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Preface

You are reading the next, most current volume of ‘“Practical Aspects of Compu-
tational Chemistry” book series. Four volumes published since 2012 augmented by
an initial book: the “Practical Aspects of Computational Chemistry” published in
2009 have established five volume series devoted to the various aspects of com-
putational chemistry that we (Jerzy Leszczynski and Manoj Shukla) are pleased to
bring to you over the last few years. This volume covers recent developments and
current applications covering nanomaterials, hydrogen-bonded clusters, semiem-
pirical local coupled-cluster theory, charge-transfer coupling, ro-vibrational energy
levels, relativistic effects and quantum electrodynamics in chemistry,
mechanochemistry, passivation on metal oxide surfaces, and nano-QSAR. The
state-of-the-science research reviews covering the current volume are distributed in
12 chapters.

Chapter 1 contributed by Barysz provides an overview of applications of rela-
tivistic effects and quantum electrodynamics in solving chemical problems such as
predicting reliable X-ray spectra. Chapter 2 discusses an efficient algorithm to
locate global energy minima of hydrogen-bonded clusters containing up to 55 water
molecules and is written by Kazachenko and Thakkar. In Chap. 3, Zakharov et al.
have discussed the development and application of semiempirical coupled-cluster
theory to calculate optical parameters such as polarizabilities and hyperpolariz-
abilities of fragments of conjugated polymers. Ramos et al. have reviewed methods
to compute charge-transfer couplings efficiently and accurately in Chap. 4. Car-
rington has reviewed methods to compute ro-vibrational energy levels of small
polyatomic molecules in Chap. 5.

The effectively unpaired electron theory for singlet states and its application
extending from diatomic to graphene nanoclusters have been reviewed by Luzanov
in Chap. 6. Bobadilla and Seminario have discussed the application of computa-
tional chemistry methods in designing of carbon-based nanodevices in Chap. 7.
There is a growing interest in the area of computational mechanochemistry and it
has been reviewed by Dopieralski and Latajka in Chap. 8. The mechanisms of
different types of Lewis acid—Lewis base interactions have been discussed in Chap.
9 by Grabowski and results of computational modeling of iodine-containing drugs
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have been reviewed by Yuldasheva et al. in Chap. 10. Rybakov et al. have dis-
cussed atomistic modeling of Si(110) passivation by atomic layer deposition of
Al,0O5 in Chap. 11. The last chapter contributed by Toropov et al. deals with the
development of nano-QSAR.

We would like to take this opportunity to thank all contributors for devoting their
time and hard work to make this project a success. We acknowledge the excellent
support from the Presidium of the European Academy of Science as well as Editors
at Springer. Of course, many thanks go to our family and friends without their
support the realization of the book would not have been possible.

Jackson, MS, USA Jerzy Leszczynski
Manoj K. Shukla
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Chapter 1
Relativistic Effects and Quantum
Electrodynamics in Chemistry

Maria Barysz

Abstract In this chapter [ discuss some aspects of relativistic theory, the accuracy of
the infinite order two-component relativistic IOTC method and its advantage over the
infinite order Douglas-Kroll-Hess (DKHn) theory, in the proper description of the
molecular spectroscopic parameters and the potential energy curves. Spin-free and
spin dependent atomic mean filed (AMFI) two-component theories are presented.
The importance of the quantum electrodynamics (QED) corrections and their role
in the correct description of the spectroscopic properties of many-electron atoms
for the X-ray spectra is discussed as well. Some examples of the molecular QED
calculations will be discussed here as well.

1.1 Introduction

In the last decades we have seen intense development of experimental techniques
to study molecular systems and this means that we get more accurate results of
these experiments. This means that we also need more and more accurate theo-
retical methods to calculate these properties. The ab initio calculations based on
Schrédinger equation have been a routine way to study a molecular electronic struc-
ture and properties in chemical laboratory or in biological systems. Nonrelativistic
Schrodinger quantum mechanics provides a consistent picture on numerous phenom-
ena in the atomic and molecular domain. However the description of physical phe-
nomena based on nonrelativistic quantum mechanics is incomplete. The descrip-
tion of phenomena at high energies requires the investigation of relativistic wave
equations. This means equations which are invariant under the Lorentz transforma-
tions. The central theme in relativity is that the speed of light, c, is constant in all
inertia frames (coordinate systems that move with respect to each other). Together
with the requirement that physical lows should be identical in such frames, this
has a consequence that time and space coordinates become equivalent. The fun-
damental structure of the Schrodinger equation is not invariant under the Lorentz
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2 M. Barysz

transformation and is therefore not relativistic correct. Traditionally, the relativistic
theory is first developed for one electron (particle) and leads to what is known as the
Dirac equation which is relevant substitute for the Schrodinger equation. Although
Dirac introduced special relativity into quantum mechanics in 1929, and the exten-
sion to many-electron systems was made by Breit soon after, the importance of rel-
ativistic corrections in molecular quantum chemistry was not fully appreciated until
the 1980s. The Dirac equation describes both electrons (positive energy solutions)
and positrons (negative energy solutions) and explicitly includes spin. For a given
potential and chosen charge g = —e, both positive and negative energy solutions of
the Dirac equation correspond to the electronic and positronic states. The excitation
energy between positive and negative states is of the order 2mc> ~ 1 MeV. Thus in
low energy processes, one can proceed by ignoring the lower continuum. In the non-
relativistic limit, the lower positive energy solutions go to zero, whereas the upper
part reduce to a spin orbital in which the spatial part of the wave function solves
the nonrelativistic Schrodinger equation. The upper and lower two components of
the Dirac wave function are generally referred to as the large and small component,
respectively [1]. The relativistic effects can be analysed in terms of direct and indi-
rect effects. The direct relativistic effects originates in the immediate vicinity of the
nucleus, the indirect relativistic effects is influenced by the outer core orbitals.The
direct relativistic effects are responsible for the radial contraction and energetic sta-
bilization of the s, ,, and p, , shells as well as for the spin-orbit splitting of shells
[ > Ointo sub shells withj =/ — 1/2andj = [ + 1/2. The SO splitting for the same /
decreases with increasing number of sub shells i.e., it is much stronger for inner shells
than for outer shells. The SO splitting decreases with increasing [ for the same prin-
cipal quantum number i.e. the np, ,, — nps, splitting is larger than the nd; , — nds,
and both are larger than the nf; , — nfs . The indirect relativistic effects are con-
sequences of a more efficient screening of the d and f shells accompanied by their
energetic destabilization (cited from [1-3]). The nature is relativistic and it does not
distinguish between relativistic and nonrelativistic effects and only theory allows to
distinguish these effects. The values of the relativistic effects for a given quantity
X are usually calculated as a difference between the relativistic and nonrelativistic
values of this quantity, i.e. AX = X,,; — X,,,; calculated at the same level of theory.
Calculations using relativistic quantum mechanics are becoming more routine nowa-
days and theoretical methods more and more accurate.

However, already in 1930s deviations were observed between the results of pre-
cision spectroscopy and the Dirac theory for simple atomic systems, primarily for
the hydrogen atom. The existence of negative-energy states in the solutions of Dirac
equation is the mathematical but not the physical grounds of the existence of parti-
cles and antiparticles (electrons and positrons). Besides, the velocity of light is finite.
For an complete model we must turn to quantum field theory and quantum electro-
dynamics (QED) [4].

Dirac himself was not convinced of the importance of relativistic effects, which
he declared would be of no importance in the consideration of atomic and molecular
structure and ordinary chemical reactions. We know that he wasn’t right. Are QED
effects important in chemistry. Full answer to this question is not yet known.
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The chapter consists of two parts. In the first part I discuss some aspects of
relativistic theory, the accuracy of the infinite order two-component relativistic IOTC
method and its advantage over the infinite order Douglas-Kroll-Hess (DKHn) the-
ory, in the proper description of the molecular spectroscopic parameters. Spin-free
and spin dependent atomic mean filed (AMFI) theory is presented. Additionally, the
accuracy of the relevant potential energy curves is discussed as well. In the second
part I show the role of the QED corrections and that they are necessary for the cor-
rect description of the spectroscopic properties of atoms for the X-ray spectra. Some
examples of the molecular QED calculations will be discussed here as well.

1.2 The Infinite Order IOTC and DKHn Theories

The four-component relativistic Dirac wave function contains information about pos-
itive and negative-energy states of the system. In chemical applications, one is usu-
ally concerned with the electronic (or positive-energy) states only. Therefore, some
reduction of the four-component wave function seems to be preferred. The history
of this reduction goes back to the period before the Dirac equation. The first step in
this direction appears to have been made by Pauli in the form of a quasi-relativistic
Hamiltonian known as the Pauli Hamiltonian. This Hamiltonian can be approxi-
mately derived from the Dirac Hamiltonian by using the fact that in the nonrelativis-
tic limit the large (the upper) 2-vector part of the Dirac 4-spinor becomes the elec-
tronic (positive energy) solution with spin. On this basis one could expect that there
is some representation of the Dirac Hamiltonian which completely separates the pos-
itive and negative energy spectra and permits to focus all attention on the electronic
part only. The exact separation of the two spectra would be equivalent to the trans-
formation of the Dirac 4-spinors into either electronic or positronic 2-spinors. Alter-
natively, this means that the 4 X 4 Dirac Hamiltonian is to be block-diagonalized, i.e.
brought into the form of the Direct sum of 2 X 2 matrix Hamiltonian’s one of them
corresponding to the electronic spectrum and the other one referring solely to the
positronic eigenvalues. Once this is achieved most problems of relativistic quantum
chemistry can be formulated solely in terms of electronic 2-spinors. The positronic
solutions can be simple abandoned. In practice it means that we have to find the
unitary transformation which diagonalize Dirac Hamiltonian.

HY = U'H,, U, (1.1)

with

_ V. cop
HDirac_ <C0'p V—2€2> ) (12)
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and

h, 0
HY = < O+h_>' (1.3)

The potential energy operator V is assumed here to correspond to the electron—
nucleus Coulomb attraction. Atomic units are used throughout this paper, c is the
velocity of light, ¢ = 137.03599 a.u.

The unitary transformation U can be determined as the product of two transfor-
mations UyU,. The first transformation U, is the free-particle Fouldy—Wouthuysen
transformation and leads to the approximate separation of the electronic and
positronic spectra H, = UgHOUO. The second unitary transformation U}LH1 U, is
based on the idea of Heully et al. and is determined in terms of the auxiliary operator
R [5]. The infinite—order (or exact) solution of the block-diagonalization problem is
then reduced to the solution of the following operator equation:

R =[(H))p]"'[—(H,)y + R(H,),; + R(H,) ,R] (1.4)

Once the solution R of Eq. (1.4) is known, the exact two-component “electronic”
Hamiltonian A, becomes:

hy = QL(H) @, + QLR (H )y 2, + QL(H)pRQ, + QLR (H),RQ, (1.5)

where the (2 operator is defined through the R operator [6, 7].

The operator Eq. (1.4) is not easy to solve since it involves terms which are linear
in op [7]. One of the possible way to solve the Eq. (1.4) is by means of some iterative
scheme. It can be made through some odd powers of a, say a®*~1, k=2, 3, ... (with
a denoting the fine structure constant, @ = 1/c). Then, the unitary transformation
U will be exact through the same order in a. Simultaneously, this will lead to the
approximate form h,,, k=2, 3, ... of k. Thus the method leads to a series of two-
component relativistic Hamiltonians whose accuracy is determined by the accuracy
of the iterative solution for R. In each step of the iteration the analytical form of the
R operator (Eq. (1.4)) and the Hamiltonian s, (Eq. (1.5)) have to be derived.

The above idea was the basis of the BSS method formulated by Barysz and Sadle;j
[8]. The BSS method has its roots in the historically earlier Douglas-Kroll-Hess
(DKH2 and DKH3) [9, 10] approximation. In the BSS approximation the fine struc-
ture constant « is the perturbative parameters and it differs from the DKH method
where the potential V is used as the perturbation. Formally the BSS and DKH meth-
ods are of the infinite order in a or V. However, the necessity to define the analytical
form of the R operator and the Hamiltonian £, in each step of the iteration, makes
the accuracy of both methods limited to the lowest order in « or V.

The break through of the above limitation came in 2002 when Barysz and Sadlej
[7] found the way to exact solution of the R operator equation Eq. (1.4). In this new
two-component infinite-order (IOTC) method the analytical form of the R operator
equation is formulated only once and the iterative procedure is defined inside of
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the molecular code. The solution is exact in the given basis set. This is the main
advantage of the IOTC method in comparison to the BSS or DKH methods.

After the IOTC method has been formulated, the so called infinite order DKHn
method has been also defined [11-13]. The DKHn approximation is the general-
ization of the original DKH theory which enables to achieve the higher orders of
the /4, Hamiltonian. Unfortunately, the necessity to formulate the analytical form
of the i, Hamiltonian in each order of perturbation V is still the basis of the
DKHn method. The order of the DKHn approximation must be defined prior to any
quantum-chemical calculations. The DKHn method is very well defined but it is only
the approximation of the IOTC method which is exact.

There are a lot of mistakes in understanding and distinctions among the BSS, the
IOTC and the DKHn methods and that is the reason we make a comment on it in
this chapter.

For the lightest elements all the methods should give very similar results. The
differences will appear for the heavier elements.

In the present work we will focus mainly on the infinite order two-component
method, IOTC. However, some comparison between the IOTC and DKHn meth-
ods will be also presented. So far the discussion has been focus on the block—
diagonalization of the one—electron Dirac Hamiltonian. For the N electron system a
Hamiltonian may be written as the sum of the one-electron transformed Dirac Hamil-
tonian plus the Coulomb electron-electron interaction and it is commonly used form
of the relativistic Hamiltonian.

1.3 Potential Energy Curves in the Spin-Free Relativistic
DKHn and IOTC Theory

The electronic and spectroscopic properties of small dimers have been the topics
of many experimental and theoretical studies in recent years [14—17]. The intense
theoretical and experimental activity in this area resulted in a huge amount of results
on the spectroscopic properties and potential curves of many dimers. Investigation
of such species provide details on the low- and high-lying electronic states and the
nature of the atom-atom bonds. Theoretical ab initio calculations on such dimers
are on the increase due to advances in theoretical methods and yield information of
significance to experimentalists and are of great value in enhancing our knowledge
of bonding in these systems. Theoretical calculations have also become valuable
in designing new experiments. Due to intense development of relativistic methods
in recent years, special interest are in dimers of heavy atoms. The nonrelativistic
Schrodinger theory is not able to properly described such dimers. The relativistic
theory has to be applied instead [18].

The nature is relativistic. One can not receive the correct potential energy curve
without taking into account the relativistic effects. To show the difference between
the nonrelativistic and relativistic theory, the results of theoretical calculations for
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the ground 'X* and two *IT, and 'IT excited states of SiAu* molecule are pre-
sented in Table 1.1. All calculations were carried out with the complete active space
CASSCF method followed by the second-order single state multireference perturba-
tion, CASPT?2 scheme [19-22].

The POL and POL.DK Gaussian basis sets have been used in the nonrelativis-
tic and spin-free relativistic CASSCF/CASPT2 calculations. Gaussian basis sets

Table 1.1 Calculated CASSCF/CASPT?2 bond lengths, R, (in pm), D, dissociation energies (in
eV) and w, spectroscopic constants (in cm™") for the ground and excited states of SiAu* cation, in
the IOTC and DKH,, methods

Method R, D, w,
1 >+

DKH, 2.1876 3.7870 459
DKH, 2.1856 3.8099 461
DKH, 2.1859 3.7708 460
DKH, 2.1858 3.8079 461
DKH, 2.1858 3.8073 460
DKH, 2.1858 3.8074 460
DKH, 2.1858 3.8074 460
10TC 2.1858 3.8076 460
NR 2.5214 2.9057 367
3,

DKH, 22772 1.9822 339
DKH, 2.2749 1.9848 340
DKH, 2.2752 1.9845 340
DKH, 2.2749 1.9849 340
DKH, 2.2751 1.9846 340
DKH, 2.2751 1.9846 340
DKH, 2.2751 1.9846 340
10TC 2.2751 1.9848 340
NR 2.6607 1.3179 180
'

DKH, 2.3480 1.4920 299
DKH, 2.3470 1.4963 299
DKH, 2.3471 1.4956 299
DKH, 2.3471 1.4956 299
DKH, 2.3471 1.4958 299
DKH, 2.3471 1.4958 299
DKH 2.3471 1.4958 299
10TC 2.3471 1.4960 299
NR 2.6813 1.5001 167
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[13s10p4d/7sS5p2d] and [21s17p11d9f/13s11p7d4f] have been used in the
calculations for Si, and Au respectively [23]. The basis set used differ a bit from those
used earlier in our calculations [24], and they lead to slightly different values of the
total energy. All calculations have been carried out in C,, symmetry. The partition
of the orbital space used in CASSCEF calculation is (0.0.0.0/20.10.10.4/3.1.1.0;5¢l).
In the CASPT2 method the partition is (17.8.8.3/3.2.2.1/3.1.1.0;5el).

The spin-free IOTC results have been compared with different DKHn approxima-
tions n = 2, 3,4, ... 8 and with the nonrelativistic (NR) data. Analyzing the results of
the calculations, one can observe a quite large role of the relativistic effect. For exam-
ple, the calculated IOTC dissociation energies for the ground ' £+ and 11, excited
states are 3.8076 and 1.9848 eV, the corresponding nonrelativistic values are 2.9057

Table 1.2 The comparison of the CASSCF/CASPT2 DKHn (n—2,3,4,...8) and the IOTC
energies (in a.u.) at the equilibrium distance R, for the ground and excited states of SiAu* molecule

State Method Energy

1x+ DKH, —19282.10072357
DKH, —19301.90094796
DKH, —19299.16552475
DKH; —19300.60487817
DKH, —19300.08950129
DKH, —19300.24097799
DKHyg —19299.99193999
I0TC —19299.97359888
NR —18154.11091612

i, DKH, —19282.03278623
DKH, —19301.83227194
DKH, —19299.09695943
DKH; —19300.33822623
DKH; —19299.82285485
DKH, —19299.97432997
DKHg —19299.92334410
I0TC —19299.90500105
NR —18154.10095727

' DKH, —19282.01523132
DKH, —19301.81477198
DKH, —19299.07945149
DKH; —19300.32072159
DKHg —19299.80534885
DKH, —19299.95682437
DKHq —19299.90583836
I0TC —19299.88749478
NR —18154.07492452
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and 1.3179eV. The relativistic IOTC equilibrium distances R, are about 0.3-0.4V
shorter than the nonrelativistic values for all states. Similarly, the significant differ-
ences can be observed for the harmonic frequency w,. The calculated spectroscopic
parameters by the IOTC method and the DKHn approximations are similar in both
methods, and starting from the n = 3—4 DKHn order they are practically the same.

To plot the whole potential energy curve one needs a total energy values. The
relativistic spin-free IOTC and DKHn values of the total energies for the Iy+ 311 -
and 'IT states at the equilibrium distance R, are shown in the Table 1.2 Accord-
ing to the calculations the total energies obtained in the Douglas-Kroll-Hess method
strongly depends on the used approximations. The perturbative DKHn results (n =
2,3,4 ... 8) converge nicely to the IOTC energy. They go a little bellow the IOTC
value. It should be noted however, that the parametrization implemented in the
DKHn approximation does not affect the DKHn Hamiltonian up to the fourth order
only. Therefore, as long as one runs calculations with DKHn Hamiltonian below
5th order may use any parametrization as they would all yield the same results.
Higher order DKHn Hamiltonian depend slightly on the chosen parametrization of
the unitary transformation applied to decouple the Dirac Hamiltonian. Nonrelativis-
tic energy values are about 1146 a.u. above the relativistic values, for all states.

1.4 Electronic States in the Spin Dependent
Relativistic Theory

We do not receive a full description of excited states and potential energy curves
without the spin-orbit terms. Spin-orbit effect arises due to the interaction of the
magnetic dipole of the electronic spin and the movement of electrons in its orbit.
For the nonrelativistic case, angular momentum 1 and spin s are normal constants of
motion and they both commute with the nonrelativistic Hamiltonian. For the rela-
tivistic case and the Dirac equation neither s nor 1 are normal constants of motion
for this case, but the total angular momentum operator j = [ + s is.

For the orbital angular momentum 1, the effect of a rotation by an angle ¢ about
the z axis is the effect of a rotation by an angle ¢ about z axis is [25]

R(P)l,m >=e™?|l,m, > (1.6)

where |1, m; > is an eigenfunction of I> and 1,,.
For the angular momentum j, the effect of a rotation by an angle ¢ about z axis is
[25]

R (), m; >= em?|j, m; > 1.7)
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In particular, if we rotate through an angle of 2z, we get

R.Q2m)lj.m; >= €™ |j,m; >= (—=1)*"i|j, m; > (1.8)

For orbital momentum /, this result was not a problem because m, is always integer,
and thus a rotation by 2z brings any physical system back to itself, and amounts to
be an identity operator. However, m; may assume half integer, and a rotation by 2x
changes the sign of the function.

In general, for functions describing systems with half integer spin, the function
must change sign under a rotation by 2z. This operation is given a special symbol,
R, and is interpreted as rotation by an angle 2z around an arbitrary axis. This has
consequences in the description of the symmetry of atomic and molecular system [2,
26]. For molecules described in the nonrelativistic theory, the symmetry is described
by the point groups, which do not contain the operation R. We would expect these
groups to require the addition of R in order to describe the relativistic symmetry of
molecules. In order to define the double groups, we introduce that the molecule is
to go into itself not upon a rotation by 2z around an axis, but only upon a rotation
by 4z. The double groups are usually denoted in terms of the nonrelativistic point
group symmetry with some specific superscript. Throughout the manuscript the
symbol is used. For example, the relativistic counterpart of the C,(E) and C,(E, C,)
point groups would be CT(E, R) and C;‘(E, C,, R, RC,) respectively [2, 25, 26].

The potential energy term in the Hamiltonian for an atom is spherically sym-
metric. The formation of a diatomic molecules leads to the lowering of the spherical
symmetry and the Hamiltonian has only cylindrical symmetry and hence any angular
momentum, rotational and electronic, are meaningful, but only the electronic angu-
lar momentum L can have a component along the bond axis. Since the energy of the
molecule is the same regardless of whether the projection is positive or negative, we
usually use the quantum number A = |M,|, i.e. the absolute value of M, to charac-
terize the system. We can also define two further quantum numbers, ' = |M| and
£ = X + A, which describe the projection of the spin angular momentum and total
electronic angular momentum, respectively, onto the internuclear axis. The possible
£2 states could be obtained by combining A with spin or directly from the individual
Jjstates, Q=M; +M, .

The correspondence of the notation of the irreducible representations of the dou-
ble group 2*, X7, I1,A,®, T, E1/2’ E3/2, E5/2’ En/2 and the nonrelativistic £2 states
are 0v,07,1,2,3,4,1/2,3/2,5/2 and n/2, respectively. The direct product for the
irreducible representations of the double groups need to be defined so that one could
use the double-group theory to derive relativistic electronic states from the non-
relativistic states. For example the direct product X+ ® X% has irreducible repre-
sentation X+ and the corresponding £ state is 0%, the direct product IT ® 4 has
irreducible representation @ ® IT what corresponds to 3, 1 €2 states. Similarly, the
direct product X+ ® IT gives the IT irreducible representation and corresponds to 1
£ state. More details can be found in [2, 26].
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The next thing one needs to establish is how the spin multiplets D* (s here denotes
the total spin of the state) correlate with the irreducible representation of the double
group. The transformation of D* is isomorphic with the transformation of the rota-
tion state j, denoted as I/, in molecular spectroscopy. The irreducible representation
s spanned by the D representation of the spin multiplet with quantum number s,
are determined once the characters for various operations in the double group are
obtained. The appropriate formulas can be found in [2] One can find that in D?_, or
C:,, double groups, D (s =0) corresponds to X+ irreducible representation, D'/?
and D? corresponds to E| 2 and (Z* + IT + A) irreducible representations, respec-
tively.

The determination of a relativistic state arising from a given non-relativistic state
involves two steps. Firstly, the irreducible representations spanned by the spin mul-
tiplets using double group correlation (as discussed above) are found out. These
irreducible representations are then multiplied with the spatial symmetry of the non-
relativistic state in the next step. The resulting set of the irreducible representations
is then transformed to the £2 state. As an example, for the nonrelativistic 3 r+ state of
the studied SiAu* cation, s = 1 and hence D' corresponds to X~ and I7 irreducible
representations. The direct products:

X" (spin) @ Il (spatial) = I1 (1.9)
I (spin) @ I (spin) =2~ + Xt + A (1.10)

Thus the 3Hr+ nonrelativistic state yields IT, X~, 2%, and 4 states and their
assignments according to £ quantum numbers are 1, 0, 07, and 2. The above dis-
cussion gives only some background to further studies.

1.5 Spin-Dependent Two-Component Theories

In the last two decades, the two-component approaches for treatment relativistic
effects in atoms and molecules has proven to lead to highly accurate results compared
both to experiment and four-component calculations. It is practical, and the usual
way, to separate operators that do not explicitly depend on the spin and to define
a one-component (scalar) relativistic approximation, resulting in one-component
equations of the type used in the usual non-relativistic approach. This separation is
possible in a rigorous manner for the Dirac-Coulomb equation. Spin-orbit interaction
can either be neglected (which is often a good approximation) or be treated by means
of perturbation theory. While most of the relativistic effects at the spin-free level are
well described using only one-electron relativistic terms and the Coulomb interac-
tions, this is not true for spin-orbit coupling. As example all splittings in 3 X states can
only be described by second-order perturbation contribution. However, the computa-
tion of the two-electron contributions by the spin-orbit operator requires a substantial
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effort due to the lower symmetry compared to the standard two-electron integrals and
the necessity to calculate three different spin-orbit two-electron files. The demands
on both CPU time and storage facilities become considerable. A method which over-
comes this problem has been proposed already in 1996—-1998 and is known under the
name ‘spin-orbit mean field integrals’ (AMFI) [27-29]. It is based on the Breit-Pauli
Hamiltonian but for the study of spin-orbit contributions, a suitable starting point is
obtained by retaining only those terms that involve direct coupling between spin and
orbital motion. The Breit-Pauli spin-orbit Hamiltonian has the following form:

H50=2LZZ < i> (1.11)

3 (o) o

The two-electron spin-orbit 745 integrals contribute to the spin-orbit matrix ele-
ment between Slater determinants which are singly or double excited relative to one
another. The matrix elements between singly excited determinants can, just like in
the Hartree-Fock equations, be written as a pseudo one-electron integral. One of the
key aspects of a mean-field theory is to neglect interactions between double excited
states and to include all two-electron integrals in pseudo one-electron integrals.

The matrix element of the spin-orbit operator between a pair of Slater determi-
nants differing by a single valence spin orbital excitation i — j is given by

<¢|H50|dﬂ,ﬁ> = (i) (1.12)

+ % Dy ((ikIHO1, 2)lik) — (k| HS(1, 2)1k5) = (ki H*O(1,2) jk))
k

where n;, denotes the occupancy of orbitals common to the determinant on the left-
and right-hand sides, k runs over all occupied spin orbitals common to the determi-
nants.

In the independent-particle model, Eq. (1.12) describes valence electrons (from
orbitals i and j) moving in a field generated by the electrons in orbitals k (which
includes the valence space). In other words, Eq. (1.12) defines a matrix element of a
Fock operator for a one-determinant approximation with a certain occupancy. Based
on this observation, we define an approximate spin-orbit operator by

)

yean=field _ <¢,|Hso |q§;‘> (1.13)

+ % 3 me (ik|HO(1,2)ljk) = (ik|HE (1, 2)1ki) — (kil H5O(1, 2)ljk) )
k
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Table 1.3 Kr, Xe and Rn—np:1 — np; splittings of the energy levels (eV)
2 2
Method 2p1 —2ps 3p1—3p: dp1 —4ps 5p1—5p3 6p1 —6p:
2 2 2 2 2 2 2 2 2 2

Kr AMFI 51.00 7.48 0.62 - -

Kr exp. 52.50 7.8 0.65 - -

Xe AMFI 306.72 58.88 11.25 1.20 -

Xe exp. 320.15 62.12 12.37 1.33 -

Rn AMFI 2492.85 571.03 142.91 28.31 3.39

Rn exp. - - - - -

The IOTC CASSCF/CASPT?2 method

In Eq. (1.13) the orbitals |k > are taken from spin-free atomic or molecular cal-
culations. It was additionally assumed, in order to make the mean-field method
efficient, that all two-electron integrals between basis functions centred on differ-
ent centres could be neglected.

Since the mean-field spin-orbit integrals have been defined and implemented to
molecular codes (Dalton, Molcas etc.), hundreds or more successful molecular and
atomic applications have been performed with the accuracy comparable to the exper-
imental results.

As an illustration of the performance of the AMFI approximation I present the
results of calculations of the np: and np: atomic splittings of the noble gases Kr,

Xe and Rn elements Table 1.3. The scalar spin-free IOTC complete active space
CASSCF/CASPT?2 method was used followed by the restricted active space state-
interaction (RASSI) method with the use of the atomic mean-filed spin-orbit (SO)
integrals AMFI.

1.6 Quantum Electrodynamic

In the previous section we discussed how to calculate the spin-orbit splittings of
atomic and molecular states. The effect of spin-orbit coupling was introduced via
the restricted active space interaction (RASSI) method with the use of the atomic
mean-field AMFI integrals. It appears however, that the discrepancies between the
experimental and calculated values of energies can be still quite big.

To explain these differences the quantum electrodynamic corrections have to be
implemented. The velocity of light is finite and this means retardation of the inter-
particle interactions. This means that the Dirac-Coulomb Hamiltonian has to be cor-
rected by further expressions.

One of the most important physical corrections to the Dirac-Coulomb Hamil-

tonian is the replacement of the nonrelativistic Coulomb repulsion, ri in with a
ij
covariant expression derived from QED [30-32].
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The precise form of this correction depends upon the gauge condition used to
describe the electromagnetic field. In the Coulomb gauge, which has been employed
more often in relativistic atomic structure, the electron-electron interactions come
from one-photon exchange process and is sum of instantaneous Coulomb interaction
and the transverse photon interaction.

N
Hy= 3, =+ Hye (1.14)
i<j i
where
al a;Q; COS@;;1y;
Htmns =- Z[+r_ + (ai . v,-)((aj . VJ)Z—] (115)
i<j L) i’ ij

w;; is the wave number of the photon being transferred, ; is the Dirac alpha matrix
for particle “i”. In the low-frequency limit (w; — 0) the Eq. (1.15) reduces to the
Breit interaction,

N
Q;a; 1
Hygpreit = — 2['*‘2_/ + (o - Ty - 1) — ] (1.16)
i<j ij 2”0

where the first term is the correction due to two-electron magnetic interaction and
represents so called Gaunt interaction, The second term is the correction due to retar-
dation resulting from the finite velocity propagation of the interaction.

Both corrections form the Breit interaction. The fact that this is the limit of
(1.15) as w; — 0 means that it must not be used for describing the interaction of
orbitals with large energy differences. A method of derivation of the Breit interac-
tion assumes %Z < 1, where c is the velocity of light.

The Dirac-Coulomb-Breit Hamiltonian is derived perturbationally and thus it is
frequently suggested that the Breit correction to the Coulomb interaction should be
considered in the perturbation framework and evaluated as the first—order contribu-
tion to the energy which follows from the Dirac-Coulomb calculations, and this is
the way how it is done, as example, in the atomic GRASP2K package.

The Breit corrections are sometimes classified as nonradiative effects in contrary
to the radiative affects which are ‘true’ quantum-electrodynamical effects due to the
electron self energy and vacuum polarization [30-32].

The effect of the Breit and Gaunt interactions has been investigated in many
atomic systems and as will be demonstrated later in this chapter, it is known that
they are very important in high-resolution atomic X-ray spectroscopy.

Some examples of the molecular calculations are known as well. For instance,
the effect of the magnetic electron-electron Gaunt interaction on bond length as been
demonstrated in reference is: CH, [0.0 pm]; SiH, [0.0 pm]; GeH, [0.1 pm, 326 ppm];
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SnH, [0.1 pm, 514 ppm]; PbH, [0.2 pm, 962 ppm]—the difference in bond lengths
compared to a calculation with only Coulomb interaction energy operators is given
in pm in brackets and the percentage of the change compared to the absolute val-
ues of the bond length is given in parts per million (ppm); the wave function was
approximated by a singly determinant. The effect of the Gaunt interaction on bind-
ing energies in CH, is about 0.3 kJ mol~! and increases in the case of PbH, to about
2.1kJ mol~!.

It is a common way to expand the Coulomb-Breit Hamiltonian in the perturbation
series in 1/c parameter. Then the one- and two-electron Breit-Pauli Hamiltonian for
the N-electron system is obtained and can be written as

Hyp = Hyg + Hy + Hpg (1.17)
and is the sum of the nonrelativistic many-electron Hamiltonian H,y, the relativistic
operator Hy, and the fine-structure operator Hyg [33]. The relativistic operator can be
written as

Hy = Hyc + Hp, + Hpy + Hpp + Hgge (1.18)

where H,,- is the mass velocity term attributed to relativistic correction arising from
the variation of the mass of the electron with its speed.

N
HMC=—8—122v;‘ (1.19)
S

and Hj,, and H)y, are the one- and two-body Darwin Terms

N
Z 5 1
H, =—— ) V- 1.20
DI 802; o) (1.20)
N
H,=—-L V2(l) (1.21)
D2 g2 & Vi ’
i<j y

The Darwin correction, is a relativistic correction attributed to the electron’s
Zitterbewegung. It arises from the smearing of the charge of the electron due to
its relativistic motion.

H g is the spin-spin contact term

Hggc = Sl Z(Si - 8;6(r; - 1) (1.22)
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and finally H,), is the orbit-orbit term

Pi - Pj rij(rij “Pp;
Hpp = —2 . Z — S (1.23)
i<j ij ij

The fine-structure operator Hg describes interactions between the spin and orbital
angular momentum of the electrons. The fine structure operator consists of three
terms

Hypg = Hyp + Hgpp + Hgg (1.24)

Here Hy,, is the spin-orbit term describing the interaction of the electron spin with
the magnetic field generated by its own movement.

N

~ Z 1

Hyy=— — ; 1.25
SO 2(,'2 l:Zl }’? l l ( )

Hg is the spin-other-orbit term

Hgpp = — 222

1<j l

(S + 2s;) (1.26)

The last two terms Hy, and Hg,, have been discussed already earlier in this
chapter. Hg is the spin-spin term

N
A 1yl (5i - 1) - 1)
Hyg =% ¥ sy 32 (127)
i<j 'ij ij

Already in the 1930s deviations were observed between the results of precision
spectroscopy and the Dirac or Dirac-Coulomb-Breit theory for simply atomic sys-
tems. Primarily this deviation was observed for the hydrogen atom. This is due to
the fact, that the Dirac equation for the hydrogen atom does not contain radiative
and other corrections that are of quantum-electrodynamic origin. Exact Dirac equa-
tion of the hydrogen atom do not differentiate between 25, , and 2P, /, states of the
hydrogen atom for a given n quantum number, thus the degeneracy is not completely
removed. High-resolution experimental studies show that the energy levels corre-
sponding to 2§, , and 2P, ;, atomic states are not identical. In Dirac’s theory, pairs

of levels with [ = j + % for the same j values are degenerate.

Emission and absorption of a virtual photon on the same electron is an effect that
is not included in the Dirac theory and it is known as the electron self-energy (SE).
This forms the major part of the Lamb shift, discovered experimentally by Lamb
and Rutherford in 1947. This was the starting point for the development of modern
quantum electrodynamic. The second most important part of the Lamb shift is the
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vacuum polarization (VP) [4]. The field near the atomic nucleus can give rise to a
polarization effect in the form of the creation of electron-positron pairs, an effect
referred as the vacuum polarization. The self-energy and the vacuum polarization
effects give the leading contribution to the Lamb shift.

Both, SE and VP, corrections are calculated, in the GRASP2K code, as the first
order contributions to the Dirac-Fock-Coulomb energy.

The corresponding expressions are given by (1.28) and (1.29), respectively,

Eg = (Z*[7) ) F (Za)q,/n} (1.28)

Evp = Z qﬂ/ [Pi(r) + Qi(")]vvp(")d’” (1.29)
P 0

where the sums run over all occupied orbitals, « is the fine-structure constant, g, is
the occupation number of the orbital, n, is its principle quantum number, P,(r) and
Q,(r) are large and small radial components of Dirac orbital, and Vy, is the vacuum
polarization potential described by Fullerton and Rinker. The values of F,(Za) are
calculated using an interpolation procedure of Grant [31].

1.7 X-Ray Spectroscopy and the Relativistic and QED
Corrections

A very good illustration of the importance of QED effects (and relativistic) is the X-
ray spectroscopy. Although the data showed in this section refers to atomic spectra,
the similar relationships will apply to molecular spectroscopy. X-ray photoelectron
spectroscopy (XPS) called ESCA (Electron Spectroscopy for Chemical Analysis) is
a good tool to study atomic and molecular structure. It provides an information on
atomic core electron binding energies (CEBE) and is closely related to the local elec-
tronic structure at the atom on which the localized ionization takes place. Already
in 1960s Kai Siegbahn et al. showed that inner shell ionization energies depend on
the chemical state (environment) of the atom from which the electron is ionized [34,
35]. The photoelectron X-ray technique can also be used in the study of the electron
properties of new materials.

The most advanced relativistic approach in relativistic calculations of X-ray spec-
tra, is most likely that based on the Dirac-Coulomb-Breit Hamiltonian and quan-
tum electrodynamic contributions accounted for. In addition, one should also carry
out the corresponding correlated-level calculation within these relativistic formal-
ism. To illustrate the role and size of relativistic and QED corrections the core and
valence ionisation potentials and excitation energies of noble gases are shown. The
relativistic IOTC CASSCF/CASPT?2 method together with the restricted active space
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state interaction, RASSI [36], method combined with the atomic mean field integrals

method, AMFI [37], has been used to take spin-orbit (SO) effects into account. One

electron part of AMFI code has been used only. It gives approximate spin-dependent

corrections and the np: and np; splittings. The two-electron part of SO corrections
2 2

were included after adding the Breit expressions. The most important, the Breit and
quantum electrodynamic (QED) corrections have been taken into account after the
IOTC/RASSI calculations.

To calculate Breit and low order QED corrections is a rather routine procedure
in atomic codes. In the molecular calculations it is not an easy task and it is prac-
tically impossible to do it. But the goal of this discussion is to show the accuracy
of molecular methods and the estimation of the size of the QED corrections that
are not included in these codes. The two-component infinite order, IOTC, method is
designed for the molecular calculations and, has been implemented in the Molcas,
Gamess and Dirac codes, and it does not allow to calculate the QED corrections, at
present.

However, some assumption can be made. It is known, from the atomic physics
that, firstly, the correlation effects are not important for the calculations of the QED
corrections, and secondly, that the core atomic QED corrections do not change signif-
icantly while calculated for an isolated atom and an atom in a molecule, particularly
for the heavy elements. These features can be exploit and they have encouraged us to
add the QED corrections calculated with the atomic GRASP2K code [38] a posteri-
ori to the relativistic IOTC data [39] calculated with the Molcas code [40, 41]. The
results have been presented in Tables 1.4, 1.5, 1.6, 1.7 and 1.8 and they have been
published earlier by us in [39].

In Tables 1.4, 1.5, 1.6, 1.7 and 1.8 some selected results of the IOTC CASPT2/
RASSI valence and core ionization potentials and excitation energies of noble gases
are presented. The results of these calculations have been compared with the X-ray
ionization and transition energies calculated within the relativistic many-body per-
turbation theory (RMBPT) designed for the atomic calculations [42], which include
the following effects: (i) nuclear size; (ii) relativistic effects (corrections to Coulomb
energy, magnetic and retardation energy); (iii) Coulomb and Breit correlation; (iv)
radiative (QED) corrections etc., for isolated atoms in vacuum. The comparison with
experiment is also presented [39].

In Tables 1.4, 1.5, 1.6 and 1.7 and the valence and core ionization potentials and
quantum electrodynamic corrections for the noble gas elements Ne, Ar Table 1.4,
and Kr and Xe (Table 1.5) are shown. For the light elements Ne and Ar the QED
corrections are very small, and for 2s and 2p IPs of Ne are almost zero. However
for the 1s~! states of Ne and Ar are not negligible. The total QED corrections are
—0.456 and —3.348 eV, for Ne and Ar respectively. It was also pleasing to note that
the IP values of Ne and Ar obtained within the present [IOTC method are close to the
experimental data and the RMBPT results.

For heavier elements Kr and Xe (Table 1.5) and for ns states, the QED corrections
to ionization potentials are more important. The QED corrections to Kr are —32.994,
—2.901 and —0.364 €V for 157!, 257! and 35~! states, accordingly. The appropriate
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Table 1.4 Ionization potentials of Ne and Ar (in eV) taken from [39]

Ne and Ar
Method 157! 257! 357! ZPII 2pgl 3p11 3pg1
b p b b
IOTC PT2 Ne| 870.78 48.70 - 21.42 21.56 - -
IOTC PT2 Ar| 3208.81 327.86 30.62 251.00 248.47 15.58 15.52
QED Corrections
BREIT Ne —0.332 —0.006 |- —0.011 —-0.003 |- -
BREIT Ar —2.342 -0.107 |-0.004 |-0.178 |-0.100 |-0.008 |—0.001
SE Ne —0.131 —0.008 |- +0.001 | +0.001 - -
SE Ar —1.083 —0.091 -0.009 |[+40.016 |+0.012 |+0.002 |+0.001
VP Ne +0.007 +0.000 |- —0.000 |-0.000 |- -
VP Ar +0.077 +0.006 | +0.006 |—-0.001 —0.001 —0.000 | —-0.000
SUM Ne —0.456 —-0.013 |- -0.010 |-0.002 |- -
SUM Ar —3.348 —-0.192 |-0.013 |-0.163 | —-0.090 |-0.006 |+0.000
10TC 870.33 48.68 - 21.41 21.56 - -
PT2+QED
Ne
10TC 3205.46 327.67 30.61 250.85 248.39 15.57 15.52
PT2+ QED
Ar
RMBPT Ne | 870.73 53.04 - 21.63 21.55 - -
RMBPT Ar | 3207.44 327.31 251.55 249.54
EXP. Ne? 870.23 48.45 - 21.66 21.56 - -
(866.90)
EXP. Ar 3206.14 326.32¢ |29.3° 250.57* |248.46* |15.9¢ 15.7¢
(3202.93)?

aReference [42]
bReference [34]
‘Reference [43]

values for Xe are —124.439, —13.178 and —2.198 eV. For each calculated state the
IOTC CASSCF/CASPT?2 ionization potential improve significantly after the QED
corrections are added. The comparison with the experimental and RMBPT data show
that for the 1s core level the calculated IPs of Kr and Xe differ by about 10 eV and 32
eV respectively. However, if the accuracy of the relativistic IOTC + QED results is
measured in terms of ratios of the error with respect to the experimental data and the
total experimental values, it is less than 0.1 %, and the performance of the method
can be considered as exceptionally good.

Another information, as follows from the data in Tables 1.4 and 1.5 is the role
of the individual QED terms. We see that the most important is the negative Breit
correction. The self energy has about half of the Breit value and is also negative.
The vacuum polarization has a positive value and is much smaller than Breit and SE
corrections.
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Table 1.5 Ionization potentials of Kr and Xe (in eV) taken from [39]

19

Kr and Xe
Method 157! 257! 357! 457!
NR PT2 Kr 14106.23 1869.70 280.80 27.96
NR PT2 Xe 33260.20 5117.41 - 201.39
IOTC PT2 Kr 14351.41 1924.06 295.12 28.81
IOTC PT2 Xe 34657.03 5462.93 - 212.82
QED Corrections in GRASP
BREIT Kr —22.142 —1.684 -0.167 —0.007
BREIT Xe —82.490 -7.737 —1.101 —0.150
SE Kr —12.135 —1.348 -0.218 +0.023
SE Xe —48.990 —6.260 —1.260 —0.264
VP Kr +1.283 +0.131 +0.021 +0.002
VP Xe +7.041 +0.819 +0.163 +0.034
SUM Kr —32.994 -2.901 —0.364 —0.027
SUM Xe —124.439 —13.178 —2.198 —0.380
I0TC PT2 + QED Kr 14318.42 1921.16 294.76 28.78
IOTC PT2+QED Xe |34532.59 5449.75 - 212.79
RMBPT Kr 14328.06 1925.49 - -
RMBPT Xe 34566.5 5453.7 - -
EXP. Kr 14327.19 1920.4 292.8% 27.4°
(14324.61)* (1916.3)*
EXP. Xe 34565.13 5452.57 1148.7% 213.2°
(34593.)* (5452.89)*
Relative error Kr 0.06 0.04 0.91 4.62
Relative error Xe 0.09 0.05 - 0.15

4Reference [42]
bReference [34]

The X-ray spectra gives the information about the ionization potentials of the core

and valence states but also about the excitations between states.

In Tables 1.6 we present some selected IOTC CASPT?2 + QED excitation energies
of Ne and Ar, such as 1s~! — ns~! and 1s~! — np~! transitions. These excitations are
from the 1s~! state with one hole to another state with one hole in the higher ns or np
levels. As it can be expected, the QED corrections are important for all excitations.
The calculated excitation energies for the Ne and Ar elements entirely agree with
the experimental data and are sometimes even better than the RMBPT results (KL1,
Ka,, Ka, of neon and Kp,, Kp; of argon).

Tables 1.7 and 1.8 show the calculated KL1, KM1, KN1 and Kg,, Kp;, K,
Kﬂ; excitation energies of Kr and Xe. In the case of krypton the difference between
the IOTC + QED energies and the experimental values do not exceed 12 eV and is
the smallest for the KL1 line (3 eV). Similar agreement can be observed with the
RMBPT data.
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Table 1.6 Excitation energies of Ne and Ar ions (in eV) taken from [39]

Ne and Ar
Method KL1? KM1P Ka,° Ka,? KB,° Kp,!
IOTC PT2 | 822.08 — 849.36 849.23 - -
Ne
IOTC PT2 | 2880.95 3178.19 2960.34 2957.81 3193.29 3193.23
Ar
QED corrections
BREIT Ne | -0.326 — -0.329 —0.321 — -
BREIT Ar | -2.235 —2.338 —2.242 -2.164 —-2.341 —-2.334
SE Ne —0.123 - —0.130 -0.130 - -
SE Ar —0.991 -1.073 —1,094 —1.099 —1.084 —1.084
VP Ne +0.007 - +0.007 +0.007 - -
VP Ar +0.071 +0.076 +0.076 +0.076 +0.077 +0.077
SUM Ne —0.442 - —0.454 —0.456 - -
SUM Ar -3.155 -3.335 —-3.258 -3.185 —3.348 —3.341
10TC 821.64 — 848.91 848.77 — —
PT2 + QED
Ne
10TC 2877.79 3174.86 2957.08 2954.63 3190.03 3190.05
PT2 + QED
Ar
RMBPT Ne | 817.69 - 849.17 849.09 - -
RMBPT Ar | 2880.13 3177.4 2957.90 2955.89 3191.47 3191.31
EXP. Ne 822.07" - 848.61¢ 848.61¢ - -
EXP. Ar 2879.6" 3176.12" 2957.68¢ 2955.57¢ 3190.49¢ 3190.49¢
a]s—l - 2S_1
bls~! = 357!
sl - 2p%
d1o—1 1
Is™ — 2172
-1
°-1s - 3p§
f1s~1 > 3pl

gReference f42]
hCalculated as the difference between the appropriate experimental energies (Table 1.2)

For xenon the absolute error is larger and varies from about 7.3 eV for the Kf;
excitation until 44 eV for the K, line. However, the relative error does not exceed
0.13 % of the experimental value.

Additionally to the relativistic calculations one may see the nonrelativistic results
for the ns ionization potentials (Table 1.5) and KL.1, KM1 and KN1 excitation ener-
gies (Table 1.6) of Kr and Xe, which show the importance of the relativistic effects
on the calculated values. The main relativistic effect is obviously associated with the
deepest core level and varies from about 245 eV in Kr (total 1s IOTC IP is about
14351 eV) to 1396 eV in Xe (total 1s IOTC IP is about 34657 eV). However, for
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Table 1.7 Excitation energies of Kr and Xe ions (in eV) taken from [39]

Kr and Xe

Method KLI1? KM1Y KN1¢
NR PT2 Kr 12236.53 13825.43 14078.27
NR PT2 Xe 28142.79 - 33058.81
IOTC PT2 Kr 12427.35 14056.29 14322.6
IOTC PT2 Xe 29194.1 - 3444421
Corrections in GRASP

BREIT Kr —20.458 -21.975 —22.135
BREIT Xe —74.754 - —82.341
SE Kr —10.787 -11.917 —12.113
SE Xe —42.730 - —48.726
VP Kr +1.152 +1.262 +1.281
VP Xe +6.222 - +7.001
SUM Kr —30.093 —32.630 —32.967
SUM Xe —111.261 - —124.060
IOTC PT2 + QED Kr | 12409.22 14022.52 14289.63
IOTC PT2 + QED Xe |29082.84 - 34320.15
RMBPT Kr 12402.57 14034.9 14301.2
RMBPT Xe 29112.8 - 343534
EXP. Kr¢ 12406.79 14034.39 14299.79
EXP. Xe¢ 29112.56 - 34351.83
Relative error % Kr 0.02 0.08 0.07
Relative error % Xe 0.10 - 0.09

s~ - 257!

bls~!l - 357!

157! - 457!

dCalculated as the difference between the appropriate experimental energies (Table 1.4)

intermediate levels, in particular for higher s-type holes, the relativistic effect is also
quite significant and its inclusion is crucial in the core X-ray spectra calculations.

Finally, we may estimate that the total calculated QED corrections, for most of
the states, are usually about 10 % of the corresponding relativistic correction.

1.8 Concluding Remarks

The role and importance of relativistic effects in the chemistry is already widely
acknowledged. The problem which remains is the choice of the best method for the
calculation of these effects. In advanced calculations they need to be spin-free or
spin-dependent algorithms. One of the most exact two-component method is the
infinite order two-component IOTC theory implemented in its spin-free version into
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Table 1.8 Excitation energies of Kr and Xe ions (in eV) taken from [39]
Kr and Xe
Method Kp,? Kp,b Kplle Kpi
IOTC PT2 Kr 14137.56 14129.19 14337.68 14337.00
IOTC PT2 Xe 33716.06 33653.58 34520.96 34509.00
QED Corrections GRASP2K
BREIT Kr -21.967 -21.813 —22.141 —22.128
BREIT Xe —81.283 —80.445 —82.35 —82.18
SE Kr —12.148 —12.162 —12.137 —12.139
SE Xe —48.994 —49.083 —49.001 —49.018
VP Kr +1.285 +1.285 1.284 1.297
VP Xe +7.054 +7.046 +7.045 +7.043
SUM Kr -32.83 -32.69 —32.994 -32.970
SUM Xe —123.22 —122.48 —124.30 —124.15
IOTC PT2 +QED Kr | 14104.73 14096.50 14304.68 14304.03
IOTC PT2 + QED Xe |33592.84 33531.10 34396.66 34384.85
RMBPT Kr 14113.3 14105.7 14314.10 14313.0
RMBPT Xe 33624.6 33563.03 34408.9 34408.
EXP. Kr® 14112.82 14104.96 14315.0 14315.0
EXP. Xe® 33624.23 33563.20 34414.7 34414.7
Relative error % Kr | 0.06 0.07 0.07 0.08
Relative error % Xe | 0.09 0.10 0.05 0.09
sl = 3ps
bls~! > 3p21
157! — 4ng
s~ > 4p21

¢Reference [242]

the MOLCAS and GAMES (USA) codes. Spin-dependent properties should also be
included in the calculations of many properties, however it is not easy to do it. One of
the possibilities gives the atomic mean-filed approximation discussed in this chapter.
Comparison of the results obtained by the IOTC method with one of the most com-
monly used, the Douglas-Kroll-Hess method (DKHn, (n = 2, 3, ... 8), show the very
good agreement of the results. In these chapter some illustration of these data have
been presented. In recent years, due to the strong development of experimental meth-
ods, we observe an increased interest in spectroscopy of small chemical molecules,
and their potential energy curves. To get the good quality potential energy curve
one needs the good total energy. It was not necessary when we were only interested
in spectroscopic parameters of the molecules. It turns out, that for the description of
the potential energy curves the IOTC method gives the results which can be obtained
only in the high order DKHn approximations.
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The are some experimental methods, such as X-ray spectroscopy, for which a
description of the experimental results by the methods based on the relativistic quan-
tum mechanics is not sufficient. These spectroscopic methods play an increasing
role, recent years, in the search for new materials. To properly described the X-ray
spectroscopy, the Breit interactions and the corrections resulting from quantum elec-
trodynamics, such as the self energy and vacuum polarization must be added to the
nonrelativistic results. The calculation of these terms is not an easy task to do, espe-
cially in the molecular codes. This chapter shows how the results of the spin-free
CASSCF/CASPT2 I0TC calculations of the core and valence ionization and exci-
tation energies change when we add to them Breit and quantum electrodynamics
corrections. It also shows that the molecular relativistic IOTC method together with
the electrodynamic expressions is able to give the X-ray parameters comparable with
the experimental results.
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Chapter 2
How Can One Locate the Global Energy
Minimum for Hydrogen-Bonded Clusters?

Sergey Kazachenko and Ajit J. Thakkar

Abstract An important problem in many areas of chemistry and physics is finding
the global energy minimum on a potential energy surface. The difficulty stems from
the exponential increase in the number of local minima with the size of the sys-
tem. An efficient algorithm to find the global minima of water clusters is described
and tested. It works well for clusters containing up to about 55 water molecules. A
generalization to other hydrogen-bonded clusters is outlined. Applications of this
algorithm to water clusters and methanol clusters have already been reported in the
literature.

2.1 Introduction

Material particles consisting of a few to a few thousand atoms are called clusters.
Cluster properties can have dramatic size and shape dependence. Clusters can serve
as building blocks for new materials and electronic devices. Hence clusters of met-
als, semiconductors, ionic solids, rare gases, and small molecules have been stud-
ied using both theoretical and experimental methods. Atomic and molecular clus-
ters [1] are held together by hydrogen bonds [2] or by relatively weak intermolecular
forces [3, 4].

In particular, small clusters of hydrogen-bonded water molecules have received a
lot of attention; see, for example, spectroscopic work [5—16], and density functional
theory and ab initio investigations [17-31]. Water is not a simple substance and has
anomalous physical and chemical properties. More than a century of work has been
devoted to modeling and understanding these properties. Nevertheless, many aspects
of water remain unsolved puzzles and the development of water models continues
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to attract much interest. Water models can use water clusters, (H,0),, as building
blocks [32-36].

An important part of cluster research is a characterization of the global min-
imum of the potential energy surface—the structure of the most stable cluster.
A scholarly and comprehensive survey of the difficult problem of locating the global
minimum on a potential energy surface is available [37]. Computational approaches
to the determination of global minima are very attractive because the experimental
determination of the structure of the ground state is extremely difficult for complex
systems. Unfortunately, the computational solution is rather expensive because the
number of local minima on the surface grows exponentially with the dimensional-
ity of the surface or, in other words, with the number of atoms in the system. An
algorithm searching for a global minimum can easily get trapped in one of these
local minima because the traversal of many intermediate minima and the crossing
of high barriers separating them may be required to find a lower local minimum. In
high-dimensional cases, which are the norm rather than the exception in physically
important clusters, a global minimum can only be discovered and verified after a
sufficiently large number of low energy minima have been located and compared.

We have been studying water clusters for some time now. Hence we have been
gradually developing and refining our own algorithm for locating a global energy
minimum for water clusters. We previously described successive improvements to
our algorithm in an incremental manner in a series of papers [38—41] and a the-
sis [42]. The purpose of this chapter is to try and describe the current state of our
algorithm in a relatively self-contained and cohesive manner without the reader hav-
ing to consult our previous work.

All algorithm tests on water clusters discussed in this chapter are done with the
empirical TIP4P model [43], a reparametrization of the venerable Bernal-Fowler
model [44]. The interactions are considered to be pair-wise additive and the water
monomers are held rigid so that they do not vibrate. The interaction between a
pair of water molecules is given by a Lennard-Jones (12,6) interaction between the
oxygen atoms and electrostatic interactions between three point charges on each
water molecule. There are positive charges on the hydrogen atoms and a balanc-
ing negative charge between the hydrogen atoms along the C, symmetry axis. The
TIP4P model gives a reasonable thermodynamic description of liquid water. Many
studies have been devoted to finding the global minima of TIP4P water clusters
[38—40, 45-51]. Generally good agreement has been found [48] between its pre-
dictions for small clusters with n < 12 and both ab initio and experimental results.
The TIP4P global minima for cluster sizes up to 47 are now firmly established [41]
except for n = 39 and n = 45. Putative TIP4P global minima have been reported [41]
for larger clusters with n < 55. Low-energy TIP4P structures for much larger clusters
with selected sizes have been located [7, 49]. Pure water clusters based on the TIP4P
model are now a benchmark for methods for global optimization of hydrogen-bonded
clusters.

Some of the basic terminology commonly used in the global optimization lit-
erature is summarized in Sect. 2.2 which also contains a brief description of basin
and minima hopping. Next, the long Sect. 2.3 details the various ways by which we
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optimize the topology of water clusters with a fixed oxygen skeleton. The overall
algorithm is then described in Sect.2.4 and its generalization to other hydrogen-
bonded clusters is outlined in Sect.2.5. A few concluding remarks are made in
Sect. 2.6.

2.2 Basin Hopping and Minima Hopping

A discussion of search algorithms is facilitated by the introduction of some termi-
nology that is widely used in the literature. A basin is a region of geometrical config-
uration space around a minimum on the potential energy surface. The basin contains
all structures, or configurations, from which a search can reach this minimum using
only small steps and downhill moves. A super-basin is the union of several neigh-
boring basins. A funnel F is a super-basin with the property that starting at any point
in F one can reach the lowest minimum in F without crossing barriers that are very
high relative to the average energy difference between local minima in 7. Figure 2.1
is a schematic illustration of two super-basins, one of which is a funnel and the other
one is not.

Use of the Boltzmann factor, exp (—AE/kT), to control all the steps used to leave
a basin makes the crossing of high barriers a rare event. Hence, global minimiza-
tion methods based exclusively on thermodynamic principles can be extremely slow
because they may find it hard to exit a funnel and may repeatedly visit neighboring
configurations that are close in energy. Many standard algorithms such as simulated
annealing [53-55] and basin hopping [46, 56—59] are based on thermodynamic prin-
ciples. However, genetic algorithms [60—62] and minima hopping [52] are not.

The fundamental idea in basin hopping is that the potential energy surface is
effectively transformed to a stepped surface [46, 56, 63]. This is done by ending
each search step with a local optimization so that one effectively searches over local
minima. How one starts the next search step distinguishes various algorithms based
on this seminal idea. We chose minima hopping [52] as the global optimization

Fig. 2.1 Two super-basins: the one on the right is a funnel but the one on the left is not. Figure
adapted from Goedecker [52]
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algorithm in our preliminary work. Minima hopping can be thought of as a version
of basin-hopping [46, 56, 63]. Its goal is to avoid revisiting previously located local
minima without forbidding repeated passages through any transition basins that may
separate many funnels. This is achieved in the minima-hopping method by maintain-
ing a list of visited minima and using adaptive thresholds to leave a basin more and
more vigorously each time the algorithm revisits it. Molecular dynamics (MD) steps
are used as an efficient mechanism for crossing energy barriers.

The minima-hopping algorithm has an inner part for jumping to a new local min-
imum and an outer part for accepting or rejecting the new local minimum. In the
inner part, one tries to escape the current minimum M_, by a short MD simulation in
which the atoms have a Boltzmann velocity distribution such that their kinetic energy
is fixed at E,;,. The simulation is stopped as soon as a minimum is encountered along
the trajectory or the maximum number of MD steps is exceeded. Then one optimizes
to the closest local minimum M using a suitable local optimization method. If this
minimum has been visited previously, then multiply E,;, by f > 1 to make the next
escape attempt more vigorous and repeat the inner part. If this is a newly found local
minimum, divide Ey;, by f to make the next escape attempt less vigorous and go
to the outer part. The latter accepts or rejects the local minimum E(M) as follows.
If EM) — E(M,) < Egyr, the minimum is accepted and E; is divided by @ > 1 to
make the next acceptance more difficult. Otherwise it is rejected and E;¢; is multi-
plied by a to make the next acceptance easier. We tried various values of a and f but
were unable to improve upon the values of @ = 1.02 and g = 1.05 recommended by
Goedecker [52]. The minima-hopping algorithm stops when E\;, reaches or exceeds
a maximum value E{™>* or the number of inner steps exceeds a preset limit N,

It is important to do local optimizations as efficiently as possible because they
are a time-consuming part of minima hopping. In our implementation, we perform
local minimization in two steps. The first optimization uses the limited memory
L-BFGS method [64, 65] with a loose convergence threshold. The optimization is
refined in the second step which uses Davidon’s optimally conditioned variable met-
ric method [66] and a more stringent convergence criterion.

It soon became apparent to us that minima hopping did not always succeed in
finding the optimum hydrogen bond topology for water clusters [39]. Nevertheless,
minima hopping served us as the basic algorithm upon which improved and spe-
cialized methods for water clusters were built. Special topology refining algorithms,
described in the next section, are used both within the global search algorithm and
independently for a refining step on the list of saved low energy minima. Although
many features described here were designed to work only with water, the core algo-
rithm is general and has been applied successfully to other hydrogen-bonded clusters
including pure methanol clusters [67] and pure clusters of ethanol, n-propanol, and
iso-propanol.
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2.3 Finding the Optimal Hydrogen Bond Topology

2.3.1 Representation of H-Bonded Clusters

An algorithm for global optimization of hydrogen-bonded clusters requires a conve-
nient description of a cluster and its features. At the most basic level, the cluster is
defined by the Cartesian coordinates and types of the atoms it consists of. We use
that information to derive some important properties and find a convenient way to
represent them.

A basic property of any H-bonded cluster is the presence or absence of a hydrogen
bond between a pair of given molecules. We use simple geometric criteria to decide
whether there is an O-H-:-O hydrogen bond: the H---O distance should be less than
2.5 A and the O-H---O angle should be greater than 90°. It is convenient to describe
the H-bonds in a cluster of #» molecules by a graph. The latter is represented as an
n X n adjacency matrix A with elements obeying the usual rules: A; = 1 if there is a
bond between molecules i and j and A; = 0 otherwise. By definition, A; = 0 because
molecules are not connected to themselves and A; = A;; because the bond direction
is not taken into consideration. The adjacency matrix allows one to calculate, for
example, the total number of hydrogen bonds in a cluster as N,y = % ZUAU One
can also calculate the number of rings of a given size formed by connected molecules.
We implemented the counting of rings using a backtracking algorithm based on the
work of Franzblau [68]. There are several possible definitions of a ring in a graph. We
count all rings in which each monomer is connected to exactly two other monomers
belonging to the same ring.

The H-bond directionality is important in topology optimization. Keeping track
of both the existence and direction of the H-bonds in a cluster can be accomplished
by using a digraph. The latter can be represented by a directed adjacency matrix D.
As with the adjacency matrix, the absence of a bond between monomers i and j is
indicated by D;; = 0 and so all diagonal elements vanish, D;; = 0. If there is a bond
in the i—j direction then Dl-j =1 and Dji = 0. The D matrix contains, for example,
information about the number of donor (don) and acceptor (acc) H-bonds for each
molecule: Néon = Zj Dj, N;cc = Z/ D;;. Note that the summation index depends on
the definition of the H-bond direction. In a computer program, the sparsity of A and
D can be exploited by storing them as linked lists of non-zero elements.

2.3.2 Why Is Topology Optimization Needed?

A simple characterization of a cluster of n water molecules is its skeleton or graph by
which we mean the connectivity of the monomers described by an adjacency matrix
A. The positions of the oxygen atoms and the skeleton define the shape of a clus-
ter as in the left panel of Fig.2.2. However, virtually all hydrogen bonds between
water molecules can be assigned a direction, say from donor to acceptor. Hence,
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Fig. 2.2 An example of a framework and a complete cluster with one of the possible H-bond
topologies for a (H,0),4 cluster. Two internal molecules are shown in blue

there can be many water cluster geometries with the same skeleton but different
hydrogen bond topologies; that is to say, cluster structures with the same skeleton
but different directions in one or more of the hydrogen bonds. In the terminology of
Sect. 2.3.1, any given adjacency matrix A can correspond to many directed adjacency
matrices D,. The oxygen framework and the H-bond topology together define a com-
plete cluster as in the right panel of Fig. 2.2. The stability of a given framework can
vary significantly depending on the hydrogen bond distribution [69-75].

Since each cluster framework maybe paired with a large number of H-bond
topologies, the resulting cluster structures can have significant energy differences.
Therefore, it is important that we are able to locate the one with the lowest energy. It
might also be of interest to know how many topologies exist for a given framework
and possibly separate them into categories. Locating the minimum energy topology,
or topology optimization, can be done either as a separate procedure on selected
water clusters or as a part of a global optimization.

The problem of finding the best hydrogen bond topology for water clusters has
been studied extensively; see, for example, Refs. [49, 51, 69-74, 76-83]. Polyhe-
dral and cubic water clusters were described in several publications using graph
theory [69, 74, 78, 79]. The effects of H-bond topology on the stability and spec-
troscopic properties of water octamers were studied by Francisco et al. [73, 80].
The relation between the topology and interaction energy was studied for polyhedral
clusters [72, 81] and for some other shapes and sizes [71, 81]. As a result, several
formulas were developed to predict the relative energy of a water cluster based on
its monomer connectivity. A different approach is to use a proton transfer to change
the direction of hydrogen bonds and so sample a number of topologies using general
optimization methods [49, 51]. There is also the brute-force approach of examin-
ing all possible topologies for an arbitrary cluster shape [77, 82, 83]. The last two
approaches will be discussed later in more detail.

Unfortunately, most of the suggested methods were designed only for a particu-
lar oxygen framework or turned out to be inefficient. We created several algorithms
suitable to our goal of reliably finding the lowest energy topology for a water clus-
ter of an arbitrary shape. The algorithms were efficient at locating lowest-energy
topologies when applied to clusters with no more than 55 molecules.
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2.3.3 Comparing and Storing Water Cluster Minima

In our approach for H-bond topology optimization, a water cluster is defined as a
structure with a particular oxygen framework. A framework is assumed to have a
unique adjacency matrix A. No two frameworks will have the same matrix and, there-
fore, clusters can be compared by comparing their A matrices. All possible topolo-
gies for a framework are considered to be variations of the same cluster. Therefore,
each cluster defined by its A matrix has a set of local minima corresponding to all
possible H-bond topologies. Such separation of the framework and topology helps to
reduce the number of local minima that are stored during a global minimum search.
Only the version of a cluster with the best topology is kept.

How can we determine if two sets with an equal number of water molecules form
clusters with an identical shape? A matrices can be compared directly if the position
of the molecules has changed only slightly, i.e. after a small distortion. However,
in general we want the comparison to be independent of the order of molecules in
a coordinate list. In our case this is done in three steps which helps to reduce the
number of time-consuming operations. First, the number of H-bonds must be the
same, which is easy to calculate and to check. Next, we use the idea that the way
molecules are connected has an effect on the number of rings formed by H-bonded
monomers in a cluster. Moreover, the number of rings is independent of the order of
molecules in a list. Therefore, as the second step, it is required that the number of
rings of each size from 3 to 10 molecules must be the same. For those cases where
the ring rule is also satisfied, an alignment of A matrices is used to perform the final
check which must allow for the possibility that the order of the elements (monomers)
is different. A backtracking procedure is used to examine the connectivity of each
monomer and to try and match pairs of molecules from the clusters being compared.
This procedure allows us to determine whether two matrices correspond to the same
framework even when the order of the elements is not the same.

When the list of visited minima is large enough, it is no longer feasible to keep
either the Cartesian coordinates or the adjacency matrix for each local minimum. In
that case, the third step that includes alignment of A matrices can be omitted. Nine
integers, the number of H-bonds and the numbers of three- through ten-membered
rings, are saved for each local minimum and provide a robust and reliable way to
compare cluster frameworks.

2.3.4 Filters to Screen Topologies

Finding the lowest-energy topology of a large cluster framework would be impossi-
ble if it required the local optimization of all or even most of its topologies. Fortu-
nately, the number of expensive local optimizations required can be reduced by using
simple filters or criteria based solely on geometrical considerations to weed out the
topologies that are likely to have a high energy. Note that although the shape of a
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unstable stable

Fig. 2.3 Examples of less stable and more stable hydrogen bonding of a monomer

water cluster depends somewhat on its topology, a stable (i.e. low-energy) frame-
work does not break or change when its topology is changed.

The first thing to do is to count the number of H-bonds and their types for each
molecule. We define a donor bond as a bond created by a hydrogen atom of a given
molecule and an acceptor bond as the one created by an oxygen atom of the molecule.
We use a modification of the venerable Bernal-Fowler “ice rules” [44] and require
that

1 < number of donor bonds < 2,

and
1 < number of acceptor bonds < 2 or 3.

In words, each water molecule in a cluster must have at least one donor and one
acceptor bond. Moreover, there can be at most two donor bonds (one for each hydro-
gen) and at most two acceptor bonds. These rules allow one to avoid unstable con-
nectivity of molecules; see Fig. 2.3. In rare cases a water molecule in a cluster accepts
three hydrogen bonds and it is necessary to account for such a possibility. However,
allowing all molecules to accept three H-bonds would significantly increase the num-
ber of topology combinations. Thus, the algorithm detects penta-coordinated mole-
cules in the input geometry and only those can have up to three acceptor bonds, while
the rest are restricted to have no more than two acceptor bonds.

We found that in some cases changing the cluster topology leads to unrealistic
monomer angles; see Fig. 2.4. Note that the molecules in a cluster shift somewhat
during a local optimization of a new topology. Thus we must allow for a range
of angles to be accepted. Test calculations suggest that a topology can reliably be

Fig. 2.4 An example of an _

unrealistic monomer angle in g d f‘
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Fig. 2.5 Adjacent monomers with a connectivity that leads to higher energy (D—donor, A—
acceptor)

considered unfavorable if it leads to a monomer angle larger than 150° or smaller
than 65°. These values span a large enough range to ensure that no important topolo-
gies are missed because of the angle filter.

It is well-established that adjacent dangling hydrogen atoms lead to a higher clus-
ter energy [69, 71-73, 79]. In addition, Anick found two other patterns leading to
an increased energy [81]. These three motifs of connectivity are shown in Fig.2.5.
The types of H-bonds are labeled by D for donor and A for acceptor. The number of
motifs 1 and 2 that occur in a cluster must be kept as low as possible. This means that
one can safely discard all topologies with more such motifs than the lowest number
found at any given stage. The third rule is not as strong. We found that a topology can
be discarded safely only when the number of such motifs exceeds the lowest number
found plus two.

2.3.5 Topology Optimization by Enumeration

A straightforward way of finding the best topology is to generate all possible H-
bond distributions, do local optimizations on each one, and compare their ener-
gies. Miyake and Aida used adjacency and directed adjacency matrices (graphs and
digraphs) to describe the framework and the topology of a cluster, respectively [82].
Knowing the digraph and the coordinates of the oxygen atoms, one can recreate the
topology and then perform a local optimization to relax the cluster geometry. The use
of adjacency matrices was a promising idea; however, in their algorithm all possible
D matrices were generated first and only later were they checked to see if they were
useful. This led to a large wasted computational effort and the largest cluster size
they were able to study was limited to just eight water molecules. Vukicevi¢ et al.
improved the performance of the method by eliminating the need to generate unre-
alistic matrices [77, 83] and analyzed the topology for clusters with up to 12 water
molecules.

The ideas of using graphs and digraphs and eliminating undesired combinations
on the fly were used in the creation of our method, called topology enumeration
(NT). Consider the cage hexamer shown in Fig.2.6a as an example. We start from
the given framework and its adjacency matrix A. Each row and column of A with the
same index corresponds to a molecule. Defining all connections of a molecule to the
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Fig.2.6 Adjacency matrices for the enumeration method. a sample geometry; b adjacency matrix;
¢ possible directed adjacency matrices

other molecules automatically defines the connections of all molecules to the current
one. Therefore, it is sufficient to consider each row and column starting from the
corresponding diagonal element; see Fig. 2.6b. The connectivity of the last molecule
(number 6), as expected, is completely defined by the connectivity of the previous
molecules.

The positions with ones in each row (or column) of A tell us which molecules are
connected to a given molecule. Let us choose rows as a reference. Then, by going
through all combinations of 1 and O for positions marked with “1/0” in Fig.2.6¢
we can generate all possible H-bond directions for the given skeleton. This can be
achieved by taking a bit representation of an integer value that ranges from 0 to
2" — 1. From the definition of D, the values in a column are the opposite of the values
in a row (positions with “0/1” in Fig. 2.6¢). H-bond directions are generated for each
molecule in this manner using a backtracking loop. The backtracking allows one to
apply geometry filters for each molecule right away without generating a complete
matrix. The steps constituting our backtracking method are shown in Listing 2.1.

Listing 2.1 Backtracking algorithm for topology enumeration.

Mark all bit combinations of all molecules as not used
Select molecule 1 as the current molecule 'M’
WHILE (‘M’ > 0)
IF (all bit combinations for ‘M’ have been used) THEN
Mark all bit combinations for ‘M’ as not used
Set 'M’ = 'M’ - 1
ELSE
Choose next bit combination for 'M’
Mark this bit combination as used
IF (topology filters are satisfied) THEN
Set ‘M’ = 'M’ + 1
END IF
IF ('M’ > number of molecules) THEN
Create and save a cluster geometry for local optimization
Set 'M’ = 'M’ - 1
END IF
END IF
END WHILE
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In the beginning it is important to sort molecules by their distance from the first
one to allow the algorithm to backtrack from bad combinations sooner rather than
later. The bicoordinated molecules are a special case because they can generally have
two stable directions for the dangling hydrogen. This is accounted for by generating
all combinations of the directions for bicoordinated molecules for each topology. A
symmetrical framework is not considered as a special case because it is a rare case
for water clusters. During creation of the geometry, hydrogen atoms are placed on
the line between two corresponding oxygen atoms. In the case of rigid monomers (as
in the TIP4P potential), and to save optimization time in the case of non-rigid ones,
the monomer bond lengths and angles are adjusted to the equilibrium values of the
given potential using a simple geometrical transformation.

A large number of trial topologies is usually generated. It is not possible to per-
form a tight local optimization for all topologies even with an inexpensive poten-
tial. Therefore, a local optimization is done in several steps of increasing precision.
A single-point energy is calculated for the initial geometry of each topology. The
geometries of the structures with the 5000 lowest single-point energies are then
optimized until a 1.0 kcal/mol/A gradient threshold is reached. Then the 500 best
resulting geometries are further optimized with a 0.1 kcal/mol/A threshold. Next,
the 50 lowest-energy geometries that result are optimized using a 0.01 kcal/mol/A
threshold. Finally, a very tight optimization is performed at the best geometry.

The number of topologies generated for three cluster sizes and the effects of topol-
ogy filters are shown in Table 2.1. Note that in these test cases the best topology found
is the same no matter what filters are used; the difference is in the number of geome-
tries that need to be locally optimized. The use of the modified ice rules still leads to a
huge number of topologies left for energy calculations. Checking for monomer angle
and adjacent dangling (non-H-bonded) hydrogen atoms further reduces the number
of accepted topologies by three orders of magnitude. The next filter is not as effective
but reduces the number of topologies in all cases. The final filter makes a difference
only for the larger cluster with n = 31. Even with all the filters included the num-
ber of resulting topologies shows an exponential growth. Thus the method becomes
increasingly inefficient for clusters with more than about 35 water molecules.

The backtracking loop for generating D matrices was also used in the routine
that produces a random topology. Such a topology should be random but still satisfy

Table 2.1 The number of topologies to be locally optimized for a sample oxygen framework in
(HZO)n

Filters used n=23 n=28 n =731
Modified ice rules ~107 ~108 ~10°

+ HOH angle ~10° ~107 ~108

+ 2 adjacent DAA 11556 46922 403465
+ 3 adjacent ADD 6892 34971 337986
+ AADD - AAD 6892 34971 318728

The plus sign means that a filter is added to all previous ones
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topology filters. To achieve this, random bond directions are selected for each line of
the D matrix. Then the backtracking search is performed starting from this random
matrix until all topology filters are satisfied.

2.3.6 Short Topology-Altering Optimization

Kazimirski and Buch [49] foresaw and Takeuchi [51] refined a different approximate
but fast H-bond topology optimization which can be used as part of a global mini-
mum search. We now describe our version of this method which we call the “short
topology-altering optimization”.

Tri-coordinate water molecules in a cluster are either double-acceptor, single-
donor (AAD) molecules or single-acceptor, double-donor (ADD) molecules. The
basic H-bond topology-altering operation is the reversal of the direction of the
H-bonds in a contiguous sequence of water molecules. It can also be viewed as a
proton transfer. It is possible to perform such a reversal without altering the connec-
tivity in rings and in those chain substructures which have an AAD water at one end
and an ADD water at the other end. Examples of such a H-bond topology-altering
operation are shown in Fig.2.7.

Sometimes this operation has the effect of creating an extra pair of non-H-bonded
or “dangling” hydrogen atoms on adjacent water molecules. However, as discussed
earlier in Sect. 2.3.4, structures with adjacent AAD water molecules are energetically
unfavorable [69, 71-73, 79]. To reduce the number of such structures generated,
we introduce a split-chain H-bond topology-alteration. This new operation consists
of splitting a chain substructure into two shorter chains between a pair of adjacent
ADD and AAD waters, and performing the H-bond reversal in both subchains with-
out altering the H-bond connecting the subchains. An example is shown in Fig. 2.8.
Adding this type of operation helps to distribute “dangling” hydrogen atoms on the
surface of a cluster.

A short topology-altering search consists of applying the operations described
above to all rings containing no more than 10 monomers and all chain and split-
chain substructures with no more than 5 monomers. Note that Takeuchi used only
rings and size 2 chain substructures while Buch and Kazimirski used only chains
and rings of size 4. New topologies are created by changing bond directions of one
substructure at a time. If a new topology has a lower energy, it is accepted as a new

N M N M : i i : i
O -~-~H=0 Q—H """ (I) H H H li' H H
1 : | | | | |
H WO H H=0 - H=Q-~H=0 —3 O —H--O—H--O—H
Ny O O H=C i : : H H :
/O H O\ /O O\ AAD AADD ADD ADD AADD AAD
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Fig. 2.7 Examples of a H-bond topology-altering operation applied to (left) a ring and (right) to
a chain of water molecules



2 How Can One Locate the Global Energy ... 37

AAD Il-l H ADD ADD H H AAD
I I I
H—Q - H—0 O—H - O—H
H H @—> H H
I | I I
H—O -~ H=0 O—H-~O—H
AAD ADD ADD AAD

Fig. 2.8 A split-chain, H-bond topology-altering operation. In this example, the split is between
the second and third waters

reference point and optimization returns to the smallest substructure. The search is
allowed to move only in a downhill direction of the potential energy surface to limit
the number of topologies considered. The framework of the initial cluster is allowed
to change during optimization. In fact, a framework change does happen often when
the input structure has a relatively high energy. The search is complete when no
substructure alteration leads to energy lowering.

Since the algorithm goes through all possible substructure changes, it is likely
that the same topology would be generated and locally optimized more than once.
Saving optimized geometries in a list removes that problem at the cost of adding
complexity to the algorithm. A list entry consists of an energy, Cartesian coordinates,
and a D matrix. New structures are saved in the list. If a structure with a given D
matrix is already in the list, the geometry and energy from the list are used instead
of performing a local optimization. The list is created for a given framework. It can be
limited to a single optimization call or can be global in case the parent process uses
short topology-altering optimization as part of a larger algorithm as in Sect.2.3.8.
If the framework changes during the optimization, the list is either reset to be used
with the new framework, or, in the case of a global list, the search is terminated. The
algorithm can only go downhill in energy. Listing 2.2 describes the general flow of
the ST algorithm.

Listing 2.2 Short topology-altering optimization (ST).

Set substructure size M = 2
WHILE (M <= 10)
FOR each substructure of type 'T’
Find substructures 'T (M)’ that allow altering H-bond direction
FOR each substructure 'T (M)’
Alter H-bond direction of the substructure
IF (topology filters are satisfied) THEN
Perform local optimization
Keep the best topology generated for the current M
END IF
END FOR
END FOR
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IF (lower energy geometry has been found) then
M =2
else
M=M=+ 1
end if
END WHILE

The effects of using topology filters and the minima list have been examined for
three large cluster sizes: n = 34, 43, and 52. For each size, 1000 low energy clusters
with randomized topologies were generated as a test set. Short topology-altering (ST)
optimization was applied to each cluster, first with no filters or lists as a reference
point, and then adding one filter at a time. The average speed up of run times was
calculated for each case; see Table 2.2.

The direction of a search often changes when filters are added. In some cases,
optimization finishes at a higher energy minimum than the one reached without the
use of the additional filter. However, with all of the improvements, the energy lower-
ing is the same on average while the run time is reduced by about 40 %. Note that the
AADD-AAD pair motif and the three adjacent ADD motif were not used as filters
because the improvement in speed was not significant.

This algorithm has also been implemented to work with mixed clusters containing
many water molecules and a few other molecules. The latter are treated as a special
case and only the H-bond network between water molecules is allowed to change.
Of course, for such an optimization to make sense, there should be enough water
molecules to form a topological network. The algorithm can be used to optimize an
initial distribution of a large number of water molecules around a solvated molecule,
for example a protein, before starting a molecular dynamics simulation.

2.3.7 Extended Topology-Altering Optimization

The short topology-altering optimization allows only downhill moves. However, it
is desirable to extend it to cross energy barriers and explore larger areas of the
potential energy surface. Using a Monte Carlo search in the manner of Buch and
Kazimirski [7] is one option. We wanted, however, to keep the algorithm more

Table 2.2 Effect of topology filters shown as an average percentage improvement in calculation
time relative to the trial with no filters

Features used (H,0),

n =234 n =43 n=>52
+ HOH angle 11.68 7.64 6.39
+ 2 adjacent DAA 41.82 37.18 31.31
+ list of minima 45.30 40.16 33.99
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deterministic. Our algorithm, called extended topology-altering optimization ET (i),
uses a population of m topologies that act as different solutions and are refined inde-
pendently. This way some topologies with an energy higher than the best are saved
as part of a population thus allowing the algorithm to search in several directions.

The algorithm is shown in Listing 2.3. A population member is described by
Cartesian coordinates, energy, A and D matrices, and its substructure level—the
size of the largest substructure for which the altering of H-bond directions has been
performed. At the beginning, the population contains only one member, an initial
structure with its substructure level set to 1. A single substructure level is consid-
ered during a search iteration. An H-bond alternation search is performed with the
ST algorithm of Sect.2.3.6 for all members whose substructure level is M — 1 in
which M is the current level. In the case a new topology is accepted, it replaces the
highest energy one in the population if its energy is lower and the population does not
already have such a topology. The new member’s substructure level is set to 1, and
M is reset to 2. Thus, only the part of the population with smaller substructure levels
is considered until all members have the same level again. The search stops when
substructures of size 10 have been examined for all members. The lowest-energy
member of the population is the result of the optimization.

Listing 2.3 Extended topology (ET) optimization.

Set current population size to 1
Use initial structure as the first member
Set the substructure level of the first member to 1
Set current substructure size M = 2
WHILE (M <= 10)
Copy current population into parent population
FOR all current population members with substructure level < M
Increase substructure level by 1
END FOR
FOR all parent population members
IF (the substructure level of the member < M) THEN
FOR each substructure of type ’'T’
Find all substructures 'T (M)’ that allow
altering H-bond direction
FOR each substructure 'T(M)’
Alter H-bond direction of the substructure
IF (topology filters are satisfied) then
Local optimization
IF (new topology is better than the worst in
the current population) THEN
Add structure if population is not full
or replace the worst
Set the substructure level of a new member to 1
END IF
END IF
END FOR
END FOR
END IF
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END FOR
IF (current population has a new member) then
Set M = 2
else
Set M =M+ 1
end if
END WHILE

We can control the extent of the search by changing the size of the population.
Using a larger population allows us to explore a larger part of the potential energy
surface (PES) but with the computational effort being significantly larger. An ET
optimization with a population of one is equivalent to an ST optimization. Since
each population member has its own adjacency matrix, the framework is allowed to
change during the optimization. Therefore, if the input structure is not sufficiently
stable, it is possible that the population will contain several different frameworks.
We have not implemented a list of visited geometries for this algorithm.

2.3.8 Genetic Topology Optimization

The enumeration algorithm is limited to clusters with up to 35 water molecules while
the ST and ET algorithms that alter the H-bond directions of the substructures are not
designed to perform an exhaustive search. We need a different approach to reliably
find the best topology for larger clusters.

If we consider the positions of ones in an A matrix and the matrix dimensions, we
can create a transformation rule that converts a corresponding D matrix into a string
containing only information on the direction of existing bonds. In other words, all
zeroes that indicate the absence of a H-bond and do not change when the topology
is altered are removed. It suffices to use only half of the D matrix because D;; can
be determined from Dj;. Since the bond direction is encoded in a binary manner by
0 and 1, we can create a bit string that unambiguously represents a topology for a
given oxygen framework; see Fig.2.9.
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Fig. 2.9 Representation of a hydrogen bond topology using a bit string
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In the jargon of genetic algorithms, a new bit string can be created by a crossover
operation on a pair of parent strings as in Fig.2.10. The definition of a suitable
crossover operation makes it possible to search over a large number of topologies
and find the best one with genetic optimization methods.

Genetic topology optimization (GT) proceeds in the following manner. A list of
visited topologies is maintained in the form of bit strings. A new generation is created
using steps standard in genetic algorithms: elitism, crossover, and mutation. Elitism
copies 20 % of the previous population into the next generation to keep several of the
lowest energy topologies in the pool. During the crossover phase, all possible pairs of
the population members exchange sequences of bits. All possible crossover positions
and sequence lengths are examined. Each child that has not been visited previously
is checked for satisfaction of the topology filters. Each accepted child is added to the
list of visited topologies and processed using a multiple step procedure described in
the next paragraph. Sometimes there are not enough new topologies generated by the
crossover phase to fill the population. In that case, random topologies are added to
the population during a mutation phase. The search stops either when the best energy
remains unchanged after 20 generations or when neither crossover nor mutation can
generate an unvisited topology.

When a new topology is accepted, it is processed in several steps. First, a local
optimization is performed in two stages of increasing precision. After the first stage,
the topology is discarded if the energy of a child is higher than the highest energy
of the parent population by 3 kcal/mol or more. Otherwise, a tighter optimization is
performed. The adjacency matrices of the initial and current geometries are com-
pared at the second step to ensure that the oxygen framework has not changed.
Allowing the framework to change during the genetic topology search would add
unnecessary complications. Next, a short topology-altering (ST) optimization is
applied. A crossover operation generates diverse starting points, sampling different
areas of the potential energy surface, while an ST optimization allows the algorithm
to reach a low energy minimum at the bottom of a funnel. The framework distortion
is checked again. If the energy was lowered during the ST step, the new topology is
checked against the visited list.

The initial population is generated as follows. Random topologies correspond-
ing to the framework of the input structure are created using the enumeration (NT)
method described in Sect. 2.3.5 and processed as described in the previous paragraph
until the desired population size is obtained.

The genetic topology algorithm is successful in optimizing topologies of large
clusters. However, a significant number of random topologies is often added to the
population during optimization. Perhaps the random topologies are more important
starting points for the ST optimization than the results of a crossover operation.



42 S. Kazachenko and A.J. Thakkar
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A careful assessment of this issue would help to improve algorithm performance.
However, one should remember that test runs over a large variety of structures are
required to obtain information on the details of the algorithm performance, since
topology optimization is much more difficult for some oxygen frameworks than
others.

2.3.9 Comparison of Topology Optimization Methods

The ability of the ST, ET, and GT methods described in Sects. 2.3.6-2.3.8 to locate
the best topology was tested. To perform a comparison, 19 low-energy (H,0)s,
clusters with randomized topologies were subject to topology optimization. Dur-
ing topology optimization, we start with a faster algorithm and then refine results
employing more precise methods. Therefore, different combinations of methods
were examined to see whether the inclusion of more complex algorithms leads to
a better topology.

The results are shown in Fig. 2.11. E_;, is the lowest energy that has been found
for a cluster whereas E is the cluster energy after a sequence of topology optimiza-
tions. The initial random topologies have an energy difference, E — E_;,, ranging
from 5 kcal/mol to 25 kcal/mol. The short topology-altering optimization lowers the
energy significantly, leading to E — E_;, < 2.5kcal/mol. The addition of a more
complex method helps to lower the energy further in all but two cases. Compari-
son of ET(10) and ET(20) shows that increasing the population size of ET(m) is
advantageous for 5 geometries out of 19. In nine cases GT is necessary to find the

best topology.
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2.4 Global Optimization of Water Clusters

An improved parallel evolutionary algorithm [84] and basin hopping combined with
vibrational modes [50] are examples of successful approaches to the problem of
global optimization of water clusters. However, these methods are not able to find the
lowest energy geometry for systems with more than 30 water molecules. A detailed
comparison of results for each cluster size can be found in our publication that
describes an application of minima hopping to water clusters [41].

2.4.1 Improved Minima Hopping

Goedecker’s minima-hopping algorithm was shown to be efficient for atomic clus-
ters [52, 85]. However, our test calculations revealed that the original minima-
hopping algorithm does not have a satisfactory performance on water clusters with
more than 25 molecules. To improve the algorithm, we decided [38] to add geom-
etry altering operations that are different from molecular dynamics or Monte Carlo
steps. These were allowed to be specific to a water cluster system in some cases.
Some examples of operations that take into account the current energy or geometry
of a cluster are direct mutation [84], internal, surface, and rotational operators [51],
and cluster surface smoothing [86].

Our improved algorithm uses several types of geometry transformation steps
which we call operators. An operator acts as a black box. It takes a cluster geometry,
performs some transformations independent of the other operators, and returns a new
geometry. For example, the MD simulation step in standard minima hopping [52] is
considered to be an operator. The main purpose of the MD operator is to “hop” over
higher energy minima, thereby sampling different areas of the PES. The other oper-
ators are designed to lower the energy of a cluster starting from a minimum obtained
by MD steps. Four types of geometry transformations were added. The topology
operations, ST and ET, described in Sect.2.3 are used to lower a cluster’s energy
through topology variation. A translational operator (TRN) moves a molecule to a
more favorable position in a cluster [38]. Lastly, a distortion operator (DST) changes
the position of several molecules in a selected area of a cluster.

A global optimization using the improved minima-hopping method consists of
many cycles. A cycle takes search parameters and cluster coordinates as an input.
Each cycle combines operator calls in an optimal sequence. During a cycle, the out-
put list and the visited minima list are updated and the final search parameters and
coordinates are returned. To account for the different computational expense of the
different operators, a cycle is divided into an initial exploration phase and a sub-
sequent energy lowering phase. The exploration phase attempts to move the search
to a slightly different area of the PES by crossing energy barriers using the MD
and ST operators. We found that the ST operator is cheap enough to be applied to
each accepted minimum during the search, significantly improving the algorithm
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performance. The other three operators are more expensive and hence they are used
sparingly. In the second phase of the cycle, the energy of a structure is lowered using
sequences of TRN, DST, and ET(4) operators. The aim of the energy lowering phase
is to reach the bottom of a funnel. Each operator is followed by a tight local optimiza-
tion and an acceptance or rejection of the resulting local minimum.

2.4.2 Accept or Reject?

The decision process closely follows the original minima-hopping [52] algorithm
and its modification [85]. An essential item for deciding what to do with a new mini-
mum is the list of visited minima which contains a description of each accepted min-
imum and a count of the number of times it has been visited. Our improved algorithm
searches over unique cluster frameworks rather than unique topologies thus reducing
the number of possible minima to be considered. To achieve this, the list contains
not only the energy for each minimum but also its nine framework parameters, the
number of hydrogen bonds and eight ring counts, as described in Sect.2.3.3. The
improved minima-hopping search is controlled by two adjustable energy criteria,
E\inetic and Ey¢. Five parameters control the rate of change of these two thresholds:
br=P=p.0s=1/p, @ = a,a, = 1/a. Values of the parameters are « = 1.02 and
p = 1.05 as in Goedecker’s work [52].

Detailed pseudo code for the processing of a newly found minimum is shown in
Listing 2.4. The first section checks whether the minimum has not been changed by
the operator or has been visited before. The rate of kinetic energy increase is modified
by an enhanced feedback mechanism [85]; it depends on the number of visits to a
minimum according to the formula ﬂ; = f,(1 + clog N), where N is the number of
visits and ¢ = 0.1 is a feedback coefficient. With this modification, repeated visits
to a minimum lead to a greater repulsion from that minimum. A special case arises
when the topology of a minimum is improved but the framework remains the same.
In such a case, the energy in the visited list is updated and the minimum is accepted.
The second section of the processing checks the energy of the new minimum. The
MD operator uses Eg;; to determine whether to accept or reject the minimum. For
all other operators a new minimum is accepted only if the energy is lowered. Finally,
the accepted minimum is written to the output and visited minima lists.

Listing 2.4 Analysis of a new minimum. "Mcurrent’ is the current minimum and "M’ is a new
minimum. "M’ is rejected unless said otherwise.

---Checking for repeated visits---
if (energy(’'M’) equals energy(’Mcurrent’)) then
if (operator is MD) then
Ekinetic=Ekinetic*betal
end if
GOTO CHECKEND
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end if
Look for 'M’ in a list of visited minima
if ('M’ matches minimum ‘Mlist’ in the list) then
if (energy(’'M’) larger than energy(’Mlist’)) then
if (operator is MD) then
Increase number of visits ‘N’ to 'Mlist’ by one
Ekinetic=Ekinetic*betal* (l+c*log('N’))
end if
GOTO CHECKEND
else
energy (’'Mlist’) is substituted by energy('M’)
end if
end if
---Checking energy---
if (operator is MD) then
Ekinetic=Ekinetic*beta3
if (energy(’'M’) - energy(’Mcurrent’) < Ediff) then
Ediff=Ediff*alphal
Accept 'M’
else
Ediff=Ediff*alpha2
end if
else
if (energy(’'M’) < energy(’Mcurrent’)) then
Accept 'M’
end if
end if
CHECKEND

2.4.3 Operator Call Sequences

Next, we consider in greater detail the search during a cycle of our improved minima-
hopping method. During the exploratory phase the MD operator is called repeatedly.
The ST operator is used to relax the topology whenever MD leads to a new accepted
minimum. To use the expensive energy lowering operators efficiently, the explo-
ration phase must stop at an optimal minimum which is not too high in energy and
preferably belongs to a different funnel of the PES. To achieve this, a change in geom-
etry is first calculated for each new minimum. A shift of the molecules’ centers of
mass (CM) between the initial cluster geometry of a cycle and the current geometry
is calculated as

N, . , 1/2
Zi:m]ql [CMinil(l) - Clv[new(l)]2

N,

mol

S =

The geometry is considered to be different when S is higher than an empirically
selected threshold value of 0.95 A. The exploration phase ends when the last three
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accepted minima satisfy the geometry condition, and the energy of the second
minimum in this sequence is the lowest of the three. The latter condition prevents
the search from stopping when the energy of the minima is changing monotonically.
The lowest-energy minimum of these minima is the result of the exploratory phase.

The energy lowering operators take a significant amount of time. Often, the result
of an operator is the same minimum or a minimum much higher in energy than
the best one. The following procedure is used to avoid wasting time on expensive
calculations far from the lowest energy. The energy of a minimum obtained in the
exploration phase is compared with the best energy found so far. The translation and
distortion operators are designed to have two different sets of parameters: one for a
more thorough search and the other for a less thorough search. The settings for a more
thorough search are used if the difference in energy between the initial minimum
for the energy-lowering phase and the best energy AE = E ., — Eyo < Eyjgp, Where
Epign =5 keal/mol. If By, < AE < Eq,, Where E,,, is an automatically adjusted
threshold, then the less thorough settings are used and E,,, is decreased. If AE >
E,.~ then the energy lowering phase is not used at all, E,,, is increased, and the
cycle goes back to the beginning of the exploration phase. In the energy-lowering
phase, operators are called in the sequence

TRN = DST = ETOP = TRN = -

An operator is called again if it is successful in lowering the energy; otherwise, the
next one is called. The energy-lowering phase is completed when application of all
three operators in a row fails to lower the energy.

2.4.4 How the Operators Work

An effective operator should take into account the properties of a system and employ
transformations that make use of the way molecules are connected. An efficient oper-
ator should use as few local optimizations as possible. This can be achieved by
using geometry filters to predict high energy minima without geometry optimiza-
tion, avoiding acceptance of the same geometry repeatedly by using a list of visited
minima, and by doing local optimization in stages of increasing precision so that it
can be stopped when it becomes clear that it is not needed.

2.4.4.1 The MD Operator

The basic operator of our algorithm is a short MD simulation as in standard minima
hopping. How short should the simulation be? How many MD steps should be taken
before continuing with a geometry relaxation? Three options were considered: (1)
stop after a fixed number of steps, (2) stop at the first energy local minimum which is
not too shallow, and (3) stop after a certain number of energy minima. Goedecker’s
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minima hopping uses the third criterion [52]; however, there were no clear rules
presented on how to choose the number of minima. In our first implementation we
used a fixed number of steps for simplicity but this was not optimal. If we examine
the usual energy trend during the MD steps, as shown in Fig. 2.12, we can see that
there is a minimum within about 100 steps while other minima could occur much
later. Since the primary object of the MD simulation is to distort the geometry and
reach a new local minimum, it suffices to stop the MD trajectory at the first energy
minimum. Therefore, we settled on the second option. The trajectory continues until
a minimum is reached provided that the energy decreases during at least the last five
steps before the minimum is reached. The latter restriction prevents termination of
the MD simulation at a very shallow local minimum. Since this prescription could
lead to a long MD simulation, the trajectory is terminated if such energy lowering is
not found within the first 100 steps. Our algorithm also checks for the situation when
monomers move too far away from the cluster since such distortions are not useful.

In principle, following the directions of soft vibrational normal modes should
result in easier barrier crossing. Such a technique was used by Kabrede in a vibra-
tional mode basin hopping study of water clusters [50]. A method of choosing a
low curvature direction for minima hopping was suggested by Goedecker et al. [85].
However, they tested it only on atomic clusters. They also noted that excessive use
of low curvature directions could reduce the randomness of the PES exploration.
We tried several approaches to make use of low curvature directions for the ini-
tial MD velocities; however, nothing gave any improvement over randomly directed
velocities.

2.4.4.2 The Translation (TRN) Operator

Translation of one or more molecules to a different part of a cluster provides a
good addition to the MD moves in which all molecules are shifted by a relatively

Fig. 2.12 Energies of two 235
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small amount. The translation operator is general and can be applied with little
modification to a cluster of any type. It was used in various forms in previous stud-
ies [38, 51, 84, 86, 87]. The purpose of a translational operator is to find a few
molecules that contribute least to the cluster binding energy and put them in a dif-
ferent location that will lower the total energy. We use an algorithm that translates
up to two molecules at once. While it can be easily extended to the simultaneous
translation of three or more molecules, we came to the conclusion that going beyond
two molecules increases the cost-efficiency ratio significantly. Further, only bi- and
tri-coordinated water molecules are moved as they are the ones most likely to have
higher energies.

Suppose that the cluster is composed of n monomers. First consider that only
one monomer is to be moved. We begin by selecting a scaffold composed of n — 1
monomers around which the remaining monomer is moved. This scaffold is chosen
by requiring that it minimizes disruption of the stability of the cluster. Candidates for
the scaffold are created as follows. Each bi- and tri-coordinated molecule is removed
in turn from the cluster and the residual structure with one less molecule is locally
optimized. The candidate with the lowest energy is selected to be the scaffold geome-
try around which the molecule is to be moved. Next, a grid of points is set up around
the cluster. The grid size depends on the minimal distance that needs to be main-
tained between the centers of mass of the monomers. The grid has a rectangular
prism shape to allow for different lengths of the cluster in the three principal direc-
tions. The nth monomer is moved to a grid point only if it is not too close to its
original position and if it is within a threshold distance from any three other mole-
cules. The nth molecule’s center of mass is placed at an accepted grid point and the
position and orientation of the molecule are then adjusted. This simple adjustment
might involve several random rotations followed by a single-point energy calcula-
tion or a loose local optimization. A more sophisticated adjustment mechanism was
developed for water clusters and it will be described below. For each grid point, the
energy of the obtained structure is compared with the initial structure’s energy. If
the energy is not lowered by moving a single molecule, two molecules are moved
simultaneously in an analogous fashion. In this case, the n — 2 scaffold is created as
follows. Each possible pair of bi- and tri-coordinated molecules is removed in turn,
the resulting scaffold candidate is locally optimized, and the lowest-energy candidate
is selected to be the scaffold geometry. As soon as the energy is improved, the opera-
tor stops and returns the structure without checking any unexplored grid points. This
does not leave other grid points unexplored because an energy-lowering translation
is always followed by another translation as the next operator in the minima-hopping
cycle.

2.4.4.3 The Distortion (DST) Operator

The distortion operator attempts to improve a selected area of the cluster by moving
several adjacent molecules a relatively short distance while the rest of the cluster
remains intact. This operator is expected to be useful for sufficiently large clusters
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for which distortion of one section of the surface will not significantly perturb the
rest of the cluster. The DST operator works as follows. The molecules are sorted by
their contribution to the cluster binding energy. The half of the molecules with the
smaller contributions serve as the centers of distortion. The molecules closest to a
distortion center are shifted and the resulting geometry is analyzed. The number of
molecules being shifted varies in turn from three to five. If energy lowering is found,
the operator stops immediately. If the final energy is higher than the starting one, but
within 0.5 kcal/mol, the operator is repeated from that higher energy point.

In our first attempt, the shifting was performed by short MD simulations with only
the selected molecules allowed to move. This did not work well enough and a more
efficient and complex distortion mechanism was created as described below. A stable
hydrogen bond network in a water cluster creates high energy barriers. Unlike the
case of an atomic cluster, it is not enough to just move a molecule; one also has to
change the existing H-bond network in the area where the molecule is placed and
in the area from which the molecule was removed. Initially, we left the creation of
new hydrogen bonds to chance using random rotations. To improve upon this, we
created a H-bond adjustment mechanism. The general idea is to remove H-bonds
that create energy barriers, change the positions of the pertinent water molecules, and
then recreate hydrogen bonds in a meaningful way for a new distribution. When we
remove hydrogen bonds, we remove the hydrogen atoms from the cluster and switch
to a representation of each water monomer as a bead or point particle. To reproduce
reasonable water molecule positions without the presence of the hydrogen bonds we
employ Molinero and Moore’s mW coarse-grained model of water [88] based on
the Stillinger-Weber silicon potential [89]. The energy of a system in the mW model
depends on distances between pairs of beads and angles between triplets of beads.
The short-ranged potential sets to zero the forces between beads farther apart than
4.32 A. The mW model successfully reproduces bulk properties of water. For us, the
important feature of the model is that it maintains a tetrahedral distribution of beads
and a correct distance between them. The angle term is a three-body term which
leads to more elaborate code than is needed for pairwise potentials.

The adjustment process consists of redistributing selected molecules and then
recreating hydrogen bonds between them. The process starts by selecting a central
point of distortion. For the DST operator, it is the geometrical center of the several
molecules selected to be shifted. The cluster is converted into the bead represen-
tation and divided into two sections. The Ny, molecules adjacent to the center of
distortion are allowed to move during the local optimization and adjust their posi-
tions depending on a new distribution. There are Ny, = Nioral — Niree Molecules
which have their coordinates frozen and their connectivity does not change. Next,
the N, < Ny molecules closest to the center of distortion are selected to be relo-
cated. A new distribution of beads is created by placing them at random positions
very close to the central point of distortion and performing a local optimization using
the mW model potential. During the optimization beads will move away from the
central point and assume a tetrahedral distribution. N,,, such attempts are made for
each point of distortion. The mW energy is not reliable. Therefore, the N_ . lowest

pos
energy distributions with different connectivity are saved for analysis. Adjacency
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matrices of the mW geometries are compared to avoid saving identical distributions.
In addition, bi- and penta-coordinated beads are avoided to reduce the number of
possible distributions considered. A process of hydrogen bond restoration is per-
formed for the saved geometries.

The process of creating new H-bonds for free molecules makes use of the back-
tracking algorithm described in Sect.2.3.5. At first, possible bonds are determined
and a directed adjacency matrix is created for a cluster using three bond categories:
existing bonds, no bonds, and possible bonds. Existing and absent bonds belong
to the frozen molecules and possible bonds to the free ones. Hydrogen atoms are
placed back into the cluster in such a way that water molecules would form hydro-
gen bonds according to the modified ice-rules discussed in Sect. 2.3.4. A backtrack-
ing algorithm is used to analyze all possible combinations of bonds in an efficient
way. The following filters are used to avoid high energy combinations: bicoordi-
nated monomers, non-bonded molecules that are too close, three-membered rings,
adjacent dangling hydrogen atoms, and unrealistic monomer angles. A single point
energy for each accepted structure is calculated and local optimization is performed
for the low energy ones. An ST optimization is used to relax the topology for several
of the energetically-best geometries.

An example of distortion using the adjustment mechanism is shown in Fig. 2.13
which highlights in blue the molecules selected to be moved (1). The molecules
are stripped of hydrogen atoms (2) and then placed close to each other (3). The
next image depicts the result of mW optimization, where highlighted molecules and

, 3

»
Lﬁ k 3;5

=0\

" S

'
°

wfp AN
}@“& AM

° é’\\@
M%%ﬁ

-
St
g X"
LA

> Ny

A
o *<f“
g}r

»-é

mA@f
e LT

4

p
,{‘“;k
% f

Fig. 2.13 An example of distortion using the adjustment mechanism

o



2 How Can One Locate the Global Energy ...

51

Table 2.3 Values of adjustment mechanism parameters for higher and lower accuracy operators

TRN(high) TRN(low) DST(high) DST(low)
Noore 2 2 35 4
Niree 12 8 12 8
Nyy 4 2 10 4
Nyos 4 2 5 2

several adjacent ones were moved to new positions (4). Then hydrogen bonds are
restored (5) and ST optimization is performed (6).

The translation and distortion operators become similar when the adjustment
mechanism is used. In the translation, movement of a molecule is followed by an
adjustment procedure. In the distortion, the adjustment is applied right away on a
selected area of a cluster; however, more adjustment attempts are made in that case.

Different sets of parameters for the adjustment mechanism are used to create ver-
sions of operators with higher and lower accuracy. The values used are listed in
Table 2.3.

2.4.5 Performance Tests

Test runs were made to check the effects of the various operators on the performance
of our improved minima hopping. It is hard to judge the change in performance of
the algorithm from a single run due to its random search nature. We need an aver-
age result from several global optimization runs on the same cluster size. The latter
must be small enough to allow the algorithm to reach the global minimum in a rea-
sonable time. Following these considerations, we performed 20 global optimization
runs each on TIP4P (H,0),, clusters with n = 19, 23, and 27. A run was stopped if a
global minimum was not found within two days. The average time used to locate the
global minimum framework in each cluster size was calculated. The operators with
a simple adjustment mechanism were used.

Table 2.4 shows the results of the test runs. In four cases, not all of the 20 runs
were able to locate the global minimum within two days and the number of success-
ful runs is indicated instead of an average time. We can conclude that all operators
improve the performance and are necessary to obtain the global minimum in a rea-
sonable time for large clusters. The inclusion of the mW potential and an advanced
adjustment mechanism led to improvement in performance. The time taken to locate
the global minimum was almost halved from 54.9 x 10° t0 29.1 X 103 s for n = 27.
The algorithm performance using a simple list of visited minima was also assessed.
Treating every topology as a unique minimum leads, as expected, to an increase in
the average search time to 35.5 x 103 s.
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Table 2.4 Average computer time (seconds) used to locate the global minima for (H,0),, clusters
using different sets of the search operators

n MD +ST +TRN +DST +ET4)
19 1741 371 246 150 110
23 (6 of 20) 4199 2200 1336 1191
27 (0 of 20) (6 of 20) (11 of 20) 78775 54927

The operators with a simple adjustment mechanism were used. If the global minimum was not found
in all 20 runs within two days, the number of successful runs is shown in parentheses instead of the
time

Table 2.5 Operator success rate (%)

n MD ST TRN DST ET@)
44 25.63 72.73 36.67 17.94 31.33
45 25.63 72.51 36.93 17.90 31.59
46 25.64 72.31 36.40 17.46 31.87
47 25.64 72.02 37.22 17.52 31.86
48 25.64 71.89 37.43 18.26 31.70
49 25.65 71.85 38.00 17.38 32.15
50 25.65 71.56 38.01 17.48 32.38
51 25.64 71.52 36.47 16.76 3242
52 25.66 71.18 36.30 16.94 32.63
53 25.66 71.11 35.76 16.07 32.67
54 25.64 70.88 36.07 1631 32.70
55 25.64 70.88 35.17 15.94 32.89

Table 2.5 lists the percentage of calls that led to energy lowering during the search.
Values for the TRN and DST operators combine both low and high precision calls.
A 25 % rate for the MD operator follows from the minima-hopping logic with only
1/4 of generated minima being accepted. Although the other operators did not have
any constraints, their success rate is consistent over a number of cluster sizes. The ST
operator shows very high success rates showing its importance. The ET(4) success
rate grows slightly as the cluster size increases while the ST success rate decreases.
This is a result of the hydrogen bond topology becoming more complicated.

Despite obvious improvements, the average time to locate the global minimum
grows rapidly. The algorithm can reliably locate the global minimum for (H,0), clus-
ters up to n = 35. Reliability means that it always finds the same lowest energy min-
imum within several days of searching on a single CPU. With a significant amount
of calculation, it was possible to find the same lowest energy minima at least twice
for sizes up to n = 47, except for n = 39 and 45 [41]. The best minima for n > 47
reported earlier [41] were found only once.
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2.5 General Version of Improved Minima Hopping

Our improved minima-hopping algorithm can be used with any type of cluster. In
that case, all operators specific to water are disabled. By design, the MD opera-
tor can be used with any monomers and does not require changes. However, the
improved minima-hopping cycle parameters should be adjusted for each type of clus-
ter to achieve the best performance. The list of visited minima is simplified by using
only the energy and the number of visits for each minimum as in standard minima
hopping.

A general version of the translational operator was created as well. The same ideas
of scaffold and grid points are used. The changes from the water version include mov-
ing only one molecule at a time because advanced adjustment cannot be used. Instead
the highest and the second highest energy molecules are used. The adjustment mech-
anism consists of several random rotations. A collision check is performed after each
rotation and a single point energy is calculated. Low energy trial structures are accu-
mulated in a list and the best one is selected after a local optimization. As before,
higher and lower quality settings are available.

The general version of the distortion operator uses several molecular dynamics
steps to create a local distortion, followed by geometry relaxation. The operator uses
several molecular dynamics steps in which only certain molecules are allowed to
move. Such distortions are applied to several areas of a cluster, each followed by a
geometry relaxation.

We have reported [67] application of the general version of improved minima
hopping to methanol clusters (CH;OH),, with n < 15 to generate a set of low-energy
geometries for subsequent electronic structure calculations. In unpublished work,
we have applied it to pure clusters of ethanol, n-propanol, and iso-propanol. In that
work, a conformational rotation operator was added to speed up the optimization.

2.6 Concluding Remarks

Our improved minima-hopping algorithm has proved its worth in applications to
water clusters using five different potential functions including two which had vibrat-
ing monomers [41]. Clusters sizes up to n = 55 were studied successfully although
the minima for sizes with n > 47 must be considered putative since they were found
only once. Our ambitious goal of global optimization of water clusters containing
up to n = 100 monomers has not yet been reached and requires further development
of the algorithm.
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Chapter 3

Optical Parameters of 7-Conjugated
Oligomer Chains from the Semiempirical
Local Coupled-Cluster Theory

Anton B. Zakharov, Vladimir V. Ivanov and Ludwik Adamowicz

Abstract The z-electron semiempirical local coupled-cluster theory has been devel-
oped and used to calculate molecular optical parameters (polarizabilities and hyper-
polarizabilities) of fragments of conjugated polymers. The method is based on using
molecular z-orbitals of ethylene as an orbital basis for the conjugated systems. The
method is termed the Covalent Unbonded molecules of Ethylene, cue. Based on the
comparison of the calculations performed with higher levels of theory (especially
with the full configuration interaction method), it has been demonstrated that for
selected conjugated molecules the approach is accurate and capable of reproducing
the available experimental data with good accuracy. The cue-CC results show qual-
itatively correct dependency on the sizes of z-systems.

3.1 Introduction

Static electrical parameters of molecules (polarizabilities and hyperpolarizabilities)
are quantities which play an important role in the characterization of a wide spec-
trum of physical-chemistry properties of molecular systems and materials. Among
the properties which are particularly relevant to this characterization one should
mention the electric polarizability, the optical absorption characteristics, and the
intermolecular dispersion interaction (molecule-molecule, molecule-surface, etc)
[2, 9, 74].

The linear and nonlinear optic properties of organic materials, including
m-conjugated molecular polymers, make it possible to develop numerous techno-
logical and industrial applications of these systems. The applications in the field
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of electronics are particularly important. The conjugated molecular structure and
the mobile nature of the z-electrons lead to a significant response of these systems
to non-resonance optical excitations. Such a property is important in applications
involving optical switches, in devices for second and third harmonic generation, in
devices for generating strong electromagnetic fields, etc.

Another important area, where information about polarizability is used, involves
statistical prognostic models and the description of the ligands-protein target inter-
actions in the Quantity—Structure—Activity Relation (QSAR) method [27].

The quantum chemical calculations of optical and nonlinear optic molecular para-
meters are an important step in designing new materials. However, adequate descrip-
tion of molecular optical parameters presents a challenge for contemporary quantum
chemistry. The main problem in such calculations is the necessity of accounting for
a significant part of the electron correlation effects. In the last decade the density
functional theory (DFT) has been used for (hyper)polarizability calculations (see for
instance [45]). It allows the consideration of systems with extended sizes. However,
the DFT calculations are known to produce significant errors in the evaluation of the
optical properties of z-conjugated systems [8, 26, 83].

Among the methods which guarantee adequate inclusion of the electron correla-
tion effects, the coupled cluster (CC) theory is one of the most effective [4, 5, 33, 39,
59, 65, 79]. The first CC calculations of molecular properties related to the interac-
tion of the molecule with the electric field date back to the first years of using the CC
theory in molecular calculations [6, 14]. However, the CC calculations, even those
performed with the standard approach which includes single and double excitations
from the reference wave function (CCSD), involve significant computational cost.

Certain improvement in the efficiency of the CC calculations can be achieved by
using the idea of “local correlation effects” [18, 33, 64, 67, 69]. In that approach
the CC reference function is built using localized molecular orbitals (LMO) [62].
The use of the LMOs enables to significantly reduce the computational cost of the
CCSD calculations [1, 32, 44, 53, 66, 70, 84]. Also, the local CC approach has
been implemented in the calculations of electronic excited states [29, 30, 37, 52].
The use of the local CCSD approach in the calculations of the (hyper)polarizabilities
has been described in Refs. [28, 35, 36, 38, 66]. For a description of the calculations
of the frequency-dependent polarizability and dispersion-coefficients see Ref. [85].

An adequate account of the electron correlation effects requires the use of basis
sets of considerable sizes which include polarization and diffuse functions. The
ab initio CC calculations with such basis sets are expensive. Thus more exact CC
calculations of molecular optical parameters can be carried out only for relatively
small molecules. In the calculations of polarizabilities and hyperpolarizabilities for
larger z-systems more approximate methods need to be used. Such calculations still
remain a difficult problem in quantum chemistry.

An alternative approach for predicting optical properties of larger molecular sys-
tems is to employ semiempirical methods which can be used to calculate large poly-
meric systems. As mentioned above, the description of the nonlinear molecular opti-
cal parameters strongly depends on the level of accounting for the electron correla-
tion effects. Thus, the semiempirical wave function has to include these effects in
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order to provide adequate accuracy in the calculations of these parameters. In our
works we have used a semiempirical version of the CCSD theory which is based on
the Pople-Pariser-Parr (PPP) Hamiltonian [60, 63]. It should be noted that the PPP
model has become increasingly popular in predicting the optical properties of large
z-conjugated systems (see for instance Refs. [34, 73, 89] and references therein).
Detailed investigations of the correlation effects in the (hyper)polarizability calcu-
lations of z-electron systems have been presented in a number of works [22, 23, 31,
42, 43, 47, 50, 61].

Notwithstanding the fact that the PPP-model is a relatively simple quantum chem-
istry approach, our PPP CCSD calculations have demonstrated that an adequate
description of the molecular optical parameters can be obtained using this model.
The 7 CCSD calculations have been done in two ways [31]. The first way involves a
separate Hartree—Fock (HF) calculation for each value of the electric field strength
followed by a CCSD calculation that uses the HF MOs generated for that field
strength. The approach is termed a “relaxed” CCSD (r-CCSD). The second way is to
perform the HF calculation only once at zero electric field strength and then use the
HF orbitals in the CCSD calculations for all fields including zero field. The approach
is termed “unrelaxed” CCSD (u-CCSD). As it was shown in Ref. [31], the u-CCSD
and r-CCSD results for some test examples agree very well with the z-electron Full
Configuration Interaction (FCI) results. For details of our z-electron FCI and CCSD
calculations see Refs. [46, 49, 61]. Further development of the z-electron CCSD the-
ory has involved using the “local correlation” idea. In our local # CCSD theory we
employ a classical representation of a molecule with a conjugated system of 7 bonds
involving a set of ethylene fragments. The molecular orbitals of the separate covalent
unbonded ethylene fragments (cue) form the orbital basis for the CCSD calculation.
Our local z-electron (PPP) CC approach is termed the cue-CCSD method [25, 86,
88]. The initial testing of the cue-CCSD approach was performed using some small
m-conjugated systems [86, 87]. It was shown that the cue-CCSD calculations lead
to results which are close to the FCI results and almost independent on the choice
of the double-bond arrangement in the structure of the molecule. The cue-CCSD
calculations of z-conjugated polymers enable the evaluation of the limit values (per
unit cell) of the optical parameters corresponding to systems with an infinite size
[25, 88]. The aim of the present article is to review the cue-CCSD results obtained in
the (hyper)polarizabilities calculations for different z-conjugated polymers. The sys-
tems under consideration include classical polyenes, polyynes, different polycyclic
hydrocarbons (nonalternants), as well as a set of nonclassical “Push-Pull” polymers.

3.2 Semiempirical Local cue-CCSD Theory

Our semiempirical z-electron CCSD theory is based on the standard CCSD scheme.
The CCSD wave function has the form:

¥cesp) = €T'+?2|0>’ (3.1)
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where the cluster operators, 7"1, and f"z, generate all single and double electron excita-
tions from the reference state, |0). In the unitary group approach the cluster operators
have the following form:

To=Y 1k, (3.2)
i,a

T,= ) “EkE, (3.3)
(i,a)=(j.b)

where the operators Eai and Ebj are unitary group generators [54, 55].

Indices i and j correspond to the occupied orbitals in the reference state, |0), while
a and b correspond to the vacant orbitals. Amplitude matrices 7! and tl.“.b contain
all information about the structure of the many-particle wave function in terms of
electronic excitations. The working equations for energy E.cgp, and amplitudes 7!
and t;b can be obtained by using projection of the Schrédinger equation onto the
reference configuration, |0), and onto singly and doubly excited configurations, |¢)
and |;”). The latter two sets of configurations can be generated by using the unitary
group operators (3.2, 3.3).

¢ & (OE,|Hy — Eccsp|Peesp) = 0. (3.4
RS <O|(2Eianb + EjaEib)mo = EccsplPecsp? = 0, (3.5)
Ecesp < (OlHy = Ecesp|Pecsp) =0, (3.6)

where H,, is PPP Hamiltonian of the system.

In the cue-CCSD method we developed [25, 86-88] the z-conjugated system
is represented as a set of ethylene units. The acronym cue stands for “covalently
unbonded molecules of ethylene”. In the framework of this approach, an arbitrary
zm-conjugated molecule (for example, naphthalene) is first represented as a set of
single and double bonds as shown in Fig. 3.1.

Then, the electronic wave function of the z-electron system is constructed from
ethylene-like MOs. For example, for structure A of naphthalene the wave func-
tions is:

Fig. 3.1 Two ways of

double-bonds distributionin 27 g X, 4 '\9/ R
the naphthalene molecule |
NN X
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|@1) = équ ) 1) = \iﬁum — 1), (3.7)
lp,) = $(|){3>+ L)), oy = %(I;@) =2 (3.8)
o) = %u;@n ) 1@y = \i&um ~ 1) (3.9)
o) = é(l)ﬁH ), o) = %um ~ 1), (3.10)

05) = —=(Uzo) + Lzi0))  16L) = —=(120) = | z10))- 3.11)

V2 V2

where the orbitals |@,), |@,), |@3), |@4), and |@s) are occupied MOs while the
orbitals |@), |¢}), |9}), 1)), and |@5) are vacant MOs. This representation cor-
responds to the case where each ethylene fragment provides an occupied orbital for
the construction of the reference determinant, |0). Wave function |0) provides zero-
order representation of the conjugated bond structure of naphthalene A. Hereinafter,
for simplicity, we denote the molecular orbitals of the cue basis with the number of
the ethylene fragments to which the basis corresponds. To indicate a vacant MO, we
use prime symbol (| ¢} )).

It should be stressed that for condensed aromatic hydrocarbons, there are usually
several ways for arranging the single and double bonds. This leads to some uncer-
tainty in constructing the reference wave function. However, as our test calculations
have shown [86], the differences in the values of the optical parameters obtained
for different resonance structures of the system do not differ much even for small
systems. For instance, for the naphthalene molecule (Fig. 3.1) there are two possible
arrangement of the double bonds corresponding to two different symmetry groups,
the D,, and C,, groups. The first case corresponds to structure A and the second one
to structure B (see Fig. 3.1). The calculations show that the difference of the average
2nd hyperpolarizabilities of the two structures is insignificant (less than 1 %).

It is worth to note that a good agreement of the results for different resonance
structures occurs only if the structures correspond to covalent arrangements of the
n-electrons. In one of the previous works [86] we presented results for systems with
different covalent coupling (including Dewar-benzene-like long-range covalent cou-
pling) using the fulvene molecule as an example. In the case of non-classical cova-
lent structures, the obtained values may differ by an order of magnitude and even in
sign. However for structures with classical covalent arrangement of the double bonds
(like the A and B structures shown in Fig. 3.1) the values of the optical parameters
obtained in the calculations are very similar. It should be noted that the ambiguity in
the double-bond distribution does not arise in the polyene molecules where the cue
basis used in the calculation corresponds to the localized HF MO’s.

The use of the cue basis in the CCSD method for calculating the energy of the
unperturbed (i.e. zero-field case) system is justified by the Thouless theorem [78]
which states that the transformation between two non-orthogonal determinants can
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be always performed with the use of an eh operator with an appropriately selected
single-excitation f‘l operator. The operator of this type is included in the wave func-
tion in the standard method CCSD. The Euclidian norm of the amplitude vector, ¢,,
associated with the Tl operator can be used as a measure of the orbital relaxation [41].

Among the advantages of using the cue representation in the CCSD calculations
are: a considerable simplification in the procedure for solving the CC amplitude
equations, a clear physical interpretation of the results of the calculation, the topo-
logical notation of correlation effects (“correlation radius™),' the possibility of sys-
tematically improving the accuracy of the calculation by including in the CC cluster
operator excitations corresponding to a longer correlation radius, and the simplic-
ity of generating the reference state, |0). The latter means that it is not necessary to
carry out an HF calculation and the MO localization prior to the CCSD calculation.
This eliminates possible convergence problems in the HF procedure associated with
a possible quasi-degeneracy of the HOMO-LUMO orbitals.

Thus the use of the cue basis leads to significant simplification in solving the
CCSD equations. This is primarily due to the simplification of transformation of
the two-electron integrals. The two-electron integrals (we use the Mulliken integral
notation where indices denote spatial orbitals) in the zero-differential overlap (ZDO)
approximation are calculated according to the following formulas:

[AB||CD] = 2[AB|CD] — [AD|CB], (3.12)
N N

[ABICD] = ) )" C,uCpisCrcCop s (3.13)
M v

where N is the number of the basis functions (in z-electron approximation N is also
equal to the number of carbon atoms), C 44 ATC the MO-LCAO coefficients, and I" v =
[uu|vv] is a two-centered Coulomb integral.

The calculation of the two-electron integrals in the standard CCSD scheme, even
within the ZDO approximation, involves a time-consuming calculation, which pre-
cludes the applicability of the CC theory to larger systems. The use of the cue
approach in the evaluation of expression (3.13) in the CCSD scheme can be illus-
trated with the following example concerning polyene molecules (see Fig. 3.2). The
calculation of the [AA’|BB’] integral using the cue basis is reduced to a simple
expression:

[AA'IBB') = (I, = I, = T, + T

) (3.14)
It is clear that the number of components in expression (3.14) does not depend on
the system size. It is also worth mentioning that the only non-zero integrals are those
with orbitals belonging to the same fragment. This leads to a significant simplifica-

I'The “correlation radius” is the distance between two structural cue elements of the z-system whose
electrons are correlated by including in the CC cluster operator electron excitations from both ele-
ments.
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Fig. 3.2 A scheme describing the calculation of two-electron integrals of polyene systems

tion in the computation of the CCSD diagrams representing the components of the
CCSD amplitude equation obtained by projecting the Schrodinger equation with the
CC wave function onto singly and doubly excited determinants. This simplification
can be illustrated using the diagram involved in the projection of the 7A"2 le term onto

doubly excited determinant (;‘;’ I: (;‘;’ |H|T, ff |0).

2 kel aidiced + scteeady = k') { e (£ =) 4267} 3.15)
klcd

where k and k' (as well as [ and ') correspond to occupied and vacant orbitals belong-
ing to same ethylene fragment, respectively. The [kk’|llI'] and [kI'|Ik'] integrals are
the usual Coulomb and exchange parts of two-electron interaction [kk’||ll'].

An important element of the cue-CCSD theory is the topological interpretation
of the correlation effects. The cue formalism allows building a hierarchy of approx-
imations based on the classification of the double-excitation structure. The possible
excitations for a polyene chain are shown in Fig. 3.3. Hereinafter use the following
notation: cue ,-CCSD is the method that takes into account all excitations up to level
[; thus cue-CCSD means that all possible excitations between the ethylene fragments
are accounted for. In the figure, the amplitudes are represented as electronic transi-
tions between different ethylene fragments. Therefore, / = 1 means including only
local excitations, [ = 2 means including also excitation between neighboring frag-
ments (separated by one bond), and / = 3 means including also excitations between
the second neighbors (separated by three bonds), etc. In the /th level of the the-
ory all excitations between ethylene fragments separated by up to (2/ — 3) bonds are
included.

The number of bonds which separate the fragments can be identified by the Floyd-
Warshall procedure [3]. As a result of applying this procedure to a molecule a matrix
containing information about the number of edges between the atomic orbitals (say

Fig. 3.3 cue excitations in 1=3

polyenes El\ /\
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U, V), W‘(jéo), is obtained. Then the topological distance between two ethylene-like
MOs is defined by the following expression:

Yueivvej: W;.MO) = min{ Wi} (3.16)

The classification of the cluster amplitudes is unambiguous for linear polyene-
like systems (Fig. 3.3). For condensed (polyaromatic) hydrocarbons (i.e. polyacenes)
there is some uncertainty in the topological evaluation of the distances between some
double bonds. To explain this let us consider an example of a graphene fragment (see
Fig.3.4). The local (I = 1) and the first-neighbor (/ = 2) excitations in this case are
the same as for the polyene chain. However some excitations taken into account in
the cue;,-CCSD approximation (/ = 3) with the distances determined as the Euclid-
ian distances between centroids of fragments separated by three bonds (see Fig. 3.4;
excitations a) are greater than excitations ¢ separated by four bonds. Thus excita-
tions ¢ need to be included in the cue;,-CCSD method. Analogically, the same rule
is applied to all excitations of higher orders in the cue,-CCSD method correspond-
ing to approximation level /.

As mentioned, when all possible double excitations between the ethylene frag-
ments are included in the wave function, the method is termed cue-CCSD. In this
case [ is equal to the number of ethylene units comprising the system, i.e. the system
length in terms of the ethylene units. Also it should be noted that the restriction of
including selected classes of excitations applies in the cue)-CCSD method (and in

the full cue-CCSD method) only to the 7, cluster operator and not to 7. All excita-
tions generated by the 7/ operator are included. This is done to properly account for
the orbital relaxation effects. Such an approach differentiate our approach from the
conventional approximate local CC theories where the restrictions are made in both
T, and T, operators.

Fig. 3.4 cue excitations in polyacenes
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3.3 Semiempirical cue-CCSD Calculations
of (Hyper)polarizabilities

The most direct introduction of molecular nonlinear optic parameters is based on the
Buckingham expansion [7]. According to this expansion the energy of a molecular
system in the external (static) electric field (i: = F;i +F J +F k) can be described
in the following form:

1 1

E(F) E(0) - :ur r 2 Ay r s - ﬂrstF FsFt - FrFsFtFu - 317

4_!}/1'5114
Einstein summation convention is assumed throughout this work. In Eq. 3.17 the
indices r, s, t, u correspond to the cartesian coordinates (r, s, f, u = x, y, z). The coef-
ficients in expansion (3.17) are: u,—the static dipole moment cartesian component,
a,.—the dipole polarizability components, and f,,, and y,,,—the first and second
static dipole hyperpolarizabilities, respectively.

Also the corresponding coefficients can be introduced by using the induced dipole
moment as:

1

o) = 14,0) + @ F + S0 FF, +

ymtquFtFu + - (318)

The molecular optic parameters used in the above equations are determined as fol-
lows:

ou,(F
a, =— _ B (3.19)
0F,0F5 F=0 0FJ F=0
0% u (F
B =— =Zh (3.20)
OF OF oF, |p—o _ OF.0F, g
*E(F o u (F
Vistu = — @ = Ag— (3.21)
OF OF OF 0F, |y—y _ OF,0F,0F, |p—

The derivatives of energy in the above equations can be obtained by numerical
differentiation (Finite Field approach, FF). For instance, to calculate the second- and
fourth-order derivatives which correspond to polarizability and 2nd hyperpolariz-
ability the following “seven point” formulaes can be used:

2E; —27E, + 270E, — 490E,, + 270E_, — 27E_, + 2E_,
ar 18022 s (3.22)

—E;+ 12E, —39E, + 56E, —39E_| + 12E_, — E_4
6&4

, (3.23)

~



66 A.B. Zakharov et al.

where ¢ is differentiation step and E,, are energies of the system in static electric
field with strength +mé&. The energy of the system in field can be obtained by solution
of corresponding Schrodinger equation with Hamiltonian:

H(xmé) = Hy + mER, (3.24)

where IEIO is unperturbed PPP-Hamiltonian (without field) of the system, while Ris
the dipole moment operator.

The average value of the (hyper)polarizabilities can be represented by the corre-
sponding invariants [7, 51]. These invariants are represented by the following expres-
sions:

(a) = 3@, + a, + ). (3.25)

1
<y> = g(yxxxx + }/yyyy + yzzzz + zyxxyy + 2yzzyy + Zyxxzz)' (326)

In all calculations described in this section “idealized” geometries for all consid-
ered m-systems are used. In these geometries all -C—C— bond lengths are equal to
1.4 A. Geometries of all zig-zag trans carbon chains of polyene systems are planar.
All -C-C—-C- bond angles for trans polyenes are equal to 120°. All cyclic systems
and polycyclic hydrocarbons are equilateral (regular) polygons.

The PPP-model of z-conjugated molecule assumes that each carbon atom con-
tributes a 2p_ orbital and a single z-electron to the z-system. The PPP parametriza-
tion of the Hamiltonian matrix elements includes resonance (electron hopping) inte-
grals for the connected carbon atoms y and v:

ty = (ulH|v) = 2.274 eV. (3.27)

In the calculations of polyene molecules the bond alternation model (BAM) is
used (see for instance [10, 74]). In our calculations in the BAM the values of two
alternated-bond resonance integrals are equal to:

t;;'v =(1£0.1)1, (3.28)

where the ‘4’ and ‘-’ signs correspond to the hopping integrals for double and single
bonds, respectively.

The one-center Coulomb integral for the carbon atomis equal to I',, = [upu|pupul =
11.13 eV. The two-center Coulomb integrals are calculated by using the Onho empir-
ical formula [57] (atom unit assumed):

é: AMV

\/1+@ALR,)?

I, =luplv] = (3.29)
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where R, is the distance between the y and v atoms. Constant { guarantees the
necessary physical dimensionof I',,. A, is the average one-center integral for atoms
uand v:

1
A= 5Ly + 1), (3.30)

3.3.1 Justification of n-Electron CCSD Theory

An important question which can be raised is how the z-electron CCSD approxi-
mation in (hyper)polarizability calculations compare with the results of other meth-
ods, particularly with the ab initio and semiempirical all-valence methods. It is also
important to compare obtained theoretical results with available experimental data.

To demonstrate adequacy of z-electron approximation in comparison with all-
valence semiempirical AM1 method we carried out calculations of polarizability and
2nd hyperpolarizability of condensed and non-condensed polyfulvenes,
(c-polyfulvene and nc-polyfulvene correspondently, see Fig.3.18, Sect.3.3.3.3).
GAMESS package [68] is used in the AM1 (and further ab initio) calculations. First
of all we are comparing AM1 and PPP variant of the HF method. Obtained results for
2nd hyperpolarizability presented on the Fig. 3.5. The values for two methods corre-
late for corresponding polymers with the coefficient greater than 0.999. It indicates
that magnitudes under consideration do not demand more expensive calculation in

500x108 -
400x10° 4
300x10% 4
=
=
200x10% A
100x 108 4
—e— c-polyfulvene, R>0.999
—— non-c-polyfulvene, R>0.999

T T T T T T 1
0 50x108 100x10% 150x105 200x10f 250x10% 300x10% 350x106
Trpp

Fig. 3.5 Hartree-Fock AMI1 versus PPP average 2nd hyperpolarizability of polyfulvenes.
Reprinted with permission from Ref. [88]. Copyright 2014 American Chemical Society
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the all-valence method due to additivity of -contribution for both polarizability and
2nd hyperpolarizability [25]. Such a result is typical and can be obtained for different
conjugated polymers.

For the monomer units one can directly compare values of 2nd hyperpolarizability
obtained in z-electron approximation and ab inito methods with augmented basis
set, 6-31++G(d,p). We carried out calculations for monomer units of considered (in
the Sect. 3.3.3.3) polyfulvenes at MP2 level of theory. Results are presented in the
Table 3.1.

Difference in the results for non-condensed case are quite noticeable but it is
not critical. In general the hyperpolarizabilities obtained at the MP2/ab initio and
MP2/PPP levels are reasonably close to each other. With the growth of the length of
the conjugation chain o-contribution increases additively, unlike z-contribution.

First comparison of 2nd hyperpolarizability obtained in CCSD/PPP approxima-
tions were performed in Ref. [73]. The results of z-electron CCSD calculations and
especially cue-CCSD calculations in comparison with experimental data [12] are
presented in the Table 3.2. The Table 3.2 results reveals quite similar calculated val-
ues (r-CCSD and cue-CCSD) with experimental data. A detailed comparison of the
results for different variants of CCSD theory with FCI values were performed in
Ref. [31].

The values for first members of polyacene series obtained in cue-CCSD and
ab initio variant of CCSD(T) methods (with extrapolation onto infinite basis set)
as well as the experimental data are presented in the Table 3.3. For the sake of com-
parability with experimental data, average values for polarizability corrected by o-
electron contribution according to additive scheme [80, 82] ad = g" + ¢°. For
polyacene molecules cue-CCSD method reveals a perfect match. However, the cue-

Table 3.1 Average 2nd hyperpolarizability ({y)/10°, a.u.) of monomer units polyfulvenes
obtained in MP2/PPP approximation and in ab initio/6-314++G(d,p) level of theory

MP2/PPP MP2/6-31++(d,p)
nc-polyfulvene 1.71 0.64
c-polyfulvene 0.50 0.37

Table 3.2 Calculated and experimental average 2nd hyperpolarizabilities (a.u. 10°) for linear
trans-polyenes (N is the number of the carbon atoms in the molecule)

N¢ HF MP2 r-CCSD cue-CCSD Experimental
8 0.791 0.966 0.963 1.016 0.993

10 2.07 2.44 2.06 2.26 1.97

12 429 4.97 3.65 4.11 3.57

14 7.59 8.72 5.67 6.49 5.56

16 12.0 13.8 8.00 9.31 7.94

18 17.5 20.0 10.5 12.43 11.3
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Table 3.3 (Hyper)polarizabilities of polyacenes

Benzene Naphthalene Anthracene | Tetracene
(a’y cue-CCSD 66.9 117.9 175.2 235.7
(a) CCSD(T)/cc-pVooZ [20] N/A 116.7 176.2 239.7
(a) CCSD(T)/aug-cc-pVeoZ [20] | N/A 115.5 164.9 N/A
{a) experim. [11] 66.8 112.0 171 N/A
(7)/10* cue-CCSD 0.536 2.17 - -
(7)/10* experim. 0.195 [40], 6.19+1.24[81] | N/A N/A

1.28 £0.06 [81]

CCSD calculations of fullerene Cy, demonstrated some discrepancies (experimen-
tal values are taken from [56]). Namely (') = 660 a.u. while experimental value
equal to 579 a.u. For the 2nd hyperpolarizability (y)/10* = 11.1 a.u. while corre-
sponding experimental value evaluated as 9.3 + 1.3 a.u.

3.3.2 The Wave Function Structure in cue-CCSD Approach

The use of cue basis in the CCSD calculation and the analysis of the resulting many-
particle CCSD wave function give a unique possibility to interpret the correlation
effects in the system in structural terms. Namely the transitions between the ethylene
units of a conjugated molecule are the parameters which characterize the correlation
effects in the system. The cue-CCSD approach differs from the standard ab initio
CCSD approach due to the delocalization of the MOs forming the reference wave
function in the latter approach. These MOs are obtained in the HF SCF calculation.
However the first question is whether the cue reference is suitable for describing the
electron-correlation effects. To determine that it is necessary to compare the val-
ues of the correlation energies (4,,,,) obtained in the cue-CCSD method with those
obtained with other methods. As usual, 4,,,, is evaluated as a difference of the total
energy of the system obtained with the particular method (E,,,,,;,,;) and the HF energy

(Eyp). For polymeric systems it is convenient to calculate the specific 4,.,,,., i.e. the
correlation energy per electron or per atom:
Acorr = (EHF - Emethod)/n’ (331)

where 7 is the number of z-electrons (or carbon atoms) in the system. In Table 3.4
specific correlation energies obtained using the MP2 and CCSD methods (in both
the HF MOs are used) and the FCI method for polyenes with different lengths are
shown. The largest polyene for which the FCI results have been obtained is C 4H 5.
The percentage value in the parentheses shows the ratio of the correlation energy
obtained with the particular method and the FCI correlation energy.
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Table 3.4 Specific correlation energies (eV, per carbon atom) obtained with different methods for
even-numbered polyene molecules, CyHy,,»

Method N
8 10 12 14 16 30

MP2 0.0713 0.0727 0.0738 0.0747 0.0754 0.0778
(38.9) (39.3) (39.5) (39.8) (39.9)

cue-CCSD | 0.1807 0.1817 0.1824 0.1829 0.1833 0.1845
(98.6) 98.1) 97.7) 97.3) 97.1)

CCSD 0.1811 0.1821 0.1828 0.1833 0.1837 0.1849
(98.9) (98.3) (97.9) (97.6) (97.3)

FCI 0.1832 0.1852 0.1867 0.1879 0.1888 N/A

In the parentheses percentage of the particular correlation energy with respect to the correlation
energy obtained with the FCI method is shown. All the methods use the z-electron PPP parame-
trization

The correlation energy values shown in Table 3.4 convincingly demonstrate that
the use of the cue basis leads to very good results. The correlation energies obtained
with cue-CCSD and with the complete CCSD method differ insignificantly. In addi-
tion, the differences between cue-CCSD and CCSD do not increase with the growth
of the polyene chain. Also it should be noted that the correlation energies obtained
with the MP2 method account only for about 40 % of the FCI results.

An important question which can be asked concerns the magnitude of the con-
tributions of certain types of amplitudes which correspond to different classes of
excitations (which are represented by /). To construct an effective local theory it is
necessary to include excitations that give the main contributions to the total wave-
function for the system under study and to neglect those that have smaller influence
on the results of the calculation. As the measure of the contribution of a particular /
layer of particular amplitudes (excitations which correspond to the cue;-CCSD level
of theory; see Sect. 3.2) it is convenient to use the sum of squares of the amplitude

matrix elements:
(1) ab\2 aby\2
e = 2 Y. (3.32)
(ab)el (.':jb)

gl can approximately describe the magnitude of the contribution resulting from

M-l

amplitudes of a certain order as it provides complete information on the level of
theory to achieve a certain accuracy threshold. The corresponding number of con-
figurations is simply equal to:

O (3.33)
N N’ :
where N is the number of amplitudes corresponding to the / layer and N is the total
number of the amplitudes corresponding to the doubly excited configurations. Hence
the parameter:

D =0 4.0
£ ||/ , (3.34)
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or the corresponding normalized parameter:

D =el) N 0, (3.35)
1

can be interpreted as a parameter that characterizes the effectiveness of the cue,-
CCSD models. This parameter can help to choose the right approach to use within
the limits of the computational capabilities provided for the calculations. It allows
determination fo the necessary level of theory without a direct calculation of the
correlation energy.

In view of the obvious differences in the structure of the wave-functions for the
linear and polycyclic conjugated polymers (linear polyacenes), let us analyze two
representative members of both classes. In Table 3.5 values of the above described
parameters are shown for polyene C5yHs, and polyacene Cs,H,gq that consists of 12
benzene rings. The values of 4_,,, that describe the contributions to the correlation
energy obtained from different /-layers in the cue-CCSD method are also shown in
the table.

It can be seen from the table that the dominant part of the excitations involved
in the calculation of the correlation energy comes from the local electron transitions
(=1, sfll _)” value). The next largest contribution to the total cue-CCSD wave function
comes from the excitations between adjacent double bonds (/ = 2). Excitations from
the [ = 3 layer constitutes only 5.83 % of the total for polyenes, but they are still
significant for polyacenes (24.87 %).

As can be seen from the data, the dominant contribution to the wave-function of
cue-CCSD method are made by an extremely small number of amplitudes of the Tz
operator matrix (the size of corresponding amplitude matrix, N, mainly determines
the computational complexity of the method). Including /-layers with larger [ (start-
ing from the 4th for the polyenes, and 5th for polyacenes) involves larger amount of
the matrix elements, but the contribution made by them is insignificant (less than
3 %). This clearly demonstrates the previously discussed fact of the correlation-
effects locality.

It should be mentioned that the structure of the amplitude matrix for a polycyclic
system is much more complex than for a polyene system due to the lack of excita-
tions of certain kinds in the former (compare Figs. 3.3 and 3.4 concerning inter-bond
electron jumping for / = 3). This leads to the contributions of some selected /-layers
to the total cue-CCSD wave function of polyenes to be noticeably different from the
contributions of the corresponding layers in polyacenes. For example, this is evi-
dent by examining the [ = 3 contribution in polyenes and the / = 4 contribution in
polyacenes. One can conclude that in the calculation of electro-optical properties of
polycyclic systems the required minimal level of the theory is cuey,-CCSD. Such
a choice guarantees a high level of accounting for the electron correlation effects
(more than 99 %) for both polyenes and polyacenes.

Parameter €, which characterizes the “effectiveness” of the local theory, shows
fast convergence with the increase of the polymeric chain. For example, for polyenes
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C;0H;,, CuoHyy, and CsyHs, the values of €@ (for layers 1-4) differ by less than
~1072 %. Also the correlation energy converges faster with the increasing number
of [ layers included in the calculation, as evident from the data shown in Table 3.6.
In the table the percentages of the account for the correlation effects for different
methods with respect to the full cue-CCSD results are shown.

As expected, for polyenes even lowest level of theory allows for an adequate
description of the correlation effects in contrast to the polyacene case. However,
despite a low level of accounting for the electron correlation by the cue,)-CCSD
method for polyacenes, this approach gives a qualitatively correct dependence of the
values of the optical and non-linear optical properties on the system size (see the next
section). We attribute this behavior to the size-extensivity of the CCSD method.

Another structural aspect of the CCSD wave function is related to its exponen-
tial form (3.1). The cumulative value of the configuration coefficient of a particular
determinant is determined by expanding the exponent in a Taylor serious in terms of
the singly and doubly excited CC operators and collecting terms generating this par-
ticular determinant. The configuration coefficient of a particular determinant (say,
determinant {(k) u |, where k indicates the level of excitation of the determinant with
respect to the reference determinant and y is the determinant number in the manifold
of the k excited determinants) can be determined as:

Cip = ((K) ¥ cesp)- (3.36)

The contribution from the reference determinant, |0), according to the intermediate
normalization condition, is assumed to be equal to unity:

Co =Wy =O0|Pccsp) =1 (3.37)
The total weight of all k-fold excited determinants in the wave function is:

We=Y C. (3.38)
M

Table 3.6 Percentage accounting of the correlation energy (relative to full cue-CCSD) by the MP2
method and methods corresponding to different levels of the cue)-CCSD method

Method Polyene Polyacene
CsoHs, CyoHy, CsoHs, CsoHyg CyoHy, CsoHyg

MP2 422 42.5 42.7 50.3 50.4 50.5
cue,,-CCSD 81.6 80.7 80.2 30.2 28.2 274
cue;)-CCSD 94.1 93.7 93.5 79.4 77.0 76.2
cuey,-CCSD 98.2 98.0 97.9 95.6 94.6 94.2
cue5)-CCSD 99.5 994 99.3 99.2 98.8 98.7
cue,-CCSD 99.8 99.8 99.8 99.9 99.7 99.7
cue-CCSD 0.1845 0.1849 0.1851 0.1677 0.1725 0.1744

In the last row the correlation energy in eV per carbon atom is shown
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Table 3.7 Configurational weights, W,, corresponding to different k values of the CCSD wave
functions with the HF reference and the cue reference for polyene molecules

Weight CioHpp CioHyy CisHg

HF cue HF cue HF cue
w, 0.493x 1073 | 0.375 0.665 x 1073 | 0.475 0.844 x 1073 | 0.575
W, 0.177 0.292 0.213 0.384 0.250 0.486
W; 0.454x107* [ 0.565x 10! | 0.838 x 10~* | 0.101 0.136x 1073 | 0.160
W, 0.103x 107" [0.229x 107! | 0.161 x 10~ | 0.418x 107! | 0.232x 10~ | 0.696 x 107!
Ws 0.117x 1073 | 0.221 x 1072 | 0.337 x 107> | 0.629 x 1072 | 0.755x 107> | 0.141 x 107!
We 0.246x 1073 | 0.673x 1073 | 0.548 x 1073 | 0.181x 1072 | 0.104x 1072 | 0.414 x 1072
> Wi 0.19 0.74 0.23 1.01 0.27 1.31

The information about the total weights of excited determinants corresponding to
different values of k for polyene molecules are shown in Table 3.7.

In the table, the results corresponding to the standard CCSD method are obtained
with the HF MOs while the cue-CCSD results are obtained with the cue MO basis.
As one can see, the contributions of higher excitations obtained with the MO basis
are significant. In particular, the contributions from four- and six-fold excitations
noticeably increase with the elongation of the carbon chain (notice that W, =~ W).
The cue-CCSD wave function has different structure in terms of Ws. In the cue basis
there is a significant relaxation of the reference state as evident from a larger value of
W,. The main contributions correspond to singly- and doubly-excited configurations.
For instance, for polyene C,,H 4 the weights are W| = 0.575 and W, = 0.486. Also
higher levels of excitations (e.g. four-fold and six-fold excitations) become impor-
tant. The total weight, « Wy characterize the complexity of the cue wave function.
All presented data, including the total weights, indicate that the cue-CCSD wave
function is significantly different from the reference determinant. The opposite can
be said about the wave function obtained with the standard CCSD method based on
the HF MOs.

3.3.3 (Hyper)polarizabilities of n-Conjugated Systems

3.3.3.1 Polyenes and Polyynes

In the field of nonlinear optics, probably the best known and studied systems are
quasi-one-dimensional polymers such as polyenes (Cy,H,,,,). In these polymers the
correlation effects are relatively large. The importance of the correlation effect in
these systems has been investigated using the semiempirical z-electron approach
in Refs. [24, 31, 42, 43, 61, 73]. As shown earlier (Table 3.4), the limit values of
the specific correlation energies for polyenes (per electron) are near 0.19 eV. As



3 Optical Parameters of z-Conjugated Oligomer Chains ... 75

the quality of the description of nonlinear optical parameters significantly depends
on the level of accounting for the electron correlation, one should expect that the
calculated values of y for long polyene chains are highly dependent on the level of
the cue-CCSD theory. In Figs. 3.6 and 3.7 the dependency of the average specific
(per electron) polarizability and 2nd hyperpolarizability for trans-polyenes on the
level of theory used in the calulations are presented.

It can be seen in the figures that the results obtained with different variants of the
CC theory are rather similar. Upon examination of the results, one can conclude that
the specific values tend to converge with increase of the chain length. This observa-
tion has a clear physical explanation. With the increase of the number of electrons
in the system the inclusion of an addition monomeric unit has increasingly smaller
influence on the specific optical properties. The results of the calculations within the
HF and MP2 frameworks show pronounced growth of the (a)/N and (y)/N values
with increasing length of the polymer chain. Apparently these methods significantly
overestimate the stability limits.

To investigate the influence of the conformation of the conjugated polymer chain
on the optical parameter, we performed calculations for a number of regular linear
polymers which different conformations. To describe the linear size of the system
we use the following parameter:

p, =L,/N, (3.39)

25 1 —e—HF

—o— MP2

—y— cue,-CCSD
A c,uem-CCSD

o0 = cue -CCSD
00— wem-CCSD
—&— cue, -CCSD o—0—0—0—0—0

—O— Cu em-CCSD oL

15 —h— cue-CCSD o
—p— r-CCSD o

—— u-CCSD " O

<o>/N

- ----------a--

e—a—ax—a—E—E 55 5 & & 8

. A AA A A A A AN N Y

Fig. 3.6 Average specific (per electron) polarizabilities of polyenes obtained using different
approaches
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Fig. 3.7 Average specific (per electron) 2nd hyperpolarizabilities of polyenes

where a € {x,y,z} are the Cartesian coordinates, L, is the length of the polymere
chain along a certain axis, and N is the number of z-electrons. The structures of the
considered polyene are shown in Fig. 3.8 (A—all-trans, B—all-cis, C—combination
of trans/cis, D—linear polyenes).
The linear size (say along the dominant “x”-direction) can be described as:
pe =7+ /N, (3.40)

where p?° is the limit (specific, per electron) length of the polymer and pg is the geo-
metrical parameter responsible for the “end-effect” contribution. The corresponding
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molecular optical parameters of 7z conjugated oligomers can be represented in an
analogical form as:
(a)/N = a®™ + ay/N, (3.41)

(r)/N =y* +1y/N, (3.42)

where a® = (a)/N and y® = (y)/N are infinite-size-limit (when N — oo) quanti-
ties for the respective optical properties of the polymer. Obviously, the interval of N
that corresponds to the region where the values a* and  (as well as y* and y,,) are
converging fits a linear relation.

By approximating this interval one can obtain the limit values of the specific «
and y. In Table 3.8 the parameters obtained using the Eq. (3.40) and the specific
components of @ and y at the limit are shown. The extrapolation for obtaining the
limit values for polyenes has been performed for systems with 50-60 atoms. For this
50-60 atom range the corresponding correlation coefficient is greater than 0.999. An
important conclusion can be derived from the results shown in Table 3.8: in the limit
of N — oo, the calculated values of the (hyper)polarizabilities for various polyenes
closely correlate to the values of these properties for the linear-size polymer.

Optical parameters obtained with Egs. (3.41) and (3.42) with different variants of
cue-CCSD, as well as with the MP2 and HF methods, are presented in Table 3.9.

As expected, the results obtained with the HF and MP2 methods are significantly
overestimated (the HF results are more than three times higher relative to the cue-
CCSD results for the 2nd hyperpolarizability). Also these methods give qualitatively
incorrect dependence of the studied properties on the polymer-chain length (see

Table 3.8 Linear sizes of different conformations of polyenes and limit values of the polarizability,
a,,, and the hyperpolarizability, y,,,,

Conformation ~° P a% ye /103
A 1.21 -1.21 38.2 9.8
B 1.05 —1.40 24.2 4.9
C 1.05 -1.40 23.6 5.0
D 1.40 -1.40 57.9 19.4

Table 3.9 Limit values of (hyper)polarizabilities for rans-polyenes obtained using different many-
body approaches

HF MP2 | cue;-CCSD cue-CCSD
I=1 |I=2 |I=3 |I=4 |I=5 |I=6
(a)® 2343 2073 |10.52 |9.04 |10.21 |11.61 |12.55 |13.09 | 13.82
(a)y —174.4|—148.4 | =33.21| —26.10 | —33.41 | —44.58 | —=54.10| —60.52 | —75.10
(y)*/10°/5.92 |653 |036 029 [045 |077 114 |145 1.99
(r)o/10% | -11.7 |-12.7 |-0.28 |—-0.22 |-0.35 |[-0.67 |—1.11 |—1.54 | —2.64




78 A.B. Zakharov et al.

Fig. 3.9 Two orthogonal
m-systems in polyynes.
1,3-butadyyne is used as an
example

Figs. 3.6 and 3.7). Therefore the HF and MP2 methods are not suitable for describing
the optical nonlinear properties for systems with strong electron correlation.

Based on the above considerations, one can expect that polyynes, (C,,H,), should
exhibit significant optical nonlinearities. These polymers are linear and contain two
orthogonal z-subsystems. The interaction of these two orthogonal subsystems and
its impact on the optical properties is still a subject of studies. In the z-electron
approximation, a triple bond is modeled as two double bonds with each carbon
atom contributing two 2p-orbitals, one to each z-system (Fig.3.9). For each pair
of bonded atoms (contributing u and v 2p-orbitals to the first z-system and y’ and v/
2p-orbitals the second z-system) two resonance integrals have to be defined (7, and
t,,,). The cross-resonance integrals (between different z-systems) are set to zero,
t, =1, = 0. Originally the model was used in the frameworks of the Hiickel the-
ory [13]. We used this parametrization of triple bonds before to describe the spin
distribution in dublet states [21] and in hyperpolarizability calculations of small
acetilenic systems [31].

The limit values of optical properties obtained for polyynes by the extrapolation
procedure (Egs. 3.41 and 3.42) are presented in the Table 3.10.

By comparing the limit values for the longitudinal component of the 2nd hyper-
polarizability for linear polyene and polyyne (19.4 x 10° a.u. and 10.8 x 10° a.u.,
respectively) one can evaluate the significance of the interaction between the orthog-
onal subsystems. The non-additive factor of 1.5 for the polarizability and 1.7 for the
2nd hyperpolarizability indicate that the cross-system interaction differently affects
the different optical properties.

Table 3.10 Limit values of (hyper)polarizabilities for polyynes obtained with different many-body
approaches

HF MP2 | cue(,-CCSD cue-CCSD
=1 |I=2 =3 =4 =5 =6
(a)® 18.42 |14.82 |7.91 6.88 8.46 10.08 |11.17 |11.77 | 12.51
(a)y -97.09 | —=70.23 | =57.77 | —46.57 | —67.08 | —=94.39 | —-116.8 | —131.7| —156.8
(y)°/10° 438 |5.62 [029 |020 [0.35 0.71 1.16 1.54 2.15
(7)0/10% | —6.39 | -7.87 |-047 |-0.31 |-0.59 |-1.35 |-2.43 |-3.49 | —-5.65
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Fig. 3.10 A fragment of W
polydiacetylene polymer — \ —— \ ——

It is also worth to note that methods with inaccurate accounting for the electron
correlation effects cannot adequately describe the entire set of the electro-optical
effects. Such methods show significant errors for the limit values of the optical

parameters. For instance, the ratios (@) . /(@)% cop = LAT, (@) 00, /(@) cop =
L8 )5/ (Vo cosp = 2:04, AV o /(Y )0, ccsp = 2-61 demonstrate the fact that

inclusion of MP2 correction improves values for polarizability but gives worse
results for 2nd hyperpolarizability in comparison with cue-CCSD method.

Systematic improvement of the cue,-CCSD theory with [ up to [ = 6 is still not
enough to give results coinciding with the cue-CCSD results. However, unlike the
MP2 approach, improvement of the quality of the wave-function with / leads to more
accurate values for both polarizability and 2nd hyperpolarizability. Also, as a rule,
the lower level of theory gives a lower bound for the calculated optical property.

Of considerable interest is the polydiacetylene polymer that can be viewed as a
combination of a polyene and a polyyne. A fragment of the polydiacetylene molecule
is shown in Fig. 3.10.

For comparison, in Table 3.11 some data for three iso-z-electron fragments: poly-
ene, CygHsy ), polydiacetylene, C gH |, and polyyne C,,H, are presented.

The values shown in the table are smaller for polydiacetylene than for polyene
and polyyne. This is likely due to the fact that addition of a non-conjugated z-bond
makes an almost additive perturbation to the x-system and leads to a reduction of
the specific (per atom) linear size. Also, as could be seen from Table 3.11, the largest
values of the specific (per atom) nonlinear optical properties among all considered
polymers are obtained for polyynes.

Analogically to the representation of the wave-function in structural terms, there
is a way to separate (hyper)polarizabilities into the individual contributions from
individual atoms. A method for such separation was developed by Brédas [15, 16]
and is called the real-space finite-field method. The approach can be easily imple-
mented for a post-Hartree-Fock method in the z-electron approximation due to the
simplicity of the calculation of the one-electron reduced density matrix (RDM1) ele-
ments. In our calculations we are using a simple numerical-derivative “two-points”
formula for RDM1 matrix elements (R,,) [88] (see also [48]):

Table 3.11 Average (hyper)polarizabilities (per electron, N,

;> or per atom, N,,) of different iso-z-
electron systems

<a>/Nel (a>/Nat (y)/Nel <Y>/Nut
CygHyy 112 112 1.09 1.09
CisHyo 6.2 9.7 035 0.55
CyuH, 73 145 0.42 0.65
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1 Eh+8-EMh,-9
BT, 2 ’

R (3.43)

where ¢ is differentiation step, while &, is core Hamiltonian matrix element. For a
detailed description of RDM1 CC calculations see Ref. [71].
A characteristic element of the Brédas method is the use of an expansion of the
dipole moment in terms of powers of the applied electrostatic field.
He = 1+ 0o Fy + B Fo + VP + o0 (3.44)
The expression for the charge of an atom in the electrostatic field applied along
a certain axis can be written as a sum of products of so-called a-, f-, and y-charges
(generally hypercharges) and the field strength, F,, raised to the corresponding pow-
ers:
4=4"+q"F, +q"F +{VF +; (3.45)

where qEO) is the charge on the ith atom in the absence of the field, r € {x, y, z}.
Hence, for the 2nd hyperpolarizability one can write:

u, 63(25.11%)@) i 0%q;
— — = X, —

Vxxx = 6F3 - aF3 5 (346)

where x; is the corresponding Cartesian coordinate of the atom. Thus the xxxx com-
ponent of 2nd hyperpolarizability can be obtained as:

N
Veor = D, %4 (3.47)
i=1

where qi.’ is the atomic change of charge in the external field:

q = 33—]%' (3.48)
In a similar way one can determine all other optical properties of interest:
N 3, N )
@, = ;x,- o= ;xiqi, (3.49)
N2, N
B = inﬁz’ = inqf, (3.50)
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The contributions to the particular property from the particular atom, which gen-
erally depend on the choice of the origin of the coordinate system, will be called a-,
f-, y-moments and denoted as:

a=xq", (3.51)
f=x4", (3.52)
7 =xq". (3.53)

The histogram Fig. 3.11 shows the distribution of a- (black) and y-charges (white)
along the polyene C;,H;, chain obtained with the cue-CCSD method (x = O corre-
sponds to the center of the molecule).

Due to the presence of a center of inversion in the systems under study, f-charges
and f-moments are equal to zero. Figure 3.12 shows the contributions from the eth-
ylene units of the polyene to «,, (black) and to y,,,, (white). The x-axis in the his-
tograms correspond to the coordinates of the centroids representing the ethylene
units. The coordinate origin is located at the center of inversion of the polyene. The
polymer is placed along the x-axis. The distribution of the a-charge shows alternat-
ing signs and almost constant absolute values along the entire chain with only small
deviations at the edge atoms. For the y-charges (Fig. 3.11) at adjacent atoms, particu-
larly close to the chain edges, the differences in the values (between atoms belonging
to a single ethylene) are of the order of 0.6. The difference, as one moves closer to the
center of the molecule, slowly decreases. The distribution of a- and y-charges vary
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Fig. 3.11 Distribution of a and y-charges in Cs,H;¢ trans-polyene chain
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Fig. 3.12 Contribution to ,, and y,,,, from ethylene units in trans-polyene, Cs,H¢

slightly with the increase of the polymer chain. For polyenes Cy, H,, and Cs,Hj,, the
total a- and y-charges at the end ethylenes change in intervals of 0.107-0.108 and
0.536-0.566, respectively. Alternating signs of the hypercharges means that the field
produces an oscillating wave of atomic charges. The charges on ethylenes, in turn,
increase with the increase of the strength of the field applied along the chain. The
largest contribution to the longitudinal components of the polarizability and the 2nd
hyperpolarizability are made by the end ethylene fragments (for the above-defined
arrangements of the molecules relatively to the origin). This is due to the fact that
the atoms of these fragments are most distant from the center of the polymer (their
charges are multiplied by the largest factors) and the charges on the atoms belong-
ing to these fragments reach the maximum values for the chain. Thus for the C;,H;¢
system, 42 % of the longitudinal polarizability component is due to the pair of the
end ethylene fragments. For y,,., the corresponding contribution is smaller—28 %,
however it decreases less in moving to the center of the chain comparatively to the
polarizability contribution. In the limit, the contribution of the end ethylene frag-
ments are 40 and 25 % for a,, and y,,,,, respectively. For all polyenes, starting with
C,,H,,, the total moments for all ethylenes in the polymer chain (but not for separate
atoms) are positive.

3.3.3.2 Polycyclic Hydrocarbons

In this section, we discuss various members of the family of polycyclic hydrocar-
bons (see Fig.3.13). Among them there are linear (A) and angular (B) polyacenes,
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Fig. 3.13 Polycyclic Aromatic Hydrocarbons under study

helicenes (G) [72], polyphenylenes (D), poly-para-quinodimethanes (E), polybenzo-
cyclobutadienes (C), poly-para-stilbenes (F), and poly-para-phenylene-vinylene (H).

The dihedral angles of the internal edge in the polyacene chain in helicene are
equal to 25 °. For polyphenylene the dihedral angle for each two neighboring cycles
is set to 45°. All presented systems contain conjugated six-membered cycles, so,
in addition to other properties, one can consider the optical parameters in terms of
benzene ring units. For the HF, MP2, and cue-CCSD methods, the corresponding
values of the polarizability for the benzene ring are 25.94, 25.74, and 25.06 a.u.,
respectively. For 2nd hyperpolarizability the values are 844.9, 905.8, and 2603.3
a.u., respectively.

As noted in the Sect. 3.3.2, the polyacenes are characterized by a more complex
structure of the wave function, and therefore, to adequately describe this structure
a higher level of theory is needed. It is expected that for the polycyclic aromatic
hydrocarbons discussed in this section the selection of an appropriate correlation
radius is a very important aspect of the calculation. To study the effect of the level
of accounting for the electron correlation effects for polyacenes, we have calculated
the polarizability and 2nd hyperpolarizability values for different levels of the cue-
CCSD theory. In Figs. 3.14 and 3.15 the dependencies of the specific values of these
properties on the number of the z-electrons are shown.

The values obtained in the calculations, in comparison to those obtained for poly-
enes, show that a principal difference exists between the two sets of results. In the
polyene case, an increase of the level of theory leads to a systematical improve-
ment of the values of all studied properties relative to the results obtained with the
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Fig. 3.14 Average specific (per electron) polarizabilities of linear polyacenes as a function of the
number of the z-electrons
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Fig. 3.15 Average specific (per electron) hyperpolarizabilities of linear polyacenes as a function
of the number of the z-electrons
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cue-CCSD method. In the case of polyacenes, for the polarizability, the approxi-
mation that takes into account only the local excitations, / = 1, shows a significant
overestimation in comparison with the results obtained with other levels. However
the results still reveal correct dependence on the number of z-electrons and they are
more accurate than the HF and MP2 limit values. For the hyperpolarizability the pic-
ture is partially the same. The results calculated with the cue;)-CCSD method fall
out from the general dependency but they are not overvalued relative to cue-CCSD.
Starting with the [/ = 2 level corresponding to an enlargement of the excitation set,
a consistent improvement of the calculated values is observed. The HF and MP2
hyperpolarizabilities show some analogy with the corresponding results for poly-
enes, namely the stabilization limit is overestimated, which can also be explained by
an insufficient flexibility of the wave functions in these methods.

Let us now consider several possible isomers of the linear polyacene: angular
polyacenes and helicenes (see Fig.3.13). In Table 3.12 the results obtained for the
C,,H,,—C,,H,, systems (containing 5—10 benzene rings) are presented for structures
corresponding to systems A, B, and G for different numbers, n, of the benzene rings
in the chain.

Based on the results shown in the table, one can conclude that the largest opti-
cal nonlinearity occurs in the longest isomer, system A. This fact confirms the con-
clusion made for the linear model polyene (Fig. 3.8) and based on the comparison
involving its different conformers. The conclusion was generalized for a larger class
of condensed aromatic hydrocarbons.

Next, let us consider the optical properties of polymers presented in Fig. 3.13,
which involve conjugated aromatic rings. In Table 3.13 the calculated polarizabili-
ties and 2nd hyperpolarizabilities are shown for systems presented in Fig. 3.13 (A—
linear polyacene C;yH,3, B—angular polyacene C;,H,;3, C—polybenzocyclobu-
tadiene Cy,H g, D—polyphenylene C,,H;,, polyquinodimethane Cy,Hs,, and G—
helicene C5,H 3). The values corresponding to the benzene unit calculated with the
different appropriate methods are also shown in the table. All systems contain seven
benzene rings. The values demonstrate the non-additive character of the calculated

Table 3.12 Average values of (hyper)polarizabilities for polyacenes A, B, and G shown in Fig. 3.13

n 5 6 7 8 9 10
(a), a.u.

A 158.96 198.09 238.03 278.57 319.58 360.93

B 148.25 184.34 221.18 258.72 296.64 33491

G 137.85 162.00 186.32 209.95 233.36 254.23
(y), a.u.

A 3.22 5.16 7.36 9.85 12.4 15.1

B 1.92 2.95 4.15 5.47 6.88 8.35

G 1.25 1.45 1.69 1.86 2.03 2.11
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Table 3.13 Average values of (hyper)polarizabilities for polyacenes shown in Fig.3.13

A B C D E G
(a), a.u.
HF 31291 236.78 373.49 262.79 N/A 189.90
MP2 292.06 234.57 385.60 258.73 N/A 191.17
cue-CCSD | 238.03 221.18 371.85 249.44 1300.2 186.32
() /@) penzene
HF 12.1 9.1 144 10.1 N/A 7.3
MP2 113 9.1 15.0 10.1 N/A 7.4
cue-CCSD | 9.5 8.8 14.8 10.0 519 7.4
(y) x 10°, a.u.
HF 5.15 2.79 116 4.02 N/A 0.863
MP2 7.04 3.52 15.8 4.28 N/A 1.07
cue-CCSD | 7.36 4.15 16.4 3.9 858 1.69
1) /0 benzene
HF 610 330 1370 476 N/A 102
MP2 777 389 1740 473 N/A 118
cue-CCSD | 283 159 630 153 33000 65

properties. They show the failure of approaches based on the assumption of additiv-
ity in evaluating the studied nonlinear optical properties.

The data presented in Table 3.13 shows several important features. The first and
most obvious concerns the degree of non-additivity of the polarizability and the 2nd
hyperpolarizability. The ratio of (a) and (@),,,..,. Only marginally differ from the
number of benzene rings in the oligomeric chain (the ratio is almost equal to that
number for helicenes), while the (y) /(¥ ),ep.ene Tatio exceeds the number of the ben-
zene rings by a factor of 2-3. This observation once again underlines the exceptional
difficulty to accurately calculate the full set of the electro-optical properties.

The second noteworthy feature is the difference in the accuracy of the description
of {a) and (y) in the HF and MP2 methods. In general, these methods are satisfactory
in describing the values of the polarizabilities (except the case of linear polyacenes).
At the same time, for the 2nd hyperpolarizabilities, there are significant deviations
from the results obtained from the cue-CCSD calculations (especially for () ,,-cne)-
Therefore, a rough accounting for the electron correlation effects cannot guarantee a
similarly accurate description of every optical property. As it will be shown below,
this conclusion remains true for optical properties proportional to odd powers of the
strength of the applied field.

The highest (hyper)polarizability values appear for poly-para-quinodimethane.
The polarizability for this polymer is 5-7 times larger than those for the other sys-
tems and the 2nd hyperpolarizability is more than 100 times larger. The HF (and thus
MP2) method for the chain poly-para-quinodimethane gives unstable results. Appar-
ently, this system has an allowed long-wavelength transition which makes it behave
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like a metal and this, to a large extent, determines the value of its (y). Despite this
metallic-like behavior, the various approximate versions of the cue-CCSD theory
provide rather stable results for the optical properties.

Table 3.14 shows limit values of the optical parameters calculated according to
Egs. 3.41 and 3.42 for systems A, C, E, F, and H shown in Fig. 3.13. Polystilbenes
(F) are combinations of model planar polyphenylenes and trans-polyenes. System
H can also be represented as a combination of poly-para-quinodimethane and trans-
polyene.

Based on the presented data, it can be concluded that the highest hyperpolariz-
ability occurs in polymers based on para-quinodimethane. The results for system
E, shown in the table, give an estimation of the lower bound due to the fact that,
for the specific (y), a fast increase of the value with the number of the monomeric
units is observed. Thus, one can expect even larger values for the linear poly-p-
quinodimethane.

In many cases, the application of the HF and MP2 methods is hampered by con-
vergence problems and by instabilities in the calculation to obtain the HF solution.
The use of an orthogonalized cue basis set solves these problems ensuring smooth
convergence even if the HOMO-LUMO gap is small. Also, according to the values
of &, and y,, a more physically correct behavior of the specific values of optical prop-
erties depends on the size of the system as demonstrated by calculations performed
with the cue;-CCSD methods. Despite the limitations imposed on the excitation set,
all levels (even the lowest, [ = 1) demonstrate correct behavior for the limit «® and
v values. The systematic improvement of the structure of the wave function equally
affects the values of the polarizability and the 2nd hyperpolarizability. This happens
due to the size consistency of the CCSD method.

Table 3.14 Limit average values of (hyper)polarizabilities for polyacenes shown in Fig.3.13

A C E F H
(a)® HF 17.28 11.17 N/A 14.85 N/A
MP2 15.60 11.78 N/A 13.62 N/A
cue-CCSD | 10.53 10.58 >60 10.64 29.54
(a)o HF -227.3 -98.34 N/A -153.8 N/A
MP2 -197.4 -112.1 N/A -132.6 N/A
cue-CCSD | -82.03 -73.21 N/A —-73.72 —430.8
(y)*/10°> |HF 1.72 0.690 N/A 2.96 N/A
MP2 1.86 1.02 N/A 3.33 N/A
cue-CCSD | 0.736 0.676 >110 1.27 19.8
(7)o/10° | HF -6.22 -1.85 N/A -8.27 N/A
MP2 —6.47 -2.87 N/A -9.19 N/A
cue-CCSD | -1.62 -1.14 N/A -2.32 -58.9
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3.3.3.3 Nonalternant Hydrocarbons

In our previous work [88] we studied systems containing odd z-electron cycles. In
the study, in addition to classical fulvalenes, we also considered systems where the
cycles are connected by trans-butadiene and para-quinodimethane bonding frag-
ments. In this section, only classical members of the fulvalene family, where each
two cycles are connected with a double bond, are described. For convenience we use
the notation shown in Fig. 3.16.

Systems considered in this section are characterized by extremely large z-electron
dipole moments, while remaining entirely carbon-based. A large dipole moment of
a system indicates that a significant charge transfer occurs between the cycles. This
behavior also affects the polarizability and hyperpolarizability and makes these prop-
erties difficult to describe in quantum-chemical calculations. We have observed these
difficulties in the calculations where different variations of the CCSD method were
employed. More specifically, the CCSD hyperpolarizability calculations of some ful-
valenes revealed a significant error (more than 30 %) in comparison with the results
obtained in the exact 7-FCI method. Also, considerable differences between the
hyperpolarizability results obtained with different variants of the CCSD method
were observed. Table3.15 shows the optical properties for calicene [17, 19, 58]
(“[5-3]” in foregoing notation) obtained with different methods including various
CC approaches.

The results are compared with the results obtained with relaxed CC methods
where an exact accounting for the triple (r-CCSDT) and quadruple (r-CCSDTQ)
excitations is included. In this case, the almost exact match of the results of the MP2
calculations (for the second hyperpolarizability) with the FCI (exact) results is likely
a coincidence. This can be concluded based on the results for other systems consid-
ered in Ref. [88], where the MP2 method, as well as the HF method, gives results for
individual components and for average values with incorrect signs or even with incor-
rect order of magnitude. As can be seen from the data presented in Table 3.15, CCSD
gives a noticeably large error (~10 %) for the 1st hyperpolarizability, and it incor-
rectly describes the 2nd hyperpolarizability (error ~30 % for the best of the results).
The inclusion of the triply-excited configurations (r--CCSDT) results in a decrease
of the error in up to 5 %, and using the method with quadruples, the -CCSDTQ
approach, leads to an almost exact value. It should be noted that such large errors

X

| [5-3] [7-5]

y

Fig. 3.16 Notations for considered fulvalenes
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Table 3.16 Classification of fulvalenes

Class 1 2 3
m=n m>n
Condition n+m=dk+2 m+n=dk (m4n=dk+2

(~30%) are obtained only for selected members of the family of the nonalternant
systems. For almost all studied systems, the CCSD approach shows good agreement
with more accurate methods. At the same time, for systems [5-5] and [7-3] r-CCSD,
u-CCSD, and cue-CCSD methods give values that differ from the FCI results on the
order of one percent. In the studies of the optical properties of fulvalenes we intro-
duced a classification of these systems based on their sizes and on the number of
cycles they contain. The classification uses the [m-n] symbols which are explained
in Table 3.16.

Structurally, this classification is related to the tendency of the cycles contained
in the system to form an aromatic bond arrangement. To explain this, let us consider
one representative of each class. In Fig. 3.17 schemes of inter-cycle charge transfer
for the [5-5], [5-3], and [7-3] systems are presented.

The systems where the charge transfer does not occur for the symmetry reason
(m =n) belong to the first class.

For the systems that belong to the second class, a possibility appears to form two
aromatic rings. In the case of the [5-3] system, this, however, requires that a tranfer
of the electron density from the trinomial cycle to the 5S-membered cycle uccurs. It
leads to the formation of 6-electron-5-center and 2-electron-3-center systems. In this
case, the trinomial cycle is an electron donor and the 5-member cycle is an electron
acceptor.

For the third class, there is the possibility of the formation of one aromatic system
and one antiaromatic system. Unlike the previous systems, for the systems belonging

class 1

class 2

class 3

Fig. 3.17 Charge transfer in different classes of nonalternants
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to the third class there is a competition between two cycles to acquire additional
electron density to achieve full aromaticity.

According to our calculations, the direction of the charge transfer is determined
by the electron-donor ability of the smaller cycle. If the two cycles are connected
with a bridging molecular fragment, there are two possible variants of the charge
distribution. If the hole/electron density of the bridging fragment is sufficient to pro-
vide enough electrons to make both cycles aromatic, a displacement of the electronic
density in the direction from the bridge to the cycles is observed. Otherwise, when
the electron-donor capacity of the bridging fragment is not sufficient, a transfer will
still occur, but it will result in the formation of an aromatic ring only for the smaller
cycle and there will be no electron transfer to the larger cycle. In [88], all possi-
ble variants of the intramolecular charge transfer were discussed for fulvalenes and
fulvalene-like systems.

The first and the third class differ from each other because in the latter case, due to
the difference in electron affinities, one cycle surpasses the other in the competition
for the extra electron density obtained from the bridging molecular fragment.

In this section we will consider the charge distribution only for classical fulvalenes
(without bridging fragments). In Table 3.17, the charges on atoms for the [5-3] and
[7-3] systems obtained in the calculations are presented (the atom numbering shown
in Fig. 3.17 is used). The charge transfer magnitude, 5 is marked with a 0 index,
as it characterizes the charge distribution at zero field.

According to the data presented in Table 3.17 one can see that a simple consider-
ation based on the tendencies of the different cycles to form aromatic rings explains

Table 3.17 Charges and transferred charges between cycles in fulvalenes obtained using different
methods

Atom Hiickel | HF MP2 cue-CCSD | r-CCSD | FCI
[5-3]
1 0.281 0.145 0.141 0.129 0.125 0.124
2 0.262 0.156 0.131 0.088 0.087 0.081
3 -0.181  |-0.150  |-0.126  |-0.085  |-0.094  |-0.089
4 -0.157  |-0.088  |-0.089  |-0.090  |-0.081  |-0.085
5 -0.165  |-0.060  |-0.054  [-0040  |[-0040  [-0.039
50 0.824 0.445 0412 0.346 0.336 0.330
[7-3]
1 -0.033 | -0.002 0.000 0.001 0.001 0.002
2 -0.154 | -0.060 | -0.055  |-0.043  |-0.044  |-0.045
3 0.087 0.057 0.053 0.042 0.041 0.043
4 -0278  |[-0.182  |-0.165  |-0.28  |-0.32 | -0.129
5 0.080 -0.017  |-0.035  |[-0061  [-0052  [-0.058
6 0.200 0.105 0.103 0.094 0.094 0.094
50 0.480 0.193 0.171 0.128 0.136 0.130
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the direction of the charge transfer. It is worth noting that the simplest of the meth-
ods used in the calculations, namely the Hiickel method, gives for system [5-3] the
amount of the electron density transferred between the cycles of about 1in units
of the electron charge. The inclusion of the electron-electron interaction does not
qualitatively change the picture of the charge distribution, but significantly reduces
the amount of the electron density transferred (the ratio of the results obtained with
the FCI and MO Huckel methods is about 2.5 times). Also note that the cue-CCSD
method correctly describes the total charge on each cycle, as well as the charges on
the individual atoms.

A more complex issue is the behavior of the charges when the field is applied
along the longitudinal axis of fulvalene. Using the partitioning scheme introduced in
Sect.3.3.3.1 and employed for describing the contributions to the (hyper)
polarizability from different atoms, we can analyze the atomic changes in fulvalenes
in the presence of the field. The intramolecular charge transfer at the zero field is
described by the different variations of the CCSD method at a sufficient level of
accuracy, so it cannot serve as an indicator of any incorrectness in the description
of the hyperpolarizabilities of systems belonging to the second class. Therefore one
needs to study the hypercharges and the moments of some corresponding quantities.
In Table 3.18 the results concerning the (hyper)charge transfer and the components
of the dipole moment and the (hyper)polarizability calculations are presented for
three representative members of each considered class.

The values presented in Table 3.18 allow us to trace the relationship between the
error in the description of the intramolecular transfer of the hypercharges and the
accuracy of the values for the corresponding optical properties, i.e. polarizability,
hyperpolarizability, etc. The most striking example is system [7-5]. For this system
a wrong sign and the order of magnitude of 6 is obtained with the cue-CCSD
method as compared with the FCI results. This results are in error for the longitudinal
component of the 2nd hyperpolarizability by more than 65 % ! This exceeds the error
for the previously described fulvalene [5-3] more than twice. At the same time, for
the [9-3] system which is isoelectronic to the [7-5] system and belongs to the same
class of systems, the error in the 2nd hyperpolarizability component is less than 1 %.

Performing a more detailed analysis of the hypercharges and the moments of the
(hyper)polarizabilities for system [7-5] one can conclude that the distribution of the
hypercharges obtained with the CCSD method is generally wrong (especially the
charges corresponding to the first and second hyperpolarizabilities). In Table 3.19
the total charges, ¢, ¢'¥, and ¢, for the cycles forming the systems and the cor-
responding total moments of the (hyper)polarizabilities are shown.

Very large errors are obtained for the two “end” atoms of the five-membered ring
(error of more than 500 % for each), but the value of the charge is small, hence its
contribution to the corresponding components is also small. The next largest error for
g is for the pair of atoms forming the bond connecting the two rings (70 and 85 %
for the atoms belonging to seven-membered and five-membered rings, respectively).
For this pair of atoms the highest values of y-hypercharge are observed, but, as they
are located close to the origin, the contribution from the corresponding moment is
also small. Nevertheless, the total moment for the seven-membered cycle is under-
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Table 3.19 (Hyper)polarizability moments for fulvalene [7-5]

q" a, q’ b, q v/10*
27 CUE 0.4890 110.3 —-0.3266 | —2992 —-0.0198 9.08
FCI 0.4673 106.2 —-0.4139 -3173 0.2142 15.40
25 CUE —0.4890 133.8 0.3266 -3600 0.0198 1.19
FCI —-0.4673 128.7 0.4139 —4364 -0.2142 13.80
Z CUE - 244.1 - —6591 — 10.27
FCI — 234.8 — —7537 — 29.21

estimated by 40 % and for the five-membered cycle by 90 %! As a result, the value
of the longitudinal component of the 2nd hyperpolarizability obtained with the cue-
CCSD method has an error of 65 %.

As mentioned above, for compounds belonging to the second class, the addition
of a molecular fragment bridging the two cycles largely affects the intramolecular
charge transfer. The presence of the bridging group also affects the charge distrib-
ution and the hypercharges. In the case of para-quinodimethane as the bridge, the
change of the total (by cycle) charge is shown in Table 3.20. The insertion of the
bridge between the cycles also leads to an increase of the longitudinal components
of the hyperpolarizability by more than one order of magnitude, as determined with
the FCI method. It also results in an incorrect order of magnitude for the first hyper-
polarizability and an incorrect sign for the second hyperpolarizability calculated with
the HF and MP2 methods.

Recalling the conclusions made in previous two sections and considering the
results for the non-alternant hydrocarbons, we can conclude that the hyperpolariz-
ability is a complex property not only for long z-conjugated systems but also for
smaller systems containing several dozen atoms. Fulvalenes add a striking confirma-
tion of this conclusion. To correctly describe the nonlinear optical properties even of
systems as small as fulvalenes it is necessary to use high-level theories that accurately
account for the electron correlation and include the third and higher order excitations
from the reference wave function. Some of the methods widely used for molecular
calculations (such as MP2 or DFT) usually do not guarantee sufficient accuracy of
the calculations of the optical properties.

Table 3.20 FCI hypercharges of [5-3] fulvalene without and with para-quinodimethane bridge
(1) (@) () )

9; 9, 9, 9;
[5-3]

>s -0.329 10.341 0.105 | -0.148
[5-para-quinodimethane-3]

>s -0.173 0.572 1383 4.095

o 0.104 ~0.032 -0.186 —0.895
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c-polyfulvene ne-polyfulvene polycalicene

Fig. 3.18 Nonalternant polymers under consideration in this work

Among the nonalternant polymers, one should separate systems that are formed
from nonalternant monomeric units from the structures with “alternant” chains and
with “nonalternant” end groups. Both types were considered in our previous work
[88]. Here we give only a general description of the systems and we present conclu-
sions that have been derived from the analysis of the results obtained in the calcula-
tions.

The first group includes condensed (c-polyfulvenes) and non-condensed (nc-
polyfulvenes) polyfulvenes and polycalicenes. The structures of these systems are
shown in Fig. 3.18. The limit values of optical properties obtained by extrapolation
for these systems are shown in Table 3.21. The corresponding specific values will be
presented at end of section.

As one can see, the limit values for the condensed and uncondensed polyful-
venes are similar. In comparison with other polymers (represented in the two pre-
vious sections) these values are small, indicating unlikely use of these polymers as
chromophores for generating the second and third harmonics.

Polycalicenes are characterized by significant limit hyperpolarizabilities that sur-
pass the hyperpolarizabilities of trans-polyenes, but do not exceed those of some
members of the polycyclic family. Some works [75-77] are devoted to the synthe-
sis of polymeric calicene, which offer some potential for use as materials in optical
devices.

Polymers belonging to the first group are characterized by very modest values
of the first hyperpolarizability, therefore, are not suitable as chromophores for the
second harmonic generation. For this purpose it is usually preferred to use polymers
with the donor and acceptor groups separated with a long z-conjugated fragment.
It is most common to use amino and nitro-groups as a pair of donor and acceptor.

Table 3.21 Limit values calculated for the polymers under consideration

c-polyfulvene nc-polyfulvene polycalicene
(a)®® 7.0 6.6 20
(y)>/10* 5.8 52 39
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In our previous work [88], the use of odd-electron z-conjugated cycles as bond-
ing fragments that guarantee large values of the 1st hyperpolarizability was sug-
gested. According to the results discussed in the section on fulvalenes, having dif-
ferent cycles forming compounds of the second class has some advantage. There-
fore, a trinomial was selected as the donor and a five-membered ring as an accep-
tor. trans-polyenes, poly-para-quinodimethanes, and poly-para-phenylenevinylene
were selected as the 7-conjugate bonding fragments (corresponding polymers desig-
nated as pp-PE, pp-PQ, pp-PPV). The structures of the systems under investigation
are shown in Fig. 3.19. This choice was made based on the data presented in the
Table 3.22.

Limit values of optical properties for considered non-classical push-pull polymers
are presented in Table 3.22. For these systems the dipole moment and first hyperpo-
larizability tend to converge with the chain length to limit values. This is why, when
obtaining values for an infinite chain, the || and | #| values can be used directly. The
fast and monotonic convergence of these values to the limit values can be explained
by the shielding of the cycles by the z-conjugated chain. For a sufficiently long length
of the polymer, the donor and acceptor groups do not interact with each other and
the atoms located in the middle of the chain do not acquire any charge. The pp-PQ
|g]* values are the largest among the three groups of polymers. Hence, these poly-
mers have potential for being good materials for high-performance non-linear optical
devices.

The specific limit (y) for the push-pull variant of the poly-para-quinodimethane
is found to be larger than that for the pure polymer. Clearly, the presence of the end

5-0ra O

pp-PQ P rE

PP ] E‘J P \_.l

Fig. 3.19 Polymers with nonalternant “end” groups

Table 3.22 Limit values of (hyper)polarizabilities for polymers shown in Fig. 3.19

Bridge [u] (D) (a)® /N, (au) ||B|* (au) (r)*/N, (a.u.)
PE 5 14 2% 10* 2%10°

PQ 14 >55 1% 10° >2% 107

PPV 9 29 2% 10° 2% 106

Reprinted with permission from Ref. [88]. Copyright 2014 American Chemical Society
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cycles affects not only the value of the first hyperpolarizability but also the value of
the second hyperpolarizability. Just as in the case of the polymers without the donor
and acceptor groups, the polarizability and the 2nd hyperpolarizability of pp-PQ are
presented to estimate the lower-boundary values for the corresponding quantities,
which exhibit intensive growth with the length of the system.

3.3.3.4 Nanosystems (Hyper)polarizability Calculations

Potential applications of z-conjugated nanosystems in molecular electronics and
optics are currently of great interest. Among these systems, one should particularly
mention fullerenes (see Sect. 3.3.1), graphene fragments, nanotubes, and their deriv-
atives. The theoretical approaches most frequently used to investigate the properties
of nanosystems are usually based on the concept of an infinite chain of periodic units
with a particular topology. However, such approaches are not suitable for investigat-
ing systems with structural defects (partial hydrogenation atom substitution and other
topological defects). The method we introduced allows computation of optical prop-
erties, i.e. the (hyper)polarizability, for aperiodic systems that contain thousands of
atoms.

For the systems discussed earlier, the calculated specific optical properties were
already converged to the limit values for a relatively small number of atoms (from
several dozen up to a few hundreds). For nano-sized systems, the convergence
requires from several hundred up to several thousand atoms. To demonstrate the abil-
ity of our method to describe nano-systems, we carried out calculations of a model
macromolecular system with the structure presented in Fig. 3.20. The system repre-
sents a looped nanotube (nanotore). The looping of the nanotube allows for avoiding
the “end” effects to appear in the calculations. The size of the nanotore is defined
by the number of unit cells in the system. It can be expected that the C—C bonds

Fig. 3.20 The nanotore
structure
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Table 3.23 (Hyper)polarizabilities for nanotores with different numbers of unit cells, n

n 16 20 24 28 Y 36
N, 320 400 480 560 640 720
(a)/10° 9.76 13.57 17.58 21.72 25.94 30.21
(y)/107 17.01 24.05 30.55 36.29 41.28 45.46
K 1.39 1.31 1.26 1.22 1.19 1.17
size T=2/104 | 7.42 9.28 11.14 13.00 14.85 16.70
size T/=3/10° | 1014 1267 1520 1774 2027 2280

The size of T, amplitude matrix, presented in the last two rows

located near the inner radius of the nanotore are somewhat shorter than the C-C
bonds located near the outer radius. However with the growth of the tore radius this
difference should be disappearing. The nanotore presented in Fig. 3.20 corresponds
to the zig-zag nanotube with the (5,0) topology. The number n of the unit cells in our
calculations varied in the interval from 16 to 36.

The difference in the C—C bond lengths for the nanotore can be expressed with the
curvature parameter x, which is defined as the ratio of the longest C—C bond length
and the smallest one. It is clear that for lim,_, , ¥ = 1 and in the limit case nanotore
becomes equivalent to an infinite nanotube without the “end” effect. The calculated
values of the average polarizability and 2nd hyperpolarizability and a parameter of
the nanotore curvature are presented in Table 3.23. The calculation of the parameters
has been carried out with the cue,)-CCSD method. The use of higher levels of theory
would require much more significant computational expenses. Also in Table 3.23,
the size of the amplitude vector is presented for level / = 2 and / = 3. Based on the
data presented in the table, one can see that extending the excitation set from the
set used in cue)-CCSD to the set used in cueg;)-CCSD leads to an increase of the
size the amplitude vector by more than two orders of magnitude. For the nanotore
system, HF and MP2 results are not reported because they were not obtained due
to the divergence of the SCF iteration process. The divergence is caused by quasi-
degeneracy of the HOMO and LUMO that happens due to the high level of symmetry
of the system.

3.4 Conclusion

The calculation of linear and nonlinear optical properties of conjugated systems is
still a difficult problem for contemporary quantum chemistry. Wide use of conju-
gated systems, especially such nanosystems as carbon nanotubes, fullerenes, and
graphenes in materials applications, require development of reliable theoretical
methods for predicting the electronic and optical properties through quantum-
mechanical calculations. The coupled cluster theory, which offers high accuracy in
ab initio calculations, cannot be applied to investigate large molecular systems con-
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taining hundreds of atoms. Our semiempirical local coupled-cluster method (cue-
CCSD) provides an alternative to the ab initio approach. It enables calculation of
optical parameters of z-conjugated molecules and to produce results which qualita-
tively agree with the experiment. The results presented in this review clearly show
the need to account for a significant part of the electronic correlation effects in the
calculations in order to predict the molecular optical parameters with an adequate
accuracy. This conclusion applies to both long polymers and small systems contain-
ing only a dozen atoms. A question which arises when the accuracy of a particular
computational approach is evaluates, is what reference data one should use in such
evaluation. In general, the optical parameters for short polymer fragments obtained
in the cue-CCSD calculations are in good agreement with those obtained in the FCI
calculations, as well as with the available experimental data. Thus, the FCI results
can be used as the reference. The results obtained with the cue-CCSD method for
quasi-one-dimensional conjugated systems with different lengths allow determina-
tion of limit values of the optical parameters. Some of these values are shown in
this review. Certainly, one cannot expect the results obtained with the cue-CCSD
method, which is a semiempirical approach, to be quantitatively accurate for a partic-

507 o t-polyene
—0— polyyne
—v— |-polyacene
—&— polybenzocyclobutadiene
—a— poly-p-quinodimethane
40 4 —o— poly-p-phenylenevinylene
—— t-polystilbene
—&— push-pull-polyguinodimethane
—&— push-pull-polyphenylenevinylene
palycalicene
30 H
]
£
A
=1
v
20
104 OO O 090 4
| W T
0 T T T T
20 40 60 80
N

Fig. 3.21 Average specific (per electron) polarizabilities of different conjugated polymers in cue-
CCSD approach
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400x10° 4 —a— push-pull-polyphenylenevinylene
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200x10° o
]
o 3
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Fig. 3.22 Average specific (per electron) 2nd hyperpolarizabilities of different conjugated poly-
mers in cue-CCSD approach

ular molecular system. However, the trends in the changes of the optical parameters
with the lengths of the polymer are usually correctly described with the method. The
same applies to polymers which are structurally similar. For example, the compar-
ative analysis of the average (per electron) polarizability described in Fig.3.21 and
the 2nd average hyperpolarizability described in Fig. 3.22 for different systems (for
a detailed description of the systems and their optical properties see Sects. 3.3.3.1—
3.3.3.3) provides information about the optical response of the systems, which can
be useful in predicting their optoelectronics applications.
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Chapter 4
A Ciritical Look at Methods for Calculating

Charge Transfer Couplings Fast
and Accurately

Pablo Ramos, Marc Mankarious and Michele Pavanello

Abstract We present here a short and subjective review of methods for calculating
charge transfer couplings. Although we mostly focus on Density Functional The-
ory, we discuss a small subset of semiempirical methods as well as the adiabatic-to-
diabatic transformation methods typically coupled with wavefunction-based
electronic structure calculations. In this work, we will present the reader with a crit-
ical assessment of the regimes that can be modelled by the various methods—their
strengths and weaknesses. In order to give a feeling about the practical aspects of
the calculations, we also provide the reader with a practical protocol for running
coupling calculations with the recently developed FDE-ET method.

4.1 Introduction

Charge transfer (CT) between molecular species play vital roles in processes that
occur in biology such as protein communication [1-5], respiratory systems in the
mitochondria [6], oxidative damage on DNA [7-9], photosynthetic cycles [10, 11],
as well as in materials science conduction in organic semiconductors [12, 13]. In
order to achieve an accurate modeling of these processes in the simulations, one
needs to include several levels of complexity, which in most instances lead to con-
sidering model systems featuring hundreds of atoms and an even larger number of
electrons. The large system sizes preclude the use of high-level wavefunction-based
quantum-chemical methods. For this reason, researchers worldwide have invested
a great deal of effort in developing approximate, fast, yet still accurate methods
for describing CT reactions. Methods based on Density-Functional Theory have in
recent years become competitive in regards to the accuracy while still maintaining a
generally low computational cost.

Marcus theory [14, 15] is perhaps the most applicable theory for modeling a CT
process. This theory was originally derived under three main approximations. First, a
CT event is thought of in terms of a two-dimensional basis set (donor and acceptor).
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The interaction matrix element of the Hamiltonian is the central quantity in deter-
mining the probability of a transition in populations from the basis function repre-
senting the donor state to one representing the acceptor state. This interaction is the
electronic coupling V), of the two electronic states involved in the CT reaction [16,
17]. Second, it relies on the Condon approximation [18, 19], in which the electronic
coupling is considered to be independent of the nuclear motion when the transfer
occurs. Third, reactants and products are modeled as being enclosed by spheres on
which the polarization of the solvent is represented as a dielectric continuum [15,
20-22]. Marcus theory can be summarized as [23]:
_(aGHa?

2 ) e 4IKgT
ker = 7|VDA|

VAT IK,T

where A is the reorganization energy, and V), is the electronic coupling.

States that most resemble the initial and final states of electron transfer have been
often referred to as “diabatic states” [24, 25] and their corresponding wavefunctions
“diabats”. Although it is known that diabatic states have a formal definition [26, 27],
it was shown [28] that charge-localized states satisfy the requirements for diabatic
states for condensed phase electron transfer reactions.

Several approaches are available in the literature to generate and evaluate Hamil-
tonian matrix elements with wavefunctions of charge-localized, diabatic states. They
differ in the level of theory used in the calculation and in the way localized electronic
structures are created [15, 25, 26, 29-31]. When wavefunction-based quantum-
chemical methods are employed, the framework of the generalized Mulliken-Hush
method (GMH) [29, 32-34], is particularly successful. So far, it has been used in
conjunction with accurate electronic structure methods for small and medium sized
systems [35-37]. As an alternative to GMH and other derived methods [38, 39],
additional methods have been explored for their applicability in larger systems such
as constrained density functional method (CDFT) [25, 37, 40, 41], and fragmenta-
tion approaches [42—47], which also include the frozen density embedding (FDE)
method [48, 49].

So far, we have mentioned methods that produce all-electron diabatic wavefunc-
tions and corresponding Hamiltonian matrix elements. There are two other classes
of methods which simplify the quantum problem by focusing on the wavefunction of
the transferred charge: such as methods making use of the frozen core approximation
Fragment Orbital methods (FO), and methods that assume the charge to be localized
on single atomic orbitals [50]. In this work, we will also treat these computationally
low-cost methods.

As our group is involved in the development of the Frozen Density Embedding
(FDE) formulation of subsystem DFT, this chapter will pay particular attention to
the FDE methodology. We believe FDE to be a very promising method capable of
achieving a good description of the electronic coupling in CT reactions, while main-
taining a low computational complexity.

.1
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This chapter is divided in two parts: the first part is devoted to the FDE method as
well as other DFT-based alternatives. The second part covers more accurate methods
(wavefunction-based). In each of the two parts, we discuss the numerical stability and
accuracy of the methods in the generation of diabatic states with the overarching goal
of obtaining reliable electronic couplings with a contained computational effort.

We will start with a description of FDE and its ability to generate diabats and
to compute Hamiltonian matrix elements—the FDE-ET method (ET stands for
Electron Transfer). In the subsequent section, we will present specific examples
of FDE-ET computations to provide the reader with a comprehensive view of the
performance and applicability of FDE-ET. After FDE has been treated, four addi-
tional methods to generate diabatic states are presented in order of accuracy: CDFT,
FODFT, AOM, and Pathways. In order to output a comprehensive presentation, we
also describe those methods in which wavefunctions methods can be used, in partic-
ular GMH and other adiabatic-to-diabatic diabatization methods. Finally, we provide
the reader with a “protocol” for running FDE-ET calculations with the only avail-
able implementation of the method in the Amsterdam Density Functional software
[51]. In closing, we outline our concluding remarks and our vision of what the future
holds for the field of computational chemistry applyed to electron transfer.

4.2 DFT Based Methods

4.2.1 The Frozen Density Embedding Formalism

The frozen density-embedding (FDE) formalism [52] developed by Wesolowski and
Warshel [52-54] has been applied to a plethora of chemical problems, for instance,
solvent effects on different types of spectroscopy [55-57], magnetic properties [S8—
62], excited states [55, 63-66], charge transfer states [49, 67, 68]. Computationally,
FDE is available for molecular systems in ADF [51, 69], Dalton [70, 71], Q-Chem
[72, 73], and Turbomole [74-76] packages, as well as for molecular periodic sys-
tems in CP2K [77, 78] and fully periodic systems (although in different flavors) in
CASTEP [79, 80], Quantum Espresso [81-83], and Abinit [84, 85].

FDE prescribes that the total electron density should be expressed as the sum of
subsystem electron densities [53, 86—89], this is based on the idea that a molecular
system can be more easily approached if it is subdivided into many smaller subsys-

tems. Namely,
#of subsystems

P = Y ). (42)

I=1

As in regular DFT calculations, the electron density of each subsystem is com-
puted by solving selfconsistently a Kohn—Sham (KS) like equation per subsystem.
These KS like equations read as:
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2
TV + k() + 0L ()] br®) = € (X)), 4.3)

where ¢;),(r), €, are the molecular orbitals and orbital energies of subsystem /. In
(4.3) we have augmented the Kohn—Sham single particle Hamiltonian by an embed-

ding potential, vi e 10 Which are encoded the interactions with the other subsystems.
In the following, vg () 18 the embedding potential acting on subsystem /:

Ny ’
] _ pj(r) ,_ Za
""””(r)_zl T s

J#I acJ
6T,lpl _6T|lp)  SE.lp]l 6E.lp]
Sp(r)  op(r) | op(r)  Sp(r)

4.4)

In the above, T, E, . and Z, are kinetic and exchange-correlation energy functionals,
and the nuclear charge, respectively, and N is the total number of subsystems con-
sidered. In practical FDE calculations, the kinetic energy is calculated in terms of
orbital free semilocal functionals. This approximation is ultimately the biggest dif-
ference between an FDE and a full KS-DFT calculation of the supersystem [90-93].
As a consequence, the embedding potential becomes inaccurate when the subsys-
tems feature a large overlap between their electron densities [83, 94, 95] (this is
because the larger the density overlap is, the larger the magnitude of the nonaddi-
tive potentials become). In FDE, the subsystem KS equations are left to converge to
selfconsistency with respect to each other. This is often achieved by employing the
so-called freeze-and-thaw procedure [69, 96] (as done in ADF and other molecular
codes) or via updating the embedding potential at every SCF cycle as done in CP2K
[78, 97] and Quantum-Espresso [81, 83, 98]. It is worth noting that FDE scales lin-
early with the number of subsystems provided that linear scaling methods for the
solution of the electrostatic problem are employed [69].

The earliest example of diabatization by FDE was given in Ref. [48]. This is
shown in Fig. 4.1, where the spin densities for a pair of guanines are calculated.
KS-DFT of the supersystem carried out with semilocal XC functionals fails in the
prediction of the spin density. This is because the self-interaction error makes the
spin density spread on both guanines against the prediction given by more accu-
rate theoretical work [35] and experimental studies [99—101]. On the contrary, FDE
localizes the charge on a guanine of choice.

The fact that FDE was able to provide subsystem-localized electronic structures
was known since its early application to systems with unpaired electrons [60-62,
102]. Later, this ability of FDE was explored for the computation of diabatic states
for electron transfer [48, 49, 67, 103] and to compute hyperfine coupling constants
[60, 61].

The question that one can raise is why FDE calculations yield charge localized
states? We provide here four reasons [49, 103].
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b) (c) ;
j | éi ’g\J
J1J ! 11
o ]
Fig. 4.1 Spin densities of a guanine-cytosine dimer radical cation, (GC);. a KS-DFT supramole-
cular calculation using PWO1 functional, b FDE calculation considering two subsystems where
the left side subsystems (blue contour) is positively charged and ¢ FDE calculation for four sub-

systems with one subsystems (blue contour) is positively charged. The nucleobases structures and
spin densities were taken from Ref. [48]

(

1. Orthogonality is not imposed between the molecular orbitals belonging to differ-
ent subsystems.

2. FDE calculations can be executed in the monomer basis set. This is known as
FDE(m) method [104].

3. FDE calculations are always initiated with a subsystem localized initial guess of
the electron density.

4. Electrons of a subsystem, remain localized also because there are repulsive walls
in the region of the surrounding (frozen) fragments.

The first reason, is important because it directly removes a bias towards delocal-
ization which results due to orthonormalization of the molecular orbitals, as already
noted by Dulak and Wesolowski [105]. The second and third reasons come together,
the lack of basis functions on the surrounding subsystems, does not allow substan-
tial charge transfer between the subsystems. As a consequence, the SCF is biased to
converge to localized electronic structures.

The fourth reason makes reference to the approximate nature of the term o) _

op(r)
% (also known as nonadditive kinetic energy potential which is part of the embed-
1

ding potential) in the region of the frozen fragments (e.g. in the region where p; with
J # I is larger than any other subsystem electron density). Approximate nonaddi-
tive kinetic energy potentials fail in canceling out the attractive potential due to the
nuclear charge in the vicinity of the nucleus of the surrounding frozen subsystems
[104, 106], and they do not reproduce the exact potential at intermediate regions
[107-109], especially in the vicinity of an atomic shell [106, 109]. In that region
they cross the exact potential and large potential walls arise. A simplified depiction
of this effect is devised in Fig. 4.2.
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Fig. 4.2 Exemplification of the embedding potential at the atomic shells of the surrounding sub-
systems. Figure from Ref. [103]

In this scenario, diabatic states can be generated with FDE by performing at least
two simulations, one featuring a hole/electron on the donor while the acceptor is
neutral and one calculation in which the charge hole/electron is on the acceptor. The
result is two charge localized states, whose, densities and Kohn—Sham orbitals are
used in a later step in order to build the diabatic Hamiltonian and overlap matrices,
needed to compute the diabatic coupling matrix element.

4.2.1.1 FDE-ET Method

FDE-ET is a methodology which computes Hamiltonian couplings from diabatic
states generated by an FDE calculation. Electron transfer reaction are usually
described in the basis of a two-state formalism [30], taking as basis set two broken-
symmetry charge-localized states. This methodology can also approach models for
the superexchange mechanism [7, 23, 110-113], where the transfer is still modelled
by a Two-dimensional basis set but the coupling includes the effect of non-resonant
bridges states. Figure 4.3, illustrates the difference between tunneling through the
vacuum and through a set of bridge states. The bridge could be comprised of one
or more molecules, a covalent bond or any other type o potential barrier as long as
its height is lower than the one when vacuum separates donor and acceptor. As it is
shown in Fig. 4.3, the higher the potential barrier the faster the coupling decays with
respect to the donor—acceptor distance.

In FDE-ET we seek a method capable of computing the Hamiltonian matrix in
the basis of charge-localized states generated with FDE. First, we have to define the
needed matrix elements. As diabatic states are not the eigenfunctions of the mole-
cular Hamiltonian, the off-diagonal elements of such Hamiltonian are not zero and
can be approximated by the following formula [114, 115] if y;, and y, are slater
determinants representing the donor and acceptor diabats:

Hp, = (WD'I:”WA) =SpuE [P(DA)(I')] . 4.5)
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Fig. 4.3 Energy dependence of a charge transfer process. The off-diagonal element (Dirac nota-
tion) will decay as the potential well that the charge has to overcome increases. Two cases: for
vacuum as a potential well we have a faster decay, and when molecules act as a bridge the transfer
will decay slower

Here H is the molecular electronic Hamiltonian, and p®4)(r) is the transition den-
sity defined as p®Y(r) = (yp| ZZ“:I 8(r, — r)|w,), with n, being the total number
of electrons in the system (i.e. the sum of the electron number of all subsystems)
and £ [p(DA)(r)] is an energy density functional. The donor—acceptor overlap matrix
elements are found by computing the following determinant:

Sy = det [SOV] | (4.6)

where SkDIA = (¢2D)|¢§A)) is the transition overlap matrix in terms of the occupied
orbitals ((i);f/)l/ A)) [114, 116]. Thus, the transition density is now written in the basis

of all occupied orbitals which make up the diabatic states y;, and y,.

occ

PP = Y @) (SPV) ). @.7)

ki

The Hamiltonian coupling is not Hp,,, but it is generally reported as the coupling
between the Lowdin orthogonalized y;, and y,. For only two states this takes the

form,
! Hpp + Han ) ) (4.8)

-1 (m,-s
2 < DA DA
1=85, 2

VDA
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Turning to the superexchange picture, the effective coupling, is a summation of
the contribution given by the interaction between D and A and the interaction of D
and A with all bridges states, namely:

VpuE) = Vpy + VI GR(E)V gy, (4.9)
——

Vbridgs

where the superscript T stands for transpose, Gz(E) is the Green’s operator, defined
as
Gy(E)=—-(Vz—ETp)7™", (4.10)

As shown in Eq. 4.9, V,, is the coupling for the donor—acceptor transfer, which in
the absence of bridge states (CT through vacuum), would be the only contribution to
Vpa(E). On the other hand, if bridge states are present, the contribution to Vj,,(E) is
given by the second addend in Eq. 4.9. Generally, E appearing above is the energy at
which the tunneling event occurs (i.e. at the crossing seam of the Marcus parabolas).
In our works [67], E was chosen to be in between E, and Ejy, and specifically to be
@. This choice is invoked by several works in the literature [30, 117-119] where
it is well known that there is a mild dependence of the coupling with the tunneling
energy [118]. However, this equation holds when there is no resonance between D,
A and the bridges states [23, 30, 120-123]. If near-degeneracies appear then the
transport regime transitions to resonant tunneling or hopping.

4.2.1.2 Distance Dependence of the Electronic Coupling

In this section, we discuss calculations of the coupling matrix element (V),,) of hole
transfer from a donor to an acceptor molecule through the vacuum. This means that
the initial state of hole transfer is the donor molecule (D), and the final state the
acceptor molecule (A), and no intermediate bridge states are considered. Any reliable
method for computing couplings should be able to reproduce high level calculations
of CT coupling in small molecular dimers. For this purpose, we initially chose 23
biologically relevant z-stacks [67], in order to analyze the distance dependence of
the coupling, separations of 3—20 A were considered, as result a total of 276 coupling
calculations were ran. Overall, our couplings show a good agreement with previous
computations (e.g. we reproduced the decay factors, f, 7-stacked dimers separated
by vacuum).

When a test set for hole transfer couplings featuring high accuracy couplings
became available [37] we could compare systematically the FDE-ET couplings with
the benchmark values [103]. Benchmark calculations were ran on a set of 15 of
m-stacked dimers. This study was rigorous, and tested the effect of the basis set size,
nonadditive kinetic energy functionals (NAKE) and exchange-correlation function-
als (XC) on the value of the computed couplings. The most important finding that
resulted from the benchmark work resided in the fact that GGA functionals coupled
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Table 4.1 Mean statistical values for the best XC-functional choices

Set MUE (MeV) MRUE (%) MAX (meV)
PBE/PW91k/TZP 15.3 7.1 49.6
PWOI/PWOIK/TZP | 15.2 7.1 49.1
B3LYP/PW9IK/TZP |18.1 7.9 58.5
MO6-2X/PW91k/TZP | 18.0 8.2 54.9

Reproduced with permission from Ref. [103]

with a medium sized basis set and the PW91k NAKE functional allow the FDE-ET
method to yield reliable electronic couplings as tested against high-level correlated
wavefunction (MRCI+Q, NEVPT?2 and SCS-CC2) methods applied to the array of
dimers. The PBE and PW91 functionals are found to be a good choice in each case
considered with a MAX error lower than 50 meV and an overall MRUE of a little over
7 % in both cases [103]. Statistically, we found that hole transfer couplings are rela-
tively insensitive to the choice of NAKE functionals, while our analysis of the basis
set dependence shows that QZ4P basis set is the most problematic, as it often biases
the FDE convergence to nonphysical states at short intersubsystem separations—a
problem already well documented in the FDE literature [ 124, 125]. Finally, Table 4.1
compares the performance of FDE-ET for different levels of theory. The results for
GGAs are in good agreement with the benchmark values, and in some cases they
showed to be superior to hybrid and meta-GGA functionals, particularly PBE and
PWO91. B3LYP also stands out as another valuable choice.

Generally, all functionals perform well in the FDE-ET coupling calculations mak-
ing FDE-ET a method that is relatively insensitive to the XC and NAKE functional
choice.

4.2.1.3 Hole Transfer in DNA Oligomers

In this section, we discuss an interesting application of FDE-ET to charge trans-
fer in biosystems.The electronic coupling for hole transfer in a completely dry B-
DNA structure of G(T)yG and G(A)yG was calculated. The structures considered
lack water molecules, metal counterions and phosphate linker groups. The latter is
because the applicability of FDE is restricted to non-covalently bound molecular
fragments. Consequently, appropriate modifications to the B-DNA structure had to
be made: we have removed the phosphate groups and capped the dangling bonds
with hydrogen atoms at 1.09 A from the bonding atom. The resulting structure of
the modified G(T),G is depicted in Fig. 4.4. The largest system considered is the
double strand with ribose groups and counts 308 atoms and 1322 electrons. In this
study, the role of the environment on the CT in DNA is elucidated and analyzed on
the basis of an all-electron computation.
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hole transfer

Fig. 4.4 The dephosphorylated G(T),G B-DNA oligomer employed in the hole transfer coupling
calculations. As the figure depicts, the hole tunnels from the bottom guanine (in balls and sticks) to
the top guanine. The tunneling wall is provided by a series of three thymines (red branch, labeled
as “bridge”). The counterstrand, C(A),C, acts as a solvating environment (in yellow, labeled as
“spectators”) and no hole is allowed to localize on it. Taken from Ref. [67]

Regarding the energetics (site energies), an uneven stabilization of the bridge
states compared to donor/acceptor states occurs in both type of oligomers, being
this effect more pronounced in the G(T),G system than in the G(A)yG system. By
inspection of the overall electrostatics of the interaction between G:C and T:A [126],
we notice that T has a strong permanent dipole pointing towards A, similarly to C:G.
Instead, A has a much weaker dipole compared to C or T and thus upon contact
of the GTG strand with the CAC strand the cytosines will stabilize much more the
holes on Gs than the adenines can stabilize the holes on Ts, hence the tunneling wall
increases from single strand to double strand.

Regarding the couplings, when the magnitude of the through space and through
bridge couplings are inspected, our calculations show that the effects of the ribose
groups and the nucleobases in the counterstrand are opposite and different in mag-
nitude depending on the oligomer size (see Table 4.2). We conclude, however, that
the effect of the counterstrand on the computed superexchange couplings completely
overpowers any effect due to the presence of the ribose groups.

4.2.2 Constrained Density Functional Theory Applied
to Electron Transfer Simulations

Alternatively to FDE-ET methodology, constrained DFT (CDFT hereafter), a DFT-
based procedure that was initially proposed by Dederichs et al. [127], and later intro-
duced by Van Voorhis and Wu [128] with the aim of applying it to charge transfer
reactions. CDFT is an effective method for calculating diabatic states for electron
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Table 4.2 Through-space and through-bridge electronic couplings and tunneling energy gaps for
single and double strand G(T),G B-DNA, including the effects of the backbone (sugars)

| Vs (meV) Virigge MeV) | Epg (V) | Epy (eV)
SINGLE STRAND NO RIBOSE
GG 78.13
GTG 0.76 12.46 0.71 0.50
G(T),G 0.01 1.13 0.79 0.66
G(T);G - 0.09 0.79 0.77
DOUBLE STRAND NO RIBOSE
GG 92.6
GTG 0.65 7.66 0.93 0.96
G(T),G 0.01 0.47 1.11 0.94
G(T);G - 0.02 0.99 1.16
SINGLE STRAND WITH RIBOSE
GG 71.38
GTG 0.18 25.01 0.43 0.37
G(T),G 0.02 1.70 0.58 0.37
G(T);G - 0.21 0.41 0.41
DOUBLE STRAND WITH RIBOSE
GG 91.07
GTG 0.02 7.35 0.62 0.87
G(T),G 0.02 0.61 0.93 0.60
G(T);G - 0.02 0.50 0.82

A-is shown for values below 0.01 meV. Reproduced with permission from Ref. [67]

transfer, it relies on the idea of seeking the ground state of a system subject to a
constraint. This can be achieved by adding to the conventional KS Lagrangian an
additional term that accounts for the constraining external potential, this reads as
[40]:

+V,

Leprrlpl = Eyg [p] + / Ve (0)p(r)dr — p [ / p(r)dr — N, / o, (r)p(r)dr — NC]

-

~-
same as regular KS—DFT

@11

where V. is the Lagrange multiplier of the constraint, @w,(r) acts as the weight func-
tion that defines the constraint, typically a population analysis based on a real-space
[25] partitioning (such as Becke pop. analysis). N, is the value of the constraint, and
at self consistency it should satisfy the following tautology:

ch/coc(r)p(r)dr 4.12)
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Having defined the constraint parameters, the energy of the system can be computed
by solving the KS equation for the constrained system:

(—%vz + / lr” (—rr)’l dr' + v, () + VCa)C(r)> BIV.IE) = &[V.1[V,]1(r)
(4.13)

where we have emphasized the functional dependence of the orbitals and orbital
energies to the CDFT Lagrange multiplier. Clearly, the integral in (4.12) is only
satisfied when an appropriate choice of V, is employed. The term v, is the exchange-
correlation potential and ¢; are the KS-orbitals. Note that p(r) =2 ), |¢p,(r)|? for
closed shell systems. Thus also the density is a functional of the CDFT Lagrange
multiplier. To our knowledge, the CDFT algorithm can be found on NWChem [129],
Q-Chem [73], CPMD [130], PSI [131], SIESTA [132], and ADF [133]. Computing
the electronic coupling on a diabatic basis can be carried out similarly to (4.5-4.8)
or using a CDFT-specific prescription [41].

An example is the long range charge transfer excited states of the zincbacte-
riochlorin-bacteriochlorin complex (ZnBC-BC), an important structure in photosyn-
thetic process in bacteria, has been calculated on the basis of CDFT procedure [41,
128]. In Fig. 4.5, the excited states at different intersubsystem distances is depicted,
where the last point of each curve represent the CT excitation energy of the linked
complex. These energies are in good agreement with previous methodologies [134],
and also demonstrates that by constraining CDFT ground state the excitations are
more accurate than TDDFT energies (1.32-1.46eV) [128].

Additionally, CDFT can generate states with partial charges [128], this is of par-
ticular importance, for example in metal-ligand CT processes, where the diabatic
states can be generated by constraining the charge on the ligand and metal center.

Recently, the CDFT implementation of CPMD was tested against high-level wave
function methods in the computation of electronic couplings for hole and excess
electron transfer [37, 135]. CDFT was shown to be on average within 5.3 % of the
benchmark calculations if 50 % HF exchange was introduced (the average deviation
goes up to 38.7 % if HF exchange is not used).

Fig. 4.5 Charge-transfer
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4.2.3 Fragment Orbital DFT

The fragment orbital DFT or FODFT is a computationally low-cost method to cal-
culate electronic couplings. This is because the wavefunctions of each diabatic state
are approximated by the fronteer orbitals of the isolated donor/acceptor fragments
[136-138]. The underlying approximations in FODFT are that (1) the interactions
between donor and acceptor have not effect on the orbital shape, (2) the coupling
component related to orbitals below the fronteer is neglected (e.g. frozen core). In
FODFT, the wavefunctions can be described by a single determinant of N — 1 spin-
orbitals ¢, where N = N, + Np, i.e. the sum of the number of electrons of the neutral
donor and acceptor. These determinants are built from the KS orbitals of the nonin-
teracting isolated donor and acceptor fragments.

D*A 1 ( 1 Np—1 ;1 N,
L i p—"— LA P ... )
VN, — T+ N)! Do AT
. 1 .
A — (¢})...¢ZD¢/§... N 1) (4.14)

VN, + N, = 1)!

The Hamiltonian used to calculate the CT matrix elements is the KS-Hamiltonian.
Namely,

Np+Ny—1
KS KS
Ha - Z ha,i
i=1
Np+N,—1
KS _ KS
HS = 3 ne (4.15)
i=1
where hf‘f are the one-particle KS-Hamiltonians for either the “a” diabat or the

“b” diabat. One feature of these Hamiltonians is that they are state dependent, thus,
they are made of the combination of orbitals of donor and acceptor species at the
given state. The transfer integral, or coupling between states, is calculated as:

H,, = (w |Hlyy)
~ (w A HS )

XM (4.16)

where N above is the fronteer orbital for D or A. Recently, Kubas et al. [37] have
shown the differences of two FODFT flavors in the calculation of the hole transfer
coupling for the HAB11 database. As we can see in Table 4.3, the implementation
including N, + N, orbitals in the KS Hamiltonian (indicated by 2N in the table)
as done in ADF [136] is more accurate than the implementation using one of the
Hamiltonians in (4.15) (which is indicated by 2N — 1 in the table).
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Table 4.3 Hj, (meV) calculated with various FODFT approaches for HAB11 dimers at inter-
molecular separation of 3.5 A

FODFT(2N-1) | FODFT(2N) | ADF(2N) FODFTB REF
Ethylene 367.7 389.2 388.4 343.7 519.2
Acetylene 316.9 345.8 345.3 212.0 460.7
Cyclopropene 418.8 443.7 439.4 367.4 536.6
Cyclobutadiene |323.3 346.9 345.6 261.6 462.7
Cyclopentadiene | 343.3 360.6 358.7 283.2 465.8
Furane 315.6 334.0 333.7 280.3 440.3
Pyrrole 328.7 347.8 347.7 286.2 456.3
Thiophene 341.2 357.8 356.1 264.8 449.0
Imidazole 310.7 328.9 328.2 277.5 411.6
Benzene 342.4 353.5 354.1 299.9 435.2
Phenol 190.5 211.3 279.5 231.4 375.0

Reproduced with permission from table XI of Kubas et al. [37]

FODFT has been successfully applied to models of CT in molecular semiconduc-
tors [139, 140] and also for modeling CT in biosystems. In the following, we provide
applications of FODFT to biological CT: such as the determination of the hole rates
on DNA hairpins linked by stilbenedicarboxamide, and the we also touch upon the
electron transfer between two cofactors in the SO enzyme.

4.2.3.1 Hole Transfer Rates on DNA Hairpins

The absolute rates were determined by using Marcus theory, in (4.1), where the
electronic coupling was calculated according to FODFT and the superexchange
regime (see Sect.4.2.1.1). Knowledge of the forward and backward rates enables
one to determine the equilibrium constant K = k,/k_, and the free energy change
—AG = —kzTIn(K). Comparable results with experiments [141] were obtained.

4.2.3.2 The Curious Case of Sulfite Oxidase

An interesting and elusive candidate for electron transfer studies is the Sulfite Oxi-
dase protein [143]. For this protein, theory predicts an electron transfer rate between
the cofactors (a heme and a molybdenum complex) about two orders of magnitude
lower than what is measured experimentally [2]. To address this issue, Beratan et.
al., using the Pathways model, suggested that the donor and the acceptor are joined
together by a flexible tether [144]. As the tether allows the two cofactors to come
sufficiently close to each other, electron transfer occurs at the rate shown by exper-
iment. A recent simulation of this mechanism was carried out so that the protein
was taken out of equilibrium and positioned in a new folded state featuring a much
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Fig. 4.6 Energy landscape for the hole transfer in Sulfite Oxidase: the spheres represent the posi-
tion of the center of mass of each fragment with respect to the electron transfer vector coordinate(the
distance between the center of mass of the HEME complex (orange sphere) and the MOCO com-
plex (pink sphere)); the size of the sphere is 1/(x?) in which x is the difference between the HOMO
energy of the fragment and the Fe (that is HOMO of Fragment—HOMO of Fe). Fe and Mo were
given a size of 1 for scale

decreased cofactor distance (about 10 A). However, recent pulsed electron paramag-
netic resonance measurements [143] indicated that the distance between the cofac-
tors is unchanged on average from the one available in the crystal structure (32
A). To approach this problem using FODFT, the crystal structure of the protein is
obtained and only the chains of the protein between the two cofactors are considered.
The chains of interest are broken into individual molecules and treated as separate
bridges.

The FODFT computations that we present here will be part of a more in-depth
study in a future publication [145]. Two ingredients are available from the simula-
tions, the site energies, and the couplings between the sites. The energies of the hole
transfer pathway for the electron transfer between the iron and the molybdenum is
presented in Fig. 4.6. With the aid of Koopman’s theorem, the HOMO energies com-
puted with FODFT are taken here as a measure of the ionization potential of each
site. The simulation was able to shed light on some very interesting aspects of the
couplings and the energy landscapes. The landscape also shows the possibility of
hopping stations-molecules that exist between the donor and acceptor and are close
to them in energy. These two aspects of the landscape alone hint the possibility of a
hole transfer occurring over the 32 A. However, proteins are very complex structures
with many variables such as size, dynamics and environment. Therefore, providing
a quantitative analysis of the kinetic constant would require incorporating unbiased
molecular dynamics and a more comprehensive structure to further characterize the
role of these hopping stations.
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4.2.4 Ultrafast Computations of the Electronic
Couplings: The AOM Method

Recently, an ultrafast method to calculate electronic couplings was developed by
Blumberger and coworkers [135]. The analytic overlap method or AOM is a use-
ful method if CT simulations need to be coupled with molecular dynamics, like in
proteins [146] or in organic semiconductors [147]. This quest requires hundreds or
maybe thousands of H,, and site energy calculations. AOM offers an interesting
alternative for such simulations. As in FODFT, AOM assumes that CT is only medi-
ated by two SOMO orbitals (fronteer orbitals, similarly to FODFT), which corre-
spond to each fragment. Then, small Slater type orbital basis for the valence states
is generated. Thus the overlap integral is evaluated as follows:

Spa = (¥plPy) = <¢IDV|¢Z> ~
atoms atoms

~ SDA = Z 2 C;ﬂ"icpﬂ,j@ﬂ,ilpﬂ,j>

ieD jeA

AOM further assumes contributions only from p-orbitals, particularly in organic
compounds with z-conjugation, the p-orbital considered is that one perpendicular to
the plane of z-conjugation.

Correlation of the overlap S, and the electronic coupling given by FODFT is
shown in Fig. 4.7 for a set of dimers and their geometries. In this picture, a satis-
factory linearity between these two parameters is witnessed, therefore reliable pro-
portionality constants can be achieved. Hy,, = CS), is used in order to obtain the
constant C that can be used to get couplings of similar compounds. The first version

Fig. 4.7 Correlation 10°
between electronic coupling
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of this method shows transferability for homo-dimers. However, transferability when
non equivalent donor and acceptor systems are considered needs to be explored. Nev-
ertheless, AOM’s speed makes it a very valuable option.

4.2.5 Note on Orthogonality

When carrying out a large number of coupling calculations, one encounters all those
low probability situations in which a method fails. In the case of FDE-ET, we probed
a large number of so-called “difficult cases”. Specifically, we faced two limitations
of the FDE-ET method. If the diabats are orthogonal, or quasi orthogonal, numerical
inaccuracies arise in the inversion of the transition overlap matrix in Eq.4.7. This is
not specific to FDE-ET, but is a problem shared by all those methods that assume the
diabatic states to be nonorthogonal [30, 115, 148—150]. When they are orthogonal,
some of the equations previously developed simply do not hold anymore. Yu et al.
have applied equations similar to Eqs. (4.5—4.8) and obtained a picture of the behav-
ior of the electronic couplings in the photosynthetic reaction center, see Fig. 4.8. If
we concentrate on the left-side panels, we notice that in some cases the electronic
coupling is proportional to the coupling, but in other cases (see lower left panel) the
coupling seems to behave somewhat erratically as a function of the diabatic overlap.
To understand this, let us consider two distinct limiting cases: (1) orthogonality by
symmetry considerations, and (2) spatial separation of the orbitals. We found that the
second case is the predominant, as the distance between donor—acceptor increases
the diabatic overlap becomes increasingly small. In the asymptotic limit [44], there
is a linear relationship between the coupling, the diabatic energy difference, and the
diabatic overlap. If the overlap is small due to case (1), the asymptotic formula is
not expected to hold. This explains the apparently contradictory results presented in
Fig.4.8.

Regarding FDE-ET, both cases can be circumvented computationally by perform-
ing a singular value decomposition of the overlap matrix and then invert only those
values which are larger than a threshold (i.e. Penrose inversion). For DNA presented
in Sect. 4.2.1.3, the default inversion threshold of 103 was appropriate in most cases
[67]. However, three systems stood out: AG, GA and TT nucleobase pairs. All the
systems above showed erratic behavior of the computed couplings for some specific
donor—acceptor distances, specifically 4.0 A for AG, 3.5 and 8.0 A for GA and 9.0
A for TT. We found that at those distances, the near singularity of the overlap matrix
due to symmetry considerations (case 1 above) was the source of the erratic behav-
ior. To circumvent these numerical issues, a threshold of 1072 was adopted in these
cases.

We thus conclude that although there is a formal relationship linking the diabatic
overlap with the value of the coupling at large donor—acceptor distances [44], gener-
ally assuming linearity in the coupling versus overlap (as mentioned in the previous
section) can lead to large errors in the magnitude of the computed couplings. In the
future, inspired by a recent work by Evangelista et al. [131], a more stable FDE-ET
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Fig. 4.8 Correlation between electronic coupling matrix element and overlap between diabatic

states for electron transfer. Taken from Ref. [148]

algorithm that invokes an orthogonalization first, and then the computation of the

couplings will be developed in our group.

4.2.6 A Fully Semiempirical Method: Pathways

Pathways [2, 50] is a semiempirical model which it is designed to reproduce electron
transfer rates between cofactors in proteins [50, 151]. In essence, Pathways includes
the contributions to the electronic tunneling from a stepwise path covering all non-
bonded interactions, as well as the bonded ones at the nearest neighbor level. Namely:
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2
|Hp,|? = A? (He,) (4.17)

i

where €; are the steps the charge need to make from donor to acceptor. For example,
a hydrogen bond is one of such steps. The above product is maximized by searching
all possible steps that contribute to the tunneling. The coupling is further split into
three kinds of interactions:

2 2 2
|HDA |2 = A2 (H ebnnd(i)> (H espaceg)) <H eH-bond(k)) (418)
i j k

Pathways can yield reliable predictions of the electronic couplings, where the CT
process in proteins are mediated by the interactions of a single or multiple configu-
rations that the protein can adopt [50]. Pathways has been successfully applied to a
number of CT processes in protein environment. For instance, the electron transfer
between the proteins cytochrome c2 (cytc2) and the photosynthetic reaction center
(RC) [152] in order to determine the protein structural dependence of this CT reac-
tion, also, to look at the impact of structural and conformational variations on the
electronic coupling between the proteins methylamine dehydrogenase and amicyanin
from Paracoccus denitrificans [153].

4.3 High-Accuracy Electronic Couplings

This section is devoted to describing those methods which are able to predict the elec-
tronic couplings accurately given a certain definition of the corresponding diabatic
states. These methods start with a mathematical definition of diabatic states (usu-
ally a definition that involves localization of the electronic structure) such that the
resulting states resemble the donor and acceptor states in the electron transfer reac-
tion. Once this is achieved, an adiabatic-to-diabatic transformation matrix is gen-
erated which can be applied to the adiabatic Hamiltonian to result in the diabatic
Hamiltonian featuring the sought electronic couplings in the off-diagonal elements.
Usually, an accurate wave function based level of theory is used for computing the
adiabatic states and Hamiltonian [29]. Examples of such techniques are, the Gener-
alized Mulliken—Hush method developed by Newton and Cave [29, 30, 154], Boys
and Edmiston-Ruedenberg localizations of Subotnik et al. [38, 154, 155], and frag-
ment charge difference proposed by Voityuk and Rosch [42, 156]. Their utility lies
on the possibility of a very accurate computation of the corresponding adiabatic
states, as was done for the hole transfer on z-stack DNA nucleobases at a CASPT2
and CASSCEF level of theory accomplished by Voityuk et al. [35]. That computation
has served as the benchmark reference for many recently developed methodologies
[49, 99, 137, 157].
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Taking this as a motivation, let us briefly introduce each of the above methods,
followed by some examples in which these methods were employed.

4.3.1 GMH Method

In the two-state model, the charge localized diabatic states are related with the adi-
abatic states by the formula:

1
Ey = 5 <ED+EAi\/(ED—EA)2+4|HDA|2> (4.19)

where Ej, 4 are the energies of the donor and acceptor states respectively, £, and E,
are the energies of the adiabatic states, this means the energy of the ground state (E,)
and the first excited state (E,). E, and E, can be obtained with any quantum chem-
istry method, however when highly accurate wavefunctions methods are employed
also the resulting couplings will be of high quality. We now distinguish two cases: a
symmetric case, for instance homo-dimers, and the general asymmetric case. In the
symmetric case, we have that E;, = E,, and thus the electronic coupling does not
depend on the diabatization procedure. Namely,

2|H,,| = AE,, (4.20)

AE,, is the difference on energy between the adiabatic ground state £, and the first
adiabatic excited state E,.

For asymmetric cases the GMH method prescribes that the proper diabatic states
are those that diagonalize the adiabatic dipole moment matrix. In the two-state prob-
lem this is calculated as follows:

lu, | AE
|Hp,| = e , 4.21)

\/(#11 — )+ 4/1%2

where p; = (¥;|ppr|'¥;), with pg; being the dipole moment in the direction of the
electron transfer. The power of GMH lies on the way one calculates the adibatic
states. As we have seen through all sections is that the authors benchmark their own
method by calculating proper diabatic couplings by using ab initio methods as mul-
tireference CI [37] and CASPT2 [35].

As an example of this method, let us discuss the very first example given by Cave
and Newton on their paper [34]. The system Zn,H,O™, the transfer of a hole is done
over the Zn atoms. However, the water molecule, which is located at a fixed distance
opposite to the Zn distance, causes an energy splitting of the Zn orbitals. Thus the
electronic coupling is determined for the following diabatic states:
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Zn(1S) + Zn™(*S) = Zn(CS) + Zn(1S) s — 5’ (4.22)
Zn('S) + Zn*(*S) —» Zn*CS) + Zn("S) p — p’ (4.23)
Zn('S) + Zn*(2S) = Zn*(S) + Zn('S) s — p’ (4.24)
Zn('S) + Zn(*S) = Zn*S) + Zn(S) p — &' (4.25)

where the transition are between the orbitals of the diabatic states (prime correspond
to the acceptor state) (s-s’), (p-p’), (s-p’) and (p-s’). CASSCF wavefunction method
was used in all calculations. In Table 4.4 we collect the values for the different cou-
plings and fs. There the analysis of the distance dependence of the coupling is carried
out for several R, distances. Note that for an infinite R, distance, the couplings
for (s-p’) and (p-s’) are equal.

We refer the reader to other publications which have evaluated the GMH method
in detail in regards to its suitability in modeling two-state as well as multi-state prob-
lems for both excitation energy transfer and electron transfer processes [39, 156,
158].

Table 4.4 (a) Electronic coupling elements versus distance (r,,y,) for Zn,H,0" with r,,, =
2.05 A. (b) Electronic coupling elements versus distance (ry,,) for Zn,H,0" with r,,, = 3.05 A.

Results are in milihartree, the § values were calculated on the range of 5-9 A. Taken from Ref.
[29]

"z (A) | Ha [ Hyy | Hy | Hye
(a)

4.0 28.3 23.6 50.4 42.7
5.0 10.5 13.0 51.7 223
6.0 3.73 7.55 41.1 10.1
7.0 1.09 4.23 21.8 4.08
8.0 0.340 2.57 13.8 1.62
9.0 0.0958 1.44 7.36 0.611
p 2.28 1.11 0.81 1.71
(b

4.0 29.7 344 59.3 41.7
5.0 7.95 14.7 38.5 22.1
6.0 2.34 7.83 19.1 9.44
7.0 0.698 4.25 9.56 3.84
8.0 0.203 2.27 4.78 1.51
9.0 0.0558 1.16 2.32 0.574
p 2.49 1.32 1.32 1.74
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4.3.2 Other Adiabatic-to-Diabatic Transformation Methods

Inspired by GMH, the electronic coupling can generally be obtained by rotating the
corresponding adiabtic states into a set of diabatic states. Thus, each diabatic state
can be expressed as a linear combination of rotated adiabatic states as [154]:

N\Ime.\
)= @)U, (4.26)

j=1

Under specific assumptions of the nature of the system-bath interaction (the fol-
lowing is valid for the condensed phase), the coupling can be estimated by con-
structing diabatic states based on Boys, Edminton—Ruedenberg (ER) or von Niessen—
Edminton—Ruedenberg (VNER) localizations. In Boys diabatization, the bath exerts
a linear electrostatic potential on the system, thus the rotation matrix can be found
by minimizing the following localizing function [24, 39]:

N,

states

Foons () = foop @) = X = UG lugr|Z) = (Ejlugr 1 EYP. 427

iy=1

Boys localization was shown to be equivalent to GMH for CT reactions [39].

ER diabatization, dictates that the bath exerts an electrostatic potential that
responds linearly to the field generated by the molecular system (sum of donor and
acceptor) system:

(Eilp(rp)|E) = (&;1p(r))IZ;)
Jer(U) = fgr(E) = Z/dn/ = T (428)

Ir) — 1y

In VNER diabatization, the bath exerts an electrostatic potential that responds
linearly to the field of the total system, but the interaction potential is a Dirac delta
function:

JSoner(U) = fyner(B) = /dr(( PAIIE) — (ElAI)IE)D). (4.29)

Just like GMH, once diabats are generated, the electronic coupling readily arises
from the off-diagonal element of the electronic Hamiltonian and is equal to:

—_ [y—
Hp, = (Ep|H"|E,) (4.30)
For a series of bridge mediated excitation energy transfer experiments, where the

donor is benzaldehyde and the acceptor naphthalene [159, 160], the transfer rates and
couplings were calculated using Boys diabatization. In Fig. 4.9 it is shown how well
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(a) (b)

(d)

Fig. 4.9 Attachment/detachment plots for the occupiedvirtual separated Boys localized diabatic
excited triplet states near the avoided crossing. The molecule here is donor—CH,—acceptor. Taken
from Ref. [154]. a Detachment density for the first localized diabet. b Attachment density for the
first localized diabet. ¢ Detachment density for the second localized diabet. d Attachment density
for the second localized diabet

the orbitals are localized on either donor or acceptor edges in the various diabatic
states. Although this computation does not concern a CT process, we want to stress
the ability of this localization procedures in generating true diabatic states.

4.3.3 Fragment Charge Difference

Similarly to the GMH method, the fragment charge difference (FCD) method yields
a donor to acceptor coupling [42]:

|Ag,|AE
|Hp,| = 212 4.31)

\/(AQH —Agp)* + 4A¢]%2

where Ag, and Ag, are the donor—acceptor charges differences in the respective
adiabatic states y; and y,. Aq,, is the off diagonal term and is defined in a general
form as Aqij = qij(D) - q,-j(A), i.e. the difference of the populations of the transition
charges.

Finally, when donor and acceptor are in resonance, i.e. when E;, = E, or Ag =0,
Hp, =5 (E, - E,).

FCD method and its simplfied from (SFCD) are compared against GMH in the
calculation of Hp, for two Watson—Crick pairs GC and AT. In Table 4.5, the cou-
plings calculated from FCD are in good agreement with GMH, the SCFD is also
quite reasonable. Because the energy gap between donor and acceptor are large, the
charge is completely localized on purines (lowest IP). However, if an electric field
F (water molecule for instance) is tuned on near the pairs, the energy gap is then
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Table 4.5 Hole coupling matrix element H,,, of nucleobases within a Watson—Crick pairs

GMH SFCD FCD

Basis set E, - E, E,—E, Hp, Hp, Hp,
GC | 6-31G* 2.163 2.159 0.0569 0.0663 0.0547
6-3114++G** |2.092 2.086 0.0679 0.0760 0.0705
AT | 6-31G* 1.505 1.502 0.0421 0.0524 0.0363
6-311++G** | 1.462 1.459 0.0474 0.0528 0.0425

Energies in eV, dipole moment matrix elements in Debye, charges in a.u. Taken from Ref. [42]

reduced and the coupling strength is enhanced. Overall, FCD is another good alter-
native to compute accurate couplings. However, the computation of the charges and
the transition charges is dependent on the specific population analysis chosen. To our
knowledge, only the Mulliken population analysis was used so far (i.e. the transition
charges are evaluated on the basis of the MO coefficients over the atomic orbital
basis set).

4.4 Practical Aspects: A Protocol for Running FDE-ET
Calculations

In order to obtain the electronic coupling for a CT reaction using FDE-ET, three dif-
ferent single point (SP) calculations have to be performed. FDE-ET is available in
ADF [51]. In Figs. 4.10, 4.11 and 4.12, the input files corresponding to the FDE-ET
methodology are described. First, a single point calculation for each isolated frag-
ment present in the system is carried out. This gives the initial density and energy
of each subsystem without any interaction between them. It is important to save the
check point files (TAPE files in ADF), because they contain all fragment informa-
tion needed in the subsequent calculations. Following all SP jobs for each isolated
fragment, an FDE calculation is performed by taking into the account the whole
supramolecular structure. So that, we create a diabatic state for each of the present
subsystems. This is done by placing a charge different from neutrality in each subsys-
tem, see Fig.4.11. In this manner, two different directories are made: one in which
an FDE calculation is carried out with subsystem 1 positively charged and one where
subsystem 2 has the positive charge. In both cases, the SCF converges on the basis of
subsystem DFT, thus, a series of three freeze-and-thaw procedure are done for each
subsystem in each diabat.

Once both isolated and embedded densities are obtained from the FDE calcula-
tions, an electrontransfer job is run whose purpose is to compute (4.5-4.8). As in the
FDE calculation, the information about the fragment is of paramount importance in
this electrontransfer job. In Fig. 4.12, the input file that calculates the diabatic ener-
gies and the electronic coupling between them is showed, in pink we can see that
the check point files (t21.emb.rho* in the figure) corresponding to the embedded
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$ADFBIN/adf << eor Bash opfions
Title : Fragment no. 1; (isolated)  Job Title

EPRINT prints the variables that you want in the outputfile
SFO NOEIG NOOVL NOORBPOP
END

NOPRINT BAS FUNCTIONS

UNITS  units to work with
length angstrom

angle degree

END

SYMMETRY NOSYM NO groups of symmetry

XC XC functional
GGA PBE
END

GEOMETRY lype of calculation: Single Point
SP
END

SCF SCF cycles
iterations 90
END

BASIS basis sets to be use
Type TZP

@re M ne

END

ATOMS Cartesian coordinates
1C 0.000000 0.000000 0.000000
2C 1.332000 0.000000 0.000000
3 H -0.574301 0.000000 -0.928785
4 H -0.574301 0.000000 0.928785
5 H 1.906301 0.000000 0.928785
6 H 1.906301 0.000000 -0.928785

END

END INPUT
eor

Bash options
mv TAPE21 t21.iso.rhol

Fig. 4.10 Single point (SP) calculation input file for an isolated ethylene
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SADFBIN/adf << eor Bash options .
Title : Fragment no. 1; (polarized) Job Title
EPRINT

SFO NOEIG NOOVL NOORBPOP

END

NOPRINT BAS FUNCTIONS

UNITS units to work with

length angstrom
angle degree
END

SYMMETRY NOSYM  NO groups of symmetry

Xc XC functional
GGA PBE
END

ceomery Type of calculation: Single Point
SP

END

sce SCF cycles
iterations 90
END

charer 11Charge and #of unpair electrons
UNRESTRICTED

FRAGMENTS  Subsystems involve in the calculation
rhol f21.iso.rhol

tho2 t21.iso.tho2 type=fde Frozen subsystem
END

aoms  Cartesian coordinates
1C 0.000000 0.000000 0.000000 f=rhol
2C 1.332000 0.000000 0.000000 f=rhol
3H -0.574301 0.000000 -0.928785 f=rhol
4H -0.574301 0.000000 0.928785 f=rhol

5H 1.906301  0.000000 0.928785 f=rhol

6H 1906301  0.000000 -0.928785 f=rhol
7C 0.000000  3.50000  0.0000000 f=rho2
8C 1.332000  3.50000  0.0000000 f=rho2

9H -0.574301  3.500000 0.928785 f=rho2

10H -0.574301  3.50000 -0.928785 f=rho2

1TH 1.906301  3.50000 -0.928785 f=rho2

12H 1906301  3.50000 0.928785 f=rho2
END

ALLOW PARTIALSUPERFRAGS

FDE FDE options

PWOTk
XCNADD PBE
END

END INPUT
eor

Bash options
mv TAPE21 t21.emb.rhol

Fig.4.11 Single point FDE calculation input file for ethylene dimer. Both fragments rhol and rho2
come from two SP calculations for each isolated fragment
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#1/bin/bash BOSh OpTiOhS
fetch="#fetch frag??.t21"
fetch2="scp ../FDE/diabatA/t21.iso.rho? ."

cp ../FDE/diabatA/t21.emb.rhol fragATl.t21 i+i H
cp ../FDE/diabatA/t21.emb.rho2 fragA2.121 Densrhes Ond energles

cp ../FDE/diabatB/t21.emb.rho1 fragB1.121 i
cp ../FDE/diabatB/t21.emb.rho2 fragB2.t21 Of bOTh DIObOTS

Sfetch

Sfetch2

SADFBIN/adf << eor

Title electrontransfer run JOb Tlﬂe

EPRINT
SFO NOEIG NOOVL NOORBPOP
END

NOPRINT BAS FUNCTIONS

UNITS units to work with

length angstrom
angle degree
END

SYMMETRY NOSYM no groups of symmetry

C .
“Cearse XC functional
END

SeometrRY Type of calculation: Single Point
END

SCF SCF cycles

iterations O
END

INTEGRATION 6.0 6.0 Numerical infegration
oneeecs  Charge and #of unpair electrons

FRAGMENTS Subsystems involve in the calculation

rhol t21.iso.rhol
rho2 t21.iso.rho2
END

ATOMS Cartesian coordinates
0.000000 0.000000 0.000000 f=rho1l
1.332000 0.000000 0.000000 f=rhol
-0.574301 0.000000 -0.928785 f=rhol
-0.574301 0.000000 0.928785 f=rhol
1.206301 0.000000 0.928785 f=rhol
1.206301 0.000000 -0.928785 f=rhol
0.000000 3.500000 0.000000 f=rho2
1.332000 3.500000 0.000000 f=rho2
-0.574301 3.500000 0.928785 f=rho2

VRN WN —
INOIIIINON

10H -0.574301 3.500000 -0.928785 f=rho2

11 H 1.206301 3.500000 -0.928785 f=rho2

12 H 1.906301 3.500000 0.928785 f=rho2
END

ELECTRONTRANSFER  ET options
numfrag 2

InvThr 1.0e-3

END

zwvrr - Density fitting

END

END INPUT
eor

Fig. 4.12 Single point ET calculation input file for ethylene dimer. In pink there some bash-shell
options in order to copy the information for each diabatic state calculated before with FDE
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fragments in each diabat is copied directly to the ET directory, where the electron-
transfer calculation is done. These files are renamed as fragA*.t21 for those ones
from the diabat A (positive charge on the donor fragment) and fragB*.t21 for those
that come from diabat B (positive charge on the acceptor fragment). It is worth men-
tioning that special care has to be taken in the management of the file names. As it
is illustrated in Fig.4.12, the fragments are numerated as 1 and 2, that means that
the charge, departs from fragA1 while fragA?2 is neutral and arrive to fragB2 while
fragB1 becomes neutral. This is very important when the system is comprised of
more than two fragments, and the charge is moving throughout all of them.

4.5 Conclusions and Future Directions

To conclude, we have presented our (fairly subjective) view of what tools are avail-
able nowadays to compute electronic couplings for charge transfer processes. We
have surveyed in detail the FDE-ET method simply because we are among the devel-
opers of this method. Other methods based on DFT, and those that are best suited
for being coupled with wavefunction based methods have also been discussed. The
discussion also touches on the strengths and limitations of the various methods.

When discussing the practical aspect of a coupling calculation, one must expose
completely the methodology. We have done so for the FDE-ET method, and provided
the reader with a step-by-step protocol on how to run such computations. This is
important also for outsiders (such as experimentalists) as they can appreciate the
kind of effort the theoreticians have to put in computing quantities relevant for the
interpretation of the experiments.

We apologize in advance to those authors who have developed all those methods
that we have omitted from this presentation. Admittedly, we provide here a subjective
view of the field.
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Chapter 5
Methods for Computing Ro-vibrational
Energy Levels

Tucker Carrington

Abstract In this article I review methods for computing ro-vibrational energy
levels of small polyatomic molecules. The principal impediment to the calculation
of energy levels is the size of the required basis set. If one uses a product basis the
Hamiltonian matrix for a four-atom molecule is too large to store in core memory.
Iterative methods enable one to use a product basis to compute energy levels (and
spectra) without storing a Hamiltonian matrix. Despite the advantages of iterative
methods it is not possible, using product basis functions, to calculate ro-vibrational
spectra of molecules with more than four atoms. A recent method combining con-
tracted basis functions and the Lanczos algorithm is described.

5.1 Introduction

Most methods for solving the Schroedinger equation represent wavefunctions as lin-
ear combinations of basis functions and solve a matrix eigenvalue problem. In this
article, I shall focus on solving the Schroedinger equation describing the motion of
nuclei on a potential energy surface (generated using the Born-Oppenheimer approx-
imation). For a molecule with more than four atoms, computing ro-vibrational energy
levels requires using a huge number of basis functions. It is critical to devise theo-
retical/computational methods to either reduce the size of the basis and/or cope with
large matrices. It is straightforward to use simple product basis function and exploit
the structure of the product basis set to calculate the energy levels of interest. This
can be done using the Lanczos algorithm and evaluating matrix-vector products by
doing sums sequentially. Another option is to use more complicated basis functions
that account of coupling and therefore reduce the size of the basis. These ideas can
be used together.

To use any basis set method one must first determine the Hamiltonian opera-
tor. If all vibrations are of small amplitude it is sufficient to use normal coordinates
(to describe the shape of the molecule), Eckart axes (to describe its orientation) and
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perturbation theory (to calculate energy levels) [1]. Normal coordinates are,however,
not the best coordinates if vibrations are of large amplitude. To compute spectra of
molecules for which large amplitude motion is important it is best to choose geo-
metrically defined curvilinear coordinates to describe the shape of the molecule,
derive a kinetic energy operator (KEO) in terms of the curvilinear coordinates, and
calculate transition energies and intensities from eigenvalues and eigenvectors of a
matrix that represents the Hamiltonian operator in a basis [2—7]. Making a potential
energy surface (PES) is also a difficult problem. To do this one must calculate elec-
tronic energies at a large number of points, and either fit a functional form to them
or employ an interpolation scheme. Methods for the calculation of energy levels and
wavefunctions have evolved with the ability of quantum chemists to calculate reason-
ably accurate potential energy surfaces and the ability of experimentalists to measure
highly resolved ro-vibrational spectra of small polyatomic molecules. Although most
methods for computing energy levels do require a potential, in this article I focus on
KEOs and the computation of the energy levels.

5.2 Deriving the Kinetic Energy Operator

To compute energy levels of a semi-rigid molecule one frequently uses a KEO in
rectilinear normal coordinates. A general (i.e. for a molecule with N atoms) normal
coordinate KEO, for a molecule with N atoms, has been known for many years [8].
The Watson KEO (atomic units are used in this article) is

P 1 v A A 1 ? 1
KW:zaEﬁ("a—”w)#aﬂ (Jﬂ_”ﬂ)_E;anz _ggﬂaa’ (51)
where
Hop = (I,_l)aﬂ ; I,aﬁ = Ia/) + 2 C,fmleanQ, 5.2)
k,m

and where I, ; is the inertia tensor and ¢ are Coriolis parameters defined for exam-
ple in Ref. [8]. The vibrational angular momentum terms, =, are given by

0
7, ==Y 00,2 (5.3)
sz kl kan

Many programs for computing energy levels use normal coordinates [9-14]. An
important disadvantage of the Watson normal coordinate KEO is its complexity.
The vibrational KEO is simple, only if one discards all the zz cross terms. If the
zr cross terms are retained, the KEO is complicated because g depends on all the
coordinates. If the mass of the molecule is large the z’ ux terms are, in general, small.
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If motions of large amplitude have an important effect on the spectrum, it is best
not to use normal coordinates, but instead to use geometrically defined internal coor-
dinates describing the shape of the molecule. Using the polar coordinates associated
with any set of N — 1 vectors that specifies the shape and orientation of the mole-
cule, a simple and general KEO can be derived. Chapuisat and Iung [15] were the
first to adopt this approach, which was also used recently in Refs. [16-22]. The KEO
is simpler if one uses “orthogonal” vectors. “Orthogonal” in this context means that
the mass-weighted vectors are related by an orthogonal transformation to the mass-
weighted nuclear position vectors.

Having defined coordinates, a KEO can be derived by using the chain rule. Sut-
cliffe and Tennyson [24-28] and Handy [29] used the chain rule. Mladenovic [21,
22] has also implemented this approach. Written in terms of angular momenta oper-
ators for N — 1 vectors which specify the shape and orientation of a molecule in the
center of mass frame, the ro-vibrational KEO is compact and general. One begins
with the KEO for N nuclei in space-fixed Cartesian coordinates,

. a1 (e & &
AR S A 5.4
NEram\ox Tor oz ©4
1
2

where i is a nuclear label and M, a nuclear mass. For T one then transforms: (i) to
mass-weighted coordinates { )_(i = Ml,l/ 2Xi}; (i1) to coordinates {Pa} linearly related
to {X;} by an N X N orthonormal transformation; and (iii) to mass-unweighted coor-

dinates {P, = y, 1/ 21_’0, }. The third step introduces arbitrary masses {4, }:

IS 1/
Ty = —52— <ﬁ> (5.5)

a=0 Ha

Applying the same transformation to 7, and 7, (introducing coordinates {Q,}
and {R,}), one obtains N vectors {r,} (with space-fixed Cartesian components
(P, Q4. R,)) that are linear combinations of the space-fixed Cartesian nuclear posi-
tion vectors with coefficients that are elements of a matrix

J =~ '7uM'/? (5.6)

where M and u are diagonal matrices of masses, and U is orthonormal [20]. ry_; is
often chosen as the position of the nuclear centre of mass. Obvious coordinates for
describing the shape and orientation of the molecule are: the lengths of the remaining
N — 1 vectors ry, rq,...,Fy_p; N —2 polar angles, 0, (« =1--- N — 2) between r
and r,; N — 3 angles ¢; (f =2--- N —2) between the plane that contains r, and
ry and the planes that contain r, and r, ; and three Euler angles that specify the
orientation of the molecule-fixed axis system with respect to the space-fixed axes.
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The molecule-fixed z axis is parallel to r,,; the molecule-fixed y axis is along ry X ry.
The KEO in these coordinates is given in many papers. [18, 30, 31]. One convenient

form [32] is,
T=T,+T,+T,,
with
Ty = Ty giag T Toroff -
and

1
k=0 2Mk 0r§

1 Jd 0
sin 6, 001

Tbr Jdiag — [BO(rO) +B (rl)] l
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a

L

0
=t~ cot6,(J.—L,). (5.16)

and [, lky, liss li are the usual angular momentum operators [33]. a1+ and aj are rais-
ing and lowering operators [32]. This KEO is associated with the volume element
sin@,sin@, -+ ,sinOy_, dr, dr -+ dry_,d0, --- dOy_,d¢p, --- dpy_,. It is valid for any
choice of the orthogonal vectors. Several four-atom choices are given explicitly in
Ref. 20. There are momentum cross terms between angles, but none between angles
and lengths. This general “polyspherical” KEO is compact only if it is written in
terms of angular momentum operators.

Although compact and general the utility of this KEO is sometimes limited by
coupling. Coupling can be reduced by making a judicious choice of the z-axis which
is used to define the 6 and ¢ coordinates. It is best to put the z axis along the vector for
which B;(r;) = 1/(2 Mirl.z), where y; and r; are the mass for and the length of the vector
I; in some representative reference configuration, is the smallest. A disadvantage of
the above KEO is its lack of flexibility: one must place the molecule-fixed z axis along
one of the r; vectors. If r;(j = 2, ..., N — 2) are orthogonal to r;, and r, a general and
flexible molecule-fixed KEO can be derived, even if r, and r; are themselves not
orthogonal, by attaching the molecule-fixed axis system to the plane spanned by r,
and r; . This is explained in Ref. [34].

It is not necessary to have an equation for the KEO. One must only be able to
calculate matrix elements of the KEO which can be done (with quadrature) as long as
it is possible to evaluate (coordinate dependent) coefficients of differential operators
in the KEO at the quadrature points. This numerical approach is very useful. It has a
long history [35-39], but its utility has been greatly enhanced by the TNUM program
of Lauvergnant [40]. One way to implement a numerical approach is to determine

ox,; . . .

%Q“, where x,; are Cartesian coordinates in a molecule-fixed frame and Q, are the
k

internal coordinates in terms of which one wishes the KEO. To determine at points

coefficients of differential operators in the KEO, one needs to invert the matrix whose

ox,; . o .

elements are % Another numerical approach uses finite difference derivatives to
k

directly compute %

0Xy;

5.3 Basis Functions

5.3.1 Vibrational Basis Functions

5.3.1.1 Product Basis Functions

A product basis is a basis each of whose functions is a product of functions of a
single coordinate. Often, the single coordinate functions are labelled with one index
and the basis is a direct product basis, may be written,
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Qi iy i = D1, (90PL(92) - b (), (5.17)

If the Hamiltonian is a sum of products (SOP), i.e.,

N

s f
EDN | LA (5.18)
=1 k=

1

~

and a direct product basis set is used then matrix elements of a term can be written
as products of matrix elements of the factors. As a rule of thumb one needs about ten
basis functions per degree of freedom and hence about 10/ product basis functions
to calculate vibrational energy levels and wavefunctions of a molecule with f vibra-
tional degrees of freedom. For a triatomic molecule the product basis Hamiltonian
matrix is only about 1000 x 1000, but for a four-atom molecule the product-basis
Hamiltonian matrix is about 1000000 x 1000000. Storing this matrix in the main
memory of a computer would require about 8000 GB.

5.3.1.2 Contracted Basis Functions

Whenever coupling is important the number of product basis functions required to
converge even a small number of energy levels of a molecule with four or more
atoms large. Contracted basis sets are smaller. They are effective tools for com-
puting vibrational energy levels [41, 42] and are usually obtained by diagonaliz-
ing reduced-dimension Hamiltonian matrices. There are two popular ways to define
effective reduced-dimension Hamiltonian matrices: 1) one diagonalizes blocks of
the full Hamiltonian matrix in a product basis; 2) one diagonalizes matrices repre-
senting the Hamiltonian with one or more coordinates fixed. The first route yields
nondirect product basis functions [42—49]. The second route yields basis functions
that are direct products of functions of different coordinates or groups of coordinates
[41, 50]. A triatomic example will make this clear. A type 1 contraction scheme is
obtained by diagonalizing (stretch) blocks < a(0)|H (0, r,ry)|a(0) > to get eigen-
functions ¢y (ry, r,) where a(0) is a discrete variable representation (DVR) [51] bend
function, A (0, r,ry) is the full Hamiltonian operator, and 6, r|, r, are the bend and
stretch coordinates. The contracted basis functions are a(6)¢%(r, r,). A type 2 con-
traction scheme is obtained by making products of eigenfunctions of H(8,, r,, r,),
denoted y(r,, r,) and eigenfunctions of H(#, rf s rg), denoted y(0). The contracted
basis functions are y(ry,r,) x(0). r{, r;, and 6, are specific values of ry,r,, and 6.
Equilibrium values are often a good choice. Regardless of the route one takes, only
a small fraction of the eigenvectors of the reduced-dimension Hamiltonian matri-
ces are retained. These methods are sometimes called diagonalization-truncation-
recoupling methods [51, 52].

The type 1 approach has been extensively used by Bacic, Bowman, Light,
Tennyson and their coworkers [42, 43, 45, 46, 51, 52]. For 6D calculations, they
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have been used by Luckhaus [49] and Mladenovi¢ [47, 48]. The type 2 approach has
been used to compute rovibrational energy levels of four-atom molecules, e.g. C,H,
[53], H,O, [54], NH; (vibration only) [55] and was favoured by Carter and Handy
[41, 50].

5.3.2 Ro-vibrational Basis Functions

5.3.2.1 Product Basis Functions

When, as explained in Sect. 5.2, the molecule-fixed frame is attached to two vectors,
the ro-vibrational basis functions for a molecule with 5 atoms are

| (my)ymylymy; JKM) = €] (8)Y)" (05, )Y, (65, 63)Dy, (@, B, 7)" . (5.19)

with the constraint K = m, + m, + m. This constraint removes the 1/ sin 6, singu-
2t
8r2

larity in the KEO. In this equation, D/ (a, f,7) =
ized Wigner function.

[} .
D’mk(a, f,7) is a normal-

5.3.2.2 Contracted Basis Functions

The size of the basis required to achieve converged energy levels can be significantly
reduced by contracting. Contracted bases for the J > 0 problem have been used for
years. Tennyson and Sutcliffe’s two-step method is similar to a type 1 vibrational
contraction: for each K (quantum number for the molecule-fixed (MF) z compo-
nent of the angular momentum) eigenfunctions of a Hamiltonian depending only on
vibrational coordinates are computed [56]. For triatomic molecules this works well.
This sort of idea was used in 2004, with MF axes (vector-z frame) attached to two
Radau vectors, to compute accurate J = 1 energy levels of methane [57]. Another
possible contracted ro-vibrational basis is composed of products of vibrational wave-
functions, |v) and Wigner functions, |[JKM) [58, 59]. As is the case for the type 2
contracted vibrational functions used for the J = 0 problem, [60] the |v) and |JKM)
factors do not have shared labels. That is, the full-dimensional basis is a direct prod-
uct and not an indirect product basis. When the |v) factors of the |v) |JKM) basis
are also obtained from a basis of products of contracted bend |b) and stretch |s)
functions, one is using nested contractions.

The meaning of the |v) |[JKM) functions is different for different choices of the
molecule-fixed (MF) frame and the size of the required basis depends on the defin-
ition of the MF frame. For many molecules an Eckart frame, designed to minimize
Coriolis coupling close to a reference configuration, is a good choice. When normal
coordinates are used it is easy to use an Eckart frame [1, 61], however, the Eckart
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KEO in internal coordinates is very complicated. Eckart KEOs have been derived for
triatomic molecules, but never employed to compute spectra [62—65]. This problem
is resolved by computing G matrix elements numerically [35-39].

5.4 Eigensolvers

5.4.1 Direct Methods

Eigenvalues and eigenvectors of matrices not larger than about 50000 x 50000 can be
easily computed using a standard implementation of Householder’s algorithm [66].
This requires storing the matrix, i.e., N? numbers, where N is the size of the matrix
and the cost of the calculation scales as N3. These disadvantages of Householder’s
algorithm are debilitating if one wishes to calculate ro-vibrational energy levels of a
triatomic molecule or vibrational energy levels of a molecule with more than three
atoms.

5.4.2 Iterative Methods

Iterative methods are often used for calculating spectra [67—80]. Their most obvious
advantage is that they require only the computation of matrix-vector products and
therefore can be used without modifying or storing the matrix [81]. It is now widely
recognized that Hamiltonian matrix-vector products can be computed without stor-
ing the Hamiltonian matrix and without even calculating its matrix elements [71, 82,
83]. The Lanczos algorithm is one popular iterative methods used to calculate spec-
tra [81, 90]. It generates an M X M tridiagonal matrix 7, recursively by evaluating
M matrix-vector products. When M is large enough, among the eigenvalues of T),
are eigenvalues of the original matrix. Refined related algorithm, designed to accel-
erate the convergence of selected eigenvalues, exist [91-93]. These methods require
considerably more storage than the straightforward Lanczos method of Cullum and
Willoughby (C&W). It is simple to use the C&W Lanczos method to calculate [90]
eigenvalues. Computing eigenvectors is harder. One must either re-calculate or store
the Lanczos vectors. The C&W Lanczos method is simpler to implement and effi-
cient [94].

5.5 Using Iterative Methods with a Product Basis Set

A product basis has structure that can be exploited to reduce the cost of evaluating
matrix-vector products so that their cost scales as n/*!, where n is a representative
number of basis functions for a single degree of freedom, and f is the number of
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degrees of freedom. If H is factorizable (KEOs are usually factorizable and potentials
are sometimes factorizable) then it has the form

;
H= i [T . (5.20)

=1 k=1

and a matrix-vector product Hu = v’ is efficiently evaluated by doing sums sequen-
tially,

ZZh(") DN R Dy = (5.21)
A - 112 4 1;,1/ Lpslpse-noly sy z; :

=1 i i

where h( l) is an element of the 7 X n matrix representation of the factor /*/(g,)

[71, 82, 83] There are several established methods for making PESs with the sum-
of-products form of Eq. (5.20) [84-89].

Perhaps surprisingly, even if the potential is not factorizable it is still possible to
do matrix-vector products at a cost that scales as #/*!, if a direct product quadrature
grid is used. For example, the quadrature approximation for the integral

Vn’m’,nm :/dqldCIan’(ql)gm’(qZ)V(CIl’q2)f;z(ql)gm(q2) (522)

ZZ\/T O ()8 (@)

a p w((gy1)y) W((qz)ﬁ) n \41)a)&m \\42)p

X V((@))as @) (@) ))\/Ta 0 .
41)a>\92) 1 (\G1)a)8m(\G2)p w((g@)a) | w((@2)p) .

where (q,), and (g,), are quadrature points and @, and w; are the corresponding
quadrature weights and w(q,;) and w(g,) are the corresponding weight functions.
Re-writing this equation by defining,

(T, = £(@))1 | (( -~ (5.24)
q:
(7)1 = (@) | s (525)
I\ w((92)p)

Vit & 2 2T, (21T, V(@) ()T, (4'T),,, . (5.26)
a

is

one obtains
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A matrix-vector product can then be written,

D), Y RITY,, V@) @) DT, Y T, =,
a p m n

(5.27)
and the n/*! scaling is evident.

The n/*! scaling is due to the structure of the product basis. It is not a conse-
quence of the sparsity of the Hamiltonian matrix or the sparsity of the h®*) matrices
(although it is sometimes advantageous to choose the single coordinate functions
so that the h® matrices are sparse to further accelerate the matrix-vector product
[95]). Evaluating matrix-vector products by doing the sums sequentially means that
one never calculates matrix elements of the Hamiltonian (not even “on the fly”). It is
important that it is possible to evaluate Hamiltonian matrix-vector products without
first building the Hamiltonian matrix.

5.6 Using Contracted Bases with the Lanczos Method

Iterative methods for solving the Schroedinger equation are efficient only if matrix-
vector products can be computed cheaply. As explained in the previous section, in
the product basis case, matrix-vector products can be evaluated at a cost that scales as
n/*1. Contracted basis sets, defined in Sect. 5.3 A have many advantages, but if they
are to be used with an iterative method it is essential that it be possible to efficiently
evaluate the corresponding matrix-vector products. Contracted basis functions (cf.
Sect. 5.3) of type 1 are excellent but have important disadvantages: The matrix-vector
products are costly; many reduced-dimension eigenvalue problems must be solved,
and many sets of eigenvectors must be stored. For molecules with more than three
atoms, contracted basis functions of the type 2 are certainly better [101, 102]. In
orthogonal polyspherical coordinates the / = 0 KEO is [21, 103]

H=T,,©,r)+T,@+V@,r) (5.28)
with

Tyon(0,7) = Y G(T,"(0)

y 0
QM:ZQE? (5.29)

i

6 represents all the bend coordinates and r represents all the stretch coordinates. The
functions Gg)(r), G, and the operators T;’)(e) are well-known [21].

We make contracted bend functions from a Hamiltonian obtained by fixing all
stretch coordinates at the values of a reference configuration (often the equilib-
rium configuration) and contracted stretch functions from a Hamiltonian obtained by
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fixing all bend coordinates at reference configuration values. The final basis func-
tions are products of stretch contracted and bend contracted functions.
The reduced-dimension bend Hamiltonian is,

H® =T, (0,r,)+V(@,r,). (5.30)
Its wavefunctions are

Xy(0) = Y, Cfi(0) (5.31)
l

and the energies are denoted E,,. The f; are primitive FBR (finite basis representation)
or DVR bend basis functions (when there is more than one bend coordinate [ is a
composite index) and the number of retained bend wavefunctions is n,. The stretch
reduced-dimension Hamiltonian is,

HY =T

str

(r)+ V(@,,r). (5.32)
and its wavefunctions are,

Y1) = D Dygq(r) (5.33)

and its energies are E,. The g, are primitive DVR stretch basis functions (if there is
more than one stretch coordinate a is a composite index) and the number of retained
stretch wavefunctions is denoted by n,. 6, and r, represent reference values of the
bend coordinates and the stretch coordinates. The final basis functions are products

bs) = 1X,)1¥;) (5.34)

The full Hamiltonian is written

H=HY +HY + AT + AV (5.35)
where
AV(r,0) = V(r,0) = V(r,.0) — V(r,0,) (5.36)
and
AT = ) AG)(NT(0) (5.37)
with

AGO(r) = GV(r) - GV(r) . (5.38)
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Matrix elements of AT and AV in the product contracted basis must be computed. If
the contracted basis is small enough, the Hamiltonian matrix in the the product con-
tracted basis can be diagonalized with a direct linear algebra method. When this is not
possible one uses an iterative method and evaluates matrix-vector products. Owing
to the product structure of Eq. (5.37), matrix-vector products for AT are straightfor-
ward. When computing matrix-vector products for AV it is critical to avoid storing
the potential on a stretch-bend grid. This is the subject of the next section.

5.6.1 Matrix-Vector Products for AV

When using an FBR primitive bend basis, a matrix element of AV in the product
contracted basis [102] is,

(B's | AV (0, P)|bs) = )" CuyCppDog Dy (I'a| AV, P lar)

14
a

= Y Cuy CiyDoy Dy TipT1y AV, (5.39)
4]
af

where

Ty = \/Wsfi(0p)

AV, = AV(@,.1,) . (5.40)

(05, wp) are points and weights for the quadrature and /, f, and a are composite
indices. The columns of C are the eigenvectors of H® in the FBR basis.

It is best to evaluate AV matrix-vector product by doing sums sequentially [101,
104-106], A potential matrix element in the contracted basis is rewritten

(B's'|AV(O,P)|bs)y = )" Cpiy CppDog Dy AV,

ap
= Z Fb’b,aDas’Das (541)
a
where F is defined by,
Fb’b,a = Z Cﬂb’ CﬂbAVﬂ(x . (5.42)
B

All the Fy,, , are calculated and stored and the AV matrix-vector product,

W, = Y (B'S'|AV|bs)uy, . (5.43)
bs
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is most efficiently done in three steps:

@ _
Uy, = ZDasubs
K
@ _ (1
ub’a - Z Fb/bauba
b

W, = Y Dyt (5.44)

The CPU cost of this matrix-vector product is na(ni + 2nyn,). One can reduce the
total time by parallelizing the calculation of F.

5.7 Conclusion

Using iterative eigensolvers has made it possible to compute vibrational spectra
with product basis sets for molecules with 4 atoms. The structure of the product
basis set is exploited to evaluate the required matrix-vector products. To compute
vibrational spectra of larger molecules it is helpful to use contracted basis sets. Con-
traction necessarily complicates the evaluation of matrix-vector products. Simply
contracted basis functions (type 2) and iterative methods can be efficiently combined.
It is imperative to avoid storing the potential on a large direct-product quadrature
grid. This can be done by using the F matrix idea. It obviates the need to transform
from the contracted basis to the primitive basis to do matrix-vector products. Con-
tracted basis functions are also advantageous for computing ro-vibrational spectra,
even for molecules with only four atoms. Products of symmetric top functions and
vibrational wavefunctions are good contracted ro-vibrational functions.

Acknowledgments This work has been supported by the Natural Sciences and Engineering
Research Council of Canada

References

. Aliev MR, Watson JKG (1985) Molecular spectroscopy: modern research, vol 3

. Carter S, Handy NC (1986) Comput Phys Rep 5:115

. Tennyson J (1986) Comput Phys Rep 4:1

. Baci¢ Z, Light JC (1989) Annu Rev Phys Chem 40:469

. Sibert EL (1990) Int Rev Phys Chem 9:1

. Carrington T Jr (1998) Encyclopedia of computational chemistry, von Ragué Schleyer P (ed),
vol 5. Wiley, New York

7. Spectrochim (2002) Acta Part A 58 A special issue on First principles rovibrational spec-
troscopy

. Watson JKG (1968) Mol Phys 15:479—-490

9. Romanowski H, Bowman JM, Harding L (1985) J Chem Phys 82:4155

AN AW =

e}



148 T. Carrington

10. Carter S, Culik SJ, Bowman JM (1997) J Chem Phys 107:10458

11. Carter S, Bowman JM, Handy NC (1998) Theor Chem Acta 100:191

12. Bowman JM, Carter S, Huang X (2003) Int Rev Phys Chem 22:533-549

13. Bowman JM, Carter S, Handy NC(2005) Theory and applications of computational chemistry:
the first forty years, Dykstra C et al (ed), Chapter 11. Elsevier, New York

14. Oyanagi C, Yagi K, Taketsugu T, Hirao K (2006) J Chem Phys 124:064311

15. Chapuisat X, Tung C (1992) Phys Rev A 45:6217-6235

16. Gatti F, Iung C, Menou M, Justum Y, Nauts A, Chapuisat X (1998) J Chem Phys 108:8804

17. Tung C, Gatti F, Viel A, Chapuisat X (1999) Phys Chem Chem Phys 1:3377

18. Mladenovi¢ M (2000) J Chem Phys 112:1070-1081

19. Mladenovi¢ M (2000) J Chem Phys 112:1082-1095

20. Bramley MJ, Carrington T Jr (1993) J Chem Phys 99:8519

21. Mladenovi¢ M (2000) J Chem Phys 112:1070

22. Mladenovi¢ M (2000) J Chem Phys 112:1082

23. Chapuisat X, Iung C (1992) Phys Rev A 45:6217

24. Sutcliffe BT (1982) Current aspects of quantum chemistry. In: Carbo R (ed) Studies in theo-
retical and physical chemistry, vol 21. Elsevier, Amsterdam, pp 99-125

25. Sutcliffe BT, Tennyson J (1991) Int J Quant Chem 39:183

26. Tennyson J, Sutcliffe BT (1982) J Chem Phys 77:4061

27. Brocks G, Van Der Avoird A, Sutcliffe BT, Tennyson J (1983) Mol Phys 50:1025

28. Xantheas SS, Sutcliffe BT (1995) J Chem Phys 103:8022

29. Handy NC (1987) Mol Phys 61:207

30. Gatti F, Iung C, Leforestier C, Chapuisat X (1999) J Chem Phys 111:7236

31. Gatti F, Munoz C, Iung C (2001) J Chem Phys 114:8275

32. Wang X-G, Carrington T Jr (2004) J Chem Phys 121:2937

33. Zare RN (1988) Angular momentum. Wiley, New York

34. Wang X-G, Carrington T Jr (2000) J Chem Phys 113:7097-7101

35. Laane J, Harthcock MA, Killough PM, Bauman LE, Cooke JM (1982) J Mol Spec 91:286;
Harthcock MA, Laane J (1982) J Mol Spectrosc 91:300

36. Meyer R (1979) J Mol Spectrosc 76:266

37. McCoy AB, Burleigh DC, Sibert EL (1991) J Chem Phys 95:7449

38. Lauvergnat D, Nauts A (2002) J Chem Phys 116:8560

39. Matyus E, Czaké G, Csaszar AG (2009) J Chem Phys 130:134112

40. Lauvergnat David (2002) J Chem Phys 116:8560

41. Carter S, Handy NC (1988) Comput Phys Commun 51:49

42. Baci¢ Z, Light JC (1989) Annu Rev Phys Chem 40:469

43. Henderson JR, Tennyson J (1990) Chem Phys Lett 173:133

44. Wu XT, McCoy AB, Hayes EF (1999) J Chem Phys 110:2354

45. Qiu Y, Zhang JZH, Baci¢ Z (1998) J Chem Phys 108:4804

46. Bahel A, Baci¢ Z (1999) J Chem Phys 111:11164

47. Mladenovi¢ M (2002) Spectrochim Acta Part A 58:809

48. Mladenovi¢ M (2002) Spectrochim Acta Part A 58:795

49. Luckhaus D (2000) J Chem Phys 113:1329

50. Bramley MJ, Handy NC (1993) J Chem Phys 98:1378

51. Light JC, Carrington T Jr (2000) Adv Chem Phys 114:263

52. Bowman JM, Gazdy B (1991) J Chem Phys 94:454

53. Carter S, Handy NC (2002) Mol Phys 100:681

54. Koput J, Carter S, Handy N (2001) J Chem Phys 115:8345

55. Handy NC, Carter S, Colwell SM (1999) Mol Phys 96:477

56. Tennyson J, Sutcliffe BT (1986) Mol Phys 58:1067; Sutcliffe BT, Tennyson J (1986) Mol Phys
58:1053

57. Wang X-G, Carrington T Jr (2004) J Chem Phys 121:2937

58. Carter S, Bowman JM, Handy NC (1998) Theor Chem Acc 100:191

59. Fabri C, Matyus E, Csaszar AG (2011) J Chem Phys 134:074105



5 Methods for Computing Ro-vibrational Energy Levels 149

60.
61.
62.
63.
64.
65.
66.

67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
71.
78.
79.
80.
81.

82.
83.
84.
85.
86.
87.
88.
89.
90.

91.
92.

93.
94.
95.
96.

97.
98.
99.

100.
101.
102.
103.
104.
105.
106.

Wang X-G, Carrington T Jr (2003) J Chem Phys 119:101
Papousek D, Aliev MR (1982) Molecular vibrational-rotational spectra. Elsevier, Amsterdam
Wei H, Carrington T (1997) J Chem Phys 107:2813-2818
Wei H, Carrington T Jr (1997) J Chem Phys 107:9493
Wei H, Carrington T Jr (1998) Chem Phys Lett 287:289
Wei H (2003) J Chem Phys 118:7208
Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical recipes. Cambridge
University Press, Cambridge
Wyatt RE (1989) Adv Chem Phys 73:231
Koeppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59
Tung C, Leforestier C (1989) J Chem Phys 90:3198
Bentley JA, Brunet J-P, Wyatt RE, Friesner RA, Leforestier C (1989) Chem Phys Lett 161:393
Bramley MJ, Carrington T Jr (1993) J Chem Phys 99:8519
Bramley MJ, Carrington T Jr (1994) J Chem Phys 101:8494
Neuhauser D (1990) J Chem Phys 93:2611
Lehoucq RB, Gray SK, Zhang D-H, Light JC (1998) Comput Phys Commun 109:15
Mussa HY, Tennyson J (1998) J Chem Phys 109:10885
Wall NR, Neuhauser D (1995) J Chem Phys 102:8011
Mandelshtam VA, Taylor HS (1995) J Chem Phys 102:7390
Mandelshtam VA, Taylor HS (1997) J Chem Phys 106:5085
Yu H-G, Smith SC (1997) Ber Bunsenges Phys Chem 101:400
Chen R, Guo H (1998) J Chem Phys 108:6068
Golub GH, Van Loan CF (1989) Matrix computations. Johns Hopkins University Press, Bal-
timore
Friesner RA, Wyatt RE, Hempel C, Criner B (1986) J] Comput Phys 64:220
Manthe U, Koeppel H (1990) J Chem Phys 93:345
Beck MH, Jaeckle A, Worth GA, Meyer H-D (2000) Phys Rep 324:1
Pelaez D, Meyer H-D (2013) J Chem Phys 138:014108
Manzhos S, Carrington T (2006) J Chem Phys 125:194105
Manzhos S, Carrington T (2007) J Chem Phys 127:014103
Manzhos S, Carrington T (2008) J Chem Phys 129:224104
Pradhan JCMSE, Carreon-Macedo J-L, Brown A (2013) J Phys Chem A 117:6925
Cullum JK, Willoughby RA (1985) Lanczos algorithms for large symmetric eigenvalue com-
putations. Birkhduser, Boston
Sorensen DC (1992) SIAM. J Math Anal Appl 13:357
Lehoucq RB, Sorensen DC, Yang C (1998) ARPACK USERS GUIDE: solution of large scale
eigenvalue problems by implicitly restarted Arnoldi methods. SIAM, Philadelphia
Baglama J, Calvetti D, Reichel L (1996) BIT 36:400
Huang S, Carrington T Jr (1999) Chem Phys Lett 312:311-318
Roy P-N, Carrington T Jr (1996) Chem Phys Lett 257:98-104
Bunker PR (1998) Symmetry Per Jensen molecular, spectroscopy, 2nd edn. NRC Research
Press, Ottawa
Wang X-G, Carrington T Jr (2001) J Chem Phys 114:1473
Chen R, Guo H (2001) J Chem Phys 114:1467
Wang X-G, Carrington T Jr (2001) J Chem Phys 115:9781
Wang X-G, Carrington T Jr (2003) J Chem Phys 118:6946-6956
Bramley MJ, Carrington T Jr (1994) J Chem Phys 101:8494
Wang X-G, Carrington T Jr (2002) J Chem Phys 117:6923
Chapuisat X, Belfhal A, Nauts A (1991) J Mol Spectrosc 149:274
Wu XT, Hayes EF (1997) J Chem Phys 107:2705
Friesner RA, Bentley JA, Menou M, Leforestier C (1993) J Chem Phys 99:324
Viel A, Leforestier C (2000) J Chem Phys 112:1212



Chapter 6

Effectively Unpaired Electrons for Singlet
States: From Diatomics to Graphene
Nanoclusters

Anatoliy V. Luzanov

Abstract Formal and computational models within the effectively unpaired elec-
tron (EUE) theory are reviewed and extended. In the first part, we analyze
open-ended aspects of the existing EUE measures and find additional advantages of
the Head-Gordon index (2003) over the very first (Yamaguchi et al. 1978) index. In
particular, for ground states the Head-Gordon index estimates an average occupa-
tion of virtual holes and particles, which occur due to electron correlation. Addi-
tional hole-particle indices for describing EUE are proposed and analyzed. The
second part of the paper is focuses on practical aspects and EUE computational
schemes in small molecules (at the ab initio level) and large-scale polyaromatic and
graphene-like structures (at the semi-empirical level). Here the unrestricted
Hartree-Fock (UHF) schemes and their recently proposed simplistic versions turn
out to be a suitable tool producing meaningful EUE characteristics for the extended
n-electron systems (with number of carbon atoms ~10° and more) in a fast and
simple way. We emphasize that UHF solutions should be regarded not as invalid
spin-contaminated states but as precursors of the appropriate spin-projected states
of the Lowdin’s extended Hartree-Fock type. The influence of the static and vari-
able electric fields on m-electron systems is also studied. It is shown that strong
perturbations drastically increase the electron unpairing in aromatic hydrocarbons,
especially those with the initially stable Clar-type structure.
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6.1 Introduction

The notion of effectively unpaired electrons (EUE) in molecules originates from the
seminal paper of Yamaguchi and colleague [1]. The EUE analysis of wave functions
has become a very useful tool for understanding electronic structure of complex in
particular, conjugated molecules. In case of singlet states all the approaches to EUE
are inevitably rooted in high-level many-electron theories because no unpaired
electrons are possible in a one-electron picture of closed-shell systems. Indeed, by
construction, each electron pair (with opposite spins) occupies exactly one suitable
MO, as prescribed by any correct independent-particle model. Hence, only bona fide
wave functions accounting for electron correlation should be employed for treating
EUE. This makes the problem interesting and difficult simultaneously.

It should be also emphasized that there exist no spin density effects in
spin-singlet (diamagnetic) molecules if relativistic effects are neglected (see
Egs. (5.2) and (5.3) in Ref. [2]). Hence, “effectively unpaired electrons” (as in the
dissociated hydrogen molecule or in radical pairs) remain, as a whole, in the singlet
state due to the total spin conservation law. This fact indicates some type of spin
correlation between particles, particularly between spatially separated ones, as it is
in the classical Einstein-Podolsky-Rosen pair [3, 4]. At the same time, systems with
large unpairing effects behave as singlet diradicaloids or even polyradicals which
feature many unusual properties. The problem is significant because a considerable
occurrence of the effectively unpaired electrons is an instability factor of the system
of interest. In particular, an EUE analysis of wave functions can easily point to a
diradical or, generally, polyradical character of electronic states. In this respect, the
EUE problem is also important for designing new molecular-based materials con-
taining giant molecules. A separate issue is electron unpairing in excited states,
which has attracted attention only recently.

There exist various quantum chemical approaches to define and quantify “odd”
electrons (this very term is used in [1] for effectively unpaired electrons). Obvi-
ously, it is important to rightly choose the scheme describing EUE. Two key
approaches are now popular in this field. The first employs the so-called Yamaguchi
index from [1]; the other uses the Head-Gordon indices from [5]. A noteworthy
progress was recently made in ab initio applications of the EUE theory [6-11]. And
yet, high-level electron correlation methods are very computationally demanding
or, more frequently, not available for large-scale and super-large-scale systems.
Therefore, it was important to develop a simplified semi-empirical, but at the same
time physically meaningful EUE theory for huge systems such as z-
electron-containing graphene-like structures and finite-sized carbon nanotubes.
Preliminary attempts in this direction were made in [12, 13]. It is worth mentioning
some interesting results produced for giant graphene molecules obtained by the
density functional theory (DFT) [14]. At the same time, in practice standard DFT
approaches typically fail to produce correctly formed density matrices, which
presents a stumbling block for the consistent analysis of molecular electronic
structures.
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In light of the above, the goal of the present contribution is to describe main trends
in this field and to give a comparable analysis of different approaches as well as to
demonstrate the utility of the EUE indices for interpreting complex structures—up to
covalent polymeric networks. In our applications of the EUE theory the stress will be
on strongly correlated molecular states, in particular large z-conjugated systems.
Here, we revisit the EUE problem in the context of previous studies [12, 15, 16], and
find the Head-Gordon index to be more appropriate and more consistent from a
physical viewpoint as well. We also describe new applications of EUE indices for
molecules in strong static and nonstationary electric fields. We aim to provide a
self-contained introduction to and a concise overview of the EUE theory.

6.2 General Definitions and Yamaguchi’s Index

We start with paper [1]. This work had put forward a first possible definition of the
EUE density for an arbitrary wave function with any permitted spin value s > 0. As
mentioned in the introduction, our main interest is the case of singlet states, and for
them the EUE effects are really important and interesting. Indeed, for nonzero spin
states (doublet-state radicals, triplet-state diradicals etc.), the manifestations of
unpaired electrons can be described even within the restricted open-shell
Hartree-Fock (ROHF) theory. The latter characterizes the unpaired spins by stan-
dard spin density matrices. In the singlet state, the spin density matrix disappears
[2], and yet, electron correlation enforces electrons to be unpaired if physical and
chemical circumstances require it (e.g., in bond breaking processes).

First, we provide the main EUE definitions using the conventional reduced
density matrix (RDM) methods. In singlet states, the first-order RDM (1-RDM) can
be defined as a spin-free matrix which is also termed the charge density matrix.
Throughout the paper, the capital letter D will be denoted the charge density matrix.
In Dirac’s bra-ket notation, D conveniently takes a compact form of a spectral
resolution, that is the following diagonal form:

D= §1k|¢k>(€0k|» (6.1)

with |@, ) being the eigenvectors (natural orbitals), and 1;( > 0) being the respective
eigenvalues. The quantities 4; are usually called natural orbital occupancy numbers
(NOON). Due to Pauli’s principle, 0 <1; <2. Furthermore, NOON are usually
normalized to a total (always even in our case) number of electrons, N =2n, where
n is a number of electron pairs in the given spin-singlet molecule. Thus,

TrD= Y A =N. (6.2)
k
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If unpaired electrons are absent then all molecular orbitals are doubly occupied.
Obviously, for the fully closed-shell system the all nonzero NOON are equal to 2:

Ai=2, 1<i<n (6.3)

(pair orbital occupancies), other A;~, =0. In this case one deals actually with the
customary independent-particle model, more exactly, the restricted Hartree-Fock
(RHF) approach. The RHF density matrix is denoted as Dy. Explicitly,

Do=2% i< loiX@il. (6.4)

The structure (6.4) is certainly changed under the influence of electron corre-
lation. So, expression (6.1) with a more involved NOON spectrum {4 } is generally
valid, and a deviation of a realistic NOON distribution from Eq. (6.3) properly
characterizes EUE. In [1] this simple reasoning was the underlying rationale for
introducing the EUE notion and the corresponding deviation measure.

Proceeding in a more formal fashion, we introduce the EUE density matrix, Deft
as a function of density matrix D (in the operatorial sense). It means that

D = %ﬂifflcakxqok\, (6.5)

and the new, also nonnegative, ‘occupation numbers’ /szf are generated by a certain
function of the initial NOON spectrum, that is

B =f () (6.5)

(see [5]). The total EUE number, or better still, the EUE index, N, can be
identified with a sum of these A"

Neff =Tr Deff = z /szf. (66)
k

For singlet states, the natural requirement is f(4;) =0 for any one-determinant
wave function satisfying Eq. (6.3). In this case /1,% =24, and this can be condensed
into the matrix identity

2Dy — (Dy)* =0 (6.7)

(the duodempotency relation). Thus, function f(4) =24 — 4 provides an admissible
choice for a function which vanishes in the case of singlet state determinants. This
leads to the simplest solution of the EUE problem: /12ff =/12dd where
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A4 =23 -2, (6.7)

Here and elsewhere superscript and subscript ‘odd’ denote that the Yamaguchi
index and related quantities are considered. As a result, the matrix representation of
Eq. (6.5) takesthe form

DY =2D—D?, (6.8)
and we can easily specify Eq. (6.6) as

Noaa =2N —Tr D* =4n— Y ;. (6.9)
k

The above approach gained more attention after this method was restated in [17]
(see also [18] about the history of N_,; and related measures in earlier literature on
valency). We now understand that for singlet states, Yamaguchi’s index N4 is
merely a possible measure of the wave function departure from a single determi-
nant. In a different context, a closely related nonidempotency measure of 1-RDM
was independently introduced in Mestechkin’s book [19]. Furthermore, N_,; was
examined, carefully analyzed and extended in many later works, such as [6, 20-24].

Let us now give a simple example of using N 4,. Following mainly [1, 5, 12], we
consider the unrestricted Hartree-Fock (UHF) method for singlet states. In this case
Egs. (6.8) and (6.9) can be easily rewritten, based on the known UHF relation

D=pa+pﬁ’ (610)

where p, and p; are usual one-electron density matrices for o - u B-shells of the
UHF determinant. Then, the working equation is

Noaa[UHE| =N = 2Tt (p,,). (6.11)
that is equivalent to

Noga[UHF] =N =2Tr (pppapy). (6.12)

as a result of idempotency relations p, = (p,)* and pﬁ=(pﬂ)2. The equivalent
representation is

2
Nodd[UHF] =lp, —P/1|| >

where ||Z|| = (Tr Z*+Z)"” is the familiar Euclidean (Frobenius) matrix norm for an
arbitrary matrix Z. When p;=p, (no spin polarization) we return to RHF, and
N,4q =0, as it should be. Another form of Eq. (6.11) is
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Noga[UHF] = 2(8%) ypyp, (6.13)

with (S?) being an average value of the squared spin [18].

6.3 Head-Gordon’s Index

In spite of many useful applications of Yamaguchi’s index, it fails in many cases. It
was first shown in [5] where one interesting example (dissociation of the triplet
oxygen molecule) was considered, and an incorrect behavior of N, was observed
for the dissociation limit. In this work a new approach was formulated in such a
way that could handle difficult cases as well. We will further refer to the EUE index
from [5] as the Head-Gordon index, and use the more compact term “H-G index”,
denoting it simply by N.g. This index is based on the following choice:

2 =1 = |3 — 1| =Min[4, 2 — 4], (6.14)
so that

Negr = X Min[A, 2 — 4] (6.15)
x

By construction, the index satisfies the inequality
Nett < Nodd (6.16)

(see Fig. 1 in [5]). The inequality is rather easy to demonstrate by considering the
UHF model. Using the corresponding spectrum {4;} from [25] an explicit
expression is derived to be

Net[UHF]=N -2 ¥ /27, (6.17)
j=1

where /17/3 are eigenvalues of psp,p;. We see that indeed Negr[UHF] <N, 44[UHF]
because eigenvalues of the product of idempotent matrices are less than 1, and
moreover, in the same notation we have from Eq. (6.12)

n
Noqa[UHF]=N -2 ¥ 2"
j=1

There are many researchers who exploit H-G index (e.g., see [6—12, 26, 27]). In
several papers, indices N,y and Ny are considered concurrently, and only few
authors advocate a preference of N 4. Notice the polemic papers [28, 29] which
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present conficting viewpoints on the EUE problem. We will discuss a difference
between N_,; and N in Sects. 6.5, 6.14, and Appendix C. Based on this con-
sideration it appears that Ny provides a more consistent way to quantify the
diradical (or polyradical) character in terms of traditional NOON. It is worth
mentioning the earlier works [30] where NOON have been applied for a qualitative
identification of diradical states and diagnostics of multiconfigurational character.

Let us review some common properties of the N, and N measures and the
corresponding EUE occupancies, that is numbers Azdd in Eq. (6.7") and /lsz in
Eq. (6.14). Returning to Eq. (6.5") we write understandable requirements of the
nonnegative EUE function f(4) to be defined only in the closed interval [0, 2], so
that

f(0)=f(2)=0, f(1)=1.

Of course, N 4y and Neg obey these equations. Less trivial is that f(4) is sym-
metric with respect to axis A =1, that is

fA)=f2-4). (6.18)

In other words, Eq. (6.18) is satisfied by an appropriate function
f(2)=F(]A—1|). Obviously, 2% and A obey the above relations. The reason for
symmetry (6.18) will be explained in Appendix A in terms of a duality transfor-
mation well-known in the multilinear algebra literature. In Appendix A one can also
find a possible generalization of indices N4, and Ncgr. Various examples of N and
related indices will be given throughout the rest of this chapter.

6.4 Unpairing Indices from Collectivity and Entropy
Numbers

Another EUE quantification scheme appeared in [15, 31]. This scheme is based on
the so-called collectivity numbers first introduced in [32] for describing electronic
excitations within the single configuration interaction (CIS) method. More general
collectivity numbers were subsequently given in [33] for the full configuration
interaction (FCI). The related logarithmic measures are considered in [15, 34, 35].
Below we follow [15] from which a few illustrations (with a slight modification) are
taken as well.

The collectivity number can be treated as a statistical measure. A similar sta-
tistical measure has been defined before in [36] for analyzing localization of
vibrational modes. It was named the participation ratio. We define it as an average
rank, «, of the given normalized probability distribution {wy}:
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k=1/Y (wi), (6.19)

k

(for more detail see [15, 32, 37]). The squared expansion coefficients can be used as
a possible {wy} set. Generally, the resulting x will be crucially dependent of the
representation chosen (the AO or MO representation, for instance). To make
Eq. (6.19) basis-independent, a matrix construction is required. The result is
automatically attained within the FCI matrix theory [38] based on the conventional
determinant FCI method [39].

For singlet states the FCI wave function |¥) can be cast as follows:

W)= 2 s Xull; J). (6.20)

Here real-valued (for simplicity) expansion coefficients X;; are normalized, and
I;J) symbolizes the N-electron Slater determinants comprised of spin-up orbital

subset {)(J:] s e )(J:} and spin-down orbital subset {7,,, ..., %,,}. The orbitals are
all taken from the chosen “full” basis set
{lr)}-

Furthermore, in Eq. (6.20) indices I and J are in fact ordered multi-indices
(strings in [39]) of the form

I={ii,ia....in}, J={j1J2s - sdn}-

As a consequence of the determinantal nature of the basis set {|/;J)} used in
Eq. (6.20), the matrix

X= || Xyl|

has regular transformation properties, and thus all matrix invariants of X are
basis-independent. Moreover, for singlet states X should be a symmetric
(Xyy =X;;) and normalized matrix (due to (¥ |¥)=1), so that
207 (X;y)? =Tr(X?) = 1. The eigenvalues {x;} of X produce a normalized proba-
bility distribution, that is {wy } = {x7}. Thus, the counterpart of Eq. (6.19) for FCI is

k=1/¥ xt=1/Tr(X*). (6.21)
k

This is just the collectivity number which was introduced in [33] and system-
atically studied in [15]. For single-determinant models we have X? = X. In this case,
|¥) in Eq. (6.19) can be reduced to one term, that is to a single determinant, so
x =1. More preferable is a logarithmic quantity which we define by the expression:
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N.= -2 InTr (X*)/In2. (6.22)

We term this quantity as the EUE k-index, or simply x-index. As shown in [15,
31], this index provides the needed properties (nonnegativity, additive separability,
and clearly interpreted results for simple chemical systems in extreme cases).

Consider two examples. The first is the two-electron hydrogen molecule treated
in a minimal basis of two atom-centred orthonormal AOs, {|y,), |r,)}. From the
symmetry and normalization we directly obtain matrix X, as follows

X[Hg]:%”\/.v; A (6.23)

VvVi—z

with z being a variational parameter. This z has a meaning of a covalency parameter

(a weight of the Heitler-London geminal [y, y, +x2x1) A2 in the total wave
function). Elementary computations on Eq. (6.22) give

Ne=2—(2/In2) In(1 + 4z — 42%). (6.24)

It can be compared with the respective values of N 4, and Negr indices:
Noga[Ha) =2(1=22)%, Ner[Ha] =2 (1-21/(1=2)z) (6.25)
(they follow from the respective density matrix D[H,] = 2(X[H,])*. Notice that there
is a misprint for x[H,] in [15, 31]. The value z=1/2 describes the Hartree-Fock

ground state. All indices, Eqgs. (6.24) and (6.25), go to 2 when z — 1, that corre-
sponds to the dissociation limit of the hydrogen molecule (see Fig. 6.1).

Fig. 6.1 Dependence of EUE Nt
indices from the covalency

parameter z in the H, 2 |
molecule treated in minimal
basis: Yamaguchi’s index
N 44 in blue, k-index N, in
green, and Head-Gordon’s
index N in red
1
z
0.5 1
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Fig. 6.2 Left panel Ny, (in blue), N, (in green), and N (in red) for insertion reaction (6.26)
within FCI/6-31G. Right panel the NOON spectrum corresponding to the region near the transition
state (for point 5 on the reaction path)

We see from Fig. 6.1 that the x-index is intermediate between Yamaguchi’s and
Head-Gordon’s indices: Nest <N, <N 44. As our experience testifies, this is, in fact,
the typical result.

As a second more complex example, consider the insertion reaction:

BC+H2 — Be H2 (626)

(see [40] for the molecular geometry in the selected 10 points on the reaction path).
For reaction (6.26) the results (partially taken from [15]) are presented in Fig. 6.2.
Evidently, each of the approaches gives a similar picture with a maximum near a
transition region (the fifth and sixth points in Fig. 6.2). A more detailed analysis
reveals that the transition state (TS) corresponds, only very approximately, to a
diradicaloid state in which unpaired electrons should be significantly localized on
the H-atoms. Really, from the NOON spectrum (the right panel in Fig. 6.2) it is
clear that there are no NOON near 1. Only the values 1.45 and 0.51 in this spectrum
appear to give a quasi open-shell TS structure. The value Ngg = 1.26 for the fifth
point is quite compatible with this situation. At the same time, the diradical char-
acter of this TS appears to be overestimated by the corresponding values
N,4q=1.94 and N, =1.75. The fact that N 4, and N, overestimate the radicaloid

(o
character is typical.

6.5 Hole-Particle Densities and Head-Gordon’s Index

We now look at the EUE problem from the viewpoint of the general theory of
hole-particle distributions given in [16]. The related indices (in a different disguise)
appeared in [15, 31]. In these works, Kutzelnigg’s original idea [41] about an
openness measure of electronic shells was discussed as well. A suitable description
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of EUE follows from a direct analysis of the RDM hole-particle components [16].
We introduce the latter by considering the general type of wave functions in terms
of the so-called excitation operators [39, 42]. They create the CI (configuration
interaction) wave-function of arbitrary order, up to FCI. Expansions of this type are
well known long ago [43, 44]. But only in [45] the one-electron and two-electron
RDMs were presented explicitly in terms of excitation operator matrices, more
exactly, elementary transition matrices (see also [16, 46]).

As usual, we must choose an appropriate reference determinant |®) from which

one can generate singly excited {|®¢)}, doubly excited { (ijb )}, and so on con-
figurations (as usually, indices i, j,... refer to occupied orbitals of the reference, and
indices a, b,... refer to virtual orbitals). Thus, the k-excited configurations are taken
from the set {’dbﬁ":‘ifk)}, and all possible k must be taken into account in an exact

(FCI) consideration. Each configuration contributes, to the considered FCI function,
with a respective configuration coefficient, Cy, . 4,.;,..i,, Or explicitly

|‘P>= Z Z Calwak;ilmik‘ Zlﬂ'.)‘(:k- (6-27)
0<k<N ij..ix
ajy...ay

For our formal consideration, the full set
{Ca]...ak;il...ik}’ OSkSN, (628>

is assumed to be fully known for a while. As usual, it is normalized to 1. Coeffi-
cients (6.28) can be packed into the corresponding multi-index matrices

Ck= [Calu.ak; i]...ik], OSkSN (629)

The same quantities (6.28) are identified with hole-particle amplitudes which are
just equal to matrix elements of hole-particle excitation operators Cy . By definition,
C; generates the superposition of k-excited configurations of the corresponding
order k (for more detail see [39, 42]). Within the customary hole-particle formalism,
the first k indices a; . .. ax in Cy,._q,. 4,..i, are related to states of ‘particles’ which are
excited above a ‘sea’ of occupied states, whereas the second k indices i ...
(occupied orbitals) are related to the possible hole states in the same sea. This
well-known interpretation is also suitable for designing correlation indices. To this
end, let us consider the normalization condition which is, evidently,

N
YGlF=1 (6.30)
k=0
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where obviously

HCksz Z |Ca1..4ak;i1...ik|2~ (631)

al...ak;i14..[k

The squared norm ||Ci||* can be presented in two equivalent forms: as
ICk|P =Tr Cu(C) ™, and as ||C;||*=Tr (Ci)* Cy. Evidently, the first form is
relevant to the particles, whereas the second to the holes.

Now look at an average number of holes, that is index NP (in notations from

[16]):
< 2
N'= ¥ KICEIP.
k=0
But the same expression is valid for the average number of particles:

N
NP = 3 k|G
k

=0
SO
N =NP = k%OkTr G(C)™. (6.32)
Thus, we find the sum
N,_, =NP +N"=2NP (6.33)

as an admissible hole-particle EUE measure [16, 31]. It remains to add that the
reference determinant |®) in expansion (6.27) should be built up from natural
orbitals of the state in question. But sometimes another choice can be also
informative.

No practical difficulties exist in calculating N, _,, because in terms of spin-free
RDMs we have the explicit relations

N"=TrD", NP =TrDP, (6.34)

and D" and DP are the hole, and, respectively, particle components of D. These
components, as defined in [16], are

D'"=2p—pDp, D’ =(I-p)D(I -p), (6.35)

Here and elsewhere, p =Dy /2, that is the spin-free projector on n maximally
occupied natural orbitals of the reference determinant:
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p= é lp:i) ;. (6.36)

(the Dirac-Fock density matrix, in other terms). In the same notations the total
hole-particle density matrix is D' = Dy + Dy, or

D'""P=2p+D—pD—Dp. (6.37)

Within the given hole-particle approach, D' is a counterpart of the corre-
sponding EUE density matrix (6.5). Technical details for computing FCI and
closed-shell CCSD (singles and doubles coupled cluster) approaches are given in
[16, 47]. We write here only the simplest relation

N,_,=2 (N —TrDp) (6.38)
following from Eqgs. (6.37). The corresponding spectral sum is

N,

by =2N-2X 4,=2 % 4. (6.39)

i<n a>n

It is this quantity from in [15] which was derived based on [41]. More than that,
the numerical experience revealed that our hole-particle index (6.39) actually
provides the same characterization of EUE, as H-G index does. This fact was
recently subject to closer scrutiny [12]. The main inference from the analysis [12] is
that the identity

N =Ny, _, (6.40)
is true for ‘normal’ ground states, which have no pathology in the NOON spectrum

{4} (see below). This becomes transparent if one considers the spectral
representation

D" P= 3 2-)leXoil+ X Ao @l (6.41)

i<n a>n

The latter follows from Eqgs. (6.1) and (6.37), as moment’s inspection of defi-
nitions shows it. In the same fashion one can rephrase the matrix D, Eq. (6.5),
which is associated with H-G index by Eq. (6.14):

D= ¥ 2=2)le)eil+ X 20a) (@l (6.42)

i<n a>n'

Here n’ is a number of NOONSs greater than 1. If n’ =n we have, by definition,
the normal state, and then
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DT =ph-P, (6.43)

Otherwise the state in question falls into the category of ‘pathological’ states. In
practice, the excited states can be such ones, and in Sect. 6.10 (Table 6.4) we will
provide an example of the pathological state.

As usual, the ground state is normal in this categorization. It means that in
reality, identities (6.40) and (6.43) are valid even for highly correlated ground
states. This fact serves as additional argument in favor of N since a clear physical
meaning can be ascribed to this index within the conventional hole-particle picture.
Namely, for the normal ground states the N index is the average number of holes
and particles which are excited in the reference one-determinant state due to
electron correlation. As for molecular excited states themselves, the situation is
generally more involved, and will be addressed in Sect. 6.10. Incidentally, from
Eq. (6.41) it follows that the hole and, respectively, particle occupancy spectra are
of the form

{2-4}. {4} (6.41)

where 4; are related to ‘occupied’ natural orbitals (4; > 1), and 4, to ‘vacant’ natural
orbitals (4, <1). A possible generalization of hole-particle EUE measure (6.39) is
postponed to Sect. 6.14.

6.6 Using the High-Order Density Matrices

The fact that the EUE theory [1, 5, 15] can be chiefly founded on the one-electron
RDM is remarkable per se. However, electron correlation effects are at least
two-electron in nature, and it is no wonder that the second-order RDM was applied
for quantifying EUE and related electron-correlation properties. Seemingly, the first
investigation in this direction was presented in book [19] where in Sect. 6.5 a
special operator named ‘correlation operator’ was introduced. Actually, in [19] the
two-electron counterpart of D' was examined. In this section we will denote
RDMs of order k by Dj°. The superscript ‘so’ shows that the full RDM (in
spin-orbital basis) is considered. For instance, D{® and D3’ are the conventional
one-electron and two-electron RDMs.

As well known, for the single Slater determinant (SD), that is for
independent-particle models, the two-electron RDM is the antisymmetrized product
of one-electron RDMs [48, 49]:

o sD 1 i .
DY — E(I—Plz)Djo(l)D](’(Z), (6.44)
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where P, represents the full (with spin variables) transposition operator. Following
[19], we introduce the correlation operator A3° as a difference between the exact
two-electron RDM and the SD approximation (6.44):

1
4y =Dy — 5 (I=Pp)DP(1)DP(2). (6.45)
By contracting A3° over variables of the second electron, we find
—2Trp)AY =D — (DY), (6.46)

that is but a ‘nonidempotency matrix’. This fact was independently discovered later
in [21] (the first paper in this reference entry). Really, contracting Eq. (6.46) over
spin variables just produces the EUE density matrix D in Eq. (6.8). We see that
using Eq. (6.46) does not provide us a new quantification scheme, not to men-
tioning that Eq. (6.8) gives not very good approach, as argued previously.

A significant advance has been made in [50] where the completely two-electron
measure was introduced. In this work the squared norm of A3, that the quantity

||A;°||2, was proposed as a new correlation and entanglement measure. Admittedly,
the EUE aspect was not within the scope of [50]. This aspect is discussed in [35]
(among other approaches). An appropriate rescaling, by constant factor 8/7, guar-
antees a correct number of unpaired electrons in the dissociated H, molecule and in
arbitrary cluster of dissociated two-electron systems. Therefore, it is simply to
modify the above-mentioned measure, as follows:

8
Neam = 5 1A (6.47)

Here subscript ‘cum’ in N, means that this EUE index is produced by the
so-called cumulant density matrix (6.45), as such RDM constructions are termed in
the current RDM theory [51]. For practical computations, within FCI or RAS-CI
(restricted active space CI), more suitable is a spin-free expression from [35].

Some results (the data partially from [35]) are presented in Table 6.1. We see
that Ny gives the values which are somewhat close to N than other indices. We
also observe that all the indices provide a similar qualitative picture. For instance, in
a case of the fully dissociated BeH,, we must obtain N, [Be + H+H] =N [Be| +2
where N[Be| is a non-zero value which results from the effect of intra-atomic
electron correlation in a free Be atom. At the FCI/6-31G level, we obtain
N 4q[Be] = 0.74 and Neg[Be] = 0.39. Thus, it is expected that for the full disso-
ciation N4q = 2.74 and Negr = 2.39, as it is the case, judging from Table 6.1. We
note also that at present using N, is rather restricted because a direct handling
with 2-RDM is avoided as a rule when treating large scale problems.
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Table 6.1 Comparison of

= System Geometry Ny N, Nom N g
Yamaguchi's index Nogg, k- " 1y R 024 017 014 012
index N, cumulant index 2 e
N_,.» and Head-Gordon’s BeH, 3R 2.74 2.59 2.47 2.39
index N, for small BH R 0.62 0.48 0.39 0.33
molecules at the FCI/6-31G BH 3R, 2.38 2.4 2.15 1.86
level CH, R, 062 |044 |037 |032

CH, 3R 4.17 4.09 4.04 3.62
H,O R. 0.36 0.22 0.21 0.18
H,O 3R 4.07 3.98 3.93 3.57
HF Re 0.27 0.16 0.16 0.14
HF 3R 2.09 2.01 1.98 1.73

R. is the equilibrium bond length, and 3R. corresponds to the
triply stretched equilibrium length

6.7 Algorithmic Aspects

Several schemes are possible for practical calculations of the main EUE indices.
Frequently, all the elements of D are needed, e.g. for computing N 4, by Eq. (6.9)
and N by Eq. (6.15). In a number of cases we can simply exploit the explicit
expressions, as in the case of the rather easily performed UHF-like models. When
sophisticated multiconfigurational models are used, it is necessary to employ the
technique which is elaborated for obtaining D within the restricted active space CI
(RAS-CI) and coupled cluster schemes [39, 42]. However, the direct way is too
demanding when large-scale systems need to be addressed. Sometimes, one can
employ the RDM-free scheme from [52] that avoids the tedious computations of all
matrix elements of D. This scheme (see Egs. (107) and (111) in [52]) can be applied
to the hole-particle quantification scheme described above. The respective tech-
nique is based on reverting the obvious relationship which connects expectation
values to RDM. Namely, for the given spinless one-particle operator Z we have

TrZD=(¥| ¥ Z(k)|¥. (6.48)

1<k<N

Then the N index is simply computed in the equivalent form of Ny _,
Eq. (6.38), that is as usual one-electron average (6.48) with

Z=2(I-p).

In this case we imply that p is known. This is a case when the Hartree-Fock
reference determinant can be approximately used in the EUE analysis. Another case
is the Brueckner coupled-cluster method [42] producing the reference molecular
orbitals, almost the same as natural orbitals.

Additional indices which can by obtained by using Eq. (6.48) are the
hole-particle atomic localization indices {D$"} which are related to N, _,
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(in practice, N ). They can be defined by the customary partition procedure well

known for other atomic indices [53, 54]. Let us introduce projector I, on atomic
orbitals belonging to the given atom (or fragment) A:

Ii= EA PRAICAE (6.49)

Then

HEA

(6.50)

e

where index u numbers the standard orthonormalized AOs. Here the full
orthonormalized AO basis is

{’Xﬂ)}lﬁﬂgdim’ (6.51)

(dim is a size of the basis set). Hence, performing calculations using Eq. (6.48) with
Z=I,+ %(Tr Lip)I—Iyp—pl, for each atom A, we find the full atomic distri-
bution of the unpaired electrons in molecule. Obviously, the identity

;1);“ =N, (6.52)

is guaranteed. For computing D and {D%} in case of the CCSD model one can
apply a suitable algorithm which resembles that of the CISD (CI singles and
doubles) method (see Appendix in [47]).

6.8 Spin Correlations

In the introduction, we mentioned that the presence of unpaired electrons in singlet
states gives indirect evidence in favor of the essential spin correlations between the
electrons, especially when they are strongly localized. The following discussion
highlights this issue. It is well known from the quantum theory of magnetism that
spin correlations can be interpreted consistently by invoking the spin correlator
formalism. In quantum chemistry, spin correlators had been introduced by Penny
[55]. In the last two decades the interest to them revived (see [35, 56-60] and many
others). We follow the notations and techniques from [35, 59].

For the given atoms or molecular subunits A and B, spin correlator (S4 - Sg) is an
average of the form
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where the local spin operator S, can be taken as follows: Sy= Y. s(i) L1 (i).
1<i<N

Here s(i) is the spin operator for the ith electron, and I, (i) is a local projector (6.49)
for the ith electron. The diagonal correlators (S, - Sy) = (Si) are usually named the
(squared) local spins. The useful identity is

2(Sa-Sp)=(s+1) Oar2, (6.54)

B

where Q4 is a spin density localized on A, and s is the total spin value for the state
in study [35, 59]. For singlet states, spin densities identically dissappear, so

%(SA -Sp)=0. (6.55)

Obviously, the full sum rule is

Z (Sa - Sp) =S(S+ 1) (656)

A,B

When analyzing spin correlators it is also suitable to pack the correlators into the
matrix

Kspin = H <SA . SB> ||’ (657)

where subscripts A and B run over all atoms in molecule.
As a simple application of these rules, consider the system divided into two parts
(subsystems) A and B. From Eq. (6.55) it follows

(S3)+(S4-Sp)=0, (S2)+(Sa-Sp)=0.
Thus, the spin-correlator matrix is of the form

1 -1

Kspin = <S§ -1 1

, (6.58)

where local correlator (Si) takes the specific values. If the subsystems A and B are

in a singlet state (as in the case of a van der Waals (vdW) dimer of singlet mole-
cules) then the spin-correlator matrix is evidently

0 0

ey )
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Now let A and B be subsystems which we assume to be in a triplet state. Then for
a resulting singlet state of the entire system, matrix (6.57) is

(6.59)

2 -2
o K

This case occurs when we treat the singlet excited states of the vdW dimers and
complexes (the so-called triplet-triplet (TT) excitations). The spin-correlator anal-
ysis for the vdW dimers was shortly mentioned in [61] where the singlet fission
models are discussed. In context of the EUE problems we can connect spin cor-
relators with the N, measure of the TT-type excited states. For instance, when no
charge transfer effects are involved, the local spins (Si) = (S%) provide an estimate
of a weight of double excitations |A;k= \B:_,) in the total excited state of dimer AB
(see Appendix C in [61]). Then N, ~2(S3) because the singlet excitation
A;_,B;_,) has four unpaired electrons. In more general situation we must take into
account interfragment charge-transfer states. It leads to a more complicated analysis
which will be given in a forthcoming paper in collaboration with D. Casanova and
A. Krylov. Additional aspects of the EUE analysis for excited states are considered
in Sect. 6.10.

6.9 Spin-Polarization Indices and Antiferromagnetic
Image of Molecule

We briefly considered in Sects. 6.2 and 6.3 how to treat EUE within the UHF
approximation which admits to different orbitals for different spin (DODS). For
singlet states the UHF scheme is usually called the spin-polarized HF method (then
Pa # Py, unlike RHF where p, =pj). Here we look at the problem from the more
general viewpoint which allow us to introduce relevant spin-polarization indices for
any singlet many-electron states [62].

It is well known that for singlet states, the UHF solutions with p, # p;; are really
possible when electron correlations become sufficiently strong. More exactly, the
spin-polarized HF determinant |®) appear only under the non-singlet (triplet)
instability which was defined by Cizek and Paldus in [63]. At the same time,
solutions of the spin-projected variational HF method (the Lowdin’s extended HF
scheme) always exist [19]. The wave functions of this type will be signified by
|®"). This is usually defined by (apart from a normalization factor)

| @) = 05 |D), (6.60)

with Oy being a projection operator onto a spin-pure N-electron state with the spin
z-projection s, =s and the total spin value s.
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In this context, it is pertinent to recall that in many cases one can obtain the
so-called best overlap orbitals [64] of DODS type which are produced by the given
many-electron wave function. These orbitals were considered in [65] where they
were identified with spin-polarized Brueckner orbitals. However, they exist if and
only if the so-called nonsinglet Brueckner instability conditions are satisfied. At
last, if the correct spin-projected determinant |®°*') is involved in the consideration,
then it is always possible to construct the best overlap orbitals of DODS type for the
given exact or approximate state vector |¥'). These orbitals were recently introduced
[62] and named the spin-polarized extended Brueckner (SPEB) orbitals. By con-
struction, they maximize ( @' | ¥).

Typical overlap integrals between |®**') and |¥) are found to be around 0.98
even for dissociated covalent molecules [62]. The corresponding EUE measures
(6.1) and (6.5) were also studied in [62] along with appropriate spin-polarization
indices. The latter are computed for |®*') from matrices p, and pp in another way
than in Egs. (6.11) or (6.17). Following the cited work, let us introduce the inter-
mediate matrices

vo = =p)p" mo=(-p"), (6.61)
and define for SPEB the special spin-polarization matrices

Doy = (0 v0)*, Doy = (g m0)”. (6.62)

Then the indices

s g
N;()lol =Tr Dgol’ NI/)ol =Tr D{)Ol’
and the total spin-polarization index
Npoi =N&y +Nb =2N7 | (6.63)

serve for the spin-up and spin-down characterization of EUE in the singlet states.
Additionally, we can introduce the associated EUE a-and B-distributions which are
composed of the atomic contributions, viz.,

M= ¥ Dpye = X (Dpot)yue (6.64)

HEA HEA

They are also helpful for the visual interpretation of the ESPB computations.
Here, A is a selected atom in molecule, and subscript pp, as previously in
Eq. (6.50), indicates a diagonal element of the matrix in the orthonormal AO basis.
The total spin polarization index assigned to atom A is evidently equal to
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My=T1%+I1%, (6.65)

so that summing II4 over all A reproduces Npo|.

Let us look at Table 6.2 to understand what one can gain from this analysis. In
the table, along with the above indices and distributions, we also give coefficient
Cha = (®° | W) at the reference determinant ’@0) (the latter is taken as is the
closed-shell natural orbital determinant). From Table 6.2 we see that
(@™ | W) = Cpy (s0 that Cpy = 1) only for normal molecules which are far from
quasi-degeneracy (Hg, CH, etc. in the table). In the Hg cluster, due to the frontier
orbital degeneracy, the ground state allows no symmetrical closed-shell structure,
and it leads to the fact that even Cyy is not large. At the same time, the SPEB
orbitals generate the spin-projected determinant which provides a sufficiently high
overlap with the exact wave function. The same is true for dissociative states in
Table 6.2. Interestingly, in this table the Ny, indices turn out, as a rule, to be more
close to the N, values than to the N, ones. The spin—polarization diagrams (two
columns in Table 6.2) deserve attention too. From them we see that the spin-up
EUE distributions are preferably localized in those parts of molecules where the
spin-down EUE distributions are localized poorly, and vice versa. This behaviour
outwardly resembles features of the alternant MOs introduced by Lowdin (e.g., see
Fig. 3 in [66]). The distinction between the two descriptions is in the fact that the

{119} and {I1”} describe the “spin” localization of EUE, that is purely correlation
effects, whereas the spin-up and spin-down orbitals in UHF, EHF etc. correspond to
individual one-electron states without specifying correlations per se. In particular,
UHF orbitals are always nonzero whereas the spin-polarization indices can disap-
pear (e.g. in ‘one-electron’ limit). It is a matter of no small importance that the

SPEB orbitals and corresponding distributions {I1?}, {IT}} are generated by exact
(FCI or RAS-CI) wave functions or high-level many-electron approximations.
Opposite to the latter, UHF and EHF frequently provide only a small part of
correlation effects for molecules in equilibrium or not too far from it (e.g., see [67]).

Alternatively, the EUE structure (within the SPEB) can be depicted by the
special spin-arrow diagrams representing together the {I1%} and {Hﬁ} distributions.
One may think of such diagrams as giving the antiferromagnetic EUE images of
molecules. Some examples are given in Fig. 6.3. Notice that the interpretation of
molecular structures in terms of antiferromagnetic coupling has a long history.
Implicitly, it was used in the Hartmann work [68]. Usually this terminology is
invoked when analyzing z-conjugated polymers and atomic clusters [69-75].
However, the nature of antiferromagnetism for the overall singlet state in molecules
is not so simple as in the case of the solid state ferromagnetism [69, 70]. We return
to this issue in Sect. 6.11.
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Fig. 6.3 Antiferromagnetic EUE images for the Hg cluster, vinylidene and twisted allene
molecules

W -

6.10 Unpairing in Excited States

The molecular excited states are just those in which the electron unpairing is one of
the key points in understanding the nature and properties of the electronic transi-
tions. But only in few works, such as [15, 62, 76-78], the EUE characteristics were
explicitly invoked for analyzing excited states. Recall that the simplified approxi-
mations are typically based on CIS (CI singles) and TDDFT (time-dependent DFT)
models. For singlet excitations the CIS density matrices were first derived by
McWeeny [79]. Then they were generalized [80] and extended to RPA (random
phase approximation) and TDDFT ([81, 82].

The CIS wave function, as a particular case of Eq. (6.27), can be written as
follows:

Y)Y = 3 ¥ Ca @), (6.66)

with ‘CI)I“) being the singly excited configurations, and C,; the normalized ampli-
tudes (configurational coefficients). For our purposes we will use the equivalent
form of Eq. (6.66) which is based on spinless amplitudes z,;, so that

’TCIS>= i i Tai|(bi—>a>v (667)
i=la=n+1
where
@0y =( |00+ [0 A2 (6.68)

are the standard spin-singlet configurations [83]. The charge density matrix for this
‘TCIS> is
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DS =2p 41zt —1t, (6.69)

where the spin-free transition matrix 7 is defined by the formula

!“
I
™=

z Tai |(pa><(pi|7 (670)
la=n+1

and p is the previously defined projector (6.36) on occupied spin-free MOs of the
reference determinant (e.g., the RHF determinant). To guarantee the normalization
condition (Y¢S | PEISY = 1 we impose the condition Trr*z=1.

Having at disposal density matrix (6.69) it is easy to perform the hole-particle
analysis of the CIS method. In this case, Egs. (6.40) and (6.43) are valid because the
CIS states have no anomalies in the density matrix spectrum. Simple manipulations
on Eq. (6.37) lead to

D [CIS] =7zt 47t 7, (6.71)
SO
N[CIS |=N, _,[CIS | =2 (6.72)

for any CIS state [15]. The result is quite natural, and it is in agreement with the
standard spin structure of each singlet-spin configuration |®;_,,), Eq. (6.68). The
same result is obtained for x-index (6.22): Njﬂ [CIS]=2. On the other hand, com-

putations on Eq. (6.9) give
N, [CIS] =2{2 - Tr(z*7)* }. (6.73)
From this it follows that 2 <N, ,[CIS] < 4. Thus, we see that again Yamaguchi’s
index overestimates the EUE measure even for the discussed (very restricted) CI
wave function. More important is the result (6.71). This EUE density matrix exactly

coincides with the excitation localization operator, which was first introduced in
[84] (see also Eq. (6.5) in [82]). In the notation adopted here this is of the form

i [CIS]=(zz* +17 1) 2, (6.74)

Thus, in terms of Eq. (6.5),
L' [c1S] = D [CIS] 2. (6.75)
We see that within the CIS approximation the excitation localization indices can

be additionally treated as the localization indices (6.50) of the unpaired electrons
occurring under excitation:
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L,[CIS] = DS"[CIS] 2. (6.76)

This aspect of the EUE theory for CIS and CIS-like models was briefly outlined
in the recent review [76] (in Sect. 14.4). It would be interesting to understand to
what extend this holds true for more general models. We provide here only pre-
liminary insight on this rather difficult question.

For the lowest transitions, the CIS and the related TDDFT excitation energies are
often found in satisfactory or even good agreement with more refined theoretical
estimates. Nevertheless, there are low-lying transitions that cannot be usefully
studied in these popular approximations. Among such are the so-called
double-excitation transitions for which the excited-state wave function has a sig-
nificant proportion of a doubly excited configurations. Even sometimes, more
efficient methods may fail as in the case presented for the methylene CH, in [85].
The methylene singlet excited states were also examined in terms of
spin-polarization diagrams [62]. Here relevant supplementary results are added
(Table 6.3). In the table, along with excitation energies and EUE indices, we present

the most important squared norms ||C¢||* defined by Eq. (6.31). These norms are
computed in the basis of the ground-state natural orbitals.

From the table we observe that 1B; and 1A, terms are CIS-like states
(|C1|F =1, all N, =2). The 2A,, excited state is the doubly excited state

(|C2||* = 1), which, however, has almost the same small N, value as that of the
ground state (see Tables 6.2 and 6.3). Thus, the EUE indices may not reflect the
multiconfigurational character of excited states. To elucidate this issue, let us
consider the main part of the NOON spectrum for the ground and excited states of
CH, (Table 6.4). In the table we omitted the maximal NOON value 2, which is due
to the (1s), frozen core of the carbon atom. Additionally, we included in Table 6.4

the main hole-particle index Ny_p, Eq. (6.39), and the related index N}(lrifg. The

latter was computed by Eq. (6.38) with p taken as the projector on the occupied MO
of the reference determinant used in the CI expansion (6.27). Recall that in
agreement with definitions (6.32) and (6.33), hole-particle index Nh_p can serve as
a suitable measure for multiconfigurational character in the corresponding CI
expansion (6.27). From Table 6.4 it is clear that the 1A; and 2A; states are very
similar in their NOON spectrum. Only in the case of the 2A; state its closed-shell

Table 6.3 Electronic characteristics of the CH, lowest excited states at the FCI/6-31G level

State Y (Co)? llC1 |2 |G| Nogq N, Nege

1B, 1.74 0. 0.957 0.019 2.27 2.21 2.12
(0.005)

2A, 4.48 0.028 0.002 0.931 0.68 0.49 0.35
(0.006)

1A, 6.00 0. 0.926 0.051 2.33 2.27 2.16

Vertical excitation energy A in eV, oscillator strength in parenthesis
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Table 6.4 Hole-particle EUE indices N, “p and N]ﬁ‘ff;, and NOON spectra for methylene’s lowest
states at the FCI/6-31G level

State Noop N}(lfif; NOON

1A, 0.32 0.32 1.9754, 1.9676, 1.8974, 0.0856, 0.0278 ...
1B, 2.13 2.14 1.9735, 1.9640, 0.9954, 0.9919, 0.0255 ...
2A4 0.35 4.00 1.9600, 1.9476, 1.9155, 0.0979, 0.0276 ...
1A, 2.16 2.19 1.9617, 1.9562, 1.0025, 0.9932, 0.0292 ...

nature is combined with the high multiconfigurational character when ||C,||* =1
) 2A,] = 3.997. The

-p
example demonstrates a usefulness of the hole-particle indices as supplementary
characteristics of excited states. Incidentally, one can observe from Table 6.4 that
the 1B, state of CH, provides an example of the pathological state (for definition,
see Sect. 6.4).

The above outlined peculiarities in using EUE indices for the multiconfigura-
tional states return us to the problem of constructing excitation localization indices
for arbitrary excitations. We can proceed in many ways. In the scheme [82, 84] the
operator modulus of density matrix difference, A D, is used. Namely, the normal-

(see Table 6.3). This picture is in accordance with N,

A A
ized excitation operator, L , can be naturally introduced as follows:

AH

L =(TrjaD])"'AD, (6.77)
AD=D"-D,

where D" is the charge density matrix for the excited state of interest, and by
definition, |[AD| =[(AD)*]'”. Then, as usual, the atomic indices

L=1Y (), (6.78)

HEA

furnish the excitation localization measure assigned to each atom of the excited
molecule. Doing so for CIS-type states (6.67) we automatically produce indices
(6.76).

To solve the same problem by another way, take atomic EUE distributions (6.50)
and compute the corresponding normalized indices

*(eff *\ el e * 1 el e
L = (D) - D /3, | (D7) - D). (6.79)
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These indices characterize the excitation localization in its own manner. For

CIS-like states the distributions {L,} and {Lz(eff)} are sufficiently close, as the
methylene molecule example shows. In particular, we have

Le[1By]=0.921, Li[1B;] =0.039,
L [1B,]=0.971, L™ [1B,]=0.015.

However, for the double excited state the compared results are markedly
different:

L:[2A1]1=0.933, L;;[2A,]=0.034,
L 2A,]=0.760, L™ [2A,]=0.120.

We conclude that for the depiction of excitation localization, the EUE indices
should be used with a certain care.

6.11 Conjugated Hydrocarbons in w-Electron Schemes

In this section we consider computations of the EUE indices for moderate-sized
systems within the easily implementable semi-empirical methods. Before doing so,
we briefly touch on simplified ab initio approaches to polyaromatic hydrocarbons
(PAHs). Many of the ab initio studies are based on various UHF and unrestricted
DFT schemes [86—88]. By these schemes, crude estimates of EUE effects can be
made even from the (S?)yyr values. Really, for slightly correlated systems the
semi-quantitative relation

Netr ~ Noga/2 (6.80)
holds (e.g., compare with the results of Table 6.2 for equilibrium geometries). As an
additional example, take the benzene molecule for which we have (in 6-31G basis
set): N4qUHF] = 1.101, and N_[UHF] = 0.584. Recalling Eq. (6.13), we can
expect that the rough estimate

Netr = (SH)UF (6.81)

can be utilized for a simplistic description in other moderately correlated systems.
Such estimates are easy because the needed data can be routinely obtained by most
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quantum chemical programs. Besides, in the current literature, the (S?)V" data are
available for many PAHs (e.g., see [87, 88]).

To be more specific, consider linear polyacenes for which a model geometry will
be used here and throughout the paper: the carbon backbone is formed by regular
hexagons with the C-C bond length of 1.4 A and the C-H bond length of 1.09 A.
Using the Gaussian program package [89], we computed (S?)UHF for the first ten
linear polyacenes Cy4,1oHo, 44 at the UHF/6-31G level. The results are conveniently
expressed via the linear regression

(SHUHF(n) = 0.6462 - n, (6.82)

with residual variance 10”3, thus reflecting a size-consistent behavior of the index.
In the case of large carbon-containing systems it is suitable to compare the EUE
index value per carbon atom. For instance, we introduce

———UHF

S = e (6.83)
where N is a number of carbon atoms (N, = 4n+ 2 for Eq. (6.82)). For large linear
acenes we have from Eq. (6.82)

TUHF
(S%) =~ 0.16.

Likewise, other EUE indices per carbon atom are defined:

Nodd = Nodqu (684)

Negr = Neir /Ne» (6.85)

Returning to Eqgs. (6.81) and (6.83) we suggest a rough estimate,
Neff ~ (.16, (686)

is reasonable for sufficiently large linear polyacenes treated with the 6-31G basis
set.

An interesting point is a measure of the participation of z-electrons in the total
unpairing. Our experience with small conjugated systems tells that usually ~2/3 of
the average DeCff value is from z-electrons. Together with Eq. (6.85) it gives a crude
estimate

Negtla] = 0.1. (6.87)

This approach is in concordance with the fact that in large conjugated systems,
electron correlation largely influences the outer n- electron shells. That is why most
physical models of conjugated polymers are based on one or another version of the



180 A.V. Luzanov

n-electron approximation (most often in the form of a many-electron Hubbard
model, see reviews [69, 90]). Furthermore, previous non-empirical studies [8, 9, 11]
in large conjugated molecules (by using DMRG and MR-AQCC) have considered
only m-electron contribution to EUE. All this has motivated us to undertake a
detailed study [12] of the EUE effects within the conventional n-electron theory.
Below we shortly outline the main results of this study.

For the selected PAHs, the results are presented in Table 6.5 where in the
structural formulas the EUE atomic distributions are displayed in a qualitative

manner. All EUE indices (except for (SZ)UHF) are computed within the hole-particle
approach, Eqgs. (6.37) and (6.38), which, for ground states, is equivalent to the
Head-Gordon approach. Here, the Parizer-Parr-Pople (PPP) m-electron approxi-
mation is employed. We see that again the UHF scheme based on Egs. (6.10) and
(6.17) works well (in respect to the CCD results), and this fact was emphasized in
[12]. The m-electron UHF scheme (n-UHF) is favorable because of its simplicity of
computation, and ease of interpretation. However, this method is not recommended
for systems with a relatively small n-electron correlation effects, e.g. in the per-
opyrene molecule (the third entry in Table 6.5). In the case of too little electron
correlation, the half-projected Hartree-Fock (HPHP) [91] and EHF schemes are

= — — ———UHF
Table 6.5 Specific EUE indices Ngf?F, N::;-IF, N§$D, and (S?) for m-systems in pentacene

bisanthene, peropyrene, and pyranthrene within n-UHF

_ ——UHF —UHF —EHF —CCD

m-Structure (8% Ny Ny Negr
0.056 0.061 0.059 0.061
0.045 0.056 0.055 0.057
0.025 0.027 0.041 0.047

0.032 0.036 0.042 0.049
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applicable. We remark that the EHF results in Table 6.5 are sufficiently close to the
CCD ones even for the peropyrene and pyranthrene molecules which have modest
electron correlation effects. These observations are the basis on which the UHF
method, with obligatory use of Eq. (6.17) or more refined indices, can be recom-
mended for studying EUE effects in large graphene-like molecules [12]. The use-
fulness of this approach shows Table 6.6 containing two examples taken from the
cited paper. To the previously defined quantities, Eqs. (6.83) and (6.85), we have
included in the table one additional characteristic index, N!°°. The index X' gives a
mean number of atoms (sites) on which the unpaired electrons are preferentially
localized. Explicitly,

N = (3 (R A2 (03" (6.88)

This equation is a generalization of the participation ratio (6.19) and gives a
more sharp estimate for a number of strongly localized atomic centers (sites). The
related index was employed in [92] where it is shown that the index can well
distinguish between localized and extended states. From Table 6.6 we see that
indeed N gives an acceptable average number of the essentially localized
unpaired electrons. When using N'® one must keep in mind that this index is
informative if R!°° <« N, that is in the case of a sufficiently sharp EUE localization.

Now we remark on the NOON spectrum {4;} given in the fourth column of
Table 6.6. Similar plots are frequently displayed when considering the nature of
EUE in large molecules [8, 9, 11-13, 26]. The first system in the table belongs to
the so-called periacene family. The earlier theoretical study of this family was given
in [93] where a simplified Hubbard-like 7-UHF method was applied. In the recent
papers [8, 9, 11] the EUE analysis for the periacenes was given at the high-level
ab initio level. Here, we can directly compare these reliable ab initio results and
ours, thanking to the fact that the needed ab initio data were kindly provided by the
authors of [9, 11]. The results are displayed in Fig. 6.4, where the same nomen-
clature of periacenes, as in [9, 11], is used. Comparing the corresponding plots, we
observe their really close similarity. More specifically, the same localization of few
NOON in the vicinity of 1 is found in the ab initio as well as the m-electron
calculations, and this localization corresponds to a genuine open-shell (polyradical)
singlet structure. A general view of the plots is also similar. Moreover, in the (5a,
6z) periacene the EUE atomic localization is comparable (see [12] for detail). On
this account, we suggest that the n-electron EUE model, which is based on the
simple UHF expression (6.17), should be useful for other large-scale conjugated
systems, at least at a qualitative level. The symmetry (exact or approximate) of the
NOON in respect to point A =1 is also deserve attention. For alternant hydrocarbons
within any correct PPP scheme this symmetry is exact, and it is easy to prove (see
the last paragraph in Appendix B). The ab initio results [9, 11] approximately fulfil
this symmetry which implicitly reflects the physical equivalence of the holes and
the particles in alternant n-systems [94] (see again plots in Fig. 6.4).
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(5a, 42) (5a, 52) (5a, 62)
2 s 2 — 2 m—
1 % 1 ~ 1 .
= -k e K - k
1 27 54 1 33 66 1 39 78

Fig. 6.4 Comparison of the ab initio [9] (violet color), and semi-empirical (green color) NOON
spectra for (5a, nz) periacenes

Notice that the above cited EUE ab initio study was performed for active m-
orbitals. Thus, the EUE indices obtained from corresponding NOON spectra, are
related to respective m-electron contributions. In case of the periacenes (5a, 4z), (Sa,
5z), and (5a, 6z), we find, from the respective NOON spectra, the following
ab initio Neg [z] values: 0.111, 0.108, 0.108, in agreement with rough estimation
(6.87). The analogous n-electron PPP data will be given in Sect. 6.14, Table 6.11.
They are approximately twice less than the ab initio values. At the same time, if we
exploit the so-called Mataga formula for two-electron two-center integrals y,,, (with
a Coulomb-like distance dependence), then we obtain the results closer to the
ab initio ones. In particular, for the (5a, 6z) periacene the n-UHF scheme with
Mataga’s Y gives Nege = 0.129. Nevertheless, the standard T-parametrization we
use (7,, by Ohno’s formula) is more appropriate for n-electron correlation effects,

as was established long ago. We also computed index (SZ)UHF (by using the pro-
gram package [89]) and get a crude ab initio estimate via Egs. (6.81) and (6.83). For
the (5a, 6z) periacene at the 6-31G level we thus obtained N [rz]=0.09 which
seems quite reasonable in comparison with the above non-empirical value
Nege[7] 220.108 from [9].

As mentioned in Sect. 6.9, the EUE structure can be interpreted in somewhat
notional terms of antiferromagnetism [95, 96]. Indeed, a local spin density is absent
in any correctly defined singlet state, and, strictly speaking, the Néel-like spin
structure is not possible for the single spin-singlet molecule. Thence, we cannot
introduce, as usual, the antiferromagnetic order parameter (such as average differ-
ence of spin density between neighboring atoms). For the correlated singlet states,
spin density matrix can be substituted with EUE density matrix (6.5). Conse-
quently, index N, might serve as an appropriate order parameter for polymer
structures,. This index satisfies inequality: 0 < N4 < 1, that is natural to expect from
the order parameter. In our case, N, o = 1 corresponds to the ordered Néel state with
the maximal ‘spin’ value in each sublattice of the bipartite structure. The given
interpretation introduces an obviousness in understanding EUE for bipartite net-
work structures. By adopting this reasoning, one can, moreover, invoke the best
spin-polarized orbitals, that is the SPEB solutions discussed in Sect. 6.9. It allows
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us to reinterpret N as a “spin” order parameter for exact or almost exact wave
functions too.

Before closing this section let us comment on the UHF calculations presented
above. From the formal viewpoint, UHF is the one-electron model which deals with
a single determinant wave function |®). However, for strongly correlated systems
the UHF wave function well mimics many properties of the spin-projected deter-
minant |CI>‘”“) which is, of course, many-determinant state and which takes into
account electron correlation. The closeness between |®) and |®*') had been
demonstrated long ago [70] with the infinite polyene chain treated analytically
within the ‘diagonal’ Hubbard Hamiltonian approximation. The authors had sug-
gested that it is a general feature of UHF solutions in polymeric n-problems. Our
experience with EHF computations on large n-systems confirms these expectations.
In particular, for the large systems the UHF charge RDM, D" as in Eq. (1.10),is a
good approximation to the EHF charge RDM, D, which is provided by the
variational |®**') state. Nevertheless, the UHF spin density matrix does not vanish
for the UHF (spin-polarized) singlet ground state. Therefore, upon obtaining the
UHF solution, the spin density matrix should be ignored (fixed to zero) what
corresponds to an implicit purification of the spin-contaminated singlet state. At the
same time, charge density D" is well defined, and indeed very close to the EHF
counterpart. For instance, we find the following squared norms, ||D® — D"||* v
(deviation of D™ from D per m-electron): 0.0007 for decacene C4,H 4, and O.
0002 for acene C;g,Hsy, respectively. These and many other examples (recall also
Table 6.5) allow us to consider, for large systems, the usual spin-contaminated UHF
solutions as a good approximation to main properties of the spin-adapted EHF
solutions.

6.12 Giant Hydrocarbons and Nanographenes
in a Spin-Polarized Hiickel-like Scheme

In case of huge conjugated systems with several thousands of atoms, even the 7-
electron UHF method, in its full version, necessitates using high-performance
computer clusters. Meanwhile, many important problems of nanoelectronics require
studying novel molecular materials, including graphene nanoribbons, nanoislands,
nanowiggles and other unusual giant honeycomb structures [74, 97-100]. Most of
these structures are based on the so-called bipartite lattices. By definition, the
bipartite lattice is formed by two interpenetrating sublattices, and each of these
sublattices contains only one kind of atoms. Following [101], we will use the term
“lattice” in an extended meaning, allowing the term for finite lattices and even for
any finite-size atomic structures. In the theory of m-conjugated molecules, the
standard term “alternant system” is a full counterpart of the term “bipartite lattice”.

There are many remarkable theorems dealing with abstract and realistic models
of bipartite lattices [94, 101-104]. The well-known Coulson-Rushbrooke pairing
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theorem [102] is one of them. Additionally, the pairing theorem has a nice and
useful matrix representation due to Hall [105]. The Hall formula (see below
Eq. (6.90)) is valid within the Hiickel method, and there is its analogue within the
PPP one-electron approximation. In solid state physics, the counterpart of the
Hiickel approach is known as the tight-binding (TB) model. TB schemes, now more
refined than before in the old solid-state physics days, are very popular because they
have advantages to handle atomic cluster with thousands of atoms, reaching
experimental sizes [106, 107]. Unfortunately, all these methods ignore electron
correlation. In [13] we modified the TB model for bipartite lattices in such a way
that it can handle strongly correlated bipartite lattices, and describe in them the
relevant EUE effects. Below we sketch the main results of this work, and leave most
formal details to Appendix B.

We recall few simple facts from the TB (or Hiickel) theory of bipartite lattices.
For the carbon-containing conjugated systems, the usual basis set {| ;(”)} of the
orthonormalized 2p,-orbitals is employed. The corresponding one-electron
Hamiltonian can be represented by the 2 X 2 block-structure matrix

= — (BO+ g), (6.89)

where all entries are expressed in units of |f,| with f, being the standard hopping
(resonance) integral between nearest-neighbor sites (n-centers). The block B in
Eq. (6.89) is the biadjacency matrix, that is B, =1, if 4 and v are nearest-neighbor
sites, otherwise B,, =0. Obviously, due to a bipartite structure of the considered
lattices we can always renumber lattice sites in such a way that Eq. (6.89) holds
true. From Eq. (6.89) it is not difficult to deduce the Hall formula [105] for the
charge density matrix (or Coulson’s bond-order matrix):

Dy =

! B(B+B)_m). (6.90)

((B+B)‘1/ZB+ I

This and somewhat more general relations are rederived in Appendix B.

Certainly, Eq. (6.89) is only a specific case of Eq. (6.4), and no EUE effects are
possible at this level of description. It would be important to extend the Hiickel
model in order to somehow account for electron correlation effects without over-
simplifying the model. The approximation of this kind was given in [108] and
applied to EUE problems in [13]. The most important expressions of this work are
reproduced here (see cit. loc. for the argumentation and precursors of the model).
The model was referred as to the quasi-correlated tight-binding (QCTB) method.
Within QCTB, we construct the effective Hamiltonians matrices

51 B 51 B
a_ _ p_ _
= (B+ - 51)’ I <B+ - 51) (6:91)
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where § is treated as a fixed auxiliary parameter. The 4% and #” matrices are the
counterparts of common Fock matrices for spin-up and spin-down electrons,
respectively. Unlike UHF, no self-consistency procedure is needed for obtaining the
corresponding density matrices p, and pg. The approach used is the most similar to
the earlier approximate one-parameter UHF theory (e.g., see [101], the second
citation). However, we can always obtain nonzero correlation effects by a suitable
choice of the fitting parameter , and it allows to extend the applicability of the
whole approach. Only for very strongly correlated systems, QCTB and the
one-parameter UHF theory scheme are virtually equivalent.

Now turn to computational aspects. For matrices p, and pg, a block represen-
tation is easy to find by simple algebra (see Appendix B). As a result, we get charge
density matrix of the QCTB model, Eq. (B4), and the respective NOON spectrum,
Eq. (BS). It comes to a suitable working formula for the main EUE index:

Ny =N,_,=N-2 zl i\ + €2 (6.92)

Here ¢ = |¢;| are eigenvalues of (B*B)'”, that is {&;} is precisely the Hiickel
energy spectrum (in modulus) of the respective alternant system (the bipartite graph
spectrum). In specific computations we will use value 6 =724 which was found by
fitting. Incidentally, remark that for small & it is easy to check that with
second-order accuracy in 6, N 44 =2N.g, as suggested before from a numerical
experience (see Eq. (6.80)).

The above quasi-Hiickel approach to EUE turns out to be reasonable and suf-
ficiently close to the UHF and even CCD schemes (see Table 1 in [12]). Here we
extract from this reference two kind of representative examples. One kind of them is
related to the conjugated polymer structures (Table 6.7), the other to the finite-size
graphene nanoflakes (Table 6.8). Before considering Table 6.7, let us make brief
preliminary remarks. For many n-electron structure, particularly, with translation
symmetry the analytical solution of the Hiickel band spectrum is well known. For
instance, consider a long polyene chain [-(CH=CH)-], (polyacetylene) as a
paradigmatic example of strong correlation in the physics of conjugated polymers
[69, 109]. In case of the finite polyene chain the Hiickel spectrum is
ex=2cos[mk/2n+ 1)](see any quantum chemistry textbook). For the asymptotic
case, n— oo, straightforward computations on Eq. (6.92) (with approximating a
sum by integration method) lead to

N =N<1 — %arcsin[l/\/ 1 +52/4]>. (6.93)

We see from this equation that in the limit of large & (very strong correlation
effects) the EUE index N — N, as it should be. Evidently, the value N ;=N
corresponds to breaking each of m-bonds, when all z-electrons are unpaired.
Remark that for infinite polymer chains the NOON spectrum {4} generally covers
a whole interval [0, 2]. Therefore, instead of discrete set {4 }, the continuous (more
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Table 6.7 The N index and quasi-continuous NOON spectrum A(k) (0 <k < 1) for infinite 7-
conjugated polymer chains

Polymer N Spectrum
M 0.092 2
(7=0) 1
0.5 1
0.076 2
™ O\
(n=0.07) 1

0.5
[ A 0.098 5

\ 1
05 1
= 0.086 N
1
/
05 1
\
B ] 0.041
F —
§ ) 1
L
) O _____ 05 1

exactly, quasi-continuous) function A(k) of the continuous variable k makes its
appearance. For convenience we make using the unity interval [0, 1] for continuous
variable k.

A more general case is the polyene chain with alternating resonance integrals
Buyr1=1+(-1)" '1)Bo. where 1) is usually small quantity (we put 7 =0.07). The
Hiickel spectrum is of the form [110]: £(k) =2 [l + 7>+ (1 —7?) cos 7 k]'”, where
0 <k < 1. This case is intractable analytically, but numerical computations are easily
performed, and the results are given in Table 6.7 (the first two systems in the table).
Another interesting example is the linear polyacene (the third system in Table 6.7), for
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which in accordance with Coulson [111] we have (k) = [1+(9 + 8 cos 7 k)] 2. In
order to present a more complete comparison we add in the table the results for the
graphene nanoribbon (4-ZGNR in the standard nomenclature) and for the poly(pe-
rianthracene) chain. The n-electron band structure of these two systems is computed
by a code from [112].

As seen from Table 6.7, only the polyacetylene with alternating bonds and poly
(perianthracene) molecules exhibit a gap in their NOON spectra. In contrast, the
polyacene and 4-ZGNR demonstrate a quasi-continuous NOON spectrum covering
the whole interval [0, 2]. Furthermore, crowding A(k) near a ‘polyradical range’,
that is near 1= 1, is observed in these spectra. A significant difference, in the N off
index, between the 4-ZGNR and poly(perianthracene) can be simply understood in
terms of Clar’s aromatic sextet theory (for the latter see, e.g., [74, 113]).

Now we will discuss in brief the QCTB results for three graphene nanoclusters
with Nx10?, presented in Table 6.8. We only note that an unprecedented rise of
interest in the graphene engineering researches generated the enormous literature in
which recent books [74, 114, 115] only minimally reflect this graphene popularity.
The first two systems in Table 6.8 are of a nanoflake family with the D¢, symmetry
(hexagonal graphene nanoflakes). The cluster system, Cjzpp, is with the
armchair-shaped edge, and the second, C359, with the zigzag-shaped edge. From
the table we see that these two clusters have a small difference in energy stability
(within QCTB), but a significant difference in the EUE characteristics. In
zigzag-edge nanocluster Ci3s9, the third system in Table 6.8, more electrons are
unpaired, and again these unpaired electrons are preferentially localized on edge

atoms. It is revealed by localization index N:ffr d (sum of atomic EUE occupancies
divided by a number of the border atoms). On this account the zigzag edge atoms
should be more unstable, or more reactive than the armchair edge atoms, and
thereby the armchair nanoflakes be more stable in accordance with experiment (see
[116], p. 382) and a model DFT study [117]. Chemical reactivity of graphene
structures is a rather frequent issue discussed in current chemical literature [74,
118-122], and the principal inference we can make is that the major reactivity
contribution comes from the edge states of nanoclusters. The very different models,
from simplistic semiempirical to high-level nonempirical ones, predict the same
qualitative trends. Notice that in the case of graphene nanoribbons with zigzag
edges the strongly localized edge states were first reported almost 20 years ago [72]
where the Hubbard n-UHF model was used. Apparently, in all models the char-
acteristic effects of chemical topology are exhibited, and this fact demonstrates the
practical usefulness of even naive models for studying large conjugated systems.
We close this chapter by noting that the proposed n-electron QCTB scheme can be
modified for an all valence-electron treatment by using the extended Hiickel MO
theory [123]. In this case the ionization potentials of 2p-electrons in the respective
Wolfsberg-Helmholtz relation should be changed similar to Eq. (6.89).
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6.13 Electron Unpairing in Strong Fields

The behavior of molecules under external perturbation shows the interesting, but
not unexpected, fact that the electron unpairing greatly increases in strong fields.
We consider here some representative examples carried over from [124, 125]. First,
we discuss the effects of static electric fields for small molecules. A typical illus-
tration is provided by an example of the rhombic cluster of Li, in an atomic-scale
electric field (~0.1 atomic units). The results of the FCI/STO-3G calculations are
shown in Fig. 6.5 where we plotted, in atomic units, the dipole moment d, and N
as functions of the electric field strength E, and the static field is applied along the
longest diagonal (x-direction) of the rhombus.

By inspecting the plots, we see a strong increase of the dipole moment in the
field, but N, behaves more unpredictably, particularly in the region where the
dipole moment curve undergoes a small inflection. A sharp maximum of N in this
region corresponds to a diradical state (N =2.04). Interestingly, in this extremal
state the most unpaired atom (judging from ij,ff) is the ending atom on the longest
diagonal, whereas the opposite atom on the same diagonal has zero EUE density
and net atomic charge +1 (that is, locally it is Li*). This corresponds to the valence
scheme of the form

2N e

Ll'\Cj)_L_i /LI
Practically the same field dependency is obtained within the CISD and EHF
schemes. Furthermore, passing from the STO-3G basis set to the 6-31G basis set,
we obtain similar plots. For other small systems, see [125]. As one can see from
[124], the analogous treatment (at the FCI/PPP level) of small conjugated hydro-
carbons, such as the naphthalene and biphenylene molecules, gives the results
resembling those of the Li, case. For extended conjugated molecules the results are
even more pronounced. Notice that in [124] we preferred using x-index, Eq. (6.22),
to using other EUE measures because the N, index requires no computations of D,
and this gives a certain advantage when it is necessary to calculate, at the FCI/PPP

level, the x-index for hundreds or more electric-field points.

d, Neff
251 2.04

01 o0z < 0.1 02 ¢

Fig. 6.5 Changes of dipole moment d, and N, in a uniform electrostatic field of strength E for
the rhombic Liy cluster at the FCI/STO-3G level
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Table 6.9 Dipole moment d, and EUE index N for decacene C4Ho4 and Clar’s structure
C4oHyo in a static electric field as functions of the strength field E, applied along the long
molecular axis (x-axis) within 7-EHF scheme

T -system d, N

CpoHoy 310 5.1

COOCOOCO00 35

0.030.06 0.1 0.030.06 0.1

CioHop 139 5.8

0.9
0.030.06 0.1 0.030.06 01

It is interesting to see a typical difference in behavior between strongly and
slightly correlated systems in a strong static field. For definiteness, we examine two
molecules with the same numbers of carbon atoms. These are the linear decacene
molecule, C4H»4, and Clar’s type aromatic hydrocarbon C4,H,, (see Table 6.9).
Recall that Clar’s hydrocarbon is described by a structural formula which consists
exclusively of benzenoid rings interlinked by quasi-single bonds [126]. It is quite
natural that the PAHs of the Clar type have significantly less diradical (polyradical)
character. The data from Table 6.9 for the decacene and Clar’s system C4,Hyg in
zero electric field agree with this. However, the situation is somewhat different in
the case of strong field. Namely, the maximal N, index of the Clar system is more
than six times larger than that in the field’s absence, and this value becomes still
greater than the maximal N index for the decacene molecule. In the latter, we
observe only a modest increase of the electron unpairing in the field (the maximal
N is about 1.5 times larger than that in the field’s absence). Note that the dipole
moment shows the qualitatively similar behavior for both systems.

We would like to stress that the observed enhancing of EUE effects in the stable
PAHs under strong fields is not confined to the static electric field. Somewhat similar
effects were reported in [127] where the action of strong magnetic field on small
acenes and antiaromatic systems was examined at the FCI/PPP level (within London’s
model of magnetic field effects). It turned out that in the strong magnetic field, aro-
matic molecules usually become diradicaloid and non-aromatic. Accordingly, the
antiaromatic systems dramatically reduce their initial diradicaloid character, and thus
lose their initial antiaromaticity. The interconnection between EUE and singlet-triplet
splitting (STS) was also discussed for these n-problems [127]. At the ab initio level, a
more extended study of STS and the polyradical character was presented in [11].

Let us return to the external field effects. Other cases are given in [27] where we
studied small molecules in laser fields which generate transient diradical or more
complex structures. Below we extend this study to the conjugated systems by using
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Table 6.10 TD-UHF temporal behavior of dipole moment d,(r) and EUE index N(¢) for the
decacene molecule in the pulse laser field with enveloping function E(¢) (all quantities in atomic
units)

E(?) cos(wr) d (1) N (1)
0.05 35 172
0
-0.05 _134 3.7
200 400 ' 200 400 200 400

Total observation time is about 400

the m-electron time-dependent UHF (TD-UHF) method. We take again the decacene
molecule, and the same pulsed laser field, as in [27], the first entry in Table 6.1. The
corresponding pulse field is of the form E(7) cos(wf), where E(¢) is an enveloping
function, and ® = 0.06 atomic units. The pulse field and temporal dependencies of
dipole moment, d,, and N index are given in Table 6.10. These data show that,
unlike the static field (see Table 6.9), the pulse laser field produces the enormous
electron unpairing in the linear decacene molecule. The similar results are obtained
for other PAHs.

The above considered effects are implicitly connected with other strong per-
turbation effects reported in the literature. For instance, distorted graphene-like
structures are really observed after irradiation generating lattice irregularities, e.g.
vacancies. It leads to appearance the dangling carbon bonds, and thereby to the
electron unpairing. The recent semiempirical study of surface states at a
many-electron (UHF-type) level was given in [128]. In our context, paper [129] is
presented even more relevant as giving the ab initio model of single defects and
treating the EUE effects simultaneously. Summing this section we would like stress
a nontrivial role of electron unpairing in various physical phenomena taking place
in molecular materials.

6.14 In Search of Better EUE Measures

Now we address a difficult issue what is good and what is not for the EUE theory.
The first discussions were started in papers [28, 29]. In the present work the
Yamaguchi index [1] is treated mainly as a historically valuable first quantity for the
EUE characterization, but not recommended for wide practical use (works [130] are
a rare example of using NX3™ now). Instead, we advocate the H-G index [5] for
which a clear hole-particle physical nature, Eq. (6.40), is established [12]. Never-
theless, one can encounter intrinsic interpretational problems when judging the
adequacy of any quantitative EUE measure, and the N index is not the exception.
For instance, we obtained in the anthracene molecule a nonempirical estimate
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N =1.9. Given the well known stability of anthracene, is it a reasonable mag-
nitude? Before going on, we must ones again consider a formal side of the issue.

For this, we will include into consideration the second index proposed by
Head-Gordon in [5]. This index denoted by Noygq[2] (as in Appendix A) is defined as

follows:

Noaa[2] = % 20— ) (6.94)

Equation (6.94) was intensively applied in papers [9, 11, 129, 131] as even more
preferable tool for quantifying EUE. By using Nogq[2], a not so important part of the
NOON spectrum (mainly due to dynamical electron correlation) is effectively cut
off. Another way to approach the EUE problems is to use matrix invariants of the
deviation matrix

AD=D-2p. (6.95)

This matrix has a meaning of a hole-particle correction to 2p (see Appendix C
for detail). Following the same procedure presented earlier for CIS states [76, 82,
84], we define the matrix modulus

|AD| =[(4D)*)'? (6.96)
and introduce the hole-particle invariants in form of traces of the |AD| powers:
Ny _,lg] =Tr|AD|?. (6.97)

The formal analysis of Nh_p[q] is given in Appendix C. In particular, for ground
state we have

Ny_,[1]=N,_p =Ny (6.98)

The second-order index Nh_p[2] has a meaning of the squared norm of the
density matrix deviation AD:

Ny_p[21= |lAD|P. (6.99)

Our experience shows that the special case q = 3/4, which produced the
hole-particle invariant Nh_p[4/3], can also serve as a good EUE measure. In this
case, as in the case of the above N 44 [2] index, nonsignificant contributions from
dynamical correlation are effectively suppressed. Apparently, the dynamical cor-
relation has no direct relation to diradicality and polyradicality. However, the
considered procedure may be not well suitable for dissociation states, as one
example in [5] had shown this for the N4, [2] measure. Nevertheless, for typical
equilibrium molecular states, such a suppression seems to be quite sensible if one is
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Table 6.11 Generalized EUE indices Ny, _p[g] and respective localization indices R for the (5a,
4z), (5a, 5z), and (5a, 6z) periacene molecules within t-UHF scheme

Periacene My-p N,y 2] Nu—p[4/3] NL"fP Rl 2] NL"ip[4 Al
(5a, 4z) 0.054 0.041 0.041 6.3 5.3 5.5
(5a, 5z) 0.057 0.042 0.042 8.4 7.1 7.0
(5a, 6z) 0.060 0.048 0.045 11.4 10.0 9.7

Here Ny coincides with N (1)

interesting in an estimation of polyradicality. In Table 6.11 we present the results of
using N, _, (for the ground state N,_ =N, ), Nogq [2] and N, _ [4/3] for peri-
acenes discussed in Sect. 6.11. We supplement the table by the values of average
locality index N, (6.88) for the each EUE measure. It is seen that the N, [2] and
N, _,[4/3] data differ nonsignificantly. With this, N, _ [4/3] is of the hole-particle
origin, as the initial N, _ index. Moreover, judging from the ¥, . magnitudes in
Table 6.11, both measures, N,y [2] and N, _,[4/3] are associated with more
localized EUE distributions than in the N case. This fact gives additional support
for using the special measures N 4, [2] and N, _[4/3] for describing a polyradical
character in conjugated hydrocarbons and related carbon-based networks.
Seemingly, it would be more preferable to perform EUE studies by invoking
several quantification schemes. One needs also to take into account the specific
features of the problem before deciding what the scheme should be taken as a more
relevant in the problem context. For instance, if we are interesting in the EUE
spatial localization, then the locality index N, . (6.88) can be quite appropriate. If
the localization measure of the NOON spectrum {4, } near A= 1 is in question then,
then indices N}, _[q] and N4y [g] with large g, e.g., g=4, are more preferable.

6.15 Concluding Remarks

The initial intent of this chapter was to provide a broad overview and a critical
assessment of various trends in the theory of effectively unpaired electrons. In the
process of preparing the manuscripts some accents were shifted, and we would
unavoidably restrict ourselves to a narrow set of issues and examples for discussion.
For instance, we only slightly touched on the electron unpairing analysis in
structures with a spatial separation of molecular subunits. These are bichromophore
systems, molecular dimers and complexes, radical and ion-radical pairs, etc. The
recent papers [77, 78, 125] are dedicated just to these problems. Besides, many
interesting systems, e.g., semiconductor quantum dots, fell beyond the scope of this
review. Indeed, many-electron aspects of the multiple exciton generation (MEG) in
quantum dots are closely related to the EUE theory, but only circumstantial evi-
dence about EUE effects in MEG can be found in the current literature [127, 128].
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Before closing, we briefly reiterate the basic points. The conventional formalism
of density matrices was used here in such a way that it helped us to understand
some essential features and interrelations between different EUE measures. In
particular, in Sect. 6.5 we see that the hole-particle index, which was introduced in
[15, 16], is identical, for ground states, to the previously proposed H-G index [5].
We also examined excited states where the situation is more complicated, so that
the H-G and hole-particle indices should be considered concurrently.

We must admit that the EUE theory is a little trickier than it seems. Indeed,
rigorously speaking, the EUE problem is not well-defined, because it does not have
a unique solution [5]. Nevertheless, we tried to understand what are the most
appropriate definitions of the EUE measures. Now, we could report only prepara-
tory results until a subsequent, more substantial analysis. Nevertheless, possible
directions to modifying the existing measures are discussed here. In particular, we
could retain the same hole-particle description for the modified (‘q-extended’) EUE
measures in which unwanted small contributions to EUE are suppressed, as it was
previously done in the case of the second Head-Gordon index, Eq. (6.94). Another
way to produce better EUE indices is to somehow estimate an average localization
of the unpaired electron. This leads to a possible measure ¥, ., Eq. (6.88), giving
the results which are closer to those expected from a ‘common chemistry sense’.

In our specific applications the stress is put on large-scale carbon-containing
molecules. For those we propose a simple semiempirical scheme [13] which has the
same complexity as the ordinary Hiickel method. It allows us to make quick and
easy estimates of EUE effects even in gigantic conjugated networks which cannot
be rigorously treated by high-level ab initio methods. It is important that the pro-
posed elementary model yields the results which are qualitatively in agreement with
the existing ab initio data [9, 11] for relatively small systems. The influence of
external perturbations on EUE is another attractive field of application. It turns out
that the systems which have a small polyradical character (hydrocarbons of the Clar
type) become extremely polyradicaloid in a strong static electric field (Sect. 6.14).
The laser field effects on the polyaromatic systems are even more pronounced, as
preliminary studies show.

In sum, we would like to stress that during the last decade or so, the unpaired
electron theory came up with new fruitful insights and techniques. In future, the
semiempirical models and concrete results for large systems should be carefully
examined by more rigorous approaches. We believe that a physical side of the
existing simplified EUE theories remains, and plenty of new intriguing results for
electrons in the conjugated molecules will be revealed.
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Appendix A: Duality Symmetry and Generalized EUE
Indices

In this Appendix we clarify the cause for postulating symmetry relation (6.18). For
this aim we introduce a formal operation which can be named the duality trans-
formation and which is well known in multilinear algebra as the Hodge star
operation, or Hodge dual [132]. In the RDM theory an equivalent transformation
was applied in [19, 133], without recognizing it as a Hodge dual. The following
simple example helps to explain this notion in the more familiar terms of
many-electron state vectors.
We consider a two-electron problem in the basis of five spin-orbitals

e beads besdbeads bes) 3 (A1)

Let the ket

[Wa) = lrixa) (A2)

be the two-electron Slater determinant built from [y,) and |y,). By definition, the
dual ket, ‘PE]), is built up from the rest spin-orbitals, giving the three-electron

determinant:

lPFz]) =xaxaxs) (A3)
In the same basis (A1), the maximal Slater determinant |¥p,x) is

|\Pmax>: |Z1)(Q/l’3)(4)(5>- (A4>

It is not difficult understand that we can produce "PE]) from |Wmax) by anni-
hilating in Eq. (A4) the state vector (A2). More exactly, apart from a prefactor we
have

TE}]) = (T[Z] | leax>- (AS)

They say that the obtained three electron state ‘PE]) is the Hodge dual of the
two-electron state |Pp ).

Now consider the respective 1-RDMs. In notation of Sect. 6.6, we have from
determinants (A2) and (A3) the usual Di° matrices in the form of projectors on
occupied spin-orbitals of the respective determinants:



6 Effectively Unpaired Electrons for Singlet States ... 197

DY (|¥e)) = )l + ) el
DTO(T[E]) =)l + ) Oral + s ) x|

We see that

DY (¥y) =1-Dy(¥?) (A6)

where unity operator [ is a projector on all five spin-orbitals from Eq. (Al).

This line of reasoning can be directly extended to a general case including exact
state vectors as well. It the general case we start with a r-dimensional spin-orbital
basis  {|y;)};<x<, and build the respective maximal determinant
[Pmax) =1 - - -1, (clearly, the only r-electron state vector is |Pmax) = |‘P[,]) ). The
given exact (or approximate) state-vector Wy, produces the Hodge dual, as
previously:

lI'ﬁ[kr—N]) = (lP[N] | W inax ) - (A7)
Accordingly, relation (A6) is generalized to be
DY (¥),_y) =1-DP(¥)). (A3)

This is the duality transformation in terms of 1-RDM. The analogous relation for
DY (‘Pf;_ n]) is somewhat more involved [133, 134]. The remarkable property of the
Hodge duality transformation is its ability to preserve correlation operator A3 in
Eq. (6.45), as it is first shown in [19]. The related expression is given in [135].
Thus, the other correlation matrices, e.g., D, must be the same as well. It is worth
mentioning in passing that in [128] and many subsequent papers, a somewhat
inconvenient terminology is used for RDMs DSO(‘I’;_ N})—the latter are loosely
identified with hole RDMs. Certainly, it leads to confusion and even misinterpre-
tation, since generally such RDMs have no relation to the genuine, ‘physical’, hole
RDMs discussed in Sect. 6.4 and in [16]. We prefer to refer to them as the dual
RDMs [16].

We now have to sum over spin indices, making spin trace in Eq. (A8). As a
result, the dual charge density matrix is yielded, viz.

D(¥|,_y)=2-D(¥). (A9)

Then the NOON spectrum of the dual charge density matrix is simply a set
{2 — A} where we imply that the initial NOON spectrum is the set {4;}. Recalling
that EUE characteristics of the dual state (A7) should be the same as in the initial
state ‘P[N], the identity
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*

D (Ppy)) =D (¥, ) (A10)

is necessitated. Taking into account Egs. (6.1), (6.5) and (6.5") we arrive at the
relation

%f(ﬂk)lfpk><fpk|= Ek]f(2—/1k)lfﬂk><fﬂk\, (A11)

from whence Eq. (6.18) immediately follows, that is
fA)=f(2-4). (A12)

The requirement (A12) allows us to specify a general dependence A° =f(1),
namely, A°T is a nonnegative definite function of argument |4 — 1|, with boundary
values f(0)=f(2)=0. Egs. (6.7) and (6.14) are evidently of this type. Rather
general types of the functions can be proposed as ‘g-extensions’ of Egs. (6.9) and
(6.15). These are

Noas la] = 2 (1= |4~ 1177, (A13)
Negt la] = ; (1= =1[)7, (A14)

where ¢>1. We see that N 4, [1] and N, [1] produce the usual N 4, and N,
measures, respectively. The choice g=2 in Eq. (A13) leads to

Now[2] = % 1= (=17 (A15)

which is the modified Head-Gordon index from [5]. This expression is trivially
equivalent to Eq. (6.94).

Appendix B: Density Matrix and NOON for QCTB

We consider here in more detail the QCTB model described in Sect. 6.13. Having at
hand the effective Hamiltonian matrices (6.91), we straightforwardly derive pro-
jector matrices p, and pg; by using the well known expressions connecting
Hamiltonians and respective projectors [19, 136, 137]). Let 4 be the Hermitian
operator, such that exactly n eigenvalues of /4 lie below zero, and P be the projector
on the corresponding eigenvectors. Then
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P=(I-h/h])2. (B1)

where |h|= [(h)*]'"? is the modulus of operator k. Further, let one-electron
Hamiltonian matrix 4’ be defined as follows:

o_ (o6l B
= (B+ -81)

In particular, h%=hP h# =hl=%. Then, by applying Eq. (B1) to h=h, we
obtain the corresponding projector

1 (1+5(81+BB*)"'"*  B(*1+B*B)™'~?
Pl == . B2
2( (81+B*B)"'"B* 1-5(8*1+B*B)"'* (B2)

In derivation, the block-diagonal structure of (h[‘sl)2 is used, that is
()2 = 5°1+BB* 0 _
0 5’I+B*B

Equation (B2) was earlier derived by another technique for the special closed n-
shells with alternating electronegativity [138]. Obviously, setting § =0, we return to
the Hall formula (6.90). By recalling Eq. (6.91) we have

pe=P?, py=P~7. (B3)

Putting together Eqgs. (B2) and (B3), we get from Eq. (6.10) the main result:

I B(&*1+B*B)™'”*
D= : B4
((521+B+B)_1/ZB+ I (B4)

The problem of diagonalizing this D is a quite elementary, and the full NOON
spectrum takes the form

L=+ e F+ed, 2,=1—e )8+, (B5)

where 1<i, a<n, and nonnegative quantities ¢ =|¢;|, as well as ¢, =|g,|, are
eigenvalues of (B* B)'%, that is {¢;} is the bipartite graph spectrum. From Eq. (B5)
the main EUE indices within QCTB are easily deduced. For instance,

Nyg=26> Y (8 +&) . (B6)

0
i=1
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Remark also an evident symmetry of the corresponding hole and particle
occupancies, defined by Eq. (6.41"):

{1—gp/*+e} ={1—e, /\/ 5 +¢€2}. (B7)

that follows from Eq. (B5). In other words, the hole and particle occupancy spectra
are identical for this n-model.

As a matter of fact, the hole and particle occupancies are identical for any
bipartite networks treated within m-approximation, up to FCI/PPP. This is a simple
corollary of the generalized pairing theorem of McLachlan [94] stating that the &t-
electron charge density matrix of the alternant hydrocarbons is of the form

o=\ 7). (B3)

where the 2p, AO basis set is ordered as in Eq. (6.89), and 0 defines the
inter-sublattice bond order matrix. Clearly, the corresponding NOON spectrum

{ﬂk} is
{1+ v {1- Vi) (B9)

where y; (or u,) are eigenvalues of 0% 9, and 1 <i, a <n. As a result, the initial n-
NOON spectrum is symmetrical in respect to the point A=1. From Eq. (B9) we
deduce that indeed the respective hole and particle m-occupancies, defined as in
Eq. (6.41"), are identically the same:

{1 =i} ={1 =V} (B10)

Interestingly, an initio data [9, 11] approximately follow Egs. (B9) and (B10).
Incidentally, it follows, from this discussion, that the hole occupancy distribution
{1—/m;} (generally {21}, ;.,) is sufficient for considering EUE problems.
For instance, instead of plotting NOON spectrum {4;}, one can plot only hole
occupancy spectrum {2—4;} as even more suitable in the EUE context. This
occupancy spectrum is in fact the second half of the typical -NOON spectra which
were presented in Tables 6.6, 6.7, and Fig. 6.4.

Appendix C: Generalized Hole-Particle Indices

Here we analyze the main EUE indices in terms of hole-particle quantities. We
begin with the representation
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D=2p+AD, (C1)

where p is of the form (6.36), and |g;) are the natural orbitals of the state in
question, so AD commutes with p. Then, using the same notation, as in Eq. (6.41),
we obtain the spectral resolution

AD= — ¥ AilpXoil+ X Ao )@l (C2)

i<n a>n
where
A,-E2—/1i (C3)

are new nonnegative quantities (0 <A; <1, and i <n), and 4, are related to ‘virtual®
natural orbitals. We see that correlation correction matrix AD has a clear
hole-particle structure: 4; are the occupancy numbers for the holes, and 4, are the
same for the particles. In manipulations the identity

ZiAi = Ea /1(1 (C4)

will be useful as well. It follows from Egs. (C1), (C2), and normalization (6.2).
Due to the diagonal form (C2) we trivially have the diagonal form of the matrix
|AD| defined by Eq. (6.96):

|AD‘ = Zi Ai |§01><(p1| + Za ;La|(pa><goa|' (CS)
But this is the same as the hole-particle density in Eq. (6.41), that is
D'P=|AD|. (C6)

It is essential that under duality transformation (A9) the holes and particles in
Eq. (C2) change place, so identity (A10) satisfies automatically for DT = Dh P,

The appropriate g-extended (g > 1) hole-particle indices can be cast explicitly
into the form

Ny_plg)=Tr(|AD|?) = ¥, AT+ ¥, 4. (C7)
Particularly,
Nh—p[2]=ZiAlz-i_Za;Li:”AD”Z' (CS)

The previously defined EUE indices can be rewritten in terms of the
correlation-dependent quantities {4;, 4,}:
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Now= Y (@Ga+A))+ X 2. (C9)
1<i<n a>n
Ner= 2 Ai+ X4, =2 X A, (C10)
1<i<n
Null= T M@0+ T l@-2) (1)
sn a>n

where we used identity (C4).

For slightly correlated systems, the most important are the first order terms in 4;
and 4,. It gives N 44 =4 Y A;, so
Nygqg 22N g4, (C12)

(o]

and this goes back to the rude estimation, Eq. (6.80). It is interesting that the exact

interrelation 2N, — N4y = ||AD||* is true. Likewise, the first-order estimation of

the modified Head-Gordon index (6.94), that is Eq. (C11), is null:
Nygq 2] 0. (C13)
Indeed, Eq. (C11) contains only the second-order and higher-order terms:
2
Nog [2]=4( X A7 + X, 4)=4/AD|I". (C14)

The above simple analysis now elucidates how small contributions from 4; and
Ja are essentially suppressed in the N4y [2] and N, _,[2] indices. As a rule, these
small contributions appear mainly from dynamical correlations. For instance, MP2
(the Moller-Plesset second-order perturbation theory) normally produce the con-
tributions of this kind. Evidently, they have no direct relation to diradicality and
polyradicality, and the N, 4, [2] and N, _,[2] indices should be rather small without
a significant contribution from non-dynamical correlation. This is a good property
of the generalized indices such as (6.94) and (C8), and apparently, this is the basic
reason why N, [2] is systematically employed in papers [9, 11, 122, 124] for
analyzing the unpaired electrons in large PAHs. At the same time, the dynamical
correlation cannot fully ignored, and the problem of an optimal quantification
remains.
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Chapter 7
In Silico Assembly of Carbon-Based
Nanodevices

Alfredo D. Bobadilla and Jorge M. Seminario

Abstract Carbon nanostructures are 0D, 1D and 2D nanomaterials with potential
to enable new markets in the electronic industry due to their novel properties which
have been recognized recently with the awarding of Nobel Prizes in Physics and
Chemistry. However their very small size constitutes a great challenge in the
manufacturing industry, demanding extraordinary and expensive efforts in experi-
mentation. Thus, the best way to avoid unneeded trial-and-error experimentation is
by using theoretical-computational tools for the molecular analysis and simulation
of prospective devices and systems, allowing us to observe properties at the
nanoscale that are practically difficult and sometimes impossible to observe
experimentally. We decided to review in this Chapter the use of these tools in order
to analyze several scenarios on the assembly and characterization of carbon-based
nanodevices. In an in silico experiment, by using molecular dynamics, we analyzed
the outcome of bombarding carbon nanotubes with argon ions and we found that for
very high energies the type of defects created were almost exclusively single
vacancy, which is important in the development of spin-based electronics. On the
other hand, combining carbon nanostructures with DNA molecules offers the
possibility of exploiting the chemical sensitivity of DNA and the transduction of
electrical signals. Therefore, by using molecular dynamics, we predicted a stable
structure for a non-covalent DNA junction with a carbon nanotube (CNT) and
graphene as interface electrodes. The electronic structure calculations predicted that
the DNA electronic structure is coupled to the carbon electron nanodevices, which
allow the sensing of a chemical environment. Finally, in the field of drug-delivery,
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biological barriers and the immune system constitute challenges for the effective
delivery of drugs to targeted areas of the human organism. Therefore, by using
molecular dynamics, we predicted the structure and stability of maximum PEGy-
lated carbon nanotubes. We found the size of the PEG-CNT complex to be smaller
at conditions of maximum PEGylation and in the nanosized regime, which is an
important requirement for the effective delivery of drugs.

7.1 Introduction

Carbon nanostructures can exhibit unique properties that include extremely high
mechanical strength, high thermal conductivity, and excellent chemical and thermal
stability. Furthermore, carbon nanostructures can be complexed with other mole-
cules showing different functional capabilities. Because nanoscale devices are
comparable in size to molecules and are much smaller than biological cells,
potential applications of these devices are on single-molecule analytical sensors,
biosensors, single cell diagnostics, implantable devices and drug-delivery.

7.1.1 Engineering Carbon Nanostructures

Irradiation of carbon nanostructured materials with electron or ion beams consti-
tutes a novel technique to engineer the structure and properties of these nanoma-
terials with high precision [1-4]. Guo et al. [5] got cutting a carbon nanotube
(CNT) by opening a window in a PMMA thin film covering CNT, and then
exposing this zone to reactive oxygen plasma. Under optimized conditions, ~25 %
of the tubes are completely cut among ~2500 devices tested. Other technique used
to engineer nanostructured materials is electrical breakdown, which occur in
SWCNT depending on the contact resistances, nanotube length, applied gate
voltage, heat transfer to the contacts and its structural perfection [6—8]. Hadeed and
Durkan [9] controlled the size and position of a gap in gold-palladium nanowires by
changing the electromigration and joule heating regimes which determine the
electrical breakdown of the nanowire.

7.1.2 A Peptide Covalent Bond Between Carbon Nanotube
and DNA

Guo et al. [10] developed a method to connect a gapped carbon nanotube
(CNT) with single DNA molecules. In their method, a gap is created in the carbon
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nanotube by oxidative cutting with reactive ion etching; all the CNT is covered with
a PMMA film but a small CNT zone is exposed to oxygen plasma by selectively
opening a small window on the film with e-beam lithography. During the etching
process, carbon nanotube is functionalized with carboxyl groups. Amine func-
tionalization of DNA molecules allowed a covalent amide linkage to CNT func-
tionalized with carboxyl groups. Using this method they obtained 10 working
devices out of 370 that were tested. This low yield on successful interconnection of
carbon nanotube with DNA is due to an inherent difficulty on creating a covalent
bond. Interestingly they found a dsDNA molecule does not conduct electricity
when a base mismatch is present.

7.1.3 A Carbon Nanotube-DNA Origami Junction

A nucleic acid-labelled single-walled carbon nanotube (NL-SWCNT) can be aligned
along patterns of the corresponding complementary single-stranded DNAs (ssDNA)
‘hooks’ on DNA origami. Nucleic acid labels are partially protected by comple-
mentary strands before they bind to the hooks on DNA origami. Each linker also has
a 40-base poly-thymine nucleobase domain that adsorbs onto the SWCNT sidewall
via vdW forces. The protection strand prevents adsorption of the labelling domain
onto SWCNT. By using this technique, two carbon nanotubes can be aligned on a
DNA origami structure, with a carbon nanotube on each side of the DNA origami
template, and an orthogonal orientation between carbon nanotubes [11].

7.1.4 Observation of Electrical Gating by ssDNA Upon
Binding to Carbon Nanotube

It has been reported that a DNA wrapped carbon nanotube device can change from
metallic behavior in dry conditions to semiconductor behavior in wet conditions
[12]. Ouellette [13] analyzed the time evolution of electrical current in a suspended
carbon nanotube positioned in a microfluidic channel through which DNA mole-
cules were allowed to flow. Electrical spikes were observed when DNA molecules
were present in the microfluidic channel; DNA molecules constantly flowed
through the microfluidic channel and electrostatic screening of van der Waals
interaction due to ions was minimized. Spikes current levels are below or above the
original CNT current level depending on the type of DNA molecule tested.
Those spikes are produced every time a DNA molecule reaches the carbon
nanotube surface, and a different change in current level, positive or negative
spikes, is observed for different DNA molecules. A DNA sequence dependence is
further suggested by the known correlation between nucleobases polarizability and
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CNT-DNA interaction strength reported by Gowtham et al. [14, 15], and by studies
on the electrical property of graphene upon interaction with nucleobases [16—18].

7.1.5 Carbon Nanotubes for Drug-Delivery

Exposure of biological cells to carbon nanomaterials can lead to loss of cell via-
bility [19]. However carbon nanotubes can be linked to a wide variety of molecules,
including biological molecules and polymers, and functionalized carbon nanotubes
have shown low toxicity and are not immunogenic [20]. Carbon nanotubes also
show a high propensity to cross cell membranes and this process is
endocytosis-independent [21]. Another important property they show is excretion,
they can be excreted via biliary pathway without causing obvious toxic effects to
normal organs [22]. And the ultrahigh surface area of these one-dimensional pol-
yaromatic macromolecules allows for efficient loading of chemotherapy drugs [23].

7.2 Irradiation-Induced Defects in a Silica-Supported
Carbon Nanotube

Carbon nanotubes are typically synthesized with poor control of length and chirality
[24, 25]. After carbon nanotubes have been selected and deposited on a substrate,
an important step in the fabrication of carbon nanodevices is the patterning to reach
an optimal size or dimensions. A common tool to pattern carbon nanostructures is
the selective exposure to ion beams, with this technique it has been possible
reaching the 10 nm range [26, 27].

By using molecular dynamics with a reactive force field [28-30] as implemented
in LAMMPS [31], we were able to analyze the side effects of ion bombardment on a
silica-supported single walled carbon nanotube. A reactive force field enables
simulating the breaking and formation of covalent bonds. Apart from observing the
effective removal of carbon atoms, we found the possibility of undesired effects on
the carbon nanotube sidewall, on the substrate as well as at the interface between the
carbon nanotube and the substrate (Fig. 7.1). We highlight the main types of atomic
defect found on carbon nanotube sidewall, vacancy defects and chemisorption.

Atomic defects on carbon nanostructures produced during the fabrication pro-
cess are typically not reported. Atomic defects are not visible by characterization
techniques typically employed such as AFM, SEM, light microscopy and Raman
spectroscopy. The atomic structure can be visible by STM [32-35] and TEM
[36, 37] but they are tedious and heavily time consuming, and they are typically not
employed in the characterization of carbon-based electron nanodevices reported in
journal publications. Molecular simulation tools offer an alternative to visualizing
and predicting the nanostructure at atomic detail.
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Fig. 7.1 Several types of defects generated on carbon nanotube wall and silicon dioxide substrate
after argon atom collision. Single vacancy (purple circle), kink (complex) defect (black circle),
carbon chemisorption and doping on SiO, substrate (orange circle) [38]
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Fig. 7.2 a Probability of single and double vacancy at different argon beam energy levels.
b Average number of single and double vacancies [38]

Vacancy defects represent the effective removal of carbon atoms from the
nanotube sidewall. Vacancy defects were always present and with maximum
probability of occurrence around 320 eV; however the probability for this type of
defect was close to null at beam energy higher than 32 keV (Fig. 7.2).

In graphitic surfaces, like in the carbon nanotube sidewall, carbon atoms are
covalently bonded in the sp> configuration forming benzene-like rings, with elec-
trons delocalized in the whole surface, in what is called a graphene plasmon.
Vacancy defects disrupt this electronic structure configuration giving the possibility
of unpaired electrons or dangling bonds and the emergence of magnetic properties
that could enable the development of spintronic devices. The magnetic properties
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will depend on the chirality of the carbon nanotube and the configuration of the
vacancy defect [39-42].

We also predicted the possibility of chemisorption of carbon and oxygen atoms
to the carbon nanotube sidewall. Oxygen atoms were ejected from the substrate
after the collision of the argon atom beam with the silicon dioxide substrate. And
when a carbon atom was effectively removed from the nanotube sidewall, it ended
up doping the substrate or chemisorbed on other sector of the nanotube sidewall.
We denoted chemisorption as the adsorption by covalent bonding of an atom to the
nanotube sidewall. It could be considered the opposite of a vacancy defect.

We found the probability of chemisorption defects to be maximum around beam
energy of 100 eV and a close to null probability of occurrence for beam energy
higher than 10 keV. The probability for chemisorption on the inner side of carbon
nanotube was always small, less than 0.15 (Fig. 7.3).
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Fig. 7.3 a Probability of chemisorption on CNT wall, and probability of chemisorption on
internal side of CNT wall or external side of CNT wall. b Probability of carbon and oxygen
chemisorption. ¢ Average number of carbon and oxygen atoms chemisorbed on CNT wall at
different argon beam energy levels [38]



7 In Silico Assembly of Carbon-Based Nanodevices 213

The effect of oxygen chemisorptions on semiconducting single wall carbon
nanotubes is mainly a reduction in the energy bandgap and the degree of change
depends again on chirality and defect configuration [43—45].

7.3 Gating Mechanism of DNA Wrapping
on Carbon Nanotube

DNA add to the set of tools of nanotechnology due to the recent development of
DNA self-assembly techniques [46—48] as well as to the fact that DNA is a versatile
biological molecule, it can be used for diverse tasks, for example as a catalyzer,
chemical sensor and computational device.

DNA has been found to adopt a helical structure on carbon nanotube sidewall
[49, 50], affecting the electrical property of carbon nanotube devices [12, 13]. We
analyzed the electronic structure of each molecule as well as the hybrid of carbon
nanotube and DNA. We used the CHARMM force field [51] as implemented in
LAMMPS [31] to obtain the atomic structure; and then obtained the electronic
structure by DFT calculations in Gaussian 09 [52].

We found DNA effectively wraps carbon nanotube due to the pi-pi interaction
between the nanotube sidewall and the nucleobases (Fig. 7.4). We observed discrete

Fig. 7.4 Molecular dynamics of CNT-DNA interaction. a Snapshot at t = 2.6 ns: DNA molecule
approaching CNT at the initial stage of the process at 340 K. The high temperature accelerates the
van der Waals attraction between DNA bases and the carbon nanotube surface. b Front view of
DNA-CNT helical wrapping after 12.2 ns, at the final stage of equilibration at 300 K. ¢ and d show
two side views. DNA molecule is color coded: thymine (violet), adenine (blue), guanine (yellow),
phosphate groups (green) [53]
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Fig. 7.5 a Input temperature:
the equilibration process at
340 K begins at t = 2.6 ns and
finishes at t = 10.1 ns.

b Energy jumps are observed
in van der Waals

(vdW) energy as each
nucleotide base binds to the
carbon nanotube surface.

¢ Electrostatic energy of
phosphate atoms in the
ssDNA backbone during
equilibration process at 340 K
[53]
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jumps in the vdW energy of interaction every time a nucleobase adsorbed on the
nanotube sidewall, and a decrease in the electrostatic energy due to phosphate-
phosphate atom charge interaction in the backbone of DNA (Fig. 7.5).

We obtained the atomic structure from molecular dynamics for the CNT
molecule (not shown), DNA molecule (not shown) as well as for the hybrid (Fig.
7.4). We performed electronic structure calculations in vacuum as well as in solvent
conditions. For the solvent conditions, we also tested an alternative method, the
PCM method (Polarizable Continuum Model) [54], which models the solvent as a
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Table 7.1 HOMO, LUMO and gap energies (eV) of DNA and CNT as isolated molecules and
when they are part of the complex DNA-CNT

System Vacuum PCM solvent Water molecules

HOMO |LUMO |Gap |HOMO |LUMO |Gap |[HOMO |LUMO |Gap
Isolated |DNA |-5.14 |-1.17 |[3.97 |-5.37 -1.09 |[4.27 |-593 422 |1.71
CNT |-5.00 |-459 |041 |-5.09 —-4.66 043 | —4.48 —4.04 [0.44
Complex | DNA | —4.89 —-1.48 |[3.41 |-550 —-1.55 |[3.95 | -5098 -3.38 [2.60
CNT |-5.00 |-4.58 |043 |-5.09 -4.66 043 |-554 |-515 [0.39

Calculations are done in vacuum, under PCM solvent, and under actual water molecules in the
Hamiltonian. All systems are run as uncharged and singlets [53]

polarizable continuum. The PCM method is originally intended to avoid the heavy
computational cost of including water molecules in the electronic structure calcu-
lations. We found the PCM method is not accurate on the prediction of the elec-
tronic structure of the hybrid CNT-DNA in water solvent (Table 7.1).

When the carbon nanotube is alone, the carbon nanotube HOMO-LUMO energy
levels increased by about 0.5 eV when changing from vacuum to water solvent
conditions.

When the carbon nanotube is wrapped by the DNA molecule, the opposite took
place, the carbon nanotube HOMO-LUMO energy levels decreased by about
0.5 eV when changing from vacuum to water solvent conditions. A detail of
molecular orbital energies for the CNT-DNA hybrid is given in Fig. 7.6 and a
schematic representation of the device in Fig. 7.7.
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Fig. 7.6 Molecular orbital energies (eV) for the CNT-DNA nanostructure in a water and
b vacuum conditions. Highlighted squares indicate HOMO and LUMO of the complex system.
Green ellipses indicate carbon nanotube HOMO and LUMO. Orbitals are localized in the carbon
nanotube (CNT), water molecules (water), bases (Base), and Phosphate groups (Phosphate) [53]
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Fig. 7.7 a Carbon nanotube-DNA based transistor and b its corresponding energy level diagram
for vacuum conditions and water solvent conditions. Gray lines correspond to CNT energy states,
green lines correspond to DNA molecule energy states, and cyan lines correspond to molecular
orbitals shared by CNT and DNA. p represents the gold electrode work function. Energy levels
corresponding to water molecules are omitted for clarity [53]

The gating mechanism in the HOMO-LUMO gap caused by DNA wrapping on
carbon nanotube explains the observed change in the electrical property of carbon
nanotube upon interaction with DNA molecules in water solvent.

7.4 Assembly and Electron Transport Characteristic
of a DNA-Graphene Junction

We analyzed a device with potential applications in DNA sequencing and chemical
sensing. Nanoscale ribbon patterns can be created on graphene by selective
exposure to oxygen plasma or ion beam. A very small gap (~1 nm) between
graphene electrodes is feasible by an electrical breakdown technique [55, 56]. We
used the CHARMM force field [51] as implemented in LAMMPS [31] to analyze
the directed assembly process of a small strand of DNA (GAG) in a gapped gra-
phene. The GENIP program [57-59] was used to perform electron transport cal-
culations of the hybrid structure in water solvent.

We observed at room temperature all nucleobases had a preference for binding
on a single graphene electrode (Fig. 7.8). We therefore needed to assist the
assembly process to position the DNA molecule in the gap between graphene
electrodes. The DNA backbone is negatively charged due to the phosphate groups,
we therefore opted to apply an electric field. An electric field of 0.8 V/nm allowed
overcoming the binding strength of DNA to graphene and 0.3 ns was enough time
to succeed on the positioning of DNA in the gap (Fig. 7.9). If the electric field was
applied for longer time, the DNA molecule abandoned the gap.
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Fig. 7.8 ssDNA (GAG) absorption to graphene nanoribbon. a Initial structure, b Time evolution
of temperature, ¢ ssDNA absorption on graphene at room temperature, d Final ssDNA
conformation during equilibration at 330 K with three nucleobases absorbed on graphene.
Molecular dynamics (MD) simulation performed with periodic boundary conditions [60]

To analyze the stability of the DNA junction we performed molecular dynamics
above room temperature, at 330 K, for 10 ns. During all the process we observed
two nucleobases are absorbed to the left graphene electrode and one nucleobase was
absorbed on the right electrode. Therefore we considered the DNA junction was
stable.

The system size is relatively big and the associated computational cost pro-
hibitively high for quantum chemistry and electron transport calculations. We
therefore reduced the system by inducing the evaporation of water molecules. The
evaporation process (not shown) was performed gradually and in a time span of 45
ns, during that process the graphene ribbon size was also reduced (not shown).
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Fig. 7.9 Electric field assisted positioning of ssDNA on graphene gap at room temperature.
ssDNA conformation at a 12.6 ns, b 12.7 ns and ¢ 12.8 ns under the application of an electric field
with magnitude 0.08 V/A to phosphate atoms in the DNA backbone. d van der Waals
(vdW) energy of interaction between graphene nanoribbons and ssDNA molecule. Electric field is

applied at t = 12.5 ns and stopped at t = 12.8 ns. Simulation performed with periodic boundary
conditions [60]

To analyze the stability of the final structure we performed molecular dynamics
at room temperature for 7 ns. During that process the junction was stable and we
only observed a change in conformation, the final structure had the central nucle-
obase positioned in the nanogap (Fig. 7.10).

We then obtained the electronic structure by DFT calculations in Gaussian 09
[52]. We observed the effect of ssSDNA (GAG) on the gapped graphene is a gating
mechanism, we observed a slight change in the energy levels of the HOMO-LUMO
gap when ssDNA fills the nanogap as well as an increase in magnitude of the
electron transmission probability function (Fig. 7.11).
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Fig. 7.10 Reduced graphene length and nonperiodic boundary conditions. a Structure at t = 1.5
ns with two nucleobases absorbed on left graphene electrode, b Structure at t = 2.5 ns with one
nucleobase positioned in the nanogap zone, ¢ vdW energy for graphene-ssDNA interaction during
the initial 2 ns of equilibration at room temperature, d vdW energy for graphene-ssDNA
interaction during the last nanosecond of equilibration at room temperature, and (i) Final
conformation at 1 K. Water molecules are omitted in a and b for visualization purposes [60]

For the electron transport calculations we included gold atoms covalently bon-
ded to carbon atoms at the opposite edges of graphene electrodes, these gold atoms
acted as interface to the electronic structure of bulk gold electrodes (Fig. 7.12).

We analyzed the effect of the electric field (associated with a bias voltage) in the
DOS (density of states) and in the TF (electron transmission probability function).
The electric field caused the splitting of peaks or energy bands in the DOS and a
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Fig. 7.11 Effect of DNA molecule on DOS and TF of gapped graphene at zero bias voltage.
a Density of states (DOS in arbitrary units, a.u.) and b electron transmission probability function
(TF in arbitrary units, a.u.) for gapped GNR (gray colored) and GNR-DNA junction (cyan
colored) [60]

significant increase in magnitude of the TF (Fig. 7.13). The gapped graphene and
the DNA junction were significantly different in the TF function at 1.4 V.

We analyzed as well the effect of the electric field on the HOMO-LUMO energy
levels of gapped graphene and DNA junction. We observed the gating mechanism
induced by the DNA molecule is not affected by the electric field (Fig. 7.14), and
the electric field was effective on reducing the HOMO-LUMO energy gap which is
expected to produce a non-zero electrical current through the junction.

The tunneling current of the gapped graphene was non-zero only after a bias
voltage larger than 1.5 V is applied. While the DNA junction had a non-zero
electrical current for bias voltage large than 0.5 V. But the effect of DNA on the
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Fig. 7.12 Graphene-DNA junction. Interfacial gold atoms (yellow), bulk electrodes (orange),
graphene carbon atoms (grey), and DNA carbon atoms (green) [60]
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Fig. 7.13 Density of states (DOS) for a gapped GNR, b DNA junction, ¢ electron transmission
function (TF) for gapped GNR, and d DNA junction [60]
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Fig. 7.14 Bias voltage dependence of a HOMO, LUMO and b HOMO-LUMO gap. Gapped GNR
(gray), DNA junction (cyan) [60]

gapped graphene only reflected in a detectable electrical signal at a bias voltage of
1.4 V when the magnitude of electrical current through the DNA junction was
1.6 nA (Fig. 7.15) and the relative difference of current levels (Ipya — Ignr)/IGNR
was maximum (Fig. 7.16).

7.5 The Hydrodynamic Volume of Maximum PEGylated
Carbon Nanotube

Drug molecules are typically of hydrophobic character [61, 62] and naturally absorb
on the hydrophobic (nonpolar) surface of carbon nanotube [63—65]. To protect the
drug from the immune response in the human body, a polymer protection is typi-
cally needed [63, 65, 66].

We analyzed the structure of a carbon nanotube functionalized with polyethylene
glycol (PEG). A maximum amount of polymer ensure a better protection of the
drug, we therefore analyzed the scenario of maximum PEGylation. The main
requirement is a small volume of the drug carrier to ensure an effective penetration
of the natural biological barriers and an optimal circulation through the human
body.

To obtain the polymer structure we performed molecular dynamics (MD) sim-
ulations [31, 51, 67, 68] with 1, 40 and 208 PEG molecules. The initial PEG
structure is obtained from a crystallographic database [69] and modified to perform
a MD simulation in water at roo