED corrections, at

present.

However, some assumption can be made. It is known, from the atomic physics

that, firstly, the correlation effects are not important for the calculations of the QED

corrections, and secondly, that the core atomic QED corrections do not change signif-

icantly while calculated for an isolated atom and an atom in a molecule, particularly

for the heavy elements. These features can be exploit and they have encouraged us to

add the QED corrections calculated with the atomic GRASP2K code [38] a posteri-

ori to the relativistic IOTC data [39] calculated with the Molcas code [40, 41]. The

results have been presented in Tables 1.4, 1.5, 1.6, 1.7 and 1.8 and they have been

published earlier by us in [39].

In Tables 1.4, 1.5, 1.6, 1.7 and 1.8 some selected results of the IOTC CASPT2/

RASSI valence and core ionization potentials and excitation energies of noble gases

are presented. The results of these calculations have been compared with the X-ray

ionization and transition energies calculated within the relativistic many-body per-

turbation theory (RMBPT) designed for the atomic calculations [42], which include

the following effects: (i) nuclear size; (ii) relativistic effects (corrections to Coulomb

energy, magnetic and retardation energy); (iii) Coulomb and Breit correlation; (iv)

radiative (QED) corrections etc., for isolated atoms in vacuum. The comparison with

experiment is also presented [39].

In Tables 1.4, 1.5, 1.6 and 1.7 and the valence and core ionization potentials and

quantum electrodynamic corrections for the noble gas elements Ne, Ar Table 1.4,

and Kr and Xe (Table 1.5) are shown. For the light elements Ne and Ar the QED

corrections are very small, and for 2s and 2p IPs of Ne are almost zero. However

for the 1s−1 states of Ne and Ar are not negligible. The total QED corrections are

−0.456 and −3.348 eV, for Ne and Ar respectively. It was also pleasing to note that

the IP values of Ne and Ar obtained within the present IOTC method are close to the

experimental data and the RMBPT results.

For heavier elements Kr and Xe (Table 1.5) and for ns states, the QED corrections

to ionization potentials are more important. The QED corrections to Kr are −32.994,

−2.901 and −0.364 eV for 1s−1, 2s−1 and 3s−1 states, accordingly. The appropriate
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Table 1.4 Ionization potentials of Ne and Ar (in eV) taken from [39]

Ne and Ar

Method 1s−1 2s−1 3s−1 2p−11
2

2p−13
2

3p−11
2

3p−13
2

IOTC PT2 Ne 870.78 48.70 − 21.42 21.56 − −
IOTC PT2 Ar 3208.81 327.86 30.62 251.00 248.47 15.58 15.52
QED Corrections

BREIT Ne −0.332 −0.006 − −0.011 −0.003 − −
BREIT Ar −2.342 −0.107 −0.004 −0.178 −0.100 −0.008 −0.001
SE Ne −0.131 −0.008 − +0.001 +0.001 − −
SE Ar −1.083 −0.091 −0.009 +0.016 +0.012 +0.002 +0.001
VP Ne +0.007 +0.000 − −0.000 −0.000 − −
VP Ar +0.077 +0.006 +0.006 −0.001 −0.001 −0.000 −0.000
SUM Ne −0.456 −0.013 − −0.010 −0.002 − −
SUM Ar −3.348 −0.192 −0.013 −0.163 −0.090 −0.006 +0.000
IOTC

PT2+QED

Ne

870.33 48.68 − 21.41 21.56 − −

IOTC

PT2+QED

Ar

3205.46 327.67 30.61 250.85 248.39 15.57 15.52

RMBPT Ne 870.73 53.04 − 21.63 21.55 − −
RMBPT Ar 3207.44 327.31 251.55 249.54
EXP. Ne

a 870.23
(866.90)

48.45 − 21.66 21.56 − −

EXP. Ar 3206.14
(3202.93)a

326.32a 29.3b 250.57a 248.46a 15.9c 15.7c

a
Reference [42]

b
Reference [34]

c
Reference [43]

values for Xe are −124.439, −13.178 and −2.198 eV. For each calculated state the

IOTC CASSCF/CASPT2 ionization potential improve significantly after the QED

corrections are added. The comparison with the experimental and RMBPT data show

that for the 1s core level the calculated IPs of Kr and Xe differ by about 10 eV and 32
eV respectively. However, if the accuracy of the relativistic IOTC + QED results is

measured in terms of ratios of the error with respect to the experimental data and the

total experimental values, it is less than 0.1%, and the performance of the method

can be considered as exceptionally good.

Another information, as follows from the data in Tables 1.4 and 1.5 is the role

of the individual QED terms. We see that the most important is the negative Breit

correction. The self energy has about half of the Breit value and is also negative.

The vacuum polarization has a positive value and is much smaller than Breit and SE

corrections.
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Table 1.5 Ionization potentials of Kr and Xe (in eV) taken from [39]

Kr and Xe

Method 1s−1 2s−1 3s−1 4s−1

NR PT2 Kr 14106.23 1869.70 280.80 27.96
NR PT2 Xe 33260.20 5117.41 − 201.39
IOTC PT2 Kr 14351.41 1924.06 295.12 28.81
IOTC PT2 Xe 34657.03 5462.93 − 212.82
QED Corrections in GRASP

BREIT Kr −22.142 −1.684 −0.167 −0.007
BREIT Xe −82.490 −7.737 −1.101 −0.150
SE Kr −12.135 −1.348 −0.218 +0.023
SE Xe −48.990 −6.260 −1.260 −0.264
VP Kr +1.283 +0.131 +0.021 +0.002
VP Xe +7.041 +0.819 +0.163 +0.034
SUM Kr −32.994 −2.901 −0.364 −0.027
SUM Xe −124.439 −13.178 −2.198 −0.380
IOTC PT2+QED Kr 14318.42 1921.16 294.76 28.78
IOTC PT2+QED Xe 34532.59 5449.75 − 212.79
RMBPT Kr 14328.06 1925.49 − −
RMBPT Xe 34566.5 5453.7 − −
EXP. Kr 14327.19

(14324.61)a
1920.4
(1916.3)a

292.8b 27.4b

EXP. Xe 34565.13
(34593.)a

5452.57
(5452.89)a

1148.7b 213.2b

Relative error Kr 0.06 0.04 0.91 4.62
Relative error Xe 0.09 0.05 − 0.15
a
Reference [42]

b
Reference [34]

The X-ray spectra gives the information about the ionization potentials of the core

and valence states but also about the excitations between states.

In Tables 1.6 we present some selected IOTC CASPT2+QED excitation energies

of Ne and Ar, such as 1s−1 → ns−1 and 1s−1 → np−1 transitions. These excitations are

from the 1s−1 state with one hole to another state with one hole in the higher ns or np
levels. As it can be expected, the QED corrections are important for all excitations.

The calculated excitation energies for the Ne and Ar elements entirely agree with

the experimental data and are sometimes even better than the RMBPT results (KL1,

K𝛼1, K𝛼2 of neon and K𝛽1, K𝛽3 of argon).

Tables 1.7 and 1.8 show the calculated KL1, KM1, KN1 and K𝛽1, K𝛽3, K𝛽
II
2 ,

K𝛽
I
2 excitation energies of Kr and Xe. In the case of krypton the difference between

the IOTC + QED energies and the experimental values do not exceed 12 eV and is

the smallest for the KL1 line (3 eV). Similar agreement can be observed with the

RMBPT data.
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Table 1.6 Excitation energies of Ne and Ar ions (in eV) taken from [39]

Ne and Ar

Method KL1
a

KM1
b

K𝛼1
c

K𝛼2
d

K𝛽1
e

K𝛽3
f

IOTC PT2

Ne

822.08 − 849.36 849.23 − −

IOTC PT2

Ar

2880.95 3178.19 2960.34 2957.81 3193.29 3193.23

QED corrections

BREIT Ne −0.326 − −0.329 −0.321 − −
BREIT Ar −2.235 −2.338 −2.242 −2.164 −2.341 −2.334
SE Ne −0.123 − −0.130 −0.130 − −
SE Ar −0.991 −1.073 −1, 094 −1.099 −1.084 −1.084
VP Ne +0.007 − +0.007 +0.007 − −
VP Ar +0.071 +0.076 +0.076 +0.076 +0.077 +0.077
SUM Ne −0.442 − −0.454 −0.456 − −
SUM Ar −3.155 −3.335 −3.258 −3.185 −3.348 −3.341
IOTC

PT2+QED

Ne

821.64 − 848.91 848.77 − −

IOTC

PT2+QED

Ar

2877.79 3174.86 2957.08 2954.63 3190.03 3190.05

RMBPT Ne 817.69 − 849.17 849.09 − −
RMBPT Ar 2880.13 3177.4 2957.90 2955.89 3191.47 3191.31
EXP. Ne 822.07h − 848.61g 848.61g − −
EXP. Ar 2879.6h 3176.12h 2957.68g 2955.57g 3190.49g 3190.49g
a1s−1 → 2s−1
b1s−1 → 3s−1
c1s−1 → 2p 3

2
d1s−1 → 2p 1

2
e1s−1 → 3p 3

2
f 1s−1 → 3p 1

2g
Reference [42]

h
Calculated as the difference between the appropriate experimental energies (Table 1.2)

For xenon the absolute error is larger and varies from about 7.3 eV for the K𝛽3
excitation until 44 eV for the K𝛽1 line. However, the relative error does not exceed

0.13% of the experimental value.

Additionally to the relativistic calculations one may see the nonrelativistic results

for the ns ionization potentials (Table 1.5) and KL1, KM1 and KN1 excitation ener-

gies (Table 1.6) of Kr and Xe, which show the importance of the relativistic effects

on the calculated values. The main relativistic effect is obviously associated with the

deepest core level and varies from about 245 eV in Kr (total 1s IOTC IP is about

14351 eV) to 1396 eV in Xe (total 1s IOTC IP is about 34657 eV). However, for
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Table 1.7 Excitation energies of Kr and Xe ions (in eV) taken from [39]

Kr and Xe

Method KL1
a

KM1
b

KN1
c

NR PT2 Kr 12236.53 13825.43 14078.27
NR PT2 Xe 28142.79 − 33058.81
IOTC PT2 Kr 12427.35 14056.29 14322.6
IOTC PT2 Xe 29194.1 − 34444.21
Corrections in GRASP

BREIT Kr −20.458 −21.975 −22.135
BREIT Xe −74.754 − −82.341
SE Kr −10.787 −11.917 −12.113
SE Xe −42.730 − −48.726
VP Kr +1.152 +1.262 +1.281
VP Xe +6.222 − +7.001
SUM Kr −30.093 −32.630 −32.967
SUM Xe −111.261 − −124.060
IOTC PT2+QED Kr 12409.22 14022.52 14289.63
IOTC PT2+QED Xe 29082.84 − 34320.15
RMBPT Kr 12402.57 14034.9 14301.2
RMBPT Xe 29112.8 − 34353.4
EXP. Kr

d 12406.79 14034.39 14299.79
EXP. Xe

d 29112.56 − 34351.83
Relative error % Kr 0.02 0.08 0.07
Relative error % Xe 0.10 − 0.09
a1s−1 → 2s−1
b1s−1 → 3s−1
c1s−1 → 4s−1
d
Calculated as the difference between the appropriate experimental energies (Table 1.4)

intermediate levels, in particular for higher s-type holes, the relativistic effect is also

quite significant and its inclusion is crucial in the core X-ray spectra calculations.

Finally, we may estimate that the total calculated QED corrections, for most of

the states, are usually about 10% of the corresponding relativistic correction.

1.8 Concluding Remarks

The role and importance of relativistic effects in the chemistry is already widely

acknowledged. The problem which remains is the choice of the best method for the

calculation of these effects. In advanced calculations they need to be spin-free or

spin-dependent algorithms. One of the most exact two-component method is the

infinite order two-component IOTC theory implemented in its spin-free version into
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Table 1.8 Excitation energies of Kr and Xe ions (in eV) taken from [39]

Kr and Xe

Method K𝛽1
a

K𝛽3
b

K𝛽
II
2
c

K𝛽
I
2
d

IOTC PT2 Kr 14137.56 14129.19 14337.68 14337.00
IOTC PT2 Xe 33716.06 33653.58 34520.96 34509.00
QED Corrections GRASP2K

BREIT Kr −21.967 −21.813 −22.141 −22.128
BREIT Xe −81.283 −80.445 −82.35 −82.18
SE Kr −12.148 −12.162 −12.137 −12.139
SE Xe −48.994 −49.083 −49.001 −49.018
VP Kr +1.285 +1.285 1.284 1.297
VP Xe +7.054 +7.046 +7.045 +7.043
SUM Kr −32.83 −32.69 −32.994 −32.970
SUM Xe −123.22 −122.48 −124.30 −124.15
IOTC PT2+QED Kr 14104.73 14096.50 14304.68 14304.03
IOTC PT2+QED Xe 33592.84 33531.10 34396.66 34384.85
RMBPT Kr 14113.3 14105.7 14314.10 14313.0
RMBPT Xe 33624.6 33563.03 34408.9 34408.
EXP. Kr

e 14112.82 14104.96 14315.0 14315.0
EXP. Xe

e 33624.23 33563.20 34414.7 34414.7
Relative error % Kr 0.06 0.07 0.07 0.08
Relative error % Xe 0.09 0.10 0.05 0.09
a1s−1 → 3p 3

2
b1s−1 → 3p 1

2
c1s−1 → 4p 3

2
d1s−1 → 4p 1

2e
Reference [42]

the MOLCAS and GAMES (USA) codes. Spin-dependent properties should also be

included in the calculations of many properties, however it is not easy to do it. One of

the possibilities gives the atomic mean-filed approximation discussed in this chapter.

Comparison of the results obtained by the IOTC method with one of the most com-

monly used, the Douglas-Kroll-Hess method (DKHn, (n = 2, 3,…8), show the very

good agreement of the results. In these chapter some illustration of these data have

been presented. In recent years, due to the strong development of experimental meth-

ods, we observe an increased interest in spectroscopy of small chemical molecules,

and their potential energy curves. To get the good quality potential energy curve

one needs the good total energy. It was not necessary when we were only interested

in spectroscopic parameters of the molecules. It turns out, that for the description of

the potential energy curves the IOTC method gives the results which can be obtained

only in the high order DKHn approximations.
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The are some experimental methods, such as X-ray spectroscopy, for which a

description of the experimental results by the methods based on the relativistic quan-

tum mechanics is not sufficient. These spectroscopic methods play an increasing

role, recent years, in the search for new materials. To properly described the X-ray

spectroscopy, the Breit interactions and the corrections resulting from quantum elec-

trodynamics, such as the self energy and vacuum polarization must be added to the

nonrelativistic results. The calculation of these terms is not an easy task to do, espe-

cially in the molecular codes. This chapter shows how the results of the spin-free

CASSCF/CASPT2 IOTC calculations of the core and valence ionization and exci-

tation energies change when we add to them Breit and quantum electrodynamics

corrections. It also shows that the molecular relativistic IOTC method together with

the electrodynamic expressions is able to give the X-ray parameters comparable with

the experimental results.
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Chapter 2
How Can One Locate the Global Energy
Minimum for Hydrogen-Bonded Clusters?

Sergey Kazachenko and Ajit J. Thakkar

Abstract An important problem in many areas of chemistry and physics is finding

the global energy minimum on a potential energy surface. The difficulty stems from

the exponential increase in the number of local minima with the size of the sys-

tem. An efficient algorithm to find the global minima of water clusters is described

and tested. It works well for clusters containing up to about 55 water molecules. A

generalization to other hydrogen-bonded clusters is outlined. Applications of this

algorithm to water clusters and methanol clusters have already been reported in the

literature.

2.1 Introduction

Material particles consisting of a few to a few thousand atoms are called clusters.

Cluster properties can have dramatic size and shape dependence. Clusters can serve

as building blocks for new materials and electronic devices. Hence clusters of met-

als, semiconductors, ionic solids, rare gases, and small molecules have been stud-

ied using both theoretical and experimental methods. Atomic and molecular clus-

ters [1] are held together by hydrogen bonds [2] or by relatively weak intermolecular

forces [3, 4].

In particular, small clusters of hydrogen-bonded water molecules have received a

lot of attention; see, for example, spectroscopic work [5–16], and density functional

theory and ab initio investigations [17–31]. Water is not a simple substance and has

anomalous physical and chemical properties. More than a century of work has been

devoted to modeling and understanding these properties. Nevertheless, many aspects

of water remain unsolved puzzles and the development of water models continues
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to attract much interest. Water models can use water clusters, (H2O)n, as building

blocks [32–36].

An important part of cluster research is a characterization of the global min-

imum of the potential energy surface—the structure of the most stable cluster.

A scholarly and comprehensive survey of the difficult problem of locating the global

minimum on a potential energy surface is available [37]. Computational approaches

to the determination of global minima are very attractive because the experimental

determination of the structure of the ground state is extremely difficult for complex

systems. Unfortunately, the computational solution is rather expensive because the

number of local minima on the surface grows exponentially with the dimensional-

ity of the surface or, in other words, with the number of atoms in the system. An

algorithm searching for a global minimum can easily get trapped in one of these

local minima because the traversal of many intermediate minima and the crossing

of high barriers separating them may be required to find a lower local minimum. In

high-dimensional cases, which are the norm rather than the exception in physically

important clusters, a global minimum can only be discovered and verified after a

sufficiently large number of low energy minima have been located and compared.

We have been studying water clusters for some time now. Hence we have been

gradually developing and refining our own algorithm for locating a global energy

minimum for water clusters. We previously described successive improvements to

our algorithm in an incremental manner in a series of papers [38–41] and a the-

sis [42]. The purpose of this chapter is to try and describe the current state of our

algorithm in a relatively self-contained and cohesive manner without the reader hav-

ing to consult our previous work.

All algorithm tests on water clusters discussed in this chapter are done with the

empirical TIP4P model [43], a reparametrization of the venerable Bernal-Fowler

model [44]. The interactions are considered to be pair-wise additive and the water

monomers are held rigid so that they do not vibrate. The interaction between a

pair of water molecules is given by a Lennard-Jones (12,6) interaction between the

oxygen atoms and electrostatic interactions between three point charges on each

water molecule. There are positive charges on the hydrogen atoms and a balanc-

ing negative charge between the hydrogen atoms along the C2 symmetry axis. The

TIP4P model gives a reasonable thermodynamic description of liquid water. Many

studies have been devoted to finding the global minima of TIP4P water clusters

[38–40, 45–51]. Generally good agreement has been found [48] between its pre-

dictions for small clusters with n ≤ 12 and both ab initio and experimental results.

The TIP4P global minima for cluster sizes up to 47 are now firmly established [41]

except for n = 39 and n = 45. Putative TIP4P global minima have been reported [41]

for larger clusters with n ≤ 55. Low-energy TIP4P structures for much larger clusters

with selected sizes have been located [7, 49]. Pure water clusters based on the TIP4P

model are now a benchmark for methods for global optimization of hydrogen-bonded

clusters.

Some of the basic terminology commonly used in the global optimization lit-

erature is summarized in Sect. 2.2 which also contains a brief description of basin

and minima hopping. Next, the long Sect. 2.3 details the various ways by which we
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optimize the topology of water clusters with a fixed oxygen skeleton. The overall

algorithm is then described in Sect. 2.4 and its generalization to other hydrogen-

bonded clusters is outlined in Sect. 2.5. A few concluding remarks are made in

Sect. 2.6.

2.2 Basin Hopping and Minima Hopping

A discussion of search algorithms is facilitated by the introduction of some termi-

nology that is widely used in the literature. A basin is a region of geometrical config-

uration space around a minimum on the potential energy surface. The basin contains

all structures, or configurations, from which a search can reach this minimum using

only small steps and downhill moves. A super-basin is the union of several neigh-

boring basins. A funnel  is a super-basin with the property that starting at any point

in  one can reach the lowest minimum in  without crossing barriers that are very

high relative to the average energy difference between local minima in  . Figure 2.1

is a schematic illustration of two super-basins, one of which is a funnel and the other

one is not.

Use of the Boltzmann factor, exp (−ΔE∕kT), to control all the steps used to leave

a basin makes the crossing of high barriers a rare event. Hence, global minimiza-

tion methods based exclusively on thermodynamic principles can be extremely slow

because they may find it hard to exit a funnel and may repeatedly visit neighboring

configurations that are close in energy. Many standard algorithms such as simulated

annealing [53–55] and basin hopping [46, 56–59] are based on thermodynamic prin-

ciples. However, genetic algorithms [60–62] and minima hopping [52] are not.

The fundamental idea in basin hopping is that the potential energy surface is

effectively transformed to a stepped surface [46, 56, 63]. This is done by ending

each search step with a local optimization so that one effectively searches over local

minima. How one starts the next search step distinguishes various algorithms based

on this seminal idea. We chose minima hopping [52] as the global optimization

Fig. 2.1 Two super-basins: the one on the right is a funnel but the one on the left is not. Figure

adapted from Goedecker [52]
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algorithm in our preliminary work. Minima hopping can be thought of as a version

of basin-hopping [46, 56, 63]. Its goal is to avoid revisiting previously located local

minima without forbidding repeated passages through any transition basins that may

separate many funnels. This is achieved in the minima-hopping method by maintain-

ing a list of visited minima and using adaptive thresholds to leave a basin more and

more vigorously each time the algorithm revisits it. Molecular dynamics (MD) steps

are used as an efficient mechanism for crossing energy barriers.

The minima-hopping algorithm has an inner part for jumping to a new local min-

imum and an outer part for accepting or rejecting the new local minimum. In the

inner part, one tries to escape the current minimum 𝐌c by a short MD simulation in

which the atoms have a Boltzmann velocity distribution such that their kinetic energy

is fixed at Ekin. The simulation is stopped as soon as a minimum is encountered along

the trajectory or the maximum number of MD steps is exceeded. Then one optimizes

to the closest local minimum 𝐌 using a suitable local optimization method. If this

minimum has been visited previously, then multiply Ekin by 𝛽 > 1 to make the next

escape attempt more vigorous and repeat the inner part. If this is a newly found local

minimum, divide Ekin by 𝛽 to make the next escape attempt less vigorous and go

to the outer part. The latter accepts or rejects the local minimum E(𝐌) as follows.

If E(𝐌) − E(𝐌c) < Edif f , the minimum is accepted and Edif f is divided by 𝛼 > 1 to

make the next acceptance more difficult. Otherwise it is rejected and Edif f is multi-

plied by 𝛼 to make the next acceptance easier. We tried various values of 𝛼 and 𝛽 but

were unable to improve upon the values of 𝛼 = 1.02 and 𝛽 = 1.05 recommended by

Goedecker [52]. The minima-hopping algorithm stops when Ekin reaches or exceeds

a maximum value Emax
kin or the number of inner steps exceeds a preset limit Niter .

It is important to do local optimizations as efficiently as possible because they

are a time-consuming part of minima hopping. In our implementation, we perform

local minimization in two steps. The first optimization uses the limited memory

L-BFGS method [64, 65] with a loose convergence threshold. The optimization is

refined in the second step which uses Davidon’s optimally conditioned variable met-

ric method [66] and a more stringent convergence criterion.

It soon became apparent to us that minima hopping did not always succeed in

finding the optimum hydrogen bond topology for water clusters [39]. Nevertheless,

minima hopping served us as the basic algorithm upon which improved and spe-

cialized methods for water clusters were built. Special topology refining algorithms,

described in the next section, are used both within the global search algorithm and

independently for a refining step on the list of saved low energy minima. Although

many features described here were designed to work only with water, the core algo-

rithm is general and has been applied successfully to other hydrogen-bonded clusters

including pure methanol clusters [67] and pure clusters of ethanol, n-propanol, and

iso-propanol.
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2.3 Finding the Optimal Hydrogen Bond Topology

2.3.1 Representation of H-Bonded Clusters

An algorithm for global optimization of hydrogen-bonded clusters requires a conve-

nient description of a cluster and its features. At the most basic level, the cluster is

defined by the Cartesian coordinates and types of the atoms it consists of. We use

that information to derive some important properties and find a convenient way to

represent them.

A basic property of any H-bonded cluster is the presence or absence of a hydrogen

bond between a pair of given molecules. We use simple geometric criteria to decide

whether there is an O–H⋯O hydrogen bond: the H⋯O distance should be less than

2.5 Å and the O–H⋯O angle should be greater than 90◦. It is convenient to describe

the H-bonds in a cluster of n molecules by a graph. The latter is represented as an

n × n adjacency matrix 𝐀 with elements obeying the usual rules: Aij = 1 if there is a

bond between molecules i and j and Aij = 0 otherwise. By definition, Aii = 0 because

molecules are not connected to themselves and Aij = Aji because the bond direction

is not taken into consideration. The adjacency matrix allows one to calculate, for

example, the total number of hydrogen bonds in a cluster as Nbond =
1
2
∑

ij Aij. One

can also calculate the number of rings of a given size formed by connected molecules.

We implemented the counting of rings using a backtracking algorithm based on the

work of Franzblau [68]. There are several possible definitions of a ring in a graph. We

count all rings in which each monomer is connected to exactly two other monomers

belonging to the same ring.

The H-bond directionality is important in topology optimization. Keeping track

of both the existence and direction of the H-bonds in a cluster can be accomplished

by using a digraph. The latter can be represented by a directed adjacency matrix 𝐃.

As with the adjacency matrix, the absence of a bond between monomers i and j is

indicated by Dij = 0 and so all diagonal elements vanish, Dii = 0. If there is a bond

in the i→j direction then Dij = 1 and Dji = 0. The 𝐃 matrix contains, for example,

information about the number of donor (don) and acceptor (acc) H-bonds for each

molecule: Ni
don =

∑
j Dji, Ni

acc =
∑

j Dij. Note that the summation index depends on

the definition of the H-bond direction. In a computer program, the sparsity of 𝐀 and

𝐃 can be exploited by storing them as linked lists of non-zero elements.

2.3.2 Why Is Topology Optimization Needed?

A simple characterization of a cluster of n water molecules is its skeleton or graph by

which we mean the connectivity of the monomers described by an adjacency matrix

𝐀. The positions of the oxygen atoms and the skeleton define the shape of a clus-

ter as in the left panel of Fig. 2.2. However, virtually all hydrogen bonds between

water molecules can be assigned a direction, say from donor to acceptor. Hence,
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Fig. 2.2 An example of a framework and a complete cluster with one of the possible H-bond

topologies for a (H2O)26 cluster. Two internal molecules are shown in blue

there can be many water cluster geometries with the same skeleton but different

hydrogen bond topologies; that is to say, cluster structures with the same skeleton

but different directions in one or more of the hydrogen bonds. In the terminology of

Sect. 2.3.1, any given adjacency matrix𝐀 can correspond to many directed adjacency

matrices 𝐃k. The oxygen framework and the H-bond topology together define a com-

plete cluster as in the right panel of Fig. 2.2. The stability of a given framework can

vary significantly depending on the hydrogen bond distribution [69–75].

Since each cluster framework maybe paired with a large number of H-bond

topologies, the resulting cluster structures can have significant energy differences.

Therefore, it is important that we are able to locate the one with the lowest energy. It

might also be of interest to know how many topologies exist for a given framework

and possibly separate them into categories. Locating the minimum energy topology,

or topology optimization, can be done either as a separate procedure on selected

water clusters or as a part of a global optimization.

The problem of finding the best hydrogen bond topology for water clusters has

been studied extensively; see, for example, Refs. [49, 51, 69–74, 76–83]. Polyhe-

dral and cubic water clusters were described in several publications using graph

theory [69, 74, 78, 79]. The effects of H-bond topology on the stability and spec-

troscopic properties of water octamers were studied by Francisco et al. [73, 80].

The relation between the topology and interaction energy was studied for polyhedral

clusters [72, 81] and for some other shapes and sizes [71, 81]. As a result, several

formulas were developed to predict the relative energy of a water cluster based on

its monomer connectivity. A different approach is to use a proton transfer to change

the direction of hydrogen bonds and so sample a number of topologies using general

optimization methods [49, 51]. There is also the brute-force approach of examin-

ing all possible topologies for an arbitrary cluster shape [77, 82, 83]. The last two

approaches will be discussed later in more detail.

Unfortunately, most of the suggested methods were designed only for a particu-

lar oxygen framework or turned out to be inefficient. We created several algorithms

suitable to our goal of reliably finding the lowest energy topology for a water clus-

ter of an arbitrary shape. The algorithms were efficient at locating lowest-energy

topologies when applied to clusters with no more than 55 molecules.
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2.3.3 Comparing and Storing Water Cluster Minima

In our approach for H-bond topology optimization, a water cluster is defined as a

structure with a particular oxygen framework. A framework is assumed to have a

unique adjacency matrix𝐀. No two frameworks will have the same matrix and, there-

fore, clusters can be compared by comparing their 𝐀 matrices. All possible topolo-

gies for a framework are considered to be variations of the same cluster. Therefore,

each cluster defined by its 𝐀 matrix has a set of local minima corresponding to all

possible H-bond topologies. Such separation of the framework and topology helps to

reduce the number of local minima that are stored during a global minimum search.

Only the version of a cluster with the best topology is kept.

How can we determine if two sets with an equal number of water molecules form

clusters with an identical shape? 𝐀 matrices can be compared directly if the position

of the molecules has changed only slightly, i.e. after a small distortion. However,

in general we want the comparison to be independent of the order of molecules in

a coordinate list. In our case this is done in three steps which helps to reduce the

number of time-consuming operations. First, the number of H-bonds must be the

same, which is easy to calculate and to check. Next, we use the idea that the way

molecules are connected has an effect on the number of rings formed by H-bonded

monomers in a cluster. Moreover, the number of rings is independent of the order of

molecules in a list. Therefore, as the second step, it is required that the number of

rings of each size from 3 to 10 molecules must be the same. For those cases where

the ring rule is also satisfied, an alignment of 𝐀 matrices is used to perform the final

check which must allow for the possibility that the order of the elements (monomers)

is different. A backtracking procedure is used to examine the connectivity of each

monomer and to try and match pairs of molecules from the clusters being compared.

This procedure allows us to determine whether two matrices correspond to the same

framework even when the order of the elements is not the same.

When the list of visited minima is large enough, it is no longer feasible to keep

either the Cartesian coordinates or the adjacency matrix for each local minimum. In

that case, the third step that includes alignment of 𝐀 matrices can be omitted. Nine

integers, the number of H-bonds and the numbers of three- through ten-membered

rings, are saved for each local minimum and provide a robust and reliable way to

compare cluster frameworks.

2.3.4 Filters to Screen Topologies

Finding the lowest-energy topology of a large cluster framework would be impossi-

ble if it required the local optimization of all or even most of its topologies. Fortu-

nately, the number of expensive local optimizations required can be reduced by using

simple filters or criteria based solely on geometrical considerations to weed out the

topologies that are likely to have a high energy. Note that although the shape of a
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Fig. 2.3 Examples of less stable and more stable hydrogen bonding of a monomer

water cluster depends somewhat on its topology, a stable (i.e. low-energy) frame-

work does not break or change when its topology is changed.

The first thing to do is to count the number of H-bonds and their types for each

molecule. We define a donor bond as a bond created by a hydrogen atom of a given

molecule and an acceptor bond as the one created by an oxygen atom of the molecule.

We use a modification of the venerable Bernal-Fowler “ice rules” [44] and require

that

1 ≤ number of donor bonds ≤ 2,

and

1 ≤ number of acceptor bonds ≤ 2 or 3.

In words, each water molecule in a cluster must have at least one donor and one

acceptor bond. Moreover, there can be at most two donor bonds (one for each hydro-

gen) and at most two acceptor bonds. These rules allow one to avoid unstable con-

nectivity of molecules; see Fig. 2.3. In rare cases a water molecule in a cluster accepts

three hydrogen bonds and it is necessary to account for such a possibility. However,

allowing all molecules to accept three H-bonds would significantly increase the num-

ber of topology combinations. Thus, the algorithm detects penta-coordinated mole-

cules in the input geometry and only those can have up to three acceptor bonds, while

the rest are restricted to have no more than two acceptor bonds.

We found that in some cases changing the cluster topology leads to unrealistic

monomer angles; see Fig. 2.4. Note that the molecules in a cluster shift somewhat

during a local optimization of a new topology. Thus we must allow for a range

of angles to be accepted. Test calculations suggest that a topology can reliably be

Fig. 2.4 An example of an

unrealistic monomer angle in

one of the H-bond topologies

for an (H2O)12 cluster
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Fig. 2.5 Adjacent monomers with a connectivity that leads to higher energy (D—donor, A—

acceptor)

considered unfavorable if it leads to a monomer angle larger than 150◦ or smaller

than 65◦. These values span a large enough range to ensure that no important topolo-

gies are missed because of the angle filter.

It is well-established that adjacent dangling hydrogen atoms lead to a higher clus-

ter energy [69, 71–73, 79]. In addition, Anick found two other patterns leading to

an increased energy [81]. These three motifs of connectivity are shown in Fig. 2.5.

The types of H-bonds are labeled by D for donor and A for acceptor. The number of

motifs 1 and 2 that occur in a cluster must be kept as low as possible. This means that

one can safely discard all topologies with more such motifs than the lowest number

found at any given stage. The third rule is not as strong. We found that a topology can

be discarded safely only when the number of such motifs exceeds the lowest number

found plus two.

2.3.5 Topology Optimization by Enumeration

A straightforward way of finding the best topology is to generate all possible H-

bond distributions, do local optimizations on each one, and compare their ener-

gies. Miyake and Aida used adjacency and directed adjacency matrices (graphs and

digraphs) to describe the framework and the topology of a cluster, respectively [82].

Knowing the digraph and the coordinates of the oxygen atoms, one can recreate the

topology and then perform a local optimization to relax the cluster geometry. The use

of adjacency matrices was a promising idea; however, in their algorithm all possible

𝐃 matrices were generated first and only later were they checked to see if they were

useful. This led to a large wasted computational effort and the largest cluster size

they were able to study was limited to just eight water molecules. Vukičević et al.

improved the performance of the method by eliminating the need to generate unre-

alistic matrices [77, 83] and analyzed the topology for clusters with up to 12 water

molecules.

The ideas of using graphs and digraphs and eliminating undesired combinations

on the fly were used in the creation of our method, called topology enumeration

(NT). Consider the cage hexamer shown in Fig. 2.6a as an example. We start from

the given framework and its adjacency matrix 𝐀. Each row and column of 𝐀 with the

same index corresponds to a molecule. Defining all connections of a molecule to the
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Fig. 2.6 Adjacency matrices for the enumeration method. a sample geometry; b adjacency matrix;

c possible directed adjacency matrices

other molecules automatically defines the connections of all molecules to the current

one. Therefore, it is sufficient to consider each row and column starting from the

corresponding diagonal element; see Fig. 2.6b. The connectivity of the last molecule

(number 6), as expected, is completely defined by the connectivity of the previous

molecules.

The positions with ones in each row (or column) of 𝐀 tell us which molecules are

connected to a given molecule. Let us choose rows as a reference. Then, by going

through all combinations of 1 and 0 for positions marked with “1∕0” in Fig. 2.6c

we can generate all possible H-bond directions for the given skeleton. This can be

achieved by taking a bit representation of an integer value that ranges from 0 to

2n − 1. From the definition of 𝐃, the values in a column are the opposite of the values

in a row (positions with “0∕1” in Fig. 2.6c). H-bond directions are generated for each

molecule in this manner using a backtracking loop. The backtracking allows one to

apply geometry filters for each molecule right away without generating a complete

matrix. The steps constituting our backtracking method are shown in Listing 2.1.

Listing 2.1 Backtracking algorithm for topology enumeration.

---------------------------------------------------------------
Mark all bit combinations of all molecules as not used
Select molecule 1 as the current molecule ’M’
WHILE (’M’ > 0)

IF (all bit combinations for ’M’ have been used) THEN
Mark all bit combinations for ’M’ as not used
Set ’M’ = ’M’ - 1

ELSE
Choose next bit combination for ’M’
Mark this bit combination as used
IF (topology filters are satisfied) THEN

Set ’M’ = ’M’ + 1
END IF
IF (’M’ > number of molecules) THEN

Create and save a cluster geometry for local optimization
Set ’M’ = ’M’ - 1

END IF
END IF

END WHILE
---------------------------------------------------------------
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In the beginning it is important to sort molecules by their distance from the first

one to allow the algorithm to backtrack from bad combinations sooner rather than

later. The bicoordinated molecules are a special case because they can generally have

two stable directions for the dangling hydrogen. This is accounted for by generating

all combinations of the directions for bicoordinated molecules for each topology. A

symmetrical framework is not considered as a special case because it is a rare case

for water clusters. During creation of the geometry, hydrogen atoms are placed on

the line between two corresponding oxygen atoms. In the case of rigid monomers (as

in the TIP4P potential), and to save optimization time in the case of non-rigid ones,

the monomer bond lengths and angles are adjusted to the equilibrium values of the

given potential using a simple geometrical transformation.

A large number of trial topologies is usually generated. It is not possible to per-

form a tight local optimization for all topologies even with an inexpensive poten-

tial. Therefore, a local optimization is done in several steps of increasing precision.

A single-point energy is calculated for the initial geometry of each topology. The

geometries of the structures with the 5000 lowest single-point energies are then

optimized until a 1.0 kcal/mol/Å gradient threshold is reached. Then the 500 best

resulting geometries are further optimized with a 0.1 kcal/mol/Å threshold. Next,

the 50 lowest-energy geometries that result are optimized using a 0.01 kcal/mol/Å

threshold. Finally, a very tight optimization is performed at the best geometry.

The number of topologies generated for three cluster sizes and the effects of topol-

ogy filters are shown in Table 2.1. Note that in these test cases the best topology found

is the same no matter what filters are used; the difference is in the number of geome-

tries that need to be locally optimized. The use of the modified ice rules still leads to a

huge number of topologies left for energy calculations. Checking for monomer angle

and adjacent dangling (non-H-bonded) hydrogen atoms further reduces the number

of accepted topologies by three orders of magnitude. The next filter is not as effective

but reduces the number of topologies in all cases. The final filter makes a difference

only for the larger cluster with n = 31. Even with all the filters included the num-

ber of resulting topologies shows an exponential growth. Thus the method becomes

increasingly inefficient for clusters with more than about 35 water molecules.

The backtracking loop for generating 𝐃 matrices was also used in the routine

that produces a random topology. Such a topology should be random but still satisfy

Table 2.1 The number of topologies to be locally optimized for a sample oxygen framework in

(H2O)n

Filters used n = 23 n = 28 n = 31
Modified ice rules ∼107 ∼108 ∼109

+ HOH angle ∼106 ∼107 ∼108

+ 2 adjacent DAA 11556 46922 403465

+ 3 adjacent ADD 6892 34971 337986

+ AADD – AAD 6892 34971 318728

The plus sign means that a filter is added to all previous ones
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topology filters. To achieve this, random bond directions are selected for each line of

the 𝐃 matrix. Then the backtracking search is performed starting from this random

matrix until all topology filters are satisfied.

2.3.6 Short Topology-Altering Optimization

Kazimirski and Buch [49] foresaw and Takeuchi [51] refined a different approximate

but fast H-bond topology optimization which can be used as part of a global mini-

mum search. We now describe our version of this method which we call the “short

topology-altering optimization”.

Tri-coordinate water molecules in a cluster are either double-acceptor, single-

donor (AAD) molecules or single-acceptor, double-donor (ADD) molecules. The

basic H-bond topology-altering operation is the reversal of the direction of the

H-bonds in a contiguous sequence of water molecules. It can also be viewed as a

proton transfer. It is possible to perform such a reversal without altering the connec-

tivity in rings and in those chain substructures which have an AAD water at one end

and an ADD water at the other end. Examples of such a H-bond topology-altering

operation are shown in Fig. 2.7.

Sometimes this operation has the effect of creating an extra pair of non-H-bonded

or “dangling” hydrogen atoms on adjacent water molecules. However, as discussed

earlier in Sect. 2.3.4, structures with adjacent AAD water molecules are energetically

unfavorable [69, 71–73, 79]. To reduce the number of such structures generated,

we introduce a split-chain H-bond topology-alteration. This new operation consists

of splitting a chain substructure into two shorter chains between a pair of adjacent

ADD and AAD waters, and performing the H-bond reversal in both subchains with-

out altering the H-bond connecting the subchains. An example is shown in Fig. 2.8.

Adding this type of operation helps to distribute “dangling” hydrogen atoms on the

surface of a cluster.

A short topology-altering search consists of applying the operations described

above to all rings containing no more than 10 monomers and all chain and split-

chain substructures with no more than 5 monomers. Note that Takeuchi used only

rings and size 2 chain substructures while Buch and Kazimirski used only chains

and rings of size 4. New topologies are created by changing bond directions of one

substructure at a time. If a new topology has a lower energy, it is accepted as a new

Fig. 2.7 Examples of a H-bond topology-altering operation applied to (left) a ring and (right) to

a chain of water molecules
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Fig. 2.8 A split-chain, H-bond topology-altering operation. In this example, the split is between

the second and third waters

reference point and optimization returns to the smallest substructure. The search is

allowed to move only in a downhill direction of the potential energy surface to limit

the number of topologies considered. The framework of the initial cluster is allowed

to change during optimization. In fact, a framework change does happen often when

the input structure has a relatively high energy. The search is complete when no

substructure alteration leads to energy lowering.

Since the algorithm goes through all possible substructure changes, it is likely

that the same topology would be generated and locally optimized more than once.

Saving optimized geometries in a list removes that problem at the cost of adding

complexity to the algorithm. A list entry consists of an energy, Cartesian coordinates,

and a 𝐃 matrix. New structures are saved in the list. If a structure with a given 𝐃
matrix is already in the list, the geometry and energy from the list are used instead

of performing a local optimization. The list is created for a given framework. It can be

limited to a single optimization call or can be global in case the parent process uses

short topology-altering optimization as part of a larger algorithm as in Sect. 2.3.8.

If the framework changes during the optimization, the list is either reset to be used

with the new framework, or, in the case of a global list, the search is terminated. The

algorithm can only go downhill in energy. Listing 2.2 describes the general flow of

the ST algorithm.

Listing 2.2 Short topology-altering optimization (ST).

---------------------------------------------------------------
Set substructure size M = 2
WHILE (M <= 10)

FOR each substructure of type ’T’
Find substructures ’T(M)’ that allow altering H-bond direction
FOR each substructure ’T(M)’

Alter H-bond direction of the substructure
IF (topology filters are satisfied) THEN

Perform local optimization
Keep the best topology generated for the current M

END IF
END FOR

END FOR
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IF (lower energy geometry has been found) then
M = 2

else
M = M + 1

end if
END WHILE
----------------------------------------------------------------

The effects of using topology filters and the minima list have been examined for

three large cluster sizes: n = 34, 43, and 52. For each size, 1000 low energy clusters

with randomized topologies were generated as a test set. Short topology-altering (ST)

optimization was applied to each cluster, first with no filters or lists as a reference

point, and then adding one filter at a time. The average speed up of run times was

calculated for each case; see Table 2.2.

The direction of a search often changes when filters are added. In some cases,

optimization finishes at a higher energy minimum than the one reached without the

use of the additional filter. However, with all of the improvements, the energy lower-

ing is the same on average while the run time is reduced by about 40 %. Note that the

AADD–AAD pair motif and the three adjacent ADD motif were not used as filters

because the improvement in speed was not significant.

This algorithm has also been implemented to work with mixed clusters containing

many water molecules and a few other molecules. The latter are treated as a special

case and only the H-bond network between water molecules is allowed to change.

Of course, for such an optimization to make sense, there should be enough water

molecules to form a topological network. The algorithm can be used to optimize an

initial distribution of a large number of water molecules around a solvated molecule,

for example a protein, before starting a molecular dynamics simulation.

2.3.7 Extended Topology-Altering Optimization

The short topology-altering optimization allows only downhill moves. However, it

is desirable to extend it to cross energy barriers and explore larger areas of the

potential energy surface. Using a Monte Carlo search in the manner of Buch and

Kazimirski [7] is one option. We wanted, however, to keep the algorithm more

Table 2.2 Effect of topology filters shown as an average percentage improvement in calculation

time relative to the trial with no filters

Features used (H2O)n

n = 34 n = 43 n = 52
+ HOH angle 11.68 7.64 6.39

+ 2 adjacent DAA 41.82 37.18 31.31

+ list of minima 45.30 40.16 33.99
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deterministic. Our algorithm, called extended topology-altering optimization ET(m),

uses a population of m topologies that act as different solutions and are refined inde-

pendently. This way some topologies with an energy higher than the best are saved

as part of a population thus allowing the algorithm to search in several directions.

The algorithm is shown in Listing 2.3. A population member is described by

Cartesian coordinates, energy, 𝐀 and 𝐃 matrices, and its substructure level—the

size of the largest substructure for which the altering of H-bond directions has been

performed. At the beginning, the population contains only one member, an initial

structure with its substructure level set to 1. A single substructure level is consid-

ered during a search iteration. An H-bond alternation search is performed with the

ST algorithm of Sect. 2.3.6 for all members whose substructure level is M − 1 in

which M is the current level. In the case a new topology is accepted, it replaces the

highest energy one in the population if its energy is lower and the population does not

already have such a topology. The new member’s substructure level is set to 1, and

M is reset to 2. Thus, only the part of the population with smaller substructure levels

is considered until all members have the same level again. The search stops when

substructures of size 10 have been examined for all members. The lowest-energy

member of the population is the result of the optimization.

Listing 2.3 Extended topology (ET) optimization.

----------------------------------------------------------------
Set current population size to 1
Use initial structure as the first member
Set the substructure level of the first member to 1
Set current substructure size M = 2
WHILE (M <= 10)

Copy current population into parent population
FOR all current population members with substructure level < M

Increase substructure level by 1
END FOR
FOR all parent population members

IF (the substructure level of the member < M) THEN
FOR each substructure of type ’T’

Find all substructures ’T(M)’ that allow
altering H-bond direction

FOR each substructure ’T(M)’
Alter H-bond direction of the substructure
IF (topology filters are satisfied) then

Local optimization
IF (new topology is better than the worst in

the current population) THEN
Add structure if population is not full

or replace the worst
Set the substructure level of a new member to 1

END IF
END IF

END FOR
END FOR

END IF
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END FOR
IF (current population has a new member) then

Set M = 2
else

Set M = M + 1
end if

END WHILE
----------------------------------------------------------------

We can control the extent of the search by changing the size of the population.

Using a larger population allows us to explore a larger part of the potential energy

surface (PES) but with the computational effort being significantly larger. An ET

optimization with a population of one is equivalent to an ST optimization. Since

each population member has its own adjacency matrix, the framework is allowed to

change during the optimization. Therefore, if the input structure is not sufficiently

stable, it is possible that the population will contain several different frameworks.

We have not implemented a list of visited geometries for this algorithm.

2.3.8 Genetic Topology Optimization

The enumeration algorithm is limited to clusters with up to 35 water molecules while

the ST and ET algorithms that alter the H-bond directions of the substructures are not

designed to perform an exhaustive search. We need a different approach to reliably

find the best topology for larger clusters.

If we consider the positions of ones in an 𝐀 matrix and the matrix dimensions, we

can create a transformation rule that converts a corresponding 𝐃 matrix into a string

containing only information on the direction of existing bonds. In other words, all

zeroes that indicate the absence of a H-bond and do not change when the topology

is altered are removed. It suffices to use only half of the 𝐃 matrix because Dji can

be determined from Dij. Since the bond direction is encoded in a binary manner by

0 and 1, we can create a bit string that unambiguously represents a topology for a

given oxygen framework; see Fig. 2.9.

Fig. 2.9 Representation of a hydrogen bond topology using a bit string



2 How Can One Locate the Global Energy . . . 41

Fig. 2.10 Crossover

operation

In the jargon of genetic algorithms, a new bit string can be created by a crossover

operation on a pair of parent strings as in Fig. 2.10. The definition of a suitable

crossover operation makes it possible to search over a large number of topologies

and find the best one with genetic optimization methods.

Genetic topology optimization (GT) proceeds in the following manner. A list of

visited topologies is maintained in the form of bit strings. A new generation is created

using steps standard in genetic algorithms: elitism, crossover, and mutation. Elitism

copies 20 % of the previous population into the next generation to keep several of the

lowest energy topologies in the pool. During the crossover phase, all possible pairs of

the population members exchange sequences of bits. All possible crossover positions

and sequence lengths are examined. Each child that has not been visited previously

is checked for satisfaction of the topology filters. Each accepted child is added to the

list of visited topologies and processed using a multiple step procedure described in

the next paragraph. Sometimes there are not enough new topologies generated by the

crossover phase to fill the population. In that case, random topologies are added to

the population during a mutation phase. The search stops either when the best energy

remains unchanged after 20 generations or when neither crossover nor mutation can

generate an unvisited topology.

When a new topology is accepted, it is processed in several steps. First, a local

optimization is performed in two stages of increasing precision. After the first stage,

the topology is discarded if the energy of a child is higher than the highest energy

of the parent population by 3 kcal/mol or more. Otherwise, a tighter optimization is

performed. The adjacency matrices of the initial and current geometries are com-

pared at the second step to ensure that the oxygen framework has not changed.

Allowing the framework to change during the genetic topology search would add

unnecessary complications. Next, a short topology-altering (ST) optimization is

applied. A crossover operation generates diverse starting points, sampling different

areas of the potential energy surface, while an ST optimization allows the algorithm

to reach a low energy minimum at the bottom of a funnel. The framework distortion

is checked again. If the energy was lowered during the ST step, the new topology is

checked against the visited list.

The initial population is generated as follows. Random topologies correspond-

ing to the framework of the input structure are created using the enumeration (NT)

method described in Sect. 2.3.5 and processed as described in the previous paragraph

until the desired population size is obtained.

The genetic topology algorithm is successful in optimizing topologies of large

clusters. However, a significant number of random topologies is often added to the

population during optimization. Perhaps the random topologies are more important

starting points for the ST optimization than the results of a crossover operation.
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Fig. 2.11 Comparison of

four topology optimization

methods. Energy differences

E − Emin are in kcal/mol.
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A careful assessment of this issue would help to improve algorithm performance.

However, one should remember that test runs over a large variety of structures are

required to obtain information on the details of the algorithm performance, since

topology optimization is much more difficult for some oxygen frameworks than

others.

2.3.9 Comparison of Topology Optimization Methods

The ability of the ST, ET, and GT methods described in Sects. 2.3.6–2.3.8 to locate

the best topology was tested. To perform a comparison, 19 low-energy (H2O)52
clusters with randomized topologies were subject to topology optimization. Dur-

ing topology optimization, we start with a faster algorithm and then refine results

employing more precise methods. Therefore, different combinations of methods

were examined to see whether the inclusion of more complex algorithms leads to

a better topology.

The results are shown in Fig. 2.11. Emin is the lowest energy that has been found

for a cluster whereas E is the cluster energy after a sequence of topology optimiza-

tions. The initial random topologies have an energy difference, E − Emin, ranging

from 5 kcal/mol to 25 kcal/mol. The short topology-altering optimization lowers the

energy significantly, leading to E − Emin < 2.5 kcal/mol. The addition of a more

complex method helps to lower the energy further in all but two cases. Compari-

son of ET(10) and ET(20) shows that increasing the population size of ET(m) is

advantageous for 5 geometries out of 19. In nine cases GT is necessary to find the

best topology.
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2.4 Global Optimization of Water Clusters

An improved parallel evolutionary algorithm [84] and basin hopping combined with

vibrational modes [50] are examples of successful approaches to the problem of

global optimization of water clusters. However, these methods are not able to find the

lowest energy geometry for systems with more than 30 water molecules. A detailed

comparison of results for each cluster size can be found in our publication that

describes an application of minima hopping to water clusters [41].

2.4.1 Improved Minima Hopping

Goedecker’s minima-hopping algorithm was shown to be efficient for atomic clus-

ters [52, 85]. However, our test calculations revealed that the original minima-

hopping algorithm does not have a satisfactory performance on water clusters with

more than 25 molecules. To improve the algorithm, we decided [38] to add geom-

etry altering operations that are different from molecular dynamics or Monte Carlo

steps. These were allowed to be specific to a water cluster system in some cases.

Some examples of operations that take into account the current energy or geometry

of a cluster are direct mutation [84], internal, surface, and rotational operators [51],

and cluster surface smoothing [86].

Our improved algorithm uses several types of geometry transformation steps

which we call operators. An operator acts as a black box. It takes a cluster geometry,

performs some transformations independent of the other operators, and returns a new

geometry. For example, the MD simulation step in standard minima hopping [52] is

considered to be an operator. The main purpose of the MD operator is to “hop” over

higher energy minima, thereby sampling different areas of the PES. The other oper-

ators are designed to lower the energy of a cluster starting from a minimum obtained

by MD steps. Four types of geometry transformations were added. The topology

operations, ST and ET, described in Sect. 2.3 are used to lower a cluster’s energy

through topology variation. A translational operator (TRN) moves a molecule to a

more favorable position in a cluster [38]. Lastly, a distortion operator (DST) changes

the position of several molecules in a selected area of a cluster.

A global optimization using the improved minima-hopping method consists of

many cycles. A cycle takes search parameters and cluster coordinates as an input.

Each cycle combines operator calls in an optimal sequence. During a cycle, the out-

put list and the visited minima list are updated and the final search parameters and

coordinates are returned. To account for the different computational expense of the

different operators, a cycle is divided into an initial exploration phase and a sub-

sequent energy lowering phase. The exploration phase attempts to move the search

to a slightly different area of the PES by crossing energy barriers using the MD

and ST operators. We found that the ST operator is cheap enough to be applied to

each accepted minimum during the search, significantly improving the algorithm
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performance. The other three operators are more expensive and hence they are used

sparingly. In the second phase of the cycle, the energy of a structure is lowered using

sequences of TRN, DST, and ET(4) operators. The aim of the energy lowering phase

is to reach the bottom of a funnel. Each operator is followed by a tight local optimiza-

tion and an acceptance or rejection of the resulting local minimum.

2.4.2 Accept or Reject?

The decision process closely follows the original minima-hopping [52] algorithm

and its modification [85]. An essential item for deciding what to do with a new mini-

mum is the list of visited minima which contains a description of each accepted min-

imum and a count of the number of times it has been visited. Our improved algorithm

searches over unique cluster frameworks rather than unique topologies thus reducing

the number of possible minima to be considered. To achieve this, the list contains

not only the energy for each minimum but also its nine framework parameters, the

number of hydrogen bonds and eight ring counts, as described in Sect. 2.3.3. The

improved minima-hopping search is controlled by two adjustable energy criteria,

Ekinetic and Edif f . Five parameters control the rate of change of these two thresholds:

𝛽1 = 𝛽2 = 𝛽, 𝛽3 = 1∕𝛽, 𝛼1 = 𝛼, 𝛼2 = 1∕𝛼. Values of the parameters are 𝛼 = 1.02 and

𝛽 = 1.05 as in Goedecker’s work [52].

Detailed pseudo code for the processing of a newly found minimum is shown in

Listing 2.4. The first section checks whether the minimum has not been changed by

the operator or has been visited before. The rate of kinetic energy increase is modified

by an enhanced feedback mechanism [85]; it depends on the number of visits to a

minimum according to the formula 𝛽
′

2 = 𝛽2(1 + c logN), where N is the number of

visits and c = 0.1 is a feedback coefficient. With this modification, repeated visits

to a minimum lead to a greater repulsion from that minimum. A special case arises

when the topology of a minimum is improved but the framework remains the same.

In such a case, the energy in the visited list is updated and the minimum is accepted.

The second section of the processing checks the energy of the new minimum. The

MD operator uses Edif f to determine whether to accept or reject the minimum. For

all other operators a new minimum is accepted only if the energy is lowered. Finally,

the accepted minimum is written to the output and visited minima lists.

Listing 2.4 Analysis of a new minimum. ’Mcurrent’ is the current minimum and ’M’ is a new

minimum. ’M’ is rejected unless said otherwise.

---------------------------------------------------------------
---Checking for repeated visits---
if (energy(’M’) equals energy(’Mcurrent’)) then

if (operator is MD) then
Ekinetic=Ekinetic*beta1

end if
GOTO CHECKEND
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end if
Look for ’M’ in a list of visited minima
if (’M’ matches minimum ’Mlist’ in the list) then

if (energy(’M’) larger than energy(’Mlist’)) then
if (operator is MD) then

Increase number of visits ’N’ to ’Mlist’ by one
Ekinetic=Ekinetic*beta2*(1+c*log(’N’))

end if
GOTO CHECKEND

else
energy(’Mlist’) is substituted by energy(’M’)

end if
end if
---Checking energy---
if (operator is MD) then

Ekinetic=Ekinetic*beta3
if (energy(’M’) - energy(’Mcurrent’) < Ediff) then

Ediff=Ediff*alpha1
Accept ’M’

else
Ediff=Ediff*alpha2

end if
else

if (energy(’M’) < energy(’Mcurrent’)) then
Accept ’M’

end if
end if
CHECKEND
---------------------------------------------------------------

2.4.3 Operator Call Sequences

Next, we consider in greater detail the search during a cycle of our improved minima-

hopping method. During the exploratory phase the MD operator is called repeatedly.

The ST operator is used to relax the topology whenever MD leads to a new accepted

minimum. To use the expensive energy lowering operators efficiently, the explo-

ration phase must stop at an optimal minimum which is not too high in energy and

preferably belongs to a different funnel of the PES. To achieve this, a change in geom-

etry is first calculated for each new minimum. A shift of the molecules’ centers of

mass (CM) between the initial cluster geometry of a cycle and the current geometry

is calculated as

S =

[∑Nmol
i=1 [CMinit (i) − CMnew(i)]2

Nmol

]1∕2

.

The geometry is considered to be different when S is higher than an empirically

selected threshold value of 0.95 Å. The exploration phase ends when the last three
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accepted minima satisfy the geometry condition, and the energy of the second

minimum in this sequence is the lowest of the three. The latter condition prevents

the search from stopping when the energy of the minima is changing monotonically.

The lowest-energy minimum of these minima is the result of the exploratory phase.

The energy lowering operators take a significant amount of time. Often, the result

of an operator is the same minimum or a minimum much higher in energy than

the best one. The following procedure is used to avoid wasting time on expensive

calculations far from the lowest energy. The energy of a minimum obtained in the

exploration phase is compared with the best energy found so far. The translation and

distortion operators are designed to have two different sets of parameters: one for a

more thorough search and the other for a less thorough search. The settings for a more

thorough search are used if the difference in energy between the initial minimum

for the energy-lowering phase and the best energy ΔE = Enew − Ebest < Ehigh, where

Ehigh = 5 kcal/mol. If Ehigh ≤ ΔE < Elow, where Elow is an automatically adjusted

threshold, then the less thorough settings are used and Elow is decreased. If ΔE ≥

Elow, then the energy lowering phase is not used at all, Elow is increased, and the

cycle goes back to the beginning of the exploration phase. In the energy-lowering

phase, operators are called in the sequence

TRN ⇒ DST ⇒ ETOP ⇒ TRN ⇒ ⋯

An operator is called again if it is successful in lowering the energy; otherwise, the

next one is called. The energy-lowering phase is completed when application of all

three operators in a row fails to lower the energy.

2.4.4 How the Operators Work

An effective operator should take into account the properties of a system and employ

transformations that make use of the way molecules are connected. An efficient oper-

ator should use as few local optimizations as possible. This can be achieved by

using geometry filters to predict high energy minima without geometry optimiza-

tion, avoiding acceptance of the same geometry repeatedly by using a list of visited

minima, and by doing local optimization in stages of increasing precision so that it

can be stopped when it becomes clear that it is not needed.

2.4.4.1 The MD Operator

The basic operator of our algorithm is a short MD simulation as in standard minima

hopping. How short should the simulation be? How many MD steps should be taken

before continuing with a geometry relaxation? Three options were considered: (1)

stop after a fixed number of steps, (2) stop at the first energy local minimum which is

not too shallow, and (3) stop after a certain number of energy minima. Goedecker’s
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minima hopping uses the third criterion [52]; however, there were no clear rules

presented on how to choose the number of minima. In our first implementation we

used a fixed number of steps for simplicity but this was not optimal. If we examine

the usual energy trend during the MD steps, as shown in Fig. 2.12, we can see that

there is a minimum within about 100 steps while other minima could occur much

later. Since the primary object of the MD simulation is to distort the geometry and

reach a new local minimum, it suffices to stop the MD trajectory at the first energy

minimum. Therefore, we settled on the second option. The trajectory continues until

a minimum is reached provided that the energy decreases during at least the last five

steps before the minimum is reached. The latter restriction prevents termination of

the MD simulation at a very shallow local minimum. Since this prescription could

lead to a long MD simulation, the trajectory is terminated if such energy lowering is

not found within the first 100 steps. Our algorithm also checks for the situation when

monomers move too far away from the cluster since such distortions are not useful.

In principle, following the directions of soft vibrational normal modes should

result in easier barrier crossing. Such a technique was used by Kabrede in a vibra-

tional mode basin hopping study of water clusters [50]. A method of choosing a

low curvature direction for minima hopping was suggested by Goedecker et al. [85].

However, they tested it only on atomic clusters. They also noted that excessive use

of low curvature directions could reduce the randomness of the PES exploration.

We tried several approaches to make use of low curvature directions for the ini-

tial MD velocities; however, nothing gave any improvement over randomly directed

velocities.

2.4.4.2 The Translation (TRN) Operator

Translation of one or more molecules to a different part of a cluster provides a

good addition to the MD moves in which all molecules are shifted by a relatively

Fig. 2.12 Energies of two

typical MD trajectories for a

water cluster
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small amount. The translation operator is general and can be applied with little

modification to a cluster of any type. It was used in various forms in previous stud-

ies [38, 51, 84, 86, 87]. The purpose of a translational operator is to find a few

molecules that contribute least to the cluster binding energy and put them in a dif-

ferent location that will lower the total energy. We use an algorithm that translates

up to two molecules at once. While it can be easily extended to the simultaneous

translation of three or more molecules, we came to the conclusion that going beyond

two molecules increases the cost-efficiency ratio significantly. Further, only bi- and

tri-coordinated water molecules are moved as they are the ones most likely to have

higher energies.

Suppose that the cluster is composed of n monomers. First consider that only

one monomer is to be moved. We begin by selecting a scaffold composed of n − 1
monomers around which the remaining monomer is moved. This scaffold is chosen

by requiring that it minimizes disruption of the stability of the cluster. Candidates for

the scaffold are created as follows. Each bi- and tri-coordinated molecule is removed

in turn from the cluster and the residual structure with one less molecule is locally

optimized. The candidate with the lowest energy is selected to be the scaffold geome-

try around which the molecule is to be moved. Next, a grid of points is set up around

the cluster. The grid size depends on the minimal distance that needs to be main-

tained between the centers of mass of the monomers. The grid has a rectangular

prism shape to allow for different lengths of the cluster in the three principal direc-

tions. The nth monomer is moved to a grid point only if it is not too close to its

original position and if it is within a threshold distance from any three other mole-

cules. The nth molecule’s center of mass is placed at an accepted grid point and the

position and orientation of the molecule are then adjusted. This simple adjustment

might involve several random rotations followed by a single-point energy calcula-

tion or a loose local optimization. A more sophisticated adjustment mechanism was

developed for water clusters and it will be described below. For each grid point, the

energy of the obtained structure is compared with the initial structure’s energy. If

the energy is not lowered by moving a single molecule, two molecules are moved

simultaneously in an analogous fashion. In this case, the n − 2 scaffold is created as

follows. Each possible pair of bi- and tri-coordinated molecules is removed in turn,

the resulting scaffold candidate is locally optimized, and the lowest-energy candidate

is selected to be the scaffold geometry. As soon as the energy is improved, the opera-

tor stops and returns the structure without checking any unexplored grid points. This

does not leave other grid points unexplored because an energy-lowering translation

is always followed by another translation as the next operator in the minima-hopping

cycle.

2.4.4.3 The Distortion (DST) Operator

The distortion operator attempts to improve a selected area of the cluster by moving

several adjacent molecules a relatively short distance while the rest of the cluster

remains intact. This operator is expected to be useful for sufficiently large clusters
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for which distortion of one section of the surface will not significantly perturb the

rest of the cluster. The DST operator works as follows. The molecules are sorted by

their contribution to the cluster binding energy. The half of the molecules with the

smaller contributions serve as the centers of distortion. The molecules closest to a

distortion center are shifted and the resulting geometry is analyzed. The number of

molecules being shifted varies in turn from three to five. If energy lowering is found,

the operator stops immediately. If the final energy is higher than the starting one, but

within 0.5 kcal/mol, the operator is repeated from that higher energy point.

In our first attempt, the shifting was performed by short MD simulations with only

the selected molecules allowed to move. This did not work well enough and a more

efficient and complex distortion mechanism was created as described below. A stable

hydrogen bond network in a water cluster creates high energy barriers. Unlike the

case of an atomic cluster, it is not enough to just move a molecule; one also has to

change the existing H-bond network in the area where the molecule is placed and

in the area from which the molecule was removed. Initially, we left the creation of

new hydrogen bonds to chance using random rotations. To improve upon this, we

created a H-bond adjustment mechanism. The general idea is to remove H-bonds

that create energy barriers, change the positions of the pertinent water molecules, and

then recreate hydrogen bonds in a meaningful way for a new distribution. When we

remove hydrogen bonds, we remove the hydrogen atoms from the cluster and switch

to a representation of each water monomer as a bead or point particle. To reproduce

reasonable water molecule positions without the presence of the hydrogen bonds we

employ Molinero and Moore’s mW coarse-grained model of water [88] based on

the Stillinger-Weber silicon potential [89]. The energy of a system in the mW model

depends on distances between pairs of beads and angles between triplets of beads.

The short-ranged potential sets to zero the forces between beads farther apart than

4.32 Å. The mW model successfully reproduces bulk properties of water. For us, the

important feature of the model is that it maintains a tetrahedral distribution of beads

and a correct distance between them. The angle term is a three-body term which

leads to more elaborate code than is needed for pairwise potentials.

The adjustment process consists of redistributing selected molecules and then

recreating hydrogen bonds between them. The process starts by selecting a central

point of distortion. For the DST operator, it is the geometrical center of the several

molecules selected to be shifted. The cluster is converted into the bead represen-

tation and divided into two sections. The Nfree molecules adjacent to the center of

distortion are allowed to move during the local optimization and adjust their posi-

tions depending on a new distribution. There are Nfrozen = Ntotal − Nfree molecules

which have their coordinates frozen and their connectivity does not change. Next,

the Nmove < Nfree molecules closest to the center of distortion are selected to be relo-

cated. A new distribution of beads is created by placing them at random positions

very close to the central point of distortion and performing a local optimization using

the mW model potential. During the optimization beads will move away from the

central point and assume a tetrahedral distribution. Ntry such attempts are made for

each point of distortion. The mW energy is not reliable. Therefore, the Npos lowest

energy distributions with different connectivity are saved for analysis. Adjacency
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matrices of the mW geometries are compared to avoid saving identical distributions.

In addition, bi- and penta-coordinated beads are avoided to reduce the number of

possible distributions considered. A process of hydrogen bond restoration is per-

formed for the saved geometries.

The process of creating new H-bonds for free molecules makes use of the back-

tracking algorithm described in Sect. 2.3.5. At first, possible bonds are determined

and a directed adjacency matrix is created for a cluster using three bond categories:

existing bonds, no bonds, and possible bonds. Existing and absent bonds belong

to the frozen molecules and possible bonds to the free ones. Hydrogen atoms are

placed back into the cluster in such a way that water molecules would form hydro-

gen bonds according to the modified ice-rules discussed in Sect. 2.3.4. A backtrack-

ing algorithm is used to analyze all possible combinations of bonds in an efficient

way. The following filters are used to avoid high energy combinations: bicoordi-

nated monomers, non-bonded molecules that are too close, three-membered rings,

adjacent dangling hydrogen atoms, and unrealistic monomer angles. A single point

energy for each accepted structure is calculated and local optimization is performed

for the low energy ones. An ST optimization is used to relax the topology for several

of the energetically-best geometries.

An example of distortion using the adjustment mechanism is shown in Fig. 2.13

which highlights in blue the molecules selected to be moved (1). The molecules

are stripped of hydrogen atoms (2) and then placed close to each other (3). The

next image depicts the result of mW optimization, where highlighted molecules and

Fig. 2.13 An example of distortion using the adjustment mechanism
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Table 2.3 Values of adjustment mechanism parameters for higher and lower accuracy operators

TRN(high) TRN(low) DST(high) DST(low)

Nmove 2 2 3–5 4

Nfree 12 8 12 8

Ntry 4 2 10 4

Npos 4 2 5 2

several adjacent ones were moved to new positions (4). Then hydrogen bonds are

restored (5) and ST optimization is performed (6).

The translation and distortion operators become similar when the adjustment

mechanism is used. In the translation, movement of a molecule is followed by an

adjustment procedure. In the distortion, the adjustment is applied right away on a

selected area of a cluster; however, more adjustment attempts are made in that case.

Different sets of parameters for the adjustment mechanism are used to create ver-

sions of operators with higher and lower accuracy. The values used are listed in

Table 2.3.

2.4.5 Performance Tests

Test runs were made to check the effects of the various operators on the performance

of our improved minima hopping. It is hard to judge the change in performance of

the algorithm from a single run due to its random search nature. We need an aver-

age result from several global optimization runs on the same cluster size. The latter

must be small enough to allow the algorithm to reach the global minimum in a rea-

sonable time. Following these considerations, we performed 20 global optimization

runs each on TIP4P (H2O)n clusters with n = 19, 23, and 27. A run was stopped if a

global minimum was not found within two days. The average time used to locate the

global minimum framework in each cluster size was calculated. The operators with

a simple adjustment mechanism were used.

Table 2.4 shows the results of the test runs. In four cases, not all of the 20 runs

were able to locate the global minimum within two days and the number of success-

ful runs is indicated instead of an average time. We can conclude that all operators

improve the performance and are necessary to obtain the global minimum in a rea-

sonable time for large clusters. The inclusion of the mW potential and an advanced

adjustment mechanism led to improvement in performance. The time taken to locate

the global minimum was almost halved from 54.9 × 103 to 29.1 × 103 s for n = 27.

The algorithm performance using a simple list of visited minima was also assessed.

Treating every topology as a unique minimum leads, as expected, to an increase in

the average search time to 35.5 × 103 s.
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Table 2.4 Average computer time (seconds) used to locate the global minima for (H2O)n clusters

using different sets of the search operators

n MD +ST + TRN + DST + ET(4)

19 1741 371 246 150 110

23 (6 of 20) 4199 2200 1336 1191

27 (0 of 20) (6 of 20) (11 of 20) 78775 54927

The operators with a simple adjustment mechanism were used. If the global minimum was not found

in all 20 runs within two days, the number of successful runs is shown in parentheses instead of the

time

Table 2.5 Operator success rate (%)

n MD ST TRN DST ET(4)

44 25.63 72.73 36.67 17.94 31.33

45 25.63 72.51 36.93 17.90 31.59

46 25.64 72.31 36.40 17.46 31.87

47 25.64 72.02 37.22 17.52 31.86

48 25.64 71.89 37.43 18.26 31.70

49 25.65 71.85 38.00 17.38 32.15

50 25.65 71.56 38.01 17.48 32.38

51 25.64 71.52 36.47 16.76 32.42

52 25.66 71.18 36.30 16.94 32.63

53 25.66 71.11 35.76 16.07 32.67

54 25.64 70.88 36.07 16.31 32.70

55 25.64 70.88 35.17 15.94 32.89

Table 2.5 lists the percentage of calls that led to energy lowering during the search.

Values for the TRN and DST operators combine both low and high precision calls.

A 25 % rate for the MD operator follows from the minima-hopping logic with only

1∕4 of generated minima being accepted. Although the other operators did not have

any constraints, their success rate is consistent over a number of cluster sizes. The ST

operator shows very high success rates showing its importance. The ET(4) success

rate grows slightly as the cluster size increases while the ST success rate decreases.

This is a result of the hydrogen bond topology becoming more complicated.

Despite obvious improvements, the average time to locate the global minimum

grows rapidly. The algorithm can reliably locate the global minimum for (H2O)n clus-

ters up to n = 35. Reliability means that it always finds the same lowest energy min-

imum within several days of searching on a single CPU. With a significant amount

of calculation, it was possible to find the same lowest energy minima at least twice

for sizes up to n = 47, except for n = 39 and 45 [41]. The best minima for n > 47
reported earlier [41] were found only once.
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2.5 General Version of Improved Minima Hopping

Our improved minima-hopping algorithm can be used with any type of cluster. In

that case, all operators specific to water are disabled. By design, the MD opera-

tor can be used with any monomers and does not require changes. However, the

improved minima-hopping cycle parameters should be adjusted for each type of clus-

ter to achieve the best performance. The list of visited minima is simplified by using

only the energy and the number of visits for each minimum as in standard minima

hopping.

A general version of the translational operator was created as well. The same ideas

of scaffold and grid points are used. The changes from the water version include mov-

ing only one molecule at a time because advanced adjustment cannot be used. Instead

the highest and the second highest energy molecules are used. The adjustment mech-

anism consists of several random rotations. A collision check is performed after each

rotation and a single point energy is calculated. Low energy trial structures are accu-

mulated in a list and the best one is selected after a local optimization. As before,

higher and lower quality settings are available.

The general version of the distortion operator uses several molecular dynamics

steps to create a local distortion, followed by geometry relaxation. The operator uses

several molecular dynamics steps in which only certain molecules are allowed to

move. Such distortions are applied to several areas of a cluster, each followed by a

geometry relaxation.

We have reported [67] application of the general version of improved minima

hopping to methanol clusters (CH3OH)n with n ≤ 15 to generate a set of low-energy

geometries for subsequent electronic structure calculations. In unpublished work,

we have applied it to pure clusters of ethanol, n-propanol, and iso-propanol. In that

work, a conformational rotation operator was added to speed up the optimization.

2.6 Concluding Remarks

Our improved minima-hopping algorithm has proved its worth in applications to

water clusters using five different potential functions including two which had vibrat-

ing monomers [41]. Clusters sizes up to n = 55 were studied successfully although

the minima for sizes with n > 47 must be considered putative since they were found

only once. Our ambitious goal of global optimization of water clusters containing

up to n = 100 monomers has not yet been reached and requires further development

of the algorithm.
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Chapter 3
Optical Parameters of 𝝅-Conjugated
Oligomer Chains from the Semiempirical
Local Coupled-Cluster Theory

Anton B. Zakharov, Vladimir V. Ivanov and Ludwik Adamowicz

Abstract The 𝜋-electron semiempirical local coupled-cluster theory has been devel-

oped and used to calculate molecular optical parameters (polarizabilities and hyper-

polarizabilities) of fragments of conjugated polymers. The method is based on using

molecular 𝜋-orbitals of ethylene as an orbital basis for the conjugated systems. The

method is termed the Covalent Unbonded molecules of Ethylene, cue. Based on the

comparison of the calculations performed with higher levels of theory (especially

with the full configuration interaction method), it has been demonstrated that for

selected conjugated molecules the approach is accurate and capable of reproducing

the available experimental data with good accuracy. The cue-CC results show qual-

itatively correct dependency on the sizes of 𝜋-systems.

3.1 Introduction

Static electrical parameters of molecules (polarizabilities and hyperpolarizabilities)

are quantities which play an important role in the characterization of a wide spec-

trum of physical-chemistry properties of molecular systems and materials. Among

the properties which are particularly relevant to this characterization one should

mention the electric polarizability, the optical absorption characteristics, and the

intermolecular dispersion interaction (molecule-molecule, molecule-surface, etc)

[2, 9, 74].

The linear and nonlinear optic properties of organic materials, including

𝜋-conjugated molecular polymers, make it possible to develop numerous techno-

logical and industrial applications of these systems. The applications in the field
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of electronics are particularly important. The conjugated molecular structure and

the mobile nature of the 𝜋-electrons lead to a significant response of these systems

to non-resonance optical excitations. Such a property is important in applications

involving optical switches, in devices for second and third harmonic generation, in

devices for generating strong electromagnetic fields, etc.

Another important area, where information about polarizability is used, involves

statistical prognostic models and the description of the ligands-protein target inter-

actions in the Quantity–Structure–Activity Relation (QSAR) method [27].

The quantum chemical calculations of optical and nonlinear optic molecular para-

meters are an important step in designing new materials. However, adequate descrip-

tion of molecular optical parameters presents a challenge for contemporary quantum

chemistry. The main problem in such calculations is the necessity of accounting for

a significant part of the electron correlation effects. In the last decade the density

functional theory (DFT) has been used for (hyper)polarizability calculations (see for

instance [45]). It allows the consideration of systems with extended sizes. However,

the DFT calculations are known to produce significant errors in the evaluation of the

optical properties of 𝜋-conjugated systems [8, 26, 83].

Among the methods which guarantee adequate inclusion of the electron correla-

tion effects, the coupled cluster (CC) theory is one of the most effective [4, 5, 33, 39,

59, 65, 79]. The first CC calculations of molecular properties related to the interac-

tion of the molecule with the electric field date back to the first years of using the CC

theory in molecular calculations [6, 14]. However, the CC calculations, even those

performed with the standard approach which includes single and double excitations

from the reference wave function (CCSD), involve significant computational cost.

Certain improvement in the efficiency of the CC calculations can be achieved by

using the idea of “local correlation effects” [18, 33, 64, 67, 69]. In that approach

the CC reference function is built using localized molecular orbitals (LMO) [62].

The use of the LMOs enables to significantly reduce the computational cost of the

CCSD calculations [1, 32, 44, 53, 66, 70, 84]. Also, the local CC approach has

been implemented in the calculations of electronic excited states [29, 30, 37, 52].

The use of the local CCSD approach in the calculations of the (hyper)polarizabilities

has been described in Refs. [28, 35, 36, 38, 66]. For a description of the calculations

of the frequency-dependent polarizability and dispersion-coefficients see Ref. [85].

An adequate account of the electron correlation effects requires the use of basis

sets of considerable sizes which include polarization and diffuse functions. The

ab initio CC calculations with such basis sets are expensive. Thus more exact CC

calculations of molecular optical parameters can be carried out only for relatively

small molecules. In the calculations of polarizabilities and hyperpolarizabilities for

larger 𝜋-systems more approximate methods need to be used. Such calculations still

remain a difficult problem in quantum chemistry.

An alternative approach for predicting optical properties of larger molecular sys-

tems is to employ semiempirical methods which can be used to calculate large poly-

meric systems. As mentioned above, the description of the nonlinear molecular opti-

cal parameters strongly depends on the level of accounting for the electron correla-

tion effects. Thus, the semiempirical wave function has to include these effects in
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order to provide adequate accuracy in the calculations of these parameters. In our

works we have used a semiempirical version of the CCSD theory which is based on

the Pople-Pariser-Parr (PPP) Hamiltonian [60, 63]. It should be noted that the PPP

model has become increasingly popular in predicting the optical properties of large

𝜋-conjugated systems (see for instance Refs. [34, 73, 89] and references therein).

Detailed investigations of the correlation effects in the (hyper)polarizability calcu-

lations of 𝜋-electron systems have been presented in a number of works [22, 23, 31,

42, 43, 47, 50, 61].

Notwithstanding the fact that the PPP-model is a relatively simple quantum chem-

istry approach, our PPP CCSD calculations have demonstrated that an adequate

description of the molecular optical parameters can be obtained using this model.

The 𝜋 CCSD calculations have been done in two ways [31]. The first way involves a

separate Hartree–Fock (HF) calculation for each value of the electric field strength

followed by a CCSD calculation that uses the HF MOs generated for that field

strength. The approach is termed a “relaxed” CCSD (r-CCSD). The second way is to

perform the HF calculation only once at zero electric field strength and then use the

HF orbitals in the CCSD calculations for all fields including zero field. The approach

is termed “unrelaxed” CCSD (u-CCSD). As it was shown in Ref. [31], the u-CCSD

and r-CCSD results for some test examples agree very well with the 𝜋-electron Full

Configuration Interaction (FCI) results. For details of our 𝜋-electron FCI and CCSD

calculations see Refs. [46, 49, 61]. Further development of the 𝜋-electron CCSD the-

ory has involved using the “local correlation” idea. In our local 𝜋 CCSD theory we

employ a classical representation of a molecule with a conjugated system of 𝜋 bonds

involving a set of ethylene fragments. The molecular orbitals of the separate covalent

unbonded ethylene fragments (cue) form the orbital basis for the CCSD calculation.

Our local 𝜋-electron (PPP) CC approach is termed the cue-CCSD method [25, 86,

88]. The initial testing of the cue-CCSD approach was performed using some small

𝜋-conjugated systems [86, 87]. It was shown that the cue-CCSD calculations lead

to results which are close to the FCI results and almost independent on the choice

of the double-bond arrangement in the structure of the molecule. The cue-CCSD

calculations of 𝜋-conjugated polymers enable the evaluation of the limit values (per

unit cell) of the optical parameters corresponding to systems with an infinite size

[25, 88]. The aim of the present article is to review the cue-CCSD results obtained in

the (hyper)polarizabilities calculations for different 𝜋-conjugated polymers. The sys-

tems under consideration include classical polyenes, polyynes, different polycyclic

hydrocarbons (nonalternants), as well as a set of nonclassical “Push-Pull” polymers.

3.2 Semiempirical Local cue-CCSD Theory

Our semiempirical 𝜋-electron CCSD theory is based on the standard CCSD scheme.

The CCSD wave function has the form:

|𝛹CCSD⟩ = eT̂1+T̂2 |0⟩, (3.1)
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where the cluster operators, T̂1, and T̂2, generate all single and double electron excita-

tions from the reference state, |0⟩. In the unitary group approach the cluster operators

have the following form:

T̂1 =
∑
i,a

tai Êai, (3.2)

T̂2 =
∑

(i,a)≥(j,b)
tabij ÊaiÊbj, (3.3)

where the operators Êai and Êbj are unitary group generators [54, 55].

Indices i and j correspond to the occupied orbitals in the reference state, |0⟩, while

a and b correspond to the vacant orbitals. Amplitude matrices tai and tabij contain

all information about the structure of the many-particle wave function in terms of

electronic excitations. The working equations for energy ECCSD and amplitudes tai
and tabij can be obtained by using projection of the Schrödinger equation onto the

reference configuration, |0⟩, and onto singly and doubly excited configurations, |ai ⟩
and |abij ⟩. The latter two sets of configurations can be generated by using the unitary

group operators (3.2, 3.3).

tai ⇐ ⟨0Êia|Ĥ0 − ECCSD|𝛹CCSD⟩ = 0, (3.4)

tabij ⇐ ⟨0|(2ÊiaÊjb + ÊjaÊib)|Ĥ0 − ECCSD|𝛹CCSD⟩ = 0, (3.5)

ECCSD ⇐ ⟨0|Ĥ0 − ECCSD|𝛹CCSD⟩ = 0, (3.6)

where Ĥ0 is PPP Hamiltonian of the system.

In the cue-CCSD method we developed [25, 86–88] the 𝜋-conjugated system

is represented as a set of ethylene units. The acronym cue stands for “covalently

unbonded molecules of ethylene”. In the framework of this approach, an arbitrary

𝜋-conjugated molecule (for example, naphthalene) is first represented as a set of

single and double bonds as shown in Fig. 3.1.

Then, the electronic wave function of the 𝜋-electron system is constructed from

ethylene-like MOs. For example, for structure A of naphthalene the wave func-

tions is:

Fig. 3.1 Two ways of

double-bonds distribution in

the naphthalene molecule



3 Optical Parameters of 𝜋-Conjugated Oligomer Chains . . . 61

|𝜑1⟩ = 1√
2
(|𝜒1⟩ + |𝜒2⟩), |𝜑′

1⟩ = 1√
2
(|𝜒1⟩ − |𝜒2⟩), (3.7)

|𝜑2⟩ = 1√
2
(|𝜒3⟩ + |𝜒4⟩), |𝜑′

2⟩ = 1√
2
(|𝜒3⟩ − |𝜒4⟩), (3.8)

|𝜑3⟩ = 1√
2
(|𝜒5⟩ + |𝜒6⟩), |𝜑′

3⟩ = 1√
2
(|𝜒5⟩ − |𝜒6⟩), (3.9)

|𝜑4⟩ = 1√
2
(|𝜒7⟩ + |𝜒8⟩), |𝜑′

4⟩ = 1√
2
(|𝜒7⟩ − |𝜒8⟩), (3.10)

|𝜑5⟩ = 1√
2
(|𝜒9⟩ + |𝜒10⟩), |𝜑′

5⟩ = 1√
2
(|𝜒9⟩ − |𝜒10⟩), (3.11)

where the orbitals |𝜑1⟩, |𝜑2⟩, |𝜑3⟩, |𝜑4⟩, and |𝜑5⟩ are occupied MOs while the

orbitals |𝜑′
1⟩, |𝜑′

2⟩, |𝜑′
3⟩, |𝜑′

4⟩, and |𝜑′
5⟩ are vacant MOs. This representation cor-

responds to the case where each ethylene fragment provides an occupied orbital for

the construction of the reference determinant, |0⟩. Wave function |0⟩ provides zero-

order representation of the conjugated bond structure of naphthalene A. Hereinafter,

for simplicity, we denote the molecular orbitals of the cue basis with the number of

the ethylene fragments to which the basis corresponds. To indicate a vacant MO, we

use prime symbol (|𝜑′
k⟩).

It should be stressed that for condensed aromatic hydrocarbons, there are usually

several ways for arranging the single and double bonds. This leads to some uncer-

tainty in constructing the reference wave function. However, as our test calculations

have shown [86], the differences in the values of the optical parameters obtained

for different resonance structures of the system do not differ much even for small

systems. For instance, for the naphthalene molecule (Fig. 3.1) there are two possible

arrangement of the double bonds corresponding to two different symmetry groups,

the D2h and C2v groups. The first case corresponds to structure A and the second one

to structure B (see Fig. 3.1). The calculations show that the difference of the average

2nd hyperpolarizabilities of the two structures is insignificant (less than 1%).

It is worth to note that a good agreement of the results for different resonance

structures occurs only if the structures correspond to covalent arrangements of the

𝜋-electrons. In one of the previous works [86] we presented results for systems with

different covalent coupling (including Dewar-benzene-like long-range covalent cou-

pling) using the fulvene molecule as an example. In the case of non-classical cova-

lent structures, the obtained values may differ by an order of magnitude and even in

sign. However for structures with classical covalent arrangement of the double bonds

(like the A and B structures shown in Fig. 3.1) the values of the optical parameters

obtained in the calculations are very similar. It should be noted that the ambiguity in

the double-bond distribution does not arise in the polyene molecules where the cue
basis used in the calculation corresponds to the localized HF MO’s.

The use of the cue basis in the CCSD method for calculating the energy of the

unperturbed (i.e. zero-field case) system is justified by the Thouless theorem [78]

which states that the transformation between two non-orthogonal determinants can
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be always performed with the use of an eT̂1 operator with an appropriately selected

single-excitation T̂1 operator. The operator of this type is included in the wave func-

tion in the standard method CCSD. The Euclidian norm of the amplitude vector, t1,
associated with the T̂1 operator can be used as a measure of the orbital relaxation [41].

Among the advantages of using the cue representation in the CCSD calculations

are: a considerable simplification in the procedure for solving the CC amplitude

equations, a clear physical interpretation of the results of the calculation, the topo-

logical notation of correlation effects (“correlation radius”),
1

the possibility of sys-

tematically improving the accuracy of the calculation by including in the CC cluster

operator excitations corresponding to a longer correlation radius, and the simplic-

ity of generating the reference state, |0⟩. The latter means that it is not necessary to

carry out an HF calculation and the MO localization prior to the CCSD calculation.

This eliminates possible convergence problems in the HF procedure associated with

a possible quasi-degeneracy of the HOMO-LUMO orbitals.

Thus the use of the cue basis leads to significant simplification in solving the

CCSD equations. This is primarily due to the simplification of transformation of

the two-electron integrals. The two-electron integrals (we use the Mulliken integral

notation where indices denote spatial orbitals) in the zero-differential overlap (ZDO)

approximation are calculated according to the following formulas:

[AB||CD] = 2[AB|CD] − [AD|CB], (3.12)

[AB|CD] =
N∑
𝜇

N∑
𝜈

C
𝜇AC𝜇BC𝜈CC𝜈D𝛤𝜇𝜈

, (3.13)

where N is the number of the basis functions (in 𝜋-electron approximation N is also

equal to the number of carbon atoms),C
𝜇A are the MO-LCAO coefficients, and𝛤

𝜇𝜈
=

[𝜇𝜇|𝜈𝜈] is a two-centered Coulomb integral.

The calculation of the two-electron integrals in the standard CCSD scheme, even

within the ZDO approximation, involves a time-consuming calculation, which pre-

cludes the applicability of the CC theory to larger systems. The use of the cue
approach in the evaluation of expression (3.13) in the CCSD scheme can be illus-

trated with the following example concerning polyene molecules (see Fig. 3.2). The

calculation of the [AA′|BB′] integral using the cue basis is reduced to a simple

expression:

[AA′|BB′] = 1
4
(𝛤rt − 𝛤ru − 𝛤st + 𝛤su). (3.14)

It is clear that the number of components in expression (3.14) does not depend on

the system size. It is also worth mentioning that the only non-zero integrals are those

with orbitals belonging to the same fragment. This leads to a significant simplifica-

1
The “correlation radius” is the distance between two structural cue elements of the 𝜋-system whose

electrons are correlated by including in the CC cluster operator electron excitations from both ele-

ments.
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Fig. 3.2 A scheme describing the calculation of two-electron integrals of polyene systems

tion in the computation of the CCSD diagrams representing the components of the

CCSD amplitude equation obtained by projecting the Schrödinger equation with the

CC wave function onto singly and doubly excited determinants. This simplification

can be illustrated using the diagram involved in the projection of the T̂2T̂2
1 term onto

doubly excited determinant ⟨abi j |: ⟨abi j |H|T̂2T̂2
1 |0⟩.

∑
k,l,c,d

[kc||ld](tabkl tci tdj + tcdij t
a
k t

b
l ) = [kk′|ll′]{tabkl

(
tk′i t

l′
j − tl′i t

k′
j

)
+ 2tk′l′ij tak t

b
l

}
, (3.15)

where k and k′ (as well as l and l′) correspond to occupied and vacant orbitals belong-

ing to same ethylene fragment, respectively. The [kk′|ll′] and [kl′|lk′] integrals are

the usual Coulomb and exchange parts of two-electron interaction [kk′||ll′].
An important element of the cue-CCSD theory is the topological interpretation

of the correlation effects. The cue formalism allows building a hierarchy of approx-

imations based on the classification of the double-excitation structure. The possible

excitations for a polyene chain are shown in Fig. 3.3. Hereinafter use the following

notation: cue(l)-CCSD is the method that takes into account all excitations up to level

l; thus cue-CCSD means that all possible excitations between the ethylene fragments

are accounted for. In the figure, the amplitudes are represented as electronic transi-

tions between different ethylene fragments. Therefore, l = 1 means including only

local excitations, l = 2 means including also excitation between neighboring frag-

ments (separated by one bond), and l = 3 means including also excitations between

the second neighbors (separated by three bonds), etc. In the lth level of the the-

ory all excitations between ethylene fragments separated by up to (2l − 3) bonds are

included.

The number of bonds which separate the fragments can be identified by the Floyd-

Warshall procedure [3]. As a result of applying this procedure to a molecule a matrix

containing information about the number of edges between the atomic orbitals (say

Fig. 3.3 cue excitations in

polyenes
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𝜇, 𝜈), W (AO)
𝜇𝜈

, is obtained. Then the topological distance between two ethylene-like

MOs is defined by the following expression:

∀𝜇 ∈ i ∪ 𝜈 ∈ j ∶ W (MO)
ij = min{W (AO)

𝜇𝜈
}. (3.16)

The classification of the cluster amplitudes is unambiguous for linear polyene-

like systems (Fig. 3.3). For condensed (polyaromatic) hydrocarbons (i.e. polyacenes)

there is some uncertainty in the topological evaluation of the distances between some

double bonds. To explain this let us consider an example of a graphene fragment (see

Fig. 3.4). The local (l = 1) and the first-neighbor (l = 2) excitations in this case are

the same as for the polyene chain. However some excitations taken into account in

the cue(3)-CCSD approximation (l = 3) with the distances determined as the Euclid-

ian distances between centroids of fragments separated by three bonds (see Fig. 3.4;

excitations a) are greater than excitations c separated by four bonds. Thus excita-

tions c need to be included in the cue(3)-CCSD method. Analogically, the same rule

is applied to all excitations of higher orders in the cue(l)-CCSD method correspond-

ing to approximation level l.
As mentioned, when all possible double excitations between the ethylene frag-

ments are included in the wave function, the method is termed cue-CCSD. In this

case l is equal to the number of ethylene units comprising the system, i.e. the system

length in terms of the ethylene units. Also it should be noted that the restriction of

including selected classes of excitations applies in the cue(l)-CCSD method (and in

the full cue-CCSD method) only to the T̂2 cluster operator and not to T̂1. All excita-

tions generated by the T̂1 operator are included. This is done to properly account for

the orbital relaxation effects. Such an approach differentiate our approach from the

conventional approximate local CC theories where the restrictions are made in both

T̂1 and T̂2 operators.

Fig. 3.4 cue excitations in polyacenes
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3.3 Semiempirical cue-CCSD Calculations
of (Hyper)polarizabilities

The most direct introduction of molecular nonlinear optic parameters is based on the

Buckingham expansion [7]. According to this expansion the energy of a molecular

system in the external (static) electric field ( ⃖⃗𝐅 = Fx 𝐢⃗ + Fy𝐣⃗ + Fz
⃖⃗𝐤) can be described

in the following form:

E( ⃖⃗𝐅) = E(0) − 𝜇rEr −
1
2
𝛼rsFrFs −

1
3!
𝛽rstFrFsFt −

1
4!
𝛾rstuFrFsFtFu −⋯ (3.17)

Einstein summation convention is assumed throughout this work. In Eq. 3.17 the

indices r, s, t, u correspond to the cartesian coordinates (r, s, t, u = x, y, z). The coef-

ficients in expansion (3.17) are: 𝜇s—the static dipole moment cartesian component,

𝛼rs—the dipole polarizability components, and 𝛽rst and 𝛾rstu—the first and second

static dipole hyperpolarizabilities, respectively.

Also the corresponding coefficients can be introduced by using the induced dipole

moment as:

𝜇r( ⃖⃗𝐅) = 𝜇r(0) + 𝛼rsFs +
1
2
𝛽rstFsFt +

1
3!
𝛾rstuFsFtFu +⋯ (3.18)

The molecular optic parameters used in the above equations are determined as fol-

lows:

𝛼rs = − 𝜕
2E( ⃖⃗𝐅)

𝜕Fr𝜕Fs

||||𝐅=𝟎 =
𝜕𝜇r( ⃖⃗𝐅)
𝜕Fs

||||𝐅=𝟎, (3.19)

𝛽rst = − 𝜕
3E( ⃖⃗𝐅)

𝜕Fr𝜕Fs𝜕Ft

||||𝐅=𝟎 =
𝜕
2
𝜇r( ⃖⃗𝐅)

𝜕Fs𝜕Ft

||||𝐅=𝟎, (3.20)

𝛾rstu = − 𝜕
4E( ⃖⃗𝐅)

𝜕Fr𝜕Fs𝜕Ft𝜕Fu

||||𝐅=𝟎 =
𝜕
3
𝜇r( ⃖⃗𝐅)

𝜕Fs𝜕Ft𝜕Fu

||||𝐅=𝟎. (3.21)

The derivatives of energy in the above equations can be obtained by numerical

differentiation (Finite Field approach, FF). For instance, to calculate the second- and

fourth-order derivatives which correspond to polarizability and 2nd hyperpolariz-

ability the following “seven point” formulaes can be used:

𝛼 ≈
2E3 − 27E2 + 270E1 − 490E0 + 270E−1 − 27E−2 + 2E−3

180𝜉2
, (3.22)

𝛾 ≈
−E3 + 12E2 − 39E1 + 56E0 − 39E−1 + 12E−2 − E−3

6𝜉4
, (3.23)
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where 𝜉 is differentiation step and E±m are energies of the system in static electric

field with strength±m𝜉. The energy of the system in field can be obtained by solution

of corresponding Schrödinger equation with Hamiltonian:

Ĥ(±m𝜉) = Ĥ0 ± m𝜉R̂, (3.24)

where Ĥ0 is unperturbed PPP-Hamiltonian (without field) of the system, while R̂ is

the dipole moment operator.

The average value of the (hyper)polarizabilities can be represented by the corre-

sponding invariants [7, 51]. These invariants are represented by the following expres-

sions:

⟨𝛼⟩ = 1
3
(𝛼xx + 𝛼yy + 𝛼zz). (3.25)

⟨𝛾⟩ = 1
5
(𝛾xxxx + 𝛾yyyy + 𝛾zzzz + 2𝛾xxyy + 2𝛾zzyy + 2𝛾xxzz). (3.26)

In all calculations described in this section “idealized” geometries for all consid-

ered 𝜋-systems are used. In these geometries all –C–C– bond lengths are equal to

1.4 Å. Geometries of all zig-zag trans carbon chains of polyene systems are planar.

All –C–C–C– bond angles for trans polyenes are equal to 120
◦
. All cyclic systems

and polycyclic hydrocarbons are equilateral (regular) polygons.

The PPP-model of 𝜋-conjugated molecule assumes that each carbon atom con-

tributes a 2pz orbital and a single 𝜋-electron to the 𝜋-system. The PPP parametriza-

tion of the Hamiltonian matrix elements includes resonance (electron hopping) inte-

grals for the connected carbon atoms 𝜇 and 𝜈:

t0 = ⟨𝜇|H|𝜈⟩ = 2.274 eV. (3.27)

In the calculations of polyene molecules the bond alternation model (BAM) is

used (see for instance [10, 74]). In our calculations in the BAM the values of two

alternated-bond resonance integrals are equal to:

t±
𝜇𝜈

= (1 ± 0.1)t0, (3.28)

where the ‘+’ and ‘−’ signs correspond to the hopping integrals for double and single

bonds, respectively.

The one-center Coulomb integral for the carbon atom is equal to𝛤
𝜇𝜇

= [𝜇𝜇|𝜇𝜇] =
11.13 eV. The two-center Coulomb integrals are calculated by using the Onho empir-

ical formula [57] (atom unit assumed):

𝛤
𝜇𝜈

= [𝜇𝜇|𝜈𝜈] = 𝜁 A
𝜇𝜈√

1 + (A
𝜇𝜈
R
𝜇𝜈
)2
, (3.29)
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where R
𝜇𝜈

is the distance between the 𝜇 and 𝜈 atoms. Constant 𝜁 guarantees the

necessary physical dimension of𝛤
𝜇𝜈

. A
𝜇𝜈

is the average one-center integral for atoms

𝜇 and 𝜈:

A
𝜇𝜈

= 1
2
(𝛤

𝜇𝜇
+ 𝛤

𝜈𝜈
). (3.30)

3.3.1 Justification of 𝝅-Electron CCSD Theory

An important question which can be raised is how the 𝜋-electron CCSD approxi-

mation in (hyper)polarizability calculations compare with the results of other meth-

ods, particularly with the ab initio and semiempirical all-valence methods. It is also

important to compare obtained theoretical results with available experimental data.

To demonstrate adequacy of 𝜋-electron approximation in comparison with all-

valence semiempirical AM1 method we carried out calculations of polarizability and

2nd hyperpolarizability of condensed and non-condensed polyfulvenes,

(c-polyfulvene and nc-polyfulvene correspondently, see Fig. 3.18, Sect. 3.3.3.3).

GAMESS package [68] is used in the AM1 (and further ab initio) calculations. First

of all we are comparing AM1 and PPP variant of the HF method. Obtained results for

2nd hyperpolarizability presented on the Fig. 3.5. The values for two methods corre-

late for corresponding polymers with the coefficient greater than 0.999. It indicates

that magnitudes under consideration do not demand more expensive calculation in

Fig. 3.5 Hartree-Fock AM1 versus PPP average 2nd hyperpolarizability of polyfulvenes.

Reprinted with permission from Ref. [88]. Copyright 2014 American Chemical Society
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the all-valence method due to additivity of 𝜎-contribution for both polarizability and

2nd hyperpolarizability [25]. Such a result is typical and can be obtained for different

conjugated polymers.

For the monomer units one can directly compare values of 2nd hyperpolarizability

obtained in 𝜋-electron approximation and ab inito methods with augmented basis

set, 6-31++G(d,p). We carried out calculations for monomer units of considered (in

the Sect. 3.3.3.3) polyfulvenes at MP2 level of theory. Results are presented in the

Table 3.1.

Difference in the results for non-condensed case are quite noticeable but it is

not critical. In general the hyperpolarizabilities obtained at the MP2/ab initio and

MP2/PPP levels are reasonably close to each other. With the growth of the length of

the conjugation chain 𝜎-contribution increases additively, unlike 𝜋-contribution.

First comparison of 2nd hyperpolarizability obtained in CCSD/PPP approxima-

tions were performed in Ref. [73]. The results of 𝜋-electron CCSD calculations and

especially cue-CCSD calculations in comparison with experimental data [12] are

presented in the Table 3.2. The Table 3.2 results reveals quite similar calculated val-

ues (r-CCSD and cue-CCSD) with experimental data. A detailed comparison of the

results for different variants of CCSD theory with FCI values were performed in

Ref. [31].

The values for first members of polyacene series obtained in cue-CCSD and

ab initio variant of CCSD(T) methods (with extrapolation onto infinite basis set)

as well as the experimental data are presented in the Table 3.3. For the sake of com-

parability with experimental data, average values for polarizability corrected by 𝜎-

electron contribution according to additive scheme [80, 82] 𝛼
total = 𝛼

𝜋 + 𝛼
𝜎
. For

polyacene molecules cue-CCSD method reveals a perfect match. However, the cue-

Table 3.1 Average 2nd hyperpolarizability (⟨𝛾⟩∕105, a.u.) of monomer units polyfulvenes

obtained in MP2/PPP approximation and in ab initio/6-31++G(d,p) level of theory

MP2/PPP MP2/6-31++(d,p)

nc-polyfulvene 1.71 0.64

c-polyfulvene 0.50 0.37

Table 3.2 Calculated and experimental average 2nd hyperpolarizabilities (a.u. 10
5
) for linear

trans-polyenes (NC is the number of the carbon atoms in the molecule)

NC HF MP2 r-CCSD cue-CCSD Experimental

8 0.791 0.966 0.963 1.016 0.993

10 2.07 2.44 2.06 2.26 1.97

12 4.29 4.97 3.65 4.11 3.57

14 7.59 8.72 5.67 6.49 5.56

16 12.0 13.8 8.00 9.31 7.94

18 17.5 20.0 10.5 12.43 11.3
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Table 3.3 (Hyper)polarizabilities of polyacenes

Benzene Naphthalene Anthracene Tetracene

⟨𝛼total⟩ cue-CCSD 66.9 117.9 175.2 235.7

⟨𝛼⟩ CCSD(T)/cc-pV∞Z [20] N/A 116.7 176.2 239.7

⟨𝛼⟩ CCSD(T)/aug-cc-pV∞Z [20] N/A 115.5 164.9 N/A

⟨𝛼⟩ experim. [11] 66.8 112.0 171 N/A

⟨𝛾⟩∕104 cue-CCSD 0.536 2.17 – –

⟨𝛾⟩∕104 experim. 0.195 [40],

1.28± 0.06 [81]

6.19± 1.24 [81] N/A N/A

CCSD calculations of fullerene C60 demonstrated some discrepancies (experimen-

tal values are taken from [56]). Namely ⟨𝛼total⟩ = 660 a.u. while experimental value

equal to 579 a.u. For the 2nd hyperpolarizability ⟨𝛾⟩∕104 = 11.1 a.u. while corre-

sponding experimental value evaluated as 9.3 ± 1.3 a.u.

3.3.2 The Wave Function Structure in cue-CCSD Approach

The use of cue basis in the CCSD calculation and the analysis of the resulting many-

particle CCSD wave function give a unique possibility to interpret the correlation

effects in the system in structural terms. Namely the transitions between the ethylene

units of a conjugated molecule are the parameters which characterize the correlation

effects in the system. The cue-CCSD approach differs from the standard ab initio

CCSD approach due to the delocalization of the MOs forming the reference wave

function in the latter approach. These MOs are obtained in the HF SCF calculation.

However the first question is whether the cue reference is suitable for describing the

electron-correlation effects. To determine that it is necessary to compare the val-

ues of the correlation energies (𝜆corr) obtained in the cue-CCSD method with those

obtained with other methods. As usual, 𝜆corr is evaluated as a difference of the total

energy of the system obtained with the particular method (Emethod) and the HF energy

(EHF). For polymeric systems it is convenient to calculate the specific 𝜆corr, i.e. the

correlation energy per electron or per atom:

𝜆corr = (EHF − Emethod)∕n, (3.31)

where n is the number of 𝜋-electrons (or carbon atoms) in the system. In Table 3.4

specific correlation energies obtained using the MP2 and CCSD methods (in both

the HF MOs are used) and the FCI method for polyenes with different lengths are

shown. The largest polyene for which the FCI results have been obtained is C16H18.

The percentage value in the parentheses shows the ratio of the correlation energy

obtained with the particular method and the FCI correlation energy.
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Table 3.4 Specific correlation energies (eV, per carbon atom) obtained with different methods for

even-numbered polyene molecules, CNHN+2

Method N

8 10 12 14 16 30

MP2 0.0713

(38.9)

0.0727

(39.3)

0.0738

(39.5)

0.0747

(39.8)

0.0754

(39.9)

0.0778

cue-CCSD 0.1807

(98.6)

0.1817

(98.1)

0.1824

(97.7)

0.1829

(97.3)

0.1833

(97.1)

0.1845

CCSD 0.1811

(98.9)

0.1821

(98.3)

0.1828

(97.9)

0.1833

(97.6)

0.1837

(97.3)

0.1849

FCI 0.1832 0.1852 0.1867 0.1879 0.1888 N/A

In the parentheses percentage of the particular correlation energy with respect to the correlation

energy obtained with the FCI method is shown. All the methods use the 𝜋-electron PPP parame-

trization

The correlation energy values shown in Table 3.4 convincingly demonstrate that

the use of the cue basis leads to very good results. The correlation energies obtained

with cue-CCSD and with the complete CCSD method differ insignificantly. In addi-

tion, the differences between cue-CCSD and CCSD do not increase with the growth

of the polyene chain. Also it should be noted that the correlation energies obtained

with the MP2 method account only for about 40 % of the FCI results.

An important question which can be asked concerns the magnitude of the con-

tributions of certain types of amplitudes which correspond to different classes of

excitations (which are represented by l). To construct an effective local theory it is

necessary to include excitations that give the main contributions to the total wave-

function for the system under study and to neglect those that have smaller influence

on the results of the calculation. As the measure of the contribution of a particular l
layer of particular amplitudes (excitations which correspond to the cue(l)-CCSD level

of theory; see Sect. 3.2) it is convenient to use the sum of squares of the amplitude

matrix elements:

𝜀
(l)
‖⋅‖ =

∑
(abij )∈l

(tabij )
2∕
∑
(abij )

(tabij )
2
. (3.32)

𝜀
l‖⋅‖ can approximately describe the magnitude of the contribution resulting from

amplitudes of a certain order as it provides complete information on the level of

theory to achieve a certain accuracy threshold. The corresponding number of con-

figurations is simply equal to:

𝜀
(l)
N = N(l)

N
, (3.33)

where N(l)
is the number of amplitudes corresponding to the l layer and N is the total

number of the amplitudes corresponding to the doubly excited configurations. Hence

the parameter:

𝜀
(l) = 𝜀

(l)
‖⋅‖∕𝜀

(l)
N , (3.34)



3 Optical Parameters of 𝜋-Conjugated Oligomer Chains . . . 71

or the corresponding normalized parameter:

𝜀(l) = 𝜀
(l)∕

∑
l
𝜀
(l)
, (3.35)

can be interpreted as a parameter that characterizes the effectiveness of the cue(l)-

CCSD models. This parameter can help to choose the right approach to use within

the limits of the computational capabilities provided for the calculations. It allows

determination fo the necessary level of theory without a direct calculation of the

correlation energy.

In view of the obvious differences in the structure of the wave-functions for the

linear and polycyclic conjugated polymers (linear polyacenes), let us analyze two

representative members of both classes. In Table 3.5 values of the above described

parameters are shown for polyene C50H52 and polyacene C50H28 that consists of 12

benzene rings. The values of 𝜆corr that describe the contributions to the correlation

energy obtained from different l-layers in the cue-CCSD method are also shown in

the table.

It can be seen from the table that the dominant part of the excitations involved

in the calculation of the correlation energy comes from the local electron transitions

(l = 1, 𝜀
(l)
‖⋅‖ value). The next largest contribution to the total cue-CCSD wave function

comes from the excitations between adjacent double bonds (l = 2). Excitations from

the l = 3 layer constitutes only 5.83% of the total for polyenes, but they are still

significant for polyacenes (24.87%).

As can be seen from the data, the dominant contribution to the wave-function of

cue-CCSD method are made by an extremely small number of amplitudes of the T̂2
operator matrix (the size of corresponding amplitude matrix, N, mainly determines

the computational complexity of the method). Including l-layers with larger l (start-

ing from the 4th for the polyenes, and 5th for polyacenes) involves larger amount of

the matrix elements, but the contribution made by them is insignificant (less than

3 %). This clearly demonstrates the previously discussed fact of the correlation-

effects locality.

It should be mentioned that the structure of the amplitude matrix for a polycyclic

system is much more complex than for a polyene system due to the lack of excita-

tions of certain kinds in the former (compare Figs. 3.3 and 3.4 concerning inter-bond

electron jumping for l = 3). This leads to the contributions of some selected l-layers

to the total cue-CCSD wave function of polyenes to be noticeably different from the

contributions of the corresponding layers in polyacenes. For example, this is evi-

dent by examining the l = 3 contribution in polyenes and the l = 4 contribution in

polyacenes. One can conclude that in the calculation of electro-optical properties of

polycyclic systems the required minimal level of the theory is cue(2)-CCSD. Such

a choice guarantees a high level of accounting for the electron correlation effects

(more than 99%) for both polyenes and polyacenes.

Parameter 𝜀(l), which characterizes the “effectiveness” of the local theory, shows

fast convergence with the increase of the polymeric chain. For example, for polyenes
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C30H32, C40H42, and C50H52 the values of 𝜀(l) (for layers 1–4) differ by less than

∼10
−2 %. Also the correlation energy converges faster with the increasing number

of l layers included in the calculation, as evident from the data shown in Table 3.6.

In the table the percentages of the account for the correlation effects for different

methods with respect to the full cue-CCSD results are shown.

As expected, for polyenes even lowest level of theory allows for an adequate

description of the correlation effects in contrast to the polyacene case. However,

despite a low level of accounting for the electron correlation by the cue(2)-CCSD

method for polyacenes, this approach gives a qualitatively correct dependence of the

values of the optical and non-linear optical properties on the system size (see the next

section). We attribute this behavior to the size-extensivity of the CCSD method.

Another structural aspect of the CCSD wave function is related to its exponen-

tial form (3.1). The cumulative value of the configuration coefficient of a particular

determinant is determined by expanding the exponent in a Taylor serious in terms of

the singly and doubly excited CC operators and collecting terms generating this par-

ticular determinant. The configuration coefficient of a particular determinant (say,

determinant ⟨(k)
𝜇
|, where k indicates the level of excitation of the determinant with

respect to the reference determinant and 𝜇 is the determinant number in the manifold

of the k excited determinants) can be determined as:

Ck𝜇 = ⟨(k)
𝜇
|𝛹CCSD⟩. (3.36)

The contribution from the reference determinant, |0⟩, according to the intermediate

normalization condition, is assumed to be equal to unity:

C0 = W0 = ⟨0|𝛹CCSD⟩ = 1. (3.37)

The total weight of all k-fold excited determinants in the wave function is:

Wk =
∑
𝜇

C2
k𝜇. (3.38)

Table 3.6 Percentage accounting of the correlation energy (relative to full cue-CCSD) by the MP2

method and methods corresponding to different levels of the cue(l)-CCSD method

Method Polyene Polyacene

C30H32 C40H42 C50H52 C30H18 C42H24 C50H28

MP2 42.2 42.5 42.7 50.3 50.4 50.5

cue(2)-CCSD 81.6 80.7 80.2 30.2 28.2 27.4

cue(3)-CCSD 94.1 93.7 93.5 79.4 77.0 76.2

cue(4)-CCSD 98.2 98.0 97.9 95.6 94.6 94.2

cue(5)-CCSD 99.5 99.4 99.3 99.2 98.8 98.7

cue(6)-CCSD 99.8 99.8 99.8 99.9 99.7 99.7

cue-CCSD 0.1845 0.1849 0.1851 0.1677 0.1725 0.1744

In the last row the correlation energy in eV per carbon atom is shown
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Table 3.7 Configurational weights, Wk, corresponding to different k values of the CCSD wave

functions with the HF reference and the cue reference for polyene molecules

Weight C10H12 C12H14 C14H16

HF cue HF cue HF cue
W1 0.493×10−3 0.375 0.665×10−3 0.475 0.844×10−3 0.575

W2 0.177 0.292 0.213 0.384 0.250 0.486

W3 0.454×10−4 0.565×10−1 0.838×10−4 0.101 0.136×10−3 0.160

W4 0.103×10−1 0.229×10−1 0.161×10−1 0.418×10−1 0.232×10−1 0.696×10−1

W5 0.117×10−5 0.221×10−2 0.337×10−5 0.629×10−2 0.755×10−5 0.141×10−1

W6 0.246×10−3 0.673×10−3 0.548×10−3 0.181×10−2 0.104×10−2 0.414×10−2∑
k Wk 0.19 0.74 0.23 1.01 0.27 1.31

The information about the total weights of excited determinants corresponding to

different values of k for polyene molecules are shown in Table 3.7.

In the table, the results corresponding to the standard CCSD method are obtained

with the HF MOs while the cue-CCSD results are obtained with the cue MO basis.

As one can see, the contributions of higher excitations obtained with the MO basis

are significant. In particular, the contributions from four- and six-fold excitations

noticeably increase with the elongation of the carbon chain (notice that W1 ≈ W6).

The cue-CCSD wave function has different structure in terms of Ws. In the cue basis

there is a significant relaxation of the reference state as evident from a larger value of

W1. The main contributions correspond to singly- and doubly-excited configurations.

For instance, for polyene C14H16 the weights are W1 = 0.575 and W2 = 0.486. Also

higher levels of excitations (e.g. four-fold and six-fold excitations) become impor-

tant. The total weight,
∑

k Wk, characterize the complexity of the cue wave function.

All presented data, including the total weights, indicate that the cue-CCSD wave

function is significantly different from the reference determinant. The opposite can

be said about the wave function obtained with the standard CCSD method based on

the HF MOs.

3.3.3 (Hyper)polarizabilities of 𝝅-Conjugated Systems

3.3.3.1 Polyenes and Polyynes

In the field of nonlinear optics, probably the best known and studied systems are

quasi-one-dimensional polymers such as polyenes (CMHM+2). In these polymers the

correlation effects are relatively large. The importance of the correlation effect in

these systems has been investigated using the semiempirical 𝜋-electron approach

in Refs. [24, 31, 42, 43, 61, 73]. As shown earlier (Table 3.4), the limit values of

the specific correlation energies for polyenes (per electron) are near 0.19 eV. As
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the quality of the description of nonlinear optical parameters significantly depends

on the level of accounting for the electron correlation, one should expect that the

calculated values of 𝛾 for long polyene chains are highly dependent on the level of

the cue-CCSD theory. In Figs. 3.6 and 3.7 the dependency of the average specific

(per electron) polarizability and 2nd hyperpolarizability for trans-polyenes on the

level of theory used in the calulations are presented.

It can be seen in the figures that the results obtained with different variants of the

CC theory are rather similar. Upon examination of the results, one can conclude that

the specific values tend to converge with increase of the chain length. This observa-

tion has a clear physical explanation. With the increase of the number of electrons

in the system the inclusion of an addition monomeric unit has increasingly smaller

influence on the specific optical properties. The results of the calculations within the

HF and MP2 frameworks show pronounced growth of the ⟨𝛼⟩∕N and ⟨𝛾⟩∕N values

with increasing length of the polymer chain. Apparently these methods significantly

overestimate the stability limits.

To investigate the influence of the conformation of the conjugated polymer chain

on the optical parameter, we performed calculations for a number of regular linear

polymers which different conformations. To describe the linear size of the system

we use the following parameter:

𝜌
𝛼
= L

𝛼
∕N, (3.39)

Fig. 3.6 Average specific (per electron) polarizabilities of polyenes obtained using different

approaches
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Fig. 3.7 Average specific (per electron) 2nd hyperpolarizabilities of polyenes

where 𝛼 ∈ {x, y, z} are the Cartesian coordinates, L
𝛼

is the length of the polymere

chain along a certain axis, and N is the number of 𝜋-electrons. The structures of the

considered polyene are shown in Fig. 3.8 (A—all-trans, B—all-cis, C—combination

of trans/cis, D—linear polyenes).

The linear size (say along the dominant “x”-direction) can be described as:

𝜌x = 𝜌
∞
x + 𝜌

0
x∕N, (3.40)

where 𝜌
∞
x is the limit (specific, per electron) length of the polymer and 𝜌

0
x is the geo-

metrical parameter responsible for the “end-effect” contribution. The corresponding

Fig. 3.8 Conformational

models of linear polyenes
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molecular optical parameters of 𝜋 conjugated oligomers can be represented in an

analogical form as: ⟨𝛼⟩∕N = 𝛼
∞ + 𝛼0∕N, (3.41)

⟨𝛾⟩∕N = 𝛾
∞ + 𝛾0∕N, (3.42)

where 𝛼
∞ = ⟨𝛼⟩∕N and 𝛾

∞ = ⟨𝛾⟩∕N are infinite-size-limit (when N → ∞) quanti-

ties for the respective optical properties of the polymer. Obviously, the interval of N
that corresponds to the region where the values 𝛼

∞
and 𝛼0 (as well as 𝛾

∞
and 𝛾0) are

converging fits a linear relation.

By approximating this interval one can obtain the limit values of the specific 𝛼

and 𝛾 . In Table 3.8 the parameters obtained using the Eq. (3.40) and the specific

components of 𝛼 and 𝛾 at the limit are shown. The extrapolation for obtaining the

limit values for polyenes has been performed for systems with 50–60 atoms. For this

50–60 atom range the corresponding correlation coefficient is greater than 0.999. An

important conclusion can be derived from the results shown in Table 3.8: in the limit

of N → ∞, the calculated values of the (hyper)polarizabilities for various polyenes

closely correlate to the values of these properties for the linear-size polymer.

Optical parameters obtained with Eqs. (3.41) and (3.42) with different variants of

cue-CCSD, as well as with the MP2 and HF methods, are presented in Table 3.9.

As expected, the results obtained with the HF and MP2 methods are significantly

overestimated (the HF results are more than three times higher relative to the cue-

CCSD results for the 2nd hyperpolarizability). Also these methods give qualitatively

incorrect dependence of the studied properties on the polymer-chain length (see

Table 3.8 Linear sizes of different conformations of polyenes and limit values of the polarizability,

𝛼xx, and the hyperpolarizability, 𝛾xxxx

Conformation 𝜌
∞
x 𝜌

0
x 𝛼

∞
xx 𝛾

∞
xxxx∕10

5

A 1.21 −1.21 38.2 9.8

B 1.05 −1.40 24.2 4.9

C 1.05 −1.40 23.6 5.0

D 1.40 −1.40 57.9 19.4

Table 3.9 Limit values of (hyper)polarizabilities for trans-polyenes obtained using different many-

body approaches

HF MP2 cuel-CCSD cue-CCSD

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
⟨𝛼⟩∞ 23.43 20.73 10.52 9.04 10.21 11.61 12.55 13.09 13.82

⟨𝛼⟩0 −174.4 −148.4 −33.21 −26.10 −33.41 −44.58 −54.10 −60.52 −75.10

⟨𝛾⟩∞∕105 5.92 6.53 0.36 0.29 0.45 0.77 1.14 1.45 1.99

⟨𝛾⟩0∕106 −11.7 −12.7 −0.28 −0.22 −0.35 −0.67 −1.11 −1.54 −2.64
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Fig. 3.9 Two orthogonal

𝜋-systems in polyynes.

1,3-butadyyne is used as an

example

Figs. 3.6 and 3.7). Therefore the HF and MP2 methods are not suitable for describing

the optical nonlinear properties for systems with strong electron correlation.

Based on the above considerations, one can expect that polyynes, (CMH2), should

exhibit significant optical nonlinearities. These polymers are linear and contain two

orthogonal 𝜋-subsystems. The interaction of these two orthogonal subsystems and

its impact on the optical properties is still a subject of studies. In the 𝜋-electron

approximation, a triple bond is modeled as two double bonds with each carbon

atom contributing two 2p-orbitals, one to each 𝜋-system (Fig. 3.9). For each pair

of bonded atoms (contributing 𝜇 and 𝜈 2p-orbitals to the first 𝜋-system and 𝜇
′
and 𝜈

′

2p-orbitals the second 𝜋-system) two resonance integrals have to be defined (t
𝜇𝜈

and

t
𝜇′𝜈′ ). The cross-resonance integrals (between different 𝜋-systems) are set to zero,

t
𝜇𝜇′ = t

𝜈𝜈′ = 0. Originally the model was used in the frameworks of the Hückel the-

ory [13]. We used this parametrization of triple bonds before to describe the spin

distribution in dublet states [21] and in hyperpolarizability calculations of small

acetilenic systems [31].

The limit values of optical properties obtained for polyynes by the extrapolation

procedure (Eqs. 3.41 and 3.42) are presented in the Table 3.10.

By comparing the limit values for the longitudinal component of the 2nd hyper-

polarizability for linear polyene and polyyne (19.4 × 105 a.u. and 10.8 × 105 a.u.,

respectively) one can evaluate the significance of the interaction between the orthog-

onal subsystems. The non-additive factor of 1.5 for the polarizability and 1.7 for the

2nd hyperpolarizability indicate that the cross-system interaction differently affects

the different optical properties.

Table 3.10 Limit values of (hyper)polarizabilities for polyynes obtained with different many-body

approaches

HF MP2 cue(l)-CCSD cue-CCSD

l = 1 l = 2 l = 3 l = 4 l = 5 l = 6
⟨𝛼⟩∞ 18.42 14.82 7.91 6.88 8.46 10.08 11.17 11.77 12.51

⟨𝛼⟩0 −97.09 −70.23 −57.77 −46.57 −67.08 −94.39 −116.8 −131.7 −156.8

⟨𝛾⟩∞∕105 4.38 5.62 0.29 0.20 0.35 0.71 1.16 1.54 2.15

⟨𝛾⟩0∕106 −6.39 −7.87 −0.47 −0.31 −0.59 −1.35 −2.43 −3.49 −5.65
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Fig. 3.10 A fragment of

polydiacetylene polymer

It is also worth to note that methods with inaccurate accounting for the electron

correlation effects cannot adequately describe the entire set of the electro-optical

effects. Such methods show significant errors for the limit values of the optical

parameters. For instance, the ratios ⟨𝛼⟩∞HF∕⟨𝛼⟩∞cue-CCSD = 1.47, ⟨𝛼⟩∞MP2∕⟨𝛼⟩∞cue-CCSD =
1.18, ⟨𝛾⟩∞HF∕⟨𝛾⟩∞cue-CCSD = 2.04, ⟨𝛾⟩∞MP2∕⟨𝛾⟩∞cue-CCSD = 2.61 demonstrate the fact that

inclusion of MP2 correction improves values for polarizability but gives worse

results for 2nd hyperpolarizability in comparison with cue-CCSD method.

Systematic improvement of the cue(l)-CCSD theory with l up to l = 6 is still not

enough to give results coinciding with the cue-CCSD results. However, unlike the

MP2 approach, improvement of the quality of the wave-function with l leads to more

accurate values for both polarizability and 2nd hyperpolarizability. Also, as a rule,

the lower level of theory gives a lower bound for the calculated optical property.

Of considerable interest is the polydiacetylene polymer that can be viewed as a

combination of a polyene and a polyyne. A fragment of the polydiacetylene molecule

is shown in Fig. 3.10.

For comparison, in Table 3.11 some data for three iso-𝜋-electron fragments: poly-

ene, C28H30, polydiacetylene, C18H10, and polyyne C14H2 are presented.

The values shown in the table are smaller for polydiacetylene than for polyene

and polyyne. This is likely due to the fact that addition of a non-conjugated 𝜋-bond

makes an almost additive perturbation to the 𝜋-system and leads to a reduction of

the specific (per atom) linear size. Also, as could be seen from Table 3.11, the largest

values of the specific (per atom) nonlinear optical properties among all considered

polymers are obtained for polyynes.

Analogically to the representation of the wave-function in structural terms, there

is a way to separate (hyper)polarizabilities into the individual contributions from

individual atoms. A method for such separation was developed by Brédas [15, 16]

and is called the real-space finite-field method. The approach can be easily imple-

mented for a post-Hartree-Fock method in the 𝜋-electron approximation due to the

simplicity of the calculation of the one-electron reduced density matrix (RDM1) ele-

ments. In our calculations we are using a simple numerical-derivative “two-points”

formula for RDM1 matrix elements (Rrs) [88] (see also [48]):

Table 3.11 Average (hyper)polarizabilities (per electron, Nel, or per atom, Nat) of different iso-𝜋-

electron systems

⟨𝛼⟩∕Nel ⟨𝛼⟩∕Nat ⟨𝛾⟩∕Nel ⟨𝛾⟩∕Nat

C28H30 11.2 11.2 1.09 1.09

C18H10 6.2 9.7 0.35 0.55

C14H2 7.3 14.5 0.42 0.65
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Rrs ≈
1

2 − 𝛿rs

E(hrs + 𝜉) − E(hrs − 𝜉)
2𝜉

, (3.43)

where 𝜉 is differentiation step, while hrs is core Hamiltonian matrix element. For a

detailed description of RDM1 CC calculations see Ref. [71].

A characteristic element of the Brédas method is the use of an expansion of the

dipole moment in terms of powers of the applied electrostatic field.

𝜇x = 𝜇
0
x + 𝛼xxFx + 𝛽xxxF2

x + 𝛾xxxxF3
x +⋯ . (3.44)

The expression for the charge of an atom in the electrostatic field applied along

a certain axis can be written as a sum of products of so-called 𝛼-, 𝛽-, and 𝛾-charges

(generally hypercharges) and the field strength, Fr, raised to the corresponding pow-

ers:

qi = q(0)i + q(𝛼)i Fr + q(𝛽)i F2
r + q(𝛾)i F3

r + ,̇ (3.45)

where q(0)i is the charge on the ith atom in the absence of the field, r ∈ {x, y, z}.

Hence, for the 2nd hyperpolarizability one can write:

𝛾xxxx =
𝜕
3
𝜇x

𝜕F3
x
=

𝜕
3(
∑N

i=1 qixi)
𝜕F3

x
=

N∑
i=1

xi
𝜕
3qi
𝜕F3

x
, (3.46)

where xi is the corresponding Cartesian coordinate of the atom. Thus the xxxx com-

ponent of 2nd hyperpolarizability can be obtained as:

𝛾xxxx =
N∑
i=1

xiq
𝛾

i , (3.47)

where q𝛾i is the atomic change of charge in the external field:

q𝛾i =
𝜕
3qi
𝜕F3

x
. (3.48)

In a similar way one can determine all other optical properties of interest:

𝛼xx =
N∑
i=1

xi
𝜕qi
𝜕Fx

=
N∑
i=1

xiq𝛼i , (3.49)

𝛽xxx =
N∑
i=1

xi
𝜕
2qi
𝜕F2

x
=

N∑
i=1

xiq
𝛽

i , (3.50)
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The contributions to the particular property from the particular atom, which gen-

erally depend on the choice of the origin of the coordinate system, will be called 𝛼-,

𝛽-, 𝛾-moments and denoted as:

𝛼 = xiq
(𝛼)
i , (3.51)

𝛽 = xiq
(𝛽)
i , (3.52)

𝛾̃ = xiq
(𝛾)
i . (3.53)

The histogram Fig. 3.11 shows the distribution of 𝛼- (black) and 𝛾-charges (white)

along the polyene C34H36 chain obtained with the cue-CCSD method (x = 0 corre-

sponds to the center of the molecule).

Due to the presence of a center of inversion in the systems under study, 𝛽-charges

and 𝛽-moments are equal to zero. Figure 3.12 shows the contributions from the eth-

ylene units of the polyene to 𝛼xx (black) and to 𝛾xxxx (white). The x-axis in the his-

tograms correspond to the coordinates of the centroids representing the ethylene

units. The coordinate origin is located at the center of inversion of the polyene. The

polymer is placed along the x-axis. The distribution of the 𝛼-charge shows alternat-

ing signs and almost constant absolute values along the entire chain with only small

deviations at the edge atoms. For the 𝛾-charges (Fig. 3.11) at adjacent atoms, particu-

larly close to the chain edges, the differences in the values (between atoms belonging

to a single ethylene) are of the order of 0.6. The difference, as one moves closer to the

center of the molecule, slowly decreases. The distribution of 𝛼- and 𝛾-charges vary

Fig. 3.11 Distribution of 𝛼 and 𝛾-charges in C34H36 trans-polyene chain
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Fig. 3.12 Contribution to 𝛼xx and 𝛾xxxx from ethylene units in trans-polyene, C34H36

slightly with the increase of the polymer chain. For polyenes C22H24 and C32H34, the

total 𝛼- and 𝛾-charges at the end ethylenes change in intervals of 0.107–0.108 and

0.536–0.566, respectively. Alternating signs of the hypercharges means that the field

produces an oscillating wave of atomic charges. The charges on ethylenes, in turn,

increase with the increase of the strength of the field applied along the chain. The

largest contribution to the longitudinal components of the polarizability and the 2nd

hyperpolarizability are made by the end ethylene fragments (for the above-defined

arrangements of the molecules relatively to the origin). This is due to the fact that

the atoms of these fragments are most distant from the center of the polymer (their

charges are multiplied by the largest factors) and the charges on the atoms belong-

ing to these fragments reach the maximum values for the chain. Thus for the C34H36
system, 42 % of the longitudinal polarizability component is due to the pair of the

end ethylene fragments. For 𝛾xxxx the corresponding contribution is smaller—28 %,

however it decreases less in moving to the center of the chain comparatively to the

polarizability contribution. In the limit, the contribution of the end ethylene frag-

ments are 40 and 25% for 𝛼xx and 𝛾xxxx, respectively. For all polyenes, starting with

C22H24, the total moments for all ethylenes in the polymer chain (but not for separate

atoms) are positive.

3.3.3.2 Polycyclic Hydrocarbons

In this section, we discuss various members of the family of polycyclic hydrocar-

bons (see Fig. 3.13). Among them there are linear (A) and angular (B) polyacenes,
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Fig. 3.13 Polycyclic Aromatic Hydrocarbons under study

helicenes (G) [72], polyphenylenes (D), poly-para-quinodimethanes (E), polybenzo-

cyclobutadienes (C), poly-para-stilbenes (F), and poly-para-phenylene-vinylene (H).

The dihedral angles of the internal edge in the polyacene chain in helicene are

equal to 25
◦
. For polyphenylene the dihedral angle for each two neighboring cycles

is set to 45
◦
. All presented systems contain conjugated six-membered cycles, so,

in addition to other properties, one can consider the optical parameters in terms of

benzene ring units. For the HF, MP2, and cue-CCSD methods, the corresponding

values of the polarizability for the benzene ring are 25.94, 25.74, and 25.06 a.u.,

respectively. For 2nd hyperpolarizability the values are 844.9, 905.8, and 2603.3

a.u., respectively.

As noted in the Sect. 3.3.2, the polyacenes are characterized by a more complex

structure of the wave function, and therefore, to adequately describe this structure

a higher level of theory is needed. It is expected that for the polycyclic aromatic

hydrocarbons discussed in this section the selection of an appropriate correlation

radius is a very important aspect of the calculation. To study the effect of the level

of accounting for the electron correlation effects for polyacenes, we have calculated

the polarizability and 2nd hyperpolarizability values for different levels of the cue-

CCSD theory. In Figs. 3.14 and 3.15 the dependencies of the specific values of these

properties on the number of the 𝜋-electrons are shown.

The values obtained in the calculations, in comparison to those obtained for poly-

enes, show that a principal difference exists between the two sets of results. In the

polyene case, an increase of the level of theory leads to a systematical improve-

ment of the values of all studied properties relative to the results obtained with the
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Fig. 3.14 Average specific (per electron) polarizabilities of linear polyacenes as a function of the

number of the 𝜋-electrons

Fig. 3.15 Average specific (per electron) hyperpolarizabilities of linear polyacenes as a function

of the number of the 𝜋-electrons
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cue-CCSD method. In the case of polyacenes, for the polarizability, the approxi-

mation that takes into account only the local excitations, l = 1, shows a significant

overestimation in comparison with the results obtained with other levels. However

the results still reveal correct dependence on the number of 𝜋-electrons and they are

more accurate than the HF and MP2 limit values. For the hyperpolarizability the pic-

ture is partially the same. The results calculated with the cue(1)-CCSD method fall

out from the general dependency but they are not overvalued relative to cue-CCSD.

Starting with the l = 2 level corresponding to an enlargement of the excitation set,

a consistent improvement of the calculated values is observed. The HF and MP2

hyperpolarizabilities show some analogy with the corresponding results for poly-

enes, namely the stabilization limit is overestimated, which can also be explained by

an insufficient flexibility of the wave functions in these methods.

Let us now consider several possible isomers of the linear polyacene: angular

polyacenes and helicenes (see Fig. 3.13). In Table 3.12 the results obtained for the

C22H14–C42H24 systems (containing 5–10 benzene rings) are presented for structures

corresponding to systems A, B, and G for different numbers, n, of the benzene rings

in the chain.

Based on the results shown in the table, one can conclude that the largest opti-

cal nonlinearity occurs in the longest isomer, system A. This fact confirms the con-

clusion made for the linear model polyene (Fig. 3.8) and based on the comparison

involving its different conformers. The conclusion was generalized for a larger class

of condensed aromatic hydrocarbons.

Next, let us consider the optical properties of polymers presented in Fig. 3.13,

which involve conjugated aromatic rings. In Table 3.13 the calculated polarizabili-

ties and 2nd hyperpolarizabilities are shown for systems presented in Fig. 3.13 (A—

linear polyacene C30H18, B—angular polyacene C30H18, C—polybenzocyclobu-

tadiene C42H18, D—polyphenylene C42H30, polyquinodimethane C44H32, and G—

helicene C30H18). The values corresponding to the benzene unit calculated with the

different appropriate methods are also shown in the table. All systems contain seven

benzene rings. The values demonstrate the non-additive character of the calculated

Table 3.12 Average values of (hyper)polarizabilities for polyacenes A, B, and G shown in Fig. 3.13

n 5 6 7 8 9 10

⟨𝛼⟩, a.u.

A 158.96 198.09 238.03 278.57 319.58 360.93

B 148.25 184.34 221.18 258.72 296.64 334.91

G 137.85 162.00 186.32 209.95 233.36 254.23

⟨𝛾⟩, a.u.

A 3.22 5.16 7.36 9.85 12.4 15.1

B 1.92 2.95 4.15 5.47 6.88 8.35

G 1.25 1.45 1.69 1.86 2.03 2.11
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Table 3.13 Average values of (hyper)polarizabilities for polyacenes shown in Fig. 3.13

A B C D E G

⟨𝛼⟩, a.u.

HF 312.91 236.78 373.49 262.79 N/A 189.90

MP2 292.06 234.57 385.60 258.73 N/A 191.17

cue-CCSD 238.03 221.18 371.85 249.44 1300.2 186.32

⟨𝛼⟩∕⟨𝛼⟩benzene
HF 12.1 9.1 14.4 10.1 N/A 7.3

MP2 11.3 9.1 15.0 10.1 N/A 7.4

cue-CCSD 9.5 8.8 14.8 10.0 51.9 7.4

⟨𝛾⟩ × 105, a.u.

HF 5.15 2.79 11.6 4.02 N/A 0.863

MP2 7.04 3.52 15.8 4.28 N/A 1.07

cue-CCSD 7.36 4.15 16.4 3.99 858 1.69

⟨𝛾⟩ ∕⟨𝛾⟩benzene
HF 610 330 1370 476 N/A 102

MP2 777 389 1740 473 N/A 118

cue-CCSD 283 159 630 153 33000 65

properties. They show the failure of approaches based on the assumption of additiv-

ity in evaluating the studied nonlinear optical properties.

The data presented in Table 3.13 shows several important features. The first and

most obvious concerns the degree of non-additivity of the polarizability and the 2nd

hyperpolarizability. The ratio of ⟨𝛼⟩ and ⟨𝛼⟩benzene only marginally differ from the

number of benzene rings in the oligomeric chain (the ratio is almost equal to that

number for helicenes), while the ⟨𝛾⟩∕⟨𝛾⟩benzene ratio exceeds the number of the ben-

zene rings by a factor of 2–3. This observation once again underlines the exceptional

difficulty to accurately calculate the full set of the electro-optical properties.

The second noteworthy feature is the difference in the accuracy of the description

of ⟨𝛼⟩ and ⟨𝛾⟩ in the HF and MP2 methods. In general, these methods are satisfactory

in describing the values of the polarizabilities (except the case of linear polyacenes).

At the same time, for the 2nd hyperpolarizabilities, there are significant deviations

from the results obtained from the cue-CCSD calculations (especially for ⟨𝛾⟩benzene).
Therefore, a rough accounting for the electron correlation effects cannot guarantee a

similarly accurate description of every optical property. As it will be shown below,

this conclusion remains true for optical properties proportional to odd powers of the

strength of the applied field.

The highest (hyper)polarizability values appear for poly-para-quinodimethane.

The polarizability for this polymer is 5–7 times larger than those for the other sys-

tems and the 2nd hyperpolarizability is more than 100 times larger. The HF (and thus

MP2) method for the chain poly-para-quinodimethane gives unstable results. Appar-

ently, this system has an allowed long-wavelength transition which makes it behave
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like a metal and this, to a large extent, determines the value of its ⟨𝛾⟩. Despite this

metallic-like behavior, the various approximate versions of the cue-CCSD theory

provide rather stable results for the optical properties.

Table 3.14 shows limit values of the optical parameters calculated according to

Eqs. 3.41 and 3.42 for systems A, C, E, F, and H shown in Fig. 3.13. Polystilbenes

(F) are combinations of model planar polyphenylenes and trans-polyenes. System

H can also be represented as a combination of poly-para-quinodimethane and trans-

polyene.

Based on the presented data, it can be concluded that the highest hyperpolariz-

ability occurs in polymers based on para-quinodimethane. The results for system

E, shown in the table, give an estimation of the lower bound due to the fact that,

for the specific ⟨𝛾⟩, a fast increase of the value with the number of the monomeric

units is observed. Thus, one can expect even larger values for the linear poly-p-

quinodimethane.

In many cases, the application of the HF and MP2 methods is hampered by con-

vergence problems and by instabilities in the calculation to obtain the HF solution.

The use of an orthogonalized cue basis set solves these problems ensuring smooth

convergence even if the HOMO-LUMO gap is small. Also, according to the values

of 𝛼0 and 𝛾0, a more physically correct behavior of the specific values of optical prop-

erties depends on the size of the system as demonstrated by calculations performed

with the cue(l)-CCSD methods. Despite the limitations imposed on the excitation set,

all levels (even the lowest, l = 1) demonstrate correct behavior for the limit 𝛼
∞

and

𝛾
∞

values. The systematic improvement of the structure of the wave function equally

affects the values of the polarizability and the 2nd hyperpolarizability. This happens

due to the size consistency of the CCSD method.

Table 3.14 Limit average values of (hyper)polarizabilities for polyacenes shown in Fig. 3.13

A C E F H

⟨𝛼⟩∞ HF 17.28 11.17 N/A 14.85 N/A

MP2 15.60 11.78 N/A 13.62 N/A

cue-CCSD 10.53 10.58 >60 10.64 29.54

⟨𝛼⟩0 HF −227.3 −98.34 N/A −153.8 N/A

MP2 −197.4 −112.1 N/A −132.6 N/A

cue-CCSD −82.03 −73.21 N/A −73.72 −430.8

⟨𝛾⟩∞∕105 HF 1.72 0.690 N/A 2.96 N/A

MP2 1.86 1.02 N/A 3.33 N/A

cue-CCSD 0.736 0.676 >110 1.27 19.8

⟨𝛾⟩0∕106 HF −6.22 −1.85 N/A −8.27 N/A

MP2 −6.47 −2.87 N/A −9.19 N/A

cue-CCSD −1.62 −1.14 N/A −2.32 −58.9
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3.3.3.3 Nonalternant Hydrocarbons

In our previous work [88] we studied systems containing odd 𝜋-electron cycles. In

the study, in addition to classical fulvalenes, we also considered systems where the

cycles are connected by trans-butadiene and para-quinodimethane bonding frag-

ments. In this section, only classical members of the fulvalene family, where each

two cycles are connected with a double bond, are described. For convenience we use

the notation shown in Fig. 3.16.

Systems considered in this section are characterized by extremely large 𝜋-electron

dipole moments, while remaining entirely carbon-based. A large dipole moment of

a system indicates that a significant charge transfer occurs between the cycles. This

behavior also affects the polarizability and hyperpolarizability and makes these prop-

erties difficult to describe in quantum-chemical calculations. We have observed these

difficulties in the calculations where different variations of the CCSD method were

employed. More specifically, the CCSD hyperpolarizability calculations of some ful-

valenes revealed a significant error (more than 30%) in comparison with the results

obtained in the exact 𝜋-FCI method. Also, considerable differences between the

hyperpolarizability results obtained with different variants of the CCSD method

were observed. Table 3.15 shows the optical properties for calicene [17, 19, 58]

(“[5-3]” in foregoing notation) obtained with different methods including various

CC approaches.

The results are compared with the results obtained with relaxed CC methods

where an exact accounting for the triple (r-CCSDT) and quadruple (r-CCSDTQ)

excitations is included. In this case, the almost exact match of the results of the MP2

calculations (for the second hyperpolarizability) with the FCI (exact) results is likely

a coincidence. This can be concluded based on the results for other systems consid-

ered in Ref. [88], where the MP2 method, as well as the HF method, gives results for

individual components and for average values with incorrect signs or even with incor-

rect order of magnitude. As can be seen from the data presented in Table 3.15, CCSD

gives a noticeably large error (∼10 %) for the 1st hyperpolarizability, and it incor-

rectly describes the 2nd hyperpolarizability (error ∼30 % for the best of the results).

The inclusion of the triply-excited configurations (r-CCSDT) results in a decrease

of the error in up to 5%, and using the method with quadruples, the r-CCSDTQ

approach, leads to an almost exact value. It should be noted that such large errors

Fig. 3.16 Notations for considered fulvalenes
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Table 3.16 Classification of fulvalenes

Class 1 2 3

m = n m > n
Condition n + m = 4k + 2 m + n = 4k m + n = 4k + 2

(∼30 %) are obtained only for selected members of the family of the nonalternant

systems. For almost all studied systems, the CCSD approach shows good agreement

with more accurate methods. At the same time, for systems [5-5] and [7-3] r-CCSD,

u-CCSD, and cue-CCSD methods give values that differ from the FCI results on the

order of one percent. In the studies of the optical properties of fulvalenes we intro-

duced a classification of these systems based on their sizes and on the number of

cycles they contain. The classification uses the [m-n] symbols which are explained

in Table 3.16.

Structurally, this classification is related to the tendency of the cycles contained

in the system to form an aromatic bond arrangement. To explain this, let us consider

one representative of each class. In Fig. 3.17 schemes of inter-cycle charge transfer

for the [5-5], [5-3], and [7-3] systems are presented.

The systems where the charge transfer does not occur for the symmetry reason

(m= n) belong to the first class.

For the systems that belong to the second class, a possibility appears to form two

aromatic rings. In the case of the [5-3] system, this, however, requires that a tranfer

of the electron density from the trinomial cycle to the 5-membered cycle uccurs. It

leads to the formation of 6-electron-5-center and 2-electron-3-center systems. In this

case, the trinomial cycle is an electron donor and the 5-member cycle is an electron

acceptor.

For the third class, there is the possibility of the formation of one aromatic system

and one antiaromatic system. Unlike the previous systems, for the systems belonging

Fig. 3.17 Charge transfer in different classes of nonalternants
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to the third class there is a competition between two cycles to acquire additional

electron density to achieve full aromaticity.

According to our calculations, the direction of the charge transfer is determined

by the electron-donor ability of the smaller cycle. If the two cycles are connected

with a bridging molecular fragment, there are two possible variants of the charge

distribution. If the hole/electron density of the bridging fragment is sufficient to pro-

vide enough electrons to make both cycles aromatic, a displacement of the electronic

density in the direction from the bridge to the cycles is observed. Otherwise, when

the electron-donor capacity of the bridging fragment is not sufficient, a transfer will

still occur, but it will result in the formation of an aromatic ring only for the smaller

cycle and there will be no electron transfer to the larger cycle. In [88], all possi-

ble variants of the intramolecular charge transfer were discussed for fulvalenes and

fulvalene-like systems.

The first and the third class differ from each other because in the latter case, due to

the difference in electron affinities, one cycle surpasses the other in the competition

for the extra electron density obtained from the bridging molecular fragment.

In this section we will consider the charge distribution only for classical fulvalenes

(without bridging fragments). In Table 3.17, the charges on atoms for the [5-3] and

[7-3] systems obtained in the calculations are presented (the atom numbering shown

in Fig. 3.17 is used). The charge transfer magnitude, 𝛿
(0)

, is marked with a 0 index,

as it characterizes the charge distribution at zero field.

According to the data presented in Table 3.17 one can see that a simple consider-

ation based on the tendencies of the different cycles to form aromatic rings explains

Table 3.17 Charges and transferred charges between cycles in fulvalenes obtained using different

methods

Atom Hückel HF MP2 cue-CCSD r-CCSD FCI

[5-3]

1 0.281 0.145 0.141 0.129 0.125 0.124

2 0.262 0.156 0.131 0.088 0.087 0.081

3 −0.181 −0.150 −0.126 −0.085 −0.094 −0.089

4 −0.157 −0.088 −0.089 −0.090 −0.081 −0.085

5 −0.165 −0.060 −0.054 −0.040 −0.040 −0.039

𝛿
(0)

0.824 0.445 0.412 0.346 0.336 0.330

[7-3]

1 −0.033 −0.002 0.000 0.001 0.001 0.002

2 −0.154 −0.060 −0.055 −0.043 −0.044 −0.045

3 0.087 0.057 0.053 0.042 0.041 0.043

4 −0.278 −0.182 −0.165 −0.128 −0.132 −0.129

5 0.080 −0.017 −0.035 −0.061 −0.052 −0.058

6 0.200 0.105 0.103 0.094 0.094 0.094

𝛿
(0)

0.480 0.193 0.171 0.128 0.136 0.130
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the direction of the charge transfer. It is worth noting that the simplest of the meth-

ods used in the calculations, namely the Hückel method, gives for system [5-3] the

amount of the electron density transferred between the cycles of about 1 in units

of the electron charge. The inclusion of the electron-electron interaction does not

qualitatively change the picture of the charge distribution, but significantly reduces

the amount of the electron density transferred (the ratio of the results obtained with

the FCI and MO Huc̈kel methods is about 2.5 times). Also note that the cue-CCSD

method correctly describes the total charge on each cycle, as well as the charges on

the individual atoms.

A more complex issue is the behavior of the charges when the field is applied

along the longitudinal axis of fulvalene. Using the partitioning scheme introduced in

Sect. 3.3.3.1 and employed for describing the contributions to the (hyper)

polarizability from different atoms, we can analyze the atomic changes in fulvalenes

in the presence of the field. The intramolecular charge transfer at the zero field is

described by the different variations of the CCSD method at a sufficient level of

accuracy, so it cannot serve as an indicator of any incorrectness in the description

of the hyperpolarizabilities of systems belonging to the second class. Therefore one

needs to study the hypercharges and the moments of some corresponding quantities.

In Table 3.18 the results concerning the (hyper)charge transfer and the components

of the dipole moment and the (hyper)polarizability calculations are presented for

three representative members of each considered class.

The values presented in Table 3.18 allow us to trace the relationship between the

error in the description of the intramolecular transfer of the hypercharges and the

accuracy of the values for the corresponding optical properties, i.e. polarizability,

hyperpolarizability, etc. The most striking example is system [7-5]. For this system

a wrong sign and the order of magnitude of 𝛿
(𝛾)

is obtained with the cue-CCSD

method as compared with the FCI results. This results are in error for the longitudinal

component of the 2nd hyperpolarizability by more than 65 % ! This exceeds the error

for the previously described fulvalene [5-3] more than twice. At the same time, for

the [9-3] system which is isoelectronic to the [7-5] system and belongs to the same

class of systems, the error in the 2nd hyperpolarizability component is less than 1%.

Performing a more detailed analysis of the hypercharges and the moments of the

(hyper)polarizabilities for system [7-5] one can conclude that the distribution of the

hypercharges obtained with the CCSD method is generally wrong (especially the

charges corresponding to the first and second hyperpolarizabilities). In Table 3.19

the total charges, q(𝛼), q(𝛽), and q(𝛾), for the cycles forming the systems and the cor-

responding total moments of the (hyper)polarizabilities are shown.

Very large errors are obtained for the two “end” atoms of the five-membered ring

(error of more than 500% for each), but the value of the charge is small, hence its

contribution to the corresponding components is also small. The next largest error for

q(𝛾) is for the pair of atoms forming the bond connecting the two rings (70 and 85 %

for the atoms belonging to seven-membered and five-membered rings, respectively).

For this pair of atoms the highest values of 𝛾-hypercharge are observed, but, as they

are located close to the origin, the contribution from the corresponding moment is

also small. Nevertheless, the total moment for the seven-membered cycle is under-
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Table 3.19 (Hyper)polarizability moments for fulvalene [7-5]

q𝛼i 𝛼i q𝛽i 𝛽i q𝛾i 𝛾i∕104∑
7 CUE 0.4890 110.3 −0.3266 −2992 −0.0198 9.08

FCI 0.4673 106.2 −0.4139 −3173 0.2142 15.40∑
5 CUE −0.4890 133.8 0.3266 −3600 0.0198 1.19

FCI −0.4673 128.7 0.4139 −4364 −0.2142 13.80∑
CUE – 244.1 – −6591 – 10.27

FCI – 234.8 – −7537 – 29.21

estimated by 40% and for the five-membered cycle by 90%! As a result, the value

of the longitudinal component of the 2nd hyperpolarizability obtained with the cue-

CCSD method has an error of 65%.

As mentioned above, for compounds belonging to the second class, the addition

of a molecular fragment bridging the two cycles largely affects the intramolecular

charge transfer. The presence of the bridging group also affects the charge distrib-

ution and the hypercharges. In the case of para-quinodimethane as the bridge, the

change of the total (by cycle) charge is shown in Table 3.20. The insertion of the

bridge between the cycles also leads to an increase of the longitudinal components

of the hyperpolarizability by more than one order of magnitude, as determined with

the FCI method. It also results in an incorrect order of magnitude for the first hyper-

polarizability and an incorrect sign for the second hyperpolarizability calculated with

the HF and MP2 methods.

Recalling the conclusions made in previous two sections and considering the

results for the non-alternant hydrocarbons, we can conclude that the hyperpolariz-

ability is a complex property not only for long 𝜋-conjugated systems but also for

smaller systems containing several dozen atoms. Fulvalenes add a striking confirma-

tion of this conclusion. To correctly describe the nonlinear optical properties even of

systems as small as fulvalenes it is necessary to use high-level theories that accurately

account for the electron correlation and include the third and higher order excitations

from the reference wave function. Some of the methods widely used for molecular

calculations (such as MP2 or DFT) usually do not guarantee sufficient accuracy of

the calculations of the optical properties.

Table 3.20 FCI hypercharges of [5-3] fulvalene without and with para-quinodimethane bridge

q(𝜇)i q(𝛼)i q(𝛽)i q(𝛾)i

[5-3]∑
5 −0.329 0.341 0.105 −0.148

[5-para-quinodimethane-3]∑
5 −0.173 0.572 1.383 4.095∑
bf 0.104 −0.032 −0.186 −0.895
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Fig. 3.18 Nonalternant polymers under consideration in this work

Among the nonalternant polymers, one should separate systems that are formed

from nonalternant monomeric units from the structures with “alternant” chains and

with “nonalternant” end groups. Both types were considered in our previous work

[88]. Here we give only a general description of the systems and we present conclu-

sions that have been derived from the analysis of the results obtained in the calcula-

tions.

The first group includes condensed (c-polyfulvenes) and non-condensed (nc-

polyfulvenes) polyfulvenes and polycalicenes. The structures of these systems are

shown in Fig. 3.18. The limit values of optical properties obtained by extrapolation

for these systems are shown in Table 3.21. The corresponding specific values will be

presented at end of section.

As one can see, the limit values for the condensed and uncondensed polyful-

venes are similar. In comparison with other polymers (represented in the two pre-

vious sections) these values are small, indicating unlikely use of these polymers as

chromophores for generating the second and third harmonics.

Polycalicenes are characterized by significant limit hyperpolarizabilities that sur-

pass the hyperpolarizabilities of trans-polyenes, but do not exceed those of some

members of the polycyclic family. Some works [75–77] are devoted to the synthe-

sis of polymeric calicene, which offer some potential for use as materials in optical

devices.

Polymers belonging to the first group are characterized by very modest values

of the first hyperpolarizability, therefore, are not suitable as chromophores for the

second harmonic generation. For this purpose it is usually preferred to use polymers

with the donor and acceptor groups separated with a long 𝜋-conjugated fragment.

It is most common to use amino and nitro-groups as a pair of donor and acceptor.

Table 3.21 Limit values calculated for the polymers under consideration

c-polyfulvene nc-polyfulvene polycalicene

⟨𝛼⟩∞ 7.0 6.6 20

⟨𝛾⟩∞∕104 5.8 5.2 39
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In our previous work [88], the use of odd-electron 𝜋-conjugated cycles as bond-

ing fragments that guarantee large values of the 1st hyperpolarizability was sug-

gested. According to the results discussed in the section on fulvalenes, having dif-

ferent cycles forming compounds of the second class has some advantage. There-

fore, a trinomial was selected as the donor and a five-membered ring as an accep-

tor. trans-polyenes, poly-para-quinodimethanes, and poly-para-phenylenevinylene

were selected as the 𝜋-conjugate bonding fragments (corresponding polymers desig-

nated as pp-PE, pp-PQ, pp-PPV). The structures of the systems under investigation

are shown in Fig. 3.19. This choice was made based on the data presented in the

Table 3.22.

Limit values of optical properties for considered non-classical push-pull polymers

are presented in Table 3.22. For these systems the dipole moment and first hyperpo-

larizability tend to converge with the chain length to limit values. This is why, when

obtaining values for an infinite chain, the |𝜇| and |𝛽| values can be used directly. The

fast and monotonic convergence of these values to the limit values can be explained

by the shielding of the cycles by the 𝜋-conjugated chain. For a sufficiently long length

of the polymer, the donor and acceptor groups do not interact with each other and

the atoms located in the middle of the chain do not acquire any charge. The pp-PQ|𝛽|∞ values are the largest among the three groups of polymers. Hence, these poly-

mers have potential for being good materials for high-performance non-linear optical

devices.

The specific limit ⟨𝛾⟩ for the push-pull variant of the poly-para-quinodimethane

is found to be larger than that for the pure polymer. Clearly, the presence of the end

Fig. 3.19 Polymers with nonalternant “end” groups

Table 3.22 Limit values of (hyper)polarizabilities for polymers shown in Fig. 3.19

Bridge |𝜇| (D) ⟨𝛼⟩∞∕Nel (a.u.) |𝛽|∞ (a.u.) ⟨𝛾⟩∞∕Nel (a.u.)

PE 5 14 2×104 2×105

PQ 14 >55 1×106 >2×107

PPV 9 29 2×105 2×106

Reprinted with permission from Ref. [88]. Copyright 2014 American Chemical Society
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cycles affects not only the value of the first hyperpolarizability but also the value of

the second hyperpolarizability. Just as in the case of the polymers without the donor

and acceptor groups, the polarizability and the 2nd hyperpolarizability of pp-PQ are

presented to estimate the lower-boundary values for the corresponding quantities,

which exhibit intensive growth with the length of the system.

3.3.3.4 Nanosystems (Hyper)polarizability Calculations

Potential applications of 𝜋-conjugated nanosystems in molecular electronics and

optics are currently of great interest. Among these systems, one should particularly

mention fullerenes (see Sect. 3.3.1), graphene fragments, nanotubes, and their deriv-

atives. The theoretical approaches most frequently used to investigate the properties

of nanosystems are usually based on the concept of an infinite chain of periodic units

with a particular topology. However, such approaches are not suitable for investigat-

ing systems with structural defects (partial hydrogenation atom substitution and other

topological defects). The method we introduced allows computation of optical prop-

erties, i.e. the (hyper)polarizability, for aperiodic systems that contain thousands of

atoms.

For the systems discussed earlier, the calculated specific optical properties were

already converged to the limit values for a relatively small number of atoms (from

several dozen up to a few hundreds). For nano-sized systems, the convergence

requires from several hundred up to several thousand atoms. To demonstrate the abil-

ity of our method to describe nano-systems, we carried out calculations of a model

macromolecular system with the structure presented in Fig. 3.20. The system repre-

sents a looped nanotube (nanotore). The looping of the nanotube allows for avoiding

the “end” effects to appear in the calculations. The size of the nanotore is defined

by the number of unit cells in the system. It can be expected that the C–C bonds

Fig. 3.20 The nanotore

structure
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Table 3.23 (Hyper)polarizabilities for nanotores with different numbers of unit cells, n
n 16 20 24 28 32 36

Nel 320 400 480 560 640 720

⟨𝛼⟩∕103 9.76 13.57 17.58 21.72 25.94 30.21

⟨𝛾⟩∕107 17.01 24.05 30.55 36.29 41.28 45.46

𝜅 1.39 1.31 1.26 1.22 1.19 1.17

size Tl=2
2 ∕104 7.42 9.28 11.14 13.00 14.85 16.70

size Tl=3
2 ∕104 1014 1267 1520 1774 2027 2280

The size of T2 amplitude matrix, presented in the last two rows

located near the inner radius of the nanotore are somewhat shorter than the C–C

bonds located near the outer radius. However with the growth of the tore radius this

difference should be disappearing. The nanotore presented in Fig. 3.20 corresponds

to the zig-zag nanotube with the (5,0) topology. The number n of the unit cells in our

calculations varied in the interval from 16 to 36.

The difference in the C–C bond lengths for the nanotore can be expressed with the

curvature parameter 𝜅, which is defined as the ratio of the longest C–C bond length

and the smallest one. It is clear that for limn→∞ 𝜅 = 1 and in the limit case nanotore

becomes equivalent to an infinite nanotube without the “end” effect. The calculated

values of the average polarizability and 2nd hyperpolarizability and a parameter of

the nanotore curvature are presented in Table 3.23. The calculation of the parameters

has been carried out with the cue(2)-CCSD method. The use of higher levels of theory

would require much more significant computational expenses. Also in Table 3.23,

the size of the amplitude vector is presented for level l = 2 and l = 3. Based on the

data presented in the table, one can see that extending the excitation set from the

set used in cue(2)-CCSD to the set used in cue(3)-CCSD leads to an increase of the

size the amplitude vector by more than two orders of magnitude. For the nanotore

system, HF and MP2 results are not reported because they were not obtained due

to the divergence of the SCF iteration process. The divergence is caused by quasi-

degeneracy of the HOMO and LUMO that happens due to the high level of symmetry

of the system.

3.4 Conclusion

The calculation of linear and nonlinear optical properties of conjugated systems is

still a difficult problem for contemporary quantum chemistry. Wide use of conju-

gated systems, especially such nanosystems as carbon nanotubes, fullerenes, and

graphenes in materials applications, require development of reliable theoretical

methods for predicting the electronic and optical properties through quantum-

mechanical calculations. The coupled cluster theory, which offers high accuracy in

ab initio calculations, cannot be applied to investigate large molecular systems con-
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taining hundreds of atoms. Our semiempirical local coupled-cluster method (cue-

CCSD) provides an alternative to the ab initio approach. It enables calculation of

optical parameters of 𝜋-conjugated molecules and to produce results which qualita-

tively agree with the experiment. The results presented in this review clearly show

the need to account for a significant part of the electronic correlation effects in the

calculations in order to predict the molecular optical parameters with an adequate

accuracy. This conclusion applies to both long polymers and small systems contain-

ing only a dozen atoms. A question which arises when the accuracy of a particular

computational approach is evaluates, is what reference data one should use in such

evaluation. In general, the optical parameters for short polymer fragments obtained

in the cue-CCSD calculations are in good agreement with those obtained in the FCI

calculations, as well as with the available experimental data. Thus, the FCI results

can be used as the reference. The results obtained with the cue-CCSD method for

quasi-one-dimensional conjugated systems with different lengths allow determina-

tion of limit values of the optical parameters. Some of these values are shown in

this review. Certainly, one cannot expect the results obtained with the cue-CCSD

method, which is a semiempirical approach, to be quantitatively accurate for a partic-

Fig. 3.21 Average specific (per electron) polarizabilities of different conjugated polymers in cue-

CCSD approach
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Fig. 3.22 Average specific (per electron) 2nd hyperpolarizabilities of different conjugated poly-

mers in cue-CCSD approach

ular molecular system. However, the trends in the changes of the optical parameters

with the lengths of the polymer are usually correctly described with the method. The

same applies to polymers which are structurally similar. For example, the compar-

ative analysis of the average (per electron) polarizability described in Fig. 3.21 and

the 2nd average hyperpolarizability described in Fig. 3.22 for different systems (for

a detailed description of the systems and their optical properties see Sects. 3.3.3.1–

3.3.3.3) provides information about the optical response of the systems, which can

be useful in predicting their optoelectronics applications.
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Chapter 4
A Critical Look at Methods for Calculating
Charge Transfer Couplings Fast
and Accurately

Pablo Ramos, Marc Mankarious and Michele Pavanello

Abstract We present here a short and subjective review of methods for calculating

charge transfer couplings. Although we mostly focus on Density Functional The-

ory, we discuss a small subset of semiempirical methods as well as the adiabatic-to-

diabatic transformation methods typically coupled with wavefunction-based

electronic structure calculations. In this work, we will present the reader with a crit-

ical assessment of the regimes that can be modelled by the various methods—their

strengths and weaknesses. In order to give a feeling about the practical aspects of

the calculations, we also provide the reader with a practical protocol for running

coupling calculations with the recently developed FDE-ET method.

4.1 Introduction

Charge transfer (CT) between molecular species play vital roles in processes that

occur in biology such as protein communication [1–5], respiratory systems in the

mitochondria [6], oxidative damage on DNA [7–9], photosynthetic cycles [10, 11],

as well as in materials science conduction in organic semiconductors [12, 13]. In

order to achieve an accurate modeling of these processes in the simulations, one

needs to include several levels of complexity, which in most instances lead to con-

sidering model systems featuring hundreds of atoms and an even larger number of

electrons. The large system sizes preclude the use of high-level wavefunction-based

quantum-chemical methods. For this reason, researchers worldwide have invested

a great deal of effort in developing approximate, fast, yet still accurate methods

for describing CT reactions. Methods based on Density-Functional Theory have in

recent years become competitive in regards to the accuracy while still maintaining a

generally low computational cost.

Marcus theory [14, 15] is perhaps the most applicable theory for modeling a CT

process. This theory was originally derived under three main approximations. First, a

CT event is thought of in terms of a two-dimensional basis set (donor and acceptor).
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The interaction matrix element of the Hamiltonian is the central quantity in deter-

mining the probability of a transition in populations from the basis function repre-

senting the donor state to one representing the acceptor state. This interaction is the

electronic coupling VDA of the two electronic states involved in the CT reaction [16,

17]. Second, it relies on the Condon approximation [18, 19], in which the electronic

coupling is considered to be independent of the nuclear motion when the transfer

occurs. Third, reactants and products are modeled as being enclosed by spheres on

which the polarization of the solvent is represented as a dielectric continuum [15,

20–22]. Marcus theory can be summarized as [23]:

kCT = 2𝜋
ℏ

|VDA|2 e−
(ΔG+𝜆)2

4𝜆KBT√
4𝜋𝜆KBT

. (4.1)

where 𝜆 is the reorganization energy, and VDA is the electronic coupling.

States that most resemble the initial and final states of electron transfer have been

often referred to as “diabatic states” [24, 25] and their corresponding wavefunctions

“diabats”. Although it is known that diabatic states have a formal definition [26, 27],

it was shown [28] that charge-localized states satisfy the requirements for diabatic

states for condensed phase electron transfer reactions.

Several approaches are available in the literature to generate and evaluate Hamil-

tonian matrix elements with wavefunctions of charge-localized, diabatic states. They

differ in the level of theory used in the calculation and in the way localized electronic

structures are created [15, 25, 26, 29–31]. When wavefunction-based quantum-

chemical methods are employed, the framework of the generalized Mulliken-Hush

method (GMH) [29, 32–34], is particularly successful. So far, it has been used in

conjunction with accurate electronic structure methods for small and medium sized

systems [35–37]. As an alternative to GMH and other derived methods [38, 39],

additional methods have been explored for their applicability in larger systems such

as constrained density functional method (CDFT) [25, 37, 40, 41], and fragmenta-

tion approaches [42–47], which also include the frozen density embedding (FDE)

method [48, 49].

So far, we have mentioned methods that produce all-electron diabatic wavefunc-

tions and corresponding Hamiltonian matrix elements. There are two other classes

of methods which simplify the quantum problem by focusing on the wavefunction of

the transferred charge: such as methods making use of the frozen core approximation

Fragment Orbital methods (FO), and methods that assume the charge to be localized

on single atomic orbitals [50]. In this work, we will also treat these computationally

low-cost methods.

As our group is involved in the development of the Frozen Density Embedding

(FDE) formulation of subsystem DFT, this chapter will pay particular attention to

the FDE methodology. We believe FDE to be a very promising method capable of

achieving a good description of the electronic coupling in CT reactions, while main-

taining a low computational complexity.



4 A Critical Look at Methods for Calculating Charge Transfer Couplings . . . 105

This chapter is divided in two parts: the first part is devoted to the FDE method as

well as other DFT-based alternatives. The second part covers more accurate methods

(wavefunction-based). In each of the two parts, we discuss the numerical stability and

accuracy of the methods in the generation of diabatic states with the overarching goal

of obtaining reliable electronic couplings with a contained computational effort.

We will start with a description of FDE and its ability to generate diabats and

to compute Hamiltonian matrix elements—the FDE-ET method (ET stands for

Electron Transfer). In the subsequent section, we will present specific examples

of FDE-ET computations to provide the reader with a comprehensive view of the

performance and applicability of FDE-ET. After FDE has been treated, four addi-

tional methods to generate diabatic states are presented in order of accuracy: CDFT,

FODFT, AOM, and Pathways. In order to output a comprehensive presentation, we

also describe those methods in which wavefunctions methods can be used, in partic-

ular GMH and other adiabatic-to-diabatic diabatization methods. Finally, we provide

the reader with a “protocol” for running FDE-ET calculations with the only avail-

able implementation of the method in the Amsterdam Density Functional software

[51]. In closing, we outline our concluding remarks and our vision of what the future

holds for the field of computational chemistry applyed to electron transfer.

4.2 DFT Based Methods

4.2.1 The Frozen Density Embedding Formalism

The frozen density-embedding (FDE) formalism [52] developed by Wesolowski and

Warshel [52–54] has been applied to a plethora of chemical problems, for instance,

solvent effects on different types of spectroscopy [55–57], magnetic properties [58–

62], excited states [55, 63–66], charge transfer states [49, 67, 68]. Computationally,

FDE is available for molecular systems in ADF [51, 69], Dalton [70, 71], Q-Chem

[72, 73], and Turbomole [74–76] packages, as well as for molecular periodic sys-

tems in CP2K [77, 78] and fully periodic systems (although in different flavors) in

CASTEP [79, 80], Quantum Espresso [81–83], and Abinit [84, 85].

FDE prescribes that the total electron density should be expressed as the sum of

subsystem electron densities [53, 86–89], this is based on the idea that a molecular

system can be more easily approached if it is subdivided into many smaller subsys-

tems. Namely,

𝜌tot(𝐫) =
# 𝑜𝑓 𝑠𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚𝑠∑

I=1
𝜌I(𝐫). (4.2)

As in regular DFT calculations, the electron density of each subsystem is com-

puted by solving selfconsistently a Kohn–Sham (KS) like equation per subsystem.

These KS like equations read as:
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[
−∇2

2
+ 𝜐

I
KS(𝐫) + 𝜐

I
emb(𝐫)

]
𝜙(i)I(𝐫) = 𝜖(i)I(𝐫)𝜙(i)I(𝐫). (4.3)

where 𝜙(i)I(𝐫), 𝜖(i)I are the molecular orbitals and orbital energies of subsystem I. In

(4.3) we have augmented the Kohn–Sham single particle Hamiltonian by an embed-

ding potential, 𝜐
I
emb, in which are encoded the interactions with the other subsystems.

In the following, 𝜐
I
emb(𝐫) is the embedding potential acting on subsystem I:

𝜐
I
emb(𝐫) =

NS∑
J≠I

[
∫

𝜌J(𝐫′)|𝐫 − 𝐫′|d𝐫′ −
∑
𝛼∈J

Z
𝛼|𝐫 − 𝐑

𝛼
|
]
+

+
𝛿Ts[𝜌]
𝛿𝜌(𝐫)

−
𝛿Ts[𝜌I]
𝛿𝜌I(𝐫)

+
𝛿Exc[𝜌]
𝛿𝜌(𝐫)

−
𝛿Exc[𝜌I]
𝛿𝜌I(𝐫)

. (4.4)

In the above, Ts, Exc and Z
𝛼

are kinetic and exchange-correlation energy functionals,

and the nuclear charge, respectively, and NS is the total number of subsystems con-

sidered. In practical FDE calculations, the kinetic energy is calculated in terms of

orbital free semilocal functionals. This approximation is ultimately the biggest dif-

ference between an FDE and a full KS-DFT calculation of the supersystem [90–93].

As a consequence, the embedding potential becomes inaccurate when the subsys-

tems feature a large overlap between their electron densities [83, 94, 95] (this is

because the larger the density overlap is, the larger the magnitude of the nonaddi-

tive potentials become). In FDE, the subsystem KS equations are left to converge to

selfconsistency with respect to each other. This is often achieved by employing the

so-called freeze-and-thaw procedure [69, 96] (as done in ADF and other molecular

codes) or via updating the embedding potential at every SCF cycle as done in CP2K

[78, 97] and Quantum-Espresso [81, 83, 98]. It is worth noting that FDE scales lin-

early with the number of subsystems provided that linear scaling methods for the

solution of the electrostatic problem are employed [69].

The earliest example of diabatization by FDE was given in Ref. [48]. This is

shown in Fig. 4.1, where the spin densities for a pair of guanines are calculated.

KS-DFT of the supersystem carried out with semilocal XC functionals fails in the

prediction of the spin density. This is because the self-interaction error makes the

spin density spread on both guanines against the prediction given by more accu-

rate theoretical work [35] and experimental studies [99–101]. On the contrary, FDE

localizes the charge on a guanine of choice.

The fact that FDE was able to provide subsystem-localized electronic structures

was known since its early application to systems with unpaired electrons [60–62,

102]. Later, this ability of FDE was explored for the computation of diabatic states

for electron transfer [48, 49, 67, 103] and to compute hyperfine coupling constants

[60, 61].

The question that one can raise is why FDE calculations yield charge localized

states? We provide here four reasons [49, 103].
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Fig. 4.1 Spin densities of a guanine-cytosine dimer radical cation, (GC)+2 . a KS-DFT supramole-

cular calculation using PW91 functional, b FDE calculation considering two subsystems where

the left side subsystems (blue contour) is positively charged and c FDE calculation for four sub-

systems with one subsystems (blue contour) is positively charged. The nucleobases structures and

spin densities were taken from Ref. [48]

1. Orthogonality is not imposed between the molecular orbitals belonging to differ-

ent subsystems.

2. FDE calculations can be executed in the monomer basis set. This is known as

FDE(m) method [104].

3. FDE calculations are always initiated with a subsystem localized initial guess of

the electron density.

4. Electrons of a subsystem, remain localized also because there are repulsive walls

in the region of the surrounding (frozen) fragments.

The first reason, is important because it directly removes a bias towards delocal-

ization which results due to orthonormalization of the molecular orbitals, as already

noted by Dulak and Wesolowski [105]. The second and third reasons come together,

the lack of basis functions on the surrounding subsystems, does not allow substan-

tial charge transfer between the subsystems. As a consequence, the SCF is biased to

converge to localized electronic structures.

The fourth reason makes reference to the approximate nature of the term
𝛿Ts[𝜌]
𝛿𝜌(𝐫) −

𝛿Ts[𝜌I ]
𝛿𝜌I (𝐫)

(also known as nonadditive kinetic energy potential which is part of the embed-

ding potential) in the region of the frozen fragments (e.g. in the region where 𝜌J with

J ≠ I is larger than any other subsystem electron density). Approximate nonaddi-

tive kinetic energy potentials fail in canceling out the attractive potential due to the

nuclear charge in the vicinity of the nucleus of the surrounding frozen subsystems

[104, 106], and they do not reproduce the exact potential at intermediate regions

[107–109], especially in the vicinity of an atomic shell [106, 109]. In that region

they cross the exact potential and large potential walls arise. A simplified depiction

of this effect is devised in Fig. 4.2.
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Fig. 4.2 Exemplification of the embedding potential at the atomic shells of the surrounding sub-

systems. Figure from Ref. [103]

In this scenario, diabatic states can be generated with FDE by performing at least

two simulations, one featuring a hole/electron on the donor while the acceptor is

neutral and one calculation in which the charge hole/electron is on the acceptor. The

result is two charge localized states, whose, densities and Kohn–Sham orbitals are

used in a later step in order to build the diabatic Hamiltonian and overlap matrices,

needed to compute the diabatic coupling matrix element.

4.2.1.1 FDE-ET Method

FDE-ET is a methodology which computes Hamiltonian couplings from diabatic

states generated by an FDE calculation. Electron transfer reaction are usually

described in the basis of a two-state formalism [30], taking as basis set two broken-

symmetry charge-localized states. This methodology can also approach models for

the superexchange mechanism [7, 23, 110–113], where the transfer is still modelled

by a Two-dimensional basis set but the coupling includes the effect of non-resonant

bridges states. Figure 4.3, illustrates the difference between tunneling through the

vacuum and through a set of bridge states. The bridge could be comprised of one

or more molecules, a covalent bond or any other type o potential barrier as long as

its height is lower than the one when vacuum separates donor and acceptor. As it is

shown in Fig. 4.3, the higher the potential barrier the faster the coupling decays with

respect to the donor–acceptor distance.

In FDE-ET we seek a method capable of computing the Hamiltonian matrix in

the basis of charge-localized states generated with FDE. First, we have to define the

needed matrix elements. As diabatic states are not the eigenfunctions of the mole-

cular Hamiltonian, the off-diagonal elements of such Hamiltonian are not zero and

can be approximated by the following formula [114, 115] if 𝜓D and 𝜓A are slater

determinants representing the donor and acceptor diabats:

HDA = ⟨𝜓D|Ĥ|𝜓A⟩ = SDAE
[
𝜌
(DA)(𝐫)

]
. (4.5)
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Fig. 4.3 Energy dependence of a charge transfer process. The off-diagonal element (Dirac nota-

tion) will decay as the potential well that the charge has to overcome increases. Two cases: for

vacuum as a potential well we have a faster decay, and when molecules act as a bridge the transfer

will decay slower

Here Ĥ is the molecular electronic Hamiltonian, and 𝜌
(DA)(𝐫) is the transition den-

sity defined as 𝜌
(DA)(𝐫) = ⟨𝜓D|∑ne

k=1 𝛿(𝐫k − 𝐫)|𝜓A⟩, with ne being the total number

of electrons in the system (i.e. the sum of the electron number of all subsystems)

and E
[
𝜌
(DA)(𝐫)

]
is an energy density functional. The donor–acceptor overlap matrix

elements are found by computing the following determinant:

SDA = det
[
𝐒(DA)

]
, (4.6)

where 𝐒DAkl = ⟨𝜙(D)
k |𝜙(A)

l ⟩ is the transition overlap matrix in terms of the occupied

orbitals (𝜙
(D∕A)
k∕l ) [114, 116]. Thus, the transition density is now written in the basis

of all occupied orbitals which make up the diabatic states 𝜓D and 𝜓A.

𝜌
(DA)(𝐫) =

occ∑
kl

𝜙
(D)
k (𝐫)

(
𝐒(DA)

)−1
kl 𝜙

(A)
l (𝐫). (4.7)

The Hamiltonian coupling is not HDA, but it is generally reported as the coupling

between the Löwdin orthogonalized 𝜓D and 𝜓A. For only two states this takes the

form,

VDA = 1
1 − S2DA

(
HDA − SDA

HDD + HAA

2

)
. (4.8)



110 P. Ramos et al.

Turning to the superexchange picture, the effective coupling, is a summation of

the contribution given by the interaction between D and A and the interaction of D

and A with all bridges states, namely:

VDA(E) = ṼDA + 𝐕̃T
DB𝐆B(E)𝐕̃BA

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

Vbridge

, (4.9)

where the superscript T stands for transpose, 𝐆B(E) is the Green’s operator, defined

as

𝐆B(E) = −(𝐕̃B − E 𝐈̃B)−1, (4.10)

As shown in Eq. 4.9, ṼDA is the coupling for the donor–acceptor transfer, which in

the absence of bridge states (CT through vacuum), would be the only contribution to

VDA(E). On the other hand, if bridge states are present, the contribution to VDA(E) is

given by the second addend in Eq. 4.9. Generally, E appearing above is the energy at

which the tunneling event occurs (i.e. at the crossing seam of the Marcus parabolas).

In our works [67], E was chosen to be in between EA and EB, and specifically to be
ED+EA

2
. This choice is invoked by several works in the literature [30, 117–119] where

it is well known that there is a mild dependence of the coupling with the tunneling

energy [118]. However, this equation holds when there is no resonance between D,

A and the bridges states [23, 30, 120–123]. If near-degeneracies appear then the

transport regime transitions to resonant tunneling or hopping.

4.2.1.2 Distance Dependence of the Electronic Coupling

In this section, we discuss calculations of the coupling matrix element (VDA) of hole

transfer from a donor to an acceptor molecule through the vacuum. This means that

the initial state of hole transfer is the donor molecule (D), and the final state the

acceptor molecule (A), and no intermediate bridge states are considered. Any reliable

method for computing couplings should be able to reproduce high level calculations

of CT coupling in small molecular dimers. For this purpose, we initially chose 23

biologically relevant 𝜋-stacks [67], in order to analyze the distance dependence of

the coupling, separations of 3–20 Å were considered, as result a total of 276 coupling

calculations were ran. Overall, our couplings show a good agreement with previous

computations (e.g. we reproduced the decay factors, 𝛽, 𝜋-stacked dimers separated

by vacuum).

When a test set for hole transfer couplings featuring high accuracy couplings

became available [37] we could compare systematically the FDE-ET couplings with

the benchmark values [103]. Benchmark calculations were ran on a set of 15 of

𝜋-stacked dimers. This study was rigorous, and tested the effect of the basis set size,

nonadditive kinetic energy functionals (NAKE) and exchange-correlation function-

als (XC) on the value of the computed couplings. The most important finding that

resulted from the benchmark work resided in the fact that GGA functionals coupled
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Table 4.1 Mean statistical values for the best XC-functional choices

Set MUE (MeV) MRUE (%) MAX (meV)

PBE/PW91k/TZP 15.3 7.1 49.6

PW91/PW91k/TZP 15.2 7.1 49.1

B3LYP/PW91k/TZP 18.1 7.9 58.5

M06-2X/PW91k/TZP 18.0 8.2 54.9

Reproduced with permission from Ref. [103]

with a medium sized basis set and the PW91k NAKE functional allow the FDE-ET

method to yield reliable electronic couplings as tested against high-level correlated

wavefunction (MRCI+Q, NEVPT2 and SCS-CC2) methods applied to the array of

dimers. The PBE and PW91 functionals are found to be a good choice in each case

considered with a MAX error lower than 50 meV and an overall MRUE of a little over

7 % in both cases [103]. Statistically, we found that hole transfer couplings are rela-

tively insensitive to the choice of NAKE functionals, while our analysis of the basis

set dependence shows that QZ4P basis set is the most problematic, as it often biases

the FDE convergence to nonphysical states at short intersubsystem separations—a

problem already well documented in the FDE literature [124, 125]. Finally, Table 4.1

compares the performance of FDE-ET for different levels of theory. The results for

GGAs are in good agreement with the benchmark values, and in some cases they

showed to be superior to hybrid and meta-GGA functionals, particularly PBE and

PW91. B3LYP also stands out as another valuable choice.

Generally, all functionals perform well in the FDE-ET coupling calculations mak-

ing FDE-ET a method that is relatively insensitive to the XC and NAKE functional

choice.

4.2.1.3 Hole Transfer in DNA Oligomers

In this section, we discuss an interesting application of FDE-ET to charge trans-

fer in biosystems.The electronic coupling for hole transfer in a completely dry B-

DNA structure of G(T)NG and G(A)NG was calculated. The structures considered

lack water molecules, metal counterions and phosphate linker groups. The latter is

because the applicability of FDE is restricted to non-covalently bound molecular

fragments. Consequently, appropriate modifications to the B-DNA structure had to

be made: we have removed the phosphate groups and capped the dangling bonds

with hydrogen atoms at 1.09 Å from the bonding atom. The resulting structure of

the modified G(T)NG is depicted in Fig. 4.4. The largest system considered is the

double strand with ribose groups and counts 308 atoms and 1322 electrons. In this

study, the role of the environment on the CT in DNA is elucidated and analyzed on

the basis of an all-electron computation.
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Fig. 4.4 The dephosphorylated G(T)NG B-DNA oligomer employed in the hole transfer coupling

calculations. As the figure depicts, the hole tunnels from the bottom guanine (in balls and sticks) to

the top guanine. The tunneling wall is provided by a series of three thymines (red branch, labeled

as “bridge”). The counterstrand, C(A)NC, acts as a solvating environment (in yellow, labeled as

“spectators”) and no hole is allowed to localize on it. Taken from Ref. [67]

Regarding the energetics (site energies), an uneven stabilization of the bridge

states compared to donor/acceptor states occurs in both type of oligomers, being

this effect more pronounced in the G(T)NG system than in the G(A)NG system. By

inspection of the overall electrostatics of the interaction between G:C and T:A [126],

we notice that T has a strong permanent dipole pointing towards A, similarly to C:G.

Instead, A has a much weaker dipole compared to C or T and thus upon contact

of the GTG strand with the CAC strand the cytosines will stabilize much more the

holes on Gs than the adenines can stabilize the holes on Ts, hence the tunneling wall

increases from single strand to double strand.

Regarding the couplings, when the magnitude of the through space and through

bridge couplings are inspected, our calculations show that the effects of the ribose

groups and the nucleobases in the counterstrand are opposite and different in mag-

nitude depending on the oligomer size (see Table 4.2). We conclude, however, that

the effect of the counterstrand on the computed superexchange couplings completely

overpowers any effect due to the presence of the ribose groups.

4.2.2 Constrained Density Functional Theory Applied
to Electron Transfer Simulations

Alternatively to FDE-ET methodology, constrained DFT (CDFT hereafter), a DFT-

based procedure that was initially proposed by Dederichs et al. [127], and later intro-

duced by Van Voorhis and Wu [128] with the aim of applying it to charge transfer

reactions. CDFT is an effective method for calculating diabatic states for electron
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Table 4.2 Through-space and through-bridge electronic couplings and tunneling energy gaps for

single and double strand G(T)NG B-DNA, including the effects of the backbone (sugars)

ṼDA (meV) Vbridge (meV) EDB (eV) EBA (eV)

SINGLE STRAND NO RIBOSE

GG 78.13

GTG 0.76 12.46 0.71 0.50

G(T)2G 0.01 1.13 0.79 0.66

G(T)3G – 0.09 0.79 0.77

DOUBLE STRAND NO RIBOSE

GG 92.6

GTG 0.65 7.66 0.93 0.96

G(T)2G 0.01 0.47 1.11 0.94

G(T)3G – 0.02 0.99 1.16

SINGLE STRAND WITH RIBOSE

GG 71.38

GTG 0.18 25.01 0.43 0.37

G(T)2G 0.02 1.70 0.58 0.37

G(T)3G – 0.21 0.41 0.41

DOUBLE STRAND WITH RIBOSE

GG 91.07

GTG 0.02 7.35 0.62 0.87

G(T)2G 0.02 0.61 0.93 0.60

G(T)3G – 0.02 0.50 0.82

A–is shown for values below 0.01 meV. Reproduced with permission from Ref. [67]

transfer, it relies on the idea of seeking the ground state of a system subject to a

constraint. This can be achieved by adding to the conventional KS Lagrangian an

additional term that accounts for the constraining external potential, this reads as

[40]:

CDFT [𝜌] = EHK [𝜌] +
∫

vext (𝐫)𝜌(𝐫)d𝐫 − 𝜇

[
∫

𝜌(𝐫)d𝐫 − Ne

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

same as regular KS−DFT

+ Vc

[
∫

𝜔c(𝐫)𝜌(𝐫)d𝐫 − Nc

]

(4.11)

where Vc is the Lagrange multiplier of the constraint, 𝜔c(𝐫) acts as the weight func-

tion that defines the constraint, typically a population analysis based on a real-space

[25] partitioning (such as Becke pop. analysis). Nc is the value of the constraint, and

at self consistency it should satisfy the following tautology:

Nc =
∫

𝜔c(𝐫)𝜌(𝐫)d𝐫 (4.12)
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Having defined the constraint parameters, the energy of the system can be computed

by solving the KS equation for the constrained system:

(
−1
2
∇2 +

∫

𝜌(𝐫′)
|𝐫 − 𝐫′|d𝐫′ + 𝜐xc(𝐫) + Vc𝜔c(𝐫)

)
𝜙i[Vc](𝐫) = 𝜖i[Vc]𝜙i[Vc](𝐫)

(4.13)

where we have emphasized the functional dependence of the orbitals and orbital

energies to the CDFT Lagrange multiplier. Clearly, the integral in (4.12) is only

satisfied when an appropriate choice of Vc is employed. The term 𝜐xc is the exchange-

correlation potential and 𝜙i are the KS-orbitals. Note that 𝜌(𝐫) ≡ 2
∑

i |𝜙i(𝐫)|2 for

closed shell systems. Thus also the density is a functional of the CDFT Lagrange

multiplier. To our knowledge, the CDFT algorithm can be found on NWChem [129],

Q-Chem [73], CPMD [130], PSI [131], SIESTA [132], and ADF [133]. Computing

the electronic coupling on a diabatic basis can be carried out similarly to (4.5–4.8)

or using a CDFT-specific prescription [41].

An example is the long range charge transfer excited states of the zincbacte-

riochlorin-bacteriochlorin complex (ZnBC-BC), an important structure in photosyn-

thetic process in bacteria, has been calculated on the basis of CDFT procedure [41,

128]. In Fig. 4.5, the excited states at different intersubsystem distances is depicted,

where the last point of each curve represent the CT excitation energy of the linked

complex. These energies are in good agreement with previous methodologies [134],

and also demonstrates that by constraining CDFT ground state the excitations are

more accurate than TDDFT energies (1.32–1.46 eV) [128].

Additionally, CDFT can generate states with partial charges [128], this is of par-

ticular importance, for example in metal-ligand CT processes, where the diabatic

states can be generated by constraining the charge on the ligand and metal center.

Recently, the CDFT implementation of CPMD was tested against high-level wave

function methods in the computation of electronic couplings for hole and excess

electron transfer [37, 135]. CDFT was shown to be on average within 5.3 % of the

benchmark calculations if 50 % HF exchange was introduced (the average deviation

goes up to 38.7 % if HF exchange is not used).

Fig. 4.5 Charge-transfer

state energies of ZnBC-BC

as compared to its

ground-state energy at

5.84 Å separation. Lower
line Zn+BC−

; upper line
Zn−BC+

. Taken from

Ref. [128]
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4.2.3 Fragment Orbital DFT

The fragment orbital DFT or FODFT is a computationally low-cost method to cal-

culate electronic couplings. This is because the wavefunctions of each diabatic state

are approximated by the fronteer orbitals of the isolated donor/acceptor fragments

[136–138]. The underlying approximations in FODFT are that (1) the interactions

between donor and acceptor have not effect on the orbital shape, (2) the coupling

component related to orbitals below the fronteer is neglected (e.g. frozen core). In

FODFT, the wavefunctions can be described by a single determinant of N − 1 spin-

orbitals 𝜙, where N = NA + ND i.e. the sum of the number of electrons of the neutral

donor and acceptor. These determinants are built from the KS orbitals of the nonin-

teracting isolated donor and acceptor fragments.

𝜓a ≈ 𝜓
D+A
a = 1√

(ND − 1 + NA)!
det

(
𝜙
1
D …𝜙

ND−1
D 𝜙

1
A …𝜙

NA
A

)

𝜓b ≈ 𝜓
DA+

b = 1√
(ND + NA − 1)!

det
(
𝜙
1
D …𝜙

ND
D 𝜙

1
A …𝜙

NA−1
A

)
(4.14)

The Hamiltonian used to calculate the CT matrix elements is the KS-Hamiltonian.

Namely,

HKS
a =

ND+NA−1∑
i=1

hKSa,i

HKS
b =

ND+NA−1∑
i=1

hKSb,i (4.15)

where hKSa,i are the one-particle KS-Hamiltonians for either the “a” diabat or the

“b” diabat. One feature of these Hamiltonians is that they are state dependent, thus,

they are made of the combination of orbitals of donor and acceptor species at the

given state. The transfer integral, or coupling between states, is calculated as:

Ha,b = ⟨𝜓a|H|𝜓b⟩
≈ ⟨𝜓D+A

a |HKS
a |𝜓DA+

b ⟩
≈ ⟨𝜙N

a |hKSa,i |𝜙N
b ⟩ (4.16)

where N above is the fronteer orbital for D or A. Recently, Kubas et al. [37] have

shown the differences of two FODFT flavors in the calculation of the hole transfer

coupling for the HAB11 database. As we can see in Table 4.3, the implementation

including NA + ND orbitals in the KS Hamiltonian (indicated by 2N in the table)

as done in ADF [136] is more accurate than the implementation using one of the

Hamiltonians in (4.15) (which is indicated by 2N − 1 in the table).
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Table 4.3 HDA (meV) calculated with various FODFT approaches for HAB11 dimers at inter-

molecular separation of 3.5 Å

FODFT(2N-1) FODFT(2N) ADF(2N) FODFTB REF

Ethylene 367.7 389.2 388.4 343.7 519.2

Acetylene 316.9 345.8 345.3 212.0 460.7

Cyclopropene 418.8 443.7 439.4 367.4 536.6

Cyclobutadiene 323.3 346.9 345.6 261.6 462.7

Cyclopentadiene 343.3 360.6 358.7 283.2 465.8

Furane 315.6 334.0 333.7 280.3 440.3

Pyrrole 328.7 347.8 347.7 286.2 456.3

Thiophene 341.2 357.8 356.1 264.8 449.0

Imidazole 310.7 328.9 328.2 277.5 411.6

Benzene 342.4 353.5 354.1 299.9 435.2

Phenol 190.5 211.3 279.5 231.4 375.0

Reproduced with permission from table XI of Kubas et al. [37]

FODFT has been successfully applied to models of CT in molecular semiconduc-

tors [139, 140] and also for modeling CT in biosystems. In the following, we provide

applications of FODFT to biological CT: such as the determination of the hole rates

on DNA hairpins linked by stilbenedicarboxamide, and the we also touch upon the

electron transfer between two cofactors in the SO enzyme.

4.2.3.1 Hole Transfer Rates on DNA Hairpins

The absolute rates were determined by using Marcus theory, in (4.1), where the

electronic coupling was calculated according to FODFT and the superexchange

regime (see Sect. 4.2.1.1). Knowledge of the forward and backward rates enables

one to determine the equilibrium constant K = kt∕k−t and the free energy change

−ΔG = −kBTln(K). Comparable results with experiments [141] were obtained.

4.2.3.2 The Curious Case of Sulfite Oxidase

An interesting and elusive candidate for electron transfer studies is the Sulfite Oxi-

dase protein [143]. For this protein, theory predicts an electron transfer rate between

the cofactors (a heme and a molybdenum complex) about two orders of magnitude

lower than what is measured experimentally [2]. To address this issue, Beratan et.

al., using the Pathways model, suggested that the donor and the acceptor are joined

together by a flexible tether [144]. As the tether allows the two cofactors to come

sufficiently close to each other, electron transfer occurs at the rate shown by exper-

iment. A recent simulation of this mechanism was carried out so that the protein

was taken out of equilibrium and positioned in a new folded state featuring a much
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Fig. 4.6 Energy landscape for the hole transfer in Sulfite Oxidase: the spheres represent the posi-

tion of the center of mass of each fragment with respect to the electron transfer vector coordinate(the

distance between the center of mass of the HEME complex (orange sphere) and the MOCO com-

plex (pink sphere)); the size of the sphere is 1∕(x2) in which x is the difference between the HOMO

energy of the fragment and the Fe (that is HOMO of Fragment—HOMO of Fe). Fe and Mo were

given a size of 1 for scale

decreased cofactor distance (about 10 Å). However, recent pulsed electron paramag-

netic resonance measurements [143] indicated that the distance between the cofac-

tors is unchanged on average from the one available in the crystal structure (32

Å). To approach this problem using FODFT, the crystal structure of the protein is

obtained and only the chains of the protein between the two cofactors are considered.

The chains of interest are broken into individual molecules and treated as separate

bridges.

The FODFT computations that we present here will be part of a more in-depth

study in a future publication [145]. Two ingredients are available from the simula-

tions, the site energies, and the couplings between the sites. The energies of the hole

transfer pathway for the electron transfer between the iron and the molybdenum is

presented in Fig. 4.6. With the aid of Koopman’s theorem, the HOMO energies com-

puted with FODFT are taken here as a measure of the ionization potential of each

site. The simulation was able to shed light on some very interesting aspects of the

couplings and the energy landscapes. The landscape also shows the possibility of

hopping stations-molecules that exist between the donor and acceptor and are close

to them in energy. These two aspects of the landscape alone hint the possibility of a

hole transfer occurring over the 32 Å. However, proteins are very complex structures

with many variables such as size, dynamics and environment. Therefore, providing

a quantitative analysis of the kinetic constant would require incorporating unbiased

molecular dynamics and a more comprehensive structure to further characterize the

role of these hopping stations.
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4.2.4 Ultrafast Computations of the Electronic
Couplings: The AOM Method

Recently, an ultrafast method to calculate electronic couplings was developed by

Blumberger and coworkers [135]. The analytic overlap method or AOM is a use-

ful method if CT simulations need to be coupled with molecular dynamics, like in

proteins [146] or in organic semiconductors [147]. This quest requires hundreds or

maybe thousands of HDA and site energy calculations. AOM offers an interesting

alternative for such simulations. As in FODFT, AOM assumes that CT is only medi-

ated by two SOMO orbitals (fronteer orbitals, similarly to FODFT), which corre-

spond to each fragment. Then, small Slater type orbital basis for the valence states

is generated. Thus the overlap integral is evaluated as follows:

SDA = ⟨ΨD|ΨA⟩ = ⟨𝜙N
D|𝜙N

A ⟩ ≈
≈ S̄DA =

atoms∑
i∈D

atoms∑
j∈A

c∗p𝜋,icp𝜋,j⟨p𝜋,i|p𝜋,j⟩

AOM further assumes contributions only from p-orbitals, particularly in organic

compounds with 𝜋-conjugation, the p-orbital considered is that one perpendicular to

the plane of 𝜋-conjugation.

Correlation of the overlap S̄DA and the electronic coupling given by FODFT is

shown in Fig. 4.7 for a set of dimers and their geometries. In this picture, a satis-

factory linearity between these two parameters is witnessed, therefore reliable pro-

portionality constants can be achieved. HDA = C̄S̄DA is used in order to obtain the

constant C that can be used to get couplings of similar compounds. The first version

Fig. 4.7 Correlation

between electronic coupling

matrix element from

sFODFT and overlap

between SOMO orbitals of

donor–acceptor fragments.

Taken from Ref. [135]
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of this method shows transferability for homo-dimers. However, transferability when

non equivalent donor and acceptor systems are considered needs to be explored. Nev-

ertheless, AOM’s speed makes it a very valuable option.

4.2.5 Note on Orthogonality

When carrying out a large number of coupling calculations, one encounters all those

low probability situations in which a method fails. In the case of FDE-ET, we probed

a large number of so-called “difficult cases”. Specifically, we faced two limitations

of the FDE-ET method. If the diabats are orthogonal, or quasi orthogonal, numerical

inaccuracies arise in the inversion of the transition overlap matrix in Eq. 4.7. This is

not specific to FDE-ET, but is a problem shared by all those methods that assume the

diabatic states to be nonorthogonal [30, 115, 148–150]. When they are orthogonal,

some of the equations previously developed simply do not hold anymore. Yu et al.

have applied equations similar to Eqs. (4.5–4.8) and obtained a picture of the behav-

ior of the electronic couplings in the photosynthetic reaction center, see Fig. 4.8. If

we concentrate on the left-side panels, we notice that in some cases the electronic

coupling is proportional to the coupling, but in other cases (see lower left panel) the

coupling seems to behave somewhat erratically as a function of the diabatic overlap.

To understand this, let us consider two distinct limiting cases: (1) orthogonality by

symmetry considerations, and (2) spatial separation of the orbitals. We found that the

second case is the predominant, as the distance between donor–acceptor increases

the diabatic overlap becomes increasingly small. In the asymptotic limit [44], there

is a linear relationship between the coupling, the diabatic energy difference, and the

diabatic overlap. If the overlap is small due to case (1), the asymptotic formula is

not expected to hold. This explains the apparently contradictory results presented in

Fig. 4.8.

Regarding FDE-ET, both cases can be circumvented computationally by perform-

ing a singular value decomposition of the overlap matrix and then invert only those

values which are larger than a threshold (i.e. Penrose inversion). For DNA presented

in Sect. 4.2.1.3, the default inversion threshold of 10−3 was appropriate in most cases

[67]. However, three systems stood out: AG, GA and TT nucleobase pairs. All the

systems above showed erratic behavior of the computed couplings for some specific

donor–acceptor distances, specifically 4.0 Å for AG, 3.5 and 8.0 Å for GA and 9.0

Å for TT. We found that at those distances, the near singularity of the overlap matrix

due to symmetry considerations (case 1 above) was the source of the erratic behav-

ior. To circumvent these numerical issues, a threshold of 10−2 was adopted in these

cases.

We thus conclude that although there is a formal relationship linking the diabatic

overlap with the value of the coupling at large donor–acceptor distances [44], gener-

ally assuming linearity in the coupling versus overlap (as mentioned in the previous

section) can lead to large errors in the magnitude of the computed couplings. In the

future, inspired by a recent work by Evangelista et al. [131], a more stable FDE-ET
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Fig. 4.8 Correlation between electronic coupling matrix element and overlap between diabatic

states for electron transfer. Taken from Ref. [148]

algorithm that invokes an orthogonalization first, and then the computation of the

couplings will be developed in our group.

4.2.6 A Fully Semiempirical Method: Pathways

Pathways [2, 50] is a semiempirical model which it is designed to reproduce electron

transfer rates between cofactors in proteins [50, 151]. In essence, Pathways includes

the contributions to the electronic tunneling from a stepwise path covering all non-

bonded interactions, as well as the bonded ones at the nearest neighbor level. Namely:
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|HDA|2 = A2

(∏
i
𝜖i

)2

(4.17)

where 𝜖i are the steps the charge need to make from donor to acceptor. For example,

a hydrogen bond is one of such steps. The above product is maximized by searching

all possible steps that contribute to the tunneling. The coupling is further split into

three kinds of interactions:

|HDA|2 = A2

(∏
i
𝜖bond(i)

)2 (∏
j
𝜖space(j)

)2 (∏
k

𝜖H-bond(k)

)2

(4.18)

Pathways can yield reliable predictions of the electronic couplings, where the CT

process in proteins are mediated by the interactions of a single or multiple configu-

rations that the protein can adopt [50]. Pathways has been successfully applied to a

number of CT processes in protein environment. For instance, the electron transfer

between the proteins cytochrome c2 (cytc2) and the photosynthetic reaction center

(RC) [152] in order to determine the protein structural dependence of this CT reac-

tion, also, to look at the impact of structural and conformational variations on the

electronic coupling between the proteins methylamine dehydrogenase and amicyanin

from Paracoccus denitrificans [153].

4.3 High-Accuracy Electronic Couplings

This section is devoted to describing those methods which are able to predict the elec-

tronic couplings accurately given a certain definition of the corresponding diabatic

states. These methods start with a mathematical definition of diabatic states (usu-

ally a definition that involves localization of the electronic structure) such that the

resulting states resemble the donor and acceptor states in the electron transfer reac-

tion. Once this is achieved, an adiabatic-to-diabatic transformation matrix is gen-

erated which can be applied to the adiabatic Hamiltonian to result in the diabatic

Hamiltonian featuring the sought electronic couplings in the off-diagonal elements.

Usually, an accurate wave function based level of theory is used for computing the

adiabatic states and Hamiltonian [29]. Examples of such techniques are, the Gener-

alized Mulliken–Hush method developed by Newton and Cave [29, 30, 154], Boys

and Edmiston-Ruedenberg localizations of Subotnik et al. [38, 154, 155], and frag-

ment charge difference proposed by Voityuk and Rösch [42, 156]. Their utility lies

on the possibility of a very accurate computation of the corresponding adiabatic

states, as was done for the hole transfer on 𝜋-stack DNA nucleobases at a CASPT2

and CASSCF level of theory accomplished by Voityuk et al. [35]. That computation

has served as the benchmark reference for many recently developed methodologies

[49, 99, 137, 157].
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Taking this as a motivation, let us briefly introduce each of the above methods,

followed by some examples in which these methods were employed.

4.3.1 GMH Method

In the two-state model, the charge localized diabatic states are related with the adi-

abatic states by the formula:

E2,1 =
1
2

(
ED + EA ±

√
(ED − EA)2 + 4|HDA|2

)
(4.19)

where ED∕A are the energies of the donor and acceptor states respectively, E1 and E2
are the energies of the adiabatic states, this means the energy of the ground state (E1)

and the first excited state (E2). E1 and E2 can be obtained with any quantum chem-

istry method, however when highly accurate wavefunctions methods are employed

also the resulting couplings will be of high quality. We now distinguish two cases: a

symmetric case, for instance homo-dimers, and the general asymmetric case. In the

symmetric case, we have that ED = EA, and thus the electronic coupling does not

depend on the diabatization procedure. Namely,

2|HDA| = ΔE12 (4.20)

ΔE12 is the difference on energy between the adiabatic ground state E1 and the first

adiabatic excited state E2.

For asymmetric cases the GMH method prescribes that the proper diabatic states

are those that diagonalize the adiabatic dipole moment matrix. In the two-state prob-

lem this is calculated as follows:

|HDA| = |𝜇12|ΔE12√
(𝜇11 − 𝜇22)2 + 4𝜇2

12

, (4.21)

where 𝜇ij = ⟨Ψi|𝜇ET |Ψj⟩, with 𝜇ET being the dipole moment in the direction of the

electron transfer. The power of GMH lies on the way one calculates the adibatic

states. As we have seen through all sections is that the authors benchmark their own

method by calculating proper diabatic couplings by using ab initio methods as mul-

tireference CI [37] and CASPT2 [35].

As an example of this method, let us discuss the very first example given by Cave

and Newton on their paper [34]. The system Zn2H2O+
, the transfer of a hole is done

over the Zn atoms. However, the water molecule, which is located at a fixed distance

opposite to the Zn distance, causes an energy splitting of the Zn orbitals. Thus the

electronic coupling is determined for the following diabatic states:
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Zn(1S) + Zn+(2S) → Zn+(2S) + Zn(1S) s → s′ (4.22)

Zn(1S) + Zn+(2S) → Zn+(2S) + Zn(1S) p → p′ (4.23)

Zn(1S) + Zn+(2S) → Zn+(2S) + Zn(1S) s → p′ (4.24)

Zn(1S) + Zn+(2S) → Zn+(2S) + Zn(1S) p → s′ (4.25)

where the transition are between the orbitals of the diabatic states (prime correspond

to the acceptor state) (s-s’), (p-p’), (s-p’) and (p-s’). CASSCF wavefunction method

was used in all calculations. In Table 4.4 we collect the values for the different cou-

plings and 𝛽s. There the analysis of the distance dependence of the coupling is carried

out for several ROZn distances. Note that for an infinite ROZn distance, the couplings

for (s-p’) and (p-s’) are equal.

We refer the reader to other publications which have evaluated the GMH method

in detail in regards to its suitability in modeling two-state as well as multi-state prob-

lems for both excitation energy transfer and electron transfer processes [39, 156,

158].

Table 4.4 (a) Electronic coupling elements versus distance (rZnZn) for Zn2H2O+
with rZnO =

2.05Å. (b) Electronic coupling elements versus distance (rZnZn) for Zn2H2O+
with rZnO = 3.05Å.

Results are in milihartree, the 𝛽 values were calculated on the range of 5–9 Å. Taken from Ref.

[29]

rZnZn (Å) Hss′ Hpp′ Hsp′ Hps′

(a)

4.0 28.3 23.6 50.4 42.7

5.0 10.5 13.0 51.7 22.3

6.0 3.73 7.55 41.1 10.1

7.0 1.09 4.23 21.8 4.08

8.0 0.340 2.57 13.8 1.62

9.0 0.0958 1.44 7.36 0.611

𝛽 2.28 1.11 0.81 1.71

(b)

4.0 29.7 34.4 59.3 41.7

5.0 7.95 14.7 38.5 22.1

6.0 2.34 7.83 19.1 9.44

7.0 0.698 4.25 9.56 3.84

8.0 0.203 2.27 4.78 1.51

9.0 0.0558 1.16 2.32 0.574

𝛽 2.49 1.32 1.32 1.74
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4.3.2 Other Adiabatic-to-Diabatic Transformation Methods

Inspired by GMH, the electronic coupling can generally be obtained by rotating the

corresponding adiabtic states into a set of diabatic states. Thus, each diabatic state

can be expressed as a linear combination of rotated adiabatic states as [154]:

|Ξ⟩ =
Nstates∑
j=1

|Φj⟩Uji (4.26)

Under specific assumptions of the nature of the system-bath interaction (the fol-

lowing is valid for the condensed phase), the coupling can be estimated by con-

structing diabatic states based on Boys, Edminton–Ruedenberg (ER) or von Niessen–

Edminton–Ruedenberg (VNER) localizations. In Boys diabatization, the bath exerts

a linear electrostatic potential on the system, thus the rotation matrix can be found

by minimizing the following localizing function [24, 39]:

fBoys(U) = fBoys(Ξ) =
Nstates∑
i,j=1

= |⟨Ξi|𝜇ET |Ξi⟩ − ⟨Ξj|𝜇ET |Ξj⟩|2. (4.27)

Boys localization was shown to be equivalent to GMH for CT reactions [39].

ER diabatization, dictates that the bath exerts an electrostatic potential that

responds linearly to the field generated by the molecular system (sum of donor and

acceptor) system:

fER(U) = fER(Ξ) =
Nstates∑
i=1

∫
d𝐫1

∫
d𝐫2

⟨Ξi|𝜌̂(𝐫2)|Ξi⟩ − ⟨Ξj|𝜌̂(𝐫1)|Ξj⟩
|𝐫1 − 𝐫2| . (4.28)

In VNER diabatization, the bath exerts an electrostatic potential that responds

linearly to the field of the total system, but the interaction potential is a Dirac delta

function:

fVNER(U) = fVNER(Ξ) = −
Nstates∑
i=1

∫
d𝐫(⟨Ξi|𝜌̂2(𝐫)|Ξi⟩ − ⟨Ξi|𝜌̂(𝐫)|Ξi⟩2). (4.29)

Just like GMH, once diabats are generated, the electronic coupling readily arises

from the off-diagonal element of the electronic Hamiltonian and is equal to:

HDA = ⟨ΞD|Hel|ΞA⟩ (4.30)

For a series of bridge mediated excitation energy transfer experiments, where the

donor is benzaldehyde and the acceptor naphthalene [159, 160], the transfer rates and

couplings were calculated using Boys diabatization. In Fig. 4.9 it is shown how well
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Fig. 4.9 Attachment/detachment plots for the occupiedvirtual separated Boys localized diabatic

excited triplet states near the avoided crossing. The molecule here is donor–CH2–acceptor. Taken

from Ref. [154]. a Detachment density for the first localized diabet. b Attachment density for the

first localized diabet. c Detachment density for the second localized diabet. d Attachment density

for the second localized diabet

the orbitals are localized on either donor or acceptor edges in the various diabatic

states. Although this computation does not concern a CT process, we want to stress

the ability of this localization procedures in generating true diabatic states.

4.3.3 Fragment Charge Difference

Similarly to the GMH method, the fragment charge difference (FCD) method yields

a donor to acceptor coupling [42]:

|HDA| = |Δq12|ΔE12√
(Δq11 − Δq22)2 + 4Δq212

(4.31)

where Δq1 and Δq2 are the donor–acceptor charges differences in the respective

adiabatic states 𝜓1 and 𝜓2. Δq12 is the off diagonal term and is defined in a general

form as Δqij = qij(D) − qij(A), i.e. the difference of the populations of the transition

charges.

Finally, when donor and acceptor are in resonance, i.e. when ED = EA or Δq = 0,

HDA = 1
2

(
E1 − E2

)
.

FCD method and its simplfied from (SFCD) are compared against GMH in the

calculation of HDA for two Watson–Crick pairs GC and AT . In Table 4.5, the cou-

plings calculated from FCD are in good agreement with GMH, the SCFD is also

quite reasonable. Because the energy gap between donor and acceptor are large, the

charge is completely localized on purines (lowest IP). However, if an electric field

F (water molecule for instance) is tuned on near the pairs, the energy gap is then
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Table 4.5 Hole coupling matrix element HDA of nucleobases within a Watson–Crick pairs

GMH SFCD FCD

Basis set E2 − E1 ED − EA HDA HDA HDA

GC 6-31G* 2.163 2.159 0.0569 0.0663 0.0547

6–311++G** 2.092 2.086 0.0679 0.0760 0.0705

AT 6-31G* 1.505 1.502 0.0421 0.0524 0.0363

6-311++G** 1.462 1.459 0.0474 0.0528 0.0425

Energies in eV, dipole moment matrix elements in Debye, charges in a.u. Taken from Ref. [42]

reduced and the coupling strength is enhanced. Overall, FCD is another good alter-

native to compute accurate couplings. However, the computation of the charges and

the transition charges is dependent on the specific population analysis chosen. To our

knowledge, only the Mulliken population analysis was used so far (i.e. the transition

charges are evaluated on the basis of the MO coefficients over the atomic orbital

basis set).

4.4 Practical Aspects: A Protocol for Running FDE-ET
Calculations

In order to obtain the electronic coupling for a CT reaction using FDE-ET, three dif-

ferent single point (SP) calculations have to be performed. FDE-ET is available in

ADF [51]. In Figs. 4.10, 4.11 and 4.12, the input files corresponding to the FDE-ET

methodology are described. First, a single point calculation for each isolated frag-

ment present in the system is carried out. This gives the initial density and energy

of each subsystem without any interaction between them. It is important to save the

check point files (TAPE files in ADF), because they contain all fragment informa-

tion needed in the subsequent calculations. Following all SP jobs for each isolated

fragment, an FDE calculation is performed by taking into the account the whole

supramolecular structure. So that, we create a diabatic state for each of the present

subsystems. This is done by placing a charge different from neutrality in each subsys-

tem, see Fig. 4.11. In this manner, two different directories are made: one in which

an FDE calculation is carried out with subsystem 1 positively charged and one where

subsystem 2 has the positive charge. In both cases, the SCF converges on the basis of

subsystem DFT, thus, a series of three freeze-and-thaw procedure are done for each

subsystem in each diabat.

Once both isolated and embedded densities are obtained from the FDE calcula-

tions, an electrontransfer job is run whose purpose is to compute (4.5–4.8). As in the

FDE calculation, the information about the fragment is of paramount importance in

this electrontransfer job. In Fig. 4.12, the input file that calculates the diabatic ener-

gies and the electronic coupling between them is showed, in pink we can see that

the check point files (t21.emb.rho* in the figure) corresponding to the embedded
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Fig. 4.10 Single point (SP) calculation input file for an isolated ethylene
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Fig. 4.11 Single point FDE calculation input file for ethylene dimer. Both fragments rho1 and rho2

come from two SP calculations for each isolated fragment
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Fig. 4.12 Single point ET calculation input file for ethylene dimer. In pink there some bash-shell

options in order to copy the information for each diabatic state calculated before with FDE
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fragments in each diabat is copied directly to the ET directory, where the electron-

transfer calculation is done. These files are renamed as fragA*.t21 for those ones

from the diabat A (positive charge on the donor fragment) and fragB*.t21 for those

that come from diabat B (positive charge on the acceptor fragment). It is worth men-

tioning that special care has to be taken in the management of the file names. As it

is illustrated in Fig. 4.12, the fragments are numerated as 1 and 2, that means that

the charge, departs from fragA1 while fragA2 is neutral and arrive to fragB2 while

fragB1 becomes neutral. This is very important when the system is comprised of

more than two fragments, and the charge is moving throughout all of them.

4.5 Conclusions and Future Directions

To conclude, we have presented our (fairly subjective) view of what tools are avail-

able nowadays to compute electronic couplings for charge transfer processes. We

have surveyed in detail the FDE-ET method simply because we are among the devel-

opers of this method. Other methods based on DFT, and those that are best suited

for being coupled with wavefunction based methods have also been discussed. The

discussion also touches on the strengths and limitations of the various methods.

When discussing the practical aspect of a coupling calculation, one must expose

completely the methodology. We have done so for the FDE-ET method, and provided

the reader with a step-by-step protocol on how to run such computations. This is

important also for outsiders (such as experimentalists) as they can appreciate the

kind of effort the theoreticians have to put in computing quantities relevant for the

interpretation of the experiments.

We apologize in advance to those authors who have developed all those methods

that we have omitted from this presentation. Admittedly, we provide here a subjective

view of the field.
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Chapter 5
Methods for Computing Ro-vibrational
Energy Levels

Tucker Carrington

Abstract In this article I review methods for computing ro-vibrational energy

levels of small polyatomic molecules. The principal impediment to the calculation

of energy levels is the size of the required basis set. If one uses a product basis the

Hamiltonian matrix for a four-atom molecule is too large to store in core memory.

Iterative methods enable one to use a product basis to compute energy levels (and

spectra) without storing a Hamiltonian matrix. Despite the advantages of iterative

methods it is not possible, using product basis functions, to calculate ro-vibrational

spectra of molecules with more than four atoms. A recent method combining con-

tracted basis functions and the Lanczos algorithm is described.

5.1 Introduction

Most methods for solving the Schroedinger equation represent wavefunctions as lin-

ear combinations of basis functions and solve a matrix eigenvalue problem. In this

article, I shall focus on solving the Schroedinger equation describing the motion of

nuclei on a potential energy surface (generated using the Born-Oppenheimer approx-

imation). For a molecule with more than four atoms, computing ro-vibrational energy

levels requires using a huge number of basis functions. It is critical to devise theo-

retical/computational methods to either reduce the size of the basis and/or cope with

large matrices. It is straightforward to use simple product basis function and exploit

the structure of the product basis set to calculate the energy levels of interest. This

can be done using the Lanczos algorithm and evaluating matrix-vector products by

doing sums sequentially. Another option is to use more complicated basis functions

that account of coupling and therefore reduce the size of the basis. These ideas can

be used together.

To use any basis set method one must first determine the Hamiltonian opera-

tor. If all vibrations are of small amplitude it is sufficient to use normal coordinates

(to describe the shape of the molecule), Eckart axes (to describe its orientation) and
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perturbation theory (to calculate energy levels) [1]. Normal coordinates are,however,

not the best coordinates if vibrations are of large amplitude. To compute spectra of

molecules for which large amplitude motion is important it is best to choose geo-

metrically defined curvilinear coordinates to describe the shape of the molecule,

derive a kinetic energy operator (KEO) in terms of the curvilinear coordinates, and

calculate transition energies and intensities from eigenvalues and eigenvectors of a

matrix that represents the Hamiltonian operator in a basis [2–7]. Making a potential

energy surface (PES) is also a difficult problem. To do this one must calculate elec-

tronic energies at a large number of points, and either fit a functional form to them

or employ an interpolation scheme. Methods for the calculation of energy levels and

wavefunctions have evolved with the ability of quantum chemists to calculate reason-

ably accurate potential energy surfaces and the ability of experimentalists to measure

highly resolved ro-vibrational spectra of small polyatomic molecules. Although most

methods for computing energy levels do require a potential, in this article I focus on

KEOs and the computation of the energy levels.

5.2 Deriving the Kinetic Energy Operator

To compute energy levels of a semi-rigid molecule one frequently uses a KEO in

rectilinear normal coordinates. A general (i.e. for a molecule with N atoms) normal

coordinate KEO, for a molecule with N atoms, has been known for many years [8].

The Watson KEO (atomic units are used in this article) is

K̂W = 1
2
∑
𝛼,𝛽

(
Ĵ
𝛼
− 𝜋̂

𝛼

)
𝜇
𝛼𝛽

(
Ĵ
𝛽
− 𝜋̂

𝛽

)
− 1

2
∑
k

𝜕
2

𝜕Qk
2 − 1

8
∑
𝛼

𝜇
𝛼𝛼
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where

𝜇
𝛼𝛽

=
(
𝐈′−𝟏

)
𝛼𝛽

; 𝐈′
𝛼𝛽

= 𝐈
𝛼𝛽

+
∑
k,l,m

𝜁
𝛼

km𝜁
𝛽

lmQkQl (5.2)

and where I
𝛼,𝛽

is the inertia tensor and 𝜁
𝛼

km are Coriolis parameters defined for exam-

ple in Ref. [8]. The vibrational angular momentum terms, 𝜋
𝛼
, are given by

𝜋
𝛼
= −i

∑
k,l

𝜁
𝛼

klQk
𝜕

𝜕Ql
. (5.3)

Many programs for computing energy levels use normal coordinates [9–14]. An

important disadvantage of the Watson normal coordinate KEO is its complexity.

The vibrational KEO is simple, only if one discards all the 𝜋𝜋 cross terms. If the

𝜋𝜋 cross terms are retained, the KEO is complicated because 𝝁 depends on all the

coordinates. If the mass of the molecule is large the 𝝅
t
𝝁𝝅 terms are, in general, small.
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If motions of large amplitude have an important effect on the spectrum, it is best

not to use normal coordinates, but instead to use geometrically defined internal coor-

dinates describing the shape of the molecule. Using the polar coordinates associated

with any set of N − 1 vectors that specifies the shape and orientation of the mole-

cule, a simple and general KEO can be derived. Chapuisat and Iung [15] were the

first to adopt this approach, which was also used recently in Refs. [16–22]. The KEO

is simpler if one uses “orthogonal” vectors. “Orthogonal” in this context means that

the mass-weighted vectors are related by an orthogonal transformation to the mass-

weighted nuclear position vectors.

Having defined coordinates, a KEO can be derived by using the chain rule. Sut-

cliffe and Tennyson [24–28] and Handy [29] used the chain rule. Mladenovic [21,

22] has also implemented this approach. Written in terms of angular momenta oper-

ators for N − 1 vectors which specify the shape and orientation of a molecule in the

center of mass frame, the ro-vibrational KEO is compact and general. One begins

with the KEO for N nuclei in space-fixed Cartesian coordinates,

T̂N = −1
2

N−1∑
i=0

1
Mi

(
𝜕
2

𝜕X2
i

+ 𝜕
2

𝜕Y2
i

+ 𝜕
2

𝜕Z2
i

)
(5.4)

≡ −1
2
(
T̂X + T̂Y + T̂Z

)

where i is a nuclear label and Mi a nuclear mass. For T̂X one then transforms: (i) to

mass-weighted coordinates {X̄i = M1∕2
i Xi}; (ii) to coordinates {P̄

𝛼
} linearly related

to {X̄i} by an N × N orthonormal transformation; and (iii) to mass-unweighted coor-

dinates {P
𝛼
= 𝜇

−1∕2
𝛼

P̄
𝛼
}. The third step introduces arbitrary masses {𝜇

𝛼
}:

T̂X = −1
2

N−1∑
𝛼=0

1
𝜇
𝛼

(
𝜕
2

𝜕P2
𝛼

)
(5.5)

Applying the same transformation to T̂Y and T̂Z (introducing coordinates {Q
𝛼
}

and {R
𝛼
}), one obtains N vectors {𝐫

𝛼
} (with space-fixed Cartesian components

(P
𝛼
,Q

𝛼
,R

𝛼
)) that are linear combinations of the space-fixed Cartesian nuclear posi-

tion vectors with coefficients that are elements of a matrix

𝐉 = 𝜇
−1∕2𝐔𝐌1∕2

(5.6)

where 𝐌 and 𝜇 are diagonal matrices of masses, and 𝐔 is orthonormal [20]. 𝐫N−1 is

often chosen as the position of the nuclear centre of mass. Obvious coordinates for

describing the shape and orientation of the molecule are: the lengths of the remaining

N − 1 vectors r0, r1,… , rN−2; N − 2 polar angles, 𝜃
𝛼

(𝛼 = 1⋯N − 2) between r0
and r

𝛼
; N − 3 angles 𝜙

𝛽
(𝛽 = 2⋯N − 2) between the plane that contains r0 and

r1 and the planes that contain r0 and r
𝛽

; and three Euler angles that specify the

orientation of the molecule-fixed axis system with respect to the space-fixed axes.
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The molecule-fixed z axis is parallel to r0; the molecule-fixed y axis is along 𝐫𝟎 × 𝐫𝟏.

The KEO in these coordinates is given in many papers. [18, 30, 31]. One convenient

form [32] is,

T = Ts + Tbr + Tcor (5.7)

with

Tbr = Tbr,diag + Tbr,off . (5.8)

and

Ts = −
N−2∑
k=0

1
2𝜇k

𝜕
2

𝜕r2k

Tbr,diag =
[
B0(r0) + B1(r1)

] [
− 1
sin 𝜃1

𝜕

𝜕𝜃1
sin 𝜃1

𝜕

𝜕𝜃1
+ 1

sin2 𝜃1
(Jz − Lz)2

]

+
N−2∑
k=2

[
B0(r0) + Bk(rk)

]
l2k

+B0(r0)

[
J2 − 2(Jz − Lz)2 − 2Jz(Lz) + 2

N−2∑
k≠k′=2

lkzlk′z

]

Tbr,off = B0(r0)

[
(L+)a−1 + (L−)a+1 +

N−2∑
k≠k′=2

(lk+lk′− + lk−lk′+)

]

Tcor = −B0(r0)
[
J−(a+1 + L+) + J+(a−1 + L−)

]
(5.9)

where

Bi(ri) =
1

2𝜇ir2i
(5.10)

Lz =
N−2∑
k=2

lkz (5.11)

L− =
N−2∑
k=2

lk− (5.12)

L+ =
N−2∑
k=2

lk+ (5.13)

li± = lix ± 𝚤liy (i = 2,… ,N − 2) (5.14)

J± = Jx ± 𝚤Jy (5.15)
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a±1 = ± 𝜕

𝜕𝜃1
− cot 𝜃1(Jz − Lz) . (5.16)

and lkx, lky, lkz, l2k are the usual angular momentum operators [33]. a+1 and a−1 are rais-

ing and lowering operators [32]. This KEO is associated with the volume element

sin 𝜃1 sin 𝜃2 ⋯ , sin 𝜃N−2 drodr1 ⋯ drN−2d𝜃1 ⋯ d𝜃N−2d𝜙2 ⋯ d𝜙N−2. It is valid for any

choice of the orthogonal vectors. Several four-atom choices are given explicitly in

Ref. 20. There are momentum cross terms between angles, but none between angles

and lengths. This general “polyspherical” KEO is compact only if it is written in

terms of angular momentum operators.

Although compact and general the utility of this KEO is sometimes limited by

coupling. Coupling can be reduced by making a judicious choice of the z-axis which

is used to define the 𝜃 and𝜙 coordinates. It is best to put the z axis along the vector for

which Bi(ri) = 1∕(2𝜇ir2i ), where 𝜇i and ri are the mass for and the length of the vector

𝐫𝐢 in some representative reference configuration, is the smallest. A disadvantage of

the above KEO is its lack of flexibility: one must place the molecule-fixed z axis along

one of the 𝐫𝐢 vectors. If rj(j = 2,… ,N − 2) are orthogonal to r0 and r1 a general and

flexible molecule-fixed KEO can be derived, even if r0 and r1 are themselves not

orthogonal, by attaching the molecule-fixed axis system to the plane spanned by r0
and r1 . This is explained in Ref. [34].

It is not necessary to have an equation for the KEO. One must only be able to

calculate matrix elements of the KEO which can be done (with quadrature) as long as

it is possible to evaluate (coordinate dependent) coefficients of differential operators

in the KEO at the quadrature points. This numerical approach is very useful. It has a

long history [35–39], but its utility has been greatly enhanced by the TNUM program

of Lauvergnant [40]. One way to implement a numerical approach is to determine
𝜕x

𝛾i

𝜕Qk
, where x

𝛾i are Cartesian coordinates in a molecule-fixed frame and Qk are the

internal coordinates in terms of which one wishes the KEO. To determine at points

coefficients of differential operators in the KEO, one needs to invert the matrix whose

elements are
𝜕x

𝛾i

𝜕Qk
. Another numerical approach uses finite difference derivatives to

directly compute
𝜕Qk

𝜕x
𝛼i

.

5.3 Basis Functions

5.3.1 Vibrational Basis Functions

5.3.1.1 Product Basis Functions

A product basis is a basis each of whose functions is a product of functions of a

single coordinate. Often, the single coordinate functions are labelled with one index

and the basis is a direct product basis, may be written,
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Φi1,i2,…,if = 𝜙i1 (q1)𝜙i2 (q2)⋯𝜙if (qf ), (5.17)

If the Hamiltonian is a sum of products (SOP), i.e.,

Ĥ =
g∑
l=1

f∏
k=1

ĥ(k,l)(qk), (5.18)

and a direct product basis set is used then matrix elements of a term can be written

as products of matrix elements of the factors. As a rule of thumb one needs about ten

basis functions per degree of freedom and hence about 10f product basis functions

to calculate vibrational energy levels and wavefunctions of a molecule with f vibra-

tional degrees of freedom. For a triatomic molecule the product basis Hamiltonian

matrix is only about 1000 × 1000, but for a four-atom molecule the product-basis

Hamiltonian matrix is about 1000000 × 1000000. Storing this matrix in the main

memory of a computer would require about 8000 GB.

5.3.1.2 Contracted Basis Functions

Whenever coupling is important the number of product basis functions required to

converge even a small number of energy levels of a molecule with four or more

atoms large. Contracted basis sets are smaller. They are effective tools for com-

puting vibrational energy levels [41, 42] and are usually obtained by diagonaliz-

ing reduced-dimension Hamiltonian matrices. There are two popular ways to define

effective reduced-dimension Hamiltonian matrices: 1) one diagonalizes blocks of

the full Hamiltonian matrix in a product basis; 2) one diagonalizes matrices repre-

senting the Hamiltonian with one or more coordinates fixed. The first route yields

nondirect product basis functions [42–49]. The second route yields basis functions

that are direct products of functions of different coordinates or groups of coordinates

[41, 50]. A triatomic example will make this clear. A type 1 contraction scheme is

obtained by diagonalizing (stretch) blocks < 𝛼(𝜃)|Ĥ(𝜃, r1, r2)|𝛼(𝜃) > to get eigen-

functions 𝜙
𝛼

n(r1, r2) where 𝛼(𝜃) is a discrete variable representation (DVR) [51] bend

function, Ĥ(𝜃, r1, r2) is the full Hamiltonian operator, and 𝜃, r1, r2 are the bend and

stretch coordinates. The contracted basis functions are 𝛼(𝜃)𝜙𝛼

n(r1, r2). A type 2 con-

traction scheme is obtained by making products of eigenfunctions of H(𝜃e, r1, r2),
denoted 𝜓(r1, r2) and eigenfunctions of H(𝜃, re1, r

e
2), denoted 𝜒(𝜃). The contracted

basis functions are 𝜓(r1, r2)𝜒(𝜃). re1, r
e
2, and 𝜃e are specific values of r1, r2, and 𝜃.

Equilibrium values are often a good choice. Regardless of the route one takes, only

a small fraction of the eigenvectors of the reduced-dimension Hamiltonian matri-

ces are retained. These methods are sometimes called diagonalization-truncation-

recoupling methods [51, 52].

The type 1 approach has been extensively used by Bacic, Bowman, Light,

Tennyson and their coworkers [42, 43, 45, 46, 51, 52]. For 6D calculations, they



5 Methods for Computing Ro-vibrational Energy Levels 141

have been used by Luckhaus [49] and Mladenović [47, 48]. The type 2 approach has

been used to compute rovibrational energy levels of four-atom molecules, e.g. C2H2
[53], H2O2 [54], NH3 (vibration only) [55] and was favoured by Carter and Handy

[41, 50].

5.3.2 Ro-vibrational Basis Functions

5.3.2.1 Product Basis Functions

When, as explained in Sect. 5.2, the molecule-fixed frame is attached to two vectors,

the ro-vibrational basis functions for a molecule with 5 atoms are

|l1(m1)l2m2l3m3; JKM⟩ = Θm1
l1
(𝜃1)Y

m2
l2
(𝜃2, 𝜙2)Y

m3
l3
(𝜃3, 𝜙3)D̄J

MK(𝛼, 𝛽, 𝛾)
∗
, (5.19)

with the constraint K = m1 + m2 + m3. This constraint removes the 1∕ sin2 𝜃1 singu-

larity in the KEO. In this equation, D̄j
mk(𝛼, 𝛽, 𝛾) =

√
2jA+1
8𝜋2 Dj

mk(𝛼, 𝛽, 𝛾) is a normal-

ized Wigner function.

5.3.2.2 Contracted Basis Functions

The size of the basis required to achieve converged energy levels can be significantly

reduced by contracting. Contracted bases for the J > 0 problem have been used for

years. Tennyson and Sutcliffe’s two-step method is similar to a type 1 vibrational

contraction: for each K (quantum number for the molecule-fixed (MF) z compo-

nent of the angular momentum) eigenfunctions of a Hamiltonian depending only on

vibrational coordinates are computed [56]. For triatomic molecules this works well.

This sort of idea was used in 2004, with MF axes (vector-z frame) attached to two

Radau vectors, to compute accurate J = 1 energy levels of methane [57]. Another

possible contracted ro-vibrational basis is composed of products of vibrational wave-

functions, |v⟩ and Wigner functions, |JKM⟩ [58, 59]. As is the case for the type 2

contracted vibrational functions used for the J = 0 problem, [60] the |v⟩ and |JKM⟩
factors do not have shared labels. That is, the full-dimensional basis is a direct prod-

uct and not an indirect product basis. When the |v⟩ factors of the |v⟩ |JKM⟩ basis

are also obtained from a basis of products of contracted bend |b⟩ and stretch |s⟩
functions, one is using nested contractions.

The meaning of the |v⟩ |JKM⟩ functions is different for different choices of the

molecule-fixed (MF) frame and the size of the required basis depends on the defin-

ition of the MF frame. For many molecules an Eckart frame, designed to minimize

Coriolis coupling close to a reference configuration, is a good choice. When normal

coordinates are used it is easy to use an Eckart frame [1, 61], however, the Eckart
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KEO in internal coordinates is very complicated. Eckart KEOs have been derived for

triatomic molecules, but never employed to compute spectra [62–65]. This problem

is resolved by computing G matrix elements numerically [35–39].

5.4 Eigensolvers

5.4.1 Direct Methods

Eigenvalues and eigenvectors of matrices not larger than about 50000 × 50000 can be

easily computed using a standard implementation of Householder’s algorithm [66].

This requires storing the matrix, i.e., N2
numbers, where N is the size of the matrix

and the cost of the calculation scales as N3
. These disadvantages of Householder’s

algorithm are debilitating if one wishes to calculate ro-vibrational energy levels of a

triatomic molecule or vibrational energy levels of a molecule with more than three

atoms.

5.4.2 Iterative Methods

Iterative methods are often used for calculating spectra [67–80]. Their most obvious

advantage is that they require only the computation of matrix-vector products and

therefore can be used without modifying or storing the matrix [81]. It is now widely

recognized that Hamiltonian matrix-vector products can be computed without stor-

ing the Hamiltonian matrix and without even calculating its matrix elements [71, 82,

83]. The Lanczos algorithm is one popular iterative methods used to calculate spec-

tra [81, 90]. It generates an M ×M tridiagonal matrix TM recursively by evaluating

M matrix-vector products. When M is large enough, among the eigenvalues of TM
are eigenvalues of the original matrix. Refined related algorithm, designed to accel-

erate the convergence of selected eigenvalues, exist [91–93]. These methods require

considerably more storage than the straightforward Lanczos method of Cullum and

Willoughby (C&W). It is simple to use the C&W Lanczos method to calculate [90]

eigenvalues. Computing eigenvectors is harder. One must either re-calculate or store

the Lanczos vectors. The C&W Lanczos method is simpler to implement and effi-

cient [94].

5.5 Using Iterative Methods with a Product Basis Set

A product basis has structure that can be exploited to reduce the cost of evaluating

matrix-vector products so that their cost scales as nf+1, where n is a representative

number of basis functions for a single degree of freedom, and f is the number of
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degrees of freedom. IfH is factorizable (KEOs are usually factorizable and potentials

are sometimes factorizable) then it has the form

H =
g∑
l=1

f∏
k=1

ĥ(k,l)(qk), (5.20)

and a matrix-vector product 𝐇𝐮 = 𝐮′ is efficiently evaluated by doing sums sequen-

tially,

g∑
l=1

∑
i1

h(1,l)i′1,i1

∑
i2

h(2,l)i′2,i2
⋯

∑
if

h(f ,l)i′f ,if
ui1,i2,…,if = u′i′1,i′2,…,i′f

(5.21)

where h(k,l)i′k ,ik
is an element of the n × n matrix representation of the factor ĥ(k,l)(qk)

[71, 82, 83] There are several established methods for making PESs with the sum-

of-products form of Eq. (5.20) [84–89].

Perhaps surprisingly, even if the potential is not factorizable it is still possible to

do matrix-vector products at a cost that scales as nf+1, if a direct product quadrature
grid is used. For example, the quadrature approximation for the integral

Vn′m′,nm =
∫

dq1dq2fn′ (q1)gm′ (q2)V(q1, q2)fn(q1)gm(q2) (5.22)

is

∑
𝛼

∑
𝛽

√
𝜔
𝛼

w((q1)𝛼)

√
𝜔
𝛽

w((q2)𝛽)
fn′ ((q1)𝛼)gm′ ((q2)𝛽)

× V((q1)𝛼, (q2)𝛽)fn((q1)𝛼)gm((q2)𝛽)
√

𝜔
𝛼

w((q1)𝛼)

√
𝜔
𝛽

w((q2)𝛽)
(5.23)

where (q1)𝛼 and (q2)𝛽 are quadrature points and 𝜔
𝛼

and 𝜔
𝛽

are the corresponding

quadrature weights and w(q1) and w(q2) are the corresponding weight functions.

Re-writing this equation by defining,

([q1]T)n′,𝛼 = fn((q1)𝛼)
√

𝜔
𝛼

w((q1)𝛼)
(5.24)

([q2]T)n′,𝛽 = fn((q2)𝛽)

√
𝜔
𝛽

w((q2)𝛽)
(5.25)

one obtains

Vn′m′,nm ≈
∑
𝛼

∑
𝛽

(([q1]T)†)n′,𝛼([q2]T†)m′,𝛽V((q1)𝛼, (q2)𝛽)([q1]T)𝛼,n([q2]T)𝛽,m . (5.26)
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A matrix-vector product can then be written,

∑
𝛼

(([q1]T)†)n′,𝛼
∑
𝛽

([q2]T†)m′,𝛽V((q1)𝛼, (q2)𝛽)
∑
m
([q2]T)

𝛽,m
∑
n
([q1]T)

𝛼,nunm = u′n′m′

(5.27)

and the nf+1 scaling is evident.

The nf+1 scaling is due to the structure of the product basis. It is not a conse-

quence of the sparsity of the Hamiltonian matrix or the sparsity of the 𝐡(k,l) matrices

(although it is sometimes advantageous to choose the single coordinate functions

so that the 𝐡(k,l) matrices are sparse to further accelerate the matrix-vector product

[95]). Evaluating matrix-vector products by doing the sums sequentially means that

one never calculates matrix elements of the Hamiltonian (not even “on the fly”). It is

important that it is possible to evaluate Hamiltonian matrix-vector products without

first building the Hamiltonian matrix.

5.6 Using Contracted Bases with the Lanczos Method

Iterative methods for solving the Schroedinger equation are efficient only if matrix-

vector products can be computed cheaply. As explained in the previous section, in

the product basis case, matrix-vector products can be evaluated at a cost that scales as

nf+1. Contracted basis sets, defined in Sect. 5.3 A have many advantages, but if they

are to be used with an iterative method it is essential that it be possible to efficiently

evaluate the corresponding matrix-vector products. Contracted basis functions (cf.

Sect. 5.3) of type 1 are excellent but have important disadvantages: The matrix-vector

products are costly; many reduced-dimension eigenvalue problems must be solved,

and many sets of eigenvectors must be stored. For molecules with more than three

atoms, contracted basis functions of the type 2 are certainly better [101, 102]. In

orthogonal polyspherical coordinates the J = 0 KEO is [21, 103]

H = Tben(𝜃, r) + Tstr(r) + V(𝜃, r) (5.28)

with

Tben(𝜃, r) =
∑
i
G(i)

b (r)T
(i)
b (𝜃)

Tstr(r) =
∑
i
G(i)

s
𝜕
2

𝜕r2i
. (5.29)

𝜃 represents all the bend coordinates and r represents all the stretch coordinates. The

functions G(i)
b (r), G

(i)
s , and the operators T (i)

b (𝜃) are well-known [21].

We make contracted bend functions from a Hamiltonian obtained by fixing all

stretch coordinates at the values of a reference configuration (often the equilib-

rium configuration) and contracted stretch functions from a Hamiltonian obtained by



5 Methods for Computing Ro-vibrational Energy Levels 145

fixing all bend coordinates at reference configuration values. The final basis func-

tions are products of stretch contracted and bend contracted functions.

The reduced-dimension bend Hamiltonian is,

H(b) = Tben(𝜃, re) + V(𝜃, re). (5.30)

Its wavefunctions are

Xb(𝜃) =
∑
l
Clbfl(𝜃) (5.31)

and the energies are denoted Eb. The fl are primitive FBR (finite basis representation)

or DVR bend basis functions (when there is more than one bend coordinate l is a

composite index) and the number of retained bend wavefunctions is nb. The stretch

reduced-dimension Hamiltonian is,

H(s) = Tstr(r) + V(𝜃e, r). (5.32)

and its wavefunctions are,

Ys(r) =
∑
𝛼

D
𝛼sg𝛼(r) (5.33)

and its energies are Es. The g
𝛼

are primitive DVR stretch basis functions (if there is

more than one stretch coordinate 𝛼 is a composite index) and the number of retained

stretch wavefunctions is denoted by ns. 𝜃e and re represent reference values of the

bend coordinates and the stretch coordinates. The final basis functions are products

|bs⟩ = |Xb⟩|Ys⟩ (5.34)

The full Hamiltonian is written

H = H(b) + H(s) + ΔT + ΔV (5.35)

where

ΔV(r, 𝜃) = V(r, 𝜃) − V(re, 𝜃) − V(r, 𝜃e) (5.36)

and

ΔT =
∑
i
ΔG(i)

b (r)T
(i)
b (𝜃) (5.37)

with

ΔG(i)(r) = G(i)
b (r) − G(i)

b (re) . (5.38)



146 T. Carrington

Matrix elements of ΔT and ΔV in the product contracted basis must be computed. If

the contracted basis is small enough, the Hamiltonian matrix in the the product con-

tracted basis can be diagonalized with a direct linear algebra method. When this is not

possible one uses an iterative method and evaluates matrix-vector products. Owing

to the product structure of Eq. (5.37), matrix-vector products for ΔT are straightfor-

ward. When computing matrix-vector products for ΔV it is critical to avoid storing

the potential on a stretch-bend grid. This is the subject of the next section.

5.6.1 Matrix-Vector Products for 𝚫V

When using an FBR primitive bend basis, a matrix element of ΔV in the product

contracted basis [102] is,

⟨b′s′|ΔV(𝜃, r)|bs⟩ = ∑
l′ l
𝛼

Cl′b′ClbD𝛼s′D𝛼s⟨l′𝛼|ΔV(𝜃, r)|l𝛼⟩

=
∑
l′ l
𝛼𝛽

Cl′b′ClbD𝛼s′D𝛼sTl′𝛽Tl𝛽ΔV𝛽𝛼
, (5.39)

where

Tl𝛽 =
√
w
𝛽
fl(𝜃𝛽)

ΔV
𝛽𝛼

= ΔV(𝜃
𝛽
, r

𝛼
) . (5.40)

(𝜃
𝛽
,w

𝛽
) are points and weights for the quadrature and l, 𝛽, and 𝛼 are composite

indices. The columns of C are the eigenvectors of H(b)
in the FBR basis.

It is best to evaluate ΔV matrix-vector product by doing sums sequentially [101,

104–106], A potential matrix element in the contracted basis is rewritten

⟨b′s′|ΔV(𝜃, r)|bs⟩ = ∑
𝛼𝛽

C̃
𝛽′b′ C̃𝛽bD𝛼s′D𝛼sΔV𝛽𝛼

=
∑
𝛼

Fb′b,𝛼D𝛼s′D𝛼s (5.41)

where F is defined by,

Fb′b,𝛼 =
∑
𝛽

C̃
𝛽b′ C̃𝛽bΔV𝛽𝛼

. (5.42)

All the Fb′b,𝛼 are calculated and stored and the ΔV matrix-vector product,

u′b′s′ =
∑
bs
⟨b′s′|ΔV|bs⟩ubs . (5.43)
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is most efficiently done in three steps:

u(1)b𝛼 =
∑
s
D

𝛼subs

u(2)b′𝛼 =
∑
b
Fb′b𝛼u

(1)
b𝛼

u′b′s′ =
∑
𝛼

D
𝛼s′u

(2)
b′𝛼 (5.44)

The CPU cost of this matrix-vector product is n
𝛼
(n2b + 2nbns). One can reduce the

total time by parallelizing the calculation of F.

5.7 Conclusion

Using iterative eigensolvers has made it possible to compute vibrational spectra

with product basis sets for molecules with 4 atoms. The structure of the product

basis set is exploited to evaluate the required matrix-vector products. To compute

vibrational spectra of larger molecules it is helpful to use contracted basis sets. Con-

traction necessarily complicates the evaluation of matrix-vector products. Simply

contracted basis functions (type 2) and iterative methods can be efficiently combined.

It is imperative to avoid storing the potential on a large direct-product quadrature

grid. This can be done by using the F matrix idea. It obviates the need to transform

from the contracted basis to the primitive basis to do matrix-vector products. Con-

tracted basis functions are also advantageous for computing ro-vibrational spectra,

even for molecules with only four atoms. Products of symmetric top functions and

vibrational wavefunctions are good contracted ro-vibrational functions.
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Chapter 6
Effectively Unpaired Electrons for Singlet
States: From Diatomics to Graphene
Nanoclusters

Anatoliy V. Luzanov

Abstract Formal and computational models within the effectively unpaired elec-
tron (EUE) theory are reviewed and extended. In the first part, we analyze
open-ended aspects of the existing EUE measures and find additional advantages of
the Head-Gordon index (2003) over the very first (Yamaguchi et al. 1978) index. In
particular, for ground states the Head-Gordon index estimates an average occupa-
tion of virtual holes and particles, which occur due to electron correlation. Addi-
tional hole-particle indices for describing EUE are proposed and analyzed. The
second part of the paper is focuses on practical aspects and EUE computational
schemes in small molecules (at the ab initio level) and large-scale polyaromatic and
graphene-like structures (at the semi-empirical level). Here the unrestricted
Hartree-Fock (UHF) schemes and their recently proposed simplistic versions turn
out to be a suitable tool producing meaningful EUE characteristics for the extended
π-electron systems (with number of carbon atoms ∼103 and more) in a fast and
simple way. We emphasize that UHF solutions should be regarded not as invalid
spin-contaminated states but as precursors of the appropriate spin-projected states
of the Lowdin’s extended Hartree-Fock type. The influence of the static and vari-
able electric fields on π-electron systems is also studied. It is shown that strong
perturbations drastically increase the electron unpairing in aromatic hydrocarbons,
especially those with the initially stable Clar-type structure.
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6.1 Introduction

The notion of effectively unpaired electrons (EUE) in molecules originates from the
seminal paper of Yamaguchi and colleague [1]. The EUE analysis of wave functions
has become a very useful tool for understanding electronic structure of complex in
particular, conjugated molecules. In case of singlet states all the approaches to EUE
are inevitably rooted in high-level many-electron theories because no unpaired
electrons are possible in a one-electron picture of closed-shell systems. Indeed, by
construction, each electron pair (with opposite spins) occupies exactly one suitable
MO, as prescribed by any correct independent-particle model. Hence, only bona fide
wave functions accounting for electron correlation should be employed for treating
EUE. This makes the problem interesting and difficult simultaneously.

It should be also emphasized that there exist no spin density effects in
spin-singlet (diamagnetic) molecules if relativistic effects are neglected (see
Eqs. (5.2) and (5.3) in Ref. [2]). Hence, “effectively unpaired electrons” (as in the
dissociated hydrogen molecule or in radical pairs) remain, as a whole, in the singlet
state due to the total spin conservation law. This fact indicates some type of spin
correlation between particles, particularly between spatially separated ones, as it is
in the classical Einstein-Podolsky-Rosen pair [3, 4]. At the same time, systems with
large unpairing effects behave as singlet diradicaloids or even polyradicals which
feature many unusual properties. The problem is significant because a considerable
occurrence of the effectively unpaired electrons is an instability factor of the system
of interest. In particular, an EUE analysis of wave functions can easily point to a
diradical or, generally, polyradical character of electronic states. In this respect, the
EUE problem is also important for designing new molecular-based materials con-
taining giant molecules. A separate issue is electron unpairing in excited states,
which has attracted attention only recently.

There exist various quantum chemical approaches to define and quantify “odd”
electrons (this very term is used in [1] for effectively unpaired electrons). Obvi-
ously, it is important to rightly choose the scheme describing EUE. Two key
approaches are now popular in this field. The first employs the so-called Yamaguchi
index from [1]; the other uses the Head-Gordon indices from [5]. A noteworthy
progress was recently made in ab initio applications of the EUE theory [6–11]. And
yet, high-level electron correlation methods are very computationally demanding
or, more frequently, not available for large-scale and super-large-scale systems.
Therefore, it was important to develop a simplified semi-empirical, but at the same
time physically meaningful EUE theory for huge systems such as π-
electron-containing graphene-like structures and finite-sized carbon nanotubes.
Preliminary attempts in this direction were made in [12, 13]. It is worth mentioning
some interesting results produced for giant graphene molecules obtained by the
density functional theory (DFT) [14]. At the same time, in practice standard DFT
approaches typically fail to produce correctly formed density matrices, which
presents a stumbling block for the consistent analysis of molecular electronic
structures.
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In light of the above, the goal of the present contribution is to describe main trends
in this field and to give a comparable analysis of different approaches as well as to
demonstrate the utility of the EUE indices for interpreting complex structures—up to
covalent polymeric networks. In our applications of the EUE theory the stress will be
on strongly correlated molecular states, in particular large π-conjugated systems.
Here, we revisit the EUE problem in the context of previous studies [12, 15, 16], and
find the Head-Gordon index to be more appropriate and more consistent from a
physical viewpoint as well. We also describe new applications of EUE indices for
molecules in strong static and nonstationary electric fields. We aim to provide a
self-contained introduction to and a concise overview of the EUE theory.

6.2 General Definitions and Yamaguchi’s Index

We start with paper [1]. This work had put forward a first possible definition of the
EUE density for an arbitrary wave function with any permitted spin value s≥ 0. As
mentioned in the introduction, our main interest is the case of singlet states, and for
them the EUE effects are really important and interesting. Indeed, for nonzero spin
states (doublet-state radicals, triplet-state diradicals etc.), the manifestations of
unpaired electrons can be described even within the restricted open-shell
Hartree-Fock (ROHF) theory. The latter characterizes the unpaired spins by stan-
dard spin density matrices. In the singlet state, the spin density matrix disappears
[2], and yet, electron correlation enforces electrons to be unpaired if physical and
chemical circumstances require it (e.g., in bond breaking processes).

First, we provide the main EUE definitions using the conventional reduced
density matrix (RDM) methods. In singlet states, the first-order RDM (1-RDM) can
be defined as a spin-free matrix which is also termed the charge density matrix.
Throughout the paper, the capital letter D will be denoted the charge density matrix.
In Dirac’s bra-ket notation, D conveniently takes a compact form of a spectral
resolution, that is the following diagonal form:

D= ∑
k
λk φkj ⟩⟨φkj, ð6:1Þ

with φkj ⟩ being the eigenvectors (natural orbitals), and λkð≥ 0Þ being the respective
eigenvalues. The quantities λk are usually called natural orbital occupancy numbers
(NOON). Due to Pauli’s principle, 0≤ λk ≤ 2. Furthermore, NOON are usually
normalized to a total (always even in our case) number of electrons, N =2n, where
n is a number of electron pairs in the given spin-singlet molecule. Thus,

TrD= ∑
k
λk =N. ð6:2Þ
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If unpaired electrons are absent then all molecular orbitals are doubly occupied.
Obviously, for the fully closed-shell system the all nonzero NOON are equal to 2:

λi =2, 1≤ i ≤ n ð6:3Þ

(pair orbital occupancies), other λk> n =0. In this case one deals actually with the
customary independent-particle model, more exactly, the restricted Hartree-Fock
(RHF) approach. The RHF density matrix is denoted as D0. Explicitly,

D0 = 2∑ 1≤ i≤ n φij ⟩⟨φij. ð6:4Þ

The structure (6.4) is certainly changed under the influence of electron corre-
lation. So, expression (6.1) with a more involved NOON spectrum fλkg is generally
valid, and a deviation of a realistic NOON distribution from Eq. (6.3) properly
characterizes EUE. In [1] this simple reasoning was the underlying rationale for
introducing the EUE notion and the corresponding deviation measure.

Proceeding in a more formal fashion, we introduce the EUE density matrix, Deff ,
as a function of density matrix D (in the operatorial sense). It means that

Deff = ∑
k
λeffk φkj ⟩⟨φkj, ð6:5Þ

and the new, also nonnegative, ‘occupation numbers’ λeffk are generated by a certain
function of the initial NOON spectrum, that is

λeffk = f ðλkÞ ð6:5′Þ

(see [5]). The total EUE number, or better still, the EUE index, Neff , can be
identified with a sum of these λeffk :

Neff = Tr Deff = ∑
k
λeffk . ð6:6Þ

For singlet states, the natural requirement is f ðλkÞ≡ 0 for any one-determinant
wave function satisfying Eq. (6.3). In this case λ2k =2λk , and this can be condensed
into the matrix identity

2D0 − ðD0Þ2 = 0 ð6:7Þ

(the duodempotency relation). Thus, function f ðλÞ=2λ− λ2 provides an admissible
choice for a function which vanishes in the case of singlet state determinants. This
leads to the simplest solution of the EUE problem: λeffk = λoddk where
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λoddk =2λk − λ2k . ð6:7′Þ

Here and elsewhere superscript and subscript ‘odd’ denote that the Yamaguchi
index and related quantities are considered. As a result, the matrix representation of
Eq. (6.5) takesthe form

Dodd = 2D−D2, ð6:8Þ

and we can easily specify Eq. (6.6) as

Nodd = 2N −Tr D2 = 4n− ∑
k
λ2k . ð6:9Þ

The above approach gained more attention after this method was restated in [17]
(see also [18] about the history of Nodd and related measures in earlier literature on
valency). We now understand that for singlet states, Yamaguchi’s index Nodd is
merely a possible measure of the wave function departure from a single determi-
nant. In a different context, a closely related nonidempotency measure of 1-RDM
was independently introduced in Mestechkin’s book [19]. Furthermore, Nodd was
examined, carefully analyzed and extended in many later works, such as [6, 20–24].

Let us now give a simple example of using Nodd. Following mainly [1, 5, 12], we
consider the unrestricted Hartree-Fock (UHF) method for singlet states. In this case
Eqs. (6.8) and (6.9) can be easily rewritten, based on the known UHF relation

D= ρα + ρβ, ð6:10Þ

where ρα and ρβ are usual one-electron density matrices for α - и β-shells of the
UHF determinant. Then, the working equation is

Nodd½UHF�=N − 2Tr ðραρβÞ, ð6:11Þ

that is equivalent to

Nodd½UHF�=N − 2Tr ðρβραρβÞ, ð6:12Þ

as a result of idempotency relations ρα = ðραÞ2 and ρβ = ðρβÞ2. The equivalent
representation is

Nodd½UHF�= jjρα − ρβjj2,

where Zk k= ðTr Z + ZÞ1 2̸ is the familiar Euclidean (Frobenius) matrix norm for an
arbitrary matrix Z. When ρβ = ρα (no spin polarization) we return to RHF, and
Nodd = 0, as it should be. Another form of Eq. (6.11) is
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Nodd½UHF�=2⟨S2⟩UHF, ð6:13Þ

with ⟨S2⟩ being an average value of the squared spin [18].

6.3 Head-Gordon’s Index

In spite of many useful applications of Yamaguchi’s index, it fails in many cases. It
was first shown in [5] where one interesting example (dissociation of the triplet
oxygen molecule) was considered, and an incorrect behavior of Nodd was observed
for the dissociation limit. In this work a new approach was formulated in such a
way that could handle difficult cases as well. We will further refer to the EUE index
from [5] as the Head-Gordon index, and use the more compact term “H-G index”,
denoting it simply by Neff . This index is based on the following choice:

λeffk =1− jλk − 1j≡Min½λk , 2− λk�, ð6:14Þ

so that

Neff = ∑
k
Min½λk , 2− λk�. ð6:15Þ

By construction, the index satisfies the inequality

Neff ≤Nodd ð6:16Þ

(see Fig. 1 in [5]). The inequality is rather easy to demonstrate by considering the
UHF model. Using the corresponding spectrum fλkg from [25] an explicit
expression is derived to be

Neff ½UHF�=N − 2 ∑
n

j=1

ffiffiffiffiffiffi
λαβj

q
, ð6:17Þ

where λαβj are eigenvalues of ρβραρβ. We see that indeed Neff ½UHF�≤Nodd½UHF�
because eigenvalues of the product of idempotent matrices are less than 1, and
moreover, in the same notation we have from Eq. (6.12)

Nodd½UHF�=N − 2 ∑
n

j=1
λαβj .

There are many researchers who exploit H-G index (e.g., see [6–12, 26, 27]). In
several papers, indices Nodd and Neff are considered concurrently, and only few
authors advocate a preference of Nodd. Notice the polemic papers [28, 29] which
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present conficting viewpoints on the EUE problem. We will discuss a difference
between Nodd and Neff in Sects. 6.5, 6.14, and Appendix C. Based on this con-
sideration it appears that Neff provides a more consistent way to quantify the
diradical (or polyradical) character in terms of traditional NOON. It is worth
mentioning the earlier works [30] where NOON have been applied for a qualitative
identification of diradical states and diagnostics of multiconfigurational character.

Let us review some common properties of the Nodd and Neff measures and the
corresponding EUE occupancies, that is numbers λoddk in Eq. (6.7′) and λeffk in
Eq. (6.14). Returning to Eq. (6.5′) we write understandable requirements of the
nonnegative EUE function f ðλÞ to be defined only in the closed interval [0, 2], so
that

f ð0Þ= f ð2Þ=0, f ð1Þ=1.

Of course, Nodd and Neff obey these equations. Less trivial is that f ðλÞ is sym-
metric with respect to axis λ=1, that is

f ðλÞ= f ð2− λÞ. ð6:18Þ

In other words, Eq. (6.18) is satisfied by an appropriate function
f ðλÞ=Fðjλ− 1jÞ. Obviously, λoddk and λeffk obey the above relations. The reason for
symmetry (6.18) will be explained in Appendix A in terms of a duality transfor-
mation well-known in the multilinear algebra literature. In Appendix A one can also
find a possible generalization of indices Nodd and Neff . Various examples of Neff and
related indices will be given throughout the rest of this chapter.

6.4 Unpairing Indices from Collectivity and Entropy
Numbers

Another EUE quantification scheme appeared in [15, 31]. This scheme is based on
the so-called collectivity numbers first introduced in [32] for describing electronic
excitations within the single configuration interaction (CIS) method. More general
collectivity numbers were subsequently given in [33] for the full configuration
interaction (FCI). The related logarithmic measures are considered in [15, 34, 35].
Below we follow [15] from which a few illustrations (with a slight modification) are
taken as well.

The collectivity number can be treated as a statistical measure. A similar sta-
tistical measure has been defined before in [36] for analyzing localization of
vibrational modes. It was named the participation ratio. We define it as an average
rank, κ, of the given normalized probability distribution fwkg:
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κ=1 ̸∑
k
ðwkÞ2, ð6:19Þ

(for more detail see [15, 32, 37]). The squared expansion coefficients can be used as
a possible fwkg set. Generally, the resulting κ will be crucially dependent of the
representation chosen (the AO or MO representation, for instance). To make
Eq. (6.19) basis-independent, a matrix construction is required. The result is
automatically attained within the FCI matrix theory [38] based on the conventional
determinant FCI method [39].

For singlet states the FCI wave function Ψj ⟩ can be cast as follows:

Ψj ⟩= ∑I, J XIJ I; Jj ⟩. ð6:20Þ

Here real-valued (for simplicity) expansion coefficients XIJ are normalized, and
I; Jj ⟩ symbolizes the N-electron Slater determinants comprised of spin-up orbital

subset fχi1
+
, . . . , χin

+ g and spin-down orbital subset fχ p̄1 , . . . , χ ̄png. The orbitals are
all taken from the chosen “full” basis set

fjχμ⟩g.

Furthermore, in Eq. (6.20) indices I and J are in fact ordered multi-indices
(strings in [39]) of the form

I ≡ fi1, i2 . . . , ing, J ≡ fj1, j2, . . . , jng.

As a consequence of the determinantal nature of the basis set f I; Jj ⟩g used in
Eq. (6.20), the matrix

X = jjXIJ jj

has regular transformation properties, and thus all matrix invariants of X are
basis-independent. Moreover, for singlet states X should be a symmetric
(XIJ =XJ I ) and normalized matrix (due to ⟨Ψ j Ψ⟩=1), so that
∑I, J ðXIJÞ2 =Tr(X2Þ=1. The eigenvalues fxkg of X produce a normalized proba-
bility distribution, that is fwkg= fx2kg. Thus, the counterpart of Eq. (6.19) for FCI is

κ=1 ̸∑
k
x4k =1 T̸r(X4Þ. ð6:21Þ

This is just the collectivity number which was introduced in [33] and system-
atically studied in [15]. For single-determinant models we have X2 =X. In this case,
Ψj ⟩ in Eq. (6.19) can be reduced to one term, that is to a single determinant, so
κ=1. More preferable is a logarithmic quantity which we define by the expression:
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Nκ = − 2 ln Tr ðX4Þ ̸ ln2. ð6:22Þ

We term this quantity as the EUE κ-index, or simply κ-index. As shown in [15,
31], this index provides the needed properties (nonnegativity, additive separability,
and clearly interpreted results for simple chemical systems in extreme cases).

Consider two examples. The first is the two-electron hydrogen molecule treated
in a minimal basis of two atom-centred orthonormal AOs, { χ1j ⟩, χ2j ⟩}. From the
symmetry and normalization we directly obtain matrix X, as follows

X½H2�= 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffi
1− z

p ffiffi
z

p
ffiffi
z

p ffiffiffiffiffiffiffiffiffiffi
1− z

p
����

����, ð6:23Þ

with z being a variational parameter. This z has a meaning of a covalency parameter
(a weight of the Heitler-London geminal χ1 χ2 + χ2 χ1j ⟩ ̸

ffiffiffi
2

p
in the total wave

function). Elementary computations on Eq. (6.22) give

Nκ =2− ð2 ̸ ln2) lnð1+ 4z− 4z2Þ. ð6:24Þ

It can be compared with the respective values of Nodd and Neff indices:

Nodd½H2�=2ð1− 2zÞ2, Neff ½H2�=2 ð1− 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− zÞz

p
Þ ð6:25Þ

(they follow from the respective density matrix D½H2�=2ðX½H2�Þ2. Notice that there
is a misprint for κ½H2� in [15, 31]. The value z=1 ̸2 describes the Hartree-Fock
ground state. All indices, Eqs. (6.24) and (6.25), go to 2 when z→ 1, that corre-
sponds to the dissociation limit of the hydrogen molecule (see Fig. 6.1).

0.5 1
z

1

2

Neff
Fig. 6.1 Dependence of EUE
indices from the covalency
parameter z in the H2

molecule treated in minimal
basis: Yamaguchi’s index
Nodd in blue, κ-index Nκ in
green, and Head-Gordon’s
index Neff in red
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We see from Fig. 6.1 that the κ-index is intermediate between Yamaguchi’s and
Head-Gordon’s indices: Neff ≤Nκ ≤Nodd. As our experience testifies, this is, in fact,
the typical result.

As a second more complex example, consider the insertion reaction:

Be+H2 →BeH2 ð6:26Þ

(see [40] for the molecular geometry in the selected 10 points on the reaction path).
For reaction (6.26) the results (partially taken from [15]) are presented in Fig. 6.2.
Evidently, each of the approaches gives a similar picture with a maximum near a
transition region (the fifth and sixth points in Fig. 6.2). A more detailed analysis
reveals that the transition state (TS) corresponds, only very approximately, to a
diradicaloid state in which unpaired electrons should be significantly localized on
the H-atoms. Really, from the NOON spectrum (the right panel in Fig. 6.2) it is
clear that there are no NOON near 1. Only the values 1.45 and 0.51 in this spectrum
appear to give a quasi open-shell TS structure. The value Neff = 1.26 for the fifth
point is quite compatible with this situation. At the same time, the diradical char-
acter of this TS appears to be overestimated by the corresponding values
Nodd = 1.94 and Nκ =1.75. The fact that Nodd and Nκ overestimate the radicaloid
character is typical.

6.5 Hole-Particle Densities and Head-Gordon’s Index

We now look at the EUE problem from the viewpoint of the general theory of
hole-particle distributions given in [16]. The related indices (in a different disguise)
appeared in [15, 31]. In these works, Kutzelnigg’s original idea [41] about an
openness measure of electronic shells was discussed as well. A suitable description

path

1

1.5

2

N NOON
2

1

0.5

1 3 6 9 12
k

eff

Fig. 6.2 Left panel Nodd (in blue), Nκ (in green), and Neff (in red) for insertion reaction (6.26)
within FCI/6-31G. Right panel the NOON spectrum corresponding to the region near the transition
state (for point 5 on the reaction path)
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of EUE follows from a direct analysis of the RDM hole-particle components [16].
We introduce the latter by considering the general type of wave functions in terms
of the so-called excitation operators [39, 42]. They create the CI (configuration
interaction) wave-function of arbitrary order, up to FCI. Expansions of this type are
well known long ago [43, 44]. But only in [45] the one-electron and two-electron
RDMs were presented explicitly in terms of excitation operator matrices, more
exactly, elementary transition matrices (see also [16, 46]).

As usual, we must choose an appropriate reference determinant Φj ⟩ from which

one can generate singly excited f Φa
i

�� ⟩g, doubly excited f Φab
ij

��� ⟩g, and so on con-

figurations (as usually, indices i, j,… refer to occupied orbitals of the reference, and
indices a, b,… refer to virtual orbitals). Thus, the k-excited configurations are taken
from the set f Φa1...ak

i1...ik

�� ⟩g, and all possible k must be taken into account in an exact
(FCI) consideration. Each configuration contributes, to the considered FCI function,
with a respective configuration coefficient, Ca1...ak ; i1...ik , or explicitly

Ψj ⟩= ∑
0≤ k ≤N

∑
i1...ik
a1...ak

Ca1...ak ; i1...ik Φ
a1...ak
i1...ik

�� ⟩. ð6:27Þ

For our formal consideration, the full set

fCa1...ak ; i1...ikg, 0≤ k≤N, ð6:28Þ

is assumed to be fully known for a while. As usual, it is normalized to 1. Coeffi-
cients (6.28) can be packed into the corresponding multi-index matrices

Ck = ½Ca1...ak ; i1...ik �, 0≤ k≤N. ð6:29Þ

The same quantities (6.28) are identified with hole-particle amplitudes which are
just equal to matrix elements of hole-particle excitation operators Ck̂ . By definition,
Ck̂ generates the superposition of k-excited configurations of the corresponding
order k (for more detail see [39, 42]). Within the customary hole-particle formalism,
the first k indices a1 . . . ak in Ca1...ak ; i1...ik are related to states of ‘particles’ which are
excited above a ‘sea’ of occupied states, whereas the second k indices i1 . . . ik
(occupied orbitals) are related to the possible hole states in the same sea. This
well-known interpretation is also suitable for designing correlation indices. To this
end, let us consider the normalization condition which is, evidently,

∑
N

k=0
jjCkjj2 = 1 ð6:30Þ
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where obviously

jjCkjj2 = ∑
a1...ak ; i1...ik

jCa1...ak ; i1...ik j2. ð6:31Þ

The squared norm jjCkjj2 can be presented in two equivalent forms: as
jjCkjj2 = Tr CkðCkÞ+ , and as jjC +

k jj2 = Tr (CkÞ+Ck . Evidently, the first form is
relevant to the particles, whereas the second to the holes.

Now look at an average number of holes, that is index Nh (in notations from
[16]):

Nh = ∑
N

k=0
kjjC +

k jj2.

But the same expression is valid for the average number of particles:

Np = ∑
N

k=0
k jjCkjj2.

so

Nh =Np = ∑
N

k=0
k Tr CkðCkÞ+ . ð6:32Þ

Thus, we find the sum

Nh− p =Np +Nh ≡ 2Np ð6:33Þ

as an admissible hole-particle EUE measure [16, 31]. It remains to add that the
reference determinant Φj ⟩ in expansion (6.27) should be built up from natural
orbitals of the state in question. But sometimes another choice can be also
informative.

No practical difficulties exist in calculating Nh− p because in terms of spin-free
RDMs we have the explicit relations

Nh =TrDh, Np = TrDp, ð6:34Þ

and Dh and Dp are the hole, and, respectively, particle components of D. These
components, as defined in [16], are

Dh = 2ρ− ρDρ, Dp = ðI − ρÞDðI − ρÞ, ð6:35Þ

Here and elsewhere, ρ=D0 2̸, that is the spin-free projector on n maximally
occupied natural orbitals of the reference determinant:
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ρ= ∑
n

i=1
φij ⟩⟨φij. ð6:36Þ

(the Dirac-Fock density matrix, in other terms). In the same notations the total
hole-particle density matrix is Dhp = Dh +Dp, or

Dh− p = 2ρ+D− ρD−Dρ. ð6:37Þ

Within the given hole-particle approach, Dhp is a counterpart of the corre-
sponding EUE density matrix (6.5). Technical details for computing FCI and
closed-shell CCSD (singles and doubles coupled cluster) approaches are given in
[16, 47]. We write here only the simplest relation

Nh− p = 2 ðN −TrDρÞ ð6:38Þ

following from Eqs. (6.37). The corresponding spectral sum is

Nh− p = 2N − 2 ∑
i≤ n

λi =2 ∑
a> n

λa. ð6:39Þ

It is this quantity from in [15] which was derived based on [41]. More than that,
the numerical experience revealed that our hole-particle index (6.39) actually
provides the same characterization of EUE, as H-G index does. This fact was
recently subject to closer scrutiny [12]. The main inference from the analysis [12] is
that the identity

Neff =Nh− p ð6:40Þ

is true for ‘normal’ ground states, which have no pathology in the NOON spectrum
fλkg (see below). This becomes transparent if one considers the spectral
representation

Dh− p = ∑
i≤ n

ð2− λiÞ φij ⟩⟨φij+ ∑
a> n

λa φaj ⟩⟨φaj. ð6:41Þ

The latter follows from Eqs. (6.1) and (6.37), as moment’s inspection of defi-
nitions shows it. In the same fashion one can rephrase the matrix Deff , Eq. (6.5),
which is associated with H-G index by Eq. (6.14):

Deff = ∑
i≤ n0

ð2− λiÞ φij ⟩⟨φij+ ∑
a> n0

λa φaj ⟩⟨φaj. ð6:42Þ

Here n0 is a number of NOONs greater than 1. If n0 = n we have, by definition,
the normal state, and then
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Deff =Dh− p. ð6:43Þ

Otherwise the state in question falls into the category of ‘pathological’ states. In
practice, the excited states can be such ones, and in Sect. 6.10 (Table 6.4) we will
provide an example of the pathological state.

As usual, the ground state is normal in this categorization. It means that in
reality, identities (6.40) and (6.43) are valid even for highly correlated ground
states. This fact serves as additional argument in favor of Neff since a clear physical
meaning can be ascribed to this index within the conventional hole-particle picture.
Namely, for the normal ground states the Neff index is the average number of holes
and particles which are excited in the reference one-determinant state due to
electron correlation. As for molecular excited states themselves, the situation is
generally more involved, and will be addressed in Sect. 6.10. Incidentally, from
Eq. (6.41) it follows that the hole and, respectively, particle occupancy spectra are
of the form

f2− λig, fλag, ð6:41′Þ

where λi are related to ‘occupied’ natural orbitals (λi >1), and λa to ‘vacant’ natural
orbitals (λa ≤ 1). A possible generalization of hole-particle EUE measure (6.39) is
postponed to Sect. 6.14.

6.6 Using the High-Order Density Matrices

The fact that the EUE theory [1, 5, 15] can be chiefly founded on the one-electron
RDM is remarkable per se. However, electron correlation effects are at least
two-electron in nature, and it is no wonder that the second-order RDM was applied
for quantifying EUE and related electron-correlation properties. Seemingly, the first
investigation in this direction was presented in book [19] where in Sect. 6.5 a
special operator named ‘correlation operator’ was introduced. Actually, in [19] the
two-electron counterpart of Deff was examined. In this section we will denote
RDMs of order k by Dso

k . The superscript ‘so’ shows that the full RDM (in
spin-orbital basis) is considered. For instance, Dso

1 and Dso
2 are the conventional

one-electron and two-electron RDMs.
As well known, for the single Slater determinant (SD), that is for

independent-particle models, the two-electron RDM is the antisymmetrized product
of one-electron RDMs [48, 49]:

Dso
2 ⟶

SD 1
2
ðI −P12ÞDso

1 ð1ÞDso
1 ð2Þ, ð6:44Þ
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where P12 represents the full (with spin variables) transposition operator. Following
[19], we introduce the correlation operator Δso

2 as a difference between the exact
two-electron RDM and the SD approximation (6.44):

Δso
2 =Dso

2 −
1
2
ðI −P12ÞDso

1 ð1ÞDso
1 ð2Þ. ð6:45Þ

By contracting Δso
2 over variables of the second electron, we find

− 2Trð2ÞΔso
2 =Dso

1 − ðDso
1 Þ2, ð6:46Þ

that is but a ‘nonidempotency matrix’. This fact was independently discovered later
in [21] (the first paper in this reference entry). Really, contracting Eq. (6.46) over
spin variables just produces the EUE density matrix Dodd in Eq. (6.8). We see that
using Eq. (6.46) does not provide us a new quantification scheme, not to men-
tioning that Eq. (6.8) gives not very good approach, as argued previously.

A significant advance has been made in [50] where the completely two-electron
measure was introduced. In this work the squared norm of Δso

2 , that the quantity
jjΔso

2 jj2, was proposed as a new correlation and entanglement measure. Admittedly,
the EUE aspect was not within the scope of [50]. This aspect is discussed in [35]
(among other approaches). An appropriate rescaling, by constant factor 8/7, guar-
antees a correct number of unpaired electrons in the dissociated H2 molecule and in
arbitrary cluster of dissociated two-electron systems. Therefore, it is simply to
modify the above-mentioned measure, as follows:

Ncum =
8
7
jjΔso

2 jj2. ð6:47Þ

Here subscript ‘cum’ in Ncum means that this EUE index is produced by the
so-called cumulant density matrix (6.45), as such RDM constructions are termed in
the current RDM theory [51]. For practical computations, within FCI or RAS-CI
(restricted active space CI), more suitable is a spin-free expression from [35].

Some results (the data partially from [35]) are presented in Table 6.1. We see
that Ncum gives the values which are somewhat close to Neff than other indices. We
also observe that all the indices provide a similar qualitative picture. For instance, in
a case of the fully dissociated BeH2, we must obtain Neff ½Be+H+H�=Neff ½Be�+2
where Neff ½Be� is a non-zero value which results from the effect of intra-atomic
electron correlation in a free Be atom. At the FCI/6-31G level, we obtain
Nodd½Be� = 0.74 and Neff ½Be� = 0.39. Thus, it is expected that for the full disso-
ciation Nodd = 2.74 and Neff = 2.39, as it is the case, judging from Table 6.1. We
note also that at present using Ncum is rather restricted because a direct handling
with 2-RDM is avoided as a rule when treating large scale problems.
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6.7 Algorithmic Aspects

Several schemes are possible for practical calculations of the main EUE indices.
Frequently, all the elements of D are needed, e.g. for computing Nodd by Eq. (6.9)
and Neff by Eq. (6.15). In a number of cases we can simply exploit the explicit
expressions, as in the case of the rather easily performed UHF-like models. When
sophisticated multiconfigurational models are used, it is necessary to employ the
technique which is elaborated for obtaining D within the restricted active space CI
(RAS-CI) and coupled cluster schemes [39, 42]. However, the direct way is too
demanding when large-scale systems need to be addressed. Sometimes, one can
employ the RDM-free scheme from [52] that avoids the tedious computations of all
matrix elements of D. This scheme (see Eqs. (107) and (111) in [52]) can be applied
to the hole-particle quantification scheme described above. The respective tech-
nique is based on reverting the obvious relationship which connects expectation
values to RDM. Namely, for the given spinless one-particle operator Z we have

Tr Z D= ⟨Ψj ∑
1≤ k≤N

ZðkÞ Ψj ⟩. ð6:48Þ

Then the Neff index is simply computed in the equivalent form of Nh− p,
Eq. (6.38), that is as usual one-electron average (6.48) with

Z =2ðI − ρÞ.

In this case we imply that ρ is known. This is a case when the Hartree-Fock
reference determinant can be approximately used in the EUE analysis. Another case
is the Brueckner coupled-cluster method [42] producing the reference molecular
orbitals, almost the same as natural orbitals.

Additional indices which can by obtained by using Eq. (6.48) are the
hole-particle atomic localization indices fDeff

A g which are related to Nh− p

Table 6.1 Comparison of
Yamaguchi’s index Nodd, κ-
index Nκ , cumulant index
Ncum, and Head-Gordon’s
index Neff , for small
molecules at the FCI/6-31G
level

System Geometry Nodd Nκ Ncum Neff

BeH2 Re 0.24 0.17 0.14 0.12
BeH2 3Re 2.74 2.59 2.47 2.39
BH Re 0.62 0.48 0.39 0.33
BH 3Re 2.38 2.24 2.15 1.86
CH2 Re 0.62 0.44 0.37 0.32
CH2 3Re 4.17 4.09 4.04 3.62
H2O Re 0.36 0.22 0.21 0.18
H2O 3Re 4.07 3.98 3.93 3.57
HF Re 0.27 0.16 0.16 0.14
HF 3Re 2.09 2.01 1.98 1.73
Re is the equilibrium bond length, and 3Re corresponds to the
triply stretched equilibrium length
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(in practice, Neff ). They can be defined by the customary partition procedure well
known for other atomic indices [53, 54]. Let us introduce projector IA on atomic
orbitals belonging to the given atom (or fragment) A:

IA = ∑
μ∈A

χμ
�� ⟩⟨χμ

��. ð6:49Þ

Then

Deff
A =Tr IA Deff = ∑

μ∈A
ðDeffÞμμ, ð6:50Þ

where index μ numbers the standard orthonormalized AOs. Here the full
orthonormalized AO basis is

f χμ
�� ⟩g1≤ μ≤ dim, ð6:51Þ

(dim is a size of the basis set). Hence, performing calculations using Eq. (6.48) with
Z = IA + 1

n ðTr IAρÞ I − IA ρ− ρ IA for each atom A, we find the full atomic distri-
bution of the unpaired electrons in molecule. Obviously, the identity

∑
A
Deff

A =Neff ð6:52Þ

is guaranteed. For computing D and fDeff
A g in case of the CCSD model one can

apply a suitable algorithm which resembles that of the CISD (CI singles and
doubles) method (see Appendix in [47]).

6.8 Spin Correlations

In the introduction, we mentioned that the presence of unpaired electrons in singlet
states gives indirect evidence in favor of the essential spin correlations between the
electrons, especially when they are strongly localized. The following discussion
highlights this issue. It is well known from the quantum theory of magnetism that
spin correlations can be interpreted consistently by invoking the spin correlator
formalism. In quantum chemistry, spin correlators had been introduced by Penny
[55]. In the last two decades the interest to them revived (see [35, 56–60] and many
others). We follow the notations and techniques from [35, 59].

For the given atoms or molecular subunits A and B, spin correlator ⟨SA ⋅ SB⟩ is an
average of the form
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⟨SA ⋅SB⟩≡ ⟨Ψj SA ⋅ SB Ψj ⟩ ð6:53Þ

where the local spin operator SA can be taken as follows: SA = ∑
1≤ i≤N

sðiÞ IAðiÞ.
Here sðiÞ is the spin operator for the ith electron, and IAðiÞ is a local projector (6.49)
for the ith electron. The diagonal correlators ⟨SA ⋅ SA⟩≡ ⟨S2A⟩ are usually named the
(squared) local spins. The useful identity is

∑
B
⟨SA ⋅ SB⟩= ðs+1ÞQA 2̸, ð6:54Þ

where QA is a spin density localized on A, and s is the total spin value for the state
in study [35, 59]. For singlet states, spin densities identically dissappear, so

∑
B
⟨SA ⋅ SB⟩=0. ð6:55Þ

Obviously, the full sum rule is

∑
A,B

⟨SA ⋅ SB⟩= sðs+1Þ. ð6:56Þ

When analyzing spin correlators it is also suitable to pack the correlators into the
matrix

Kspin = ⟨SA ⋅ SB⟩k k, ð6:57Þ

where subscripts A and B run over all atoms in molecule.
As a simple application of these rules, consider the system divided into two parts

(subsystems) A and B. From Eq. (6.55) it follows

⟨S2A⟩+ ⟨SA ⋅ SB⟩=0, ⟨S2B⟩+ ⟨SA ⋅SB⟩=0.

Thus, the spin-correlator matrix is of the form

Kspin = ⟨S2A⟩
1 − 1

− 1 1

����
����, ð6:58Þ

where local correlator ⟨S2A⟩ takes the specific values. If the subsystems A and B are
in a singlet state (as in the case of a van der Waals (vdW) dimer of singlet mole-
cules) then the spin-correlator matrix is evidently

Kspin =
0 0
0 0

����
����.
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Now let A and B be subsystems which we assume to be in a triplet state. Then for
a resulting singlet state of the entire system, matrix (6.57) is

Kspin =
2 − 2
− 2 2

����
����. ð6:59Þ

This case occurs when we treat the singlet excited states of the vdW dimers and
complexes (the so-called triplet-triplet (TT) excitations). The spin-correlator anal-
ysis for the vdW dimers was shortly mentioned in [61] where the singlet fission
models are discussed. In context of the EUE problems we can connect spin cor-
relators with the Neff measure of the TT-type excited states. For instance, when no
charge transfer effects are involved, the local spins ⟨S2A⟩≡ ⟨S2B⟩ provide an estimate
of a weight of double excitations A*

s=1B
*
s=1

�� ⟩ in the total excited state of dimer AB
(see Appendix C in [61]). Then Neff ≈ 2⟨S2A⟩ because the singlet excitation
A*
s=1B

*
s=1

�� ⟩ has four unpaired electrons. In more general situation we must take into
account interfragment charge-transfer states. It leads to a more complicated analysis
which will be given in a forthcoming paper in collaboration with D. Casanova and
A. Krylov. Additional aspects of the EUE analysis for excited states are considered
in Sect. 6.10.

6.9 Spin-Polarization Indices and Antiferromagnetic
Image of Molecule

We briefly considered in Sects. 6.2 and 6.3 how to treat EUE within the UHF
approximation which admits to different orbitals for different spin (DODS). For
singlet states the UHF scheme is usually called the spin-polarized HF method (then
ρα ≠ ρβ, unlike RHF where ρα = ρβ). Here we look at the problem from the more
general viewpoint which allow us to introduce relevant spin-polarization indices for
any singlet many-electron states [62].

It is well known that for singlet states, the UHF solutions with ρα ≠ ρβ are really
possible when electron correlations become sufficiently strong. More exactly, the
spin-polarized HF determinant Φj ⟩ appear only under the non-singlet (triplet)
instability which was defined by Cizek and Paldus in [63]. At the same time,
solutions of the spin-projected variational HF method (the Löwdin’s extended HF
scheme) always exist [19]. The wave functions of this type will be signified by
Φextj ⟩. This is usually defined by (apart from a normalization factor)

Φextj ⟩=Os Φj ⟩, ð6:60Þ

with Os being a projection operator onto a spin-pure N-electron state with the spin
z-projection sz = s and the total spin value s.
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In this context, it is pertinent to recall that in many cases one can obtain the
so-called best overlap orbitals [64] of DODS type which are produced by the given
many-electron wave function. These orbitals were considered in [65] where they
were identified with spin-polarized Brueckner orbitals. However, they exist if and
only if the so-called nonsinglet Brueckner instability conditions are satisfied. At
last, if the correct spin-projected determinant Φextj ⟩ is involved in the consideration,
then it is always possible to construct the best overlap orbitals of DODS type for the
given exact or approximate state vector Ψj ⟩. These orbitals were recently introduced
[62] and named the spin-polarized extended Brueckner (SPEB) orbitals. By con-
struction, they maximize ⟨Φext j Ψ⟩.

Typical overlap integrals between Φextj ⟩ and Ψj ⟩ are found to be around 0.98
even for dissociated covalent molecules [62]. The corresponding EUE measures
(6.1) and (6.5) were also studied in [62] along with appropriate spin-polarization
indices. The latter are computed for Φextj ⟩ from matrices ρα and ρβ in another way
than in Eqs. (6.11) or (6.17). Following the cited work, let us introduce the inter-
mediate matrices

υ0 = ðI − ρβÞρα, π0 = ðI − ραÞρβ, ð6:61Þ

and define for SPEB the special spin-polarization matrices

Dα
pol = ðυ+

0 υ0Þ2, Dβ
pol = ðπ +

0 π0Þ2. ð6:62Þ

Then the indices

Nα
pol = Tr Dα

pol, N
β
pol = Tr Dβ

pol,

and the total spin-polarization index

Npol =Nα
pol +Nβ

pol = 2Nβ
pol ð6:63Þ

serve for the spin-up and spin-down characterization of EUE in the singlet states.
Additionally, we can introduce the associated EUE α-and β-distributions which are
composed of the atomic contributions, viz.,

Πα
A = ∑

μ∈A
ðDα

polÞμμ, Πβ
A = ∑

μ∈A
ðDβ

polÞμμ. ð6:64Þ

They are also helpful for the visual interpretation of the ESPB computations.
Here, A is a selected atom in molecule, and subscript μμ, as previously in
Eq. (6.50), indicates a diagonal element of the matrix in the orthonormal AO basis.
The total spin polarization index assigned to atom A is evidently equal to
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ΠA =Π α
A +Π β

A, ð6:65Þ

so that summing ΠA over all A reproduces Npol.
Let us look at Table 6.2 to understand what one can gain from this analysis. In

the table, along with the above indices and distributions, we also give coefficient
Cnat ≡ ⟨Φ0

�� Ψ⟩ at the reference determinant Φ0
�� ⟩ (the latter is taken as is the

closed-shell natural orbital determinant). From Table 6.2 we see that
⟨Φext j Ψ⟩≅Cnat (so that Cnat ≅ 1) only for normal molecules which are far from
quasi-degeneracy (H6, CH2 etc. in the table). In the H8 cluster, due to the frontier
orbital degeneracy, the ground state allows no symmetrical closed-shell structure,
and it leads to the fact that even Cnat is not large. At the same time, the SPEB
orbitals generate the spin-projected determinant which provides a sufficiently high
overlap with the exact wave function. The same is true for dissociative states in
Table 6.2. Interestingly, in this table the Npol indices turn out, as a rule, to be more
close to the Neff values than to the Nodd ones. The spin–polarization diagrams (two
columns in Table 6.2) deserve attention too. From them we see that the spin-up
EUE distributions are preferably localized in those parts of molecules where the
spin-down EUE distributions are localized poorly, and vice versa. This behaviour
outwardly resembles features of the alternant MOs introduced by Löwdin (e.g., see
Fig. 3 in [66]). The distinction between the two descriptions is in the fact that the
fΠα

Ag and fΠβ
Ag describe the “spin” localization of EUE, that is purely correlation

effects, whereas the spin-up and spin-down orbitals in UHF, EHF etc. correspond to
individual one-electron states without specifying correlations per se. In particular,
UHF orbitals are always nonzero whereas the spin-polarization indices can disap-
pear (e.g. in ‘one-electron’ limit). It is a matter of no small importance that the
SPEB orbitals and corresponding distributions fΠα

Ag, fΠβ
Ag are generated by exact

(FCI or RAS-CI) wave functions or high-level many-electron approximations.
Opposite to the latter, UHF and EHF frequently provide only a small part of
correlation effects for molecules in equilibrium or not too far from it (e.g., see [67]).

Alternatively, the EUE structure (within the SPEB) can be depicted by the
special spin-arrow diagrams representing together the fΠα

Ag and fΠβ
Ag distributions.

One may think of such diagrams as giving the antiferromagnetic EUE images of
molecules. Some examples are given in Fig. 6.3. Notice that the interpretation of
molecular structures in terms of antiferromagnetic coupling has a long history.
Implicitly, it was used in the Hartmann work [68]. Usually this terminology is
invoked when analyzing π-conjugated polymers and atomic clusters [69–75].
However, the nature of antiferromagnetism for the overall singlet state in molecules
is not so simple as in the case of the solid state ferromagnetism [69, 70]. We return
to this issue in Sect. 6.11.

6 Effectively Unpaired Electrons for Singlet States … 171



T
ab

le
6.
2

T
he

re
fe
re
nc
e
co
ef
fi
ci
en
tC

na
t,
ov

er
la
p
in
te
gr
al
⟨
Φ

ex
t
jΨ

⟩,
E
U
E
in
di
ce
s
N
od
d
an
d
N
ef
f,
to
ta
lp

ol
ar
iz
at
io
n
in
de
x
N
po
l,
an
d
at
om

ic
di
st
ri
bu

tio
ns

fΠ
α A
g,

fΠ
β A
gf

or
sm

al
l
m
ol
ec
ul
es

in
th
e
ba
si
s
se
t
of

6-
31

G
qu

al
ity

Sy
st
em

C
na
t

⟨
Φ

ex
t
jΨ

⟩
N
od
d

N
ef
f

N
po
l

fΠ
α A
g

fΠ
β A
g

H
6

0.
97

0.
99

0.
48

0.
24

0.
44

H
8

0.
65

0.
98

2.
71

2.
36

2.
24

C
H
2

(1
R
e)

0.
96

0.
98

0.
62

0.
32

0.
65

C
H
2

(3
R
e)

0.
50

0.
98

4.
17

3.
62

3.
94

vi
ny

lid
en
e

0.
97

0.
97

0.
80

0.
41

0.
41

(c
on

tin
ue
d)

172 A.V. Luzanov



T
ab

le
6.
2

(c
on

tin
ue
d)

Sy
st
em

C
na
t

⟨
Φ

ex
t
jΨ

⟩
N
od
d

N
ef
f

N
po
l

fΠ
α A
g

fΠ
β A
g

C
yc
lo
pr
op

en
yl
i

de
ne

0.
97

0.
97

0.
61

0.
31

0.
27

A
lle
ne

0.
96

0.
98

0.
29

0.
57

0.
47

A
lle
ne

(T
S)

0
1.
00

2.
20

2.
39

2.
28

Fo
r
th
e
C
H
2
m
ol
ec
ul
e,

FC
I
w
ith

fr
oz
en

co
re

is
us
ed
;
fo
r
ot
he
r
ca
rb
on

-c
on

ta
in
in
g
sy
st
em

s,
a
C
A
SS

C
F-
lik

e
sc
he
m
e
is
ex
pl
oi
te
d

6 Effectively Unpaired Electrons for Singlet States … 173



6.10 Unpairing in Excited States

The molecular excited states are just those in which the electron unpairing is one of
the key points in understanding the nature and properties of the electronic transi-
tions. But only in few works, such as [15, 62, 76–78], the EUE characteristics were
explicitly invoked for analyzing excited states. Recall that the simplified approxi-
mations are typically based on CIS (CI singles) and TDDFT (time-dependent DFT)
models. For singlet excitations the CIS density matrices were first derived by
McWeeny [79]. Then they were generalized [80] and extended to RPA (random
phase approximation) and TDDFT [81, 82].

The CIS wave function, as a particular case of Eq. (6.27), can be written as
follows:

ΨCIS
�� ⟩= ∑

i
∑
a
Cai Φa

i

�� ⟩, ð6:66Þ

with Φa
i

�� ⟩ being the singly excited configurations, and Cai the normalized ampli-
tudes (configurational coefficients). For our purposes we will use the equivalent
form of Eq. (6.66) which is based on spinless amplitudes τai, so that

ΨCIS
�� ⟩= ∑

n

i=1
∑
r

a= n+1
τai Φi→ aj ⟩, ð6:67Þ

where

Φi→ aj ⟩= Φa
+

i
+

��� ⟩+ Φa
−

i
−

��� ⟩
� �

̸
ffiffiffi
2

p
ð6:68Þ

are the standard spin-singlet configurations [83]. The charge density matrix for this
ΨCIS
�� ⟩ is

Fig. 6.3 Antiferromagnetic EUE images for the H8 cluster, vinylidene and twisted allene
molecules
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DCIS = 2ρ+ ττ+ − τ+ τ, ð6:69Þ

where the spin-free transition matrix τ is defined by the formula

τ= ∑
n

i=1
∑
r

a= n+1
τai φaj ⟩⟨φij, ð6:70Þ

and ρ is the previously defined projector (6.36) on occupied spin-free MOs of the
reference determinant (e.g., the RHF determinant). To guarantee the normalization
condition ⟨ΨCIS

�� ΨCIS⟩=1 we impose the condition Trτ+ τ=1.
Having at disposal density matrix (6.69) it is easy to perform the hole-particle

analysis of the CIS method. In this case, Eqs. (6.40) and (6.43) are valid because the
CIS states have no anomalies in the density matrix spectrum. Simple manipulations
on Eq. (6.37) lead to

Deff ½CIS�= ττ+ + τ+ τ, ð6:71Þ

so

Neff ½CIS �=Nh− p½CIS �=2 ð6:72Þ

for any CIS state [15]. The result is quite natural, and it is in agreement with the
standard spin structure of each singlet-spin configuration Φi→ aj ⟩, Eq. (6.68). The
same result is obtained for κ-index (6.22): Nκ

eff ½CIS�=2. On the other hand, com-
putations on Eq. (6.9) give

Nodd½CIS�=2f 2−Trðτ+ τÞ2 g. ð6:73Þ

From this it follows that 2≤Nodd½CIS�<4. Thus, we see that again Yamaguchi’s
index overestimates the EUE measure even for the discussed (very restricted) CI
wave function. More important is the result (6.71). This EUE density matrix exactly
coincides with the excitation localization operator, which was first introduced in
[84] (see also Eq. (6.5) in [82]). In the notation adopted here this is of the form

L̂*½CIS�= ðττ+ + τ+ τÞ 2̸, ð6:74Þ

Thus, in terms of Eq. (6.5),

L
*̂½CIS�=Deff ½CIS� 2̸. ð6:75Þ

We see that within the CIS approximation the excitation localization indices can
be additionally treated as the localization indices (6.50) of the unpaired electrons
occurring under excitation:
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L*A½CIS�=Deff
A ½CIS� 2̸. ð6:76Þ

This aspect of the EUE theory for CIS and CIS-like models was briefly outlined
in the recent review [76] (in Sect. 14.4). It would be interesting to understand to
what extend this holds true for more general models. We provide here only pre-
liminary insight on this rather difficult question.

For the lowest transitions, the CIS and the related TDDFT excitation energies are
often found in satisfactory or even good agreement with more refined theoretical
estimates. Nevertheless, there are low-lying transitions that cannot be usefully
studied in these popular approximations. Among such are the so-called
double-excitation transitions for which the excited-state wave function has a sig-
nificant proportion of a doubly excited configurations. Even sometimes, more
efficient methods may fail as in the case presented for the methylene CH2 in [85].
The methylene singlet excited states were also examined in terms of
spin-polarization diagrams [62]. Here relevant supplementary results are added
(Table 6.3). In the table, along with excitation energies and EUE indices, we present
the most important squared norms jjCkjj2 defined by Eq. (6.31). These norms are
computed in the basis of the ground-state natural orbitals.

From the table we observe that 1B1 and 1A2 terms are CIS-like states
( C1k k2 ≅ 1, all Neff ≅ 2). The 2A1, excited state is the doubly excited state
( C2k k2 ≅ 1), which, however, has almost the same small Neff value as that of the
ground state (see Tables 6.2 and 6.3). Thus, the EUE indices may not reflect the
multiconfigurational character of excited states. To elucidate this issue, let us
consider the main part of the NOON spectrum for the ground and excited states of
CH2 (Table 6.4). In the table we omitted the maximal NOON value 2, which is due
to the ð1sÞ2 frozen core of the carbon atom. Additionally, we included in Table 6.4

the main hole-particle index Nh− p, Eq. (6.39), and the related index NðrefÞ
h− p. The

latter was computed by Eq. (6.38) with ρ taken as the projector on the occupied MO
of the reference determinant used in the CI expansion (6.27). Recall that in
agreement with definitions (6.32) and (6.33), hole-particle index Nh− p can serve as
a suitable measure for multiconfigurational character in the corresponding CI
expansion (6.27). From Table 6.4 it is clear that the 1A1 and 2A1 states are very
similar in their NOON spectrum. Only in the case of the 2A1 state its closed-shell

Table 6.3 Electronic characteristics of the CH2 lowest excited states at the FCI/6-31G level

State λ ðC0Þ2 jjC1jj2 jjC2jj2 Nodd Nκ Neff

1B1 1.74
(0.005)

0. 0.957 0.019 2.27 2.21 2.12

2A1 4.48
(0.006)

0.028 0.002 0.931 0.68 0.49 0.35

1A2 6.00 0. 0.926 0.051 2.33 2.27 2.16
Vertical excitation energy λ in eV, oscillator strength in parenthesis
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nature is combined with the high multiconfigurational character when C2k k2 ≅ 1

(see Table 6.3). This picture is in accordance with NðrefÞ
h− p ½2A1� = 3.997. The

example demonstrates a usefulness of the hole-particle indices as supplementary
characteristics of excited states. Incidentally, one can observe from Table 6.4 that
the 1B1 state of CH2 provides an example of the pathological state (for definition,
see Sect. 6.4).

The above outlined peculiarities in using EUE indices for the multiconfigura-
tional states return us to the problem of constructing excitation localization indices
for arbitrary excitations. We can proceed in many ways. In the scheme [82, 84] the
operator modulus of density matrix difference, ΔD, is used. Namely, the normal-

ized excitation operator, L̂*, can be naturally introduced as follows:

L
*̂
= ðTrjΔDjÞ− 1ΔD, ð6:77Þ

ΔD=D* −D,

where D* is the charge density matrix for the excited state of interest, and by
definition, jΔDj = ½ðΔDÞ2�1 2̸. Then, as usual, the atomic indices

L*A = ∑
μ∈A

ðL*̂Þμμ ð6:78Þ

furnish the excitation localization measure assigned to each atom of the excited
molecule. Doing so for CIS-type states (6.67) we automatically produce indices
(6.76).

To solve the same problem by another way, take atomic EUE distributions (6.50)
and compute the corresponding normalized indices

L*ðeffÞA = j ðD*ÞeffA −Deff
A j ̸∑B j ðD*ÞeffB −Deff

B j. ð6:79Þ

Table 6.4 Hole-particle EUE indices Nh− p and NðrefÞ
h− p, and NOON spectra for methylene’s lowest

states at the FCI/6-31G level

State Nh− p NðrefÞ
h− p

NOON

1A1 0.32 0.32 1.9754, 1.9676, 1.8974, 0.0856, 0.0278 …

1B1 2.13 2.14 1.9735, 1.9640, 0.9954, 0.9919, 0.0255 …

2A1 0.35 4.00 1.9600, 1.9476, 1.9155, 0.0979, 0.0276 …

1A2 2.16 2.19 1.9617, 1.9562, 1.0025, 0.9932, 0.0292 …
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These indices characterize the excitation localization in its own manner. For

CIS-like states the distributions fL*Ag and fL*ðeffÞA g are sufficiently close, as the
methylene molecule example shows. In particular, we have

L*C½1B1�=0.921, L*H½1B1�=0.039,

L*ðeffÞC ½1B1�=0.971, L*ðeffÞH ½1B1�=0.015.

However, for the double excited state the compared results are markedly
different:

L*C½2A1�=0.933, L*H½2A1�=0.034,

L*ðeffÞC ½2A1�=0.760, L*ðeffÞH ½2A1�=0.120.

We conclude that for the depiction of excitation localization, the EUE indices
should be used with a certain care.

6.11 Conjugated Hydrocarbons in π-Electron Schemes

In this section we consider computations of the EUE indices for moderate-sized
systems within the easily implementable semi-empirical methods. Before doing so,
we briefly touch on simplified ab initio approaches to polyaromatic hydrocarbons
(PAHs). Many of the ab initio studies are based on various UHF and unrestricted
DFT schemes [86–88]. By these schemes, crude estimates of EUE effects can be
made even from the ⟨S2⟩UHF values. Really, for slightly correlated systems the
semi-quantitative relation

Neff ≈ Nodd 2̸ ð6:80Þ

holds (e.g., compare with the results of Table 6.2 for equilibrium geometries). As an
additional example, take the benzene molecule for which we have (in 6-31G basis
set): Nodd½UHF� = 1.101, and Neff ½UHF� = 0.584. Recalling Eq. (6.13), we can
expect that the rough estimate

Neff ≈ ⟨S2⟩UHF ð6:81Þ

can be utilized for a simplistic description in other moderately correlated systems.
Such estimates are easy because the needed data can be routinely obtained by most
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quantum chemical programs. Besides, in the current literature, the ⟨S2⟩UHF data are
available for many PAHs (e.g., see [87, 88]).

To be more specific, consider linear polyacenes for which a model geometry will
be used here and throughout the paper: the carbon backbone is formed by regular
hexagons with the C-C bond length of 1.4 Å and the C-H bond length of 1.09 Å.
Using the Gaussian program package [89], we computed ⟨S2⟩UHF for the first ten
linear polyacenes C4n+2H2n+4 at the UHF/6-31G level. The results are conveniently
expressed via the linear regression

⟨S2⟩UHFðnÞ = 0.6462 ⋅ n, ð6:82Þ

with residual variance 10− 3, thus reflecting a size-consistent behavior of the index.
In the case of large carbon-containing systems it is suitable to compare the EUE

index value per carbon atom. For instance, we introduce

⟨S2⟩
UHF

≡ ⟨S2⟩
UHF

N̸C, ð6:83Þ

where Nc is a number of carbon atoms (Nc = 4n+2 for Eq. (6.82)). For large linear
acenes we have from Eq. (6.82)

⟨S2⟩
UHF

≅ 0.16.

Likewise, other EUE indices per carbon atom are defined:

N ̄odd ≡ Nodd N̸c, ð6:84Þ

N ēff ≡Neff N̸c, ð6:85Þ

Returning to Eqs. (6.81) and (6.83) we suggest a rough estimate,

N ēff ≅ 0.16, ð6:86Þ

is reasonable for sufficiently large linear polyacenes treated with the 6-31G basis
set.

An interesting point is a measure of the participation of π-electrons in the total
unpairing. Our experience with small conjugated systems tells that usually ≈2 3̸ of
the average Deff

C value is from π-electrons. Together with Eq. (6.85) it gives a crude
estimate

N ̄eff ½π� ≅ 0.1. ð6:87Þ

This approach is in concordance with the fact that in large conjugated systems,
electron correlation largely influences the outer π- electron shells. That is why most
physical models of conjugated polymers are based on one or another version of the
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π-electron approximation (most often in the form of a many-electron Hubbard
model, see reviews [69, 90]). Furthermore, previous non-empirical studies [8, 9, 11]
in large conjugated molecules (by using DMRG and MR-AQCC) have considered
only π-electron contribution to EUE. All this has motivated us to undertake a
detailed study [12] of the EUE effects within the conventional π-electron theory.
Below we shortly outline the main results of this study.

For the selected PAHs, the results are presented in Table 6.5 where in the
structural formulas the EUE atomic distributions are displayed in a qualitative

manner. All EUE indices (except for ⟨S2⟩
UHF

) are computed within the hole-particle
approach, Eqs. (6.37) and (6.38), which, for ground states, is equivalent to the
Head-Gordon approach. Here, the Parizer-Parr-Pople (PPP) π-electron approxi-
mation is employed. We see that again the UHF scheme based on Eqs. (6.10) and
(6.17) works well (in respect to the CCD results), and this fact was emphasized in
[12]. The π-electron UHF scheme (π-UHF) is favorable because of its simplicity of
computation, and ease of interpretation. However, this method is not recommended
for systems with a relatively small π-electron correlation effects, e.g. in the per-
opyrene molecule (the third entry in Table 6.5). In the case of too little electron
correlation, the half-projected Hartree-Fock (HPHP) [91] and EHF schemes are

Table 6.5 Specific EUE indices NUHF
eff , NEHF

eff , NCCD
eff , and ⟨S2⟩

UHF
for π-systems in pentacene

bisanthene, peropyrene, and pyranthrene within π-UHF

π-Structure
⟨S2⟩

UHF NUHF
eff NEHF

eff NCCD
eff

0.056 0.061 0.059 0.061

0.045 0.056 0.055 0.057

0.025 0.027 0.041 0.047

0.032 0.036 0.042 0.049
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applicable. We remark that the EHF results in Table 6.5 are sufficiently close to the
CCD ones even for the peropyrene and pyranthrene molecules which have modest
electron correlation effects. These observations are the basis on which the UHF
method, with obligatory use of Eq. (6.17) or more refined indices, can be recom-
mended for studying EUE effects in large graphene-like molecules [12]. The use-
fulness of this approach shows Table 6.6 containing two examples taken from the
cited paper. To the previously defined quantities, Eqs. (6.83) and (6.85), we have
included in the table one additional characteristic index, ℵloc. The index ℵloc gives a
mean number of atoms (sites) on which the unpaired electrons are preferentially
localized. Explicitly,

ℵloc = ½∑
A
ðDeff

A Þ2�2 ½̸∑
A
ðDeff

A Þ4. ð6:88Þ

This equation is a generalization of the participation ratio (6.19) and gives a
more sharp estimate for a number of strongly localized atomic centers (sites). The
related index was employed in [92] where it is shown that the index can well
distinguish between localized and extended states. From Table 6.6 we see that
indeed ℵloc gives an acceptable average number of the essentially localized
unpaired electrons. When using ℵloc one must keep in mind that this index is
informative if ℵloc ≪Nc, that is in the case of a sufficiently sharp EUE localization.

Now we remark on the NOON spectrum fλkg given in the fourth column of
Table 6.6. Similar plots are frequently displayed when considering the nature of
EUE in large molecules [8, 9, 11–13, 26]. The first system in the table belongs to
the so-called periacene family. The earlier theoretical study of this family was given
in [93] where a simplified Hubbard-like π-UHF method was applied. In the recent
papers [8, 9, 11] the EUE analysis for the periacenes was given at the high-level
ab initio level. Here, we can directly compare these reliable ab initio results and
ours, thanking to the fact that the needed ab initio data were kindly provided by the
authors of [9, 11]. The results are displayed in Fig. 6.4, where the same nomen-
clature of periacenes, as in [9, 11], is used. Comparing the corresponding plots, we
observe their really close similarity. More specifically, the same localization of few
NOON in the vicinity of 1 is found in the ab initio as well as the π-electron
calculations, and this localization corresponds to a genuine open-shell (polyradical)
singlet structure. A general view of the plots is also similar. Moreover, in the (5a,
6z) periacene the EUE atomic localization is comparable (see [12] for detail). On
this account, we suggest that the π-electron EUE model, which is based on the
simple UHF expression (6.17), should be useful for other large-scale conjugated
systems, at least at a qualitative level. The symmetry (exact or approximate) of the
NOON in respect to point λ=1 is also deserve attention. For alternant hydrocarbons
within any correct PPP scheme this symmetry is exact, and it is easy to prove (see
the last paragraph in Appendix B). The ab initio results [9, 11] approximately fulfil
this symmetry which implicitly reflects the physical equivalence of the holes and
the particles in alternant π-systems [94] (see again plots in Fig. 6.4).
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Notice that the above cited EUE ab initio study was performed for active π-
orbitals. Thus, the EUE indices obtained from corresponding NOON spectra, are
related to respective π-electron contributions. In case of the periacenes (5a, 4z), (5a,
5z), and (5a, 6z), we find, from the respective NOON spectra, the following
ab initio N ̄eff ½π� values: 0.111, 0.108, 0.108, in agreement with rough estimation
(6.87). The analogous π-electron PPP data will be given in Sect. 6.14, Table 6.11.
They are approximately twice less than the ab initio values. At the same time, if we
exploit the so-called Mataga formula for two-electron two-center integrals γμν (with
a Coulomb-like distance dependence), then we obtain the results closer to the
ab initio ones. In particular, for the (5a, 6z) periacene the π-UHF scheme with
Mataga’s γμν gives N ̄eff = 0.129. Nevertheless, the standard π-parametrization we
use (γμν by Ohno’s formula) is more appropriate for π-electron correlation effects,

as was established long ago. We also computed index ⟨S2⟩
UHF

(by using the pro-
gram package [89]) and get a crude ab initio estimate via Eqs. (6.81) and (6.83). For
the (5a, 6z) periacene at the 6-31G level we thus obtained N ̄eff ½π�≅ 0.09 which
seems quite reasonable in comparison with the above non-empirical value
N ēff ½π�≅ 0.108 from [9].

As mentioned in Sect. 6.9, the EUE structure can be interpreted in somewhat
notional terms of antiferromagnetism [95, 96]. Indeed, a local spin density is absent
in any correctly defined singlet state, and, strictly speaking, the Néel-like spin
structure is not possible for the single spin-singlet molecule. Thence, we cannot
introduce, as usual, the antiferromagnetic order parameter (such as average differ-
ence of spin density between neighboring atoms). For the correlated singlet states,
spin density matrix can be substituted with EUE density matrix (6.5). Conse-
quently, index N ̄eff might serve as an appropriate order parameter for polymer
structures,. This index satisfies inequality: 0≤N ēff ≤ 1, that is natural to expect from
the order parameter. In our case, N ēff = 1 corresponds to the ordered Néel state with
the maximal ‘spin’ value in each sublattice of the bipartite structure. The given
interpretation introduces an obviousness in understanding EUE for bipartite net-
work structures. By adopting this reasoning, one can, moreover, invoke the best
spin-polarized orbitals, that is the SPEB solutions discussed in Sect. 6.9. It allows

(5a, 4z)
2 2

1

1 33
k 1 39 78

k

1

2

66

1

1 27 54
k

(5a, 5z) (5a, 6z)

Fig. 6.4 Comparison of the ab initio [9] (violet color), and semi-empirical (green color) NOON
spectra for (5a, nz) periacenes
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us to reinterpret N ̄eff as a “spin” order parameter for exact or almost exact wave
functions too.

Before closing this section let us comment on the UHF calculations presented
above. From the formal viewpoint, UHF is the one-electron model which deals with
a single determinant wave function Φj ⟩. However, for strongly correlated systems
the UHF wave function well mimics many properties of the spin-projected deter-
minant Φextj ⟩ which is, of course, many-determinant state and which takes into
account electron correlation. The closeness between Φj ⟩ and Φextj ⟩ had been
demonstrated long ago [70] with the infinite polyene chain treated analytically
within the ‘diagonal’ Hubbard Hamiltonian approximation. The authors had sug-
gested that it is a general feature of UHF solutions in polymeric π-problems. Our
experience with EHF computations on large π-systems confirms these expectations.
In particular, for the large systems the UHF charge RDM, Duhf , as in Eq. (1.10), is a
good approximation to the EHF charge RDM, Dext, which is provided by the
variational Φextj ⟩ state. Nevertheless, the UHF spin density matrix does not vanish
for the UHF (spin-polarized) singlet ground state. Therefore, upon obtaining the
UHF solution, the spin density matrix should be ignored (fixed to zero) what
corresponds to an implicit purification of the spin-contaminated singlet state. At the
same time, charge density Duhf is well defined, and indeed very close to the EHF
counterpart. For instance, we find the following squared norms, jjDext −Duhf jj2 N̸
(deviation of Duhf from Dext per π-electron): 0.0007 for decacene C42Hc4, and 0.
0002 for acene C102H54, respectively. These and many other examples (recall also
Table 6.5) allow us to consider, for large systems, the usual spin-contaminated UHF
solutions as a good approximation to main properties of the spin-adapted EHF
solutions.

6.12 Giant Hydrocarbons and Nanographenes
in a Spin-Polarized Hückel-like Scheme

In case of huge conjugated systems with several thousands of atoms, even the π-
electron UHF method, in its full version, necessitates using high-performance
computer clusters. Meanwhile, many important problems of nanoelectronics require
studying novel molecular materials, including graphene nanoribbons, nanoislands,
nanowiggles and other unusual giant honeycomb structures [74, 97–100]. Most of
these structures are based on the so-called bipartite lattices. By definition, the
bipartite lattice is formed by two interpenetrating sublattices, and each of these
sublattices contains only one kind of atoms. Following [101], we will use the term
“lattice” in an extended meaning, allowing the term for finite lattices and even for
any finite-size atomic structures. In the theory of π-conjugated molecules, the
standard term “alternant system” is a full counterpart of the term “bipartite lattice”.

There are many remarkable theorems dealing with abstract and realistic models
of bipartite lattices [94, 101–104]. The well-known Coulson-Rushbrooke pairing
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theorem [102] is one of them. Additionally, the pairing theorem has a nice and
useful matrix representation due to Hall [105]. The Hall formula (see below
Eq. (6.90)) is valid within the Hückel method, and there is its analogue within the
PPP one-electron approximation. In solid state physics, the counterpart of the
Hückel approach is known as the tight-binding (TB) model. TB schemes, now more
refined than before in the old solid-state physics days, are very popular because they
have advantages to handle atomic cluster with thousands of atoms, reaching
experimental sizes [106, 107]. Unfortunately, all these methods ignore electron
correlation. In [13] we modified the TB model for bipartite lattices in such a way
that it can handle strongly correlated bipartite lattices, and describe in them the
relevant EUE effects. Below we sketch the main results of this work, and leave most
formal details to Appendix B.

We recall few simple facts from the TB (or Hückel) theory of bipartite lattices.
For the carbon-containing conjugated systems, the usual basis set f χμ

�� ⟩g of the
orthonormalized 2pz-orbitals is employed. The corresponding one-electron
Hamiltonian can be represented by the 2 × 2 block-structure matrix

h0 = − 0 B
B+ 0

� �
, ð6:89Þ

where all entries are expressed in units of jβ0j with β0 being the standard hopping
(resonance) integral between nearest-neighbor sites (π-centers). The block B in
Eq. (6.89) is the biadjacency matrix, that is Bμν =1, if μ and ν are nearest-neighbor
sites, otherwise Bμν =0. Obviously, due to a bipartite structure of the considered
lattices we can always renumber lattice sites in such a way that Eq. (6.89) holds
true. From Eq. (6.89) it is not difficult to deduce the Hall formula [105] for the
charge density matrix (or Coulson’s bond-order matrix):

D0 =
I BðB+BÞ− 1 2̸

ðB+BÞ− 1 2̸ B+ I

� �
. ð6:90Þ

This and somewhat more general relations are rederived in Appendix B.
Certainly, Eq. (6.89) is only a specific case of Eq. (6.4), and no EUE effects are

possible at this level of description. It would be important to extend the Hückel
model in order to somehow account for electron correlation effects without over-
simplifying the model. The approximation of this kind was given in [108] and
applied to EUE problems in [13]. The most important expressions of this work are
reproduced here (see cit. loc. for the argumentation and precursors of the model).
The model was referred as to the quasi-correlated tight-binding (QCTB) method.
Within QCTB, we construct the effective Hamiltonians matrices

hα = − δ I B
B+ − δ I

� �
, hβ = − δ I B

B+ − δ I

� �
ð6:91Þ
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where δ is treated as a fixed auxiliary parameter. The hα and hβ matrices are the
counterparts of common Fock matrices for spin-up and spin-down electrons,
respectively. Unlike UHF, no self-consistency procedure is needed for obtaining the
corresponding density matrices ρα and ρβ. The approach used is the most similar to
the earlier approximate one-parameter UHF theory (e.g., see [101], the second
citation). However, we can always obtain nonzero correlation effects by a suitable
choice of the fitting parameter δ, and it allows to extend the applicability of the
whole approach. Only for very strongly correlated systems, QCTB and the
one-parameter UHF theory scheme are virtually equivalent.

Now turn to computational aspects. For matrices ρα and ρβ, a block represen-
tation is easy to find by simple algebra (see Appendix B). As a result, we get charge
density matrix of the QCTB model, Eq. (B4), and the respective NOON spectrum,
Eq. (B5). It comes to a suitable working formula for the main EUE index:

Neff =Nh− p =N − 2 ∑
n

i=1
εi ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2i

q
. ð6:92Þ

Here εi ≡ εij j are eigenvalues of ðB+BÞ1 2̸, that is fεig is precisely the Hückel
energy spectrum (in modulus) of the respective alternant system (the bipartite graph
spectrum). In specific computations we will use value δ=7 2̸4 which was found by
fitting. Incidentally, remark that for small δ it is easy to check that with
second-order accuracy in δ, Nodd = 2Neff , as suggested before from a numerical
experience (see Eq. (6.80)).

The above quasi-Hückel approach to EUE turns out to be reasonable and suf-
ficiently close to the UHF and even CCD schemes (see Table 1 in [12]). Here we
extract from this reference two kind of representative examples. One kind of them is
related to the conjugated polymer structures (Table 6.7), the other to the finite-size
graphene nanoflakes (Table 6.8). Before considering Table 6.7, let us make brief
preliminary remarks. For many π-electron structure, particularly, with translation
symmetry the analytical solution of the Hückel band spectrum is well known. For
instance, consider a long polyene chain [–(CH=CH)–]n (polyacetylene) as a
paradigmatic example of strong correlation in the physics of conjugated polymers
[69, 109]. In case of the finite polyene chain the Hückel spectrum is
εk =2 cos½π k ð̸2n+1Þ�(see any quantum chemistry textbook). For the asymptotic
case, n→∞, straightforward computations on Eq. (6.92) (with approximating a
sum by integration method) lead to

Neff =N 1−
2
π
arcsin½1 ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ δ2 4̸

p
�

� �
. ð6:93Þ

We see from this equation that in the limit of large δ (very strong correlation
effects) the EUE index Neff →N, as it should be. Evidently, the value Neff =N
corresponds to breaking each of π-bonds, when all π-electrons are unpaired.
Remark that for infinite polymer chains the NOON spectrum fλkg generally covers
a whole interval [0, 2]. Therefore, instead of discrete set fλkg, the continuous (more
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exactly, quasi-continuous) function λðkÞ of the continuous variable k makes its
appearance. For convenience we make using the unity interval [0, 1] for continuous
variable k.

A more general case is the polyene chain with alternating resonance integrals
βμ, μ+1 = ½1+ ð− 1Þμ+1η�β0, where η is usually small quantity (we put η=0.07). The

Hückel spectrum is of the form [110]: εðkÞ= ffiffiffi
2

p ½1+ η2 + ð1− η2Þ cos π k�1 2̸, where
0≤ k≤ 1. This case is intractable analytically, but numerical computations are easily
performed, and the results are given in Table 6.7 (the first two systems in the table).
Another interesting example is the linear polyacene (the third system in Table 6.7), for

Table 6.7 The Neff index and quasi-continuous NOON spectrum λðkÞ (0≤ k≤ 1) for infinite π-
conjugated polymer chains

Polymer N ̄eff Spectrum

0.092

0.076

0.098

0.086

0.041
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which in accordance with Coulson [111] we have εðkÞ= ½1±ð9+ 8 cos π kÞ1 2̸ � 2̸. In
order to present a more complete comparison we add in the table the results for the
graphene nanoribbon (4-ZGNR in the standard nomenclature) and for the poly(pe-
rianthracene) chain. The π-electron band structure of these two systems is computed
by a code from [112].

As seen from Table 6.7, only the polyacetylene with alternating bonds and poly
(perianthracene) molecules exhibit a gap in their NOON spectra. In contrast, the
polyacene and 4-ZGNR demonstrate a quasi-continuous NOON spectrum covering
the whole interval [0, 2]. Furthermore, crowding λðkÞ near a ‘polyradical range’,
that is near λ=1, is observed in these spectra. A significant difference, in the N ēff
index, between the 4-ZGNR and poly(perianthracene) can be simply understood in
terms of Clar’s aromatic sextet theory (for the latter see, e.g., [74, 113]).

Now we will discuss in brief the QCTB results for three graphene nanoclusters
with N∝103, presented in Table 6.8. We only note that an unprecedented rise of
interest in the graphene engineering researches generated the enormous literature in
which recent books [74, 114, 115] only minimally reflect this graphene popularity.
The first two systems in Table 6.8 are of a nanoflake family with the D6h symmetry
(hexagonal graphene nanoflakes). The cluster system, C1302, is with the
armchair-shaped edge, and the second, C1350, with the zigzag-shaped edge. From
the table we see that these two clusters have a small difference in energy stability
(within QCTB), but a significant difference in the EUE characteristics. In
zigzag-edge nanocluster C1350, the third system in Table 6.8, more electrons are
unpaired, and again these unpaired electrons are preferentially localized on edge

atoms. It is revealed by localization index N ̄bordeff (sum of atomic EUE occupancies
divided by a number of the border atoms). On this account the zigzag edge atoms
should be more unstable, or more reactive than the armchair edge atoms, and
thereby the armchair nanoflakes be more stable in accordance with experiment (see
[116], p. 382) and a model DFT study [117]. Chemical reactivity of graphene
structures is a rather frequent issue discussed in current chemical literature [74,
118–122], and the principal inference we can make is that the major reactivity
contribution comes from the edge states of nanoclusters. The very different models,
from simplistic semiempirical to high-level nonempirical ones, predict the same
qualitative trends. Notice that in the case of graphene nanoribbons with zigzag
edges the strongly localized edge states were first reported almost 20 years ago [72]
where the Hubbard π-UHF model was used. Apparently, in all models the char-
acteristic effects of chemical topology are exhibited, and this fact demonstrates the
practical usefulness of even naive models for studying large conjugated systems.
We close this chapter by noting that the proposed π-electron QCTB scheme can be
modified for an all valence-electron treatment by using the extended Hückel MO
theory [123]. In this case the ionization potentials of 2p-electrons in the respective
Wolfsberg-Helmholtz relation should be changed similar to Eq. (6.89).

6 Effectively Unpaired Electrons for Singlet States … 189



6.13 Electron Unpairing in Strong Fields

The behavior of molecules under external perturbation shows the interesting, but
not unexpected, fact that the electron unpairing greatly increases in strong fields.
We consider here some representative examples carried over from [124, 125]. First,
we discuss the effects of static electric fields for small molecules. A typical illus-
tration is provided by an example of the rhombic cluster of Li4 in an atomic-scale
electric field (∼ 0.1 atomic units). The results of the FCI/STO-3G calculations are
shown in Fig. 6.5 where we plotted, in atomic units, the dipole moment dx and Neff
as functions of the electric field strength E, and the static field is applied along the
longest diagonal (x-direction) of the rhombus.

By inspecting the plots, we see a strong increase of the dipole moment in the
field, but Neff behaves more unpredictably, particularly in the region where the
dipole moment curve undergoes a small inflection. A sharp maximum of Neff in this
region corresponds to a diradical state (Neff ≅ 2.04). Interestingly, in this extremal
state the most unpaired atom (judging from Deff

A ) is the ending atom on the longest
diagonal, whereas the opposite atom on the same diagonal has zero EUE density
and net atomic charge +1 (that is, locally it is Li+ ). This corresponds to the valence
scheme of the form

Practically the same field dependency is obtained within the CISD and EHF
schemes. Furthermore, passing from the STO-3G basis set to the 6-31G basis set,
we obtain similar plots. For other small systems, see [125]. As one can see from
[124], the analogous treatment (at the FCI/PPP level) of small conjugated hydro-
carbons, such as the naphthalene and biphenylene molecules, gives the results
resembling those of the Li4 case. For extended conjugated molecules the results are
even more pronounced. Notice that in [124] we preferred using κ-index, Eq. (6.22),
to using other EUE measures because the Nκ index requires no computations of D,
and this gives a certain advantage when it is necessary to calculate, at the FCI/PPP
level, the κ-index for hundreds or more electric-field points.

25.1
dx Neff

2.04

0.78

0.1 0.2 0.1 0.2

Fig. 6.5 Changes of dipole moment dx and Neff in a uniform electrostatic field of strength E for
the rhombic Li4 cluster at the FCI/STO-3G level
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It is interesting to see a typical difference in behavior between strongly and
slightly correlated systems in a strong static field. For definiteness, we examine two
molecules with the same numbers of carbon atoms. These are the linear decacene
molecule, C42H24, and Clar’s type aromatic hydrocarbon C42H20 (see Table 6.9).
Recall that Clar’s hydrocarbon is described by a structural formula which consists
exclusively of benzenoid rings interlinked by quasi-single bonds [126]. It is quite
natural that the PAHs of the Clar type have significantly less diradical (polyradical)
character. The data from Table 6.9 for the decacene and Clar’s system C42H20 in
zero electric field agree with this. However, the situation is somewhat different in
the case of strong field. Namely, the maximal Neff index of the Clar system is more
than six times larger than that in the field’s absence, and this value becomes still
greater than the maximal Neff index for the decacene molecule. In the latter, we
observe only a modest increase of the electron unpairing in the field (the maximal
Neff is about 1.5 times larger than that in the field’s absence). Note that the dipole
moment shows the qualitatively similar behavior for both systems.

We would like to stress that the observed enhancing of EUE effects in the stable
PAHs under strong fields is not confined to the static electric field. Somewhat similar
effects were reported in [127] where the action of strong magnetic field on small
acenes and antiaromatic systemswas examined at the FCI/PPP level (within London’s
model of magnetic field effects). It turned out that in the strong magnetic field, aro-
matic molecules usually become diradicaloid and non-aromatic. Accordingly, the
antiaromatic systems dramatically reduce their initial diradicaloid character, and thus
lose their initial antiaromaticity. The interconnection between EUE and singlet-triplet
splitting (STS) was also discussed for these π-problems [127]. At the ab initio level, a
more extended study of STS and the polyradical character was presented in [11].

Let us return to the external field effects. Other cases are given in [27] where we
studied small molecules in laser fields which generate transient diradical or more
complex structures. Below we extend this study to the conjugated systems by using

Table 6.9 Dipole moment dx and EUE index Neff for decacene C42H24 and Clar’s structure
C42H20 in a static electric field as functions of the strength field E, applied along the long
molecular axis (x-axis) within π-EHF scheme

π -system dx Neff

C42H24

C42H20
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the π-electron time-dependent UHF (TD-UHF) method. We take again the decacene
molecule, and the same pulsed laser field, as in [27], the first entry in Table 6.1. The
corresponding pulse field is of the form E(t) cos(ωt), where E(t) is an enveloping
function, and ω = 0.06 atomic units. The pulse field and temporal dependencies of
dipole moment, dx, and Neff index are given in Table 6.10. These data show that,
unlike the static field (see Table 6.9), the pulse laser field produces the enormous
electron unpairing in the linear decacene molecule. The similar results are obtained
for other PAHs.

The above considered effects are implicitly connected with other strong per-
turbation effects reported in the literature. For instance, distorted graphene-like
structures are really observed after irradiation generating lattice irregularities, e.g.
vacancies. It leads to appearance the dangling carbon bonds, and thereby to the
electron unpairing. The recent semiempirical study of surface states at a
many-electron (UHF-type) level was given in [128]. In our context, paper [129] is
presented even more relevant as giving the ab initio model of single defects and
treating the EUE effects simultaneously. Summing this section we would like stress
a nontrivial role of electron unpairing in various physical phenomena taking place
in molecular materials.

6.14 In Search of Better EUE Measures

Now we address a difficult issue what is good and what is not for the EUE theory.
The first discussions were started in papers [28, 29]. In the present work the
Yamaguchi index [1] is treated mainly as a historically valuable first quantity for the
EUE characterization, but not recommended for wide practical use (works [130] are
a rare example of using NYam

eff now). Instead, we advocate the H-G index [5] for
which a clear hole-particle physical nature, Eq. (6.40), is established [12]. Never-
theless, one can encounter intrinsic interpretational problems when judging the
adequacy of any quantitative EUE measure, and the Neff index is not the exception.
For instance, we obtained in the anthracene molecule a nonempirical estimate

Table 6.10 TD-UHF temporal behavior of dipole moment dxðtÞ and EUE index NeffðtÞ for the
decacene molecule in the pulse laser field with enveloping function E(t) (all quantities in atomic
units)

E(t) cos(ωt) dxðtÞ NeffðtÞ

Total observation time is about 400
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Neff ≅ 1.9. Given the well known stability of anthracene, is it a reasonable mag-
nitude? Before going on, we must ones again consider a formal side of the issue.

For this, we will include into consideration the second index proposed by
Head-Gordon in [5]. This index denoted by Nodd½2� (as in Appendix A) is defined as
follows:

Nodd½2�= ∑
k
ð2λk − λ2kÞ2. ð6:94Þ

Equation (6.94) was intensively applied in papers [9, 11, 129, 131] as even more
preferable tool for quantifying EUE. By using Nodd½2�, a not so important part of the
NOON spectrum (mainly due to dynamical electron correlation) is effectively cut
off. Another way to approach the EUE problems is to use matrix invariants of the
deviation matrix

ΔD=D− 2ρ. ð6:95Þ

This matrix has a meaning of a hole-particle correction to 2ρ (see Appendix C
for detail). Following the same procedure presented earlier for CIS states [76, 82,
84], we define the matrix modulus

jΔDj = ½ðΔDÞ2�1 2̸ ð6:96Þ

and introduce the hole-particle invariants in form of traces of the jΔDj powers:

Nh− p½q�=TrjΔDjq . ð6:97Þ

The formal analysis of Nh− p½q� is given in Appendix C. In particular, for ground
state we have

Nh− p½1�=Nh− p =Neff . ð6:98Þ

The second-order index Nh− p½2� has a meaning of the squared norm of the
density matrix deviation ΔD:

Nh− p½2�= jjΔD jj2. ð6:99Þ

Our experience shows that the special case q = 3/4, which produced the
hole-particle invariant Nh− p½4 3̸�, can also serve as a good EUE measure. In this
case, as in the case of the above Nodd ½2� index, nonsignificant contributions from
dynamical correlation are effectively suppressed. Apparently, the dynamical cor-
relation has no direct relation to diradicality and polyradicality. However, the
considered procedure may be not well suitable for dissociation states, as one
example in [5] had shown this for the Nodd ½2� measure. Nevertheless, for typical
equilibrium molecular states, such a suppression seems to be quite sensible if one is
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interesting in an estimation of polyradicality. In Table 6.11 we present the results of
using Nh− p (for the ground state Nh− p =Neff ), Nodd ½2� and Nh− p½4 3̸� for peri-
acenes discussed in Sect. 6.11. We supplement the table by the values of average
locality index ℵloc (6.88) for the each EUE measure. It is seen that the Nodd ½2� and
Nh− p½4 3̸� data differ nonsignificantly. With this, Nh− p½4 3̸� is of the hole-particle
origin, as the initial Nh− p index. Moreover, judging from the ℵloc magnitudes in
Table 6.11, both measures, Nodd ½2� and Nh− p½4 3̸� are associated with more
localized EUE distributions than in the Neff case. This fact gives additional support
for using the special measures Nodd ½2� and Nh− p½4 3̸� for describing a polyradical
character in conjugated hydrocarbons and related carbon-based networks.

Seemingly, it would be more preferable to perform EUE studies by invoking
several quantification schemes. One needs also to take into account the specific
features of the problem before deciding what the scheme should be taken as a more
relevant in the problem context. For instance, if we are interesting in the EUE
spatial localization, then the locality index ℵloc (6.88) can be quite appropriate. If
the localization measure of the NOON spectrum fλkg near λ=1 is in question then,
then indices Nh− p½q� and Nodd ½q� with large q, e.g., q=4, are more preferable.

6.15 Concluding Remarks

The initial intent of this chapter was to provide a broad overview and a critical
assessment of various trends in the theory of effectively unpaired electrons. In the
process of preparing the manuscripts some accents were shifted, and we would
unavoidably restrict ourselves to a narrow set of issues and examples for discussion.
For instance, we only slightly touched on the electron unpairing analysis in
structures with a spatial separation of molecular subunits. These are bichromophore
systems, molecular dimers and complexes, radical and ion–radical pairs, etc. The
recent papers [77, 78, 125] are dedicated just to these problems. Besides, many
interesting systems, e.g., semiconductor quantum dots, fell beyond the scope of this
review. Indeed, many-electron aspects of the multiple exciton generation (MEG) in
quantum dots are closely related to the EUE theory, but only circumstantial evi-
dence about EUE effects in MEG can be found in the current literature [127, 128].

Table 6.11 Generalized EUE indices Nh− p½q� and respective localization indices ℵloc for the (5a,
4z), (5a, 5z), and (5a, 6z) periacene molecules within π-UHF scheme

Periacene Nh− p Nodd ½2� Nh− p½4 3̸� ℵloc
h− p ℵloc

odd ½2� ℵloc
h− p½4 3̸�

(5a, 4z) 0.054 0.041 0.041 6.3 5.3 5.5
(5a, 5z) 0.057 0.042 0.042 8.4 7.1 7.0
(5a, 6z) 0.060 0.048 0.045 11.4 10.0 9.7
Here Nh− p coincides with NeffðtÞ
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Before closing, we briefly reiterate the basic points. The conventional formalism
of density matrices was used here in such a way that it helped us to understand
some essential features and interrelations between different EUE measures. In
particular, in Sect. 6.5 we see that the hole-particle index, which was introduced in
[15, 16], is identical, for ground states, to the previously proposed H-G index [5].
We also examined excited states where the situation is more complicated, so that
the H-G and hole-particle indices should be considered concurrently.

We must admit that the EUE theory is a little trickier than it seems. Indeed,
rigorously speaking, the EUE problem is not well-defined, because it does not have
a unique solution [5]. Nevertheless, we tried to understand what are the most
appropriate definitions of the EUE measures. Now, we could report only prepara-
tory results until a subsequent, more substantial analysis. Nevertheless, possible
directions to modifying the existing measures are discussed here. In particular, we
could retain the same hole-particle description for the modified (‘q-extended’) EUE
measures in which unwanted small contributions to EUE are suppressed, as it was
previously done in the case of the second Head-Gordon index, Eq. (6.94). Another
way to produce better EUE indices is to somehow estimate an average localization
of the unpaired electron. This leads to a possible measure ℵloc, Eq. (6.88), giving
the results which are closer to those expected from a ‘common chemistry sense’.

In our specific applications the stress is put on large-scale carbon-containing
molecules. For those we propose a simple semiempirical scheme [13] which has the
same complexity as the ordinary Hückel method. It allows us to make quick and
easy estimates of EUE effects even in gigantic conjugated networks which cannot
be rigorously treated by high-level ab initio methods. It is important that the pro-
posed elementary model yields the results which are qualitatively in agreement with
the existing ab initio data [9, 11] for relatively small systems. The influence of
external perturbations on EUE is another attractive field of application. It turns out
that the systems which have a small polyradical character (hydrocarbons of the Clar
type) become extremely polyradicaloid in a strong static electric field (Sect. 6.14).
The laser field effects on the polyaromatic systems are even more pronounced, as
preliminary studies show.

In sum, we would like to stress that during the last decade or so, the unpaired
electron theory came up with new fruitful insights and techniques. In future, the
semiempirical models and concrete results for large systems should be carefully
examined by more rigorous approaches. We believe that a physical side of the
existing simplified EUE theories remains, and plenty of new intriguing results for
electrons in the conjugated molecules will be revealed.
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Appendix A: Duality Symmetry and Generalized EUE
Indices

In this Appendix we clarify the cause for postulating symmetry relation (6.18). For
this aim we introduce a formal operation which can be named the duality trans-
formation and which is well known in multilinear algebra as the Hodge star
operation, or Hodge dual [132]. In the RDM theory an equivalent transformation
was applied in [19, 133], without recognizing it as a Hodge dual. The following
simple example helps to explain this notion in the more familiar terms of
many-electron state vectors.

We consider a two-electron problem in the basis of five spin-orbitals

χ1j ⟩, χ2j ⟩, χ3j ⟩ χ4j ⟩, χ5j ⟩f g. ðA1Þ

Let the ket

Ψ½2�j ⟩= χ1χ2j ⟩ ðA2Þ

be the two-electron Slater determinant built from χ1j ⟩ and χ2j ⟩. By definition, the

dual ket, Ψ*
½3�

��� ⟩, is built up from the rest spin-orbitals, giving the three-electron

determinant:

Ψ*
½3�

��� ⟩= χ3χ4χ5j ⟩. ðA3Þ

In the same basis (A1), the maximal Slater determinant Ψmaxj ⟩ is

Ψmaxj ⟩= χ1χ2χ3χ4χ5j ⟩. ðA4Þ

It is not difficult understand that we can produce Ψ*
½3�

��� ⟩ from Ψmaxj ⟩ by anni-
hilating in Eq. (A4) the state vector (A2). More exactly, apart from a prefactor we
have

Ψ*
½3�

��� ⟩= ⟨Ψ½2� j Ψmax⟩. ðA5Þ

They say that the obtained three electron state Ψ*
½3�

��� ⟩ is the Hodge dual of the
two-electron state Ψ½2�j ⟩.

Now consider the respective 1-RDMs. In notation of Sect. 6.6, we have from
determinants (A2) and (A3) the usual Dso

1 matrices in the form of projectors on
occupied spin-orbitals of the respective determinants:
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Dso
1 ð Ψ½2�j ⟩Þ= χ1j ⟩⟨χ1j+ χ2j ⟩⟨χ2j,

Dso
1 ðΨ*

½3�Þ= χ3j ⟩⟨χ3j+ χ4j ⟩⟨χ4j+ χ5j ⟩⟨χ5j.

We see that

Dso
1 ðΨ*

½3�Þ= I −Dso
1 ðΨ½2�Þ ðA6Þ

where unity operator I is a projector on all five spin-orbitals from Eq. (A1).
This line of reasoning can be directly extended to a general case including exact

state vectors as well. It the general case we start with a r-dimensional spin-orbital
basis f χkj ⟩g1≤ k≤ r and build the respective maximal determinant
Ψmaxj ⟩= χ1 . . . χrj ⟩ (clearly, the only r-electron state vector is Ψmaxj ⟩≡ Ψ½r�

�� ⟩ ). The
given exact (or approximate) state-vector Ψ½N� produces the Hodge dual, as
previously:

Ψ*
½r−N�

��� ⟩= ⟨Ψ½N�
�� Ψmax⟩. ðA7Þ

Accordingly, relation (A6) is generalized to be

Dso
1 ðΨ*

½r−N�Þ= I −Dso
1 ðΨ½N�Þ. ðA8Þ

This is the duality transformation in terms of 1-RDM. The analogous relation for
Dso

2 ðΨ*
½r−N�Þ is somewhat more involved [133, 134]. The remarkable property of the

Hodge duality transformation is its ability to preserve correlation operator Δso
2 in

Eq. (6.45), as it is first shown in [19]. The related expression is given in [135].
Thus, the other correlation matrices, e.g., Deff , must be the same as well. It is worth
mentioning in passing that in [128] and many subsequent papers, a somewhat
inconvenient terminology is used for RDMs DsoðΨ*

½r−N�Þ—the latter are loosely
identified with hole RDMs. Certainly, it leads to confusion and even misinterpre-
tation, since generally such RDMs have no relation to the genuine, ‘physical’, hole
RDMs discussed in Sect. 6.4 and in [16]. We prefer to refer to them as the dual
RDMs [16].

We now have to sum over spin indices, making spin trace in Eq. (A8). As a
result, the dual charge density matrix is yielded, viz.

DðΨ*
½r−N�Þ=2−DðΨ½N�Þ. ðA9Þ

Then the NOON spectrum of the dual charge density matrix is simply a set
f2− λkg where we imply that the initial NOON spectrum is the set fλkg. Recalling
that EUE characteristics of the dual state (A7) should be the same as in the initial
state Ψ½N�, the identity
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DeffðΨ½N�Þ=DeffðΨ*
½r−N�Þ ðA10Þ

is necessitated. Taking into account Eqs. (6.1), (6.5) and (6.5′) we arrive at the
relation

∑
k
f ðλkÞ φkj ⟩⟨φkj= ∑

k
f ð2− λkÞ φkj ⟩⟨φkj, ðA11Þ

from whence Eq. (6.18) immediately follows, that is

f ðλÞ= f ð2− λÞ. ðA12Þ

The requirement (A12) allows us to specify a general dependence λeff = f ðλÞ,
namely, λeff is a nonnegative definite function of argument jλ− 1j, with boundary
values f ð0Þ= f ð2Þ=0. Eqs. (6.7′) and (6.14) are evidently of this type. Rather
general types of the functions can be proposed as ‘q-extensions’ of Eqs. (6.9) and
(6.15). These are

Nodd ½q�= ∑
k
ð1− jλk − 1j2Þq, ðA13Þ

Neff ½q�= ∑
k
ð1− jλk − 1jÞq, ðA14Þ

where q≥ 1. We see that Nodd ½1� and Neff ½1� produce the usual Nodd and Neff
measures, respectively. The choice q=2 in Eq. (A13) leads to

Nodd½2�= ∑
k
½1− ðλk − 1Þ2Þ�, ðA15Þ

which is the modified Head-Gordon index from [5]. This expression is trivially
equivalent to Eq. (6.94).

Appendix B: Density Matrix and NOON for QCTB

We consider here in more detail the QCTB model described in Sect. 6.13. Having at
hand the effective Hamiltonian matrices (6.91), we straightforwardly derive pro-
jector matrices ρα and ρβ by using the well known expressions connecting
Hamiltonians and respective projectors [19, 136, 137]). Let h be the Hermitian
operator, such that exactly n eigenvalues of h lie below zero, and P be the projector
on the corresponding eigenvectors. Then

198 A.V. Luzanov



P= ðI − h j̸hjÞ 2̸, ðB1Þ

where jhj= ½ðhÞ2�1 2̸ is the modulus of operator h. Further, let one-electron
Hamiltonian matrix hδ be defined as follows:

h½δ� = − δ I B
B+ − δ I

� �
.

In particular, hα = h½δ�, hβ = h½− δ�. Then, by applying Eq. (B1) to h= h½δ�, we
obtain the corresponding projector

P½δ� =
1
2

I + δðδ2I +BB+ Þ− 1 2̸ Bðδ2I +B+BÞ− 1 2̸

ðδ2I +B+BÞ− 1 2̸B+ I − δðδ2I +B+BÞ− 1 2̸

� �
. ðB2Þ

In derivation, the block-diagonal structure of ðh½δ�Þ2 is used, that is

ðh½δ�Þ2 = δ2I +BB+ 0
0 δ2I +B+B

� �
.

Equation (B2) was earlier derived by another technique for the special closed π-
shells with alternating electronegativity [138]. Obviously, setting δ=0, we return to
the Hall formula (6.90). By recalling Eq. (6.91) we have

ρα =P½δ�, ρβ =P½− δ�. ðB3Þ

Putting together Eqs. (B2) and (B3), we get from Eq. (6.10) the main result:

D= I Bðδ2I +B+BÞ− 1 2̸

ðδ2I +B+BÞ− 1 2̸B+ I

� �
. ðB4Þ

The problem of diagonalizing this D is a quite elementary, and the full NOON
spectrum takes the form

λi =1+ εi ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2i

q
, λa =1− εa ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2a

q
, ðB5Þ

where 1≤ i, a≤ n, and nonnegative quantities εi ≡ εij j, as well as εa ≡ εaj j, are
eigenvalues of ðB+BÞ1 2̸, that is fεig is the bipartite graph spectrum. From Eq. (B5)
the main EUE indices within QCTB are easily deduced. For instance,

Nodd = 2δ2 ∑
n

i=1
ðδ2 + ε2i Þ− 1. ðB6Þ
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Remark also an evident symmetry of the corresponding hole and particle
occupancies, defined by Eq. (6.41′):

f1− εi ̸
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2i

q
g = f1− εa ̸

ffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 + ε2a

q
g. ðB7Þ

that follows from Eq. (B5). In other words, the hole and particle occupancy spectra
are identical for this π-model.

As a matter of fact, the hole and particle occupancies are identical for any
bipartite networks treated within π-approximation, up to FCI/PPP. This is a simple
corollary of the generalized pairing theorem of McLachlan [94] stating that the π-
electron charge density matrix of the alternant hydrocarbons is of the form

D=
I ∂

∂
+ I

� �
, ðB8Þ

where the 2pz AO basis set is ordered as in Eq. (6.89), and ∂ defines the
inter-sublattice bond order matrix. Clearly, the corresponding NOON spectrum
fλkg is

f1+ ffiffiffiffi
μi

p g, f1− ffiffiffiffiffi
μa

p g ðB9Þ

where μi (or μa) are eigenvalues of ∂
+
∂, and 1≤ i, a≤ n. As a result, the initial π-

NOON spectrum is symmetrical in respect to the point λ=1. From Eq. (B9) we
deduce that indeed the respective hole and particle π-occupancies, defined as in
Eq. (6.41′), are identically the same:

f1− ffiffiffiffi
μi

p g= f1− ffiffiffiffiffi
μa

p g. ðB10Þ

Interestingly, an initio data [9, 11] approximately follow Eqs. (B9) and (B10).
Incidentally, it follows, from this discussion, that the hole occupancy distribution
f1− ffiffiffiffi

μi
p g (generally f2− λig1≤ i≤ n) is sufficient for considering EUE problems.

For instance, instead of plotting NOON spectrum fλkg, one can plot only hole
occupancy spectrum f2− λig as even more suitable in the EUE context. This
occupancy spectrum is in fact the second half of the typical π-NOON spectra which
were presented in Tables 6.6, 6.7, and Fig. 6.4.

Appendix C: Generalized Hole-Particle Indices

Here we analyze the main EUE indices in terms of hole-particle quantities. We
begin with the representation
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D=2ρ+ΔD, ðC1Þ

where ρ is of the form (6.36), and φij ⟩ are the natural orbitals of the state in
question, so ΔD commutes with ρ. Then, using the same notation, as in Eq. (6.41),
we obtain the spectral resolution

ΔD= − ∑
i≤ n

Δi φij ⟩⟨φij+ ∑
a> n

λa φaj ⟩⟨φaj, ðC2Þ

where

Δi ≡ 2− λi ðC3Þ

are new nonnegative quantities (0≤Δi <1, and i≤ n), and λa are related to ‘virtual’
natural orbitals. We see that correlation correction matrix ΔD has a clear
hole-particle structure: Δi are the occupancy numbers for the holes, and λa are the
same for the particles. In manipulations the identity

∑i Δi = ∑a λa ðC4Þ

will be useful as well. It follows from Eqs. (C1), (C2), and normalization (6.2).
Due to the diagonal form (C2) we trivially have the diagonal form of the matrix

jΔDj defined by Eq. (6.96):

jΔDj = ∑i Δi φij ⟩⟨φij + ∑a λa φaj ⟩⟨φaj. ðC5Þ

But this is the same as the hole-particle density in Eq. (6.41), that is

Dh− p = jΔDj. ðC6Þ

It is essential that under duality transformation (A9) the holes and particles in
Eq. (C2) change place, so identity (A10) satisfies automatically for Deff =Dh− p.

The appropriate q-extended (q≥ 1) hole-particle indices can be cast explicitly
into the form

Nh− p½q�=TrðjΔDj qÞ= ∑i Δ
q
i + ∑a λ

q
a. ðC7Þ

Particularly,

Nh− p½2�= ∑i Δ
2
i + ∑a λ

2
a = jjΔD jj2. ðC8Þ

The previously defined EUE indices can be rewritten in terms of the
correlation-dependent quantities {Δi, λa}:
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Nodd = ∑
1≤ i≤ n

ð4Δi +Δ 2
i Þ+ ∑

a> n
λ2a, ðC9Þ

Neff = ∑ i Δi + ∑a λa =2 ∑
1≤ i≤ n

Δi, ðC10Þ

Nodd ½2�= ∑
1≤ i≤ n

½Δið2−ΔiÞ�2 + ∑
a> n

½λað2− λaÞ�2. ðC11Þ

where we used identity (C4).
For slightly correlated systems, the most important are the first order terms in Δi

and λa. It gives Nodd ≅ 4∑Δi, so

Nodd ≅ 2Neff , ðC12Þ

and this goes back to the rude estimation, Eq. (6.80). It is interesting that the exact
interrelation 2Neff −Nodd = jjΔD jj2 is true. Likewise, the first-order estimation of
the modified Head-Gordon index (6.94), that is Eq. (C11), is null:

Nodd ½2�≅ 0. ðC13Þ

Indeed, Eq. (C11) contains only the second-order and higher-order terms:

Nodd ½2�≅ 4 ð ∑i Δ
2
i + ∑a λ

2
aÞ=4jjΔD jj2. ðC14Þ

The above simple analysis now elucidates how small contributions from Δi and
λa are essentially suppressed in the Nodd ½2� and Nh− p½2� indices. As a rule, these
small contributions appear mainly from dynamical correlations. For instance, MP2
(the Moller-Plesset second-order perturbation theory) normally produce the con-
tributions of this kind. Evidently, they have no direct relation to diradicality and
polyradicality, and the Nodd ½2� and Nh− p½2� indices should be rather small without
a significant contribution from non-dynamical correlation. This is a good property
of the generalized indices such as (6.94) and (C8), and apparently, this is the basic
reason why Nodd ½2� is systematically employed in papers [9, 11, 122, 124] for
analyzing the unpaired electrons in large PAHs. At the same time, the dynamical
correlation cannot fully ignored, and the problem of an optimal quantification
remains.

References

1. Takatsuka K, Fueno T, Yamaguchi K (1978) Theor Chim Acta 48:175
2. McWeeny R, Kutzelnigg W (1968) Int J Quant Chem 2:187
3. Einstein A, Podolsky B, Rosen N (1935) Phys Rev 47:777

202 A.V. Luzanov



4. Afriat A, Selleri F (1999) The Einstein, Podolsky, and Rosen paradox in atomic, nuclear, and
particle physics. Plenum Press, New York; McWeeny R (2000) Adv Quant Chem 36:365

5. Head-Gordon M (2003) Chem Phys Lett 372:508
6. Hachmann J, Dorando JJ, Aviles M, Chan GK-L (2007) J Chem Phys 127:134309
7. Yoneda K, Nakano M, Fukuda K, Champagne B (2012) J Phys Chem Lett 3:3338
8. Mizukami W, Kurashige Y, Yanai T (2012) J Chem Theor Comp 9:401
9. Plasser F, Pašalić H, Gerzabek MH, Libisch F, Reiter R, Burgdörfer J, Müller T, Shepard R,

Lischka H (2013) Angew Chem Int Ed 52:2581
10. Casanova D (2014) J Comput Chem 35:944
11. Horn S, Plasser F, Müller T, Libisch F, Burgdörfer J, Lischka H (2014) Theor Chem Acc

133:1511
12. Luzanov AV (2014) J Struct Chem 55:799
13. Luzanov AV (2014) Funct Mater 21:437 [http://www.isc.kharkov.com/journal/contents/21-

4/fm214-12.pdf]
14. Barnard AS, Snook IK (2011) Modelling Simul Mater Sci Eng 19:054001; Shi H,

Barnard AS, Snook IK (2012) Nanotechnology 23:065707
15. Luzanov AV, Zhikol OA (2005) Int J Quant Chem 104:167
16. Luzanov AV, Prezhdo OV (2006) J Chem Phys 124:224109
17. Staroverov VN, Davidson ER (2000) Int J Quant Chem 77:316
18. Staroverov VN, Davidson ER (2000) Chem Phys Lett 330:161
19. Mestechkin MM (1977) Metod Matritsy Plotnosti v Teorii Molekul. Naukova Dumka, Kiev
20. Staroverov VN, Davidson ER (2000) J Am Chem Soc 122:7377
21. Lain L, Torre A, Bochicchio RC, Ponec R (2002) Chem Phys Lett 346:283; Alcoba DR,

Bochicchio RC, Lain L, Torre A (2006) Chem Phys Lett. 429:286; Lain L, Torre A,
Alcoba DR, Bochicchio RC (2009) Chem Phys Lett 476:101

22. Yamaguchi K, Kawakami T, Takano Y, Kitagawa Y, Yamashita Y, Fujita H (2002) Int J
Quant Chem 90:370

23. Cheng M-J, Hu C-H (2003) Mol Phys 101(9):1319
24. Proynov EI (2006) J Mol Struct (Theochem) 762:159; Proynov E, Liu F, Kong J (2013) Phys

Rev A 88:032510
25. Amos AT, Hall GG (1961) Proc Roy Soc A 263:483
26. Stück D, Baker TA, Zimmerman P, Kurlancheek W, Head-Gordon M (2011) J Chem Phys

135:194306
27. Luzanov AV (2013) Int J Quant Chem 113:2489
28. Bochicchio RC, Torre A, Lain L (2003) Chem Phys Lett 380:486
29. Head-Gordon M (2003) Chem Phys Lett 380:488
30. Döhnert D, Koutecký J (1980) J Am Chem Soc 102:1789; Gordon MS, Schmidt MW,

Chaban G M, Glaesemann KR, Stevens WJ, Gonzalez C (1999) J Chem Phys 110:4199
31. Luzanov AV (2004) Kharkov University Bulletin. Chemical Series Issue 11(34):195 [http://

chembull.univer.kharkov.ua/archiv/2004/12.pdf]
32. Luzanov AV, Umanski VE (1977) Theor Experim Chem 13:162
33. Luzanov AV, Pedash YF, Mohamad S (1990) Theor Experim Chem 26:513
34. Grobe R, Rzazewski K, Eberly JH (1994) J Phys B 27:L503
35. Luzanov AV, Prezhdo OV (2007) Mol Phys 105:2879
36. Bell RJ, Dean P, Hibbins-Butler DC (1970) J Phys C 32:111
37. Zyczkowski K (1999) Phys Rev A 60:3496
38. Luzanov AV (1989) Theor Experim Chem 25:19; Luzanov AV, Wulfov AL, Krouglov VO

(1992) Chem Phys Lett 197:614
39. Helgaker T, Jørgensen P, Olsen P (2000) Molecular Electronic-Structure Theory. Wiley,

New York
40. Purvis GD, Sheppard R, Brown BR, Bartlett RJ (1983) Int J Quant Chem 23:835
41. Kutzelnigg W, Smith VH (1968) Int J Quant Chem 2(531):553
42. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics. Cambridge

University Press, Cambridge

6 Effectively Unpaired Electrons for Singlet States … 203

http://www.isc.kharkov.com/journal/contents/21-4/fm214-12.pdf
http://www.isc.kharkov.com/journal/contents/21-4/fm214-12.pdf
http://chembull.univer.kharkov.ua/archiv/2004/12.pdf
http://chembull.univer.kharkov.ua/archiv/2004/12.pdf


43. Nesbet RK (1958) Phys Rev 109:1632
44. Kumar K (1962) Perturbation theory and the nuclear many body problem. North-Holland,

Amsterdam
45. Luzanov AV (1977) Theor Math Phys 30:232
46. Luzanov AV (2008) Int J Quant Chem 108:671
47. Luzanov AV, Prezhdo OV (2006) J Chem Phys 125:154106
48. Dirac PAM (1931) Cambr Phil Soc 27:240
49. Davidson ER (1976) Reduced density matrices in quantum chemistry. Academic, New York
50. Juhasz T, Mazziotti DA (2006) J. Chem. Phys. 125:174105
51. Mazziotti DA (ed) (2007) Advances in Chemical Physics, vol 134. Wiley, New York
52. Luzanov AV, Prezhdo OV (2005) Int J Quantum Chem 102:582
53. Roby KR (1974) Mol Phys 27:81
54. Clark AE, Davidson ER (2003) Int J Quantum Chem 93:384
55. Penney WG (1937) Proc Roy Soc A 158:306
56. Raos G, Gerratt J, Cooper DL, Raimondi M (1994) Chem Phys 186:233; Clark AE,

Davidson ER (2001) J Chem Phys 115:7382; (2002) Mol Phys 100:373; (2002) J Phys
Chem A 106:7456

57. Herrmann C, Reiher M (2006) J Comput Chem 27:1223; Podewitz M, Reiher M (2010) Adv
Inorg Chem 62:177

58. Alcoba DR, Torre A, Lain L, Bochicchio RC (2011) J Chem Theory Comput 7:3560
59. Luzanov AV (2012) Int J Quantum Chem 112:2915
60. Ramos-Cordoba E, Matito E, Mayer I, Salvador P (2012) Phys Chem Chem Phys 14:15291
61. Matsika S, Feng X, Luzanov AV, Krylov AI (2014) J Phys Chem A 118:11943
62. Luzanov AV, Prezhdo OV (2011) J Chem Phys 135:094107
63. Cížek J, Paldus J (1967) J Chem Phys 47:3976
64. Kutzelnigg W, Smith VH (1964) J Chem Phys 41:896
65. Paldus J, Cížek J, Keating BA (1973) Phys Rev A 8:640
66. Mayer I (1980) Adv Quantum Chem 12:189
67. Klimo V, Tino J (1980) Mol Phys 43:477; Henderson TM, Tsuchimochi T, Scuseria GE

(2012) J Chem Phys 136:164109; Luzanov
68. Hartmann H (1947) Z Naturforsch A 2:259
69. Ovchinnikov AA, Ukrainskii II, Kvenzel’ GF (1973) Sov Phys Uspekhi 15:575
70. Misurkin IA, Ovchinnikov AA (1974) Mol Phys 27:237; Misurkin IA, Ovchinnikov AA

(1977) Russ Chem Rev 46:96
71. Macêdo AMS, dos Santos MC, Coutinho-Filho MD, Macedo CA (1995) Phys Rev Lett

74:1851
72. Fujita M, Wakabayashi K, Nakada K, Kushakabe K (1996) J Phys Soc Jap 65:1920
73. Jiang D-E, Chen X-Q, Luo W, Shelton WA (2009) Chem Phys Lett 483:120; Jiang DE,

Sumpter BG, Dai SJ (2007) Chem Phys 126:134701; Das M (2014) J Chem Phys
140:124317

74. Jiang DE, Chen Z (eds) (2013) Graphene chemistry: theoretical perspectives. Wiley, Puerto
Rico

75. Jiménez-Hoyos CA, Rodríguez-Guzmán R, Scuseria GE (2014) J Phys Chem A 118:9925
76. Luzanov AV, Zhikol OA (2012) In: Leszczynski J, Shukla MK (eds) Practical aspects of

computational chemistry I: an overview of the last two decades and current trends. Springer,
Heidelberg, p 415

77. Minami T, Iton S, Nakano M (2013) J Phys Chem Lett 4:2133
78. Feng X, Luzanov AV, Krylov AI (2013) J Phys Chem Lett 4:3845
79. McWeeny R (1968) In: Reports on the Density Matrix Seminar. Queen’s University. Ontario;

p 25; Dacre PD, Watts CJ, Williams GRJ, McWeeny R (1975) Mol Phys 30:1203
80. Luzanov AV (1975) Theor Experim Chem 9:567
81. Ipatov A, Cordova F, Doriol LJ, Casida ME (2009) J Mol Struct (Theochem) 914:60
82. Luzanov AV, Zhikol OA (2010) Int J Quant Chem 110:902
83. Murrell JN, McEwen KL (1956) J Chem Phys 25:1143

204 A.V. Luzanov



84. Luzanov AV, Sukhorukov AA, Umanski VE (1976) Theor Experim Chem 10:354
85. Krylov AI, Sherrill CD, Head-Gordon M (2000) J Chem Phys 113:6509
86. Bendikov M, Duong H M, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc

126:7416; Son Y-W, Cohen ML, Louie SG (2006) Nature 444:347; Pisani L, Chan JA,
Montanari B, Harrison NM (2007) Phys Rev B 75:064418; Hod O, Barone V, Scuseria GE
(2008) Phys Rev B 77:035411

87. San-Fabian E, Moscardy F (2013) Int J Quantum Chem 113:815
88. Torres A, Guadarrama P, Fomine S (2014) J Mol Modeling 20:1
89. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR,

Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, MillamJM, Iyengar SS, Tomasi J,
Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M,
Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O,
Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C,
Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C,
Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ,
Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD,
Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J,
Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T,
Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W,
Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision A.01. Gaussian, Inc.,
Wallingford

90. Gebhard F (1997) The Mott metal insulator transition: models and methods. Springer, Berlin;
Yazyev OV (2013) Acc Chem Res 46:2319

91. SmeyersYG, Doreste-Suarez L (1973) Int. J. Quantum Chem 7:687
92. Murphy NC, Wortis R, Atkinson WA (2011) Phys Rev B 83:184206
93. Tyutyulkov N, Dietz F, Müllen K, Baumgarten M (1992) Chem Phys 163:55
94. McLachlan AD (1961) Mol Phys 4:49
95. Vonsovskii SV, Svirskii MS (1970) JETP 30:140; Vonsovskii SV (1974) Magnetism. vol 2.

Wiley, New York
96. Majlis N (2000) The quantum theory of magnetism. World Scientific, Singapore
97. Luo Z, Kim S, Kawamoto N, Rappe AM, Johnson AT (2011) ACS Nano 5:9154
98. Girão EC, Cruz-Silva E, Liang L, Filho AGS, Meunier V (2012) Phys Rev B 85:235431
99. Fujihara M, Miyata Y, Kitaura R, Nishimura Y, Camacho C, Irle S, Iizumi Y, Okazaki T,

Shinohara H (2012) J Phys Chem C 116:15141
100. Zhang X, Xin J, Ding F (2013) Nanoscale 5:2556
101. Lieb EH, Mattis DC (1962) J Math Phys 3:749; Langer WD, Mattis DC (1971) Phys Lett

36A:139; Lieb EH (1989) Phys Rev Lett 62:1201
102. Coulson CA, Rushbrooke GS (1940) Proc Cambridge Phil Soc 36:139; Brickstock A,

Pople JA (1954) Trans Farad Soc 59:901
103. Kasteleyn P (1967) In: Harary F (ed) Graph theory and theoretical physics. Academic Press,

London, p 43
104. Harary F (1972) Graph theory. Addison-Wesley, London; Cvetkovic´ DM, Doob M, Sachs H

(1980) Spectra of graphs, theory and application. Academic Press, New York
105. Hall GG (1955) Proc Roy Soc A 229:251
106. Boykin TB (2009) J Comput Electron 8:142; Goringe CM, Bowler DR (1997) Hernández E

Rep Prog Phys 60:1447
107. Mariscal M.M, Oviedo OA, Leiva EPM (eds) (2011) Metal clusters and nanoalloys: from

modeling to applications. Springer, Berlin
108. Ivanov VV, Kisil IP, Luzanov AV (1996) J Struct Chem 37:537
109. Chien JCW (1984) Polyacetylene: chemistry, physics and materials science. Academic Press,

New York
110. Lennard-Jones JE (1937) Proc Roy Soc A 158:280
111. Coulson CA (1948) Proc Phys Soc A 60:257
112. Luzanov AV (2002) J Struct Chem 43:711

6 Effectively Unpaired Electrons for Singlet States … 205



113. Petersen R, Pedersen TG, Jauho A-P (2011) ACS Nano 5:523
114. Foa Torres LEF, Roche S, Charlie J-C (2014) Introduction to graphene-based nanomaterials:

from electronic structure to quantum transport. Cambridge Uiversity Press, Cambridge
115. Wolf EL (2014) Graphene: a new paradigm in condensed matter and device physics. Oxford

University Press, Oxford
116. Cresti A, Nemec N, Biel B, Nieble G, Triozon F, Cuniberti G, Roche S (2008) Nano

Research 1:361
117. Wei D, Wang F (2012) Surf Sci 606:485
118. Baldoni M, Sgamellotti A, Mercuri F (2008) Chem Phys Lett 464:202; Selli D, Mercuri F

(2014) Carbon 75:190; Baldoni M, Mercuri F (2015) Phys Chem Chem Phys 17:2088
119. Sharma R, Nair N, Strano MS (2009) J Phys Chem C 113:14771
120. Dinadayalane TC, Leszczynski J (2010) Struct Chem 21:1155
121. Wassmann T, Seitsonen AP, Saitta AM, Lazzeri M, Mauri F (2010) J Am Chem Soc

132:3440
122. Radovic R, Silva-Villalobos AF, Silva-Tapia AB, Vallejos-Burgos F (2011) Carbon 49:3471
123. Hoffmann R (1963) J Chem Phys 39:1397; Lowe JP (1978) Quantum chemistry. Academic,

New York
124. Luzanov AV (2013) J Struct Chem 54:835
125. Luzanov AV (2013) Kharkov University Bulletin. Chemical Series Issue 22(45):9
126. Clar E, Zander M. (1958) J Chem Soc 1861; Clar E (1972) Aromatic sextet. Wiley, London
127. Luzanov AV (2013) J Struct Chem 54:277
128. Tyutyulkov N, Drebov N, Mu1llen K, Staykov A, Dietz F (2008) J Phys Chem C 112: 6232
129. Machado FBC, Aquino AJA, Lischka H (2014) ChemPhysChem 15:3334
130. Sheka EF (2012) Int J Quantum Chem 112:3076; Sheka EF (2015) Adv Quantum Chem

70:111
131. Cui Z-h, Lischka H, Mueller T, Plasser F, Kertesz M (2014) ChemPhysChem 15:165;

Cui ZH, Lischka H, Beneberu, HZ, Kertesz M (2014) J Am Chem Soc 136:12958
132. Mardsen JE, Ratiu T, Abraham R (2001) Manifolds, tensor analysis, and applications.

Springer, New York
133. Mestechkin MM (1969) Theor Math Phys 1:221
134. Ruskai MB (1970) J Math Phys 11:3218
135. Valdemoro C (1992) Phys Rev A 45:4462
136. Dirac PAM (1934) Proc Cambr Phil Soc 30:150
137. Davydov AS (1965) Quantum mechanics. Pergamon Press, Oxford [see Eqs. (61.12) and

(61.29)]
138. Rebane TK (1963) Vestn Leningr Gos Univ 22:30; Mestechkin MM (1965) Theor Experim

Chem 1:388
139. Li W, Chen F (2014) J Nanopart Res 16:2498
140. Löwdin P-O (1955) Phys Rev 97:1505
141. Fischer SA, Prezhdo OV (2011) J Phys Chem C 115:10006; Jaeger HM, Hyeon-Deuk K,

Prezhdo OV (2012) Acc Chem Res 46:1280

206 A.V. Luzanov



Chapter 7
In Silico Assembly of Carbon-Based
Nanodevices

Alfredo D. Bobadilla and Jorge M. Seminario

Abstract Carbon nanostructures are 0D, 1D and 2D nanomaterials with potential
to enable new markets in the electronic industry due to their novel properties which
have been recognized recently with the awarding of Nobel Prizes in Physics and
Chemistry. However their very small size constitutes a great challenge in the
manufacturing industry, demanding extraordinary and expensive efforts in experi-
mentation. Thus, the best way to avoid unneeded trial-and-error experimentation is
by using theoretical-computational tools for the molecular analysis and simulation
of prospective devices and systems, allowing us to observe properties at the
nanoscale that are practically difficult and sometimes impossible to observe
experimentally. We decided to review in this Chapter the use of these tools in order
to analyze several scenarios on the assembly and characterization of carbon-based
nanodevices. In an in silico experiment, by using molecular dynamics, we analyzed
the outcome of bombarding carbon nanotubes with argon ions and we found that for
very high energies the type of defects created were almost exclusively single
vacancy, which is important in the development of spin-based electronics. On the
other hand, combining carbon nanostructures with DNA molecules offers the
possibility of exploiting the chemical sensitivity of DNA and the transduction of
electrical signals. Therefore, by using molecular dynamics, we predicted a stable
structure for a non-covalent DNA junction with a carbon nanotube (CNT) and
graphene as interface electrodes. The electronic structure calculations predicted that
the DNA electronic structure is coupled to the carbon electron nanodevices, which
allow the sensing of a chemical environment. Finally, in the field of drug-delivery,
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biological barriers and the immune system constitute challenges for the effective
delivery of drugs to targeted areas of the human organism. Therefore, by using
molecular dynamics, we predicted the structure and stability of maximum PEGy-
lated carbon nanotubes. We found the size of the PEG-CNT complex to be smaller
at conditions of maximum PEGylation and in the nanosized regime, which is an
important requirement for the effective delivery of drugs.

7.1 Introduction

Carbon nanostructures can exhibit unique properties that include extremely high
mechanical strength, high thermal conductivity, and excellent chemical and thermal
stability. Furthermore, carbon nanostructures can be complexed with other mole-
cules showing different functional capabilities. Because nanoscale devices are
comparable in size to molecules and are much smaller than biological cells,
potential applications of these devices are on single-molecule analytical sensors,
biosensors, single cell diagnostics, implantable devices and drug-delivery.

7.1.1 Engineering Carbon Nanostructures

Irradiation of carbon nanostructured materials with electron or ion beams consti-
tutes a novel technique to engineer the structure and properties of these nanoma-
terials with high precision [1–4]. Guo et al. [5] got cutting a carbon nanotube
(CNT) by opening a window in a PMMA thin film covering CNT, and then
exposing this zone to reactive oxygen plasma. Under optimized conditions, ∼25 %
of the tubes are completely cut among ∼2500 devices tested. Other technique used
to engineer nanostructured materials is electrical breakdown, which occur in
SWCNT depending on the contact resistances, nanotube length, applied gate
voltage, heat transfer to the contacts and its structural perfection [6–8]. Hadeed and
Durkan [9] controlled the size and position of a gap in gold-palladium nanowires by
changing the electromigration and joule heating regimes which determine the
electrical breakdown of the nanowire.

7.1.2 A Peptide Covalent Bond Between Carbon Nanotube
and DNA

Guo et al. [10] developed a method to connect a gapped carbon nanotube
(CNT) with single DNA molecules. In their method, a gap is created in the carbon
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nanotube by oxidative cutting with reactive ion etching; all the CNT is covered with
a PMMA film but a small CNT zone is exposed to oxygen plasma by selectively
opening a small window on the film with e-beam lithography. During the etching
process, carbon nanotube is functionalized with carboxyl groups. Amine func-
tionalization of DNA molecules allowed a covalent amide linkage to CNT func-
tionalized with carboxyl groups. Using this method they obtained 10 working
devices out of 370 that were tested. This low yield on successful interconnection of
carbon nanotube with DNA is due to an inherent difficulty on creating a covalent
bond. Interestingly they found a dsDNA molecule does not conduct electricity
when a base mismatch is present.

7.1.3 A Carbon Nanotube-DNA Origami Junction

A nucleic acid-labelled single-walled carbon nanotube (NL-SWCNT) can be aligned
along patterns of the corresponding complementary single-stranded DNAs (ssDNA)
‘hooks’ on DNA origami. Nucleic acid labels are partially protected by comple-
mentary strands before they bind to the hooks on DNA origami. Each linker also has
a 40-base poly-thymine nucleobase domain that adsorbs onto the SWCNT sidewall
via vdW forces. The protection strand prevents adsorption of the labelling domain
onto SWCNT. By using this technique, two carbon nanotubes can be aligned on a
DNA origami structure, with a carbon nanotube on each side of the DNA origami
template, and an orthogonal orientation between carbon nanotubes [11].

7.1.4 Observation of Electrical Gating by ssDNA Upon
Binding to Carbon Nanotube

It has been reported that a DNA wrapped carbon nanotube device can change from
metallic behavior in dry conditions to semiconductor behavior in wet conditions
[12]. Ouellette [13] analyzed the time evolution of electrical current in a suspended
carbon nanotube positioned in a microfluidic channel through which DNA mole-
cules were allowed to flow. Electrical spikes were observed when DNA molecules
were present in the microfluidic channel; DNA molecules constantly flowed
through the microfluidic channel and electrostatic screening of van der Waals
interaction due to ions was minimized. Spikes current levels are below or above the
original CNT current level depending on the type of DNA molecule tested.

Those spikes are produced every time a DNA molecule reaches the carbon
nanotube surface, and a different change in current level, positive or negative
spikes, is observed for different DNA molecules. A DNA sequence dependence is
further suggested by the known correlation between nucleobases polarizability and
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CNT-DNA interaction strength reported by Gowtham et al. [14, 15], and by studies
on the electrical property of graphene upon interaction with nucleobases [16–18].

7.1.5 Carbon Nanotubes for Drug-Delivery

Exposure of biological cells to carbon nanomaterials can lead to loss of cell via-
bility [19]. However carbon nanotubes can be linked to a wide variety of molecules,
including biological molecules and polymers, and functionalized carbon nanotubes
have shown low toxicity and are not immunogenic [20]. Carbon nanotubes also
show a high propensity to cross cell membranes and this process is
endocytosis-independent [21]. Another important property they show is excretion,
they can be excreted via biliary pathway without causing obvious toxic effects to
normal organs [22]. And the ultrahigh surface area of these one-dimensional pol-
yaromatic macromolecules allows for efficient loading of chemotherapy drugs [23].

7.2 Irradiation-Induced Defects in a Silica-Supported
Carbon Nanotube

Carbon nanotubes are typically synthesized with poor control of length and chirality
[24, 25]. After carbon nanotubes have been selected and deposited on a substrate,
an important step in the fabrication of carbon nanodevices is the patterning to reach
an optimal size or dimensions. A common tool to pattern carbon nanostructures is
the selective exposure to ion beams, with this technique it has been possible
reaching the 10 nm range [26, 27].

By using molecular dynamics with a reactive force field [28–30] as implemented
in LAMMPS [31], we were able to analyze the side effects of ion bombardment on a
silica-supported single walled carbon nanotube. A reactive force field enables
simulating the breaking and formation of covalent bonds. Apart from observing the
effective removal of carbon atoms, we found the possibility of undesired effects on
the carbon nanotube sidewall, on the substrate as well as at the interface between the
carbon nanotube and the substrate (Fig. 7.1). We highlight the main types of atomic
defect found on carbon nanotube sidewall, vacancy defects and chemisorption.

Atomic defects on carbon nanostructures produced during the fabrication pro-
cess are typically not reported. Atomic defects are not visible by characterization
techniques typically employed such as AFM, SEM, light microscopy and Raman
spectroscopy. The atomic structure can be visible by STM [32–35] and TEM
[36, 37] but they are tedious and heavily time consuming, and they are typically not
employed in the characterization of carbon-based electron nanodevices reported in
journal publications. Molecular simulation tools offer an alternative to visualizing
and predicting the nanostructure at atomic detail.
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Vacancy defects represent the effective removal of carbon atoms from the
nanotube sidewall. Vacancy defects were always present and with maximum
probability of occurrence around 320 eV; however the probability for this type of
defect was close to null at beam energy higher than 32 keV (Fig. 7.2).

In graphitic surfaces, like in the carbon nanotube sidewall, carbon atoms are
covalently bonded in the sp2 configuration forming benzene-like rings, with elec-
trons delocalized in the whole surface, in what is called a graphene plasmon.
Vacancy defects disrupt this electronic structure configuration giving the possibility
of unpaired electrons or dangling bonds and the emergence of magnetic properties
that could enable the development of spintronic devices. The magnetic properties

Fig. 7.1 Several types of defects generated on carbon nanotube wall and silicon dioxide substrate
after argon atom collision. Single vacancy (purple circle), kink (complex) defect (black circle),
carbon chemisorption and doping on SiO2 substrate (orange circle) [38]
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Fig. 7.2 a Probability of single and double vacancy at different argon beam energy levels.
b Average number of single and double vacancies [38]
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will depend on the chirality of the carbon nanotube and the configuration of the
vacancy defect [39–42].

We also predicted the possibility of chemisorption of carbon and oxygen atoms
to the carbon nanotube sidewall. Oxygen atoms were ejected from the substrate
after the collision of the argon atom beam with the silicon dioxide substrate. And
when a carbon atom was effectively removed from the nanotube sidewall, it ended
up doping the substrate or chemisorbed on other sector of the nanotube sidewall.
We denoted chemisorption as the adsorption by covalent bonding of an atom to the
nanotube sidewall. It could be considered the opposite of a vacancy defect.

We found the probability of chemisorption defects to be maximum around beam
energy of 100 eV and a close to null probability of occurrence for beam energy
higher than 10 keV. The probability for chemisorption on the inner side of carbon
nanotube was always small, less than 0.15 (Fig. 7.3).
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Fig. 7.3 a Probability of chemisorption on CNT wall, and probability of chemisorption on
internal side of CNT wall or external side of CNT wall. b Probability of carbon and oxygen
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different argon beam energy levels [38]
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The effect of oxygen chemisorptions on semiconducting single wall carbon
nanotubes is mainly a reduction in the energy bandgap and the degree of change
depends again on chirality and defect configuration [43–45].

7.3 Gating Mechanism of DNA Wrapping
on Carbon Nanotube

DNA add to the set of tools of nanotechnology due to the recent development of
DNA self-assembly techniques [46–48] as well as to the fact that DNA is a versatile
biological molecule, it can be used for diverse tasks, for example as a catalyzer,
chemical sensor and computational device.

DNA has been found to adopt a helical structure on carbon nanotube sidewall
[49, 50], affecting the electrical property of carbon nanotube devices [12, 13]. We
analyzed the electronic structure of each molecule as well as the hybrid of carbon
nanotube and DNA. We used the CHARMM force field [51] as implemented in
LAMMPS [31] to obtain the atomic structure; and then obtained the electronic
structure by DFT calculations in Gaussian 09 [52].

We found DNA effectively wraps carbon nanotube due to the pi-pi interaction
between the nanotube sidewall and the nucleobases (Fig. 7.4). We observed discrete

Fig. 7.4 Molecular dynamics of CNT-DNA interaction. a Snapshot at t = 2.6 ns: DNA molecule
approaching CNT at the initial stage of the process at 340 K. The high temperature accelerates the
van der Waals attraction between DNA bases and the carbon nanotube surface. b Front view of
DNA-CNT helical wrapping after 12.2 ns, at the final stage of equilibration at 300 K. c and d show
two side views. DNA molecule is color coded: thymine (violet), adenine (blue), guanine (yellow),
phosphate groups (green) [53]
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jumps in the vdW energy of interaction every time a nucleobase adsorbed on the
nanotube sidewall, and a decrease in the electrostatic energy due to phosphate-
phosphate atom charge interaction in the backbone of DNA (Fig. 7.5).

We obtained the atomic structure from molecular dynamics for the CNT
molecule (not shown), DNA molecule (not shown) as well as for the hybrid (Fig.
7.4). We performed electronic structure calculations in vacuum as well as in solvent
conditions. For the solvent conditions, we also tested an alternative method, the
PCM method (Polarizable Continuum Model) [54], which models the solvent as a
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Fig. 7.5 a Input temperature:
the equilibration process at
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b Energy jumps are observed
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nucleotide base binds to the
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c Electrostatic energy of
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ssDNA backbone during
equilibration process at 340 K
[53]
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polarizable continuum. The PCM method is originally intended to avoid the heavy
computational cost of including water molecules in the electronic structure calcu-
lations. We found the PCM method is not accurate on the prediction of the elec-
tronic structure of the hybrid CNT-DNA in water solvent (Table 7.1).

When the carbon nanotube is alone, the carbon nanotube HOMO-LUMO energy
levels increased by about 0.5 eV when changing from vacuum to water solvent
conditions.

When the carbon nanotube is wrapped by the DNA molecule, the opposite took
place, the carbon nanotube HOMO-LUMO energy levels decreased by about
0.5 eV when changing from vacuum to water solvent conditions. A detail of
molecular orbital energies for the CNT-DNA hybrid is given in Fig. 7.6 and a
schematic representation of the device in Fig. 7.7.

Table 7.1 HOMO, LUMO and gap energies (eV) of DNA and CNT as isolated molecules and
when they are part of the complex DNA-CNT

System Vacuum PCM solvent Water molecules

HOMO LUMO Gap HOMO LUMO Gap HOMO LUMO Gap

Isolated DNA −5.14 −1.17 3.97 −5.37 −1.09 4.27 −5.93 −4.22 1.71

CNT −5.00 −4.59 0.41 −5.09 −4.66 0.43 −4.48 −4.04 0.44

Complex DNA −4.89 −1.48 3.41 −5.50 −1.55 3.95 −5.98 −3.38 2.60

CNT −5.00 −4.58 0.43 −5.09 −4.66 0.43 −5.54 −5.15 0.39

Calculations are done in vacuum, under PCM solvent, and under actual water molecules in the
Hamiltonian. All systems are run as uncharged and singlets [53]

Fig. 7.6 Molecular orbital energies (eV) for the CNT-DNA nanostructure in a water and
b vacuum conditions. Highlighted squares indicate HOMO and LUMO of the complex system.
Green ellipses indicate carbon nanotube HOMO and LUMO. Orbitals are localized in the carbon
nanotube (CNT), water molecules (water), bases (Base), and Phosphate groups (Phosphate) [53]
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The gating mechanism in the HOMO-LUMO gap caused by DNA wrapping on
carbon nanotube explains the observed change in the electrical property of carbon
nanotube upon interaction with DNA molecules in water solvent.

7.4 Assembly and Electron Transport Characteristic
of a DNA-Graphene Junction

We analyzed a device with potential applications in DNA sequencing and chemical
sensing. Nanoscale ribbon patterns can be created on graphene by selective
exposure to oxygen plasma or ion beam. A very small gap (∼1 nm) between
graphene electrodes is feasible by an electrical breakdown technique [55, 56]. We
used the CHARMM force field [51] as implemented in LAMMPS [31] to analyze
the directed assembly process of a small strand of DNA (GAG) in a gapped gra-
phene. The GENIP program [57–59] was used to perform electron transport cal-
culations of the hybrid structure in water solvent.

We observed at room temperature all nucleobases had a preference for binding
on a single graphene electrode (Fig. 7.8). We therefore needed to assist the
assembly process to position the DNA molecule in the gap between graphene
electrodes. The DNA backbone is negatively charged due to the phosphate groups,
we therefore opted to apply an electric field. An electric field of 0.8 V/nm allowed
overcoming the binding strength of DNA to graphene and 0.3 ns was enough time
to succeed on the positioning of DNA in the gap (Fig. 7.9). If the electric field was
applied for longer time, the DNA molecule abandoned the gap.

Fig. 7.7 a Carbon nanotube-DNA based transistor and b its corresponding energy level diagram
for vacuum conditions and water solvent conditions. Gray lines correspond to CNT energy states,
green lines correspond to DNA molecule energy states, and cyan lines correspond to molecular
orbitals shared by CNT and DNA. µ represents the gold electrode work function. Energy levels
corresponding to water molecules are omitted for clarity [53]
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To analyze the stability of the DNA junction we performed molecular dynamics
above room temperature, at 330 K, for 10 ns. During all the process we observed
two nucleobases are absorbed to the left graphene electrode and one nucleobase was
absorbed on the right electrode. Therefore we considered the DNA junction was
stable.

The system size is relatively big and the associated computational cost pro-
hibitively high for quantum chemistry and electron transport calculations. We
therefore reduced the system by inducing the evaporation of water molecules. The
evaporation process (not shown) was performed gradually and in a time span of 45
ns, during that process the graphene ribbon size was also reduced (not shown).
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Fig. 7.8 ssDNA (GAG) absorption to graphene nanoribbon. a Initial structure, b Time evolution
of temperature, c ssDNA absorption on graphene at room temperature, d Final ssDNA
conformation during equilibration at 330 K with three nucleobases absorbed on graphene.
Molecular dynamics (MD) simulation performed with periodic boundary conditions [60]
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To analyze the stability of the final structure we performed molecular dynamics
at room temperature for 7 ns. During that process the junction was stable and we
only observed a change in conformation, the final structure had the central nucle-
obase positioned in the nanogap (Fig. 7.10).

We then obtained the electronic structure by DFT calculations in Gaussian 09
[52]. We observed the effect of ssDNA (GAG) on the gapped graphene is a gating
mechanism, we observed a slight change in the energy levels of the HOMO-LUMO
gap when ssDNA fills the nanogap as well as an increase in magnitude of the
electron transmission probability function (Fig. 7.11).
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Fig. 7.9 Electric field assisted positioning of ssDNA on graphene gap at room temperature.
ssDNA conformation at a 12.6 ns, b 12.7 ns and c 12.8 ns under the application of an electric field
with magnitude 0.08 V/Å to phosphate atoms in the DNA backbone. d van der Waals
(vdW) energy of interaction between graphene nanoribbons and ssDNA molecule. Electric field is
applied at t = 12.5 ns and stopped at t = 12.8 ns. Simulation performed with periodic boundary
conditions [60]
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For the electron transport calculations we included gold atoms covalently bon-
ded to carbon atoms at the opposite edges of graphene electrodes, these gold atoms
acted as interface to the electronic structure of bulk gold electrodes (Fig. 7.12).

We analyzed the effect of the electric field (associated with a bias voltage) in the
DOS (density of states) and in the TF (electron transmission probability function).
The electric field caused the splitting of peaks or energy bands in the DOS and a
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Fig. 7.10 Reduced graphene length and nonperiodic boundary conditions. a Structure at t = 1.5
ns with two nucleobases absorbed on left graphene electrode, b Structure at t = 2.5 ns with one
nucleobase positioned in the nanogap zone, c vdW energy for graphene-ssDNA interaction during
the initial 2 ns of equilibration at room temperature, d vdW energy for graphene-ssDNA
interaction during the last nanosecond of equilibration at room temperature, and (i) Final
conformation at 1 K. Water molecules are omitted in a and b for visualization purposes [60]
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significant increase in magnitude of the TF (Fig. 7.13). The gapped graphene and
the DNA junction were significantly different in the TF function at 1.4 V.

We analyzed as well the effect of the electric field on the HOMO-LUMO energy
levels of gapped graphene and DNA junction. We observed the gating mechanism
induced by the DNA molecule is not affected by the electric field (Fig. 7.14), and
the electric field was effective on reducing the HOMO-LUMO energy gap which is
expected to produce a non-zero electrical current through the junction.

The tunneling current of the gapped graphene was non-zero only after a bias
voltage larger than 1.5 V is applied. While the DNA junction had a non-zero
electrical current for bias voltage large than 0.5 V. But the effect of DNA on the
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Fig. 7.11 Effect of DNA molecule on DOS and TF of gapped graphene at zero bias voltage.
a Density of states (DOS in arbitrary units, a.u.) and b electron transmission probability function
(TF in arbitrary units, a.u.) for gapped GNR (gray colored) and GNR-DNA junction (cyan
colored) [60]
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Fig. 7.12 Graphene-DNA junction. Interfacial gold atoms (yellow), bulk electrodes (orange),
graphene carbon atoms (grey), and DNA carbon atoms (green) [60]
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Fig. 7.13 Density of states (DOS) for a gapped GNR, b DNA junction, c electron transmission
function (TF) for gapped GNR, and d DNA junction [60]
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gapped graphene only reflected in a detectable electrical signal at a bias voltage of
1.4 V when the magnitude of electrical current through the DNA junction was
1.6 nA (Fig. 7.15) and the relative difference of current levels (IDNA − IGNR)/IGNR
was maximum (Fig. 7.16).

7.5 The Hydrodynamic Volume of Maximum PEGylated
Carbon Nanotube

Drug molecules are typically of hydrophobic character [61, 62] and naturally absorb
on the hydrophobic (nonpolar) surface of carbon nanotube [63–65]. To protect the
drug from the immune response in the human body, a polymer protection is typi-
cally needed [63, 65, 66].

We analyzed the structure of a carbon nanotube functionalized with polyethylene
glycol (PEG). A maximum amount of polymer ensure a better protection of the
drug, we therefore analyzed the scenario of maximum PEGylation. The main
requirement is a small volume of the drug carrier to ensure an effective penetration
of the natural biological barriers and an optimal circulation through the human
body.

To obtain the polymer structure we performed molecular dynamics (MD) sim-
ulations [31, 51, 67, 68] with 1, 40 and 208 PEG molecules. The initial PEG
structure is obtained from a crystallographic database [69] and modified to perform
a MD simulation in water at room temperature (now shown). The final structure
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Fig. 7.14 Bias voltage dependence of a HOMO, LUMO and b HOMO-LUMO gap. Gapped GNR
(gray), DNA junction (cyan) [60]
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served as input to build a system of carbon nanotube (CNT) functionalized with 40
PEGs (Fig. 7.17), and 40 was about the maximum amount possible to attach.

To validate the result of this simulation we compared the radius of the complex
to that reported in experiments on AFM measurements of a similar complex, equal
diameter of carbon nanotube (1 nm) and equal molecular weight (5 kDa) of
polyethylene glycol. The radius of the complex we obtained (7.6 nm, Fig. 7.18) is
very close to the experimental value of 7 nm [71].
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(1.25–2.25 V), and c transition between electrically nonconductive (<0.01 nA) to conductive state
(>1 nA) for DNA junction [60]
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Fig. 7.17 a Side view of initial structure. b PEG-CNT initial structure, including 40 PEG
molecules, before energy minimization. c PEG-CNT final structure at 300 K for MD simulation.
Water molecules are omitted for visualization purposes d PEG molecules attached to the CNT
sidewall show globular and linear segments. Structure was extracted from PEG-CNT final
conformation at 300 K [70]
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Fig. 7.18 Estimation of polymer radial thicknes (AFM value) wrapping CNT. a Time evolution of
rmax(t), maximum distance between a PEG atom and CNT sidewall, for every PEG molecule.
Vertical axis is in distance units (Å), horizontal axis is an identifier for PEG molecules with values
1, 2, ..., 40, and curves are color coded for different time (picoseconds), b AFM value estimation
from rðavgÞ values. We calculate rðavgÞ for every PEG molecule as the average over time of
rmaxðtÞ value in a 100 ps MD run. AVG is the average value of rðavgÞ and AFM is the average
value of rðavgÞ when r(avg) is larger than AVG (60 Å), c AFM. value estimation from
instantaneous rmax(t) values in a 100 ps MD run [70]
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To build a PEG-CNT complex with maximum PEGylation we take a polymer
molecule from the CNT-40PEG system as an initial reference for the CNT-208PEG
system. The ‘linear fragment’ of the polymer (Fig. 7.17d) is elongated to enable an
increase in the amount of PEG molecules attached to the CNT. After the elongation,
208 PEG molecules is about the maximum amount possible to attach to the CNT
sidewall (Fig. 7.19).

To characterize the complex we estimated the radius of the PEG-CNT complex
(∼ruv) as well as the end-to-end distance of PEG molecules (hi) (Fig. 7.20). We
found the maximum radius of complex decreases from 10 nm (for CNT-40PEG) to
7 nm (for CNT-208PEG). And the maximum end-to-end PEG distance decreased
from 7.5 to 5 nm (Figs. 7.21a, b and 7.22a, b). They reflected an overall reduction in
the volume of the PEG-CNT complex; therefore, maximum PEGylation is not only
beneficial for optimal protection of the drug molecule but to achieve a small volume
of the carrier and an optimal circulation through the human body. As a reference for
the volume of the complex with maximum PEGylation (CNT-208PEG), the maxi-
mum diameter was 14 nm and the length 40 nm (Fig. 7.22c, d).
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Fig. 7.19 Time evolution of a temperature and b total potential energy for PEG-CNT construct
with 208 PEG molecules. c PEG-CNT structure at t = 150 ps and room temperature, and
d tetrahedral structure at a PEG-CNT link [70]
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Fig. 7.20 Distances calculated in the PEG-CNT complex. dmn is the maximum distance between
atoms of opposite PEG molecules attached to a same CNT ring and along a direction orthogonal to
the CNT axis, m is an index for every CNT ring and n is an index for every pair of opposite PEG
molecules attached to the ring. hi is the end-to-end distance for every PEG molecule. ruv is the
maximum distance between a PEG atom and the CNT sidewall, u is an index for every CNT ring
and v is an index for every PEG molecule attached to the ring [70]
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Fig. 7.21 Estimates for a PEG-CNT construct with 40 PEG molecules. a Maximum distance
between an atom of PEG and CNT sidewall, and b root mean squared end-to-end distance for a
PEG molecule [70]
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7.6 Summary and Conclusions

We analyzed the effects of irradiation on carbon nanotube and we found a pre-
dominance of single vacancy defects upon exposure to very high energy argon ion.
These defects resembled magnetic impurities. Then, by using molecular dynamics,
we were able to predict the structure of irradiated carbon nanotubes, DNA-carbon
hybrid nanostructures and PEGylated carbon nanotube. This allowed a detailed
analysis of the atomic structure, otherwise difficult and sometimes impossible to
attain by conventional imaging tools. Furthermore, the structure found by molecular
dynamics can serve as input for electronic structure calculations and we suggested
the possibility of novel electron devices. Finally, by exploiting the strong van der
Waals interaction in electron-rich pi-systems, we suggested the assembly of novel
nanostructures based on DNA and carbon nanostructures, we found that DNA
always induces a gating mechanism on the electronic structure of carbon; therefore,
the chemical sensitivity of DNA can be effectively coupled to the electrical property
of the carbon nanodevice.
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Fig. 7.22 Estimates for a PEG-CNT complex including 208 PEG molecules. a Maximum
distance between a PEG atom and CNT sidewall, b root mean squared end-to-end distance, c width
of the PEG-CNT complex has a maximum value of 136.5 Å (averaged during the last 50 ps), and
d the maximum length of the PEG-CNT complex is 407 Å (averaged during the last 50 ps) [70]
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Chapter 8
Computational Mechanochemistry

Przemyslaw Dopieralski and Zdzislaw Latajka

Abstract Mechanochemistry is a field with a long history, but only about a decade

ago it was transferred from macroscopic milling-type experiments down to the mole-

cular level. The Bochum group headed by Professor Dominik Marx established

a general theoretical framework for describing such mechanical manipulation of

covalent bonds in terms of force transformed potential energy surfaces. The orig-

inal static approach has been there recently extended to dynamical simulations of

mechanochemical reactions in solution in order to explore both solvation and ther-

mal activation effects what is going to be discussed in this chapter. First of all

the isotensional ab initio metadynamics yields force transformed free energy land-

scapes, which were used successfully to unravel the complex mechanochemistry of

force-induced ring-opening of cyclopropanes in the gas phase. After that the step

forward from isolated systems into solvated was made and by using a minimal mole-

cular model, which is diethyl disulfide in water, we have most recently published an

explanation of the biphasic, Janus-faced behavior of the reaction rate, the so-called

“reactivity switch”, as a function of force that has been observed experimentally in

stretched proteins. At the end the simulations on protein are shown, where the drastic

topological changes of the free energy profiles along the S-S-C-C dihedral angle as

the external forces increases are qualitatively similar to those observed for simple

molecular model.

8.1 Introduction to Mechanochemistry. What Is It?

Mechanochemistry history has started a year 1892 with Carey Lea [1], when he

proved empirically that by use of mechanical force onto AgCl, AgBr and AgI those

materials can be dissociated. It is also noted that Lea was the first who published
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his original findings in this branch of chemistry, but mankind used mechanical brute

force long before Lea to induce fire and thus produce heat for thermochemistry. In

recent years the term mechanochemistry has been videly used to describe mechan-

ically induced chemistry and when these processes are connected with breaking

of covalent bonds it is usually called as a covalent mechanochemistry (CMC), in

opposition to “non-covalent mechanochemistry” [2–4]. Shear stress used onto some

chemical substances as a solids were developed into grinding, ball-miling, compre-

sion or mastication techniques [5, 6], but only a decade ago the macroscopic milling-

type experiments were transferred down to the molecular level, where it became

possible to exert the required nano-Newton forces onto molecules in rather con-

trolled way, thus triggering and influencing site-specific chemical reactions. This

new chapter has started with the seminal paper “How Strong is a Covalent Bond?”

published in 1999 by Gaub et al. [7]. Nowadays more sophisticated and advanced

techniques are used for manipulation in micro scale: atomic force microscope (AFM)

[8, 9] in a force-clamp mode [10–13] optical and magnetic tweezers [14] or sono-

chemistry. [15] As those techniques have been already reviewed at least few times

[16–18], we are not going to spent any line for discussion and doubling the same

information already accessible from cited reviews.

Why there is an growing interest in a covalent mechanochemistry (CMC)? [16–

18]. Mostly because of the potential use of such “smart” materials in applications

that range from drug delivery to camouflage systems and self-healing materials

[19, 20]. At this moment it is hard to overestimate the potential and importance

of mechanochemistry as it has a great impact in different fields such as synthetic

chemistry and materials science [21].

We refer the reader to available reviews—two excellent experimentally oriented

reviews on mechanochemistry [16, 17] and recent one where theoretical/

computational mechanochemistry is discussed in great details [18].

Our goal here is to guide the reader through the leatest theoretical framework

(based on two computational examples), which was implemented in Car–Parrinello

Molecular Dynamics package CPMD [22] by Marx laboratory [23, 24]. Our imple-

mented new theoretical method is able to investigate for the first time force-

transformed Free Energy Surface (FES) and explore possible reaction pathways as

a function of applied external constant force at a finite temperature, thus including

thermal fluctuations. All limitations which apply when static zero temperature per-

spective is used like lack of proper solvation effects are now gone. Presented novel

approach has been succesfully used to study mechano-reactivity of isolated cyclo-

propanes and fully solvated disulfides, providing deep understaing of the chemistry

in the heart of the conducted experiments, what is going to be disccused in Sect. 8.3.

8.2 Computations

Phenomenological model to describe the effect of external force onto the rate of bond

dissociation was firstly presented by Eyring et al. [25] and Zhurkov [26] but is usu-

ally atrributed to Bell [27]. Unfortunatelly Bell model assumes that potential energy
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landscape of the reaction does not change with applied force, thus Bell model as

simple one dimensional model is valid only for one dimensional processes—where

the force acts exactly in line with reaction coordinte. The tilted potential energy pro-

file model is an improvment of the Bell’s model and now the structures of the reac-

tants and trasition states of the reaction can be affected by mechanical external force.

Concept was already presented by Eyring [25] but only Evans and Ritchie [28] com-

bine the model with reaction kinetics theory to describe bond dissociation reaction.

After short historical recall let know introduce electronic structure based

approaches. Very first computer simulations in this field imposed distance constraint

and carried out constraint minimization for different values of this distance show-

ing this way that external force can be simulated by simple geometry constraints—

COGEF (constrained geometries simulate external force) that was firstly introduced

by Beyer [29]. Those are so-called isometric calculations in contrast to isotensional

approach where not distance but desired force is fixed and this formalism EFEI

(external force is explicitly included) was firstly introduced by Marx et al. [30] and

Martinez et al. [31] and followed by Wolinski and Baker [32]. It has been also shown

and proven that EFEI potential is the Legendre transform of the COGEF potential.

For more details see [18]. In here we will excusively elaborate about EFEI fromalism

as the one which mimics the isotensional experiments.

8.2.1 Explicit External Force Approach

Previous work [30, 33, 34] on CMC was mostly focused on static descriptions of the

molecular response for applied external constant force in vacuo providing “isoten-

sional” conditions. The central concept of new formalism introduced by Marx and

co-workers [30] is the force transformed Potential Energy Surface (PES), which,

given an external constant force 𝐅0, is rigorously defined as

VEFEI(𝐱,𝐅0) = VBO(𝐱) − 𝐅0𝐪(𝐱), (8.1)

where VBO(𝐱) is the usual Born–Oppenheimer PES as a function of all nuclear carte-

sian coordinates 𝐱, and 𝐪 is the mechanical coordinate, i.e. a structural parameter (a

generalized coordinate in terms of 𝐱) on which the force acts. By locating the sta-

tionary points of this function, in which the “External Force is Explicitly Included”

(EFEI), one can evaluate, without invoking any approximation, properties such as

reactant and transition state structures as functions of 𝐅0.

8.2.2 Explicit External Force at Finite Temperatures

As thermal activation effects are not negligible at room temperature, and as they must

eventually override mechanical activation effects at some point, in Marx laboratory
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[23] recently the EFEI approach has been implemented in the CPMD code [22].

Importantly, when combined with such a techniques like “blue moon” constrained

molecular dynamics [35, 36] (thermodynamic integration [37])—which is proper

generalization of COGEF method—or ab initio metadynamics technique [38, 39],

this methodology allow for the first time to properly study force-transformed free

energy curves and respectively force-transformed free energy surfaces (FT–FES).

This methodology is the basis for exploring possible reaction pathways as a func-

tion of applied tensile external constant force at a finite temperature as disussed on

some selected examples in the following chapter.

8.3 Isotensionl Ab Initio Molecular Dynamics

Static zero temperature perspective is able to provide great insight into the

mechanochemistry but unfortunately neglecting finite-temperatures effects and influ-

ence of proper solvation effects, which are simplyfied to microsolavation or con-

tinuum approximations at zero temperature static view, is in many cases (in some

complex reactions) simply not possible to obtain right mechanisms and not only

the energies. Thus in here we will exclusively elaborate about three recent ab initio

molecular dynamics computations performed in domain of mechanochemistry.

8.3.1 Mechano-Stereochemistry of Cyclopropane
Ring-Opening Reactions

The model system chosen to explore the mechanochemistry of gDCCs is 1,1–

dichloro–2,3–dimethylcyclopropane: its cis and trans isomers and the four possible

distinct reaction products of the corresponding ring-opening processes are depicted

in Fig. 8.1. Our simulations [23] (both at 0 K and at 300 K) have revealed that the

ring-opening of these molecules to yield the corresponding 2,3–dichloroalkenes pro-

ceeds via a concerted disrotatory mechanism, whereby the breaking of the C–C bond

takes place in concert with the C–Cl bond cleavage and the subsequent Cl migra-

tion. For cis gDCC there are two possible pathways as indicated in Fig. 8.1: the

“outward pathway” which passes through TS–I and the “inward pathway” via TS–

III. On the basis of the difference between the activation energies of both pathways

(about 5 kcal/mol, see Fig. 8.1), it has been concluded that the thermal ring-opening

of cis gDCC occurs via a “disrotatory outward mechanism”, whose BO–PES fea-

tures a TS of Cs symmetry (TS–I) and a bifurcation point along the IRC after the

TS is left behind. By virtue of this topological feature, the migrating Cl atom can

move either to the C atom on the right side (thus yielding the Z,R–alkene) or to

the left (leading to Z,S–alkene), see Fig. 8.1. Given the topology of the underlying

PES, the ring-opening of cis gDCC is expected to yield the two enantiomeric alkenes
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Fig. 8.1 Left Scheme showing the involved chemical species, i.e. all reactants (cis; trans–I and

trans–II being enantiomers), transition states (TS–I to TS–IV; S–TS–I to S–TS–IV), and products

(Z,R; Z,S; E,S; E,R). The arrows connecting the reactants with the distinct products via the cor-

responding TSs represent the reaction paths obtained from IRC mapping and ab initio trajectory

shooting starting from the TSs (see text). The second set of TSs (S–TS) belongs to interconversion

reactions between selected products as indicated. For simplicity all structures correspond to the

stationary points at zero force, the Z,R product is reproduced twice for clarity, and the Cl atoms

are colored violet. Right Force-dependence of activation energies ΔE‡(F0) (open symbols) and free

energies ΔA‡(F0) at 300 K (filled symbols) of the disrotatory ring-opening of cis (red circles for

the “outward” pathway) and trans (blue squares) 1,1–dichloro–2,3–dimethylocyclopropanes. The

stretching force is applied to the C atoms of the two terminal methyl groups as indicated in the inset.

Reprinted with permission from Ref. [40]

with equal probability. The disrotatory ring-opening of trans gDCC at zero force, in

its turn, implies either the TS–II or the TS–IV according to Fig. 8.1. The computed

activation free energies were found to be lower (by about 4 kcal/mol) for the ring-

opening of cis gDCC than trans gDCC, as shown in Fig. 8.1. As justified in Ref. [23],

of all the reaction pathways plotted in Fig. 8.1, only two of them are relevant for fully

describing the mechanochemistry of gDCCs: the disrotatory outward mechanism of

cis gDCC and the disrotatory ring-opening of trans gDCC passing through TS–II. As

shown in Fig. 8.1, the force-dependence featured by the activation free energy, ΔA‡
,

and the activation energy, ΔE‡
, for the two considered pathways follows a similar

general trend. The values of ΔA‡(F0) have been obtained from the FT-FESs shown

in original paper. [23] Despite the similar trends, the values of ΔA‡(F0) are much

lower by about 6–7 kcal/mol over the whole range of forces, which results in a dra-

matic rate acceleration due to finite-temperature and entropy effects not accounted

for by ΔE‡(F0). With reference to the selectivity with which the tensile load might

promote preferentially the ring-opening of one isomer, both the qualitatively differ-

ent shapes of the energy curves associated with the cis and trans reactants and the

corresponding rupture forces (1.5 and 2.5 nN, respectively, at 300 K) reflect the fact

that the external forces enhance the ring-opening of cis gDCCs more efficiently. This

is somehow contradictory with the experimentally found lack of selectivity [41]. As

argued in Ref. [23], the most plausible suggestion for resolving such apparent contra-

diction would be to speculate that sufficiently large forces (forces on the order of 2 nN
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would suffice, according to the data in Fig. 8.1) were generated in the sonochemical

experiments as to reach the barrierless regime for the ring-opening reactions of both

isomers.

8.3.2 SN2 at Sulfur: Disulfide Bond Reduction

Fernandez [12, 13], by applying AFM (Atomic Force Microscopy) in a force-clamp

mode, demonstrated that the resulting stretching force leads to protein unfolding

and accelerates disulfide cleavage in the presence of nucleophiles, such as hydrox-

ide ions, thiol or phosphine reagents. It has been observed that the reaction rate

changes with the magnitude of the applied force. As we have recently communi-

cated to Nature Chemistry, the nucleophilic substitution at sulfur, “SN2 at S”, was

found to feature the experimentally observed two distinct regimes of disulfide reac-

tivity below 500 pN and above, which are attributed by us to one and the same reac-

tion, which is disulfide-bond reduction—based on simple molecular model. This has

been traced back to be a manifestation of the subtle interplay between two antago-

nistic effects: on the one hand side the pulling force increases exponentially the rate

of the reaction, but on the other hand side stretching out the molecule causes a con-

formational change due to distorting the molecule. In particular, the dihedral angle

S-S-C-C increases from about 70
◦

(“open conformation”) to 170
◦

(“closed confor-

mation”) upon pulling, which is partially blocking the reaction cone for nucleophilic

attack at the sulfur sites (this has been discussed in much detail in our article [24] and

the extensive Supporting Information attached to this paper so that we only explain

here the key conclusions).

The results from our simulations are presented in Fig. 8.2. Based on two different

free energy sampling techniques we have arrived at quite similar results which show

the overall acceleration effect on the reaction when the system is exposed to tensile

stress. What is more important, however, is the nonlinear nature of this effect as a

result of a conformational distortion from “open” to “closed” conformers. One can

easily see from Fig. 8.2 inset in panel a that at zero force the reaction cone is really

symmetrical and fully open (see red sphere in Fig. 8.2 inset in panel a), whereas at a

force of 1.5 nN (cf. violet sphere) the reaction cone is in fact no more cone-shaped

and no longer favoring the ideal 180
◦

attacking angle S–S⋯OH
−

, This different

approaching angle from the one required for SN2–type reactions imposes an ener-

getic penalty and leads to the nonlinear dependence of the activation free energies

with applied force. This finding not only explains the aforementioned AFM exper-

iment, but will be of general importance to mechanochemistry as such: force may

not only accelerate by making free energy landscapes flatter, but might as well grow

new barriers due to molecular distortions that must be overcome.



8 Computational Mechanochemistry 239

Fig. 8.2 Activation free energies as a function of external force (panel a) for nucleophilic cleavage

of diethyl disulfide in bulk water by OH
−

from isotensional ab initio metadynamics sampling (red)

and thermodynamic integration (black) at T = 300 K. Free energy surfaces in the absence of force

(panel b) and at a force of 1.5 nN (panel c). CV1 is the difference between the S–S distance and

the distance of the attacked sulfur, S
⋆

, with respect to the attacking hydroxyl oxygen (thus negative

(positive) values correspond to reactant (product) states respectively). CV2 is the S-S
⋆

-C-C dihedral

angle on the side of the reaction center (where the dotted horizontal lines mark 180
◦

and thus

the so-called closed conformation of diethyl disulfide, see text). The arrows and crosses highlight

schematically the energetically preferred and disfavored pathways, respectively, according to the

topology of the underlying free energy landscape. Red circles in panel a mark points for which free

energy surfaces are shown in panels b and c. Reprinted from ref. 24. Copyright 2013 NPG

8.3.3 From Simple Diethyl Disulfide Model into Protein

Given that our model system was smaller than the protein employed in the force-

clamp AFM experiments, the very first thing that needs to be proven is that the

observed force-induced conformational rearrangement in the diethyl disulfide mole-

cule can also take place in the protein and, thus, that the mechanism extracted from

this model is responsible for the experimental findings reported for the protein.

Force-field molecular dynamics simulations carried out on the same system used in
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Fig. 8.3 Free energy

profiles along the S-S
⋆

-C-C

dihedral angle of the

disulfide bridge of the I27

protein as a function of

external force. The profile

has been obtained from

force–field molecular

dynamics simulations

carried out with GROMOS

at T = 300K. The model

system in these simulations

comprises the I27 protein

and SPC water molecules

solvating the protein in a

tetragonal box. The relevant

S-S-C-C conformers of the

disulfide bridge embedded in

the protein are shown on top
using a partial and schematic

representation. Courtesy of

Padmesh Anjukandi

the experiments, that is a computational model of the mutated 27th immunoglobulin-

like domain of cardiac titin (I27), show that this is indeed the case. As displayed in

Fig. 8.3, the drastic topological changes of the free energy profiles along the S-S
⋆

-

C-C dihedral angle as the external forces increases are qualitatively similar to those

observed for simple molecular model—diethyl disulfide. In particular, at zero force,

the open conformer of the disulfide bridge embedded in the protein is slightly more

stable than the closed one, in agreement with the conformational properties of the

diethyldisulfide molecule [42]. The 𝜒2 and 𝜒
′
2 angles have been found to change from

conformations that are open to nucleophilic attack to sterically hindered, so-called

closed states upon exerting tensile stress. In view of the growing evidence of the

importance of C-C-S-S dihedrals in tuning the reactivity of disulfides. [24] In our

latest work we present a systematic study of the conformational diversity of disul-

fides as a function of tensile stress [42]. With the help of force-clamp metadynamics

simulations, we show that tensile stress brings about a large stabilization of the closed

conformers, thereby giving rise to drastic changes in the conformational free energy

landscape of disulfides. Statistical analysis shows that native thiol–disulfide inter-

change proteins (TDi), disulfide oxidoreductases (DO) and interchain immunoglob-

ulin (Ig) protein disulfides prefer open conformations, whereas the intrachain disul-

fide bridges in Ig proteins favor closed conformations. Correlating mechanical stress

with the distance between the two 𝛼–carbons of the disulfide moiety reveals that

the strain of intrachain Ig protein disulfides corresponds to a mechanical activation

of about 100 pN (see in Fig. 8.4) Such mechanical activation leads to a severalfold

increase of the rate of the elementary redox SN2 reaction step. All these findings

constitute a step forward towards achieving a full understanding of functional

disulfides.
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Fig. 8.4 Dependence of the computed average distance between the C
𝛼
–atoms as a function of

F0 for the polypeptide model (black circles), cystine (red circles), and DEDS (green circles) and

obtained from force field equilibrium (at zero force) and force clamp MD (for F0 > 0 nN) simula-

tions. Computational reference data for DEDS obtained from QM/MM simulations are shown by

GEOMETRY FILE/created by CPMD brown triangles and the experimental reference based on the

strained macrocycle [43] is marked by a violet square. The horizontal blue, pink and orange dotted
lines are the average C

𝛼
–C

𝛼
distances of disulfide bonds in TDi, DO and interchain Ig proteins,

respectively, whereas the cyan dotted line corresponds to intrachain Ig proteins. Reprinted from

Ref. [42]

Conclusion

Prompted by recent controversial issues connected with disulfides reactivity we

decided to investigate the disulfide bond breaking reaction mechanism with and

without applied external force in bulk aqueous environments. Before doing so, our

thermodynamic approach has been fully validated based on cis– and trans-1,1-

dichloro-2,3-dimethylcyclopropane (gDCC) molecular systems [23] and was sup-

plemented by ab initio trajectory shooting simulations operating on the FT–PESs

in order to dissect genuinely dynamical effects on branching ratios as a function of

force (see Sect. 8.3.1). Based on these methods we have unveiled the mechanisms of

force-induced ring-openings of cis versus trans gDCCs, which rationalizes puzzling

experimental findings [41].

This work is the basis of INSIDE article on HPC applications carried out on

JUGENE platform.

In our next project we have investigated with much effort and in great detail the

mechanochemical hydrolysis mechanism of the simplest disulfide model system in

aqueous solution—substitution at sulfur. For the first time in a calculation, the enig-

matic biphasic behavior of the reaction rate as a function of applied force obtained

from force-clamp AFM experiments, see [13], has been reproduced in silico! [24]

Only this allowed us to extract the molecular reason behind this nonlinear effect,

which is different from all the possibilities suggested in the earlier literature based

on plausibility arguments. Our results are shortly reviewed in Sect. 8.3.2 and the

corresponding article is already published in Nature Chemistry.
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Thus, next our methodology was used to carry out force-field molecular dynamics

simulations on the same system as used in the experiments, that is a computational

model of the mutated 27th immunoglobulin-like domain of cardiac titin (I27) and

we have succesfully proved that the mechanism extracted from the minimal model

is responsible for the experimental findings reported for the protein.
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Chapter 9
Hydrogen Bond and Other Lewis
Acid–Lewis Base Interactions—
Mechanisms of Formation

Sławomir J. Grabowski

Abstract The hydrogen bond formation leads to numerous structural changes in
interacting sub-systems. These changes are a consequence of a redistribution of
electron charge density being a result of complexation. This is important that
similar transformations are observed for other Lewis acid–Lewis base interactions.
In general, for such interactions, including the hydrogen bond, an electron charge
shift is observed from the Lewis base unit to the Lewis acid. This leads to further
processes such as a change of polarizations of bonds, rehybridization of atoms, and
numerous others. The transformations being the result of complexation are reflected
in changes of geometrical, energetic and topological parameters. The results of
ab initio calculations as well as of the Quantum Theory of ‘Atoms in Molecules’
(QTAIM) and Natural Bond Orbitals (NBO) approaches are presented here for
selected types of Lewis acid–Lewis base interactions. Experimental X-ray and
neutron diffraction measurements’ results on organic crystal structures are analyzed
to support the ideas presented.

9.1 Which Interactions Are Classified as the Lewis
Acid–Lewis Base Ones?

The term “noncovalent interactions” is often used in literature for such interactions
as hydrogen bond, dihydrogen bond, halogen bond and others to indicate that
corresponding atom-atom contacts differ from typical covalent bonds. However this
term does not seem to be relevant and there are numerous reasons of its unsuit-
ability. First of all it covers the variety of interactions [1], the mentioned above
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hydrogen and halogen bonds, as well as weak interactions where systems are
mainly stabilized by dispersive forces; such as, for example, the methane dimer,
interactions between noble gas atoms or interactions between hydrogen molecules;
there are other numerous examples. On the other hand interactions between simple
ions, known in the classical literature as ionic bonds may be de facto also classified
as noncovalent interactions; one can mention a classical example of NaCl moiety.

The next problem concerns the meaning of the term “covalent”. Pauling has
pointed out early on that the covalent bond is “the sharing of a pair of electrons by
the two bonded atoms” [2]. The more recent definition recommended by IUPAC is
not as restrictive as the Pauling one since it states that the covalent bond is “a region
of relatively high electron density between nuclei which arises at least partly from
sharing of electrons and gives rise to an attractive force and characteristic inter-
nuclear distance” [3]. The IUPAC definition shows that some of very strong
intermolecular interactions could be classified as covalent bonds. One can mention
here the low barrier hydrogen bonds (LBHBs) analyzed in earlier and recent studies
[4–6]. Besides the covalent character (or covalency) of inter- and intramolecular
hydrogen bonds as well as of other interactions was discussed in numerous studies
[7, 8]. Hence according to those studies the classification of the hydrogen bond as a
noncovalent interaction seems to be confusing. The term “covalent character” is
often related to the hydrogen bonded system stabilization connected with the
electron charge shifts being the result of complexation. This stabilization is reflected
in meaningful attractive interactions which are defined in different ways in various
decomposition schemes of the energy of interaction [8]. The delocalization, charge
transfer, polarization or induction terms are often used in literature for the inter-
action energy terms related to the electron charge shifts [9–11]. Certainly, those
attractive interactions are accompanied by other attractive contributions such as
electrostatic or dispersive ones.

It is worth mentioning that the covalent character of hydrogen bond was ana-
lyzed early on by Pauling [2], Coulson [12] as well as by Pimentel and McClellan
[13]. Since the stabilization of the hydrogen bond and of other interactions is partly
ruled by covalency thus the use of the term “noncovalent interactions” seems to be
misleading. Besides it was pointed out earlier here that the latter term covers broad
class of interactions, in principle all which are not classified as covalent bonds in
the classical Lewis [14] or Pauling [2] definitions’ meaning.

This is why the use of the term Lewis acid–Lewis base interactions seems to be
useful since it covers hydrogen bond, halogen bond and the other ones such as
pnicogen [15–21], hydride [22, 23] or chalcogen [24–26] bonds recently investi-
gated. The latter term requires the strict determination of Lewis acid and Lewis base
centers which if there are in contact may lead to the stabilization of the system.
Besides weak, mainly dispersive interactions for such systems as noble gases or
particularly the dimer of methane are excluded here. What is common for the Lewis
acid–Lewis base interactions? There is the electron charge shift from the Lewis base
to the Lewis acid subunit [27], often the meaningful shift is observed for
very strong interactions—this is discussed in the next sections of this chapter. This
shift is related to attractive interactions such as the charge transfer and polarization
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(if one refers to the Kitaura-Morokuma decomposition scheme of the energy of
interaction [9]). The Lewis acid and Lewis base centers are usually characterized by
the positive and negative electrostatic potentials at the molecular surfaces,
respectively [28]. Hence the electrostatic interaction is also important for the Lewis
acid–base interactions.

Which interactions may be classified as the Lewis acid–Lewis base (La–Lb)
ones? First of all, the hydrogen bond which is the most often analyzed interaction
since its key role in numerous chemical, physical and biochemical processes is very
well known [29–33]. It is often identified as A–H…B where the A–H proton
donating bond is the part of the Lewis acid subunit while B marks the Lewis base
center possessing at least one free electron pair. The H…B contact is exactly that
one between the Lewis acid and base centers; the H-atom hemisphere is charac-
terized by the positive electrostatic potential while the B-center by the negative
electrostatic potential. Scheme 9.1 shows an example of the water dimer linked
through the hydrogen bond.

It is worth to mention that different kinds of the hydrogen bond may be classified
as La–Lb interactions; also those where π-electrons play the role of the electron
donors, i.e. A–H…π hydrogen bonds [13, 31, 34]. Such molecules as ethylene,
acetylene, benzene, their derivatives and numerous π-electron systems may act as
the Lewis base units; they do not possess the free electron pairs from the classical
point of view but the π-electron systems may be treated as multicenter proton
acceptors here. Similarly the A–H…σ hydrogen bonds with σ-electrons acting as
the Lewis base may be classified as La–Lb interactions [35–38]. Such systems with
the molecular hydrogen acting as the Lewis base sub-unit were analyzed both
theoretically [35–38] and experimentally [39–43]. The dihydrogen bond being the
sub-class of the hydrogen bonds is another example where the H…H contact
between a protic hydrogen being the Lewis acid center and a hydric hydrogen
playing the role of the Lewis base center is observed [44].

σ-hole bonds are also classified as the Lewis acid–Lewis base interactions
[28, 45–47]. A σ-hole bond is defined as an interaction between a covalently-
bonded atom of Groups IV–VII and an electron donating center. “It involves a
region of positive electrostatic potential, labeled a σ-hole, on the extension of one of

Lewis acid center

Lewis base center

electron charge transferScheme 9.1 The water dimer
linked through the O–H…O
hydrogen bond
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the covalent bonds to the atom” [47]. Considering the Groups IV–VII atoms as the
Lewis acid centers interacting with the Lewis bases the following σ-hole bonds may
be indicated; tetrel (Group IV) [48–53], pnicogen (V) [15–21], chalcogen
(VI) [24–26] and halogen (VII) [54–58] bonds. The mentioned here Lewis acid
centers are usually classified as the electronegative atoms possessing the negative
atomic charges. However the parts of molecular surfaces related to these atomic
centers are characterized by the positive electrostatic potential regions attributed to
the σ-holes [28, 46, 47].

This is worth to mention that there are also regions of the molecular surfaces at
these atoms characterized by the negative electrostatic potential [28, 46, 47]. This is
why the Groups V–VII atoms possess a dual character and the same center may act
simultaneously as the Lewis acid and as the Lewis base. This dual character is not
related to the sp3 hybridized tetrel atoms not possessing lone electron pairs thus
they act only as the Lewis acid centers (of course there are exceptions where the
dual character is revealed, like, for example, for carbenes). Figure 9.1 presents the
fragment of the crystal structure of 2-amino-5-bromopyridinium propynoate where
the bromine center acts simultaneously as the Lewis acid and the Lewis base since it
is involved in C–Br…O halogen bond and the C–H…Br hydrogen bond, respec-
tively. The C–Br…O arrangement close to linearity is a consequence of the σ-hole
location (the positive electrostatic potential) at the molecular surface, in the elon-
gation of the C–Br bond. Similarly there is the belt of the negative electrostatic
potential around the Br-atom (approximately in the direction perpendicular to C–Br
bond) owing the lone electron pairs of bromine atom. Hence the characteristic
arrangement of atoms for the C–H…Br–C hydrogen bond bridge is observed
(Fig. 9.1).

+

+

_ _

Fig. 9.1 The fragment of the crystal structure of 2-amino-5-bromopyridinium propynoate with
intermolecular interactions (broken lines); C–H…Br hydrogen bond and C–Br…O halogen bond;
black circles correspond to carbon atoms, grey to hydrogens, red to oxygens, blue to nitrogens and
brown to bromines, the positive and negative regions of the electrostatic potential for atoms being
in contact are designated by + and −, respectively; this structure and next two structures (Figs. 9.2
and 9.3) were taken from the Cambridge Structural Database [59]

248 S.J. Grabowski



The mentioned here dual character of atoms of Groups V–VII, i.e. that σ-holes
are found in conjunction with regions of the negative electrostatic potential, results
in the existence of interactions between symmetrically equivalent atoms. Thus the
halogen-halogen (dihalogen) bonds [60] are observed as well as
chalcogen-chalcogen and pnicogen-pnicogen interactions. This is often observed in
crystal structures where the equivalent atoms (related by symmetry) interact
between themselves. Figure 9.2 presents the crystal structure of 4-iodobenzoic acid
where dihalogen bonds are observed; note that the same I-center acts as the Lewis
base and the Lewis acid here and for this center two C–I…I contacts are observed
(perpendicular and linear arrangements). Such two simultaneous interactions occur
for I-centers of all equivalent 4-iodobenzoic acid molecules in the crystal structure.

Figure 9.3 presents the fragment of the crystal structure of bis
(2,3,5,6–tetrafluoro–4-trifluoromethylphenyl)–di-tellurium. The Te-center is the
Lewis acid since the σ-hole exists in the elongation of the C–Te bond and it is the
Lewis base owing to the lone electron pairs. Note that also dihydrogen bond as a
sub-set of hydrogen bond interactions [38] is classified as the La–Lb interaction.
However in this case H-atoms do not possess the dual character; the protic and
hydric H-atoms being in contact are characterized by the positive and negative
electrostatic potential hemispheres, respectively. Hence the dihydrogen bond,
where different kinds of atoms are in the contact, can not be formed between the
symmetrically equivalent centers.

The hydrogen bond was suggested to belong to the σ-hole bond class of inter-
actions since for the σ-hole bonds as well as for the hydrogen bond there is the
electron charge shift within the Lewis acid unit from the Group IV–VII atom
(Z-atom) and from the H-atom, respectively, to the center bonded with this atom
(Y-center in Scheme 9.2) [61]. This leads to the reduction of electron charge at the
Z-atom, in the elongation of the Y–Z bond, i.e. to the σ-hole region at Z-atom often
characterized by the positive electrostatic potential.

+

+

_

_

Fig. 9.2 The fragment of the crystal structure of 4-iodobenzoic acid with C–I…I intermolecular
interactions (dihalogen bonds -broken lines); black circles correspond to carbon atoms, grey to
hydrogens, red to oxygens and violet to iodines, the positive and negative regions of the
electrostatic potential for atoms being in contact are designated by + and −
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Figure 9.4 presents the electrostatic potential (EP) maps for F3CCl and H2O
molecules. One can see that in a case of chlorine center there is the region of the
positive electrostatic potential in the elongation of the C–Cl bond (σ-hole) and “the
belt” of the negative EP around this atom being the consequence of the existence of
the lone electron pairs. In a case of water molecule the whole hemispheres of
H-atoms are characterized by the positive EP.

+
+

_
_

Fig. 9.3 The fragment of the crystal structure of bis(2,3,5,6–tetrafluoro–4-
trifluoromethylphenyl)–di-tellurium; with Te…Te intermolecular interactions (chalcogen–chalco-
gen interactions—broken lines: red one—central atom acts as the Lewis acid, blue one—central
atom is the Lewis base); black circles correspond to carbon atoms, green to fluorines and orange to
seleniums, the positive and negative regions of the electrostatic potential for atoms being in contact
are designated by + and –

Y-Z
electron charge shift

decrease of electron charge

Scheme 9.2 The electron
charge shift for Y–Z bonds;
the case of CF3Cl and H2O
molecules is presented;
arrows show the electron
charge shifts
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It was pointed out that the hydrogen bond is rationalized differently than the
other σ-hole bonds [61]. This difference was also analyzed recently [62]. For
example, in CF3X molecules (X designates the Cl, Br or I halogen atom) the
contribution of halogen atom to the σCX bond is mainly a p-orbital which is colinear
with the C–X bond; this leads to the mentioned above depletion of the electron
charge (σ-hole) at the X halogen center. Such depletion may be reduced if X = F
since fluorine contributes more s-character into the σCX bond—the more spherical
F-atomic hybrid orbital reduces the σ-hole [61]. This is why the C–F…B (B des-
ignates the Lewis base center) halogen bonds are rather rare. In a case of the A–H…
B hydrogen bond the p-character of the H-atom orbital contributing to the σAH bond
is meaningless if any. Thus the electron charge shift for A-H bonds potentially
forming further A–H…B hydrogen bond bridges is ruled by the other mechanisms.
It was explained that the hydrogen nucleus attracts less the electron cloud than any
other heavier atom nucleus, thus for the A–H bond there is the natural electron
charge shift from the H-center to the more electronegative A-atom. This effect is
observed experimentally, for example, bond lengths to hydrogen measured by
microwave spectroscopy depending on the positions of the nuclei are longer than
those measured for the same bond by techniques that depend on diffraction by the
electrons [63].

One can also compare the neutron diffraction and X-ray diffraction experiments
where there is the diffraction of neutrons on nuclei and the diffraction of X-rays on
electrons, respectively [64, 65]. As a consequence the positions of nuclei and the
positions of maxima of the electron density are determined in neutron diffraction and
X-ray diffraction measurements, respectively. Thus in a case of neutron diffraction
the results correspond to the common understanding of molecular structure where
the bond length is the distance between atoms’ nuclei. In a case of X-ray results the
positions of electron density local maxima are practically the same as the positions of
nuclei but only for non-hydrogen atoms. For the H-atom, as it was described earlier

σ-hole

σ-hole

σ-hole

Fig. 9.4 Computed electrostatic potential (EP) on the 0.001 au molecular surface
(MP2/aug-cc-pVTZ calculations) of F3CCl (left) and H2O (right). Blue color corresponds to the
maximum and red one to the minimum EP for each case considered separately. Arrows show the
regions of positive EP (σ-holes)
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here, the position of H-atom electron charge density local maximum is shifted to the
heavy atom bonded with the hydrogen. Figure 9.5 presents histograms of O–H bond
lengths for water molecules detected in crystal structures. The neutron diffraction
and X-ray diffraction results are presented. The low precision of positions of
H-atom’s electron density maxima and other traits of X-ray technique (like spherical
approximation of H-atom’s thermal motions) results these positions are not directly
comparable with the neutron diffraction H-nuclei positions but Fig. 9.5 roughly
shows that the X-ray O–H bonds are much shorter than the neutron diffraction
counterparts. The number of X-ray observations is large in comparison with the
neutron diffraction ones since the total number of crystal structures stored into
Cambridge Structural Database is equal to 686,944 while only 1616 of them are the
neutron diffraction measurements (CSD summary statistics—6 January 2014 [66]).

The regions of low electron density situated at a planar part of the molecular
system containing the atomic center considered were also analyzed [47]. It was
pointed out that such regions exist for the boron center in the BX3 planar molecules
(X = F, Cl, Br, I) as well as for the sulfur in SO2 and the nitrogen in FNO2, the
other examples of Cl2CO, F2CO and F2SiO molecules were discussed where the
carbon and silicon centers are characterized by the electron charge depletion. Such
regions of the low electron density were named as the π-holes and the corre-
sponding interactions with the Lewis base centers as the π-hole bonds.

The Lewis acid properties of the triel Z atoms (Z = B, Al, Ga, In, Tl) were
analyzed recently in triel trifluorides, ZF3 [67]. The strong acidic properties of the
triel atoms in those planar molecules are connected with their electron structures
since the triel atom possesses six electrons in the outer shell thus it is electron
deficient. This electron structure is connected with the existence of the vacant
p-orbital situated perpendicularly to the plane of the molecule. Consequently it
results in the strong electrophilic properties of the Z-center. The octet rule is not
fulfilled here what is often named as the hypovalency in the literature [68]. The
similar electronic structure and consequently the electron deficiency is observed for

Fig. 9.5 Histograms of the O–H bond length for water molecules detected in crystal structures,
neutron diffraction (left) and X-ray diffraction (right) results are presented. The horizontal axes
correspond to O–H bonds (length in Å), the vertical axes to number of observations, based on the
results from the Cambridge Structural Database [59]
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the triel trihydrides and other triel trihalides what results in the positive electrostatic
potential at the Z-atom in the direction perpendicular to the molecule. Figure 9.6
presents the electrostatic potential (EP) map for the AlH3 molecule (two projec-
tions) where one can see the regions of the positive (π-hole) and negative EP
attributed to the Al-center and to the H-atoms, respectively.

The results of the MP2/aug-cc-pVTZ calculations performed on complexes of
the ZF3 molecules with one and with two ligands playing the role of the Lewis base
centers led to the conclusion that the Lewis acid–Lewis base interactions result here
in the tetrahedral or the trigonal bipyramidal structures. The tetrahedral structure is
the result of the interaction of the ZF3 molecule with one ligand and the complex
formed is linked through a very strong triel…Lewis base interaction which may be
named as the triel bond [67]. In this case in the initial step of the reaction the lone
electron pair of the Lewis base is directed to one of lobes of the vacant p-orbital of
the Z-center. The octet rule is obeyed in the tetrahedral complex formed. Also two
Lewis base ligands being directed to two lobes of the vacant p-orbital of the
Z-center may interact with the ZF3 molecule. The latter leads to the pentacoordinate
Z-atom structure, in a case of strong interactions both Z…Lewis base contacts
possess characteristics of covalent bonds what leads to ten electrons in the outer
shell of the Z-atom (hypervalency [68]). Figure 9.7 presents two complexes;
BF3–NCH and GaF3–(NCH)2 representing the tetravalency of the boron atom
(tetrahedral structure) and pentavalency of the gallium atom (trigonal bipyramide
structure), respectively.

The results of calculations presented here are confirmed by experiment, especially
the analogues interactions exist in the crystal structures containing triel trihydrides
and triel trihalides [67]. Figure 9.8 presents species of two crystal structures of
(1,1,3,3-tetramethylguanidine)-gallane and of (acetonitrile-N)-trichlorido-gallium
(III). For the first structure one can see the result of the interaction between the

π-hole

π-hole

Fig. 9.6 Computed electrostatic potential (EP) on the 0.001 au molecular surface
(MP2/aug-cc-pVTZ calculations) for the AlH3 molecule (two projections). Blue color corresponds
to the maximum (positive) and red one to the minimum (negative) EP. Arrows show the region of
positive EP (π-hole)

9 Hydrogen Bond and Other Lewis … 253



gallium trihydride and the nitrogen center of the 1,1,3,3-tetramethylguanidine, the
link through the Ga…N triel bond is the result of complexation; for the second
structure the result of the interaction between the gallium trichloride and the ace-
tinitrile is observed. Thus the same type of interaction, i.e. Ga…N triel bond exists
for both crystal structures. This is interesting that the gallium center for both
structures corresponds to the arrangement close to the tetrahedral one thus both Ga…
N contacts may be treated as covalent bonds.

The pentacoordinated triel atoms are also observed in numerous crystal struc-
tures. Figure 9.9 presents two examples, two species of the tris(hydrido)-bis
(trimethylamine)-aluminium and of the trichloro-bis(trimethylamine)-aluminium
(III) crystal structures. In both cases the trigonal bipyramid arrangement for the
aluminium center is observed. In one case the species observed in the crystal
structure may be treated as the interaction between AlH3 and nitrogen Lewis base
centers, in the second case that is the interaction of AlCl3 with the same ligands.

One can see that the diversity of La–Lb interactions is observed not only in
theoretical results of calculations but also in the real systems analyzed experi-
mentally; it is possible to enumerate their different kinds, often differencing in

Fig. 9.7 The structures of the AlF3–NCH (left) and of GaF3-(NCH)2 (right) complexes

Fig. 9.8 The fragments of the crystal structures of (1,1,3,3-tetramethylguanidine)-gallane (left)
and of (acetonitrile-N)-trichlorido-gallium(III) (right); black circles correspond to carbon atoms,
green to chlorine atoms, grey to hydrogens, pink to gallium and blue to nitrogens, the structures
taken from the Cambridge Structural Database [59]
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numerous characteristics. Not all of them were described here; for example, the
special attention is needed for the beryllium bonds [69–72] where the Be-atom
center acts as the Lewis acid. Also the lithium bond [62, 73–75] was not described
here. However few additional types of La–Lb interactions are discussed in the next
sections of this chapter. It seems that at least few properties are common for all
La–Lb interactions, and that these interactions are ruled by the same or similar
mechanisms. One can mention significant or at least noticeable electron density
shift from the Lewis base to the Lewis acid unit as a common feature of interactions
labeled here as La–Lb pairs (instead of the commonly used term “noncovalent
interactions”). It seems that this name is also problematic since other interactions as
for example those between ions or van der Waals interactions are also characterized
by the charge transfer component. However in a case of hydrogen bond, halogen
bond or other interactions mentioned earlier here the charge transfer is the main
term or at least comparable with the other attractive interactions while for ionic or
van der Waals contacts this term is much less important than the electrostatic or
dispersive contributions. Nevertheless there is no doubt that the terminology of
interactions should be ordered and specified in the near future.

9.2 Mechanisms of Hydrogen Bond Formation

The recent IUPAC definition covers various interactions often classified as hydrogen
bonds. It is as follows: “the hydrogen bond is an attractive interaction between a
hydrogen atom from a molecule or a molecular fragment X–H in which X is more
electronegative than H, and an atom or a group of atoms in the same or a different
molecule, in which there is evidence of bond formation” [76]. One can see that the
X–H…Y designation was applied in this definition to describe the hydrogen bonded
system. The A–H…B designation is used in this chapter to emphasize that the A–H
bond is a fragment of the Lewis acid unit and that B is the Lewis base center; besides
X in this chapter and in numerous studies is usually reserved for the halogen atom.

Fig. 9.9 The fragments of the crystal structures of tris(hydrido)-bis(trimethylamine)-aluminium
(left) and of trichloro-bis(trimethylamine)-aluminium(III) (right); black circles correspond to
carbon atoms, green to chlorine atoms, grey to hydrogens, pink to aluminiums and blue to
nitrogens, the structures taken from the Cambridge Structural Database [59]
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In other words one may state that the hydrogen bond is the Lewis acid–Lewis
base interaction which leads to the formation of the A–H…B link where A–H and B
play the role of the Lewis acid (electron accepting) and Lewis base (electron
donating) centers, respectively. Further the numerous properties of this “link” may
be specified, as for example that B may be mono-center (atom of any species or ion)
or multicenter (π-electron or σ-electron system).

In early studies on hydrogen bonds it was assumed that the H…B distance
should be shorter than the sum of the corresponding van der Waals radii (of H and
B atoms), sometimes it was stated that the H…B distance should be shorter at least
by 0.3 Å than the mentioned above sum [77]. This is often observed for the A and B
centers characterized by the high electronegativity; i.e. for the O–H…O, N–H…O,
N–H…N, F–H…O links, and others. However the C–H…O, C–H…N and in
general C–H…B (B designates here, as before, the Lb center) contacts were found
in crystal structures and classified as hydrogen bonds [77, 78]. It was found that for
numerous such systems the H…B distance is close to the corresponding sum of van
der Waals radii or even exceeds it; it was explained that the hydrogen bond is partly
long range electrostatic interaction being attractive far beyond this sum [31].
Desiraju has pointed out that the hydrogen bond is an interaction without borders
[79] which may be treated in terms of its electrostatic, van der Waals, and covalent
components. The term “without borders” may be understood in a following way;
there is the smooth crossing between van der Waals interactions and very weak
hydrogen bonds as well as there is the smooth crossing between very strong
hydrogen bonds and covalent bonds.

Since the hydrogen bond is a complex phenomenon thus the question arises if for
such complex interaction the common mechanisms of its formation may be
determined? This question seems to be justified since almost all characteristics
indicated in the literature before as attributed to the hydrogen bond may be con-
tested. The characteristics often pointed out in the early literature that for the
A–H…B hydrogen bond the A and B centers should be highly electronegative and
that the H…B distance should be shorter than the corresponding sum of van der
Waals radii are not justified as it was described earlier here. Another characteristic
often treated before as a signature of the hydrogen bond formation is that the
complexation leads to the elongation of the A–H bond with the concomitant
red-shift of the corresponding stretch frequency. However the later studies showed
that this is not a rule since sometimes the shortening of the A–H proton donating
bond with the corresponding blue-shift is observed [80–83].

It seems that the starting point to analyze the mechanism of the hydrogen bond
formation may be related to the electron charge transfer from the Lewis base
to the Lewis acid since this is common for La–Lb interactions [27]. The mechanism
of the hydrogen bond formation based on the latter property was proposed in terms
of the Natural Bond Orbitals (NBO) approach [68]. It was explained that the
A–H…B hydrogen bond is a combination of two effects: the hyperconjugative A–H
bond weakening and the rehybridization-promoted A–H bond strengthening [84].

The first effect is very well known and it was discussed in early and recent studies
[68, 85, 86]. It is connected with the electron charge transfer from the lone pair of
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B Lewis base center to the antibonding σ* orbital of the A–H bond. The interaction
energy of the corresponding nB → σ*AH orbital-orbital overlap is often presented in
studies on the hydrogen bonded systems and it often correlates with the other
parameters related to the hydrogen bond strength [87]. The mentioned above overlap
refers to the 3c–4e (3 center and 4 electron) system, however different other types of
hydrogen bond may be also considered [38]. For the A–H…π, A–H… σ and A–H…
H–B hydrogen bonds following orbital-orbital interactions were found as the most
important ones; πB → σ*AH, σB → σ*AH and σBH → σ*AH, respectively. The latter A–H…
H–B interaction, dihydrogen bond, is classified as a special kind of the hydrogen bond
where theH…H interatomic contact is observed between the protic positively charged
H(A)-atom and the hydric negatively charged hydrogen—H(B) [88–90].

The second effect, the rehybridization-promoted A–H bond strengthening, was
described in literature recently [84] and it is connected with the further redistri-
bution of the electron charge being the result of complexation. It leads to the
increase in the s-character of the A-atom hybrid orbital in the A–H bond. This
redistribution of the electron charge is connected with its shift from the hydrogen
atom of the A–H bond to the further parts of the Lewis acid unit, especially to the
A-center. This is why the A–H…B hydrogen bond formation is connected with
the increase of the positive charge of H-atom and increase of the negative charge of
the A-atom [68, 84]. However there are exceptions, the F–H…SH2 complex is an
example of such situation where the hydrogen bond formation leads to the decrease
of the positive charge of H-atom [91]. The definition proposed recently by Wein-
hold and Klein is in line with the above descriptions of the hydrogen bond for-
mation since it is stated that the hydrogen bond is “commonly originating in the
nB → σ*AH donor–acceptor interaction between the lone pair nB of the Lewis base
and the hydride antibond σ*AH of the Lewis acid” [86]. This definition refers to the
3 center–4 electron A–H…B systems and may be slightly modified to be proper for
the other types of hydrogen bond mentioned earlier here [38].

The processes accompanying the hydrogen bond formation and explained in
terms of the NBO method correspond to descriptions based on the Quantum Theory
of Atoms in Molecules (QTAIM) [92, 93] results. For example, eight QTAIM
criteria of the existence of the hydrogen bond were proposed by Koch and Popelier
[94]; the criterion of the existence of the H…B bond path with the corresponding
bond critical point is the most often checked one in studies on various interactions.
It was pointed out that for the hydrogen bond the electron density at the H…B BCP
should be situated within the range of (0.002, 0.04) au; the range for the laplacian of
the electron density at BCP was also proposed [94]. The decrease of the electron
charge (the increase of the positive charge) of the hydrogen atom as an effect of the
A–H…B hydrogen bond formation and the simultaneous decrease of the hydrogen
atom volume were also listed among these criteria. The latter dependence between
the atomic charge and its volume seems to be obvious since this volume as well as
the charge are related to the electron atomic basin within the QTAIM approach [93].

Different Lewis acid–Lewis base interactions were analyzed recently
(MP2/6-311++G(d,p) calculations) [95], among them hydrogen bonds in the
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following systems; F3CH…NH3, F3CH…OH−, (HCCH)2 (T-shaped dimer),
HCCH…NH3, (H2O)2 and NH4

+
…NH3 and numerous correlations between NBO

and QTAIM parameters were discussed. For example, Fig. 9.10 presents the cor-
relation between the QTAIM integrated H-atom charge and its QTAIM volume for
those hydrogen bonds. This correlation seems to be important since the protic
H-atom in complexes considered belongs to various Lewis acid species (fluoroform,
water, acetylene, and ammonia cation) and neither its charge nor its volume are
normalized here to be related to the H-atom in the corresponding La species not
involved in any interaction.

Figure 9.11 presents for the same sample of hydrogen bonds the correlations
between the electron charge shift from the Lewis base to the Lewis acid and different
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energy terms. Note, that the electron charge shift is the sum of QTAIM atomic
charges of the Lewis acid unit within the complex. The Lewis base–Lewis acid
electron charge shift is observed here like for most of the La–Lb interactions. Hence
the charge of Lewis acid unit in the complex is negative. The following energies are
presented in figure, the binding energy being the difference between the energy of the
complex and the sum of energies of monomers in their energetic minima (the BSSE
correction included), the charge transfer energy calculated within the DFT/NEDA
decomposition scheme [96] and the nB → σ*AH orbital-orbital interaction energy. For
all energy types good correlations are observed. However these are only rough
dependencies from the statistical point of view since only six complexes are con-
sidered; besides two points corresponding to the greatest electron density shifts are
outside the remaining part of the sample. The tendencies observed in Fig. 9.11 may
indicate the importance of the electron charge density shift for the hydrogen bonded
complexes since this shift coincides not only with the orbital-orbital interaction or
with the total charge transfer but even with the binding energy.

It was mentioned earlier here that the hydrogen bond formation leads to the
rehybridization process. This is connected with the increase in s-character of
A-atom hybrid orbital of the proton donating A–H bond [84]. The latter is in
agreement with the Bent rule [97] which states that atoms maximize their
s-character in hybrid orbitals directed towards electropositive substituents and they
maximize their p-character towards electronegative substituents. The Bent rule may
be applied to the A–H…B hydrogen bonded systems since for them the com-
plexation is connected with the increase of the positive charge of the hydrogen
atom; thus one can state that the H-atom is more electropositive after the com-
plexation than it was before. It seems that the increase of the s-character is the
common feature of hydrogen bonds, except of rare cases when the positive charge
of the hydrogen decreases in the process of complexation (FH…SH2 complex
mentioned above here [91]).

The MP2/6-311++G(3df,3pd) calculations were performed recently for the
hydrogen bonded complexes of acetylene and fluoroform [98]. For all of them the
increase in the s-character of the C-hybrid orbital participating in the C–H proton
donating bond was observed as a result of complexation. This is important that such
an increase does not depend on the blue- or red-shifted hydrogen bond is considered
but it is related to the strength of interaction. Figure 9.12 presents relationships
between the binding energy and the s-character for these two series of complexes.
The greater increase of the s value is observed for stronger interactions. For
example, the s-character for the carbon hybrid orbital in the isolated acetylene
molecule is equal to 48.1 % while this value for the HCCH…F− complex amounts
54.3 %. For the isolated CF3H molecule the s-character for the C-atom hybrid
orbital is equal to 30.4 % and in the F3C–H…F− complex it is equal to 36.6 %. This
is worth to mention that the s-character described here correlates not only with the
binding energy but also with other measures of the hydrogen bond strength; and
different correlations between the s-character and the other parameters were found
for numerous samples of the hydrogen bonded systems [95, 98].
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The QTAIM approach mentioned here before is a very useful tool to describe
La–Lb interactions since it is possible to have a deeper insight into changes in the
electron charge distribution being the result of complexation; especially the changes
of hydrogen bonded systems. For example, the position of the C–H proton donating
bond critical point (BCP) was analyzed recently [98] for the mentioned earlier here
complexes of acetylene and fluoroform. It is possible to decompose the C–H bond
into two radii defined by the position of BCP (see Fig. 9.13). Hence there is the
radius of the carbon atom which is the distance between BCP and the C-atom
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attractor and the radius of the hydrogen atom being the distance between BCP and
the H-atom attractor.

It was found for the complexes of acetylene and fluoroform that the A–H…B
hydrogen bond formation results in the increase of the radius of proton donator
(A) and the decrease of the radius of H-atom of the A–H proton donating bond. If
the H-radius decrease outweighs the A-radius increase thus one can observe the
blue shifted hydrogen bond, for the reverse situation there is the red shifted
hydrogen bond. This finding is in line with the mechanisms of the formation of the
hydrogen bond proposed earlier in literature and described here [84, 86, 94]. It was
explained before that the hydrogen bond formation results in the increase of the
positive charge of H-atom what is connected with the decrease of its volume; the
H-atom radius is related to its volume thus it also decreases. Similarly the negative
charge of A-atom increases thus the concomitant increase of its volume is observed;
the latter results in the increase of A-atom radius. This is important that there is no
difference between the blue and red-shifted hydrogen bonds; in both cases the same
changes of the mentioned above radii are observed. This is interesting that these
radii correlate with the binding energy and other interaction strength parameters
[98]. Thus for stronger H-bond interactions the greater elongation of the A-radius
and the greater shortening of the H-radius are observed.

Figure 9.13 presents discussed above parameters for the CF3H…OH2 and
HCCH…OH2 complexes. For the first one the slight shortening by 0.001 Å of the
C–H proton donating bond as a result of complexation is observed (from 1.085 to
1.084 Å) with the concomitant stretch frequency corresponding to the blue shift.
For the second complex there is the elongation of the C–H proton donating bond
from 1.062 to 1.067 Å with the concomitant stretch frequency corresponding to the
red shift. One can see that for both complexes there is the increase of the C-atom
radius and the decrease of the H-atom radius of the C–H bond after the formation of
the hydrogen bond. Note that the sums of the atoms’ radii are smaller than the bond
lengths. It was discussed in the previous section than the attractor of the H-atom
(the maximum of the electron density) is shifted towards the heavier atom; hence
the C–H nucleus-nucleus distance is greater than the corresponding C–H
attractor-attractor distance.

9.3 Mechanisms Accompanying Formation of Lewis
Acid–Lewis Base Links

The question arises if the mechanism of formation of the hydrogen bond described
earlier here is similar or the same one for other Lewis acid–Lewis base interactions;
particularly if two effects existing in the A–H…B hydrogen bonds: the hypercon-
jugative A–H bond weakening and the rehybridization-promoted A–H bond
strengthening [84] have their analogies in the La-Lb interactions. The reply to this
question seems to be very interesting since the protic hydrogen of the A–H bond
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acts only as the Lewis acid center because its whole hemisphere is characterized by
the positive electrostatic potential while the pnicogen, chalcogen and halogen
centers possess the dual character and may act as La and Lb centers simultaneously.
For example, on one hand the halogen center (and particularly chlorine atom pre-
sented in Scheme 9.3) may form hydrogen bonds or halide bonds with Lewis acid
centers and on the other hand it forms halogen, dihalogen, halogen-hydride bonds
with Lewis bases.

The MP2/6-311++G(d,p) calculations have been performed recently on the
complexes of chlorotrifluoromethane, CF3Cl, with different species possessing
properties of Lewis acids and Lewis bases [99, 100]. The CF3Cl species was chosen
since the chlorine is characterized by the region of positive EP in the extension of
the C–Cl bond and by the region of negative EP in the direction perpendicular, or
nearly so, to this bond due to the lone electron pairs of chlorine (see Fig. 9.4). This
is why the CF3Cl moiety may interact through the chlorine center with Lewis acids
and with Lewis bases. The complexes of CF3Cl with following moieties acting as
the Lewis bases; CH2O, Cl−, HMgH, FCl, OH− and CH3Cl were analyzed.
Figure 9.14 presents selected examples of those complexes. One can see the
classical linear C-Cl…O halogen bond for the CF3Cl…OCH2 complex. This lin-
earity is a result of the restricted region of the positive EP at the Cl-atom in the
elongation of the C–Cl bond. The CF3Cl…OH−, CF3Cl…Cl−, and CF3Cl…FCl
complexes (not presented in Fig. 9.14) are other examples of the typical halogen
bonds; two first interactions, C–Cl…O− and C–Cl…Cl−, are assisted by the neg-
ative charge thus they may be named as the negatively charge assisted halogen
bonds. For the complexes of chlorotrifluoromethane with Cl− and FCl one can
expect the term dihalogen bond since the Cl…Cl− and Cl…F connections are
formed here. However it seems that the term halogen bond is proper for both
interactions since the chlorine anion as well as the fluorine center act here as the
Lewis bases and they are not characterized by the dual character. The chlorine anion

Lewis acid
hydrogen bond

halide bond

Lewis base
halogen bond

dihalogen bond
halogen-hydride bond

Scheme 9.3 The molecular graph of CF3Cl molecule, the directions of possible interactions with
Lewis acids and Lewis bases are shown
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does not possess the regions of the positive EP, similarly as the F-center in the FCl
molecule where the whole hemisphere of fluorine is characterized by the negative
EP. It seems that the term dihalogen bond is proper for the halogen-halogen sta-
bilizing contacts if both halogen atoms are characterized by the dual character; i.e. if
both centers may act as the Lewis base and as the Lewis acid. This is why the
dihalogen bond may be formed between the same kind molecules like in a case of
4-iodobenzoic acid (see Fig. 9.2). The CF3Cl…ClCH3 complex (see Fig. 9.14)
represents such a situation of the dihalogen bond. The CF3Cl species acts here as
the Lewis acid through the region of the positive EP situated in the elongation of the
C–Cl bond while Cl–CH3 acts as the Lewis base through the chlorine negative
region of EP being perpendicular to the C–Cl bond.

Figure 9.14 presents the CF3Cl…HMgH complex where the hydric H-atom of
MgH2 acts as the Lewis base center, the intermolecular Cl…H interaction (where
electronegative Cl atom acts as the Lewis acid and the H-atom as the Lewis base!)

Fig. 9.14 The molecular graphs of the CF3Cl…OCH2, CF3Cl…HMgH and CF3Cl…ClCH3

complexes; big circles correspond to attractors, small ones to bond critical points; solid and broken
lines to bond paths

9 Hydrogen Bond and Other Lewis … 263



was named as the halogen-hydride bond [27]. It is important that this interaction is
very rare since in the Cambridge Structural Database [59] where over 600,000
crystal structures are collected [66] only in few cases interactions which may be
classified as halogen-hydride ones were found [27].

It was mentioned earlier here that the chlorine center of CF3Cl may act also as
the Lewis base; its complexes with HF, H3O

+, HCl2O
+ and Li+ were analyzed

(Fig. 9.15). There is the F–H…Cl hydrogen bond for the CF3Cl…HF complex; for
the H3O

+ and HCl2O
+ species the O–H…Cl positively charge assisted hydrogen

bonds exist while for the complex of CF3Cl with the Li + cation there are halide
bonds. Figure 9.15 shows two intermolecular Cl…Li+ and F…Li+ bond paths for
the latter complex corresponding to two C–Cl…Li+ and C–F…Li+ halide bonds.
One can see that in all cases where chlorine acts as the Lewis base, the Lewis acid
unit is directed perpendicularly, or nearly so, to the C–Cl bond, i.e. it is directed to
the region of the negative EP of the chlorine center.

Table 9.1 presents selected geometrical and energetic parameters of the com-
plexes described above. One can see that longer intermolecular contacts are observed
for complexes where CF3Cl acts as the Lewis acid than in a case where the chlorine
is the Lewis base center. Only, for the first group of complexes, relatively small
Cl…O distance of 2.46 Å is observed for the CF3Cl…OH− complex where the
halogen bond is assisted by the negative charge and where the strongest interaction is
detected (Ebin = −13.8 kcal/mol). The shorter H…Cl distances for the hydrogen
bonded systems are justified since the H-atom being in the intermolecular contact is
characterized by a small van der Waals radius. Also for the CF3Cl…Li+ complex
characterized by the strong interaction (Ebin = −12.1 kcal/mol) the small Cl…Li
distance amounting 2.48 Å is observed.

Fig. 9.15 The molecular graphs of the CF3Cl…HF, CF3Cl…H3O
+, CF3Cl…HCl2O

+ and
CF3Cl…Li+ complexes; big circles correspond to attractors, small ones to bond critical points;
solid and broken lines to bond paths

264 S.J. Grabowski



If the CF3Cl species acts as the Lewis base the elongation of the C–Cl bond is
observed as a result of complexation (Table 9.1). However if the CF3Cl acts as the
Lewis acid, in the C–Cl…B halogen bonds and related interactions; dihalogen bond
and halogen-hydride bond, in all cases considered, the shortening of the C–Cl bond
is detected. This is slightly surprising since for the A–H…B hydrogen bonds the red
shift corresponding to the elongation of the proton donating bond is usually
observed and the shortening of the A–H bond with the simultaneous blue shift is
not so often. However it was described in the literature that the blue shift for
halogen bonds occurs more often than in a case of hydrogen bonds [99, 100]. One
can see that for the halogen bond and related interactions the linear, or nearly so,
C–Cl…B arrangements are observed since this angle is situated within the
168–180° range (Table 9.1). In a case of hydrogen bonded systems and the halide
interaction the range of 78–97° is observed, close to perpendicular C–Cl…A (A
designates Lewis acid center) arrangement. This is in line with the description
presented before here that the negative EP of chlorine concerns the region being
perpendicular to the C–Cl bond while the region of positive EP is situated in the
extension of the C–Cl bond.

The last column of Table 9.1 presents ENBO values which correspond to the
orbital-orbital interaction energies calculated within the NBO scheme. The com-
plexes of CF3Cl with HF, H3O

+ and HCl2O
+ are linked through the hydrogen

bonds and the lone pair (n) → σ* interaction is detected for them (see previous
section of this chapter). This is the n(Cl)→ σFH* interaction for the complex with HF
molecule and the n(Cl) → σOH* interaction for the complexes with H3O

+ and
HCl2O

+. In two latter cases the meaningful orbital-orbital interaction energies of 36

Table 9.1 MP2/6-311++G(d,p) results; the chlorine—Lewis acid/Lewis base center distance
(Cl…A(B), in Å), ΔC–Cl the change of bond length (Å) as a result of complexation (+ denotes
increase and − decrease), C–Cl…B(A) angle (degrees) as well as binding energy, Ebin (corrected
for BSSE, in kcal/mol), ENBO (kcal/mol) is the orbital-orbital interaction energy described in the
text; C–Cl bond length for F3CCl species not involved in any interaction amounts 1.746 Å

Species Cl…B(A) ΔC–Cl C−Cl…B(A) Ebin ENBO

CF3Cl as Lewis acid
OCH2 3.059 −0.006 179.8 −1.4 0.6
Cl− 3.098 −0.025 180.0 −7.3 5.5
OH− 2.460 −0.012 175.5 −13.8 15.7
FCl 2.990 −0.002 175.6 −0.4 0.7
ClCH3 3.467 −0.001 168.8 −0.7 0.9
MgH2 2.964 −0.004 169.4 −1.1 0.7
CF3Cl as Lewis base
HF 2.592 +0.012 96.6 −0.1 1.5
H3O

+ 1.979 +0.049 94.1 −7.5 36.3
HCl2O

+ 1.787 +0.077 95.6 −9.0 82.4
Li+ 2.482 +0.027 78.7 −12.1 22.3
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and 82 kcal/mol are observed. In a case of halide bond (C–Cl…Li+) the lone
pair → lone pair interaction, n(Cl) → n(Li)*, occurs.

The n(B) → σCCl* interaction (B corresponds to the Lewis base center) is
observed if the CF3Cl species acts as the Lewis acid. The O, Cl, O, F and Cl atoms
act as the Lewis base centers for the CF3Cl complexes with OCH2, Cl

−, OH−,
FCl and ClCH3, respectively. This is a very similar type of orbital-orbital inter-
action as that one usually observed for the A–H…B hydrogen bonds (n(B) → σAH* );
in both cases, of the hydrogen bond and of the halogen bond, we have the anti-
bonding orbital corresponding to the Lewis acid moiety, hydride σAH* orbital and
halide σAX* orbital, respectively (σCCl* for the CF3Cl molecule considered here). In a
case of the CF3Cl…HMgH complex there is the σMgH → σCCl* orbital-orbital
interaction, however even here one can see the same antibonding σCCl* orbital as for
other interactions where the chlorine plays a role of the Lewis acid center.

Table 9.2 presents other characteristics of the CF3Cl complexes. It is obvious
that there is the electron charge shift to the CF3Cl species if the latter one acts as the
Lewis acid (positive ET values in Table 9.2) and a withdrawing of electrons from
the CF3Cl if it acts as the Lewis base (negative ET values). One can see that the
greatest absolute ET values are observed for the charge assisted interactions. It is
interesting to analyze the change of atomic charges being a result of complexation.
For the A–H…B hydrogen bond the increase of the positive charge of the H-atom
and the increase of the negative charge of the A-atom are observed [68] (there are
exceptions described in the previous parts of this chapter). The analogues to the
hydrogen bond systems are those linked through the halogen bond and related
dihalogen and halogen-hydride bonds where for the C–Cl…B interaction the
increase of the positive charge of Cl-atom and the increase of the negative charge of

Table 9.2 NBO parameters for the F3CCl complexes; ET (in milielectrons) is the amount of
electron charge transferred from the Lewis base to the Lewis acid (positive values if F3CCl is the
Lewis acid, negative values if it acts as the Lewis base

Species ET C-charge Cl-charge Pol(%C) s(%C)

OCH2 1.5 0.9844 0.0318 47.76 27.27
Cl− 54.2 0.9426 0.0967 50.18 29.96
OH− 123.4 0.9162 0.1060 51.88 31.54
FCl 2.2 0.9904 0.0154 47.29 26.90
ClCH3 6.0 0.9906 0.0116 47.28 26.89
MgH2 2.6 0.9882 0.0234 47.53 27.16
HF −5.6 1.0021 −0.0129 46.38 25.95
H3O

+ −122.7 1.0318 0.0241 44.28 23.84
HCl2O

+ −221.7 1.0507 0.0652 42.23 22.25
Li+ −69.2 1.0122 0.0110 45.99 25.4
F3CCl* – 0.9942 0.0073 47.0 26.62
C-charge and Cl-charge NBO charges (in au). Pol(%C) is the C–Cl bond polarization (% at
C-atom), s(%C) is the percentage s-character in C orbital of the C–Cl bond. The last line of the
table (*) presents characteristics of the CF3Cl monomer not involved in any interaction
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C-atom are observed (Table 9.2). The Cl-atom charge in the CF3Cl free molecule is
equal to +0.007 au and it increases for all halogen, dihalogen and halogen-hydride
bonded complexes. The greatest increase is observed for the strongest interaction
with the OH− ion where the Cl-atom charge is equal to +0.106 au. The situation for
the CF3Cl species interacting with the Lewis acids is not so clear. However in such
a case hydrogen bondsHydrogen bond or halide bond are formed and one should
analyze the changes of characteristics of the H- or Li- atoms.

For the free CF3Cl molecule the charge of the carbon atom is equal to +0.994 au
and it decreases for all complexes linked through halogen bond and related inter-
actions, similarly as in the A–H…B hydrogen bonds where the decrease of the
positive charge (increase of negative charge) of the A-atom is usually observed. The
positive C-atom charge increases if the CF3Cl species acts as the Lewis base, in
other words there is the outflow of the electron charge in this case to the Lewis acid
unit (HF, H3O

+, HCl2O
+ or Li+), partly from the carbon center.

There are other consequences of the complexation if chlorine in the CF3Cl
species acts as the Lewis acid center, the outflow of the electron charge from
chlorine and its accumulation at the carbon center leads to the increase of the
polarization of the C–Cl bond (see Table 9.2); the greatest polarization of 51.9 % (%
of the electron charge at the carbon center) is observed for the CF3Cl…OH−

complex where the strongest interaction occurs. And the increase of the s-character
is also detected, the same effect was observed for A-center in A–H…B as a result of
the hydrogen bond formation. One can see that the hyperconjugative and rehy-
bridization processes known for A–H…B hydrogen bonds are also observed for
A–X…B halogen bonds (and related interactions). This is interesting that the
polarization of the C–Cl bond decreases if the chlorine in CF3Cl species acts as the
Lewis base, similarly s-character of the hybrid orbital of carbon atom in C–Cl
decreases.

The changes being the result of complexation and concerning polarization,
s-character, atomic charges of the C–Cl bond, etc. correlate with the binding energy
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and with other descriptors of the strength of interaction [99, 100]. Figure 9.16
presents an example of such correlation between the binding energy and the
s-character for the CF3Cl complexes described above. Only complexes where
chlorine plays the role of the Lewis acid center are taken into account here. One can
see an excellent linear dependence; however only six complexes are considered here
thus from the statistical point of view it may be treated only as a tendency; besides
two points corresponding to the strongest interactions are far from the remaining part
of the sample (it is no use that those remaining four points also well correlate—the
sample is too small from the statistical point of view). However it seems that the
s-character may be treated as a measure of the strength of interaction since such
correlations were detected for other larger samples of complexes, particularly those
linked through the hydrogen bond [98].

The complexes linked by more distinct interactions were analyzed recently;
various types of hydrogen bonds were taken into account as well as halogen,
hydride and dihydrogen bonds (MP2(full)/6-311++(3df,3pd) calculations were
performed) [101]. It was found that mechanisms of formation of various complexes
are very similar in spite of the diversity of interactions considered. Figure 9.17
presents examples of NH4

+
…HBeH and NH4

+
…HMgH complexes linked through

the dihydrogen bond (DHB). This interaction was analyzed before [88–90] thus one
may state, being in agreement with those earlier descriptions that the dihydrogen
bond is the Lewis acid–Lewis base interaction characterized by the H…H contact
where one of H-atoms plays the role of the Lewis acid center (protic H-atom) and

s(N) 28.6
(25.0)

Pol (% at N) 
75.0 (72.9)

s(Be) 47.8
(49.9)

Pol (% at Be) 
20.5 (28.1)
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Pol (% at N) 
76.9 (72.9)

s(Mg) 46.5
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Pol (% at Mg) 
11.5 (19.9)

Fig. 9.17 The molecular graphs of NH4
+
…HBeH (up) and NH4

+
…HMgH (down) complexes;

small circles correspond to bond critical points, big ones to attractors, solid lines represent bond
paths, s designates s-character of the hybrid orbital (for example N-hybrid orbital of the N–H
bond); Pol is the polarization of the bond considered (% of the electron charge at the atom
indicated); the values in parentheses concern monomers not involved in dihydrogen bonds
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the second hydrogen (hydric) is the Lewis base center. The hydrogen atoms being
in contact possess the opposite charges. It is often designated as A–H…H–B where
the protic hydrogen belongs to the Lewis acid unit (A) and the hydric hydrogen to
the Lewis base (B). One can see that this interaction may be treated as a sub-class of
hydrogen bonds since it is characterized by the A–H proton donating bond, as for
the classical hydrogen bonds, and the negatively charged hydric hydrogen center,
similarly as the B-center for A–H…B hydrogen bonds.

In general the same mechanisms of the electron charge shift are observed for
DHB as for the hydrogen bond. The QTAIM analysis of the atomic charges of
NH4

+
…HBeH and NH4

+
…HMgH complexes show that the complexation leads to

the increase of the positive charge of the protic H-atom of the NH4
+ cation and the

increase of the negative charge of the N-atom. In a case of Be–H or Mg–H bond of
the Lewis base unit being in contact with the protic hydrogen of ammonia ion there
is the outflow of the electron charge since for both atoms of the bond the decrease
of the negative charge is observed. The electron charge shifts for these complexes
lead to the other changes (Fig. 9.17), the increase of the s-character of the N-hybrid
orbital of the N–H proton donating bond as well as the increase of the polarization
of this bond (% of the electron charge at the N-atom)—the same changes as those
usually observed for the A–H…B hydrogen bonds as well as for the A–X…B
halogen bonds. One can also observe the changes of the s-character and of the
polarization for the electron donating Be–H and Mg–H bonds which are reverse to
those detected for the proton donating N–H bond. The s-character of Mg or Be
hybrid orbital decreases as well as the polarization of the Mg–H or Be–H (% of the
electron density at the Mg or Be atom) decreases.

This is worth mentioning that the σ → σ* interaction is the main orbital-orbital
overlap for DHBs [38]; particularly in a case of the BeH2 and MgH2 complexes
discussed here these are the following interactions; σBeH → σNH* and σMgH → σNH* .
The similar σ → σ orbital-orbital interactions occur for the A–H…σ hydrogen
bonds where the σ-electrons of molecular hydrogen play the role of the Lewis base
[38]. For the typical hydrogen bond the n(B) → σ* interaction is often treated as its
signature [68].

The numerous results presented here for different La–Lb interactions show that
at least few common characteristics may be indicated for them; especially for the
Lewis acid bond being in contact with the Lewis base center. This is the A–H bond
for the A–H…B hydrogen bonds and for the A–H…H–B dihydrogen bonds as well
as the A–X bond for the A–X…B halogen bonds. Scheme 9.4 shows selected
characteristics of the A–Y…B La–Lb interaction, where B is the Lewis base center
while A–Y is the bond of the Lewis acid unit.

The changes presented in Scheme 9.4 were analyzed in several studies; for
example the hydrogen and halogen bonds were analyzed in several complexes and
these changes were detected as common for both kinds of interactions [95]. Par-
ticularly the (H2O)2 and CF3Cl…NH3 complexes linked through the O–H…O
hydrogen bond and the C–Cl…N halogen bond, respectively, were compared [95].
It was found that the shortening of the H…O and Cl…N intermolecular distances
leads to the same electronic and structural changes what comes from the same
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mechanisms of the complex formation. The positive charge of H or Cl-atom
increases, its volume decreases; the negative charge of O and C atoms connected
with H and Cl atoms, respectively, increases what leads to the increase of their
volumes. The corresponding s-character of the hybrid orbital of O (and C) of the
O–H (and C–Cl) bond increases what is in agreement with the Bent rule [97]. This
is important that these changes follow changes of the intermolecular distance
(H…O and Cl…N) from the distances greater than those corresponding to energetic
minima up to exactly those of the equilibrium states. Hence one may say that these
changes correspond to the process of complex formation (the formation through the
hydrogen and halogen bonds).

9.4 The Electron Charge Shifts in a Case of Cooperativity
Effects

The cooperativity effect is not strictly defined; however, very often it is understood
as the enhancement (or diminution) of interaction in the complex if the additional
species interacts with one of components of this complex forming the next inter-
action [102, 103]. This effect is analyzed most often for hydrogen bond interactions;
for example Jeffrey analyzed the cooperativity in crystal structures claiming that it
is connected with σ-bonds which can interrelate in a chain or in a cycle; the case of
O–H bonds is an example since such (R)O–H…(R)O–H…(R)O–H.. chain or cycle
may be formed here [30]. This effect occurs very often in crystal structures where
the translational symmetry requires the reduplication of the system through the
intermolecular interactions, often through the hydrogen bonds. However there are
other experimental evidences of the existence of cooperativity effects; as for the
H3N…HF and H3N…HF…HF systems which were analyzed by the microwave
and theoretical techniques [104]. It was found that for the H3N…HF…HF complex
the H…N interaction is stronger than in the complex containing one HF molecule,
besides the H…N distance is by 0.21(6) Å shorter for the former system than for the
latter one.

A-Y B
Lewis acid Lewis base

s-characterof A orbital

A-Y bond polarization

positive charge of Y-atom

negative charge of A-atom

increase

...

Scheme 9.4 The change (increase) of few parameters of the A–Y bond involved in the A–Y…B
La–Lb interaction as a result of complexation
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There are different studies where the enhancement of the hydrogen bond due to
additional interactions is observed; however it was also found that sometimes the
weakening of the hydrogen bond occurs as a result of the cooperativity [103].
Additionally the number of studies where the other La–Lb interactions, not only
hydrogen bonds, are analyzed in terms of the cooperativity effects increases in
recent years [102]. For example, the electron density shifts were analyzed recently
for dyads and triads linked through hydrogen and/or halogen bonds and the cal-
culations were performed at the MP2(full)/6-311++G(d,p) level [105]. Figure 9.18
presents systems selected from those analyzed before [105]; HF and C2H2 mono-
mers, C2H2…HF and C2H2…Cl− dyads, and the HF…C2H2…Cl− triad. In a case
of the C2H2…HF system there is the FH…π hydrogen bond since this is the
T-shaped complex where the HF molecule is perpendicular to the acetylene species.
For the C2H2…Cl− linear complex the C–H…Cl− hydrogen bond is formed, and
for the mentioned above triad we have both kinds of the hydrogen bond (see
Fig. 9.18). Different parameters are presented in Fig. 9.18 thus one can see the
changes being the result of complexations and the cooperativity effects occurring in
a case of triad.

From one side it is possible to analyze the influence of the C–H…Cl− hydrogen
bond on the FH…π interaction and from the other side, vice versa, the influence of
the latter hydrogen bond on the former one. Let us consider the first case. For the

s=20.67
Pol=77.58

-0.547 0.547

s=48.14
Pol=61.24

0.223 0.223-0.223 -0.223

-0.9460.276-0.174-0.3650.200

s=50.65
Pol=65.31

ρ
BCP=0.021
E = -8.6

0.238 0.238-0.232 -0.232

-0.568

0.556

s=23.35
Pol=78.61

s=48.46
Pol=61.98

ρ
BCP=0.016
E = -3.2

s=24.70
Pol=79.66

s=51.39
Pol=66.44

-0.591

0.570

-0.919
0.283-0.3710.216 -0.188

ρ
BCP=0.033
E = -13.9

ρ
BCP=0.025
E = -8.5

Fig. 9.18 The molecular graphs of HF, C2H2, C2H2…Cl−, C2H2…HF and HF…C2H2…Cl−

species, s-character, polarization of the bond participating in an interaction, and NBO charges (in
au, presented below the pictures) are given. The electron density at BCP corresponding to
interaction, ρBCP (au), is included and the binding energy, E (kcal/mol)
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C2H2…HF T-shaped complex the complexation leads to the increase of the positive
charge of hydrogen atom of the HF molecule from 0.547 to 0.556 au and the
increase of the negative charge of the F-atom from −0.547 to −0.568 au. Addi-
tionally the polarization of the H–F bond and s-character of the F-hybrid orbital
increase since for the isolated HF molecule they are equal to 77.58 and 20.67 %,
respectively, while these values in the C2H2…HF complex amount 78.61 and
23.35 %, respectively. The binding energy for this complex is equal to
−3.2 kcal/mol (corrected for BSSE); there is the bond path corresponding to the
intermolecular H…π contact; π denotes the bond critical point of the C≡C bond of
acetylene. The electron density at this BCP, ρBCP, is equal to 0.016 au. It is worth
mentioning that the ρBCP value is often treated as a measure of the hydrogen bond
strength since it correlates for numerous samples of complexes with the binding
energy; especially, such correlations were observed for the homogeneous (struc-
turally related) samples of complexes [8].

For the HF…C2H2…Cl− triad the additional C–H…Cl− interaction enhances the
F–H…π hydrogen bond, thus the positive charge of the H-atom of HF molecule
amounts 0.570 au while the negative charge of fluorine is equal to −0.591 au. The
polarization and s-character are greater than for the isolated HF as well as than for
the C2H2…HF complex, 79.66 and 24.70 %, respectively. One can see that the
hyperconjugative and rehybridization processes known for the hydrogen bonded
systems exist also for the FH…π hydrogen bond considered here and that these
processes are enhanced in a case of cooperativity. The binding energy related to the
F–H…π interaction in the triad is equal to −8.5 kcal/mol, the corresponding ρBCP
value is equal to 0.025 au. One can see that evidently, the additional C–H…Cl−

interaction enhances the F–H…π one. The binding energy corresponding to the
F–H…π hydrogen bond in this triad is calculated as the difference between the
energy of the triad in its energetic minimum and the sum of the energies of HF
monomer and HCCH…Cl− dyad; the monomer and the dyad correspond to their
energetic minima, BSSE correction was included here.

Let us consider the influence of FH…π hydrogen bond on the C–H…Cl−

interaction. One can see that the H and C atomic charges for the isolated acetylene
molecule are equal to 0.233 au and −0.233 au, respectively. For the C2H2…Cl−

linear complex the positive charge of the hydrogen being in contact with the
chlorine ion increases to 0.276 au but the carbon of the C–H proton donating bond
is less negative (−0.174 au) than in the isolated acetylene. However the next carbon
is much more negative (−0.365 au); this means that there is the electron charge
transfer from the chlorine ion to acetylene as a result of complexation and next the
triple C≡C bond is an excellent electron charge transmitter. The polarization of the
C–H bond and the s-character of the carbon hybrid orbital for the isolated acetylene
are equal to 61.24 and 48.14 %, respectively; the corresponding values for the
C2H2…Cl− complex amount 65.31 and 50.65 %, respectively. The binding energy
for this complex is equal to −8.6 kcal/mol (corrected for BSSE); the electron
density at the BCP corresponding to the H…Cl bond path is equal to 0.021 au.

Let us look at the HF…C2H2…Cl− triad to analyze the influence of the F–H…π
interaction on the C–H…Cl− hydrogen bond. For the acetylene molecule in the

272 S.J. Grabowski



triad there are the following atomic charges, 0.283 au for hydrogen, more than for
isolated acetylene and more than in the C2H2…Cl− diad, and the C-atoms charges
of −0.188 au and −0.371 au, more negative than for the dyad. The electron charge
transmission effect through the C≡C bond described earlier for the dyad is also
detected here. If one considers the C–H proton donating bond of the C–H…Cl−

hydrogen bond in the triad thus the polarization of the bond and s-character of
carbon are equal to 66.44 and 51.39 %, respectively, more than for the isolated
acetylene and more than for the C2H2…Cl− complex. The binding energy corre-
sponding to the C–H…Cl− hydrogen bond in this triad is calculated as the differ-
ence between the energy of the triad in its energetic minimum and the sum of the
energies of Cl− ion and the C2H2…HF dyad; the monomer and the dyad correspond
to their energetic minima, BSSE correction was also included here. It is equal to
−13.9 kcal/mol and the electron density at the corresponding BCP amounts 0.033
au; hence there is the enhancement of the H…Cl− interaction in the triad in
comparison with the dyad. One can see that also in this case the cooperativity may
be treated as an effect which enhances the hyperconjugative and rehybridization
processes.

This is worth to mention that the same dependences are detected for the HF…
HCCCl…Cl− triad where the F–H…π hydrogen bond is enhanced by the C–Cl…
Cl− halogen bond and vice versa, the C–Cl…Cl− interaction is enhanced by the
F–H…π hydrogen bond [105]. Figure 9.19 presents the molecular graphs of the HF
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Fig. 9.19 The molecular graphs of HF, HCCCl, HCCCl…Cl−, HCCCl…HF and HF…HCCCl…
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interaction, ρBCP (au), is included and the binding energy, E (kcal/mol)
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and HCCCl monomers, the HCCCl…HF and HCCCl…Cl− dyads, and the HF…
HCCCl…Cl− triad. The similar changes as those found for the HF…C2H2…Cl−

triad are observed here for the s-character and polarization (see Fig. 9.19). Let us
mention only binding energies and the values of the electron densities at BCPs. For
the HCCCl…HF dyad the binding energy is equal to −2.5 kcal/mol and the value of
the corresponding ρBCP is equal to 0.016 au; the increase of the latter values are
observed in a case of the additional interaction with Cl− anion in the HF…
HCCCl…Cl− triad; to −6.4 kcal/mol (the absolute value increases) and 0.020 au. In
a case of the HCCCl…Cl- dyad linked through the halogen bond the binding
energy and ρBCP are equal to −5.7 kcal/mol and 0.013 au, respectively; they are
equal to −9.5 kcal/mol and 0.015 au in the triad.

One can see that if there is any system possessing the Lewis acid and Lewis base
properties, like C2H2 or HCCCl considered here, and if this system acts as the
Lewis base within the complex (the C2H2…HF and HCCCl…HF complexes
considered here) or as the Lewis acid (the C2H2…Cl− and HCCCl…Cl− complexes
considered here) thus the additional interaction where the C2H2 or HCCCl species
acts as the Lewis acid or Lewis base, respectively, enhances the former interaction.
The other triads linked through the hydrogen and halogen bonds were also analyzed
in terms of the cooperativity effects and the same clear conclusions were stated for
them [105].

9.5 Summary

There are different types of the Lewis acid–Lewis base (La–Lb) interactions; one
may mention the hydrogen, lithium, pnicogen, chalcogen, triel bonds and numerous
others. The part of these interactions is classified as the σ-hole bonds, or the π-hole
bonds. However for all of them there is the characteristic electron charge transfer
from the Lewis base unit to the Lewis acid. One may state that such an electron
charge transfer, if it is not negligible, is a signature of the La–Lb interactions for
which contacts between the atomic centers characterized by regions of the opposite
electrostatic potentials are observed. In such a way the systems stabilized mainly by
the dispersive forces such as the dimer of methane or noble gas species are not
classified as La–Lb complexes.

It is interesting to know if there are other characteristics common for all Lewis
acid–Lewis base interactions. It is difficult to point out general statements. Even for
one type of La–Lb interaction, like for example for the hydrogen bond, it is difficult
to indicate common characteristics. However few trends or mechanisms which most
often are observed for the large part of La–Lb interactions could be listed. Few
common characteristics are observed for the A–Y bond of the Lewis acid unit if this
bond is in contact with the Lewis base center (in other words for the A–Y…B
interactions, see Scheme 9.4). The increase of the polarization of the A–Y bond is
the result of complexation (% of the electron charge density calculated at A-center)
what comes from the increase of the positive charge of Y-atom and the increase of
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the negative charge of A-center; additionally the increase of the s-character of the
A-hybrid orbital of the A–Y bond is observed. All those changes may be described
as coming from two general mechanisms firstly described for the A–H…B
hydrogen bonds [84, 86]; the hyperconjugative A–Y(A–H) bond weakening and the
rehybridization-promoted A–Y (A–H) bond strengthening.
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Chapter 10
Iodine Containing Drugs: Complexes
of Molecular Iodine and Tri-iodide
with Bioorganic Ligands and Lithium
Halogenides in Aqueous Solutions

Gulnara A. Yuldasheva, Georgii M. Zhidomirov, Jerzy Leszczynski
and Aleksandr I. Ilin

Abstract This chapter reviews the results of molecular modeling of
iodine-containing drugs. They are active ingredients of mixtures that in aqueous
solutions consist of molecular iodine, bio-organic ligands, and potassium and
lithium halogenides. In these drugs molecular iodine is in such an active form that
after oral administration it minimizes toxic effects in humans. Previously it was
shown that the active complex (AC) of the drugs contains molecular iodine that is
located inside α-helix of dextrin and is coordinated by lithium halides and
polypeptides (LiI5-α-dextrin polypeptide). In these types of complexes the elec-
tronic structure of the I2 molecule is different from the electronic structure of I2 in
complexes with organic ligands, or in its free state. Interestingly, in the AC the
molecular iodine exhibits acceptor properties with respect to polypeptides, and
donor properties with respect to lithium halide. Our group was the first to propose
the molecular model of active complexes of the iodine-containing drugs. This was
based on the results of calculations performed using the DFT-B3PW91/midi
approach. Model system of the water-glycine KI3-LiCl-ethanol was considered in
this study. The calculations of the spectral parameters of the proposed structures are
in good agreement with the experimental data of UV and IR spectral investigations.
We have shown that α-dextrins ensure the presence in the studied mixtures of the
three active centers located within the α-dextrin helix: molecular iodine coordinated
lithium halogenides and polypeptides, triiodide, and lithium halogenides. Using UV
spectroscopy, the interaction of α-dextrin-LiCl(I)-I2-polypeptid with the AGA
nucleotide triplet was investigated. Comparison of the quantum chemical calcula-
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tions carried out for electronic transitions obtained for the structure that models the
interaction of α-dextrin-LiCl(I)-I2-polypeptid with the nucleotide triplet indicates
that the DNA nucleotides can displace polypeptide and form stable complexes with
molecular iodine and lithium halogenides. In such structures, molecular iodine
binds both the nucleotide triplet and lithium halogenides. We have shown that the
presence of molecular iodine is vital for activity of compounds that inhibit
the active site of HIV-1 integrase. Iodine prevents the active site of integrase from
the formation of a complex with HIV DNA and inhibits the active complex of
integrase and viral DNA, becoming the center of another nucleoprotein complex,
and binding together the active site of integrase and viral DNA.

10.1 Introduction

Iodine is known for its broad spectrum of antimicrobial and antiviral activity; it kills
all known microflora. The need to unveil the details of the interaction of iodine
complexes with biomolecules has grown considerably in recent years. On the one
hand, this is due to the search for the interrelationship between the characteristics of
donor-acceptor complexes and physiological and biological activity of their con-
stituent molecules. On the other hand, it is because of successful developments of a
number of biologically active compounds and drugs containing iodine complexes.

There are some general outlines related to composition of complex compounds
of iodine. The following example demonstrates components of a species that rep-
resents such a complex. They include: DI2 outer-sphere complexes, formed due to
the donor-acceptor interaction of iodine with organic compounds (D); iodine
halogenides of organic cations such as CtXI2 (Ct is an organic cation, XI2 (X = Cl,
Br, I)), iodine-containing complex anions, and organic cations polyiodide CtI2n+1
(n = 2–4), in which the complexant is iodide or triiodide, while iodine molecules
serve as ligands.

A great structural variety of solid and liquid polyiodides has been demonstrated
in [1]. This review covers research activities related to the chemistry of polyiodide
for the period from 1970 to 2002. The formation of anions containing more than
one molecule of iodine is considered as resulting from the interaction between the
components of basic building blocks (I−, I2, I3

−).
Higher polyiodide ions have a more complicated structure than I3

−. For example,
I5
− anion is an angular species, which can be regarded as formed by the coordi-

nation of two iodine molecules by iodide ion. The heptaiodide ion can be described
as [(I3

−) 2I2], [(I3
−) 3I2], [(I5

−) I2], with a more or less distorted pyramidal geometry
or Z-shape.

In recent works [2, 3] the methods of molecular dynamics and X-ray photo-
electron spectroscopy were used to study the effect of the type of solvent on the I3

−

geometric structure. One finds the solvent effects on the I3
− to be unusually strong

as it is a highly polarizable species. Protic solvent such as water, ethanol, and
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methanol that can form hydrogen bonds provide interactions that lead to the I3
−

geometry with two unequal bonds and asymmetric distribution of charges. How-
ever, for the solvents such as xenon, tetrahydrofuran, methyltetrahydrofuran and
acetonitrile the I3

− adopts only geometry with two equal bonds.
Of a particular interest is the study of the structure/function/properties in the poly

halogenide molecules of cations of nitrogen-containing heterocycles that exhibit
high biological activity. Among such species are diodhlorid (I2Cl

−), diodbromid
(I2Br

−), and triiodide (I3
−) N-cetyl (decyl) pyridinium that were synthetized and

isolated with the aim to synthetically produce drugs with a predetermined ability to
release molecular iodine. X-ray analysis of triiodide and iodine halogenides of
N-cetylpyridinium shows that the crystal structure of organic polyhalides has a
layered packaging with uniformly alternating layers of nitrogen-containing cations
and iodine halogenide anions [4].

By now a significant amount of research related to the interaction of halogen
molecules as electron acceptors with organic ligands and polymers has been carried
out [5–11]. Halogen molecules form charge transfer complexes with organic
ligands. In such complexes a transfer of electron density from the lone pair electron
of the heteroatom of the organic ligand (σ-donors), or a transfer of π-electron
density of the ligand (π-donor) to the molecule of halogen occurs. Alkylamines,
nitrogen heterocycles, nitriles, alcohols, ethers, carbonyl compounds, sulfides,
selenides, and organophosphorus compounds are classified as σ-donors, while
arenes and some of heterocycles fall under the category of π-donors.

Interestingly, a three-stage mechanism of interaction of iodine with organic
bases has been proposed based on the results of quantum chemical and spec-
trophotometric studies [12–14]. The first, fast stage involves the formation of the
D-I-I outer-sphere complex. At the second, slower stage the [D-I+] I− inner-sphere
complex is formed, and at the third stage the inner-sphere complex interacts with
molecular iodine to form [D-I+(I3

−)].
At the stage of formation of the D-I-I outer-sphere complex a charge transfer

from the lone electron pair of the heteroatom of the organic ligand to the molecule
of iodine occurs, and this leads to the polarization of the I-I bond, or even to its
rupture. The I2 molecule in the D-I-I complex already displays donor properties and
can transfer its charge to another I2 molecule.

The stability of the D-I-I complex and the cleavage of the I-I bond depend on the
donor activity of the ligand and the solvent. The formation of a complex between I2
and three pentadentate Schiff bases, 1,3-bis (salicylideneamino)-2-propanol, 1,3-bis
(2-hydroxy-1-naphthylideneamino)-2-propanol, and 1,3-bis [1-(pyridine-2-yl)
methylideneamino]-2-propanol results only in polarization of the I-I bond [13]. The
formation of a complex between pyridine and molecular iodine (I2) leads to the
polarization of the I-I bond in some non-polar solvents such as liquid alkanes and is
accompanied by cleavage of the I-I bond in low-density polyethylene [14].

Spectroscopic analysis has demonstrated that many nitrogen-containing heterocyclic
drugs form charge transfer complexes with iodine [15, 16]. UV-spectrophotometric
study provides an estimation method therapeutic drugs possessing antifungal,
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antihistamine, β-adregenic, antidepressant properties from study of their complex with
iodine [15].

Interestingly, the value of formation constant Kc of a complex with iodine has
been used as a measure for evaluation of anti-thyroid activity of such compounds.
The complexes of morpholine with iodine were shown to be of the n-σ type with a
1:1 stoichiometry. A strong donor-acceptor interaction was found in this complex
(Kc = 1261 ± 12 mol−1 at 20 °C in CCl4). This is considerably higher than
analogous characteristics of complexes of aromatic compounds with iodine. The
high value of the formation constant for this complex indicates that morpholine
could serve as a starting point for the synthesis of novel anti-thyroid drugs [16].

Pharmaceutical compounds containing complexes of molecular iodine have a
wide spectrum of antibacterial and antiviral activity, including HIV. However, all
known iodine-containing drugs are characterized as highly toxic substances and
therefore in fact are not used in medical practice for parenteral application.

Among the drugs that comprise iodine complexes the species containing not
only molecular iodine complexes with organic ligands, but also potassium and
lithium halogenides stand out considerably [17–19]. These drugs have a low tox-
icity and can be used internally. Armenicum is a name of a drug used to treat HIV
infection [17, 18]. Recently a new anti-infective drug with anti-HIV action has been
patented (AID) [19]. Armenicum is composed of the LiI5-α-dextrin complex.
The AID contains polypeptides along with the LiI5-α-dextrin complex (LiCl(I)-I2
DP).

Recently we have shown that the active complex (AC) of preparations contains
molecular iodine located inside the α-dextrin helix and coordinated by lithium
halogenides and polypeptides [20]. In the AC [17–20], molecular iodine forms a
complex with the polypeptides and halogenides of alkali metals. This complexed
molecular iodine shows acceptor properties with respect to polypeptides and donor
properties towards lithium halogenides.

Moreover, for the first time we proposed a model of active complexes (AC) of the
iodine-containing drugs [21]. This has been a result of investigation of the following
systems: water-glycine (a), water-glycine-KI3 (b), water-glycine-KI3-LiCl-ethanol (c).
The study was performed using a combination of experimental techniques (UV-IR
spectroscopy), and quantum-chemical calculations (DFT-B3PW91/midi level).

As shown by the results of this combined investigation in an aqueous solution
the zwitterionic form of amino acids solvated by water molecules is more stable
than the neutral form [22–27]. The activation energy required for the neutral form
of glycine to transfer into the zwitterionic in water amounts to 16.85 kcal/mol [22].

However, the localization of negative and positive charges at the ends of the
zwitterion creates conditions for the formation of strong hydrogen bonds not only
with water molecules, but also among zwitterions. The results of an X-ray
diffraction test for the crystals of L-DL-alanine in their zwitterionic form have been
recently published [28]. In the crystal structure of these alanine forms there is a
common head-to-tail structural element, where the carboxyl group is bounded with
the protonated amino group by hydrogen bonds.
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Interestingly, also the possibility of formation of a zwitterion cluster in water has
been presented [21]. In this cluster glycine molecules are bonded by strong
hydrogen bonds and are located one under the other, so that the protonated amino
group is always under or above the carboxyl group.

The first solvation shell of eight molecules of glycine was proposed for such a
cluster. With involvement of all hydrogen bonds one derives a structure where two
water molecules interact with a Gly-Gly pair, while Gly-Gly pairs are bonded with
each other by one molecule of water.

In the water-glycine-KI3-LiCl-ethanol system the cluster of glycine zwitterions
splits iodide ion I3

− into I− and I2 fragments (I− interacts with the protonated amino
group, while I2 interacts with the carboxyl group). This creates conditions for the
formation of iodine complex compound, in which molecular iodine exhibits the
acceptor properties with respect to glycine and the donor properties with respect to
LiCl-ethanol complex. The UV and IR spectra of the systems (a–c) are in good
agreement with the results of quantum-chemical calculations (at the DFT
(B3PW91/midi level). The results reveal spectral characteristics of structures that
simulate the effect of the zwitterionic form of glycine on the complex compounds of
iodine in the model systems (a–c).

The analysis of UV spectra indicates that in an aqueous solution of KI-I2-
amylose the number of rings of the dextrin helix may affect the iodine-triiodide
equilibrium [29]. With increase in the number of rings (N ≥ 15) UV spectra detect
existence of complexes of iodine and triiodide. The α-dextrin which is a part of the
drugs [17–20] has 15 or more rings, therefore complexes of iodine and triiodide
could exist inside the helix.

As shown in [21], the cluster of glycine zwitterions, like the dextrin helix,
creates conditions for the presence of I2, I

−, I3
− in solution. It implies that the

discussed previously mixture (c) can be considered as a model for the drugs
[17–20].

This chapter reviews the effect of alkali metal halogenides and zwitterionic form
of glycine on the iodine-triiodide equilibrium in aqueous solution and the inter-
action of I2, and I3

− with lithium halogenides (LiCl). It reveals and analyzes the
results obtained by experimental studies using UV and IR spectroscopy, as well as
the outcomes of theoretical investigations. Computational studies have been carried
out using quantum-chemical methods of DFT-B3PW91/midi, explicit inclusion of
solvent molecules, as well as by application of COSMO continuum model [30].

10.2 Computational Details

An adequate description of the structure and electronic properties of iodine com-
plexes with the transfer of charge and polyiodide ions requires taking into account
of electron correlation. A detailed comparative analysis of various quantum
chemical approaches including CCSD(T) and DFT (BLYP, BPW91, B3LYP,
B3PW91) for calculations of dissociation energies, bond lengths, and harmonic
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frequencies for polyiodide anions and evaluation of the obtained data based on
agreement with experimental IR and Raman Spectroscopy studies is presented in
[31]. Comparison of the results obtained by DFT-methods with the results obtained
by the CCSD(T) approach and experimental data shows that the most reliable
results are produced by the DFT-B3PW91 level of theory. Based on these con-
clusions the DFT-B3PW91/midi approximation was selected in our investigations
of molecular structures and characteristics of the complexes containing lithium
halides and iodide anion.

For the systems (a–c) with full geometry optimization at the DFT-B3PW91/midi
level the spatial structure of the most stable complexes of iodine and triiodide was
calculated. Using the optimized structures as the references, in the next step
vibrational frequencies required for the interpretation of IR spectra were calculated
at the same level of theory.

COSMO [30] was used to model effect of water solution. Gibbs free energy
(ΔG) of the most stable structures was defined in terms of the COSMO model. To
study electronic properties of the considered system the wavelength of the specify
electronic transitions were calculated by the TD-DFT/B3PW91 approach.

In solving the equation for eigenfunctions and eigenvalues in the framework of
the TD-DFT method the convergence of eigenvalue matrix diagonalization depends
on the size of the matrix. In the case of complexes containing six molecules of
glycine the application of TD-DFT/B3PW91 has not resulted in convergence of
calculations. Therefore, to overcome this problem and to calculate the wavelength
of electron transitions for the most stable structures obtained with full geometry
optimization a model system that approximates the studied species was considered.
It consists of two pairs of Gly-Gly, interacting with I− and I2 that were modeled
without geometry optimization. The calculations were performed using GAUS-
SIAN09 [32].

10.3 Results and Discussion

Interestingly, the solvent effects and the role of organic compounds on the equilibria
in iodine triiodide solutions were studied as early as at the beginning of last century
[33]. Though this subject has already a long history it is still considered to be
important and draws attention of various research groups [34–40].

The mixtures containing of iodine-triiodide ion complexes represent complicated
chemical systems. Their equilibrium reflects the entire spectrum of complex and
varied interactions of iodine and its anions with solvent, dissolved metal ions, and
organic or bioorganic compounds present in the solution.

The spectrophotometric properties of I−, I2 and I−/I2 mixture for system LiI-I2
were studied in numerous solvents in order to reveal the influence of various
solutions on their characteristics. Among the studied solvents were:
1,2-dichloroethane (DCE), acetone (AC), acetonitrile (ACN), ethanol (EtOH),
methanol (MeOH), tertiary-butanol (t-BuOH), dimethylformamide (DMF),
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propylene carbonate (PC), 3-methoxypropionitrile (MePN), dimethylsulfoxide
(DMSO), dioxane (DIO), and pyridine (PY) [40]. It was concluded that the basicity
of the solvent is the main factor promoting the formation of solvent-I+ complex,
particularly in the presence of a high amount of I2.

In most Lewis basic solvents tiriodid ion prevails. Triiodide ion is easily formed
from I− and I2, and the higher the basicity of the solvent, the easier the triiodide ion
is determined by UV-spectra. However, in DMF and PC triiodide ion is unstable.

Iodine, although is poorly soluble in water, it is readily soluble in solution in the
presence of alkali metal iodides. This is due to the formation of polyiodide
complexes.

The thermal effect of the I3
− forming reaction in an aqueous solution in the

presence of alkali metal iodides was evaluated early 60th of the last Century by the
colorimetric method [41]. The entropy and enthalpy of the I3

− formation were
calculated. By means of the Raman scattering the related equilibrium rates of
forward and reverse reactions of I3

− formation at the temperature of 298 K and
ionic strength of 0.02 were evaluated. They amount to 6.2 × 109 M−1c−1, and
8.5 × 106 M−1c−1, respectively [42]. These data indicate that in the presence of
alkali metal ions the equilibrium is shifted towards the formation of the triiodide
ion, so that in comparison I3

−, molecular iodine and I− in aqueous solution could
hardly be detected. This was confirmed by the results of quantum-chemical cal-
culations. They revealed that in such a solution the equilibrium is shifted toward the
formation of poliiodide anions [38].

The polar glycine zwitterion is able to shift the iodine-triiodide equilibrium. We
have considered two possible ways of triiodide ion interactions with a cluster that
consists of six glycine molecules (Ia, IIa). In the structure Ia, a cluster of glycine
zwitterions splits the triiodide ion into I− ion and molecular iodine. The negatively
charged iodine ion interacts with the amino groups of two glycine molecules from
different Gly-Gly pairs, and molecular iodine is complexed by the carboxyl
group. In the structure represented by IIa, the triiodide ion interacts with the amino
groups of two glycine molecules (see Fig. 10.1, structure Ia, IIa).

The geometry of model structures was optimized at the DFT-B3PW91/midi
level. The influence of solvent on the stability of model structures was taken into
account not only by way of constructing the first solvation shell, but also applying
the continuum model. The COSMO method was used to calculate the total energies
and Gibbs free energies for the optimized structures. When developing molecular
geometry for structures Ia and IIa, it was assumed that I3

−, I2, and I− displaced two
water molecules from the coordination sphere. The charge distribution in the cluster
zwitterions of glycine was obtained using the COSMO continuum model. Calcu-
lations showed that the positive charges on the NH3

+ hydrogen groups and negative
charges on the COO− groups were distributed unevenly.

Initial assumptions have been made for the location of the mixtures components
and starting geometries of the complexes and were set up accordingly. In the IIa
mixture the triiodide ion was attached to the hydrogen atom of the amino group
with the highest positive charge. As the result of geometry optimization triiodide
position was not changed, but in the optimized structure the triiodide interacts with
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the hydrogen atoms of the two amino groups of Gly-Gly pairs (Fig. 10.1, structure
IIa).

When the initial molecular geometry of the complex Ia was set up the data
obtained from the previous calculation were taking into account. It includes the
distribution of negative charges on the COO-groups in the complex IIa, as calcu-
lated by the COSMO model. The molecular iodine was attached to the oxygen atom
of the COO− group with the highest negative charge. As the result of the geometry
optimization the position of the molecular iodine did not change.

In contrast with the structure Ia, the enhancement of hydrogen bonds in pairs
Gly-Gly was observed in the optimized IIa structure. This is evidenced by a
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Fig. 10.1 The structure of molecular iodine and triiodide complexes in an aqueous glycine-KI-I2
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decrease in the interatomic distances r (O7-H) and r (O15-H) (Fig. 10.1). In the
optimized structures Ia and IIa in the Gly-Gly pair, that did not interact with I3

− and
I−, a transition from the glycine zwitterionic form to the neutral one was observed
and a new O-H bond was formed. A new O-H bond was formed in the Gly-Gly pair
that did not interact with I3

− and I−. We observe a transition the zwitterionic form
of glycine to the neutral one.

The small difference in the Gibbs free energy (ΔG = G(Ia) − G(IIa) = −4.77
within B3PW91/midi approximation, and −3.55 kcal/mol value obtained within
COSMO approach) for the complexes Ia and IIa makes it possible to assume that
these two complexes can be detected by UV and IR methods in an aqueous solution
of glycine-KI3 mixture.

The UV spectrum of the system (b) is presented and discussed in [21]. There are
two fairly broad bands recorded at 212–257 nm and 257–319 nm in the UV
spectrum of the aqueous glycine-KI3 solution (Fig. 10.2).

Two distinct bands in the UV-spectrum of experimental system (b) 212–257 nm,
257–319 nm are interpreted in the literature. 212–257 nm correspond to charge
transfer transitions in iodine complexes with organic ligands [7]. 257–319 nm
correspond to transitions in triiodide complexes with the dextrins [29].

The experimental data could be used to evaluate, validate, and select compu-
tational techniques able to accurately predict the investigated species. The wave-
length corresponding to the electronic transitions were calculated by the
TD-DFT/B3PW91 approach. This approach has some challenges. When solving
the equation for the eigenfunctions and eigenvalues within the TD-DFT method the
convergence of diagonalization of the eigenvalue matrix depends on the size of the
matrix. In our calculations in the case of complexes Ia-IIa no convergence could be
achieved using the TD-DFT/B3PW91 method. Therefore some additional
approximations were necessary in order to predict the wavelength of the electronic

Fig. 10.2 Experimental UV
spectrum of system
water-glycine-KI3 (b)
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transitions in the structures Ia, IIa; two Gly-Gly pairs interacting with I− and I2
(structure Ib, Fig. 10.1); or I3

− (structure IIb Fig. 10.1). The electronic transitions
were calculated for structures Ib and IIb based on optimized geometry of structures
Ia and IIa.

The absence of spatial symmetry in our cluster structures greatly interferes with
high quality interpretation of calculated optical transitions. Generally speaking, all
the electron terms involved in transitions are characterized by a mixed orbital
composition of atoms in the structure. However, among the many found transitions
first of all we are interested in transitions associated with a change in the electronic
states of iodine atoms. It is such transitions that are critical in the diagnosis of the
type of binding of the iodine component in the complex. In this case, being guided
by the local symmetry of some iodine fragments, we felt comfortable to introduce a
symbolic representation of the π- and σ-orbitals of iodine structures. This
approximation is justified by the fact that the main contribution to the MO involved
in our transitions is made by the orbitals of iodine atoms. Another locally selected
group of orbitals is orbitals corresponding to lone pairs electron of heteroatoms of
nitrogen and oxygen. Hereinafter we will use these terms to characterize the tran-
sitions in question in terms of quality, keeping in mind the conditional nature of
assigned notations. Another important fact characterizing our transitions involving
iodine atoms is their relatively high oscillator strength associated with the fact that
they to a greater or lesser extent are charge-transfer transitions.

The predicted electronic transitions in the Ib complex, described in [21], indicate
the formation of a coordination bond between molecular iodine and the glycine
carboxyl group. This results in their contribution towards short wave band at
212–257 nm (Table 10.1).

The transitions at 226 and 266 nm can be interpreted as the charge transfer
transition from n-pair of oxygen atom to the coordination bond O15-I16-I17. Under
the coordination the partial negative charge is transferred to the molecular iodine, as
evidenced by the appearance 228 nm corresponds a charge transfer transition from
the molecular iodine to the protonated glycine group.

The electronic transitions in the IIb complex make a contribution to a
longer-wave region at 257–319 nm (Table 10.2). They correspond to the transitions
between the orbitals in the triiodide ion.

Table 10.1 Calculated (TD-DFT/B3PW91 level) wavelengths of electronic transitions (λ, nm)
and oscillator strength (Iλ) for the Ib complex [21]

λtheor. Assignment Iλ

266 1A → 1A (n(O14, O15) → *(O15-I16-I17)) 0.1105
228 1A → 1A ((O15-I16-I17) → *(+N22H3, O

24H2)) 0.1208
227 1A → 1A (n(O7, O8) → *(N22H3 O

24H2)) 0.1343
226 1A → 1A (n (O14, O15) → *(O15-I16-I17))

1A → 1A ((O14-C13-O15-I16-I17) → *(O15-I16-I17))
1A → 1A ((O14-C13-O15-I16-I17) → *(+N22H3, O

24H2))

0.9881
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The bands at 259 and 270 nm can be attributed to the transition between the
occupied and the excited orbitals of triiodide. The electronic transition between the
orbital with main contribution bond O7-C6-O8, O19-C18-O20 of the carboxyl groups
and excited orbital of triiodide makes a contribution at 259 nm. Theoretical fre-
quency 270 nm corresponds to the peak (287 nm) at the region 257–319 nm, within
the error of applied computational method.

In the recent work [21] only the band at 212–257 nm was interpreted. Inter-
estingly, the calculated data of electronic transitions for the Ib-IIb complexes
indicate that the iodine-triiodide equilibrium in the solution glycine-KI-I2 is
reflected in the UV spectrum of the system (b). It is demonstrated by the presence of
two bands at 212–257 nm and 257–319 nm, corresponding to the spectrum of
iodine-triiodide complexes.

The experimental IR spectrum for the mixture: glycine-KI-I2 is provided in [21].
For the Ia and IIa structures of their vibrational spectra are predicted at the
DFT-B3PW91/midi level. The possibility of the presence of small amounts of water
molecules in the structure of solid amino acids is established by IR spectroscopy
[43]. Following this suggestion when calculating the vibrational frequencies the
water molecules were not eliminated from the computational models of Ia and IIa
structures. The details of vibrational frequency analysis for the Ia complex are
provided in [21].

In Table 10.3 the most intense IR absorption bands in the system glycine-KI-I2
are compared with the theoretically calculated frequencies for the Ia, and IIa
complexes. One notices that the vibrational frequencies of the two complexes are in
good agreement with the experimental frequencies.

In the IR spectra of the aqueous solution of glycine-KI-I2 in the range of
1600–1300 cm−1 the intensive absorption bands at 1580, 1497 and 1407 cm−1,
1322 cm−1 are observed. The symmetric and antisymmetric deformation vibrations
of NH3 and symmetric and antisymmetric vibrations of the carboxyl group make a
contribution at 1580, and 1497 cm−1. The bands at 1407, and 1322 cm−1 may be
attributed to the symmetric valence vibration of the carboxyl group.

When comparing the experimental vibrational frequencies of the aqueous gly-
cine solution and the aqueous solution of the system glycine-KI-I2 as discussed in
[21], it was noted that the coordination of the carboxyl group with molecular iodine
results in the reduction of the valence vibration frequency of the carboxyl group
(from 1332 to 1322 cm−1). As can be seen from Table 10.3, no shift to the
short-wave region in the IIb complex is observed. The band at 1322 cm−1 is wider
than the bands at 1580 and 1497 cm−1, therefore the vibrational frequencies of the

Table 10.2 Calculated (TD-DFT/B3PW91 level) wavelengths of electronic transitions (λ, nm)
and oscillator strength (Iλ) for the IIb complex

λtheoret. Assignment Iλ

270 1A → 1A ((I17-I16-I23) → *(I17-I16-I23)) 0.6430
259 1A → 1A ((O7-C6-O8) (O19-C18-O20) → *(I17-I16-I23))

1A → 1A ((I17-I16-I23) → *(I17-I16-I23))
1.0892
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carboxyl group in the complexes Ia (1307) and IIa (1346) fall within the range of its
interval.

In the 2500–3500 cm−1 region, the intensive vibrations can be distinguished at
2606, 2692, 2822, 2962, 3003, 3156, and 3228 cm−1. They may be attributed to the
valence vibrations of N-H bonds of the protonated amino group. The valence
vibrations of the O-H groups of the two water molecules bound by hydrogen bonds
with NH3 and COO−-groups also make a contribution within the broad band at
2650–2740 cm−1. It was concluded that the vibrations in this area are observed for
all amino acids comprising interactions between NH3-H2O and COO-H2O [43].

The enhancement of hydrogen bond r(O7-H) in IIa results in the reduced fre-
quency of the valence symmetric vibration of the carboxyl groups (C6-O7-O8) (the
frequency at 1480 cm−1 corresponds to the experimental frequency at 1496 cm−1 in
IIa), and the valence vibration frequency of N2-H (the frequency at 2939 cm−1

corresponds to the experimental frequency at 2961 cm−1 in IIa).

Table 10.3 Experimental (for the system: water-glycine-KI-I2) and calculated (DFT-B3PW91/
midi level) vibrational IR frequencies (cm−1) for complex Ia, IIa and their assignment

Experimental Ia Ia Assignment IIa IIa Assignment

1580 1592 δ(+N12H3) asym
ν(C13O14O15) asym

1600 δ(+N12H3) asym
δ(+N2H3) asym

1497 1507 δ(+N12H3) sym
δ(C11H2) sym
ν(C13O14O15) asym

1480 δ(+N12H3) sym
ν(C6O7O8) asym

1407 1410 ν(C3O4O5) sym
δ(C1H2) sym

1405 δ(+N2H3) sym
ν(C3O4O5) sym
ν(C1-C3)

1322 1307 ν(C13O14O15) sym 1346 ν(C18O19O20) sym
δ(+N22H3) sym

1111 1083 δ(C1H2) sym
ν(C3O4O5) sym

1091 δ(+N2H3)
δ(C1H2)

2123 – – 2123 ν(H-N22-H) asym
2650–2740 2632 ν(N10-H)

ν(O25-H)
ν(O26-H)

2733 ν(N22-H)
ν(O24-H)

2876 2920 ν(N10-H)
ν(O25-H)
ν(O26-H)

–

2962 2961 ν(N2-H) 2939 ν(N2-H)
ν(O27-H)

3003 3007 ν(N2-H) 3015 ν(N12-H)
ν(N10-H)

3090 – – 3190 ν(N22-H)
3157 3159 δ(C2H2) asym –

3228 3234 ν(N22-H) –
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Based on the obtained data we conclude that the zwitterionic form of glycine
significantly influences the iodine-triiodide equilibrium. In the presence of glycine
in a solution containing potassium halogenides and molecular iodine, molecular
iodine and triiodide complexes can be detected both in the UV and IR spectra. The
calculated spectral characteristics for the complexes of molecular iodine and tri-
iodide provide the most complete assignment and description of the experimental
UV-IR characteristics for the system (b).

For the water-glycine-KI3-LiCl-ethanol system (system c), which is of a vital
importance since it models the composition of the drugs [17–20], various possible
ways of coordination of the molecular iodine and the triiodide ion with lithium
halogenides were examined. Based on the developed model geometries the total
energies for the complexes IIIa-Va were calculated. In the complex III(a), studied in
[21], the molecular iodine interacts with glycine and LiCl-ethanol, revealing its
acceptor properties with respect to glycine and the donor properties to LiCl-ethanol.
The complexes IV (a) and V (a) correspond to the two possible interaction types of
LiCl-ethanol with the triiodide ion-cluster of the glycine zwitterions complex. In
one case, the triiodide ion and LiCl-ethanol are spatially separated; I3

− interacts
with the amino groups of two glycine molecules, and LiCl-ethanol with an oxygen
atom of the carboxyl group (complex IVa). However, in the second developed
model the LiCl-ethanol complex is coordinated with an oxygen atom of the glycine
carbonyl group and triiodide ion complex Va (Fig. 10.3).

The initial molecular geometry for the complex IVa was based on the previously
determined geometry of the complex IIa. Given the charge distribution in the
complex IIa, evaluated using the COSMO model, LiCl was attached to the oxygen
atom with the highest negative charge of the COO− group. A Gly molecule,
belonging to one of the two Gly-Gly pairs of Gly-Gly assembly, was assumed to
interact with triiodide.

After optimization of the molecular geometry the resulted geometry of IVa
displayed the distinctive arrangement of water molecules (Fig. 10.3). In this opti-
mized structure the triiodide interacts with the amino groups of the two Gly-Gly
pairs, without participation of water molecules. The location of coordination of
LiCl-ethanol has been also altered. A LiCl-ethanol fragment coordinates the car-
boxy group of the third Gly-Gly pair, which does not interact with I3

−. A new
OH-bond was formed in the glycine molecule, clear of coordination in the Gly-Gly
pair that interacted with LiCl-ethanol.

The results of calculations have shown that the most stable complex (IVa) is
formed when the ion triiodid and LiCl-ethanol are spatially separated. The Gibbs
free energies of complexes IIIa and IVa differ only by 1.47 kcal/mol within
B3PW91/midi level predictions and by 5.66 kcal/mol within COSMO approxi-
mation. Therefore these two complexes can be detected at the same time in the
system (c) using UV and IR methods.

The UV spectrum of the system (c) is presented and discussed in [21]. In the UV
spectrum of the aqueous glycine-KI3-LiCl-ethanol solution it is possible to distin-
guish three fairly broad bands at 212–257 nm, 257–319 nm, 320–380 nm.

10 Iodine Containing Drugs: Complexes of Molecular … 291



(IIIa)

(IVa)

(IVb,c)

(Va) 

N2

H
C1H2H

C3

O4

O5

O7

C6

O8

C9H2 N10

H

H
H

H

N12

H

H2C11 
H C13

O14

O15

O16

C C19H2

N20
H

H

H

O27

H

-II21

18
O17

I23 I22

H H

O24 H

H O25

H

H

O26

H

H

O33

C31

O32

C30

N29

H
H

H

N34

H

H2C35 
H

C36

O37

13

O38

H

Li39Cl40

H

O28H

H
O44

H

O41H

C42H2 C43H3

H
N

H

CH2
H

C

O

O

O

C

O

CH2

N

H H

H

H

N

H

H2CH C

O

O

H
O

H

O

C

O

C
H2

N

HH

H

I-

H

O

H

Li

Cl

H

O H

I

I

2

4

5

31

7

8

6 9

10

12

11 13

14

15

28

21

16

20

17

18 19

22

23

24

26

27

25

2.85Å

3.1
5Å

1.97Å

2.26Å

2.48Å

2.5
2Å

C2H5

OH

(IIIb)
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Since the attempts to optimize molecular geometry of IIIa failed in order to
calculate UV spectrum we developed molecular models that provide all significant
characteristics of the studied species. At the first step the IIIb complex, comprising
of two Gly-Gly pairs, which interact with both I− and the I2LiCl-ethanol complex
was separated out. The IVa complex was divided into the IVb complex, comprising
two Gly-Gly pairs, interacting with I3

−, and IVc complex, consisting of one Gly-Gly
pair, where one of the carboxyl groups is coordinated with LiCl-ethanol. Using the
TD-DFT/B3PW91 method, the wavelengths of electronic transitions for such
constructed IIIb-IVb,c complexes were calculated.

As shown in [21], the electronic transitions in the IIIb complex make contri-
butions to two bands at 212–257 nm and 257–319 nm (Table 10.4). Coordination of
molecular iodine with glycine also takes place in the solution (c). However, in this
system the molecular iodine interacts with the glycine carboxyl group and LiCl,
revealing the acceptor properties with respect to glycine and donor properties to
LiCl. This resulted weakening iodine bond. Predicted the transitions between
occupied and excite MO of the coordination bond O15-I16-I17 (235 and 272 nm) is
accompanied by a shift to longer wave region, as compared to the IIb complex. In
the IIIb complex, I− interacts only with one protonated amino group, therefore the
charge transfer to +N20H3 group is increased, thus giving rise to the charge-transfer
transition at 259 nm.

The electronic transitions in the IVb complex (Table 10.5) make contributions to
the longer-wavelenght bands at 257–319 nm and 320–380 nm. This is an indication
of the presence of a triiodide complex in the solution [29].

The electronic transitions in triiodide between occupied and excited orbitals
make contributions to bands at 376, 352 and 258 nm. The transfer of partial electron
density from the carboxyl group to the excite orbital of I3

− causes the appearance of

Table 10.4 Calculated (TD-DFT/B3PW91 level) wavelengths of electronic transitions (λ, nm)
and oscillator strength (Iλ) for the IIIa complex [21]

λtheor. Assignment Iλ

272 1A → 1A ((O14-C13-O15-I16-I17) → *(O15-I16-I17)) 0.0867
259 1A → 1A(I− → *(+N20H3)) 0.02081
235 1A → 1A ((O14-C13-O15-I16-I17) → *(O15-I16-I17)) 0.7280
226 1A → 1A (π (O14-C13-O15-I16-I17) → *(+N20H3)) 0.0294

Table 10.5 Calculated
(TD-DFT/B3PW91 level)
wavelengths of electronic
transitions (λ, nm) and
oscillator strength (Iλ) for the
IVb complex

λtheor. Assignment Iλ

376 1A → 1A ((I21-I22-I23) → *(I21-I22-I23)) 0.0671
352 1A → 1A ((I21-I22-I23) → *(I21-I22-I23)) 0.1252
310 1A → 1A ((I21-I22-I23) → *(I21-I22-I23))

1A → 1A ((O17-C18-O16) → *(I21-I22-I23))
0.0555

266 1A → 1A (n (O17,O16) → *(I21-I22-I23)) 0.0607
258 1A → 1A ((I21-I22-I23) → *(I21-I22-I23))

1A → 1A ((I21-I22-I23) → *(I21-I22-I23))
2.1374
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the band at 310 nm. The transition at 266 nm is due to the charge transfer from
n-pair of oxygen atoms of the carboxyl group to the excite orbital of triiodide.

In the IVc complex, it is possible to distinguish only one weak band at 211 nm.
The corresponding electronic transition is attributed to the charge-transfer transition
from the water molecule O28H2 to the Li+ ion.

Our calculations are not always able to reproduce the oscillator strengths of UV
spectra, because in our calculations of frequencies by TD-DFT we select a very
small cluster of glycine molecules (only four molecules). Probably for that reason,
the theoretical intensity transitions of 258 or 259 nm do not correspond to the
experimental ones.

Interestingly, based on the results of calculations one uncovers novel details
concerning considered systems. It is revealed that the most complete and accurate
description of the UV spectrum of the system (c) corresponds to the assumption that
in this system two complexes may be formed at the same time: IIIa, in which
molecular iodine interacts with the glycine zwitterion and LiCl-ethanol, and com-
plex IVa, comprising spatially separated triiodide and LiCl-ethanol.

Also, a comparison of the experimental frequencies in the IR spectrum of the
system (c) with the calculated frequencies for the IIIa, and IVa model complexes
resulted in similar conclusions. An analysis of experimental and theoretically pre-
dicted vibrational frequencies indicates that in the aqueous glycine-KI3-
LiCl-ethanol solution the formation of these two complexes is feasible.

Experimental IR spectrum for the system (c) is discussed in details in the recent
work [21]. For the IIIa and IVa structures the theoretical data are analyzed. The
vibrational frequencies and their interpretation for the IIIa structure are also pre-
sented in this paper [21].

Table 10.6 displays experimental, the most intense bands in the IR spectrum of
the system (c). They are compared with the frequencies calculated for the IIIa, and
IVa complexes. The calculated vibrational frequencies are in good agreement with
the experimental data.

In comparison with the system (b), two additional bands at 1605 and 1523 cm−1

appear in IR spectrum of the system (c). These bands are associated with changes in
the structure of the complex upon the LiCl-ethanol addition.

The frequencies at 1603 cm−1 in the IIIa complex, and 1618 cm−1 in the
complex IVa, may be attributed to the experimental band at 1605 cm−1. The band at
1603 cm−1 can be interpreted as an asymmetric deformation vibration of +N20H3

groups in the glycine molecule which interacts with I− ion. The frequency at
1618 cm−1 corresponds to the asymmetric valence vibration of the carboxyl group
O32-C31-O33 (complex IVc).

In the IIIa complex the band at 1523 cm−1 corresponds to the frequency at
1527 cm−1, which can be attributed to the asymmetric deformation vibrations of the
+N10H3 group, which interacts with I− through the water molecule. In the IVa
complex there is a vibration at 1515 cm−1, corresponding to symmetric deformation
vibrations of the +N10H3 group coordinated with triiodide.

Thus a comparison of the theoretical spectral characteristics of the most stable
model complexes of iodine and triiodide for the systems (b, and c) with the
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experimental data indicates that the polar structure of the glycine zwitterions sig-
nificantly affects the iodine-triiodide equilibrium. Where only alkali metal halo-
genides are present, the equilibrium is shifted towards the formation of triiodide.
Therefore, in comparison with I3

− the molecular iodine and I− cannot be detected in
such a system. However, this changes when amino acid is added to an aqueous
solution and then the iodine and triiodide complexes can be detected by the IR-UV
spectroscopy.

In the system (c), that closely models the composition of a drug [17–20], the
glycine zwitterion cluster forms two complexes. In one of them the molecular
iodine may be coordinated by both the lithium halogenides and zwitterions cluster,
showing the acceptor properties with respect to glycine, and the donor character-
istics with respect to lithium halogenides. In the other complex the triiodide and
LiCl-ethanol are spatially separated, while triiodide interacts with protonated amino
groups, and LiCl-ethanol assembly interacts with carboxy glycine zwitterions. The
calculated spectral characteristics of the complexes in question provide an adequate
description of the experimental UV and IR spectra of system (c), indicating

Table 10.6 Experimental (for the system: water-glycine-KI-I2-LiCl-ethanol) and calculated
(DFT/B3PW91/midi level) vibrational IR frequencies for complex IIIa, and and IVa (cm−1) and
their assignment

Experiment IIIa IIIa Assignment IVa IVa Assignment

1605 1603 δ(+N20H3) asym 1618 ν(O33-H)
ν(C31O32O33) asym

1581 1577 δ(+N10H3) asym
N10H3-O

28H2

ν(C16O18O17) asym

1577 δ(+N2H3) sym
N2H3-O

24H2

δ(+N12H3) sym
δ(+N10H3) sym
N10H3-O

26H2

ν(C6O8O7) asym
1523 1527 δ(+N10H3) sym

N10H3-O
28H2

1515 δ(C11H2) sym
δδ(+N12H3) sym

1498 1512 δ(+N2H3) sym
δ(C1H2) sym

1489 δ(+N10H3) sym
N10H3–O

26H2

δ(C9H2) sym
1408 1400 δ(+N20H3) sym

ν(C16O18O17) sym
1404 ν(C6O8O7) asym

δ(H-C9-N10-H)
1322–1350 1333 ν(C16O18O17) sym 1357 ν(C3O4O5) sym

δ(C1H2) sym
ν(C1-C3)

2630–2720 2656 ν(N12-H)
ν(O25-H)

2725 ν(O24-H)
ν(N2-H)

2800–2900 2905 νN20-H 2904 ν(N20-H)
3156 3136 ν(C19H2) asym 3153 ν(N34-H)

ν(H-N29-H) sym
3228 3230 ν(O28-H)

ν(N10-H)
3200 ν(N2-H)

ν(N17-H)
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appropriate selection of the computational model. Thus one assumes that
involvement of α-dextrins in the mixture ensure the presence of the three active
centers located within the α-dextrin helix: molecular iodine coordinated lithium
halogenides and polypeptides, triiodide and lithium halogenides.

Interestingly, the authors of papers [44, 45] have shown that the presence in
solution of the drug I2 and I3

− species affect its biological properties, such as
toxicity, and irritation.

Drugs made using aqueous solutions of iodine complexes with organic com-
pounds (povidone, polysaccharides) also may contain ions I−, I2, I3, I5

−, I6
2−, HOI,

OI−, IO2
− influence of initial concentrations of molecular iodine and iodide, and

also pH (0-14) on the equilibrium concentration of molecular iodine and the above
ions was studied using an aqueous solution of iodine and iodide ion [45]. Based on
the studies, the authors have come to the conclusion, that the aqueous solutions of
complexes of iodine with organic compounds actually contain only I−, I3

− and I2.
There is general agreement that free molecular iodine represents the real active

iodine species which is based on the frequently observed positive correlation
between equilibrium concentration of I2 and the rate of microbial extermination
[46]. Furthermore, it is an important parameter for toxicity related features like skin
irritation. Triiodide is non-toxic and does not have antimicrobial properties.
Importantly, selection of equilibrium concentrations of molecular iodine and tri-
iodide can reduce toxicity while retaining antimicrobial properties.

10.4 The Mechanism of Anti-HIV Action

Efficient combination of experimental and computational techniques results in
shedding a light on complex phenomena. In the recent work we proposed a
mechanism of anti-HIV effects of drugs [20]. In the active site of biomolecule the
molecular iodine, located inside the dextrin helix and coordinated by peptides and
lithium halides, is hardly inaccessible for interaction with bio-organic ligands. Only
bioorganic ligands whose donor activity is higher than that of amides can compete
for complexing with iodine. We have shown that the nucleotides of viral DNA are
able to compete with amide [20].

UV spectroscopy is one of the most widely used methods for studying the
structure of DNA. UV spectra are sensitive to the type of nucleotide base and to
the formation of hydrogen or coordination bonds within the DNA. For this reason
the UV experiments are often used to investigate the interaction of drugs with DNA
nucleotides [47–51].

Authors of paper [48] studied the self-complementary duplexes A and B and
compared them to their single strands, in order to compare helix or G-quadruplex.
Clear differences in the UV spectra of the double helix and G-quadruplex are
observed, as compared to the corresponding single strands. The red shift upon
higher-order structure formation is attributed to the absorption of clusters of bases
interacting via hydrogen bonds (Watson–Crick type for the duplex and Hoogsteen
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type for the quadruplex) and via base stacking. Theoretical calculations of the
electronic spectra on large DNA structures (200 atoms and more) also reveal a red
shift upon double-helix and G-quadruplex structure formation.

This approach was also used in our recent project. Using UV spectroscopy, we
investigated the interaction of LiCl(I)-I2-α-dextrin-peptide with the AGA nucleotide
triplet. UV spectra of aqueous solutions of the AGA nucleotide triplet (system d) of
the LiCl(I)-I2-α-dextrin-peptide (system f) and the aqueous solution of the LiCl(I)-
I2-α-dextrin-peptide complex, and the AGA nucleotide triplet (system e) are pre-
sented and discussed in [52].

Comparison of the UV spectra of aqueous solutions of systems (d-e) indicates
that in (e) the nucleotide triplet interacts with the LiCl(I)-I2-α-dextrin-peptide
complex. The band at 287 nm observed in system (f) disappears in the UV spectrum
of system (e). In addition, the band recorded at 256 nm in system (d), becomes less
intense and changes shape in (e).

The molecular structures of molecular iodine complexes with nucleotides ade-
nosine (VI) and guanosine (VII) and LiCl were studied using computational
methods. The DFT/B3PW91 method with the 6-31G ** basis set for the atoms of
C, N, O, H, Li, Cl and the midi basis set for I was applied. The considered
complexes were fully optimized (Fig. 10.4).

In addition, UV spectrum of the studied complexes was simulated by theoretical
methods. The TD-DFT/B3PW91 approach was used to calculate the energies of
electronic transitions in complexes VI and VII (Tables 10.7 and 10.8).

The splitting of the experimental band at ∼200 nm can be described by elec-
tronic transitions of 207, 210, and 219 nm in complex VI. Transitions between π-
orbitals of I2 and π*-orbitals of the nucleotide base contribute to these frequencies.
The electronic transition due to the transfer of electron density from lithium
chlorine to I2 also contributes to the 210 nm frequency, while the transition between
the occupied orbitals of the coordination bond N-I and unoccupied orbitals of I2

(VI) (VII)

Fig. 10.4 Complexes of molecular iodine with adenosine (VI), guanosine (VII) and lithium
chlorine. Color codes: blue balls—carbon atoms, dark blue balls—nitrogen atoms, red balls—
oxygen atoms, violet balls—iodine atoms, orange balls—lithium atoms, green balls—chlorine
atoms, yellow balls—phosphor atoms
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contributes to the 219 nm transition. Complex VII also displays the 215 nm tran-
sition between occupied and unoccupied orbitals of I2. This transition contributes to
the ∼200 nm band.

Contributing to the 223 nm band in complex VI are the following two transi-
tions: 227 and 235 nm. They could be considered as transitions between occupied
and unoccupied orbitals of the nucleotide base of adenosine, and transitions
between occupied and unoccupied orbitals of I2. In complex VII contributions to
the said band are from the 234 nm transition that corresponds to the transfer of
electron density from the molecular iodine onto π-orbitals of the nucleotide base of
guanosine.

Comparison of the quantum chemical calculations for electronic transitions for
the structure modeling the interaction of LiCl(I)-I2-α-dextrin-peptide complex with
the nucleotide triplet indicates that the DNA nucleotides can displace polypeptide
and form stable complexes with molecular iodine and lithium halogenides. Inter-
estingly, in such structures, molecular iodine binds both nucleotide triplet and
lithium halogenides.

Thus, the conclusion initially derived only on the basis of quantum-chemical
calculations about the possibility of interaction of viral DNA nucleotides with LiCl
(I)-I2-α-dextrin complexes, that are part of drugs [17–20], is further confirmed by
the results of complementary experimental investigations. They include UV-
spectroscopy study.

Table 10.7 Calculated (TD-DFT/B3PW91 level) wavelengths of electronic transitions (λ, nm)
and oscillator strength (Iλ) in complex VI

λtheor. Assignment Iλ

244 1A → 1A (π (nucleot.) → π* (nucleot.)) 0.1319
235 1A → 1A (π(I2) → π* (I2))

1A → 1A (π (nucleot.) → π* (I2))
0.3325

227 1A → 1A (π (nucleot.) → π* (I2)) 0.1017
219 1A → 1A (π (nucleot.) → π* (I2))

1A → 1A ((N-I-I) → π* (I2))
0.1410

210 1A → 1A (π(I2) → π* (nucleot.))
1A → 1A ((Cl-Li-I) → π* (I2))

0.3493

207 1A → 1A (π(I2) → π* (nucleot.))
1A → 1A (π (nucleot.) → π* (nucleot.))

0.2503

Table 10.8 Calculated (TD-DFT/B3PW91 level) wavelengths of electronic transitions (λ, nm)
and oscillator strength (Iλ) in complex VII

λtheor. Assignment Iλ

244 1A → 1A (π(I2) → π* (I2)) 0.1515
234 1A → 1A (π(I2) → π* (nucleot.)) 0.1155
215 1A → 1A (π(I2) → π* (I2)) 0.6343
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10.5 Conclusion

The unique composition of drugs [17–20] assures a presence in their composition of
an iodine complex, whose structure is unique and differs from the structure of
iodine complexes in other known drugs. In the active site species the molecular
iodine interacts with the bio-organic ligands (polypeptides) and lithium halogenide
and exhibits acceptor properties with respect to polypeptides and donor properties
in relation to lithium halide. The of existence such iodine complex is the probable
cause of the low toxicity of the drugs.

In the active site of biomolecules molecular iodine is being held inside the α-
dextrin helix and coordinated by lithium halides and polypeptides. It is hardly
accessible for interactions with other bio-organic ligands and only the nucleotides
of viral DNA are able to compete with polypeptides for formation of chemical
bonds with the iodine.

Previously we have shown that the molecular iodine may be assigned to com-
pounds that inhibit the active site of HIV-1 integrase [52, 53]. It prevents the active
site of integrase from the formation of a complex with HIV DNA and inhibits the
active complex of integrase and viral DNA. Such complex becomes the center of
another, larger nucleoprotein species, binding the active site of integrase and viral
DNA.

Remarkably, the presence in solution of the drug of I2 molecules and I3
− ions

affect drug’s biological properties such as toxicity, irritation [44, 46]. Selection of
equilibrium concentrations of molecular iodine and triiodide can reduce toxicity
while retaining antimicrobial properties. The reviewed studies could shed a light on
such phenomena. One assumes that involvement of α-dextrins in the mixture ensure
the presence of the three active centers located within the α-dextrin helix: molecular
iodine coordinated lithium halogenides and polypeptides, triiodide and lithium
halogenides. We believe that the existence of two complexes of iodine and triiodide
reduces toxicity of the drugs [17–20].
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Chapter 11
Detailed Atomistic Modeling of Si(110)
Passivation by Atomic Layer Deposition
of Al2O3

Andrey A. Rybakov, Alexander V. Larin, Daniel P. Vercauteren
and Georgy M. Zhidomirov

Abstract Typical structural defects were studied theoretically in the course of
O → Al → O atomic depositions on the basic Si(110) surface. The defects were
determined by analyses of the band gap states and projected densities of the s- and
p-states after the deposition aimed to form a Si(110)/SiOX/AlOY/γ-Al2O3 slab. The
extent of Si(110) passivation after every deposition step was studied by scanning
the band structure calculated using Density Functional Theory with periodic
boundary conditions. The atomic structure of the optimized Si(110) surface was
compared to the one of Si(100) for which more information is available. Our
modeling reproduces most features of the use of trimethylaluminium or any other
organic ligand as Al precursor along O2 plasma assisted atomic layer deposition
(PA ALD) when the organic ligands are completely oxidized so that their partici-
pation can be neglected in the deposition as already shown experimentally. The
final oxidation step corresponds to the junction of the slab deposited over Si(110)
with a γ-Al2O3 fragment, whose super cell (SC) parameters have been selected to
lead to the minimum mismatch. Different examples of either non-satisfactory or
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accurate junction of the oxidized Si(110) slab and γ-Al2O3 fragment (under two
different forms) are discussed aiming to develop a route for understanding the
dominant defect types at the interface. Such theoretical work should be the first step
for the elaboration of computational tools for the passivation of silicon with
amorphous oxides. The latter are mainly formed at the conditions of the PA ALD
depositions. The list of formed typical defects at the Si(110)/SiOX/AlOY/γ-Al2O3

boundary is presented and characterized by the projected density of states and
respective band structure around the band gap.

11.1 Introduction

Specific geometries of fully coordinated atoms and groups of atoms, whose states
can appear in the band gap or at the edges of conduction and valence zones crucial
for the electronic properties, have already been widely analyzed using different
models of amorphous Si (a-Si) bulk or Si/SiO2 boundaries [1–7]. Many outstanding
results were, for example, obtained using the tight binding (TB) approximation and
Bethe models. The later works continued the discussions on the localization
problem of the electronic states in a-Si ([8–12] and the Refs. therein) or hydro-
genated a-Si:H [8] started by Anderson for amorphous materials [13], involving
more elaborated cluster [8] and periodic [9–12, 14, 15] models. A discussion of the
evolution of methods versus the localization-delocalization problem is presented in
[16]. The energy of the states relative to the mobility edge indeed determines the
charge transport mechanism, being of prime importance for solar energetics. In
[15], the authors considered the penetration of O atoms to the deeper Si (001) layers
(involving a 4th layer for a total of 14) with up to 16 O atoms per 2 × 2 super cell
(SC) by comparing various optimized geometries mainly using Local Density
Approximation (LDA) with General Gradient Approximation (GGA)/PW91 cor-
rections and combined ultra-soft/norm-conserving pseudopotentials. Charged states
of nitrogen defects were involved in the super-lattice model of Si(100)/SiO2

interface [14].
It is known that charge transport becomes more complex in multi-component

systems obtained at the Si/X or Si/SiO2/X boundaries passivated with an X oxide.
Al2O3 remains the best passivation material for both n- and p-silicon as compared to
other known candidates (SiOx, a-SiNx:H, a-Si:H) [17]. Al2O3 is usually obtained in
amorphous state by various deposition methods. The states of both fully and
under-coordinated atoms have however rarely been discussed for alternate Al/O
depositions upon atomic layer deposition (ALD) conditions. The identification of
fully coordinated atoms and consideration as reactive species is important to
develop for example kinetic Monte-Carlo (KMC) schemes [18, 19] oriented
towards the passivation problems with amorphous oxides. It is therefore important
to recognize the arising defects from the geometrical (bonds and angles) and/or
topological (atomic/hybridization types of the 1st and, may be, 2nd neighbors)
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points of view because no other information is available regarding KMC modeling
of any large system.

After the KMC studies [18, 19], two experimental facts were discovered:
(1) as-deposited amorphous Al2O3 transforms to the γ-Al2O3 state only after
annealing [20]; (2) full oxidation of TMA ligands takes place in the course of O2

plasma assisted (PA) ALD [21, 22]. In parallel, upon annealing amorphous Al2O3

achieves the desired parameters of the Al2O3/Si surface (low interface density of
1011 eV−1cm−2, low surface recombination velocity near 100 cm/s, and long
effective time-of-life of 1 ms) irrespective of thermal ALD (T ALD) or PA ALD
[20]. Hence, a separation of the low temperature deposition and high temperature
annealing is necessary. The crucial importance of the annealing step for Al2O3 as
compared, for example to a-SiNx:H [23], should thus define the strategy of mod-
eling. To our best of knowledge, this has not been addressed in the series of
attempts of KMC modeling of Al2O3/Si deposition [18, 19] performed before the
appearance of [20] and for which traditional (long and complex) kinetic schemes
for T ALD from TMA/H2O have been realized. The authors in [18, 19] considered
a crystalline Al2O3 lattice to calculate the events and rate constants. But at depo-
sition temperatures lower than 600 °C, Al2O3 can be obtained in the amorphous
form only regardless the type of substrate [24]. The accuracy of the replacement of
an amorphous oxide model by a crystalline one for rate constant calculations [18,
19] will depend on the chosen oxide. The absence of successful KMC results for the
Al2O3 growth does not confirm such possibility for the Al2O3 case even if addi-
tional reasons can be behind this result.

The second tip, i.e., oxidation of TMA ligands in O2 plasma [21, 22], has been
confirmed also after the first attempt of KMC modeling of Al2O3/Si deposition
upon O2 PA ALD [18, 19]. It allows to select the simplest adequate computational
model for PA ALD. Detailed results of mass spectrometry (CHx

+, C2Hx
+, CO2

+,
CO+) and optical emission (H, O, O2

+, CO) spectroscopy in O2 plasma conditions
[22] have shown that CH3 ligands of adsorbed TMA are completely oxidized by O2

plasma at room temperature (at the deposition temperatures of 70 and 200 °C) with
the formation of CO, CO2, H2O, and possibly H and/or OH at the oxidized Si/SiO2

surface. A way for the formation of observed small quantities of higher C2Hx

hydrocarbons has also already been proposed [25]. As a result, all the specifically
adsorbed species that can be hardly deleted are present in negligible concentrations
after each purging step of the ALD cycle. These experimental findings of Kessels
group [21, 22] have thus opened a route to the simplest possible solid state kinetic
scheme compared to the traditional ones [26–31] applied for the T ALD modeling,
the latter including multi-step decomposition of TMA adsorbed at the surface as
performed in [27]. The full oxidation of the TMA ligands in O2 PA ALD [21, 22]
minimizes the number of participating atomic species (Si, O, Al, H, from which Si
participates at the earliest steps) in the growing Al2O3 slab only. Hence, our aim is
to analyze the possible computational schemes of Al2O3/Si deposition with the
participation of Si, O, and Al atoms (without H).

Formally, the presented work has repeated the approach developed in [7, 32]
wherein distorted Si-Si and Si-O bonds were modeled at the Si(111)/SiO2 [7] and Si
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(100)/SiO2 [7, 32] interfaces. The computational aspects and hierarchy of all
obtained models are described in Sect. 11.2. The initial Si model for oxidation is
described in Sect. 11.3.1, while Sects. 11.3.2 and 11.3.3 are devoted to the suc-
cessive O and Al deposition/oxidation steps, respectively. The trend to keep—
(Al…Al)n− chains is assigned to the formation of boehmite fragments on the
deposited amorphous slab. In Sect. 11.3.4, we discuss the results of joining the Si
(110) slabs with pre-deposited O/Al layers considering several fragments of Al2O3

obtained in the previous steps to accelerate the growth of the passivated Si(110)/
SiO2/AlOX/γ-Al2O3 layer. The geometries of all observed defects at the interface
are discussed together with the assignments of their states in the band gap.

11.2 Computational Details

The isolated Si(110) and γ-Al2O3 slabs were constructed as parts of the unified
supercell (SC). The results of the interaction between the parts were studied at the
Density Functional Theory (DFT) GGA/PBE level with periodic boundary condi-
tions (PBC) using the VASP code [33, 34]. The junction of the SC parts was
realized after a series of successive O → Al → O depositions on the Si(110) plane
(Scheme 11.1) to form a final Si(110)/SiOX/AlOY/γ-Al2O3 slab. We therefore will
first discuss the Si(110) slab model.

Possible slab candidates for the Si(110) part of the reactive system were sought
throughout the SCs with sizes (n × 3.8608, m × 5.46) proportional to the ones of
the elementary cell, i.e., 3.8608 and 5.46 Å. The (n, m) values were selected as the
minimal mismatch with the second part of the slab, γ-Al2O3. The final Si(110)
system contains eight layers of Si atoms (Fig. 11.1). Free valences of the
three-coordinated Si atoms in the deepest layer were capped by H atoms. Hydro-
gens were placed at a distance of 1.5 Å perpendicularly to the Si(110) surface to
simulate the whole crystal. The deepest Si and H layers were kept fixed along the
geometry optimization.

The γ-Al2O3 fragment was cut parallely to the (110) plane of the γ-Al2O3 bulk
from the structure constructed on the basis of the (113) SC (Fig. 11.2). Two Al
vacancies were admitted in the initial γ-Al2O3 at the octahedral sites as providing
the most stable configuration versus the other vacancy types [35, 36]. The sizes of
the γ-Al2O3 (113) slabs are 7.9931 and 16.8269 Å. The latter values correspond to
the best (n, m) selection, (2, 3) relative to the Si(110) SC parameters
(2 × 3.8608 = 7.7216 and 3 × 5.46 = 16.38 Å). These Si(110) SC parameters are
pretty close to the SC parameters of Al2O3 with a mismatch of 3.4 and 2.7 % only.
The last SC sizes of Al2O3 were re-scaled to exactly 7.7216 and 16.38 Å, like for
the SC of Si, including seven atomic layers (16 Al and 30 O atoms) of the Al2O3

slab. We did not conserve an exact Al/O ratio of 2/3 to achieve a better oxidation
step with a small number of successive deposition steps. For coherence, a separate
computation was also performed for the stoichiometric Al2O3 slab of six layers with
16 Al and 24 O atoms.
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A model with PBC requires a vacuum interval for the slabs modeling. The
vacuum interval was varied between 80 and 83 Å for the different models, so that
the total cell height (z-period) was around 100 Å. The algorithm to model the
deposition procedure was then simplified according to several experimental argu-
ments. Considering the case of PA ALD with O2, we admitted that the stage of
complete H deletion happens at the pre-oxidation step. Hence, we added O atoms
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Fig. 11.1 Illustration of the Si(sp2) formation when optimizing the geometry of the clean
(110) (a) and (100) (d) Si planes. Views of the Si(sp2) (blue) and Si(sp3) (green) atoms in the two
upper layers after the optimization of the (110) (b, c) and (100) (e, f) planes. Other Si atoms are in
sp3 states. Si and H atoms are in yellow and grey. p-type PDOS values (g) with atomic labels given
in (b, c) for selected Si atoms for the (110) plane. Bond notations (A, L, U, yu, yl, xs) in (e, f) are
used in Table 11.2. Some of the atomic labels are used in Fig. 11.3 and Table 11.3
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without the parallel presence of H atoms and thus did not consider the defects
formed owing to the participation of hydrogens. The upper (110) surface, optimized
without H atoms, was further used for the successive O → Al → O depositions. To
check the optimization tools, i.e., VASP [33, 34] and PBE/PAW level, we opti-
mized similarly small 2 × 2 SCs for the traditional Si(100) surface (Fig. 11.1d–f)
and compared the structures to the known data (Sect. 11.3.1).

In all cases, we tried to locate the O atoms so that a complete passivation of all
the undercoordinated Si atoms could be achieved. One should note that such
deposition method still allows many different ways to improve the quality of the
passivation by subsequent atomic transformations, which then would require the
search of transition states (TS) and analyses of the relative barriers. But as the
search of these successive steps and realization of such procedure are related to the
domain of KMC methods, we will not discuss these issues herein.

Our series of constructed structural and compositional models involves eight (I
to VIII) classes (Scheme 11.1): (I) the first model was obtained via the direct
reaction between Si(110) and Al16O30; (II) a series of 8, 12, 18, and 20 O atoms per
SC was after added over the Si(110) slab leading to seven different structural
models; the way to add the oxygens is discussed below; (III) Al16O30 was then
added to model II, with 8 oxygens only; (IV) a series of 4, 6, and 7 Al atoms (after
the 12, 18, and 20 O atoms, respectively) were also added to model II leading to six
different models; (V) an Al16O30 slab was added over model IV leading to six
different models; (VI) 18 O atoms per SC were added to model IV (after the 18 O
and 6 Al atoms) leading to one model; (VII) Al16O30 was added to model VI; (VIII)
9 O or 11 O atoms were withdrawn (under the forms of stable O2 and/or O3 species)
from model VI leading to two different compositional models. The geometry of
each of the 25 models obtained by either covering of different atomic layers or

(a) 

(b) 

Fig. 11.2 Geometry of the
(113) supercell (SC) of the γ-
Al2O3 of I41/amd group with
two octahedral Al vacations
before (a) and after
(b) geometry optimization. Al
and O atoms are in violet and
red
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merging with the Al16O30 slab was optimized using VASP. As final step, we
expected to obtain an Al/O ratio which exceeds the 1/3 experimental value related
to the large number of ALD cycles as mentioned in [37] but that is smaller than the
2/3 ratio as in [17, 20, 38]. Each class thus contains different number of models
whose formation was principally conditioned by the variable initial geometries of
deposited atoms. The numbers in parentheses in Scheme 11.1 indicate the quantity
of models in each class.

The assignment of defect states after each optimization step was realized using
the gradient-corrected GGA/PBE functional and the projected-augmented wave
(PAW) method on the basis of the comparison of the s- and p-projected density of
states and band structure. The energy cut-off was set to 500 eV. The Brillouin zone
k-sampling was restricted to the Γ–point for the geometry optimization, and was (8
4 1) for the density of states (DOS) calculation. Bands were calculated along the Γ-
(0.5, 0) - (0.5, 0.5) - (0, 0.5) – Γ line on the (0, 0, 0) plane in reciprocal space.
Figures were realized with MOLDRAW2.0 [39].

In order to compare the relative ΔU energies of the 25 different optimized
HmSinAlkOp systems, we considered the following reaction scheme:

HmSin + ðp 2̸− 3k 4̸ÞO2 + ðk 2̸ÞAl2O3 →HmSinAlkOp ð11:1Þ

(p/2–3 k/4) being positive for all the obtained models. The energies computed at the
PBE/PAW level are –6.770, –9.858, –36.977, and –5.425 eV for H2, O2, Al2O3,
and Si [40], respectively. The total energy value for Al2O3, –295.816 eV, was
obtained from the full geometry optimization of bulk γ-Al2O3 with a SC containing
the Al16O24 unit.

(110) Si

+ 8, 12, 18, 20 O atoms 

IV (6) III (1) 

VI (1)  Al6O36

+ 4, 6, 7 Al atoms 
+ Al16O30

+ Al16O30 or Al16O24 + 18 O atoms (after 6 Al)

+ Al16O30

II (7)   H12Si96O12, H12Si96Al6O18, H12Si96Al7O20 

+ Al16O30 -9 O atoms 
-2 O atoms VIII (1)

VIIIa (1)

H12Si96Al16O30    I (1)

Al16O38 Al4O12, Al6O18, Al7O20

Al6O25

Al6O27
Al22O66   VII (1)

A20O42, Al22O48, Al23O44, Al23O50   lV (6)

Scheme 11.1 Constructed slab models with successive O and Al deposition including (classes I,
III, V, VII) or not (classes II, IV, VI, VIII) capping Al16O30 fragment. Number of the models for
each class is given between parentheses. The “H12Si96” part is omitted in the titles of the slab
classes from III to VIII for shortness
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11.3 Results and Discussion

11.3.1 Si Slabs

The optimized geometry of the Si(110) slab is shown in Fig. 11.1. One observes
chains of alternated three-coordinated Si(sp2) and Si(sp3) atoms (Fig. 11.1b, c). The
deviation of the Si29(sp2) atom (in blue in Fig. 11.1b, c) relative to the plane
containing its three neighbors is around 0.02 Å, thus confirming the sp2

hybridization versus 1.18 Å for the three-coordinated Si94(sp3) defect. The largest
peak in the p-type projected DOS (PDOS) belongs to Si94 while the
three-coordinated Si29(sp2) and fully coordinated Si96(sp3), i.e., the nearest
neighbor of Si29, possess similar p-densities (Fig. 11.1g). The p-PDOS value
decreases steeply for the fully coordinated Si atoms from the top to the bottom layer
(with the hydrogenated side) (Fig. 11.1g). Negligible variations in the PDOS were
obtained with more accurate schemes of Si-H arrangements (the optimization of H
positions in the direction of the deleted Si-Si bond) in the lowest layer and hence
the capping scheme of H atoms was not modified to take into account more tiny
relaxation effects.

Two types of Si(sp2) and Si(sp3) three-coordinated atoms were obtained for the
non-oxidized totally dehydrogenated Si(110) and Si(100) slabs by geometry opti-
mization (Table 11.1). A common feature of both Si hybridization types at the
(100) and (110) surfaces is the similar Si-Si bond lengths for the sp2 and sp3 types
(Table 11.1), in agreement with earlier computations [4–6, 27, 41, 42]. Our opti-
mized models showed a satisfactory agreement with the experimental distances of
2.28 and 2.32 Å for the Si(100)2 × 1 surface [42] (Table 11.1). Our values
obtained for the Si25-Si33, Si25-Si58, and Si53-Si bonds (noted as A, L, and U in
Fig. 11.1e) are slightly overestimated (Table 11.2). Their relative order is never-
theless coherent with the experimental A, L, and U values [42–44]. Let us note a
small difference of the Si-Si bond lengths between the sp2 and sp3 states with the
different DFT methods applied at the PBC level (Table 11.1). The data for the
(100) surface were included to demonstrate the similarity between the Si(sp3) or Si
(sp2) types for both the (100) or (110) surfaces optimized using the same procedure1

and thus to evaluate the different bulk restrictions imposed on the sp2 geometry
(Table 11.1). A plain Si(sp2) type geometry for the dangling bond (DB) Si atom
was obtained for a completely unconstrained cluster so that a non-plain sp2

geometry could be due to the bulk restrictions [41], which vary between the
(110) and (100) forms. That is why the Si(sp2) geometry for our (110) model also
deviates from a planar one. Regarding the similar deviations from planarity for
(100) or (110) surfaces (the angle δ in Table 11.1, δ being the deviation of the Si
atom from the plane with its three Si neighbors), we can consider that the deviation

1Only one type of Si(sp3) three-coordinated atom was obtained for the Si(111) plane with the same
procedure so that we did not considered it. A Si(111) 7 × 7 superstructure was observed exper-
imentally in [40] but cannot be modeled with the smaller SC considered herein.
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corresponds mainly to the measure of hybridization between the sp2 and sp3 types.
The deviation from planarity can also be estimated using δ′ = sin(δ)/sin(δT) [41],
the angle δT = 35.26° corresponding to an ideal sp3 hybridization (δ′ = 1). The δ
and δ′ values calculated for both Si types are drastically different for the Si(sp3) or
Si(sp2) atoms (Table 11.1). Finally, the differences between the Si(sp2) atoms for
the (110) and (100) surfaces are smaller regarding the Si-Si bond lengths and α
angles (PBE level in Table 11.1) versus those between the Si(sp3) ones.

Table 11.1 Optimized structural parameters at different theory levels of the slab models
containing Si(spn) atoms (n = 2, 3) with relative formation energies ΔU (eV)a) from crystalline Si
and H2: Si-Si bond lengths (Å), valence angles α = X-Si-Y (°), deviation angle δ (°) of central Si
(spn) atom from the plane containing three neighbor atoms, and δ’ = sin(δ)/sin(δT) [41], the angle
δT of 35.26° corresponding to an ideal sp3 hybridization (or δ’ = 1)

Slab Method ΔU spn Si-Si α δ δ’
H12Si96(110) PBE 38.407 sp3 2.310, 2.342,

2.342
84.5, 84.5,
123.8

38.11 1.069

sp2 2.342, 2.342,
2.345

116.7, 116.7,
123.8

10.63 0.320

H8Si64(100) PBE 19.464 sp3 2.304, 2.380,
2.380

94.2, 94.23,
122.5

36.93 1.041

sp2 2.342, 2.342,
2.304

115.6, 115.7,
127.7

6.30 0.190

PW91 – sp2 2.321, 2.321,
2.302

115.7, 115.7,
127.9

5.72 0.173

PBEsol – sp2 2.311, 2.311,
2.304

114.5, 114.5,
129.1

8.50 0.256

PBEsolb – sp2 2.313, 2.313,
2.304

114.6, 114.7,
128.8

8.54 0.257

AM05b, c – sp2 2.309, 2.309,
2.303

114.1, 114.1,
129.3

9.58 0.282

Exper.d 2.28, 2.32
acalculated only at the PBE/PAW level; bspin excited state; coptimized using the trial wave
functions obtained with PBEsol method; d[42]

Table 11.2 Structural parameters of the Si(100) slab models optimized at different theory levels
in comparison with experimental data, the distance notation being explained in Fig. 11.1e, f

Parameter Experiment Theory
[42] [43] [44] [45]a PBE PBEsol PW91

A 2.28 2.26 2.67 2.29 2.304 2.304 2.302
U 2.34 – – 2.35 2.380 2.369 2.378
L 2.32 – – 2.31 2.324 2.311 2.322
yu 3.63 3.74 3.84 3.60 4.172 4.172 4.172
xs 3.55 3.64 3.70 3.60 3.728 3.728 3.727
yl 4.02 3.94 3.84 4.08 4.172 4.172 4.172
acalculated for the (4 × 2) case
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The optimized Si(110) geometry with -(sp2−sp3)n− chains (Fig. 11.1) in the top
layer is pretty similar to the p(2 × 1)a structure with buckled dimers of asymmetric
type for the (100) Si plane [43]. The relative formation energy for the Si(100) p
(2 × 1)a SC type could compete with the one for complex p(2 × 2) and c(4 × 2)
SCs, but their relative differences in total energies per dimer are small, around some
meV, which prevents to make a proper selection [44, 45]. The accuracy of the
PBE/PAW approach as well as of the other similar computational methods does not
reach the meV scale; a chemical accuracy of 1 kcal/mol (∼0.043 eV) seems to be
the best estimate. The above mentioned latter two forms were observed with dif-
ferent experimental techniques, i.e., p(2 × 2) [46–48] and c(4 × 2) [49, 50].
According to [44], the flip between these forms and p(2 × 1) depends on the sample
preparation conditions. That is why we admitted that a more detailed and precise
geometry optimization for the Si(110) surface has no real influence to elucidate its
stable final geometries with the most typical defects. Additionally, the energy
variations between the packing models of the buckled dimers at Si(100) are also
negligibly small versus the different energies of the products of the interactions with
the O atoms along the deposition. The small deviations between the initial energies
(and between the respective geometries) of the buckled dimers at the Si(100) plane
or the -(sp2-sp3)n- chains at the Si(110) surfaces are not representative due to the
strong reconstructions of the successive systems along the reaction with the O
atoms. As will be demonstrated below, a simultaneous reaction of Si(110) with 12
or 20 O atoms per SC destructs the regular upper Si(110) layer and strongly
perturbs the second layer in the case with 20 deposited O atoms.

Relative to these deviations, we have also calculated other parameters regarding
the Si atoms with the Bader partition scheme of the electron density for both
(110) and (100) planes (Table 11.3). The obtained Bader charges for the Si(sp3) or
Si(sp2) atoms possess opposite signs for both (110) and (100) planes. The different
charges are coherent with the proposed origin of the band gap of 0.5 eV for a
partially ionic Si-Si bond [45], which explains the non-metallic character of the Si
(100) surface [51]. Small differences are observed between the Si(sp2) Bader
charges for the (110) and (100) surface but the Si(sp3) charges coincide for both
planes.

Following Fig. 11.1g, Si94(sp3) contributes to the largest part of the PDOS at
the “valence edge” in the system, while the PDOS decreases steeply versus its
neighbor atoms. Edwards [41] pointed a partial shift of spin density from the DB Si
atoms to their neighbor fully coordinated Si atoms. Taking into account such
observation, we compared the α- and β-spin projected DOS of s- and p-orbitals of
Si29(sp2) and Si94(sp3) for the optimized H12Si96(110) model (Fig. 11.3). The
superposition of the α- and β-spin PDOS which shows a favored spin density for the
Si94(sp3) while both α- and β-spin projections are similar for Si29(sp2) and for the
deeper Si105 (fully coordinated). The obtained Si(110) model (Fig. 11.1a–c, g) will
thus serve as starting point for the following oxidation schemes.
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11.3.2 Oxidation

11.3.2.1 Atomic Oxygen

A minimal number of 12 O atoms per SC is required to interact with the 6 Si(sp3)
and 6 Si(sp2) types at the optimized Si(110) surface (Fig. 11.4). Two “+12 O”
models were considered: with a rather “random” (v1-H12Si96O12 in Fig. 11.4a) or
more “ordered” (v2-H12Si96O12 in Fig. 11.4b) location of O atoms over the surface
at Si-O distances fixed as 1.8 Å (Table 11.4). The optimization of the
v2-H12Si96O12 model leads to an ordered structure with 8 three-coordinated Si
defects (i.e., 3 Si atoms of Si2O type or with two Si and one O neighbors, 3 Si
atoms of O3 type, and 2 Si atoms of SiO2 type) and 3 mono-coordinated O defects
with double bond versus the nearest Si atoms, i.e., >Si = O species with
|Si = O| = 1.528 Å per SC. One should note that neither O atom, nor Si(sp2) of
the >Si = O group possesses a state in the mid band gap that was shown by the
PDOS analysis for the H12Si96O20 model constructed using an initial Si-O distance
of 1.9 Å (see below). The first more stable v1-H12Si96O12 model corresponds to
only 2 Si three-coordinated defects with Si3 and Si2O neighbors. Both the v1- and
v2-H12Si96O12 models were then used for the consequent Al deposition resulting in
the formation of the v1- and v2-Al4O12 SCs of the VI class (Scheme 11.1).

In order to consider possible series of Si oxidation products with higher O
concentration, we added more O atoms per SC; 18 O atoms per SC (Fig. 11.5) were
deposited as “ordered” scheme and 20 O atoms per SC (Fig. 11.6) were deposited

Table 11.3 Atomic Bader charges q(e) of Si(spn) atoms (n = 2, 3) and fully coordinated nearest
Si atoms (noted * in the same columns below, i.e., Si79 is the closest neighbor of Si78, Si32 is the
closest neighbor of Si29) in the slabs optimized at the PBE/PAW level. Atomic numbers are partly
shown in Fig. 11.1b, c, e

Type sp3 sp2

N q N q

110 14 0.23 13 –0.19
30 0.23 29 –0.19
62 0.23 61 –0.19
78 0.23 77 –0.19
94 0.23 93 –0.19
79* 0.08 32* –0.10

100 17 0.23 9 –0.07
33 0.23 25 –0.07
49 0.23 41 –0.07
65 0.23 57 –0.07
50* –0.07 58* –0.06

Five and four atoms of the same type for (110) and (100), respectively, are given to show the
minor computation errors for the charge. N corresponds to the atom label
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as “random” scheme. In the “ordered” case, the 18 O atoms are arranged in one
plane parallel above the (110) SC, the O…O distances (“x” and “y” in Fig. 11.5a)
being selected according to the SC shape and dimensions. Despite the simplicity of
this deposition scheme for 18 O atoms, the obtained band gap of 0.7 eV looks
reasonable for a passivated Si slab (Fig. 11.5c). In the “random” case, the 20 O
atoms were fixed at the same Si-O distance (1.7–1.9 Å) above the “defective” sp2 or
sp3 Si atoms with random Si-O directions while avoiding strong O…O repulsion.
The obtained final four H12Si96O20 models considering the three different initial
Si-O distances correspond to different stable products, the most stable being for the

(a) (b)

(c) (d)

(e) (f)

Fig. 11.3 Projected α- (upper graph) and β- (lower graph) spin DOS of s-type (a, c, e) and p-
type (b, d, f) orbitals for Si29(sp2) (a, b), Si94(sp3) (c, d), and four-coordinated Si105 (e, f) atoms
for the H12Si96 model. The atomic positions are shown in Fig. 11.1
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longer distances, i.e., –3.950, –4.046/–4.197,2 and –4.237 eV/Si for 1.7, 1.8, and
1.9 Å, respectively (Table 11.4). This trend is held irrespective of the different
numbers of Si defects in the models obtained by O deposition at 1.7 (one sp2), 1.8
(six sp3)/1.8 (two sp3), and 1.9 Å (one sp3 and one sp2). Additionally, the spatial
hindrances caused by simultaneous deposition of many O atoms led to a smaller
heat of oxidation. The destruction of the regular upper Si(110) layer along the
addition of 12 (Fig. 11.6a) or 20 O atoms (Fig. 11.6b–d) led to energy losses.
Nevertheless, the effect of oxidation can be calculated as stabilizing (exothermic)
per O atom (ΔU/nO in Table 11.4). The ΔU/nO heat values herein are smaller than
the maximal heat value estimated as –7.3 eV/O from the search of the optimal
position for each additional O atom with conservation of the whole structure of the
Si(100) surface [15]. However one should point out that such “atom-by-atom”

addition with the following geometry optimization procedure for every atom can
hardly be relevant for modeling general PA ALD deposition processes. The
importance of the depth of the oxidized Si layer was emphasized by Dingemans
et al. [53] for Al2O3 deposition as one of the principal parameters of the Si pas-
sivation. As well different thicknesses of SiO2 layer were measured for the T ALD
(0.5 ± 0.3 nm) and PA ALD (1.5 ± 0.5 nm) oxide slabs [54]. The thicker PA ALD
oxide slabs can be assigned to the higher kinetic energy of the O atoms in O2

PA ALD that leads to a deeper O penetration.

(a) (b)

(c) (d)

Fig. 11.4 Geometry configuration of the upper part of the initial (a, b) and final (c, d) structures
for the v1-H12Si96O12 (a, c) and v2-H12Si96O12 (b, d) slabs obtained with the ordered and random
O deposition schemes, respectively. Si, H, Al, and O atoms are in yellow, grey, violet, and red

2For the second model see comment (c) in Table 11.4.
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One should note that our deposition scheme allows many ways to improve the
quality of the passivation by using atomic transformations which require a TS
search and analyses of the relative barriers. A complex structure of defects cannot
however guarantee the obtaining of a passivated slab. A distorted rhombohedral
Si66(O17O22)Si113 group (Fig. 11.6e, the view of total slab geometry is omitted)

Table 11.4 Energy values of
the reagent (H12Si96) and its
oxidation products. Energy
ΔU/nO = UC − UT (eV),
where ΔU = UC − UT, nO is
the number of O atoms per
SC, UC is the value calculated
at the PBE/PAW level, while
UT corresponds to the
balances of Eq. (11.1). The
energies of Si(bulk), 3O2,
Al2O3, and H2 are –5.425,
–9.858, –36.977, and
–6.770 eV, respectively, at
the PBE/PAW level

Slab UC UT ΔU n̸O
a

H12Si96 –523.013 –561.420 –

v1-H12Si96O12 –630.873 –582.165 –4.059
v2-H12Si96O12 –627.455 –3.774
v1-H12Si96Al4O12 –645.980 –617.276 –2.392
v2-H12Si96Al4O12 –645.717 –2.370
v1-H12Si96Al20O42 –981.265 –933.385 –1.140
v2-H12Si96Al20O42 –974.210 –0.972
H12Si96O18 –667.357 –611.576 –3.099
v1-H12Si96Al6O18 –707.267 –678.305 –1.609
v2-H12Si96Al6O18 –704.877 –1.476
H12Si96Al6O36 –823.739 –767.039 –1.575
H12Si96Al6O27 –780.935 –722.669 –2.158

H12Si96Al6O25 –770.701 –712.801 –2.316
H12Si96Al22O66 –1141.480 –1043.140 –1.490
v1-H12Si96Al22O48 –1051.490 –980.546 –1.478
v2-H12Si96Al22O48 –1053.183 –1.513
H12Si96O20 –700.647a –621.646 –3.950

–702.550b;
–704.163b, c;
–705.588b, c

–4.045
–4.126
–4.197

–706.341d –4.238
v1-H12Si96Al7O20 –728.585 –682.905 –2.284
v2-H12Si96Al7O20 –724.328 –2.071
H12Si96Al23O44 –1015.978 –1004.934 –0.251
v1-H12Si96Al23O50 –1076.019 –1024.648 –1.027
v2-H12Si96Al23O50 –1069.266 –0.892
H12Si96Al16O30 –852.576 –839.136 –0.448
H12Si96Al16O38 –910.118 –866.290 –1.155
amodel obtained starting the optimization with a Si…O distance of
1.7 Å for all three-coordinated Si atoms, resulting in one sp2 defect;
bmodel obtained starting the optimization with a Si…O distance of
1.8 Å for all three-coordinated Si atoms, resulting in six sp3 defects;
coptimization with NEB [52] reducing six initial Si defects to only
two sp3 defects; dmodel obtained starting the optimization with a
Si…O distance of 1.9 Å for all three-coordinated Si atoms, resulting
in one sp3 and one sp2 defects
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was hence obtained as an intermediate stable structure with an energy of
–704.163 eV (Table 11.4). This rhombohedral defect leads to a high s-type PDOS
for the Si66 atom with an energy –2.5 eV (Fig. 11.6f). Despite of the close con-
nections with the surface, this defect results in an unusual k-independent energy in
the Brillouin zone (Fig. 11.6f) which is more typical for O2 fragments weakly
bonded to the framework. An analogous defect was obtained for the “+20 O”
model, starting with an initial distance of 1.7 Å (the defect is not visible in

(a) 

(c) 

(b) x 

y 

Fig. 11.5 Geometry (side view) of the initial (a), final (b), and band structure (c) for the H12Si96O18

slab obtained with the ordered O deposition scheme. See Fig. 11.4 for color coding of atoms
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H12Si96O20

H12Si96O20(a)

(c)

(e)

(f)

(d)

(b)v1-H12Si96O12

H12Si96O20

H12Si96O20

Si66

O17

Si113

O22

1.902
1.635

2.518

1.614
1.884

H12Si96O20

Si66
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Fig. 11.6b) with a close Si…Si (2.520 Å) and shorter Si-O (1.675 – 1.790 Å)
distances as compared to those in Si66(O17O22)Si113 defect (Fig. 11.6e).

11.3.2.2 Oxidation via Joining with Al16O30 with or Without
Pre-oxidation Using Oxygen Atoms

Our first oxidation reaction of H12Si96 by the whole Al16O30 oxide fragment was
modeled without pre-oxidation stage. The Si(110) – Al16O30 distance for the unique
model of class I was chosen rather intuitively to allow the reaction between H12Si96
(Fig. 11.1b, c) and Al16O30 (Fig. 11.2). Formally, an insufficient oxygen concen-
tration in the layer close to the Si atoms (6 O atoms at the lowest layer of Al16O30)
does not allow a deep Si passivation. Nevertheless, this simple operation leads to a
unique Si(sp2) defect per SC which revives after the junction. The resulting
H12Si96Al16O30 model (also noted Al16O30 for shortness) (Fig. 11.7a, b) contains
one Si(sp2) atom (Si75) of Si3 neighbor type with a state in the mid band gap
(Fig. 11.7e) which thus should be active in an electron spin resonance
(ESR) spectra. We have tried to delete this Si75(sp2) defect by addition of one O
atom nearby and followed by an optimization. But together with curing of the Si
(sp2) defect and its transformation to a Si(sp3) atom of Si2O2 neighbor type, a new
Si(sp2) atom (δ = 17.67°) of the Si3 neighbor type was obtained due to an angular
switch of the nearest “O-Al” bond initially connected to the full coordinated Si.
Despite the rather long initial distance of 4.772 Å between the old Si defect and new
Si one (the final distance being 4.200 Å), the length of the “O-Al” bond is almost
conserved (it varies from 1.720 to 1.727 Å only while switching) due to its angular
motion towards the oxidized old Si(sp2) defect including the Al atom. This example
confirms the proposed revival way of Si(sp2) defects beneath the oxide layer. The
experimental ESR data relative to the (110) plane do not contradict that such Si(sp2)
defects can also be assigned to IX type defects whose concentration are smaller (1/5)
relative to the one of the main Pb ones [55]. The IX type signal disappears when
varying the thickness of the deleted SiO2 layer (up to some μm) from the oxide
surface and revives in a similar or a close geometry upon new oxidation [55]. The
number of revival defects after oxidation can be evaluated from the ratio between
the concentrations of the initial and final defects. The estimate leads to the con-
servation of one among 460 surface sp2 defects as obtained by dividing the initial
concentration per experimental occupancy (or final concentration) of IX type
(1 × 1012 cm−2 [55]). The initial concentration can be evaluated from the number
of 6 total Si(sp2) atoms per SC surface (Fig. 11.1b, c) as 6/130.8 Å−2 = 4.6 × 1014

Fig. 11.6 Geometry of the final structures for the v1-H12Si96O12 (a) and H12Si96O20 (b-d) slabs
obtained with the O injection using different initial Si-O distances of 1.7 (b), 1.8 (c), and 1.9 Å (d).
Dashed lines pass approximately through the three upper Si surface layers. Geometry of the defect
(e) obtained for the H12Si96O20 models (1.7 and 1.8 Å) with distances among atoms shown
together with the band structure for the H12Si96O20 (1.8 Å) case (f). See Fig. 11.4 for color coding
of atoms

◀
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cm−2. The ESR signal of the sp2 defect (Si3 neighbor type) should not depend upon
the temperature of oxidation in agreement with experiment as those of the IX type
[55] because the sp2 defect is located immediately beneath the oxidized layer and
does not interact with oxygen which oxidizes the Si atoms of the upper layer [55].
Formally, the initial concentration of Si(sp3) atoms per SC surface is the same (6 Si

Al2O2 Al2O3+AlO2Al2O3

(a) (b)

(c)

(e) (f)

(d)

Fig. 11.7 Geometry (a-d) and band structure (e, f) of H12Si96Al16O30 (a, b, e) and
H12Si96Al16O38 (c, d, f) models. Si(sp3) and Si(sp2) types of three-coordinated Si atoms are
given blue (c), Si, H, Al, and O atoms are in yellow, grey, violet, and red. Al2O2 and Al2O3 defects
are shown by ellipses (d) (see Fig. 11.8b, c, j for details)
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(sp3) and 6 Si(sp2) at the top layer, Fig. 11.1b, c) so that these assignments could be
equally addressed to the sp3 and sp2 defects. But the main argument in favor of Si
(sp2) is conditioned by a similar ESR signal at different oxidation conditions. The Si
(sp3) atom can vary its angular geometry and bond lengths in a larger extent
(Table 11.1) and hence modify the ESR signal while an Si(sp2) can vary the bond
lengths only. Regarding the small variation of bond lengths for one Si(sp2) atom
(Table 11.1), one could suspect less degrees of freedom with respect to the standard
Si(sp2) which would lead to an invariance of the ESR shape with a higher
probability.

The conservation of the Si(sp3) defects can be demonstrated for a similar
merging of the Al16O30 fragment with a pre-oxidized Si(110) slab. In the first case
above, we considered the junction with the lower plane of the Al16O30 slab which
contains 6 O atoms. The opposite side of the slab contains 12 Al and 12 O atoms,
this side being probably more rigid regarding the interaction with the Si plane. In
order to induce a reaction between the Si(110) slab and the opposite side of the
Al16O30 fragment, we rotated this last one by π radians (the rotation axis is shown in
Fig. 11.2b). Usually, at the first step of PA ALD, oxygen is applied to form the
initial oxidized layer over Si before the formation of an AlXOY oxide layer [17].
While increasing the inter-surface distance by 0.86 Å between the inverted Al16O30

model and H12Si96 relative to the distance used in model I, we added 8 O atoms
which simulates the initial stage of ALD deposition at the Si(110) surface
(Fig. 11.7c, d, f). The content of the AlXOY component was thus changed from
X/Y = 16/30 = 0.53(3) to 16/38 = 0.421. Both ratios exceed the experimental
value of 0.333 related to the large number of ALD cycles [37] but are smaller
versus the ratio of 0.666 obtained in [17, 20, 38]. In such a way, we constructed the
H12Si96Al16O38 slabs (model III, Fig. 11.7c, d, f). The reaction between the Si slab,
8 O atoms, and the inverted Al16O30 fragment leads to 5 three-coordinated Si(sp2)
and Si(sp3) atoms of Si3 (Si102, Si117), Si2O (Si116), and SiO2 (Si132, Si148, both
with very short Si-Si distances lower than 2.3 Å) neighboring types (shown in blue
in Fig. 11.7c). Only the p-PDOS of Si132 and Si148 results in a state near the
conduction edge; the s- and p-type PDOS of Si102 and Si117 are below or near the
Fermi energy (EF) level (left columns in Table 11.5) while the contribution of the
Si116 atom turns out to be very weak.

A very instructive aspect of this second variant of slab junction is the wide series
of AlXOY units which contain O2 fragments with nearly k-independent s- and p-
PDOS profiles. They were obtained essentially owing to the 6 O excessive atoms at
the upper side of the Al16O30 fragment. Their k-independence points to a weak
bonding with the slab and a possible easy detachment of O2 or of other parts.
The PDOS and energy values relative to the obtained AlXOY species are given in
the right columns of Table 11.5 while the geometry and atomic labels are presented
in Fig. 11.8b, c, j. The most complex defect includes two Al2O3 moieties connected
via one common Al atom (Fig. 11.8j). Only the O17 and O29 atoms (left part of
Fig. 11.8j) reveal strong PDOS peaks in the mid band gap or at the edges as well as
O14 and O26 in the isolated Al2O3 unit (Fig. 11.8c) and O13 and O22 in the
isolated Al2O2 unit (Fig. 11.8b). Going forward, one should note that the “silent” O
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atoms (i.e., without PDOS peaks) as O15 and O27 (right part in Fig. 11.8j) can
possess PDOS peaks in other structures (cf. the part about the Al6O36 slab) and, on
the opposite, the O13 and O22 type atoms in the isolated Al2O2 units can be silent
(cf. the part about the Al22O55 and Al22O66 slabs). Let us also remind that Al2O2

moieties were usually considered as stable ones in zeolites ([56] and Refs. therein);
where the stability of squared Al2O2 species was evaluated as favored as compared
to the chain type fragment observed via our slab modeling.

11.3.3 Al Deposition

This part includes the various steps between the II and IV classes of Scheme I with
different numbers of deposited Al atoms. Two Al4O12 systems of type IV were
constructed via successive deposition of O and Al atoms. The v1- and v2-Al4O12

models were obtained from the v1- and v2-H12Si96O12 slabs by injecting 4 Al
atoms (Fig. 11.9a, b). Either two or one Al…Al bridge were obtained by opti-
mization when injecting 4 Al atoms, respectively (Fig. 11.9c, d; bridges are shown
by ellipses). The presence of states in the mid band gap in the systems depends on
the Al…Al bond lengths, i.e., the formation of bridges, as well as on the Al
coordination. For v2-Al4O12 with one two-coordinated Al, one observes a state in
the mid band gap (Fig. 11.9f), while such states are obtained only at the edges for
v1-Al4O12 (Fig. 11.9e), i.e., at the valence edge from the three-coordinated Si
atoms and at the conduction edge from the Al atoms connected by a weak Al…Al

Table 11.5 PDOS values (a.u.) and associated energy E (eV) of the s- and p-states of the Si(sp2)
(Si132, Si148) and Si(sp3) (Si102, Si116, Si117) atoms with tetrahedral angle δ (°) (left columns)
and of the AlXOY type defects (right columns) in Al16O38 model

Type N δ E PDOS Type N E PDOS

sp3 102s 47.4 –0.25 0.37 Al2O3
a 14p –0.2 8.5

102p –0.25 0.35 0.05 6.0
117p 42.4 –0.4 0.24 26p –0.2 1.0

–0.2 0.31 0.05 6.2
0.0 0.33 Al2O3

b 17p –0.2 8.6
116s 36.2 –0.25 0.09 0.05 2.0

0.0 0.15 29p –0.2 3.5
147p – –0.18 0.18 0.05 1.7

–0.05 0.13 36p 0.05 0.1
sp2 132p 5.0 –0.05 0.25 Al2O3

c 13p –0.4 1.75
0.8 0.7 –0.2 0.45

148p 13.9 –0.25 0.20 22p –0.4 4.3
0.9 0.85 –0.2 1.2

N corresponds to the atom label
aAl2O3 type shown in Fig. 11.8c; bAl2O3 type shown in Fig. 11.8j, with atomic labels; cAl2O2 in
coherence with Fig. 11.8b
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bond (2.690 Å). Detailed PDOS analyses of the gap states (Fig. 11.9e, f) are given
below (Fig. 11.9g, h).

v1-Al4O12. The slab contains 2 three-coordinated Si61 (of SiO2 neighbor type,
δ = 44.70°) and Si77 (of Si3 neighbor type, 46.70°) atoms, and 2 Al…Al bridges
linked by rather long bonds of 2.521 and 2.670 Å. It is easy to verify that the three
—coordinated Si atoms and the Al2 groups interact. The Si77 is located close to the
Al25…Al28 bond, the Al25 and Al28 atoms being quite similar (the Al25…Al28
bond equals 2.521 Å, the Al-O bonds equal 1.788 or 1.786 Å, and the Al–Si bonds
equal 2.507 or 2.502 Å, respectively). The distances between Si77 and Al25 (2.990
Å) or Al28 (2.758 Å) are rather large but the PDOS profiles of these atoms are very
similar at the valence edge and are nearly absent at the conduction edge. The PDOS
is dominated by the profile of the Si77 atom (Fig. 11.9g) with a maximal value of
0.56 a.u. at E = −0.38 eV (to be compared with 0.24 and 0.28 a.u. for Al25 and
Al283 in Table 11.6) and two small branches with peaks at –0.54 and –0.24 eV.
The PDOS of Si77, with a similar shape to the PDOS of Al28 (Fig. 11.9g), is
omitted in Fig. 11.9g to present all the PDOS values with a smaller scale. Hence,
the Al25…Al28 group is involved in the state determined by the three-coordinated
Si77. It is not the case for the second Al26…Al27 bridge of 2.670 Å with Al27,
whose coordination is between two- and three-coordinated states, and leads to a
state at the conduction edge.

The three-coordinated Si61 atom participates in a rhombohedral Si61(O14O15)
Al26 group while the three-coordinated Al26 (O3 neighbor type) is connected by a
Al26…Al27 bond of 2.690 Å with Al27 (Si and O neighbors) whose coordination,
between 2 and 3, is determined by the Al…Al bond. Only the influence of Al27 can
explain the presence of the two PDOS maxima at the conduction edge for all three
Al26, Al27, and Si61 (not shown) atoms at energies of 0.66 and 0.54 eV
(Table 11.6). The relative PDOS maxima are larger for Al27 (Table 11.6, PDOS
for Si61 is given in Fig. 11.9g). In parallel, Si61 manifests s- and p-DOS peaks of
high intensity at the valence and both valence and conduction edges, respectively
(Fig. 11.9g). Such behavior has been observed for Si atoms of the Si4 and Si3O
neighbor types optimized using the Bethe models for different Si/SiO2 interfaces
(without s/p partition) [32]. (Several atoms which contribute to both sides of the gap
with similar s- or p-type orbitals will be mentioned below). The participation of
O14 and O15, which connect the Si61 and Al26 atoms in the rhombohedral Si61

Fig. 11.8 Views of several defects AlO2 (a), Al2O2 (b), Al2O3 (c-e, i, j), O3 (f), O4 (g), OAl3 (h),
and combination (j). The labels (d1–d4) are given for the band gap states in Fig. 11.11. More data
about the geometries of d3 and d4 are given in Table 11.9, the band gap states are shown in
Fig. 11.11e. The defects were obtained in H12Si96Al6O36 (a, g), H12Si96Al22O55 (b),
H12Si96Al16O38 (b, c, j), H12Si96Al22O66 (b, f, g), H12Si96Al6O27 (c, d), v1-H12Si96Al20O42 (e),
H12Si96Al23O44 (h), v2-H12Si96Al20O42 (h), and H12Si96Al16O30 (i) models. Maximum s- and p-
PDOS values are given in (h)

◀

3The puzzling aspect is the comparable PDOS values for the s- and p-PDOS of Al25 (Table 11.6)
and a negligible s-PDOS of Al28 despite of the similarities between these Al atoms.
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(O14O15)Al26 defect, in the state with maxima at 0.54 and 0.66 eV is less effective
at the O15 atom (0.06 and 0.06 a.u.), which contributes to the state at the valence
edge only similarly to Si61, and is negligible at O14 (0.02 and 0.04 a.u.). Never-
theless the non-zero contributions of O15 to the state at the conduction edge allow

final v1-Al4O12 final v2-Al4O12

final v1-Al4O12 final v2-Al4O12

initial v1-Al4O12 initial v2-Al4O12

final v2-Al4O12final v1-Al4O12

Si77

O22 Si77 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11.9 Geometry (top view) of the (2 × 2) SC of the initial (a) and final (c) random v1-Al4O12 and
initial (b) and final (d) ordered v2-Al4O12 models obtained with injection of 4 Al and corresponding
band structures (e) and (f). The s- and p-PDOS values are given for v1-Al4O12 (g) and v2-Al4O12 (h).
Al…Al bridges are shown by ellipses. See Fig. 11.4 for color coding of atoms
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to confirm a delocalized state over the Al27…Al26-O15-Si61 chain. The weak
Al26…Al27 bond of 2.670 Å clearly limits the position of the conduction edge
(Fig. 11.9g) and thus determines the width of the band gap. All four Al atoms and
Si77 and Si61 defects lead to a narrower gap in our model relative to the one of pure
c-Si (1.15 eV). Its evolution after the junction with the Al2O3 fragment is presented
with the v1-Al20O42 model in Sect 11.3.4.

v2-Al4O12. The band structure of this less stable system, by as much as
0.263 eV versus v1-Al4O12 (Table 11.4), is more complex than the one of
v1-Al4O12. The v2-Al4O12 model contains a wide series of under-coordinated
atoms, i.e., a mono-coordinated Al atom (as Al26 linked to an O at 1.732 Å), which
does not show any state in the band gap, a two-coordinated Al atom (as Al25),
three-coordinated Si atoms of Si2O neighbor type (as Si77, δ = 45.98°), Si78 of O3

neighbor type (as Si78, δ = 31.73°), Si93 of SiO2 neighbor type (δ = 38.54°), Si
atoms of Si3 neighbor type (as Si95, δ = 38.49°), and Si atoms of Si3 neighbor
type, (as Si96, δ = 35.74°). The DOS picture of v2-Al4O12 is simplified by the two
weak Si…Si bonds of 2.603 Å between Si77…Si95, and of 2.614 Å between
Si93…Si96. As a result, the PDOS at these atoms has moderate maxima at the
conduction edge only. An exception is Si77 (with a p-PDOS intensity of 0.08 a.u. in
the mid band gap, i.e., at E = 0.24 eV) which is connected via O22 with the fully
coordinated Si94 (Fig. 11.9d). The atomic geometry of Si94 is not strongly dis-
torted, i.e., β = 6.8°, but its fourth bond of 2.554 Å is directed versus Al25, whose
coordination varies between 2 and 1, if one counts this bond or not, respectively.
The Al25 atom is probably the reason of an enhanced PDOS at both fully coor-
dinated Si94 and O14 neighbors.

As a result of the delocalization of the state originated from the two-coordinated
Al25, one observes a long (Al26-O17-Si110)-(Al27-O21-Si94)-(Al25-O14-Si78)-
O15(O16) chain containing three repeating non-equivalent Al-O-Si fragments. The
variation of the maximum DOS values, of the s- or p-type character, in the Al26-…-
O15(O16) chain corresponds to the (0.0s-0.02p-0.12p)-(0.04s-0.14p-0.53s)-(0.68s-

Table 11.6 PDOS values (a.u.) and associated energy E (eV) of the s- and p-states of the Al(N)
atoms in some models

N v1-Al4O12 v2-Al4O12 N v2-Al20O42

E PDOS E PDOS E PDOS

25s –0.38 0.24 –0.29
0.24

0.30
0.68

58s 0.5
–0.4

0.53
0.14

25p –0.38 0.23 –0.29
0.24

0.40
0.80

58p 0.5 0.68

26p 0.54
0.66

0.16
0.11

– – 55p –0.4 0.18

27p 0.54
0.66

0.26
0.19

–0.56
0.53

0.22
0.30

56p –0.6 0.11

28p –0.38 0.27 –0.56
0.53

0.30
0.25

57p 0.5 0.10

N corresponds to the atom label
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1.03p-0.76p)-0.37p(0.20p) sequence. Both three- and four-coordinated Si78 and
Si94, of SiO3 neighbor type, possess states in the mid band gap and near the valence
edge (Fig. 11.9f), like the one of Al25 (Table 11.6, Fig. 11.9h). The PDOS at O14
in the mid band gap (1.03p a.u. at 0.24 eV and 0.11s a.u. at –0.29 eV) is even larger
than the ones at both its neighbors defect, Al25 and Si78 (Fig. 11.9h). The Al25
atom possesses both s- and p-type states in the mid band gap (0.8p a.u. at 0.24 eV
and 0.4p a.u. at –0.29 eV; Fig. 11.9h and Table 11.6). Together with O14, other
fully coordinated O neighbors of the three-coordinated Si78 also possesses valuable
PDOS, i.e., O15 (0.37p a.u. at 0.24 eV and 0.54p a.u. at –0.29 eV) and O16
(0.20p a.u. at 0.24 eV and 0.29p a.u. at –0.29 eV). Owing to the weak Al27…Al28
bond of 2.612 Å, both Al atoms do not manifest p-DOS peaks (s-DOS peaks are
minor ones) in the mid band gap but only near both edges (Al28 at –0.56 and
0.53 eV as shown in Fig. 11.9h, Al27 is not shown). Finally, the study of the
slightly less stable v2-Al4O12 system allows finding an interesting example of
enhanced PDOS at the fully coordinated O14 atoms which reveals larger PDOS
peaks versus the defective two-coordinated Al25 and three-coordinated Si78
neighbors. The v2-Al4O12 model will serve for the following oxidation towards the
v2-Al20O42 model using the Al16O30 fragment as described above.

Al7O20. Two v1- and v2-Al7O20 models were constructed from the class II
models (the H12Si96O20 slab obtained with Si…O distances of 1.8 Å) by injecting 7
Al atoms (Fig. 11.10). The initial Al positions were targeted towards the O atoms
so that the directions of Al-O vectors are nearly tilt for v1-Al7O20 (Fig. 11.10a) and
nearly perpendicular for v2-Al7O20 (Fig. 11.10b) relative to the surface. Starting
from different initial models, the two final optimized models led to an
Al-clusterization. Two Al clusters were obtained for the two v1-Al7O20 models (3
Al + 3 Al + 1 Al, shown by ellipses in Fig. 11.10c) and v2-Al7O20 model (3
Al + 4 Al in Fig. 11.10d).

In the last v2-case, the largest PDOS (0.72 a.u., Figure 11.10f) belongs to Al34
(Fig. 11.10d), in the middle of the 4-atom chain (Al39-Al34-Al35-Al37) with
decreasing values for its neighbors ranging from 0.42 a.u. for Si72 (|
Si72-Al34| = 2.645 Å), 0.34 a.u. for Al35 (|Al35-Al34| = 2.478 Å) to 0.06 a.u. for
Al37 (|Al37-Al34| = 2.643 Å). By comparing the distances, one can outline that the
bonds including Al37 and Si72 are extremely weak so that Al34 can be considered
as a mono-coordinated defect. The other 3 Al atoms of the triangular group (Al33,
Al36, Al38, not labelled in Fig. 11.10d) possess a state closer to the conduction
edge at E > 0.25 eV.

A similar situation is observed for the obtained most stable v1-Al7O20 model
(Fig. 11.10c) with the largest PDOS belonging to Al33 (0.57 a.u., Figure 11.10e),
which forms two typical bonds of 2.447 Å with Si41 and 2.367 Å with Si72 and
one weak bond of 2.651 Å with Al34, thus leading to two-coordinated defects with
a state in the mid band gap at nearly 0.1 eV (Fig. 11.10g).

Al6O18. Two v1- and v2-Al6O18 models were constructed from the H12Si96O18

slabs by injecting 6 Al atoms. Two grids with a parallelogram form in coherence
with the SC were selected for the deposition of Al atoms with (Fig. 11.11a). The 6
Al atoms were positioned with different Al…Al distances in each of the two
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directions corresponding to the sides of the parallelogram (Fig. 11.11a), i.e., three
Al atoms located along the smaller and larger sides of the parallelogram in the v1
(Fig. 11.11a) and v2 variants (not shown here), respectively. For both cases, the
larger side is oriented along the longer side of the SC (Fig. 11.11a). In the

(d) final v2-Al7O20(c) final v1-Al7 O20

(b) initial v2-Al7O20(a) initial v1-Al7O20

(f) v2 -Al7O20
(e) v1-Al7O20

(g) v1-Al7O20 (h) v2-Al7O20

Al36

Fig. 11.10 Geometry of the initial (configuration of the upper part of one SC in (a), (b)) and of the final
(2 × 2) SC (top view) v1-Al7O20 (c), v2-Al7O20 (d) models, obtained with the Al deposition schemes (a,
b), corresponding s- and p-PDOS values (with atomic labels given in (c, d)) of selected atoms (e) and (f),
and corresponding band structures (g) and (h). See Fig. 11.4 for color coding of atoms
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(a) initial Al6O18 (b) finalAl6O18

(c) finalAl6O36(d) finalAl6O27

+6Al 

+18 O

purge O31

O37

Al40

Al44

“old” Al2O3(d2) O4(d4)

O2 O3 (d3)

AlO2 (d1)

“new” Al2O3

(h) Al6O27

b) 

(f) final Al6O27(e) final Al6O36

(g) final Al6O25

-9 O

d2

d1 d2

Al2O3(d2)

d4d3

(i) final Al6O25

Fig. 11.11 Geometry (top view) of the (2 × 2) SC (a-d) of the initial (a) and final Al6O18 (b),
Al6O36 (c), Al6O27 (d) models, band structures for Al6O36 (e), Al6O27 (f), Al6O25 (g), respectively,
and s- and p-PDOS values for Al6O27 (h) and Al6O25 (i). The states of d1-d4 type defects are
shown in (e, f, h). See Fig. 11.4 for color coding of atoms
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v1-model, the grid with the initial (shorter) Al…Al distance of 3.752 Å leads to the
formation of continuous chains containing three-, four-, and three-coordinated Al
atoms (Al1, Al2, Al3), respectively (Table 11.7). The obtained Al…Al distances
are shorter as compared to the experimental values of 2.868 and 2.866 Å observed
in boehmite [57] or as compared to the Al…Al distances ranging from 2.793 to
2.812 Å in the SC of γ-Al2O3 with an Al16O24 content as optimized with VASP at
the same computational level (Table 11.8). Three other Al atoms are linked together
with also shorter Al…Al distances of 2.672 and 2.610 Å. One of the terminal Al
atoms of this three-atom group forms two Al–Si bonds of 2.479 and 2.743 Å, but
these bonds disappear at the next oxidation step. The short Al…Al bonds are the
consequence of the low coordination numbers (3 or 4) for all deposited Al atoms.

Al6O36. The Al6O36 model was constructed from the class IV model (the
H12Si96Al6O18 slab) by injecting 18 O atoms (Fig. 11.11c) resulting in a product
with the maximal O/Al ratio of 6. As a result, the Al chain is partly oxidized. The
three-Al atom fragment decomposes to three separate Al atoms with Al-O-Al
connections (|Al…Al| > 3 Å) while the continuous Al-chain (Fig. 11.11b) is
modified to a three-atom fragment (Table 11.8, Fig. 11.11c) with Al…Al distances
closer to the ones in Al2O3 or in boehmite (|Al…Al| < 2.9 Å). The Al-O-Al links
were formed parallelly to each elongated Al…Al bond of the three-atom fragment.
The difference with boehmite is the slightly lower coordination numbers for two of
the three five-, six-, and five-coordinated Al atoms. The longer bonds are probably
the consequence of the formation of Al-O-Al chains (|Al-O| > 1.69 Å) parallel to

Table 11.7 Al…X bond lengths (Å) (X = O, Al) in the Al6O18 and Al6O27 slabs as optimized at
the PBE/PAW level

Atom Al6O18 Al6O27

Al1 1.819, 2.640, 2.696 1.696, 1.722, 1.853, 1.875, 2.666, 2.831
Al2 1.817, 1.818, 2.640, 2.692 1.701, 1.702, 1.864, 1.937, 2.831, 2.843
Al3 1.780, 2.692, 2.696 1.707, 1.712, 1.835, 1.868, 2.666, 2.843

Table 11.8 Al…Al bond lengths (Å) in Al2O3 (bulk) and Al6OX slabs as optimized at the
PBE/PAW level compared to the experimental values in boehmite [57]

Al2O3 (bulk) Al6O18 Al6O36 Al6O27 Al6O25 Boehmite

2.793, 2.795, 2.801, 2.803,
2.809, 2.812, 2.835

2.640,
2.696,
2.692
(chain)

2.859,
2.717
(3-atom
species)

2.831,
2.666,
2.843
(chain)

2.762,
2.809,
2.924,
2.852,
2.733
(two 3-atom
species)

2.866,
2.868
(chain)
[57]
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the Al…Al bond. The most important consequence of the oxidation with an O
excess is the formation of the defect structures AlO2, Al2O3, AlO3, and AlO4

(shown by ellipses in Fig. 11.11c, d) and O2 molecules with gap states that are k-
independent (Fig. 11.11e). Their domination in the defect states in the band gap is
confirmed by the s- and p-PDOS analysis (Fig. 11.11h). The AlO2 (Fig. 11.8a) and
Al2O3 (Fig. 11.8c–e) are very similar to the ones obtained at the surface of the
Al16O38 slab with essentially higher Al concentrations (Al/O = 0.421) than used
herein (Al/O = 0.167). Let us stress that these AlO2 and Al2O3 structures were
obtained from deposited Al atoms and not from Al atoms of the oxide fragment as
one could suspect after considering the part about the Al16O38 slab. It is easy to note
that the AlO2 and Al2O3 species form at the upper (non-reactive) side of the
Al16O30 fragment while modeling the Al16O38 slab. It confirms the rather universal
character of apparition of AlO2 and Al2O3 fragments with an excess of oxygen,
realized with O2 PA ALD deposition.

It is also worth to mention that exothermic heats of formation for similar O3 and
O4 type moieties were observed for the reactions of the MeOXMe (X = 1−2)
species with molecular oxygen (Table 11.9) [58, 59]. Close similarities are revealed
between the O4 geometries obtained in our slab and the ones noted in the cluster
models and periodic models of zeolites despite of more variable geometries in the
last case. The closeness between bond lengths (±0.02 Å) with the similar O4

structures optimized at the PW91/PAW level for the Ca2O4 species in CaMOR
zeolite is even surprising.

Al22O66. The attempt to finalize the formation of the Si/SiOX/Al2O3 interface by
merging the already deposited 18 O/6 Al/18 O slab (Al6O36) with the Al16O30

fragment (Fig. 11.2) without purging the Al6O36 slab was not successful. The
higher O concentration did not lead to the formation of new types of defects as
compared to those obtained after injection of 18 O atoms per SC. The obtained O3

or O4 fragments did not interact with the atoms of the Al16O30 fragment even if the
O3 or O4 species were located mostly at the upper side of the oxidized Si/SiOX/
AlOY slab. Moreover, new O4 species connected to the Si atom were obtained while

Table 11.9 O…O bond lengths in the OX (X = 3 as d3 in Fig. 11.8f and X = 4 as d4 in
Fig. 11.8g) species stabilized as CaOXCa, in the 8R or 6R + 4R clusters, CaMOR zeolite [58, 59],
and coordinated as OX to the Al or Si atoms of the Al6O36 and Al22O66 slabs as optimized at
different theory levels

System Method O…O distances
X = 3 X = 4

CaOXCa(8R) B3LYP/6-31G* 1.500, 1.503 1.340, 1.350, 1.998, 2.498
CaOXCa(6R + 4R) B3LYP/6-31G* 1.496, 1.498 1.358, 1.362, 1.928, 2.514
CaOXCa(6R + 4R) MP2/6-31G* 1.508, 1.509 1.439, 1.442, 2.276, 2.300
CaOXCaMOR PW91/PAW 1.500, 1.503 1.238, 1.358, 1.828, 2.414
H12Si96Al6O36 PBE/PAW 1.253, 1.560 1.239, 1.339, 1.831, 2.416
H12Si96Al22O66 PBE/PAW 1.283, 1.407 1.222, 1.263, 1.835, 3.260

1.232, 1.393, 1.782, 2.560
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the initial O4 species switched their connection from the deposited Al atoms to Al
ones of the Al16O30 oxide layer. An O1-O2 bond reduction from 1.339 to 1.263 Å
in the O4 species is noted for the part -Al-O1-O2-O3-O4 in the last O group. This
shorter bond correlates with a weaker neighbor Al-O1 bond noted at the new
position, i.e., 2.150 instead of 1.824 Å before. The other noted bond changes are
minor but the longer distance between the terminal O1-O2-O3-O4 atoms increases
up to 3.260 Å. It showed that the O3 or O4 moieties are relatively flexible and
stable. The difference between the O3 species in zeolites and in our slab, i.e., one
shorter terminal O-O bond for the latter, allows to propose an easier O2 deletion
from the O3 species. The question of which species could be desorbed or decom-
posed within the purging stage and how to desorb them is not trivial because O2 or
O3 molecules can also be formed as soon as O3 or O4 fragments decompose. Their
disappearance along the purging ALD stage could or not happen because the
desirable state of passivation is achieved only after annealing. The possibility of the
defects deletion should however be strictly confirmed by a precise TS evaluation. In
this particular work, we assume the possibility of deletion of O2 or O3 fragments
along the purging stage.

Al6O27. The Al6O27 model was constructed from the class VI model (the
H12Si96Al6O36 slab) by deleting 9 O atoms (Fig. 11.11d). The deletion of the
defects from the Al6O36 model was realized in two successive steps. First, we
deleted the O3 or O4 fragments towards stable O2 or O3 molecules, respectively, and
an O2 molecule was cut from the AlO2 moieties. The remaining Al-O bonds relax in
the optimized Al6O27 (or 18O-6Al-9O) model after desorption of O2 or O3. We thus
conserved only one Al2O3 defect (shown by ellipses in Fig. 11.11c, d) which
remains visible in the band gap. One supposes that the O atoms could be redis-
tributed upon the loss of the O atoms by the neighboring Al atoms. However, the
defect was kept in the chain connecting 3 six-coordinated Al atoms (“old” Al2O3 in
Fig. 11.8c). Its deletion was realized in the Al6O25 (18O-6Al-7O) model. Ran-
domly, the new type of Al2O3 (or Al2O*O2

4) fragment appeared between two -(O3)
A1-O*-Al2(O4)- atoms at the location of the deleted O2 or O3 fragments from Al1
and Al2 atoms, respectively (“new” Al2O3 in Fig. 11.8d). The 2 remaining O1 and
O2 atoms of the O3 or O4 fragments form a new Al2O*O2 fragment with another
geometry with O1 and O2 atoms coordinated to one and two Al atoms, respectively,
and with a longer |O1-O2| = 1.522 Å (Fig. 11.8d) than within the “old” Al2O3, |O1-
O2| = 1.403 Å (Fig. 11.8c). One of two O atoms coordinates to one Al (1.746 Å)
while the second possesses two non-equivalent Al-O bonds of 1.746 and 2.320 Å.
The initial O* atom of the Al2O*O2 moiety does not change of coordination within
the transformation. The O atoms of the “new” Al2O3 group do not possess defect
states in the mid band gap similarly to the defect in the v1-H12Si96Al20O42 model
(Fig. 11.8e) discussed below.

4The * sign is used to depict the O* atom in the Al-O*-Al fragment which is conserved in the new
Al2O3 defect.
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Al6O25. The second stage of removing the defects from the Al6O36 model consisted
in preparing the Al6O25 model from the Al6O27 one. For this, the O2 fragment of the
“old” Al2O3 defect (Fig. 11.8c) was withdrawn in Al6O27 and optimized, thus
resulting in the complete deletion of three gas like states which are independent on the
k-value (at the energies of –0.75, –0.6, and 0.0 eV in Fig. 11.11f). The remaining
“new” Al2O3 defect (Fig. 11.11d, e) does not possess any state in the mid band
gap. Despite the complete passivation of all added 6 Al atoms and O connected atoms,
we obtained high density of states near the conduction edge and near the mid band
gap. The last state near EF (Fig. 11.11g) belongs mainly to the unique
three-coordinated Si108 atom of the SiO2 neighbor type (δ = 43.29°). This atom is
connected within the O28-Si108-Si111(Si62)-Si125-Si126 chain of Si4 neighbor type
(Si62, Si111,5 Si126) which reveals higher p-PDOS values than the s-ones with the
exception of Si125 of the Si2O2 neighbor type, i.e., 0.21p-0.43p-0.23p(0.23p)-0.18s-
0.13p. The angular analysis does not confirm that the enhanced PDOS values are the
result of structural Si distortions.

The Al…Al distances in the Al6O25 model are presented in Table 11.8. Externally,
Al6O25 is pretty similar to the geometry of the Al6O27 model (Fig. 11.11d) with a
minor deviation. One of the Al…Al distances reaches 2.924 Å (Table 11.8), so that
the chains which were continuous in Al6O27 decompose into three-atom fragments in
Al6O25. The Al6O25 model includes 2 three-atom Al-fragments. This Al…Al elon-
gation is not in contradiction with the stability of the Al-chains in the slabs observed at
all preceding steps which have shown the possible boehmite formation at the Si(110)
surface using O2 PA ALD as discussed below (Sect. 11.4.2).

11.3.4 Junction with the Al16O30 Fragment After Al
Deposition

v1-Al20O42. The v1-Al20O42 system of V type (Scheme 11.1) was obtained from
the merging of the v1-Al4O12 model (type IV) with the Al16O30 fragment. The
lower part of Al16O30 reacts with the deposited Al atoms and three of the total of
four Al atoms are trapped into the oxide layer initially located close to the upper Si
plane. It could be the consequence either of the larger O/Al ratio in Al16O30, or of
the necessary coverage of the deposited Al atoms by an O layer before such
merging. Such bad example of junction accompanied by Al redistribution is nev-
ertheless instructive leading to a wide series of Si defects (Table 11.10). If we
accept as a conventional upper limit for a weak Si…Si bond 2.5 Å, then the final
slab involves a two-coordinated Si91 of O2 neighbor type (Si91 with two O20 and
O23 neighbors), a Si of Si2 neighbor type (Si94), a three-coordinated Si of SiO2

neighbor type (Si107), a Si of Si3 neighbor type (Si141), and a Si of O3 neighbor

5The largest (fifth) Si111-Si125 distance of 2.507 Å allows to consider Si111 as a five-coordinated
(Si5) one.
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type (Si108) (Fig. 11.12a). Factually, all of them can be considered as fully
coordinated ones with one (Si108, Si141) or two (Si91, Si94) weak bonds with the
exception of Si107 which does not participate in any weak Si…Si bond (more
precisely, |Si107…Si*| > 2.836 Å towards the nearest Si* atom). The angular
deformation of each Si atom can be evaluated by the average absolute deviation of
the α = X-Si-X angles (Table 11.10), X = Si or O, as:

β= ∑
i = 1, 6

ðjαi − 109.47◦jÞ ̸6 ð11:2Þ

Table 11.10 Si-X bond lengths (Å) (X = Si, Al, O), X-Si-X’ bond angles (°), and s- or p-PDOS
values (a.u.) of the fully and under-coordinated Si atoms, those being the neighbors of the dangling
bond defects in the v1-Al20O42 (Si141) and v2-Al20O42 (Si92) models optimized at the PBE/PAW level

Model Type Si-X X-Si-X’ PDOS

v1-Al20O42 Si91 1.643, 1.742, 2.604,
2.673

89.7, 104.4, 105.0, 110.4,
116.4, 126.1

0.27s,
0.23p

Si108 1.663, 1.668, 1.695,
2.673

82.3, 103.4, 105.5, 107.4,
115.4, 132.5

0.15 s,
0.13p

Si141 2.340, 2.382, 2.435,
2.558

91.5, 97.5, 98.2, 99.3, 124.1,
151.3

0.45p,
0.30s

Si75 1.680, 2.267, 2.380,
2.383

95.8, 102.5, 106.0, 113.9,
115.1, 119.2

0.03p,
0.005s

Si79 2.300, 2.399, 2.420,
2.435

76.5, 95.9, 111.1, 111.1,
118.6, 141.0

0.18p,
0.07s

Si94 2.342, 2.367, 2.558,
2.604

85.9, 87.8, 104.8, 114.6,
120.9, 132.0

0.40p,
0.24s

Si144 2.318, 2.340, 2.354,
2.355

104.9, 106.7, 107.2, 107.3,
111.9, 118.2

0.08p

v2-Al20O42 Si76a 1.724, 2.359, 2.400,
2.606

92.5, 94.7, 99.7, 119.9, 122.3,
125.6

0.5pb

Si92a 2.334, 2.414,
2.543*, 2.549

82.8, 98.5, 101.0, 115.2,
125.3, 126.8

1.14p,
0.09s

Si107a 1.630, 1.703, 2.439,
2.606

97.1, 101.8, 109.0, 109.8,
119.1, 121.3

0.8pb

0.27sb

Si139a 1.664, 2.433, 2.601,
2.714

102.8, 103.9, 104.8, 107.2,
112.4, 123.9

0.04s,p

Si142a 2.388, 2.439, 2.465,
2.714

96.2, 96.4, 102.8, 103.9,
120.4, 129.3

0.005p

Si157a 2.400, 2.411, 2.473,
2.601

97.7, 97.8, 101.5, 101.9,
108.7, 146.1

0.03p

The * is for the X = Al neighbor atom. The larger (weak bonds) Si-X distances and X-Si-X’ bond
angles for each atom are given in bold. The largest PDOS is given in bold for each model. See also
Figs. 11.12 and 11.16
aall PDOS profiles in the mid band gap are visible in Fig. 11.12f or g
bintensity of the PDOS values at the valence edge are visible in Fig. 11.12f or g
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(c) v1-Al20O42

(a) v1-Al20O42

(d) v2-Al20O42

(b) v2-Al20O42

(e) v1-Al20O42 (f) v2-Al20O42

(g) v2-Al20O42
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A maximum β parameter value of 17.8° is observed for Si141 among all Si atoms
considered in this work. The difference between the twisting deformation per 60°
required for a strong PDOS perturbation [32] and the deformation of β = 17.8°
obtained herein could come from the different computational approaches (neither
the tight binding approximation, nor the Bethe lattice for the Si part were consid-
ered herein) so that any further extent of Si distortion could be corrected by
additional modeling. Regarding the PDOS profiles (Fig. 11.12c, e), we have added
the fully Si4 type coordinated Si79 and Si75 atoms (Table 11.10). The first Si79
atom is characterized by a strong angular distortion β = 15.1°. This specific
geometry situation obtained in the system is related to the two weak Si94…Si91…
Si108 bonds of 2.604 and 2.673 Å, respectively, with an angle of 126.1°. Usually
the participation of under-coordinated atoms in a weak bond is sufficient to shift its
state from the mid band gap to the edges [2]. However, the distribution of the PDOS
peaks of the defects in the obtained v1-Al20O42 model seems to be more puzzling
because the Si atoms (Si91, Si94) with two weak bonds are the intermediate ones in
the order of atoms contributing to the mid band gap if one considers the roles at the
extreme lower energies, i.e., Si141 > Si91 > Si94 > Si108, and at the conduction
edge, i.e., then Si141 > Si91 > Si94, being absent at the extreme valence edge
where the PDOS profiles of the Si141 and Si107 atoms are of the same order. In
order to classify the influence of the bond weakening, we selected the largest Si…Si
bond for each Si atom (upper part of Table 11.10) and calculated the upper Si…Si
elongation (ΔR) relative to the equilibrium bulk Si-Si distance of 2.35 Å
(Table 11.11 and Fig. 11.13b). The moderate correlation of the PDOS intensity
versus ΔR (Fig. 11.13b) does not explain the unique dominance in the PDOS of the

◀ Fig. 11.12 Geometry configuration of the upper part of one SC (a, b), band structure (c, d), and
PDOS (e-g) of v1-Al20O42 (a, c, e) and v2-Al20O42 (b, d, f, g) models, the latter containing Si
atoms linked by one (Si76, Si107, Si142, Si157) or two (Si139) weak Si…Si bonds (b), with the
main Al58 and Si92 defects (b). See Fig. 11.4 for color coding of atoms

Table 11.11 Maximum intensities of the s- and p-PDOS values (a.u.) of the Si atoms in the
v1-Al20O42 model optimized at PBE/PAW theory level versus the Si…Si elongation of the longest
bond relative to equilibrium bulk Si-Si distance of 2.35 Å (ΔR, Å) and average absolute deviation
(β, °) of the α = X-Si-X angle (X = Si or O) expressed as β = Σi=1,6 (|αi -109.47°|)/6, with
number of weak bonds (N) and different neighbor types of each Si atom (see Fig. 11.13)

N Atom Type p-PDOS (s + p)-PDOS ΔR β
0 Si75 SiO3 0.03 0.035 0.033 7.3

Si79 Si4 0.18 0.25 0.085 15.1
Si144 Si4 0.08 0.08 0.005 3.9

1 Si141 Si4 0.45 0.75 0.208 17.8
Si108 SiO3 0.15 0.28 0.323 11.4

2 Si91 Si2O2 0.27 0.50 0.323 9.1
Si94 Si4 0.40 0.64 0.254 12.9
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Si…Si elongation (ΔR in Table 11.11). A higher correlation was observed for the
average absolute deviation β (Eq. 11.2) (Fig. 11.13a). Similar correlation coeffi-
cients (Fig. 11.13) were obtained for both the intensities of the p-PDOS (dashed
lines in Fig. 11.13) or for the sum of s- and p-PDOS intensities (solid lines in
Fig. 11.13). Regarding these results, we suppose that the PDOS could be accurately
described by a more complex function depending on both ΔR and β.

v2-Al20O42. The second variant of V type (Scheme 11.1) was obtained from
merging the v2-Al4O12 model (type IV) with the Al16O30 fragment leading to a
model that is less stable by 7.056 eV relative to the v1-variant (Table 11.4). Three
of the total of four previously deposited Al atoms are trapped into the oxide layer
but it is a consequence of their initial elevated positions above the surface in the
starting v2-Al4O12 model. Such location prevents a complete passivation and the
isolation of the Al58 atom which was “conserved” at the Si slab surface after
joining with Al16O30. The negligible p-PDOS of two of the Al atoms (Al55, Al56)
in the mid band gap are similar to those of the Al atoms of the oxide slab while the

Fig. 11.13 PDOS maximum
values (a.u.) for p-orbitals
only (open circles) or (s + p)-
orbitals together (closed
circles) as a function (a) of the
elongation of the longest Si…
Si bond relative to 2.35 Å or β
(°) bond angles (b) of the
fully coordinated and
under-coordinated Si atoms,
those being the neighbors of
the DB defects (Si141) in the
v1-Al20O42 model optimized
at the PBE/PAW level. The
correlation r is given for the
PDOS maximum values of p-
orbitals only (dashed lines) or
for the PDOS sum of (s + p)-
orbitals together (solid lines).
The type of neighbors for
each Si atom and the PDOS
values are given in
Table 11.10
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one of Al57 is around 0.11, a consequence of the closeness to a chain of defects
(see below). The Al57O2 group (|O-O| = 1.620 Å) is similar to the defect model in
Fig. 11.8b (with a second O atom also connected to the oxide layer) but it is
inactive in the band gap.

The two-coordinated Al58 atom linked to Si92 (2.543 Å) and O23 (1.705 Å)
(Fig. 11.12b) is an analogue to the Si94-Al25-O14 precursor in the initial v2-Al4O12

model (Fig. 11.9c) but now it is not part of a long -(Al-O-Si)3- chain. The Si92
participates in two weak bonds with Si93 and Si75 (2.414, 2.549 Å) in v2-Al20O42; as
well as Si141 forms one weak bond (2.558 Å) in v1-Al20O42; and both Si92 and
Si141atoms possess the most intensive PDOS profiles in the band gaps of both v2- and
v1-Al20O42 models, respectively. For clarity, we partitioned the different groups of
atoms in the v2-Al20O42 model into two graphs of different scales (the smaller PDOS
peaks in the mid band gap in Fig. 11.12g and the largest ones in Fig. 11.12f). The
lower extent of the angular distortion for Si92 as compared to the one for Si141 in the
v1-Al20O42 model is expressed by β = 14.8°, but a cumulative influence of the
angular Si92 distortion and, possibly, its two weak bonds result in higher PDOS
intensities (1.14p a.u. in Fig. 11.12f) versus the one of Si141 (0.45p a.u. in
Fig. 11.12e) in the mid band gap.6 One also notes a state near the conduction edge
(0.5 eV in Fig. 11.12d) which coincides with the DOS peaks of Si92 and Al58
(Fig. 11.12d) with a minor O23 participation. The two Al58 and Si92 atoms determine
the mid band gap structure of the v2-Al20O42 variant. This state is more strongly
delocalized along the Si75-(Si93)Si92-Al58-O23-Si91-O20-Si156-Al57-O21 chain
(0.11p-(0.11p)1.14p-0.68p-0.29p-0.04p-0.13p-0.22p-0.11p-0.10p a.u.), the PDOS
intensity being close to zero at the Si91 only, which can be assigned to a small β
distortion of 3.8°. So, one observes a long chain for the state in the band gap similar to
the one for the precursor v2-Al4O12 model (Fig. 11.9d). The difference with the
Si94-Al25-O14 group in v2-Al4O12 (Fig. 11.9f) is related to the mid band gap states
of the latter while the state of the Si92-Al58-O23 group is shifted to the conduction
edge (Fig. 11.12f). The Si-Al-O angles in both groups differ rather slightly, i.e., 105.7°
in v2-Al4O12 and 116.3° in v2-Al20O42, which can hardly be the reason of a valuable
deviation between these groups.

All other nearest neighbors (O or Si) of both Si92 and Al58 atoms such as the
two-coordinated species (Si139 of SiO neighbor type), three-coordinated species,
i.e., Si76 of Si2O type, Si107 of SiO2 type, Si142 of Si3 type, and Si157 of Si3 type,
do not contribute significantly to the PDOS in the mid band gap (Fig. 11.12g).
These “silent” atoms are of interest for the system due to numerous weak Si…Si
bonds in the system (lower part of Table 11.10). According to the evaluations of
[32], such Si…Si bond elongation has to be around 1.4 times the bulk RSi-Si value
(RSi-Si = 2.35 Å) to lead to a substantial PDOS at the valence (and then at the
conduction) edge. The results of the group of Drabold [12] showed the opposite
trend for a-Si using a 512-atom model with much smaller bond changes (by 0.1 Å)
using DFT and small atomic basis sets with the SIESTA code. More precisely, the

6We will see below that the state in the band gap can be obtained even at a smaller β value of 10°.
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DOS increases nearly symmetrically at the valence and conduction edges upon the
Si…Si shortening and elongation, respectively [12]. The first pair of the
three-coordinated Si76 and Si107 atoms forms a weak Si…Si bond of 2.606 Å,
which explains the absence of respective states in the band gap. Both other
three-coordinated Si142 and Si157 atoms possess a sp3 hybridization with δ angles
around 40°7 and elongated bond lengths compared to the one in the bulk, i.e.,
2.388, 2.439, 2.465 Å and 2.400, 2.411, 2.473 Å for Si142 and Si157 atoms,
respectively. Formally, these three-coordinated atoms have to reveal a state in the
band gap.8 However, the detailed analysis shows 2 weak Si…Si bonds of 2.601 Å
(Si157…Si139) and 2.714 Å (Si142…Si139) centered around the two-coordinated
Si139. Both bond lengths are also smaller than 1.4 × RSi-Si forming a Si142…
Si139…Si157 angle of 102.8°. Their DOS intensities (Fig. 11.12g) are much
smaller as compared to those of Al58 and Si92 (Fig. 11.12f). If “silent” cycled
trimers with usual Si-Si distances (i.e., for bulk) were mentioned [15] in the third
and fourth oxidized Si layers, one cannot speak about a cycled trimer of weak
bonds because the third |Si142…Si157| distance in the trimer is rather long (4.154
Å).

v1-Al23O50. The v1-Al23O50 model (type V) was obtained via the successive
deposition of 20 O and 7 Al atoms (from type IV) and junction with the Al16O30

fragment (Scheme 11.1). It results in very dense bond formations and conservation
of 5 Al atoms of a total 7 at the oxidized surface (Fig. 11.14a). Its reduced heat of
oxidation ΔU/nO = –1.027 eV per O is smaller (in absolute value) than the value
ΔU/nO = –2.284 eV per O obtained at the previous stage of Al deposition
according to respective balances:

H12Si96 + 4.75 ×O2 + 3.5 ×Al2O3 → vl−H12Si96Al7O20 ð11:3Þ

H12Si96 + 7.75 ×O2 + 11.5 ×Al2O3 → vl−H12Si96Al23O50 ð11:4Þ

Both values are smaller (in absolute value) than the maximal heat of Si(100)
oxidation ΔU/nO = –7.3 eV/O [15]. Let us note that these partial (per O atom)
values are more illustrative for the oxidation reactions without the Al2 O3 fragment
because only a part of its O atoms reacts. As a result, the ΔU/nO value decreases in
absolute value going from the reaction with O atoms only to the reaction with O
atoms and the Al2O3 unit. The unique defect state belongs to the fully coordinated
Si151 atom of Si3O neighbor type (Fig. 11.14a) with two elongated Si-Si distances
(“Al23O50” column 2 in Table 11.12) and moderate angular distortion β of 10°.
According to [32] we should not obtain the DOS peaks for the Si atom of Si3O
neighbor type in the band gap (Fig. 2 of [32]). Regarding the (111) surface con-
sidered with the Bethe model, Sakurai and Sugano [2] showed with a TB approach
that a weak Si-Si bond moves towards the valence band, while the weak Si-O bond

7If one calculates δ value as proposed in the preceding part (v1- Al20O42).
8While the absence of states in the mid band gap for Si3O case has been noted (Fig. 2 in [31]), it is
not the case for Si2O.
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produces a shift towards the conduction band. The Si151 is included in both weak
Si-Si and weak Si-O bonds (Table 11.12) but probably the Si-O elongation by
around 0.2 Å is more important than the Si-Si elongation by around 0.05–0.1 Å so
that the state of Si151 shifts closer to the conduction edge in accordance with ref.
[2]. The other 7 atoms of the same Si3O neighbor type (but with Si-Si bond lengths
shorter than 2.4 Å) are present in the model without any effective role near the EF.
Some of them are however useful to estimate the extent of the angular distortion
which results in the band gap states. Neither Si121 (β = 3.9°), nor Si118 (β = 7.3°)
atoms do not have states at the edges. Hence, we assigned the particular state of
Si151 to the co-existence of both stretching (Si-O) and angular distortions β

(b)v2-Al23O50(a) v1-Al23O50

(c) v1-Al23O50 (d) v2-Al23O50

(e) v1-Al23O50 (f) v2-Al23O50

Fig. 11.14 Geometry configuration of the upper part of one SC—(a, b), band structure (c, d), and
PDOS (e, f) of the v1-Al23O50 (a, c, e) and v2-Al23O50 (b, d, f) models. See Fig. 11.4 for color
coding of atoms
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(Eq. 11.2). Oxidizing the defect with one or two additional O atoms, we hope to
cure the slab thus achieving a band gap without any defect states. The work is under
progress.

v2-Al23O50. The second v2-Al23O50 variant deserves attention as the worse
passivation case due to the Al64…Al67 bond length of 2.840 Å, meaning this
connection cannot be counted as a coordination bond for both linked mono- (Al64)
and two-coordinated (Al67) atoms (not including this Al…Al bond for both Al64
and Al67). This 2.840 Å bond length can be compared to 2.521 and 2.670 Å in the
v1-Al4O12 model and 2.612 Å in the v2-Al4O12 model, where we evaluated 2.521
Å as weak Al…Al bond (Sect. 11.3.3). In the two last Al4O12 models, Al atoms do
not possess states in the band gap. Both Al64 and Al67 in the v2-Al23O50 possess s-
(mainly) and p-type states with an energy exactly at the EF level (Fig. 11.14d, f).
Owing to the close states of the two-coordinated Si151 of the O2 neighbor type,
whose p-PDOS is the most important at the conduction edge, we have factually no
band gap for this v2-variant. It is strictly localized so that the PDOS profiles at the
1st (O atoms) and 2nd (Al, Si) neighbors have no substantial values in the
gap/edges.

11.4 Discussion

The Al2O3/Si boundary remains in the center of intensive theoretical [60–65] and
experimental [66–73] studies partially owing to the rising interest to the Al2O3/
III-V [60, 62, 63] and Al2O3/SiNX [71–73] boundaries. While charged and neutral
defects of α-Al2O3 [60, 61, 65], κ-Al2O3 [60], and θ-Al2O3 [60] forms in the bulk
were properly considered, less attention was paid to the studies of the defects at the
surface of the amorphous Al2O3 slab or at grain boundaries of Al2O3 [65]. Recent
experimental results were presented in reviews [74, 75] with domination of ALD
methods and few plasma enhanced chemical vapor deposition (PECVD) exceptions
[72, 73]. That is why our Discussion parts are mainly oriented to the surface defects
and structural aspects formed at the Al2O3/Si boundary in the course of PA ALD
deposition together with the problems of accelerated formation of the interface
layer, using an Al2O3 fragment.

Table 11.12 Type of
neighbor atoms and Si-Y
bond lengths (Å) for the
atoms of the Si3O (Si151,
Si121) or Si2O2 (Si118)
neighbor types in the initial
models. See also Fig. 11.14

Type Y Si151 Si121a Si118a

Al23O50 Al23O50 Al23O50

O35 1.880 1.753 1.628, 1.867
Si87 2.350 2.272 2.384
Si135 2.421 2.332 2.423
Si153 2.406 2.438 2.640
aThe Si and O atomic numbers differ from the ones in the left
column
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11.4.1 Structural Distortion of the Defects

One of the interesting results is the alternation of Si(sp2) (in blue in Fig. 11.1) with
Si(sp3) (in green in Fig. 11.1) neighbors in the upper (110) layers (Table 11.1). The
Si(sp2) and Si(sp3) alternating atoms were also tentatively recorded using atomic
resolved scanning tunneling microscopy in silicene nanosheets on Ag(111) [76].
However, these last authors evaluated very short Si-Si distances of 1.9 ± 0.1 Å,
thus much shorter (about 17 %) than the one for Si bulk (2.35 Å), explaining them
by the interaction with the Ag layer. The earlier works on the Si(sp2) and Si(sp3)
hybridization did not note any drastic shortening of the Si-Si bonds for the sp2 state
[4, 5, 31, 40]. Such Si-Si bond decrease was indeed not observed with any of the
computational approaches neither for the Si surface (Table 11.1), nor for silicene
[77–79], thus possibly requiring further verification. We cannot guess any element
which could demonstrate such wide single/double bond variation as 17 %. In the
system with ordered O deposition of 12 O atoms, we obtained a Si = O double
bound with |Si = O| = 1.528 Å (Sect. 11.3.2.1). Accepting a Si-O single bond
length as 1.62 Å at the same computational level, we obtained a decrease of 5.1 %.
It is much smaller than the suggested 17 %.

The simultaneous O deposition of many O atoms (as along a short ALD step)
undertaken in our work deviates relatively to the consequent search of the most
stable O geometries in [15]. We consider only surface trapping of oxygen and the
following spontaneous reactions with Si atoms. As a result of these reactions, O
atoms can penetrate to the deeper layers, so that we observe O diffusion into the
deeper Si layers (second, third, …) with our approach. But a simultaneous attack of
12 (Fig. 11.6a) or 20 O atoms (Fig. 11.6b–d) leads to a serious destruction of the
upper layer (1st of a total of 8) and penetration of the O atoms to the 2nd layer. It
would therefore be useful to estimate the critical surface density of O atoms which
corresponds to the favored penetration of O atoms into the deeper Si layers.
According to the relative energies [15], the models with N oxygen atoms distributed
between the two upper Si layers over the 2 × 2 SC of Si(100) (the SC surface of
59.6 Å2) are preferred if N > 8 at nearly equilibrium reaction conditions
(atom-by-atom). This leads to the critical surface O density of 8/59.6 = 0.13 Å−2 as
compared to 0.153 Å−2 for the largest coverage of 20 O atoms over 2 × 3 SC of Si
(110) (the SC surface of 130.8 Å2) in our work. The coverages of 18 or 12 O atoms
produce surface O densities of 0.138 or 0.092 Å−2, respectively, which are slightly
larger or smaller than the critical value of 0.13 Å−2 for the stabilization of O atoms
in the second layer [15].

Some aspects which are important to develop future KMC approaches for the
deposition of amorphous oxide were concerned above. The identification of fully
coordinated defects in complex system, like we present above, should be done a
priori on the basis of geometry and topology. But the quantitative parameters of
fully coordinated Al and Si defects remain not clear. Some tips were however
obtained in the presented results. The case of the “silent” Al25…Al28 (2.521 Å)
bridge in the band gap and the limiting role of the Al26…Al27 (2.670 Å) bridge in
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the v1-Al4O12 model is valid from both topological and geometrical points of view,
providing an area for future estimations for weak bond lengths. Additionally, from
the v1-Al20O53 model, one deduces a critical angular X-Si-X distortion β (Eq. 11.2)
(X = Si, O) for the fully coordinated Si151 atom as β > 10°. Two other Si141 in
v1-Al20O42 and Si92 in v-Al20O42 atoms (Table 11.10) with β = 17.8 and 14.8°,
respectively, confirm this evaluation as illustrated in Fig. 11.13a.

11.4.2 Boehmite Formation

The tendency of forming Al chains has been reported for any number of Al atoms per
SC surface, with an Al/O ratio of 3 [35]. Using different initial models with variable
numbers of O (12, 18, 20) andAl (4, 6, 7) atoms over the SC of the Si(110) surface, we
obtained a wide series of models each containing double, triple Al-atom groups or
continuous chains. At the initial O/Al stage, the chain of low coordinated Al possesses
too short bond lengths as compared to the ones in the experimental XRD data for
boehmite (Table 11.8) [57]. These bonds elongate upon the following O/Al/O oxi-
dation step due to the formation of an Al-O-Al linkage, parallel to Al-Al ones. Such
Al…Al lengthening can vary in a wide range from 2.7 to 3.2 Å, which usually
corresponds to strongAl-O bonds of 1.68–1.72Å already at |Al…Al| = 2.9Å.Hence,
the chain decomposes to three-atom fragments (Fig. 11.11c). The deletion of the
excess of oxygenated species as proposed at the next purging step of ALD, in theO2 or
O3 forms, leads again to a decrease of the longest Al…Al bonds and the restoration of
continuous chains. After this step, the similarity with a boehmite type becomes evi-
dent (Table 11.11). This purging involves the deletion of O2 or O3 molecules from
AlO2, Al2O3, O3, or O4 fragments. The problem is however to separate properly the
steps for deletion of the defects upon purging and annealing.

We wish to emphasize that the stabilized boehmite-like chain is related to the
Si/Al2O3 contact surface and not to a free one (with gas phase). At the higher O
concentration provided by the usually longer ALD step of oxygen treatment and the
necessary Si pre-oxidation ALD step, we believe that the Al coordination could be
larger than at the free surface. The lower Al coordination at the Al2O3 surface is
indeed well known. This result is in a partial contradiction with the transformation
mechanism of T ALD deposited amorphous Al2O3 to crystalline Al2O3 along the
annealing as suggested in [80]. The last work proposed a long-range ordering of the
edge-sharing of tetrahedral and octahedral Al atoms without redistribution among
their types as not visible from XPS. To our opinion, such conclusion [80] requires
further verification because the concentration of octahedral Al atoms is very small,
if any, in amorphous Al2O3 according to the experimental XRD or neutron data
[81] as well as by modeling [82–84]. The deviation is less emphasized between the
surfaces of crystalline γ-Al2O3 and amorphous Al2O3 [83–84] but such distinction
of Al types at the surfaces exists. According to [85], “…the coordination number
distribution and structural features, are different for amorphous and crystalline
alumina surfaces, …”. Hence, it is a problem to illustrate which kind of long-range
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transformation can lead to crystalline Al2O3 with dominating octahedral Al atoms
from amorphous Al2O3 with dominating tetrahedral (and nearly absent octahedral)
Al atoms [81] without local reordering.

The observed boehmite-like chain could agree with the mechanism of the Al2O3

transformation [80] provided that tetrahedral Al could be obtained in the same chain
together with octahedral Al ones. It depends on the O/Al ratio which would require
modeling with a smaller O/Al ratio than the one used herein (O/Al = 3). But, then
the bond lengths should vary and probably the chain would not be stable and not
boehmite-like. However, formally the mechanism proposed in [80] is related to T
ALD deposition amorphous Al2O3 for which the mechanism of Al2O3 growth as
proposed by us without products of TMA decomposition cannot be applied. These
compounds containing methyl ligands obtained at the T ALD conditions are not
oxidized by O2 plasma and need to be considered. They could determine another
way of oxide formation at every T ALD step.

The self-organization of boehmite from the extraframe work Al species was
shown in HY zeolite in the form of Al16O13(OH)22(OH2)11 clusters as observed via
XRD already 30 years ago [80, 86].9 The similarity between our observed chain
and the octahedral linkage of boehmite is enforced by pre-oxidation of the Si(110)
surface (O2 plasma treatment) so that the Al–Si bonds are nearly absent after the
first stage of Al deposition (Fig. 11.11b) with the exception of one bond of 2.479 Å
which disappears at the next step. It is also possible that the formation of the
Al-chains (and not of Al-clusters) is a more general topic which has also been
studied recently at the Si(100) surface using a KMC approach [87].

11.4.3 Joining Procedure: Pros et Cons

The passivated oxide Al2O3/Si layer is relatively thin [17], but nevertheless exceeds
10 Å, so that any computational hints to accelerate the growing of the interface
instead of the numerous steps of successive O/Al/O/Al/… depositions could be
useful. It is why we have used the merging procedure with Al16O30 (joined via two
opposite sides) or Al16O24 fragments which led to a passivation in most of the
cases. The obtained defects are easily identified in terms of structural distortion or
under-coordinated states. We distinguished two types of possible negative effects
produced by joining the Si support and the oxide fragment. At small number of Al
atoms (NAl = 4) deposited on the oxidized Si slab, the oxide can attach the essential
part of Al atoms thus redistributing them in favor of the oxide. It can be considered
as a decomposition of the deposited interlayer. In such a case, the v1-Al20O42

model demonstrates the expansion of the band gap which is conditioned by the
extraction of Al atoms from the oxidized Si surface. The wider band gap in the

9Randomly, the SC of crystalline γ-Al2O3 was selected by us with the same quantity of Al atoms
(Al16O30).
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latter is easier to obtain (Figs. 11.3 and 11.4) versus the similar width for the AlxOy

models presented above. With the increase of the concentration of deposited Al
atoms (as 7), the joining procedure for v1-Al23O50 does not result in the redistri-
bution of Al atoms. In such a case, one observes a “true” passivation with the oxide
layer.

The second type of negative effects of the proposed junction is related to the
transformation of the OAl2 and OAl3 (Fig. 11.8h) groups of the Al2O3 oxide layer.
The defective states of the OAl2 groups could be previewed regarding three- or
four-coordinated O atoms in the Al2O3 bulk, but the reasons of such transformation
of OAl3 groups are less understood and could be assigned tentatively to a geometry
distortion. The two systems, among a total of ten, wherein we have observed this
effect, unfortunately, do not allow to quantify the parameters which led to the O
states located at the valence edge of the band gap or close to the EF (Fig. 11.15). In
the two cases, both v2-Al20O42 and Al23O44 models correspond to minimal oxi-
dation effects obtained such as –0.972 eV per O and –0.251 eV per O, respectively.
An example of such v2-Al20O42 system obtained from v2-Al4O12 by junction with
Al16O30 is presented in Fig. 11.15; the PDOS profiles for Si-O-O-Al, OAl2, and
OAl3 type defects are shown in Fig. 11.15b–d; respective PDOS values are in
Table 11.13.

(d) OAl3

(b) Si-O34-O30-Al

(c) OAl2

(a) 

O30

O34 O41 O51

O52

O48 O32

O25
O37+

O42

O25 O35

O31

O39

Fig. 11.15 Geometry configuration of the upper part of one SC (a) and PDOS (a.u.) (b-d) at the O
atoms of the various defect groups in the v2-Al20O42 model. The band structure is given in
Fig. 11.12d. See Fig. 11.4 for color coding of atoms
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A similar effect was observed while replacing the Al16O30 fragment by the close
Al16O24 one. The latter was applied because we tried to vary the O/Al ratio of the
added fragment. One difference between Al16O24 and Al16O24 is the absence of the
lowest layer containing 6 O atoms between the oxide and Si surfaces. A final
v1-Al23O44 product was obtained from v1-Al7O20 by junction with Al16O24. This
v1-Al23O44 case corresponds to the much weaker peaks for the OAl2 and OAl3
groups in the PDOS relative to the ones for v2-Al20O42. The second difference
between the v2-Al20O42 and v1-Al23O44 cases is the higher extent of delocalization
in v1-Al23O44. From the relative maximum PDOS peaks for the v1-Al23O44 model
(not shown), we observed that the O and Al atoms between the OAl2 groups
possess comparable PDOS values. For v2-Al20O42, we wish to point out …O48
(7.8)-Al60(0.04)-O51(8.6)… chain for two OAl2 groups connected via the Al60
atom (with the PDOS maximum values in parentheses). This demonstrates more
isolated states in the v2-Al20O42 slab. The third difference between v2-Al20O42 and
v1-Al23O44 is related to similar orders of PDOS values for the OAl2 and OAl3

Table 11.13 p-PDOS values (a.u.) and associated energy E (eV) of several O(N) atoms of OTX

groups (X = 2 − 3, T = Al, Si), in the v2-Al20O42 and Al23O44 models optimized at the
PBE/PAW level

Model Type N O-T/O T-O-T’/O (E, PDOS)

v2-Al20O42 OAl2 51 1.704, 1.693 130.08 –0.1, 1.4
–0.35, 8.6

48 1.702, 1.743 92.89 –0.1, 2.5
–0.35, 7.8

35 1.724, 1.754 126.4 –0.1, 7.7
25 1.776, 1.790 116.2 –0.1, 3.2

–0.4, 2.3
49 1.654, 1.725 126.75 0.0, 0.5

–0.5, 1.8
OAl3 41 1.787, 1.864,

1.971
81.2, 112.0,
154.5

–0.1, 1.21
–0.35, 1.41

37 1.787, 1.828,
1.878

94.4, 126.7,
127.8

0.0, 0.6
–0.5, 0.32

O-O*-Al 30 1.476, 1.846 107.8 0.0, 6.0
–0.5, 2.0

O-O*-Si 34 1.476, 1.675 110.3 0.0, 3.2
v1-Al23O44 OAl2 48 1.697, 1.732 122.3 –0.3, 0.45

OSi2 24 1.662, 1.743 99.0 –0.1, 0.22
OAl3 52 1.792, 1.857,

1.927
94.2, 97.2,
144.3

–0.3, 0.37

39 1.819, 1.848,
1.904

108.7, 121.9,
125.5

–0.3, 0.27

33 1.839, 1.870,
1.893

93.1, 122.0,
138.7

–0.25, 0.15

N corresponds to the atom label
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groups for v1-Al23O44 but not for v2-Al20O42 (Table 11.13, Fig. 11.15). But, as
already mentioned above, at the moment, the sets of both defective OAl3 and OAl2
species are too limited to quantitatively conclude about the reasons of the presence
of such defective groups in the deformed oxide layer.

The final set of defects including the OAlX group, from the v1-Al23O44 model
only, is also shown in Fig. 11.8. If some of them reveal usually several states in the
gap (Fig. 11.8a, f, g), for others, the effect depends on the system and possibly on the
exact geometry of the defect (Fig. 11.8b, c, d, g, h, i, j). The states corresponding to
Al2O3 or AlO2 are positioned near the valence edge and below the EF similarly to
those of OAl2 and OAl3 groups, while the states from the O3 and O4 groups can also
be located closer to the conduction edge. All of them should be considered as the
targets for studying the following decomposition reactions using NEB for example
to evaluate all possible channels and to evaluate the relative stabilities.

11.5 Conclusions

Alternate O → Al → O surface reactions with the basic Si(110) surface were
modeled theoretically at the Density Functional Theory PBE/PAW level in the
course of O2 plasma assisted atomic layer deposition (PA ALD) processes using
periodic boundary conditions. After three first O/Al/O steps, numerous defects were
obtained from atomic oxygen (O2, O3, O4, AlO2, and Al2O3) as determined by the
s- and p-PDOS analyses and band structures. A limited series of defects which
manifest states in the mid band gap was observed in the obtained models. Some of
them, as Al2O2 and Al2O3, reveal states in the band gap depending of the obtained
models and possibly of the exact defect geometry. The purging stage was then
simulated by deleting excessive adsorbed O2 and O3 molecular species from the
defects (O4, AlO2, Al2O3).

One observed the presence of states related to the weaken Si…Si bonds in the
band gap if the respective Si atoms are connected with fully coordinated Si atoms
possessing a distorted geometry. The evaluation of the extent of O-Si-O angular
deformation was proposed as β = Σi=1,6 (|αi –109.47°|)/6, a β > 10° revealing a
defect state in the band gap. As a stronger angular distortion happens with a higher
probability near the surface, where the defects are located, the obtained PDOS
results from both a delocalization of the defect states and the deformation of atomic
geometries.

The parallel addition of a series of O atoms was tested to simulate the ALD
processes. It led to essentially lower but exothermic (negative) heats of oxidation
versus the ones obtained via the successive steps of atom-by-atom optimization
which can hardly be achieved during short ALD steps. Already after the injection of
12 O atoms, one could observe a strong reconstruction of the upper Si layer. It
demonstrates that the search of the most stable geometry of trapped O atoms by the
successive optimization of every O atom over a regular upper layer could not be
relevant for ALD modeling.
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An accelerated scheme for developing a γ-Al2O3 precursor has been proposed by
joining the previously deposited O + Al layers with the above described γ-Al2O3

fragment (containing or not excessive oxygen with a total content of Al16O30 or
Al16O24), the last one being strongly deformed in the course of the reaction. Some
of the defects (as Al2O2 and Al2O3) were obtained via two different routes either at
the O/Al deposited layer, or at the upper surface of the added Al16O30 fragment (the
case of the Al16O38 slab). In two models out of a total of ten obtained by the
merging, we noted defect states for the OAl3 and OAl2 types formed due to a
deformation of the Al16O30 or Al16O24 oxide fragments added to the oxidized Si
(110) surface. A sharp difference in the localization was observed in these two
models. However, the reasons or other qualitative parameters which provoke such a
distortion remain unclear. It shows that some care while using such a way to grow
the oxide layer is needed. At small number of 4 or 6 Al atoms per SC surface (and
12 or 18 O atoms, respectively, deposited before Al), their largest part turns out to
be trapped by Al2O3 forming more stable models. For the slab model with 7
deposited Al atoms, the larger part of Al atoms (5/7) remains at the surface in the
most stable system. With the increase of the total number of deposited atoms (and
nearly constant Al/O ratio 4/12, 6/18, and 7/20), a minor Al loss from the SiOx

surface was observed. Hence, this model with joined γ-Al2O3 fragment can serve as
a precursor of an amorphous Al2O3 slab without the separation of the oxides at
sufficiently high oxygen concentration at the oxidized Si surface.

It was also observed that long chains of 6–7 atoms possess defect states in the
mid band gap with a steep drop of PDOS along them and DOS maxima at the fully
coordinated Si atom (v2-Al20O42 models). The striking example of high PDOS
value at fully coordinated atom relative to the ones at the nearest defects was
observed. It corresponds to an O atom linking two under-coordinated neighbors,
i.e., two-coordinated Al and three-coordinated Si atoms (as in the v2-Al20O42

model).
Boehmite-like chains with higher Al coordination (NAl = 6) without Al–Si

bonds were stabilized at the Si(110) surface. Traditionally, the lower Al coordi-
nation leads to a more stable free Al2O3 surface (with gas or air) compared to the
coordination in the bulk of amorphous or crystalline oxides. These chains can be the
precursor for the transition from amorphous to crystalline Al2O3 along the fol-
lowing annealing but such proposition requires further testing. These defects should
be the topic of future search of transition states to evaluate their stabilities and
possible transformation routes under the ALD conditions.
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Chapter 12
Development of the Latest Tools
for Building up “Nano-QSAR”:
Quantitative Features—Property/Activity
Relationships (QFPRs/QFARs)

Andrey A. Toropov, Alla P. Toropova, Karel Nesmerak,
Aleksandar M. Veselinović, Jovana B. Veselinović,
Danuta Leszczynska and Jerzy Leszczynski

Abstract Computational studies of common compounds are already standard ways
of their investigations. However, modeling properties of nanomaterials has been
always a challenging task. This chapter reveals important differences between
approaches applied to these two groups of species. The development of an optimal
descriptor provides one of the efficient ways for the computational techniques to
estimate endpoints related to nanospecies. Notably, the optimal descriptor can
represent a translator of eclectic information into the endpoint prediction. Devel-
opment of the optimal descriptor could start with consideration of a hybrid of
topological indices calculated with the adjacency matrix of the molecular graph and
application of additive scheme where a physicochemical parameter is modeled as
the summation of contributions of molecular fragments. Further, the optimal
descriptor might be advanced by taking into account contributions of various
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physicochemical conditions. Such contributions include presence/absence of
defined chemical elements and/or defined kinds of covalent bonds, as well as
different kinds of rings in the molecular system—factors which are able to modify
the physicochemical (biochemical) behavior of a substance. Finally, the latest
version of optimal descriptor involves the applications of eclectic data into building
up model for endpoints related to nanomaterials. A recently acquired collection of
models developed to predict various endpoints of nanomaterials is presented and
discussed in this chapter.

12.1 Introduction

In the last few decades one notices strong influence and fast expansion of appli-
cations of various nanomaterials for industry, medicine, and many other areas that
affect the everyday life. Unfortunately, current advantages of such materials can be
accompanied by their unexpected and dangerous effects in the near future. These
effects can include various types of toxicity together with hazardous ecological
impacts. Obviously, possible hazardous aspects of nanomaterials require studies
that would reveal their characteristics and provide guidelines to facilitate their safe
applications. Predictive models for nanomaterials can be useful for both theoretical
and practical reasons.

After introduction of the classical approaches to predict properties and activities
(endpoints) of the typical chemical substances essential parts of this chapter are
devoted to: (i) description of optimal descriptors which are translators of eclectic
data into endpoint prediction; (ii) discussion of predictive potential of models based
on the optimal descriptors; and (iii) discussion of possible ways to improve the
optimal descriptors as a tool to build up QFPR/QFAR which are analogs of the
traditional QSPR/QSAR for nanomaterials.

Quantitative Structure—Property/Activity Relationships (QSPR/QSAR) is one
of the valuable tools of theoretical chemistry. To some extent, QSPR/QSAR
analyses can be classified as investigations solely rely on and devoted to chemistry.
However, in recent years more common situation emerges when QSPR/QSAR
analysis accumulates and uses ideas and approaches adopted from two or more
natural science areas. Unfortunately, at present these methods are only scantily
involved in the nano-chemistry, nano-biology, and nano-ecology.

Milestones of QSPR have been established in works of Wiener [1–4]. Main idea
of these studies is an application of a molecular graph, or more exactly a matrix of
topological distances in calculation of special coefficients (descriptors) which can
be correlated with thermodynamical properties of organic compounds.

The truth cannot be improved: mathematical predictions of any endpoints, hardly
can be accomplished with high accuracy for large set of non-congeneric substances.
As a rule, the numerical experimental data on an endpoint are sensitive to many
factors besides the molecular structure. For instance, physicochemical properties
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can be modified by unknown impacts, such as electromagnetic field, ultrasound,
etc. In the case of biochemical endpoints the variety of possible impacting effects
considerably increases. For instance, the biochemical endpoints can be sensitive to
atmospheric pressure, weather at the moment of the experimental definition of the
endpoint, and many other factors. Though obviously, it is almost impossible to
include all such factors in the predictive models. But a mathematical prediction of
an endpoint can be useful at least as a preliminary estimation, especially, if the
approach can be utilized for a group of compounds.

The typical approach involving a mathematical prediction of an endpoint can be
expressed by the following scheme:

1. Using matrix of distances [1–4] for a set of congeneric compounds the sum of
topological distances (elements of matrix of distances) or Wiener index are
calculated. In fact the Wiener index is the first descriptor used for the QSPR
analysis.

2. The numerical data on descriptors (e.g. Winer index) are compared with
numerical data on the endpoint.

*** *** *** ***
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3. Using the least squares method one could develop the model: Endpoint = F
(descriptor). The calculation is based on the experimental data on endpoint and
the numerical data on the descriptor.

4. One can use the equation: Endpoint = F (descriptor) for compounds which
have not been examined in the experiment. However, the estimation of the
endpoint is robust if these compounds are congeneric to compounds involved in
building up model. In fact, the model as a rule is the following:
Endpoint = C0 + C1*Descriptor.

It is to be noted that this scheme can be modified by means of using nonlinear
model such as: Endpoint = C0 + C1*Descriptor + C2*Descriptor

2 +
C3*Descriptor

3 + …

Also, one can utilize a group of descriptors. In the case of utilization of a group
of descriptors the approach is well-known as multiple linear regression analysis
(MLRA):

Endpoint = C0 + C1*Descriptor1 + C2*Descriptor2 + C3*Descriptor3 + …

From the beginning of 1980s, a number of different descriptors conceptually
analogical to Wiener number has significantly increased [5–13]. Most of these
descriptors or indices were based on two special matrixes, named as the adjacency
matrix and above mentioned the matrix of topological distances in a molecular
graph.
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On molecular graph of 2-methyl butane, with numbering of vertices of the
adjacency matrix A(G) and matrix of topological distances D(G) are the following:

In spite of existence of a large number of descriptors [9], the main idea of their
calculation can be illustrated with Wiener number (W) and connectivity indices of
zero-order (0χ) and first-order (1χ), the latter is also known as Randic index [8,
12–15].

General scheme of building up optimal descriptors with the hydrogen-
suppressed graphs based approach can be demonstrated using example of ethyl
isopropyl sulfide with the following numbering of atoms:
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the Adjacency matrix and Modified Adjacency matrix for the compounds are the
following:

Optimal descriptor is a mathematical function of the molecular structure where
instead of the rigid invariants (e.g. vertex degree, topological distances, etc.)
specific coefficients are used. Thus, the traditional descriptor is in fact:

D=F molecular structureð Þ=F I1, I2, . . . Imð Þ ð12:1Þ

where Ik is the kth molecular invariant. It is a “rigid” version of descriptor. Formula
(1) can be modified by replacing “rigid” components by flexible ones:

D=F molecular structureð Þ=F CW I1ð Þ, CW I2ð Þ, . . .CW Imð Þð Þ ð12:2Þ

where CW(Ik) is correlation weight of the kth molecular invariant. It is flexible
version of descriptor. These CWs, being some numerical coefficients, are used in
calculation with Eq. (12.2).

Accordingly to a study published in one of the classical papers [10], application
of x = +0.25 and y = −0.95 in calculation of the optimal connectivity index 1χ (x,y)
for correlation with normal boiling points of 21 sulfides gives considerable decrease
of standard error, in comparison with the “inflexible” 1χ (0,0).

Correlation coefficient between descriptor calculated with Eq. (12.2) and
property/activity (PA) of interest is also a mathematical function of the CWs,

R PA,Dð Þ=R½PA,FðCW I1ð Þ,CW I2ð Þ, . . .CW Imð ÞÞ� ð12:3Þ

where R(PA,D) is the correlation coefficient between the PA and D, calculated with
Eq. (12.2).
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By means of an optimization procedure one can calculate the CW*(MI1),
CW*(MI2), … CW*(MIm), which are being placed in Eq. (12.3) to provide maxi-
mum of the R(PA,D) for a training set of compounds under consideration.
Rationality of such model can (and should) be tested with properly selected external
set of species.

It is an important feature of the scheme based on the Eq. (12.3), that these
correlation weights can be calculated not only for numerical invariant of molecular
graph such as vertex degrees [16], extended connectivity of increasing orders [17],
paths of length 2,3, or higher [9], valence shells of increasing orders [9], but also,
for eclectic features of molecular structure, such as presence of different atoms,
presence/absence of different rings, and so on. This option gives possibility to
introduce and estimate measure of influence of given molecular attribute on
property/activity of interest. This can be used as hint on the mechanism of phe-
nomena under consideration—an important outcome of the QSAR approach.

It is to be noted that comparison of the hydrogen-suppressed graph based and the
hydrogen-filled graph based optimal descriptors has been carried out in [18]. It has
been shown that optimal descriptor based on hydrogen-filled graph improves
accuracy prediction of normal boiling points of alkyl alcohols.

The graph of atomic orbitals (GAO) [16–22] also can be used as a basis for the
optimal descriptors. The basic idea of the representation of the molecular structure
by considering configuration of chemical elements is presented in the Table 12.1.

Figure 12.1 contains an example of translation of hydrogen suppressed molec-
ular graph into the GAO. It is to be noted that there are two ways to translate the
traditional molecular graph into the GAO: (i) translation of hydrogen suppressed
graph into GAO; and (ii) translation of hydrogen filled graph into GAO [16–22].
For a training set of graphs of atomic orbitals, one can carry out the same opti-
mization of correlation weights of the invariants using the same algorithms [23].

The scheme can be based not only on molecular graphs, but also on simplified
Molecular Input Line Entry System (SMILES) [24–26]. SMILES contains an string
of characters. These characters reflect molecular structure, or at least some part of
attributes of the molecular structure. Based on such assumptions one can attempt to
define a descriptor that represents a mathematical function of the SMILES char-
acters. Figure 12.2 contains the scheme for building up optimal descriptors using
SMILES.

Table 12.1 Groups of atomic
orbitals, for some chemical
elements, used in constructing
the graph of atomic orbitals

Chemical element Group of atomic orbitals

H 1s1

C 1s2, 2s2, 2p2

N 1s2, 2s2, 2p3

O 1s2, 2s2, 2p4

F 1s2, 2s2, 2p5

P 1s2, 2s2, 2p6, 3s2, 3p3

S 1s2, 2s2, 2p6, 3s2, 3p4

Cl 1s2, 2s2, 2p6, 3s2, 3p5

Br 1s2, 2s2, 2p6, 3s2, 3p6, 3d10, 4 s2, 4p5
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Thus, there are four basic representation of the molecular structure which can be
used as basis to build up the optimal descriptors (Fig. 12.3): (i) hydrogen sup-
pressed graph; (ii) hydrogen filled graph; (iii) GAO; and (iv) SMILES. These
representations also can be involved into hybrid version of the optimal descriptor
where molecular features extracted from e.g. GAO and SMILES play the role of
hybrid basis for a QSPR/QSAR predictions [27–32].

It is to be noted that structure of peptides represented by one-letter codes that
reflect different amino acids is very similar to SMILES (Fig. 12.4). In fact, the
representation of peptides can be used for their QSPR/QSAR analyses [33].

   O1    C2    C3    C4    O5    C6 EC0k

   O1    0    1 0    0    0    0 1
   C2    1    0 1    1    0    0 3
   C3    0    1 0    0    0    0 1
   C4    0    1 0    0    1    1 3
   O5    0    0 0    1    0    0 1
   C6    0    0 0    1    0    0 1
Graph of atomic orbitals (GAO): 

Hydrogen suppressed graph:

O1 C2 C3 C4 O5 C6

1s2 2s2 2p4 1s2 2s2 2p2 1s2 2s2 2p2 1s2 2s2 2p2 1s2 2s2 2p4 1s2 2s2 2p2 EC0k

1s2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3
2s2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3
2p4 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3
1s2 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 9
2s2 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 9
2p2 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 9
1s2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3
2s2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3
2p2 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 3
1s2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 9
2s2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 9
2p2 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 9
1s2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3
2s2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3
2p4 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3
1s2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3
2s2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3
2p2 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 3

Fig. 12.1 Example of the representation of Acetoin (CAS 513-86-0; and SMILES = “O = C(C)C
(O)C”) by means of (i) hydrogen suppressed graph; and (ii) Graph of atomic orbitals
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Figure 12.5 contains the graphical representation of the Monte Carlo optimiza-
tion. This approach is based on calculations of the correlation weights which give
maximum correlation coefficient between experimental and predicted endpoint.

The above discussion provides summary of QSPR/QSAR approaches applied to
classical, chemical compounds. However, an analysis devoted to nanomaterials
having gigantic and complex molecular architecture lead to necessity of definition
of new approaches for the predictive modelling, because the representation of their
molecular structure by means of molecular graph and/or SMILES sometimes
becomes very problematic (e.g. multi-walled carbon nanotubes [34], graphene
[35]). In the first approximation, the optimal descriptors for such species should be
a collector of all available data which are able to impact the physicochemical and/or
biochemical behavior of nanomaterials. This concept is displayed in Fig. 12.6.

Fig. 12.2 The definition of optimal descriptors using representation of the molecular structure by
SMILES

Fig. 12.3 The basic versions of the representations of the molecular structure which are used to
build up optimal descriptors
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It can be consider as a “quasi-SMILES” approach [36]. In contrast to traditional
SMILES [24–26] one can use in such a case the quasi-SMILES [36] that reflect all
available eclectic data on nanomaterials augmented by features (impacts, condi-
tions), that have clear influence on the performance of nanomaterials.

Formally, the quasi-SMILES can replace the traditional SMILES in the above
mentioned optimization procedure. However, in this case the new description
should be used and the models should be named quantitative “features”—
property/activity relationships (QFPRs/QFARs), since these models will be based
on features which can be distant from the molecular structure (e.g. size, concen-
tration, time exposure, etc.) that is used in classic QSPR/QSAR methods.

Figure 12.7 shows the evolution of concepts related to building up optimal
descriptors. Interestingly, at the last stage one can see a new quality: the predicted
details of molecular structure lost the advantage to be the only source of the
information. The essence of difference between traditional descriptors and
descriptors calculated with quasi-SMILES is depictured at the Fig. 12.8. Here
eclectic features (impacts) partially replace data on the molecular structure.

In the cases of organic, inorganic, and organometallic compounds, as well as for
various polymers the quantitative structure—property/activity relationships
(QSPRs/QSARs) approaches represent efficient and available tools one can use in
order to predict numerical data related to an endpoint of unknown substances. In
order to accomplish it and develop QSPR/QSAR model such approaches require

Fig. 12.4 The representation
of peptides by means of
symbols of amino acids. One
notices its similarity with
SMILES
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application of experimental data for this endpoint from analogical substances which
have been investigated in the experimental studies.

There is considerable number of the literature sources dedicated to discussion
traditional QSPR/QSAR analyses of nanomaterials based on selection of groups of

Fig. 12.5 The general scheme of the Monte Carlo optimization used as the basis of calculation of
optimal descriptors. The row “Correlation weight” contains graphical images of various features
(extracted from graph or SMILES) characterized by positive values of the correlation weights (they
are indicated by white color) or by negative values of correlation weights (those are indicated by
black color). Blocked (rare) features have correlation weights which are fixed to be equal to zero
(indicated by grey “b”). The R(X,Y) is correlation coefficient between descriptor and endpoint

Fig. 12.6 The quasi-SMILES in fact is a collector of all available eclectic information related to
some complex systems, such as nanomaterials, peptides, and micro electro mechanical systems
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molecular descriptors [37–40]. However, unfortunately, the traditionally used
QSPR/QSAR techniques, as a rule, do not provide convenient and efficient
methodology to study nanomaterials, owing to a number of reasons. Firstly,
molecular structure of majority of nanomaterials contains hundreds or even thou-
sands of atoms. Of course, it generates a complex (but soluble technical problem)
how exactly to save the data on the molecular structure in the form of the molecular

Fig. 12.7 The evolution of optimal descriptors: last stage represents descriptors of the new
quality, since they become descriptors which are built up by means of analysis of features which at
least partially are distinct from the molecular structure

Fig. 12.8 The essence of difference between QSPR/QSAR and QFPR/QFAR
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graph and/or in the form of SMILES. Nevertheless, more important obstacle is due
to the impossibility of comparison of such systems: they will be too similar
(thousands of atoms are identical and only tenth of atoms are different) or too
incomparable (thousands of atoms are different and only tenth are identical). In
addition, modes of action of different nanomaterials in different biological systems
(cell, organ, and organism) can be absolutely incomparable (different parts of
gigantic molecule are acting in dissimilar environments). Also, in spite of manifold
attempts to prepare and supply large databases on nanomaterials such collections of
data still remain unsatisfactory and usually incomplete sources for the traditional
QSPR/QSAR analyses.

Thus, in fact, endpoints related to traditional substances (i.e. non nanomaterials)
represent phenomena basically defined by the molecular architecture which
involves a “modest” number of atoms (e.g. less than 100). In contrast, endpoints
related to nanomaterials are phenomena basically governed by many other factors
besides the molecular characteristics of gigantic systems.

For the discussed above reasons, the application of the “classic” approaches to
development of QSPR/QSAR models for nanomaterials becomes impossible, or at
least very problematic. Consequently, for such species the paradigm “Endpoint is a
mathematical function of the molecular structure” should be changed to the para-
digm “Endpoint is a mathematical function of all available eclectic data related to
nanomaterials” (Fig. 12.7).

Examples of the eclectic data include: (i) size of particles; (ii) porosity;
(iii) condition of synthesis; (iv) irradiation (absence of the irradiation); (v) type of
targets, e.g. cell, organ, organism, ecological system, etc.; (vi) electromagnetic
field; (vii) presence of pollutants, and others. There is diversity and/or hierarchy of
endpoints related to substances in general, and related to nanomaterials in partic-
ular. Different kinds of the acute toxicity are characterized by apparent and rela-
tively fast effects. Skin sensitivity also represents a group of endpoints with
apparent and relatively fast effects. Carcinogenicity and mutagenicity represent
assemblies of endpoints characterized by effects which become visible only after
considerable period of impact upon some targets (bacteria, cells, organisms). The
experimental measurement of the above mentioned endpoints involve different
costs, time, and equipment. Even for relatively simple endpoints such as density,
normal boiling points, water solubility, etc., the computational prediction is an
attractive alternative to a direct experiment. However, in the case of complex
endpoints (e.g. carcinogenicity, mutagenicity, and therapeutic effects) applications
of computational approaches become the necessity in both the case of traditional
substances and in the case of nanomaterials.

The hierarchy of nanomaterials contains the considerable list of various groups,
such as, (i) fullerenes and their derivatives, (ii) single wall carbon nanotubes
(SWCN); (iii) multi walls carbon nanotubes (MWCNT); (iv) graphene; (v) mi-
cro-electro-mechanical systems (MEMS); (vi) metal nano oxides; (vii) quantum
dots, and others. One can expect that in the near future this list will be extended
owing to intensive work of experimentalists.
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One of the valuable options for development and application of the computa-
tional approach that is devoted to estimate endpoints related to nanomaterials is the
employment of the above mentioned optimal descriptor which can represent a
translator of eclectic information into the endpoint prediction. As an initial form of
the optimal descriptor one can apply a hybrid of topological indices calculated with
the adjacency matrix of the molecular graph and additive scheme. In this form a
physicochemical parameter is modeled as the summation of contributions of
molecular fragments. Further, the optimal descriptor could be expanded by means
of taking into account contributions of various physicochemical conditions
(presence/absence of defined chemical elements and/or defined types of covalent
bonds, as well as different types of rings in the molecular system) which are able to
modify the physicochemical (biochemical) behavior of a substance. The next step
of evolution of the optimal descriptor is the involvement of the above mentioned
eclectic factors related to various modes of action of the nanomaterials (Fig. 12.8).

12.2 Methods

12.2.1 Data

12.2.1.1 Thermal Conductivity of Micro-Electro-Mechanical Systems

Experimental data on the thermal conductivity of Micro-Electro-Mechanical Sys-
tems (MEMS) have been posted recently at the Internet [41]. We used these data to
building up a model of thermal conductivity for MEMS studied experimentally. The
logarithm of the thermal conductivity expressed in [W/m/K] has been used as the
endpoint. The collection of MEMS has been selected according to two principles
(i) these MEMS have (partially) the same technological attributes (Table 12.2); and
(ii) their number is as large as possible (Table 12.3). The development of suitable
computational model involves rational application of the available experimental
data. Here the experimental data for considered species were three times randomly
split into the sub-training set (i.e. a group of MEMS which are “producer of model”),
calibration set (i.e. a group of MEMS which are “critic of model”), test set (i.e. a
group of MEMS which are “preliminary estimator of model”), and validation set (i.e.
a group of MEMS which are “final estimator of model”). Table 12.4 contains the
details of correlation weights for the model of MEMS.

12.2.1.2 Mutagenicity of Fullerene Under Various Conditions

Fullerene, that represents one of the first novel nanomaterials that was discover by
interdisciplinary, multinational team 40 years ago, has been since meticulously
investigated. Such investigations involve also interactions of fullerene with bio-
logical species. Recently bacterial reverse mutation caused by fullerene was tested
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using Salmonella typhimurium strains TA100 in the presence and absence of
metabolic activation under dark conditions and irradiation [42]. These data were
used as experimental endpoints in our study. The data were split into the training,
calibration, and validation sets according to the following principles: (i) the split is
random; and (ii) the ranges of endpoint for the above-mentioned sets are similar.
Table 12.5 displays list of features which are involved in building up the model for

Table 12.2 Technological
attributes and their codes,
which are used for building
up model of thermal
conductivity for MEMS

Temperature, C Code of the temperature

20 %1

25 %1

27 %1

80 %1

100 %1

127 %1

150 %1

200 %2

250 %2

273.1 %2

315 %3

350 %3

400 %4

425 %4

500 %5

540 %5

600 %6

650 %6

700 %7

800 %8

875 %9

1000 %10

1100 %11

1200 %12

1250 %12

1327 %13

1400 %14

1530 %15

1600 %16

2300 %17

Status of MEMS Code of status

Ceramic 1

Single crystal 2

Cubic 3

CVDa 4

Glass 5
aCVD = Chemical Vapor Deposition
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Table 12.3 MEMS, their codes and data on the decimal logarithm of thermal conductivity, as
well three splits of available data into the sub-training set (+), calibration set (−), test set (#), and
validation set (*)

MEMS Split Codes for MEMS lgTC

1 2 3

AlN-1 + + + Al.N.%6 1.302

AlN-2 * – * Al.N.%4 1.345

AlN-3 – + + Al.N.%1 1.479

Al2O3-1 # – – Al.Al.O.O.O.2 1.699

Al2O3-2 + + * Al.Al.O.O.O.1.%14 0.735

Al2O3-3 – – + Al.Al.O.O.O.1.%1 1.399

Al2O3-4 – * # Al.Al.O.O.O.1.%3 1.189

Al2O3-5 * * + Al.Al.O.O.O.1.%5 1.165

Al2O3-6 + # # Al.Al.O.O.O.2.%1 1.634

Al2O3-7 * # + Al.Al.O.O.O.2.%3 1.293

Al2O3-8 * + – Al.Al.O.O.O.2.%8 1.084

BN-1 * # * B.N.1.%3 1.458

BN-2 – # * B.N.1.%7 1.431

BN-3 * – + B.N.1.%10 1.425

Cd – + – Cd.%1 1.986

Cr + – + Cr.%1 1.956

CrB2 – # – Cr.B.B.%1 1.311

Cr3C3 – + – Cr.Cr.Cr.C.C.C.1 2.278

GaAs + + + Ga.As.%1 1.663

Mo – + * Mo.%1 2.140

MoSi2-1 # * – Mo.Si.Si.%1.1 1.732

MoSi2-2 # + # Mo.Si.Si.%4.1 1.490

MoSi2-3 # – # Mo.Si.Si.%5.1 1.345

MoSi2-4 – # + Mo.Si.Si.%6.1 1.377

MoSi2-5 # – – Mo.Si.Si.%9.1 1.284

MoSi2-6 + * # Mo.Si.Si.%11.1 1.234

(Al2O3)3*(SiO2)2-1 + * + Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.Si.O.O.%1.1 0.782

(Al2O3)3*(SiO2)2-2 # # # Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.Si.O.O.%2.1 0.735

(Al2O3)3*(SiO2)2-3 – * * Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.Si.O.O.%4.1 0.663

(Al2O3)3*(SiO2)2-4 + # – Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.Si.O.O.%6.1 0.621

(Al2O3)3*(SiO2)2-5 * – + Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.Si.O.O.%8.1 0.599

(Al2O3)3*(SiO2)2-6 # * * Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.Si.O.O.%10.1 0.575

(Al2O3)3*(SiO2)2-7 * # * Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.Si.O.O.%12.1 0.575

(Al2O3)3*(SiO2)2-8 – + * Al.Al.O.O.O.Al.Al.O.O.O.Al.Al.O.O.O.Si.O.O.Si.O.O.%14.1 0.575

Ni * + # Ni.%1 1.957

Pt # + – Pt.%1 1.863

SiC-1 * – + Si.C.3.4.%1 2.082

SiC-2 + # # Si.C.3.4.%6 1.319

SiC-3 – # * Si.C.3.4.%8 1.407

SiC-4 – – # Si.C.3.4.%10 1.329

SiC-5 # – # Si.C.3.4.%13 1.539

SiO2-1 – * * Si.O.O.1.%2 0.017

SiO2-2 + * – Si.O.O.1.%4 0.097

(continued)
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Table 12.3 (continued)

MEMS Split Codes for MEMS lgTC

1 2 3

SiO2-3 # – # Si.O.O.1.%8 0.223

SiO2-4 # # – Si.O.O.1.%12 0.320

SiO2-5 # + * Si.O.O.1.%16 0.400

SiO2-6 * – + Si.O.O.5.%1 0.140

SiO2-7 * * – Si.O.O.5.%2 0.107

SiO2-8 + # – Si.O.O.5.%3 0.134

SiO2-9 # * # Si.O.O.5.%4 0.176

SiO2-10 * # + Si.O.O.5.%7 0.255

Table 12.4 Lists of codes
and their correlation weights
calculated by the Monte Carlo
method for three random
splits of available data into
training set (it includes
sub-training, calibration, and
test set) and external
validation set

Split 1 Split 2 Split 3

Code CW(Code) Code CW(Code) Code CW(Code)

%1 3.97200 %1 2.84600 %1 1.52100

%10 0.0 %10 1.29900 %10 0.0

%11 2.57800 %11 1.64050 %11 0.0

%12 0.0 %12 0.21350 %12 0.0

%13 0.0 %13 0.0 %13 0.0

%14 −0.21050 %14 0.0 %2 0.0

%16 0.0 %2 0.0 %3 0.0

%2 0.0 %3 0.0 %4 0.0

%3 1.35400 %4 0.0 %5 0.0

%4 0.22100 %5 2.32700 %6 0.0

%5 0.0 %6 0.77300 %7 0.0

%6 1.87800 %7 2.39900 %8 0.0

%7 0.0 %8 0.42400 %9 0.0

%8 0.0 %9 0.0 1 0.27900

%9 0.0 1 −1.80000 2 0.0

1 −0.38550 2 0.0 3 0.0

2 1.39700 3 −0.30400 4 0.0

3 2.32100 4 −0.33650 5 0.0

4 2.24600 5 −4.49700 B 0.0

5 −1.54250 B 1.46050 C 0.0

B 0.0 C 5.26050 Al 2.34800

C 1.81750 Al 1.20750 As 0.0

Al 1.34150 Cr −0.80100 Cd 0.0

As 1.52500 N 1.88350 Cr 0.0

Cd 0.0 O 0.06450 Ga 0.0

Cr 2.72100 Mo 6.59900 N −0.20200

Ga 1.23950 Ni 0.0 O −2.07300

N 1.93350 Si −1.40950 Mo 0.0

O 0.12700 −0.27900 Ni 0.0

Mo 7.07400 Pt 0.0

Pt 0.0 Si −0.38350

Si −2.26050 0.52700

. −0.35950
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fullerene mutagenicity. In addition, Table 12.6 contains the data set on the muta-
genicity of fullerene under various conditions. The QFAR model is described in the
recent work [43] (Table 12.7).

12.2.1.3 Prediction of Membrane Damage by Various TiO2

Nanoparticles

Nano sized metal oxides are among the most important constituents of nanomaterials
group. Titanium dioxide represents the largest tonnage metal oxide. It has various
applications including cosmetics, paint and paper industry. Its characteristics make

Table 12.5 List of attributes
of fullerene C60 nanoparticles’
exposure and their codes

Attribute Codes of attributes (Ck) and their
meaning

Dark or
Irradiation

0 = Dark
1 = Irradiation

Mix S9 + = with Mix S9
− = without Mix S9

Dose (g/plate) A = 50
B = 100
C = 200
D = 400
E = 1000

Table 12.6 The list of
fullerene C60 nanoparticles
and data on the bacterial
reverse mutation test TA100

No. Set Dark or irradiation Mix s9 Dose TA100

1 Validation 0 + A 146

2 Training 0 + B 141

3 Training 0 + C 159

4 Validation 0 + D 160

5 Training 0 + E 177

6 Calibration 0 – A 143

7 Training 0 – B 139

8 Validation 0 – C 169

9 Training 0 – D 168

10 Training 0 – E 152

11 Calibration 1 + A 129

12 Training 1 + B 131

13 Validation 1 + C 138

14 Training 1 + D 137

15 Calibration 1 + E 160

16 Validation 1 – A 136

17 Training 1 – B 136

18 Training 1 – C 138

19 Calibration 1 – D 164

20 Calibration 1 – E 172
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this nanomaterial an important component of sunscreens protection against UV
radiation. Due to large amount of TiO2 that is manufactured an investigation of its
interactions with biological species are important since the obtained data could shed a
light on possible health and environmental effects of this very common nanomaterial.
Recent experimental studies provide information on the physicochemical features of
TiO2 nanoparticles and their influence on the membrane damage [44]. These are
(i) engineered size (nm); (ii) size in water suspension (nm); (iii) size in phosphate
buffered saline (BPS, nm); (iv) concentration (mg/L); and (v) zeta potential (mV). The
above-mentioned physicochemical features of TiO2 nanoparticles [44] were used to
build up computational model for membrane damage related to various TiO2

nanoparticles (characterized by different physicochemical features). Three various
splits of experimental data [44] into the training and test sets were examined in
computational studies. These splits obey the following principles (i) they are random;
and (ii) the ranges of the endpoint for the training and test sets are similar. Various
features applied into building up the model for membrane damage by TiO2

nanoparticles are displayed in the Table 12.8. Table 12.9 contains normalized rep-
resentation of physicochemical features of TiO2 nanoparticles. Experimental data

Table 12.7 The QFAR for the mutagenicity of the fullerene C60 under various conditions

ID Quasi-SMILES DCW(1,3) TA100expr TA100calc ΔTA100Expr−TA100calc
Training set

2 0 + B 2.93450 141.000 145.657 4.657
3 0 + C 3.37500 159.000 157.105 1.895
5 0 + E 3.68850 177.000 165.252 11.748
7 0 − B 2.87200 139.000 144.033 5.033
9 0 − D 3.49600 168.000 160.249 7.751
10 0 − E 3.62600 152.000 163.628 11.628
12 1 + B 2.30950 131.000 129.415 1.585
14 1 + D 2.93350 137.000 145.631 8.631
17 1 − B 2.24700 136.000 127.791 8.209
18 1 − C 2.68750 138.000 139.239 1.239
Calibration set

6 0 − A 2.43550 143.000 132.690 10.310
11 1 + A 1.87300 129.000 118.072 10.928
15 1 + E 3.06350 160.000 149.010 10.990
19 1 − D 2.87100 164.000 144.007 19.993
20 1 − E 3.00100 172.000 147.386 24.614
Validation set

1 0 + A 2.49800 146.000 134.314 11.686
4 0 + D 3.55850 160.000 161.873 −1.873
8 0 − C 3.31250 169.000 155.481 13.519
13 1 + C 2.75000 138.000 140.863 −2.863
16 1 − A 1.81050 136.000 116.448 19.552
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allow developing a computational model that links characteristics of studied nano-
materials with membrane damage. Table 12.10 contains the Codes of Impacts and
membrane damage values (MD, units/L) used to set-up definition of the
quasi-SMILES. Based on this definition the quasi-SMILES parameters were selected.
They are listed in the Table 12.11, together with the numerical data on three models
for membrane damage obtained for three random splits of data into the visible training
set and invisible validation set. The calculated values are in good agreement with
experimental data. This provides a strong evidence of the applicability of the applied
methodology to modeling environmental effects of nanomaterials.

12.2.1.4 Prediction of Membrane Damage by ZnO and TiO2

Nanoparticles

In many cases rather than dealing with just a single nanomaterial one needs to
consider a mixture of various species. Such a case was reported for investigations of

Table 12.8 Experimental data on physicochemical features of TiO2 nanoparticles, and their
denotations

ID A B C D E

Engineered size,
nm

Size in water,
nm

Size in PBS,
nm

Concentration,
mg/L

-Zeta potential,
mV

1 30 125 1250 25 10

2 30 102 987 25 12

3 30 281 1543 50 15

4 30 101 1045 50 9

5 30 299 1754 100 11

6 30 134 961 100 11

7 30 600 1876 200 12

8 30 298 1165 200 12

9 45 129 2567 25 9

10 45 129 2309 25 10

11 45 201 2431 50 9

12 45 201 2987 50 11

13 45 451 2941 100 11

14 45 451 1934 100 9

15 45 876 1965 200 11

16 45 876 2109 200 10

17 125 136 3215 25 11

18 125 136 2667 25 10

19 125 149 3782 50 10

20 125 149 2144 50 15

21 125 343 3871 100 12

22 125 343 2890 100 9

23 125 967 3813 200 9

24 125 967 2671 200 8
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the effect of metal oxides on membrane damage. Experimental data on the
physicochemical features of TiO2 and ZnO nanoparticles and their influence on the
membrane damage (Table 12.11) were published recently [44]. The experimental
study meticulously considered various features of nanoparticles that could affect
final outcome. Such characteristics include: (i) engineered size (nm); (ii) size in
water suspension (nm); (iii) size in phosphate buffered saline (PBS, nm); (iv) con-
centration (mg/L); and (v) zeta potential (mV). Such methodical study provides
solid fundation for development of computational model. All measured character-
istics of nanoparticles as well as presence of TiO2 and/or ZnO in process that
impacts on cells are the features which are applied in order to develop the quan-
titative features—activity relationships (QFAR). Membrane damage values related
to TiO2 and ZnO nanoparticles (characterized by different physicochemical fea-
tures) were examined as the endpoint. Analysis of the results of three random splits
of the experimental data into the sub-training, calibration, and test set and invisible

Table 12.9 Normalized representation of physicochemical features of TiO2 nanoparticles

ID A B C D E
Engineered
size, normalized

Size in water,
normalized

Size in PBS,
normalized

Concentration,
normalized

-Zeta potential,
normalized

1 0.39 0.21 0.46 0.22 0.78
2 0.39 0.19 0.40 0.22 0.87
3 0.39 0.36 0.52 0.33 1.00
4 0.39 0.19 0.42 0.33 0.74
5 0.39 0.37 0.56 0.56 0.83
6 0.39 0.22 0.40 0.56 0.83
7 0.39 0.66 0.59 1.00 0.87
8 0.39 0.37 0.44 1.00 0.87
9 0.48 0.22 0.73 0.22 0.74

10 0.48 0.22 0.68 0.22 0.78
11 0.48 0.28 0.70 0.33 0.74
12 0.48 0.28 0.82 0.33 0.83
13 0.48 0.52 0.81 0.56 0.83
14 0.48 0.52 0.60 0.56 0.74
15 0.48 0.91 0.61 1.00 0.83
16 0.48 0.91 0.64 1.00 0.78
17 1.00 0.22 0.86 0.22 0.83
18 1.00 0.22 0.75 0.22 0.78
19 1.00 0.23 0.98 0.33 0.78
20 1.00 0.23 0.64 0.33 1.00
21 1.00 0.42 1.00 0.56 0.87
22 1.00 0.42 0.80 0.56 0.74
23 1.00 1.00 0.99 1.00 0.74
24 1.00 1.00 0.75 1.00 0.70
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validation sets was performed in order to build up the QFAR approach. Table 12.12
contains the experimental data on features (impacts) of TiO2 and ZnO nanoparti-
cles, and their denotations. Table 12.13 contains the normalization of data on
physicochemical properties and builds up codes of impacts for the quasi-SMILES.
Table 12.14 presents the quasi-SMILES of representation of TiO2 and ZnO
nanoparticles and their experimental membrane damage. Table 12.15 contains the
correlation weights of codes of impacts for calculation of the optimal descriptor for
splits 1, 2, and 3 in the case of the TiO2 and ZnO nanoparticles.

12.2.1.5 Prediction of Membrane Damage by Nano Metal Oxides

Due to a large pool of available nano metal oxides and their industrial applications
numerous efforts have been carried out to link their characteristics to biological
outcome. Such studies have been performed experimentally and augmented by
details obtained using computational methods. Recently the experimental data on

Table 12.10 Codes of impacts and membrane damage values (MD, units/L)

ID Code for
engineered size

Code for size
in water

Code for
size in PBS

Code for
concentration

Code for
zeta potential

MD,
units/L

1 A3 B2 C4 D2 E7 0.90
2 A3 B1 C4 D2 E8 1.00
3 A3 B3 C5 D3 E9 0.75
4 A3 B1 C4 D3 E7 0.70
5 A3 B3 C5 D5 E8 1.04
6 A3 B2 C3 D5 E8 1.09
7 A3 B6 C5 D9 E8 1.15
8 A3 B3 C4 D9 E8 1.20
9 A4 B2 C7 D2 E7 0.90
10 A4 B2 C6 D2 E7 0.85

11 A4 B2 C7 D3 E7 0.75
12 A4 B2 C8 D3 E8 0.78
13 A4 B5 C8 D5 E8 1.40
14 A4 B5 C5 D5 E7 1.50
15 A4 B9 C6 D9 E8 1.35
16 A4 B9 C6 D9 E7 1.40
17 A9 B2 C8 D2 E8 1.25
18 A9 B2 C7 D2 E7 1.17
19 A9 B2 C9 D3 E7 1.00
20 A9 B2 C6 D3 E9 1.10
21 A9 B4 C9 D5 E8 1.50
22 A9 B4 C7 D5 E7 1.42
23 A9 B9 C9 D9 E7 1.60
24 A9 B9 C7 D9 E6 1.65
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Table 12.11 Numerical data on three models for membrane damage by TiO2 nanoparticles under
different conditions

Set Quasi-SMILES CW(2,20) Expr Calc Expr-calc ID

Split 1

Training A3B3C5D3E9 −0.52500 0.750 0.739 0.011 3
Training A3B2C3D5E8 2.14600 1.090 1.079 0.011 6
Training A3B3C4D9E8 3.33100 1.200 1.229 0.029 8
Training A4B2C7D2E7 1.04700 0.900 0.939 0.039 9
Training A4B2C7D3E7 −0.55100 0.750 0.735 0.015 11
Training A4B9C6D9E7 4.46750 1.400 1.374 0.026 16
Training A9B2C8D2E8 3.45650 1.250 1.245 0.005 17
Training A9B2C7D2E7 2.58250 1.170 1.134 0.036 18
Training A9B2C9D3E7 1.73050 1.000 1.026 0.026 19

Training A9B4C7D5E7 4.91450 1.420 1.431 0.011 22
Test A3B1C4D2E8 1.19900 1.000 0.958 0.042 2
Test A4B2C8D3E8 0.32300 0.780 0.847 0.067 12
Test A9B2C6D3E9 1.58250 1.100 1.007 0.093 20
Test A9B4C9D5E8 5.78850 1.500 1.542 0.042 21
Test A9B9C9D9E7 6.00300 1.600 1.570 0.030 23
Validation A3B2C4D2E7 0.37850 0.900 0.854 0.046 1
Validation A3B1C4D3E7 −0.52700 0.700 0.738 −0.038 4
Validation A3B3C5D5E8 2.98850 1.040 1.186 −0.146 5
Validation A3B6C5D9E8 3.18100 1.150 1.210 −0.060 7
Validation A4B2C6D2E7 1.79300 0.850 1.034 −0.184 10
Validation A4B5C8D5E8 4.25300 1.400 1.347 0.053 13
Validation A4B5C5D5E7 4.12500 1.500 1.331 0.169 14
Validation A4B9C6D9E8 4.59550 1.350 1.390 −0.040 15
Validation A9B9C7D9E6 5.10900 1.650 1.456 0.194 24
Split 2

Training A3B1C4D2E8 2.04350 1.000 0.984 0.016 2
Training A3B3C5D3E9 −0.00700 0.750 0.710 0.040 3
Training A3B3C5D5E8 2.84400 1.040 1.091 0.051 5
Training A3B2C3D5E8 2.49900 1.090 1.045 0.045 6
Training A3B6C5D9E8 3.63250 1.150 1.196 0.046 7
Training A4B2C7D2E7 1.94900 0.900 0.971 0.071 9
Training A4B2C8D3E8 0.37800 0.780 0.761 0.019 12
Training A4B5C8D5E8 5.67400 1.400 1.469 0.069 13
Training A4B5C5D5E7 5.51500 1.500 1.448 0.052 14
Training A4B9C6D9E7 4.87100 1.400 1.362 0.038 16
Training A9B2C8D2E8 3.68100 1.250 1.203 0.047 17
Training A9B2C9D3E7 2.54900 1.000 1.051 0.051 19
Training A9B4C9D5E8 5.68850 1.500 1.471 0.029 21

(continued)
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cell membrane damage measured by propidium iodide (PI) uptake were reported for
24 nano metal-oxides (ZrO2, ZnO, Yb2O3, Y2O3, WO3, TiO2, SnO2, SiO2, Sb2O3,
NiO, Ni2O3, MnO3, La2O3, In2O3, HfO2, Gd2O3, Fe3O4, Fe2O3, CuO, Cr2O3, CoO,

Table 12.11 (continued)

Set Quasi-SMILES CW(2,20) Expr Calc Expr-calc ID

Test A3B1C4D3E7 1.06550 0.700 0.853 0.153 4
Test A4B2C6D2E7 1.94900 0.850 0.971 0.121 10
Test A9B2C6D3E9 2.18750 1.100 1.003 0.097 20
Test A9B4C7D5E7 6.16350 1.420 1.534 0.114 22
Test A9B9C9D9E7 6.72100 1.600 1.609 0.009 23
Validation A3B2C4D2E7 1.46250 0.900 0.906 −0.006 1
Validation A3B3C4D9E8 4.08450 1.200 1.256 −0.056 8
Validation A4B2C7D3E7 0.69900 0.750 0.804 −0.054 11
Validation A4B9C6D9E8 4.59900 1.350 1.325 0.025 15
Validation A9B2C7D2E7 4.00200 1.170 1.245 −0.075 18
Validation A9B9C7D9E6 6.35950 1.650 1.560 0.090 24
Split 3

Training A3B1C4D2E8 2.70350 1.000 0.957 0.043 2
Training A3B3C5D3E9 0.72325 0.750 0.705 0.045 3
Training A3B1C4D3E7 1.00225 0.700 0.741 0.041 4
Training A3B3C5D5E8 4.08150 1.040 1.133 0.093 5
Training A3B2C3D5E8 3.44475 1.090 1.052 0.038 6
Training A4B2C7D2E7 2.54800 0.900 0.938 0.038 9
Training A4B2C8D3E8 1.38075 0.780 0.789 0.009 12
Training A4B5C8D5E8 6.52100 1.400 1.444 0.044 13
Training A4B5C5D5E7 6.62900 1.500 1.458 0.042 14
Training A4B9C6D9E7 5.82700 1.400 1.356 0.044 16
Training A9B4C9D5E8 6.52100 1.500 1.444 0.056 21
Training A9B9C9D9E7 8.19575 1.600 1.658 0.058 23
Training A9B9C7D9E6 8.04050 1.650 1.638 0.012 24
Test A3B2C4D2E7 1.66875 0.900 0.826 0.074 1
Test A3B3C4D9E8 3.65450 1.200 1.079 0.121 8
Test A4B9C6D9E8 6.41375 1.350 1.431 0.081 15
Test A9B2C8D2E8 4.22525 1.250 1.152 0.098 17
Test A9B2C6D3E9 2.47600 1.100 0.928 0.172 20
Test A9B4C7D5E7 5.88100 1.420 1.363 0.057 22
Validation A3B6C5D9E8 3.98150 1.150 1.120 0.030 7
Validation A4B2C6D2E7 1.96250 0.850 0.863 −0.013 10
Validation A4B2C7D3E7 1.43350 0.750 0.796 −0.046 11

Validation A9B2C7D2E7 4.27800 1.170 1.158 0.012 18
Validation A9B2C9D3E7 3.21675 1.000 1.023 −0.023 19
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Table 12.12 Experimental data on features (impacts) of TiO2 and ZnO nanoparticles, and their
denotations

ID NPs Engineered
size, nm

Size in
water, nm

Size in
PBS, nm

Concentration,
mg/L

-Zeta
potential, mV

A B C D E

1. TiO2 30 125 1250 25 10
2. – 30 102 987 25 12
3. – 30 281 1543 50 15
4. – 30 101 1045 50 9
5. – 30 299 1754 100 11
6. – 30 134 961 100 11
7. – 30 600 1876 200 12
8. – 30 298 1165 200 12
9. – 45 129 2567 25 9
10. – 45 129 2309 25 10
11. – 45 201 2431 50 9
12. – 45 201 2987 50 11
13. – 45 451 2941 100 11
14. – 45 451 1934 100 9
15. – 45 876 1965 200 11
16. – 45 876 2109 200 10
17. – 125 136 3215 25 11
18. – 125 136 2667 25 10
19. – 125 149 3782 50 10
20. – 125 149 2144 50 15
21. – 125 343 3871 100 12
22. – 125 343 2890 100 9
23. – 125 967 3813 200 9
24. – 125 967 2671 200 8
25. ZnO 50 55 158 25 55
26. – 60 68 208 25 45
27. – 70 71 198 25 50

28. – 50 56 258 50 50
29. – 60 78 386 50 50
30. – 70 95 279 50 50
31. – 50 168 314 100 25
32. – 60 151 385 100 30
33. – 70 172 354 100 29
34. – 1000 1245 1319 25 44
35. – 1200 1268 1325 25 33
36. – 1500 1198 1381 25 25
37. – 1000 1268 1459 50 30
38. – 1200 1301 1587 50 32

(continued)
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Table 12.12 (continued)

ID NPs Engineered
size, nm

Size in
water, nm

Size in
PBS, nm

Concentration,
mg/L

-Zeta
potential, mV

A B C D E

39. – 1500 1283 1523 50 29
40. – 1000 1243 1925 100 20
41. – 1200 1124 1805 100 21
42. – 1500 1269 2109 100 21

Table 12.13 The
normalization of data on
physicochemical properties
and build up codes of impacts
for the quasi-SMILES

ID NPs A B C D E

1 T A0 B1 C3 D2 E2
2 T A0 B1 C2 D2 E3
3 T A0 B2 C4 D3 E3
4 T A0 B1 C2 D3 E2
5 T A0 B2 C4 D5 E3
6 T A0 B1 C2 D5 E3
7 T A0 B4 C5 D9 E3
8 T A0 B2 C3 D9 E3
9 T A0 B1 C6 D2 E2
10 T A0 B1 C6 D2 E2
11 T A0 B1 C6 D3 E2
12 T A0 B1 C7 D3 E3

13 T A0 B3 C7 D5 E3
14 T A0 B3 C5 D5 E2
15 T A0 B6 C5 D9 E3
16 T A0 B6 C5 D9 E2
17 T A1 B1 C8 D2 E3
18 T A1 B1 C7 D2 E2
19 T A1 B1 C9 D3 E2
20 T A1 B1 C5 D3 E3
21 T A1 B2 C9 D5 E3
22 T A1 B2 C7 D5 E2
23 T A1 B7 C9 D9 E2
24 T A1 B7 C7 D9 E2
25 Z A0 B0 C0 D2 E9
26 Z A0 B0 C0 D2 E8
27 Z A0 B0 C0 D2 E9
28 Z A0 B0 C1 D3 E9
29 Z A0 B0 C1 D3 E9
30 Z A0 B1 C1 D3 E9
31 Z A0 B1 C1 D5 E5

(continued)
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Co3O4, CeO2, Al2O3) [45]. These data were used to develop computational models.
The experimental results on this endpoint related to four doses (50, 100, 150, and
200 μg/mL) and seven exposure time (from 1 to 7 h) for all 24 nano metal-oxides
were examined. Figure 12.9 contains an example of the representation for (i) nano
metal-oxide; and (ii) conditions of its impact upon cell membrane. The data set
contains the numerical values of cell membrane damage which are characterized by
dispersion <10 % [46].

12.2.2 Principles of Building up Optimal Descriptors

An experience acquired during developments of QSAR/QSPR methods applied to
various nanomaterials allows establishing useful principles applied to obtaining
optimal descriptors. Few key rules are given below:

(i) One should collect information on all features (impacts) which are able
to influence biochemical behavior of a complex system;

(ii) One should define preliminary hierarchy of the above features;
(iii) The traditional paradigm of the QSPR/QSAR analysis “End-

point = Mathematical function of the molecular structure” must be
replaced by paradigm “Endpoint = Mathematical function of all avail-
able eclectic data”. It is to be noted, that the “molecular structure” can
represent a “specific eclectic data”;

(iv) Rational discrimination of features of the complex system in accordance
with their frequencies (in the visible training set and invisible validation
set) and their information contributions (correlation weights) should be
carried out bymeans of comparison of series ofMonte Carlo optimizations

Table 12.13 (continued) ID NPs A B C D E

32 Z A0 B1 C1 D5 E6
33 Z A0 B1 C1 D5 E5
34 Z A6 B9 C3 D2 E8
35 Z A8 B9 C3 D2 E6
36 Z A9 B9 C3 D2 E5
37 Z A6 B9 C4 D3 E6
38 Z A8 B9 C4 D3 E6
39 Z A9 B9 C4 D3 E5
40 Z A6 B9 C5 D5 E4
41 Z A8 B8 C4 D5 E4
42 Z A9 B9 C5 D5 E4

Minimum 30 55 158 25 8
Maximum 1500 1301 3871 200 55
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Table 12.14 The
quasi-SMILES of
representation of TiO2 and
ZnO nanoparticles and their
experimental membrane
damage

ID quasi-SMILES Membrane damage (units/L)

1 TA0B1C3D2E2 0.90
2 TA0B1C2D2E3 1.00
3 TA0B2C4D3E3 0.75
4 TA0B1C2D3E2 0.70
5 TA0B2C4D5E3 1.04
6 TA0B1C2D5E3 1.09
7 TA0B4C5D9E3 1.15
8 TA0B2C3D9E3 1.20
9 TA0B1C6D2E2 0.90
10 TA0B1C6D2E2 0.85
11 TA0B1C6D3E2 0.75
12 TA0B1C7D3E3 0.78

13 TA0B3C7D5E3 1.40
14 TA0B3C5D5E2 1.50
15 TA0B6C5D9E3 1.35
16 TA0B6C5D9E2 1.40
17 TA1B1C8D2E3 1.25
18 TA1B1C7D2E2 1.17
19 TA1B1C9D3E2 1.00
20 TA1B1C5D3E3 1.10
21 TA1B2C9D5E3 1.50
22 TA1B2C7D5E2 1.42
23 TA1B7C9D9E2 1.60
24 TA1B7C7D9E2 1.65
25 ZA0B0C0D2E9 1.10
26 ZA0B0C0D2E8 1.03
27 ZA0B0C0D2E9 1.08
28 ZA0B0C1D3E9 1.00
29 ZA0B0C1D3E9 0.92
30 ZA0B1C1D3E9 0.99
31 ZA0B1C1D5E5 1.12
32 ZA0B1C1D5E6 1.25
33 ZA0B1C1D5E5 1.19
34 ZA6B9C3D2E8 1.58
35 ZA8B9C3D2E6 1.69
36 ZA9B9C3D2E5 1.59
37 ZA6B9C4D3E6 0.92
38 ZA8B9C4D3E6 0.95
39 ZA9B9C4D3E5 0.84
40 ZA6B9C5D5E4 1.25
41 ZA8B8C4D5E4 1.39
42 ZA9B9C5D5E4 1.45
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Table 12.15 Correlation weights of codes of impacts for calculation of the optimal descriptor for
splits 1, 2, and 3 in the case of the TiO2 and ZnO nanoparticles

Ck CW(Ck) Frequency of Ck in
training set

Frequency of Ck in
calibration set

Frequency of Ck in
test set

Split 1

A0 0.49800 6 11 3
A1 1.36250 5 1 1
A6 1.18950 3 0 0
A8 1.70300 1 1 1
A9 0.92600 2 1 0
B0 0.68250 1 2 0
B1 0.50500 6 4 3
B2 0.54600 2 1 1
B3 0.0 0 2 0
B4 0.0 0 1 0
B6 1.50400 1 1 0
B7 2.00500 1 1 0
B8 0.0 0 1 0
B9 1.07100 6 1 1
C0 0.90400 1 1 0
C1 0.54900 1 3 0
C2 0.0 0 2 0
C3 2.00200 4 0 1
C4 0.55200 3 2 0
C5 1.45300 3 4 0
C6 0.0 0 0 3
C7 1.55500 3 2 0
C9 1.27900 2 0 1
D2 1.18450 5 2 3
D3 0.50300 6 2 1
D5 2.00300 3 7 1
D9 1.52100 3 3 0

E2 1.00100 5 3 3
E3 0.93000 4 5 1
E4 1.09500 1 2 0
E5 1.45400 3 1 0
E6 0.87400 2 0 1
E8 1.05100 1 1 0
E9 1.27800 1 2 0
T 1.10950 9 8 4
Z 0.98450 8 6 1
Split 2

A0 −0.13550 11 8 3
A1 2.05500 4 2 2

(continued)
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Table 12.15 (continued)

Ck CW(Ck) Frequency of Ck in
training set

Frequency of Ck in
calibration set

Frequency of Ck in
test set

A6 0.0 2 0 0
A8 0.0 0 2 0
A9 0.0 1 2 0
B0 0.0 2 1 1
B1 −0.90000 7 5 3
B2 0.0 2 2 1
B3 0.0 1 1 0
B6 0.0 2 0 0
B7 0.0 1 1 0
B8 0.0 0 1 0
B9 0.40400 3 3 0
C0 0.0 1 0 1
C1 0.63650 3 2 1
C2 0.0 1 1 1
C3 0.99150 3 1 0
C4 0.0 1 4 0
C5 0.74500 4 2 0
C6 0.0 1 1 0
C7 0.0 2 3 0
C8 0.0 0 0 1
C9 0.0 2 0 1
D2 1.79700 7 1 2
D3 0.05950 4 5 1
D5 2.53950 4 6 2
D9 2.84700 3 2 0
E2 0.90100 8 2 1
E3 0.98750 3 6 2
E4 0.0 1 2 0
E5 0.0 2 1 1
E6 0.0 0 2 0
E8 0.0 2 0 0
E9 0.0 2 1 1
T 0.40100 11 8 3
Z 1.91150 7 6 2
Split 3

A0 −0.20300 13 4 6
A1 0.0 0 6 0
A6 1.49900 3 0 0
A8 2.57600 1 0 1
A9 1.75200 2 1 0

(continued)
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with various distributions of the data into the visible training set and
invisible validation set;

(v) The validation of the predictive potential of the preferable rational model
should be carried out with quasi-SMILES of the validation set. This
quasi-SMILES are invisible during building up the model.

Table 12.15 (continued)

Ck CW(Ck) Frequency of Ck in
training set

Frequency of Ck in
calibration set

Frequency of Ck in
test set

B0 0.10400 4 0 1
B1 −0.30300 5 6 3
B2 0.0 0 3 1
B3 3.04900 2 0 0
B4 1.10300 1 0 0
B6 2.38450 1 0 1
B7 0.0 0 1 0
B8 2.33350 1 0 0
B9 1.21550 5 1 1
C0 0.34900 3 0 0
C1 2.05400 4 0 2
C2 −0.29700 1 1 0
C3 0.72400 1 3 0
C4 −0.29600 3 0 2
C5 1.80100 5 1 1
C6 0.64250 1 0 2
C7 1.40300 1 3 0
C8 0.0 0 1 0
C9 0.0 0 2 0
D2 1.72500 5 3 1
D3 −0.21250 5 3 4
D5 3.50200 7 3 1
D9 3.20300 2 2 1
E2 1.52500 4 4 2
E3 1.14900 2 6 2
E4 −0.22100 3 0 0
E5 0.68650 2 1 1
E6 1.14900 2 0 1
E8 3.02900 2 0 0
E9 2.52900 4 0 1
T 0.85400 6 10 4
Z 1.69700 13 1 3
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12.2.3 Calculation of the Optimal Descriptors

The general scheme of calculation of optimal descriptors is the following:

DCW quasi− SMILES, Threshold, Nepoch
� �

= ∑CW Ckð Þ ð12:4Þ

where Threshold is coefficient for classification of various features extracted from
quasi-SMILES into two classes: (i) active (in this case correlation weight is
involved in the modeling process); and (ii) rare (in this case correlation weight is
not involved in the modeling process); the Nepoch is the number of epochs of the
Monte Carlo optimization which gives the best statistical quality for the calibration
set; Ck is a symbol of quasi-SMILES which is representation of a feature taken into
account for this model. Having numerical data on correlation weights of features
which give the preferable statistics for the calibration set, one can calculate (using
the training set) the model

Endpoint=C0 +C1*DCW quasi−SMILES, Threshold, Nepoch
� � ð12:5Þ

The predictive potential of the model should be checked up with external val-
idation set (quasi-SMILES which are invisible during build up the model).

12.3 Results and Discussion

12.3.1 QFPR for Thermal Conductivity of MEMS

Thermal conductivity [W/m/K] of nanomaterials was examined as endpoint in
recent works [47, 48] where approach similar to described here has been used.
Technological attributes (Table 12.2) are the basis of the models. Table 12.3
contains the codes for the technological attributes, in fact these are basis for the
quasi-SMILES. Table 12.4 contains the correlation weights for technological

Fig. 12.9 Building up the representation of impact of Fe3O4 upon cell membrane according to
codes of Table 12.16; dose is 200 μg/mL (“A”) and exposure time is five hours (“5”)
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attributes which were obtained for three different splits into the sub-training, cali-
bration, test, and validation sets. The models of decimal logarithm of thermal
conductivity (lgTC) are the following:

LgTC=0.7914 ±0.009ð Þ+0.1556 ±0.0030ð Þ*DCW 1, 44ð Þ ð12:6Þ

n= 11, r2 = 0.9752, q2 = 0.9628, s = 0.097, F = 355 sub-training setð Þ
n= 14, r2 = 0.7977, s = 0.373 calibration setð Þ
n= 13, r2 = 0.9601, s = 0.419 test setð Þ
n= 13, r2 = 0.8229, s = 0.351 validation setð Þ

LgTC=0.8914 ±0.010ð Þ+0.1380 ±0.0017ð Þ*DCW 1, 55ð Þ ð12:7Þ

n= 12, r2 = 0.9598, q2 = 0.9490, s = 0.120, F= 239 sub-training setð Þ
n= 15, r2 = 0.8505, s = 0.239 calibration setð Þ
n= 12, r2 = 0.8811, s = 0.317 test setð Þ
n= 12, r2 = 0.9295, s = 0.456 validation setð Þ

LgTC=0.8700 ±0.0284ð Þ+0.2283 ±0.0145ð Þ*DCW 3, 57ð Þ ð12:8Þ

n= 14, r2 = 0.6742, q2 = 0.5570, s = 0.327, F= 49 sub-training setð Þ
n= 13, r2 = 0.8463, s = 0.379 calibration setð Þ
n= 12, r2 = 0.8508, s = 0.247 test setð Þ
n= 12, r2 = 0.6751, s = 0.321 validation setð Þ

The calculations were carried out for three various splits into the sub-training,
calibration, test, and external (invisible) validation sets. The statistical quality of
these models is different, but can be estimated as satisfactory for all three splits.

12.3.2 QFAR for Mutagenicity (TA100) of Fullerene

Table 12.5 contains the eclectic data related to mutagenicity of fullerene under
different conditions. Table 12.6 contains quasi-SMILES which were used as the
basis of the QFAR for the mutagenicity of fullerene. The model calculated with
these quasi-SMILES are the following:

TA100= 69.3980 ±7.2079ð Þ+25.9872 ±2.5129ð Þ*DCW 1, 3ð Þ ð12:9Þ
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n= 10, r2 = 0.7549, q2 = 0.5709, s = 7.67, F= 25 Training setð Þ
n= 5, r2 = 0.8987, s = 18.4 Calibration setð Þ
n= 5, r2 = 0.6968, s = 10.9 Validation setð Þ

Table 12.7 contains the details related to the model calculated with Eq. 12.9.
Unfortunately the estimation of the approach with different splits into the

training set and calibration set together with external validation set is impossible
since available data are limited. However, the approach can be extended to other
similar data when those will become available.

12.3.3 QFAR for Membrane Damage by Various TiO2
Nanoparticles

Table 12.8 contains experimental data related to membrane damage by TiO2

nanoparticles. In order to build up quasi-SMILES for this eclectic system these data
were normalized and discriminated into nine categories. The formula for the nor-
malization is the following:

Norm ðXkÞ= minXk +Xk

minXk +maxXk
ð12:10Þ

where Xk is a physicochemical parameter (Table 12.8).
Table 12.9 contains the normalized data on the physicochemical parameters.

Table 12.10 contains basis to build up quasi-SMILES.
Predictive models for the membrane damage by TiO2 nanoparticles (MD,

units/L) calculated for three random splits are the following:

MD=0.8054 ±0.0044ð Þ+0.1273 ±0.0014ð Þ*DCW 2, 20ð Þ ð12:11Þ

n= 10, r2 = 0.9893, q2 = 0.9845, RMSE=0.025, F= 741 training setð Þ
n= 5, r2 = 0.9647, RMSE=0.066 test setð Þ
n= 9, r2 = 0.8679, RMSE=0.115 validation setð Þ

MD=0.7108 ±0.0084ð Þ+0.1336 ±0.0025ð Þ*DCW 2, 19ð Þ ð12:12Þ

n= 13, r2 = 0.9639, q2 = 0.9495, RMSE=0.049, F= 294 training setð Þ
n= 5, r2 = 0.9263, RMSE=0.123 test setð Þ
n= 6, r2 = 0.9748, RMSE=0.054 validation setð Þ

MD=0.6128 ±0.0080ð Þ+0.1275 ±0.0016ð Þ*DCW 2, 21ð Þ ð12:13Þ
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n= 13, r2 = 0.9792, q2 = 0.9718, RMSE=0.049, F= 518 training setð Þ
n= 6, r2 = 0.8959, RMSE=0.118 test setð Þ
n= 5, r2 = 0.9925, RMSE=0.025 validation setð Þ

Table 12.11 contains the numerical data related to models calculated with
Eqs. 12.11–12.13 together with the distribution into the training set, test set, and
validation set.

12.3.4 QFAR for Membrane Damage by Means of Various
TiO2 and ZnO Nanoparticles

The scheme of building up quasi-SMILES for the case TiO2 together with ZnO is in
fact the same scheme which is used for solely TiO2 nanoparticles (Tables 12.12,
12.13 and 12.14), but with special symbols (‘T’ and ‘Z’ in Table 12.14) in order to
define two kinds of the nanoparticles (i.e. TiO2 and ZnO). The translation of the
scheme of building up the model for TiO2 (solely) into the scheme of building up
the model for TiO2 and ZnO is demonstration of the possibility of connecting of
two eclectic systems into one generalized model. The QFAR models for the
membrane damage (MD) for the case TiO2 together with ZnO, calculated with three
random splits are the following:

Split 1

MD= − 0.3708 ±0.0499ð Þ+0.2378 ±0.0081ð Þ*DCW 1, 5ð Þ ð12:14Þ

n= 17, r2 = 0.8131, q2 = 0.7582, s = 0.114, F= 65 sub-training setð Þ
n= 14, r2 = 0.8062, s = 0.256 calibration setð Þ
n= 5, r2 = 0.9952, s = 0.241, test setð Þ
n= 6, r2 = 0.8362, s = 0.244, validation setð Þ

Split 2

MD=0.5784 ±0.0187ð Þ+0.1596 ±0.0051ð Þ*DCW 3, 19ð Þ ð12:15Þ

n= 18, r2 = 0.7845, q2 = 0.7308, s = 0.129, F= 58 sub-training setð Þ
n= 14, r2 = 0.8197, s = 0.110 calibration setð Þ
n= 5, r2 = 0.9873, s = 0.056, test setð Þ
n= 5, r2 = 0.7159, s = 0.157, validation setð Þ
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Split 3

MD=0.4544 ±0.0209ð Þ+0.0974 ±0.0027ð Þ*DCW 1, 13ð Þ ð12:16Þ

n= 19, r2 = 0.9255, q2 = 0.8932, s = 0.068, F= 211 sub-training setð Þ
n= 11, r2 = 0.6693, s = 0.354 calibration setð Þ
n= 7, r2 = 0.8866, s = 0.102, test setð Þ
n= 5, r2 = 0.6763, s = 0.318, validation setð Þ

Table 12.15 contains the correlation weights for the models calculated with
Eqs. 12.14–12.16.

12.3.5 QFAR for Cellular Membrane Damage
(CMD) by Metal Oxide Nanoparticles

Table 12.16 contains the eclectic data used as basis for the QFAR model.
Table 12.17 contains the correlation weights for development of the model.
Table 12.18 contains available data represented by quasi-SMILES and distribution

Table 12.16 The list of Ck which are used for representation of nano metal-oxides and conditions
of their action. For example, the “Zn.O.A2” means (i) nano metal-oxide ZnO; (ii) dose is
200 μg/mL; and (iii) exposure time is 2 h

Ck Comment

Chemical elements
Al, Ce, Co, Cr, Cu, Fe, Gd, Hf, O, In, La, Mn, Ni, W, Sb, Si, Y, Sn, Ti, Yb, Zn,
and Zr
Separator for chemical elements (dot)
“.”
Doses
“A” 200 μg/mL
“B” 150 μg/mL
“C” 100 μg/mL
“D” 50 μg/mL
Exposure time
“1” 1 h
“2” 2 h
“3” 3 h
“4” 4 h
“5” 5 h
“6” 6 h
“7” 7 h
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into the sub-training set, calibration set, and validation set (Split 1). In order to
validate the approach five random splits were examined. The models are the
following:

Table 12.17 Correlation
weights, CW(Ck), for
calculation of DCW(T,Nepoch)
with Eq. 12.17

Ck CW(Ck)

Split 1 Split 2 Split 3 Split 4 Split 5

Al 1.37800 1.25100 1.31450 1.19250 1.12900
Ce 3.12300 2.80850 2.49500 3.00200 2.56550
Co 0.18850 −0.00300 0.18350 0.00200 0.00200
Cr 0.80950 0.81750 0.74700 0.37800 0.68650
Cu 4.62100 4.81050 3.99600 5.18250 4.06650
Fe 0.43950 0.37200 0.37200 0.12700 0.25100
Gd 1.06650 0.87300 0.93250 0.80850 0.81050
Hf 3.81650 3.50400 3.12300 3.50300 3.12700
O 0.49600 0.81450 0.24700 1.00200 0.56650
In 1.37300 1.12900 1.31450 1.12500 1.06550
La 0.87100 0.56350 0.68850 0.55950 0.68750
Mn 2.56450 1.93650 2.37600 2.00400 1.93950

Ni 0.99700 1.99500 0.99500 2.62100 1.87500
W 1.49800 1.12600 1.87500 0.87300 1.49700
Sb 0.56750 0.44250 0.62500 0.18950 0.56750
Si 3.05950 2.81450 2.62500 2.93550 2.43550
Y 1.37900 1.18250 1.25400 1.00100 0.99800
Sn 3.31750 3.06350 2.68550 3.18750 2.68850
Ti 3.99600 3.69050 3.50200 3.62800 3.00500
Yb 1.25200 1.06250 1.19150 0.94250 1.00100
Zn 5.94150 6.12300 4.87200 6.37400 4.99600
Zr 3.25000 3.18850 2.63000 3.31150 2.69050

0.12700 0.05950 0.12500 0.12600 0.12300
A 1.55950 1.75300 1.55850 0.94150 1.74700
B 1.31650 1.43450 0.94150 0.62700 1.49600
C 1.30950 1.49900 1.06250 0.44150 1.56750
D 1.55850 1.81050 1.37200 0.74900 1.62500
1 1.93750 0.99600 0.75400 1.31250 1.24600
2 1.87100 1.00100 0.87600 1.43850 1.44150
3 2.00500 1.37300 1.12100 1.74900 1.69050
4 1.56250 0.87600 0.62600 1.06650 1.25200
5 1.93650 1.31150 0.93550 1.62300 1.56050
6 1.50100 0.75000 0.56350 1.19150 1.12200
7 2.25400 1.68850 1.37300 1.87700 1.68250
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Table 12.18 The model for split 1: (i) representation of the nano metal-oxides; (ii) distribution
into the sub-training, calibration and validation sets; (iii) the numerical data on the DCW(1,10);
and (iv) numerical data for cell membrane damage (CMD) [1]

ID Set Quasi-SMILES DCW(1,10) CMDExpr CMDCalc

3 Sub-training Zn.O.A2 10.12200 −2.125 −2.101
4 Sub-training Yb.Yb.O.O.O.A1 8.12400 −3.500 −2.978
5 Sub-training Y.Y.O.O.O.A1 8.37800 −2.750 −2.867
6 Sub-training Y.Y.O.O.O.A3 8.44550 −3.000 −2.837
7 Sub-training Y.Y.O.O.O.A5 8.37700 −3.000 −2.867
9 Sub-training Y.Y.O.O.O.A7 8.69450 −3.000 −2.728
11 Sub-training Sn.O.O.A4 7.81250 −3.000 −3.115
12 Sub-training Sn.O.O.A5 8.18650 −3.000 −2.951
14 Sub-training Si.O.O.A2 7.86300 −3.250 −3.093
15 Sub-training Si.O.O.A3 7.99700 −3.125 −3.034
17 Sub-training Si.O.O.A5 7.92850 −3.125 −3.064
19 Sub-training Sb.Sb.O.O.O.A2 6.68850 −3.125 −3.609
20 Sub-training Sb.Sb.O.O.O.A4 6.38000 −2.875 −3.744
21 Sub-training Sb.Sb.O.O.O.A7 7.07150 −3.125 −3.440
22 Sub-training La.La.O.O.O.A7 7.67850 −2.625 −3.174
23 Sub-training Hf.O.O.A6 8.25000 −2.875 −2.923
24 Sub-training Gd.Gd.O.O.O.A2 7.68650 −3.000 −3.170
26 Sub-training Gd.Gd.O.O.O.A4 7.37800 −3.125 −3.306
27 Sub-training Gd.Gd.O.O.O.A5 7.75200 −3.125 −3.142
29 Sub-training Gd.Gd.O.O.O.A7 8.06950 −2.750 −3.002
31 Sub-training Fe.Fe.Fe.O.O.O.O.A5 7.68750 −3.500 −3.170
32 Sub-training Cu.O.A1 8.86800 −3.125 −2.652
33 Sub-training Cr.Cr.O.O.O.A1 7.23900 −2.875 −3.367
34 Sub-training Cr.Cr.O.O.O.A2 7.17250 −3.000 −3.396
35 Sub-training Cr.Cr.O.O.O.A6 6.80250 −4.000 −3.559
37 Sub-training Co.O.A7 4.75200 −5.000 −4.459
38 Sub-training Co.Co.Co.O.O.O.O.A6 6.49900 −3.000 −3.692
39 Sub-training Ce.O.O.A4 7.61800 −4.500 −3.200
40 Sub-training Yb.Yb.O.O.O.B6 7.44450 −2.875 −3.277
42 Sub-training Y.Y.O.O.O.B2 8.06850 −3.000 −3.003
43 Sub-training Y.Y.O.O.O.B5 8.13400 −2.750 −2.974
44 Sub-training Y.Y.O.O.O.B7 8.45150 −3.125 −2.835
45 Sub-training W.O.O.O.B1 6.74800 −3.125 −3.582
46 Sub-training W.O.O.O.B2 6.68150 −3.500 −3.612
47 Sub-training W.O.O.O.B6 6.31150 −4.575 −3.774
48 Sub-training W.O.O.O.B7 7.06450 −3.000 −3.443
51 Sub-training Sn.O.O.B4 7.56950 −3.125 −3.222
53 Sub-training Si.O.O.B6 7.25000 −3.000 −3.362
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Table 12.18 (continued)

ID Set Quasi-SMILES DCW(1,10) CMDExpr CMDCalc

55 Sub-training Sb.Sb.O.O.O.B1 6.51200 −4.625 −3.686
56 Sub-training Sb.Sb.O.O.O.B2 6.44550 −4.375 −3.715
58 Sub-training Gd.Gd.O.O.O.B7 7.82650 −3.550 −3.109
59 Sub-training Fe.Fe.Fe.O.O.O.O.B7 7.76200 −3.125 −3.137
61 Sub-training Cu.O.B1 8.62500 −2.875 −2.758
62 Sub-training Cu.O.B2 8.55850 −3.000 −2.788
63 Sub-training Cu.O.B5 8.62400 −1.500 −2.759
65 Sub-training Zr.O.O.C2 7.80350 −3.125 −3.119
66 Sub-training Zr.O.O.C3 7.93750 −3.125 −3.060
67 Sub-training Zr.O.O.C6 7.43350 −3.000 −3.281
68 Sub-training Zr.O.O.C7 8.18650 −3.000 −2.951
70 Sub-training Y.Y.O.O.O.C7 8.44450 −2.875 −2.838
71 Sub-training W.O.O.O.C6 6.30450 −4.500 −3.777
74 Sub-training Ti.O.O.C3 8.68350 −2.875 −2.733
75 Sub-training Ti.O.O.C4 8.24100 −2.875 −2.927
76 Sub-training Ti.O.O.C6 8.17950 −2.875 −2.954
78 Sub-training Sn.O.O.C7 8.25400 −3.000 −2.921
79 Sub-training Si.O.O.C7 7.99600 −3.125 −3.035
80 Sub-training Ni.O.C1 4.99400 −3.550 −4.352
83 Sub-training Ni.O.C5 4.99300 −4.750 −4.353
84 Sub-training Ni.O.C6 4.55750 −4.875 −4.544
85 Sub-training In.In.O.O.O.C2 8.04950 −3.000 −3.011
89 Sub-training In.In.O.O.O.C6 7.67950 −3.000 −3.173
92 Sub-training Gd.Gd.O.O.O.C1 7.50300 −3.000 −3.251
93 Sub-training Fe.Fe.O.O.O.C2 6.18250 −3.625 −3.831
94 Sub-training Fe.Fe.O.O.O.C3 6.31650 −3.375 −3.772
96 Sub-training Cu.O.C1 8.61800 −3.000 −2.761
97 Sub-training Cu.O.C6 8.18150 −3.250 −2.953
98 Sub-training Cr.Cr.O.O.O.C6 6.55250 −4.000 −3.668
100 Sub-training Co.Co.Co.O.O.O.O.C4 6.31050 −4.000 −3.774
101 Sub-training Ce.O.O.C3 7.81050 −2.750 −3.116
102 Sub-training Ce.O.O.C6 7.30650 −2.875 −3.337
104 Sub-training Zr.O.O.D7 8.43550 −3.000 −2.842
105 Sub-training Yb.Yb.O.O.O.D1 8.12300 −2.875 −2.979
106 Sub-training Yb.Yb.O.O.O.D2 8.05650 −3.000 −3.008
107 Sub-training Yb.Yb.O.O.O.D7 8.43950 −2.875 −2.840
109 Sub-training Y.Y.O.O.O.D4 8.00200 −2.750 −3.032
110 Sub-training Y.Y.O.O.O.D5 8.37600 −3.000 −2.868
111 Sub-training Y.Y.O.O.O.D6 7.94050 −2.875 −3.059
112 Sub-training W.O.O.O.D7 7.30650 −2.750 −3.337

(continued)
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Table 12.18 (continued)

ID Set Quasi-SMILES DCW(1,10) CMDExpr CMDCalc

113 Sub-training Sn.O.O.D4 7.81150 −3.125 −3.116
114 Sub-training Sn.O.O.D5 8.18550 −3.000 −2.951
119 Sub-training Sb.Sb.O.O.O.D2 6.68750 −3.500 −3.609
120 Sub-training Mn.O.O.O.D5 8.05550 −3.000 −3.008
121 Sub-training La.La.O.O.O.D2 7.29450 −4.150 −3.343
122 Sub-training La.La.O.O.O.D3 7.42850 −3.675 −3.284
123 Sub-training La.La.O.O.O.D6 6.92450 −3.125 −3.505
124 Sub-training La.La.O.O.O.D7 7.67750 −2.875 −3.174
125 Sub-training In.In.O.O.O.D2 8.29850 −2.875 −2.902
126 Sub-training In.In.O.O.O.D3 8.43250 −3.000 −2.843
127 Sub-training In.In.O.O.O.D4 7.99000 −2.875 −3.037
128 Sub-training In.In.O.O.O.D5 8.36400 −3.125 −2.873
130 Sub-training Hf.O.O.D1 8.68550 −2.750 −2.732
131 Sub-training Gd.Gd.O.O.O.D7 8.06850 −3.525 −3.003
133 Sub-training Co.Co.Co.O.O.O.O.D4 6.55950 −3.875 −3.665
134 Sub-training Ce.O.O.D2 7.92550 −2.875 −3.066
135 Sub-training Ce.O.O.D3 8.05950 −2.750 −3.007
137 Sub-training Al.Al.O.O.O.D2 8.30850 −2.875 −2.897
16 Calibration Si.O.O.A4 7.55450 −3.125 −3.228
25 Calibration Gd.Gd.O.O.O.A3 7.82050 −3.050 −3.112
28 Calibration Gd.Gd.O.O.O.A6 7.31650 −3.000 −3.333
30 Calibration Fe.Fe.Fe.O.O.O.O.A2 7.62200 −2.875 −3.199
36 Calibration Co.O.A5 4.43450 −4.375 −4.598
41 Calibration Yb.Yb.O.O.O.B7 8.19750 −2.875 −2.946
50 Calibration Sn.O.O.B3 8.01200 −3.125 −3.028
57 Calibration Ni.O.B3 5.06850 −3.575 −4.320
69 Calibration Yb.Yb.O.O.O.C7 8.19050 −2.875 −2.949
72 Calibration W.O.O.O.C7 7.05750 −3.000 −3.447
77 Calibration Ti.O.O.C7 8.93250 −2.500 −2.623
81 Calibration Ni.O.C3 5.06150 −3.800 −4.323
82 Calibration Ni.O.C4 4.61900 −4.500 −4.517
86 Calibration In.In.O.O.O.C3 8.18350 −3.125 −2.952
87 Calibration In.In.O.O.O.C4 7.74100 −2.875 −3.147
88 Calibration In.In.O.O.O.C5 8.11500 −3.000 −2.982
90 Calibration Hf.O.O.C3 8.50400 −2.800 −2.812
91 Calibration Hf.O.O.C7 8.75300 −2.900 −2.702
115 Calibration Sn.O.O.D6 7.75000 −3.000 −3.143
132 Calibration Fe.Fe.Fe.O.O.O.O.D7 8.00400 −2.625 −3.031
136 Calibration Ce.O.O.D7 8.30850 −3.000 −2.897
1 Validation Zr.O.O.A7 8.43650 −3.000 −2.841

(continued)
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Split 1

CMD= − 6.5448 ±0.0455ð Þ+0.4390 ±0.0057ð Þ*DCWð1, 10Þ ð12:17Þ

n= 96, r2 = 0.5213, q2 = 0.4947, s = 0.392, F= 102 sub-training setð Þ
n= 21, r2 = 0.8424, s = 0.290 calibration setð Þ
n= 20, r2 = 0.9174, s = 0.280 validation setð Þ

Split 2

CMD= − 6.3034 ±0.0411ð Þ+0.4261 ±0.0053ð Þ*DCWð1, 8Þ ð12:18Þ

n= 96, r2 = 0.5093, q2 = 0.4837, s = 0.393, F= 98 sub-training setð Þ
n= 21, r2 = 0.8628, s = 0.296 calibration setð Þ
n= 20, r2 = 0.8110, s = 0.315 validation setð Þ

Table 12.18 (continued)

ID Set Quasi-SMILES DCW(1,10) CMDExpr CMDCalc

2 Validation Zn.O.A1 10.18850 −2.125 −2.072
8 Validation Y.Y.O.O.O.A6 7.94150 −3.125 −3.058
10 Validation Ti.O.O.A7 9.18250 −2.875 −2.514
13 Validation Sn.O.O.A6 7.75100 −3.125 −3.142
18 Validation Si.O.O.A7 8.24600 −2.875 −2.925
49 Validation Sn.O.O.B2 7.87800 −3.250 −3.086
52 Validation Sn.O.O.B7 8.26100 −3.125 −2.918
54 Validation Si.O.O.B7 8.00300 −3.125 −3.031
60 Validation Fe.Fe.O.O.O.B6 5.81950 −4.750 −3.990
64 Validation Cr.Cr.O.O.O.B2 6.92950 −3.875 −3.503
73 Validation Ti.O.O.C2 8.54950 −3.000 −2.792
95 Validation Fe.Fe.O.O.O.C5 6.24800 −4.125 −3.802
99 Validation Co.Co.Co.O.O.O.O.C3 6.75300 −4.000 −3.580
103 Validation Ce.O.O.C7 8.05950 −3.000 −3.007
108 Validation Y.Y.O.O.O.D3 8.44450 −3.000 −2.838
116 Validation Sn.O.O.D7 8.50300 −3.125 −2.812
117 Validation Si.O.O.D1 7.92850 −3.500 −3.064
118 Validation Si.O.O.D5 7.92750 −3.250 −3.065
129 Validation In.In.O.O.O.D6 7.92850 −3.175 −3.064
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Split 3

CMD= − 5.6821 ±0.0336ð Þ+0.4539 ±0.0058ð Þ*DCWð1, 9Þ ð12:19Þ

n= 96, r2 = 0.5014, q2 = 0.4754, s = 0.393, F= 95 sub-training setð Þ
n= 21, r2 = 0.8235, s = 0.352 calibration setð Þ
n= 20, r2 = 0.6979, s = 0.255 validation setð Þ

Split 4

CMD= − 6.3770 ±0.0422ð Þ+0.4297 ±0.0055ð Þ*DCWð1, 9Þ ð12:20Þ

n= 91, r2 = 0.5026, q2 = 0.4767, s = 0.389, F= 90 sub-training setð Þ
n= 26, r2 = 0.7010, s = 0.250 calibration setð Þ
n= 20, r2 = 0.9268, s = 0.402 validation setð Þ

Split 5

CMD= − 7.5325 ±0.0495ð Þ+0.6161 ±0.0068ð Þ*DCWð1, 8Þ ð12:21Þ

n= 91, r2 = 0.5437, q2 = 0.5215, s = 0.394, F= 106 sub-training setð Þ
n= 24, r2 = 0.8824, s = 0.214 calibration setð Þ
n= 22, r2 = 0.7809, s = 0.348 validation setð Þ

The technical details for these models are available in the literature [46]. The
comparison of statistical quality for model calculated with Eqs. 12.17−12.21 shows
that the distribution of available data into visible training set (i.e. sub-training set
and calibration set) and invisible validation set influences the predictive potential of
these models.

12.4 Conclusions

Though details of computational investigation of properties and activities of
nanomaterials are still being developed the quantitative “features”—
property/activity relationships (QFPRs/QFARs) methods discussed in this chapter
provide efficient tool to predict various characteristics of nanospecies. They are
developed following a set of rules: (i) All examined eclectic systems of data are
translated into quasi-SMILES with further prediction of the above mentioned
endpoints by the same approach; (ii) building up these models using the
quasi-SMILES can be carried out by the same algorithm (software) which is used in
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the case of the traditional SMILES [49–56]; (iii) eclectic systems can be similar in
order for their implementation into common generalized model; (iv) the suggested
model has mechanistic interpretation in terms of revealing promoters of increase
and decrease for an endpoint. Thus, one concludes that the proposed approach
provides models for nanomaterials, in accordance with the OECD principles [57].
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