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To the memory of Professor R.D. Milne
(1930–2014). He taught tenaciously that in
science, before all else, we must understand.
This book is largely about understanding,
inspired in no small part by his teaching.



Ronald D. Milne was born on August 3, 1930, in Aberdeen. He attended Aberdeen Grammar
School and Aberdeen University, then continued his studies at Cranfield College of Aeronautics
and Queen Mary College, London, where he became Lecturer in 1956 and Reader in 1964. In
August 1971, he became Chair of Theoretical Mechanics at the University of Bristol which he
renamed Engineering Mathematics, and in 1977 he became Dean of Engineering. He developed a
mathematical framework for aeroelasticity and made a milestone contribution to the dynamics of
the deformable aeroplane. His commitment to mathematics was unequivocal and his understanding
of fluid dynamics was absolute. His influence on me was immeasurable.



In Praise of Hemo-Dynamics

“Zamir carries the reader from first principles to the complexity of pulsatile blood
flow with an elegance and fluidity not unlike the very subject matter he is describing.
The journey from Newton’s second law, through the Navier-Stokes equations and
finally to the dynamics of pulsatile blood flow and pathology is presented in a clear,
accessible manner; perfect for students and researchers new to the field.” Matthew
Betti, PhD candidate, Applied Mathematics, The University of Western Ontario.

“Avoiding the math, even me, a clinician, enjoyed reading this book, I can
follow it easily, as it is well written. Chapter 3 was very interesting and made
me wonder if pressure recovery is a topic that would be of interest, i.e. in severe
aortic stenosis. The section on arterial bifurcations (which cause all sorts of trouble
in the coronary system; treatment is difficult and almost never ideal) provoked a
chain of thought about whether one could develop mathematical models for most
common bifurcations, look retrospectively into coronary PCI cases and bifurcations
and predict an outcome. Chapter 9 brought to mind LVAD therapy (left ventricular
assist devices for heart failure) and how complex the interplay of machine and blood
vessel function is, almost unsolvable; there must be a “mess” of flows created by
LVADs.” Mario Gössl, MD, Adjunct Assistant Professor of Medicine, University
of Wisconsin School of Medicine and Public Health; Director, Heart Valve and
Structural Heart Disease Clinic, Dean Clinic, Madison, WI.

“Incredible, the figures alone are to die for. . . At first glance “Hemo-Dynamics”
seems like a deep engineering and modeling dive into the mechanical properties
of the cardiovascular system, blood, and how they interact to generate flow and
pressure. However, the text is laid out in a stepwise manner and I was especially
impressed in the way that the key conceptual figures illustrate the essential concepts.
In keeping with the philosophical underpinnings of engineering, Professor Zamir
has also constructed his book so that the format, text, equations and the figures
are self-reinforcing. This is a book that will be of great use to those who seek to
understand the cardiovascular system from a mechanical and modeling perspective.”
Michael J. Joyner, MD, Professor of Anesthesiology, Mayo Clinic, Rochester MN.

“I have read your Magnum Opus! It is excellent . . . Prof. Mair Zamir has
written extensively concerning pulsatile blood flow in the arterial system. This
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viii In Praise of Hemo-Dynamics

book summarizes his research on this important subject. . . It is a great book and
deserves to be read. Diseases of the arterial system are the most common cause
of death in our society hence such fundamental knowledge is a requirement for
those proposing care and treatment.” Gerald Klassen, MD, Professor of Cardiology
(retired), Dalhousie University.

“I feel uniquely qualified to assess the utility of this book as I have no background
in fluid dynamics, physics, or mathematics. The effectiveness of this large body of
work to communicate fluid dynamics to readers of all levels is tremendous. I glazed
over most of the intimidating mathematical formulas, yet finished with a far greater
understanding of fluids and fluid flow properties than when I began. Dr. Zamir’s
ability to explain these concepts so that they are accessible by all is fantastic. I
would highly recommend this book to any learner looking for an understanding of
fluid dynamics, especially within the cardiovascular system.” Katelyn Norton, PhD
candidate, Faculty of Health Sciences, The University of Western Ontario.

“I like the Introduction in that it motivates me to understand flow by delving
into the mathematics so that I can get insight into some emerging characteristics of
the blood flow system. The distinction between the concept of blood flow (driven
by blood pressure gradient) and just blood volume (driven by blood pressure) is of
particular physiological importance as tissues need the flow to deliver nutrients and
remove metabolic products. Moreover blood pressure itself and its pulsatile nature
are critically important signals for maintaining arterial wall tension and thereby
lumen diameter. Hence the detailed analysis of the role of arterial tree branching
geometry and the role of elastic vessels are particularly instructive.” Erik L. Ritman
MD, PhD, Professor of Physiology and Medicine, Mayo Clinic College of Medicine,
Rochester, MN.

“I enjoyed the book (the parts I understood) and it would be a resource for my lab.
I think it would make a strong text for an interdisciplinary graduate program. The
book is clearly organized to take the reader by the hand and guide them carefully
and slowly through the important elements of steady state and pulsatile flow.” Kevin
Shoemaker, PhD, Professor of Kinesiology, The University of Western Ontario.

“As a physiologist reading the introductory chapters of this book, I was inclined
to skip ahead to the sections which I felt might be more relevant to my work, but
instead I just kept reading as each section was so informative that I didn’t want to
risk missing anything. I learn concepts in a very “step by step” fashion, and this
book caters to that learning style, describing very complex concepts with language
that is both easily understood, and also quite enchanting. The enchantment, I think,
is the true strength of the book - Dr. Zamir does an enviable job of instilling his
love of the mathematics and physics of fluids into the reader. After I’d started
reading this book, I traveled to Jasper National Park for a short vacation, and as
I sat by a majestic glacier lake, all I could think about was the beauty of fluids.”
Charlotte W. Usselman, PhD, Postdoctoral Fellow, Faculty of Physical Education
and Recreation, University of Alberta.

“This book provides an elegant and intuitive derivation of the fundamental
mathematics underlying fluid flow, and then applies these in a straightforward way
to pulsatile blood flow in all its complexity. One of the triumphs of the book is that
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Zamir succeeds in making essential concepts such as the Navier-Stokes equations
completely accessible to any reader with a knowledge of basic calculus. The author
succeeds in conveying both the beauty of his subject matter, and his passion for the
elegance and intricacies of fluid flow more generally.” Lindi Wahl, PhD, Professor
of Applied Mathematics, The University of Western Ontario.





Preface

In the first editions of The Physics of Pulsatile Flow1 and The Physics of Coronary
Blood Flow,2 which appeared in 2000 and 2005, respectively, I used the word
“physics” in the titles to emphasize that while the subject of the two books is
of interest in biology and medicine, the basic principles underlying blood flow
reside firmly in physics and by implication in mathematics. I was convinced then
and am even more convinced today that a good understanding of these principles
is a necessary prerequisite for a study of the myriad of biological and medical
phenomena involving fluids and fluid flow, particularly those relating to blood flow.
This book, like the earlier two, is strongly fashioned by this conviction.

That is not to say that blood flow and related phenomena in health and in disease
can be understood entirely within the spheres of mathematics and physics. Rather,
it is to say that blood flow and related phenomena cannot be understood entirely
within the spheres of physiology and medicine either. To students and teachers
alike, this reality has always presented a dilemma: Which sphere does the subject
belong to?

Electing to place the subject of blood flow in the spheres of mathematics and
physics as we do in this book is not in any way a claim that the subject resides
exclusively within these spheres, but rather that this is where the subject has its
roots. In the spheres of physiology and medicine, by contrast, one is faced with
“end-point” or “emergent” phenomena with unknown beginnings. Heart disease and
stroke in all their forms, for example, are end-point phenomena, end results. They
emerge at the end of a tortuous course of pathogeneses involving the cardiovascular
system, the autonomic nervous system, and likely others. In each case there is an
end-result but no clear beginning. The obvious temptation is to declare the observed
pathology at hand as a beginning: a blocked artery, a ruptured aneurysm, high blood
pressure, and then proceed from there to search for answers. The practicing clinician
is well justified in yielding to this temptation rather than search for answers in the

1Springer-Verlag, New York, 2000.
2Springer, New York, 2005.
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xii Preface

spheres of mathematics and physics, but, alas, emergent phenomena rarely point
the way to their origin because they have no unique origin. They result from a
confluence of events each of which has its own beginning, not unlike the confluence
of water tributaries converging onto a river.

The choice of where to place the subject of blood flow and related phenomena
is therefore not a clear one and it is certainly not a matter of advantage of one
choice over the other. The two choices, in fact, bear some asymmetry. In the spheres
of mathematics and physics, one constructs scenarios that reach out like tentacles
in the hope of finding some of the complex emergent phenomena observed in the
living system. In the spheres of biology and medicine, one deconstructs the observed
complex phenomena at hand in the hope of finding their roots in mathematics and
physics. The first is clearly the easier of the two, and the scientist has the luxury of
making that choice. The clinician does not have that luxury.

Thus, the choice made in this book of placing the subject of blood flow in
the spheres of mathematics and physics is certainly less daunting than that of the
practicing clinician, but it is predicated in the hope that the book may serve as an
aide to the practicing clinician in his or her search for answers. In the least, it will
introduce the clinician to the beautiful grounds in mathematics and physics where
blood flow and related phenomena have their roots, not in terms of equations and
formulas but in terms of a large amount of explanatory text which has been added
specifically for the non-mathematical reader. To the mathematician, the physicist,
and the engineer, the book will hopefully provide a useful compilation of those
equations and formulas in a single source. To all readers, the book will hopefully
provide a glimpse into the extraordinary way in which biology has made use of (or
indeed invented?) the unique properties of fluids and fluid flow to serve the function
of pulsatile blood flow and the cardiovascular system. One of my highest hopes
is that the book will serve the full spectrum of readers who are interested in this
subject.

I owe an apology to my clinical colleagues for appropriating the term “Hemo-
dynamics” for the title of this book, as I am fully aware that the term is used
somewhat differently in the clinical setting. My defense is that when stripped
down to its literal elements, the term “hemo-dynamics” represents precisely what
this book is about, namely the “dynamics of blood,” with the emphasis being on
“dynamics.” For this reason, and to avoid confusion, the term has been hyphenated
in the title.

I owe an apology also to my non-clinical colleagues for the absence of a
comprehensive list of references to the enormous amount of work that has been done
and is being done in the area of blood flow. This is not an omission but a deliberate
decision that I have made, for three reasons. First, the book is not intended to be
a survey of advances or recent developments in the subject, but rather a concise
synthesis of its roots in mathematics and physics. Second, in an effort to make
this synthesis as self-contained as possible, I chose to provide the required details
wherever possible, rather than refer the reader elsewhere. The number of references
is thus limited mainly to classical work or to the source of data that are being used
to illustrate a specific result or phenomenon. Third, an outstanding list of references
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as well as a comprehensive survey of past and recent work in the field is available
in the modern editions of McDonald’s classical book on Blood Flow in Arteries.3

I am in awe of the breadth of that book and strongly recommend it for everything in
which my book is lacking.

One of the ironies of modern science is that it has become so heavily aided by
computer technology that “understanding” the subject of blood flow is becoming
less and less necessary. Today, it is possible to solve many problems in blood flow
and in fluid flow in general by using ready-made computer programs, without the
need to delve into the details of the underlying mathematics and physics. Indeed,
it is possible to bypass most, if not all, of the entire content of this book and
yet solve problems in hemo-dynamics using readily available software designed
specifically for the purpose. The irony in this development lies in that it is gradually
eliminating the need to understand the subject. This is a great loss indeed, for there
is a substantial amount of benefit and beauty in the process of understanding the
intricacies of pulsatile blood flow and of fluid flow in general. I may be excused for
lamenting these realities at the preface to a book devoted primarily to this purpose. I
feel a sense of duty to inform the reader at the outset that he or she does not actually
need this book if understanding the subject is not his or her main objective.

London, ON, Canada Mair Zamir
July 5, 2015

3Nichols WW, O’Rourk MF, Vlachopoulos C. McDonald’s Blood Flow in Arteries. Hodder
Arnold, UK, 2011.
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end. In hemodynamics, this interplay unfolds in the form of neural control of blood
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Chapter 1
Introduction

1.1 The Essence of Life Is Not Blood

It is remarkable how readily we accept the proposition that blood is the essence of
life, our life. Yet we miss the point. The essence of life is not blood, it is blood flow.
When the heart stops beating, the body dies not because of lack of blood but because
of lack of blood flow. In most cases the dead body is still awash in blood, the same
amount of blood as before, but this blood is of little use because it is not flowing.

The essence of life is not blood, it is blood flow.

Blood flow is the life-line to every living cell within our body. The driving force
that maintains this life-line is of course the heart, by its pumping action, but what
makes blood able to flow is its fluidity. The fluidity of blood is as essential to life as
are the nutrients which blood carries. The scheme which biology has concocted for
keeping our body alive is predicated entirely on the fluidity of blood, on the ability
of blood to flow.

To be more accurate, therefore, the essence of our life is ultimately not blood
but the fluidity of blood.

It is remarkable how readily we miss this point.

1.2 Fluidity and the Fluid State

It is so often said that life is not possible without air and water, without oxygen,
hydrogen, nitrogen and carbon which air and water carry, but here again we miss the
point, this time in a big way. It is somewhat like standing in awe in front of a painter
and his masterpiece and declaring, correctly, that the essence of this masterpiece is
the canvas and the paint. But would the canvas and the paint alone have produced
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2 1 Introduction

the painting? And would the chemical ingredients of air and water alone make life
possible?

Life is not possible without air and water not only because of their chemical
ingredients but also, in fact more so, because of the fluidity of air and water.

Fluidity is one of the most remarkable phenomena in nature, surpassed perhaps
only by life itself. It is the closest-to-life phenomenon in the non-living world, and is
more animated than some forms of life. The fluidity of air and water allows them to
bend without the slightest effort, so much so in fact that it is inappropriate to use the
term “bend” in this context. They squeeze through the most tortuous passages with
ease and emerge fully collected. They are so compliant as to yield to the slightest
force, and so acquiescent as to always fit the mold of their surroundings. No other
(non-fluid) objects we know, animate or inanimate, are capable of such feats.

Air and water behave in this way not because of their chemical substance but
because they are in the fluid state. Matter as we know it is commonly found in three
distinct states which we call the solid, liquid, and gaseous states.1

The word “fluid” as a noun or adjective is used in a generic manner to mean
any substance in the fluid state. Any liquid or gas is referred to as a fluid. Though
there are some differences between liquids and gases, they both posses the basic
characteristics of the fluid state. When a substance is in the fluid state it exhibits a
mode of behavior which is governed almost totally by the state, not the substance.

Some confusion between state and substance arises in everyday language.
“Water” is strictly the name of a substance, not a state, but we use the word rather
loosely to mean one or the other. There is solid water which we call ice, gaseous
water which we call steam, and liquid water which we call simply “water” but
actually mean “water in the liquid state”. In the same way, while “rock” is strictly
the name of a substance, we use the word rather loosely to mean “rock in the solid
state”. Indeed, on that basis we commonly use the expression “solid as a rock”. But
rock is not always in the solid state- in fact in the earth’s interior it is permanently
liquid. With equal justification, therefore, we could sometime use the expression
“fluid as a rock”.

1.3 Life Without Fluids?

Life as we know it is not possible without the fluid state. Not even in the realm of
science fiction can we imagine a form of life of any degree of complexity without the
fluid state. From amoebae to elephant, from fish to tree, and from the most primitive

1Plasma is sometimes listed as a fourth state. It differs from the other states only in its electrical
property. This property of the plasma component of blood is important in some processes but not
in the dynamics of blood flow which is the main subject of this book. More important in blood flow
is the corpuscular composition of blood as will be discussed in Sect. 2.9.
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virus to man, none can exist without the fluid state. The more sophisticated forms
of life depend even more on it. Humans are doomed to do nothing without it. It is
remarkable how readily we miss the point that fluidity is as essential to life as is
oxygen or DNA. Indeed, the evolution of life is so closely intertwined with fluids
and fluid flow that it is not unreasonable to think of fluidity as an integral part of
biology, and even wonder:

Did biology discover the fluid state or did it invent it?

Humans cannot breath, eat, move, reproduce or even think without the fluid state.
When a man takes a breath, a large volume of air from all around him rushes towards
his face and promptly threads itself through any opening that leads it towards the
narrow passages of his lungs’ airways. Through a maze of ever branching tree
of smaller and smaller vessels, the fresh body of air meticulously divides itself
into millions of thin separate streams which, like tentacles, reach for the inner
compartments of the lungs. There, a little packet of air that fills each compartment
makes a generous donation of oxygen,2 then turns back immediately for its return
journey. Millions of individual air packets now travel through the same tree of
airways, but in reverse, moving from smaller to larger airways, and eventually out
into the open. All of this is being accomplished in a most orderly manner, at every
breath of every breathing man and woman, many thousand times every day. Imagine,
if you will, how this could be accomplished without the fluid state.

Similar scenarios go on in almost every facet of life: blood flow, marine life
and locomotion, food transport in plants, and the internal operation of the living
cell, are but a few example. In the inanimate world of stars, planets, and non-
living substances, the fluid state is equally pervasive. Our planet is composed of
a fluid core. The sun and many other stars are entirely gaseous. The evolution of the
universe involves key events which, if current theories on the subject are correct,
would not have been possible without the fluid state. Interstellar gases and gaseous
stars are as essential elements in the evolution of the universe as air and water were
in the evolution of life.

Even the world of physics and chemistry would be somewhat incomplete without
the fluid state. The laws of physics would be deprived of a fascinating field of
application, and the laws of chemistry would have to wait much longer for the results
of any chemical reaction in the absence of a fluid medium to facilitate mixing. The
laws of mechanics find some of their most beautiful expressions in the behavior of
fluids. Fluid motion, alas, is as different from the motion of a rigid object as the
graceful movements of a ballet dancer are different from the chugging motion of a
tank.

In the world of engineering and technology not much would seem possible
without fluids. A steam engine, internal combustion engine, jet engine or any other
form of engine without fluids? A rocket without fluids? A machine of any kind
without a fluid lubricant? A nuclear reactor without fluids? And what form of

2Weibel ER. The Pathway For Oxygen. Harvard University Press, 1984.
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transport would be possible without engines on land, without water in the seas and
without air in the skies? The feat of an aircraft in flight is only one of many examples
of our technological use of the fluid state. The massive weight of an airliner in flight,
with hundreds of passengers and their luggage on board, is carried entirely by air.
The wings of the airliner are slightly bulged at the top and fairly flat at the bottom.
As the wings move through the air, air particles on their upper surface are forced to
move faster because of that bulge, and in so doing they create suction in the same
way that blowing gently through our lips over a strip of paper causes it to lift up.
The two phenomena are not only similar, they are precisely the same. In both cases
the lifting force is suction created by speeding air over the top surface. This suction
supports the enormous weight of the airliner during the entire flight. Tiny packets of
air speeding relentlessly around the top surface of the wings to keep the airliner up:
How would this be possible without the fluid state?

1.4 Mechanics of Fluids and Fluid Flow

Fluidity is a mechanical wonder bordering on magic. We tend to overlook the
phenomenon because our contact with fluids is so commonplace that we have
become accustomed to the way they behave. But if we intentionally focus on a body
of water as it wobbles or as it swirls, or a filament of smoke as it rises with exquisite
grace, we will be struck by the question: How exactly does this happen? We do not
normally ask this question, not because we know the answer but because we have
become so accustomed to this behavior that we have come to expect it.

Fluidity is more than flexibility. A spring is flexible, the branch of a tree is
flexible, putty and dough are very flexible, but none can flow. None can squeeze
through the minute airways of the lungs or the maze of blood vessels of the
cardiovascular system with the same grace and efficiency as do air, water and
blood. Fluids are all of flexible, limber, pliable and supple, yet none of these terms
adequately describes fluidity. The elements of a fluid body appear to be not at all
constrained by each other, yet they are somehow held together. They move far apart,
yet do not tear apart. What is the quality of fluids that allows them to do all that?
What is fluidity?

To address the second question first, fluidity has to do with the “mechanical
behavior” of material objects, that is the manner in which they respond to the
application of a deforming force, a force attempting to change their shape. Rigidity,
flexibility, pliability and fluidity are all to do with the way different objects respond
when an attempt is made to change their shape. A simple test of mechanical behavior
consists of subjecting a material body to a deforming force, the force is applied
momentarily and then removed as illustrated in Fig. 1.1. When this test is applied to
deformable bodies of different materials it is found that there are three main types
of behavior after the deforming force has been removed: the body may (i) return to
its original shape, (ii) remain in its deformed shape, or (iii) continue to deform.

• An elastic band, a spring, rubber, jelly, the branch of a tree or the wing of an
aircraft will all bend or deform under the action of a deforming force, then regain
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Fig. 1.1 Mechanical
classification of material
bodies. An initially
rectangular body (left
column) is subjected to a
shearing force (middle
column), then the force is
removed (right column).
A rigid body does not deform
at all under the action of the
force. An elastic body
deforms under the action of
the force but regains its shape
when the force is removed.
A plastic body deforms under
the action of the force and
remains in the deformed state
when the force is removed.
A fluid body deforms under
the action of the force and
continues to deform even
after the force is removed.

RIGID

ELASTIC

PLASTIC

FLUID

their original shape when the force has been removed. This mechanical behavior
is known as “elasticity”.

• Putty, dough, plasticine and some soft metals will deform under the action of
a deforming force and remain in their deformed shape after the force has been
removed. This mechanical behavior is known as “plasticity”.

• Water, air, blood or milk, will deform under the action of a deforming force
and continue to deform even after the force has been removed. This mechanical
behavior is known as “fluidity”.

How do we know when a body of air or water is deforming? By observing the waves
on the surface of water as we disturb it; the distortions of visible bodies of smoke,
steam and the like, or clouds as they move; and the spinning pattern on the surface
of coffee in a cup or water above the drain in a bath tub. In each case a force has
been applied to deform the fluid, and the fluid continues to deform even after the
force has been removed. Walking through air, or heating it as in the case of rising
smoke, causes it to deform. Swimming or stirring a cup of coffee causes the liquid
to deform. In each case the force of our action produces the initial deformation, but
the fluid continues to deform, continues to move, even after our action has ceased.

It may seem odd to describe jelly or a rubber band as an elastic “solid”, but this is
only because we often confuse solidity with rigidity. In mechanics the term “solid”
is an antonym of the term “fluid”. “Solid” means “not fluid”. Rigidity, on the other
hand, has to do with the degree of elasticity, namely the amount of force required
to produce a given amount of deformation. Rubber and steel are both elastic solids
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since they both deform under the action of a force and then regain their shape after
the force has been removed. The difference between the two is only in the amount of
force required to produce a given amount of deformation. In common language the
term “rigidity” is used loosely to describe this difference, thus we say steel is more
rigid than rubber. However, in the more accurate language of mechanics the term
“rigid” is reserved for the ultimate extreme in which a body cannot be deformed at
all, no matter how high the applied force. Diamond comes close to this extreme.

In the yet more accurate and somewhat strange language of mathematics, to say
that an object cannot be deformed is the same as saying that the object requires an
infinite amount of force to deform it or, equivalently, that it offers an infinite amount
of resistance to deformation. This play of words is in fact useful because it brings out
another extraordinary mechanical feature of fluids and fluidity. If rigidity is thought
of as a scale on which objects are placed according to the amount of force which
they require to be deformed or, equivalently, according to the amount of resistance
to deformation which they offer, then fluids fit at the very bottom of that scale.

One of the most remarkable properties of fluids is that they offer barely any
resistance to deformation, practically zero, and therefore the force which they
require to be deformed is also practically zero.

Fluids are at the bottom of the rigidity scale also because the amount of
deformation which a fluid body can undergo is unlimited. No other material objects
behave in this way. Elastic or plastic solids have a limit beyond which they cease
to behave as elastic or plastic solids, and may break or yield to another form
of behavior thereafter. An elastic band will eventually snap if stretched beyond
this limit and a bridge will collapse if its structure is deformed beyond its limit.
Interestingly, an elastic object may yield to plastic behavior first and then break.
A spring stretched beyond the limit of its “springiness” is a good example. A fluid
object has no such limits. It can be deformed indefinitely.

Indeed, “flow” is nothing but a state of continuous deformation.

Thus, zero rigidity, zero resistance to deformation and no limit to the amount of
possible deformation are the hallmarks of the fluid state. Fluidity is the embodiment
of these remarkable properties.

1.5 Physics of Fluids and Fluid Flow

Now to address the first question posed earlier: What is the quality of fluids that
allows them to do all that? What makes fluids fluid and solids solid? How can fluids
behave in the remarkable way that they do?

The answers to these questions lie in the molecular structure of matter, solid or
fluid alike. The molecules comprising a material body are not cemented together
like bricks, nor physically connected to each other in any way. They are in fact
separated from each other by vast amounts of space, not unlike the objects we see
in the sky. While they are completely detached, however, they are not entirely free
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from each other. There is a force of attraction between them, which makes them
want to move towards each other, and a force of repulsion, which makes them want
to move away from each other. Both forces are in effect simultaneously and at all
times. A molecule surrounded by a few others is thus trapped by these two opposing
forces as they relate to each one of its neighbors. Forces are constantly pulling and
pushing it as it makes a move in any direction. It and its neighbors are in constant
wobble as a result, like a group of exotic dancers packed together in a dance hall.

How then does a material body, being as exceedingly sparse as this, hold itself
together? How does this strange world lead the the mechanical behavior of
material objects and in particular to the difference between solid and fluid
objects described earlier? What is fluidity on the molecular scale?

The answers to these questions lie in the precarious balance between the
attractive and repulsive forces that hold molecules together within a material body.3

Briefly, the degree to which the molecules are confined to their positions within the
body, under this balance of forces, determines the degree to which a material body
holds itself together. It is this that determines the mechanical behavior of the body
as we encounter it on our larger scale. It is this that makes fluids fluid and solids
solid.

When a material body is in the solid state it is believed that the balance between
repulsive and attractive forces among its molecules is such that each molecule is
completely imprisoned by its neighbors, unable to break away from them or from
the position to which it is confined.

In the fluid state it is believed that the repulsive and attractive forces between
molecules are so precariously balanced that either single molecules or groups of
molecules are able to break away from each other and wander freely from one
position to another within their host body.

Thus, a material body in the solid state is rigid and hard to break or manipulate
because its molecules, particularly groups of molecules, cannot break away from
each other or move from one part of the body to another. A material body in the
fluid state is supple and easy to manipulate because its molecules are fairly free
from each other and free to move about within the body.

1.6 Continuum Concept: Sand Is Not a Fluid

The loose molecular structure of fluids is what gives them their fluidity and enables
them to flow. It enables them to be in a state of continuous deformation. Yet, flow
is a contradiction. While fluidity points to how loosely a fluid body is held together,
flow points to how well a fluid body in fact stays together as it moves. When a fluid
body is at rest, we are struck by the ease with which it can be disturbed, the ease
with which it can be deformed and manipulated. This suggests that the body might

3Goldstein DL. States of Matter. Dover Publications, 2014.
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easily disintegrate or fall apart. Yet when the body flows, it is together at all times.
It does not fall apart.

A body of sand falls apart as it “flows”. When sand is poured and it appears to be
flowing, it is not actually flowing. The body of sand is not together as it moves. The
grains of sand are completely detached from each other and their motion consists of
sliding and toppling over each other. What actually occurs when sand is poured is a
landslide, or an avalanche. It is not flow.

When a fluid body flows, by contrast, its elements are not detached from each
other. They do not slide or topple over each other. The body is whole and integral
at all times and its elements are in complete contact with each other as the body
moves. To make sand behave this way, every grain of sand must be made infinitely
flexible, stretchable and deformable. Then the grains must be somehow attached to
each other so that they would be in complete contact with each other as they move,
with no empty gaps between them.

The ability of a fluid body to stay together as it moves, even though its
molecules are so far apart and so loosely held together, is at the core of fluidity
and fluid flow. While on the molecular or “microscopic” scale there are large
gaps between molecules, on the larger “macroscopic” scale there are no such
gaps between small chunks or “elements” of the fluid as there are between
grains of sand.

We may think of the microscopic scale as the scale on which molecules are
visible and the macroscopic scale as the scale on which grains of sand are visible.
The difference between these two scales is enormous because one cubic millimeter
of air under standard temperature and pressure, for example, contains approximately
1016 molecules. Thus, if a grain of sand is considered to be one thousandths or even
one millionth of a cubic millimeter, a volume of air of this size would still contain
1010 molecules. Thus a volume of fluid of this minute size contains a sufficient
number of molecules to retain its fluidity and behave as a fluid.

On this basis the molecular structure of fluids can be abandoned in favor
of a view on the macroscopic scale where a fluid body can be thought of as
consisting of small “elements” which are completely continuous with each
other (Fig. 1.2).

This view of a fluid body as a “continuum” has been pivotal in the study of fluids
and fluid flow because it enabled a mathematical description and analysis of fluidity
and fluid flow which would not be possible on the microscopic scale. Fluids not
only conform perfectly with this continuum model but they maintain it at all times
as they move. Sand is not a continuum since its elements are not continuous with
each other. Sand does not flow since its elements lose touch with each other as the
body of sand moves. A fluid body on the macroscopic scale is viewed as consisting
of minute elements that are continuous with each other in favor of a view on the
microscopic scale where it has a vastly discontinuous molecular structure.

The validity of the continuum view of fluids rests on the fact that a fluid element
is exceedingly large on the microscopic scale and exceedingly small on the
macroscopic scale.
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Fig. 1.2 The concept of fluid
as a continuum. On the
microscopic scale a fluid
body consists of a
discontinuous collection of
molecules. On the
macroscopic scale we view it
as a continuous collection of
elements. The figure depicts
the relation between the two
scales only in concept, not in
proportion, because the
difference between the two
scales is much too large to be
shown in the same figure.

1.7 Mathematical Basis of Fluid Flow

Newton’s laws of motion provide the basis for a mathematical description of the
motion of material objects, but in their most basic form the laws can be applied only
if the object is moving as a whole, “en masse”, as a stone or a rock. More precisely,
the laws are actually concerned with only the mass of the object, as in

force D mass � acceleration (1.1)

with no reference to or acknowledgment of different parts of the object.
The laws of motion as they stand, therefore, cannot be applied directly to a body

of fluid in motion because a body of fluid rarely moves en masse. A bucket full
of water, lifted ever so slowly so as not to disturb the water within, is an example
of a body of fluid moving en masse, but this scenario is hardly typical of a body of
fluid in motion. Typically, indeed almost invariably, a body of fluid is in a state of
flow, a state in which different parts of the body are moving at different speeds or
in different directions or both. Very rarely do we find a body of air, water, or indeed
blood, moving en masse. This is because, as we noted earlier, a body of fluid offers
zero resistance to deformation, thus any small external force will cause it to deform
and continue to deform even after the force has been removed. When a spoon stirring
the coffee in a cup is removed, the coffee does not stop turning. How and why does
it ever stop? We find out later.
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Fig. 1.3 A fluid element on
the microscopic scale
becomes a “point” on the
macroscopic scale. Equations
governing the mechanics of
fluid elements therefore
become “point equations” on
the macroscopic scale. They
govern conditions at every
point in a flow field, on the
macroscopic scale.

MICROSCOPIC

MACROSCOPIC

For a mathematical description of a fluid body in motion, therefore, the laws
of motion must be applied not globally to the body as a whole but individually
to every small part of the body.

How small should the part of the body be? This question has in fact already
been answered in our earlier discussion of a fluid body as a continuum. The laws of
motion must be applied to what we have referred to as fluid “elements” which, as
we recall, are very small on the macroscopic scale but very large on the microscopic
(molecular) scale.

In fact, a fluid element is so small on the macrosopic scale that it can be treated
as a “point” within the fluid body, as illustrated in Fig. 1.3. And since the fluid body
is being treated as a continuum where fluid elements are contiguous with each other,
then the “points” representing these elements within the fluid body are contiguous
with each other.

The continuum view of fluids therefore enables the use of continuous mathe-
matical functions to navigate through different parts of a fluid body because
every point of a given mathematical function describing some property within
the body of fluid can now be identified with a geometrical position within that
body as well as a fluid element occupying that position that has mass which
the laws of motion can be applied to.

The notion that a “point” has mass may seem at odds with the mathematical
concept of a point, but the difficulty is only one of semantics. We shall avoid this
difficulty by defining a point within a fluid body as either

(a) a geometrical position within the space occupied by the fluid body, or
(b) a fluid element occupying that position.
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To avoid confusion between the two we may use the explicit terms “geometrical
point” and “material point” respectively, but in most cases the intended meaning will
be sufficiently clear so that we dispense with the adjectives. In the way of notation, in
rectangular Cartesian coordinates for example, we shall keep the distinction between
the two by using .x; y; z/ to denote the geometrical point at these coordinates and
.X; Y; Z/ to denote the corresponding material point at the same coordinates. As
before, the two coordinate systems shall be referred to as “position coordinates”
and “material coordinates”, respectively.

These conventions lay the grounds for applying the laws of motion to every
material point within a body of fluid, but the laws require further that the mass
of these material points be specified. One of the most remarkable triumphs of the
continuum view of fluids and its cornerstone concept of a fluid element is that, as
we shall see later, it enables the application of the laws of motion to every element
of the body, in other words at every point within the body, without having to specify
explicitly the mass or volume present at that point. This is accomplished by defining
the density �.x; y; z/ at a point, which in turn is done by considering a volume
V surrounding the point (x; y; z) and containing a mass M of fluid (Fig. 1.3), then
writing

�.x; y; z/ D lim
V!v

�
M

V

�
D m

v
(1.2)

where m and v are respectively the mass and volume of the fluid element at (x; y; z).
The limit does not go to zero because the smallest volume of fluid which we
recognize on the continuum scale is that of a fluid element. But since the density
�.x; y; z/ is to be represented mathematically by a continuous function on the
continuum scale where a fluid element is represented by a (material) point, then
the limit in Eq. 1.2 can be written appropriately as

�.x; y; z/ D lim
V!0

�
M

V

�
(1.3)

We shall find in the next chapter that the limit in Eq. 1.3, which contains neither
the mass nor volume of the fluid element at (x; y; z), can be applied in the same
way to the forces acting on that element. Thus the laws governing the motion of
individual fluid elements within a body of fluid can be applied without having to
specify explicitly either the mass or volume of these elements.



Chapter 2
Mathematical Description of Fluid Flow

2.1 Introduction

With the grounds laid in Sect. 1.7, we are now in a position to apply the laws of
motion at every point within a body of fluid. The equations of motion obtained in
this way can be thought of as point equations in the sense that they do not govern
the motion of the fluid body as a whole but the motion of individual material points
(fluid elements) within that body.

2.2 Equations at a Point

Since within a body of fluid material points are continuous with each other, both the
governing equations and their solutions can be expressed mathematically in terms of
continuous functions whose range of values covers the entire fluid body to describe
the motion of every material point within it. The result is a description of a motion
field. Compared with the motion of the single object governed by Eq. 1.1, a motion
field is somewhat like a map of the motion of many objects governed by a simple
extension of Eq. 1.1, namely

force .x; y; z/ D mass .x; y; z/ � acceleration .x; y; z/ (2.1)

The law is being applied at every position (x; y; z) within the fluid body, and the
solution of the equation will yield the motion of the fluid elements identified with
these positions.

Equation 2.1 is actually not quite workable yet because when the fluid body
is in motion the fluid elements identified with the positions (x; y; z) are at these
positions only at a particular point in time. At a later point in time their positions
will have changed. What is required is to lock in the identity of fluid elements
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so that they can be followed as they move. We can do that by using the concept
and notation of “position coordinates x; y; z” and “material coordinates X; Y; Z”
introduced in Sect. 1.7, whereby (X; Y; Z) is used to identify the fluid element in
coordinate position (x; y; z) within the fluid body. For example, (III; I; IV) shall
denote the identity or label of the fluid element in coordinate position (3; 1; 4), etc.

However, the above scheme is workable only when the body of fluid is not
moving and all fluid elements identified with their coordinate positions remain in
these positions. When the body of fluid is in motion, the coordinate positions of fluid
elements are continuously changing. What we must do in this case is recognize that
(X; Y; Z) is now simply a label of an object in motion whose coordinate position at
time t is given by

8̂̂
<
ˆ̂:

X D X.x; y; z; t/

Y D Y.x; y; z; t/

Z D Z.x; y; z; t/

(2.2)

This equation reads:

(X; Y; Z) is the fluid element whose coordinate position at time t is (x; y; z).

In particular, if we consider the motion to have started at time t D 0, then the
initial position of that fluid element is given by

8̂̂
<
ˆ̂:

X0 D X.x; y; z; 0/ D x

Y0 D Y.x; y; z; 0/ D y

Z0 D Z.x; y; z; 0/ D z

(2.3)

as in the above example where we had x D 3; y D 1; z D 4 and X D III; Y D I;
Z D IV .

It is now clear that the laws of motion within a body of fluid must be applied
not at coordinate positions (x; y; z) within the body but to fluid elements (X; Y; Z).
Accordingly, Eq. 2.1 must finally be written more appropriately as

force .X; Y; Z/ D mass .X; Y; Z/ � acceleration .X; Y; Z/ (2.4)

Equation 2.4 highlights the difference between an application of the laws of
motion to a single isolated object and to a fluid element within a body of fluid. In
the case of a single isolated object in motion as, for example, the motion of a stone
thrown up against gravity, there is no issue regarding the identity of the object, and
the motion is governed by Eq. 1.1. In the case of a fluid element in motion, the
identity of the element is required because the ultimate aim is to construct a motion
field which involves all the elements within a fluid body.
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Furthermore, in the case of a single isolated object in motion the mass of the
object and the force acting on it will generally be given, thus the acceleration can be
readily calculated. In the case of a fluid element in motion the following difficulties
arise:

(i) The force acting on a fluid element within a fluid body is not known because
the element is continuous with other fluid elements which exert forces on each
other apart from any external force that is driving the motion.

(ii) As discussed in Sect. 1.7, the mass of a fluid element within a body of fluid
is not known explicitly and, in any case, it would not be practical or useful to
specify the mass or volume of all the elements within the fluid body.

(iii) The acceleration of a fluid element in motion is not easily determined because,
as we see later, the motion of the element is not being tracked individually
as in the case of a single isolated object in motion. Instead, the motions
of all elements within the fluid body are tracked collectively in terms of
instantaneous “snapshots” of the motion field as a whole.

These difficulties are addressed in the remaining sections of the present chapter.
It is remarkable that an entire chapter is actually needed to do no more than apply the
most basic law of motion to the elements of a fluid body in motion. The equations
governing that collective motion, or motion field, indeed represent nothing more
than an application of Eq. 1.1 to different elements of the fluid body. The difficulties
listed above are not with the physical principles involved but with the mathematical
expression of these principles within the confines of a fluid body.

2.3 Eulerian and Lagrangian Descriptions

It would seem overwhelming to track the motion of every (material) point within a
body of fluid to get a complete picture of the motion field within that body. There
are two different ways of doing so, generally referred to as the Lagrangian and the
Eulerian methods.

In the Lagrangian method the initial position of each fluid element is recorded
and then the motion of each element is followed individually as in the case of a
single isolated object in motion. In particular, the velocity of each element under
this scheme will be a function of time only, again as in the case of a single isolated
object in motion. However, the aggregate of all such velocities within the body of
fluid will be a function of time and of the identity of each element because, unlike
the case of an isolated object in motion, we are now dealing with a motion field, that
is the simultaneous motion of all the fluid elements within the body of fluid.

The initial positions of fluid elements, namely their position coordinates before
the motion started, are used as their identities. Thus, in rectangular Coordinates
x; y; z these will be denoted by X0; Y0; Z0 as in Eq. 2.3. The velocities of these
individual fluid elements are then referred to as “Lagrangian velocities” because
they track the motion of each fluid element individually. If the components of these
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velocities in the x; y; z directions are denoted by U; V; W, respectively, then these
will clearly be functions of the identities of the fluid elements which they represent
and of time t, i.e.

8̂̂
<
ˆ̂:

U D U.X0; Y0; Z0; t/

V D V.X0; Y0; Z0; t/

W D W.X0; Y0; Z0; t/

(2.5)

Each set of values X0; Y0; Z0 identifies a particular element (material point) within
the fluid body, then the Lagrangian velocity components U; V; W describe the
motion of that particular element at different points in time t.

While this method of describing a body of fluid in motion seems logical, it is
actually impractical. The requirement that each element (material point) within the
fluid body be associated with a unique label is extremely difficult to meet in practice,
and this requirement is also inconsistent with the continuum view of a fluid body as
being composed of fairly generic “pieces” rather than distinct identifiable objects.
Under the continuum concept, a fluid element is imagined to be somewhat like
a “bag of molecules” contiguous with other bags of molecules all around it. The
shapes of these bags of molecules are not defined and the borders between them are
not real borders- they are only imagined for the purpose of defining a fluid element.

These difficulties are demonstrated clearly in practice when an attempt is made
to actually follow the motion of an individual element within a body of fluid, which
can be done, for example, by attaching color to a small “blob” of fluid and then
tracking its motion. The result will come close to tracking the motion of a fluid
element, although the size of the blob will likely be such that it will encompass not
one but many thousands of fluid elements. Furthermore, because the borders of the
blob as well as the borders between individual fluid elements do not actually exist,
the color will ultimately diffuse to other parts of the fluid body.

In summary, the Lagrangian method of describing a body of fluid in motion
may seem to be a fairly logical extension of the method of describing the
motion of a single isolated object, but in practice it challenges the concept of
a fluid element by taking that concept beyond its intended limits. The method
is also almost intractable because of the large number of (ill-defined) fluid
elements that must be identified and tracked individually. While this can be
done mathematically, and is indeed done in some applications, the utility of
the method is highly limited.

The second way in which the motion field within a fluid body can be mapped,
which is known as the “Eulerian method”, is based not on the motion of identifiable
fluid elements but on the motion recorded at fixed coordinate positions (x; y; z)
within the space occupied by the fluid body. In rectangular Cartesian coordinates,
if the motion is recorded in terms of velocity components u; v; w in the x; y; z
directions, respectively, then these so called Eulerian velocities will be functions
of x; y; z and t, i.e.
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8̂̂
<
ˆ̂:

u D u.x; y; z; t/

v D v.x; y; z; t/

w D w.x; y; z; t/

(2.6)

The most important difference here is that the identities of fluid elements and hence
their initial positions are not involved. Thus, u.2; 1; 4; t/ is the velocity measured
at (fixed) position x D 2, y D 1, z D 4 at time t within the motion field. Since
at different times this coordinate position is occupied by different fluid elements,
the Eulerian velocities at a point in a flow field do not represent the velocities of
the same fluid element. They represent the velocities of different elements which
occupy that position at different times.

How then does one apply the laws of motion in terms of Eulerian velocity,
because the laws in their basic form apply only to a single identifiable object in
motion? Eulerian velocities represent the motion of different unidentifiable objects.
We shall find that the difficulties involved in answering this question are both
mathematical and conceptual but they are surmountable.

In summary, while Eulerian velocities seem less logical and less easy to
interpret, they are the velocities of choice in most fluid flow problems because
their practicality far outweighs the conceptual and analytical difficulties
which they entail. The practicality results from the ease with which the
velocities can be measured at specific coordinate positions within a flow field,
by simply placing instruments at the required positions. And the analysis of
fluid flow problems is more meaningful in terms of Eulerian velocities because
in practice it is these velocities that we would normally be interested in: the
velocities at this or that point in a flow field, rather than the velocities of this
or that identifiable fluid element.

2.4 Conservation of Mass: Equation of Continuity

The continuum view of fluids introduced in Sect. 1.6 requires that a fluid body
remains continuous as it moves, at all times and at every point within the body.
Another way of looking at this requirement is in terms of the mass of the fluid body.
For the fluid body to remain continuous, its mass must be conserved not only as a
whole but at every “point” within the body. Conservation of mass, of course, is a
“sacred” law of physics but the notion of conservation of mass at a point may seem
odd. However, if we recall that every point within a fluid body is a material point,
a fluid element, then the requirement that mass must be conserved at every point
within a body of fluid should not seem odd. It is simply the requirement that the
mass of fluid elements be conserved. For a body of fluid to remain continuous at all
times, this requirement must be satisfied particularly when the body of fluid is in
motion.
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Fig. 2.1 Conservation of
mass. Rates of mass flow
entering three sides of a box
formed by coordinate
surfaces are shown. If the
same flow rates leave the box
through the opposite three
sides, the net mass change
within the box is zero. In
general the rates will be
different, however, because of
changes in velocities or
density. Conservation of mass
requires that the difference
between rates of mass flow
into and out of the box be
equal to the rate of change of
mass of fluid within the box.
As the box is shrunk to a
point, this requirement
becomes an equation of
conservation of mass at a
“point”.
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To apply this requirement at a point, meaning to a fluid element, within a body
of fluid in motion, we consider a fixed volume of the fluid body in the form of a
closed rectangular box surrounding that point, then require that the mass contained
within the box be conserved. Of course, because the body of fluid as a whole is
in motion, some fluid will flow into and out of the box at different times. Thus, to
satisfy conservation of mass within the box, the mass flow into and out of the box
must add up to zero. Then, to satisfy conservation of mass at a point, we simply
allow the volume of the box to shrink to the volume of a fluid element.

In a rectangular Cartesian coordinate system x; y; z, we consider a rectangular
box defined by ıx; ıy; ız as shown in Fig. 2.1. The volume V of the box is given by

V D ıxıyız (2.7)

and the mass M contained within this volume is

M � �V (2.8)

where � is the fluid density, which may vary within the box, hence the equality is
only approximate.

Mass within the box will change as flow enters and leaves the different sides of
the box. Because of the way these sides are oriented with respect to the coordinate
axes, each side of the box will be affected by only one of the velocity components
u; v; w as shown in Fig. 2.1, the other two being tangential to it and hence do not
contribute to mass flow through it. Thus, in the x direction, mass will enter the box
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at a rate �uıyız and leave at a rate �.u C ıu/ıyız. The only difference between the
two is in the incremental velocity change ıu due to a possible change in the velocity
component u from point x to point x C ıx, recalling that the velocity u is a function
of position x; y; z and time t (Eq. 2.6). A change of u in time t is of no concern here
since we are comparing the two values of the velocity at the same moment in time.

Thus the balance of mass flow into and out of the box in the x direction can be
expressed as

�uıyız„ƒ‚…
in

� .�u C ı.�u//ıyız„ ƒ‚ …
out

� � ı.�u/ıyız„ ƒ‚ …
net

(2.9)

The equality is approximate because the values of � and u may vary over the ıyız
sides of the box and are here taken only as average values. The equality becomes
exact when the volume of the box is allowed to shrink to the volume of a fluid
element, which on the continuum scale is a point, and the values of � and u become
their exact values at that point.

The incremental change ı.�u/ represents a possible change in the product �u in
the x direction only, which can be written as

ı.�u/ D @.�u/

@x
ıx (2.10)

and the net rate of mass flow into the box in the x direction thus becomes

�@.�u/

@x
ıxıyız (2.11)

If � and u are constant, the gradient of �u will be zero and there will be no net rate
of change of mass within the box resulting from flow in the x direction. The minus
sign indicates that if the gradient of �u is positive, mass is leaving the box at a higher
rate than that entering the box and hence the net result is negative. Conversely, the
result will be positive if the gradient of �u is negative.

Repeating this entire process in the y and z directions, we find similarly that the
net rates of mass flow into the box in these two directions are respectively given by

�@.�v/

@y
ıxıyız (2.12)

and

�@.�w/

@z
ıxıyız (2.13)

Conservation of mass requires that the total of these net rates of mass flow be
equal to the rate of change of mass within the box.

�
�

@.�u/

@x
C @.�v/

@y
C @.�w/

@z

�
ıxıyız � @M

@t
(2.14)
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Now, mass contained within the box is equal to the product of density � and volume
ıV of the box (Eq. 2.8), where

ıV D ıxıyız (2.15)

Since the volume of the box is fixed, the rate of change of mass within the box is
simply the rate of change of density times the volume of the box, i.e.

@M

@t
D @�

@t
ıxıyız (2.16)

Thus, finally, conservation of mass requires

�
�

@.�u/

@x
C @.�v/

@y
C @.�w/

@z

�
ıxıyız � @�

@t
ıxıyız (2.17)

Since the volume of the box, ıxıyız, is a factor on both sides, it can be divided
out. Furthermore, if at the same time the volume of the box is now allowed to shrink
to the volume of a fluid element, in other words to shrink to a point, the density and
velocities become the density � and velocities u; v; w at that point. The equality thus
becomes exact, and we obtain

@�

@t
C @.�u/

@x
C @.�v/

@y
C @.�w/

@z
D 0 (2.18)

Since the velocity components u; v; w and the density � are functions of position
x; y; z, this equation represents the law of conservation of mass at a point within
a body of fluid in motion. However, since a “point” on the continuum scale is
a material point which represents a fluid element, Eq. 2.18 represents the law of
conservation of mass applied to a fluid element within a body of fluid in motion.

What is remarkable about Eq. 2.18 is that it represents conservation of mass
of a fluid element, yet it does not contain either the mass or volume of that
element. Instead, the equation contains only the density at a point which, as we
recall (Eq. 1.3), represents the average density of the fluid element at that point.
Furthermore, if the density is constant in time, the equation becomes

@.�u/

@x
C @.�v/

@y
C @.�w/

@z
D 0 (2.19)

and if, finally, the density is constant throughout the fluid body, the equation reduces
further to

@u

@x
C @v

@y
C @w

@z
D 0 (2.20)

Equations 2.18, 2.19, 2.20 represent unique expressions of the law of conser-
vation of mass for a fluid body in motion. The expressions are unique because
they apply the law not to the fluid body as a whole but at every point within that



2.5 Acceleration of Fluid Elements 21

body, which means to every fluid element within the body. The equations are also
remarkable in that they ensure the conservation of mass of a fluid element, yet
they do not contain the mass, volume, or shape of that element. The last form
of the equation, Eq. 2.20, is particularly remarkable because it expresses the law
of conservation of mass at every point within the fluid body in terms of only the
Eulerian velocities at each point.

These mathematical feats represent a triumph of the continuum concept and
of the concept of a fluid element. Equations 2.18, 2.19, 2.20 are only possible if
the fluid body can be treated as a continuum, and the fluid body can be treated
as a continuum only by using the concept of a fluid element. For these reasons,
Eqs. 2.18, 2.19, 2.20 are often referred to as “equations of continuity” rather than
equations of conservation of mass. By either name, however, they represent the
most important law governing fluids in motion since conservation of mass is a
fundamental law of physics that must be satisfied in all circumstances.

2.5 Acceleration of Fluid Elements

Acceleration is a simple concept. The acceleration of an object in motion is the
rate of change of its velocity with time. If the object is a fluid element within
a flow field, its acceleration is then simply the rate of change of its Lagrangian
velocity components with time. This is because, as we have seen in Sect. 2.3, the
Lagrangian velocities describe the motion of each fluid element as a single isolated
object in motion. If the acceleration components in the x; y; z directions are denoted
by ax; ay; az, respectively, we then have

8̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂:

ax D @U.X0; Y0; Z0; t/

@t

ay D @V.X0; Y0; Z0; t/

@t

az D @W.X0; Y0; Z0; t/

@t

(2.21)

The time derivatives are partial derivatives because the other independent variables,
namely X0; Y0; Z0, are being held constant. This is required if ax; ay; az are to be the
acceleration components of the particular fluid element identified by the material
coordinates X0; Y0; Z0.

The subject of acceleration would end here if the fluid element in question was
indeed being identified as a single isolated object and its motion is being described
by its Lagrangian velocities. This is not the case, however. As discussed in Sect. 2.3,
the use of Lagrangian velocities is rather impractical and the velocities of choice
when describing a fluid body in motion, indeed the velocities which we shall use in
the remainder of this book, are the Eulerian velocities.
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But how can the acceleration components of a particular fluid element be
expressed in terms of Eulerian velocity components which represent the velocities
recorded at a particular coordinate position, not the velocities of particular fluid
elements? As discussed earlier, a particular coordinate position within a body of
fluid in motion will be occupied by different fluid elements at different times. The
partial derivatives of the Eulerian velocity with time, namely

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

@u.x; y; z; t/

@t

@v.x; y; z; t/

@t

@w.x; y; z; t/

@t

(2.22)

therefore do not represent the acceleration of a particular fluid element because they
imply that the coordinate positions x; y; z are being held constant. They represent the
rate of change of velocities at particular locations within the body of fluid, not the
velocities of particular elements of that body. And, as stated before, these locations
are occupied by different fluid elements at different times.

Yet, the laws of motion can only be applied to particular fluid elements,
individually.

These difficulties can be resolved if we now treat x; y; z not as a fixed coordinate
position within the fluid body but as the instantaneous position at time t of a fluid
element in motion. This makes x; y; z functions of time t, and we now write Eq. 2.6 as

8̂
<̂
ˆ̂:

u D ufx.t/; y.t/; z.t/; tg
v D vfx.t/; y.t/; z.t/; tg
w D wfx.t/; y.t/; z.t/; tg

(2.23)

Thus the Eulerian velocity components u; v; w are now seen not as the
velocities recorded at a fixed location x; y; z within the fluid body, but as
the velocity components of the fluid element which happens to occupy that
location at time t.

With this interpretation, and in view of Eq. 2.23, the acceleration of that fluid
element is now given appropriately by the total derivatives of these velocities with
time, that is

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
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Dt
D @u

@t
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C @u

@z
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dt
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Dt
D @v

@t
C @v

@x

dx

dt
C @v

@y
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dt
C @v

@z
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dt

az D Dw

Dt
D @w

@t
C @w

@x

dx

dt
C @w

@y

dy

dt
C @w

@z

dz

dt

(2.24)
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Furthermore, since x; y; z are the instantaneous coordinates of the fluid element in
motion, then the time derivatives of these coordinates represent the Eulerian velocity
components at that location and that instant in time, that is

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

dx

dt
D u

dy

dt
D v

dz

dt
D w

(2.25)

and the expressions for the acceleration components finally become
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ˆ̂̂̂̂
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ˆ̂̂:

ax D @u

@t
C u

@u

@x
C v

@u

@y
C w

@u

@z

ay D @v

@t
C u

@v

@x
C v

@v

@y
C w

@v

@z

az D @w

@t
C u

@w

@x
C v

@w

@y
C w

@w

@z

(2.26)

If the acceleration is denoted by a vector a, then

a D .ax; ay; az/ (2.27)

It is important to note that the partial derivatives

@u

@t
;

@v

@t
;

@w

@t
(2.28)

are rates of change of u; v; w with time, keeping x; y; z constant, and that these
derivatives do not represent the acceleration of the fluid element at x; y; z. They
represent only part of that acceleration. The total acceleration of the element in
terms of Eulerian velocities depend not only on the partial derivatives of these
velocities with time but also on the velocity gradients at that point within the fluid
body. Velocity gradients within a fluid body in motion, mathematically speaking,
are represented by the partial derivatives of the Eulerian velocities with position
coordinates x; y; z, as in the extra terms beyond the time derivative terms in Eq. 2.26.

Mathematically, the combination of time and space derivatives of the Eulerian
velocities are known as total derivatives. From the perspective of physics, the space
derivative terms within the total derivative are known as the convective terms. The
name is important in that it highlights the difference between the acceleration of an
isolated object in motion and that of a fluid element within a fluid body in motion.
The latter is driven not only by the direct forces that are causing its acceleration or
deceleration but also by the velocity field within which it is moving.
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The situation is analogous to that of a runner sprinting uphill or downhill.
The runner’s acceleration or deceleration consists of two parts. One part is
the acceleration which the runner’s effort would produce on level ground, the
other is the acceleration or deceleration caused by the slope of the hill. The
first of these would be represented by the time rate of change of the runner’s
velocity on level ground. The second would be represented by the rate at which
his or her velocity is being changed by the terrain.

A fluid element within a body of fluid in motion, such as flow in a tube, would
face the analogue of a “downhill” situation if the tube had a narrowing where
fluid is forced to move faster because of the constricted space. As the fluid
element approaches the narrowing, it would be accelerated forward in the
same way that the runner is accelerated downhill.

2.6 Forces Acting on a Fluid Element

Having dealt with the acceleration of a fluid element, the second important term in
the equation of motion (Eq. 2.4) is the force acting on the fluid element to cause that
acceleration.

In the case of an isolated object in motion, the force acting to accelerate or
decelerate it is typically an external force which can be easily identified, such as
the gravitational force acting downward on an aircraft in flight, the aerodynamic lift
force acting to keep it up, the thrust of the engines pulling it forward, or the force of
air friction acting against that pull. Whether the aircraft accelerates or decelerates
and in which direction is determined by the net of these forces. In the end, the
net force will precisely equal the mass of the aircraft times any acceleration or
deceleration it is undergoing, precisely as dictated by Newton’s law of motion in
Eq. 1.1.

And so it is for a fluid element within a body of fluid in motion. We have already
seen that the law of motion cannot be applied to the fluid body as a whole. It must be
applied to individual elements of that body, which on the continuum scale means it
must be applied at every (material) point within the body as in Eq. 2.4. But, unlike an
aircraft in flight, a fluid element within a fluid body in motion is typically surrounded
by other elements which are in contact with it on all sides and at all times. It is
actually part of the fluid body as a whole and, as such, it is unlike an isolated object
in motion. What then are the forces acting on a fluid element and how are they to be
determined?

To answer these questions it is helpful to think of the forces acting on a fluid
element in general as being of two types: internal “boundary forces” exerted by the
push and pull of neighboring elements that are in contact with it and acting directly
on its boundary, and external “body forces” acting directly on the mass of the fluid
element, independently of its neighbors.



2.7 The Stress Tensor 25

Examples of body forces are those resulting from gravitational or magnetic fields
affecting a body of fluid. Since these act directly on the mass of fluid elements, their
effect on the acceleration or deceleration of these elements is similar to that in the
case of an isolated object in motion under the same forces. The only, though very
important, difference between the two is that in the case of a fluid element these
body forces must be combined with the boundary forces acting on the same element
to determine the net force that would cause it to accelerate or decelerate. Flow in a
river is the quintessential example of a body force (gravity) acting on the elements
of water, causing it to flow down the river.

Boundary forces, by contrast, are transmitted internally within a body of fluid
from one fluid element to the next. The most important example of a boundary
force is pressure. Pressure at one end of a fluid filled tube causes the fluid to “flow”
along the tube simply by one fluid element pushing another, from the high pressure
end of the tube to the other end, in a process not unlike that of a domino effect. We
shall find out later that in the resulting flow along the tube not all fluid elements are
able to move forward at the same speed. The reason for this is another important
boundary force that acts on fluid elements, namely the shear force resulting from
one fluid element rubbing against another or against a solid boundary such as the
tube wall in this case. The same is true of the flow in a river mentioned above. Here
again the flow is not uniform, in the sense that not all elements of the water are
moving with the same speed down the river, because of boundary forces.

What we see in these two examples is that flow in a tube would typically be
determined largely by boundary forces, specifically pressure. Certainly, flow in a
horizontal tube would be so driven and would not be affected by the body force of
gravity. In the case of an inclined tube, flow may be driven by a combination of
both. However, if the tube is stationary in its inclined position, the effect of gravity
would be equally stationary and the only variability in the flow would result from
the variability in pressure. This is precisely the situation in blood flow and hence
the focus in this book will be on boundary forces only, specifically pressure and
shear forces. The force of gravity plays a role in some blood flow problems, as in
the effects of going from a lying to standing position or vice versa, or in the effects
of the absence of gravity on astronauts in outer space, but, like flow in a tube going
from a horizontal to an inclined position, after an initial transition period, the effect
of gravity will become stationary and any variability in the flow will be dominated
by variability in pressure. This is the case in blood flow.

2.7 The Stress Tensor

Following the previous section, it is clear that in order to apply the laws of motion
to a fluid element the internal forces acting on its boundary must be somehow
accounted for. At a first glance this may seem to be an impossible task because
a fluid element is not well defined as a material entity- neither the mass nor shape or
volume of the element are known. Only the “density at a point” has so far been used,
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τxz τxy
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Fig. 2.2 Stress tensor. Boundary stresses acting on three sides of a closed box formed by
coordinate surfaces, a stress being force per area. On each side there is one stress acting normal to
that side and two acting tangential to it. Normal stresses are denoted by �’s and tangential stresses
by �’s, with the first subscript identifying the normal to the face on which the stress is acting and the
second identifying the direction in which the stress itself is acting. Stresses acting on the opposite
three sides may in general be different, thus producing a net force acting on the volume of fluid
contained within the box. As the box is shrunk to a point, this force becomes the net boundary
force acting at a “point”, that is, acting on the fluid element at that point.

as in Eq. 1.3, to “acknowledge” the presence of a fluid element at that point within
a larger body of fluid. In fact, the concept of a fluid element does not go any further
than this in the way of detail. How then does one determine the internal forces that
act on a fluid element in order to determine its motion?

Surprisingly, the task is not as daunting as it seems. Essentially, we follow the
same procedure as that followed in Sect. 2.4 to determine conservation of mass. As
in that section, we begin by considering a rectangular box with edges ıx; ıy; ız that
are aligned with the three coordinate axes. The box is positioned such that one of
its corners, to be referred to as ‘A’, is at the point x; y; z and the diagonally-opposite
corner, to be referred to as ‘B’, is at x C ıx; y C ıy; z C ız. Three of the six faces of
the box intersect at A, the other three intersect at B, as illustrated in Fig. 2.2.

Our plan is to determine the forces acting on each of the six faces of the volume
of fluid contained in this box, and then, as was done in Sect. 2.4, allow the volume
of the box to shrink to the corner A by letting ıx; ıy; ız ! 0. In that process, the
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forces acting on the six faces of the box become the forces acting at a point, hence
the forces acting on a fluid element at that point, namely the point (x; y; z). In fact, as
we shall see, the forces acting on each face are divided by the area of that face, thus
converting the forces into stresses acting on a fluid element—“stress”, by definition,
being force divided by the area on which that force is acting.

In rectangular Cartesian coordinates, a stress � , being a vector (as is a force),
can be specified in terms of its three components in the x; y; z directions. Thus, in
general, there will be three stress components acting on each face of the rectangular
box. We use a two-subscript notation for this purpose, one to identify the face on
which the stress component is acting and another to identify the direction in which
that component is acting. Thus �xy, for example, shall denote a stress component
acting in the y-direction on the face normal to the x-axis, while �yx shall denote a
stress component acting in the x-direction acting on the face normal to the y-axis.
In this way, the stress components acting on the first three faces of the box, namely
the three faces that intersect at the point A.x; y; z/, form a 3 � 3 matrix known as the
“stress tensor”

T D
2
4�xx �xy �xz

�yx �yy �yz

�zx �zy �zz

3
5 (2.29)

The diagonal components of the stress tensor are denoted by a different symbol (� )
because they are different in that the direction in which they act is normal to the
face on which they are acting, while the off-diagonal components, denoted by � ,
represent stress components that act tangential to the face on which they are acting.
For example, of the three stress components acting on the face normal to the x-axis,
which are in the top row of the stress tensor (Eq. 2.29), �xy and �xz act tangential to
that face while �xx acts normal to it. Similarly, we note that the stress components
acting on the faces normal to the y-axis and the z-axis are in the second and third
rows of the stress tensor, respectively.

As noted above, the nine components of the stress tensor in Eq. 2.29 represent
stress components acting on only three faces of the box, namely those that intersect
at the point A.x; y; z/. Stress components acting on the other (opposite) three faces,
namely those that intersect at the point B.xCıx; yCıy; zCız/, are generally different
because the forces acting within the body of fluid may in general be different from
point to point. Thus, the stress components on the two faces normal to the x-axis are

8̂̂
<
ˆ̂:

�xx

�xy

�xz

(2.30)
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on the face intersecting the x-axis at A.x; y; z/, and
8̂
ˆ̂̂̂̂
<̂
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ˆ̂:

�xx C @�xx

@x
ıx

�xy C @�xy

@x
ıx

�xz C @�xz

@x
ıx

(2.31)

on the face intersecting the x-axis at B.xCıx; yCıy; zCız/. The difference between
the two is

�
@�xx

@x
;

@�xy

@x
;

@�xz

@x

�
ıx (2.32)

and if this difference between the stresses acting on the two opposite faces is
multiplied by the area of these faces, namely ıyız, we obtain, finally, the net force
resulting from the difference between the forces acting on the two faces of the box
that are normal to the x-axis

�
@�xx

@x
;

@�xy

@x
;

@�xz

@x

�
ıxıyız (2.33)

In a similar way we find the net force resulting from the difference between the
forces acting on the two faces of the box that are normal to the y-axis

�
@�yx

@y
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@�yy

@y
;

@�yz

@y

�
ıyıxız (2.34)

and the net force resulting from the difference between the forces acting on the two
faces of the box that are normal to the z-axis

�
@�zx

@z
;

@�zy

@z
;

@�zz

@z

�
ızıyıx (2.35)

In each of Eqs. 2.33, 2.34, 2.35, the force is a vector with three components acting
in the x; y; z directions. The sum of all these forces can therefore be denoted by a
single vector F.Fx; Fy; Fz/ representing the total force acting on the volume of fluid
contained within the box defined by ıx; ıy; ız. The components of F in the x; y; z
directions are given by
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(2.36)

The equalities are approximate because the forces acting on each face of the box
defined by ıxıyız are only average forces. To make the equalities exact requires
that the forces be exactly those acting at the point x; y; z, which is achieved by letting
ıx; ıy; ız ! 0. Another way of putting it, the volume of fluid within the box defined
by ıxıyız contains many fluid elements and, in general, the forces acting on these
elements will not be the same. The forces in Eq. 2.36 represent only the average of
the forces acting on all fluid elements within the box. To turn this average into the
actual forces acting on the fluid element at the point x; y; z is achieved, again, by
letting ıx; ıy; ız ! 0.

To implement this limiting process, we use a technique similar to that used in
Sect. 2.4 where the mass of fluid within the box was divided by the volume ıV D
ıxıyız while at the same time letting ıV ! 0. This process led to the use of the
density at a point, which is the density of the fluid element at that point, instead of
the actual mass of that element. Here too, we divide the forces F.Fx; Fy; Fz/ acting
on the volume of fluid within the box by the volume of the box while at the same
time letting ıV ! 0, thereby defining the “force per volume”

f.fx; fy; fz/ D lim
ıV!0

�
F.Fx; Fy; Fz/

ıV

�
(2.37)

Applying this limit to Eq. 2.36 leads to
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(2.38)

The force vector is given by

f D .fx; fy; fz/ (2.39)

Again we see that the difficulty of specifying the actual mass, volume, or shape of
a fluid element has been avoided. Only the exact location of the element is specified,
namely the point (x; y; z). This is a fundamental technique in the study of fluid flow.
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It represents a triumph of the concept of a “fluid element” whereby, despite the
vagueness of that concept, the laws of conservation of mass and, as we shall see, the
laws of motion can be applied at every “point” within a body of fluid in motion.

2.8 Newton’s Second Law “At a Point”

As fundamental as it is in its scope, Newton’s second law of motion cannot be
applied to a body of fluid in motion. This problem has already been introduced and
the reasons for it briefly discussed in Sect. 2.2. Essentially, the law does not apply
to a fluid body as a whole because different elements of a fluid body in motion
are in general under different forces and are moving individually, not en masse.
While they are continuous with each other and to some extent constrained by each
other, elements of fluid are typically able to move faster or slower than each other.
Indeed, as we shall gradually come to understand, “flow” is nothing but the ability
of different elements of a fluid body to move at different velocities while at the same
time remaining continuous with each other.

In essence, fluid elements negotiate Newton’s second law individually and, under
these conditions, the law must be applied separately to each element of a fluid body
in motion. And since on the continuum scale an element of fluid is a “point”, a
material point, then Newton’s second law must be applied at every point within a
fluid body in motion. The task of doing so is not as daunting as it seems, however,
because preliminary steps in that direction have already been taken in previous
sections.

We begin with the law itself as presented in Eq. 1.1, only now we switch the
left and right sides of the equation because, interestingly, as the law migrated
from its origin in classical physics to the more modern studies of fluid flow and
hemodynamics, the term representing “force” established itself firmly on the right
side of the equation, not the left. In that tradition, therefore, we write

mass � acceleration D force (2.40)

Assuming that the mass of that element is m and its volume is v, we may write
this as

m � acceleration D v � .force=volume/ (2.41)

The key step in the application of Newton’s second law to every element of a fluid
body in motion, i.e. at every point within a fluid body in motion, is that Eq. 2.41 is
now divided by v and the ratio m=v is replaced by the density � as was done in
Sect. 2.4, which leads to

density � acceleration D .force=volume/ (2.42)
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In doing so the actual mass m and volume v of the element are eliminated and the
equation becomes applicable to every element of the fluid body in motion, i.e. at
every point within the fluid body. Different elements are identified only by their
locations x; y; z, and it is in this sense that Eq. 2.42 is now an equation “at a point”.

Thus, using the acceleration a introduced in Sect. 2.5 and the total force per
volume acting on that element f introduced in Sect. 2.6, we write, in vector form

�.x; y; z/ � a.x; y; z/ D f.x; y; z/ (2.43)

or in component form
8̂
<̂
ˆ̂:

�.x; y; z/ � ax.x; y; z/ D fx.x; y; z/

�.x; y; z/ � ay.x; y; z/ D fy.x; y; z/

�.x; y; z/ � az.x; y; z/ D fz.x; y; z/
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Every term in these equations is a function of coordinate position x; y; z and, again,
it is in this sense that the equation is an equation at a point.

Substituting for the acceleration components from Sect. 2.5 and for the force
components from Sect. 2.6 we finally have
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The brackets (x; y; z; t) have been omitted from these equations and will be omitted
in future, with the understanding that the position coordinates x; y; z and the time
t are implicit in all subsequent equations. All subsequent equations are point
equations, representing Newton’s second law of motion as applied to the fluid
element at (x; y; z; t).

2.9 Mechanical Properties: Viscosity

The mechanical properties of material objects have to do with the way they respond
to a deforming force. Briefly, as discussed in Sect. 1.4, the more “rigid” an object
the higher the resistance it offers to deformation. Fluids are at the bottom of this
scale; they offer zero resistance to deformation. Within a flow field, fluid elements
are in a state of “continuous deformation”.
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Indeed, fluid “flow” can be appropriately defined as a state of continuous
deformation.

But if flow is a state of continuous deformation and fluids offer zero resistance
to deformation, how and why does flow ever stop? Every day experience indicates
clearly that it does. Tea or coffee stirred in a cup ultimately stops spinning. Water
disturbed by a swimmer in a pool ultimately becomes still again. Air disturbed by a
flying object will become calm again. Or more to the subject at hand, blood, driven
by the heart through our labyrinth of arteries and, as we shall see later, is in a state of
continuous deformation, a state of flow, stops flowing when the heart stops pumping.
In all cases, the action triggers the start of a state of continuous deformation, a state
of flow, but when the action ceases the flow ultimately stops. Why?

Furthermore, since an aircraft in flight is merely deforming the elements of air
around it, and since air, being a fluid, offers no resistance to deformation, why does
the aircraft require an engine to continue its motion through the air once it started?
Similarly, since a swimmer in a pool of water is merely deforming the elements of
water around his or her body as it moves and again, since water, being a fluid, offers
no resistance to deformation, why does the act of swimming require a continuous
supply of energy? Or again, more to the subject at hand, why does blood flow require
a pump?

Remarkably, we encounter the answers to these questions in every day life, yet,
as with other aspects of fluids and fluid flow, we simply accept the experience
without pursuing it any further. If we do pursue the issue we soon find that moving
our arms at low speed through the water while swimming meets less resistance
and requires less energy than doing so at higher speed. In both cases the water is
being continuously deformed, but the rate at which it is being deformed is different.
Another, somewhat mundane but no less instructive example, is that of unscrewing
the cap of a jar of honey in which the thread on the cap has been smeared with
the stuff. An attempt to do so with excessive force, thus causing a high rate of
shear (deformation) of the honey caught between the cap and the jar, will meet high
resistance. The cap will open more easily if it is unscrewed very slowly.

Thus, while fluids offer zero resistance to deformation, they resist the rate
at which they are being deformed, the higher the rate of deformation the
higher the resistance. This fundamental property of fluids is known as their
“viscosity”.

In its simplest form, a state of continuous deformation can be represented by
a “velocity gradient”, that is a state in which adjacent layers of fluid are moving
at gradually higher and higher velocities, as illustrated in Fig. 2.3. It is somewhat
like the traffic on a multi-lane highway. A fluid element within a velocity gradient
is in a state of continuous deformation, the rate of deformation being proportional
to the velocity gradient. The viscous force � with which fluids resist the rate of
deformation is therefore related to the velocity gradients within the flow field. The
relation most commonly used is a linear one, with a constant of proportionality �



2.9 Mechanical Properties: Viscosity 33

Fig. 2.3 Flow is a state of
velocity gradients. Only one
gradient is illustrated here,
resulting from variation of the
x-component of velocity u in
the y-direction. An element of
fluid within this gradient is in
a state of continuous
deformation, a state of flow.

du
dy

u

y

x

known as the “coefficient of viscosity” and whose value is a characteristic property
of the fluid, that is

� D �
du

dy
(2.46)

This relation was first derived by Newton, and fluids whose behavior is consistent
with it are referred to as Newtonian fluids.1

Many common fluids are found to behave as Newtonian fluids, among them air,
water, and oil. Others may behave as Newtonian fluids when the rates of deformation
and hence velocity gradients within a flow field are small, and as non-Newtonian
fluids when the gradients are large. Theoretical studies have concluded, in fact,
that the linear relation in Eq. 2.46 is only an approximation for small rates of
deformation, but one that has a wide range of validity. Other relations have been
explored in both theoretical and experimental studies.2

The question of whether blood is a Newtonian fluid is a long standing one.
Indeed, the corpuscular nature of whole blood raises the question of whether it
can be treated as a continuum, and the peculiar makeup of plasma makes it seem

1Tokaty GA. A History & Philosophy of Fluidmechanics. Foulis & Co, 1971.
2Larsen RG. The Structure and Rheology of Complex Fluids. Oxford University Press, New York,
1999.
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Fig. 2.4 Is blood a
Newtonian fluid? The
question is tied much to the
diameter of the tube in which
blood is flowing. When the
diameter is comparable with
the scale of the corpuscular
structure of blood (top), the
assumption of a Newtonian
fluid, indeed the assumption
of blood as a fluid continuum,
is clearly untenable. The
reason for the latter is that the
blood cells are not fluid.
However, when the tube
diameter is large on the
corpuscular scale (bottom),
both assumptions are found to
be fairly adequate.

different from more common fluids. There is no doubt that blood cannot be treated
as a Newtonian fluid in general and under all circumstances, but there is equally
no doubt that under many of the normal physiological circumstances of blood
circulation it can. A great deal of understanding, indeed the overwhelming majority
of what we know to date about the dynamics of blood flow, has been achieved
by treating blood as a Newtonian fluid, or more accurately by using Newtonian
relations between shear stresses and velocity gradients. This is not to say that blood
is a Newtonian fluid, but only that the Newtonian relations have proved adequate for
much of what has been studied so far. Near the capillary level of the vascular tree
where vessel diameters become comparable with the size of the discrete corpuscles
of blood, the continuum model of blood and its assumed Newtonian behavior
become clearly inadequate, but in the core of more common blood flow problems the
Newtonian model has proved adequate so far (Fig. 2.4). The effects of viscosity are
an inseparable part of fluid flow because of the ever presence of velocity gradients in
fluid flow. Indeed, as has been mentioned previously, velocity gradients are absent
only when a fluid body is moving en masse, that is when all its elements are moving
at the same speed and in the same directions, as the body of fluid in a cup when the
cup is being moved gently without disturbing the fluid within. In this case the body
of fluid is moving as a solid object and there are no velocity gradients and no flow.
Outside this rather artificial example, however, flow and velocity gradients go hand
in hand- where there is flow there are velocity gradients and vice versa. We shall see
later how these gradients arise as we consider specific flow fields, most notable that
of flow in a tube.

Thick liquid honey provides a vivid demonstration of a viscous fluid, but all fluids
are viscous to some extent, including water, milk, blood and, surprisingly, even air
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and other gases. The difference is only in the degree of viscosity: some fluids are
more viscous than others. The force and energy which a swimmer requires to move
through the water is almost entirely spent on overcoming the effects of viscosity,
and the same is true of the force and energy which the engine of an aircraft must
provide. While the viscosity of air is very low, the rate at which layers of air are
sheared by the passage of a high speed aircraft is very high, and hence the viscous
resistance is correspondingly high.

The effects of fluid viscosity are as ubiquitous in our life as are the effects of
gravity. A world without fluid viscosity would be as magical as a world without
gravity. Without viscosity it would be possible to fly through air without any
resistance. An aircraft would need only to be taken up to a certain height and given
a push to then continue flying in that direction without engine or fuel. A swimmer
would be able to kick the wall at one end of a swimming pool and reach the other
end without any further effort. The force of gravity would no longer be needed to
maintain the flow in a river, that is, the flow in a river would no longer need to be
downhill. Once started, it would be possible for the flow to continue indefinitely
on level ground without the need to overcome viscous resistance. Above all, in the
absence of viscosity blood would circulate through our arteries without the need for
a pump. The circulation of blood would be “primed” only once at birth and it would
then go on indefinitely. Oddly, or perhaps sadly, a world without viscosity would be
a world without the human heart!

How does the viscous property of fluids come about? See Appendix A.

2.10 Constitutive Equations

The purpose of applying Newton’s second law at every point within a fluid body
in motion, as was done in the previous section, is to provide a map of the variable
motion within the body, a map of the flow field within that body. For the map of
a flow field to be useful, it must describe that field in terms of variables that are
both accessible (can be measured) and meaningful (can be interpreted). In Sect. 2.3
it was concluded that the Eulerian velocities u; v; w meet these criteria because they
represent the velocity components at every point within a fluid body in motion. In
Sect. 2.5 it was seen how the acceleration of fluid elements can be expressed in
terms of these velocity components, thus providing one part of Newton’s law, as in
Eq. 2.45. However, the other part of these equations which represents the “force”
side of Newton’s law is expressed in terms of components of the stress tensor which
certainly do not meet the criteria of being accessible or meaningful. We recall that
components of the stress tensor represent internal forces which fluid elements exert
on each other and, so far, in Sects. 2.6 and 2.7, these forces have only been “named”
in terms of their components in the three coordinate directions. It is not clear as yet
how these forces come about and how they relate to what can actually be measured
in a flow field. Ideally, if components of the stress tensor can be expressed in terms
of the Eulerian velocities, as was done with the acceleration components, then this
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would not only give meaning to these components but also complete the expression
of Newton’s law in Eq. 2.45 in terms of the same variables. This can indeed be done
and it is the subject of the present section. Equations relating the stresses acting on a
fluid element to the Eulerian velocities and pressure within a flow field are known as
“constitutive equations” because the form of that relation, as we shall see, depends
on the constitution of the particular fluid, on its mechanical properties.

The Newtonian relation discussed in the previous section (Eq. 2.46) was based
on only one velocity gradient and one shear stress � . More generally each of
the three velocity components in a flow field may have a gradient in each of the
three coordinate directions, and there are as many possible shear stress components
on the boundary of a fluid element as we saw in the previous section. The
constitutive equations of a given fluid are usually based on the relations between
these velocity gradients and corresponding shear stresses. In the case of Newtonian
fluids the relations are more complicated than that in Eq. 2.46 but they remain linear.
Linearity of the relations between shear stresses and velocity gradients is a defining
characteristic of Newtonian fluids.

Constitutive equations are generally based on a combination of theory and
empirical data.3 For many common fluids the following equations are found to hold
when velocity gradients are not large.
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where � is the coefficient of viscosity introduced in the previous section and p is
“pressure” at that point within the fluid body and whose interpretation is discussed
below.

Direct verification of constitutive equations is rarely possible. More commonly
they are tested indirectly by using them as the basis of equations of motion, as

3Schlichting H. Boundary-Layer Theory. McGraw-Hill 1979.
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we do in the next section. The equations are subsequently solved for a given flow
situation, and it is the solutions that are then compared directly with experiment or
observation. Such indirect verification of course does not test the assumptions on
which the constitutive equations are based, and it is important to identify these at
this point.

The central assumption is that of linearity of the relation between shear stress and
velocity gradient. It is well recognized that this is only an approximation for small
gradients but its range of validity seems to be fairly wide. Solutions of equations of
motion based on the constitutive equations of Newtonian fluids have been applied
to most common fluids and have been tested successfully against experiment for
many years. Many problems in blood flow have been modelled successfully by
these equations, even though the Newtonian character of blood can be questioned.
In particular, the classical solutions for pulsatile flow which we use in this book
have been based on the constitutive equations of Newtonian fluids.

The second important issue concerns the pressure p appearing in the constitutive
equations. Pressure is strictly a thermodynamic property which is subject to the
laws of thermodynamics applied to a body of fluid at rest. In that state the pressure
represents a force which acts in the direction of the normal to the boundary of
fluid elements and which is independent of the orientation of that boundary. The
constitutive equations above are consistent with this state, as when the fluid is at
rest (u � v � w � 0) they reduce to

�xx D �rr D ��� D �p (2.49)

Thus in this state the thermodynamic pressure is identified with the normal
components of the stress tensor. The negative sign arises because normal stresses
are defined to be positive in the direction of outward normal while pressure in
thermodynamics is defined to be positive in the direction of inward normal.

When fluid is in motion, however, the normal stresses are no longer equal to each
other and the thermodynamic concept of pressure in fact no longer applies. What
has been done to overcome this difficulty is to assume that the pressure in a moving
fluid is equal to the average of the normal stresses, namely (see Footnote 3)

p D �1

3
.�xx C �rr C ��� / (2.50)

The constitutive equations are based on this assumption as can be readily verified
by adding Eqs. 2.47 and then using the equation of continuity (Eq. 2.20). The
assumption inherent in this is sometimes referred to as the “mechanical definition of
pressure”, and it is on the basis of this assumption that the thermodynamic pressure
p appears in the constitutive equations and subsequently in the equations of motion.



38 2 Mathematical Description of Fluid Flow

Finally, the constitutive equations assume that the stress tensor is symmetrical,
namely

8̂<
:̂

�xy D �yx
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�xz D �zx

(2.51)

and this again is recognized to be an approximation, but one which is found to
work well under normal circumstances. Asymmetry of the stress tensor would give
rise to forces which have spinning effects on fluid elements. The assumption of
symmetry is based on the fact that such forces are found to be absent under normal
flow conditions. An external field of force is required to produce them such as an
electrostatic field, and in the absence of such field the fluid does not support such
asymmetry in the components of the stress tensor.

2.11 Navier-Stokes Equations

Having dealt with the internal forces acting on a fluid element within a body of
fluid in motion, it is now possible to complete the application of Newtons’s law of
motion at every point within that body by substituting for the components of the
stress tensor from Eqs. 2.47 and 2.48 into the equations of motion (Eq. 2.45) to get,
after some algebra
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The last equation will be recognized as the equation of continuity (Eq. 2.20) which
was derived previously as a condition of conservation of mass when the density �

is assumed constant. It arises here again when differentiating the components of the
stress tensor on the right hand side of Eq. 2.45, but again only if it is assumed that
the density � is constant. To illustrate this, substituting for components of the stress
tensor in the first line of Eq. 2.45 we have
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and after the differentiation is carried out this reduces to
8̂̂
<̂
ˆ̂̂:

�

�
@u

@t
C u

@u

@x
C v

@u

@y
C w

@u

@z

�
C @p

@x
D

�

�
@2u

@x2
C @2u

@y2
C @2u

@z2

�
C @

@x

�
@u

@x
C @v

@y
C @w

@z

� (2.54)

The last term in this equation is zero if it is assumed that Eq. 2.20 is valid, which
is the case only when the density � is constant as shown in Sect. 2.4. Thus, based
on the assumption of constant density, Eq. 2.54 reduces to the first and last lines in
Eq. 2.52, namely
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The other two lines in Eq. 2.52 are obtained in the same way, with the equation of
continuity arising again in each case. It is therefore both important and appropriate
that the equations of motion in the form of Eq. 2.52 always contain the equation of
continuity even though that equation is not part of Newton’s second law. It must be
included because the validity of the first three lines of Eq. 2.52 is contingent on the
validity of the last line.

Equation 2.52 is widely known as the Navier-Stokes equations4;5;6 in recognition
of its first authors. They are also referred to as the “momentum equations” because
the terms on the left side of the equations, which represent “mass � acceleration”,
can also be seen as representing rate of change of momentum.

mass � acceleration D mass � .velocity=time/

D .mass � velocity/=time

D momentum=time

4Tokaty GA. A History & Philosophy of Fluidmechanics. Foulis & Co., Henley-On-Thames, 1971.
5Rouse H, Ince S. History of Hydraulics. Dover, New York, 1957.
6Schlichting H. Boundary-Layer Theory. McGraw-Hill, New York, 1979.
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Equation 2.52 is remarkable in that they represent no more than Newton’s
exquisitely simple second law of motion, yet an entire chapter was required for their
derivation. The law is applied at every “point” within a flow field, that is to every
fluid element within that flow field, individually, yet the equations contain neither
the identity nor mass of these elements. Finally, the range of application and validity
of these equations to fluid flow problems in general and blood flow in particular has
been extraordinary.

Detailed derivation of the Navier-Stokes equations in this book was carried
out in rectangular Cartesian coordinates x; y; z in order to keep focus on the main
physical issues involved, particularly those relating to the application of Newton’s
second law of motion to a fluid body. When the equations are derived in cylindrical
polar coordinates x; r; � , as was done in an earlier edition of this book,7 further
complications arise because of added curvature terms8 in the equations and, while
these raise some important points relating to the characteristics of curvilinear
coordinates, they tend to obscure the main issues at hand.

Paradoxically, however, the Navier-Stokes equations in cylindrical polar coor-
dinates is best suited for the study of flow in tubes and therefore for the study of
hemodynamics, which is the main subject of this book. Therefore we present the
equations below for use in the remainder of this book.
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7Zamir M. The Physics of Pulsatile Flow. Springer-Verlag, New York, 2000.
8Moon PH, Spencer DE. Field Theory for Engineers. Van Nostrand Reinhold Inc., New York,
1961.
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Velocity components u; v; w in this case are in the directions of x; r; � , respectively,
where x is in the cylindrical axis direction, r is in the radial direction, and � is in the
circumferential direction. The last equation is the equation of continuity.

The components of the stress tensor in cylindrical polar coordinates r; �; z are
given by
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Chapter 3
Steady Flow in a Tube

3.1 Introduction

Flow in tubes is one of the most common physical phenomena, indeed one of the
most common physical tools, in biology. Its evolution as a form of transport in
biology1;2;3 is so closely intertwined with the evolution of life that it is difficult to
view the two as separate from each other. Not even in the realm of science fiction
can we imagine a living organism of any degree of complexity without the facility
of flow in tubes.

There are many spectacular phenomena in fluid flow4;5: the whirling of a tornado
and the ominous whip-like posture of its axis as it rises to the sky; the massive bulk
of ocean waves and the open “jaw” of a breaker wave; the calm and innocent looking
flow towards the edge of a fall and the complete breakdown of that innocence as flow
reaches the edge.

There are many beautiful fluid flow phenomena: the meticulous forming of a
water drop at the mouth of a slowly dripping tap and the drama of its eventual
breakaway; the anatomy of a splash and the choreography of the blobs and tentacles
of displaced fluid as they rise from the site of the splash in a splendid variety of
geometrical forms, particularly when seen in slow motion and when minute details

1LaBarbera M, 1990. Principles of design of fluid transport systems in zoology. Science 249:
992–1000.
2LaBarbera M, 1991. Inner currents: How fluid dynamics channels natural selection. Sciences
Sept/Oct:30–37.
3LaBarbera M, Vogel S, 1982. The design of fluid transport systems in organisms. Am Scientist
70:54–60.
4Van Dyke M. An Album of Fluid Motion. Parabolic Press, 1982.
5Nakayama Y. Visualized Flow. Pergamon Press, 1988.
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are magnified; the pattern of rings that form on the surface of still water when gently
disturbed by a small object, by the touch of a stick, or even by the landing of an
insect.

And then there are many intriguing fluid flow phenomena: the tireless race of
air elements over the bulged top surface of an aircraft wing. The bulge in effect
presents a constriction which reduces the space available to the flow and forces it to
either move faster or become denser. The second option would seem natural for air
because of the ease with which it can compress, but for reasons of its own the flow
takes the first option. The situation is not unlike that of the traffic on a multi-lane
highway when presented with a constriction which reduces the number of available
lanes, but here, interestingly, the second option is chosen. Cars slow down and come
closer together (density is increased), though usually not enough to maintain the
same flow rate as that of incoming cars. What is intriguing further in the case of
air flow is that when the flight speed exceeds the speed of sound, the behavior of
air becomes a combination of the first and second options, giving rise to the well
known phenomena of shock waves and sonic booms.

There is truly no end to the variety and range of fluid flow phenomena, and
it is no more possible to illustrate this variety with a few examples than it is
possible to illustrate the variety of life forms by describing the elephant and
the fly. Yet, astonishingly, the heart and soul of fluid flow is neither spectacular
nor intriguing or beautiful. It is perhaps the most innocuous of all fluid flow
phenomena. It is the flow in a tube.

The distinctive features of the flow in a tube are its simplicity, its flexibility, its
remarkable reliability and, above all, its unfailing delivery. It is by far the most
important mode of transport on this planet, a most efficient way of moving mass,
heat energy, or chemical ingredients, a way perhaps unmatched by any other, natural
or man-made.

If a vast amount of heat energy is to be removed in a hurry and is to be carried
away from its source to another destination, as is the case at a nuclear reactor, flow
in a tube is the only way in which the task has been achieved so far. A scheme based
on heat removal by solids would be doomed from the start. While solids usually
have the capacity to contain more heat energy than do fluids, the elements of a solid
are limited by the slow speed of diffusion in moving that heat from one location
to another. By contrast, the elements of fluid in a tube are able to “take the heat
and run” using the much faster process of convection. Without the facility of flow
in tubes the enormous heat generated in a nuclear power plant simply cannot be
removed fast enough, thus turning the power plant into a nuclear bomb. Indeed, the
plant is a nuclear bomb but for the flow of fluid in the tubes of its cooling system.

The control of temperature in our own body is less spectacular but no less critical,
and the consequences of not moving sufficient heat energy from one part of the body
to another is no less dire, and here too, flow in tubes is the method of choice. Blood
flow, having access to every corner of the body, achieves this task with relative ease.
It is hard to imagine how else it could be done.

Of course, the more familiar function of blood flow is not the transport of heat
but the transport of nutrients and waste products, and the hauling of a multitude of
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chemical messages to and from every corner of our body. Again, any scheme for
doing so without the use of flow in tubes would seem inconceivable. Indeed, flow in
tubes is an indispensable facility in the inner workings of all living things. Only the
most primitive life forms can do without it. To us, sapiens, flow in tubes is how we
take in most of our food, much of how we deal with it once it is in, how we bring
the nutrients from it to where they are needed, how we eliminate what is left, how
we breath to bring in the gases we need from the atmosphere and to expel those we
do not need, how we reproduce, and even how we think. Not even the most daring
science fiction can produce a design of our body without the facility of flow in tubes.

3.2 Condition of “No-Slip”

When moving through a tube, fluid does not slide in bulk through the tube, as a
pellet. Fluid elements in contact with the tube wall actually grab on to the wall,
or more accurately “smear” onto the wall and become stuck to it in a condition
known as “no-slip”.6 The next layer of fluid then uses the first layer, somewhat as
a lubricant, to move slowly forward. The third layer does the same over the second
layer, moving a little faster than the second, and so on, the fastest moving fluid
being along the axis of the tube. The result, in a cross section of the tube, is a
“velocity profile” with zero velocity at the tube wall, gradually increasing from there
to a maximum at the center, as illustrated schematically in Fig. 3.1. The situation is
somewhat like the bulge of a sail, two edges of the sail being firmly held by the
posts, then the bulge of the sail gradually increasing from there to a maximum at the
center.

A picture of the flow in a tube thus emerges in which cylindrical layers of the
fluid move forward, one inside the other in a concentric fashion. The layers do not
slide over each other as they move but rather shear each other as the inner ones move

Fig. 3.1 Velocity “profile” of
the flow in a tube. Flow
velocity at the tube wall is
zero, rising gradually and
smoothly to a maximum at
the tube center.

6Schlichting H. Boundary-Layer Theory. McGraw-Hill, 1979.
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Fig. 3.2 Condition of no-slip
at a solid-fluid interface.
Viscosity does not allow a
fluid to slip past a solid
boundary. Fluid in contact
with the boundary must have
zero velocity, and the
velocities of neighboring
elements must change
smoothly to meet that value at
the wall.

y

SLIP

  u ≠ 0 at y = 0 x

y

  NO-SLIP

  u = 0 at y = 0 x

faster than the outer ones and as they remain forever stuck to each other. Shearing,
but not sliding or slipping, is the hallmark of fluid flow.

This remarkable picture of the flow in a tube is a result of two factors: the
condition of no-slip and the viscous property of fluids. For a somewhat more
animated picture see “Poiseuille Flow: A Story” in Appendix B.

The condition of no-slip is one of the most fundamental condition at the interface
between a fluid body in motion and a solid boundary. It requires that there be
no velocity difference between the solid boundary and fluid elements in contact
with it as illustrated schematically in Fig. 3.2. In fact this is only a special case
of a more general condition, imposed by the viscous property of fluids, that there
be no finite velocity difference between any two adjacent layers of fluid, no step
change in velocity anywhere within a flow field. This, as we recall, is because an
external force is required to produce a rate of deformation within the fluid. The
force is required to overcome the viscous resistance of the fluid and is (Eq. 2.46)
proportional to the velocity gradient. Since a step change in velocity would imply
an infinite velocity gradient, it would require an infinite force to maintain. Thus,
only a smooth velocity gradient is possible, whereby the velocity difference between
adjacent layers of fluid is infinitely small. In particular, a smooth velocity gradient,
not a step change, is established within the flow field in a tube, starting at the wall of
the tube where the velocity increases gradually from zero at the wall to a maximum
at the center of the tube. This velocity gradient at the wall represents the viscous
resistance between the tube and the moving fluid. It is the resistance which needs
to be overcome in order to drive the flow through the tube. Only a fluid without
viscosity would be able to slide through the tube without the need for a force to
drive it.
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3.3 Laminar and Turbulent Flow

In late nineteenth century, Osborne Reynolds made one of the most important
discoveries about the flow in a tube.7;8 In a series of experiments designed to study
the basic characteristics of the flow, Reynolds rendered the flow visible by injecting
dye at the tube’s entrance, then changed the flow rate to see how this affected what
he observed. The injection of dye had the effect of “marking” elements of fluid so
that their subsequent course could be observed.

Reynolds found that at low flow rates the marked elements produced streaklines
which were fairly distinct and ran parallel to the axis of the tube. At higher flow
rates, however, the streaklines became increasingly unstable, eventually breaking
down and causing the dye to diffuse over the whole cross section of the tube,
streaklines being no longer distinct or visible. Reynolds identified what he observed
as two different types of flow. Today they are known widely as “laminar” and
“turbulent” flow.

Later, more advanced technology which was not available to Reynolds showed
that in laminar flow fluid elements move only in the direction of the flow, in the
direction of the Eulerian velocity vector at each point (Fig. 3.3).

Fig. 3.3 Laminar and
turbulent flow. In laminar
flow, fluid elements move
only in the main flow
direction. In turbulent flow,
fluid elements vibrate
randomly in all directions as
they move in the main flow
direction.

7Tokaty GA. A History & Philosophy of Fluidmechanics. Foulis & Co., Henley-On-Thames, 1971.
8Rouse H, Ince S. History of Hydraulics. Dover, New York, 1957.
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In turbulent flow, by contrast, fluid elements vibrate randomly in all directions, at
high frequency and with small amplitude, as they move in the main flow direction.
Thus in turbulent flow a fluid element typically has a “mean” velocity component in
the main flow direction, plus small amplitude oscillatory velocity components in all
directions.

The phenomenon of turbulence is a remarkable revisiting of the random
motion of molecules on the microscopic scale, which is dealt with by treating
a fluid body as a continuum of fluid elements on the much larger macroscopic
scale. The difficulty with turbulence is that the scale on which it occurs is
already the larger macroscopic scale, and it is the fluid elements themselves
that are now engaged in unnecessary random motion.

As a consequence, more energy is expended in turbulent flow in order to produce
this motion. Some of this energy is wasted in the form of heat energy produced by
viscous friction and some is wasted in the form of sound energy. Indeed, turbulent
motion is actually audible.

Reynolds found that the onset of turbulence depends not only on the average flow
velocity through the tube, u, but also on the density � and viscosity � of the fluid,
and diameter d of the tube. His most important contribution was to then recognize
that the onset of turbulence actually depends not on u; �; �; d individually but on
the nondimensional combination

R D �ud

�
(3.1)

which today is known universally and appropriately as the Reynolds number.
Reynolds’ experiments suggested that transition from laminar to turbulent flow
occurred at R � 2000, but since then it has been found that transition can be delayed
to much higher values of R if flow disturbances at entrance to the tube and surface
roughness at the tube wall are kept to a minimum. Present understanding is that the
value R D 2000 is a “lower bound” below which flow will remain in the laminar
state even if disturbed. At higher values of R the flow becomes increasingly unstable
and may become turbulent depending on prevailing destabilizing conditions.9

In blood flow, the highest flow velocities occur in the aorta as it leaves the heart
for distribution to the rest of the body. Assuming steady flow at first, in a human
aorta of approximately 2.5 cm in diameter and an average cardiac output of 5 L/min,
the average velocity is given by

u D 5000=60

� � 2:52=4
� 17 cm=s (3.2)

9Schlichting H. Boundary-Layer Theory. McGraw-Hill, 1979.
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Taking the density � � 1 g=cm3 and viscosity � � 0:04 g=cm s, we obtain

R D �ud

�
D 1 � 17 � 2:5

0:04
� 1063 (3.3)

indicating that under these assumptions the Reynolds number is well below 2000.
In pulsatile flow, at the peak of the oscillatory cycle (systole), and under

conditions of high cardiac output, this value of R can be exceeded considerably,
thus the possibility exists for turbulent flow to occur at this level of the arterial tree
and in part of the oscillatory cycle. At higher levels of the vascular tree, however,
the Reynolds number diminishes rapidly because average flow velocities, vessel
diameters and oscillatory flow peaks, all diminish rapidly, leaving conditions under
which laminar flow is stable and the possibility of turbulent flow is considerably
reduced. For this reason much of the work on pulsatile flow deals with laminar flow,
and we follow this practice in this book. The mathematical description of fluid flow
in Chap. 2 and the equations derived in that chapter relate strictly to laminar flow.

Turbulence as described above may be referred to as “high-Reynolds-number-
turbulence” to be distinguished from eddies or vortices which occur on a larger
scale and the details of which can in many cases be visualized and mathematically
described. By contrast, high-Reynolds-number-turbulence is totally random and
occurs on the much finer scale of fluid elements and cannot be easily visualized.
Vortices and eddies are in effect only disturbed or unstable forms of laminar flow.

In blood flow it is important to distinguish between these two physically
distinct phenomena because the situations in which they arise are very dif-
ferent. At the peak of each oscillatory cycle in pulsatile flow, for example, the
Reynolds number may become momentarily high enough for high-Reynolds-
number-turbulence to occur in the aorta. By contrast, flow emerging from
a constriction within a blood vessel or from a malfunctioning heart valve
as it closes often leads to vortices and eddies. The underlying cause in one
case is high velocity while in the other it is disturbed or disorderly flow. It
is important both clinically and phenomenologically that the two phenomena
not be described by the same word. For this reason, in this book the word
“turbulence” shall be used exclusively in reference to high-Reynolds-number
turbulence, while disturbed or disorderly flow, eddies and vortices shall be
referred to simply as such.

Another element of confusion may arise in the clinical setting because both
turbulence and disturbed or disorderly flow produce sound which can be
heard with the aid of a stethoscope. The word “murmur” is generally used
to describe sounds originating from the heart, caused by a defective heart
valve. It is important that the same word not be used to describe every sound
originating from the heart or from other locations within the cardiovascular
system as the clinical interpretation of these may be very different from that
generally associated with the word “murmur”.
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3.4 Entry Length

The velocity profile of flow in a tube discussed qualitatively in Sect. 3.2, with zero
velocity at the tube wall and increasing gradually to a maximum at the tube center,
prevails only far downstream from the tube entrance. As will be described below,
the velocity profile at the entrance is actually different and it only gradually evolves
into that form as the flow progresses downstream as shown schematically in Fig. 3.4.
The length of tube required for the velocity profile to reach its final form is known
as the “entry length”, and the final form of the flow and of the velocity profile is
said to be “fully developed”. The form of flow in a tube discussed in Sect. 3.2 is that
of fully developed flow. In this section we describe briefly how that form is reached
and how far downstream from the entrance it does so.

When flow enters a tube, the no-slip boundary condition on the tube wall arrests
fluid elements in contact with the wall while elements along the axis of the tube
charge ahead, less influenced by that condition. Since viscosity of the fluid does
not allow a step change in velocity to occur anywhere in the flow field, a smooth
velocity profile must develop to join the faster moving fluid along the axis of the
tube with the stationary fluid at the tube wall. At the tube entrance this velocity
profile consists of a straight line representing the bulk of the fluid moving uniformly
down the tube, then dropping rapidly but smoothly to zero near the wall. Further
downstream, however, because of viscosity, the arrested layer of fluid at the tube
wall begins to slow down the layer of fluid in contact with it on the other side, and
this effect propagates further and further away from the wall as the flow progresses
further and further downstream from the entrance. Thus the region of influence of
the no-slip boundary condition grows further and further away from the wall, with
the result that the velocity profile becomes more and more rounded. When the wall
effect engulfs the entire cross section of the tube, the velocity profile reaches its
fully developed form.

Fig. 3.4 Entry flow in a tube. When flow enters a tube, only fluid near the tube wall or in contact
with it is influenced by the no-slip boundary condition there. As flow moves further downstream,
however, this region of influence grows, leading ultimately to a more rounded velocity profile.
Flow in this region is called “fully developed” in the sense that it has reached its ultimate form,
while developing flow in the preceding region is called “entry flow”.
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An inherent difficulty with the computation or measurement of the entry
length is that the flow reaches its fully developed state only asymptotically. Thus,
mathematically, the entry length is infinite. For practical purposes, however, flow in
a tube becomes very nearly fully developed at a finite distance from the tube entrance
which can be determined both theoretically and experimentally once a criterion is
prescribed for how close the flow must be to its ultimate form.

A criterion which has been commonly used is that the flow is deemed fully
developed when the centerline velocity has reached 99 % of its ultimate value. Other
criteria, based on integral properties of the velocity profile, have also been used.
In either case, the actual value of the entry length depends on the form in which
flow enters the tube and the assumption usually made here is that the flow enters
the tube with uniform velocity U. The entry length, of course, also depends on the
viscosity � and density � of the fluid.

With these considerations in mind, if the entry length is denoted by le and the
tube diameter is denoted by d, the generally accepted10 value of the entry length,
expressed in non-dimensional form, is given by

le
d

D 0:04Rd (3.4)

where Rd is the Reynolds number based on the diameter of the tube, namely

Rd D �Ud

�
(3.5)

Thus at Rd D 1000, for example, the entry length is equal to 40 tube diameters. At
Rd D 100 it is only four tube diameters.

In the cardiovascular system flow is rarely in a very long tube segment as it
progresses from one vascular junction to the next. The vascular tree is made up
of many millions of vascular segments which typically have a length to diameter
ratio of about 10 and ranging anywhere from a minimum near zero to a maximum
of 35–40 (Fig. 3.511). Flow in each vascular segment therefore typically does not
have the entry length required for that segment. However, the flow is entering and
re-entering these segments not as uniform flow but as partially developed flow.

When flow entering a tube is partially developed, or in any case not uniform, its
entry length is usually shorter than the corresponding entry length for uniform entry
flow. Thus, while flow in the arterial tree may not have sufficient run to become
fully developed in each tube segment, it may become increasingly developed as it
hops from one segment to the next. Furthermore, as flow progresses from the central
segments of the arterial tree towards the periphery, both the diameter of vessel
segments and the average velocity within them rapidly decrease. The Reynolds
number, from a high of about 1000 in the aorta, decreases rapidly in subsequent

10Schlichting H. Boundary-Layer Theory. McGraw-Hill, 1979.
11Zamir M. On fractal properties of arterial trees. Journal of Theoretical Biology 197:517–526.
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Fig. 3.5 Length of tube
segments in a vascular tree.
Measurements, here taken
from the vascular tree of the
human heart (see
Footnote 11), indicate that
while there is no apparent
correlation between the
length and diameter of vessel
segments, the ratio of length
to diameter seems to have a
maximum value of about 35
(dashed line) and an average
of about 10 (solid line).
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segments. The flow in these segments therefore requires smaller and smaller length
to diameter ratios to become fully developed.

These considerations suggest that while flow may not be fully developed
everywhere in the vascular tree, it may be very close to that state in many parts
of the tree. The assumption of a fully developed state when considering steady
flow in the arterial tree, whether locally or in the tree as a whole, may therefore
be somewhat justified on this basis. From a practical view point the assumption is in
any case a necessary approximation to make the analysis tractable. Analysis based
on individual flow development in each of many millions of tube segments is clearly
impractical.

If fluid enters a tube uniformly with velocity U, then U must equal the average
velocity us of the fully developed flow profile which it ultimately reaches. Velocity
along the centerline of the tube, however, must change from U to the maximum
velocity in that profile, which will be shown later to be twice the average velocity.
Thus in the entry region of flow in a tube, fluid near the centerline of the tube must
be accelerated, and this acceleration requires extra pumping power to maintain.
Analysis based on fully developed flow is therefore likely to underestimate the
power required to drive the flow in the vascular tree.

In pulsatile blood flow the entry flow problem is further complicated by the
combination of flow development in space and time. When the frequency of
pulsation is low, the flow reaches the fully developed flow profile at the peak
of each cycle in the fully developed region, thus the results of fully developed
steady flow bear some relevance to pulsatile flow in that region. In the entry
region the situation is more complicated. In its simplest form, the flow at a
given distance from the tube’s entrance attempts to reach the velocity profile
which prevails in steady flow at that location, but the problem is not actually
as simple because equations governing the flow in the entrance region are
nonlinear.
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It is important that “fully developed flow” not be confused with “steady flow”.
The first relates to a region of the tube where the velocity profile has reached
its ultimate form and is no longer changing in space (x). The second relates to
the flow anywhere within the tube being fixed in time. Thus, flow in the entry
region of a tube is not fully developed in the sense that it is changing in space
but it may be steady in the sense that it is not changing in time. Similarly, flow
in the fully developed region of the tube is not changing in space but it may be
non-steady or steady depending on whether it is or is not changing in time.

3.5 Simplified Equations

The Navier-Stokes equations derived in Sect. 2.11 provide the governing equations
for a very wide range of fluid flow problems. Flow in a tube in its most general
form requires the full equations, but if it can be assumed that the cross section of
the tube is circular and the tube is straight and sufficiently long, and if attention
is focused on only the fully developed region of the flow, these equations can be
simplified considerably. The classical solutions for steady or pulsatile blood flow are
based on a highly simplified form of the Navier-Stokes equations. In this section we
present the assumptions on which the simplified equations are based and show how
these equations are obtained from the general form of the Navier-Stokes equations
(Eqs. 2.55–2.58).

If the tube is straight and has a circular cross section, and in the absence of any
external forces which would cause flow rotation, the flow field will be symmetrical
about the longitudinal axis of the tube to the effect that the angular component of
velocity and all derivatives in the angular direction are then zero, that is
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All terms in Eq. 2.57 are then identically zero and the other two equations (Eqs. 2.55
and 2.56), together with the equation of continuity (Eq. 2.58) simplify to
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If these equations are now further restricted to only the fully developed region of
the flow, where by definition

@u

@x
� @v

@x
� 0 (3.8)

then the equation of continuity reduces to

@v

@r
C v

r
D 1

r

@.rv/

@r
D 0 (3.9)

which can be integrated to give

rv D constant (3.10)

Since v must be zero at the tube wall (r D a), this result implies that the radial
component of velocity must be identically zero, that is

v � 0 (3.11)

As a result of this and Eq. 3.8, the equation of continuity (Eq. 3.9) is now
satisfied identically, and all the velocity terms in the second Navier-Stokes equation
(Eq. 2.56) are now zero, therefore

@p

@r
� 0 (3.12)

which implies that p is a function of only x and t. In the remaining Navier-Stokes
equation (Eq. 2.55), terms containing velocity gradients in x are zero because of
Eq. 3.8 and the term containing v is zero because of Eq. 3.11, thus the entire Navier-
Stokes equations together with the equation of continuity reduce to
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This is the highly simplified form of the governing equations on which the classical
solutions for fully developed steady and pulsatile flow in a tube are based. As a
result of the simplifying assumptions and their consequences in Eqs. 3.8 and 3.12,
the velocity u in Eq. 3.13 is now a function of r and t only, while the pressure p is a
function of x and t only, that is

(
u D u.r; t/

p D p.x; t/
(3.14)



3.5 Simplified Equations 55

This means that as the flow progresses along the tube, only the pressure p is
changing, not the velocity u. This can only happen if the tube is rigid. If the tube is
not rigid, the change in pressure will cause a corresponding change in the diameter
of the tube which in turn will lead to x-changes in not only the magnitude but
direction of velocity. As a consequence, not only will u become a function of x
but the radial component of velocity (v) will become nonzero. These circumstances
will be dealt with later when considering flow in elastic tubes. The purpose of the
present discussion is to emphasize that Eq. 3.13 is valid only for flow within a rigid
tube.

Finally, if the flow in a tube is steady, the velocity and pressure are independent
of time and the equation for flow in a tube (Eq. 3.13) reduces further to

dps

dx
D �

�
d2us

dr2
C 1

r

dus

dr

�
(3.15)

The subscript s has now been introduced to emphasize that we are now dealing with
steady flow where the velocity and pressure are not functions of time. It should not
be surprising that the equation no longer involves the fluid density �. There are no
longer any acceleration terms in the equation. In fact, the equation is no longer an
expression of Newton’s law of “mass�acceleration D force” but rather a degenerate
form of this law, namely “force D force”
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resisting viscous force

(3.16)

The progression from Eq. 2.55 to Eq. 3.13 and then to Eq. 3.16 further clarifies
the discussion concerning the important difference between “steady” flow and “fully
developed” flow at the end of the previous section. In Eq. 2.55 the velocity field is
changing in space (x) as well as in time (t), thus the flow is neither fully developed
nor steady. In Eq. 3.13 the flow field is no longer changing in x, the velocity as a
function of r (velocity profile) is the same at all positions x along the tube but at
each position it may be changing in time t. In Eq. 3.16, finally, the velocity field is
fixed in both time and space, the flow is both steady and fully developed.

At the core of this discussion is the fact that the acceleration of a fluid element at
position x; y; z and time t in a flow field (Eq. 2.26) depends on (a) the rate of change
of the Eulerian velocities in time at that position and (b) the rate of change of the
Eulerian velocities in space at that position and that point in time. In steady flow
the changes in (a) are zero while in fully developed flow the changes in (b) are zero.
Thus, again, “steady flow” and “fully developed flow” are not to be confused with
each other.
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3.6 Balance of Forces

As noted in Sect. 3.2, the mechanics of steady flow in a tube are remarkably simple.
Only two forces are involved: a pressure force driving the flow and a viscous
force resisting the flow. The equation governing the flow (Eq. 3.16) can be derived
from the Navier-Stokes equations as shown in the previous section. However, to
highlight the simple mechanics characterizing the flow, it is instructive to see that
the governing equation can actually be derived directly by considering the balance
of the two forces which elements of the fluid within the tube are subject to.

Consider a cylindrical volume of fluid within the tube, of length ıx, inner radius
r and outer radius r C ır (Fig. 3.6). This volume of fluid is under a pressure force
attempting to move it forward and a viscous force resisting that motion. In steady
flow (no acceleration) these two forces are in equilibrium. The pressure force arises
because the pressure at the downstream end of that volume is ps while at the
upstream end it is higher, say ps C ıps. The viscous resistance arises because the
shear stress acting on its inner surface is �s while on the outer surface it is higher,
say �s C ı�s. The subscript s is used here again, as in the previous section, to note
that the flow is steady and that both p and � are not functions of time.

Recalling that both ps and �s are stresses, meaning that the forces which they give
rise to are given by the stresses multiplied by the surface areas on which they are
acting, and equating the pressure and viscous forces acting on the cylindrical
volume of fluid, we then have

(
.ps C ıps/ � 2�rır � ps � 2�rır D
.�s C ı�s/ � 2�.r C ır/ıx � �s � 2�rıx

(3.17)

Simplifying gives

ıps � rır D �s � ırıx C ı�s � rıx C ı�s � ırıx (3.18)

Fig. 3.6 Pressure and shear
forces acting on a cylindrical
volume of fluid within the
flow in a tube. Ps + δ Ps

τs + δ τs

Ps

τs

 δr

δx



3.7 Poiseuille Flow 57

and on division by rırıx

ıps

ıx
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r
C ı�s
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C ı�s

r
(3.19)

Now, as ı�s; ır; ıx ! 0, the last term vanishes because it is an order of magnitude
smaller than the other terms, and the quotient increment terms become derivatives,
giving
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(3.20)

The shear stress � in this case is simply related to the velocity gradient
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(3.21)

thus, Eq. 3.20 finally becomes
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which is the same as Eq. 3.16. It is instructive to note that both sides of this equation
are negative because the pressure p is decreasing in x (in order to drive the flow in
the positive x direction) and the velocity u is decreasing in r (from a maximum at
r D 0 to zero at r D a). We see this explicitly and more clearly in the next section
as we obtain the actual velocity profile in a cross section of the tube, as well as find
that the second derivative of the velocity is also negative.

3.7 Poiseuille Flow

Fully-developed, steady flow in a tube is governed by Eq. 3.16 as derived in
Sects. 3.5 and 3.6. As discussed in those sections, under steady flow conditions the
pressure is a function of x only while the velocity is a function of r only. Both
functions are independent of time t and Eq. 3.14 reduces to

u D us.r/; p D ps.x/ (3.22)

Thus, in the equation governing the flow, namely (Eq. 3.16)

dps

dx
D �

�
d2us

dr2
C 1

r

dus

dr

�
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the left hand side is a function of x only while the right hand side is a function of
r only. The only way that the equation can be satisfied in general, therefore, is by
having both sides equal a constant, the same constant, say ks. Thus the governing
equation in effect splits into two separate equations, one for the pressure

dps

dx
D ks (3.23)

and one for the velocity

�

�
d2us

dr2
C 1

r

dus

dr

�
D ks (3.24)

Solving the pressure equation first, gives

ps.x/ D ksx C ps.0/ (3.25)

where ps.0/ is the pressure at x D 0, and if ps.l/ is the pressure at a point x D l
downstream, then

ps.l/ D ksl C ps.0/ (3.26)

The constant ks is thus given by

ks D ps.l/ � ps.0/

l
(3.27)

which is the pressure gradient along the tube. For flow in the positive x direction
the pressure upstream (ps.0/) must be higher than the pressure downstream (ps.l/),
thus the pressure gradient is negative. The pressure difference

�ps D ps.0/ � ps.l/ (3.28)

is usually referred to as the corresponding “pressure drop”. This leads to some
confusion because the pressure difference �ps D ps.0/ � ps.l/ is positive but by
using the term “drop” it is implied that one is referring to the negative of that
pressure difference. It is therefore important to use the concept of “pressure drop” by
definition, as in Eq. 3.28 (or any other), rather than by implication. If �ps is defined
as above, we then have

�ps D �ks � l (3.29)

It is clear that the above result is valid only in the fully developed region of
the flow because the Eq. 3.13 on which the results are based is valid only for fully
developed flow. Thus the points x D 0 and x D l are not to be considered as points
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of entry into and exit from the tube but rather points of entry into and exit from a
tube segment of length l within the fully developed region of the flow. The relevance
of this to flow in the vascular tree was discussed in Sect. 3.4.

To solve the velocity equation, we write Eq. 3.24 in the form

d2us

dr2
C 1

r

dus

dr
D ks

�
(3.30)

or

d

dr

�
r

dus

dr

�
D ks

�
r (3.31)

Integrating once gives

dus

dr
D 1

2

ks

�
r C A

r
(3.32)

where A is a constant, and integrating again gives

us.r/ D ks

4�
r2 C A ln r C B (3.33)

where B is a constant.
The constants A; B are evaluated by imposing first that the velocity at the center

of the tube be finite, that is

jus.0/j ¤ 1 (3.34)

which give

A D 0 (3.35)

and then impose the no-slip boundary condition at the tube wall (r D a) where a is
the tube radius, that is

us.a/ D 0 (3.36)

which give

B D � ks

4�
a2 (3.37)

With these values of A and B, Eq. 3.33 becomes

us D ks

4�
.r2 � a2/ (3.38)
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This is the classical “velocity profile” in fully developed steady flow in a tube,
usually referred to as Poiseuille flow after its first author.12;13;14 The velocity profile
is often referred to as a “parabolic” velocity profile because, as a function of r it is
in the form of a parabola.

3.8 Properties of Poiseuille Flow

Poiseuille flow has distinctive properties which are unique to fully developed flow
in tubes. In this section we examine these properties specifically when the flow is
steady. However, these basic properties remain relevant when the flow is not steady,
particularly in pulsatile flow which will be examined in subsequent chapters. The
key assumption in both cases is that the flow be fully developed.

Starting with the solution obtained in the previous section and writing

us.r/ D ks

4�
.r2 � a2/ (3.39)

we note first that the no-slip boundary condition is satisfied at the tube wall (r D a),
that is

us.a/ D 0 (3.40)

Maximum (or “peak”) velocity, to be denoted by Ous, occurs on the axis of the tube
.r D 0/, that is

Ous D us.0/ D �ksa2

4�
(3.41)

The minus sign indicates that the direction of velocity is opposite to that of the
pressure gradient ks. The velocity is positive in the direction of negative pressure
gradient.

As anticipated, maximum velocity on the axis of the tube and zero velocity at
the tube wall are joined by a smooth profile, with no step change at any point in
between. As noted in the previous section, the shape of that profile is a parabola,
which is seen more clearly if Eq. 3.39 is divided by Eq. 3.41 to get the velocity
profile in non-dimensional form

us.r/

Ous
D 1 �

� r

a

�2

(3.42)

12Tokaty GA. A History & Philosophy of Fluidmechanics. Foulis & Co., Henley-On-Thames,
1971.
13Rouse H, Ince S. History of Hydraulics. Dover, New York, 1957.
14Schlichting H. Boundary-Layer Theory. McGraw-Hill, New York, 1979.
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Flow rate through the tube is usually expressed in terms of volume flow rather
than mass flow because the equation of Poiseuille flow (Eq. 3.39) does not contain
the density, which in turn is because the flow is steady and fully developed, hence
the acceleration of fluid elements is zero. The volumetric flow rate qs through the
tube is obtained by integrating over a cross section of the tube

qs D
Z a

0

us � 2�rdr

D �ks�a4

8�
(3.43)

Again, the minus sign indicates that flow rate and pressure gradient have opposite
signs. That is, negative pressure gradient produces flow in the positive x-direction.
The average velocity us is then given by

us D qs

�a2

D �ksa2

8�
(3.44)

which is seen from Eq. 3.41 to be one half the maximum velocity (Fig. 3.7).

us

Ous
D 1

2
(3.45)

Of interest is the shear stress prevailing within the flow field and particularly at
the tube wall. Of the different components of the stress tensor, �rx represents shear
stress acting in the x-direction on surfaces perpendicular to r (cylindrical surfaces)
and is thus the required component of the stress tensor. From Eq. 2.60 we have

�rx D �

�
@u

@r
C @v

@x

�
(3.46)

Fig. 3.7 Velocity profile in
steady fully developed
Poiseuille flow (us). The
profile has a parabolic form
and the average velocity (us)
is one half the maximum
velocity (Ous).

 us

 ûs
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and since v is zero in Poiseuille flow, this reduces to

�rx D �

�
@u

@r

�
(3.47)

Now, it will be recalled from Sects. 2.6 and 2.7 that components of the stress tensor
represent forces acting on the outer boundary of a fluid element by its surrounding
elements. At the wall-fluid interface in Poiseuille flow, therefore, �rx represents the
drag force exerted by the wall on the moving fluid. In blood flow, of interest is the
counterpart of this force, namely the force exerted by the fluid on the tube wall
because it represents the direct mechanical effect of the moving fluid on endothelial
tissue. We shall denote this by �s (the subscript “s”, as before, referring to steady
flow) and write

�s D �.�rx/rDa D ��

�
@u

@r

�
rDa

(3.48)

and using Eq. 3.39 we find

�s D �ksa

2
(3.49)

or in terms of the flow rate, using Eq. 3.43,

�s D 4�qs

�a3
(3.50)

It will be noted that �s and q have the same sign, which means that the force which
�s represents is in the direction of the flow, and since it was evaluated at the tube
wall (r D a), the force it represents is that exerted by the fluid on the tube wall as
intended.

The rate of energy expenditure (power) required to maintain this drag force by
the fluid on the tube wall is the pumping power Hs required to maintain the flow. It is
given by the product of the total drag force and the average flow velocity. The total
drag force in turn is the given by the product of the shear stress and the surface area
on which it is acting. Again, to comply with the assumptions on which Poiseuille
flow is based, we consider a segment of length l of the tube in which the flow is fully
developed to get

Hs D �s � 2�al � us (3.51)

Since the flow under consideration is steady, the two opposing forces at play
must be equal (the net force must be zero). Specifically, the pressure force driving
the flow must equal the shear force at the tube wall resisting the flow, that is

�ps � �a2 D �s � 2�al (3.52)
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which is consistent with Eq. 3.49, recalling from Eq. 3.29 that

�ps D ps.0/ � ps.l/ D �ksl (3.53)

Thus the pumping power may be expressed alternatively as the product of the
driving pressure force and the average flow velocity, that is

Hs D �ps � �a2 � us

D �ps � qs (3.54)

D �lksqs

D � lk2
s a4

8�
(3.55)

In other words, the pumping power is equal to the product of the flow rate and the
pressure drop.

The simplicity of Poiseuille flow in a tube admits the following analogy with the
flow of electric current along a perfect conductor

electric current , volumetric flow rate

potential difference , pressure drop

resistance to current flow , resistance to fluid flow

To see the analogy more clearly, the pressure drop can be expressed in terms of the
flow rate by using Eqs. 3.28 and 3.43, to get

�ps D
�

8�l

�a4

�
qs (3.56)

which is analogous to the corresponding relation in the flow of electric current,
namely

voltage D resistance � current (3.57)

Thus, the bracketed term in Eq. 3.56 is seen to be the resistance R to Poiseuille flow
where

R D 8�l

�a4
(3.58)

Within a given tube, therefore, Eq. 3.56 shows that the pressure drop in Poiseuille
flow in a tube is equal to the product of resistance and volumetric flow rate

pressure drop D resistance � flow rate (3.59)



64 3 Steady Flow in a Tube

in strict analogy with the corresponding electrical relation in Eq. 3.57. Within
different tubes, however, Eq. 3.58 indicates that the resistance to flow is inversely
proportional to the fourth power of the tube radius.

Finally, the expression for the pumping power in Eq. 3.54 can be put in the
following form by substituting for the pressure drop from Eq. 3.56

Hs D
�

8�l

�a4

�
q2

s (3.60)

D R � q2 (3.61)

thus

pumping power D resistance � (flow rate)2 (3.62)

in analogy with

electric power D resistance � (current)2 (3.63)

Conclusions for blood flow from these results are found in Eq. 3.60 which
indicates that the pumping power associated with Poiseuille flow in a tube
can be reduced by reducing the viscosity of the fluid, reducing the flow rate,
and above all, by increasing the tube radius by even a small amount. It is
remarkable that despite the drastic simplifying assumptions on which these
results are based, the above three measures are highly relevant and are
actually used in clinical practice to reduce the pumping load of an ailing
heart. The viscosity of blood is reduced by what is referred to as “blood
thinning”, flow rate is reduced by reducing physical activity to reduce the
demand for blood flow, and tube radii are increased by using pharmaceutical
agents to dilate the blood vessels.

3.9 Energy Expenditure and Pumping Power

How much energy does it take to drive fluid through a tube? More accurately, how
much power does it require to maintain fully developed Poiseuille flow in a tube?
We are now in a position to justify the claim that flow in a tube is one of the most
efficient forms of transport on the planet!

The equation governing steady flow in a tube (Eq. 3.24)

ks„ƒ‚…
driving pressure force

D �

�
d2us

dr2
C 1

r

dus

dr

�
„ ƒ‚ …

resisting viscous force

(3.64)
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expresses a balance between the forces affecting the flow, specifically the driving
pressure force on the left and the retarding viscous force on the right. At any
point in time during flow in a tube, these two forces are associated with rates
of energy expenditure. The pressure force is associated with the rate of energy
expenditure required to drive the flow, or the “pumping power”, while the viscous
force is associated with the rate of energy dissipation by viscosity. In this section we
examine these two rates of energy expenditure and the way in which their balance
is based on the equation governing the flow. While in the present case both rates
are constant and the balance between them is one of simple equality, this simple
case serves as a useful foundation for the same exercise in pulsatile flow which we
consider in the next chapter.

As it stands, the equation of motion above actually represents not forces but
forces per unit volume. This, we recall, is a basic characteristic of the more general
Navier-Stokes equations from which the above equation is obtained. In order to
consider energy expenditures, therefore, the equation must first be multiplied by
some volume of fluid so that its terms will actually represent forces, then determine
the rate at which these forces are doing work. It should be recalled that work
or energy is produced by force times distance, while power or rate of energy
expenditure is produced by force times distance per time, or force times velocity.

It is therefore necessary to consider a small volume of fluid which is moving with
the same velocity. A convenient choice is that of a thin cylindrical shell of radius r,
thickness ır, and length l (Fig. 3.6). The volume of fluid comprising the shell is then
2�rlır and the velocity with which its elements are moving is simply the Poiseuille
flow velocity at radial position r, namely us.r/. If the equation of motion above is
multiplied by the volume of this shell and by the velocity with which it is moving,
the result is an equation representing the balance of energy expenditure associated
with this volume of fluid, namely

ks � 2�rlusır D �

�
d2us

dr2
C 1

r

dus

dr

�
� 2�rlusır (3.65)

Furthermore, if each side of this equation is now integrated over a cross section of
the tube, that is from r D 0 to r D a, the same balance will be established for fluid
filling the entire volume of a tube of radius a and length l, that is

Z a

0

ks � 2�rlusdr D
Z a

0

�

�
d2us

dr2
C 1

r

dus

dr

�
� 2�rlusdr (3.66)

The integral on the left hand side of Eq. 3.66 yields

Z a

0

ks � 2�rlusdr D ksl
Z a

0

2�rusdr

D kslqs

D .�ps � �a2/ � us (3.67)
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where in the last step the flow rate qs was replaced by the average velocity times
the cross sectional area (qs D �a2 us) and the pressure gradient was replaced by the
pressure difference between the two ends of the tube over its length (ks D �p=l).
The final result is seen to be the product of the pressure force and the average flow
velocity, which is then the rate of energy expenditure or “pumping power” required
to maintain the flow within the tube.

The integral on the right hand side of Eq. 3.66 yields
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D .�s � 2�al/ � .us/ (3.68)

where earlier expressions for us and �s were used in the last step. The final result is
seen to be the product of the viscous force and the average flow velocity, which is
then the rate of energy dissipation by viscous resistance at the tube wall.

Equations 3.67 and 3.68, being derived from the two sides of the equality in
Eq. 3.65, establish the balance of the rate of energy expenditure in Poiseuille flow,
namely

.�ps � �a2/ � us D .�s � 2�al/ � .us/ (3.69)
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Each side represents a force multiplied by the average velocity, thus amounting to a
rate of energy expenditure, or power. On the left is the pumping power required to
drive the flow, while on the right is the rate of energy dissipated by viscous resistance
at the tube wall. In each case the force is in the flow direction, �s being the drag force
being exerted by the fluid on the tube wall (Eq. 3.50), and �ps being the difference
between the pressure at the tube entrance minus that at x D l (Eq. 3.28).

3.10 Non Circular Cross Sections

The unique geometrical properties of the circle are a matter of legend in science,
in mathematics, and in the technological revolution because of its contribution to
the invention of the wheel and the basis for rotary components in machinery. Far
less known or celebrated are the unique properties of flow in tubes of circular cross
sections. In the same way that the circle provides the most efficient way of enclosing
a given area, a tube of circular cross section provides the most efficient conduit for
fluid flow. In the same way that any other than circular perimeter encloses a smaller
area than that enclosed by a circle of the same perimeter length, the flow rate in a
tube of any other than circular cross section is lower than that in a tube of circular
cross section under the same driving pressure. Considering the indispensable role of
flow in tubes in the evolution of life, it is again not unreasonable to wonder:

Did biology discover the tube of circular cross section, or did it invent it?

The above remarks apply in the first place to steady, fully developed flow.
In the entry region of a tube, where the flow is not fully developed, the effects
of noncircular cross sections cannot be generalized because they depend on the
particular geometry in each case, especially on whether the cross section involves
any sharp kinks as in rectangular or triangular cross sections. The key question here
is whether the entry length in a tube of noncircular cross section is higher or lower
than that in a tube of circular cross section. We have seen in Sect. 3.4 that in the case
of circular cross section the entry length depends on the Reynolds number (Eq. 3.4).
In the case of a noncircular cross section, again, the entry length depends on the
particular geometry of that cross section. In any case, however, since the flow in the
entry region of a tube is always less efficient than that in the fully developed region
of that tube, and since fully developed flow in a tube of noncircular cross section
is less efficient than that in a tube of circular cross section, these two effects will
generally be compounded in a tube of noncircular cross section.

In pulsatile flow, where the flow is not steady, we shall see later that the flow
comes close to reaching the fully developed steady flow profile at the peak of
each oscillatory cycle, and the extent to which it does so depends on the pulsation
frequency. If the fully developed steady state flow is not Poiseuille flow because
of any deviation from the ideal conditions of a cylindrical tube with circular cross
section, the efficiency of pulsatile flow will be reduced in the same way and for
the same reasons for which it is reduced in steady flow, and this reduction will be
compounded by the effect of frequency.
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In this section we consider briefly steady flow in a tube of elliptic cross section
as an example of deviation from the singular case of a tube of circular cross
section. An elliptic cross section is particularly relevant in blood flow because it
provides an approximation of the cross section of a compressed blood vessel. This
situation occurs most prominently in the heart where coronary vasculature is deeply
embedded in myocardial tissue. An elliptic cross section also has the advantage
of representing a whole family of cross sections, ranging from perfectly circular
to highly flattened, and the elliptic geometry makes the problem mathematically
tractable.

An important feature of flow in a tube that carries over from the case of circular
cross section to that of noncircular cross section is that if the tube is straight, the
flow remains one-directional and the transverse velocity components are identically
zero as they are in the case of circular cross section.15 Under these conditions the
governing equations for the flow in a tube of any cross section is the same as
that for a tube of circular cross section (Eq. 3.15), which in rectangular Cartesian
coordinates x; y; z, with x along the axis of the tube and y; z in the plane of a cross
section, takes the form

dpse

dx
D �

�
d2use

dy2
C d2use

dz2

�
(3.70)

where use; pse; � are as defined previously for the case of a tube of circular cross
section, with subscript ‘e’ being added here as a reference to the case of elliptic
cross section to be considered. This equation is also a simplified form of the Navier
Stokes equations in rectangular Cartesian coordinates (Eq. 2.52), based on the same
simplifying assumptions as those on which Eq. 3.15 is based. In fact, Eqs. 3.15
and 3.70 can be transformed directly from one to the other in a straightforward
manner using the relationship between the rectangular and polar coordinates

r2 D x2 C y2 (3.71)

With the governing equation being the same, the difference between the solution
of this equation for a tube of circular cross section and a tube of noncircular cross
section appears only in the boundary conditions.

Consider an elliptic cross section in the yz-plane, defined by the ellipse

y2

b2
C z2

c2
D 1 (3.72)

compared with a circular cross section defined by the circle

y2 C z2 D a2 (3.73)

15Maslen SH, 1958. Transverse velocities in fully developed flows. Quarterly Journal of Applied
Mathematics 16:173–175.
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Taking b > c, the major and minor axes of the ellipse are respectively defined by

(
z D 0; y D ˙b

y D 0; z D ˙c
(3.74)

thus the major and minor axes of the ellipse are 2b and 2c while the diameter of the
circle is 2a.

To facilitate comparison of the flow in the two cases, the driving pressure gradient
is taken to be the same in both cases, that is

dpse

dx
D dps

dx
D k (3.75)

The condition of no-slip on the boundary of the elliptic cross section is

use D 0 on
y2

b2
C z2

c2
D 1 (3.76)

A solution of Eq. 3.70 satisfying these conditions is given by

use.y; z/ D kb2c2

2�.b2 C c2/

�
y2

b2
C z2

c2
� 1

�
(3.77)

The flow rate in a tube of elliptic cross section is then obtained by integrating
over that cross section, which gives

qse D 4

Z c

0

Z b�
p

1�z2=c2

0

udydz D �k�

8�
ı4 (3.78)

where

ı D
�

2b3c3

b2 C c2

�1=4

(3.79)

and the corresponding pumping power is given by

Hse D klqse D 8�l

�

q2
se

ı4
(3.80)

It will be noted that when b D c D a, ı D a, the ellipse becomes a circle of radius
a, and the expressions for flow rate and pumping power reduce to those for a tube
of circular cross section of radius a (Eqs. 3.43 and 3.60).

Flow inefficiency in a tube of noncircular cross section manifests itself in terms
of lower flow rate for a given pumping power, or higher pumping power for a
given flow rate. For a meaningful comparison between the two cases, either the
areas or the perimeters of the circular and the noncircular cross sections must be
made equal. In the case of elliptic cross section this establishes a relation between
the radius of the circular cross section and the axes of the elliptic cross section.
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Comparison of two cross sections of equal perimeter is particularly relevant to the
case of compressed blood vessels, and we use it here for illustration. The perimeter
of an ellipse of semi minor and major axes b; c is equal to that of a circle of radius
a if

a2 � 1

2
.b2 C c2/: (3.81)

Two particular scenarios are of interest in which a tube of circular cross section is
compressed such that its cross section becomes elliptic while its perimeter remains
unchanged.

In the first scenario the pumping power driving the flow is kept unchanged,

Hse D Hs D H (3.82)

therefore the flow rate through the compressed tube will be reduced. For direct
comparison we consider the ratio Nq of flow in the elliptic tube (Eq. 3.78) divided
by the corresponding flow in the circular tube

Nq D qse=qs

D
��ks�

8�
ı4

�
=

��ks�

8�
a4

�

D .ı=a/4 (3.83)

and using Eqs. 3.79 and 3.81, and simplifying, this becomes

Nq D
�

2bc

b2 C c2

�3

(3.84)

or

Nq D
�

2	

1 C 	2

�3

(3.85)

where

	 D c=b (3.86)

In the second scenario the flow rate is kept unchanged as the tube is compressed,
writing

qse D qs D q (3.87)

therefore the pumping power to maintain the flow will be higher. For direct
comparison we consider the ratio NH of the power required to drive flow in a tube
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of elliptic cross section (Eq. 3.80) divided by the corresponding driving power in a
tube of circular cross section

NH D Hse=Hs

D
�

8�lq2

�ı4

�
=

�
8�lq2

�a4

�

D .a=ı/4 (3.88)

and using Eqs. 3.79 and 3.81, and simplifying, this becomes

NH D
�

b2 C c2

2bc

�3

(3.89)

or

Nq D
�

1 C 	2

2	

�3

(3.90)

Some specific results are shown in (Fig. 3.8).

Fig. 3.8 Flow in a tube of
elliptic cross section
compared with that in a tube
of circular cross section of
equal perimeter. For the same
flow rate in both tubes, the
pumping power required to
drive the flow in the elliptic
tube is higher by a factor of
125=64. For the same
pumping power in both tubes,
the flow rate in the elliptic
tube is lower by a factor of
64=125. The ratio of major to
minor axis of the ellipse is
2:1.

H=H s

q = qs

EQUAL PERIMETERS

H=H S : q = (64/125) qs

q=q s : H = (125/64) Hs
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It is clear from these results that as a tube of circular cross section is compressed
such that its cross section becomes elliptic with minor-to-major axis ratio 	 D c=b
and with the length of its cross sectional perimeter being unchanged in the process,
the flow rate will be reduced unless the driving pumping power is increased to
compensate for the increased resistance. This effect intensifies as 	 decreases. As
an example, with 	 D 1=2, if the driving power is unchanged, the flow rate will
drop by approximately 50 %, and if the flow rate is to be kept unchanged, the power
required would increase by close to 100 %. With 	 D 1=4, the corresponding drop
in flow rate would be close to 90 % and corresponding increase in pumping power
would be close to 900 %.

These dramatic changes in flow rate or pumping power may play a significant
role in the dynamics of blood flow in situations where blood vessels are
being compressed by surrounding tissue. The most important situation,
mentioned earlier, is that of coronary vasculature embedded deeply within the
myocardium and providing the heart itself with the blood supply it requires for
its own metabolic needs. It is well known that when the heart contracts to drive
blood flow to the rest of the body, blood flow to the heart itself is drastically
reduced or comes to a halt because flow within the coronary vasculature is
drastically reduced. However, the way in which this effect is integrated into the
overall dynamics of blood supply to the heart has yet to be fully understood,
in health and in disease, and particularly in heart failure.

3.11 Cube Law

Properties of Poiseuille flow derived in Sect. 3.8 indicate that the power required
to drive flow through a tube is highly sensitive to the diameter (or radius) of the
tube, more specifically it varies inversely with the fourth power of the radius ‘a’
(Eq. 3.60). Thus, to drive the same flow rate through a tube of half the diameter
requires 16 times more power. To drive the same flow rate through a tube of double
the diameter requires only 1=16 of the power. These dramatic properties of flow in
a tube lead inescapably to the question of how did our blood vessels come to have
the diameters that they do. For if the diameters of the aorta and all its subsequent
branches were to double, the heart would need only 1=16th or approximately 6 %
of the power to drive the flow through the arterial tree! How and why then did the
aorta come to have the diameter that it does?

This question was considered by Cecil D. Murray in 1926 who proposed
that alongside the power required to drive the flow through a blood vessel, one
must consider the metabolic power required to maintain the volume of blood
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within the vessel.16 The larger the vessel diameter, the more blood it contains,
its volume increasing as a2, assuming that its length remains unchanged. Thus
if the diameters of all the vessels within the arterial tree were to double, the
volume of blood contained within the tree would increase by a factor of four,
and so will the metabolic power required to maintain this larger volume of blood.
There are therefore two opposing consequences to an increase in the diameter of
a blood vessel, the power required to drive the flow decreases as 1=a4 while the
metabolic power required to maintain the volume of blood increases as a2. A simple
“optimality” problem is thus established by writing, for a blood vessel of radius ‘a’

H D A

a4
C Ba2 (3.91)

where H is the total cost of driving the flow through the vessel and maintaining the
volume of blood within it, and A; B are constants. A minimum value of H occurs
when

8̂̂
<
ˆ̂:

dH

da
D �4A

a5
C 2Ba D 0

d2H

da2
D 20A

a6
C 2B > 0

(3.92)

Since both A and B are positive, the inequality is satisfied and the first equation gives

a6 D 2A

B
(3.93)

Now, in Eq. 3.91 the second term represents the metabolic power required to
maintain the volume of fluid within the vessel, where B is a constant representing
the rate at which this power increases with a2, while the first term represents the
power required to drive the flow where A represents the rate at which this power
increases with 1=a4. The first of these constants is unknown and can be estimated
from the metabolic rate of blood, but this estimate is not required for the purpose at
hand. However, the constant A is known because the first term in Eq. 3.91 represents
the power required to drive the flow as was found in Eq. 3.60 and, comparing the
two equations we have

Hs D A

a4
D 8�lq2

s

�a4
(3.94)

which gives

A D 8�lq2
s

�
(3.95)

16Murray CD, 1926. The physiological principle of minimum work. I. The vascular system and the
cost of blood volume. Proceedings of the National Academy of Sciences 12:207–214.
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Substituting this value of A in Eq. 3.93, we find

a6 D 2A

B
D 2

B

8�lq2
s

�
(3.96)

and on the assumption that B; �; l are constants which do not depend on the flow rate
qs, it follows from Eq. 3.96 that the required condition of minimum power occurs
when

qs / a3 (3.97)

which is known as the “cube law”, or as “Murray’s law” after its first author.
The cube law has been tested and used for many years and has shown consid-

erable presence in the cardiovascular system.17 It is important to note that the law
rests on two important assumptions: (i) that the flow under consideration is steady
and fully developed Poiseuille flow, and (ii) that the optimality criterion being used
is that of minimizing the total rate of energy expenditure for dynamic and metabolic
purposes. More general forms of Murray’s law have been considered by a number
of authors to address observed departures or scatter away from the cube law (see
Footnote 17). It has been found, for example, that in the aorta and its first generation
of major branches, a “square law” in which the flow rate is proportional to a2 may
be more appropriate than the cube law. At more peripheral regions of the arterial
tree, however, measured data suggest that the cube law eventually prevails, even if
with considerable scatter.

One of the most important issues associated with the way in which the flow
rate in a blood vessel is related to its diameter is that of the shear stress acting on
endothelial tissue because it represents the only mechanism by which the vessel
wall is in direct contact with the flow. In particular, the shear stress acting on the
endothelium in the very small pre-capillary arterioles is likely to play a key role in
the mechanisms and control of local perfusion. To date there has been no definitive
measurement or theory to indicate what the level or distribution of shear stress at
this level of the vasculature might be, and how these relate to the implementation
and control of local perfusion. These issues are paramount in the mechanisms of
myocardial perfusion.

Since in Poiseuille flow (Eq. 3.50) the shear stress acting on the tube wall is
proportional to q=a3, the cube law (q / a3) implies that the shear stress no longer
depends on the vessel radius, thus the shear stress acting on endothelial tissue in
large vessels would be the same as that acting in small vessels. This implication has
not been generally accepted on physiological grounds, nor has it been possible to
test it because of inherent difficulties associated with direct measurements of shear
stress, particularly in small vessels.

17There is an extensive literature on the subject. For a summary and list of references see “Zamir
M. The Physics of Pulsatile Flow. Springer-Verlag 2000.”
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If as an alternative to the cube law it is assumed that the flow rate in a blood vessel
varies in accordance with a square law (q / a2) or a quartic law (q / a4), the shear
stress acting on the vessel wall would vary as 1=a in the first case and as a in the
second. Thus a square law would imply that the shear stress is larger in smaller
vessels while the quartic law implies that the shear stress is smaller in smaller
vessels. The second of these options appears more acceptable on physiological
grounds. In other words, if the relation between the flow rate and vessel radius is
put in the more general form

q / a
 (3.98)

where 
 is an unknown index, then one would suspect on physiological grounds that
in the hierarchical structure of the arterial tree the value of 
 may be equal to or less
than 3:0 within the large distributing vessels and higher than 3:0 within the small
pre-capillary vessels. At the present time these issues stand unresolved.

3.12 Two Tubes or One?

A key task of the cardiovascular system is to supply blood from a single source
(the heart) to several billion destinations (individual cells within the entire body). It
has already been established that the mechanism of choice for meeting this task is
flow in tubes. Before discussing the design principles by which this mechanism is
implemented within the body, in this section we consider a much simpler question:

Is it more efficient for a given flow rate q0 to be carried in a single tube of
radius a0 or divided into two flow rates q1; q2 carried in two separate tubes of
radii a1; a2?

subject, of course, to

q0 D q1 C q2 (3.99)

To address this question we must define what is meant by “efficient”. In the
physiological system the amount of power H required to maintain the flow is clearly
an important consideration so that lower power expenditure would certainly be
considered as higher efficiency. However, other considerations such as the volume
V of blood required to fill the two tubes compared with one, the amount of tissue T
required to form the two tubes compared with one, and the shear stress � between
the moving fluid and the tube wall in the two cases, are equally important. Below
we examine the question of efficiency in terms of each of these.

If the power required to maintain the flow in the single tube is denoted by H0

and in the two tubes by H1; H2, then we define a measure of power efficiency as the
fractional difference
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�H D H1 C H2 � H0

H0

(3.100)

Using Eq. 3.60 for the power required to drive flow q in a tube of radius a, and
assuming for simplicity that the three tubes have the same length and that the fluid
properties are the same, Eq. 3.100 reduces to

�H D .q2
1=a4

1/ C .q2
2=a4

2/ � .q2
0=a4

0/

.q2
0=a4

0/
(3.101)

Assuming further that flow in the two smaller tubes is divided equally such that
(

q2 D q1

a2 D a1

(3.102)

Equation 3.101 reduces to

�H D 2

�
q2

1=a4
1

q2
0=a4

0

�
� 1 (3.103)

It is seen from the above that the answer to the question at hand, namely that of
“two tubes or one?”, depends on the relation between the radius of a tube and the
flow rate which it carries. If we use the cube law, Eq. 3.97, for that purpose, then
Eq. 3.103 becomes

�H D 2

�
a1

a0

�2

� 1 (3.104)

while from Eq. 3.99 we find

a3
0 D a3

1 C a3
2

D 2a3
1

a1

a0

D 2�1=3 (3.105)

Substituting this in Eq. 3.104, we finally get

�H D 2
�
2�1=3

	2 � 1

D 21=3 � 1

� 0:26 (3.106)
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Thus, based on the cube law relationship between the radius of a tube and the flow
which it carries (Eq. 3.97), if the flow in a single tube is divided equally into two
separate tubes, the power required to drive the flow will be higher by approximately
26 %.

If instead of the cube law we assume the more general relationship between the
radius of a tube and flow which it carries (Eq. 3.98), then instead of Eq. 3.103 we
would have

�H D 2

 
a2


1 =a4
1

a2

0 =a4

0

!
� 1 (3.107)

and instead of Eq. 3.104

�H D 2

�
a1

a0

�2
�4

(3.108)

The ratio of radii within the bracket is then obtained from

q0 D q1 C q2

a

0 D a


1 C a

2

D 2a

1

a1

a0

D 2�1=
 (3.109)

Substituting this into Eq. 3.108, we obtain finally

�H D 2.4=
/�1 � 1 (3.110)

which indicates that
8̂̂
<
ˆ̂:

�H D 0 at 
 D 4

> 0 when 
 < 4

< 0 when 
 > 4

(3.111)

For the volume V0 of blood in a single tube compared with that in two tubes of
volume V1 each, we define

�V D 2V1 � H0

H0

(3.112)
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Since the volume V of a tube of length l and radius a is given by V D l � �a2, and
since the lengths of all three tubes are assumed to be the same, Eq. 3.112 reduces to

�V D 2

�
a1

a0

�2

� 1 (3.113)

and using Eq. 3.109 we find

�V D 2.2�2=
 / � 1

D 21�.2=
/ � 1 (3.114)

which indicates that
8̂̂
<
ˆ̂:

�V D 0 at 
 D 2

> 0 when 
 > 2

< 0 when 
 < 2

(3.115)

Similarly, for the surface area of tissue T forming a tube of length l and radius a,
where T D l � 2�a, we define

�T D 2T1 � T0

T0

(3.116)

and again since the lengths of all three tubes are assumed to be the same, this
reduces to

�T D 2

�
a1

a0

�
� 1 (3.117)

and using Eq. 3.109 we find

�T D 2.2�1=
 / � 1

D 21�.1=
/ � 1 (3.118)

which indicates that 8̂̂
<
ˆ̂:

�T D 0 at 
 D 1

> 0 when 
 > 1

< 0 when 
 < 1

(3.119)

Finally, in the case of shear stress � at the tube wall, there are two issues to
consider. First, from a purely physical standpoint � represents energy dissipation due
to viscous friction at the tube wall, thus a relevant comparison in this case would be
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between the energy dissipated in the single tube compared with that in two separate
tubes. Second, in the physiological setting � is a mechanism of communication
between the endothelium and the moving blood and, as such, a relevant comparison
would be simply between the value of � in the single tube compared with that in the
two separate tubes. The first of these is in fact already taken care of by �H because
the rate of energy dissipation within each of the three tubes is equal to the power
required to drive the flow. Therefore, below we deal with only the second of the
above considerations and accordingly define

�� D �1 � �0

�0

(3.120)

and using Eq. 3.50, we have

�� D
�

q1=a3
1

q0=a3
0

�
� 1 (3.121)

and using Eq. 3.98, this becomes

�� D
�

a1

a0

�
�3

� 1 (3.122)

and using Eq. 3.109, we get

�� D .2�.
�3/=
 / � 1

D 2.3=
/�1 � 1 (3.123)

which indicates that
8̂̂
<
ˆ̂:

�� D 0 at 
 D 3

> 0 when 
 < 3

< 0 when 
 > 3

(3.124)

The results are shown graphically in Fig. 3.9. In discussing these it is convenient
to refer to �V and �T as “material” costs and to �H and �� as “energy” costs
(although, as discussed earlier, in the comparisons above we considered only the
physiological aspect of � , not its dissipative aspect).

The first important result seen in Fig. 3.9 is that the radius ‘a1’ of each of the two
separate tubes is in all cases smaller than that of the single tube (a0). The second
important result seen in the figure is that there is no value of the power law exponent

 for which flow in two tubes is “better” than one. More precisely, there is no value
of 
 for which �V; �T; �H; �� are all zero.

Specifically, at 
 D 1, the volume cost of having two tubes instead of one is
actually favorable (�V D �0:5) and the tissue cost is neutral (�T D 0) but the
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Fig. 3.9 Two tubes or one? The figure shows the percentage cost or gain of replacing the flow rate
in one tube of radius ‘a0’ by the same flow rate divided equally into two tubes of the same length
as that of the single tube and of radius ‘a1’ each. The �’s represent percentage difference in lumen
volume V , tube wall surface T , power required to drive the flow H, and shear stress at the tube wall
� . The significance of the results is discussed in the text. The power law exponent x in the figure is
the same as the power law exponent 
 in the text.

energy costs (�H and �� ) are so high that this option would not be viable. At

 D 2, �V D 0, �T > 0, �� is moderately high while �H is still considerably
high.

At 
 D 3 and higher values of 
 the material costs continue to increase while
the energy costs continue to decrease. Thus, if the flow in a single tube is to be
divided into two tubes, only a compromise between the energy and material costs is
possible. At 
 D 3 this compromise is achieved with what seems to be a balance
between material and energy costs. At higher values of 
 , the compromise is such
that higher weight is given to energy costs than to material costs.



Chapter 4
Basic Elements of Pulsatile Flow

4.1 Introduction: Why Pulsatile?

The pressure difference across the two ends of a tube provides only the force needed
to drive the flow through the tube. In order to maintain the flow it is necessary to
maintain this driving force, and to do so requires a source of continuous energy, a
power source. The high pressure at one end of a tube is therefore only a momentary
source of that power but it is a limited source unless it is constantly replenished.

The situation is much like that of the level of water in a water reservoir. The
water level provides the pressure required to drive the flow through the pipe or pipes
leaving the reservoir, but unless this water level is maintained, the driving pressure
will gradually diminish and so will the flow. It is in this replenishing process that
the energy payment for the flow is made. Water must be somehow hauled to the top
of the reservoir in order to maintain its level, and the energy spent in this hauling
process is in payment for the energy consumed by the flow.

Another way of producing high pressure at one end of a tube is that provided
by a reciprocating pump. In this case high pressure is produced only momentarily
at each stroke of the pump and then diminishes until the next stroke. In fact, if the
pump stroke is aligned with the tube, the process may also be seen as the pump
simply pushing fluid directly into the tube and thereby producing forward flow. It is
not unlike the process of adding buckets of water into a reservoir at fixed intervals
in order to maintain the water level within it. At the delivery of each bucket the level
of water rises and so does the pressure available for driving the flow, then they both
gradually diminish until the next delivery.

In the cardiovascular system, perhaps not surprisingly, biology has opted for
a combination of these two mechanisms. The heart acts as a reciprocating pump
that drives blood directly into the aorta, the flow reaching a peak (systol) at each
stroke, then diminishing to a low (diastol) until the next stroke. This, as is the
case with a reciprocating pump, produces “jerks” of flow at each stroke rather than
continuous flow. If the output from the pump is directed to a large reservoir instead,
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and the water level from the reservoir is used to drive the flow, these jerks would
be moderated. Biology has used precisely this mechanism in order to moderate the
jerkiness of blood flow through the vascular system. Of course, there is no room
for a large reservoir within the body. Instead, a stretchable container is used for
“storing” fluid. The aorta and its major branches are sufficiently compliant that they
expand at the peak of each pumping cycle and store some of the blood being pushed
forward by the heart, in much the same way that a reservoir stores buckets of water
that are being poured into it. The stored fluid is then regurgitated during the low
phase of the pumping cycle. Not only is the fluid stored between peak cycles in this
way, but also, and perhaps more importantly, some of the driving energy too. The
latter is done by the elasticity of the vessel walls as they stretch at the peak of each
cycle. At the low phase of each cycle, the walls recoil and give back most of the
energy used in stretching them.

Why pulsatile flow? Biology found no other way of maintaining high pressure
at one end of the arterial system in order to drive the flow of blood,
continuously and without stop.

Indeed, there is no other way of providing a continuous source of high pressure
in the physical or engineering world either. What appears to be a continuous supply
of water or gas into our homes is in fact also driven by a pulsatile pressure system,
but one that has such a large storage capacity that the depletion and replenishing
of that capacity is so minute by comparison with the size of that capacity that the
jerkiness associated with the pulsatile nature of the driving pressure is practically
eliminated. Biology does not have the luxury of such a large capacity reservoir to
serve the cardiovascular system.

There are thus two aspects to the study and analysis of pulsatile flow. First, the
relationship between pressure and flow in a tube when the driving pressure is not
constant. Second, the relationship between the pressure and flow in a tube when the
driving pressure is not constant and the tube is stretchable to the extent of providing
some storage capacity. While the difference between the two may seem trivial, it is
in fact not the case. There is a considerable difference in the mathematical analysis
involved in the two cases, as well as in the corresponding physics. For this reason,
in the present chapter we deal with only the first of these two aspects of pulsatile
flow. The second is dealt with in the next chapter.

4.2 Pulsatile Poiseuille Flow

When the pressure driving the flow in a tube is constant, the resulting flow is steady,
as we have seen previously in the form of Poiseuille flow. In that case, the pressure
p varies only in the axial direction x as it “drops” from the upstream end to the
downstream end of the tube, while the velocity u varies only in the radial direction
r, thus p D p.x/ and u D u.r/ (Sect. 3.8).

When the pressure driving the flow in a tube varies in time, the resulting flow
also varies in time, thus in this case p D p.x; t/ and u D u.r; t/. The equation
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governing the flow is then a generalized form of the equation governing Poiseuille
flow, namely Eq. 3.13 as derived in Sect. 3.5, which we now write more explicitly as

�
@u.r; t/

@t
C @p.x; t/

@x
D �

�
@2u.r; t/

@r2
C 1

r

@u.r; t/

@r

�
(4.1)

This equation bears strong relation to the equation governing Poiseuille flow
(Eq. 3.15) because it reduces to that equation when the time dependence is absent.
Indeed, we shall see that the physics of the flow represented by this equation bears
a strong relation to the physics of Poiseuille flow.

For the purpose of discussion we consider a specific case in which the driving
pressure is oscillatory in time, varying as a trigonometric sine or cosine function.
As the pressure rises to its peak, the flow increases gradually in response, and as
the pressure falls, the flow follows again. If the change in pressure is very slow, the
corresponding change in flow will be almost in phase with it, but if the change in
pressure is rapid, the flow will lag behind because of the inertia of the fluid. Because
of this lag, the peak which the flow reaches in each cycle will be somewhat short of
what it would be in steady Poiseuille flow under a constant driving pressure equal
to the peak of the oscillatory pressure.

This loss in peak flow is higher at higher frequency of oscillation of the driving
pressure, to the point that at very high frequency the fluid barely moves at all. Only
at the other extreme, at very low frequency, will the flow rise and fall in phase with
the pressure and reach a peak commensurate with the peak pressure at each cycle.
In fact at very low frequency the pressure and flow are instantaneously what they
would be in steady Poiseuille flow. That is, the Poiseuille relation between pressure
and flow (Eq. 3.15) is satisfied at every instant in the oscillatory cycle as they both
change during the cycle. Not only the flow rate but the velocity profile at each instant
will also be the same as it would be in steady Poiseuille flow under a constant driving
pressure equal to the value of the oscillatory pressure at that instant in the oscillatory
cycle, at low frequency. The flow is then somewhat like a pulsatile Poiseuille flow.
At high frequency the velocity profile fails to reach the full form which it would
have in Poiseuille flow under the same driving pressure.

The assumptions under which this oscillatory flow takes place are essentially
the same as those in steady Poiseuille flow. The cross section of the tube must be
circular and axial symmetry must prevail to the effect that velocity and derivatives
in the � -direction are zero. Also, the tube must be sufficiently long for the flow field
to be fully developed and independent of x, and we saw in Sect. 3.5 that this requires
that the tube be rigid.

The consequences of these restrictions are far more significant in pulsatile flow
than in steady Poiseuille flow. In order to satisfy these restrictions in pulsatile flow,
fluid at different axial positions along the tube must respond in unison to the chang-
ing pressure, to the effect that the velocity profile is instantaneously the same at all
axial positions along the tube. As the pressure changes, the velocity profile changes
in response, simultaneously at all axial positions along the tube. It is as if the fluid
is moving in bulk.
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While this feature of the flow is fairly artificial and somewhat “unphysical”, it
provides an important foundation for the understanding of more realistic forms of
pulsatile flow. In fact the classical solution which we present in this chapter and
which has provided the basic understanding of pulsatile flow is based on this model
of the flow.

To make the model more realistic the tube must be allowed to be nonrigid. As
the pressure changes in a nonrigid tube, the change acts only locally at first because
it is able to stretch the tube at that location. Later the stretched section of the tube
recoils and pushes the change in pressure further down the tube. This produces a
wave which travels down the tube. In the case of a rigid tube, by contrast, there is
no wave motion. The flow in a rigid tube, rises and falls simultaneously at all axial
positions along the tube.

In the presence of wave motion the axial velocity u is a function of not only r
and t but also of x, and the radial velocity v is no longer zero, thus Eq. 4.1 ceases
to be valid. More important, the presence of wave motion entails the possibility of
wave reflections which introduce further complications in the analysis of the flow.
These complications are considered in subsequent chapters. In the current chapter
we present the classical solution of Eq. 4.1 which is based on the idealized model of
pulsatile flow in a rigid tube.

4.3 Pulsatile D Steady C Oscillatory

The pumping action of the heart produces a pressure difference across the arterial
tree which changes rythmically with that action. It is a characteristic of this driving
force that it consists of a constant part which does not vary in time and which
produces a steady flow forward as in Poiseuille flow, plus an oscillatory part
which moves the fluid only back and forth and which produces zero net flow over
each cycle. We shall use the terms “steady” and “oscillatory” to refer to these
two components of the flow, respectively, and the term “pulsatile” to refer to the
combination of the two.

An important feature of Eq. 4.1 is that it is linear in both the pressure p.x; t/ and
velocity u.r; t/. As a result of this feature the equation can deal with the steady and
oscillatory parts of the flow entirely separately and independently of each other. This
is a useful breakdown of the problem because the steady part of the flow has already
been dealt with in Sect. 3.7.

The oscillatory part of the problem can be isolated and dealt with separately,
which we do in the present chapter. This part of the problem is mathematically more
complicated than the steady flow part, and in the midst of the analysis to follow it
may seem pointless to consider it since it only moves fluid back and forth with no
net flow. It is therefore helpful to remember that the reason for which the oscillatory
part is dealt with in such great detail is that it represents an important part of the
composite pulsatile flow which we are interested in, and it carries with it most of
the seminal features of the composite flow.
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If the steady and oscillatory parts of the pressure and velocity are identified by
subscripts “s” and “�” respectively, then to isolate the oscillatory flow problem we
write (

p.x; t/ D ps.x/ C p�.x; t/

u.r; t/ D us.r/ C u�.r; t/
(4.2)

Substituting these in Eq. 4.1, we obtain
�

dps

dx
� �

�
d2us

dr2
C 1

r

dus

dr

��
C
�

@p�

@x
� �

�
@2u�

@r2
C 1

r

@u�

@r

�
C �

@u�

@t

�
D 0

(4.3)

where terms have been grouped into those which do not depend on time t (first
group) and those which do (second group). Because of that difference between them,
each group must equal zero separately.

The first equality then leads to Eq. 3.15 for steady flow which has already been
dealt with, and the second leads to a governing equation for the oscillatory part of
the flow, namely

@p�

@x
D �

�
@2u�

@r2
C 1

r

@u�

@r

�
� �

@u�

@t
(4.4)

This equation is entirely independent of the equation governing the steady compo-
nent of the flow (Poiseuille flow) in the sense that it can be solved separately for u�

which we do in what follows.
In Eq. 4.4 the left hand side is a function of x and t only while the right hand side

is a function of r and t only, therefore both sides must equal a function of t only, the
same function of t, say k�.t/. Therefore Eq. 4.4 splits into two equations

@p�

@x
D k�.t/ (4.5)

�

�
@2u�

@r2
C 1

r

@u�

@r

�
� �

@u�

@t
D k�.t/ (4.6)

As ks in steady Poiseuille flow (Eq. 3.23), k�.t/ here is the pressure gradient driving
the oscillatory part of the flow. If the total pressure gradient driving the pulsatile
flow is denoted by k.t/, then from Eq. 4.2 we find

k.t/ D @p.x; t/

@x

D dps.x/

dx
C dp�.x; t/

dx
(4.7)
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Fig. 4.1 Pulsatile pressure
gradient k.t/ consists of a
constant part ks plus a purely
oscillatory part k�.t/.

 k

k(t)

ks

 0 t

which in view of Eqs. 3.23 and 4.5 gives

k.t/ D ks C k�.t/ (4.8)

Thus k.t/ is the “pulsatile” pressure gradient in pulsatile flow, ks is its steady part,
and k�.t/ is its purely oscillatory part, as illustrated in Fig. 4.1.

Properties of pulsatile flow are obtained by solving Eq. 4.6 for the oscillatory
velocity component u� and then adding this to the steady velocity component us

obtained in Sect. 3.8 to construct the total velocity in pulsatile flow using Eq. 4.2.
Thus in what follows our attention is focused only on a solution of Eq. 4.6 for the
oscillatory velocity component u� .

4.4 Using Complex Exponential Functions

Solution of Eq. 4.6 for the oscillatory velocity component u� depends clearly on the
form of the pressure gradient k� driving the flow as a function of time. We consider
first one of the simplest oscillatory functions, namely that of a trigonometric sine or
cosine, writing

k�.t/ D ks cos !t (4.9)

or

k�.t/ D ks sin !t (4.10)
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where ! is the oscillatory frequency and ks is a constant which we chose to be
equal to the constant pressure gradient in Poiseuille flow. This choice makes it easier
to compare the oscillatory flow directly with the corresponding Poiseuille flow. In
both cases (Eqs. 4.9 and 4.10) ks serves as the amplitude of the oscillatory pressure
gradient. Thus the oscillatory pressure gradient varies as a sine or cosine function
from a high value of ks to a low of �ks. In this way the peak value of the oscillatory
flow rate and peak form of the oscillatory velocity profile can be compared directly
with the corresponding flow rate and velocity profile in steady Poiseuille flow with
constant pressure gradient ks.

Solution of Eq. 4.6 is greatly simplified analytically if instead of taking one of
the other of Eqs. 4.10 and 4.9 we take their combination in the form of a complex
exponential function

k�.t/ D kse
i!t (4.11)

D ks.cos !t C i sin !t/

where i D p�1. Because Eq. 4.6 is linear, a solution with this choice of k� will
actually consist of the sum of two solutions, one for which k�.t/ D ks cos !t and
another for which k�.t/ D ks sin !t. The first is obtained by taking the real part of
the solution and the second by taking the imaginary part. The combined solution is
complex because of this choice of k�.t/.

With this choice of pressure gradient Eq. 4.6 becomes

@2u�

@r2
C 1

r

@u�

@r
� �

�

@u�

@t
D ks

�
ei!t (4.12)

This equation admits a solution by separation of variables, that is by a decomp-
osition of u�.r; t/ into one part which depends on r only and one on t only.
Furthermore, the form of the equation and the exponential form of the function of
time on the right together dictate that the part of u� which depend on t must have the
same exponential form as that on the right. The separation of variables thus arrived
at is

u�.r; t/ D U�.r/ei!t (4.13)

Upon substitution into Eq. 4.12, the factor ei!t cancels throughout, leaving an
ordinary differential equation for U�.r/ only, namely

d2U�

dr2
C 1

r

dU�

dr
� i�2

a2
U� D ks

�
(4.14)

where a is the tube radius and � is a nondimensional frequency parameter, given by

� D
r

�!

�
a (4.15)

We shall see later that the value of � has a significant effect on the form of the
solution.



88 4 Basic Elements of Pulsatile Flow

It is clear that Eq. 4.14, being an ordinary differential equation, is considerably
simpler than Eq. 4.12. In fact Eq. 4.14 is a form of Bessel equation which has a
standard solution as we see in the next section.

It is important to note that this simplification of the problem has been achieved
primarily by the choice of k�.t/ as a simple trigonometric sine or cosine. However,
as we see later, this simplified form of the problem is actually a fundamental
prerequisite step towards dealing with more complicated forms of k�.t/ such as
that generated by the heart.

It is also important to note that while the pressure gradient k�.t/ in Eq. 4.11 and
the velocity u�.r; t/ in Eq. 4.13 appear to have the same oscillatory form in the time
variable t, this does not mean that the pressure gradient and velocity are actually
in phase with each other. The reason for this is that the other part of the velocity,
namely U�.r/, is complex because of the presence of i in its governing equation
(Eq. 4.14). The product of U�.r/ with ei!t in Eq. 4.13 alters the phases of the real
and imaginary parts of the velocity u�.r; t/ so that in general they are not the same
as those of the real and imaginary parts of the pressure gradient k�.t/.

4.5 Bessel Equation and Solution

Equation 4.14 is a form of Bessel equation which has a known general solution,1;2

namely

U�.r/ D iksa2

��2
C AJ0.
/ C BY0.
/ (4.16)

where A; B are arbitrary constants and J0; Y0 are Bessel functions of order zero and
of the first and second kind, respectively, satisfying the standard Bessel equation

8̂
ˆ̂̂<
ˆ̂̂̂
:

d2J0

d
2
C 1




dJ0

d

C J0 D 0

d2Y0

d
2
C 1




dY0

d

C Y0 D 0

(4.17)

The new variable 
 is related to the radial coordinate r by


.r/ D ƒ
r

a
(4.18)

1McLachlan NW. Bessel Functions for Engineers. Clarendon Press, 1955.
2Watson GN. Theory of Bessel Functions. Cambridge University Press, 1958.
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Fig. 4.2 Bessel functions of the first kind of order zero (J0.x/) and of order one (J1.x/) where x is
real.

where ƒ is a frequency parameter related to the nondimensional frequency � by

ƒ D
�

i � 1p
2

�
� (4.19)

Some of the relevant properties of J0.x/ and J1.x/ are illustrated graphically in
Figs. 4.2 and 4.3.

Because of this relation, and because ƒ and � appear explicitly and implicitly in
all elements of the solution, the numerical value of the nondimensional frequency
� has a key effect on the detailed characteristics of the flow field.

Substituting for U�.r/ from Eq. 4.16 into the governing equation (Eq. 4.14)
readily verifies that the governing equation is satisfied. In particular, it can be readily
verified that the first term on the right hand side of Eq. 4.16 represents a particular
solution of Eq. 4.14 since it satisfies that equation and it does not contain an arbitrary
constant. Then it can be verified that each of the second and third terms on the right
of Eq. 4.16 satisfies the homogeneous form of the governing equation, namely

d2U�

dr2
C 1

r

dU�

dr
� i�2

a2
U� D 0 (4.20)

Substituting U� D AJ0 into this equation produces the first line in Eq. 4.17 which
is known to be valid by definition of J0. Similarly for Y0. Furthermore, it is known
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Fig. 4.3 Real and imaginary parts of J0.z/ where z D .i � 1/x=21=2.

from the properties of J0 and Y0 that they are independent of each other, that is
one cannot be expressed in terms of the other. Therefore, the three terms on the
right hand side of Eq. 4.16 represent the required elements of the general solution of
Eq. 4.14, namely two independent solutions of the homogeneous equation (Eq. 4.20)
and a particular solution of the full equation (Eq. 4.14).

The boundary conditions which the solution must satisfy for flow in a tube are
no-slip at the tube wall and finite velocity along the axis of the tube, that is

(
U�.a/ D 0

jU�.0/j < 1 (4.21)

These provide the two equations required for determining the two arbitrary constants
A; B in the general solution.

It is known from the properties of Y0.
/ that it becomes infinite as 
 ! 0,3;4

which occurs on the axis of the tube where r D 0, thus the second boundary
condition in Eq. 4.21 leads to

B D 0 (4.22)

3McLachlan NW. Bessel Functions for Engineers. Clarendon Press, 1955.
4Watson GN. Theory of Bessel Functions. Cambridge University Press, 1958.
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and the first boundary condition then gives

A D �iksa2

��2J0.ƒ/
(4.23)

noting from Eq. 4.18 that


.a/ D ƒ (4.24)

With these values of A; B the solution for U� is finally given by

U� D iksa2

��2

�
1 � J0.
/

J0.ƒ/

�
(4.25)

4.6 Oscillatory Velocity Profiles

The solution of Eq. 4.12 for the oscillatory flow velocity u�.r; t/ is now complete.
Using the results in Eqs. 4.13 and 4.25, we have

u�.r; t/ D iksa2

��2

�
1 � J0.
/

J0.ƒ/

�
ei!t (4.26)

This is a classical solution for oscillatory flow in a rigid tube, obtained in different
forms and at different times by Sexl,5 Womersley,6 Uchida,7 and discussed at some
length by McDonald,8 and Milnor.9

The first element of the solution is a constant coefficient whose value depends on
the amplitude of the pressure gradient ks, radius of the tube a, viscosity of the fluid
�, and the frequency of oscillation �. The second element, inside the large brackets,
is a function of r which describes the velocity profile in a cross section of the tube.
The third element is a function of time which multiplies and therefore modifies
the velocity profile as time changes within the oscillatory cycle, thus producing a
sequence of oscillatory velocity profiles.

5Sexl T, 1930. Über den von E.G. Richardson entdeckten “Annulareffekt”. Zeitschrift für Physik
61:349–362.
6Womersley JR, 1955. Oscillatory motion of a viscous liquid in a thin-walled elastic tube, I: The
linear approximation for long waves. Philosophical Magazine 46:199–221.
7Uchida S, 1956. The pulsating viscous flow superimposed on the steady laminar motion of
incompressible fluid in a circular pipe. Zeitschrift für angewandte Mathematik und Physik
7:403–422.
8McDonald DA. Blood flow in arteries. Edward Arnold, 1974.
9Milnor WR. Hemodynamics. Williams and Wilkins, 1989.
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To compare these oscillatory profiles with the constant parabolic profile in
Poiseuille flow, we consider steady and oscillatory flows in tubes of the same radius
a, and take ks in Eq. 4.26 to be both the constant pressure gradient in the Poiseuille
flow case and the amplitude of the oscillatory pressure gradient in the oscillatory
flow case. To further facilitate the comparison, the oscillatory flow velocity u�.r; t/
is divided by the maximum velocity in Poiseuille flow, using Eqs. 3.41 and 4.19,
to get

u�.r; t/

Ous
D �4

ƒ2

�
1 � J0.
/

J0.ƒ/

�
ei!t (4.27)

This nondimensional form of the oscillatory velocity has the convenient scale in
which a value of 1:0 represents a velocity equal to the maximum velocity in the
corresponding Poiseuille flow case.

Because of the complex form of the driving pressure gradient (Eq. 4.11) for
which the solution was obtained, Eq. 4.27 above represents two distinct solutions:
one for which the pressure gradient driving the flow varies as the real part of k� ,
namely cos !t, and another for which the gradient varies as the imaginary part of
k� , namely sin !t. It is convenient to introduce the following notation for the real
and imaginary parts of the velocity and pressure

k� D k�r C ik�i

D ks.cos !t C i sin !t/ (4.28)

thus (
k�r D ks cos !t

k�i D ks sin !t
(4.29)

The corresponding velocities are the real and imaginary parts of u� , that is

u� D u�r C iu�i (4.30)

D U�ei!t

D U�.cos !t C i sin !t/ (4.31)

It is important to note that the real and imaginary parts of the velocity do not vary
as cos !t and sin !t because the parameters ƒ; 
; J0.
/; J0.ƒ/ in U� (Eq. 4.25) are
all complex. Thus the real and imaginary parts of the velocity in these expressions
are generally different from those of the pressure gradient, hence a phase difference
exists between the oscillatory pressure gradient and the oscillatory velocity profiles
which it produces.

If the real and imaginary parts of U� are denoted by U�r and U�i respectively,
that is

U� D U�r C iU�i (4.32)
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where

U�r

Ous
D <

� �4

ƒ2

�
1 � J0.
/

J0.ƒ/

��
(4.33)

U�i

Ous
D =

� �4

ƒ2

�
1 � J0.
/

J0.ƒ/

��
(4.34)

then Eq. 4.31 becomes

u� D .U�r C iU�i/.cos !t C i sin !t/ (4.35)

and the real and imaginary parts of u� are thus given by
(

u�r D U�r cos !t � U�i sin !t

u�i D U�i cos !t C U�r sin !t
(4.36)

It is clear from the expressions in Eq. 4.26 that the shape of the oscillatory
velocity profiles will depend critically on the frequency of oscillation ! since it
affects the values of the nondimensional frequency �, the complex frequency ƒ,
the complex variable 
 and ultimately the Bessel functions J0 and oscillatory flow
velocity u� . A set of oscillatory velocity profiles corresponding to � D 3 and to the
real part of the pressure gradient, namely ks cos !t, are shown in Fig. 4.4.

It is observed that velocity profiles oscillate between a peak profile in the
forward direction and a peak profile in the backward direction, but neither the phase
nor amplitude of these peak profiles correspond with the peaks of the oscillatory
pressure. The first because forward and backward peaks of the pressure gradient,
being ks cos !t, occur at !t D 0ı; 180ı, while the corresponding peak velocity
profiles are seen to occur at approximately !t D 90ı; 270ı. Thus the oscillatory
velocity lags the oscillatory pressure, clearly because of the inertia of the fluid. The
second because maximum velocity in the peak velocity profile is less than 1:0, which
means that it is less than the maximum velocity in the corresponding Poiseuille
profile.

4.7 Oscillatory Flow Rate

Volumetric flow rate q� in oscillatory flow through a tube is obtained by integrating
the oscillatory velocity profile over a cross section of the tube. Since the oscillatory
velocity u�.r; t/ is a function of r and t, the result is a function of time given by

q�.t/ D
Z a

0

2�ru�.r; t/dr (4.37)
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Fig. 4.4 Oscillatory velocity profiles in a rigid tube with frequency parameter � D 3:0 and
corresponding to the real part of the pressure gradient, namely k�r D ks cos !t. The panels
represent the profiles at different phase angles (!t) within the oscillatory cycle, with !t D 0

in the top panel then increasing by 90ı for subsequent panels. The impression that the tubes are
tapering is only an optical illusion. Oscillatory flow in a rigid tube is here seen to be “purposeless”
because it produces zero net flow, and entirely wasteful because of the energy being dissipated
against the viscous shear stress at the tube wall. While oscillatory flow in a rigid tube is a
mathematical simplification of oscillatory blood flow, it becomes increasingly relevant under
pathological vascular stiffening, as will be discussed at great length in subsequent chapters.

Using the solution for u�.r; t/ in Eq. 4.26, this becomes

q�.t/ D 2� iksa2

��2
ei!t

Z a

0

r

�
1 � J0.
/

J0.ƒ/

�
dr (4.38)

The integral on the right is evaluated as follows

Z a

0

r

�
1 � J0.
/

J0.ƒ/

�
dr D a2

ƒ2J0.ƒ/

Z ƒ

0

.J0.ƒ/ � J0.
//
d


D a2

2

�
1 � 2J1.ƒ/

ƒJ0.ƒ/

�
(4.39)
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where J1 is a Bessel function of the first order and first kind, related to J0 by
Z


J0.
/d
 D 
J1.
/ (4.40)

Thus the oscillatory flow rate is finally given by

q�.t/ D i�ksa4

��2

�
1 � 2J1.ƒ/

ƒJ0.ƒ/

�
ei!t (4.41)

The net flow rate Q� over one oscillatory cycle is given by

Q� D
Z T

0

q�.t/dt

D i�ksa4

��2

�
1 � 2J1.ƒ/

ƒJ0.ƒ/

�Z T

0

.cos !t C i sin !t/dt

D i�ksa4

��2

�
1 � 2J1.ƒ/

ƒJ0.ƒ/

�Z 2�

0

.cos � C i sin �/d�

D 0 (4.42)

where T D 2�=! is the period of oscillation. The result confirms that in oscillatory
flow the fluid moves only back and forth, with no net flow in either direction.

To examine the variation of flow rate within the oscillatory cycle it is convenient
to put Eq. 4.41 in nondimensional form, as was done for the velocity in the
previous section. Dividing Eq. 4.41 through by the corresponding flow rate in steady
Poiseuille flow, namely qs in Eq. 3.43, gives

q�.t/

qs
D �8

ƒ2

�
1 � 2J1.ƒ/

ƒJ0.ƒ/

�
ei!t (4.43)

The ratio represents the oscillatory flow rate scaled in terms of the corresponding
flow rate in Poiseuille flow, thus a value of 1:0 represents a flow rate equal to that in
Poiseuille flow in the same tube and under a constant pressure gradient equal to ks.
Numerical computations require values of J1.ƒ/ in addition to those of J0.ƒ/. It
is clear form the expression on the right of Eq. 4.43 that the oscillatory flow rate
depends heavily on the frequency of oscillation. It should also be noted that the
expression is complex, its real part corresponding to the real part of the pressure
gradient, and its imaginary part corresponding to the imaginary part of the pressure
gradient.

Variation of q�.t/=qs over one oscillatory cycle, at a moderate frequency, � D
3:0, is shown in Fig. 4.5.

It is seen that the flow rate oscillates between a peak in the forward direction
and a peak in the backward direction. At this frequency the value of the peak
is decidedly less than 1:0, which means that the flow rate falls short of reaching
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Fig. 4.5 Variation of the oscillatory flow rate q� within an oscillatory cycle, compared with
variation of the corresponding pressure gradient, in this case k�I D ks sin !t. Peak flow occurs
later than peak pressure, that is the flow wave lags the pressure wave. Also, normalized peak flow
is less than 1:0, which means that peak flow is less than the corresponding Poiseuille flow rate
under the same pressure gradient.

the corresponding flow rate in Poiseuille flow under a constant pressure gradient
equal to ks which is the peak value of the oscillatory pressure gradient. The reason
for this is clearly the inertia of the fluid which must be accelerated to peak flow
in each cycle. We shall see later that this effect intensifies as the frequency of
oscillation increases, the fluid having greater and greater difficulty reaching a peak
flow commensurate with that in Poiseuille flow.

4.8 Oscillatory Shear Stress

In oscillatory flow, as fluid moves back and forth in response to the oscillatory
pressure gradient, the shear stress at the tube wall varies accordingly as a function
of time given by

��.t/ D ��

�
@u�.r; t/

@r

�
rDa

(4.44)
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It is important to note that since this shear is produced by only the oscillatory
velocity u� , it is in addition to that produced by the steady velocity us when present.

Using the solution for u�.r; t/ in Eq. 4.26, this becomes

��.t/ D � iksa2
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�
d

dr
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/
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��
rDa

ei!t
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d
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��

Dƒ

ƒ

a
ei!t

D �ksa

ƒ

�
J1.ƒ/

J0.ƒ/

�
ei!t (4.45)

where the relations between 
,ƒ and � in Eqs. 4.18 and 4.19, as well as the
following relation between Bessel functions of the first and zeroth order 10;11, have
been used

dJ0.
/

d

D �J1.
/ (4.46)

As before, it is convenient to put Eq. 4.45 in nondimensional form by scaling the
oscillatory shear stress by the corresponding shear stress in Poiseuille flow, that is
by dividing through by �s as given in Eq. 3.49, to get

��.t/

�s
D 2

ƒ

�
J1.ƒ/

J0.ƒ/

�
ei!t (4.47)

The expression on the right is complex, its real part representing the shear stress at
the tube wall when the driving pressure gradient varies as cos !t and its imaginary
part representing that shear when the gradient varies as sin !t. In both cases the
result is numerically scaled by the corresponding shear stress in Poiseuille flow.

Variation of the imaginary part of �.t/ within the oscillatory cycle is shown in
Fig. 4.6. It is seen that it has a sinosoidal form like that of the imaginary part of
the pressure gradient driving the flow, but with a phase difference between the
two. The oscillatory shear stress lags the pressure, somewhat like the oscillatory
flow rate. The amplitude of the oscillatory shear indicates the highest shear stress
reached at the peak of each cycle as the fluid moves back and forth in each direction.
This maximum clearly depends heavily on the frequency of oscillation as evident
from Eq. 4.47. The results shown in Fig. 4.6 are for � D 3:0, where it is seen
that the oscillatory shear reaches a maximum value at the peak of each cycle of
approximately one half the steady Poiseuille flow value.

10McLachlan NW, 1955. Bessel Functions for Engineers. Clarendon Press, Oxford.
11Watson GN, 1958. A Treatise on the Theory of Bessel Functions. Cambridge University Press.
Cambridge.
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Fig. 4.6 Variation of the imaginary part of oscillatory shear stress ��I (red) compared with the
corresponding part of the pressure gradient k�I . Shear stress lags the pressure, and its normalized
value at its peak is less than 1:0, hence less than the corresponding shear stress in Poiseuille flow.
Since the shear stress shown here is produced entirely by the oscillatory flow, it is in addition to
the constant shear stress produced by the steady component of pulsatile flow.

In pulsatile flow consisting of steady and oscillatory flow components, the
oscillatory shear stress adds to and subtracts from the steady shear stress. The results
in Fig. 4.6 show that in pulsatile flow at this particular frequency the shear stress
would oscillate between a high of approximately 1:5 to a low of approximately 0:5

times its constant value in steady Poiseuille flow.

4.9 Energy Expenditure and Pumping Power

As in the case of steady Poiseuille flow, in pulsatile flow the equation governing the
flow can be used to examine the balance of energy expenditure and in particular,
in this case, to determine the pumping power required to drive the flow. Since the
oscillatory part of pulsatile flow does not produce any net flow forward, and since
the pumping power required to drive the steady part of pulsatile flow is the same as
that in steady flow, any power expenditure on the oscillatory part of the oscillatory
part of the flow is an “added expense” which reduces the efficiency of the flow. In
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this section we examine this added expense by considering the balance of energy
expenditures in pulsatile flow, much along the same lines as was done for steady
flow in Sect. 3.9.

We begin with the governing equation for oscillatory flow, namely Eq. 4.6, in
which we identify the different terms in the equation

k�.t/„ƒ‚…
driving pressure force

D �

�
@2u�

@r2
C 1

r

@u�

@r

�
„ ƒ‚ …

resisting viscous force

��
@u�

@t„ ƒ‚ …
accelerating/decelerating force

(4.48)

We note that in this equation k� and u� are both complex with real and imaginary
components. Therefore, this equation is equally complex and actually embodies two
separate equations representing its real and imaginary parts. Using the notation of
Sect. 4.6, they are

k�r D �

�
@2u�r

@r2
C 1

r

@u�r

@r

�
� �

@u�r

@t
(4.49)

k�i D �

�
@2u�i

@r2
C 1

r

@u�i

@r

�
� �

@u�i

@t
(4.50)

The discussion of energy expenditure is identical in terms of either one of these two
equations and for the purpose of the present section we shall use the latter.

As in the case of steady Poiseuille flow, Eq. 4.48 represents a balance of forces.
While in the steady flow case this balance is between only the driving pressure term
on the left and the viscous resistance term on the right, in the present case there
is an added acceleration term. In oscillatory flow, at any point in time, the driving
pressure force must equal the net sum of viscous and acceleration forces which may
add to or subtract from each other at different times within the oscillatory cycle.

As they stand, the terms in Eq. 4.48 represent forces per unit volume. The rate
of energy expenditure associated with each term is thus obtained by considering a
given volume of fluid moving with the same velocity. As in Sect. 3.9, we consider a
cylindrical shell of radius r, length l, and thickness ır, moving with velocity u�i.r; t/,
the volume of fluid contained within the shell is then 2�rlır. It is important to recall
that axial location x along the tube is not a factor in pulsatile flow through a rigid
tube since fluid at all cross sections of the tube is moving with the same velocity
profile, hence x does not appear as a variable in the velocity or in the governing
equation.

If, as in the case of steady flow, each term in Eq. 4.50 is now multiplied by
2�rlır � u�i and integrated over the cross section of the tube, we obtain the rate
of energy expenditure associated with that particular term for fluid flow within the
entire cross section of the tube. However, while in the case of steady flow this
rate of energy expenditure is constant, in oscillatory flow it represents only the
instantaneous rate of energy expenditure at time t within the oscillatory cycle.
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Thus, for the driving pressure term we find

Z a

0

k�i � .2�rlır/ � u�i D lk�I.t/
Z a

0

2�ru�i.r; t/dr

D lk�i.t/q�i.t/ (4.51)

For the viscous dissipation term we find
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and for the acceleration term we find
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�
rdr (4.53)

As shown explicitly in Eq. 4.51, since k� D k�.t/ and u� D u�.r; t/, the result of
integration is a function of t. The same is implicit in the other two equations, but
the functional dependence is omitted to simplify the notation. Thus the balance of
energy expenditure in oscillatory flow varies in time within the oscillatory cycle.
The instantaneous balance at time t is given by

�lk�iq�i D 2��l
Z a

0

r

�
@u�i

@r

�2

dr C 2� l
d

dt

Z a

0

�
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2
�u2

�i

�
rdr (4.54)

from which it is seen that at any point in time, the pumping power on the left
hand side is being expended on the net sum of energy required to accelerate the
flow and that required to overcome the viscous resistance. Since as the oscillatory
cycle progresses the acceleration term changes sign while the viscous term does not,
the net result at any instant may represent the sum or difference of the two terms.
Physically, this means that during the acceleration phase of the oscillatory cycle the
pumping power pays for both acceleration and viscous dissipation, while during the
deceleration phase the flow actually returns some of its kinetic energy.
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Fig. 4.7 Variation of oscillatory pumping power H�I during one cycle compared with the
corresponding pressure gradient k�I . The power has two peaks within each oscillatory cycle
because it consists of the product of oscillatory pressure and oscillatory flow. The integral of the
power over one cycle is not zero, hence oscillatory flow requires energy to maintain even though
the net flow is zero. This energy expenditure is required to maintain the energy dissipation at the
tube wall. The net energy expenditure for accelerating and decelerating the flow is zero (see text).

Variation of oscillatory pumping power is shown in Fig. 4.7, where it is seen
that the power has two peaks within one oscillatory cycle because it consists of the
product of k� and q� . The figure also shows clearly that the integral of the power
over one cycle is not zero.

Of ultimate interest is the average energy expenditure over the oscillatory cycle.
To obtain this the rates of energy expenditures in Eq. 4.54 must be integrated in time
over one cycle and divided by the period

T D 2�

!
(4.55)



102 4 Basic Elements of Pulsatile Flow

where ! is the angular frequency in radians/s. The balance of average energy
expenditure in pulsatile flow, using Eq. 4.54, is thus given by
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If the last integral on the right hand side, which represents the average rate of
energy expenditure associated with acceleration and deceleration of the flow, is
evaluated first, we find
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Thus, while the instantaneous energy expenditure required to accelerate the flow
is generally nonzero, the net expenditure over one cycle is zero. The energy spent
during one half of the cycle is recovered during the other half.

It follows that over one cycle the average power expenditure required to drive
the oscillatory part of the flow is equal to that being dissipated by viscosity, thus
Eq. 4.56 reduces to

�
Z T

0

lk�iq�idt D 2��l
Z T

0

Z a

0

r

�
@u�i

@r

�2

drdt (4.58)

Only one side of this equation needs to be evaluated to determine the average rate of
energy expenditure in oscillatory flow. However, neither side is easy to evaluate
in general because of the mix of Bessel and trigonometric functions involved.
Approximate results in the limits of low or high frequency are examined in the
next two sections.
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4.10 Oscillatory Flow at Low Frequency

At low frequency, oscillatory flow in a tube is better able to keep pace with
the changing pressure. In fact, at very low frequency, or in the limit of “zero
frequency”, the relation between flow and pressure becomes instantaneously the
same as in steady Poiseuille flow. That is, at each point in time within the oscillatory
cycle the velocity profile is what it would be in steady Poiseuille flow under a
pressure gradient equal to the value of the oscillatory pressure gradient at that
instant. The situation suggests the term “oscillatory Poiseuille flow”. In this section
we demonstrate these features of the flow analytically and derive approximate
expressions which are valid at low frequency and which are easier to use than the
more general expressions involving Bessel functions.

An appropriate measure of high or low frequency is the non-dimensional
frequency parameter � as defined in Eq. 4.15 because this parameter appears in the
equations governing the flow, either explicitly or implicitly through ƒ (Eq. 4.19).
At an angular frequency of 1 cycle/s, which is equivalent to an angular frequency of
2� radians/s, density of 1 g=cm3, and viscosity of 0.04 Poise (Poise D dyne s=cm2),
the value of the nondimensional frequency parameter �, using Eq. 4.15, is given by

� D
r

2�

0:04
a (4.59)

where a is the radius of the tube in cm. It is apparent from this that the values
of the frequency parameters � and ƒ, and hence the characteristics of oscillatory
flow, will depend not on the value of the angular frequency but on that of �.
Thus, while the angular frequency of the human heart beat is approximately 1 Hz
or 1 cycle/s, the value of Omega and hence the characteristics of pulsatile flow
will be different in different parts of the vascular system because of the difference
in vessel diameters. Furthermore, the pulse generated by the heart consists of a
mix of different frequencies and therefore different components (harmonics) of
that pulse will contribute differently to the overall characteristics of the resulting
pressure or flow wave. Again, these contributions in each case will depend not on
the angular frequency of each harmonic but on the corresponding value of the non-
dimensional frequency Omega. Accordingly, in this and the next section we examine
the characteristics of oscillatory flow at low and high values of �.

Since, as we have seen in Sect. 4.5, the characteristics of oscillatory flow involve
Bessel functions, we begin by looking at the behavior of these functions at small
values of their argument (independent variable). A series expansion of the Bessel
function of the first kind and order zero, J0.z/, for small z is given by12;13

12McLachlan NW. Bessel Functions for Engineers. Clarendon Press, 1955.
13Watson GN. Theory of Bessel Functions. Cambridge University Press, 1958.
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J0.z/ D 1 � z2

22
C z4

22 � 42
� z6

22 � 42 � 62
C � � � (4.60)

The expansion is valid for complex values of z. Using this, and recalling from
Eq. 4.18 that 
 D ƒr=a, we find
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(4.61)

only terms of order 
4 being retained at each step. By substituting this result in
Eq. 4.27 for the velocity profile we obtain the following approximate expression
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The real and imaginary parts of the velocity are then given by
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16

�
3 � 4r2
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C r4

a4

�
cos !t (4.63)

These expressions are easier to use than Eq. 4.27 since they do not involve Bessel
functions and can be used in place of that equation when the frequency is small.
Furthermore, substituting for Ous from Eq. 3.41, and using Eq. 4.29 for the real and
imaginary parts of the pressure gradient, we obtain
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We see that for small � where the second term in each of the two expressions can
be neglected, the relation between velocity and pressure becomes

8̂
ˆ̂<
ˆ̂̂:

u�r.r; t/ � k�R

4�
.r2 � a2/

u�i.r; t/ � k�I

4�
.r2 � a2/

(4.65)

which is the same as that in Eq. 3.38 for steady Poiseuille flow, but with instan-
taneous values of velocity and pressure, hence justifying the term “oscillatory
Poiseuille flow”. Velocity profiles with � D 1:0 are shown in Fig. 4.8.

For the flow rate we use the series expansion of J1.z/ for small values of z14;15

J1.z/ D z

2
� z3

22 � 4
C z5

22 � 42 � 6
C z7

22 � 42 � 62 � 8
C : : : (4.66)

Combined with the expansion for J0 in Eq. 4.60, we find
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where only terms of order ƒ4 or lower were retained at each step. Substituting this
result in Eq. 4.43, we get

q�.t/

qs
� 8i

�2

�
ƒ2

8
C ƒ4

48

�
ei!t (4.68)

14McLachlan NW, 1955. Bessel Functions for Engineers. Clarendon Press, Oxford.
15Watson GN, 1958. A Treatise on the Theory of Bessel Functions. Cambridge University Press.
Cambridge.
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Fig. 4.8 Oscillatory velocity profiles in a rigid tube at low frequency (� D 1:0) and corresponding
to the real part of the pressure gradient, namely ks cos !t. The figure shows the profiles at different
phase angles (!t) within the oscillatory cycle. The profiles reach their peak form at the peak of
pressure gradient (!t D 0ı; 180ı), and the maximum velocity at peak has a normalized value near
1:0. Thus flow is almost in phase with pressure gradient, and the relation between the two is as if
the flow were Poiseuille flow at each instant (see text).

Noting that
(

ƒ2 D �i�2

ƒ4 D ��4
(4.69)

the real and imaginary parts of the flow rate are given by
8̂̂
ˆ̂<
ˆ̂̂̂:

q�r.t/
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� cos !t C �2

6
sin !t
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qs
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6
cos !t

(4.70)

Substituting for the steady flow rate from Eq. 3.43 and for the real and imaginary
parts of the pressure gradient from Eq. 4.29, we get
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Fig. 4.9 Variation of the oscillatory flow rate q� within an oscillatory cycle, compared with
variation of the corresponding pressure gradient, in this case k�I D ks sin !t, at low frequency
(� D 1:0). Flow is almost in phase with pressure gradient, and normalized peak flow is close to
1:0. Flow at each point in time is close to what it would be in steady Poiseuille flow under the
instantaneous value of the pressure gradient.
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At low frequency where the second term in each expression can be neglected, the
relation between flow rate and pressure gradient becomes the same as that in steady
flow at each instant, that is
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ˆ̂̂<
ˆ̂̂̂
:

q�r � �k�r�a4

8�

q�i � �k�i�a4

8�

(4.72)

as in Eq. 3.43 for steady flow. Flow rate with � D 1:0 is shown in Fig. 4.9.
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Similarly, and omitting the details, we obtain the following expressions for the
oscillatory shear stress
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and for the oscillatory maximum velocity
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In each case, if the frequency is low enough for the second term to be neglected, the
relation becomes instantaneously the same as in steady flow (Eqs. 3.41 and 3.49).
If the frequency is small but not negligible, the second term can be used for
approximate calculations. Oscillatory shear stress with � D 1:0 is shown in
Fig. 4.10.

For the pumping power, if the real and imaginary parts of the average oscillatory
power over the oscillatory cycle is denoted by H�r and H�i then from Eq. 4.51 we
have 8̂
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and using Eq. 4.29 for k� and the approximate results for the flow rate in Eq. 4.71
we find 8̂̂
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(4.76)

Comparing this with the rate of energy expenditure (pumping power) in steady
Poiseuille flow, namely Hs as given by Eq. 3.55, we find
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Fig. 4.10 Variation of the imaginary part of oscillatory shear stress ��I compared with the
corresponding part of the pressure gradient k�I , at low frequency (� D 1:0). Shear stress is almost
in phase with pressure gradient, and normalized peak shear stress is close to 1:0. Shear stress at
each point in time is close to what it would be in steady Poiseuille flow under the instantaneous
value of the pressure gradient.
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With T D 2�=! and noting that
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and
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Fig. 4.11 Variation of oscillatory pumping power H�I during one cycle compared with the
corresponding pressure gradient k�I , at low frequency (� D 1:0). The two peaks of the power
coincide very closely with the peaks of pressure gradient which at low frequency coincide with
the peaks of flow rate (Fig. 4.9). Area under the power curve, which represents the net energy
expenditure over one cycle, is not zero. In fact it equals one half the corresponding energy
expenditure in steady Poiseuille flow (see text).

we find

H�r

Hs
D H�i

Hs
D 1

2
(4.80)

Since in oscillatory flow there is no net flow forward, this pumping power is
“wasted” in the sense that it is not being utilized to a useful end. Thus in pulsatile
flow (steady plus oscillatory), at low frequency, the total power required to drive
the flow is equal to the power required to drive the steady part of the flow, as in
Poiseuille flow, plus one half of that amount to maintain the oscillatory part of the
flow. Pumping power with � D 1:0 is shown in Fig. 4.11.
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4.11 Oscillatory Flow at High Frequency

At high frequency oscillatory flow in a tube is less able to keep pace with the
changing pressure, thus reaching less than the fully developed Poiseuille flow profile
at the peak of each cycle. The higher the frequency the lower the peak velocity the
flow is able to reach. In the limit of infinite frequency the velocity reached at the
peak of each cycle is zero, that is the fluid does not move at all. An interesting
question is whether the pumping power required to maintain this limiting state of
zero flow is zero. In this section we develop approximate expressions describing
properties of oscillatory flow at high frequency which are easier to use than the more
general expressions involving Bessel functions, and which will be used to answer
this question.

An approximate expression for J0.z/ when z is large is given by16;17

J0.z/ � sin z C cos zp
�z

(4.81)

For the purpose of algebraic manipulation we write z D iz1 so that

J0.z/ � sin .iz1/ C cos .iz1/p
� iz1

� i sinh z1 C cosh z1p
� iz1

� .1 C i/

2

ez1

p
� iz1

(4.82)

and similarly, writing ƒ D iƒ1, then

J0.ƒ/ � .1 C i/

2

eƒ1

p
� iƒ1

(4.83)

Near the tube wall where r=a � 1: Inserting the above approximations in
Eq. 4.27 for the velocity profile, and recalling from Eq. 4.18 that 
 D ƒr=a,
hence 
1 D ƒ1r=a, we find
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16McLachlan NW. Bessel Functions for Engineers. Clarendon Press, 1955.
17Watson GN. Theory of Bessel Functions. Cambridge University Press, 1958.
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The real and imaginary parts of which are given by
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Near the center of the tube, where r=a � 0 but ƒ is large because of high
frequency: Here the ratio J0.
/=J0.ƒ/ in the expression for the velocity (Eq. 4.27)
requires an approximation of J0.
/ for small 
 and an expansion of J0.ƒ/ for large
ƒ, with the result
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ƒ2
ei!t (4.86)

the real and imaginary parts of which are given by
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These results indicate that at high frequency fluid near the tube wall (Eq. 4.85) is
affected differently from fluid near the center of the tube (Eq. 4.87), thus distorting
the parabolic character of the velocity profile. There is also some phase difference
between the velocity near the center of the tube and that near the wall. By contrast,
at low frequency fluid is affected more uniformly by pulsation, and the parabolic
character of the velocity profile is fairly well preserved during the oscillatory cycle
as we saw in the previous section. Velocity profiles with � D 10 are shown in
Fig. 4.12.
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For the flow rate, similarly, we use an approximation of J1.z/ for large z,
namely18;19

J1.z/ � sin z � cos zp
�z

(4.88)

and, as before, writing z D iz1, ƒ D iƒ1, this gives

J1.ƒ/ � .i � 1/eƒ1

2
p

� iƒ1

(4.89)

Using this result in combination with the approximation for J0.ƒ/ in Eq. 4.83 for
the flow rate in Eq. 4.43, we get

−1 −0.5 0 0.5 1
axial velocity (normalized)

Fig. 4.12 Oscillatory velocity profiles in a rigid tube at high frequency (� D 10) and
corresponding to the real part of the pressure gradient, namely ks cos !t. The figure represents
the profiles at different phase angles (!t) within the oscillatory cycle, with !t D 0 in the top
panel then increasing by 90ı for subsequent panels. While the velocity is everywhere near zero,
the profiles reach their peak form in the second panel, which means that they are about 90ı out of
phase with the pressure gradient (see text).

18McLachlan NW. Bessel Functions for Engineers. Clarendon Press, 1955.
19Watson GN. Theory of Bessel Functions. Cambridge University Press, 1958.
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where the higher order term in 1=�2 is neglected in the last step, and recalling that
ƒ2 D �i�2. The real and imaginary parts of the flow rate are then given by
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These results have the same form as those for velocity near the center of the tube
(Eq. 4.87), thus flow rate at high frequency behaves like velocity near the center of
the tube. The results also show how flow rate diminishes at high frequency, as shown
in Figs. 4.13 and 4.14.

Corresponding results for shear stress, omitting the details, are given by
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(4.92)

Variation of shear stress within the oscillatory cycle, and with � D 10, is shown in
Fig. 4.15.

Finally, for the pumping power, denoting the real and imaginary parts of the
oscillatory pumping power by H�r and H�i respectively, then using Eq. 4.51 and
dividing by the corresponding pumping power in steady flow, Hs, we find, omitting
the details again
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��
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Fig. 4.13 Variation of the oscillatory flow rate q� within an oscillatory cycle compared with
variation of the corresponding pressure gradient, in this case k�I D ks sin !t, at high frequency
(� D 10). Flow rate is almost zero throughout the cycle, but there is an approximately 90ı phase
difference between flow rate and pressure gradient.
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In both cases the pumping power vanishes in the limit of very high frequency. Fluid
does not actually move in that limit. Variation of oscillatory pumping power within
the oscillatory cycle, and with � D 10, is shown in Fig. 4.16.

4.12 Oscillatory Flow in Tubes of Elliptic Cross Sections

Pulsatile flow described in this chapter so far relates exclusively to flow in a tube
of circular cross section. Flow in tubes of noncircular cross sections has not been
studied as extensively as that in tubes of circular cross section, and there have been
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Fig. 4.14 Variation of amplitude and phase of the oscillatory flow rate q� with frequency
parameter �. The amplitude (normalized in terms of corresponding steady flow rate) is near
1:0 at low frequency but drops rapidly to near zero as the frequency increases. The phase angle
(representing the phase difference between flow rate and pressure gradient, in degrees) is near zero
at low frequency but drops rapidly to �90ı as the frequency increases.

very few studies of pulsatile flow in such tubes.20 The problem of pulsatile flow
in tubes of elliptic cross sections is of particular interest because it offers the
possibility of an exact analytical solution. Also, changing the ellipticity of an elliptic
cross section produces a wide range of cross sections, including the circular cross
section as a special case. Finally, a tube of elliptic cross section provides a good
analytical model of a “compressed” blood vessel, which has considerable relevance
in hemodynamics.

Solution of the governing equation for pulsatile flow in a tube of elliptic cross
section has been obtained in terms of Mathieu functions.21 These functions are not
as easy to evaluate as Bessel functions, which makes the solution not as readily
usable as that for a tube of circular cross section. A brief outline of this solution
is presented in this section, with some possible simplifications which make the
solution more easy to use, and some results are presented to highlight the effects
of ellipticity.

20Haslam M, Zamir M, 1998. Pulsatile flow in tubes of elliptic cross sections. Annals of Biomedical
Engineering 26:1–8.
21McLachlan NW. Theory and Application of Mathew Functions. Dover Publications, 1964.
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Fig. 4.15 Variation of the imaginary part of oscillatory shear stress ��I compared with the
corresponding part of the pressure gradient k�I , at high frequency (� D 10). Shear stress is very
low at high frequency, but there is an approximately 90ı phase difference between shear stress and
pressure gradient.

The equation governing the flow is the same as that for a tube of circular
cross section, namely Eq. 4.6. Boundary conditions are the same as those used
for steady flow in a tube of elliptic cross section, namely Eq. 3.76. Because this
boundary condition is being prescribed on the elliptic boundary of the cross section,
it becomes necessary to transform the governing equation to elliptic coordinates22

(
y D d cosh � cos �

z D d sinh � sin �
(4.95)

where y; z are rectangular coordinates in the plane of the elliptic cross section and
2d is the distance between the two foci of the ellipse. In this coordinate system the
curves of constant � represent a family of confocal hyperbolas while the curves of
constant � represent a family of confocal ellipses, as illustrated in Fig. 4.17.

22Moon PH, Spencer DE. Field Theory for Engineers. Van Nostrand, 1961.
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Fig. 4.16 Variation of oscillatory pumping power H�I during one cycle compared with the
corresponding pressure gradient k�I , at high frequency (� D 10). Pumping power is near zero at
high frequency, as expected since oscillatory flow rate and shear stress are near zero. By contrast,
oscillatory pumping power at low frequency is one half the corresponding power in steady flow,
even though the net flow forward is zero.

The coordinate � varies from 0 on the interfocal line to �o on the tube wall. In
terms of the elliptic coordinates �; �, the governing equation with no-slip at the tube
wall (Eqs. 4.6 and 3.76) become

8̂<
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C @2u�e

@�2

�
� �
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u�e.�o; �/ D 0

(4.96)

where subscript � is being used as in Sect. 4.3 to denote oscillatory flow, subscript
e is being added as in Sect. 3.10 to denote elliptic cross section, and k�e is
the oscillatory pressure gradient in the elliptic tube. Solution is obtained for an
oscillatory pressure gradient as in the case of oscillatory flow in a tube of circular
cross section, that is

k�e D kse
i!t (4.97)
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Fig. 4.17 Elliptic coordinate
system used in the solution
and description of flow in
tubes of elliptic cross
sections. Adapted from
Haslam and Zamir (1998; see
Footnote 20).
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the amplitude ks being taken the same as that in steady flow in tubes of circular and
elliptic cross sections, to facilitate comparison.

With this choice of pressure gradient, the oscillatory part of the velocity takes the
form

u�e.�; �; t/ D U�e.�; �/ei!t (4.98)

and the governing equation finally becomes an equation for U�e, namely
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A nondimensional frequency parameter is defined by

�e D
r

�!

�
	 (4.100)

where

	 D
s

2b2c2

b2 C c2
(4.101)

and b; c are semi-minor and semi-major axes of the ellipse as in the steady flow case.
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Fig. 4.18 Oscillatory velocity profiles along the major axis (top) and minor axis (bottom) of an
elliptic cross section at low frequency (	 D 1, left) and high (	 D 10, right). In each panel,
velocity profiles are shown at different phase angles !t within the oscillatory cycle, ranging from
!t D 0 to !t D 180ı, the second half of the cycle being omitted because of symmetry. The
coordinates x; y and the axes ˛; ˇ in this figure, from Haslam and Zamir (1998; see Footnote 20),
correspond to coordinates y; z and axes b; c used in this book. The effects of ellipticity on the
flow are here seen in terms of the difference between velocity profiles along the major axis in the
top panels and minor axis in the bottom panels. The difference is seen to be insignificant at low
frequency but becomes considerable at high frequency.

Equation 4.102 has a solution of the form (see Footnote 20)

U�e.�; �/ D 4Ouse

i�2
C

1X
nD0

C2nCe2n.�; �
/ ce2n.�; �
/ (4.102)

where C2n is a constant determined by the boundary condition, ce2n and Ce2n are the
ordinary and modified Mathieu functions23, and


 D i�!d2

4�
(4.103)

Some velocity profiles are shown in Fig. 4.18 and oscillatory flow rate in Fig. 4.19.

23McLachlan NW, 1964. Theory and Applications of Mathieu Functions. Dover Publications. New
York.
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Fig. 4.19 Oscillatory flow rate in a tube of elliptic cross section of ellipticity � D 0:6, normalized
in terms of the corresponding steady flow rate. The ratio Q=Q0 and parameter 	 in this figure,
from Haslam and Zamir (1998; see Footnote 20), correspond to the ratio q�e=qse and frequency
parameter �e used in this book. Each curve represents variation of the flow rate within one
oscillatory cycle for a given value of the frequency parameter. The dotted curve represents the
corresponding pressure gradient. As in the case of a tube of circular cross section, flow rate is
in phase with pressure gradient at low frequency but becomes increasingly out of phase and
diminishes in magnitude as the frequency increases.

Evaluation of this solution is highly cumbersome because of the infinite series
in Eq. 4.102 and because of the difficulties involved in the evaluation of Mathieu
functions in general. Some simplifications are possible, however, under certain
conditions.

At low frequency it is found that velocity and flow rate can be put in the form

(
u�e.y; z; t/ � use.y; z/ei!t

q�e.t/ � qseei!t
(4.104)

where use and qse are the corresponding velocity and flow rate in steady flow in a
tube of elliptic cross section (Eqs. 3.77 and 3.78).

At low ellipticity it is found that velocity and flow rate become very close to those
in a tube of circular cross section, with the radius of the tube being replaced by 	.
In fact for � D b=c > 0:9 it is found that differences from the circular case are
negligibly small.
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It has also been found that the ratio q�e=qse at all frequencies is highly insensitive
to the value of ellipticity �. In particular, therefore, this ratio for a tube of elliptic
cross section is approximately equal to the corresponding ratio for a tube of circular
cross section, that is

q�e.t/

qse
� q�.t/

qs
(4.105)

the ratio on the right being that for a tube of circular cross section (Eq. 4.43). This
permits the following approximation for the flow rate in a tube of elliptic cross
section
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and �e, which contains the parameter 	, replacing the radius a of a circular cross
section, is defined by Eq. 4.100.

Finally, if the approximate expression in Eq. 4.105 is put in the form

q�e.t/

q�.t/
� qse

qs
(4.108)

then the conclusions reached in Sect. 3.10 regarding the effect of ellipticity in steady
flow provide a good approximation for the effect of ellipticity in pulsatile flow.



Chapter 5
Pulsatile Flow in an Elastic Tube

5.1 Introduction

Blood vessels are not rigid. Oscillatory flow in an elastic tube differs in a
fundamental way from oscillatory flow in a rigid tube (Fig. 5.1). In a rigid tube, as
the driving pressure increases to a peak during the systolic (rising pressure) phase
of the oscillatory cycle, the flow can only move faster along the tube. In the case of
an elastic tube the flow has another option, namely that of inflating the tube locally
as well as moving faster along the tube, the balance between the two options being
dependent on the degree of elasticity of the tube. Biology has chosen pulsatile flow
in elastic rather than rigid tubes for a good reason. We saw in the previous chapter
that the energy spent on moving the fluid back and forth during the oscillatory cycle
is entirely “wasted” because of viscous dissipation at the fluid-wall interface. In the
case of an elastic tube, by contrast, the energy spent on inflating the tube during
the systolic phase of the cycle is actually recovered during the diastolic (falling
pressure) phase of the cycle. It is recovered in full if the tube is purely elastic and
largely recovered if the tube is “viscoelastic” as blood vessels are.

In short, the extra energy required for oscillating the flow in a rigid tube is spent,
while in the case of an elastic tube it is stored. It is stored as elastic energy within the
walls of the tube in precisely the same way that energy is stored within a spring when
the spring is extended or compressed. In both cases the stored energy is recoverable
in part or in full.

In the case of oscillatory flow in an elastic tube the energy is recovered as
the walls of the tube “recoil” during the diastolic phase of the oscillatory cycle.
However, the inflation and recoiling of the tube does not occur uniformly along the
tube. Instead, as pressure rises at one end of the tube, the tube inflates only locally
and then deflates as the pressure subsides. As it deflates it pushes fluid forward
along the tube. In fact, it pushes the local inflation of the tube forward, thus forming
a wave motion along the tube.

© Springer International Publishing Switzerland 2016
M. Zamir, Hemo-Dynamics, Biological and Medical Physics, Biomedical
Engineering, DOI 10.1007/978-3-319-24103-6_5
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Fig. 5.1 Oscillatory flow in
an elastic tube. In the fully
developed region of flow in a
rigid tube (top) oscillatory
pressure changes occur
simultaneously at every point
along the tube to the effect
that the fluid oscillates in
bulk. There is no wave
motion. In an elastic tube
(bottom) pressure changes
cause local movements of the
fluid and tube wall, which
then propagate downstream in
the form of a wave. Velocity
is no longer independent of x,
and the radial velocity v is no
longer zero.

r,v

 x, u

 u = u(r,t), v = 0

r,v

x,u

 u = u(x,r,t), v = v(x,r,t)

From a mathematical standpoint, pulsatile flow in an elastic tube is more
complicated because it involves two more dimensions than does pulsatile flow in a
rigid tube. In the case of a rigid tube the flow is independent of the axial coordinate x
because the flow oscillates en masse all along the tube and, as we saw in the previous
chapter, the radial velocity component v is zero because the fluid motion is entirely
along the tube. There is no motion towards the tube wall. In the case of an elastic
tube, as described above, both of these simple features of the flow are lost. The flow
is now dependent on x, and the radial velocity component v is not zero as illustrated
schematically in Fig. 5.1.

We shall find nevertheless that the mathematical treatment of pulsatile flow in
rigid tubes presented in the previous chapter provides an important foundation for
analysis of the more complicated problem in the present chapter.

5.2 Wave Motion

As stated in the previous section, a fundamental difference between flow in a rigid
tube and flow in an elastic tube is that a local change of pressure in a rigid tube
is transmitted instantaneously to every part of the tube while in an elastic tube the
change is transmitted with a finite speed. The reason for this is that a local increase
in pressure in an elastic tube is able to stretch the tube wall outward, forming a local
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bulge, and when the change in pressure subsides, the bulge recoils and pushes the
excess fluid down the tube.1 The increase in pressure and the bulge associated with
it propagate down the tube like the crest of an advancing wave. This scenario is
not possible in a rigid tube because fluid in that case cannot stretch the tube wall,
and because, as stated earlier, we assume throughout this discussion that the fluid
is incompressible. It is for these two reasons that the local change in pressure in a
rigid tube is transmitted instantaneously to every part of the tube. Wave motion is
not possible in a rigid tube.

If a change in pressure occurs at some interior position in an elastic tube, the
change will propagate equally in both directions, towards both ends of the tube, as
illustrated schematically in Fig. 5.2.

A scenario of more practical interest is that in which the change in pressure
occurs at one end of the tube and propagates in one direction towards the other end,
which happens, for example, when a pump is placed at one end of a tube to drive the
flow, or simply when there is a change in the pressure difference driving the flow. In
this case wave propagation is in only one direction, namely from entrance to exit,
as illustrated in Fig. 5.3, and this is the case we discuss in what follows under the
general heading of wave propagation.

Fig. 5.2 A local change in
pressure at an interior point in
an elastic tube will propagate
equally in both directions,
towards the two ends of the
tube.

1Lighthill M. Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics,
1975.
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Fig. 5.3 A wave propagation
scenario of more practical
interest is that in which a
change in pressure occurs at
one end of a tube and
propagates to the other end.
This occurs, for example,
when flow is driven by the
stroke of a pump at the tube
entrance, or simply when
there is a change in the
pressure difference driving
the flow.

Fig. 5.4 A wave moving in
one direction along an elastic
tube may be reflected totally
or partially by an obstacle,
resulting in a secondary wave
moving in the opposite
direction.

However, the possibility exists that a wave propagating in one direction may be
totally or partially reflected by an obstacle, thus leading to a secondary wave moving
in the opposite direction as illustrated in Fig. 5.4. This will be discussed later under
the heading of wave reflections. Thus, in this section we consider only a primary
wave moving from one end of an elastic tube to the other end.

When considering flow in an elastic tube it is important to distinguish between
motion of the wave and motion of the fluid. If the flow is driven by an increase in
pressure at the tube entrance, for example, then wave motion refers to the forward
motion of the local swelling or bulge in the tube caused by the increase in pressure,
as illustrated in Figs. 5.2 and 5.3, much like the motion of the crest of a wave on the
surface of a lake. The speed at which the bulge advances along the tube is referred
to as the wave speed. Fluid motion, on the other hand, refers to the motion of fluid
elements within the tube, associated with that wave motion. As the wave crest passes
each position along the tube, fluid elements at that location are first swept towards
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Fig. 5.5 As a wave crest passes each position along an elastic tube, fluid elements at that location
are first swept towards the local bulge in the tube and then, as the crest passes and the bulge
subsides, they are swept back by the decreasing pressure. This fluid motion is to be distinguished
from the wave motion, illustrated in Figs. 5.2, 5.3, and 5.4, which is concerned with only the
motion of the wave itself. Fluid motion is shown above only schematically in order to illustrate
the difference between fluid motion and wave motion, the motion of fluid elements is actually
considerably more complicated.

the local bulge in the tube, as illustrated schematically in Fig. 5.5, and then as the
wave passes and the bulge subsides they are swept back by the decreasing pressure.
The situation is again much the same as that experienced by a floating or submerged
body swept by the passage of the crest of a wave on the surface of a lake.

The wave speed c in an elastic tube depends on the degree of elasticity of the tube
wall, usually referred to as the “modulus of elasticity” or “Young’s modulus” and
denoted by E. The value of c also depends on the diameter d of the tube and its wall
thickness h, and on the density � of the fluid. An approximation for the wave speed
in terms of these properties, to be denoted by c0, is the so called Moens-Korteweg
wave speed,2;3;4 given by

c0 D
s

Eh

�d
(5.1)

The approximation is based on the assumptions that (a) the fluid density � is
constant, (b) the effects of fluid viscosity can be neglected, and (c) the wall thickness
of the tube is small compared with the tube diameter.

The assumption of constant density � is important because if � is not constant
then changes in pressure will lead to compression and expansion of the fluid within
the tube, which provides another mechanism for wave propagation which can
occur even in a rigid tube. In pulsatile blood flow this scenario is not of interest
because under normal circumstances elasticity of the blood vessels far outweighs,

2McDonald DA. Blood Flow in Arteries. Edward Arnold, 1974.
3Caro CG, Pedley TJ, Schroter RC, Seed WA. The Mechanics of the Circulation. Oxford University
Press, 1978.
4Milnor WR. Hemodynamics. Williams and Wilkins, 1989.
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practically precludes, any compression of the blood to provide a mechanism for
wave propagation. Indeed, the wave speed as determined by the Moen-Korteweg
approximation for the wave speed is used in the clinical setting as a marker of the
mechanical health of blood vessels, although in that context it is known as the “pulse
wave velocity”. In particular, a rise in the wave speed with aging or disease is widely
interpreted as a sign of stiffening of the blood vessels or, equivalently, a higher value
of E in Eq. 5.1.

Of mathematical interest in particular is the limit of infinite value of E because
it represents the case of a rigid tube. In that case Eq. 5.1 indicates that the wave
speed becomes infinite, which means that as pressure rises at one end of the tube,
the pressure rise reaches the other end of the tube instantaneously. As a result, the
flow will accelerate and decelerate in bulk all along the tube, which is precisely what
we saw in pulsatile flow in a rigid tube. Thus the bulk motion of fluid in the case of
oscillatory flow in a rigid tube can be thought of as resulting from a wave traveling
with infinite speed.

The Moens-Korteweg formula for the wave speed (Eq. 5.1) is approximate
because it does not take into account some dependence of the wave speed on
viscosity of the fluid. Also, the formula is based on the assumption that the wall
thickness h is small compared with the tube diameter. Despite these limitations the
formula can be used to provide an estimate of the wave speed in the cardiovascular
system. This is possible if it is further assumed that an average wall-thickness-
to-diameter ratio h=d above can be taken for the entire system, which leaves c
dependent on E and � only. Thus, taking E D 107 dyne=cm2, � D 1 g=cm3, and
h=d D 0:1, we find c D 1000 cm=s or 10 m=s.

If the pressure at the entrance of an elastic tube does not merely rise once but
rises and falls in an oscillatory manner, the result is a train of wave crests moving in
tandem along the tube, which is commonly referred to as “wave propagation”. The
distance between two consecutive crests being referred to as the wave length L, as
illustrated in Fig. 5.6.

Fig. 5.6 If the pressure at the entrance of a tube does not change only once but continuously, in an
oscillatory manner, the result is a train of wave crests moving along the tube, or what is commonly
referred to as wave propagation. The distance L between two consecutive crests is referred to as
the wave length.
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If the frequency of oscillation is f cycles=s or f Hz, then the wave length is related
to the wave speed by

L D c

f
(5.2)

D c

!=2�
(5.3)

where ! is the angular frequency in radians/s, related to f by

! D 2� � f (5.4)

The pressure wave generated by the heart is a composite wave with a fundamental
frequency of approximately 1 Hz. Thus an estimate of the wave length based on
this frequency and a wave speed of 10 m=s is 10 m. The wave length is shorter
at higher frequency, being only 5 m at a frequency of 2 Hz, etc. This is relevant
when considering higher harmonics of the composite pressure wave generated by
the heart. Thus, the fundamental frequency being 1 Hz, the frequency of the second
harmonic will be 2 Hz, and that of the third will be 4 Hz, etc. as will be discussed in
full detail in Chap. 10.

Finally, the wave speed and the wave length are affected by the degree of
elasticity of the vessel wall, via the value of modulus of elasticity E in Eq. 5.1.
More rigid walls have higher values of E and therefore lead to higher wave speeds
and higher wave lengths, which is relevant to blood vessels as they become more
rigid, with age or disease. In the limiting case of a totally rigid tube, E is infinite
and hence both the wave speed and wave length become infinite. Wave propagation
is therefore not possible in a rigid tube, clearly because a local increase in pressure
cannot stretch the tube radially outward and thereby start the propagation process.
Nevertheless, it is sometimes convenient to think of wave propagation in a rigid
tube as one in which the wave speed is infinite, with a change in pressure at one end
reaching all parts of the tube with infinite speed, that is instantaneously. Indeed,
if the driving pressure at the entrance of a rigid tube changes in an oscillatory
manner, the entire body of fluid within the tube oscillates back and forth in unison,
as described in the previous chapter, which is not to be confused with wave
propagation5.

One of the most important effects of wave propagation in an elastic tube is the
possibility of wave reflections. Wave reflections arise when a wave meets a change in
one of the conditions under which it is propagating, such as the diameter or elasticity
of the tube, or more generally any change in the opposition to wave motion along
the tube.

It is important to distinguish between the opposition to flow in a tube and the
opposition to wave motion in that tube. The first is caused by the viscous shear at
the tube wall, the second is caused by a combination of elasticity of the tube wall
and inertia of the fluid. In the context of wave propagation, in order to distinguish

5Zamir M, 2000. The Physics of Pulsatile Flow. Springer-Verlag, New York.
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between the two, the first is referred to as “pure resistance” but more usually as
simply “resistance”, the second is referred to as “reactance” and will be defined
accurately later in this chapter. Here it is sufficient to note that reactance is higher if
the tube wall is less elastic. Reactance is infinite if the tube wall is rigid, hence, as
noted earlier, wave propagation is not possible in a rigid tube.

The combined effects of reactance and resistance are commonly referred to as
“impedance”. We shall see later that wave reflections in a tube arise at a point where
there is a change of impedance, which may be caused by a change of diameter or
elasticity of the tube. Impedance and wave propagation play a central role in the
dynamics of blood flow because blood flow is pulsatile.

5.3 Equations Governing the Fluid Motion

Oscillatory flow in an elastic tube does not satisfy the simplifying assumptions on
which Eq. 3.13 for oscillatory flow in a rigid tube was based. We must therefore
return to the full Navier-Stokes equations, assuming only axial symmetry at first,
namely Eq. 3.7 which we reproduce here to derive the required governing equations:
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(5.5)

Simplification of these equations is possible if it can be assumed that the length L of
the propagating wave is much higher than the tube radius a (so called “long wave”
approximation), and wave speed c0 is much higher than the average flow velocity u
within the tube, that is if

a

L
;

u

c0

<< 1 (5.6)

Under these conditions some of the terms in Eq. 5.5 will be much larger than others,
namely 8̂̂
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and if the smaller terms are neglected, Eq. 5.5 reduce to
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(5.8)

There are three equations for three dependent variables, namely u.x; r; t/, v.x; r; t/,
p.x; r; t/, compared with only one equation (Eq. 3.13) for u.r; t/ in the case of rigid
tube.

5.4 Solution of Flow Equations

As in the case of a rigid tube, a solution of the governing equations is possible
when the input pressure at the tube entrance is a simple “sinosoidal” oscillatory
function. In this case, however, as discussed earlier, the resulting pressure and flow
distributions within the tube are oscillatory both in space and time. At any point in
time, the pressure and flow distributions are sinosoidal in x, and at any fixed position
they are sinosoidal in t. As in the case of a rigid tube, the analysis is considerably
easier if the oscillations are considered as complex exponential functions rather than
sine or cosine functions. Mathematically, then, the simplified governing equations
are found to have a solution for which the 3 dependent variables are of the form

8̂
<̂
ˆ̂:

p.x; r; t/ D P.r/ei!.t�x=c/

u.x; r; t/ D U.r/ei!.t�x=c/

v.x; r; t/ D V.r/ei!.t�x=c/

(5.9)

As in the case of a rigid tube, ! is the frequency of oscillation of the input pressure,
and as in that case, the oscillations within the tube have the same frequency. The
analytical advantage of the complex exponential form is noted upon substitution
of these into Eq. 5.8 with the result that the exponential terms cancel throughout,
leaving ordinary differential equations for P.r/; U.r/; V.r/, namely
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The first two of these equations are forms of Bessel equations with known solutions
in terms of Bessel functions.6;7 To put the equations in standard form we introduce
the following non-dimensional parameters, as in the case of a rigid tube
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thus, in terms of 
, the governing equations now become
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(5.12)

The boundary conditions are zero velocities at the tube wall and finite velocity at
the tube center. Since the tube wall is in motion, the first of these makes it difficulty
to obtain an analytical solution. As a reasonable approximation, the boundary
condition is applied instead at a fixed radius a which is taken to be the neutral
position of the tube wall. Thus the approximate boundary conditions become

(
U.a/; V.a/ D 0

U.0/; V.0/ < 1 (5.13)

Solutions of the first two governing equations (Eq. 5.12) which satisfy the third
equation as well as these boundary conditions are given by

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

U.r/ D AJ0.
/ C B
a


�.i�2 C 
2/
J0

� 


ƒ


�

V.r/ D A



ƒ
J1.
/ C B

a


�.i�2 C 
2/
J1

� 


ƒ


�

P.r/ D BJ0

�
r

a

�
(5.14)

6McLachlan NW. Bessel Functions for Engineers. Clarendon Press, 1955.
7Watson GN. Theory of Bessel Functions. Cambridge University Press, 1958.
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where A; B are arbitrary constants and


 D i!a

c
(5.15)

Using the long wave approximation (Eq. 5.6) we note that
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Applying these approximations, the solutions reduce to

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

U.r/ D AJ0.
/ C B � 1

�c

V.r/ D A � i!a

cƒ
J1.
/ C B � i!r

2�c2

P.r/ D B

(5.17)

The constants A; B are determined by matching the velocities of the fluid and the
tube wall at the fluid-wall interface (r D a), which requires that the motion of the
tube wall be considered. This may seem to contradict the assumption made earlier
(Eq. 5.13) that the no-slip boundary conditions for U.r/ and V.r/ are applied at a
fixed radius (r D a). However, it must be remembered that U.r/ and V.r/ represent
only the amplitudes of the velocities u.x; r; t/ and v.x; r; t/ (see Eq. 5.9). What is
required further is that the oscillatory velocities of the fluid u.x; r; t/ and v.x; r; t/ be
matched with the oscillatory motion of the tube wall in x and t.

5.5 Elastic Wall Movement

Elastic movement of the tube wall are governed by the equations of elasticity which
in their most general form are considerably more complicated than the equations of
fluid flow. The reasons for this is that in fluid flow one is usually concerned with
three velocity components and pressure, while in the case of elasticity one may be
concerned with three displacement components and six internal stresses. To deal
with the elasticity problem in its most general form is far more than is required for
the present purpose. In what follows, therefore, rather than derive the equations of
elasticity in their general form we simply consider the forces acting on an element
of the vessel wall, then extract from the theory of elasticity only what is required for
the purpose at hand.
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Fig. 5.7 An element of the
tube wall considered for
analysis of movement of the
tube wall. Dimensions of the
element in the three
coordinate directions are ıx,
ır, and aı� , where a is the
tube radius. On the
assumption that the wall
thickness h is small compared
with a, we take ır D h,
which implies that the radial
gradients within the tube wall
are neglected. r x

 θ

Furthermore, here and in the rest of the book we follow the classical treatment
of pulsatile flow in elastic tubes in which the tube wall is assumed to be
“thin”, specifically h << a where h is the wall thickness and a is the
neutral radius of the tube. Events within the wall thickness such as any
compression or shearing stresses and strains are neglected, which means that
any differential movements within the wall thickness are also neglected. These
assumptions form the mathematical basis of the classical theory of pulsatile
flow in elastic tubes to be presented in what follows. The theory still stands
today as the only comprehensive method of analysis of physiological pulsatile
flow phenomenon. A comprehensive theory of pulsatile flow in elastic tubes
in which the walls are “thick” to the extent that they do not satisfy the above
assumptions is currently lacking.8

Consider an element of the tube wall defined by an arc length aı� and axial
length ıx (Fig. 5.7).

The volume and mass of the element are then respectively given by

(
ıV � haı�ıx

ım � �wıV
(5.18)

8Hodis S, Zamir M, 2011. Mechanical events within the arterial wall under the forces of pulsatile
flow: A review. Journal of the Mechanical Behavior of Biomedical Materials 4:1595–1602.
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Fig. 5.8 Equations
governing motion of the tube
wall are based on a balance of
forces acting on an element of
the tube wall (this figure),
shown here enlarged. The
forces arise from four stresses
(which have the dimensions
of force/area): axial tension
Sxx within the tube wall,
radial tension Srr pulling
elements of the tube wall
towards the tube axis and
arising from angular tension
S�� in the tube wall (Fig. 5.9),
shear stress �w exerted by the
fluid on the inner surface of
the tube, and pressure pw

exerted radially by the fluid
on the inner surface of the
tube.

 Sxx

τw

Pw
 Srr

where �w is density of the wall material. Forces acting on this element of the tube
wall result from four mechanical stresses, each having the dimensions of force per
unit area (Fig. 5.8).

1. Axial tension within the vessel wall, to be denoted by Sxx. A change ıSxx in this
tension over the length of the element leads to a force in the x-direction, given by

ıSxx � haı� D @Sxx

@x
ıx � haı� (5.19)

2. Radial stress, to be denoted by Srr, resulting from circumferential tension within
the vessel wall, and producing a force pushing the tube wall towards the center
of the tube, given by

�Srr � aı�ıx (5.20)

While Srr may in general vary within the thickness of the tube wall, that is it may
be a function of r, thus producing another part of the radial force due to a change
ıSrr over the thickness of the vessel wall, this part is here being neglected on the
assumption that the tube wall is thin as described above.

3. Fluid pressure within the vessel wall, being the net difference between pressures
acting on the inside and outside of the tube wall, to be denoted by pw, and leading
to a force in the positive r-direction given by

pw � aı�ıx (5.21)
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4. Shear stress �w exerted by the moving fluid on the tube wall and leading to a force
in the flow direction given by

�w � aı�ıx (5.22)

The net force in each of the three coordinate directions must equal the acceler-
ation of the element in that direction times its mass, thus providing an equation of
motion in each direction. If �; �; � represent displacements of this element of the
vessel wall in the x; r; � directions respectively, then in the axial direction we have

�w � haı�ıx � d2�

dt2
D haı� � @Sxx

@x
ıx C aı�ıx � �w

which simplifies to

�wh
d2�

dt2
D h

@Sxx

@x
C �w (5.23)

Similarly, in the radial direction we have

�w � haı�ıx � d2�

dt2
D aı�ıx � pw � aı�ıx � Srr

which simplifies to

�wh
d2�

dt2
D pw � Srr (5.24)

In the angular (circumferential) direction acceleration is zero because of axial
symmetry and because of the absence of any external force in that direction. As
stated earlier, however, because of curvature of the tube wall the internal angular
stress (tension) S�� produces not only radial strain (change in wall thickness) but
also a movement of the wall in the radial direction. The latter is caused by change in
the tube radius which in turn is caused by change in the circumference of the tube
circular cross section, that is by angular strain. In fact a useful relation between the
angular and radial stresses can be obtained by equating forces in the radial direction
for a small segment of the wall when in a state of equilibrium (Fig. 5.9), namely

aı� � Srr D 2 � h � S�� � sin

�
ı�

2

�

� hS�� ı� (5.25)

which gives

Srr D h

a
S�� (5.26)
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Fig. 5.9 Radial stress Srr ,
which acts to pull the vessel
wall towards the axis of the
tube, is related to angular
tension S�� within the vessel
wall (Eq. 5.26).

dθ

srr

sθθ sθθ dθ
2

5.6 Equations Governing the Wall Motion

In order to complete the equations of wall motion, the stresses (Sxx; Srr; S�� ) in
Eqs. 5.23 and 5.24 must be expressed in terms of the displacements �; �. This is
achieved by stress-strain relations which are found to exist in an elastic body. The
relations are analogous to the relations between stresses and rates-of-strain which
exist in a fluid body, as considered in the previous chapter. In both cases the relations
are empirical in origin.

If the strains in the axial, radial and angular directions are denoted by exx; err; e�� ,
the stress-strain relations for an elastic body are given by9;10;11

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

exx D 1

E
ŒSxx � �.Srr C S�� /�

err D 1

E
ŒSrr � �.S�� C Sxx/�

e�� D 1

E
ŒS�� � �.Srr C Sxx/�

(5.27)

9Sechler EE. Elasticity in Engineering. Dover Publications, 1968.
10Wempner G. Mechanics of Solids With Applications to Thin Bodies. McGraw-Hill, 1973.
11Shames IH, Cozzarelli FA, 1992. Elastic and Inelastic Stress Analysis. Prentice Hall, 1992.



138 5 Pulsatile Flow in an Elastic Tube

where E; � are two constant properties of the elastic material, known as Young’s
modulus or modulus of elasticity, and Poisson’s ratio, respectively. The relations
express a fundamental characteristic of elastic materials whereby the strain in one
direction depends not only on stress in that direction but also on stresses in the other
two directions.

Using the relation between the radial and angular stresses (Eq. 5.26), only two of
the above stress-strain relations are required, namely

8̂
<̂
ˆ̂:

exx D 1

E

h
Sxx � �Srr

�
1 C a

h

�i

e�� D 1

E

h
Srr

�a

h
� �

�
� �Sxx
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Invoking the thin wall approximation, specifically that a=h is sufficiently large
compared with 1:0 or � , the above relations reduce to
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and solving for the two stresses, we obtain finally

8<
:

Sxx D E� .exx C �e�� /

Srr D hE�

a
.e�� C �exx/

(5.30)

where

E� D E

1 � �2
(5.31)

Axial strain is caused by axial elongation of the tube which in turn is caused by
variation of the axial displacement � along the tube, that is by � being a function
of x. If all elements of the tube undergo the same axial displacement, that is if �

is constant, the axial strain is zero. More generally � is a function of x and a small
element of the wall of original length ıx will have length

ıx C ı� D ıx C @�

@x
ıx (5.32)

in its strained state (Fig. 5.10).
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Fig. 5.10 Axial
displacement � is in general
different at different points
along the tube wall. As a
result, an element of original
length ıx may stretch by an
amount ı� , where ı� is the
change in � over the length of
the element. x, ξ

δx δξ

Axial strain is defined as the ratio of the change in length over original length,
that is

exx D 1

ıx



ıx �

�
ıx C @�

@x
ıx

��

D �@�

@x
(5.33)

Angular strain may arise in two ways. First in analogy with axial strain, a segment
of the tube subtended by angle ı� and of original length aı� may change its length
because the angular displacement � is not the same all around the tube, that is
because of a gradient @�=@� (Fig. 5.11).

Because of axial symmetry, however, this gradient is here assumed to be zero
and hence this source of angular strain is zero. Another, more important, source of
angular strain is radial displacement � which changes the radius of the tube from its
neutral radius a to a C � and therefore changes the arc length of the segment from
aı� to .a C �/ı� (Fig. 5.12).

Angular strain is defined as the ratio of change in length over original length,
that is

e�� D 1

aı�
Œ.a C �/ı� � aı��

D �

a
(5.34)
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Fig. 5.11 Angular
displacement � may in
general be different at
different points around the
tube wall, leading to angular
elongation. On the
assumption of axial
symmetry, however, angular
displacement � is uniform
around the tube, that is
ı� D 0, and hence this
source of angular elongation
is zero. A more important
source of angular strain,
which does not conflict with
axial symmetry, is shown in
Fig. 5.12.

δθ

δφ

Fig. 5.12 An important
source of angular strain is a
change in tube radius, as
shown, from a to a C �. The
resulting angular strain, as
discussed in the text, is �=a
(Eq. 5.34).

a 
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Substituting these results for the strains in Eq. 5.30, the expressions for the axial
and radial stresses become
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and substituting these in turn into Eqs. 5.23 and 5.24, the equations of motion of the
tube wall become
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These equations are coupled with those of the flow field through the pressure pw and
shear stress �w and this coupling is dealt with in the next section.

5.7 Coupling of Fluid and Wall Motions

Motion of the tube wall is coupled to the motion of the fluid through the action of
fluid pressure and shear stress on the tube wall as illustrated in Fig. 5.13.

Mathematically, the coupling occurs through the presence of pw and �w in the
equations of wall motion (Eq. 5.36). To solve the equations these flow parameters
must be determined from the flow field solution.

The pressure acting on the tube wall, from Eqs. 5.9 and 5.17, is given by

pw D p.x; a; t/ D Bei!.t�x=c/ (5.37)

Fig. 5.13 Motion of the tube
wall is mediated by two
stresses exerted by the
moving fluid on the inner
surface of the tube: pressure
pw and shear stress �w.

τw

 Pw
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The shear stress acting on the tube wall is, from Eq. 3.46, given by

�w D �.�xr/rDa D ��

�
@u

@r
C @v

@x

�
rDa

(5.38)

Applying the approximations used before, namely that the length of the traveling
wave is much larger than the tube radius, the second gradient above is much smaller
than the first and can be neglected, so that we take

�w D ��

�
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�
rDa

(5.39)

Substituting for u.r/ from Eq. 5.9, we have

�w D ��

�
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�
rDa

ei!.t�x=c/ (5.40)

and substituting for U.r/ from Eq. 5.14, this gives, after some algebra
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2�c3

�
ei!.t�x=c/ (5.41)

where we have used again the approximations used in the flow field (Eq. 5.16)
Substituting for pw and �w from above into the equations of wall motion

(Eq. 5.36), the latter finally become
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(5.42)

5.8 Matching at the Fluid-Wall Interface

The equations of wall motion (Eq. 5.42) contain two arbitrary constants A; B yet
to be determined. These constants provide the link between motion of the fluid
and motion of the tube wall, and their values are determined by matching the
two motions at the wall-fluid interface. The matching is expressed in terms of
two boundary conditions at the interface, which require that the radial and axial
velocities of the wall be equal to the radial and axial velocities of the fluid in contact
with the wall. As before, since the wall is itself in motion, these boundary conditions
are applied only approximately at the neutral position of the wall, namely r D a.
Thus, we take
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8̂̂
<
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@t
D u.x; a; t/

@�

@t
D v.x; a; t/

(5.43)

It is reasonable to assume that the axial and radial oscillatory movements of the
wall have the same frequency as that prevailing in the flow field, thus we write

(
�.x; t/ D Cei!.t�x=c/

�.x; t/ D Dei!.t�x=c/
(5.44)

where C; D are two new constants to be determined. Note that this form does not
imply that the wall motion is in phase with the oscillatory motion of the fluid, since
these constants, as we shall find out, are generally complex quantities. Substituting
from the above expressions for �; � and their derivatives into the two equations of
wall motion (Eq. 5.42) and two boundary conditions (Eq. 5.44), we obtain a set of
four equations for the constants A; B; C; D, namely
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Some simplifications are possible by noting that in the first equation
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and in the second equation
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In both cases the term !2a2=c2 is neglected as it is of order .a=L/2.
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With these simplifications the four combined equations for A; B; C; D take the
final form8̂̂
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cƒ
A C i!a

2�c2
B

(5.48)

5.9 Wave Speed (“Pulse Wave Velocity”)

Equations 5.48 can be put in the form of the following four linear equations in
A; B; C; D 8̂

ˆ̂̂̂<
ˆ̂̂̂
:̂

a11A C a13C C a14D D 0

a22B C a23C C a24D D 0

a31A C a32B C a33C D 0

a41A C a42B C a44D D 0

(5.49)

where the coefficients aij are given by

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

a11 D �ƒJ1.ƒ/

�wha
; a13 D !2

�
1 � E�

�wc2

�
; a14 D �i!�E�

�wac

a22 D 1

h
; a23 D i!�E�

ac
; a24 D �E�

a2

a31 D J0.ƒ/; a32 D 1

�c
; a33 D �i!

a41 D i!J1.ƒ/a

cƒ
; a42 D i!a

2�c2
; a44 D �i!

(5.50)
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Since this system of four equations is homogeneous, a nontrivial solution is
obtained by setting the determinant of the coefficients to zero12;13;14, that is

ˇ̌̌
ˇ̌
ˇ̌̌
a11 0 a13 a14

0 a22 a23 a24

a31 a32 a33 0

a41 a42 0 a44

ˇ̌̌
ˇ̌
ˇ̌̌ D 0 (5.51)

or
8̂̂
<
ˆ̂:

a11Œa22.a33a44/ � a23.a32a44/ C a24.�a42a33/�

Ca13Œ�a22.a31a44/ C a24.a31a42 � a41a32/�

�a14Œ�a22.�a41a33/ C a23.a31a42 � a41a32/� D 0

(5.52)

Substituting for the coefficients, this gives, after some algebra

Œ.g � 1/.�2 � 1/�z2 C



�wh

�a
.g � 1/ C

�
2� � 1

2

�
g � 2

�
z C 2�wh

�a
C g D 0

(5.53)

where

z D E� h

�ac2
(5.54)

and

g D 2J1.ƒ/

ƒJ0.ƒ/
(5.55)

Equation 5.53 is a quadratic equation in z and its solution furnishes a value of the
wave speed (or pulse wave velocity) c in terms of parameters of the fluid and tube
wall. In particular, recalling that the wave speed in inviscid flow is given by (Eq. 5.1)

c2
0 D Eh

2�a

12Bradley GL, 1975. A Primer of Linear Algebra. Prentice Hall, Englewood Cliffs, New Jersey.
13Noble B, Daniel JW, 1977. Applied Linear Algebra. Prentice Hall, Englewood Cliffs, New Jersey.
14Lay DC, 1994. Linear Algebra and its Applications. Addison-Wesley, Reading, Massachusetts.
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then, combined with Eq. 5.54, this gives

�c0

c

�
D 1

2

E

E�

z (5.56)

Substituting for E� from Eq. 5.31, we finally have

c D
s

2

.1 � �2/z
c0 (5.57)

Thus the solution of Eq. 5.53 for z is in effect a solution for the wave speed c. The
equation is indeed referred to as the wave speed equation. It is important at this point
to recall the difference between this wave speed c and the Moen-Korteweg wave
speed c0. Both wave speeds are based on pulsatile flow in an elastic tube but c0 is
based on flow which does not satisfy the no-slip boundary condition at the tube wall,
hence it is sometimes referred to as the “inviscid” wave speed. On the other hand, the
wave speed c as derived in this chapter, based on the classical solution of pulsatile
flow in an elastic tube, take into account the no-slip boundary conditions at the tube
wall. Here the equations governing the dynamics of the fluid are fully coupled with
the equations governing the dynamics of the tube wall. Thus c is more accurate than
c0 in the sense that it adheres more closely to the physics of the problem.

It is important to note, however, that c is still based on the assumptions inherent
in the classical solution of pulsatile flow as described in this chapter and therefore
it too is only an approximation. The most important of these is the assumption that
the tube wall is “thin” to the extent that events within the wall are neglected. This
is clearly not the case when the tube wall is appreciably thick compared with the
tube radius. A solution of the governing equations of pulsatile flow in a thick-walled
elastic tube is considerably more complicated than the classical solution described
above and is yet to be achieved (see Footnote 8).

Since z is complex, it follows that the wave speed c is also complex, meaning
that it has a real and an imaginary part whereas c0 is entirely real. What does
this mean in physical terms, and what are the consequences of this?

In answer to this question it would seem at first that c is not a true “speed”
because it does not simply replace the inviscid wave speed c0 in the wave
propagation expression ei!.t�x=c0/. Furthermore, while c0 depends only on constant
properties of the tube wall and of the fluid (Eq. 5.1), c depends also on z (Eq. 5.57)
which in turn depends on frequency (Eq. 5.53), therefore z depends on frequency.
The latter implies that the speed at which the wave propagates depends on the
frequency with which it is propagating.

To examine the consequences (indeed the physical meaning) of this, it is
convenient to write

1

c
D 1

c1

C i
1

c2

(5.58)
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or equivalently

c D c1c2
2

c2
1 C c2

2

� i
c2

1c2

c2
1 C c2

2

(5.59)

Using Eq. 5.58 we find

ei!.t�x=c/ D ei!.t�x=c1�ix=c2/

D e!x=c2ei!.t�x=c1/ (5.60)

Comparing this expression for wave propagation with the corresponding expression
for wave propagation in inviscid flow, we have

fe!x=c2g ei!.t�Œx=c1�/ (5.61)

in the present viscous flow case, compared with

ei!.t�Œx=c0�/ (5.62)

in the inviscid flow case. The two expressions differ in two places as indicated by the
square brackets. First, it is seen that viscosity has the effect of changing amplitude
of the wave from a reference value of 1:0 in the inviscid case to e!x=c2 in the viscous
case, an effect usually referred to as “attenuation”. Second, it is seen that viscosity
has the effect of changing the wave speed from c0 in the inviscid case to c1 in the
viscous case. Since c1 depends on frequency, the magnitude of this effect will also
depend on frequency and, hence, as stated earlier, the change in wave speed due to
viscosity will also depend on frequency. This effect of viscosity on the wave speed
is known as “dispersion”.

The significance of this in pulsatile blood flow lies in the fact that the pressure
waveform generated by the heart, as we shall see in the next chapter, is
composed of sinosoidal waves (harmonics) that are propagating at different
frequencies. Dispersion causes these harmonic components to propagate at
different speeds, thereby altering the shape of the composite wave as it
progresses along the vascular tree.

Solution of Eq. 5.53 provides a value of c for each value of the frequency, hence
the equation is sometimes also referred to as the “frequency equation”. Results in
Fig. 5.14 show that in the limit of high frequency the imaginary part of c goes to
zero while the real part of c becomes the same as c0. In the same limit, the value of
c1 becomes the same as that of c0 while the value of c2 becomes infinite as shown in
Fig. 5.15. Together, these results indicate that the attenuation and dispersion effects
of viscosity vanish at high frequency, rendering pulsatile flow of viscous fluid in
an elastic tube the same as that of inviscid fluid in an elastic tube. In particular, the
wave speed c becomes the same as the Moen-Korteweg wave speed c0 at the limit of
high frequency. However, as the two figures indicate, at lower frequencies (� < 3

or so) the value of c is significantly different from that of c0 and must be determined
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Fig. 5.14 Variation of the real and imaginary parts of the wave speed c, normalized in terms of
the wave speed in invisicid flow, c0, with frequency parameter �. As the frequency increases, the
imaginary part of c vanishes while the real part becomes the same as c0.

from the full solution of the governing equations as detailed in this chapter. This is
particularly so because, as we shall see in the next chapter, the lower frequencies are
associated with the more dominant harmonic components of the composite pressure
wave generated by the heart.

5.10 Arbitrary Constants

To determine the arbitrary constants A; B; C; D, we note that Eq. 5.49 A; B; C; D are
a set of homogeneous linear equations, with a 4 � 4 coefficient matrix which is of
rank 3, therefore one of A; B; C; D must remain arbitrary.15;16 That is, the solution
determines only 3 of A; B; C; D in terms of the fourth. Results in Eq. 5.17 suggest
that the obvious choice to make is that of expressing A; C; D in terms of B, since
the latter represents the amplitude of the input oscillatory pressure which would

15Noble B, Daniel JW. Applied Linear Algebra. Prentice Hall, 1977.
16Lay DC, 1994. Linear Algebra and its Applications. Addison-Wesley, 1994.
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Fig. 5.15 Variation of dispersion and attenuation coefficients, c1 and c2 respectively in Eq. 5.61,
normalized in terms of the wave speed in inviscid flow, c0. As the frequency increases, c2 ! �1
and c1 ! 1:0, and both attenuation and dispersion effects vanish from Eq. 5.61.

normally be known or specified. Thus from Eqs. 5.9 and 5.17 we have

p.x; r; t/ D P.r/ei!.t�x=c/

D Bei!.t�x=c/ (5.63)

which, as stated above, shows that B is the amplitude of the input oscillatory pressure
and may therefore be considered known.

Using the second and forth of Eq. 5.48 to eliminate D and combining the result
with the third equation we then find

A D a33a24a42 � a33a44a22 C a44a23a32

�a33a24a41 � a44a23a31

B (5.64)

Substituting this in the third of Eq. 5.48 we then have

C D a31A C a32B

�a33

(5.65)
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and from the forth equation in Eq. 5.48, finally

D D a41A C a42B

�a44

(5.66)

Substituting for the coefficients from Eq. 5.50, we find finally, after some algebra

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

A D 1

�cJ0.ƒ/



2 C z.2� � 1/

z.g � 2�/

�
B

C D i

�c!



2 � z.1 � g/

z.2� � g/

�
B

D D a

�c2



g C �z.g � 1/

z.g � 2�/

�
B

(5.67)

5.11 Properties of Pulsatile Flow in an Elastic Tube

All the required elements are now in place to complete the solution of pulsatile flow
in elastic tubes, using Eqs. 5.9, 5.17, and 5.67. For the axial velocity component we
find

u.x; r; t/ D B

�c



1 � G

J0.
/

J0.ƒ/

�
ei!.t�x=c/ (5.68)

where

G D 2 C z.2� � 1/

z.2� � g/
(5.69)

This is the classical solution of the problem of oscillatory flow in an elastic
tube, obtained by Morgan and Kiely17 and Womersley18 and enlarged upon by

17Morgan GW, Kiely JP, 1954. Wave propagation in a viscous liquid contained in a flexible tube.
Journal of Acoustical Society of America 26:323–328.
18Womersley JR, 1955. Oscillatory motion of a viscous liquid in a thin-walled elastic tube-I: The
linear approximation for long waves. Philosophical Magazine 46:199–221.
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others,19;20;21 though the rudiments of the solution can be traced back to pioneering
work by Korteweg,22 Lamb,23 Witzig,24 and Lambossy.25

To compare this and other properties of the flow with corresponding properties
of steady flow in a rigid tube, we recall from Eq. 5.63 that the constant B in the
present case represents the amplitude of the input oscillatory pressure which must
be specified for the problem to be complete. For comparison we take the amplitude
of the oscillatory pressure gradient to be equal to the constant pressure gradient in
steady flow, namely ks as defined in Eq. 3.23, then using Eq. 5.63 we find

8̂
<
:̂

p.x; r; t/ D Bei!.t�x=c/

@p

@x
D � i!

c
Bei!.t�x=c/

(5.70)

thus we take
8̂̂
<
ˆ̂:

�i!

c
B D ks

B D ic

!
ks

(5.71)

It is useful also to normalize the axial velocity in oscillatory flow in terms of the
maximum velocity Ou in steady flow, using Eq. 3.41,

Ous D �ksa2

4�

19Atabek HB, Lew HS, 1966. Wave propagation through a viscous incompressible fluid contained
in an initially elastic tube. Biophysical Journal 6:481–503.
20Cox RH, 1969. Comparison of linearized wave propagation models for arterial blood flow
analysis. Journal of Biomechanics 2:251–265.
21Ling SC, Atabek HB, 1972. A nonlinear analysis of pulsatile flow in arteries. Journal of Fluid
Mechanics 55:493–511.
22Korteweg DJ, 1878. Über die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Rohren.
Annalen der Physik und Chemie 5:525–542.
23Lamb H, 1897. On the velocity of sound in a tube, as affected by the elasticity of the walls.
Memoirs and Proceedings, Manchester Literary and Philosophical Society A42:1–16.
24Witzig K, 1914. Über erzwungene Wellenbewegungen zäher, inkompressibler Flüssigkeiten in
elastischen Rohren. Inaugural Dissertation, Universität Bern.
25Lambossy P, 1950. Apercu historique et critique sur le probleme de la propagation des ondes dans
un liquide compressible enferme dans un tube elastique. Helvetica Physiologica et Pharmalogica
Acta 8:209–227.
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Fig. 5.16 Real and imaginary parts of the elasticity factor G which embodies the difference
between oscillatory flow in rigid and elastic tubes (see text).

thus we finally have

u.x; r; t/

Ous
D �4

ƒ2



1 � G

J0.
/

J0.ƒ/

�
ei!.t�x=c/ (5.72)

In comparison with the corresponding expression for pulsatile flow in a rigid tube
(Eq. 4.27), the above result indicates that the difference between the two is contained
entirely in the function G as defined in Eq. 5.69. However, since G is complex and
both its real and imaginary parts depend on the frequency !, the effect is not easily
apparent. Variation of the real and imaginary parts of G with frequency are shown
in Fig. 5.16.

In a similar way for the radial velocity component, using Eqs. 5.17 and 5.67, we
find

v.x; r; t/

Ous
D 2a!

iƒ2c



r

a
� G

2J1.
/

ƒJ0.ƒ/

�
ei!.t�x=c/ (5.73)

The radial velocity of the fluid at the tube wall is of particular interest because it is
equal to the motion of the tube wall in the radial direction. Thus, setting r D a in
Eq. 5.73 and, from Eq. 4.18, noting that 
.a/ D ƒ, we find
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Fig. 5.17 Oscillatory flow in an elastic tube where the tube length l is the same as the wave length
L, that is l=L D 1:0. In this case the entire cycle of the wave unfolds within the length of the tube.
The top panel shows the tube wall movements. Velocity profiles within the tube are shown in the
middle panel, and the peak velocity reached at each point along the tube is shown in the bottom
panel. The latter being normalized in terms of the peak velocity in steady Poiseuille flow.

v.x; a; t/

Ous
D 2a!

iƒ2c
Œ1 � Gg�ei!.t�x=c/ (5.74)

It is important to note that oscillatory flow in an elastic tube consists of two
oscillations, one in time and one in space. This, indeed, is the essence of wave
propagation. Both oscillations have the same frequency ! and hence the same
period T D 2�=!. During this time period, the input oscillatory pressure gradient
completes one cycle, in time, while the pressure gradient within the tube completes
one cycle, in space. The length of tube which this cycle occupies is the wave length
Ł D cT D 2�c=!. Thus, if the tube length is denoted by l then when l=L D 1

the entire oscillatory cycle unfolds within the length of the tube, as illustrated in
Fig. 5.17. However, if l=L < 1, only part of the wave will unfold, as illustrated in
seen in Figs. 5.18 and 5.19.

In Fig. 5.19, where l=L D 0:1, the velocity profiles are seen to be moving almost
in unison as in the case of a rigid tube (Fig. 4.4). The comparison indicates that
pulsatile flow in an elastic tube that is much shorter than the oscillatory wave
length will be fairly close to the corresponding flow in a rigid tube. In the human
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Fig. 5.18 Oscillatory flow in an elastic tube as in Fig. 5.17 but l=L D 0:5, that is, the tube length
here is only one half the wave length, therefore only one half of the wave unfolds within the tube
length.

cardiovascular system the wave speed is in the range of26 5–10 m/s which means
that at a frequency of 1 Hz the wave length would be between 5 and 10 m.

One might be led to believe, therefore, that the further complexity of the analysis
of pulsatile flow in an elastic tube is unnecessary since the overwhelming majority of
vessel segments within the cardiovascular system are shorter, indeed much shorter,
than 5–10 m. The problem with this conclusion, however, is that the wave speed
measured within the cardiovascular system is usually taken “across” almost the
entire length of the body and hence across many millions of vessel segments of
different sizes, which makes the interpretation of the measured wave speed rather
uncertain.

Furthermore, the most important difference between pulsatile flow in a rigid
tube and that in an elastic tube is that the latter consists of wave motion while
the former does not. This difference is fundamental in physics because wave

26Dìaz A, Galli C, Tringler M, Ramìrez A, Fischer EIC. Reference values of pulse wave velocity
in healthy people from an urban and rural Argentinean population. International Journal of
Hypertension, Volume 2014, Article ID 653239, 7 pages.
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Fig. 5.19 Oscillatory flow in an elastic tube as in Fig. 5.17 but l=L D 0:1, that is, the tube length
here is only one tenth of the wave length, therefore only one tenth of the wave unfolds within the
tube length.

motion involves wave reflections, as we shall see in the next chapter, and wave
reflections alter the relationship between pressure and flow and therefore
cannot be ignored. Wave reflections are ubiquitous within the cardiovascular
system because they arise at every vascular junction. In a rigid tube wave
reflections do not arise because there is no wave motion (again, as long as the
fluid density is constant).

The flow rate at each point within the oscillatory cycle, namely

q.x; t/ D
Z a

0

2�rudr (5.75)

depends on the radius ‘a’ of the tube which here is not constant of course because the
tube is not rigid. However, on the assumption that the radial movements of the tube
wall are small compared with the tube radius, an approximate value of the flow rate
can be obtained by treating a as a constant “neutral” radius. Nondimensionalizing
in terms of the flow rate in steady flow, qs in Eq. 3.43, this gives

q.x; t/

qs
D �8

ƒ2
.1 � Gg/ei!.t�x=c/ (5.76)
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Fig. 5.20 Oscillatory flow rate within the oscillatory cycle in an elastic tube compared with that
in a rigid tube at moderate frequency, � D 3:0. A small difference exists between the two cases at
this frequency, with the flow rate in an elastic tube reaching a somewhat higher peak than that in a
rigid tube.

Results for oscillatory flow rate at moderate frequency (� D 3:0) are shown in
Fig. 5.20, compared with the corresponding flow rate in a rigid tube. It is seen that
a small difference exists between the two cases at this frequency, with the flow rate
in an elastic tube reaching a somewhat higher peak than that in a rigid tube. The
percentage difference between the two peaks at different frequencies is shown in
Fig. 5.21.

We note, finally, that the classical solution described in this section provides what
we might refer to as “field properties” in the sense that these properties describe the
velocity field point-by-point. Other, more “integral” or “lumped” properties, such
as the flow rate or pumping power are not as easy to determine mathematically, or
indeed interpret physically, as they are in the case of pulsatile flow in a rigid tube.
The reason for this is that in the case of a rigid tube the flow is in only one direction
while in an elastic tube it is in two directions. Thus the flow “rate” at any point
in time within the oscillatory cycle consists of some forward flow and some radial
flow that goes towards inflating the tube. Their proportion of course varies within
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Fig. 5.21 Percentage difference between the peak of flow rate reached within the oscillatory cycle
in an elastic tube and that reached in a rigid tube at different frequencies. Peak flow rate is higher
in the elastic tube at all frequencies.

the oscillatory cycle as well as at different axial positions along the tube. Similarly,
the pumping power required to drive the flow here consists of a certain proportion
of power for driving the flow forward and another for driving the radial flow that
goes toward inflating the tube.

Thus, the point-by-point description of the flow would be particularly useful
in applications where the focus is on a local phenomenon, a local disturbance of
the flow by vascular pathology such as an obstructive plaque, an aneurysm, or a
thrombus. In other applications where the focus is on the global properties of an
entire vascular bed containing many millions of blood vessels, as in the case of
vascular stiffening with aging or in heart failure where the work load of the heart
against the entire vascular system is critical, other methods would be required as
will be described in subsequent chapters.



Chapter 6
Wave Reflections

6.1 Introduction

As hinted at the end of the previous chapter, wave reflections are ubiquitous in the
cardiovascular system because, as we shall see, they arise at every junction within
the vascular system as illustrated schematically in Fig. 6.1. The analysis of wave
reflections must be based on the equations of pulsatile flow in an elastic tube, of
course, because wave reflections do not arise in a rigid tube (so long as the fluid
density is constant). The task may seem intractable at first because the vascular
system is as much a network of vascular junctions as it is a network of “vessels”.
In the present chapter we examine how this task can be simplified somewhat, to the
point of retaining and highlighting the main features of the phenomenon of wave
reflections.

In a rigid tube there is no wave motion and therefore the possibility of wave
reflections does not exist. A more interesting way of looking at this is to note that
the wave speed c0 as defined by the Moen-Korteweg formula (Eq. 5.1) becomes
infinite in a rigid tube because the elastic modulus of the tube wall material E is
infinite. There is then wave propagation at infinite speed in a rigid tube, which is
equivalent to changes in flow or pressure being transmitted instantaneously to every
part of the tube. Thus “propagation” in this limit degenerates into “bulk motion”
whereby the entire body of fluid is moving in unison as we saw in the previous
chapter (Fig. 4.4). In the face of an obstacle such as a vascular branch point, this
bulk motion is disturbed in some transient way rather than reflected in the same way
that a wave is reflected.

In an elastic tube wave reflections have the effect of modifying the pressure and
flow within the tube because the reflected waves combine with the forward waves
as illustrated in Fig. 6.2 to produce a new pressure-flow relationship.

© Springer International Publishing Switzerland 2016
M. Zamir, Hemo-Dynamics, Biological and Medical Physics, Biomedical
Engineering, DOI 10.1007/978-3-319-24103-6_6
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Fig. 6.1 Wave reflections
are ubiquitous in the
cardiovascular system
because of the branching
structure of the vascular tree
where each junction acts as a
reflection site. The result is a
bewildering array of forward
and backward moving waves.
Analysis of the pressure
distribution along the tree is
possible only if the tube
segments comprising the tree
are treated as one dimensional
“transmission lines”.

If there are many reflected waves from many different reflection sites this
relationship may not be easy to predict or compute. Thus the results of the previous
chapter do not depict the most important difference between pulsatile flow in rigid
and elastic tubes because the analysis there does not include the effects of wave
reflections.

In order to take the effects of wave reflections into account the method of analysis
must be simplified. To do so we note that the most important effects of wave
reflections in a tube are manifest in terms of changes in pressure and flow in the axial
direction, thus full details of the flow in a cross section of the tube, as was obtained
in the previous chapter, are not required. Instead, flow properties can be integrated
over cross sections of the tube to become functions of only one space variable x
instead of x and r. A method of analysis which follows this avenue successfully
is based on the so called Transmission Line Theory.1;2 In what follows we show
how the equations governing pulsatile flow in an elastic tube can be reduced to
one dimensional wave equations, and then use this model for the analysis of wave
reflections.

1Wylie EB, Streeter V. Fluid Transient. McGraw-Hill, 1978.
2Fung YC. Biodynamics: Circulation. Springer-Verlag, 1984.
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Fig. 6.2 Effect of wave reflection in a tube. Pressure distribution is shown in terms of normalized
distance x along the tube, where x D 0 at entrance and x D 1:0 at exit. A forward pressure wave
is reflected at exit, producing a backward moving wave. The resulting pressure distribution in the
tube is the sum of the two waves, which is thus greatly affected by the nature and extent of the
reflected wave. Here a forward cosine wave is shown reflected at 80 %.

6.2 One Dimensional Wave Equations

One dimensional analysis of pulsatile flow in elastic tubes begins with the same
equations as those used in the previous chapter where a full (two dimensional)
description of the flow was obtained, namely Eq. 5.8. The equations are reproduced
below to emphasize the fact that the one dimensional analysis to follow does not
introduce any new approximations than those on which the two dimensional analysis
was based.
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As they stand these equations are two dimensional in space in the sense that the
dependent variables are functions of two space variables, namely x and r. In the
present analysis the equations are transformed into one dimensional equations by
eliminating the dependence on r. This is accomplished by integrating over a cross
section of the tube so that the main dependent variable is changed from velocity to
flow rate, and the equation in the radial direction (Eq. 6.2) is then no longer required.
It is important to note that this latter step is not the same as taking the radial velocity
v to be identically zero as it is in the rigid tube case. In the present analysis v is not
zero even though the equation in the radial direction has been eliminated.

Each term in the first and third equations is multiplied by 2�r and integrated
from r D 0 to r D a where a is the tube radius, that is
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and
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C v
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�
dr D 0 (6.5)

To these governing equations is added the boundary condition

v.a; t/ D @a

@t
(6.6)

which ensures that the radial velocity of the fluid at the tube wall is equal to the
rate of change of the tube radius. This boundary condition is central to the present
analysis since it ensures that although the radial direction is being eliminated,
the combined effect of radial velocity and elasticity of the tube wall, and hence
the essential elements of wave propagation, are preserved. Furthermore, using this
boundary condition, the last integral in Eq. 6.5 becomes

2�
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0

r

�
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@r
C v

r

�
dr D 2�

Z rDa
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d.vr/

D 2�av.a/
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(6.7)

where

A.t/ D �a2.t/ (6.8)
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is cross sectional area of the tube. Using this condition, and noting that
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where q is flow rate through the tube and �w is shear stress on the tube wall, given by

q D 2�

Z a

0

rudr (6.13)
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Thus Eqs. 6.4 and 6.5 finally become
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D 0

(6.15)

This is the integral form of the governing equations (Eqs. 6.1–6.3) on which pulsatile
flow in elastic tubes is based. We note again that no further approximations have
been introduced in the process, even though the radial direction and radial velocity
have been eliminated and axial velocity has been replaced by flow rate. This is the
very essence of “one dimensional wave propagation” or “transmission line theory”.

The basic form of transmission line theory is usually based on inviscid flow
where �w D 0 and on an inviscid wave speed to be denoted by ctl and defined by

c2
tl D A

�

@p

@A
(6.16)

Comparing this with the Moen-Korteweg wave speed (Eq. 5.1) it will be noted that
the two wave speeds are essentially the same in the sense that they are both based
on inviscid flow. The difference between them is only in the way the elasticity of the
tube wall is being represented, as a relationship between pressure and cross sectional
area in the case of ctl and as a modulus of elasticity in the case of c0. For this reason,



164 6 Wave Reflections

and in order not to maintain unnecessarily complicated notation, we shall henceforth
treat the two wave speeds as being the same, that is

ctl � c0 (6.17)

Noting that
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0
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Equation 6.15 under inviscid flow conditions reduce to
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In many wave propagation studies this basic inviscid form of the wave equations
has the advantage of isolating the effects of wave reflections from the effects of
viscosity. The main effects of viscosity on wave propagation, as we saw in the
previous chapter, is to reduce the speed and amplitude of the traveling wave.
These effects are fairly predictable and can in fact be easily reinstated in the one
dimensional equations,3;4;5;6 but it is convenient to leave them out while the focus
is on wave reflections. With this in mind, cross differentiation of Eq. 6.19 finally
leads to

8̂
<̂
ˆ̂:

@2p

@t2
D c2

0

@2p

@x2

@2q

@t2
D c2

0

@2q
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(6.20)

the coefficients A=� and A=�c2
0 being treated as constants in the differentiation. Each

of these two equations is a standard one dimensional wave equation. Pressure and
flow are thus governed by the same wave equation and propagate with the same
wave speed. This does not mean that they are in phase, however, as we see in what
follows.

3Wylie EB, Streeter V. Fluid Transient. McGraw-Hill, 1978.
4Hardung V. Propagation of pulse waves in viscoelastic tubings. Handbook of Physiology:
Circulation. 1:107–135. Williams and Wilkins, 1962.
5Lighthill MJ. Mathematical Biofluiddynamics. Society for Industrial and Applied Mathematics,
Philadelphia, 1975.
6Duan B, Zamir M, 1992. Viscous damping in one-dimensional wave transmission. Journal of
Acoustical Society of America 92:3358–3363.
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6.3 Solution of Wave Equation

Since the wave equations for pressure and flow are the same, we consider here only
the equation for the pressure. Solution of the wave equation for the pressure Eq. 6.20
is obtained by separation of variables, that is by writing

p.x; t/ D px.x/pt.t/ (6.21)

The form of the driving pressure applied at entrance to the tube, to be denoted
by pa.t/, must be specified to proceed with the solution. We consider a complex
exponential form as in the previous chapter, that is we take

pa.t/ D p0ei!t (6.22)

where p0 is amplitude of the applied oscillatory pressure at the tube entrance. This
clearly implies that

px.0/ D p0; and pt.t/ D ei!t (6.23)

The second result indicates that the time-dependent part of pressure within the tube
must have the same functional form as that applied at the tube entrance. Thus the
expression for the pressure is now

p.x; t/ D px.x/ei!t (6.24)

and it remains to determine only the x-dependant part of the pressure. Substituting
the above expression for the pressure into the wave equation (Eq. 6.20) leads to an
ordinary differential equation for px.x/, namely

d2px

dx2
C !2

c2
0

px D 0 (6.25)

This is a standard second order linear differential equation with the general solution7

px.x/ D Be�i!x=c0 C Cei!x=c0 (6.26)

where B; C are arbitrary constants. With this, the complete expression for the
pressure (Eq. 6.24) becomes

p.x; t/ D px.x/ei!t

D Bei!.t�x=c0/ C Cei!.tCx=c0/ (6.27)

7Spiegel MR. Applied Differential Equations. Prentice Hall, Englewood Cliffs, New Jersey, 1967.
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The first part of this solution represents a wave traveling in the positive x-direction
at a speed c0. This interpretation is gained by observing that the pressure is constant
when

x D c0t (6.28)

which represents a point moving in the positive x-direction at a speed c0. The
second part of the solution represents a wave traveling with speed c0 in the negative
x-direction. It is not to be confused with waves returning after being reflected, which
we shall deal with fully later. Here the reverse wave arises at the same time as the
forward wave and the two move symmetrically in opposite directions. Reflected
waves, by contrast, consist initially of forward waves arising from the first part of
the solution, traveling forward to a point where they meet an obstacle and where
they give rise to reflected waves traveling back.

Pulsatile flow in a tube is typically driven by a pulsating pressure source at
the tube entrance. In the context of this analytical solution, this pressure source
gives rise to two waves starting simultaneously from the entrance and travelling in
opposite directions. Therefore only the forward wave is physically relevant and we
take, from Eq. 6.27

p.x; t/ D Bei!.t�x=c0/ (6.29)

The condition at the tube entrance requires that

p.0; t/ D Bei!t

D p0ei!t (6.30)

therefore

B D p0 (6.31)

and the required solution is finally

p.x; t/ D p0ei!.t�x=c0/ (6.32)

It is convenient to normalize pressures in terms of the amplitude of the applied
pressure at the tube entrance and introduce the notation

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

p.x; t/ D p.x; t/

p0

px.x/ D px.x/

p0

pa.t/ D pa.t/

p0

(6.33)
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The solution (Eq. 6.32) can then be put in the normalized form

p.x; t/ D ei!.t�x=c0/ (6.34)

D px.x/ei!t (6.35)

thus

px.x/ D e�i!x=co (6.36)

We shall find that this form of the solution of the one dimensional wave equation
is more useful. In this form it is seen that the pressure wave within the tube is
composed of two periodic functions, one in space and one in time. At any fixed
point in time, the pressure distribution within the tube is described by px.x/, and at
any fixed position within the tube, the pressure oscillation is described by ei!t, which
is the same oscillatory function in time as the applied pressure at the tube entrance.
However, the phase and amplitude of that oscillation depend on px.x/ and therefore
this entity plays a central role in the physical characteristics of the propagating wave.

In particular, since the solution p.x; t/ was obtained in complex form for a
complex applied pressure pa.t/ at the tube entrance, the real and imaginary parts of
p.x; t/ correspond to the real and imaginary parts of pa. Now the real and imaginary
parts and the amplitude of p.x; t/ are given by

8̂̂
<
ˆ̂:

<fp.x; t/g D <fpx.x/ei!tg
=fp.x; t/g D =fpx.x/ei!tg
jp.x; t/j D jpx.x/ei!tj D jpx.x/j

(6.37)

while the real and imaginary parts and the amplitude of pa.t/, from Eq. 6.22, are
given by

8̂̂
<
ˆ̂:

<fpag D cos !t

=fpag D sin !t

jpaj D 1:0

(6.38)

Equation 6.37 shows the important role which px.x/ plays in determining the
characteristics of the propagating pressure wave. The complex form of px.x/

determines the final form of the real and imaginary parts of the pressure within the
tube as seen from the first two equations, while the amplitude of px.x/ determines the
amplitude of the time oscillations at fixed positions along the tube as is seen from
the third equation. Thus the distribution of jpx.x/j along the tube is an important
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Fig. 6.3 Progression of a cosine pressure wave along an elastic tube in the absence of wave
reflections. Individual curves in the top three panels represent the pressure curve at different times
within the oscillatory cycle, plotted in terms of normalized distance x along the tube, where x D 0

at entrance and x D 1:0 at exit. The outer envelope in the bottom panel represents the peak of the
wave at different points along the tube, or the amplitude of time oscillations of pressure at different
positions along the tube. The ideal pressure amplitude distribution seen in this case, characterized
by a straight envelope along the tube, is singular in the sense that it is only possible in the absence
of wave reflections.

measure of pressure oscillations within the tube. In particular, in the present case
where wave reflections are absent, using Eq. 6.36, this distribution is given by

jpx.x/j D je�i!x=c0 j D 1:0 (6.39)

which indicates that the time oscillations of the normalized pressure within the tube
have an amplitude of 1:0 at every position along the tube, as illustrated in Fig. 6.3.

It is important not to confuse this distribution of the amplitude of the traveling
pressure wave, namely jpx.x/jas shown in Fig. 6.3, with the pressure wave itself,
namely px.x/. The focus here is only on the former because, as we shall see in
what follows, it is the amplitude of the traveling pressure wave that is modified by
wave reflections. The uniform distribution of amplitude of the traveling wave seen
in Fig. 6.3 only exists in the absence of wave reflections and it therefore serves as
an important reference state as we proceed to consider wave reflections.
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6.4 Primary Wave Reflections

When an oscillatory pressure pa.t/, as in Eq. 6.22, is applied at the entrance of an
elastic tube of length l, pressure oscillations will travel towards the other end of
the tube in the form of a propagating wave as described in the previous section.
In the presence of any change in conditions, such as an obstruction or a vascular
junction, part of the wave will be reflected back towards the entrance. Depending
on conditions at the entrance, part of this backward traveling wave may in turn
be reflected back towards the other end of the tube. In principle this may continue
indefinitely, although the wave is diminishing in strength (amplitude) in the process.
The phenomenon is analogous to that of the surface waves generated by a boat,
moving towards the shore and being reflected back towards the boat. Indeed, the
underlying physics of the two problems is the same.

In most hemodynamic applications it is rarely necessary to go beyond the
first round of wave reflections because subsequent reflections are usually greatly
diminished and can be neglected. The former are generally referred to as primary
wave reflections while the latter are referred to collectively as secondary wave
reflections. In this section we deal with the analysis of primary wave reflections
in full details. Secondary wave reflections are considered briefly at the end of this
chapter.

To illustrate the way in which wave reflections affect the pressure distribution
in a tube, we focus first on a single tube in which a forward pressure wave pf .x; t/
represents the input pressure at one end of the tube (input end) and gives rise to a
backward traveling wave pb.x; t/ at the other end (reflecting end). We shall see in
subsequent sections that the nature of the backward wave depends critically on the
type of conditions that exist at the reflecting end of the tube. In the present section,
again in order to focus on the way in which forward and backward waves combine
to change the pressure distribution in a tube, we shall consider only a basic case in
which the backward wave has the same form as the forward wave but is moving in
the negative x-direction. Thus if the forward wave is given by

pf .x; t/ D ei!.t�x=c0/ (6.40)

we take

pb.x; t/ D Bei!.tCx=c0/ (6.41)

where B is a constant. Since the pressure at the reflecting end of the tube must be
single valued, the forward and backward pressure waves must be equal at x D l,
where l is the tube length. Thus

pb.l; t/ D Bei!.tCl=c0/

D Be�2i!l.ei!.t�l=c0//
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D Be�2i!l.pf .l; t//

D R pf .l; t/ (6.42)

where R is known as the “reflection coefficient”, thus given by

R D pb.l; t/

pf .l; t/
(6.43)

The reflection coefficient is then seen to represent the fraction of the forward wave
that is being reflected at the reflecting end of the tube. Specifically, R D 1 represents
“total” reflection whereby the backward wave is equal to the forward wave in its
entirety, while a small value of R represents a small reflection whereby the backward
wave is only a small fraction of the forward wave.

We shall see in subsequent sections that this definition of R is only possible when
conditions at the reflection site are such that the reflected wave is of the same form
as the forward wave. Under more general conditions R may become complex, with
real and imaginary parts, thus giving rise to a reflected wave that is not of the same
form as the forward wave. Similarly, in the above formulation the wave speed c is
assumed to be the inviscid wave speed c0. More generally, as seen in Sect. 5.9, c is a
complex entity, with real and imaginary parts, thus again causing the reflected wave
to be different in form from the input wave.

At any point in time t and position x along the tube the prevailing pressure is the
sum of the forward and backward waves evaluated at x; t, that is

p.x; t/ D pf .x; t/ C pb.x; t/

D ei!.t�x=c0/ C Rei!.tCx=c0�2l=c0/ (6.44)

or, in dimensional form

p.x; t/ D p0 � ˚ei!.t�x=c0/ C Rei!.tCx=c0�2l=c0/
�

(6.45)

As in the case of no reflections, the oscillations in space can be separated from the
oscillations in time by writing

p.x; t/ D px.x/ei!t (6.46)

where px.x/ has the same important interpretation as before, namely that of being
the amplitude of time oscillations at any position x along the tube, given by

px.x/ D e�i!x=c0 C Rei!.x�2l/=c0 (6.47)

or, in dimensional form

px.x/ D p0 � ˚e�i!x=c0 C Rei!.x�2l/=c0
�

(6.48)
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This makes it clear that jpx.x/j is no longer constant along the tube as it is in the
absence of wave reflections. In fact it can only become constant if either R D 0 or
l is infinite. The first scenario corresponds to there being perfect conditions at the
end of the tube so that wave reflections are absent, and the second corresponds to
the reflecting end of the tube being infinitely far away so that any reflections from
that end cannot return in finite time.

The extent to which the pressure distribution in a tube is affected by wave
reflections depends also on the frequency !, as is apparent from Eq. 6.47. Since
frequency is related to the wave length L by

L D 2�c0

!
(6.49)

the pressure distribution in Eq. 6.47 can be put in the form

px.x/ D e�2� ix=L C Re2� i.x�2l/=L (6.50)

It is also convenient to introduce

(
x D x=l

L D L=l
(6.51)

whereby Eq. 6.50 takes the normalized form

px.x/ D e�2� ix=L C Re2� i.x�2/=L (6.52)

The advantage of this form is that as the ratio of wave length to tube length varies,
the full range of positions along the tube is always described by x D 0 to x D 1:0.
An important reference case to consider is that for which the wave and tube lengths
are equal, thus L D 1, e�4� i=L D 1, and Eq. 6.52 reduces to

px.x/ D e�2� ix C Re2� ix (6.53)

D .R C 1/ cos 2�x C i.R � 1/ sin 2�x (6.54)

The distribution of jpx.x/j at different positions along the tube is shown in Fig. 6.4,
to be compared with the constant distribution seen in Fig. 6.3 where wave reflections
are absent.

Analytically, from Eq. 6.53 we now have

jpx.x/j D
p

R2 C 1 C 2R cos 4�x (6.55)
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Fig. 6.4 Progression of a sinosoidal pressure wave along an elastic tube in the presence of 80 %
wave reflections (R D 0:8), to be compared with the corresponding results in Fig. 6.3 where
wave reflections are absent. Individual curves in the top three panels represent the total (forward
plus backward) pressure waves at different times within the oscillatory cycle, plotted in terms of
normalized distance x along the tube, where x D 0 at entrance and x D 1:0 at exit. The outer
envelope in the bottom panel represents the peaks of these waves at different points along the tube,
or the amplitude of time oscillations of pressure at different positions along the tube. The shape of
the envelope is affected critically by the ratio of wave length over tube length (L). In this figure
L D 1:0.

compared with the result in Eq. 6.39 for the case in which wave reflections are
absent. In particular, the value of jpx.x/j is maximum at x D 0; 1=2; 1, and
minimum at x D 1=4; 3=4. At the maximum points the forward and backward
waves add, while at the minimum points they subtract.

Since jpx.x/j represents the amplitude of time oscillations at normalized position
x along the tube, it is seen that these oscillations will have different amplitude at
different positions whenever R ¤ 0. The distribution of jpx.x/j is relatively easy
to describe in the special case of L D 1, but it becomes more complicated for
other values of L and for specific values of the reflection coefficient R where the
forward and backward waves combine in more complicated ways. Results for L D
2; 3; 4; 5; 10 are shown in Figs. 6.5, 6.6, 6.7, 6.8 and 6.9.
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Fig. 6.5 Same as in Fig. 6.4 but with L D 2.

6.5 Pressure-Flow Relations

The ultimate purpose of determining the pressure distribution in a tube is to obtain a
measure of the flow within the tube and determine the relationship between pressure
and flow. In steady flow, the relation between pressure and flow is dominated and
fully determined by the viscous resistance to flow at the tube wall. Equation 3.43
illustrates the simple relation which exists in this case between the flow rate qs

and the constant pressure gradient ks. In pulsatile flow through a rigid tube the
relation between pressure and flow is again affected by viscous resistance but now
also by inertia of the fluid because of repeated acceleration and deceleration of the
fluid within the oscillatory cycle. Thus the oscillatory frequency becomes an added
factor in the relation between pressure and flow, as can be seen in Eq. 4.43 for the
oscillatory flow rate q�.t/ in pulsatile flow through a rigid tube.

In pulsatile flow through an elastic tube the elastic properties of the tube become
yet another added factor in the relation between pressure and flow. Equation 5.72
for the axial velocity u.x; r; t/ in this case involves not only viscosity of the fluid
and frequency of oscillation but also elastic properties of the tube wall, embedded
in the parameter G and the wave speed c. Furthermore, the pulsating pressure and
flow in this case propagate in the form of progressive waves, as is apparent from
the presence of x in Eq. 5.72, thus admitting the possibility of wave reflections.
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Fig. 6.6 Same as in Fig. 6.4 but with L D 3.

Results of the previous section demonstrate clearly that wave reflections can affect
the pressure distribution in a tube profoundly because of the superposition of
forward and backward waves.

This new factor in the relation between pressure and flow is important not only
because it can produce major changes in the pressure distribution but also because
these changes are not as easily predictable as they are in the case of viscosity or
frequency. For this reason, in what follows we focus on this factor in particular
and deal with it in isolation so as not to mask it by the effects of viscosity and
frequency which have already been examined. This approach has the advantage
of making the effects of wave reflections more “visible”. As seen in the previous
section, by appropriate scaling the changes in pressure distribution can be expressed
as deviations from a reference state in which the normalized pressure amplitude has
the constant value 1:0 all along the tube. This reference state is attained only in the
absence of wave reflections, thus any deviation from it can be identified immediately
as resulting from wave reflections.

A basic solution for the flow wave follows much the same lines as that for the
pressure. Starting with the solution in Eq. 6.32 as an initial forward pressure wave,
before any reflections, writing

pf .x; t/ D p0ei!.t�x=c0/ (6.56)
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Fig. 6.7 Same as in Fig. 6.4 but with L D 4.

and since pressure and flow are governed by the same wave equations (Eq. 6.20),
we postulate a solution for the corresponding forward flow wave in the form

qf .x; t/ D Bei!.t�x=c0/ (6.57)

where B is a constant.
The relation between pressure and flow is governed by Eq. 6.19. Applying these

to the above pressure and flow waves we obtain

8̂
ˆ̂<
ˆ̂̂:

@qf

@t
C A

�

@pf

@x
D 0

@qf

@x
C A

�c2
0

@pf

@t
D 0

(6.58)

Substituting for pf and qf , both equations yield the same results, namely

B D
�

A

�c0

�
p0 (6.59)



176 6 Wave Reflections

−1
0
1

−1
0
1

no
rm

al
iz

ed
 p

re
ss

ur
e

−1
0
1

0 0.2 0.4 0.6 0.8 1

−1
0
1

normalized distance

Fig. 6.8 Same as in Fig. 6.4 but with L D 5.

and

qf .x; t/ D
�

A

�c0

�
p0ei!.t�x=c0/

D
�

A

�c0

�
pf .x; t/ (6.60)

Similarly, from the result in Eq. 6.44 we have, for the reflected wave

pb.x; t/ D Rp0ei!.tCx=c0�2l=c0/ (6.61)

thus, we postulate a corresponding flow wave

qb.x; t/ D Cei!.tCx=c0�2l=c0/ (6.62)

where C is a constant. Applying the governing equations to these waves we obtain

8̂̂
<̂
ˆ̂̂:

@qb

@t
C A

�

@pb

@x
D 0

@qb

@x
C A

�c2
0

@pb

@t
D 0

(6.63)
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Fig. 6.9 Same as in Fig. 6.4 but with L D 10. Only a small part (10 %) of the wave unfolds within
the tube in this case.

Substituting for pb and qb, both equations yield the same results, namely

C D
��A

�c0

�
Rp0 (6.64)

and

qb.x; t/ D
��A

�c0

�
Rp0ei!.tCx=c0�2l=c0/

D
��A

�c0

�
pb.x; t/ (6.65)

The entity

Y0 D A

�c0

(6.66)
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is known as the “characteristic admittance”8;9;10 of the tube, and it is seen to be a
key parameter in the relation between pressure and flow. Its reciprocal

Z0 D �c0

A
(6.67)

is known as the “characteristic impedance”. From Equations 6.60, 6.65, 6.66, 6.67
we then find

Y0 D qf .x; t/

pf .x; t/
D �qb.x; t/

pb.x; t/
(6.68)

Z0 D pf .x; t/

qf .x; t/
D pb.x; t/

�qb.x; t/
(6.69)

from which we draw the interpretation that Y0 is indeed a measure of the extent
to which the tube “admits” flow, while Z0 is a measure of the extent to which
it “impedes” the flow. The minus sign associated with the backward flow wave
indicates that qb and qf have opposite signs because of their opposite directions.
This issue does not arise in the case of pb and pf since pressure is a scalar quantity.
An important consequence of this is that when the reflected waves are included
in the complete expressions for the pressure and flow waves, we obtain, using
Eqs. 6.56, 6.60, 6.61, 6.65,

p.x; t/ D pf .x; t/ C pb.x; t/

D p0ei!.t�x=c0/ C Rp0ei!.tCx=c0�2l=c0/ (6.70)

q.x; t/ D qf .x; t/ C qb.x; t/

D Y0

�
p0ei!.t�x=c0/ � Rp0ei!.tCx=c0�2l=c0/

	
D q0ei!.t�x=c0/ � Rq0ei!.tCx=c0�2l=c0/ (6.71)

where

q0 D Y0p0 (6.72)

From these results we note that the forward and backward pressure waves add
while the corresponding flow waves subtract. Furthermore, from the definition of
the reflection coefficient (Eq. 6.43) we have

R D pb.l; t/

pf .l; t/
(6.73)

8McDonald DA. Blood flow in arteries. Edward Arnold, London, 1974.
9Fung YC. Biodynamics: Circulation. Springer-Verlag, New York, 1984.
10Milnor WR. Hemodynamics. Williams and Wilkins, Baltimore, 1989.
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Fig. 6.10 At a completely
closed end of a tube, the
reflection coefficient R D 1:0,
the pressure wave is
duplicated, and the flow wave
is “annihilated”.

0.1=Rpf
pb = pf

 pb pb+pf = 2pf

 qf 0.1=R

qb = -qf

 qb qb + qf = 0

and in terms of flow waves, using Eq. 6.68

R D �qb.l; t/

qf .l; t/
(6.74)

Thus a value of R D 1:0 represents a situation in which the flow wave is annihilated,
qb.l; t/ D �qf .l; t/, while the pressure wave is duplicated, pb.l; t/ D pf .l; t/. This
situation would occur when the tube end is completely closed, and the results are
therefore consistent with what would be expected on physical grounds (Fig. 6.10).

A value of R D �1:0, similarly, represents a situation in which the flow
wave is duplicated, qb.l; t/ D qf .l; t/, while the pressure wave is annihilated,
pb.l; t/ D pf .l; t/. This situation would occur when the tube end is completely
open, and the results are again consistent with what would be expected on physical
grounds (Fig. 6.11).

A value of R D 0, finally, represents a situation in which both the flow and
the pressure waves are unchanged, that is qb.l; t/ D 0, pb.l; t/ D 0. This situation
would occur when the tube end is completely matched with another tube of the
same properties. In this case no reflections arise, as would be expected on physical
grounds (Fig. 6.12).
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Fig. 6.11 At a completely
open end of a tube, the
reflection coefficient
R D �1:0, the pressure wave
is “annihilated”, and the flow
wave is duplicated.

0.1-=Rpf
pb = -pf

 pb pb + pf = 0

qf R = -1.0

qb = qf

qb qb + qf = 2qf

Fig. 6.12 At a completely
matched end of a tube, the
reflection coefficient R D 0,
no reflections arise and the
pressure and flow waves are
unchanged.

0=Rpf
pb = 0

pb pb + pf = pf

qf R = 0

qb

qb = 0

qb + qf = qf

6.6 Effective Admittance/Impedance

Results of the previous section make it clear that in the presence of wave reflections
the pressure and flow waves within a tube no longer have the same form (Eqs. 6.70
and 6.71). One of the most important consequences of this is a change in the
ratio of flow to pressure and hence a change in the admittance, and by implication
impedance, of the tube. The characteristic admittance Y0 is no longer a measure
of the extent to which the tube admits flow, a new “effective admittance” Ye takes
its place.
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To determine the effective admittance, consider first a single tube extending from
x D 0 to x D l in which the reflection coefficient at x D l is R. By common
convention the effective admittance Ye of the tube is defined as the ratio of flow
to pressure at the tube entrance (x D 0), hence it is also known as the “input
admittance”. By this definition, using Eqs. 6.70 and 6.71 we then have

Ye D q.l; t/

p.l; t/
(6.75)

D Y0

�
1 � Re�2i!l=c0

1 C Re�2i!l=c0

�
(6.76)

The same comments and discussion apply to impedance and to the corresponding
concepts of “effective impedance” or “input impedance” Ze, in which case we have

Ze D p.l; t/

q.l; t/
(6.77)

D Z0

�
1 C Re�2i!l=c0

1 � Re�2i!l=c0

�
(6.78)

Because of the simple reciprocal relation between admittance and impedance,
therefore, in the remainder of this section we shall confine discussion to admittance
only.

It is clear from Eq. 6.76 that the effective admittance Ye will be different from the
characteristic admittance Y0 as long as R ¤ 0, that is as long as wave reflections are
present. In the most basic scenario, the reflection coefficient R at x D l may result
from a transition at x D l from one tube in which the characteristic admittance is
Y0;1 to another in which the admittance is Y0;2 (Fig. 6.13).

The reflection coefficient at the junction between the two tubes can be expressed
in terms of the difference between the two admittances by applying two conditions
at that junction. The first condition requires that the sum of forward and backward

Fig. 6.13 Wave reflections
occur when the pressure or
flow wave meets a change of
admittance from Y0 in one
tube to Yt in another. The
reflection coefficient R is
equal to 1:0 when Yt is zero,
�1:0 when Yt is infinite, and
0 when Yt D Y0. The three
situations are the same as
those illustrated in Figs. 6.10,
6.11 and 6.12.

Y0 Yt

 R = 
Y0 - Yt
Y0 + Yt
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pressure waves evaluated at x D l in the first tube be equal to the forward pressure
wave evaluated at x D 0 in the second tube, that is, with obvious notation

p1;f .l; t/ C p1;b.l; t/ D p2;f .0; t/ (6.79)

The second condition requires that the vector sum of the forward and backward flow
at x D l in the first tube be equal to the forward flow at x D 0 in the second tube,
that is

q1;f .l; t/ C q1;b.l; t/ D q2;f .0; t/ (6.80)

noting, that q1;f and q1;b have different signs, hence the sum on the left actually
represents the difference between the two flows.

Substituting from Eq. 6.68 for the flow rates in Eq. 6.80, we then have

Y0;1 � p1;f .l; t/ � Y0;1 � p1;b.l; t/ D Y0;2 � p2;f .0; t/ (6.81)

and using Eq. 6.79 this becomes

Y0;1 � p1;f .l; t/ � Y0;1 � p1;b.l; t/ D Y0;2 � ˚p1;f .l; t/ C p1;b.l; t/
�

(6.82)

Since by definition of the reflection coefficient (Eq. 6.73)

p1;b.l; t/

p1;f .l; t/
D R (6.83)

substitution this in Eq. 6.82 yields

R D Y0;1 � Y0;2

Y0;1 C Y0;2

(6.84)

We see that the reflection coefficient is zero when Y0;1 D Y0;2, that is when there
is no change of admittance at the junction between the two tubes. The coefficient
is equal to 1:0 when Y0;2 D 0, that is when the admittance of the second tube is
zero, there is complete blockage and hence total reflection. The reflection coefficient
is equal to �1:0, finally, when Y0;2 is infinite, that is when the second tube is
completely open and offers no impedance to flow (or infinite admittance). These
3 situations are illustrated in Figs. 6.10, 6.11 and 6.12.

6.7 Reflection Coefficients

In the previous section we considered the simple situation of only two tubes in
succession, with wave reflections arising at the interface between the two tubes
because of a difference in their admittances. As a result of wave reflections,
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the admittance of the tube to which the backward waves return changes from
its characteristic admittance to an “effective admittance” which depends on the
returning waves. This effective admittance, not the characteristic admittance, must
then be used in the calculation of pressure or flow within the tube.

The task of extending this scenario into a vascular tree structure consisting of
many millions of tubes would seem to be intractable at first. For this reason, we
shall begin with only a small generalization from the result of the previous section
and consider a succession of three tubes instead of two. Following the notation of
the previous section, the three tubes shall be identified by subscripts 1; 2; 3 and
the reflection coefficients at the end of each tube shall be denoted by R1; R2; R3

respectively. The task at hand is how to determine the succession of reflection
coefficients R1; R2; R3?

At our disposal are the two main results from the previous section, namely
Eq. 6.76 for the effective admittance Ye and Eq. 6.84 for the reflection coefficient
R. Applying these to the first two tubes, we have

Ye;1 D Y0;1

�
1 � R1e�2i!l=c0

1 C R1e�2i!l=c0

�
(6.85)

and

R1 D Y0;1 � Y0;2

Y0;1 C Y0;2

? (6.86)

or

R1 D Y0;1 � Ye;2

Y0;1 C Ye;2

? (6.87)

where, as in the previous section, subscripts 0; e are being used to denote characteris-
tic and effective admittances, respectively. The questions posed in Eqs. 6.86 and 6.87
illustrate the added complication in extending the results of the previous section to
a succession of more than two tubes. It is clear that the reflection coefficient R1

cannot be based on the characteristic admittance of the second tube as in Eq. 6.86
because of wave reflections at the junction of the second and third tubes represented
by the reflection coefficient R2. In the previous section R2 was zero, hence this added
complication did not arise.

It would seem then that the extension to a succession of more than two tubes
must be based on Eqs. 6.85 and 6.87. However, in the way of application, neither
of the two equations can proceed forward to the third tube (and ultimately larger
succession of tubes). This is because in Eq. 6.85 R1 is not known and in Eq. 6.87
Y2e is not known, which indicates clearly that the analysis must proceed backward,
starting with the third tube (or higher if any). To do so we note first that in order to
simplify the process, Eq. 6.85 can be written as



184 6 Wave Reflections

Ye;1 D Y0;1

�
ei�1 � R1e�i�1

ei�1 C e�i�1

�

D Y0;1

�
.cos �1 C i sin �1/ � R1.cos �1 � i sin �1/

.cos �1 C i sin �1/ C R1.cos �1 � i sin �1/

�

D Y0;1

�
.1 � R1/ cos �1 C i.1 C R1/ sin �1

.1 C R1/ cos �1 C i.1 � R1/ sin �1

�
(6.88)

where

�1 D !l1
c1

(6.89)

and l1; c1 are the length of and the (inviscid) wave speed in the first tube. Then, from
Eq. 6.87 we have

8̂̂
<̂
ˆ̂̂:

1 C R1 D 2Y0;1

Y0;1 C Ye;2

1 � R1 D 2Ye;2

Y0;1 C Ye;2

(6.90)

which finally yields

8̂
ˆ̂<
ˆ̂̂:

Ye;1 D Y0;1

�
Ye;2 C iY0;1 tan �1

Y0;1 C iYe;2 tan �1

�

R1 D Y0;1 � Ye;2

Y0;1 C Ye;2

(6.91)

Although R1 has now been eliminated from the equation for Ye;1, the expression for
R1 is included here as a reminder that this expression was used in the process. It
is therefore important to note that in this process R1 is defined not in terms of the
difference between Ye;1 and Ye;2 but in terms of the difference between Y0;1 and Ye;2.

Equations 6.91 thus provide a template for progression from the second tube to
the third. Thus, using this template and proceeding to the second and third tubes,
with obvious notation, we have

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

Ye;2 D Y0;2

�
Ye;3 C iY0;2 tan �2

Y0;2 C iYe;3 tan �2

�

R2 D Y0;2 � Ye;3

Y0;2 C Ye;3

�2 D !l2
c2

(6.92)
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and in general, if the number of successive tubes is N, then

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

Ye;j D Y0;j

�
Ye;jC1 C iY0;j tan �j

Y0;j C iYe;jC1 tan �j

�

Rj D Y0;j � Ye;jC1

Y0;j C Ye;jC1

, j D 1 � � � N � 1

�j D !lj
cj

(6.93)

It will be noted that this formula can only be evaluated backward because the
effective admittance of each tube requires the effective admittance of the next
tube. Also, Eq. 6.93 determines the effective admittances of all the tubes except
the last one. The effective admittance of the last tube must be known or specified.
Equations 6.93 set the stage for considering the problem of wave propagation and
wave reflections in a vascular tree structure, which we deal with in full in the next
Chapter.

6.8 Secondary Wave Reflections

So far in this chapter, a wave reflected at one end of a tube and traveling back toward
the other end of the tube was assumed not to be reflected again at that end. In this
context the first reflection would be referred to as a “primary wave reflection” while
subsequent reflections would be referred to as “secondary wave reflections”. In this
section we consider the latter briefly.

If wave reflections at both ends of a tube are considered, a wave originating at
x D 0 in a tube of length l will be partly reflected at x D l and the reflected part will
travel back toward x D 0 where it is in turn partly reflected and so on.11 In principle
this process will continue indefinitely, though clearly with diminishing effects since
the reflected part of the wave is each time only a fraction of the incident wave as
illustrated schematically in Fig. 6.14.

We begin by considering an initial wave propagating in the positive x-direction
in a tube of length l, writing, as in Eq. 6.35

p .0;f /.x; t/ D ei!.t�x=c0/ (6.94)

D p .0;f /
x .x/ei!t (6.95)

11Kenner T, 1969. The dynamics of pulsatile flow in the coronary arteries. Pflügers Archiv;
European Journal of Physiology 310:22–34.
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Fig. 6.14 Wave reflections at
both ends of a tube. Pressure
or flow waves travel back and
forth, indefinitely, though
each time being reduced in
magnitude by the reflection
coefficient.

R0 R1

where here the superscript 0 is being used to identify the initial state of the wave,
before any reflections, and the superscript f is being used to indicate that this is a
forward wave, moving in the positive x-direction. Backward waves, moving in the
negative x-direction, shall be identified by a superscript b. As in Eq. 6.35, this wave
is being represented here by two oscillatory functions, one in time, represented by
ei!t, and one in space, represented by

p .0;f /
x .x/ D e�i!x=c0 (6.96)

As before, the wave is in normalized form, such that

8̂
<̂
ˆ̂:

p .0;f /.0; 0/ D 1:0

p .0;f /
x .0/ D 1:0

p .0;f /
x .l/ D e�i!l=c0

(6.97)

As we saw in the previous sections, the effects of wave reflections is to change
the form of space oscillations within the tube, leaving the form of time oscillations
unchanged. Thus, px.x/ begins as a simple complex exponential function when wave
reflections are absent, as in Eq. 6.98, then becomes more composite as the primary
reflected wave is added. In this section we pursue this process to its ultimate limit as
the primary wave reflections are now followed by secondary wave reflections, that
is reflected waves now go back and forth between the two ends of the tube.

To consider this process in detail, it is useful to think of the x-oscillatory function
as arising from an input pressure amplitude p0; f x.0/ at the tube entrance which is
then “operated on” by the complex exponential function representing the translation
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of that input into a wave form p0; f x.x/ along the tube. We shall find this concept
useful as the wave is reflected back and forth, and to make use of it we write Eq. 6.98
in the form

p .0;f /
x .x/ D fp .0;f /

x .0/ge�i!x=c0 (6.98)

As this wave reaches the other end of the tube (x D l), its value at that point,
multiplied by the reflection coefficient (Rl) there, becomes the “input pressure
amplitude” for the reflected wave. This resulting backward wave progresses in the
negative x-direction, and its distance as it moves away from the reflection site is
(l � x) in place of x for the forward wave. The net result is

p .0;b/.x/ D fRle
�i!l=c0ge�i!.l�x/=c0

D Rle
�i!.2l�x/=c0 (6.99)

It will be noted that the sum of p .0;f /.x/ from Eq. 6.98 and p .0;b/.x/ from Eq. 6.99 is
identical with the result obtained in the previous section (Eq. 6.47) for the pressure
wave after only one primary reflection. In this section we continue this process
beyond the primary stage.

As the backward wave reaches the entrance of the tube and is allowed to be
reflected there, the value of p .0;b/.x/ at that point (x D 0), multiplied by the
reflection coefficient (R0) there, becomes the input pressure amplitude for the next
forward wave, that is

p .1;f /
x .x/ D fR0Rle

�i!2l=c0ge�i!x=c0

D R0Rle
�i!.2lCx/=c0 (6.100)

The pattern is now established for subsequent reflections, as waves move back
and forth between the two ends of the tube, we have

p .1;b/
x .x/ D fR0R2

l e�i!3l=c0ge�i!.l�x=c0/

D R0R2
l e�i!.4l�x/=c0 (6.101)

p .2;f /
x .x/ D fR2

0R2
l e�i!4l=c0ge�i!x=c0

D R2
0R2

l e�i!.4lCx/=c0 (6.102)

p .2;b/
x .x/ D fR2

0R3
l e�i!5l=c0ge�i!.l�x=c0/

D R2
0R3

l e�i!.6l�x/=c0 (6.103)



188 6 Wave Reflections

The net pressure distribution within the tube consists of the sum of all the forward
and backward waves, that is

px.x/ D p .0;f /
x .x/ C p .1;f /

x .x/ C p .2;f /
x .x/ C � � �

C p .0;b/
x .x/ C p .1;b/

x .x/ C p .2;b/
x .x/ C � � � (6.104)

D e�i!x=c0 C R0Rle
�i!.2lCx/=c0

C R2
0R2

l e�i!.4lCx/=c0 C � � �
C Rle

�i!.2l�x/=c0 C R0R2
l e�i!.4l�x/=c0

C R2
0R3

l e�i!.6l�x/=c0 C � � � (6.105)

D e�i!x=c0f1 C .R0Rle
�i!2l=c0 /

C .R0Rle
�i!2l=c0 /2 C .R0Rle

�i!2l=c0 /3 C � � � g
C Rle

�i!.2l�x/=c0f1 C .R0Rle
�i!2l=c0 /

C .R0Rle
�i!2l=c0 /2 C .R0Rle

�i!2l=c0 /3 C � � � g (6.106)

The series inside the curly brackets is an infinite geometric series in �, where

� D R0Rle
�i!2l=c0 < 1 (6.107)

and therefore12

1 C � C �2 C �3 C : : : D 1

1 � �
(6.108)

Thus Eq. 6.106 for the pressure distribution along the tube reduces to the much
simpler form

px.x/ D e�i!x=c0 C Rle�i!.2l�x/=c0

1 � R0Rle�i!2l=c0
(6.109)

Comparing this with the result obtained in the previous section (Eq. 6.47), it is
seen that the two become identical when R0 D 0, that is when there are no
reflections from the tube entrance as was assumed in the previous section. Despite
this difference, in many studies of wave reflections it is found adequate to use the

12Spiegel MR, 1968. Mathematical handbook of Formulas and Tables. McGraw-Hill, New York.



6.8 Secondary Wave Reflections 189

results of primary reflections only13;14;15;16. One justification for this is that the term
in the denominator of Eq. 6.109 contains the product of two reflection coefficients
which usually have values, in magnitude, less than 1:0.

13Duan B, Zamir M, 1993. Reflection coefficients in pulsatile flow through converging junctions
and the pressure distribution in a simple loop. Journal of Biomechanics 26:1439–1447.
14Duan B, Zamir M, 1995. Mechanics of wave reflections in a coronary bypass loop model: The
possibility of partial flow cut-off. Journal of Biomechanics 28:567–574.
15McDonald DA, 1974. Blood flow in arteries. Edward Arnold, London.
16Milnor WR, 1989. Hemodynamics. Williams and Wilkins, Baltimore.



Chapter 7
Flow in Branching Tubes

7.1 Introduction

It seems reasonable to think of blood vessels as “tubes” because the physical
principles of flow in tubes is at the core of how blood is conveyed within the body.
Indeed, the study of these principles has been the declared theme of this book, and
“flow in tubes” has been the language we used so far and the language we will
continue to use. Yet, paradoxically, it would be a gross error to think of the arterial
tree as only a system of branching tubes, a system of passive conduits.

In the design of the arterial tree biology has taken the use of fluids and fluid flow
to a higher level of sophistication than that of flow in a single tube. Here, biology
has used the complex pressure-flow relationships made possible by the hierarchical
branching structure of the arterial tree as tools by which a seemingly passive system
of tubes becomes a living organ!.

The notion that the arterial tree is a living organ may seem odd from the
perspective of hemodynamics where, as we have seen, the governing principles of
pressure and flow reside decidedly in the domains of mathematics and physics. But
if the hemodynamic system is viewed more widely, and perhaps more accurately, as
part of a living organism, then it should not be odd to view the arterial tree in turn
as part of that biological scheme.

There is no contradiction in saying that the physical principles of flow in tubes are
at the very core of hemodynamics but that these principles alone do not constitute
the entire sphere of hemodynamics. They constitute only the mechanisms by which
the principles of flow in tubes are used in the cardiovascular system to construct
a living hemodynamic system. In this chapter we examine first the structure and
then the dynamics of flow in arterial trees to unveil the mechanisms they provide to
endow a system of branching “tubes” with the characteristics of a living organ.

© Springer International Publishing Switzerland 2016
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Engineering, DOI 10.1007/978-3-319-24103-6_7
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7.2 Arterial Bifurcation

When we look at the way biology has dealt with the seemingly impossible task
of taking blood from a single source (the heart) and delivering it individually to
billions of blood cells within the body, what we see is not a mass of long tubes but
a meticulous system of branching tubes. Repeatedly, we see a blood vessel dividing
into two branches, then the branches in turn dividing into branches and so on, thus
forming a hierarchical tree structure. Nowhere do we see two tubes running side
by side toward two destinations. What we see instead is a single tube running part
of the way and then bifurcating to reach the two destinations. The vascular system
is indeed better described as a plethora of bifurcations rather than a plethora of
tubes or vessels. Indeed, the vast number and close succession of bifurcations within
the vascular tree calls into question the wide use of the terms “vessel” or “artery”
because, as we shall see, the objects which these terms refer to cannot be easily
defined or measured. In what follows and in the rest of this book, therefore, we shall
use the terms “vessel segment” or “arterial segment” instead, to mean simply and
more accurately the vascular segment between two successive bifurcations.

The branching structure of the arterial tree allows the “sharing” of vessel
segments so that blood flow to each tissue cell within the body does not have to
be carried individually from source to destination. The branching tree structure
eliminates the need to run tubes in parallel. In doing so, saving occurs at each
bifurcation and is multiplied many times over by the large number (billions) of
bifurcations that make up the arterial tree.

Arterial “bifurcation” is thus the kernel or the structural unit of the arterial
tree whereby typically a parent vessel segment divides into two branch segments.
Data from the cardiovascular system have shown that division into more than two
branches is very rare. More common are two divisions in very close succession.
The three vessel segments forming a bifurcation are usually found to lie in the same
plane, but a change in the orientation of this plane from one bifurcation to the next
produces highly three dimensional tree structures. Also, wide variation is found in
the degree of asymmetry of arterial bifurcations, that is the degree to which the two
branch vessel segments are of unequal caliber, thus resulting in highly nonuniform
tree structures.

There has been a great deal of work and wide ranging literature on the subject
of arterial bifurcations and arterial branching dating back to the classical
work of Murray in 1926.1 The purpose of this section is not to provide a survey
of this literature but to provide a basic understanding of the subject for use in
subsequent chapters. A comprehensive review of the literature is not available.
For partial reviews and some references see below.2;3

1Murray CD, 1926. The physiological principle of minimum work applied to the angle of branching
of arteries. Journal of General Physiology 9:835–841.
2Zamir M. The Physics of Pulsatile Flow. Springer-Verlag, New York, 2000.
3Zamir M. Vascular system of the human heart: Some branching and scaling issues. In: Brown JH,
West GB (eds.). Scaling in Biology. Oxford University Press, 2000.
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q1

 d0

d1q0

d2

q2

Fig. 7.1 Arterial bifurcation, the basic structural unit of an arterial tree. A parent vessel of
diameter d0 divides into two branch vessel segments of diameters d1; d2. Conservation of mass
requires that flow rate q0 in the parent vessel must equal the sum of flow rates in the daughter
vessels, q1 C q2. Combined with the cube law, this provides an important “optimum” relation
between the 3 diameters involved, namely d3

0 D d3
1 C d3

2 .

The geometrical structure of arterial bifurcations has been found to obey physical
principles which can be described mathematically and which are strongly tied to the
power law relationship between the radius of a vessel segment and the flow rate
which it carries as introduced by Murray in the form of the cube law (Eq. 3.11).
In particular, if the radii of the parent and branch vessel segments at an arterial
bifurcation are denoted by a0; a1; a2 (Fig. 7.1), and if we use the convention of
always taking a1 � a2, then a useful bifurcation index can be defined by

˛ D a2

a1

(7.1)

The value of ˛ then ranges conveniently between 0 and 1:0. A highly nonsymmet-
rical bifurcation is one for which the value of ˛ is near zero, while a “symmetrical”
bifurcation is one for which ˛ D 1:0.

Another important measure at an arterial bifurcation is the area ratio

ˇ D a2
1 C a2

2

a2
0

(7.2)
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which is the ratio of the combined cross sectional area of the two daughter segments
over that of the parent segment. Values of ˇ greater than 1:0 produce expansion
in the total cross sectional area available to flow as it progresses from parents to
daughters and thus from one level of the vascular tree to the next.

Conservation of mass at an arterial bifurcation requires that flow rate in the parent
vessel segment must equal the sum of flows in the two branch segments, thus if these
rates are denoted by q0; q1; q2 respectively, then

q0 D q1 C q2 (7.3)

The geometrical structure of an arterial bifurcation is then determined from an
assumed power law relation between the radii of the three vessels involved and
the flow rate which they carry, (q / a
 ) as in Eq. 3.98. The process is much the same
as that discussed in Sect. 3.12. At first we illustrate this process by using the cube
law (
 D 3). The analysis can be extended to other values of 
 in a straightforward
manner as in that section. Thus, based on the cube law, Eq. 7.3 provides a relation
between the radii of the three vessel segments at an arterial bifurcation, namely

a3
0 D a3

1 C a3
2 (7.4)

In terms of the bifurcation index ˛ (Eq. 7.1), this relation can be written as

8̂̂
<
ˆ̂:

a1

a0

D 1

.1 C ˛3/1=3

a2

a0

D ˛

.1 C ˛3/1=3

(7.5)

and substituting these into Eq. 7.2 yields a relationship between the bifurcation
index and the area ratio ˇ

ˇ D 1 C ˛2

.1 C ˛3/2=3
(7.6)

For a symmetrical bifurcation (˛ D 1:0) we find

a1

a0

D a2

a0

D 2�1=3 � 0:7937 (7.7)

ˇ D 21=3 � 1:2599 (7.8)

thus, characteristically, and based on the cube law, in the division from parent to
daughters at an arterial bifurcation the vessel radii are reduced by approximately
21 % while the cross sectional area is increased by approximately 26 %.

Arterial trees are made up of a large number of repeated bifurcations to produce
a large number of small vessels (arterioles, capillaries) at the delivering end of the



7.2 Arterial Bifurcation 195

tree. If the tree structure begins with a single tube segment which bifurcates again
and again, each time doubling the number of segments involved, the number of such
“generations” required to reach a large number of end vessels is fairly small. Only
30 generations produce over 109 end segments.

The total cross sectional area available to the flow generally increases at each
generation, the increase being mediated by values of the area ratio ˇ greater than
1:0 at individual bifurcations. An accepted estimate in the systemic arterial tree is
that the increase in cross sectional area from the aorta to the capillaries is by a factor
of about 1000.4 Since flow rate is equal to the average flow velocity times the cross
sectional area available to the flow, the increase in cross sectional area available to
the flow from the aorta to the capillaries is matched by a corresponding decrease
in the average velocity from that in the aorta to what is needed in the capillaries in
order to allow diffusion to occur across the capillary walls. If the increase in cross
sectional area is assumed to occur over 30 generations in a uniform tree structure in
which the value of ˇ is the same at every bifurcation, then an estimate of that value
is given by

ˇ30 D 1000 (7.9)

which yields

ˇ D 101=10 � 1:2589 (7.10)

Comparing this value with that obtained from the cube law (Eq. 7.8), the closeness
of the two values is quite remarkable because of the widely different considerations
on which they are based.

While these results are based on the cube law and are therefore limited by the
simplifying assumption on which that law is based (Sect. 3.11) , they have found
considerable support from biological data. If instead of the cube law a more general
power law relationship between flow rate and tube radius is used (Eq. 3.98), the
following results are obtained in terms of the power law index 


a

0 D a


1 C a

2 (7.11)

8̂̂
<
ˆ̂:

a1

a0

D 1

.1 C ˛
 /1=


a2

a0

D ˛

.1 C ˛
 /1=


(7.12)

ˇ D 1 C ˛2

.1 C ˛
 /2=

(7.13)

4Burton AC. Physiology and Biophysics of the Circulation. Year Book Medical Publishers,
Chicago, 1965.
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and for a symmetrical bifurcation (˛ D 1:0)

a1

a0

D a2

a0

D 2�1=
 (7.14)

ˇ D 21�2=
 (7.15)

The “efficiency” or “optimality” of an arterial bifurcation lies not only in
the optimality of the relationship between vessel radius and flow rate but in the
optimality of branching angles which the two branch vessel segments make as they
branch off the parent vessel segment. Specifically, at an arterial bifurcation, blood
flow from point A at the upstream end of the parent vessel segment is destined to
reach points B and C at the downstream ends of the two branch vessel segments
(Fig. 7.2 ).

Instead of running two separate tubes from A to B and from A to C, the bifurcation
makes it possible to share the flow from A to some junction point J and only then
dividing into two separate tubes. The saving is approximately that of running only
one tube from A to J instead of two.

A

 J

CB

Fig. 7.2 Bifurcation principle: an arterial bifurcation makes it possible for flow from point A to
reach points B and C without running two separate tubes from A to B and C. Instead, flow is
“shared” from A to some junction point J before dividing into two separate tubes.
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In Poiseuille flow the power H required to drive a flow rate q through a tube of
radius a is proportional to q2a�4 (Eq. 3.60), and if the cube law is assumed to hold
(Eq. 3.97), this gives H / a2. Thus if the powers required to drive the flow in tubes
of radii a0; a1; a2 are denoted by H0; H1; H2, then the fractional difference between
running two tubes of radii a1; a2 from A to J or only one tube of radius a0, is given
by, in nondimensional form,

H1 C H2 � H0

H0

D a2
1 C a2

2 � a2
0

a2
0

D ˇ � 1 (7.16)

Since the value of ˇ is generally higher than 1:0, the result is positive. If the
bifurcation is symmetrical and we take ˇ � 1:26 as determined by the cube law
(Eq. 7.8), a saving of 26 % is realized by running a single tube instead of two.

This calculation is only approximate, however, since a straight line from A to B
would be shorter than one from A to J plus one from J to B, and similarly for a line
from A to C. In fact to account for these differences an optimality problem must
be solved for the position of the junction point J, which determines the branching
angles �1; �2 which the two branch vessel segments should optimally make with the
direction of the parent vessel (Fig. 7.3 ). It is found5;6 that in order to minimize
the pumping power required to drive the flow through the junction, and based on
the assumption of Poiseuille flow again, optimum branching angles are given by

8̂̂
<̂
ˆ̂̂:

cos �1 D .1 C ˛3/4=3 C 1 � ˛4

2.1 C ˛3/2=3

cos �2 D .1 C ˛3/4=3 C ˛4 � 1

2˛2.1 C ˛3/2=3

(7.17)

These results indicate that the branch with the smaller diameter should optimally
make a larger branching angle (Fig. 7.3), which is fairly well supported by obser-
vations from the cardiovascular system. In the limit of a very small branch with
˛ � 0, the results indicate that the branching angle of the larger branch is near zero
while that of the smaller branch is near 90ı. This again is supported by observations
from the cardiovascular system and is in fact the basis of the common term “small
side branch”. Other optimality principles for branching angles have been used and
have produced qualitatively similar results.

5Murray CD, 1926. The physiological principle of minimum work applied to the angle of branching
of arteries. Journal of General Physiology 9:835–841.
6Zamir M, 1978. Nonsymmetrical bifurcations in arterial branching. Journal of General Physiology
72:837–845.
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θ1

 θ2

Fig. 7.3 Optimum branching angles. The fluid dynamic efficiency of an arterial bifurcation is
affected by the angles at which the two daughter vessels “branch off”. Optimally the larger branch
makes a smaller branching angle than the smaller branch. In the limit, a small “side branch” comes
off at almost 90ı while the branching angle of the larger branch is close to zero (inset).

7.3 Steady Flow Along Tubes in Series

As a prelude to flow in a sequence of tubes in series, consider flow in a single tube
at first, in which we set a coordinate x along the axis of the tube, being zero at the
entrance and positive in the direction of the flow. In contrast with the analysis in
Sect. 3.8 where flow q is expressed in terms of a pressure difference �p between the
two ends of the tube, the aim here is to consider both the flow and pressure as being
functions of position x along the tube, as shown in Fig. 7.4 .

To do this we use Eqs. 3.23 and 3.43 to write

dp

dx
D �

�
8�

�a4

�
q (7.18)

which, upon integration, gives

p.x/ D p.0/ �
�

8�

�a4

�
q x (7.19)
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x

x0=0 x0=l0
x1=0

x1=l1

x1

p0(x0) p1(x1)

p(x)

Fig. 7.4 In unlumped-model analysis the pressure p in a tube is considered as a function of
streamwise position coordinate x measured from the tube entrance. In a sequence of tube segments
in series, the pressure and the position coordinate are re-defined in each tube segment and are
confined to that tube only.

where p.0/ is the pressure at the tube entrance (x D 0), a is the tube radius and � is
the viscosity of the fluid. If the tube length is l, then the pressure at the other end of
the tube is

p.l/ D p.0/ �
�

8�

�a4

�
q l (7.20)

which is the same as the result obtained in Sect. 3.8, noting that in that section
(Eqs. 3.28 and 3.29) a constant pressure gradient was used, defined by

k D ��p

l
D p.l/ � p.0/

l
(7.21)

The main focus in this section is on Eq. 7.19 in which the pressure is seen as a
function of position x, and on using this equation to track the pressure distribution
in a system of tubes. For this purpose, consider only two tube segments in series at
first, to be identified by subscripts 0 and 1. Allowing the lengths and radii of the two
segments to be different but using the same flow rate, then Eq. 7.19 gives
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8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂:

p0.x0/ D p0.0/ �
�

8�

�a4
0

�
q x0

p1.x1/ D p1.0/ �
�

8�

�a4
1

�
q x1

:::

pn.xn/ D pn.0/ �
�

8�

�a4
n

�
q xn

(7.22)

where x0 and p0.x0/ are the streamwise coordinate and corresponding pressure in
the first tube only, and similarly for the second tube identified by subscript 1, and
subsequent tubes identified by subscripts 2; 3 � � � n, as illustrated in Fig. 7.4 . In these
expressions we are clearly assuming that the idealized conditions of Poiseuille flow
prevail along the full length of each tube segment, neglecting deviations from these
conditions at entry and exit regions and at the junction between two tube segments.
Thus, the results to follow will be inaccurate locally in these regions, but our interest
here and in subsequent sections is primarily in the global pressure distribution along
a large number of tube segments connected in series or in a branching pattern.

It is important to note that the domain of p0 is restricted to the first tube segment
only, and the domain of p1 is restricted to the second tube segment only. Thus, p1

is a function of x1 only, and p1.0/ is therefore the value of p1 at x1 D 0 with no
ambiguity. Similarly, p0 is a function of x0 only, and p0.0/ and p0.l0/ are values of
p0 at x0 D 0 and at x0 D l0, respectively, again without ambiguity.

Accordingly, the junction between the first two tube segments occurs at x0 D l0
or x1 D 0, and the junction between the second and third tubes occurs at x1 D l0 or
x2 D 0, etc., and on the assumption of pressure continuity at each junction, we have

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

p1.0/ D p0.l0/

p2.0/ D p1.l1/

:::

pn.0/ D pn�1.ln�1/

(7.23)

It is convenient to put these expressions in normalized form, using properties of
the first tube segment as reference properties. Thus the pressures everywhere are
referred to the initial input pressure p0.0/, and the pressure drop in the first tube
segment from Eq. 7.22

�p0 D p0.0/ � p0.l0/

D
�

8�

�a4
0

�
q l0 (7.24)
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is used to define a normalized form of the pressure in each tube segment, namely

P.x/ D p.x/ � p0.0/

�p0

(7.25)

In addition, the position coordinates in each tube segment are normalized by writing

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

X0 D x0=l0

X1 D x1=l1

:::

Xn D xn=ln

(7.26)

so that, in terms of the new position coordinate X, the normalized length of each
tube segment is now 1:0.

Thus, the pressure distributions in Eq. 7.22 can now be put in normalized form

P0.X0/ D p0.x0/ � p0.0/

�p0

D �
�

a0

a0

�4 �x0

l0

�

D �X0 (7.27)

with

P0.1/ D p0.l0/ � p0.0/

�p0

D �1 (7.28)

Similarly, for the pressure distribution in the second tube in normalized form,
using Eq. 7.22 and the result in Eq. 7.28, we have

P1.X1/ D p1.x1/ � p0.0/

�p0

D p1.x1/ � p1.0/

�p0

C p1.0/ � p0.0/

�p0

D p0.l0/ � p0.0/

j�p0j �
�

a0

a1

�4 �x1

l0

�

D �1 �
�

a0

a1

�4 � l1
l0

�
X1 (7.29)
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with

P1.l1/ D p1.l1/ � p0.0/

�p0

D �1 �
�

a0

a1

�4 � l1
l0

�
(7.30)

An iterative pattern is thus established:

P2.X2/ D �1 �
�

a0

a1

�4 � l1
l0

�
�
�

a0

a2

�4 � l2
l0

�
X2 (7.31)

P3.X3/ D �1 �
�

a0

a1

�4 � l1
l0

�
�
�

a0

a2

�4 � l2
l0

�

�
�

a0

a3

�4 � l3
l0

�
X3 (7.32)

and in general

Pn.Xn/ D �1 �
�

a0

a1

�4 � l1
l0

�
�
�

a0

a2

�4 � l2
l0

�
� : : :

�
�

a0

an

�4 � ln
l0

�
Xn (7.33)

The results indicate that in this convenient normalized form, the pressure
distribution along a sequence of tube segments in series consists of a series of linear
pressure drops, with the pressure starting from a normalized value of 0 at entry and
dropping linearly to �1 at the end of the first tube. Subsequent values of the pressure
depend on the lengths and diameters of subsequent tubes.

If, for the purpose of illustration, it is assumed that the tube lengths are
proportional to their diameters, the pressure distribution in each tube segment
becomes dependent on the ratios of radii only, namely

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

P0.X0/ D �X0

P1.X1/ D �1 �
�

a0

a1

�3

X1

P2.X2/ D �1 �
�

a0

a1

�3

�
�

a0

a2

�3

X2

:::

Pn.Xn/ D �1 �
�

a0

a1

�3

�
�

a0

a2

�3

� : : : �
�

a0

an

�3

Xn

(7.34)
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If it is assumed further, for the purpose of illustration again, and for reasons to
become apparent in the next section, that the radii of successive tube segments are
diminishing such that

a0

a1

D a1

a2

D a2

a3

: : : D 21=3 (7.35)

then these results become

8̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
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P0.X0/ D �X0

P1.X1/ D �1 � 21X1

P2.X2/ D �1 � 21 � 22X2

:::

Pn.Xn/ D �1 � 21 � 22 � : : : � 2nXn

(7.36)

and if, for the purpose of comparison, the radii of successive tube segments are
increasing, such that

a0

a1

D a1

a2

D a2

a3

: : : D
�

1

2

�1=3

(7.37)

we find
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(7.38)



204 7 Flow in Branching Tubes

Finally, in the trivial case where successive tube segments have the same
diameters, the results are

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
:

P0.X0/ D �X0

P1.X1/ D �1 � X1

P2.X2/ D �1 � 1 � X2

:::

Pn.Xn/ D �1 � 1 � 1 � : : : � Xn

(7.39)

These results are illustrated graphically in Fig. 7.5, where it is seen that the
above trivial case serves as a good reference in which the pressure distribution in
each tube segment is linear and dropping by the same (normalized) amount of �1.
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Fig. 7.5 Pressure distribution in steady flow along a sequence of tube segments in series. The
streamwise distance X here is a cumulative coordinate along the sequence of tube segments
whereby the normalized length of each tube segment is 1:0. Thus, the first tube segment extends
from X D 0 to X D 1:0, the second extends from X D 1:0 to X D 2:0, etc. If the radii of successive
tube segments are increasing, the pressure drops very rapidly, while if the radii are decreasing the
pressure drops very slowly. In the trivial case where the radii of successive tube segments remain
unchanged, the pressure drops by the same amount (�1:0) in each tube segment, with this case
serving as a useful reference for comparison.
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In the case where the radii of successive tube segments are diminishing, the drops
in pressure in successive segments increase very rapidly, and the reverse happens
when the radii of successive tube segments are increasing. While these examples
are fairly artificial, they serve as useful guides when considering branching tubes.

7.4 Steady Flow Through a Bifurcation

The concept of “arterial bifurcation” as the main building block of the arterial tree
was introduced in Sect. 7.2. In this section we consider the properties of steady flow
through a bifurcation, being modeled, as in that section, by three tube segments as
shown schematically in Fig. 7.6. Subscripts 0, 1, 2 are used to identify the parent and
the two branch segments, respectively, as shown in the figure, with the convention
that subscript 1 shall always be used to identify the branch with the larger diameter.

 q0

q2

 q1

Fig. 7.6 Arterial trees in the cardiovascular system are formed largely by repeated bifurcations
whereby a vessel segment divides into two branches and then each of the branches in turn divides
into two branches, etc. An arterial bifurcation is shown here schematically, with the parent vessel
identified by subscript 0 and the two branches by subscripts 1; 2, with the convention that subscript
1 is always reserved for the branch with the larger radius. Flow rate q0 in the parent vessel is
divided into q1; q2 in the branches.



206 7 Flow in Branching Tubes

With the flow being from parent to branches, conservation of mass requires that flow
rate q0 in the parent vessel be equal to the sum of the flow rates in the two branches,
that is q0 D q1 C q2, as in Eq. 7.3.

The pressure distribution under conditions of steady flow through the bifurcation
can be considered by following two separate streamwise paths: one from parent
to branch-1 and another from parent to branch-2. Along each path the situation
is the same as that of two tubes in series, as considered in the previous section.
It is important to emphasize again that here too we assume that the idealized
conditions of fully developed Poiseuille flow prevail along the full length of each
tube segment, ignoring local deviations at the two ends of each segment. The
justification for this is that we are interested primarily in the pressure distribution
along the tubes forming the bifurcation rather than in the local details of the
flow field within the bifurcation. The only difference here is that, because of flow
division, the flow rates in consecutive tube segments are not the same.

The pressure distribution along the path from the root segment to the first branch,
and the path from the root segment to the second branch, we may then return to
Eq. 7.22 in the previous section and, using the same notation as in that section, write
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(7.40)

and for pressure continuity at the junction of the three tubes

p0.l0/ D p1.0/ D p2.0/ (7.41)

thus the pressure distributions in the three tubes forming the bifurcation (Eq. 7.40)
become
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(7.42)
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The lengths of the three vessel segments can be normalized by writing

8̂̂
<
ˆ̂:

X0 D x0=l0

X1 D x1=l1

X2 D x2=l2

(7.43)

In terms of these coordinates, the normalized length of each of the three vessel
segments is now 1:0, which, as we see shortly, is useful for plotting the pressure
distributions along the paths to the two branches using the same scale regardless
of their different lengths. Furthermore, these pressure distributions can now be put
in normalized form by using the properties of the parent tube segment as reference
properties. In particular, the pressure drop in the parent tube segment, namely

�p0 D p0.0/ � p0.l0/

D 8�

�a4
0

q0l0 (7.44)

is used to put the pressure distributions in Eq. 7.42 in nondimensional form.
Following the same steps as in the previous section and omitting the details, we
find

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

P0.X0/ D �X0

P1.X1/ D �1 �
�

a0

a1

�4 �q1

q0

��
l1
l0

�
X1

P2.X2/ D �1 �
�

a0

a2

�4 �q2

q0

��
l2
l0

�
X2

(7.45)

If for the purpose of illustration it is assumed that the vessel lengths are
proportional to their radii, the pressure distributions in the three tube segments
become

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

P0.X0/ D �X0

P1.X1/ D �1 �
�

a0

a1

�3 �q1

q0

�
X1

P2.X2/ D �1 �
�

a0

a2

�3 �q2

q0

�
X2

(7.46)
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Furthermore, as discussed in Sect. 3.11, it is generally suspected on theoretical
grounds that a power law relation exists between the radius of a blood vessel and
the flow rate which the vessel normally carries, that is, as in Eq. 3.98,

q � a


If this relation is used, the pressure distributions in Eq. 7.46 become

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂:

P0.X0/ D �X0

P1.X1/ D �1 �
�

a0

a1

�3�


X1

P2.X2/ D �1 �
�

a0

a2

�3�


X2

(7.47)

As discussed in Sect. 3.11, the power law relation in Eq. 3.98 also provides a relation
between the radii of the three tubes at a bifurcation, namely

a

0 D a


1 C a

2 (7.48)

Essentially, this relation dictates that if one branch at a bifurcation has a compar-
atively large radius then the other must have a comparatively small one. This is
clearly a reflection of the conservation of mass requirement namely that if one
branch carries a relatively larger proportion of the flow rate then the other must carry
a correspondingly small proportion. As in Sect. 3.11 we introduce a “bifurcation
index”

˛ D a2

a1

(7.49)

Recalling that by convention branch-1 is taken as the branch with the larger radius,
except when the two radii are equal, this index is a measure of the asymmetry of a
bifurcation in terms of the relative radii of its two branches. Its value is 1:0 when the
bifurcation is perfectly symmetrical, meaning that its two branches have the same
radii, and close to zero when the bifurcation is highly asymmetrical, meaning that
one of the two branches has a much larger radius than the other. Thus ˛ has the
convenient range of values of 0–1:0 for the entire spectrum of possible bifurcations.

The relation between the three radii in Eq. 7.48, upon division by a1 or a2, can
be put in terms of the bifurcation index ˛, that is

8̂̂
<̂
ˆ̂̂:

a0

a1

D .1 C ˛
 /1=


a0

a2

D
�

1 C ˛


˛


�1=
 (7.50)
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Using these in diameter ratios in Eq. 7.47, finally, the pressure distributions become

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

P0.X0/ D �X0

P1.X1/ D �1 � ˚
.1 C ˛
 /�1C3=


�
X1

P2.X2/ D �1 �
(�

1 C ˛


˛


��1C3=

)

X2

(7.51)

A considerable volume of work on arterial branching has gone into analysis of the
optimal design of arterial bifurcations which, as we see here, depends primarily on
the value of the power law index 
 in the relation between the radius of a vessel and
the flow rate which that vessel normally carries (Eq. 3.98). Three values in particular
were considered on theoretical grounds, namely 
 D 2; 3; 4, while vessel diameters
actually measured in the cardiovascular system have produced values of 
 highly
scattered within and beyond this theoretical range.7;8

A key consideration in determining the “optimum” value of 
 is the shear stress
�w which blood flow exerts on endothelial tissue and which under the idealized
conditions of Poiseuille flow (Eq. 3.50) is given by

�w D 4�

�

� q

a3

�
(7.52)

or in terms of the pressure drop (Eq. 3.49), to give

�w D �p

2

�a

l

�
(7.53)

where �p is the pressure drop along the tube length l, as defined in Eq. 3.28.
The first of these results indicates that if a power law relation exists between the

radius of a vessel and the flow rate which the vessel carries, then the shear stress in
vessels of different radii would vary as

�w � a
�3 (7.54)

If the value of 
 is less than 3, the shear stress will be higher in vessels of smaller
radii, which clearly cannot be supported on physiological grounds. If the value of

 is more than 3, the shear stress will be lower in vessels of smaller radii, which is
more plausible on physiological grounds. But if the value of 
 is equal to 3 (cube
law), the shear stress in Eq. 7.52 will be altogether independent of the radius a,
which means that the shear stress will be the same in vessels of different radii.

7Zamir M, 1999. On fractal properties of arterial trees. J Theor Biol 197:517–526.
8Zamir M. Vascular system of the human heart: Some branching and scaling issues. In: Brown JH,
West GB (eds.). Scaling in Biology. Oxford University Press, 2000.
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Fig. 7.7 Pressure distributions within the three vessel segments forming an arterial bifurcation,
under the idealized conditions of steady Poiseuille flow and on the assumption of a power law
relation between the radius of each vessel and the flow rate through it. If the power law index is
less than 3, as it is here, the pressure drop in the branch with the smaller radius (branch-2) is higher
than that in the other branch.

Of interest in the present context is the second of the above results, namely that in
Eq. 7.53, which indicates that if the length of a vessel is assumed to be proportional
to its radius then the pressure drop becomes proportional to the shear stress, and
hence everything that has been said above about the shear stress now applies equally
to the pressure drop. In particular, for the two branches at a bifurcation, if the value
of 
 is more than 3, the pressure drop along the branch with the smaller radius is
lower than that along the branch with the larger radius. This is somewhat unlikely
on physiological or fluid dynamic grounds. On the other hand, if the value of 
 is
less than 3, the reverse is true, which is more plausible on both grounds. If the value
of 
 is equal to 3, the pressure drop is the same along both branches. These results
are illustrated in Figs. 7.7, 7.8 and 7.9.

The foregoing discussion leads to an interesting conundrum. From the point of
view of the shear stress acting on endothelial tissue, the more likely values of 
 are
3 or higher, but from the point of view of pressure drop the more likely values are 3

or lower. The only possible compromise between these two requirements is clearly

 D 3, which lends further theoretical support to the cube law. As stated earlier,
values of 
 based on actual measurements from the cardiovascular system have
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Fig. 7.8 Pressure distributions within the three vessel segments forming an arterial bifurcation,
under the idealized conditions of steady Poiseuille flow and on the assumption of a power law
relation between the radius of each vessel and the flow rate through it. If the power law index is
more than 3, as it is here, the pressure drop in the branch with the smaller radius (branch-2) is
lower than that in the other branch.

shown much scatter not only within the range of 2–4 but also outside this range.9

The scatter, however, is generally found to center around the value 
 D 3.

7.5 Branching Tubes: j; k Notation

Considerations underlying the concept of branching tubes were discussed in
Sects. 3.12 and 7.2. Briefly, a system in which the flow to multiple destinations starts
out in a single tube and then divides repeatedly as it approaches these destinations is
the only practical (and efficient) way for blood flow to reach billions of cells within
the body.

Indeed, arterial trees are generally found to consist of a succession of bifurcations
whereby a root vessel segment divides into two branches, then each of the branches

9Zamir M. Vascular system of the human heart: Some branching and scaling issues. In: Brown JH,
West GB (eds.). Scaling in Biology. Oxford University Press, 2000.
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Fig. 7.9 Pressure distributions within the three vessel segments forming an arterial bifurcation,
under the idealized conditions of steady Poiseuille flow and on the assumption of a power law
relation between the radius of each vessel and the flow rate through it. If the power law index is
equal to 3, as it is here, the pressure drop is the same along both branches.

in turn divides into two branches, etc. The “symmetry” of each bifurcation, that is
the relative radii of the two branches, is measured by the bifurcation index ˛ D
a2=a1 introduced in the previous section, where a1; a2 are radii of the two branches,
subscript 1 being reserved by convention to the branch with the larger radius. The
branching process is illustrated schematically in Fig. 7.10 where ˛ D 1:0 and in
Fig. 7.11 where ˛ D 0:7. An 11-level tree with ˛ D 0:7 is shown in Fig. 7.12

In each case, the value of the bifurcation index ˛ is the same at every bifurcation
within the tree structure, thus producing a degree of uniformity which is not
characteristic of arterial trees in the cardiovascular system. Instead, it is found that
the value of ˛ varies widely throughout the tree.10;11

In order to deal with a general branching tree structure, the notation of a single
bifurcation used in the previous section must clearly be generalized to cater for a

10Kassab GS, Rider CA, Tang NJ, Fung YC, Bloor CM, 1993. Morphometry of pig coronary
arterial trees. American Journal of Physiology 265:H350–H365.
11Zamir M, 1999. On fractal properties of arterial trees. Journal of Theoretical Biology
197:517–526.
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α = 1.0

Fig. 7.10 A 5-level branching tree structure in which the value of the bifurcation index ˛ is 1:0,
which means that the two branches at each bifurcation along the tree structure have the same radius.

sequence of consecutive bifurcations and a much larger number of branches. In fact,
the term “branches” used in the previous section to identify the two branch tube
segments at a bifurcation is no longer adequate here because most vessel segments
within a tree structure are both parents and branches. The only tube segments
that can be identified by name here are the root segment and the terminal branch
segments, and we shall continue to use that terminology for these segments.

For general notation throughout the tree structure, however, this descriptive
scheme is rather inadequate and a more analytic scheme is required. For this purpose
we note that each tube segment within a hierarchical tree structure has a unique
position within that structure in terms of the generation or “level” of the tree in
which it is located and in terms of its sequential position among other tube segments
at that level. The terms “level” and “generation” are used interchangeably in this
context and we shall follow this practice.

If the generation at which a vessel segment is situated within a tree structure is
denoted by ‘j’, and its sequential position within that generation is denoted by ‘k’,
then it is appropriate to treat (j; k) as position coordinates of a vessel segment within
the tree structure. Only two numbers are then required to identify the position of any
vessel segment within the tree structure, as illustrated in Fig. 7.13

The convention used in previous sections to designate branch-1 as the branch
with the larger radius at a bifurcation can also be extended. Here we note that a tube
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α = 0.7

Fig. 7.11 A 5-level branching tree as in Fig. 7.10 but with ˛ D 0:7.

segment with position coordinates j; k in general has two branches with position
coordinates (j C 1; 2k � 1) and j C 1; 2k. The k-coordinate of the first of these
(2k � 1) is an odd number while that of the second (2k) is an even number. Thus, to
generalize the convention of the previous sections we reserve the odd k-coordinate
at each bifurcation for the branch segment with the larger radius and the even k-
coordinate for the branch with the smaller radius. An application of this scheme to
the 5-level tree structure is illustrated in Fig. 7.14.

It is important to emphasize that vascular trees within the cardiovascular
system are neither as uniform nor as complete as the tree shown in Fig. 7.14.
That is, vascular trees within the cardiovascular system rarely have the same
value of the bifurcation index at each bifurcation, and they rarely have every
coordinate position (j; k) occupied. The latter occurs because some paths
reach the capillary level in a smaller number of generations than others as
will be discussed in Sect. 7.7. An advantage of the j; k notation system is that
the coordinates of occupied positions within a tree structure are not altered
by any unoccupied positions within that tree. This has an important practical
example when trees from the cardiovascular system are studied by casting or
imaging where, invariably, some branches are lost in the process. The j; k
coordinates of the remaining vessel segments within the vascular tree are
unaltered by the missing branches because the coordinates of each vessel
segment are determined only by its parent as shown in Figs.7.13 and 7.14.
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α = 0.7

Fig. 7.12 An 11-level branching tree as in with ˛ D 0:7.

Finally, the j; k notation provides a simple way of navigating through the
hierarchical structure of a branching tree. Thus, as illustrated in Fig. 7.13, to move
from a parent tube segment .j; k/ to its two branches, we have

parent.j; k/ ! branch1.j C 1; 2k � 1/, branch2.j C 1; 2k/ (7.55)

and to move from a branch segment .j; k/ to its parent, we have

branch.j; k/ ! parent.j � 1;
k C 1

2
/ if k is odd (7.56)

or ! parent.j � 1;
k

2
/ if k is even (7.57)

7.6 Steady Flow in Branching Tubes

Pulsatile flow in the arterial tree consists of a steady flow component and an oscilla-
tory component. Each of these two components relates to different design features
of the arterial tree and to different flow phenomena and governing equations. Both
components are important for an understanding of the arterial tree as a living organ.
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Fig. 7.13 A notation scheme for identifying the positions of vessel segments within a branching
tree structure. A coordinate pair j; k is used such that the first identify the level or generation in
which a vessel segment is situated and the second identifies its sequential position within that
generation. The inset shows that in general at each bifurcation one of the two branch segments has
an odd sequential number and the other has an even sequential number. We use the convention of
reserving the odd sequential number for the branch with the larger radius at each bifurcation.

In this section we examine the steady flow component, using the grounds laid in the
previous three sections.

For this purpose we consider a tree consisting of a system of branching tubes in
which a root tube segment divides into two branches and each of the branches in turn
divides into two branches etc. The pressure distribution within the tree structure is
determined simply by following all possible paths from the root segment of the tree
to the terminal branch segments. Since each of these paths is unique and consists
of a simple succession of tube segments in series, the results of Sect. 7.3 for tubes
in series can then be used, noting only that the flow rate in this succession of tube
segments is not the same but varies according to the bifurcation rules discussed in
Sect. 7.4.

The pressure distribution along any tube segment within the tree structure is
determined by simply following the unique path from the root tube segment of the
tree to that particular segment, using the j; k notation introduced in the previous
section, and following the analysis used in Sect. 7.3. Thus, for the root segment of
the tree (j D 0; k D 1) we write, as in Eq. 7.22
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Fig. 7.14 Application of the j; k notation scheme to a 5-level hierarchical tree structure. Only two
numbers are required to identify the position of a vessel within the tree structure. The bifurcation
index used here is 0:7, which means that at each bifurcation one of the two branches has a larger
diameter than the other. By convention, the odd k-value at each bifurcation represents the branch
with the larger diameter. The path from the root segment to any other segment within the tree
structure is unique. One path of particular significance is that of following the branch with the larger
radius at each bifurcation, another is that of following the branch with the smaller diameter. We
refer to these as “bounding paths”, the first being the “major” path and the second the “minor” path.

p0;1.x0;1/ D p0;1.0/ �
�

8�

�

��
1

a0;1

�4

q0;1 x0;1 (7.58)

where, as in Sect. 7.3, p.x/ is pressure at position x along the tube segment, a
is radius and q is flow rate, all being specific to that particular tube segment as
indicated by the subscripts. � is fluid viscosity.

If we now proceed from the root segment to the branch tube with the larger
radius, hence with coordinates j D 1; k D 1, then the pressure distribution in that
segment is

p1;1.x1;1/ D p1;1.0/ �
�

8�

�

��
1

a1;1

�4

q0;1 x1;1 (7.59)
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and if we continue along the hierarchy of the tree, at each bifurcation choosing the
branch with the larger diameter, then

p2;1.x2;1/ D p2;1.0/ �
�

8�

�

��
1

a2;1

�4

q2;1 x2;1 (7.60)

and in general

pn;1.xn;1/ D pn;1.0/ �
�

8�

�

��
1

an;1

�4

qn;1 xn;1 (7.61)

It is important to note that, as in Sect. 7.3, the domain of p0;1 is confined to the
root tube segment only, and the domain of p1;1 is confined to the branch tube segment
with the larger diameter only, etc. Thus, p0;1 is a function of x0;1 only, and p0;1.0/

is therefore the value of p0;1 at x0;1 D 0 with no ambiguity and, similarly, p1;1 is
a function of x1;1 only. The value of p0;1 at the downstream end of the root tube
segment is p0;1.l0;1/.

Because of pressure continuity, the pressure at the downstream end of the parent
tube segment at each junction point must equal the pressure at the upstream ends of
the two branch segments. Accordingly, the following equalities apply at the junction
points

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

p1;1.0/ D p0;1.l0;1/

p2;1.0/ D p1;1.l1;1/

:::

pn;1.0/ D pn�1;1.ln�1;1/

(7.62)

As in Sect. 7.3, the pressure distribution in successive tube segments can be
normalized by using properties of the root tube segment as reference properties.
Thus the pressures everywhere are referred to the initial input pressure p0;1.0/, and
the pressure drop in the first tube segment from Eq. 7.58

�p0;1 D p0;1.0/ � p0;1.l0;1/ (7.63)

D
�

8�

�

��
1

a0;1

�4

q0;1 l0;1 (7.64)

is used to define a nondimensional form of the pressure in each tube segment,
writing

P.x/ D p.x/ � p0;1.0/

�p0;1

(7.65)
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In addition, the position coordinates in each tube segment are normalized by writing

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

X0;1 D x0;1=l0;1

X1;1 D x1;1=l1;1

:::

Xn;1 D xn;1=ln;1

(7.66)

so that, in terms of the new position coordinate X, the normalized length of each
tube segment is now 1:0.

Thus, the pressure distribution in the root tube segment in Eq. 7.58 can now be
put in nondimensional normalized form

P0;1.X0;1/ D p0;1.x0;1/ � p0;1.0/

�p0;1

D �
�

a0;1

a0;1

�4 �q0;1

q0;1

��
x0;1

l0;1

�

D �X0;1 (7.67)

with

P0;1.1/ D p0;1.l0;1/ � p0;1.0/

�p0;1

D �1 (7.68)

For the pressure distribution in the branch tube with the larger radius, we have

P1;1.X1;1/ D p1;1.x1;1/ � p1;1.0/

�p0;1
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�
� 1
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�
X1;1 (7.69)
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Similarly, and omitting the details, we find

P2;1.X2;1/ D �1 �
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and in general
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As in Sect. 7.3, the results indicate that in this convenient nondimensional form,
the pressure distribution along the designated sequence of tube segments within the
tree structure consists of a series of linear pressure drops, with the pressure starting
from a normalized value of 0 at entry to the root segment and dropping linearly from
there to �1:0 at the end of that segment. Subsequent values of the pressure depend
on the lengths and diameters of subsequent branch segments.

If it is assumed that the tube lengths are proportional to their diameters, the
pressure distributions in subsequent segments become

8̂̂
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(7.72)



7.6 Steady Flow in Branching Tubes 221

If a power law relationship between tube radius and flow rate (q � a
 ) is
assumed, as in Eq. 3.98, then the pressure distributions in Eq. 7.72 become
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Each of the above equations determines the pressure distribution along one tube
segment as indicated by the coordinate subscripts. By choice, the selected segments
in Eq. 7.73 represent a very specific path from the root segment to the nth generation
of the tree which we shall refer to as the “major path” because it follows the branch
with the larger radius at each junction. A counterpart to this path, which is what
we shall referred to as the “minor path”. The pressure distributions in tube segments
along this path are obtained in much the same way as was done along the major
path. Omitting the details, we find
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As seen in Sect. 7.4, the power law relation between tube radius and flow rate also
implies a relation between parent and branch tube radii at a bifurcation (Eq. 7.50).
Thus the ratios of radii in Eqs. 7.73 and 7.74 can be determined from Eq. 7.50 by
noting that
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where ˛0;1 is the ratio of small to large radius of the two branches of parent .0; 1/

˛0;1 D a1;2

a1;1

(7.76)

For simplicity, we shall assume that this ratio is the same at all junctions throughout
the tree, thus dispensing with the subscript and denoting it simply as ˛. This means
that the ratio of the two branch diameters at every bifurcation is assumed to be the
same throughout the tree. It then follows that the ratios of radii of parent-to-small
and parent-to-large branches in Eq. 7.75 will also be the same throughout the tree
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The ratios of radii in Eqs. 7.73 and 7.74 can now be expressed in terms of 	1 and 	2

by noting that
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Using these expressions for the radii ratios in Eqs. 7.73 and 7.74, we find
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Again we note that each of these two equations represents the pressure distribution
in one particular tube segment within the hierarchical tree structure. The two
segments chosen are somewhat special in that each lies on one of the two singular
paths through the tree structure, namely the major and the minor paths described
earlier. The expressions describing the pressure along these two paths have been
highly simplified by the assumed idealized structure of the tree, in particular the
assumption that the bifurcation index ˛ and the power law index 
 do not change
from one bifurcation to the next throughout the tree structure.

It is important to emphasize, again, that these idealized conditions do not
prevail in the cardiovascular system and they are being used here only
to illustrate the process of determining the pressure distribution within the
tree. The same process can be used to determine the pressure distribution
without these assumptions, given the actual values of ˛ and 
 at individual
bifurcations which can be determined from measurements of the three vessel
radii at each bifurcation.

More generally, any other tube segment, within any other tree structure, will be
reached by a unique path which is more easily described by moving upstream along
the tree structure, from the location of that segment to the root segment of the tree.
The j; k notation described in Sect. 7.5 makes the task fairly simple. Thus, the path
from a segment j; k is to the root segment of the tree is constructed by moving
upstream, from branches to parents as in Eqs. 7.56 and 7.57. As an example, from
segment .4; 5/ to the root segment of the tree the path is

branch.4; 5/ ! parent.3; 3/

! parent.2; 2/

! parent.1; 1/

! Root.0; 1/
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and from segment .4; 14/ to the root segment of the tree the path is

branch.4; 14/ ! parent.3; 7/

! parent.2; 4/

! parent.1; 2/

! Root.0; 1/

The pressure distribution along these paths are constructed by moving upstream
from the root segment of the tree to the designated branch segment as in Eq. 7.71 but
with the appropriate sequence of segments and appropriate assumptions about the
progression of flow rates, tube lengths, and tube radii. The process is clearly more
tedious than in the idealized cases of the major or minor paths considered earlier,
but the principles are the same.

The pressure distributions along the two bounding paths and along all other paths
within the 5-level tree structure are shown in Figs. 7.15, 7.16 and 7.17 where the
singular nature of the two bounding paths is seen again in terms of the pressure
distributions within the entire tree structure.

Figures 7.15, 7.16 and 7.17 also show the critical dependence of the pressure
distribution on the value of the power law index 
 in the relation between flow
rate and vessel radius (Eq. 3.98). Again, the cube law (
 D 3) appears to present
the ideal compromise as concluded in the previous chapter. However, vessel radii
actually measured in the cardiovascular system have shown that the cube law is not
met exactly but with considerable scatter.12;13

7.7 What Is an “Artery”?

The tree structure considered in the previous section was highly idealized in the
sense that all the bifurcations within the tree were assumed to have the same
properties, and the lengths of all tube segments were assumed to be related to
the corresponding tube radii in the same way. These idealized conditions do not
exist in the arterial tree. Data from the cardiovascular systems of humans and
animals, based on direct measurements of vessel segment diameters and lengths,
have shown consistently that bifurcation properties vary widely within the vascular
tree, and vessel segment lengths do not relate to vessel segment radii in any simple
or consistent way.

12Kassab GS, Rider CA, Tang NJ, Fung YC, Bloor CM, 1993. Morphometry of pig coronary
arterial trees. American Journal of Physiology 265:H350–H365.
13Zamir M. Vascular system of the human heart: Some branching and scaling issues. In: Brown
JH, West GB (eds.). Scaling in Biology. Oxford University Press, 2000.
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Fig. 7.15 Pressure distributions along paths from the root segment to all terminal segments of the
5-level tree structure shown in the inset. The two bold curves represent the pressure distributions
along the two “bounding paths”, the pressure distributions along all other paths fall in between
those two. The pressure falls linearly in each segment in accordance with the pressure drop in
Poiseuille flow, but the magnitude of the drop depends on the radius of each vessel segment and on
the amount of flow. Results in this figure are based on the assumption that the flow rate in a vessel
segment is proportional to the square of its radius (square law).

Interestingly, however, the laws governing the branching structure of arterial
trees seem to hold despite a background of considerable scatter in vessel segment
and bifurcation properties. Specifically, despite very high variability in measured
values of the bifurcation index ˛ (Eq. 7.1) and vessel segment lengths, the power
laws on which the ratios of parent-to-branch radii or cross sectional areas (Eqs. 7.50
and 7.13) are found to hold remarkably well.14;15

Thus the “major” and “minor” paths considered in the previous section were only
possible because of the idealized tree structure on which they were based. In reality,
as discussed at the end of the previous section, in order to determine the pressure
distribution along a certain path within an arterial tree structure, the path must be

14Kassab GS, Rider CA, Tang NJ, Fung YC, Bloor CM, 1993. Morphometry of pig coronary
arterial trees. American Journal of Physiology 265:H350–H365.
15Zamir M. Vascular system of the human heart: Some branching and scaling issues. In: Brown
JH, West GB (eds.). Scaling in Biology. Oxford University Press, 2000.
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Fig. 7.16 Pressure distributions in the 5-level tree structure as in Fig. 7.15, but here the results are
based on the assumption that the flow rate in a vessel segment is proportional to the fourth power
of its radius (quartic law).. It is seen that under this assumption the pressure drops more steeply
along the path of branches with the larger radii than it does along the path of branches with the
smaller radii, which is somewhat unlikely on physiological or fluid dynamic grounds.

constructed by piecing together, sequentially, all the vessel segments comprising
that path. The task may seem intractable or impractical, but if measurements of
segment lengths and diameters are available, along with the corresponding j; k
coordinates of these segments, then the task of computing the pressure distribution
along that path is in fact fairly trivial.

Variability in the branching structure of arterial trees therefore calls into
question the meaning of the terms “artery” or “vessel” which are widely used in
hemodynamics and, more importantly, in the clinical setting. What is an artery?
(Fig. 7.18).

In a typical arterial tree or sub-tree consisting of 20 or more generations there
would potentially be 220 vessel segments at the terminal end of the tree. The path
from the root segment of the tree to each of these terminal segments may strictly
be identified as an “artery”, because it is a unique path in the sense that the vessel
segments comprising the path to each of the terminal segments will be different.
There will be many shared segments with other paths along the tree structure, but
in total the sequence of segments leading to each terminal segment will be different.
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Fig. 7.17 Pressure distributions in the 5-level tree structure as in Fig. 7.15, but here the results
are based on the assumption that the flow rate in a vessel segment is proportional to the third
power of its radius, which is widely known as the “cube law”. Under this assumption the pressure
distributions are identical along all paths from the root segment of the tree to the terminal branches,
which lends strong theoretical support to the validity of the cube law.

Indeed, the sequence of vessel segments leading from the root segment of the tree
to any segment within the tree structure is unique.

If an “artery” is defined as a sequence of consecutive arterial segments within
an arterial tree structure, therefore, the number of such “arteries” within the tree
structure will be so large as to render the term “artery” of little use. Yet, in the heart
and in the brain, indeed in the entire cardiovascular system, arteries are routinely
named: the “left coronary”, the “middle cerebral” and, most famously, the “aorta”.
Is the aorta an “artery” in the sense that it can be defined in terms of a consecutive
sequence of vessel segments? We know well where this sequence starts, but where
does it end?

To the surgeon or anatomist this discussion may seem somewhat “esoteric”
because in the clinical setting one “knows” where the left and right coronary
arteries begin and where they end. They and other arteries are generally defined in
anatomical terms, but there is wide variability in the way the paths of these arteries
unfold in different subjects [pathology (flow strategy) paper]. From the standpoint
of hemodynamics, therefore, that is from the standpoint of the mathematics and
physics of the flow, an anatomically based definition of an artery does not provide
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Fig. 7.18 An “arterial segment” can be accurately defined as the vascular interval between two
consecutive vascular junctions. By contrast: What is an ’artery’? The calculation of pressure and
flow along a certain path within a vascular tree requires a prescribed sequence of consecutive
arterial segments and, as illustrated here, there are typically many such sequences within a tree
structure. The term “artery” does not usually identify one of these uniquely but is rather used
within an anatomical context.

the required basis for an analysis of the flow. Only a well defined path in terms of
a sequence of consecutive vessel segments through the vascular tree structure can
provide that basis, and even then it can only do so on an individual basis in different
subjects. Indeed, the recognition of this reality has led in recent years to the rise of
the important notion and practice of “patient-specific” hemodynamics.16;17

The wide variability (heterogeneity) in the value of the bifurcation index ˛

(Eq. 7.1) in an arterial tree and hence the wide variability in the hierarchical structure
of the tree is not to be interpreted as the result of a random process. Rather, it
highlights the fact that the hierarchical structure of the tree is determined largely

16Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA. An image-based
modeling framework for patient-specific computational hemodynamics. Medical and Biological
Engineering and Computing 11:1097–112.
17Kim HJ, Vignon-Clementel IE, Coogan JS, Figueroa CA, Jansen KE, Taylor CA. Patient-
specific modeling of blood flow and pressure in human coronary arteries. Annals of Biomedical
Engineering 10:3195–209.
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by functional considerations. A good demonstration of this is found in the coronary
circulation where the notion of “distributing” and “delivering” vessels has been
used to describe two categories of arteries.18 Briefly, the first describes a vessel that
undergoes a sequence of highly asymmetrical bifurcations, giving rise to so called
“side branches”, and thereby keeping its own diameter very little changed in the
process. The second describes a vessel that undergoes a sequence of symmetrical
bifurcations and its diameter is thereby diminishing rapidly in the process. The
change in diameter is obtained by following a “major path” as in the previous
section, whereby the larger of the two branches is selected at each successive
bifurcation. Using the cube law for this purpose, the diameter of the vessel after
successive bifurcations is determined from Eq. 7.5, writing

8̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂:

d1

d0

D .1 C ˛3/�1=3

d2

d0

D d2

d1

� d1

d0

D .1 C ˛3/�2=3

d3

d0

D d3

d2

� d2

d1

� d1

d0

D .1 C ˛3/�3=3

:::

dn

d0

D dn

dn�1

� dn�1

dn�2

� � � � � d1

d0

D .1 C ˛3/�n=3
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Using this progression, for a vessel that undergoes 20 successive symmetrical
bifurcations, for which ˛ D 1:0, the ratio of its final to original diameters is

.1 C 1/.�20=3/ � 0:00984 (7.82)

while for a vessel that undergoes 20 successive highly asymmetrical bifurcations,
giving rise to so called “side branches” for which say ˛ D 0:01, the ratio of final to
original diameters of the vessel is

.1 C 0:01/.�20=3/ � 0:99999 (7.83)

In the first case the diameter of the vessel diminishes to only one percent of it
original diameter, while in the case the diameter of the vessel remains practically
unchanged. These two extremes and others in between are illustrated graphically in
Fig. 7.19

On that basis two types of vessels were identified in the coronary circulation:
“delivering” vessel that branch profusely and reach the capillary bed rapidly in

18Zamir M, 1988. Distributing and delivering vessels of the human heart. Journal of General
Physiology 91:725–735.
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Fig. 7.19 The rate at which the diameter of a vessel decreases as it progresses along its course is
an indicator of its function. At each bifurcation which the vessel undergoes along its course, the
amount by which the parent diameter diminishes depends on the bifurcation index ˛ as defined in
the figure. Each curve in the lower panel represents the course of a vessel for a particular value
of ˛. The diameter, d.n/, of the vessel following n bifurcation sites is expressed as a fraction of
its initial diameter, d.0/. Along the uppermost curves, the diameter of the vessel decreases slowly,
while along the lowest curves the reverse is true. Adapted from Zamir (1988; see Footnote 18).

terms of the number of generations, and “distributing” vessel that give rise to mostly
side branches and thereby maintain their diameter in the process. An example
of these two types of vessels is shown in Fig. 7.20. Delivering vessels were thus
identified with vessels that penetrate the myocardium, while distributing vessels
were identified with vessels that circle the myocardium and distribute blood to
different regions. Thus, the notion of delivering and distribution arteries in some
way provides a basis for “naming” the main arteries in the coronary circulation,
although the problem of identifying these arteries with quantifiable paths for blood
flow remain as discussed earlier.
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Fig. 7.20 A cast of the left anterior descending artery of a human heart and its branches. The
branches, being delivering vessels, typically divide more profusely and terminate more rapidly
than the main distributing vessel. The difference between the two types of behavior may provide
the basis for referring to the distributing vessel anatomically as an “artery” but the difficulties
of identifying it as a quantifiable path for blood flow remain. Adapted from Zamir (1988; see
Footnote 18).

The ultimate conclusion of this section is that the notion of an “artery” or a
“vessel” is of very little use from the perspective of mathematics and physics
of hemodynamics within the highly variable structure the arterial tree. Only a
prescribed sequence of vessel segments can be used to determine the pressure or
flow distribution along a given path within that structure. Unlike the difficulties
associated with the definition of an “artery” or a “vessel”, an “arterial segment”
or a “vessel segment” is accurately defined as the vascular interval between two
consecutive bifurcations.

7.8 Pulsatile Flow in Branching Rigid Tubes

There are two complications in progressing from the problem of steady flow in a
hierarchical tree structure of branching tubes considered in Sect. 7.6 to pulsatile flow
in a hierarchical tree structure of branching elastic tubes. The first complication
arises, as seen in Chap. 4, because the properties of pulsatile flow depend on a
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combination of frequency and tube diameter, therefore these properties will be
affected by the change in vessel diameters as the flow encounters each bifurcation
within the tree structure. The second complication arises, as seen in Sect. 5.1
and Chap. 6, because pulsatile flow in elastic tubes gives rise to wave propagation
and, in a tree structure, this in turn gives rise to wave reflections as the propagating
wave encounters each bifurcation within the tree structure.

In the cardiovascular system both of these complications are present because of
the branching structure of the vascular tree and because the blood vessels comprising
that tree are not rigid. Pulsatile flow through elastic branching tubes is therefore the
ultimate target for a model of flow in the vascular tree, but it is more instructive to
approach that target in two steps rather than one. Accordingly, in this section we
consider pulsatile flow in rigid branching tubes and in the next section we progress
to branching elastic tubes.

From Chap. 4 we have seen that a key parameter that determines the properties
of pulsatile flow in a rigid tube is the frequency parameter, also known as the
Womersley number,

� D
r

�!

�
a (7.84)

If the flow in a tree structure, made up of many rigid tube segments, is driven by an
oscillatory input pressure of the form

k�.t/ D k0ei!t (7.85)

then the frequency of oscillation ! in Eq. 7.84 for tube segments throughout the tree
will be the same as the frequency of that input pressure. If it is assumed further that
the fluid density � and viscosity � in that equation remain constant throughout the
tree, then the value of the frequency parameter � will change only with the radius
a of tube segments within the tree.

To illustrate the variation of � along the 5-level tree structure considered in
Sect. 7.6, taking the following property values
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(7.86)

the value of the frequency parameter in Eq. 7.84 is then given by

� D p
12:5 � � � d (7.87)
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where d is the diameter of the tube in cm. This expression can be used to map out the
values of � along the 5-level tree structure used in Sect. 7.6 for steady flow, using a
power law relation between flow and tube diameter to determine the progression of
segment diameters along the tree structure.

As an example, we consider a tree with root segment diameter d D 0:4 cm, which
is representative of the radius of a main human coronary artery. The diameters of
subsequent branch segments are then given by Eq. 7.77 where the values of the
bifurcation index ˛ and the power law index 
 can be prescribed to determine
the sequence of diameters along any path downstream from the root segment.
With the diameters of all tube segments within the tree structure now known, the
corresponding values of the frequency parameter � can be calculated from Eq. 7.87
and mapped out throughout the tree structure as shown in Figs.7.21 and 7.22. In
general the value of � decreases along any path from the root segment of the tree to
the periphery. It decreases most rapidly along the “minor” bounding path which, as
we recall, consists of branch segments with the smaller diameter at each bifurcation,
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Fig. 7.21 Values of the frequency parameter � at different segments of the 5-level tree shown in
the inset. The tree is based on a power law relation between flow rate and vessel radius, with power
law index 
 D 3:0 and bifurcation index ˛ D 0:7. The values of � decrease most rapidly along the
bounding path marked �2 consisting of branch segments with the smaller radii at each bifurcation,
and most slowly along the other bounding path, marked �1. Values of � at other branch segments
fall in between these two extremes.
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Fig. 7.22 Values of the frequency parameter ˝ in a tree with the same parameters as that in
Fig. 7.21 but here the tree has 11 levels (marked 0 to 10). Values of ˝ continue to decrease,
ultimately reaching towards zero.

and more slowly along the “major” path. This is to be expected in view of Eq. 7.87
where the value of � is seen to be directly related to tube diameter.

The distribution of the frequency parameter � within the tree structure deter-
mines the corresponding distribution of other properties of the flow. Of particular
interest is the peak flow rate, and the peak shear stress, reached in each pulsating
cycle. The values of both of these properties and the distribution of these values
within the tree structure will depend on the distribution of the frequency parameter.

The peak flow rate reached within the oscillatory cycle in each tube segment
within the tree, which we shall refer to simply as “peak flow” and denote it by Oq� .
Using Eq. 4.43 for the oscillatory flow rate q�.t/, the peak flow rate Oq� in normalized
form and in the notation of Sect. 4.7 is given by

Oq�.t/

qs
D
ˇ̌
ˇ̌ 8

i�2

�
1 � 2J1.ƒ/

ƒJ0.ƒ/

�ˇ̌ˇ̌ (7.88)

The distribution of peak flow within the 5-level vascular tree is shown in Fig. 7.23.
Because it is normalized in terms of the steady flow rate qs in Poiseuille flow,
the value of this peak flow is a measure of how close the oscillatory flow at
different levels of the tree comes to a fully developed Poiseuille flow driven by
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Fig. 7.23 Normalized peak flow rates reached at different branch segments of the 5-level tree
shown in the inset. A value of 1:0 represents a peak flow equal to that in steady flow. This value is
reached more rapidly along the bounding path marked q2 consisting of branch segments with the
smaller radii, and more slowly along the other path, marked q1. Other lines represent values of the
peak flow along other paths within the tree structure.

the same pressure gradient as oscillatory pressure gradient at that point in time.
Thus, a normalized peak flow of 1:0 represents an oscillatory flow in which the
velocity profile at each point in time is a Poiseuille flow profile, while values less
than 1:0 represent oscillatory flows in which peak flow does not quite reach the
corresponding Poiseuille flow value. The results in Fig. 7.23 indicate that peak flows
reach the Poiseuille flow values more rapidly along the major bounding path they do
along the minor path. The reason for this is that the oscillatory flow profile is closer
to a Poiseuille profile at smaller values of the frequency parameter � (Eq. 7.88),
which occur along the minor path.

The peak shear stress reached within the oscillatory cycle in each tube segment
within the tree, which we shall refer to simply as “peak shear” and denote it by
O�� . Using Eq. 4.47 for the oscillatory flow shear stress ��.t/, the peak shear O�� in
normalized form and in the notation of Sect. 4.8 is given by

O��.t/

�s
D
ˇ̌̌
ˇ 2

ƒ

�
J1.ƒ/

J0.ƒ/

�ˇ̌̌
ˇ (7.89)
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Fig. 7.24 Normalized peak shear stress reached at different branch segments of the 5-level tree
shown in the inset. A value of 1:0 represents a peak shear stress equal to that in steady flow. This
value is reached more rapidly along the bounding path marked �2 consisting of branch segments
with the smaller radii, and more slowly along the other path, marked �1. Other lines represent
values of the peak flow along other paths within the tree structure. The results are based on the
cube law relation between flow rate and vessel radius, q � a
 ; 
 D 3:0, as indicated in the inset.

Again, because of the way it is normalized, the value of the peak shear stress is here
expressed as a fraction of the constant shear stress in steady Poiseuille flow. Thus,
a normalized value of 1:0 represents peak oscillatory shear stress equal to that in
Poiseuille flow. The distribution of peak shear stress within the 5-level tree is shown
in Fig. 7.24. It is similar to that of peak flow rate, as would be expected, because
shear stress is high at high flow rates and low at low flow rates.

We recall that in steady flow, a cube law relation between vessel radius and flow
rate, namely q � a3, ensures a constant shear stress throughout the tree structure,
as was demonstrated in Sect. 7.6. This is not the case in pulsatile flow, as we see in
Fig. 7.24 where the results are based on the cube law. Other values of the power law
index, namely 
 D 2:0 and 
 D 4:0, produce similar results as shown in Figs.7.25
and 7.26. The reason for this is that in steady flow the shear stress depends on the
ratio of flow rate over the third power of the radius (Eq. 3.50), while in pulsatile flow
the corresponding relation (Eq. 4.45) is not as simple.
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Fig. 7.25 Normalized peak shear stress reached at different branch segments of the 5-level tree
shown in the inset, as in Fig. 7.23, but here the results are based on a power law index 
 D 2:0.

7.9 Wave Speed in Branching Elastic Tubes

In Sect. 5.9 we saw that the wave speed c in pulsatile flow in an elastic tube depends
on the frequency parameter � such that when � > 3 the wave speed approaches the
Moens-Korteweg wave speed c0 (Eq. 5.1), but when � < 3 the value of c departs
significantly from the value of c0. In fact, the value of c becomes complex, with both
its real and imaginary parts depending strongly on the value of �.

An estimate of the range of values of � in the cardiovascular system can be
derived in general from Eq. 7.84 and, at a fundamental frequency of 1 Hz from
Eq. 7.87. In the latter case, with the prescribed values of the fluid density and
viscosity, � depends only on the diameter of the tube. Thus, using Eq. 7.87 we
find that in a human aorta of 2.5 cm in diameter the value of � is approximately
15:67, while in a pre-capillary arteriole of 0.025 mm in diameter the value of � is
approximately 0:016. Therefore, in much of the arterial tree the value of � will be
less than 3:0 and hence the wave speed c will depart significantly from the Moens-
Korteweg wave speed c0. Indeed, in the example of a 5-level tree structure used in
the previous section, where the root diameter of the tree is 4 mm, the value of �

was found to be less than 3:0 throughout the entire tree (Figs. 7.21 and 7.22). We
continue to use this tree structure as an example in the present section.
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Fig. 7.26 Normalized peak shear stress reached at different branch segments of the 5-level tree
shown in the inset, as in Fig. 7.23, but here the results are based on a power law index 
 D 4:0.

Given the values of � for each vessel segment in that tree structure, the
corresponding values of the wave speed c can then be calculated, using the solution
for pulsatile flow in an elastic tube described in Sect. 5.9. Results are shown
in Figs.7.27 and 7.28 where the hierarchy of the tree has been extended to 10
generations, and where the real and the imaginary parts of the wave speed are shown
normalized in terms of the Moens-Korteweg wave speed c0. The figures indicate
that at the root segment of this tree the real part of the wave speed is below the
normalized value of 1:0, which means that it is below the Moens-Korteweg value.
Thereafter, at smaller and smaller branch segments, the wave speed continues to
decrease in value, more rapidly along the minor bounding path. Both the real and
imaginary parts of c ultimately vanish at the peripheral levels of the tree, consistent
with the dependence of c on the frequency parameter �.

Based on these values of c, the wave-length-to-tube-length ratio can also be
calculated for each vessel segment using the diameters and lengths of vessel
segments prescribed for this tree. The length 	 of a propagating wave is related
to the wave speed c and the angular frequency ! by

	 D 2�c

!
(7.90)
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Fig. 7.27 The real part of the wave speed, normalized in terms of the Moens-Korteweg wave speed
c0, in a vascular tree model in which the root segment has approximately the same diameter (4 mm)
as a main coronary artery in the human heart and in which subsequent branching follows the cube
law with power law index 
 D 3:0 as described in Sect. 8.4 and bifurcation index ˛ D 0:7. The
two bounding paths marked c1; c2 in the tree model are singular paths along which the branch
with the larger diameter is followed at each junction in one case (c1), and the branch with the
smaller diameter is followed in the second (c2). They represent two paths along which the real
part of the wave speed decreases most slowly (c1), or most rapidly (c2), as indicated on the graph.
Everywhere else within the tree structure the value of the real part of the wave speed is bound
by these two curves. Thus, since the normalized values are everywhere less than 1:0, the figure
indicates that the wave speed is everywhere lower than the Moens-Korteweg wave speed.

and the wave-length-to-tube-length ratio is then

	 D 	

L
D 2�c

!L
(7.91)

where L is the tube length. If it is assumed further that the length of tube segments
throughout this tree structure are a simple multiple of the corresponding diameters
of these segments (usually taken as �10), then at a fundamental frequency of 1 Hz,
i.e. ! D 2� , we finally have

	 D c

10 � d
(7.92)

Thus the distribution of wave-length-to-tube-length ratio within the tree structure
can now be determined from the prescribed hierarchy of diameters at different
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Fig. 7.28 The imaginary part of the wave speed associated with the real part shown in Fig. 7.27.
Since the Moens-Korteweg wave speed is purely real, it follows that the wave speed here is different
from the Moens-Korteweg wave speed everywhere along the tree structure, consistent with the
results in Fig. 7.27. Remaining caption is the same as in that figure.

levels of the tree, which in this case was based on the cube law as described earlier
(Sect. 3.11). Results are shown in Fig. 7.29 where it is seen that in a tree structure
such as this, with 4 mm root diameter, as in the coronary arterial tree for example,
values of 	 are well above 100 throughout the tree structure.

As was shown in Sect. 5.11, at high wave-length-to-tube-length ratio pulsatile
flow in a single isolated elastic tube approaches the corresponding flow in a single
isolated rigid tube. Therefore, pulsatile flow in a rigid tube, which is much simpler
analytically, can be used as a good approximation for the corresponding flow in an
elastic tube. As discussed further in that Section, however, this approximation is
valid only in the absence of wave reflections, and this condition clearly cannot be
met in the arterial tree because of the inherent branching structure of the tree.

In summary, tube segments within the arterial tree cannot be treated as isolated
tubes that are free from wave reflections and, consequently, pulsatile flow in an
arterial tree consisting of elastic branching tube segments cannot be approximated
by pulsatile flow in a tree consisting of rigid branching tube segments. As a
consequence, and as discussed in Sect. 6.6, pulsatile flow in elastic branching tubes
must be based not on the characteristic impedance of these tubes but on their
effective impedance.
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Fig. 7.29 The ratio of wave length to tube length (	 D 	=L) for vessel segments along the same
11-level tree model used in Fig. 7.27 and using values of the wave speed shown in that figure. The
two bounding paths marked 	1 and 	2 correspond to those marked c1; c2 in Fig. 7.27 and have the
same interpretation. The figure indicates that the value of 	 is significantly above 100 everywhere
along the tree structure, which means that the effects of wave propagation on flow within individual
vessel segments is minimal if wave reflections are absent. Because of the large number of vessel
junctions, however, wave reflections are ubiquitous and their effects on pressure and flow within
the tree structure must be calculated.

7.10 Effective Impedance, Admittance

From a functional standpoint, the effects of wave reflections in a tube or vascular
tree can be thought of in terms of the way they affect the opposition to flow. The
term “opposition” is used here deliberately because the opposition to pulsatile flow
in the presence of wave reflections is neither pure “resistance” as it is in steady flow,
nor pure “impedance” as it is in oscillatory flow in an elastic tube in the absence of
wave reflections.

The opposition to pulsatile flow in the presence of wave reflections is described
by a modified impedance usually referred to as “effective” impedance. The pure
impedance in oscillatory flow in the absence of wave reflections is then renamed
“characteristic impedance” to differentiate between the two. Thus, the difference
between the characteristic impedance and the effective impedance in a tube or
vascular tree is a direct and functionally meaningful measure of the effects of wave
reflections.
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In general, opposition to flow is defined in terms of the amount of flow produced
by a given amount of driving pressure. Thus in steady Poiseuille flow the ratio of
pressure difference driving the flow to flow rate is termed the “resistance” to flow, as
discussed in Sect. 3.8. In oscillatory flow, if the driving pressure and the flow rate are
simple harmonic (sine or cosine) functions, the ratio of the amplitudes of pressure
over flow is termed the “impedance” as discussed in Sect. 6.5.

The resistance in steady Poiseuille flow in a tube depends on only static
properties of the tube and of the fluid (Eq. 3.58). The characteristic impedance in
oscillatory flow through an elastic tube (Eq. 6.67), in the absence of wave reflections,
depends on static properties of the tube wall and of the fluid as well as on the wave
speed (which may in turn depend on frequency if the viscosity of the fluid is not
neglected). In the presence of wave reflections, the effective impedance depends
further on the extent of wave reflections.

Similar discussion and terminology apply to admittance which is the reciprocal
of impedance, thus the terms “characteristic admittance” and “effective admittance”
are interpreted in the same way as in the case of impedance.

From the results in Sect. 6.5, an input oscillatory pressure of the form

pin.t/ D p0ei!t (7.93)

in an elastic tube, in the absence of wave reflections, leads to pressure and flow
waves within the tube, respectively, of the form

(
P.x; t/ D p0ei!.t�x=c/

Q.x; t/ D q0ei!.t�x=c/
(7.94)

where 8̂<
:̂

q0 D Y0p0

Y0 D �a2

�c

(7.95)

a is tube radius, � is fluid density and c is wave speed which is assumed constant
within the tube. It is seen that

Q.0; t/

P.0; t/
D q0

p0

D Y0 (7.96)

The name “admittance” for Y0 is thus appropriate as it represents a measure of
the amount of oscillatory flow which the tube “admits” for a given oscillatory
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pressure. Similarly, the reciprocal of Y0, which represents the extent to which the
tube “impedes” the flow, is then given the name “impedance” and is defined by

Z0 D 1

Y0

(7.97)

D q0

p0

D P.0; t/

Q.0; t/

D �c

�a2
(7.98)

In the way they are defined here, Y0 and Z0 are referred to as “input” admittance and
“input” impedance, respectively, because they are based on pressure and flow at the
input end of the tube.

It is important to note that Y0; Z0 represent the admittance and impedance in a
given tube not only in the absence of wave reflections but also on the assumption
of constant wave speed within the tube. As we saw in Sect. 5.9, this constant
wave speed is typically not equal to the Moens-Korteweg wave speed but must be
determined from the solution for pulsatile flow in an elastic tube for each vessel
segment. It depends on the frequency ! and therefore Y0; Z0 will also depend on !.

In the presence of wave reflections, the pressure and flow waves are no longer
given by Eq. 7.94 because they then consist of both forward and backward moving
waves as discussed in Sect. 6.4. As determined for the pressure in detail in that
section, and using similar analysis for the flow wave, the two waves are now given by

(
P.x; t/ D p0ei!.t�x=c/ C Rp0ei!.t�.2l�x/=c/

Q.x; t/ D q0ei!.t�x=c/ � Rq0ei!.t�.2l�x/=c/
(7.99)

from which it is clear that admittance or impedance are no longer determined
by p0; q0 only. For this reason they are now denoted by Ye; Ze and referred to
as the “effective” admittance and “effective” impedance, respectively, to distinguish
these from the characteristic admittance and impedance. They are defined to have
the same meaning as before, however, in terms of the pressure and flow at input
to the tube, namely, as in Eq. 7.96

Q.0; t/

P.0; t/
D q0 � Rq0e�i!.2l=c/

p0 C Rp0e�i!.2l=c/

D Y0

�
1 � Re�i!.2l=c/

1 C Re�i!.2l=c/

�

D Ye (7.100)
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Fig. 7.30 The reflection coefficient RA at the junction between two tubes depends on the difference
between the characteristic admittances Y0A of the first tube and Y0B of the second if wave reflections
are absent (top), or the difference between the characteristic admittance Y0A of the first tube and
the effective admittance YeB of the second if wave reflections are present (bottom).

If wave reflections arise at a junction between two tubes denoted by A and
B whose characteristic admittances are Y0A and Y0B, and if there are no further
reflections at the downstream end of the second tube, as shown schematically in
Fig. 7.30, then the reflection coefficient R at the junction can be expressed in terms
of the two characteristic admittances

R D Y0A � Y0B

Y0A C Y0B
(7.101)

But if there are wave reflections at the downstream end of the second tube then its
admittance is now its effective admittance YeA, and the expression for the reflection
coefficient becomes

R D Y0A � YeB

Y0A C YeB
(7.102)

Similarly, at a bifurcation, if the two branches are denoted by subscripts B and C
as illustrated schematically in Fig. 7.31, since the combined admittance of the two
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Fig. 7.31 The reflection coefficient RA at an arterial bifurcation depends on the difference between
the characteristic admittance Y0A of the parent vessel segment and the sum of the characteristic
admittances Y0B; Y0C of the two branch segments if wave reflections are absent (top), or the
difference between the characteristic admittance Y0A of the parent vessel segment and the sum
of the effective admittance YeB; YeC of the two branch segments if wave reflections are present
(bottom).

branches is simply the sum of the two (hence it is convenient to use admittance rather
than impedance in the analysis of branching trees), then in the absence of wave
reflections at the downstream ends of the two branches the reflection coefficient is
given by

R D Y0A � .Y0B C Y0C/

Y0A C .Y0B C Y0C/
(7.103)

while in the presence of wave reflections it is given by

R D Y0A � .YeB C YeC/

Y0A C .YeB C YeC/
(7.104)

In an arterial tree the effective admittance of each vessel segment depends on
wave reflections from all junction sites downstream of that segment. To calculate
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these, we may use Eq. 7.100 for the effective admittance of the parent vessel
segment, with the reflection coefficient as given by Eq. 7.104, that is,

YeA D Y0A

�
1 � Re�i!.2lA=cA/

1 C Re�i!.2lA=cA/

�
(7.105)

It is then convenient to eliminate the reflection coefficient R from this expression by
using Eq. 7.104 to substitute for R. The result, after some algebra (as in Sect. 6.7,
Eq. 6.91), is

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
:

YeA D Y0A

�
.YeB C YeC/ C iY0A tan �

Y0A C i.YeB C YeC/ tan �

�

R D Y0A � .YeB C YeC/

Y0A C .YeB C YeC/

� D !lA
cA

(7.106)

In this form we see that the effective admittance of the parent vessel segment
in a bifurcation is determined by its characteristic admittance and the effective
admittance of the two branches. If there are no wave reflections at the downstream
ends of the two branches, then their effective admittances are the same as their
characteristic admittances.



Chapter 8
Dynamics of Pulsatile Blood Flow I

8.1 Introduction

Solutions of fluid flow problems, to fully determine the dynamics of the fluid,
including a mapping of the velocity field and of the relation between the prevailing
pressure and flow fields, are possible only in the most simply constructed cases and
mostly in the physical sciences. Fluid flow problems in biology, by contrast, are
rarely simply constructed and can rarely be solved directly. The problem of flow in
a tube, for example, has a simple so called “Poiseuille flow” solution when the tube
is rigid, its cross section is perfectly circular, the tube is long enough for the flow
to be fully developed, and the fluid is a smooth “continuum” that has the simple
rheological properties of a “Newtonian” fluid in which the shear stress is related
linearly to the velocity gradients. Barely any of these ideal conditions is met in
biological problems involving flow in tubes, most notably the problem of blood flow
in arteries which is the subject of this book. Here the fluid is not a smooth continuum
but a suspension in plasma of discrete red and other blood cells and, as we saw
in the previous chapter, the system does not consist of a single tube but of many
millions of tube segments that are joined together in a hierarchical tree structure.
The segments are rarely long enough or perfectly circular to support fully developed
Poiseuille flow, and the details of flow at their junctions are highly complicated and
depend strongly on the exact geometry of each junction. Furthermore, the precise
branching structure of the arterial tree or sub-trees within the cardiovascular system
can rarely be mapped to the last detail so as to allow a mathematical solution of the
flow problem based on a given tree structure as was done in the previous chapter.

In the previous chapter many of these difficulties were overcome by idealizing
the problem to the point that it could be solved analytically. Is there another
way?

A key feature of the approach used in the previous chapter, indeed in all the
previous chapters so far, starting with the Navier-Stokes equations in Chap. 2,
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is that the analysis there is based on the application of Newton’s law of motion
at every “point” within the flow field as discussed at great length in that
chapter. The result is a point-by-point description of the flow.

This amount of detail may be necessary in some problems where the required
information is localized, as in the flow within an aneurysm or around a plaque in
a single artery, but in other problems where the required information is more global
in nature, as in the dynamics of the coronary or cerebral circulations as a whole, or
indeed the dynamics of the entire systemic circulation, the point-by-point approach
is not only unnecessary but is inappropriate in that it does not provide the required
information.

In an arterial tree this situation occurs on two scales. First, on the scale of the flow
within each individual vessel segment, the steady part of the flow is being described
point-by-point in terms of Poiseuille velocity profiles and the oscillatory part of the
flow is being described in terms of wave propagation properties at each point x along
that segment. Second, on the scale of the tree as a whole, the flow is being described
in each one of possibly millions of individual vessel segments. Again, this amount
of detail may be useful in some problems involving the relationship between the
branching structure of a vascular tree and its function. But in other problems, as in
the diagnosis of the health state of an entire vascular bed in relation to disease or
aging, for example, this amount of detail is not only unnecessary but unattainable
because it requires prior knowledge of the branching geometry of tree structure
which is rarely available.

The notion that the vascular tree is not merely a passive system of tubes but a
living organ, as discussed in the previous chapter, reinforces the need to study
the properties of that organ as a whole in terms of its overall performance
rather than in terms of point-by-point events within its structure. In the clinical
setting, what matters in the end is how this organ is performing its function as
the life line of its host tissue, be that in the heart, in the brain, or in any other
part of the body.

In Chaps. 4 and 5 we saw the stark difference between pulsatile flow in a
rigid tube compared with that in an elastic tube, due entirely to the difference in
compliance of the two tubes, the compliance of the rigid tube being zero. Thus,
as a vascular bed stiffens with age or disease, for example, what effect does this
have on the function of that bed, and how do we assess the nature and magnitude of
that effect? While this question was actually answered in the previous chapter, the
answer was based on a theoretically prescribed vascular branching structure.

In the present chapter we consider a way of looking at the dynamics of arterial
trees not point-by-point within each vessel segment, or segment-by-segment within
each tree structure, but by “lumping” the properties of these individual components
all together under what is generally known as the “lumped parameter concept”.



8.2 The Lumped Parameter Concept 249

8.2 The Lumped Parameter Concept

The relation between pressure and flow in a tube depends on such properties of the
tube as its diameter, length, and elasticity. It also depends on the form of the driving
pressure, in particular on whether the pressure is steady or pulsatile. The relation
between pressure and flow in an arterial tree consisting of a large number of
tube segments depends not only on all such factors in each tube segment but also
on events at the junctions between tube segments and on how the properties of
individual segments are distributed within the tree structure. The overwhelming
complexity of this problem is the background rationale for the “lumped parameter”
concept.

Briefly, the lumped parameter concept proposes that the complex structure of a
vascular bed can be ignored and the bed can be replaced by a single tube that has
the combined or “lumped” properties of the vascular bed as a whole. This is clearly
a variant of the more familiar “black box” concept, in which a complex system
is enclosed by an imaginary box and only the relationship between the input and
output from the box is examined to learn something about the characteristics of the
system within the box.

In a well defined circulation such as that of heart or the brain, for example, where
access to the complex vasculature that serves these two organs is extremely limited,
the information that can be gleaned from input and output to the system provides a
valuable insight into the state of the vascular beds within. As in the case of a black
box, here the input in each case is the pressure driving the flow into the vascular
bed and the output is the flow which this driving pressure produces. For a given
driving pressure, it is clear that the resulting flow will be different at different states
of the vascular system, particularly so under conditions of pulsatile flow where more
properties of the system become involved, most prominently the compliance of the
blood vessels.

Much the same can be said about the systemic circulation as a whole. In fact,
in this case it is common practice to examine features of the pressure and flow
waveforms that emerge from the left ventricle to gain some insight into the state of
the systemic vasculature as a whole. Any change in that state produces changes
in the pressure and flow waveforms and in the relationship between them. It is
common practice, for example, to measure the wave speed (pulse wave velocity)
in the systemic circulation to assess the compliance of the systemic vasculature.
This is an application of the lumped parameter concept because in the calculation
of the wave speed the very complex structure of the systemic vasculature and the
complex distribution of parameters that goes with it are all ignored in the process,
being replaced by one set of lumped parameters.

Above all, the lumped parameter concept provides the required tool to
examine the dynamics of pulsatile flow in an arterial tree or a vascular bed as
a whole. This tool is not available in a point-by-point description of the flow.
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In the remainder of this chapter we shall see in detail how the relationship
between the driving pressure and the flow which it produces in a vascular bed
depends critically on the “lumped” properties of that bed, and how an understanding
of this relationship provides a valuable insight into the state of that bed.

8.3 Flow in a Tube Revisited

The lumped parameter concept discussed in the previous section is based on the
assumption that flow through a complex vascular bed can be replaced by the flow in
a single tube with “equivalent” properties. It is important therefore that flow in a tube
as discussed in previous chapters be revisited in order to examine the assumptions
on which this concept is based and to identify the equivalent properties of the flow
in a tube to be used in the process.

Consistent with the lumped parameter concept, in what follows the flow in a tube
will be considered as a bulk of fluid moving en masse rather than as individual fluid
elements as has been done in earlier chapters. This bulk of fluid will be subject to
the laws of motion but not point-by-point as in the Navier-Stokes equations or in the
description of Poiseuille flow. Instead, we consider the forces that affect the bulk of
fluid as a whole, starting with the resistance to flow.

The most important form of resistance to flow in a tube is that due to viscous
friction at the interface between the fluid and the tube wall. It is important because it
is present when flow is steady or oscillatory and it always dissipates energy. Because
of this, it is usually referred to simply as “the resistance”, and we shall follow this
practice in this book. As described in Sect. 3.7, this resistance to flow in a tube arises
because of a combination of the no-slip boundary condition at the tube wall and the
viscous property of the fluid.

From the results in Sect. 3.8, the relation between the flow rate q and the driving
pressure �p, is given by (Eq. 3.56)

�ps D
�

8�l

�a4

�
qs

with the term inside the brackets being identified as the resistance to flow. It is
important to note, as indicated by the subscript s, that this result is based on the
assumption of steady flow. In the context of the lumped parameter concept we shall
dispense with this subscript and associate this resistance to flow always with the
viscous resistance to flow in steady flow and denote it by R, thus writing

q D �p

R
(8.1)

where

R D
�

8�l

�a4

�
(8.2)
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We recall that the pressure drop �p was defined as the difference between pressure
upstream minus pressure downstream (Eq. 3.28), therefore it is positive in the
direction of the flow, as is the flow rate q.

Equation 8.3 is a simple example of the application of the lumped parameter
concept in that the flow in a tube is reduced to a simple relation between the flow
rate q and the driving pressure difference �p. The relation between q and �p is the
cornerstone of the lumped parameter concept. In Eq. 8.3 the relation involves only
one parameter, namely R, but we shall see that as other factors affect the flow, other
parameters will be required. Equation 8.3 is therefore singular in the sense that it is
valid only when the viscous shear force at the tube wall is the single force resisting
the flow in a tube, which, as we saw in Sect. 3.7, occurs only in steady Poiseuille
flow.

The significance of the above statement is that it applies equally to the flow in
a branching tree structure so long as viscous shear at the tube walls is the only
force resisting the flow or, equivalently, so long as the flow in all tube segments is
fully developed Poiseuille flow. Of course, these ideal conditions are rarely met in
the vascular tree because vascular segments at least in part of the tree would be too
short for flow to reach the fully developed state (Sect. 3.4).

In the lumped parameter concept this difficulty is dealt with by identifying
the pressure drop �p in Eq. 8.3 specifically as the pressure drop required to
overcome the viscous resistance forces in all tube segments within a vascular tree.
Regardless of whether these forces arise in fully developed flow or not, they are
all “lumped” together into a single resistance force R, and it is in this sense that
R becomes a “lumped” parameter. The pressure force required to overcome this
lumped resistance is then appropriately denoted by �Pr, writing

q D �Pr

R
(8.3)

The subscript r is added to indicate clearly that �Pr is the amount of driving
pressure related to overcoming only the viscous resistance force.

The fact that this resistance force may not be occurring in fully developed regions
of the flow is dealt with by recalling, as described in Sect. 3.4, that in the entry region
of flow in a tube the flow is being accelerated towards the fully developed state, and
this acceleration requires an added amount of driving pressure.

Thus, in lumped parameter analysis it is recognized that in general �Pr is only
part of the total pressure required to drive the flow in a tube. Other parts will be
required to overcome other forms of resistance to flow, such as acceleration or
deceleration of the flow, compliance of the tube wall, and possibly wave reflections
within a tree structure. The ultimate step in lumped parameter analysis is to compare
simultaneous measurements of the flow rate q and driving pressure �p in a vascular
system, whether in steady or pulsatile flow. If the relation between the measured q
and �p is the same as that in Eq. 8.3, then the only forces opposing the flow in that
system are due to viscous resistance to flow. If the relation between the measured q
and �p is not the same as that in Eq. 8.3, then there are other forces opposing the
flow and these must be accounted for as will be described in the coming sections.
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Fig. 8.1 Pressure wave (top) and corresponding flow wave (bottom) when opposition to flow is
only resistance R. The two waves have identical form but cannot be put together because of their
different scales and physical units.

Thus the pressure drop �Pr emerges as an important baseline reference pressure
drop, and Eq. 8.3 emerges as an important reference relation between pressure and
flow. According to that relation, the measured pressure and flow will have the same
form when the only force resisting the flow is that of viscous resistance. In fact, if
a scaled form of the flow rate, namely the product q � R, is used instead of q, then
Eq. 8.3 can be put in the form

q � R D �Pr (8.4)

and the scaled flow rate then actually becomes equal to the pressure drop �p. The
measured time course of q � R and �p, whether under steady or pulsatile flow
conditions, can then be plotted in the same figure using the same scale (Figs. 8.1
and 8.2).

The cornerstone of the lumped parameter method of analysis is the fact that if
viscous resistance to flow is the only force opposing the flow in a given vascular
system, then the curves representing q � R and �p in this figure will be identical.
On the other hand, and more importantly, if other opposing forces are at play, the
two curves will be different and, as stated earlier, these forces must be accounted for.
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Fig. 8.2 The product of flow rate q and resistance R (R-scaled flow) has the same physical units
as pressure p. In the example of Fig. 8.1, the pressure is in mmHg, the flow is in L/min while the
resistance R is in mmHg/(L/min), thus the product R � q has the units of mmHg and can be put on
the same scale as p as shown in the figure (the two curves are slightly shifted to make them visibly
distinct). The use of R-scaled flow is useful because the pressure and R-scaled curves coincide only
when the opposition to flow consists of pure resistance. Therefore, any discrepancy between the
two curves indicates that other forms of opposition to flow are present as will be discussed in the
present chapter.

8.4 Transient and Steady States

If the pressure driving the flow in a tube is constant, the corresponding flow rate will
also be constant, assuming that the fluid and tube properties on which the resistance
to flow is based are also constant. Thus, if in the lumped parameter relation between
the flow rate and pressure in Eq. 8.3 we set �p D �p0 and R D R0 where the
subscript ‘0’ is being used to denote constant quantities, then the flow rate q will be
given by

q D �p0

R0

(8.5)

and will therefore also be constant, and the flow is then said to be in “steady state”.
A pertinent example here, of course, is fully developed Poiseuille flow, as described
in Sect. 3.8, because Eq. 8.3 was actually derived from fully developed Poiseuille
flow.
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However, flow in a tube need not be fully developed to be steady, and Eq. 8.5 is
not limited to fully developed Poiseuille flow although it was based on that flow in
the previous section. Flow in the entry region of a tube, as described in Sect. 3.4, is
not fully developed but is steady in the sense that if the pressure driving the flow is
constant, flow in the entry region of the tube does not change with time. Equation 8.5
will remain valid because the relation between the flow rate q and the pressure �p0

will continue to hold, albeit with a different value of the resistance, say R1, because
resistance to flow in the entry region of the tube is different from that in the fully
developed region.

Thus the lumped parameter concept captures the flow in both the developing
and the fully developed region of the flow in a tube and combines the resistances
in the two regions of the flow into one lumped resistance R1. This is a simple,
though important, example of the application of this concept and of Eq. 8.5. It is
important because in many vessel segments within an arterial tree the flow is not
fully developed. Thus, if the pressure driving the flow into an arterial tree is constant,
Eq. 8.5 will continue to hold, first by lumping the resistances in each vessel segment
into one, and then by lumping the resistances of all vessel segments into one. The
relation between the flow rate and the driving pressure will continue to hold, though
now with a new lumped resistance Rlumped

q D �p0

Rlumped
(8.6)

Now, if the pressure driving the flow in a tube or a branching tree structure
changes to another constant value, say from �p0 to �p1, the flow rate will adjust to
this new value of the driving pressure until it reaches a new value, say q1, appropriate
for the new value of the driving pressure, and the flow is then said to have reached
a new steady state. But the change from the first steady state to the second will not
occur instantaneously because of (a) the inertia of the fluid and (b) any elastic or
viscoelastic effects within the vessel wall. These factors will be discussed in detail
in the coming sections. Here we point out only that during the period of adjustment
from the first steady state to the second steady state the flow is said to be in “transient
state”.

It is important not to confuse “transient” and “steady state” being discussed
here, with “developing” and “fully developed” flow discussed in Sect. 3.4.

Broadly speaking, developing and fully developed flow have to do with flow
development in space, as in the entrance region of a tube, while transient and
steady states have to do with flow development in time, as when the pressure
driving the flow is changed.

There is one exception to the above rule, namely the case of oscillatory flow.
Oscillatory flow is in fact considered as steady flow, both by definition and by the
fact that while the pressure and flow in oscillatory flow change in time within each
cycle, they do not change from one cycle to the next. This extends the scope of
the lumped parameter concept to pulsatile flow where, as we shall see, remarkably,
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Eq. 8.6 will continue to hold but with the resistance R being replaced by the
impedance Z, that is

q D �p0

Zlumped
(8.7)

This simple equation is truly remarkable in its scope because as long as the
driving pressure �p is either constant or a periodic function of time, the flow
rate will be related to the driving pressure via a lumped resistance or impedance
which represents the lumped resistances or impedances of the vascular system at
hand. It is indeed the principal tool in the lumped parameter concept and, as we
shall see in the next chapter, combined with the method of Fourier decomposition
of composite pressure waveforms, it provides a powerful method of analyzing the
relation between the pressure and flow waveforms at the input to a vascular bed to
determine the impedance that would give rise to that relation, and thereby determine
in turn the lumped properties of the bed that would give rise to that impedance.

It is important to note that Eq. 8.7 is valid only in steady state. But as
stated above this includes steady state oscillation, which is the quintessential
problem in the cardiovascular system because this is the pattern of driving
pressure produced by the heart. There are transient states, however, that take
the system from one steady state to another. The dynamics of these transient
states are discussed in the remainder of this chapter.

8.5 Fluid Inertia: Inductance

Acceleration in fluid flow may occur in one of two ways: in space or in time.
Acceleration in space occurs when the space available to a stream of fluid is
decreasing, so the fluid must increase its velocity to go through a reduced amount of
space. Flow in a tube with a narrowing, as in a bottle neck, is an example (Fig. 8.3).
Velocity at the narrowing must be higher than it is elsewhere, since the flow rate
through the tube must be everywhere the same by conservation of mass, and since it
is assumed here that the flow is incompressible, that is fluid density is not changing.
Thus the fluid is in a state of acceleration as it goes through the narrowing. The
acceleration is in space, that is, in the sense that fluid elements are being accelerated
as they progress along the tube.

Another, less obvious, example of acceleration in space occurs at the entrance
to a tube. If fluid enters with uniform velocity, elements of the fluid along the tube
axis must accelerate to reach the maximum velocity in Poiseuille flow, while fluid
elements near the tube wall are slowed down by the viscous resistance to meet the
condition of no-slip at the tube wall (Fig. 8.4). Thus in the entrance region of the
tube some fluid is in a state of acceleration and some is in a state of deceleration, in
both cases the change is occurring in space, that is as the fluid progresses along the
tube.
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Fig. 8.3 Flow in a tube with a narrowing causes fluid elements to accelerate as they approach the
narrowing and decelerate as they leave, assuming that the fluid is incompressible. Flow velocity is
highest at the neck of the narrowing as indicated by the closeness of the streamlines there. Both
the acceleration and deceleration are occurring in space, in the sense that the change in velocity is
occurring as fluid elements progress along the tube.

Fig. 8.4 Flow in the entrance region of a tube provides another example of acceleration and
deceleration in space. If fluid enters with uniform velocity, elements of the fluid along the tube
axis must accelerate to meet the maximum velocity in Poiseuille flow, while fluid elements near
the tube wall are slowed down by the viscous resistance and condition of no-slip at the tube wall.

One of the most important features of acceleration or deceleration in space is that
it occurs in steady flow, that is in a state of flow which does not change in time. In
steady flow the velocity field does not change with time, that is the velocities at fixed
positions within the flow field are fixed and acceleration and deceleration occur as
fluid elements move from one position to the next. It is in this sense that acceleration
and deceleration in steady flow are seen as occurring in space.

Acceleration or deceleration in time, by contrast, is associated with unsteady
flow, a state of flow in which the velocity distribution within the flow field changes
with time. This situation occurs when the pressure driving the flow is not constant in
time, as is the case in pulsatile blood flow where the driving pressure changes in an
oscillatory manner. In this case acceleration and deceleration are occurring in time,
in the sense that the velocity at fixed positions within the flow field is changing in
time (Fig. 8.5).
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Fig. 8.5 Changing flow field in oscillatory flow. Different panels represent different points in time
within the oscillatory cycle. Velocity is changing in time at fixed positions in space within the flow
field. Acceleration and deceleration is occurring in time.

When a mass of fluid is accelerated or decelerated in time, the fluid does not
respond immediately, because of its inertia. Thus if the pressure difference �p
driving the flow in a tube changes suddenly to a higher level, it takes the flow
rate q some time before it adjusts to a new value appropriate for the new driving
pressure difference. This “reluctance” of the fluid to respond immediately is a
form of resistance which would appropriately be referred to as “inertance” but is
commonly known as inductance because of an electrical analogy to be discussed
later.

Unlike the viscous resistance to flow which is present at constant flow rate,
inductance is only present when flow is being accelerated or decelerated, that is
only when there is change in the flow rate. In fact it is the rate of change of flow rate
that is being resisted by the fluid, which means that a force is required to bring about
such change. In the case of flow in a tube this means that a pressure difference �Pl

would be required specifically for this purpose, the subscript L is there to distinguish
this pressure difference from that required to maintain the flow against the viscous
resistance. More precisely, the required force is proportional to the rate of change of
flow rate, that is

�Pl D L
dq

dt
(8.8)
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Again, the symbol L is commonly used for the inertial constant because of analogy
with inductance in electric systems.

The basis of this relation can be found in the mechanics of an isolated mass m,
governed by Newton’s law of motion, as was previously applied to a fluid element
but is now being applied to a bulk of fluid as whole within a tube. The law required
that the product of mass and acceleration be equal to the net force acting on that
mass. If the force is denoted by F and the position of the mass is denoted by x, the
law can be written as

m
d2x

dt2
D F (8.9)

where t is time. In general this equation is a vector equation because both F and x
are vectors, but for the present purpose it is sufficient to work in only one dimension.
In fluid flow the corresponding situation would be that of flow in a tube being
accelerated, or decelerated, in one direction, namely along the axis of the tube. If the
viscous effect at the tube wall is neglected for now (as it is accounted for separately
below), then the body of fluid may be considered to move freely along the tube, as
a bolus, in accordance with Newton’s law. If the diameter of the tube is d, then the
mass of such bolus of length l, being a cylindrical volume of fluid of diameter d and
length l, is �l�d2=4, where � is the density of the fluid. If the velocity of the bolus
is u and the pressure difference driving it is �Pl then Eq. 8.9 applied to this mass
gives

�l�d2

4

du

dt
D �Pl

�d2

4
(8.10)

Since q is the volumetric flow rate, then q D u�d2=4 and the above can be put in
the form

�Pl D
�

4�l

�d2

�
dq

dt
(8.11)

Comparison of this with Eq. 8.8 indicates that the constant L in that equation
corresponds to the bracketed term above, that is

L D
�

4�l

�d2

�
(8.12)

Thus Eq. 8.8 and the concept of inductance on which it is based have a basis in
simple mechanics.

The total pressure difference �p required to drive the flow in a tube in the
presence of change in flow rate is the sum of the pressure difference needed to
overcome the force of resistance due to inductance, namely �Pl, plus the pressure
difference needed to overcome the force of resistance due to viscosity, namely �Pr

as discussed in the previous section, that is
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�p D �Pr C �Pl (8.13)

Substituting for �Pr from Eq. 8.4 and for �Pl from Eq. 8.8, we then have

�p D Rq C L
dq

dt
(8.14)

This is a first order ordinary differential equation which has the general solution1

q.t/ D e�t=.L=R/

L

Z
�p et=.L=R/dt (8.15)

If the driving pressure difference is constant, say

�p D �p0 (8.16)

Then Eq. 8.15 gives upon integration

q.t/ D �p0

R
C Ae�t=.L=R/ (8.17)

where A is a constant of integration. If the flow rate is zero at t D 0, we find
A D ��p0=R and the solution finally becomes

q.t/ D �p0

R

�
1 � e�t=.L=R/

	
(8.18)

As time goes on, the exponential term vanishes, leaving the flow rate at a constant
value of �p0=R, which is what it would be against a resistance R and with a constant
driving pressure difference �p0 (Eq. 8.5). At that value the flow is in steady state,
while prior to that it is in a transient state.

The effect of inertia of the fluid is thus seen to cause the flow to take a certain
amount of time to reach steady state. As the driving pressure difference is applied,
the flow rate increases from zero to its ultimate value but because of inertia it takes
a certain amount of time to reach that value. The higher the inertial effect the longer
time it takes the flow to reach steady state (Fig. 8.6).

The ratio L=R has the dimensions of time and is a measure of the time delay
caused by the inertial effect. It is usually referred to as the “inertial time constant”
and we shall denote it here by tl, that is

tl D L

R
(8.19)

1Kreyszig E, 1983. Advanced Engineering Mathematics. Wiley, New York.
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Fig. 8.6 If the pressure difference driving the flow in a tube is suddenly increased from 0 to
some fixed value �p0, the flow increases gradually (solid curves) until it reaches the value �p0=R
(dashed lines). At that value the flow is said to be in steady state, while prior to that it is in a
transient state. In steady state the flow rate has the value which it would have against a resistance
R and with a driving pressure difference �p0 (Eq. 8.3), but because of fluid inertia the flow rate
takes time to reach this value, the higher the inertia the longer the time. A measure of this effect
is the so called “inertial time constant” tl D L=R, which has the dimension of time when L and R
are as defined in Eqs. 8.12 and 8.2. The three solid curves above, from left to right, correspond to
tl D 1:0; 3:0; 6:0 s. The time it takes the flow curve to reach its ultimate value is directly related to
the value of tl, and the reciprocal of tl represents the initial slope with which the flow curve moves
towards its asymptotic value. In the absence of the inertial effect (L=R D tl D 0), the flow curve
would “jump” to the asymptotic value at time t D 0 and remain on it thereafter.

The higher the value of tl the higher the prevailing inertial effect and the longer is
the time required for the flow to reach steady state. It is important to note, however,
that the approach to steady flow is asymptotic, as seen in Fig. 8.6, which means that,
strictly, the flow takes an infinite amount of time to reach steady state. For practical
purposes, however, the flow is sufficiently close to steady state in a finite and usually
very short amount of time. The inertial time constant tl is a measure of that time.

More precisely, if we introduce a nondimensional (normalized) flow rate

q.t/ D q.t/

�p0=R
(8.20)
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then Eq. 8.18 becomes

q.t/ D 1 � e�t=tl (8.21)

and upon differentiation we find

d q

dt
.t/ D 1

tl
e�t=tl

d q

dt
.0/ D 1

tl
(8.22)

Thus the reciprocal of tl represents the initial slope with which the flow curve moves
towards its asymptotic value. The higher the inertial effect the higher the value of
tl and hence the lower the initial slope of the flow curve and the longer it takes the
flow to reach its asymptotic value. Also, because the asymptotic value of the flow is
here set at a normalized value of 1:0, then tl also represents the time it takes the flow
to reach this asymptotic value if, hypothetically, it continued with its initial slope,
as illustrated in Fig. 8.6.

If the driving pressure gradient �p increases linearly with time, say

�p D �p0

T
t (8.23)

where �p0 is a constant and T is a fixed time interval, Eq. 8.15 gives upon
integration (by parts) and simplification

q.t/ D �p0

TR

�
t � L

R

�
C Ae�t=.L=R/ (8.24)

where A is a constant of integration. If the flow rate is zero at t D 0, we find

A D �p0L

TR2

and the solution becomes

q.t/ D �p0

TR

�
t � L

R
C L

R
e�t=.L=R/

�
(8.25)

or in nondimensional form

q.t/ D q.t/

�p0=R
D t

T
� tl

T

�
1 � e�.t=T/=.tl=T/

	
(8.26)
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The form of the solution suggests that the appropriate time variable in this case
is the fractional time t=T , where T may, for example, be taken as the total interval
over which the flow takes place, hence t=T has the range 0–1:0. As in the previous
case, the effect of inertia is embodied in the value of inertial time constant tl. Again,
since tl has the dimension of time, it is appropriate in this case to consider values of
the inertial time constant tl=T , as this indeed is the parameter required in the above
equation.

Results for tl=T D 0:1; 0:3; 0:5 are shown in Fig. 8.7. As the driving pressure
difference �p increases, both the flow rate and its derivative begin to increase,
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Fig. 8.7 If the pressure difference driving the flow in a tube increases linearly from zero, the flow
rate begins to increase, but because of inertia it requires a certain amount of time to reach a value
appropriate for the prevailing value of the pressure difference. But since in this case the pressure
difference is continually increasing, the flow rate is never able to reach that appropriate value.
What the flow rate is able to achieve as time goes on is a quasi-steady state in which its value is
a fixed amount below what it should be. Thus, asymptotically, the flow acquires the same form as
the driving pressure, namely that of a linearly increasing function with a unit slope (Eq. 8.27), but,
because of the inertial effect the flow curve is shifted along the time axis by an amount equal to the
value of tl=T as shown. The three solid curves above, from left to right respectively, correspond to
tl=T D L=RT D 0:1; 0:3; 0:5, where T is total time interval over which flow is taking place, here
taken as 1:0. The dashed curve through the origin represents the normalized pressure as well as
what the flow rate would be in the absence of inertial effects, that is when tl=T is zero. The other
three dashed curves represent the asymptotes of the flow curves for tl=T D L=RT D 0:1; 0:3; 0:5.
The higher the value of tl=T the larger the ultimate gap between pressure and flow and hence the
higher the inertial effect.
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but as in the previous case, because of inertia, it takes a certain amount of time
for the flow to reach a value appropriate for the prevailing value of the pressure
difference. But since in this case the pressure difference is continually increasing,
the flow rate is never able to reach that appropriate value. What the flow rate is able
to achieve as time goes on is a state in which its value is a fixed amount below what
it should be. We may refer to this state as a quasi-steady state since, strictly, steady
state is usually defined as one in which the flow rate is either constant or periodic.
In the present case it is continually increasing. Nevertheless, it is possible here to
distinguish (Fig. 8.7) between an initial period where the flow rate is adjusting to the
new pressure difference, which may be referred to as a transient state, and a final
period in which the flow rate is still changing but now at a fixed rate, the same rate
at which the driving pressure difference is changing. It is in this sense that the latter
may be referred to as a quasi-steady state.

From Eq. 8.26 we see that the quasi-steady state is reached asymptotically as the
exponential term vanishes and the flow rate reduces to

q.t/ � t

T
� tl

T
(8.27)

Thus, asymptotically, the flow acquires the same form as the driving pressure
(Eq. 8.23), but because of the inertial effect the flow curve is shifted along the
time axis by an amount equal to the value of tl=T as shown in Fig. 8.7. This
shift represents the time interval by which the flow rate lags behind the prevailing
pressure difference. The higher the inertial effect, the higher the value of tl and
the larger this ultimate gap between pressure and flow. Also, this gap between
the flow and driving pressure never closes in this case because the driving pressure
is continuously changing. Only in the case of constant driving pressure does the
flow ultimately “catch up” with the prevailing pressure and in a sense “overcome”
the inertial effect as it reaches steady state. In the case of continuously changing
pressure, as in the present case, the inertial effect is present in the transient as well
as in the quasi-steady state.

If, finally, the driving pressure difference �p varies as a periodic function of
time, say

�p D �p0 sin !t (8.28)

where ! is the angular frequency of the oscillation, then Eq. 8.15 gives upon
integration (by parts again)

q.t/ D �p0.R sin !t � !L cos !t/

R2 C !2L2
C Ae�.R=L/t (8.29)

where A is a constant of integration. If the flow rate is zero at time t D 0, we find

A D �p0!L=.R2 C !2L2/ (8.30)
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and the solution becomes

q.t/ D �p0

R2 C !2L2

�
R sin !t � !L cos !t C !Le�.R=L/t

	
(8.31)

A more useful form of the solution is obtained by combining the two trigonomet-
ric terms to give

8̂̂
ˆ̂<
ˆ̂̂̂
:

q.t/ D �p0p
R2 C !2L2

�
sin .!t � �/ � !Lp

R2 C !2L2
e�.R=L/t

�

� D tan�1

�
!L

R

� (8.32)

or in nondimensional form
8̂
ˆ̂̂̂<
ˆ̂̂̂
:̂

q.t/ D q.t/

�p0=R
D 1q

1 C !2t2l

0
B@sin .!t � �/ � !tlq

1 C !2t2l

e�t=tl

1
CA

� D tan�1 .!tl/

(8.33)

In this form we see that as the exponential term vanishes, the flow rate becomes the
same function of time as the oscillatory pressure difference, but with a phase angle
shift � . The size of the shift is higher the higher the inertia of the fluid, that is the
higher the value of the inertial time constant tl.D L=R/. Thus here we see essentially
the same behavior of the fluid as in the previous case. The flow begins with a
transient period in which it attempts to satisfy the prevailing pressure difference, but
it never does. Instead, a steady state is reached in which the flow rate oscillates with
the same frequency as the pressure difference driving the flow. It is a true “steady
state” in this case, by common definition of that term.2 In this state the flow rate
oscillates in tandem with but lags behind the pressure difference by a fixed angle � .
The higher the inertial effect the larger is � , and in the absence of inertial effects
� D 0, as can be seen from Eq. 8.33. The amplitude of flow oscillation, which
represents the highest flow rate reached at the peak of each cycle, from Eq. 8.33, is
given by

jq .t/j D 1q
1 C !2t2l

(8.34)

2Kreyszig E, 1983. Advanced Engineering Mathematics. Wiley, New York.
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Fig. 8.8 If the pressure difference driving the flow in a tube changes in an oscillatory manner, the
flow rate attempts to follow the same oscillatory pattern, but because of inertia it requires a certain
amount of time to reach that pattern. When it does, however, the flow rate lags behind the pressure
difference by a fixed phase angle � and its amplitude is lower than what it would be in the absence
of inertial effects, which here has the normalized value of 1:0. The three solid curves above, from
the highest peak to the lowest, respectively, correspond to tl D L=R D 0:1; 0:3; 1:0 s. It is seen that
the higher the value of the inertial time constant tl the larger the phase angle � and the lower the
amplitude of the flow oscillations. The dashed curve represents the normalized pressure as well as
what the flow rate would be in the absence of inertial effects, that is when tl is zero.

thus the higher the inertial effect, hence the higher the value of tl, the lower the
amplitude of flow oscillation, as shown in Fig. 8.8. In the absence of inertial effects
the amplitude of flow oscillation would be 1:0 (Fig. 8.8).

In summary, when fluid is accelerated or decelerated, fluid inertia gives rise
to another form of opposition to flow, commonly referred to as inductance.
The immediate effect of inductance is to delay the response of the fluid to a change
in the driving pressure difference. The flow rate does not “match” the prevailing
pressure difference immediately but with a time delay. In that “transient state”
the flow rate is attempting to reach a value appropriate for the prevailing pressure
difference, and it ultimately does so if the prevailing pressure difference does not
change any further. But if the driving pressure difference continues to change, as in
oscillatory flow, the flow rate never reaches that appropriate value. It falls short and
lags behind, more so at higher values of the inertial constant.
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8.6 Elasticity of the Tube Wall: Compliance

A tube in which the walls are rigid offers a fixed amount of space within it, hence
the volume of fluid filling it must also be fixed, assuming, here and throughout this
discussion, that the fluid is incompressible. By the law of conservation of mass, flow
rate q1 entering the tube must equal flow rate q2 at exit. There is thus only one flow
rate q through the tube, which may vary at different points in time depending on the
applied pressure gradient, but at any point in time it must be the same at all points
along the tube.

When flow is occurring in a nonrigid tube, by contrast, two new effects come
into play:

• First, the volume of fluid contained within the tube may change, like the volume
of air in a balloon as it is inflated. This effect known as the tube’s compliance
or, in the context of electrical analogy, it is known as capacitance in relation
to a change in the charge within a capacitor. We shall use the two terms
interchangeably.

• Second, a local change of pressure within the tube causes a local change in the
volume of fluid which then propagates as a wave crest (or valley) down the tube
at a finite speed known as the wave speed as discussed more fully in Sect. 5.2.

While both the effects result from elasticity of the tube wall, there is a fundamental
difference between them which provides a basis for dealing with them separately.
Under the effect of compliance there is a change in the total volume of fluid
contained within the tube, again, as in the case of a balloon that is being inflated
or deflated. Under the effect of wave propagation, by contrast, there is no change in
the total volume of fluid within the tube- the change of volume occurs only locally.
It is important to emphasize, however, that while this difference makes it possible to
separate the two effects on theoretical grounds, it does not imply that the two effects
actually occur separately in practice.

An instructive way of looking at the difference between the two effects of
elasticity of the vessel wall is by noting that total changes in volume occur
largely in the transient state, while local changes in volume occur in the steady
state of wave propagation.

The dynamics of wave propagation have been described extensively in previous
chapters. In this section we focus on the transient effects of compliance.

Since compliance of the tube wall affects the total volume of fluid within the
tube, flow rate at entrance to the tube may no longer be the same as that at exit. This
is because some of the flow at the entrance may go towards inflating the tube while
some of the flow at exit may have come from a deflation of the tube. A convenient
way of modeling this situation is to imagine flow going into a rigid tube to which
a balloon is attached such that fluid has the option of flowing through the tube as
well as inflating the balloon as depicted schematically in Fig. 8.9. The choice of a
rigid tube is essential in order to eliminate the possibility of local changes in volume
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Fig. 8.9 Compliance effect
of flow in an elastic tube can
be modeled by flow into a
rigid tube with a balloon
attached at one end. Flow rate
q entering the system may go
into the balloon or into the
tube or both. Pressure p1 at
entry into the system is equal
to pressure prevailing inside
the balloon. Pressure at exit
from the rigid tube is p0, the
same as that outside the
balloon.

p1

p0

p0qc qr

q

p1

that would occur in wave propagation. Thus, the combination of a rigid tube and a
balloon captures the transient changes in total volume in isolation from those of
wave propagation.

Schematically, we consider the entrance to the balloon to be the same as the
entrance to the rigid tube, and the pressure p1 at entry into the system is equal to
pressure prevailing within the balloon. Pressure outside the balloon and at exit from
the tube is p0. Flow through the tube and flow into the balloon are thus in parallel,
in the sense that they can occur independently of each other. Flow into the system
has the option of inflating the balloon or flowing down the tube, not unlike flow
from the left ventricle into the aorta, which has the option of going downstream or
inflating the aorta, or do some of each.

Consider the general scenario in which some of the flow rate will go towards
inflating the balloon and some will go through the rigid tube. We shall refer to these
as “capacitive” and “resistive” flow rates and denote them by qc and qr respectively.

Flow down the rigid tube will driven by the pressure difference p1 � p0 against
the viscous resistance R such that, as in Eq. 8.3, we have

8<
:

qr D �pr

R

�pr D p1 � p0

(8.35)

For flow into the balloon we note first that the balloon is in an inflated state when
pressure inside the balloon is higher than pressure outside it, that is when p1 > p0

or p > 0. If the volume of fluid contained within the balloon in this state is v, then
the compliance C of the balloon is usually defined by the amount of change in the
pressure difference ıp required to produce a change ıv in the volume of the balloon,
that is

C D ıv

ı.�p/
(8.36)
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The awkward notation in the denominator emphasizes the fact that it is not the
pressure difference �p that produces the change in volume but a change in that
pressure difference. Also, in this form it is seen that a higher value of C represents
a balloon that requires less change in �p to produce a given change in volume, that
is a balloon that is more elastic, or more compliant.

Thus, unlike resistive flow qr, which is driven by the pressure difference �p,
capacitive flow qc requires a change in �p. This is because flow in the rigid
tube is resisted by the viscous shear stress at the tube wall, while flow into the
balloon is resisted by the stretching of the balloon wall.

The change in volume ıv in Eq. 8.36 is not a useful entity to work with in blood
flow because it is not easily accessible. A more useful entity is the capacitive flow
rate qc representing the amount of flow going into or out of the balloon, which of
course can be related to ıv in the following way. As before, we assume that fluid is
incompressible, hence the only way in which a change in the volume of fluid within
the balloon can occur is by having a nonzero capacitive flow qc going into or out of
the balloon. If a constant capacitive flow rate qc occurs over a time interval ıt, the
corresponding change in volume of fluid within the balloon will be

ıv D qcıt (8.37)

which upon substitution into Eq. 8.36 gives

C D qcıt

ı.�p/
(8.38)

or

qc D C
ı.�p/

ıt
(8.39)

In the limit, if �p is a continuous function of time, then qc correspondingly becomes
a continuous function of time, given by

qc D C
d.�p/

dt
(8.40)

This result shows clearly, again, that flow rate into the balloon depends not on the
pressure difference �p but on the time rate of change of that difference. Also, by
noting that total flow rate q into the system must equal the sum of the two partial
flow rates, that is

q D qc C qr (8.41)

we see clearly that the input flow rate q will not in general be equal to the output
flow qr.
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We thus note that in the presence of compliance, flow rate q into a vascular
system will not in general be equal to flow rate qr out of the system.

The outcome depends on the form of the pressure difference �p. We explore the
following three scenarios.

(i) If the pressure difference p1 � p0 is constant, that is

�p D �p10 (8.42)

where �p10 is a constant, then Eqs. 8.40 and 8.35 give

8<
:

qr D �p10

R

qc D 0

(8.43)

Under this scenario the flow is entirely through the tube. Flow into the balloon
is zero because the rate of change of �p is zero (although �p itself is not zero).
The volume of the balloon remains unchanged in this case.

(ii) If p1 �p0 increases linearly with time, from zero at time t D 0 to �p10 at t D T ,
where �p10 is a constant as before, then

�p D �p10 � t

T
(8.44)

and from Eqs. 8.40 and 8.35 we find

8̂
ˆ̂<
ˆ̂̂:

qr D �p10

R

t

T

qc D C
�p10

T

(8.45)

Under this scenario there is constant flow into the balloon because the rate of
change of �p with time is constant. Flow through the tube is increasing linearly
with time as �p increases with time. To compare the two graphically it is easier
to put them in nondimensional forms, writing

8̂̂
<̂
ˆ̂̂:

qr D qr

�p10R
D t

T

qc D qc

�p10R
D RC

T

(8.46)

The product RC is seen to have the physical dimensions of time and is referred
to as the “capacitive time constant”. We shall denote it by tc, in analogy with
the inertial time constant (tl), writing
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Fig. 8.10 Comparison of resistive and capacitive flow rates when the driving pressure �p is
increasing linearly with time over a time interval T and at three different values of the capacitive
time constant: tc D 0:6; 0:3; 0:1. In all cases, capacitive flow is constant since it depends on the
rate of change of �p, while resistive flow increases linearly with time since it depends on �p itself
and the resistance R is constant. Higher values of the capacitive constant tc correspond to higher
compliance, thus allowing more flow into the balloon.

tc D RC (8.47)

and the two flow rates in nondimensional form become

8̂̂
<
ˆ̂:

qr D t

T

qc D tc
T

(8.48)

Figure 8.10 compares these flow rates at different values of tc. We recall that
higher values of tc (D RC) are associated with higher compliance, allowing
more flow to go into the balloon. Thus, as seen in the figure, capacitive flow is
constant at a value in fact equal to tc=T , while resistive flow (flow through the
tube) increases linearly as t=T .
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(iii) Finally, if the pressure differences p1 � p0 is oscillatory, such that

�p D �p10 sin !t (8.49)

where ! is the angular frequency of oscillation, then from Eqs. 8.40 and 8.35
we find

8<
:

qr D �p10

R
sin !t

qc D �p10 ! C cos !t

(8.50)

As expected, both qc and qr are oscillatory functions of time, with the same
frequency as the driving pressure, namely !. In nondimensional form

(
qr D sin !t

qc D !tc cos !t
(8.51)

The two flows are compared graphically in Fig. 8.11, where it is seen that the
proportion of the flow rate that goes into the balloon in each cycle depends
on the value of the capacitive time constant tc. As in the previous case, higher
values of tc correspond to higher compliance, thus allowing more flow into the
balloon. The resistive flow, on the other hand, is unaffected by the value of tc
and has the same form as the driving pressure, noting that inertial effects are
not included here. The combination of compliance and resistance depicted in
Fig. 8.11 forms the basis of the classical “windkessel” concept that dates back
to the seventeenth century3 whereby pulsatile flow is seen to consist of an initial
phase in which fluid is driven mostly into an expanding chamber, followed by a
second phase in which the chamber contracts, driving fluid out of the chamber
and thereby creating forward flow. Precisely how forward flow is created, will
be discussed in the next chapter.

8.7 Mechanical Analogy

The mechanics of flow in a tube or a system of tubes can be identified, by analogy,
with the basic mechanics of a solid object in motion under the influence of certain
forces and conditions. Both situations are governed by the same laws of physics,
and it should not be surprising that the analytical descriptions of their mechanics
are analogous. What is different between the two situations, and what makes the
analogy useful, stems from a difference not in the governing laws but in the type of
forces and conditions involved and in the variables used in the two cases.

3See: Milnor WR. Hemodynamics. Williams & Wilkins, Baltimore, 1989.
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Fig. 8.11 Comparison of resistive and capacitive flow rates when the driving pressure �p is an
oscillatory function of time of period T . The resistive flow has the same form as the driving pressure
since inertial effects are not included here and since it is unaffected by the value of the capacitive
time constant tc. The capacitive flow in each cycle, on the other hand, is higher with higher values of
tc because of higher compliance of the balloon. The three capacitive flow curves shown corresponds
to tc=T D 0:1; 0:6; 1:0.

In the classical mass-damper-spring system, the motion of a solid object may
be opposed by a spring resistance proportional to the displacement of the object, a
damper resistance proportional to the rate of change of displacement (or velocity)
of the object, and to an inertial resistance proportional to the second rate of
displacement (or acceleration) of the object.4;5 While in fluid flow these forces and
conditions are not present in the same form, they are present in equivalent forms
which obey the same governing laws, hence the basis for the analogy.

For example, in fluid flow the compliance (or capacitance) of a tube or a system
of tubes is analogous to the spring in the mechanical system, the viscous resistance
between the fluid and the tube wall is analogous to the damper resistance, and
the inertia of the fluid is analogous to the inertia of a solid object in motion.

4Meriam JL, 1980. Engineering Mechanics, Statics and Dynamics. John Wiley and Sons, New
York.
5Ginsberg JH, Genin J, 1984. Statics and Dynamics. John Wiley and Sons, New York.
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These properties have already been discussed in earlier sections, what is required
in this section is only to show how they translate into the corresponding properties
of the mechanical system. The translation is not a direct one because the basic
variables used in the mechanical system, namely mass, displacement and rates of
displacement, are not readily available or convenient to work with in the fluid flow
system.

Despite these difficulties, the mechanical analogy is a useful tool in modeling a
blood flow system because the analogy itself as it applies to each individual element
is clearly valid. Thus, the relation between the flow rate q and pressure drop �p in
a tube, derived in Sect. 8.5, namely

�p D L
dq

dt
(8.52)

where L is the inertance, or inertial constant, of a bolus of fluid within the tube was
shown in that section to be equivalent to the basic law of motion

F D m
du

dt
(8.53)

where m is the mass of a solid object in motion, u is its velocity, and F is the
force acting on it. The analogy between the two equations is apparent and the
correspondence between the two situations is illustrated in Fig. 8.12. The driving
pressure difference �p in the fluid flow system corresponds to the acting force F
in the mechanical system, while the inertance L corresponds to the mass m, and
the flow rate q corresponds to the velocity u. In both cases the underlying law is
the same, namely “force equals mass times acceleration”, but as stated earlier, the
variables used in the two situations are not the same. In particular, Eq. 8.52 avoids
the use of mass or acceleration because these must be related to a specific object.
Flow rate q and an inertial parameter L are used instead which relate to the entire
body of fluid rather than to a specific element of that body.

Similarly, the viscous resistance to flow in a tube, discussed in Sect. 8.3, and the
resulting relation between the pressure difference �p and the flow rate q, namely

�p D Rq (8.54)

where R is the resistance to flow due to viscosity of the fluid and the condition of
no-slip at the tube wall, is analogous to the classical law of friction at a solid-solid
interface

F D fu (8.55)

where f is the coefficient of friction at the interface, u is the relative velocity
between the two surfaces, and F is the driving force. Again, the analogy between
the two equations is apparent, and the two situations are illustrated in Fig. 8.13.
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m m

Δp = L
dq
dt

F = m
du
dt

Fig. 8.12 Mechanical analogy between flow in a tube and the motion of a solid object in classical
mechanics. The driving pressure difference �p in the fluid flow system corresponds to the acting
force F in the classical mechanics system, while the inertance L corresponds to the mass m, and
the flow rate q corresponds to the velocity u. In both cases the underlying law is “force equals mass
times acceleration”.

Here the pressure difference �p corresponds to the driving force F and the flow rate
q corresponds the velocity u, as before, and the viscous resistance R corresponds
to the friction coefficient f . Finally, the compliance of an elastic tube, discussed
in Sect. 8.6, and the resulting relation between the pressure difference �p and the
change in volume �v, namely

ı.�p/ D 1

C
ıv

D 1

C

Z
qdt (8.56)

ıv D
Z

qdt (8.57)
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Δp = Rq

F = fu

Fig. 8.13 Mechanical analogy between the viscous friction at the interface between fluid and tube
wall, represented by velocity gradient at the tube wall, and the friction law in classical mechanics
at the interface between two solid objects. Here the pressure difference �p in the tube corresponds
to the driving force F in the classical mechanics system, the flow rate q corresponds to the friction
velocity u, and the viscous resistance R corresponds to the friction coefficient f .

where C is the compliance of the tube, is analogous to the classical Hook’s law for
an elastic spring, namely

F D kıx

D k
Z

udt (8.58)

ıx D
Z

udt (8.59)

where k is the spring constant, ıx is the spring extension and F is the applied force.
In the integral terms above, the spring extension is expressed in terms of the velocity
u with which the spring is being extended, and the change in volume ıv of the elastic
tube/balloon is expressed in terms of the flow rate q. The analogy between the two
equations is apparent, with ı.�p/ corresponding to the applied force F, the awkward
notation is there to emphasize again that capacitive flow is driven not by �p but by
a change in �p. The analogy between the two situations is illustrated in Fig. 8.14.
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Δx
F = k Δx

ΔvΔp = 1
C

Fig. 8.14 Mechanical analogy: between the compliance effect of flow in an elastic tube, here
represented by a balloon, and the stretch of an elastic spring according to Hook’s law. The pressure
difference �p in the flow system corresponds to the applied force F in the spring system, the
change in volume �v of the tube/balloon corresponds to the change in length �x of the spring,
and 1=C in the flow system corresponds to the spring constant k, where C is a measure of the
compliance of the tube/balloon, as defined by Eq. 8.38.

In summary, flow in an elastic tube is governed by the same physical laws and the
same equations as the motion in a mechanical mass-damper-spring system. By this
so called “mechanical analogy”, fluid inertia in the fluid flow system is equivalent to
the inertia of the mass in the mechanical system, viscous resistance in the fluid flow
system is equivalent to damper resistance in the mechanical system, and compliance
of the tube in the fluid flow system is equivalent to the stretch of the spring in the
mechanical system. The analogy is useful because the elements of the mechanical
system are more familiar and their functions can be visualized more clearly than
those in the fluid flow system.

8.8 Electrical Analogy

The dynamics of a pulsatile blood flow system can also be modelled, by analogy, in
terms of an electric circuit with the basic elements of resistance, capacitance, and
inductance. The analogy is subject to the same limitations as the mechanical analogy
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discussed in the previous section, namely the assumption that these elements can be
identified with lumped properties of the blood flow system that is being modeled.
Electrical analogies have been used extensively in the study of pulsatile blood
flow because electric circuits are much easier to manipulate, both analytically
and experimentally, and are thus a convenient modeling tool. An electrical model
of a blood flow system can actually be built and tested experimentally, which makes
the electrical analogy particularly useful in the study of pulsatile blood flow.

In the electrical analogy the potential difference or voltage, V , corresponds to the
pressure difference �p in the blood flow system, and the electric current I along a
conductor corresponds to the flow rate q along a tube. The basis of the analogy is
that the relation between the voltage V and current I across an inductor L, namely6

V D L
dI

dt
(8.60)

is analogous to the corresponding relation between the pressure difference and flow
rate in a tube, as in Eq. 8.52, namely

�p D L
dq

dt

where the inertia of the fluid is seen to produce an effect analogous to that of an
inductor, in the electrical system. The analogy is illustrated in Fig. 8.15.

Similarly, the relation between the voltage and current across a resistor R, namely

V D I � R (8.61)

is analogous to the relation between the pressure difference and flow rate in a tube,
as in Eq. 8.4,

�p D q � R (8.62)

where viscous friction between fluid and the tube wall is seen to produce an effect
analogous to that of a resistor in the electrical system. The analogy is illustrated in
Fig. 8.16.

Finally, the relation between the voltage across and current into a capacitor
namely

V D 1

C
�Q

6Cogdell JR, 1999. Foundations of Electric Circuits. Prentice Hall, Upper Saddle River, NJ.
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Δp = L
dq
dt

V = L
dI
dt

LV

Fig. 8.15 Electrical analogy: between flow in a tube and the flow of current in an electric circuit,
in the presence of inductance L in both systems. The driving pressure difference �p in the fluid
flow system corresponds to the voltage V in the electrical system, and the flow rate q corresponds to
the electric current I. Inductance in the fluid flow system is due to a change in the flow rate, which
is associated with acceleration or deceleration of a mass of fluid, while inductance in the electrical
system is due to change in the current, which is associated with acceleration or deceleration of a
mass of electrons.

D 1

C

Z
Idt (8.63)

�Q D
Z

Idt (8.64)

where C is the capacitance and �Q is the accumulated electric charge on the
capacitor, is analogous to the relation between the pressure difference and flow rate
into an elastic tube (Eq. 8.56).

ı.�p/ D 1

C
ıv

D 1

C

Z
qdt

ıv D
Z

qdt
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Δp = Rq

V = IR

RV

Fig. 8.16 Electrical analogy: between flow in a tube and the flow of current in an electric circuit,
in the presence of resistance R in both systems. The driving pressure difference �p in the fluid
flow system corresponds to the voltage V in the electrical system, and the flow rate q corresponds
to the electric current I. Resistance in the fluid flow system is due to loss of kinetic energy because
of viscous friction between fluid and the tube wall, while in the electrical system it is due to loss of
electric energy within the resistor. Interestingly, in both cases the lost energy is converted to heat.

Here, because of the elasticity of the tube wall, the accumulated volume of
fluid within the tube can change in analogy with a change in the electric charge
accumulated on the capacitor. The analogy is illustrated in Fig. 8.17.

8.9 Summary

Flow in a tube viewed as the motion of fluid in bulk rather than point-by-point as
was done in earlier chapters provides a different method of analysis than was done
earlier. The most important advantage of this method is that it makes it possible to
use mechanical and electrical analogies which are well known and the dynamics of
which are well understood.

Under these analogies, the electrical, mechanical, and fluid flow systems are
all characterized by a driving force which may be referred to as the “input”, a
consequent motion or flow which may be referred to as the “output”, and three
types of opposition to that output which are known as “inductive”, “resistive”,
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q
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v

Δv

ΔvΔp = 1
C

ΔQV = 1
C

Fig. 8.17 Electrical analogy: between flow in a tube and the flow of current in an electric circuit,
in the presence of capacitance C in both systems. The driving pressure difference �p in the fluid
flow system corresponds to the voltage V in the electrical system, and the flow rate q corresponds
to the electric current I. Capacitance in the fluid flow system is due to a change in the volume v

of fluid within an elastic tube, here represented by an expandable balloon, while in the electrical
system it is due to a change in the total electric charge Q on a capacitor. The change in volume �v

in the fluid flow system is attained by a sustained flow rate into or out of the balloon, while the
change in electric charge �Q on the capacitor is attained by a sustained current into or out of the
capacitor.

and “capacitive” elements or forces. Different terminologies are sometimes used
in each of the three systems, but the relation between input and output against the
opposition forces is the same in all three systems.

In the electrical system the input is potential difference or voltage V , the output
is current I, and the three elements of opposition are an inductor, a resistor, and
a capacitor, represented respectively by their parameters L; R; C. The relations
between input and output via these elements are given by

8̂
ˆ̂̂̂<
ˆ̂̂̂
:̂

V D L
dI

dt
inductive

V D R � I resistive

V D 1

C

Z
Idt capacitive

(8.65)
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In the mechanical system the input is an external force F, the output is velocity
u, and the three elements of opposition are mass, friction, and a spring, represented
respectively by their parameters m; f ; k. The relations between input and output via
these elements are given by

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

F D m
du

dt
inductive

F D f � u resistive

F D k
Z

udt capacitive

(8.66)

In the fluid flow system, finally, the input is a pressure difference �p, the output is
flow rate q, and the three elements of opposition are fluid inertia, fluid viscosity, and
tube compliance, represented respectively by their parameters L; R; C. The relations
between input and output via these elements are given by

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

�p D L
dq

dt
inductive

�p D R � q resistive

�p D 1

C

Z
qdt capacitive

(8.67)

For flow in a tube of length l and radius a, assuming Poiseuille flow through-
out, the resistance and inductance parameters are respectively given by (Eqs. 8.2
and 8.12)

8̂̂
ˆ̂<
ˆ̂̂̂:

R D
�

8�l

�a4

�

L D
�

�l

�a2

� (8.68)

while the compliance parameter C is determined by the elasticity of the tube wall.

The lumped parameter concept makes it possible to extend the parameters
R; L; C characterizing the flow in a single tube to parameters of the same type
characterizing the flow in a vascular tree consisting of a large number of tube
segments.

While the values of these parameters will be different for the tree as a whole
than they are for a single tube, the functional relation between the driving
pressure difference and the resulting flow rate will be the same as it is for a
single tube and therefore as outlined in this chapter.



282 8 Dynamics of Pulsatile Blood Flow I

The most important application of the lumped parameter concept, therefore, is in
using it in combination with the electrical and mechanical analogies to actually find
the values of the parameters R; L; C characterizing a given vascular bed where the
driving pressure difference and the resulting flow rate can be measured. Since the
relations between the driving pressure difference and the resulting flow rate must be
in accordance with those in Eq. 8.67, then the values of R; L; C must be such that
the measured pressure and flow are the same as those dictated by Eq. 8.67.

The lumped parameter concept in combination with the mechanical and
electrical analogies thus provides a powerful and non-invasive diagnostic
tool for determining the properties of a vascular bed to assess the functional
“health” of that bed.



Chapter 9
Dynamics of Pulsatile Blood Flow II

9.1 Introduction

The way in which each of the three basic effects of resistance R, inductance L,
and compliance C, influence the dynamics of the flow in tubes were considered
separately in the previous chapter. In the present chapter we examine how they work
together to determine fully the dynamics of flow in tubes.

We recall that in the way they were defined, the parameters R; L; C apply equally
to the dynamics of flow in a single tube as they do to the dynamics of flow in an
entire vascular bed, providing that the bed is in the form of a hierarchical branching
tree structure, or in fact any form of branching structure that emanates from a single
root vascular segment. In the case of a vascular bed the three parameters represent
the collective effects of resistance, inductance, and compliance within the entire bed
and are therefore aptly referred to as “lumped” parameters. This is indeed where the
lumped parameter concept outlined in the previous chapter finds its most important
application, because the relation between driving pressure and resulting flow for the
entire bed can then be determined in terms of these lumped parameters.

More specifically, if the driving pressure and resulting flow rate in a vascular
bed can actually be measured at the point of entry to that bed, then the
established relation between pressure and flow can be used in reverse to
determine the values of the lumped parameters R; L; C that characterize that
bed.

An example where this can be done relatively easily is that of obtaining mea-
surements of pressure and flow at a brachial artery to determine values of the
lumped parameters R; L; C that characterize the downstream vasculature emanating
from that artery and hence much of the arterial side of the vascular bed of the
arm. Similarly, measurements of pressure and flow at an iliac, coronary, carotid,
or indeed at the ascending aorta, would provide values of the lumped parameters
characterizing vascular beds in the leg, the heart, the brain, or the systemic
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circulation as a whole. This makes the lumped parameter method a very powerful
diagnostic tool for determining the dynamic “fitness” of a vascular bed, in normal
or pathological states. At the basis of this method is an established relation between
the driving pressure and the corresponding flow in a given vascular bed. The way in
which this relation is established is considered in the present chapter.

9.2 Pulsatile Blood Flow Revisited

In pulsatile blood flow, both the pressure and the flow are periodic functions of
time and, as such, each can be divided into a steady part and an oscillatory part as
discussed in Sect. 4.3. The steady part of the pressure drives the steady part of the
forward flow while the oscillatory part of the pressure drives the oscillatory part of
the flow, back and forth and with zero net forward flow (Sect. 4.3).

While this is an accurate picture of pulsatile blood flow, it raises some
questions for the uninitiated. How does pulsatile blood flow produce a
reasonably continuous forward flow? Not necessarily constant but continuous
forward flow. In essence, how do the steady and the oscillatory parts of
pulsatile blood flow work (together?) to optimize forward flow?

To the physiologist the answer to this question is embedded in the classical
Windkessel concept mentioned briefly at the end of Sect. 8.6, namely: “fluid is
stored within the Windkessel chamber when pressure is high in systole and released
when pressure is low in diastole”. Thus the Windkessel effect is proposed as a
mechanism for absorbing the force of the high pressure peak in systole, thereby
producing a more continuous and somewhat less “jerky” forward flow.

To the mathematician the question at hand is more acute because, as stated earlier,
the steady and the oscillatory parts of pulsatile blood flow are completely separable.
This would suggest that forward flow is produced entirely by the steady part of
the driving pressure, independently of the oscillatory part. In other words, here the
Windkessel effect of absorbing the pressure peak is not clear because here it seems
as if forward flow is not being affected by the oscillatory part of the flow. Why
then is mathematical work on pulsatile blood flow, including the classical solutions
described in Chaps. 4 and 5, is focused specifically and almost exclusively on the
oscillatory part of the system? In this section we address these questions.

One mechanism by which the oscillatory part of pulsatile blood flow may affect
the steady part is that of wave reflections. The subject was discussed in Chap. 6
where, briefly, it was shown that wave reflections (which are generated by the
oscillatory part of the flow) can modify the pressure distribution within the vascular
system and thereby change the steady part of the flow. Since this effect has already
been fully examined in Chap. 6, in this section and in the context of the questions at
hand we focus specifically on how in the absence of wave reflections the steady and
the oscillatory parts of pulsatile blood flow affect each other.

We shall find that the oscillatory part of pulsatile blood flow plays a critical role
in the efficiency and dynamics of the flow, although when considered in isolation
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it appears to produce a net forward flow of zero. Paradoxically, however, focus on
the oscillatory part of the flow in isolation is both legitimate and useful because it
provides an understanding of this critical part of pulsatile blood flow.

9.3 Resistive-Capacitive Interplay I

The main conclusion from the previous section is that the oscillatory part of pulsatile
blood flow is at the very core of the dynamics of that flow and, in turn, the interplay
between the resistive and the capacitive parts of the oscillatory flow is at the very
core of the dynamics of that flow. Indeed, the dynamics of the resistive-capacitive
interplay will be pursued in several forthcoming sections of the book. In the present
section we illustrate this interplay in its most basic form.

For this purpose we consider a simple combination of resistance R and compli-
ance C in parallel to represent the resistive and the capacitive parts of the pulsatile
flow system, respectively. While this model is highly simplified, it is perfectly
adequate for illustrating the phenomenon at hand. The essence of the phenomenon,
as depicted schematically in Fig. 8.9, is that the flow entering the system has the
option of going against the resistance in the rigid tube or against the compliance of
the elastic balloon. This option is only available when the resistive and capacitive
elements of the system are in parallel, not in series. The parallel option is at the core
of the Windkessel concept because it represents the physiological conditions which
the concept was designed to address, namely the conditions facing blood flow as it
leaves the left ventricle. The flow has the option of going against the resistance to
flow within the arterial tree or against the compliance of the arterial tree.

It is important that resistive flow and capacitive flow not be confused with the
steady and the oscillatory parts of pulsatile blood flow. In a rigid tube, for
example, the steady part and the oscillatory part of the flow are both entirely
resistive because they are both unfolding against the resistance to flow at the
tube wall. In an elastic tube this situation is mitigated somewhat by turning
some of the oscillatory flow into capacitive flow. Thus in this case some of the
resistive flow is steady and some is oscillatory, while the capacitive flow is
entirely oscillatory.

It is also important to note that the option provided by the parallel arrangement
of compliance and resistance is not an “either/or” option. In general the flow will
divide itself according to the relative opposition provided by the compliance and
resistance at hand. There are two different ways of viewing this division, one in
which flow into the parallel system is seen as being driven by a common source of
pressure (not constant but common) and another in which it is seen as being driven
by a common source of flow rate. We examine both scenarios below to illustrate the
different pictures which they provide.

In the first scenario, consider a parallel arrangement of compliance C and
resistance R driven by a common source of pressure, say
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P.t/ D Ps C P�.t/

D Ps C P0 ei!t (9.1)

Here the notation of Sect. 4.3 is being used, where Ps; P� are the steady and
the oscillatory parts of the driving pressure, respectively, P0 is amplitude of the
oscillatory pressure, ! is angular frequency and t is time. The pressure in this form
is pulsatile in the sense that it consists of a steady part and an oscillatory part to
simulate somewhat that aspect of pulsatile blood pressure. This simulation is very
crude, of course, but it serves the purpose of the present section. More accurate
pulsatile pressure wave forms will be considered in the next two chapters.

From the results in Sects. 8.3 and 8.6, the resistive and capacitive flow rates, to
be denoted by qr; qc, respectively, are given by

8̂
ˆ̂<
ˆ̂̂:

qr D P

R

qc D C
dP

dt

(9.2)

where, for simplicity, P is being used here to represent the pressure difference �P
used in Sects. 8.3 and 8.6.

Substituting for the pressure, we find

8̂<
:̂

qr D 1

R
.Ps C P0ei!t/

qc D CP0 i! ei!t

(9.3)

Using the capacitive time constant introduced in Sect. 8.6

tc D R � C

and noting that

! D 2�

T
(9.4)

where T is the period of oscillation, the resistive and capacitive flow rates can be put
in the following nondimensional (normalized) form

8̂
ˆ̂<
ˆ̂̂:

qr D qr

Ps=R
D 1 C 	p ei2�.t=T/

qc D qc

Ps=R
D i2�.tc=T/	p ei2�.t=T/

(9.5)
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where

	p D P0

Ps
(9.6)

It may seem from these results that the resistive and the capacitive flows and
capacitive flow are in this case independent of each other and a change in the
properties of one does not change the other. This is not the case, however, since
a change in the value of the compliance C will in fact change the amplitude of the
oscillatory part of both the resistive and the capacitive flows (Eq. 9.3). This is seen
more clearly as we consider the second scenario below.

In the second scenario, consider a parallel arrangement of compliance C and
resistance R driven by a common source of flow, say

Q.t/ D Qs C Q�.t/ (9.7)

D Qs C Q0 ei!t (9.8)

with obvious notation, as in the first scenario. The resistive and capacitive flow rates
and capacitive flow are again given by Eq. 9.2 but here we also use the fact that the
two flows are coupled such that

qr C qc D Q (9.9)

Substituting for qr and qc from Eq. 9.2 and for Q from Eq. 9.7, we find

C
dP

dt
C P

R
D Qs C Q0 ei!t (9.10)

Solving this equation for the pressure P, and omitting the details, we find

P D RQs C
�

RQ0

1 C CRi!

�
ei!t (9.11)

Substituting this pressure into the expressions for qr and qc in Eq. 9.2, and using the
same notation as in the first scenario, we find, after some algebra

8̂̂
ˆ̂<
ˆ̂̂̂
:

qr D Qs C
�

Q0ei!t

1 C i!CR

�

qc D
�

i!CRQ0ei!t

1 C i!CR

� (9.12)
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or in non-dimensional form
8̂
ˆ̂̂<
ˆ̂̂̂:

qr D qr

Qs
D 1 C

�
	q

1 C i2�.tc=T/

�
ei2�.t=T/

qc D qc

Qs
D
�

i2�.tc=T/	q

1 C i2�.tc=T/

�
ei2�.t=T/

(9.13)

where

	q D Q0

Qs
(9.14)

Here it is seen more clearly how the resistive and the capacitive flows and capacitive
flow are coupled such that a change in one (via a change in tc) affects the other. This
is illustrated graphically in Fig. 9.1. The two different views of pulsatile blood flow
which the above two scenarios provide are implicit in much of our understanding
of the subject, the first in mathematical analysis and the second in the Windkessel
concept.

To the uninitiated they provide the grounds for considerable confusion
because when discussion of the Windkessel concept in pulsatile blood flow is
limited to only the effect of absorbing the shock of the pressure peak in systole,
then the resistive-capacitive interplay enabled by the Windkessel effect, which
is the key biological aspect of pulsatile blood flow, is entirely missed.

In pulsatile blood flow biology has produced a system in which part of the
oscillatory resistive flow is exchanged for oscillatory capacitive flow, with a
considerable energy saving in the process. The saving is obtained because
resistive flow dissipates energy while capacitive flow stores that energy and
later releases it.

It was shown in Sect. 4.10 that in the extreme case of a strictly rigid tube, the
energy expenditure by the oscillatory part of the flow, which is purely resistive in
this case, amounts to 50 % of the energy expenditure for the steady part of the flow.
In an elastic tube all of this wasted energy expenditure on the oscillatory part of
the flow can be saved if (a) the tube wall is purely elastic and (b) the resistive flow
oscillations are completely eliminated.

In pulsatile blood flow these two requirements are not fully met, although
under normal circumstances they are met sufficiently to provide considerable
energy saving and hence efficient dynamics of the oscillatory part of the
flow. In aging or under pathological conditions, however, when vessel wall
properties depart considerably from being purely elastic, both the efficiency
and dynamics of the flow are disrupted. The heart ultimately bears the brunt of
these disruptions since it must provide the energy required for driving the flow.
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Fig. 9.1 Resistive-capacitive interplay in its most basic form, using only a pure resistance R and
a purely elastic compliance C. A decrease in the value of tc (D R � C) causes a shift of oscillatory
flow from the capacitive chamber to the resistive path, thereby increasing energy dissipation as
discussed in the text. The change may come about because of vascular stiffening, which reduces
the value of C, or because of vasodilation, which reduces the value of R. While this model is highly
simplified, it illustrates the very essence of the resistive-capacitive interplay in pulsatile blood flow.
It also illustrates the important role which the dynamics of the oscillatory part of the flow play and
the clinical implications of this role. The loss of vascular compliance, with age or disease, then
leads to a shift of oscillatory flow from the capacitive chamber to the resistive path, thus increasing
energy dissipation (loss) which must be supplied by the heart. The common use of vasodilators
to provide relief to an ailing heart is based of course on lowering the resistance R and thereby
reducing the energy required to drive the steady part of the flow. Oddly, however, this will also
increase energy dissipation incurred by the oscillatory part of the flow which must be provided by
the heart.

9.4 The Capacitive Chamber

In the previous section it was established that pulsatile blood flow, because of its
periodicity, can always be divided into a steady part which represents the equivalent
of steady Poiseuille flow, and an oscillatory part which represents the oscillatory
dynamics of the flow. It was shown in the previous section that a key characteristic
of the oscillatory part of the flow, namely that of having the option of resistive vs
capacitive flow, can be captured by a resistance R and compliance C in parallel.
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In principle, the parallel R; C system captures the key characteristic of the
oscillatory part of pulsatile blood flow, namely that of consisting of one path along
which flow is being allowed to go through at a steady pace, and another path
along which fluid is being accumulated and then released in an oscillatory manner
and with no net flow through. This picture of the oscillatory part of pulsatile blood
flow does not change in principle, but in reality the capacitive path along which
fluid is being accumulated and then released consists of more than purely elastic
compliance C. For the purpose of discussion we shall use the term “capacitive
chamber” to refer to the full form of this path which we consider in this section.

In the previous section the capacitive chamber was taken to consist of only
compliance C and this compliance was considered to be purely elastic as discussed
in Sect. 8.6. In reality blood vessel tissue is not purely elastic, it is “viscoelastic” in
the sense that it has an element of viscosity. A purely elastic material resists stretch.
A viscoelastic material resists stretch plus rate of stretch. In terms of the volume q
of a balloon, following Sect. 8.6, for a purely elastic material the pressure gradient
required to drive flow into the balloon is proportional to the flow rate q, that is

d.�pc/

dt
D 1

C
q (9.15)

where �pc is the pressure difference across the balloon which, upon integration, is
then given by

�pc D 1

C

Z
q dt (9.16)

For a viscoelastic material the pressure gradient required to drive flow into the
balloon is proportional to the flow rate q as well as the rate at which the flow rate is
changing, that is

d.�pve/

dt
D 1

C
q C K

dq

dt
(9.17)

where �pve is the pressure difference across the balloon which, upon integration, is
then given by

�pve D 1

C

Z
q dt C Kq (9.18)

Thus the pressure difference across a viscoelastic balloon (capacitor) is the sum of
the pressure difference across a purely elastic balloon plus a resistance-like term
proportional to the flow rate, that is

�pve D �pc C �pk (9.19)
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where

�pk D Kq (9.20)

This additional pressure difference is required to overcome the viscous resistance to
stretch within the viscoelastic material of the balloon wall. Thus, mathematically,
the parameter K is analogous to the parameter R representing the resistance to flow
against the viscous resistance between the fluid and the tube wall. It is important
that the two not be confused.

The effects of repeated acceleration and deceleration along the capacitance
chamber were considered in Sect. 8.5 where it was shown that these effects are
represented by an inductance parameter L such that

�pl D L
dq

dt
(9.21)

The elements of elasticity, viscoelasticity, and inductance along the capacitive
chamber represented by C; K; L are in series in the sense that the flow has no option
but to go through all three of them. Thus, if the total pressure to drive flow through
the chamber is denoted by �p, then

�pl C �pk C �pc D �p (9.22)

Substituting for the individual pressure drops from Eqs. 9.16, 9.20, 9.21, this
becomes an equation for the oscillatory flow rate q along the capacitive chamber

L
dq

dt
C Kq C 1

C

Z
qdt D �p (9.23)

Equation 9.23 governs the dynamics of the capacitive chamber and, in effect, much
of the dynamics of pulsatile blood flow. It consists of the pressure difference �p
required to drive the flow on one side, and the three forms of “opposition to flow”
on the other. The flow rate q governed by this equation, it will be recalled, is purely
oscillatory with no net forward flow because the dynamics of this part of pulsatile
blood flow is purely oscillatory. In subsequent sections we examine the solutions of
this equation under different conditions.

The solution of Eq. 9.23 is facilitated by differentiating once to get

L
d2q

dt2
C K

dq

dt
C 1

C
q D d.�p/

dt
(9.24)

The general solution of this equation can be put in the form

q.t/ D qh.t/ C qp.t/ (9.25)
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where qh is the homogeneous part of the solution of Eq. 9.24 and the general
solution of

L
d2qh

dt2
C K

dqh

dt
C 1

C
qh D 0 (9.26)

while qp is the particular part of the solution of Eq. 9.24 and a particular solution of

L
d2qp

dt2
C K

dqp

dt
C 1

C
qp D d.�p/

dt
(9.27)

These two parts of the solution of Eq. 9.24 represent two different aspects of the
dynamics of the capacitive chamber which are pursued separately in the next two
sections.

9.5 Transient States

In this section we examine the solution of Eq. 9.26 and the interpretation of that
solution for the homogeneous part of the oscillatory flow rate within the capacitive
chamber, namely

L
d2qh

dt2
C K

dqh

dt
C 1

C
qh D 0

The interpretation of this equation in the context of the full dynamics of the
capacitive chamber is that it represents the three elements of opposition to flow but
in the absence of any driving pressure difference, that is when �p in Eq. 9.24 is zero.
The dynamics of the capacitive chamber under these conditions are appropriately
referred to as “free dynamics” while those under a nonzero �p are referred to as
“forced dynamics”. Dynamics of the capacitive chamber in pulsatile blood flow are
forced dynamics because of the driving pressure provided by the heart. However,
we shall find that the free dynamics of that system provide important clues about
the dynamic characteristics of the system.

It is convenient to reduce the number of parameters by introducing time constants

(
tlk D L=K

tck D CK
(9.28)

thus the equation becomes

tlk
d2qh

dt2
C dqh

dt
C 1

tck
qh D 0 (9.29)
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This equation is a standard second order linear differential equation with constant
coefficients.1 Its solution depends on the nature of the roots of the associated so
called “indicial” equation

tlk˛
2 C ˛ C 1

tck
D 0 (9.30)

The roots are in general given by

˛ D �1 ˙p
1 � .4tlk=tck/

2tlk
(9.31)

but the solution of the governing equation (Eq. 9.29) and hence the dynamics of the
system depend critically on whether these roots are real or complex, which in turn
depends on the relative values of the time constants tlk; tck.

If 4tlk < tck, then Eq. 9.30 has two distinct real roots, given by

8̂̂
ˆ̂<
ˆ̂̂̂:

˛1 D �1 Cp
1 � .4tlk=tck/

2tlk

˛2 D �1 �p
1 � .4tlk=tck/

2tlk

(9.32)

and the solution of the governing equation is given by

qh.t/ D Ae˛1t C Be˛2t (9.33)

where A; B are arbitrary constants. Given the values of the flow rate at time t D 0,
namely q.0/, and the rate of change of the flow rate at the same time, namely q0.0/,
we find

8̂̂
<̂
ˆ̂̂:

A D �˛2qh.0/ C q0
h.0/

˛1 � ˛2

B D ˛1qh.0/ � q0
h.0/

˛1 � ˛2

(9.34)

If 4tlk > tck, then Eq. 9.30 has two complex (conjugate) roots, given by

(
˛1 D a C ib

˛2 D a � ib
(9.35)

1Kreyszig E, 1983. Advanced Engineering Mathematics. Wiley, New York.
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where

8̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂:

a D �1

2tlk

b D
p

.4tlk=tck/ � 1

2tlk

i D p�1

(9.36)

and the solution of the governing equation is given by

qh.t/ D fA cos.bt/ C B sin.bt/g eat (9.37)

where A; B are arbitrary constants. Given the values of q.0/ and q0.0/, again, we find

8̂
<
:̂

A D qh.0/

B D �aqh.0/ C q0
h.0/

b

(9.38)

Finally if 4tlk D tck, then Eq. 9.30 has two identical real roots, given by

˛1 D ˛2 D a D �1

2tlk
(9.39)

and the solution of the governing equation is given by

qh.t/ D .A C Bt/ eat (9.40)

where A; B are arbitrary constants. Given the values of q.0/ and q0.0/, we find

(
A D qh.0/

B D �aqh.0/ C q0
h.0/

(9.41)

It must be remembered that the flow under these scenarios is free from any exter-
nal driving force, but it is unfolding under the effects of inertance L, viscoelastic
resistance K, and compliance C. The dynamics of the system are “free” in the sense
that the system is under only internal forces.

At time t D 0 the dynamics are triggered with a pre-existing flow rate q.0/

through the system, and for the purpose of illustration we take q.0/ D 1 and
q0.0/ D 0. This flow will diminish because it has no external driving force and it
is opposed by the tube resistance R and by the elasticity of the balloon wall as flow
stretches it. The only driving force which keeps some flow going at this phase is an
internal force due to the inertial effect, namely the momentum which the fluid has by
virtue of the pre-existing velocity with which it was started. Since this momentum
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Fig. 9.2 Free dynamics of the capacitive chamber (C; K; L in series) with 4tlk=tck D 0:4,
4tlk=tck D 1:0, and 4tlk=tck D 40. The three values produce what is usually referred to as
“overdamped”, “critically damped”, and “underdamped” dynamics, respectively.

is finite and is not being renewed by any external force, it is ultimately exhausted
and the fluid comes to rest. The flow rate ultimately becomes zero.

At this point one of two possible scenarios may unfold: the balloon may recoil
and send fluid back, thus reversing the flow direction, or the balloon may simply
absorb the increased volume of fluid and come to equilibrium at a new volume. In
the mechanical system analogy this is equivalent to the compression (or expansion)
of a spring and then letting go. The spring may then simply return to its neutral
position or overshoot and undergo some diminishing oscillations about that position.

Which of the two scenarios occurs depends on the rate at which the flow
rate diminishes, which in turn depends on the relative values of the inertial and
capacitance effects. Recalling that tlk D L=K, tck D CK, if the value of the
ratio 4tlk=tck is below 1:0, the balloon does not recoil, as seen in the top curve in
Fig. 9.2. If the value of the ratio is higher than 1:0, the balloon recoils, leading to the
oscillations seen in the bottom curve. These two scenarios are referred to as being
“overdamped” and “underdamped” respectively. One singular scenario, namely that
corresponding to 4tlk=tck D 1:0, is referred to as being “critically damped” in the
sense that it acts as the dividing line between the underdamped and the overdamped
cases, as shown by the middle curve in Fig. 9.2.
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The free dynamics of a dynamical system do not represent its dynamics under
the action of external forces but they do represent the intrinsic dynamics of
the system. An understanding of these dynamics is important because they
ultimately determine how the system responds to a change in its properties
such as a change in the relative values of C; K; L. This change, which may be
the result of disease or intervention, may cause the system to cross over from
one type of dynamic behavior to another.

9.6 Steady State Oscillations

Free dynamics of the capacitive chamber considered in the previous section
represents only the homogeneous part of the general solution of Eq. 9.24 for the
oscillatory flow rate q.t/ within the capacitive chamber. The remainder of the
solution, as explained in Sect. 9.4, is a particular solution of Eq. 9.27 which we
consider in this section.

For this purpose we consider a driving pressure �p in the form of a complex
function as in Sect. 4.4, writing

�p D �p0ei!t (9.42)

where �p0 is a constant as before, representing the amplitude of the input oscillatory
pressure. Upon substitution in Eq. 9.27, we have

L
d2qp

dt2
C K

dqp

dt
C 1

C
qp D i!�p0ei!t (9.43)

or in terms of the time constants introduced in the previous section

tlk
d2q

dt2
C dq

dt
C q

tck
D i!�p0ei!t

K
(9.44)

A particular solution of this equation, because of the exponential term on the right,
has the form2

qp.t/ D Mei!t (9.45)

where M is a constant to be determined below and is not to be confused with the
arbitrary constants A; B in the homogeneous part of the solution obtained in the
previous section. The constant M is determined simply by substituting the assumed
form of qp from Eq. 9.45 into Eq. 9.43 to find, after some algebra

2Kreyszig E, 1983. Advanced Engineering Mathematics. Wiley, New York.
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M D �p0

K C i
�
!L � 1

!C

	 (9.46)

or in terms of the time constants

M D �p0=K

1 C i
�
!tlk � 1

!tck

� (9.47)

Substituting this value of M into Eq. 9.45, the particular part of the flow rate is now
completely determined, namely

qp.t/ D �p0

K C i
�
!L � 1

!C

	ei!t (9.48)

or in nondimensional form

qp.t/ D qp.t/

�p0=K
D 1

1 C i
�
!tlk � 1

!tck

�ei!t (9.49)

It is clear from this form of qp.t/ that it is an oscillatory function of time. For
given values of the lumped parameters C; K; L, both the frequency and amplitude of
the oscillations are fixed, thus the dynamics of the flow rate under these conditions
are appropriately referred to as “steady state oscillations”.

9.7 Full Dynamics of the Capacitive Chamber

It is clear now that the capacitive chamber is indeed the chamber of the
pulsatile blood flow system and its dynamics are at the core of the dynamics
of pulsatile blood flow. We recall that the main function of this part of the
system is the exchange of dissipative viscous resistance energy for recoverable
viscoelastic energy as described in Sect. 9.2. An apt mechanical analogy is
that in which the energy dissipated by friction is eliminated or considerably
reduced by the use of a lubricant. To say that the capacitive chamber acts as
a “lubricant” in pulsatile blood flow is indeed not only an apt analogy but a
useful one because it places the dynamics of the chamber correctly within
the dynamics of pulsatile blood flow. A disruption in the dynamics of the
capacitive chamber is indeed not unlike that of a disruption in the function
of a lubricant in a mechanical system. In both cases the result is energy loss
due to dissipation by friction.



298 9 Dynamics of Pulsatile Blood Flow II

The full dynamics of oscillatory flow q.t/ within the capacitive chamber consists
of the sum of the homogeneous part qh.t/ and the particular part qp.t/ as determined
in the previous two sections, namely, using Eqs. 9.33 and 9.52

q.t/ D qh.t/ C qp.t/

D Ae˛1t C Be˛2t C �p0

K C i
�
!L � 1

!C

	ei!t (9.50)

D Ae˛1t C Be˛2t C �p0=K

1 C i
�
!tlk � 1

!tck

�ei!t (9.51)

where A; B and ˛1; ˛2 are as determined in Sect. 9.5, depending on the particular
damping scenario at hand.

Equation 9.51 indicates that the dynamics of the oscillatory flow rate within the
capacitive chamber unfold by a transient phase at first (represented by the first two
terms in the equation), followed by a phase of steady state oscillations (represented
by the last term). The transient phase merges with the steady state phase as the first
two terms die out in time. The time it takes for this to occur is strictly infinite
because the two phases merge asymptotically, but in reality the state of steady-state
oscillations is reached within a few oscillatory cycles depending on the damping
scenario at hand. Examples of the three scenarios are shown in Figs. 9.3, 9.4 and 9.5.

It is important that the time t D 0 in Figs. 9.3, 9.4, and 9.5 not be viewed
as the “beginning of time” and, correspondingly, that the transient state not be
considered as relevant only at the beginning of time. Because, strictly, there is no
beginning of time in pulsatile blood flow, other than at the embryonic stage which
is only a singular event and which is not the subject of present discussion. The more
important “beginning of time” in the present context is the onset of any event that
moves the dynamics of the capacitive chamber away from a state of steady state
oscillations, not unlike that of disrupting the swings of a pendulum. At the onset
of each such event the system must go through a transient state before returning to
a state of steady state oscillations. This is the context in which the time t D 0 in
Figs. 9.3, 9.4, and 9.5 is to be interpreted.

The above discussion reiterates the principal theme that blood flow may
be disrupted not only by blocked or narrowed passages but by disorderly
dynamics. Each time the orderly dynamics of the capacitive chamber is
disturbed, its function as a “lubricant” is disturbed until the system is able
to return to its steady state oscillations. If the dynamics of the capacitive
chamber is chronically disturbed, its function is chronically compromised.
Pulsatile blood flow is then less efficient, more energy is required to drive
it, and the heart must supply the extra energy. Heart “disease” must not be
thought of as a consequence of only vascular pathologies but also of dynamic
pathologies. Dynamic pathologies may result from any conditions that alter
the lumped parameters of the system and hence alter its dynamical state.
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Fig. 9.3 Overdamped dynamics of the capacitive chamber (C, K, L in series) under oscillatory
driving pressure.

9.8 The Concept of Reactance

The concepts of reactance and impedance arise in the dynamics of pulsatile blood
flow and form the focus of much of the analytical as well as experimental work on
the subject. It must be emphasized from the outset that these concepts relate to the
phase of steady state oscillations only. The reason for this emphasis is that these
concepts are so widely used that it is usually only implied, but rarely explicitly
stated, that their use is limited to steady state dynamics only, not to the transient
state. Thus, in introducing these concepts here, and using them in subsequent
sections, it must be clear from the outset that we are now dealing with only the
particular solution of the governing equation obtained in Sect. 9.6, namely

qp.t/ D �p0

K C i
�
!L � 1

!C

	ei!t (9.52)

where the driving pressure is given by

�p D �p0ei!t (9.53)
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Fig. 9.4 Underdamped dynamics of the capacitive chamber (C, K, L in series) under oscillatory
driving pressure.

For the purpose of the present section we shall use only the real part of this
driving pressure, namely

�p.t/ D �p0 cos !t (9.54)

The corresponding part of the solution for the flow rate q.t/ is the real part of qp.t/
in Eq. 9.52 which, omitting the algebra, is given by

q.t/ D <.qp.t//

D <
 

�p0

K C i
�
!L � 1

!C

	ei!t

!

D �p0

�
K cos !t C S sin !t

K2 C S2

�
(9.55)
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Fig. 9.5 Critically damped dynamics of the capacitive chamber (C, K, L in series) under
oscillatory driving pressure.

where

S D !L � 1

!C
(9.56)

The subscript p for the particular parts of the solution discussed in the previous
section has been dropped.

It is thus implied here, and whenever the concepts of reactance and impedance
are used, that q.t/ represents only the particular part of the solution, which, as
discussed in the previous section, corresponds to the steady state dynamics of
the C; K; L system. Indeed, a meaningful definition of reactance or impedance
is only possible when the driving pressure �p.t/ and consequently the flow
rate q.t/ are simple harmonic functions as in Eqs. 9.54 and 9.55 above.

Using standard trigonometric identities, Eq. 9.55 can be simplified further to

q.t/ D �p0p
K2 C S2

cos.!t � �/ (9.57)
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where

tan � D S

K
(9.58)

To discuss the nature and effect of the quantity S, we begin by noting that when
S D 0, Eqs. 9.55 and 9.57 give

q.t/ D �p0

K
cos !t

D �p

K
(9.59)

which we recognize as the simple expression for the flow rate through a resistance
K when the driving pressure drop across it is �p.

Thus, in the dynamics of the C; K; L system the quantity S as defined in Eq. 9.56
embodies the combined effects of inductance L and capacitance C such that when
S D 0 the system behaves as a simple resistance. When S ¤ 0, it is clear from a
comparison of Eq. 9.57 and 9.59 that S acts as an added form of opposition to flow,
resulting from the presence of inductance and capacitance. It is also noted from the
presence of ! in the expression for S that this added form of opposition occurs only
in oscillatory flow. By analogy with the same phenomenon in the flow of alternating
current in an electric circuit, S is generally referred to as the “reactance”. It is a
form of opposition to flow, but it differs from K in that it occurs only in oscillatory
flow. Also, unlike the viscous resistance R in Poiseuille flow, the reactance S does
not actually dissipate flow energy, it merely stores it and releases it within each
oscillatory cycle.

From Eq. 9.56 we note that there are two ways in which the reactance S can be
zero. First, when the capacitance and inductance effects are simply absent, that is
when

8̂<
:̂

L D 0

1

C
D 0

(9.60)

which together lead to S D 0. Second, when the values of !; L; C are such that

C D 1

!2L
(9.61)

which again leads to S D 0.
While the first of the above circumstances is trivial, the second has a clear

physiological significance because it deals with the critical balance between the
effects of compliance and inductance in pulsatile blood flow. If the values of the
frequency ! and inductance L in Eq. 9.56 are considered fixed, then the value of S
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now depends on the compliance C only. Starting at the limit where a blood vessel is
rigid, the compliance C is zero and its reciprocal is infinite. The value of S from
Eq. 9.56 is then infinite and negative, and the corresponding value of the phase
angle � from Eq. 9.58 is ��=2. Equation 9.57 then indicates that the flow is leading
the pressure drop by �=2. As the compliance gradually increases from this extreme
value, the values of S and � remain negative at first but continue to increase until at
some point they both become zero. The value of C at which this occurs is that given
in Eq. 9.61.

At this critical value of C the reactance is zero, the phase angle between the flow
and pressure drop is also zero, and the amplitude of the flow rate has its highest
value. That is, altogether, and using Eq. 9.57, we have

8̂̂
<̂
ˆ̂̂:

S D 0

� D 0

jq.t/j D �p0

K

(9.62)

As compliance continues to increase beyond this point, the value of S becomes
positive, the phase angle � also becomes positive, which means that flow is now
lagging the pressure drop, and the amplitude of the flow rate begins to decrease
again from its maximum value.

To illustrate these results graphically, it is convenient to use a normalized form
of the flow rate, namely

q.t/ D q.t/

�p0=K
(9.63)

D 1p
1 C .S=K/2

cos.!t � �/ (9.64)

Also, instead of using the actual compliance C, it is more convenient to use the
capacitive time constant

tck D CK (9.65)

If K is assumed to be constant, tck is a direct measure of C and, using the inertial
time constant

tlk D L=K (9.66)

the reactance S can be expressed in terms of these two time constants as

S

K
D !tlk � 1

!tck
(9.67)
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Fig. 9.6 Normalized value of the reactance (S=R), as a function of the capacitive time constant
tck. Of particular significance is the point at which reactance becomes zero, which occurs at tck D
1=4�2 � 0:0253.

Figure 9.6 shows the variation of the reactance as the capacitive time constant tck

increases from zero to large values. In that sequence the value of S changes from
large negative to positive, thus passing zero at one particular value of tck which we
shall denote by tck;0, and which from Eq. 9.61 is given by

tck;0 D 1

!2tlk
(9.68)

If the frequency of oscillation is taken as 1.0 cycles/s (Hz) so that the angular
frequency ! is 2� radians/s, and if the inertial time constant tlk is used as the
normalizing unit of time, which is equivalent to taking tlk D 1:0 s, then Eq. 9.68
gives

tck;0 D 1

.2�/2
� 0:0253 s (9.69)

as seen in Fig. 9.6. At higher values of tck, as capacitance effects become more
significant, the normalized reactance S=K approaches the constant value, from
Eq. 9.67, 2� � 6:283, again as seen in that figure. Corresponding values of the



9.8 The Concept of Reactance 305

0 0.02 0.04 0.06 0.08 0.1

−100

−50

0

50

100

150

t
ck

 (seconds)

ph
as

e 
an

gl
e 

θ 
(d

eg
re

es
)

Fig. 9.7 Phase angle � between flow rate and pressure drop, as a function of the capacitive time
constant tck. The angle becomes zero and changes sign at the same critical value of tC where
reactance is zero (Fig. 9.6), namely tck D 1=4�2 � 0:0253.

phase angle � are shown in Fig. 9.7, where it is seen that the phase angle is zero at
the same critical value of tck where the reactance is zero, namely at tck � 0:0253.
At higher values of tck the angle is positive, which means that flow is lagging behind
the pressure drop, while at lower values of tck the reverse is true. This change in
phase shift is illustrated in Figs. 9.8, 9.9, and 9.10 where values of tck near the critical
value are taken. It is remarkable that only a small departure from the critical value
of tck is needed to produce a significant change in phase angle. A similar change
occurs in the amplitude of the flow wave, which can be put in the normalized form

jq.t/j D 1p
1 C .S=K/2

(9.70)

In this form the amplitude has the normalized value of 1:0 when S D 0, which
occurs at the critical value of tck. Figures 9.8, 9.9, and 9.10 show clearly that this is
the maximum value of the flow amplitude. At all other values of tck the flow wave is
affected both in phase and amplitude.



306 9 Dynamics of Pulsatile Blood Flow II

0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t / t
L

no
rm

al
iz

ed
 fl

ow
 r

at
e 

q(
t)

t
ck

= 0.03

pressure
flow

Fig. 9.8 Normalized flow rate compared with pressure drop (dashed curve) within the oscillatory
cycle, and with tck D 0:03 s, which is just above critical value of tck D 0:0253 at which the
two curves would be identical. Flow rate lags behind pressure drop and flow amplitude is below
maximum.

The results in Figs. 9.8, 9.9, and 9.10 have significant implications regarding
the dynamics of the capacitive chamber. They point to conditions under which
the capacitive chamber as represented by the C; K; L system in series will
operate most optimally with specific values of the parameters C; K (L being
held constant), and any small departure from these values moves the dynamics
of the chamber away from these optimum conditions. Under these conditions
the reactance is zero, that is the effects of inductance and compliance are
eliminated, and the only remaining opposition to the oscillatory flow is the
viscoelasticity K.

The mere existence of these optimal conditions, and their critical dependence
on the values of C; K; L, have obvious clinical implications. They point to how
any change in the properties of the system, whether they are caused by disease
or clinical intervention, may move the system away from its optimal dynamics.
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Fig. 9.9 Normalized flow rate compared with pressure drop (dashed curve) within the oscillatory
cycle, and with tck D 0:025 s, which is very close to critical value of tck D 0:0253 at which the two
curves would be indistinguishable. Flow rate is in phase with pressure drop and flow amplitude is
maximum.

9.9 Impedance, Complex Impedance

The concept of “impedance”, like that of reactance, arises in the steady state
oscillations of the capacitive chamber as represented by the C; K; L system in series
under a simple oscillatory driving pressure drop and, as emphasized in the previous
section, it is only valid, indeed only meaningful, in the context of that steady state
oscillations. As in the case of reactance, the concept of impedance is borrowed from
the flow of alternating current in electric circuits, but it has wide applications in the
dynamics of pulsatile blood flow.

Broadly speaking, impedance plays the same role in the relationship between
pressure and flow in steady state oscillations as the resistance R does in steady
Poiseuille flow. Thus, if the impedance is denoted by Z, then the concept of
impedance allows us to write

q.t/ D �p.t/

Z
in steady state oscillations (9.71)
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Fig. 9.10 Normalized flow rate compared with pressure drop (dashed curve) within the oscillatory
cycle, and with tck D 0:02 s, which is just below critical value of tC D 0:0253 at which the two
curves would be identical. Flow rate leads pressure drop and flow amplitude is below maximum.

in analogy with

q D �p

R
in steady Poiseuille flow (9.72)

Thus, impedance represents “impediment” or “opposition” to steady state flow
oscillations in the same way that resistance represents impediment to steady flow.

By its definition, impedance depends on the frequency of oscillations and, from
what we have seen in previous sections it is then best treated in terms of the complex
exponential function. Thus, in Sect. 9.6 we found

q.t/ D �p0

K C i
�
!L � 1

!C

	ei!t (9.73)

where the subscript p used in that section for the “particular solution” has been
dropped because, as stated earlier, by the very definition of impedance it is implied
that we are only dealing with steady state oscillations as determined by the particular
solution of the governing equation.



9.9 Impedance, Complex Impedance 309

As Eq. 9.75 represents the relation between pressure and flow under the three
elements of the capacitive chamber C; K; L in steady state oscillations, we can put it
in the form of Eq. 9.71

q.t/ D �p.t/

Z
(9.74)

where
8̂
<̂
ˆ̂:

�p.t/ D �p0ei!t

Z D K C i

�
!L � 1

!C

� (9.75)

Furthermore, we may break the impedance Z into partial impedances Zk; Zl; Zc

representing the effects of viscoelasticity, inductance, and compliance, respectively,
and then by considering each of these effects in isolation (with the other two being
absent) we find

8̂
ˆ̂<
ˆ̂̂:

Zk D K viscoelasticity

Zl D i!L inductance

Zc D 1

i!C
capacitance

(9.76)

It is clear from this and Eq. 9.75 that the partial impedances of the capacitive
chamber, representing the three components of the capacitive chamber in series,
add up, such that

Z D Zk C Zl C Zc (9.77)

Thus in steady state oscillations partial impedances in series add up in the same
way that in steady flow partial resistances in series add up. The reason in both cases
is that when the components of impedance (or resistance) are in series, the total
pressure drop required to overcome the total opposition to oscillatory (or steady)
flow is the sum of the partial pressure drops, that is

�p D �pk C �pl C �pc (9.78)

and since the three components are in series, the flow rate q is the same, hence
8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

�pk D qZk

�pl D qZl

�pc D qZc

�p D qZ

(9.79)
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To complete the basic elements of the pulsatile blood flow system requires that
a resistive element R now be added in parallel with the capacitive chamber. For
this purpose we now denote the total impedance of the capacitive chamber by Zb

and that of the resistive path by Zr, and the corresponding flow rates by qb and qr

respectively.
The flow rates qb and qr along the two paths are of course different but they are

driven by a common source of pressure since the two paths are parallel. Therefore,
if the common pressure difference is denoted by �p, then

8̂̂
<
ˆ̂:

qb D �p

Zb

qr D �p

Zr

(9.80)

If the total flow rate is now denoted by q and the total impedance by Z, then since

q D qb C qr (9.81)

we finally have

�p

Z
D �p

Zb
C �p

Zr
(9.82)

or

1

Z
D 1

Zb
C 1

Zr
(9.83)

Equations 9.77 and 9.83 are of course well known rules for adding impedances in
series and in parallel, respectively, as in the analogy of electric circuits.

In summary, the two basic paths characterizing pulsatile blood flow can be
represented by two impedances in parallel: Zb along the capacitive chamber and
Zr along the resistive path, where

8̂<
:̂

Zb D K C i

�
!L � 1

!C

�
capacitive chamber

Zr D R resistive path

(9.84)

The total impedance of pulsatile blood flow, from Eq. 9.83, is then

Z D ZrZb

Zr C Zb
(9.85)

and substituting for the individual impedances we finally have

Z D R
�
!KC C i.!2LC � 1/

	
!C.R C K/ C i.!2LC � 1/

(9.86)
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Equation 9.86 represents the total impedance of the two principal components
of pulsatile blood flow, namely the resistive component and the capacitive
component, in terms of the four lumped parameters characterizing the system,
namely R; C; K; L. The two components and the four parameters together con-
stitute the fundamental ingredients for the dynamics of pulsatile blood flow.
The impedance may therefore be applied to the entire systemic circulation or
to any sub-system thereof because it contains the required ingredients. While
the resistive path or the capacitive chamber may contain a more complicated
combination of these ingredients, the two options available to the flow,
namely resistive and capacitive in parallel, must remain unchanged. Similarly
while the values of the lumped parameters R; C; K; L will be different in
different systems, the fundamental characteristics which they represent remain
unchanged in providing the basic ingredients required for the dynamics of
pulsatile blood flow. The only element missing from this discussion is the effect
of wave reflections discussed in Chap. 6. The way this effect may be integrated
into the dynamics of pulsatile blood flow is discussed in the next section.

9.10 Pressure-Flow Relations

The ultimate utility of the impedance Z introduced in the previous section is to
provide the relation between pressure and flow under steady state oscillations and
in the presence of inertial, elastic or viscoelastic effects, in the same way that the
resistance R provides that relation in the absence of these effects. The relation
between pressure and flow then in turn provides a measure of the “opposition” to
oscillatory flow in the same way that the relation between pressure and flow in
Poiseuille flow provides a measure of the resistance to flow in that case.

In all cases the general relation between the flow rate q.t/ and the driving pressure
difference �p.t/ is of the form of Eq. 9.71 of the previous section, namely

q.t/ D �p.t/

Z
(9.87)

where Z is the impedance. To illustrate the utility of this relation, we take an
oscillatory driving pressure wave in the form of a single harmonic (sine or cosine)
and use the complex exponential function for that purpose as before

�p.t/ D �p0ei!t (9.88)

More complex pressure waveforms, such as those delivered by the heart, will be
considered in the next two chapters. In the present section the focus is on the
basic forms of pressure-flow relations under the effects of the basic elements of
the pulsatile flow system.
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The most basic form of pressure-flow relation, of course, occurs under simple
resistance R, as in Poiseuille flow, only now both the pressure and flow are
oscillatory. In this case (Eq. 9.84)

8̂̂
ˆ̂̂̂<
ˆ̂̂̂
ˆ̂:

Zr D R

q.t/ D �p

Zr

D �p0

R
ei!t

(9.89)

The flow is precisely the same oscillatory function of time as the driving pressure
(Eq. 9.88), which provides a good reference case for pressure-flow relations under
different conditions.

In the case of viscoelasticity, using Eq. 9.76 of the previous section, we

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

Zk D K

q.t/ D �p

Zk

D �p0

K
ei!t

(9.90)

which indicates that here too the flow is precisely the same oscillatory function of
time as the driving pressure. Thus, as noted previously, the effect of viscoelasticity,
which represents viscous resistance to stretch within the vessel wall, is the same
as the effect of viscous resistance to flow at the interface between the wall and the
moving fluid.

In the case of inductance, using Eq. 9.76 of the previous section, we

8̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

Zl D i!L

q.t/ D �p

Zl

D �p0

i!L
ei!t

D �p0

!L
.sin !t � i cos !t/

(9.91)
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which indicates that here
8̂
<̂
ˆ̂:

<.q.t// D �p0

!L
sin !t

=.q.t// D ��p0

!L
cos !t

(9.92)

while the real and imaginary parts of the driving pressure (Eq. 9.88) are �p0 cos !t
and �p0 sin !t respectively. Thus, the imaginary part of the pressure, �p0 sin !t,
reaches its first peak at !t D �=2 while the imaginary part of the flow, � �p0

!L cos !t
reaches its first peak at !t D � . Inductance has the effect of shifting the flow wave
90ı behind the pressure.

In the case of compliance, using Eq. 9.76 of the previous section, we

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂:

Zc D 1

i!C

q.t/ D �p

Zc

D �p0i!Cei!t

D �p0!C.� sin !t C i cos !t/

(9.93)

thus, here

(<.q.t// D �p0!C.� sin !t/

=.q.t// D �p0!C.cos !t/
(9.94)

while, as before, the real and imaginary parts of the driving pressure (Eq. 9.88)
are �p0 cos !t and �p0 sin !t respectively. Thus, the imaginary part of the pressure,
�p0 sin !t, reaches its first peak at !t D �=2 while the imaginary part of the flow,
�p0!C.cos !t/ reaches its first peak at !t D 2� . Peak capacitive flow (into a
capacitive chamber) occurs 270ı behind the peak in pressure. The reason for this,
of course, is that flow into a capacitive chamber is driven not by pressure but by
pressure gradient. Thus peak flow into a capacitive chamber occurs at the first peak
in pressure gradient following the first peak in pressure, which occurs at !t D 2� .

While it is instructive to consider these effects on pressure-flow relations, as was
done above, in general these effects rarely occur in isolation. Thus, for the capacitive
chamber as a whole the effects of capacitance, viscoelasticity, and inductance are
combined such that
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8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂:

Zb D K C i.!L � 1

!C
/

q.t/ D �p

Zb

D !C�p0ei!t

!KC C i.!2LC � 1/

(9.95)

The real and imaginary parts of the flow rate correspond to the real and imaginary
parts of the driving pressure, respectively, that is

8̂̂
<
ˆ̂:

�p D �p0 cos !t

q.t/ D !C�p0 � <
�

ei!t

!KC C i.!2LC � 1/

� (9.96)

8̂̂
<
ˆ̂:

�p D �p0 sin !t

q.t/ D !C�p0 � =
�

ei!t

!KC C i.!2LC � 1/

� (9.97)

It is clear that the pressure-flow relation is no longer simple in this case, both the
amplitude and phase of the flow being dependent on the lumped parameters of the
capacitive chamber as well as on the frequency.

Finally, if the capacitive chamber is now combined with the resistive path, using
the total impedance in Eq. 9.86 of the previous section, we then have

8̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂:

Z D R
�
!KC C i.!2LC � 1/

	
!C.R C K/ C i.!2LC � 1/

q.t/ D �p

Z

D
�

!C.R C K/ C i.!2LC � 1/

R .!KC C i.!2LC � 1//

�
�p0ei!t

(9.98)

Again, the real and imaginary parts of the flow rate correspond to the real and
imaginary parts of the driving pressure, respectively, that is

8̂̂
<
ˆ̂:

�p D �p0 cos !t

q.t/ D �p0 � <
�

!C.R C K/ C i.!2LC � 1/

R .!KC C i.!2LC � 1//
ei!t

� (9.99)
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8̂
<̂
ˆ̂:

�p D �p0 sin !t

q.t/ D �p0 � =
�

!C.R C K/ C i.!2LC � 1/

R .!KC C i.!2LC � 1//
ei!t

� (9.100)

In practice there is no need to evaluate the expressions for the real and imaginary
parts of the flow explicitly since it involves rather tedious algebra. Computations
can be made using any software such as Matlab where the real and the imaginary
parts are extracted in the process.

To sum up this section, it is important to clarify the concept of “impedance”
and its role in the dynamics of pulsatile blood flow, particularly in comparison
with the more clearly understood concept of “resistance”. Some confusion arises
because both terms are sometimes used rather loosely to mean simply any form of
“opposition” to flow.

As noted in earlier sections, pulsatile blood flow consists of a steady flow part
and an oscillatory flow part. A distinction between the concepts of resistance and
impedance can be made by saying that resistance has to do with opposition to
the steady part of pulsatile flow while impedance has to do with opposition to the
oscillatory part of the flow.

Another useful though not strict distinction between the two concepts is that
resistance is usually associated with energy dissipation due to viscous shear between
the moving fluid and the tube wall, while impedance is usually associated with the
repeated inflation and deflation of the capacitive chamber where much of the energy
spent in one part of the oscillatory cycle is recovered in another part of the cycle.
This distinction is not strict because the latter involves some energy dissipation
due to viscous resistance to stretch within the vessel wall as represented by the
parameter K and described in Sect. 9.4. Also, the oscillatory part of pulsatile blood
flow, representing the repeated inflation and deflation of the capacitive chamber,
involves some energy dissipation due to viscous shear at the tube wall because of
oscillatory flow within the resistive path as represented by the parameter R in the
impedance of the full oscillatory flow system which includes both the resistive path
and the capacitive chamber (Eq. 9.86).



Chapter 10
Analysis of Composite Waveforms

10.1 Introduction

The oscillatory pressure drops used in all previous chapters have been of a
particularly simple form, namely that of a trigonometric sine or cosine function.
These simple waveforms have specific properties that make them particularly useful
for the study of oscillatory systems, but the ultimate aim in pulsatile blood flow is
to examine the dynamics of such systems under oscillatory pressure drops of more
general forms, in particular the forms of pressure waves generated by the heart.
In what follows, and for reasons to become clear shortly, we shall refer to these
generically as “composite” wave forms.

An example of a composite waveform is shown in Fig. 10.1, compared with a
simple sine wave. The first difference to be observed, of course, is the strictly regular
form of the sine wave compared with the highly irregular form of the composite
wave. It is this simple regular form of the sine wave that makes it possible to
describe it by a simple analytical function. How to describe the irregular form of
the composite wave is the subject of the present chapter.

Of course, a composite wave can be described numerically, by tabulating the
position of discrete points along the wave, as shown in Fig. 10.2 and in Table 10.1,
but this is a rather awkward method of description. It is certainly not as elegant or
efficient as the description of a sine or cosine wave, which can be accomplished by
the use of a simple analytical function. More important, the steady state solutions
obtained in the previous chapter were possible only because the pressure drop �p
driving the flow was assumed to have the simple analytical form of trigonometric
sine or cosine, or both as in the complex exponential function. If �p can only be
described in numerical form, the analytical solutions of the previous chapter would
not be possible.

In one of mathematics’ most beautiful triumphs this difficulty is completely
resolved, using a technique known as Fourier analysis, named after its
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Fig. 10.1 Comparison of a composite waveform (top) with the very simple form of the sine wave
(bottom). While they are both periodic, as seen on the right, the composite wave is highly irregular
and is therefore not easy to describe analytically.

original author. The theory of Fourier analysis shows that a composite wave
such as that shown at the top of Fig. 10.1 can actually be decomposed into a
series of sine and cosine waves like the one shown at the bottom of that figure.
The composite wave is simply the sum of these so called “harmonics”, each
of which is a simple sine or cosine wave. This makes it possible to express the
composite waveform of the pressure drop �p driving the flow in an oscillatory
system simply as the sum of the sine and cosine functions which constitute
that particular composite waveform. The steady state oscillation solution of
the governing equation can then be obtained for each of these sine and cosine
functions separately, and then these solutions are collected into a whole. Thus,
the steady state oscillation solutions obtained in the previous chapter, which
were limited to pressure drops of simple sine or cosine waveforms, are not
irrelevant to the case of pressure drops of composite waveforms. In fact, they
are highly relevant in that they provide the “building blocks” from which a
solution with a pressure drop of a composite waveform is constructed.

The theory of Fourier analysis is well established and fairly straightforward,
but its application to the analysis of specific composite waveforms involves some
tedious calculations and some algebraic intricacies which can only be illustrated
by considering specific examples. While mathematical software packages such as
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Fig. 10.2 A composite wave can be described numerically by tabulating the positions of discrete
points along the wave, as shown in Table 10.1. The axes are marked generically as t for time and
p for pressure. This numerical description is not adequate for obtaining the steady state dynamics
associated with this wave, but Fourier analysis shows that the wave can be decomposed into a
series of constituent sine and cosine waves for which the dynamics can be obtained, as was done
in previous chapters.

MATLAB and MATHEMATICA now have specific tools under the heading of Fast
Fourier Transforms (FFT) that can handle much of the tedious calculations, these
tools cannot be used reliably, or indeed meaningfully, without a basic understanding
of the analytical intricacies involved.1;2 For this reason, and since “understanding”
is one of the main missions of this book, in subsequent sections we consider a series
of examples that are intended mainly to illustrate the analytical process involved. In
each case, the purpose of the analysis is to find the Fourier series representation of
the given waveform, that is to find the series of sine and cosine waves that make up
the given waveform. The focus in all cases is on using the analytical formulation
of Fourier analysis, the use of FFT is best described by the documentation of the
particular software package being used.

1Brigham EO, 1988. The Fast Fourier Transform and its Applications. Prentice Hall, Englewood
Cliffs, NJ.
2Walker JS, 1988. Fourier Analysis. Oxford University Press, New York.
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Table 10.1 A numerical
description of the composite
wave shown in Fig. 10.2,
giving the position (t; p) of
each of the discrete points
shown along the curve.

t p t p

0.000 �7.7183 0.500 8.0597

0.025 �8.2383 0.525 5.6717

0.050 �8.6444 0.550 2.5232

0.075 �8.8797 0.575 1.3301

0.100 �9.6337 0.600 1.4405

0.125 �10.5957 0.625 1.9094

0.150 �11.8705 0.650 1.8145

0.175 �10.0942 0.675 0.8738

0.200 �6.2839 0.700 0.7055

0.225 �1.1857 0.725 0.7343

0.250 2.6043 0.750 0.7788

0.275 4.4323 0.775 0.7495

0.300 6.1785 0.800 0.6711

0.325 7.8211 0.825 �0.4796

0.350 9.1311 0.850 �1.6541

0.375 9.9138 0.875 �2.8643

0.400 10.3447 0.900 �3.4902

0.425 10.4011 0.925 �4.1714

0.450 10.2807 0.950 �5.6581

0.475 9.8951 0.975 �6.8024

10.2 Basic Theory

In mathematical language, the pressure and flow waveforms occurring in pulsatile
blood flow are said to be “periodic functions”. A function f .x/ is said to be periodic
in the variable x if

f .x C T/ D f .x/ (10.1)

where T is then said to be the period of that function. An obvious example is the
trigonometric function f .!t/ D sin !t for which

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

f .x C 2�/ D sin .x C 2�/

D sin x cos 2� C cos x sin 2�

D sin x � 1 C 0

D sin x

D f .x/

(10.2)

therefore, f .x/ D sin x is a periodic function with a period T D 2� . The function
is seen graphically in Fig. 10.1 (bottom) where the meaning of the period T is quite
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clear, namely the time interval over which the function assumes a complete cycle
of its values. The composite wave seen in Fig. 10.1 (top) also represents a periodic
function, although the function in this case does not have a simple mathematical
representation. Nevertheless, the composite wave in Fig. 10.1 represents a periodic
function because we can see graphically that the function has a well defined period
over which it assumes a complete cycle of its values.

Another example of a periodic function which we used in previous sections and
which again has a period T D 2� is f .x/ D eix, because

8̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

f .x C 2�/ D ei.xC2�/

D ei2�eix

D .cos 2� C i sin 2�/eix

D .1 C 0/eix

D eix

D f .x/

(10.3)

The theory of Fourier analysis has shown that a periodic function of period T can
be expressed as a sum of sine and cosine functions, such that

f .t/ D
1X

nD0

An cos

�
2�nt

T

�
C

1X
nD1

Bn sin

�
2�nt

T

�
(10.4)

or in expanded form

f .t/ D A0 C A1 cos

�
2� t

T

�
C A2 cos

�
4� t

T

�
C : : :

C B1 sin

�
2� t

T

�
C B2 sin

�
4� t

T

�
C : : : (10.5)

where the A’s and B’s are constants known as “Fourier coefficients” and are given by

8̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
:

A0 D 1

T

Z T

0

f .t/dt

An D 2

T

Z T

0

f .t/ cos

�
2�nt

T

�
dt

Bn D 2

T

Z T

0

f .t/ sin

�
2�nt

T

�
dt

(10.6)
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The infinite series in Eq. 10.4 are called Fourier series, and this representation of the
function f .t/ is then referred to as the Fourier series representation of that function.

We note from the definition of A0 that it represents the average value of the
periodic function f .t/ over one period. We note further that there are actually two
series in Eq. 10.4 and that, except for A0, the remaining terms in the two series
are paired, meaning that the terms in A1 and B1 have the same argument, namely
2� t=T , and the next two terms again have the same argument, namely 4� t=T , etc.
This makes it possible to combine each pair, using standard trigonometric identities,
whereby we can write

A1 cos

�
2�nt

T

�
C B1 sin

�
2�nt

T

�
D M1 cos

�
2n� t

T
� �1

�
(10.7)

where M1; �1 are two new constants, related to A1; B1 by

(
A1 D M1 cos �1

B1 D M1 sin �1

(10.8)

This pairing process can now be repeated for each pair of terms in Eq. 10.5, with the
result that the two Fourier series can be combined into one, namely

f .t/ D A0 C M1 cos

�
2� t

T
� �1

�
C M2 cos

�
4� t

T
� �2

�

C M3 cos

�
6� t

T
� �3

�
C : : : (10.9)

or in more compact form

f .t/ D A0 C
1X

nD1

Mn cos

�
2n� t

T
� �n

�
(10.10)

where
(

An D Mn cos �n

Bn D Mn sin �n

(10.11)

therefore
8̂
ˆ̂<
ˆ̂̂:

Mn D
q

A2
n C B2

n

�n D tan�1

�
Bn

An

� (10.12)
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Eq. 10.10 provides a more compact Fourier series representation of the function f .t/
in that it contains only one series instead of two. In this representation each term
except the first is a simple cosine wave with M as its amplitude and � as its phase.
Because these waves add up to constitute the function f .t/, they are referred to as
the “harmonics” of this periodic function.

We note in Eq. 10.10 that in the first harmonic the cosine function has the same
value at t D 0 and at t D T , therefore this harmonic has a period T , which is the
same as the period of the original function f .t/. For this reason it is referred to as
the “fundamental harmonic”. In the second harmonic, by comparison, the cosine
function has the same value at t D 0 and at t D T=2. Therefore, this harmonic
has a period T=2 which is half the period of f .t/. This pattern continues to higher
harmonics.

Because of the reciprocal relation between the period and the frequency of a
periodic function, the above pattern can be expressed in terms of the frequencies of
the different harmonics. Thus, if fr is the frequency of the periodic function f .t/ in
cycles/s (Hz), then

fr D 1

T
(10.13)

and the corresponding angular frequency ! is given by

8<
:

! D 2� fr

D 2�

T
radians=s

(10.14)

Thus the Fourier series representation in Eq. 10.10 can now be put in the form

f .t/ D A0 C M1 cos .!t � �1/ C M2 cos .2!t � �2/

C M3 cos .3!t � �3/ C : : : (10.15)

in which it is seen clearly that the frequency of the first harmonic is !, the same
as the frequency of the original function f .t/ and is therefore referred to as the
“fundamental frequency”. The frequency of the second harmonic is 2!, and of
the third is 3!, etc. These are important properties of the harmonics of a periodic
function which we shall see more clearly later as we consider specific functions.
In particular, we shall see that the amplitudes of successive harmonics usually
diminish fairly rapidly and in most cases it is found that the first ten harmonics
are sufficient for producing a good representation of a given periodic function such
as the composite pressure wave produced by the heart. In that case, the fundamental
frequency is the beating frequency of the heart which, under resting conditions, is
approximately 1 Hz, thus the frequency of the tenth harmonic would be 10 Hz. It is
for this reason that frequencies as high as 10 Hz are sometimes considered in the
analysis of pulsatile blood flow as we did in some previous sections.
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10.3 Example: Single-Step Waveform

Thus, in this spirit consider the simple waveform consisting of a single step shown
in Fig. 10.3, which has a period T D 1 as seen graphically, and which is defined by

8̂̂
<̂
ˆ̂̂:

f .t/ D 1; 0 	 t <
1

2

D 0;
1

2
	 t < 1

(10.16)

Following the theory presented in the previous section, the Fourier series represen-
tation of this periodic function is given by (Eq. 10.4)
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Fig. 10.3 A simple waveform consisting of a single step and having a period T D 1 as seen in
the left two panels. The first ten harmonics of this waveform are shown on the right. The even
harmonics, namely harmonics 2; 4; 6; 8; 10 are zero in this case and make no contribution to the
Fourier composition of this waveform, as seen on the right. The series is led by the fundamental
harmonic which has the same period and hence the same frequency as the original wave, namely
the fundamental period and fundamental frequency. The period of the third harmonic is one third
of the fundamental period and hence its frequency is three times the fundamental frequency, etc.
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f .t/ D
1X

nD0

An cos

�
2�nt

T

�
C

1X
nD1

Bn sin

�
2�nt

T

�

D A0 C A1 cos

�
2� t

T

�
C A2 cos

�
4� t

T

�
C : : :

C B1 sin

�
2� t

T

�
C B2 sin

�
4� t

T

�
C : : : (10.17)

and, using Eq. 10.6 to find the Fourier coefficients, recalling that T D 1 in this case,
we have

A0 D 1

T

Z T

0

f .t/dt

D
Z 1

0

f .t/dt

D
Z 1=2

0

1 � dt C
Z 1

1=2

0 � dt

D 1

2
(10.18)

Note that by its definition (Eq. 10.6), A0 represents the average value of the periodic
function over one period, which in Fig. 10.3 is seen graphically to be 1=2, in
agreement with the above result.

For the other coefficients, we find

An D 2

T

Z T

0

p.t/ cos

�
2n� t

T

�
dt

D 2

Z 1

0

f .t/ cos.2n� t/dt

D 2

Z 1=2

0

1 � cos.2n� t/dt C 2

Z 1

1=2

0 � cos.2n� t/dt

D 2

Z 1=2

0

cos.2n� t/dt

D sin.2n� t/

n�

ˇ̌̌
ˇ
1=2

0

D 0 for all n (10.19)



326 10 Analysis of Composite Waveforms

and similarly

Bn D 2

T

Z T

0

p.t/ sin

�
2n� t

T

�
dt (10.20)

D 2

Z 1

0

p.t/ sin.2n� t/dt

D 2

Z 1=2

0

1 � sin.2n� t/dt C 2

Z 1

1=2

0 � sin.2n� t/dt

D 2

Z 1=2

0

sin.2n� t/dt

D � cos.2n� t/

n�

ˇ̌̌
ˇ
1=2

0

D 1 � cos n�

n�
(10.21)

Substituting these values of the Fourier coefficients in Eq. 10.17, we obtain the
required Fourier series representation of this waveform, namely

f .t/ D 1

2
C

1X
nD1

�
1 � cos n�

n�

�
sin .2n�/

D 1

2
C 2

�
sin .2n�/ C 0 C 2

3�
sin .6n�/ C 0 : : :

C 2

5�
sin .10n�/ C 0 : : :

D 1

2
C 2

�
sin .2n�/ C 2

3�
sin .6n�/ C 2

5�
sin .10n�/ : : : (10.22)

To put the series in the more compact form of Eq. 10.12, that is, in terms of the
amplitudes Mn and phase angles �n of the individual harmonics that make up the
waveform, we use Eq. 10.12 to find

Mn D
q

A2
n C B2

n

D Bn since An D 0 for all n

D
�

1 � cos n�

n�

�
(10.23)
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and

�n D tan�1

�
Bn

An

�

D ˙�

2
since An D 0 for all n (10.24)

Which of the two values of � is appropriate is determined by satisfying Eq. 10.12,
namely

Bn D Mn sin �n (10.25)

Since Mn D Bn in this case (Eq. 10.12), this gives sin �n D 1, and therefore

�n D �

2
for all n (10.26)

Substituting these values of Mn and �n into Eq. 10.15 gives

p.t/ D A0 C
1X

nD0

Mn cos .2n� t � �n/

D 1

2
C

1X
nD0

�
1 � cos n�

n�

�
cos .2n� t � �

2
/

D 1

2
C

1X
nD0

�
1 � cos n�

n�

�
sin .2n� t/

D 1

2
C 2

�
sin .2� t/ C 2

3�
sin .6� t/ C 2

5�
sin .10� t/ : : : (10.27)

which is identical with the result in Eq. 10.22.
Thus, in the present example, because of the very simple form of the wave, the

two different forms of Fourier series representation in Eqs. 10.22 and 10.27 are
identical. More precisely, the Fourier series representation of this simple waveform
consists of only one series (not two as in Eq. 10.17), hence the compact and the non-
compact forms of the Fourier representation are the same. Furthermore, we shall find
that the determination of the phase angle � is in general more troublesome than it is
in the present simple case. The reason for this is that the range of the inverse tangent
function used in Eq. 10.12 is limited to the interval ��=2 to C�=2 and therefore
does not yield all possible angles.
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If the harmonics of this waveform are denoted by f1.t/; f2.t/; f3.t/ : : :, then the
result in Eq. 10.27 can be written as

f .t/ D 1

2
C f1.t/ C f2.t/ C f3.t/ : : : (10.28)

where the individual harmonics are given by

8̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂:

f1.t/ D 2

�
sin .2� t/

f2.t/ D 0

f3.t/ D 2

3�
sin .6� t/

f4.t/ D 0

:::

(10.29)

It is seen that the first harmonic has the same period and hence the same frequency
as the original wave, namely the fundamental period and fundamental frequency.
The second and other even-numbered harmonics are zero in this case. The period of
the third harmonic is one third of the fundamental period and hence its frequency
is three times the fundamental frequency, etc. The first ten harmonics are shown
graphically in Fig. 10.3.

One of the most important pillars of the theory of Fourier analysis is that the
amplitudes of successive harmonics become successively smaller and hence they
make successively smaller contribution to the Fourier representation of the periodic
function in hand. This is highly important for practical purposes because the infinite
series representing the periodic function can then be truncated at some point without
committing large error. This is illustrated graphically in Fig. 10.4, where different
Fourier series representations are shown, based on the first one, four, seven, and ten
harmonics.

A Fourier series representation based on the first 50 harmonics is shown in
Fig. 10.5 where these properties can be observed. We shall see later that a larger
number of harmonics does not always produce a more accurate Fourier series
representation. Specifically, when the description of a given periodic function is
available in only numerical form, as in Table 10.1 for the cardiac wave, new
complications arise which make the optimum number of harmonics dependent on
the number of data points available in the numerical description of the waveform.
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Fig. 10.4 Fourier series representations of the single-step waveform, based on the first one, four,
seven, and ten harmonics, clockwise from top left corner.

10.4 Example: Piecewise Waveform

Consider next a “piecewise” waveform consisting of several steps, as shown in
Fig. 10.6, and defined by

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:

f .t/ D 4t; 0 	 t <
1

4

D 1;
1

4
	 t <

1

2

D 1

2
;

1

2
	 t <

3

4

D 0;
3

4
	 t < 1

(10.30)
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Fig. 10.5 Fourier series representation of the single-step waveform based on the first 50 harmon-
ics.

As in the previous section, the Fourier series representation of this periodic function
is given by

f .t/ D
1X

nD0

An cos

�
2n� t

T

�
C

1X
nD1

Bn sin

�
2n� t

T

�

D A0 C A1 cos

�
2� t

T

�
C A2 cos

�
4� t

T

�
C : : :

C B1 sin

�
2� t

T

�
C B2 sin

�
4� t

T

�
C : : : (10.31)

and the Fourier coefficients, recalling that T D 1, are given by

A0 D 1

T

Z T

0

f .t/dt

D
Z 1

0

f .t/dt
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D
Z 1=4

0

4t � dt C
Z 1=2

1=4

1 � dt C
Z 3=4

1=2

1

2
� dt C

Z 1

3=4

0 � dt

D 2t2
ˇ̌1=4

0
C tj1=2

1=4 C 1

2
t

ˇ̌̌
ˇ
3=4

1=2

C 0

D 1

8
C 1

4
C 1

8

D 1

2
(10.32)

Again, we note that by its definition (Eq. 10.6), the coefficient A0 represents the
average value of the periodic function over one period. The result is seen to be
correct from the graphical representation of the waveform in Fig. 10.6. For the other
Fourier coefficients we have

0 0.5 1
−0.5

0

0.5

1

1.5

0 1 2 3 4
−2

0

2

4

Fig. 10.6 A composite “piecewise” waveform consisting of several steps and having a period
T D 1 as seen in the left two panels. The first ten harmonics of this waveform are shown on
the right. The series is led by the fundamental harmonic which has the same period and hence the
same frequency as the original wave, namely the fundamental period and fundamental frequency.
The periods of the second and third harmonics are one half and one third of the fundamental period,
respectively, and hence their frequencies are two and three times the fundamental frequency, etc.
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(10.33)

where the first integral above was evaluated using integration by parts and applying
the indefinite integral identity3;4;5

Z
x cos kxdx D cos kx

k2
C x sin kx

k
(10.34)

Similarly

Bn D 2

T

Z T

0

p.t/ sin

�
2n� t

T

�
dt

D 2

Z 1

0

p.t/ sin .2n� t/dt

D 2

Z 1=4

0

4t sin .2n� t/dt C 2

Z 1=2

1=4

sin .2n� t/dt

3Gradshteyn IS, Ryzhik IM, 1965. Table of Integrals, Series, and Products. Academic Press, New
York.
4Spiegel MR, 1968. Mathematical Handbook of Formulas and Tables. McGraw-Hill, New York.
5Beyer WH, 1978. CRC Handbook of Mathematical Sciences. CRC Press, West Palm Beach, FL.
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(10.35)

Here again the first integral was evaluated using integration by parts and applying
the indefinite integral identity6;7;8

Z
x sin kxdx D sin kx

k2
� x cos kx

k
(10.36)

Substitution of these expressions for the Fourier coefficients in Eq. 10.31 makes
the resulting expression for the Fourier series rather cumbersome. Instead, numer-
ical values of An; Bn; Mn; �n can be simply tabulated for the required number of
harmonics, as shown in Table 10.2.

Values of Mn in Table 10.2 are determined from Eq. 10.12

Mn D
q

A2
n C B2

n

However, as mentioned in the previous section, the phase angles �n must satisfy
both conditions in Eq. 10.11, namely

An D Mn cos �n (10.37)

Bn D Mn sin �n (10.38)

These two conditions cannot be replaced by the single condition

�n D tan�1

�
Bn

An

�
(10.39)

6Gradshteyn IS, Ryzhik IM, 1965. Table of Integrals, Series, and Products. Academic Press, New
York.
7Spiegel MR, 1968. Mathematical Handbook of Formulas and Tables. McGraw-Hill, New York.
8Beyer WH, 1978. CRC Handbook of Mathematical Sciences. CRC Press, West Palm Beach, FL.
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Table 10.2 Numerical
values of Fourier coefficients
for the first ten harmonics of
the piecewise waveform
shown in Fig. 10.6.

n An Bn Mn �n (ı)

1 �0:36180 0:36180 0.51166 135

2 �0:10132 0:00000 0.10132 180

3 0:03054 0:03054 0.04318 45

4 0:00000 �0:07958 0.07958 �90

5 �0:03994 0:03994 0.05648 135

6 �0:01126 0:00000 0.01126 180

7 0:01860 0:01860 0.02631 45

8 0:00000 �0:03979 0.03979 �90

9 �0:02019 0:02019 0.02855 135

10 �0:004053 0:00000 0.00405 180

because the range of values of the inverse tangent function is limited to the interval
��=2 to �=2. For example, using the values of A1; B1 from the table, Eq. 10.39
gives

�1 D tan�1

�
B1

A1

�
(10.40)

D tan�1

�
0:3618

�0:3618

�
(10.41)

D tan�1.�1/ (10.42)

D ��

4
(10.43)

This value of �1 is incorrect because it does not satisfy Eqs. 10.37 and 10.38.
Substituting �1 D ��=4 in these equations gives

A1 D M1 cos .��=4/ (10.44)

D 0:51166 � 0:7071 (10.45)

D 0:3618 (10.46)

and

B1 D M1 sin .��=4/ (10.47)

D 0:51166 � .�0:7071/ (10.48)

D �0:3618 (10.49)

These values of A1; B1 are incorrect, the actual values are A1 D �0:3618, B1 D
0:3618 as indicated in the table. The correct value of �1, that is, a value of �1 which
satisfies both of Eqs. 10.37 and 10.38, is actually 3�=4 or 135ı as indicated in the
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table. This value is obtained by writing A1; B1 as the real and imaginary parts of a
complex number

z1 D A1 C iB1 (10.50)

then the correct value of �1 is obtained as the argument (“arg”) of z1, that is

�1 D arg.z1/ (10.51)

where the function “arg” is the angle of a complex number in the complex plane
or Argand diagram, measured in an anticlockwise direction from the real axis and
having the range of values �� to � , as illustrated in Fig. 10.7. Numerical values of
the coefficients A1; B1 can now be extracted from Table 10.2 to construct the Fourier
series representation of the piecewise waveform in its full form, as in Eq. 10.31,
giving

(A,B)

real axis

ø

imaginary axis

Fig. 10.7 The phase angle � of a harmonic with coefficients A; B is correctly obtained as the
argument of the complex number z D A C iB. This angle, � D arg.z/, is measured in an
anticlockwise direction from the real axis, as shown, and has the range of values �� to � . The
example shown here is that of the first harmonic of the piecewise waveform for which the values
of the coefficients (from Table 10.2) are A1 D �0:3618 and B1 D 0:3618, which are shown
in the complex plane above as the coordinates of the complex number z, and which give � D
arg .�0:3618 C i � 0:3618/ D 3�=4 D 135ı as given in Table 10.2. The inverse tangent function
in this case would give an incorrect value, namely � D tan�1.B=A/ D tan�1.�1/ D �=4 D 45ı.
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f .t/ D
1X

nD0
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�
2n� t
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�
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1X
nD1

Bn sin

�
2n� t

T

�

D A0 C A1 cos

�
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T

�
C A2 cos

�
4� t

T

�
C : : :

C B1 sin

�
2� t

T

�
C B2 sin

�
4� t

T

�
C : : :

D 0:5 � 0:3618 � cos .2� t/ � 0:10132 � cos .4� t/

C 0:030536 � cos .6� t/ C 0:3618 � sin .2� t/

C 0:030536 � sin .6� t/ C : : : (10.52)

Or, numerical values of Mn; �n can be used from Table 10.2 to put the series in its
compact form, as in Eq. 10.10

f .t/ D A0 C
1X

nD0

Mn cos

�
2n� t

T
� �n

�

D A0 C M1 cos

�
2� t

T
� �1

�
C M2 cos

�
4� t

T
� �2

�

C M3 cos

�
6� t

T
� �3

�
C : : :

D 0:5 C 0:51166 � cos .2� t � 135 � �=180/

C 0:10132 � cos .4� t � 180 � �=180/

C 0:043184 � cos .6� t � 45 � �=180/ C : : : (10.53)

As in the previous example, if the harmonics of this waveform are denoted by
f1.t/; f2.t/; f3.t/ etc., then the individual harmonics are given by

8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂:

f1.t/ D 0:51166 � cos .2� t � 135 � �=180/

f2.t/ D 0:10132 � cos .4� t � 180 � �=180/

f3.t/ D 0:043184 � cos .6� t � 45 � �=180/

:::

f10.t/ D 0:0040528 � cos .20� t � 180 � �=180/

(10.54)
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Fig. 10.8 Fourier series representations of the piecewise waveform in Fig. 10.6, based on the first
one, four, seven, and ten harmonics, clockwise from top left corner.

Again, it is seen that the first harmonic has the same period and hence the same
frequency as the original wave, namely the fundamental period and fundamental
frequency. The period of the second harmonic is one half of the fundamental
period and hence its frequency is twice the fundamental frequency, etc. The first
ten harmonics are shown graphically in Fig. 10.6.

Figure 10.8 shows the accuracy of this Fourier representation of the piecewise
waveform when only the first one, four, seven, and ten harmonics are used.

A Fourier representation with the first 50 harmonics is shown in Fig. 10.9.

10.5 Numerical Formulation

The waveforms considered in the previous two sections were rather artificially
constructed in order to illustrate the basic concepts of Fourier analysis and the basic
steps involved in its application to specific waveforms. In the context of pulsatile
blood flow, however, the specific waveforms of interest are those of the pressure
and flow waveforms generated by the pumping action of the left ventricle, as in
the example shown in Fig. 10.2. One important feature of this waveform which is
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Fig. 10.9 Fourier series representation of the piecewise waveform in Fig. 10.9, based on the first
50 harmonics.

not shared by the examples of the previous two sections is that it cannot be presented
in analytical form.

As stated in the introduction to this chapter, a composite pressure waveform of
the type shown in Fig. 10.2 is generally available only in numerical form, that is as
a set of points, tabulated as in Table 10.1 or presented graphically as in Fig. 10.2.
This is the most natural way in which the waveform would present itself in practice
where the set of points would come from pressure or flow measurements at some
accessible point within the system and at small time intervals during the oscillatory
cycle as shown in Table 10.1.

The aim of the present section is to present a numerical formulation of Fourier
analysis, that is to show how a set of points such as this would be used in the process
of Fourier analysis to produce the Fourier series representation of the waveform.
Once this representation has been achieved, the waveform becomes like any other
waveform, expressed in terms of a series of sine and cosine functions, or in terms
of its harmonics as in the examples of the previous sections. Indeed, the data in
Table 10.1 may be regarded as a periodic function like any other we have considered
so far, the only difference here is that the function is presented in numerical form
rather than analytically. Each pair of values (f ; t) in the table represents one point in
Fig. 10.2, and the entire set of values in the table produce the waveform shown in
the figure.
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Let the number of points available be denoted by N, which is not to be confused
with n which we shall continue to use for the number of harmonics. The Fourier
analysis process is considerably easier, of course, when the points are spaced at
regular intervals of time within the oscillatory cycle, and we shall proceed on that
basis. In fact, if the original set points are not equally spaced in time, it would be
best first to place them on a “best-fit” curve and then extract a new set of points from
that curve at regular time intervals.

If the period of the waveform at hand is denoted by T , and the time interval
between successive data points is denoted by �t, then

�t D T

N
(10.55)

In Table 10.1 the period has been normalized to T D 1:0 and the number of points
N D 40, therefore �t D 1=40 D 0:025 as noted from successive points in the table.

If the time at the beginning of the oscillatory cycle is set at t D 0, and if this and
subsequent points in time are denoted by t0; t1; t3 etc., then these points are given by

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂:

t0 D 0

t1 D 1 � �t

t2 D 2 � �t

t3 D 3 � �t

:::

tN�1 D .N � 1/ � �t

(10.56)

Note that there are a total of N points in time within one oscillatory cycle. If the
corresponding values of f .t/ are denoted similarly by f0; f1; f2 etc., then

8̂
ˆ̂̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂:

f0 D f .t0/

f1 D f .t1/

f2 D f .t2/

f3 D f .t3/

:::

fN�1 D f .tN�1/

(10.57)
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The general form of the Fourier series representation of the composite waveform
in Fig. 10.2 is the same as that in the previous two sections (Eq. 10.17), namely
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�
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C : : :

C B1 sin

�
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�
C B2 sin

�
4� t

T

�
C : : :

but the Fourier coefficients An; Bn in the present case cannot be evaluated by means
of integrals as before, because the periodic function f .t/ is not available in analytical
form. But the function is available in numerical form, as in Table 10.1, therefore
the required integrals can be formulated and evaluated numerically in a fairly
straightforward manner as described below.

If each of the N points describing the periodic function f .t/ is associated with
one time interval �t, then the N points together cover the entire period T . In the
simplest numerical formulation, the value of the function f .t/ at t0, namely f0, is
taken to remain constant over the small time interval �t associated with t0, then
the value of f .t/ at t1, namely f1, is taken to remain constant over the next time
interval, etc., with the result that the periodic function f .t/ is presented graphically as
shown in Fig. 10.10. This graphical presentation provides the basis for the numerical
formulation and evaluation of the Fourier coefficients An; Bn.

Briefly, each of the integrals required in the evaluation of the coefficients is
reformulated as a sum, using standard methods of numerical integration9. Thus, for
A0 we have (Eq. 10.6)

A0 D 1

T

Z T

0

p.t/dt (10.58)

The integral on the right represents the area under the curve of f .t/ in Fig. 10.10
over one period. A standard approximation of this area is the sum of the areas of the
N long thin rectangles of width �t rising from the t axis to the curve. This makes it
possible to write

A0 � 1

T
ff0�t C f1�t C f2�t : : : fN�1�tg

� 1

N
ff0 C f1 C f2 C : : : C fN�1g

� 1

N

N�1X
kD0

fk (10.59)

9Kreyszig E, 1983. Advanced Engineering Mathematics. Wiley, New York.
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Fig. 10.10 Graphical presentation of the periodic function p.t/, when the description of the
function is available only numerically. The data points shown are based on the data in Table 10.1
for the composite waveform in Fig. 10.1. In a numerical formulation of Fourier analysis, each data
point is associated with the small time interval �t between it and the next data point, and over each
such �t the value of p is taken to remain constant as shown in the figure. This allows the numerical
formulation and evaluation of the Fourier coefficients An; Bn as described in the text.

having used Eq. 10.55 in the process. The degree of approximation clearly depends
on the number of data points available for representing the function f .t/ or,
equivalently, on the size of the time interval �t relative to the period T .

Numerical expressions for An and Bn are obtained in the same way, although
the integrals in this case involve the product of f .t/ and a sine or cosine function
and therefore do not represent simply the area under the f .t/ curve. Nevertheless,
using the integral expressions for these coefficients from Eq. 10.6 and converting
the integrals involved into sums as for A0, we find
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(10.60)

and similarly
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(10.61)

These expressions are valid generally for any periodic function f .t/ for which
a numerical description is available in terms of N data points as in Table 10.1.
The expressions are used specifically for that case in the next section.

10.6 Example: “Cardiac” Waveform

It is important to emphasize at the outset that the term “Cardiac” is being used here
in an entirely generic manner. It should not be taken to imply that there is a unique
pressure or flow waveform generated by the heart. The pressure or flow waveform
generated by the heart is not only different from one heart to the next, but is highly
variable from beat to beat within the same heart. It is also highly dependent on the
prevailing physiological conditions both in health and in disease. Thus, the cardiac
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waveform to be considered in the present section and based on the data in Table 10.1
is only an example that has the general characteristics of a cardiac waveform and that
is being used here merely to illustrate how a composite pressure or flow wave of this
form is dealt with by the method of Fourier analysis. In this respect, the discussion
to follow can be applied in the same way to any other composite pressure or flow
waveform. All is required is a set of data that define the particular waveform at hand,
as the data in Table 10.1.

Using the numerical formulation of the previous section and the numerical data
in Table 10.1 for the cardiac waveform shown in Fig. 10.1, we are now in a position
to apply the numerical formulation of Fourier analysis to this wave and to find
its harmonics. Essentially, the analysis is the same as for other waves except for
the evaluation of the Fourier coefficients An; Bn, which in this case must be done
numerically.

For A0, using Eq. 10.59 and values from Table 10.1, we find

A0 � 1

N
ff0 C f1 C f2 C : : : C fN�1g

� 1

40
f�7:7183 � 8:2383 � 8:6444 C : : : � 6:8024g

� 0:00000475

� 0 (10.62)

We recall from previous examples that A0 represents the average value of the
periodic function f .t/ over one complete period. Thus, the fact that this average
value is zero in this case indicates that the waveform in Fig. 10.2 represents only
the oscillatory part of the cardiac wave, any constant part has been removed. It is
always possible, and in fact desirable, to remove any constant average from a
waveform before applying Fourier analysis to it because the analysis is concerned
with only the oscillatory part. This principle is illustrated graphically in Fig. 10.11.

For the other Fourier coefficients, using Eq. 10.60 and the data in Table 10.1, and
noting that the number of data points N D 40 and the period T D 1:0, we find

An � 2

N

�
f0 cos

�
2n� t0

T

�
C f1 cos

�
2n� t1

T

�
C : : :

C fN�1 cos

�
2n� tN�1

T

��

� 1

20
f�7:7183 � cos .2n� � 0/

�8:2383 � cos .2n� � 0:025/ C : : :

�6:8024 � cos .2n� � 0:975/g (10.63)
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Fig. 10.11 A cardiac wave such as the solid curve at the top can always be separated into a
constant part and a purely oscillatory part. The purely oscillatory part is shown at the bottom and
it has the property that its average over one period is zero. In Fourier analysis the constant part of
the wave is represented by A0, thus the result A0 D 0 in Eq. 10.62 indicates that the data on which
the result is based represents only the oscillatory part of the waveform, any constant part has been
removed.

Similarly, using Eq. 10.61 and the data in Table 10.1, and noting that the number
of data points N D 40 and the period T D 1:0, we find

Bn � 2

N

�
f0 sin

�
2n� t0

T

�
C f1 sin

�
2n� t1

T

�
C : : :

C fN�1 sin

�
2n� tN�1

T

��

� 1

20
f�7:7183 � sin .2n� � 0/

�8:2383 � sin .2n� � 0:025/ C : : :

�6:8024 � sin .2n� � 0:975/g (10.64)
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Table 10.3 Values of the
Fourier coefficients for the
cardiac wave shown in
Fig. 10.11, using Eqs. 10.60
and 10.61 with
n D 1; 2 : : : 10.

n An Bn Mn �n (ı)

1 �7:98840 0:15707 7:99000 178:8736

2 �0:42846 �4:41890 4:43960 �95:5381

3 0:88370 0:46246 0:99740 27:6238

4 0:68508 0:28468 0:74187 22:5649

5 �0:35969 0:87460 0:94567 112:3553

6 �0:30961 �0:28316 0:41956 �137:5548

7 �0:53143 �0:20924 0:57114 �158:5089

8 0:26366 �0:15171 0:30419 �29:9153

9 0:02955 0:06432 0:07078 65:3256

10 0:04842 0:16564 0:17258 73:7050

We recall that values of n in these expressions refer to different harmonics. Thus,
evaluating these for the first ten harmonics (n D 1; 2; : : : ; 10), the results are shown
numerically in Table 10.3.

With the values of Mn and �n in Table 10.3, the Fourier representation of this
waveform can be put in the more compact form of Eqs. 10.10 and 10.15, namely

f .t/ D A0 C
1X

nD0

Mn cos

�
2n� t

T
� �n

�

D A0 C M1 cos

�
2� t

T
� �1

�
C M2 cos

�
4� t

T
� �2

�

C M3 cos

�
6� t

T
� �3

�
C : : : (10.65)

with the individual harmonics given by

f1.t/ D M1 cos

�
2� t

T
� �1

�

� 7:99 � cos

�
2� t � 178:8736 � �

180

�
(10.66)

f2.t/ D M2 cos

�
4� t

T
� �2

�

� 4:4396 � cos

�
4� t � �95:5381 � �

180

�
(10.67)

:::
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Fig. 10.12 The cardiac waveform of Fig. 10.1 with its first ten harmonics, using the results in
Eqs. 10.65–10.68.

f10.t/ D M10 cos

�
20� t

T
� �10

�

� 0:17258 � cos

�
20� t � 73:705 � �

180

�
(10.68)

These results are illustrated in Fig. 10.12 where the cardiac waveform and its first
ten harmonics are shown.

Figure 10.13 shows the accuracy of this Fourier representation of the cardiac
waveform when only the first one, four, seven, and ten harmonics are used. It is
seen that the representation is fairly accurate with only the first seven harmonics.
By contrast, Fourier representations of the single-step and the piecewise waveforms
considered in the previous sections were less accurate with as many as fifty
harmonics. The reason for this can be seen clearly in Fig. 10.5. The presence of
step changes in those cases, and the behaviour of the Fourier curves in the vicinity
of these steps, shows that Fourier series have difficulty replicating step changes. The
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Fig. 10.13 Fourier series representations of the cardiac waveform, based on the first one, four,
seven, and ten harmonics, clockwise from top left corner.

cardiac waveform does not contain such changes, thus higher accuracy is achieved
with a relatively small number of harmonics.

In fact, as mentioned earlier, when the waveform to be represented by a Fourier
series is available only in numerical form, the number of harmonics that produces
the most accurate representation becomes dependent on the number of data points
available in the numerical description of the waveform. Broadly speaking, the
theory of Fourier analysis has shown that if the number of data points available
is N, then the number of harmonics that produces the most accurate representation
(Nyquist rule) is N=2.10;11 A smaller or a larger number of harmonics produce a
less accurate representation, for different reasons. This is an oversimplification of
the underlying theory, but it provides a useful guide, indeed a necessary guide, for
practical application of Fourier analysis to specific waveforms.

10Brigham EO, 1988. The Fast Fourier Transform and its Applications. Prentice Hall, Englewood
Cliffs, NJ.
11Walker JS, 1988. Fourier Analysis. Oxford University Press, New York.
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Fig. 10.14 Fourier series representation of the cardiac waveform, based on the first 20, 30, 38, and
45 harmonics, clockwise from top left corner.

For the cardiac waveform being considered in this section, the number of data
points in the numerical description of the wave (Table 10.1) is 40, thus the number
of harmonics required to produce the most accurate representation is 20. However,
it turns out that this maximum accuracy is reached along a fairly shallow (not sharp)
peak, thus the optimum number of harmonics need not be treated precisely. In other
words, 19 or 21 harmonics will not produce significant differences. In fact, as seen
in Fig. 10.13, both seven and ten harmonics produce fairly accurate representations,
and the difference between them is barely detectable. A Fourier representation with
precisely 20 harmonics is shown in Fig. 10.14, compared with representations using
30, 38, and 45 harmonics. It is seen that only in the latter two cases the representation
breaks down.



Chapter 11
Dynamics of Pulsatile Blood Flow III

11.1 Introduction

In this chapter we use the tools developed in previous chapters to put together a
model of pulsatile blood flow that includes the key elements of the blood flow
system. Specifically, in what follows we consider a system consisting of a “resistive
path” and a “capacitive chamber” in parallel, these terms being used in the way that
they were defined and used in Chap. 9. Flow through the system shall be considered
to be driven by a “cardiac” waveform, again, this term being used in a generic
manner as in Sect. 10.6.

We recall that the principal difference between the two elements of the
pulsatile blood flow system is that flow through the resistive path has a net
throughput while flow through the capacitive chamber has zero throughput.
Another important difference between the two is that the energy spent on
driving the flow through the resistive path is totally dissipated (lost) while
the energy spent on driving the flow through the capacitive chamber is largely
recovered.

We recall further that the flows through the resistive path and the capacitive
chamber are not to be confused with “steady” and “oscillatory flow”, as
explained in Sect. 9.3. There is in fact some oscillatory flow through the
resistive path as explained in that section. The ultimate utility of the capacitive
chamber is to reduce this oscillatory flow through the resistive path to a
minimum and thereby reduce energy dissipation to a minimum.

Opposition to flow through the resistive path is caused by the shear force between
the fluid and the vessel wall and is represented by what is commonly referred to
as the “resistance” R. Opposition to flow within the capacitive chamber is caused
by fluid inertia, elastic compliance of the vessel wall, and viscous resistance to
stretch within the wall material, represented by what is commonly referred to as the
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“inertance” L, the “compliance” (or “capacitance”) C, and the “viscoelasticity” K.
These three components are in series with each other, and together they constitute
the “impedance” Zb to oscillatory flow within the capacitive chamber, using the
notation of Sect. 9.9. The combination of this impedance and the resistance to flow
along the resistive path, in parallel, constitute the total impedance Z of the entire
system. These basic elements and their arrangement provide the most elementary
model of pulsatile blood flow in that it includes all the necessary ingredients that
characterize the flow not only in the systemic circulation but any sub-circulation
thereof.

The effects of wave reflections, which as discussed in Chap. 6 are an insepara-
ble feature of pulsatile blood flow, may seem to be missing from the above picture.
However, they are actually embedded within the concept of “effective impedance”
discussed in Sect. 6.6. Briefly, the primary effect of wave reflections in a vascular
system is a change in the pressure distribution within the system which in turn
leads to a change in the impedance of the system. The change is both in terms
of the distribution of local impedance within the system and in terms of the global
impedance of the system as a whole.

In what follows the above model is used to illustrate some of the salient features
of pulsatile blood flow. The emphasis shall be on using the analytical methods and
basic understanding developed in previous chapters. This is not only to provide
continuity with previous chapters but, more importantly, to provide a self-contained
analytical basis of the results to follow. As mentioned previously, while these results
can now be obtained by ready made FFT routines in standard mathematical software
packages, the focus in this book is on the analytical basis of these routines.

11.2 Composite Pressure-Flow Relations

The relation between pressure and flow is at the very core of hemodynamics. Indeed,
it is the central issue in the dynamics of pulsatile blood flow and has been the subject
of much of this book so far. However, in previous sections the relation between
pressure and flow was examined under restricted conditions in which the driving
pressure was of a particularly simple form, namely that of a single harmonic (sine
or cosine), or the opposition to flow was of a particularly simple form, consisting of
only some elements of the resistive path and the capacitive chamber. In the present
chapter the aim is to examine the relation between pressure and flow when the
driving pressure has a composite waveform and the opposition to flow includes all
the elements of the resistive path and the capacitive chamber.

In previous sections we have seen that when the driving pressure P.t/is in the
form of a single harmonic (sine, cosine, or complex exponential), the corresponding
flow Q.t/ is of the same form, so that we can write as we did in previous sections

(
P.t/ D P0ei!t

Q.t/ D Q0ei!t
(11.1)
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Again, for simpler notation in this and subsequent sections we continue to denote
the driving pressure as P.t/ instead of �p.t/ which was done in earlier sections.

When the form of the driving pressure is not a single harmonic, however, the
relation between pressure and flow in Eq. 11.1 no longer applies. In particular, if
the driving pressure is in the form of a composite cardiac wave, the corresponding
flow wave will also be in the form of a composite wave but in general not the same
composite wave as the pressure. What then is the relation between P.t/ and Q.t/ in
this case? In other words, if P.t/ is in the form of a general function of time f .t/,
then (

P.t/ D f .t/

Q.t/ D ‹
(11.2)

Of course, the particular case of interest here is that in which f .t/ is a periodic
function of time as discussed in Chap. 10. In that case, since the function can be
decomposed into the sum of individual harmonics, each of which can be expressed
as a complex exponential function, then Eq. 11.1 dictates that for each harmonic
of the pressure waveform there will be a corresponding harmonic of the flow
waveform. Thus, if the harmonics of the pressure are denoted by p1.t/, p2.t/, etc.,
and the corresponding harmonics of the flow waveform are denoted by q1.t/, q2.t/,
etc., then using Eq. 11.1 we have

(
p1.t/ D p10ei!t

q1.t/ D q10ei!t
(11.3)

(
p2.t/ D p20ei!t

q2.t/ D q20ei!t
(11.4)

etc., where the subscript ‘0’ is being used to denote amplitude as in Eq. 11.1.
Based on these relations, the answer to the question posed in Eq. 11.2 is then

(
P.t/ D p1.t/ C p2.t/ C � � �
Q.t/ D q1.t/ C q2.t/ C � � � (11.5)

This is the basis of the relation between pressure and flow in pulsatile blood flow.
We shall see that of particular interest is the shape of the flow waveform compared
with that of the pressure waveform. The reason for this is that the relation between
each pair of harmonics p; q depends on the prevailing impedance which in turn
depends on the properties of the resistive path and capacitive chamber as well as on
the frequency of that particular pair of harmonics as we saw in previous sections
and as we shall see in more detail in the remainder of this chapter.

Thus the relation between pressure and flow in pulsatile blood flow is a powerful
diagnostic tool not unlike that of the relation between the input and output associated
with a black box. Indeed, a vascular bed consisting of many millions of vessel
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segments is not unlike a black box because its properties are practically inaccessible.
The relation between pressure and flow within that bed provides a window onto
these properties.

11.3 Baseline Example: Pure Resistance

In the hypothetical case where the opposition to flow in pulsatile blood flow consists
of only pure resistance R, there is a singular relation between the pressure and flow
waveforms which provides an important “baseline” case with which all other cases
can be compared. In this section we illustrate this important case, using the cardiac
pressure waveform in Table 11.1 and shown in Fig. 11.1.

To obtain the corresponding flow waveform, using the scheme outlined in the
previous section, the pressure waveform is decomposed into its harmonics as
outlined in Chap. 10, noting in this case that the pressure wave contains the mean
as well as the oscillatory part. The results for the first ten harmonics are shown
numerically in Table 11.2.

Since the only opposition to flow in this case is the resistance R, then the relation
between pressure and flow harmonics is a particularly simple one (Eq. 9.89), namely

qn.t/ D pn.t/

R
n D 1; 2; : : : ; 10 (11.6)

Table 11.1 A numerical
description of the cardiac
wave shown in Fig. 11.1,
giving the pressure (P) at
different times t within the
oscillatory cycle. The
oscillatory period has been
normalized to 1:0. The
pressure data include both the
mean and the oscillatory part
of the pressure.

t P t P

0.000 96.60 0.500 111.00

0.025 96.21 0.525 108.15

0.050 97.27 0.550 103.65

0.075 95.56 0.575 103.00

0.100 95.34 0.600 103.00

0.125 95.38 0.625 103.00

0.150 93.46 0.650 102.00

0.175 91.92 0.675 101.53

0.200 93.88 0.700 101.00

0.225 100.04 0.725 100.26

0.250 104.50 0.750 101.00

0.275 106.68 0.775 101.00

0.300 108.20 0.800 101.00

0.325 110.00 0.825 102.00

0.350 110.95 0.850 102.00

0.375 112.38 0.875 101.13

0.400 113.80 0.900 100.70

0.425 113.00 0.925 99.86

0.450 113.00 0.950 99.47

0.475 112.93 0.975 98.18
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Fig. 11.1 A “cardiac” pressure wave used as an example to illustrate how the corresponding flow
wave is obtained from the given pressure waveform.

Table 11.2 Fourier
coefficients of the first ten
harmonics of the pressure
wave in Fig. 11.1.

n An Bn Mn �n (ı)

1 �6.5901 0.94298 6.65720 171.8568

2 1.08200 �4.66400 4.78780 �76.9394

3 0.74761 0.62007 0.97129 39.6723

4 0.15931 0.39243 0.42353 67.9050

5 �0.77719 0.93475 1.21560 129.7415

6 �0.28180 �0.56377 0.63028 �116.5580

7 �0.19808 �0.38691 0.43467 �117.1109

8 0.55090 �0.07722 0.55628 �7.9796

9 �0.23510 0.22975 0.32872 135.6601

10 �0.13825 0.18000 0.22696 127.5263

For the purpose of the present section, to illustrate the numerical analysis
involved, we now pursue this example with an estimate of the resistance R in the
human systemic circulation in order to produce typical values of pressure and flow
as they occur in this system, with the emphasis being on the numerical relations
involved rather than on the numerical values.

In the human systemic circulation, taking a cardiac output of 5 L/min and a mean
arterial pressure of 100 mmHg, an estimate of total resistance would be
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R D 100 mmHg

5 L=min

D 20



mmHg

L=min

�
(11.7)

Using this value of R in Eq. 11.6, and using the compact form (Eq. 10.10) of the first
ten harmonics of the pressure wave, namely

pn.t/ D Mn cos

�
2�nt

T
� �n

�
n D 1; 2; : : : ; 10 (11.8)

then with values for Mn and �n taken from Table 11.2 we find

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

q1.t/ D p1.t/=R

D 6:6572

20
� cos .2� t � 171:8568 � �=180/ ŒL=min�

q2.t/ D p2.t/=R

D 4:7878

20
� cos .4� t C 76:9394 � �=180/ ŒL=min�

:::

q10.t/ D p10.t/=R

D 0:22696

20
� cos .20� t � 127:5263 � �=180/ ŒL=min�

(11.9)

and for the steady part of the flow

8<
:

q D p=R

D 102:5995

20
ŒL=min�

(11.10)

where p.t/ is the mean value of the pressure as determined from Table 11.1
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Fig. 11.2 Cardiac pressure wave (top) and corresponding flow wave (bottom) when opposition to
flow consists of only resistance R which has been estimated at 20 mmHg/L/min. We see that in this
baseline case of pure resistance the pressure and flow waves have precisely the same form, the flow
wave being only scaled by the value of the resistance R.

These components of Q.t/ can now be added to give the composite flow
waveform Q.t/ produced by the composite pressure wave P.t/, that is

Q.t/ D q C q1.t/ C q2.t/ C : : : C q10.t/ (11.11)

which is shown graphically together with the pressure wave in Fig. 11.2.
It is seen that the pressure and flow waveforms have the same shape in this case,

which is what makes the case of flow under pure resistance a “baseline” case. In
all other cases the shape of the flow waveform would be different from that of the
pressure waveform. To further facilitate the comparison, the pressure and flow waves
can be put on the same scale by using what we shall refer to as “R-scaled flow” and
denote by QQ where

QQ D R � Q (11.12)

Thus Eq. 11.11 can now be put in the form

QQ.t/ D Qq C Qq1.t/ C Qq2.t/ C : : : C Qq10.t/ (11.13)
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Fig. 11.3 When studying pressure-flow relations it is convenient to plot the pressure and flow
waves to the same scale so as to compare their waveforms. This can be achieved as seen here
by plotting P.t/ (solid curve) and the “R-scaled” flow R � Q.t/ (dashed) instead of q.t/. When
the opposition to flow consists of only resistance R as it is in this case, the two curves become
graphically identical. In this figure they are slightly shifted to make them visibly distinct. The
use of R-scaled flow is particularly useful when other elements of the RLC system are present. In
such cases any small change in the form of the flow wave can be detected more easily and can be
attributed directly to inertial (L) or capacitive (C) effects only, because the effects of resistance (R)
have been scaled out.

with the result that the pressure and (R-scaled) flow waves can now put on the same
scale as shown in Fig. 11.3 where it is seen more clearly that in this singular baseline
case they are identical.

The use of R-scaled flow is useful not only when the opposition to flow consists
of pure resistance but also, and particularly so, when other elements of the resistive
path and capacitive chamber are present. In such cases, as we shall see, any departure
in the shape of the flow wave from that of the pressure wave can be detected
more easily and can be attributed directly to the presence of inertial, capacitive,
or viscoelastic effects.
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11.4 Resistive-Capacitive Interplay II

The interplay between oscillatory flow along the resistive path and oscillatory
flow within the capacitive chamber was discussed at great length in Sect. 9.3.
As discussed in that section, this interplay, or interchange, between these two
oscillatory flows is at the very core of pulsatile blood flow, and for this reason we
revisit this subject again in the present chapter.

As discussed in Sect. 9.3, it is important to recall that flow along the resistive path
and flow within the capacitive chamber are not to be confused with “steady flow”
and “oscillatory flow” because flow along the resistive path is not entirely steady.
Indeed, the ultimate efficiency of pulsatile blood flow is attained when the oscil-
latory part of the flow occurs largely within the capacitive chamber where energy
expenditure is much lower than it is along the resistive path. This is the essence
of the resistive-capacitive interplay in pulsatile blood flow as was illustrated in
Sect. 9.3, using single harmonic pressure and flow waves and only resistance R and
compliance C. In the present chapter we explore the resistive capacitive interplay
further by using composite pressure and flow waves in the present section, and
including all elements of the resistive path and capacitive chamber in the next
section.

We consider resistance R and compliance C in parallel and, as in Sect. 9.3, with
flow rate into the system denoted by Q.t/ and is such that

Q.t/ D qr.t/ C qc.t/ (11.14)

where qr.t/ and qc.t/ are flow rates through the resistance R and within the capacitor
C, respectively.

When Q.t/ is a single harmonic function, that is, as in Sect. 9.3, if we take

Q.t/ D Q0ei!t (11.15)

it was shown in that section that the resistive and capacitive flow rates are given by
(Eq. 9.12)

8̂
ˆ̂̂<
ˆ̂̂̂
:

qr D
�

Q0ei!t

1 C i!CR

�

qc D
�

i!CRQ0ei!t

1 C i!CR

�

where the steady part of the flow, Qs in Eq. 9.12, is being omitted here so that the
focus is on only the oscillatory part of the flow. The resistive-capacitive interplay
involves the oscillatory part of the flow only.
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Another way of obtaining these results is by noting that Eq. 11.14 can be put in
the form

P.t/

Z
D P.t/

Zr
C P.t/

Zc
(11.16)

where P.t/ is the (common) pressure driving the flow into the parallel system, Z is
the total impedance of the parallel system, Zr is the impedance of the resistive path
and Zc is the impedance of the capacitive chamber which in the present case consists
of only purely elastic compliance.

The impedances in Eq. 11.18, as determined in Sect. 9.9 are given by

8̂<
:̂

Zr D R

Zc D 1

i!C

(11.17)

and since

1

Z
D 1

Zr
C 1

Zc
(11.18)

then

8̂̂
<̂
ˆ̂̂:

Z D ZrZc

Zr C Zc

D R

1 C i!C

(11.19)

It then follows that

P.t/ D ZQ.t/ D ZQ0ei!t (11.20)8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂:

qr.t/ D P.t/

Zr

D Z

Zr
Q0ei!t

D Q0ei!t

1 C i!RC

(11.21)
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and
8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

qc.t/ D P.t/

Zc

D Z

Zc
Q0ei!t

D i!RCQ0ei!t

1 C i!RC

(11.22)

While the above results apply to the simple case where (a) the pressure and
flow waves consist of only a single harmonic each, and (b) the resistive path
and capacitive chamber are represented by only a resistance R and purely elastic
compliance C, respectively, the results nevertheless serve well the purpose of
illustrating the basic interplay between the resistive path and capacitive chamber.

Since the only opposition to flow here is a resistance R and compliance C, in
parallel, it is clear on physical grounds that higher values of R or higher values of C
will lead to a larger proportion of the oscillatory flow to be diverted to the capacitive
side of the system, while lower values of R or C will lead to oscillatory flow to be
diverted to the resistive side. This can also be seen clearly in Eq. 11.44 where

(
as C; R ! 1 W qr.t/ ! 0

qc.t/ ! Qn.t/
(11.23)

and
(

as C; R ! 0 W qr.t/ ! Qn.t/

qc.t/ ! 0
(11.24)

The resistive-capacitive interplay is an interplay between the two extremes in
Eqs. 11.23 and 11.24. In the first case, oscillatory flow within the system occurs
entirely on the capacitive side, in the second case it occurs entirely on the resistive
side. These two extreme scenarios are illustrated in Fig. 11.4.

The important difference between the two, as discussed in Sect. 9.3, is that in the
first scenario, in which the compliance C is purely elastic in this case, the energy
used to drive the oscillatory part of the flow is completely “recycled”. In the second
scenario it is completely dissipated (lost). As discussed in Sect. 9.3, this is indeed
the primary benefit of the Windkessel effect. Absorbing the shock of the pressure
rise in systole is only secondary.

The clinical implications of these results lie in their relevance to the pumping
“load” of the heart. The extra energy dissipated when more of the oscillatory
flow is diverted to the resistive side of the parallel R; C system must ultimately
be supplied by the heart. Thus, the loss of elasticity of blood vessels in aging or
disease, which is usually seen in terms of its effect on blood pressure, must also
be seen in terms of its effect on the pumping load of the heart. The resulting
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Fig. 11.4 Two extremes in the interplay between the resistive and the capacitive flow, as depicted
in Eqs. 11.23 and 11.24. At high value of the capacitive time constant tc (D R � C) oscillatory flow
is almost entirely within the capacitive chamber, while at low values of tc oscillatory flow is almost
entirely within the resistive path. The first of these scenarios is of course the “optimum” for the
pulsatile blood flow system because it incurs the least energy dissipation for the oscillatory part of
the flow.

risk factor lies not only in “the heart having to pump against higher blood
pressure” but also in that it has to dissipate more energy in the process.

11.5 Resistive-Capacitive Interplay III

In the previous section, the interplay between the resistive path and the capacitive
chamber was illustrated in terms of a resistance R in parallel with only a purely
elastic compliance C. In the present section we examine this interplay when the
capacitive chamber is represented by all its elements, namely the compliance C,
inertance L, and viscoelasticity K, in series with each other and in parallel with a
resistance R along the resistive path. The process involved is much the same as in
the previous two sections, therefore some of the details are omitted.

We proceed as in the previous section with an oscillatory flow rate Q.t/ as input
into the parallel system, with its harmonics given by

Q.t/ D Q0ei!nt (11.25)
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with some of this flow rate (qr) going into the resistive path and the rest (qb) going
into the capacitive chamber, such that

Q.t/ D qr.t/ C qb.t/ (11.26)

where the subscript ‘b’ is now used to refer to the capacitive chamber because it
consists of more than the compliance C.

The corresponding oscillatory pressure P.t/ required to drive the flow is then of
the form

P.t/ D P0ei!t (11.27)

which is related to the flow rate by

P.t/ D ZQ.t/ (11.28)

where Z is the total impedance of the parallel system.
The total impedance Z is related to the impedance of the resistive path (Zr) and

that of the capacitive chamber (Zb) by

1

Z
D 1

Zr
C 1

Zb
(11.29)

or

Z D ZrZb

Zr C Zb
(11.30)

The individual impedances of the resistive path and of the capacitive chamber have
been obtained previously (Eq. 9.84), namely

8̂<
:̂

Zr D R

Zb D K C i

�
!L � 1

!C

� (11.31)

thus the total impedance is given by

Z D R
�
!KC C i.!2LC � 1/

	
!C.R C K/ C i.!2LC � 1/

(11.32)

It then follows that

P.t/ D ZQ.t/ D ZQ0ei!t (11.33)
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8̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:

qr.t/ D P.t/

Zr

D Z

Zr
Q0ei!t

D .!KC C i.!2LC � 1//Q0ei!t

!C.R C K/ C i.!2LC � 1/

D .!KC C i.!2LC � 1//Q.t/

!C.R C K/ C i.!2LC � 1/

(11.34)

and

8̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂̂
:̂

qb.t/ D P.t/

Zb

D Z

Zb
Q0ei!t

D !RCQ0ei!t

!C.R C K/ C i.!2LC � 1/

D !RCQ.t/

!C.R C K/ C i.!2LC � 1/

(11.35)

While the resistive-capacitive interplay here seems more complex, the main
principle is the same as that seen in the previous section, namely, if flow into the
capacitive chamber is prevented for any reason then oscillatory flow is diverted to
the resistive path. Thus, here again we find, as in the previous section, that

(
as C; R ! 1 W qr.t/ ! 0

qb.t/ ! Q.t/
(11.36)

and
(

as C; R ! 0 W qr.t/ ! Q.t/

qb.t/ ! 0
(11.37)

However, the added effects of viscoelasticity and inertance here, as represented
by K; L respectively, provide other scenarios for the resistive-capacitive interplay.
On physical grounds, it is clear that if viscous effects within the capacitive chamber
become so large as to prevent the chamber from expanding, then oscillatory flow
will be diverted into the resistive path. In the limit, Eqs. 11.57 and 11.58 give
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(
as K ! 1 W qr.t/ ! Q.t/

qb.t/ ! 0
(11.38)

The effects of inertance are perhaps less obvious. These effects come into play as
a result of acceleration and deceleration of the fluid. Thus, on physical grounds, it
is intuitively clear that inertial effects present higher resistance to fluid acceleration
into the capacitive chamber than they do to fluid acceleration along the resistive
path. This is seen more clearly from Eqs. 11.57 and 11.58 where we readily find

(
as L ! 1 W qr.t/ ! Q.t/

qb.t/ ! 0
(11.39)

Finally, in the absence of inertance and viscoelastic effects, the capacitive
chamber becomes a purely elastic chamber, as in the previous section. Thus, as a
test, in this limit we find that the resistive and capacitive flow rates in Eqs. 11.57
and 11.58 reduce to

8̂̂
ˆ̂<
ˆ̂̂̂:

as K; L ! 0 W qr !
�

Q.t/

1 C i!CR

�

qc !
�

i!CRQ.t/

1 C i!CR

� (11.40)

which are identical with the results obtained in Eq. 11.44 of the previous section.
Some of the above scenarios are illustrated in Figs. 11.5, 11.6, and 11.7.

11.6 Resistive-Capacitive Interplay IV

The results of the previous two section can be extended in a straightforward manner
to the case where the pressure P.t/ and flow Q.t/ are composite waves (periodic
functions). In this section we illustrate the results with the composite wave shown
in Fig. 11.8.

When Q.t/ is a periodic function, we have seen that it can be decomposed such
that

8̂̂
<̂
ˆ̂̂:

Q.t/ D Q1.t/ C Q2.t/ C � � �

D
nDNX
nD1

Qn

(11.41)

where each of Q1.t/, Q2.t/, etc. is a single harmonic function, n is a running index
and N is the number of harmonics which Q.t/ has been decomposed into.
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Fig. 11.5 In the absence of inertial and viscoelastic effects, the capacitive chamber becomes
purely elastic and the resistive-capacitive interplay becomes the same as that considered in the
previous section (Eq. 11.40, Fig. 11.4).

The results of the previous section, which were derived for single harmonics, can
therefore be applied to the harmonics of Q.t/ individually, writing as in Eqs. 11.15
and 11.14

(
Qn.t/ D Qn;0ei!nt

D qn;r.t/ C qn;c.t/
(11.42)

and then, as in Eqs. 11.21 and 11.22

8̂
ˆ̂̂<
ˆ̂̂̂
:

qn;r D
�

Qn;0ei!nt

1 C i!nCR

�

qn;c D
�

i!nCRQn;0ei!nt

1 C i!nCR

� (11.43)
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Fig. 11.6 Effect of viscoelasticity (K) on the resistive-capacitive interplay.

or, using Eq. 11.42
8̂̂
ˆ̂<
ˆ̂̂̂:

qn;r D
�

Qn.t/

1 C i!nCR

�

qn;c D
�

i!nCRQn.t/

1 C i!nCR

� (11.44)

The total flow rate into the parallel R; C system is then given by
8̂̂
<̂
ˆ̂̂:

Q.t/ D Q1.t/ C Q2.t/ C � � � C QN.t/

D
NX

nD0

Qn.t/
(11.45)

The resistive and capacitive flow rates are then correspondingly given by

8̂̂
<̂
ˆ̂̂:

qr.t/ D q1;r.t/ C q2;r.t/ C � � � C qN;r.t/

D
NX

nD0

qn;r.t/
(11.46)
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Fig. 11.7 Effect of inductance (L) on the resistive-capacitive interplay.

8̂̂
<
ˆ̂:

qc.t/ D q1;c.t/ C q2;c.t/ C � � � C qN;c.t/

D
NX

nD0

qn;c.t/
(11.47)

Results based on the composite wave in Fig. 11.8 are shown in Fig. 11.9.

11.7 Resistive-Capacitive Interplay V

In the previous section, the interplay between the resistive path and the capacitive
chamber was illustrated in terms of a resistance R in parallel with only a purely
elastic compliance C. In the present section, finally, we examine this interplay when
the capacitive chamber is represented by all its elements, namely the compliance C,
inertance L, and viscoelasticity K, in series with each other and in parallel with a
resistance R along the resistive path. The process involved is much the same as in
the previous two sections, therefore some of the details are omitted.

We proceed as in the previous section with an oscillatory flow rate Q.t/ as input
into the parallel system, with its harmonics given by
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Fig. 11.8 A composite wave being used to illustrate the resistive-capacitive interplay in this and
the next section. The wave is decomposed into its harmonic components and the analysis then
proceeds separately for each harmonic as in the previous two sections and the results are put
together as described in the text. The figure shows the wave in its original form and as it is
recomposed based on the first ten harmonics.

Qn.t/ D Qn;0ei!nt n D 1; 2; � � � N (11.48)

For each harmonic n the fraction of oscillatory flow rate going into the resistive path
and that going into the capacitive chamber are denoted by qn;r and qn;b respectively
and are such that

Qn.t/ D qn;r.t/ C qn;b.t/ (11.49)

where subscript b is now used to refer to the capacitive chamber.
Similarly, the oscillatory pressure P.t/ required to drive the flow is represented

by its harmonics

Pn.t/ D Pn;0ei!nt n D 1; 2; � � � N (11.50)

and the relation between the pressure and flow harmonics is given by

Pn.t/ D ZnQn.t/ (11.51)
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Fig. 11.9 Resistive capacitive-interplay under the composite pressure wave shown in Fig. 11.8.
While the interplay is here only between resistance R and purely elastic compliance C, the
results are more complicated because the interplay is frequency-dependent and therefore applies
differently to each harmonic of the composite wave. Nevertheless, the main principle of the
resistive-capacitive interaction remains. At low values of tc (D R � C) the oscillatory flow is
almost entirely resistive while at higher values of tc it is almost entirely capacitive. The figure
also illustrates rather dramatically that capacitive flow is determined not by the pressure but by
the rate of change of pressure with time, hence it is determined by the derivative of the waveform
in Fig. 11.8.

where Zn is the total impedance of the parallel system, which is different for each
harmonic because of its dependence on the frequency !n of that harmonic, hence
the subscript n.

The total impedance Zn is related to the impedances of the resistive path and
capacitive chamber, Zn;r; Zn;b respectively, by

1

Zn
D 1

Zn;r
C 1

Zn;b
(11.52)

or

Zn D Zn;rZn;b

Zn;r C Zn;b
(11.53)
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The individual impedances of the resistive path and of the capacitive chamber have
been obtained previously (Eq. 9.84), namely

8̂
<
:̂

Zn;r D R

Zn;b D K C i

�
!nL � 1

!nC

� (11.54)

thus the total impedance is given by

Zn D R
�
!nKC C i.!2

n LC � 1/
	

!nC.R C K/ C i.!2
n LC � 1/

(11.55)

It then follows that

Pn.t/ D ZnQn.t/ D ZnQ0nei!t (11.56)8̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

qn;r.t/ D Pn.t/

Zn;r

D Zn

Zn;r
Q0nei!nt

D .!nKC C i.!2
n LC � 1//Q0nei!nt

!nC.R C K/ C i.!2
n LC � 1/

D .!nKC C i.!2
n LC � 1//Qn.t/

!nC.R C K/ C i.!2
n LC � 1/

(11.57)

and
8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂:

qn;b.t/ D Pn.t/

Zn;b

D Zn

Zn;b
Q0nei!nt

D !nRCQ0nei!nt

!nC.R C K/ C i.!2
n LC � 1/

D !nRCQn.t/

!nC.R C K/ C i.!2
n LC � 1/

(11.58)

While the resistive-capacitive interplay here seems more complex, the main
principle is the same as that seen in the previous section, namely, if flow into the
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capacitive chamber is prevented for any reason then oscillatory flow is diverted to
the resistive path. Thus, here again we find, as in the previous section, that

(
as C; R ! 1 W qn;r.t/ ! 0

qn;b.t/ ! Qn.t/
(11.59)

and
(

as C; R ! 0 W qn;r.t/ ! Qn.t/

qn;b.t/ ! 0
(11.60)

However, the added effects of viscoelasticity and inertance here, as represented
by K; L respectively, provide other scenarios for the resistive-capacitive interplay.
On physical grounds, it is clear that if viscous effects within the capacitive chamber
become so large as to prevent the chamber from expanding, then oscillatory flow
will be diverted into the resistive path. In the limit, Eqs. 11.57 and 11.58 give

(
as K ! 1 W qn;r.t/ ! Qn.t/

qn;b.t/ ! 0
(11.61)

The effects of inertance are perhaps less obvious. These effects come into play as
a result of acceleration and deceleration of the fluid. Thus, on physical grounds, it
is intuitively clear that inertial effects present higher resistance to fluid acceleration
into the capacitive chamber than they do to fluid acceleration along the resistive
path. This is seen more clearly from Eqs. 11.57 and 11.58 where we readily find

(
as L ! 1 W qn;r.t/ ! Qn.t/

qn;b.t/ ! 0
(11.62)

Finally, in the absence of inertial and viscoelastic effects, the capacitive chamber
becomes a purely elastic chamber, as in the previous section. Thus, as a test, in
this limit we find that the resistive and capacitive flow rates in Eqs. 11.57 and 11.58
reduce to

8̂̂
ˆ̂<
ˆ̂̂̂
:

as K; L ! 0 W qn;r !
�

Qn.t/

1 C i!nCR

�

qn;c !
�

i!nCRQn.t/

1 C i!nCR

� (11.63)

which are identical with the results obtained in Eq. 11.44 of the previous section as
illustrated in Fig. 11.10. Other scenarios are shown in Figs. 11.11 and 11.12.
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Fig. 11.10 In the absence of viscoelasticity and inertial effects, the capacitive chamber becomes
purely elastic and the resistive-capacitive interplay becomes the same as that considered in the
previous section (Eq. 11.63, Fig. 11.9).

The clinical implications of these results, as discussed in Sect. 11.4, lie in their
relevance to the pumping “load” of the heart as oscillatory flow is shifted from
the capacitive chamber to the resistive path, or vice versa, because of changes
in the conditions controlling the dynamics of the system as represented by
changes in the values of the parameters R; C; K; L. Physiological conditions
that may lead to changes in the values of R and C are fairly obvious, as
in vasoconstriction and vascular stiffening, respectively. However, conditions
that may lead to changes in K and L are less obvious.

While much is known about the elasticity of blood vessels and about the
cellular matrix that produces this property within the vessel wall, very little
is known about the viscoelastic property. While this property of the vessel
wall is well known to exist, and while changes in this property as represented
by changes in the value of K may have a significant effect on the dynamics of
pulsatile flow in general and on the resistive-capacitive interplay in particular
as shown in this section, very little is know about the origin of this property
within the vessel wall.

Similar remarks apply to changes in the inertial effects within a vascular bed,
as represented by the parameter L. While changes in the inertia of blood may
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Fig. 11.11 Viscoelasticity (K) acts as a resistance to stretch within the vessel wall and thus has
the effect of modulating (or “smoothing out”) the capacitive flow as seen in the figure. At very high
values of K this resistance overrides the elasticity of the wall and the capacitive chamber becomes
effectively “rigid” as shown in Eq. 11.61.

be an obvious source of such changes, the more likely source is a change in
the geometrical structure of the vascular bed including vasoconstriction or
vasodilation, acute or chronic. Such changes will alter the acceleration and
deceleration environment within the vascular bed and, as seen in the above
scenarios, will affect the dynamics of the flow.
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Fig. 11.12 Inertial effects as represented by the parameter L. The main effect of this property is
to produce a phase shift in the dynamics of the flow and thus disrupt the harmony between the
driving pressure and oscillatory momentum of the flow, not unlike that of disrupting the oscillatory
momentum of a pendulum. While elastic and viscoelastic effects may be related somewhat to
measurable properties of the vessel wall, inertial effects are extremely difficult to assess because
they depend on acceleration and deceleration of the flow which in turn depend on space and time
as seen in Sect. 2.5. Thus, any change in the topology of the integrated lumen of a vascular bed,
whether by disease or intervention, such as vasodilation or vasoconstriction, may cause a disruption
in the dynamics of the flow.



Chapter 12
Dynamic Pathologies

12.1 Introduction

The main task of the cardiovascular system is to bring blood flow to within reach of
billions of cells within the body, individually. There is a capillary with continuously
moving blood within reach of every living cell within the body. The vascular system
required to achieve this task is of an immense proportion. There are likely more
“tube segments” within a single human body than there are in any man-made fluid
flow system on the planet (Figs. 12.1 and 12.2).

Along with this immense structural aspect of the cardiovascular system there is
the dynamical aspect, namely that of orchestrating the flow within the system. Flow
from a single source, the heart, must reach the billions of capillaries throughout the
body, individually, and then return to the heart, repeatedly. The pressure required to
drive this flow is not steady as it would be from an elevated water tank, but pulsatile.
It is provided by repeated ejection of fluid from the heart in a rhythmic manner,
approximately once every second. It is from this rhythmic action of the heart that all
the dynamical aspects of the cardiovascular system originate.

It is remarkable that while the dynamical aspects of pulsatile blood flow
have been studied by mathematicians as much as its structural and functional
aspects have been studied by physiologists, the focus of clinical concern with
the working of the system in health or in disease has been largely, indeed
almost exclusively, with the structural aspects of the system, that is with the
working of the system under steady flow conditions where a vessel free from
pathology is seen as a guarantee of flow within that vessel. Yet, as we have
seen in the previous chapter, when the dynamics of the system are considered,
this guarantee is no longer valid.

That is not to say that the structural aspects of the cardiovascular system and its
working under steady flow conditions are not important. The effects of a blocked or
narrowed artery are as clearly visible as they are incontrovertible. It is to say only
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Fig. 12.1 Cast of vasculature of the human brain. Red and blue colors indicate vasculature from
the left and right carotid arteries, respectively, green represents vasculature from the vertebral
arteries. Venous vasculature and capillaries are absent.

Fig. 12.2 Cast of vasculature of the human kidney. As in Fig. 12.1, venous vasculature and
capillaries are absent. There are likely more “tube segments” within a single human body than
there are in any man-made fluid flow system on the planet.

that an anomaly in the dynamics of the system, though not as visible as a structural
anomaly, may be equally important because it may disrupt the continuous flow of
blood just as a structural anomaly does. It is not unreasonable therefore to use the
term “pathology” here in the same way that the term is used in general, but we now
distinguish between a static or “structural pathology” and a “dynamic pathology”.
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A dynamic pathology may arise as a result of any acute or chronic change in
the characteristic parameters of the system, namely R; C; K; L. Whether the change
is caused by disease, aging, pharmaceutical or surgical intervention, the result is a
change in the dynamics of the system as seen in previous chapters. In the present
chapter we examine this notion with some specific examples.

12.2 Swing in the Park

The dynamics of a freely hanging pendulum depend on several static or structural
parameters such as the length of the suspending rod or string, the weight of the
suspended mass, and any friction at the pivoting joint that allows the pendulum to
swing. It is a fairly common experience that the orderly swings of the pendulum can
be very easily disrupted with an external force without any change in the static
parameters of the system. In other words, the working of the pendulum can be
disrupted by a dynamic pathology in the same way that it can be by a static pathology
such as a broken string or a rusty pivoting joint.

Anyone who has pushed a child on a swing in the park, or remembers his or her
own experience as a child on the swing, will know the exquisite harmony that must
exist between the timing of the applied force and the oscillatory momentum of the
swing. Any discord between the two will cause the swing to lose rather than gain
momentum, thus producing a dynamic pathology. The structure of the swing is fully
intact, but its dynamics are deranged.

The dynamics of a freely hanging pendulum is an example of a system of free
oscillation characterized by the absence of an external driving force. Pulsatile blood
flow is a system of forced oscillations characterized by the presence of an external
driving force, namely the pumping pressure produced by the heart. In Chap. 9 it
was shown that the dynamics of pulsatile blood flow can in fact be separated
(mathematically) into a set of free oscillations that depend only on the properties
of the system, plus a set of forced oscillations that depend heavily on the nature of
the external force.

The dynamics of a swing in the park provide a useful example of a system which
may operate as a system of free oscillations or one of forced oscillations. If the
oscillations of the swing, with a child on the seat, are allowed to continue without
any attempt by the seated child or by an attending adult to force these oscillations,
the dynamics of the system will ultimately unfold freely and in a fairly predictable
manner. But if either the child or the adult attempt to force the oscillations of
the swing, the outcome becomes highly complex and not as readily predictable
because it is now heavily dependent on the form of the applied force.

This example, which may seem trivial at first, provides a very useful and
fairly accurate analogy for the dynamics of pulsatile blood flow. Any discord
between the pumping pressure wave produced by the heart and the prevailing
oscillatory flow within the vascular system will cause a dynamic pathology.
The pathology may be chronic, due to slow and permanent changes in the
characteristic properties (R; C; K; L) of the system caused by disease or aging,
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for example. Or it may be acute, caused by a momentary disruption in the
dynamics of the system caused by vasoconstriction, for example, or by a
sudden change in the form or rhythm of the pressure wave produced by the
heart.

In the remainder of this chapter we discuss different scenarios in which dynamic
pathologies may arise. Because much of the dynamics of pulsatile blood flow occurs
within the oscillatory part of the flow, we shall find that the discussion is primarily
about the dynamics of this part of the flow.

12.3 Dynamic Markers I

The resistive-capacitive interplay examined extensively in the previous two chapters
provides the most important ground for dynamic pathologies. Briefly, it was seen
that the oscillatory part of pulsatile blood flow is divided into a resistive part and
a capacitive part. The first occurs within the resistive path and the energy required
to drive it is therefore completely dissipated (lost), while the second occurs within
the capacitive chamber and the energy required to drive it is largely recovered. Both
produce zero net flow over each oscillatory cycle, but the interplay between them
has a significant effect on the dynamics of the flow.

It is not unreasonable to assume that the cardiovascular system is designed
such that under normal circumstances much of the oscillatory flow is diverted
to the capacitive chamber. The extent to which these optimal conditions
prevail in the cardiovascular system as a whole or in any part thereof provides
important markers of the dynamic “health” or “pathology” of the system.

This can in fact be examined by direct measurements of pressure and flow waves
within an intact vascular bed. The pressure wave can be used to generate a flow
wave using the relation established in Sect. 11.6, namely

Qn.t/ D Pn.t/

Zn
; n D 1; 2; � � � N (12.1)

where Qn.t/ and Pn.t/ are the harmonics of the measured flow and pressure waves,
respectively, and Zn are the corresponding harmonics of the impedance

Zn D R
�
!nKC C i.!2

n LC � 1/
	

!nC.R C K/ C i.!2
n LC � 1/

; n D 1; 2; � � � N (12.2)

where !n are the harmonic frequencies and R; C; K; L are properties of the vascu-
lar bed.

In Eq. 12.1 the harmonics of the pressure wave Pn.t/ can be determined by
decomposing the measured wave as described in Chap. 10 but the lumped properties



12.3 Dynamic Markers I 379

R; C; K; L of the bed in which the pressure was measured, which are required for
determining Zn, are unknown. However, since the pressure wave was measured
simultaneously with the corresponding flow wave, the values of R; C; K; L can be
determined in an iterative manner by matching the predicted flow wave in Eq. 12.1
with the measured flow wave. The values of R; C; K; L at which the two flow waves
match can then be declared as the values of these properties for the bed in which the
pressure and flow waves were measured.

The above method provides a power noninvasive tool for determining the lumped
properties of a vascular bed. Indeed, because of access and other practical reasons,
it is clearly the only possible tool for determining the collective properties of the
millions of blood vessels in a vascular bed. An example of this process applied to
the vascular bed of the arm is shown in Figs. 12.3 and 12.4 where simultaneous
measurements of pulsatile pressure and flow waves were made at the brachial
artery.1
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Fig. 12.3 Pressure wave measured at the brachial artery of a human subject (see Footnote 1). The
figure shows the wave based on 100 original data points and a Fourier reconstruction of the wave
based on the first 50 harmonics as described in Chap. 10.

1Zamir M, Norton K, Fleischhauer A, Frances MF, Goswami R, Usselman CW, Nolan RP,
Shoemaker JK, 2009. Dynamic responsiveness of the vascular bed as a regulatory mechanism
in vasomotor control. The Journal of General Physiology. DOI: 10.1085/ jgp.200910218.
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Fig. 12.4 Flow wave calculated as described in the text and based on the first 50 harmonics of
the pressure wave in Fig. 12.3, compared with the flow wave measured simultaneously with that
pressure wave (see Footnote 1). In the calculation of the flow wave the values of the parameters
R; C; K; L are adjusted iteratively to achieve the smallest error between the measured and the
calculated waves.

For the purpose of the present section, the flow wave Qn.t/ in Fig. 12.4 can now
be divided into its resistive qn;r and capacitive qn;b components as determined in
Sect. 11.7 , namely

8̂̂
ˆ̂<
ˆ̂̂̂:

qn;r.t/ D .!nKC C i.!2
n LC � 1//Qn.t/

!nC.R C K/ C i.!2
n LC � 1/

qn;b.t/ D !nRCQn.t/

!nC.R C K/ C i.!2
n LC � 1/

(12.3)

where we note, of course, that

qn;r C qn;b D Qn.t/ (12.4)

The corresponding flow waveforms are finally obtained by adding the harmonic
components
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8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

Q.t/ D
NX

nD1

Qn.t/

qr.t/ D
NX

nD1

qn;r.t/

qb.t/ D
NX

nD1

qn;b.t/

(12.5)

It will be recalled that the division of oscillatory flow into a resistive and a
capacitive component is a critical marker of the dynamic “health” or “pathology” of
the vascular bed in which this division is observed. The result for the flow wave in
the vascular bed of the arm is shown in Fig. 12.5.

The result is an example of “healthy dynamics” in which the oscillatory flow
occurs almost entirely within the capacitive chamber, therefore the pumping energy
of the heart expended on the oscillatory part of the flow is almost completely
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Fig. 12.5 Division of the oscillatory flow rate seen in Fig. 12.4 into “resistive” and “capacitive”
components. The observed division is remarkable in that the overwhelming proportion of the flow
goes through the capacitive chamber with very little through the resistive path, which indicates a
state of “healthy dynamics” in this vascular bed.
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Fig. 12.6 The effect of reduced compliance C from its value under the healthy dynamic conditions
seen in Fig. 12.4. While the division of oscillatory flow into resistive and capacitive components
remains favorable, the peak of both components and hence the peak of total oscillatory flow in
systole are all considerably reduced.

recovered. If the properties of the vascular bed change from their values under
these optimal dynamics, the result is a “dynamic pathology” in which more of the
oscillatory flow occurs along the resistive path where much of the pumping energy
of the heart is dissipated (lost). Scenarios where the values of C; K; L are changed
to simulate different dynamic pathologies are shown in Figs. 12.6, 12.7, and 12.8.

The common conclusion from these results is that any change in properties of
the capacitive chamber, as represented by C; K; L will affect the dynamics of the
oscillatory part of pulsatile blood flow. The most dramatic of these effects is seen
to be that of a change in the value of the inertial parameter L. This change may
come about by any alteration in the acceleration and deceleration environment
available to the oscillatory flow within a given vascular bed, such as vasodilation
or vasoconstriction.

Thus, while vasodilation is a well established clinical strategy for reducing
the resistance to the steady part of pulsatile blood flow and thereby providing
relief to an ailing heart, its effect on the oscillatory part of the flow cannot
be ignored because, paradoxically, it may present the heart with a dynamic
pathology.
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Fig. 12.7 Viscoelasticity as represented by the parameter K acts as resistance to stretch within the
vessel wall. A higher value of K, as seen here, leads to lower peak flow in systole, lower capacitive
flow, but somewhat higher resistive flow. The latter is caused by higher opposition to flow into the
capacitive chamber, hence some of the oscillatory flow is diverted into the resistive path.

Changes in the “elasticity” of the vessel wall, which affect values of the parame-
ters C and K, have the overall effect of reducing the systolic peak of the oscillatory
flow. While both of these properties represent “opposition” to stretch within the
vessel wall, it is important to recall from Sect. 9.4 that the first (C) represents
opposition to the amount of stretch while the second represents opposition to the
rate of stretch, that is the rate at which the stretch is occurring in time. While
“pure” elasticity as represented by the parameter C is generally associated with
elastin within vessel wall, less is known about the source of viscoelasticity within
the cellular matrix of the wall material. In the clinical setting the two effects are
usually combined under the general headings of “vascular stiffening” or “hardening
of the arteries”.

Vascular stiffening, in disease or aging, is generally seen as a risk factor
for hypertension because of higher pulse wave velocity and wave reflections
(Sect. 5.9, Chap. 6) which in turn is seen as a risk factor for heart disease
because of the increased “load” of the heart as it pumps against higher blood
pressure. The results in Figs.12.6 and 12.7 indicate that a more menacing,
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Fig. 12.8 Increased inertial effects, as represented by a higher value of L, produce a considerable
derangement of the oscillatory flow and provide the quintessential example of a “dynamic
pathology”. Peak flow is actually increased but a considerable proportion of it is diverted to the
resistive path. Furthermore, compared with the “healthy dynamics” in Fig. 12.5, there is a clear
phase discord between different components of the flow not unlike an untimely push of a swing in
the park.

or at least an equally menacing, effect of this dynamic pathology is that in
reducing the systolic peak of the oscillatory part of the flow, the heart is less
able to use the capacitive chamber for recycling much of its pumping energy.

12.4 Dynamic Markers II

The branching architecture within a vascular bed provides another important ground
for dynamic pathologies, that is another way in which the dynamics of pulsatile
blood flow can be disrupted. This is because the branching architecture determines
the pattern of wave reflection and hence the pattern of admittance or impedance
within the bed. That is, it determines the extent to which the bed “admits”
or “impedes” the oscillatory part of pulsatile blood flow. Any change in this
architecture may thus lead to dynamic pathology. The markers for such pathology
are clearly not as readily available as those discussed in the previous section,
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because they involve the detailed architecture of the vascular bed in question.
Nevertheless, in this section we illustrate the consequences of changes in vascular
branching architecture, using the 11-level vascular tree of Fig. 7.12.

There are a number of ways in which the admittance environment within a
vascular bed can become acutely or chronically pathological. A key factor in
all cases is the wave speed or “pulse wave velocity”. Anything that affects the
propagation of the pressure pulse through the vascular bed will affect the admittance
environment within the bed. In the previous section the focus was on changes in
the lumped properties of the vascular bed, in the present section we focus on changes
in the detailed architecture of the bed. The two are not unrelated, of course, because
a change in the branching architecture of the bed, for example, will also affect
the acceleration and deceleration environment of the bed and hence the lumped
inertance parameter L. Similarly, a change in the elasticity or viscoelasticity of the
vessels which changes the lumped compliance properties C; K of the bed as a whole
will also affect the pulse wave velocity and hence the admittance environment within
the bed.

A measure of the effects of wave reflections in a vascular tree is the difference
between the characteristic and the effective admittances of all vessel segments
within that tree. The characteristic admittances can be calculated from the pre-
scribed properties of these segments, using Eq. 7.95. The calculation of effective
admittances, since it involves the effects of wave reflections from all junctions up to
and including the upstream ends of the peripheral terminal segments, must therefore
begin at this end of the tree. From known or prescribed reflection coefficients at
these ends, the effective admittances of the terminal vessel segments are determined,
using Eq. 7.106. If there are no wave reflections at these ends, then the reflection
coefficients are zero and the effective admittances of the terminal branches are the
same as their characteristic admittances. In either case, the calculation can then
progress to the next upstream level of the tree in which each vessel segment is a
parent segment in a bifurcation in which the two branches are two of the peripheral
segments, thus the effective admittance of the parent segment is determined using
Eq. 7.106. This process then continues to the next upstream level of the tree, and so
on, until the root segment is reached.

More specifically, the reflection coefficient at the downstream end of a tube
segment in a tree structure is determined by the characteristic admittance of that
segment and by the effective admittances of the two branch segments forming the
bifurcation at that end, as determined in Sect. 6.7. If the position of the vessel
segment under consideration is j; k, then the positions of the two branch segments
at its downstream end (xj;k D lj;k) are j C 1; 2k � 1 and j C 1; 2k, as illustrated
in Fig. 7.12. Using the results of Sect. 7.10, therefore, Eq. 7.106 expressed in the
notation of the present section gives for the reflection coefficient

Rj;k D Y0;j;k � .Ye;jC1;2k�1 C Ye;jC1;2k/

Y0;j;k C .Ye;jC1;2k�1 C Ye;jC1;2k/
(12.6)
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The characteristic admittance Y0 is defined by Eq. 6.66 and is determined by the
radius of the tube segment and by the wave speed which again may be taken as c or
c0 as discussed above, depending on the desired accuracy. The effective admittance
Ye, using Eq. 7.106 in present notation, is given by

8̂̂
<̂
ˆ̂̂:

Ye;j;k D Y0;j;k �
�

.Ye;jC1;2k�1 C Ye;jC1;2k/ C iY0;j;k tan �j;k

Y0;j;k C i.Ye;jC1;2k�1 C Ye;jC1;2k/ tan �j;k

�

�j;k D !lj;k
cj;k

(12.7)

The results of such calculations are illustrated for the 11-level tree model in
Fig. 12.9.

The difference between the distribution of characteristic admittances and that of
effective admittances, which is due entirely to the effects of wave reflections, is seen
to be fairly large. Furthermore, because these effects are cumulative, they reach their
highest value at the root of the tree as observed in the figure. The most important
aspect of these results, however, is that the effects of wave reflections in this tree
model are seen to produce higher admittance, and hence lower impedance, within
the tree.
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Fig. 12.9 Absolute values of the effective and the characteristic admittances at different levels of
the 11-level tree model, with parameter values as shown in the figure. The difference between the
two distributions is due entirely to wave reflections.
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Furthermore, as seen in Fig. 7.29, the wave-length-to-tube-length ratios in this
tree model are everywhere well above 100. In Sect. 5.11 it was shown that under
these circumstances, and in the absence of wave reflections, the velocity profiles of
pulsatile flow in an elastic tube are much the same as those in rigid tube. The results
of the present section show that in the presence of wave reflections this is not the
case, particularly as these reflections compound within a tree structure.

The situation is somewhat more complicated, however, because the wave speed
c involved in the wave-length-to-tube-length ratio 	 is also a function of frequency
as in Eq. 7.91

	 D 	

L
D 2�c

!L

In Fig. 12.9 this was simplified by taking c D c0 where c0 is the constant
Moen-Korteweg wave speed. In order to account for this effect, the calculations
of characteristic admittances in these figures must be repeated by using a value of
c obtained from the solution for pulsatile flow in an elastic tube for each vessel
segment (Sect. 5.9). The results are shown in Fig.12.10. This “refinement” produces
essentially the same results, though with even higher effects of wave reflections.
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Fig. 12.10 Absolute values of the effective and characteristic admittances at different levels of the
11-level tree model at a frequency of 1 Hz, as in Fig. 12.9, but here using a value of the wave speed
c obtained from a solution of the pulsatile flow in an elastic tube for each vessel segment.
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Fig. 12.11 Absolute values of the effective and characteristic admittances (which in this case
coincide) at different levels of the 11-level tree model at a frequency of 1 Hz and c D c0, as
in Fig. 12.9, but here using a square law (
 D 2) for the hierarchy of radii at different levels
of the tree. The law produces what is generally referred to as “impedance matching” at arterial
bifurcations because under the square law the impedance of the parent vessel is equal to the
combined impedance of the two branches. Under these conditions the effective admittances are
everywhere the same as the corresponding characteristic admittances, which means that the effects
of wave reflections are entirely eliminated. It is important to note that impedance matching requires
not only 
 D 2 but also c D c0.

Finally, the results in Figs.12.9 and 12.10 are based on a tree model in which the
hierarchy of vessel radii follows the cube law, namely 
 D 3:0 as discussed in
Sect. 3.11. An instructive case to consider is a model based on the square law,
namely 
 D 2:0, and c D c0. The results are shown in Fig. 12.11, where the effects
of wave reflections are seen to be totally absent and the distributions of characteristic
and of effective admittances are identical. The result shown is for a frequency f D 1

Hz, but the same results are obtained for other frequencies. The reason for this rather
singular result is that under a power law index 
 D 2:0, the sum of cross-sectional
areas of the two branches at a bifurcation is equal to the cross-sectional area of the
parent, that is (Eq. 7.48)

a2
p D a2

a C a2
b (12.8)
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where a is vessel radius and subscripts p; 1; 2 are being used here to identify the
parent tube segment and two branches, respectively. The characteristic admittances
of the three tube segments forming the bifurcations, using Eq. 7.95, are given by

8̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:̂

Y0p D �a2
p

�cp

Y0a D �a2
a

�ca

Y0b D �a2
b

�cb

(12.9)

and the corresponding characteristic impedances are given by

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

Z0p D �cp

�a2
p

Z0a D �ca

�a2
a

Z0b D �cb

�a2
b

(12.10)

If now we set

cp D ca D cb D c0 (12.11)

which is actually implied in the solution of the wave equations (Sect. 6.2) on which
the definition of admittance in Eq. 12.9 are based, it then follows from Eqs. 12.8
and 12.9 that

Y0p D Y0a C Y0b (12.12)

and

1

Z0p
D 1

Z0a
C 1

Z0b
(12.13)

which constitute what is generally referred to as “impedance matching” at the
bifurcation, meaning that the propagating wave does not encounter any change of
impedance (or admittance) as it crosses the bifurcation and hence there are no wave
reflections at the junction. Since this is true at all bifurcations of the 11-level tree
model, with 
 D 2, it follows that no wave reflections arise throughout the tree and
hence the effective admittances are everywhere the same as the corresponding
characteristic admittances as observed in Fig. 12.11.
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It has been suggested that “square law” conditions (
 D 2:0) prevail in the
first few generations of the aorta,2 and that this is a deliberate design feature of
the vascular system which has the advantage of avoiding wave reflection effects
at these upstream generations of the vascular tree. This may indeed be the case in
the larger vessels of the vascular tree where values of the frequency parameter �

are sufficiently high that the wave speed is close to the constant Moen-Korteweg
wave speed c0, as seen in Fig. 5.14, which the conditions for impedance matching
require.

However, in a smaller sub-tree structure such as that of the coronary circulation
where values of � are typically much lower as seen in Fig. 7.22, the wave speed is
significantly different from c0 as seen in Fig. 5.14. Thus, strictly, for application
to the coronary circulation the calculations on which the results of impedance
matching in Fig. 12.11 are based must be repeated using the actual value of c
obtained from a solution for pulsatile flow in an elastic tube, as in Sect. 5.9 for
each vessel segment. The results are shown in Fig. 12.12 where it is seen clearly
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Fig. 12.12 Absolute values of the effective and characteristic admittances at different levels of the
11-level tree model, as in Fig. 12.11, but here using a value of the wave speed c obtained from a
solution of the pulsatile flow in an elastic tube for each vessel segment, instead of c D c0 on which
the results in Fig. 12.11 are based. The results show that impedance matching does not occur in
this case because it requires 
 D 2 and c D c0.

2West GB, Brown JH, Enquist BJ, 1997. A general model for the origin of allometric scaling laws
in biology. Science 276:122–126.
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that impedance matching does not occur at the junctions, and effective admittances
are significantly different from the corresponding characteristic admittances in most
of the tree structure.

In summary, the effects of wave reflections in the cardiovascular system are
not to be seen as necessarily negative or obstructive to the flow. Indeed,
wave reflection sites are so pervasive within the vascular tree that it would
be highly surprising to find that biology has neglected this aspect of hemody-
namics within the arterial tree. Under normal circumstances, wave reflections
produce effective impedances that are more favorable to the dynamics of the
oscillatory part of pulsatile blood flow as seen in this section. Any change in
these optimal circumstances, whether it is caused by disease or intervention,
will lead to a dynamic pathology.

12.5 Coronary Blood Flow

Coronary blood flow is blood flow to the heart for its own metabolic needs, and
because the heart is itself the driver of this flow, there is a measure of “symbiotic”
relationship between the dynamics of the heart as a pump and the dynamics of
its own blood supply. There are three distinct aspects of coronary blood flow that
make the dynamics of the flow more complex and more susceptible to dynamic
pathologies.

First, coronary vasculature, that is vessels that supply blood to the heart itself
for its own metabolic needs, are embedded within the heart muscle as shown in
Fig. 12.13. When the heart muscle contracts to eject blood to the rest of the body,
the vessels are squeezed shut and blood supply to the heart is momentarily stopped.
Only when the heart muscle relaxes the supply is restored. Thus the oscillatory
character of coronary blood flow is dictated largely by contractions of the heart
muscle rather than by the pressure pulse generated by the heart itself. As a result,
while blood flow to the rest of the body peaks in systole, coronary blood flow peaks
in diastole.

Second, because of the central role of the heart as a pump for blood supply to
the entire body, and because the demand for blood flow from the rest of the body
is highly variable, from a low in a resting state to a high in an aerobic activity,
coronary blood flow has the capacity to increase “on demand” by as much as five or
six fold, a feature generally referred to as “coronary flow reserve”.3;4;5;6;7 Thus the

3Gregg DE, 1950. Coronary Circulation in Health and Disease. Lea & Febiger, Philadelphia, PA.
4Marcus ML, 1983. The Coronary Circulation in Health and Disease. McGraw-Hill, New York.
5Kajiya F, Klassen GA, Spaan JAE, Hoffman JIE (eds), 1990. Coronary Circulation: Basic
Mechanism and Clinical Relevance. Springer-Verlag, Tokyo.
6Spaan JAE 1991. Coronary Blood Flow. Kluwer Academic Publishers, Dordrecht, The Nether-
lands.
7Zamir M. The Physics of Coronary Blood Flow. Springer, New York, 2005.
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Fig. 12.13 Cast of coronary arterial vasculature of the human heart. Red and blue colors represent
vasculature from the left and right coronary arteries, respectively. Venous vasculature is not
included. Only some capillaries can be seen as clumps of white fluff, the vast majority have been
excluded from forming in the cast so as not to obscure other vasculature. This entire vasculature
is embedded within the heart tissue, much of it within the myocardium and is therefore subject to
contractions of the heart muscle.
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dynamics of coronary blood flow can be far more “volatile” than the dynamics of
pulsatile blood flow in other parts of the cardiovascular system. Not only is the flow
pulsatile but it can frequently be in a state (Sect. 9.7) in which it is more susceptible
to dynamic pathologies.

Third, because of the repeated opening and closing of coronary vasculature
embedded within the cardiac muscle, the branching architecture of the coronary
vasculature is in a state of constantly varying geometry. This has enormous impact
on wave reflections within the coronary vasculature because wave reflections depend
critically on the geometry of branching architecture within the vascular bed. Fur-
thermore, because the source of the varying architecture is the repeated contraction
of the heart muscle, this presents the heart with the opportunity of controlling the
pattern of wave reflections within its own vasculature. Wave reflections, as seen
in the previous section, tend to enhance the admittance of oscillatory flow within
the vascular bed. This has indeed been shown to occur in the vasculature of the
human heart as shown in Fig. 12.14, suggesting that “Reflection effects endow the
peripheral regions of the [coronary arterial] tree with a mechanism of ‘sucking’ flow
towards them, somewhat like a sponge, although the sucking action in a sponge is
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Fig. 12.14 Characteristic and effective admittances of 27 segments of the right coronary artery
of a human heart, based on measurements of vessel lengths and diameters of the right coronary
arterial tree. Compare with Fig. 12.10 where the results are based on a theoretical 11-level tree
structure. Adapted from Zamir (1998; see Footnote 8).
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caused by an entirely different mechanism.” and that “In coronary blood flow, wave
reflection effects : : : may play a significant ‘silent’ role in coronary heart disease
: : :”8

Each of these unique features of coronary blood flow presents a clear
potential for dynamic pathologies, acute or chronic, yet, for obvious reasons,
the focus in the clinical setting is usually on structural pathologies: blood
cholesterol level, coronary artery disease. While the presence of these and
other structural pathologies have a clear and direct impact on coronary blood
flow, the above results suggest that the absence of structural pathologies does
not guarantee the integrity of blood supply to the heart. Coronary blood flow
can be equally disrupted by dynamic pathologies.

Arrhythmia, in all its forms, is a familiar example of a dynamic pathology. It is a
direct insult on the oscillatory character of the pressure wave generated by the heart
and specifically on the harmony between this pressure wave and the resistive and
capacitive characteristics of the vascular system. In short, it is a direct insult on the
dynamics of the flow. It is indeed not unlike an insult on the dynamics of a swing
in the park by an untimely pull or push. The subsequent course of the deranged
dynamics is not predictable and the consequences are not easy to assess. A footprint
of the cause of derangement is absent, which is the hallmark of dynamic pathologies.

Another phenomenon that has the attributes of a dynamic pathology is “sudden
cardiac death” in which, essentially, the timing of the event cannot be explained
in terms of a structural pathology alone. The cause of death in all cases is a
“: : :precipitous fall in cardiac output to levels that can no longer sustain cerebral
or cardiac function: : :”.9 The fall in cardiac output is usually associated with
a disruption in heart rhythm in one form or another: ventricular fibrillation,
tachycardia, bradycardia, and the like, all of which have to do with a disruption
in the oscillatory dynamics of the flow.

Yet another example of a dynamic pathology is that of the “Broken Heart
Syndrome” in which “Emotional stress can precipitate severe, reversible left ven-
tricular dysfunction in patients without coronary disease. Exaggerated sympathetic
stimulation is probably central to the cause of this syndrome.”10 The syndrome was
found to be marked by highly elevated plasma levels of catecholamines and “stress-
related neuropeptides”. These agents are known to control parameters that affect the
dynamics of the coronary circulation as they produce changes in vascular calibers

8Zamir M, 1998. Mechanics of blood supply to the heart: Wave reflection effects in a right coronary
artery. Proceedings of the Royal Society of London B 265:439–444.
9Osborn MJ, 1996. Sudden cardiac death: A. Mechanisms, incidence, and prevention of sudden
cardiac death. In: Mayo Clinic Practice of Cardiology, pp. 862–894. Giuliani ER, Gersh BJ,
McGoon, MD, Hayes DL, Schaff HV (eds). Mosby, St. Louis, MO.
10Wittstein IS, Thiemann DR, Lima JAC, Baughman KL, Schulman SP, Gerstenblith G, Wu KC,
Rade JJ, Bivalacqua TJ, Champion HC, 2005. Neurohumoral features of myocardial stunning due
to sudden emotional stress. New England Journal of Medicine 352:539–548.
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and vascular resistance. The broken heart syndrome may therefore be considered
as another example of a disruption in, indeed a direct insult on, the dynamics of
coronary blood flow.

Unlike structural pathologies, dynamic pathologies do not leave a “footprint”
after they have been resolved or after they have produced their damage.
Following sudden cardiac death, indeed following any death attributed to
heart disease, only structural pathologies can usually be found. Any dynamic
pathologies that may have been involved are not in evidence because they are
no longer at play.



Appendix A
Viscosity: A Story

How does the viscosity of fluids come about? What in the structure of fluids
gives rise to this property? More specifically, what in the structure of fluids
allows a fluid body to deform freely without resistance or force, yet puts out
resistance to the rate at which the deformation is taking place?

Imagine two long trains running side by side on parallel tracks, carrying a large
flock of children to a ball game. Children being what they are, unable to wait for
their destination, they start the game on the trains. Balls fly in both trains and in all
directions, and with the windows open, some balls fly from one train to the other.

As long as the trains run at exactly the same speed, this exchange of balls occurs
as if the two trains were one, and when a ball arrives it makes no difference whether
it came from the same train or from the other.

If one train begins to move faster than the other, however, balls being exchanged
between the two trains will now be affected by the difference in speed between the
two trains. Balls entering the fast train from the slower one, as they collide with the
first object in the fast train, will be speeded up by that collision to acquire the speed
of the fast train. Similarly, balls entering the slow train from the fast one, as they
collide, will be slowed down to the speed of the slow train.

When a slow moving ball is hit by a faster moving train and is speeded up by it,
the train suffers a small loss of momentum which, of course, may not be noticeable
if there is only one ball. But if a large number of slow balls are hit by a faster moving
train, the loss of momentum by the train can be sufficiently large to affect the train’s
engine and be noticed by the driver. The same is true, of course, if a large number
of fast moving balls are hit by a slower moving train, in this case the train can gain
sufficient momentum to be noticed.

Thus, if the train drivers after moving at the same speed for some time and having
exhausted all the small talk that they can muster decide to have a little race with each
other, they will be in for a surprise.
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As one driver attempts to pull his train a little faster, he notices some unusual
sluggishness: more power than usual is needed to accelerate. He communicates the
puzzle to the driver of the other train who then attempts to speed up his own train
and meets with the same mysterious added resistance.

The drivers conclude, without knowing why, that the trains resist any attempt
to move them at different speeds. The only thing we know more than they do
is the underlying reason for that resistance. The trains resist any rate of shear
between them because of the wild game going on inside, which the drivers are totally
unaware of.

The mechanics of this resistance to rate of shear are precisely the mechanics
of fluid viscosity.

The flying balls in the case of fluids are the molecules. They are in a state of constant
wobble, chaotic dance in all directions which causes them to have occasional
collisions with each other. Any attempt to produce rate of shear between two
neighboring layers of fluid causes collisions of faster moving molecules with the
slower moving layer, and between slower moving molecules with the faster moving
layer. The result is a resistance of precisely the same type as that between the two
trains.

The train story is re-enacted every time an attempt is made to shear
two neighboring layers of fluid at any significant (non-zero) rate or, more
accurately, an attempt to create a “velocity gradient”, an attempt to move
two neighboring layers of fluid at different speeds. The viscous property of
fluids resists velocity gradients.

A small amount of viscous fluid such as thick liquid honey rubbed back and forth
between the thumb and index finger will clearly demonstrate this effect. But shear
rate between neighboring layers of fluid exists whenever there is flow, because flow
is essentially a shearing motion. Thus, fluid viscosity and viscous resistance to rate
of shear is an ever present factor in the behavior of fluids.



Appendix B
Poiseuille Flow: A Story

A somewhat animated picture of the flow in a tube is that of a chain of swimmers
attempting to save each other from a swift current. The two swimmers closest to the
river banks manage to grab onto the banks, each with one hand, stretching the other
hand out to help one of their friends. Two swimmers closest to these hands grab on
to them each with one hand, stretching the other hand out to help another friend.
This goes on and on as swimmers further and further away from the banks connect
to this human chain, until two hands clinch at the center of the river and close the
chain.

If we permit ourselves to believe this story, and if we continue to use it as an
analogy, we gain a helpful visual image of what fluid elements actually do when
fluid flows through a tube.

Under the force of the swift current the two swimmers closest to the banks are
fully anchored on one side but are drifting a little on the other side, the side of
their free hands. The next two swimmers are drifting by the same amount on one
side, since they are holding hands with the first two swimmers on that side, but are
drifting a little more on the other side, the side of their free hands, and so on. The
amount of drifting is higher and higher for swimmers further and further away from
the banks, being highest for swimmers at the center of the river.

Thus the chain of swimmers under the force of the current takes on the shape
of a belly-curve, somewhat like the shape of a blown sail, in cross section. Better
still, like the shape of the floating edge of a fishing net stretched out from one bank
of a river to the other. In all cases the highest dip in the curve occurs at the center,
furthest away from the points of anchor.

Fluid elements in a tube are much smaller than swimmers in a river, of course,
and there are other differences in the two situations, but the analogy is useful.

In the case of the swimmers the driving force is the force of the swift current
which acts to push each swimmer forward along the river. In the case of fluid flow
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through a tube the driving force is higher pressure at the one end of the tube, created
by a pump or some other means. This pressure acts to push each element of the fluid
forward along the tube, as the swift current does to each swimmer.

An important difference between the plight of the swimmers and that of fluid
elements is that the swimmers do not want to go on drifting while fluid elements do.
More accurately, the swimmers cannot go on drifting, but fluid elements can. The
chain of swimmers, like a fully blown sail, cannot drift any further once their arms
become fully stretched. The chain of fluid elements never become fully stretched
since fluid elements can stretch indefinitely. They are in fact deforming rather
than just stretching. A fluid element is typically being sheared by a faster moving
neighbor on one side and a slower moving neighbor on the other. It continues to
hold hands with both neighbors, never letting go, never needing to let go, because it
can deform indefinitely. Elements of fluid thus drift continuously down the tube as
they deform, producing what we call flow.

A picture of the flow in a tube thus emerges in which cylindrical layers of the
fluid move forward, one inside the other in a concentric fashion. The layers do not
slide over each other as they move but rather shear each other as the inner ones move
faster than the outer ones and as they remain forever stuck to each other. The layer
in contact with the wall of the tube does not move at all on that side but its other side
is able to move slowly. This slow movement is matched by the movement on one
side of the next layer of fluid, but the other side of this layer moves a little faster,
and so on.

It is as if each layer of the fluid is acting to shield the next layer from the dragging
effect of the inner wall of the tube, as if each layer is acting to enable the next layer
to move a little faster than itself. Fluid elements always act in this way, they are
a heroic bunch. This is what makes flow possible, and what gives flow its unique
qualities. Flow in a tube is not at all like a bullet. It is a fully orchestrated act, a well
calculated scheme.

A bend in the tube or a change in its caliber, an obstacle, or a detour into a branch,
present no problems. The scheme unfolds just the same. The carpet is laid over the
wall of the tube wherever that wall is and wherever that wall leads to. One layer
after another then move over this carpet and over each other in a well calculated,
well ordered manner. Any obstacle along the way is carpeted just the same and
layers move over or around it as the case may be. As long as the driving pressure
is still behind it, and as long as there is still an opening for fluid to get through,
however small that opening is, flow along the tube continues. It is nothing like a
bullet. A bullet cannot do that.
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A
acceleration, 21

components, 21–23
acceleration in space, 255, 256

in steady flow, 256
acceleration in time, 256, 257

in unsteady flow, 256
acceleration, deceleration

in space, 255
in time, 255

admittance, 242
characteristic, 178, 180, 181, 242, 243
effective, 180, 181, 242, 243
input, 181, 243

amplitude, 264, 265
angular frequency, 129, 263, 271, 323
arbitrary constants, 296
arterial bifurcation, 192, 205

area ratio, 193
bifurcation index, 193
branching angles, 196
branchng angles, 198
cube law, 193, 194
efficiency,optimality, 196, 198
geometrical structure, 193, 194
optimal design, 209
power law index, 209–212
pressure distribution, 210–212
pressure drop, 210
shear stress, 209, 210
steady flow, 205, 206

arterial segment, 228, 231
arterial tree, 247

bounding paths, 225
branches, 213

cube law, 195
effective admittance, 246
generations, 195
living organ?, 191, 215
major, minor paths, 225
power law, 221
power law index, 224
pressure distribution, 216
reflection coefficient, 246
wave reflections, 245

arterial tree:bounding paths, 224
arterial tree:major, minor paths, 221
arterial trees

bifurcation, 211
generation, 213
hierarchical tree structure, 213
level, 213
sequential position, 213

artery?, 226, 228, 231
asymptotic value, 263

B
Bessel equations, 88
Bessel functions, 88, 132

at high frequency, 111, 113
at low frequency, 103
properties, 89, 90

bifurcation, 205, 244
power law, 208
pressure distribution, 206, 207
steady flow, 205, 206

bifurcation index, 208, 212, 213, 217, 239
blood

essence of life?, 1

© Springer International Publishing Switzerland 2016
M. Zamir, Hemo-Dynamics, Biological and Medical Physics, Biomedical
Engineering, DOI 10.1007/978-3-319-24103-6

401



402 Index

blood flow
dynamics, 130
essence of life, 1

body forces, 24, 25
boundary forces, 24, 25
bounding path, 224
bounding paths, 233, 236, 241
branching elastic tubes

wave speed, 237–239
branching rigid tubes

frequency parameter, 233
peak flow rate, 234, 235
peak shear stress, 235–238
pulsatile flow in, 232

branching tree, 213–215
structure, 213

branching tree structure, 216
branching trees

bounding paths, 217
j,k notation, 213, 214, 216, 217
major, minor paths, 217
missing branches, 214
navigation through, 215
position coordinates, 213, 214, 216

branching tubes, 192
bifurcation, 192
hierarchical tree structure, 192

C
capacitive chamber, 289–292, 295, 310, 311,

378
compliance, 294
critically damped dynamics, 301
dynamics, 306
free dynamics, 296
full dynamics, 298
inertance, 294
optimal dynamics, 306
orderly dynamics, 298
overdamped dynamics, 299
resistance, 294
steady state oscillations, 297, 298, 307
underdamped dynamics, 300

capacitive effects, 356
capacitive flow, 267, 268, 270, 285, 287, 288
capacitive time constant, 269–271, 305
cardiac pressure wave, 353
cardiac pressure wave, numerical description,

352
cardiac pressure wave, waveform, 328,

345–348
characteristic admittance, 178, 180, 181, 242,

243

characteristic impedance, 178, 241–243
characteristic impedance, admittance, 244,

245, 389
classical solution

for oscillatory flow in a rigid tube, 91
complex conjugate roots, 293
complex exponential function, 87, 131
compliance, 266–268, 270, 271, 303
composite wave, waveform, 318, 355
composite waveforms, 317

“cardiac”, 342
Fourier analysis, 317, 318
fundamental frequency, 323, 337
fundamental harmonics, 323
fundamental period, 337
harmonics, 318, 323
numerical description, 317, 319
numerical form, 338
Nyquist rule, 347
periodic functions, 320
piecewise, 329, 331, 334, 337, 338
single-step, 324

conservation of mass, 17, 18
at a point, 17, 18
equation, 19, 20

constitutive equations, 36, 37
continuum, 247
continuum concept, 9
coronary arteries, 233

distributing, delivering vessels, 229–231
coronary blood flow, 391

arrhythmia, 394
broken heart syndrome, 394
coronary flow reserve, 391
coronary vasculature, 391–393
dynamic pathology, 391, 394, 395
effective admittance, 393
oscillatory character, 391
structural pathology, 394, 395
sudden cardiac death, 394
transient oscillatory state, 393
wave reflections, 393

coronary circulation, 390
dynamics, 394

cube law, 74, 224, 227, 236, 239

D
deceleration, see acceleration
deformation

continuous, 32
rate of, 32

density at a point, 11
displacement, 273



Index 403

dynamic of pulsatile blood flow
dynamic fitness, 284

dynamic pathologies, 298
dynamic pathology, 376, 377, 382, 391

acute, 378
arrhythmia, 394
broken heart syndrome, 394
chronic, 377
compliance effects, 382
coronary blood flow, 391, 394
cube law, 388
effective admittance, 385, 386
footprint, 394, 395
hanging pendulum, 377
impedance matching, 388–391
in forced oscillations, 377
in free oscillations, 377
inertial effects, 384
markers, 378, 381
pulse wave velocity, 385
reflection coefficients, 385
resistive-capacitive interplay, 378
square law, 388
static pathology, 377
sudden cardiac death, 394
swing in the park, 377
vascular branching architecture, 384
vascular stiffening, 383
vasodilation, 382
viscoelastic effects, 383
vs structural pathology, 376
wave reflection effects, 385
wave reflections, 384, 386, 387
wave speed, 385, 387

dynamics of arterial trees, 248
lumped parameter concept, 248

dynamics of pulsatile blood flow
capacitive chamber, 289–292, 295, 349
capacitive flow, 285, 287, 288
composite waveforms, 351
critically damped, 295
effective impedance, 350
forced dynamics, 292
free dynamics, 292, 294, 295
lumped parameters, 283
oscillatory flow, 349
overdamped, 295
pressure-flow relations, 350
resistive flow, 285, 287, 288
resistive path, 289, 349
resistive-capacitive interplay, 285, 289,

357, 359, 360, 362, 364–366
single harmonics, 350
steady flow, 349

underdamped, 295
viscoelasticity, 290
wave reflections, 284, 350
Windkessel concept, 284, 285, 288

E
effective admittance, 180, 181, 242, 243

in an arterial tree, 246
effective impedance, 181, 241–243
effective impedance, admittance, 244, 245,

386, 389
elastic branching tubes

pulsatile flow in, 232
elastic tube, 267, 387
elasticity, 5, 266

equations, 133
modulus of, 127
Young’s modulus, 127

electric circuit, 280
electric current, 277
electrical analogy, 257, 266, 276–280, 302

acceleration, deceleration, 278
capacitance, 276, 280
capacitor, 277–279
delectric current, 278
elastic tube, 278
elasticity, 279
electric charge, 278, 280
electric circuit, 278, 279
electric current, 277, 279, 280
flow in a tube, 279, 280
flow in tube, 278
flow rate, 277–280
inductance, 276, 278
inductor, 277
inertia, 277
lumped properties, 277
potential difference, voltage, 277
pressure difference, 277–280
resistance, 276, 279
resistor, 277
voltage, 277–280

elliptic cross sections, 68
coordinate system, 119
Mathieu functions, 116
oscillatory flow, 116, 120, 121
steady flow, 68

entry flow, 50
entry length, 50, 51
entry region, 50
equation of continuity, 21, 38
Eulerian method, 16
Eulerian velocities, 16, 17
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F
fast Fourier transform, 319
flow, 6, 30, 32

laminar, 47
turbulent, 47

flow in a tube, 198, 265, 281
developing, 254
entrance region, 255, 256
fully developed, 254
revisited, 250

flow in branching tubes, 191
flow in tubes, 43–45, 191, 247

arterial tree, 191
average velocity, 61
balance of forces, 56
clinical relevance, 64
electrical analogy, 63
energy expenditure, 62, 64, 65
entry flow, 50
entry length, 50, 51
entry region, 50
flow rate, 61
fully developed, 53, 55, 60
fully developed flow, 50
governing equations, 54, 55, 57
in series, 198, 199, 204
maximum velocity, 61
no-slip, 59, 60
of elliptic cross sections, 68, 69, 71
partially developed, 51
peak velocity, 60
pressure distribution, 204
pressure drop, 58
pressure gradient, 58
pumping power, 63, 64, 66
shear stress, 61
steady, 53, 55
tube lengths, 202
two tubes or one?, 75, 80
velocity profile, 45, 50, 61

fluid
as a continuum, 8, 9
as a rock?, 2

fluid element, 8, 10
fluid state, 2

life without?, 2, 3
fluidity

bordering on magic, 4
defined, 5
life without?, 2
of blood, 1
on molecular scale, 7
what is-?, 4

fluids
on molecular scale, 7

force dynamics, 292
Fourier analysis, 319, 328

analytical formulation, 319
Fourier coefficients, 321
Fourier series, 322
fundamental frequency, 323
fundamental harmonics, 323
harmonics, 323
numerical formulation, 338, 340, 341, 343
periodic functions, 321
theory, 321

Fourier coefficients, 321, 325, 326, 330, 333,
341, 345, 353

numerical formulation, 343
Fourier series, 322

compact representation, 323
Fourier series, representation, 322, 324,

326–330, 340, 346–348
free dynamics, 292, 294, 295
frequency, 129, 263

angular, 129
fundamental, 129

frequency equation, 147
frequency parameter, 232, 233, 237
fully developed flow, 50, 53, 55
fully developed state, 254
fundamental frequency, 129, 323, 324, 328,

331
fundamental harmonic, 324, 331
fundamental period, 324, 328, 331

G
geometrical point, 11

H
harmonics, 318, 323, 328, 346–348, 353
hierarchical tree structure, 247

I
impedance, 130, 241–243, 255, 299, 301, 307,

308
characteristic, 178, 241–243
complex exponential function, 308
effective, 181, 241–243
input, 181, 243

incompressible fluid, 255, 266, 268
indicial equation, 293
inductance, 255, 257, 258, 265
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inductor, 277
inertance, 257
inertance, inertial constant, 273
inertia, 255, 257, 259, 260, 262, 263, 265
inertial constant, 258, 265
inertial effect, 259, 262
inertial effects, 263, 265, 356
inertial time constant, 259, 260, 262, 264, 265,

304
input admittance, 181, 243
input impedance, 181, 243

L
Lagrangian method, 15, 16
laminar flow, 47
long wave approximation, 130, 133, 142
lumped parameter analysis, 251, 252
lumped parameter concept, 249–251, 254,

255
dynamics of arterial trees, 248

lumped parameters, 249, 283
lumped properties, 249, 250, 255

M
macroscopic scale, 8
major, minor paths, 221
mass, 273
material coordinates, 11, 14
material point, 11
mechanical analogy, 271, 273–276

compliance, 272, 275, 276
damper friction, 276
damper resistance, 272
elastic spring, 275, 276
friction coefficient, 273, 275
Hook’s law, 275, 276
inertance, 274
inertia, 276
inertial resistance, 272
law of friction, 273, 275
mass, 274, 276
mass-damper-spring system, 276
resistance, 272, 273, 276
spring, 276
spring constant, 275, 276
spring resistance, 272

mechanical properties, 31
microscopic scale, 8
modulus of elasticity, 129, 138
Moen Korteweg wave speed equation, 146
Moen-Korteweg wave speed, 128, 163, 387,

390

Moens-Korteweg wave speed, 127, 237–239,
243

momentum equations, 39
motion field, 13, 14
murmur, 49
Murray’s law, 74

and shear stress, 74
generalized, 74, 75

Murray, Cecil D, 72

N
Navier-Stokes equations, 39, 53

in cylindrical polar Cartesian coordinates,
40

in rectangular Cartesian coordinates, 40
simplified, 53

Newton
law of motion, 13, 14, 24, 30, 31

Newtonian fluid, 33, 34, 36, 37, 247
Is blood a -?, 34

no-slip, 45, 46, 59, 60, 250
no-slip condition, 255, 256
nonrigid tube, 266
numerical form, formulation, 338, 340, 341,

347

O
opposition to flow, 241, 242
oscillatory flow, 84, 254
oscillatory flow in a rigid tube, 123

at high frequency, 111, 113, 115–118
at low frequency, 103, 106, 107, 109, 110,

116
classical solution, 91
compared with Poiseuille flow, 92
energy and power expenditure, 98, 101, 102
flow rate, 93, 96
of elliptic cross sections, 116, 120, 121
purposeless, 94
shear stress, 96, 98
velocity profiles, 94
wave propagation?, 129, 130

oscillatory flow in an elastic tube, 123, 124,
153

governing equations, 130
long wave approximation, 130, 133
wave motion, 123, 126, 127
wave propagation, 125, 126, 128
wave reflections, 126, 129
wave speed, 126, 127

oscillatory part, 343, 344
oscillatory pressure, flow, 271
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P
parabolic velocity profile, 60
partially developed flow, 51
patient-specific, 228
peak flow, 234, 235
peak flow rate

in branching rigid tubes, 234, 235
peak shear, 235
peak shear stress, 236

in branching rigid tubes, 235–238
period, 320, 323
periodic function, 263, 321
phase angle, 265, 333, 335
phase shift, 264
plasticity, 5
point

equations, 10
geometrical, 11
has mass?, 10
material, 11
within a fluid body, 10

point equations, 13
point-by-point description, 248, 249

vs global description, 248
Poiseuille flow, 60, 200, 255, 256, 281

fully developed, 206
properties, 60
pulsatile, 83

Poisson’s ratio, 138
position coordinates, 11, 14
power law, 221, 233
power law index, 224, 239, 388

cube law, 227
quartic law, 226
square law, 225

pressure, 36, 37
mechanical definition, 37
thermodynamic, 37

pressure difference, 273
pressure distribution, 204
pressure gradient

pulsatile, 86
pressure wave, 353
pressure-flow relations, 311

as a diagnostic tool, 351
baseline case, 352, 355
compliance, 313
flow waveform, 352
harmonics, 352
impedance, 311
inductance, 312
R-scaled, 356
resistance, 312
viscoelasticity, 312

primary wave reflection, 185
pulsatile blood flow, 310, 311

as a swing in the park, 377
beginning of time?, 298
capacitive chamber, 310, 311
capacitive component, 311
dynamic pathology, 377
dynamics, 311
impedance, 299, 301
reactance, 299, 301–305
resistive component, 311
resistive path, 310, 311
steady state, 299
transient state, 299
wave reflections, 311

pulsatile flow, 256
= steady + oscillatory, 84
frequency parameter, 232, 233
in branching rigid tubes, 232
in elastic branching tubes, 232
oscillatory part, 84, 285, 286
pressure gradient, 86
steady part, 285, 286
using complex exponential function, 87
Why?, 82
Womersley number, 232

pulsatile flow in an elastic tube
axial velocity, 150, 151
classical solution, 150, 156
flow rate, 156
properties, 151
radial velocity, 152
wave reflections, 155

pulsatile Poiseuille flow, 83
pulsatile pressure gradient, 86
pulse wave velocity, 128, 145

Q
quartic law, 226
quasi-steady state, 262, 263

R
reactance, 130, 299, 301–305
reflection coefficient, 170, 178, 181, 182, 385

at a bifurcation, 245
between two tubes, 244

reflection coefficients
successive, 183

resistance, 130, 241, 242, 250, 256, 259, 267,
352, 353

resistive flow, 267, 268, 270, 271, 285, 287,
288
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resistive path, 289, 310, 311, 378
resistive-capacitive interplay, 285, 364–366,

369, 371
“healthy” dynamics, 381
capacitive chamber, 366, 370
clinical implications, 359, 371
composite waves, 363, 367, 368
inertance effects, 370
inertial effects, 373
viscoelastic effects, 370
viscoelasticity, 372

resistive-capasitive interplay
dynamic pathology, 378

Reynolds number, 48
Reynolds, Osborne, 47
rigid tube, 129
rigidity, 5

S
sand

does not flow, 8
is not a continuum, 8
is not a fluid, 7

secondary wave reflection, 185
single-step waveform, 324
solidity, 5
square law, 225, 390
steady flow, 53, 55, 250
steady state, 253, 254, 259, 260, 263, 264
steady state oscillations, 297
stress tensor, 26, 27, 38, 62

components, 28, 29
in cylindrical polar coordinates, 41
symmetry, 38

sudden cardiac death, 395

T
thin wall approximation, 138
thin wall assumption, 146
time delay, 265
transient state, 254, 255, 259, 260, 263,

265
transmission line, 160
transmission line theory, 160, 163
tube wall, 134

balance of forces, 135
modulus of elasticity, 138
Poisson’s ratio, 138
thick, 134
thin, 134
Young’s modulus, 138

tube wall motion
governing equations, 137
stress-strain relations, 137

turbulence
and murmur, 49
high-Reynolds-number-, 49

turbulent flow, 47

V
velocity gradient, 32, 33

and viscosity, 398
velocity profile, 50

parabolic, 60
vessel segment, 231
viscoelasticity, 290
viscosity, 32, 34, 35, 128, 250

a story, 397
and velocity gradient, 398
coefficient of, 33, 36

W
wall thickness, 128
wave crest, 127
wave equations, 164

one dimensional, 162, 164
solution, 167

wave length, 128, 129, 238–241
estimate, 129

wave propagation, 128, 130
at infinite speed, 159
transmission line theory, 163
wave length, 128

wave reflection
primary, 185
secondary, 185

wave reflections, 129, 159, 160, 241, 243–245,
284, 388

one dimensional, 163
primary, 169
secondary, 169
transmission line, 160

wave speed, 126–129, 145, 238, 243, 387
attenuation, 147
dispersion, 147
estimate, 128
imaginary part, 238, 240
in branching elastic tubes, 237–239
infinite, 128
Moen-Korteweg , 163
Moens-Korteweg, 127, 128, 237, 239
real part, 238, 239

wave speed equation, 146
windkessel, 271
Windkessel concept, 284, 285
Womersley number, 232

Y
Young’s modulus, 129, 138
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