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Preface

In the last years, public opinion and political managers increasingly consider global
change studies as a vital field to better address the current environmental challenges.
Climate alterations, natural hazards, biodiversity, water resources and other critical
phenomena need to be understood at different spatial scales, from local to global.
Reliable and long-term databases are indispensable in these studies, to establish
temporal and spatial trends that will provide a better conception of the sources and
impacts of changes.

Earth Observation of global changes is increasingly considerable as an indispens-
able tool to have such a comprehensive view of current problems and challenges.
Images acquired by EO satellites provide a synoptic and repetitive inspection on the
state of natural resources. Sensor systems currently acquired images from different
spectral bands (visible, near, medium and thermal infrared and microwave), with
a wide range of spatial resolutions (from 1 m to 3 km pixel size), and at different
temporal intervals (from 15 min to several weeks). This information may be easily
integrated into geographical databases, thus providing an ideal scenario for spatial
planning at different spatial scales.

This volume gathers a selection of papers presented at the Second International
Conference on Earth Observation of Global Change (EOGC2009), held in Chengdu,
China, 26–29 May, 2009. The first conference was held in Madrid, Spain, 2
years earlier and was also published by Springer (Chuvieco E (ed) (2008) Earth
Observation of Global Change. The role of satellite remote sensing in monitoring
the Global Environment. Springer). This present volume is organized around six
topics:

1. Remote Sensing of Land Use and Land Cover Change (Chapters 1–4).
2. Remote Sensing of Coastal and Marine Ecosystems (Chapters 5 and 6).
3. Remote Sensing of Snow, Ice, and the Polar Environment (Chapters 7–9).
4. Observing Global Change by Geodetic Techniques (Chapters 11–12).
5. Earth Observation for Natural Hazards Monitoring and Assessment

(Chapters 13–16).
6. Geospatial Data Processing and Integration for Change Detection

(Chapters 17–19).
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vi Preface

All papers have been reviewed by external scientists and prepared specifically
to be part of this book. The editors in charge of this process have been Emilio
Chuvieco (Sections 1 and 5), Jonathan Li (Sections 4 and 6) and Xiaojun Yang
(Sections 2 and 3).

The final selection of papers includes a wide range of topics, where Earth
Observation data have proven to be very valuable for analysis and planning: urban
growth, natural hazards (earthquakes, landslides, forest fires, etc.), land degradation
process, water quality, ice and snow monitoring, tectonic motion, ocean height, food
security, and weather patterns. These variables have been estimated with a great
variety of sensors: from optical to thermal and microwave, and satellite missions:
Terra-MODIS, Envisat-MERIS, Landsat-TM/ETM+, ALOS-SAR, Envisat-SAR,
Radar Altimeters, among others. This variety of data will be extended in the near
future with many other missions that are being planned by the different space agen-
cies. It is worth to mention the European Space Agency’s Sentinel program, as
well as the continuation of NASA Mission to Planet Earth. Meteorological agen-
cies will also provide further relevant information from the geostationary and polar
orbiting satellites. This panorama will increase in the near future with the missions
coming from the private sector, which are being benefited from the reduction in
launching costs, optics and electronic components, providing an even wider range
of on-demand sensors based and small satellites.

This whole flow of information needs to be properly ingested in current climate
and vegetation models, to reduce the uncertainty of modelling future scenarios of
change. The increase use of EO data will certainly make model outputs more versa-
tile, precise and accurate. Therefore, EO data will continue to be a critical source of
spatial information to better understand and preserve our fragile Planet.

Madrid, Spain Emilio Chuvieco
Waterloo, Ontario, Canada Jonathan Li
Tallahassee, Florida Xiaojun Yang
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Chapter 1
The Role of Small Satellite Missions in Global
Change Studies

Rainer Sandau and Klaus Briess

Abstract There is an increasing need for Earth Observation (EO) missions to meet
the information requirements in connection with Global Change Studies. Small
and cost-effective missions are powerful tools to flexibly react on information
requirements with space borne solutions. Small satellite missions can be conducted
relatively quickly and inexpensively and provide increased opportunity for access
to space. The spacecraft bus and instruments can be based either on optimised off-
the-shelf systems, with little or no requirements for new technology, or on new
high-technology systems. Thus a new class of advanced small satellites, including
autonomously operating “intelligent” satellites may be created, opening new fields
of application for scientific purposes as well as operational, public and commercial
services. Further milestones in the small satellite Earth observation mission devel-
opments are the availability and improvement of small launchers, the development
of small ground station networks connected with rapid and cost-effective data distri-
bution methods, and cost-effective management and quality assurance procedures.
Advantages of small satellite missions, complementing the large complex missions
are: more frequent mission opportunities and therefore faster return of science and
application data; larger variety of missions and therefore also greater diversification
of potential users; more rapid expansion of the technical and/or scientific knowl-
edge base; and greater involvement of local and small industry. The paper deals
with general trends in the field of small satellite missions for Earth observation.
Special attention is given to the potential of spatial, spectral, and temporal resolu-
tion of small satellite based systems. Examples show that constellations give the
unique for small satellites possibility to provide good daily coverage of the globe
or/and allow to observe dynamic phenomena.

R. Sandau (B)
DLR, German Aerospace Center, Rutherfordstr. 2, 12489 Berlin, Germany
e-mail: rainer.sandau@dlr.de

1E. Chuvieco et al. (eds.), Advances in Earth Observation of Global Change,
DOI 10.1007/978-90-481-9085-0_1, C© Springer Science+Business Media B.V. 2010



2 R. Sandau and K. Briess

1.1 Introduction

The high need for Earth observation missions in order to improve the data base con-
tents in connection with global change studies is perhaps most clearly seen in the
many current moves for international co-operation in the field of environment where
measurements from Earth observing satellites are an essential element. This is espe-
cially so where we need to acquire, analyze and use data documenting the condition
of the Earth’s resources and environment on a long-term (permanent) basis.

In 2008 the Group on Earth Observations, which currently numbers some 74
countries, the European Commission and 51 participating organizations, has con-
crete plans for its Global Earth Observation System of Systems (GEO, 2008). In
2008 the European Union’s Space Council continued to advance Europe’s Space
Policy, reaffirming the need for rapid implementation of the Global Monitoring for
Environment and Security (GMES) (GMES, 2009a, b) programme.

From the space-borne remote sensing point of view, the only way to meet the
information requirements is to pursue activities to develop and operate cost-effective
Earth observations missions, especially small satellite missions.

Small satellite missions can be achieved by using different approaches and meth-
ods. One approach is to focus on a single task and use available off-the-shelf
technology to build a small satellite system (bus and payload) for the intended
remote sensing purpose. Another possible approach is to take full advantage of the
ongoing technology developments leading to further miniaturization of engineer-
ing components, development of micro-technologies for sensors and instruments
which allow designing dedicated, well-focused high-performance Earth observation
missions.

Since the advent of modern technologies, small satellites using off-the-shelf
technologies or missions focused on specific physical phenomena have also been
perceived to offer an opportunity for countries with a modest research budget and
little or no experience in space technology, to enter the field of space-borne Earth
observation and its applications. Small satellite technology is a major mean to bring
within the reach of every country the opportunity to operate small satellite Earth
observation missions and utilize the data effectively at low costs, as well as to
develop and build application-driven missions. It provides the opportunity to con-
duct or participate in Earth observation missions using small, economical satellites,
and associated launches, ground stations, data distributions structures, and space
system management approaches.

The situation in the field of small satellite missions for Earth observation has
matured in the last 10 years. This may be, for instance, observed from the topics
and the quality of contributions to the series of conferences taking place in Berlin,
Logan, at the annual International Astronautical Congress or conducted by space
agencies like ESA or CNES.

But what exactly is a small satellite? The International Academy of Astronautics
IAA proposed a simplified definition (Sandau, 2006). This definition is reflected in
Fig. 1.1 in conjunction with additional features which are essential when discussing
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1 M$ 10 M$ 100 M$
cost

1 yr 2 yrs 5 yrs 
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examplesENVISAT: 
8 t, 15+ yrs, 3 ×109 $

mass
1 kg 10 kg 100 kg 10 000 kg

Pico Nano Micro Mini

Small Satellites Large Satellites 

1000 kg

examplesCubeSat: 
1 kg, ca. 2 yrs, 0.2 M$

Fig. 1.1 Some features of small satellites

small satellite characteristics like cost and response time. The performance issue is
covered in the subsequent chapters of the paper.

At UNISPACE III (Background Paper, 1998), the costs of developing and man-
ufacturing a typical mini-satellite was indicated to be US$ 5–20 million, while the
cost of a micro-satellite was correspondingly US$ 2–5 million. The cost of a nano-
satellite could be below US$ 1 million (prices as of 1999). Whereas the development
and production time for large satellites is observed to be 15+ years, the correspond-
ing time for minis should be 3–5 years, for micros 1.5 years, for nanos about 1 year,
and for picos less than 1 year. Of course, cost and duration figures are to be consid-
ered ball park figures. They are bases on the usage of state-of-the-art technology by
professional teams. They may deviate considerably if key technology is to be devel-
oped and/or the implementation teams are at the beginning of the learning curve.
Figure 1.1 is complemented by two examples showing the edges of the feature
ranges.

In the next chapters of the paper, the actual status of small satellite missions
is summarized. Small satellites of Surrey Satellite Technology Ltd. SSTL, the
small satellite initiatives of the USA and in the rest of the world are addressed, as
well as small satellites developed by universities. Constellations are another aspect
considered.

1.2 Small Satellite Missions: Facts and Trends

From Fig. 1.1 we can learn that, roughly, the smaller the satellite the less the cost and
the response time. This is a strong motivation to try to go for small satellite missions.
The International Academy of Astronautics IAA study (Sandau, 2006) presented the
state of the art of small satellite missions and examined more factors that enable one
to produce a cost-effective small satellite mission for Earth observation. It seems,
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while there are several examples of such missions flying today, the lessons that must
be learned in order to produce cost-effective small sat missions have neither been
universally accepted nor understood by all in the space community. One of the inten-
tions of that study was to point out how a potential user can produce a cost effective
mission. One of the key enablers of designing a cost-effective mission is having the
key expertise available. As the number of successfully space-faring nations grows,
the pool of expertise available to meet the challenges of small mission grows.

1.2.1 General Facts

Small satellite missions can be achieved by using different approaches and methods.
Since about two decades, small satellites have also been perceived to offer an

opportunity for countries with a modest research budget and little or no experi-
ence in space technology, to enter the field of space-borne Earth observation and
its applications. Small satellite technology is a major mean to bring within the
reach of every country the opportunity to operate small satellite Earth observa-
tion missions and utilize the data effectively at low costs, as well as to develop
and build application-driven missions. It provides the opportunity to conduct or
participate in Earth observation missions using small, economical satellites, and
associated launches, ground stations, data distributions structures, and space system
management approaches.

One of the possible approaches is taking full advantage of the ongoing technol-
ogy developments leading to further miniaturization of engineering components,
development of micro-technologies for sensors and instruments which allow to
design dedicated, well-focused Earth observation missions. At the extreme end of
the miniaturization, the integration of micro-electromechanical systems (MEMS)
with microelectronics for data processing, signal conditioning, power conditioning,
and communications leads to the concept of application specific integrated micro-
instruments (ASIM). These micro- and nano-technologies have led to the concepts
of nano- and pico-satellites, constructed by stacking wafer-scale ASIMs together
with solar cells and antennas on the exterior surface, enabling the concept of space
sensor webs.

The advantages of small satellite missions are:

• more frequent mission opportunities and therefore faster return of science and for
application data

• larger variety of missions and therefore also greater diversification of potential
users

• more rapid expansion of the technical and/or scientific knowledge base
• greater involvement of local and small industry.

After some years of global experience in developing low cost or cost-effective
Earth observation missions, one may break down the missions into categories
like:
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• Commercial – Requiring a profit to be made from satellite data or services
• Scientific/Military – Requiring new scientific/military data to be obtained
• New technology – Developing or demonstrating a new level of technology
• Competency demonstration – Developing and demonstrating a space systems

competency
• Space technology transfer/training – Space conversion of already competent

engineering teams
• Engineering competency growth – Developing engineering competence using

space as a motivation
• Education – Personal growth of students via course projects or team project

participation

Large satellite missions and small satellite missions are considered to be com-
plementary rather than competitive. The large satellite missions are sometimes even
a precondition for cost-effective approaches.

1.2.2 Trends

Small satellite missions are supported by several contemporary trends:

• Advances in electronic miniaturization and associated performance capability;
• The recent appearance on the market of new small launchers (e.g. through the use

of modified military missiles to launch small satellites);
• The possibility of “independence” in space (small satellites can provide an

affordable way for many countries to achieve Earth Observation and/or defense
capability, without relying on inputs from the major space-faring nations);

• Ongoing reduction in mission complexity as well as in those costs associated
with management; with meeting safety regulations etc.;

• The development of small ground station networks connected with rapid and
cost-effective data distribution methods.

1.3 Resolution Requirements for Space Borne Remote Sensing

When we discuss the performance parameters, we address in the first hand the
resolution in terms of:

• Spatial resolution
• Spectral resolution
• Temporal resolution

For space borne sensors, further requirement may be considered concerning
mass, volume and power consumption. These are essential features when it comes
to the spacecraft design, especially when targeting to small satellites. Figures 1.2
and 1.3 show the very divers requirements connected with the different remote
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sensing application fields (Roeser et al., 2000). The range of spatial resolution,
the ground sampling distance GSD, covers centimeters to several hundred meters.
The revisit time (temporal resolution) ranges from less than 1 h to 10 years. The
range of spectral resolution requirements starts with panchromatic only for topo-
graphic mapping and ends with hyper-spectral resolution, for instance in the field of
hydrology.

Figure 1.2 relates the spectral requirements to the ground sampling distance
GSD for different application fields. It can be seen that some important applica-
tions like agriculture, environmental monitoring, resource monitoring, topography
and hydrology require a moderate ground pixel size in the order of 10–100 m
but several spectral channels (multispectral or hyper-spectral instruments). These
requirements can be meet by multi-spectral cameras, imaging spectrometer or
imaging spectro-radiometer fitting to small satellites.

Figure 1.3 depicts temporal resolution versus ground sampling distance GSD for
different application fields. Only few applications require a high repeating time of
one or few days like disaster monitoring. To meet the requirement of a high revisit
time with optical instruments with a limited swath width because of the required
moderate or high ground sampling distance only a number of satellites flying in a
constellation are the solution. These satellites are preferably small satellites because
of the affordability. Especially data from disaster monitoring satellites are interest-
ing for long term studies of disaster occurrence in time and location that means also
for global change studies.
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Fig. 1.4 Spatial and temporal requirements for coastal studies (after Hoepffner)
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Even within the different application fields, the related subtasks may cover
huge areas again. Figure 1.4 shows the requirement range for different coastal
applications. In Fig. 1.4 the GSD ranges from meters to kilometers with revisit times
from half an hour to several years (Sandau, 2006). Several coastal applications like
costal upwelling, coastal flooding, coastal run-off, storm event, coastal land use and
phytoplankton spring bloom are monitored by small satellites. And these applica-
tions are of high importance also for global change studies because of increasing
anthropogenic impact in these fields.

It is obvious: a small satellite system for remote sensing needs to focus on one of
the application fields and within that application field on a specific task or group of
tasks where feasible. With this background, when talking about a small satellite we
are basically talking about an instrument or a complex instrument system optimized
for a specific task and accommodated on a small satellite platform.

1.4 Resolution Capabilities of Small Satellite Systems

Seeing the huge diversity in the three different resolution areas spatial, spectral, and
temporal, we need to answer two questions (for optical remote sensing systems) for
small satellites and their payloads:

• what are the limitations, and
• what are the strengths

1.4.1 Spatial Resolution

The spatial resolution is increasing, i.e., the ground sampling distance GSD is
decreasing. For example: the camera PIC-2 on the small satellite EROS-B from
Israel provides a GSD of 0.70 m (Defense Update, 2006). EROS-B with a mass of
290 kg was already launched on 25.04.2006 with a Russian START-1 launcher into
500 km sun synchronous orbit (SSO).

1.4.2 Spectral Resolution

Also the spectral resolution is increasing. As an example may serve the hyper-
spectral imager CHRIS on the ESA funded PROBA satellite (ESA, 2002). CHRIS,
the 14 kg/9 W hyper-spectral imager, has a GSD of 18 m and provides up to 19
out of a total of 62 spectral bands in the VIS/NIR spectral range (400–1000 nm).
PROBA with a mass below 100 kg (so it is a micro satellite) was launched into
a 600 km SSO on 2.10.2001 together with the DLR/Germany micro satellite
BIRD for forest fire detection and fire parameter assessment (Brieß et al., 2003),
and the main payload TES (India) (EO, 2001) with the PSLV-C3 launcher from
India.
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1.4.3 Temporal Resolution

Small satellites provide a unique opportunity for affordable constellations. In this
respect, small satellites can do things that are not practical with large satellites. At
this point, the disaster monitoring constellation DMC may serve as the example for
a constellation of five small satellites. We will elaborate more on constellations and
formations in Chapter 6 of this paper.

1.5 Status of Small Satellites

If we try to count the small satellites launched into space within the last 4 years, we
achieve about the following results (for more details see Kramer, 2002):

• Company SSTL 14
• USA 15
• Rest of the World 60
• Universities 6, without the PicoSats.

All these small satellites are equipped with payloads to answer questions coming
from different user groups. The favorite payloads for small satellites are cameras
and spectrometers in the visible and near infrared wavelength range. According to
this instrumentation most of the users groups are investigate the land surface to
study albedo and reflectance characteristics, vegetation indices, land cover charac-
teristics, urban regions, cartography and other mult-purpose imagery. But also the
evaluation of ocean colors plays a role in determining sea surface parameters with
multi-spectral cameras or spectrometers on small satellites. Another group of instru-
ments especially suitable for small satellites are GNSS (Global Navigation Satellite
System) receiver, electron detectors, magnetometers and other to measure parame-
ters of atmosphere including the ionosphere, like the Total Electron Content, plasma
density and other. Up to now the group active and passive radar instruments fit usu-
ally not to the resources of small satellites especially in the power consumption and
geometric restrictions. There are some exceptions like the Indian RISAT satellite; it
is a 300 kg RADAR satellite for reconnaissance. The status today is that no small
RADAR satellite is available for Earth global change studies, small in the sense of
a total satellite mass less than 500 kg.

Table 1.1 gives an overview to the status of small satellites suitable for global
change studies. The DMC Bejing-1 has an optical payload and is part of the Disaster
Monitoring Constellation. The EROS A, B and C are commercial small satellites for
Earth observation (Israel).

HJ-1A and HJ-1B are small satellites from China dedicated to monitoring
environment changes and the analysis and evaluation of natural disasters and envi-
ronmental pollution. They have multi- and hyper-spectral instruments in the visible
wavelength range on board an infrared camera system (HJ-1B). The HJ-1C will
follow with a RADAR payload. The RapidEye constellation is described in the
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Table 1.1 Planned in-orbit operations time of running and planned small satellite missions for
Earth observation suitable for global change studies, TOPSAT – extended lifetime (different
sources)

 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
DMC BEIJING-1
EROS A
EROS B
EROS C
HJ-1A
HJ-1B
HJ-1C
Rapid Eye
TARANIS
TOPSAT
UK-DMC-2

following section. The TARANIS satellite (CNES, France) will study the atmo-
sphere with emphasis of the thermosphere. TOPSAT is a high resolution (2.5 m)
optical satellite for Earth remote sensing from the United Kingdom. The UK-
DMC-2 is the follow-on satellite from the United Kingdom for the next Disaster
Monitoring Constellation with a multi-spectral camera.

Some typical mission parameters of operational small satellites (except VENuS
in ca. 2012) suitable for global change studies are summarized in Table 1.2. Multi-
spectral optical instruments including infrared are the most favorite payloads.

In future, as already partly in the past, small satellites may be equipped with
payloads dedicated to answer specific questions coming from the teams deal-
ing with the global change studies. In the future more small satellites for Earth
remote sensing will fly in formation or constellation to assure a high area or
time coverage or a high coverage of the same area by different instruments.
Especially constellations, the unique domain of small satellites, give the chance
to include also the dynamics of physical phenomena in the studies. For these rea-
son two state-of-the-art small satellite constellations are described in the following
chapter.

1.6 Constellations

Besides the potential high performance in terms of GSD and spectral resolution,
constellations provide support also for observing dynamic characteristics of phe-
nomena and/or a good daily coverage of the globe. Two examples are given here to
show the potential: DMC-1 and successors, and RapidEye. These constellations are
not specifically designed to support global change studies, but they may be used for
such studies. At least they may be used as a model for future space borne systems
dealing with global change aspects.
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1.6.1 Disaster Monitoring Constellation DMC-1

Small satellites provide a unique opportunity for affordable constellations. In this
respect, small satellites can do things that are not practical with large satellites.

DMC may serve as the example for a constellation of five small satellites (DMC
2008). DMC has a GSD of 32 m and a swath width of 600 km (Landsat: GSD =
30 m, Swath width = 185 km). It provides a daily coverage of the Earth.

The five satellites

• AlSat-1,
• BILSAT-1,
• NigeriaSat-1,
• UK-DMC-1 and
• Beijing-1

from five countries have been launched with three COSMOS launchers into the
same orbit. There are more constellations in sight, for instance DMC-2, a fol-
low up of DMC-1 with improved performances based on new technologies, and
RapidEye which was launched in August 2008 (see Fig. 1.5). The facts discussed in
Sections 1.6.1–1.6.2 may lead to the conclusion: small satellites have the potential
to change the economics of space and to increase the tempo of space exploitation.

DEIMOS-1

There are more satellites based on the DMC concept, for instance DEIMOS-1 of
Spain. DEIMOS-1 is an automatic spactial platform with a small size and latest tech-
nology that provides optic and infra-red images adapted to the study of the earth’s
vegetation cover.

Fig. 1.5 SSTL high resolution mission products (Curiel et al., 2005)
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DEIMOS-1 is based on the concept Microsat-100 from Surrey. The satellite is
conceived for obtaining Earth images with a good enough resolution to study the
terrestrial vegetation cover, although with a great range of visual field in order to
obtain those images with high temporal resolution and at a reduced cost. (Deimos-1,
2009)

1.6.2 RapidEye

RapidEye is a commercial multispectral Earth observation mission of RapidEye AG
of Brandenburg, Germany, that includes a constellation of five minisatellites. The
mission will provide high-resolution multispectral imagery along with an opera-
tional GIS (Geographic Information System) service on a commercial basis. The
objectives are to provide a range of Earth-observation products and services to
a global user community. The RapidEye sensor images five optical bands in the
400–850 nm range and provides 6.5 m pixel size at nadir. It provides products for
the following applications:

• Agricultural producers (farmers): Crop monitoring and mapping, yield
prediction;

• Agricultural insurance: Provision of regularly updated field maps to help insurers
assess insurance contracts and claims by providing quick and reliable information
about damaged areas;

• Cartography – satellite based maps (scale 1:25,000), ortho photos, DEM (Digital
Elevation Model) generation

• Other markets – disaster assessment, 3-D visualization
• Service spectrum at completion mission: Guaranteed daily revisit, global cov-

erage, product delivery to the customer within 24 h, possibility of dedicated
programming, capability of direct transmission and imagery transfer within
hours, global digital database of “orthomaps” of 1:25,000 scale and DEMs of
20 m × 20 m resolution. The service permits also the merging of multi-temporal
imagery with information from other sources.

The five RapidEye earth observation satellites have been launched on a single
Russian Dnepr rocket from the Baikonur Cosmodrome in Kazakhstan in August of
2008. They are deployed in orbits at an altitude of 630 km. The satellites are placed
equally spaced in a single sun-synchronous orbit to ensure consistent imaging con-
ditions and a short revisit time. The satellites follow each other in their orbital plane
at about 19 min intervals (Fig. 1.6). The constellation approach in a single orbital
plane permits a cumulative swath to be built up (the spacecraft view adjacent regions
of the ground, with image capture times separated by only a few minutes). A revisit
time of 1 day can be obtained anywhere in the world (±70◦ latitude) with body
pointing techniques. The average coverage repeat period over mid-attitude regions
(e.g., Europe and North America) is 5.5 days at nadir. The RapidEye system can
access any area on Earth within 1 day and cover the entire agricultural areas of
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Fig. 1.6 The RapidEye
constellation consists of five
satellites (DLR, 2006)

North America and Europe within 5 days. The swath width is 80 km and the maxi-
mum scene length per orb it is 1500 km. Some typical mission parameters of 5 small
satellite missions are listed in Table 1.2.

1.7 Conclusion

Small Satellites for Earth observation supplement the conventional missions with
advanced technologies and different instruments. Most of them, but not all, are
cameras and imaging spectrometers in the visible and infrared wavelength range.

The fields of applications of the small satellite missions are very different but
many of them are related to cartography, monitoring of environment changes,
analysis and evaluation of natural disasters and environmental pollution, agriculture,
remote sensing of land surface, land coverage and atmosphere including ionosphere.

Because of these application fields and the appropriate instrumentation a lot of
small satellite missions are suitable for global change studies despite the fact that
they are not originally designed for these purposes.

The first constellations of small satellites are operationally and assure a high area
and time coverage. The instrumentation of these constellations is characterized by
multi-spectral imaging systems. The data of these missions could be interesting for
global change studies too. Small satellites make a constellation more affordable and
for this reason in the future more constellations will be implemented using small
satellites. They will be equipped not only with cameras and spectrometers but also
with GNSS receiver and other instruments to study the atmosphere and ionosphere.
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Today the data processing for small satellite missions runs on ground station in
a very fast way to get the data product after 1 day or faster. In the future for certain
applications small satellites will have the capability of on-board data processing and
sending a high level data product (e.g. level 1b) to the final user without any delay.
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Chapter 2
Spatial Pattern Analysis of Water-Driven Land
Cover Change in Aridzone, Northwest of China

Qiming Zhou and Bo Sun

Abstract As a good indicator reflecting the interaction between human activities
and ecological environment, landuse and land cover change has been studied for
decades. The focuses of current researches are from “whether a change has hap-
pened” to “what cause the change and how will change in the future”. Many forces
will drive environmental change of the earth. Water is one of the most significant
factors for living things, especially in an arid environment. The study of land cover
change with dynamic change of water resource can give us a better understanding
on land cover change and the change reasons. This study attempts to find the spa-
tial pattern of land cover change driven by water in an aridzone in the northwest
of China and try to find a balance between economic development and sustainable
development of environment for the fragile region. Since land cover change at that
place is mainly due to the extension and abandon of farmland, two main land cover
classes are considered in this study – the farmland and non-farmland. Based on the
post-classification method, a change trajectory has been established to rebuild the
history of land cover changes. In order to quantifying the impacts of water sup-
ply, two class-level metrics, Normalized Landscape Shape Index (NLSI) and Area
Weighted Fractal Dimension Index (AWFDI), are adopted as tools which can mea-
sure the spatial distribution of changes. The result shows that farmland extension in
that region is close to extreme due to the restriction of water supply. With the pro-
posed approach, we can get a better understanding of the impacts of human activities
or natural resources on land cover change.
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2.1 Introduction

As a land surface process, landuse and land cover change (LUCC) emerged in
researches on global environmental changes has been studied for several decades
(Lambin et al. 2006). It was first recognized that land cover change modifies surface-
atmosphere energy exchanges and thus influences global climate (Charney and
Stone 1975; Otterman 1974). No matter how the theory of butterfly effect will affect
this world, scientists believe that this change can made an impact on global change
via carbon cycle, water cycle and so on (Turner et al. 1994; Woodwell et al. 1983).
On the other hand, LUCC is not only a major part of global environmental change
but also the cause of other changes at the same time. As the proportion of human
behaviors in global change has been rising, land cover change can be regarded as
a good indicator that reflects the interaction between human activities and natural
environment (Li and Zhou 2009; Zhou et al. 2008c).

Since sensors on satellites can get a wide impression of landscape, remote sens-
ing data, especially satellite images with different resolutions, are widely used for
earth observation at different scales. One hot spot of global applications is land cover
change detection. Coppin et al. (2004) divided existing methods of change detection
into two broad classes, namely bi-temporal change detection and temporal trajectory
analysis. To understand the trail of a rapid change, the latter is much more effective
for modeling the dynamic process of changes (Zhou et al. 2008a, c) and forecast
the trend of change in future (Tottrup and Rasmussen 2004; Liu and Zhou 2005).
With the accumulation of remotely sensed images over the past decades, it is now
possible to analyze the spatial pattern of land cover change over a long period.

Besides detecting changes, current research on LUCC is also focused on change
driving forces and change estimation (Huang et al. 2009; Petit et al. 2001). In
the analyses of change forces, a measuring tool called landscape metric is always
employed (e.g., Crews-Meyer 2004, 2006). With the calculated metrics, spatio-
temporal pattern of the changes can be better described and its relation to driving
forces may be further explored (Zhou et al. 2008b).

With a fragile ecosystem aridzone is recognized as the sensitive region prone
to rapid land cover change. This study, therefore, is focused on China’s aridzone,
where the environmental condition is dry and harsh, and rapid land cover change
has been observed in the past decade due to the rapid growth of commercial agri-
cultural operations. The irrigated farmland has been trebled, mainly by converting
lands originally covered by natural rangeland vegetation into irrigated cotton fields.
Serious questions, however, has been raised on whether this rapid growth can sus-
tain given the intensified competition on water resources. When the supply of water
become unsustainable, then the newly cultivated farmland will most likely be aban-
doned, leaving the sandy bare soil exposed to the strong seasonal wind without the
protection of original rangeland vegetation.

This study aims to analyze land cover change process and to seek the relationship
between land cover change and water resource. On the basis of trajectory analysis
of land cover change, this study also attempts to get a quantified spatio-temporal
description of the impacts of water resource on land cover change in the region.
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2.2 Methodology

The methodology of this study is based on classification of multi-temporal
images. It took the post-classification approach. Firstly, the multi-temporal images
were classified to extract the farmland land cover type independently. Land
cover change trajectories were then established to create categorical shift pat-
terns between farmland and other land cover types. Finally, landscape met-
rics of land cover types were computed for analyzing the impact of water
supply.

2.2.1 Study Area and Data

The study area is centered at Yuli County, Xinjiang Uygur Autonomous Region of
China. It is located at the fringe of Taklimakan Desert. Topography shows a incline
from higher terrain in the northwest to the southeast. This region represents a typ-
ical arid environment with desert vegetation and soils in the northwest of China.
The rainfall in this region averages around 30 mm a year. Comparing with the
total water consumption in Yuli County which reached to 0.25 billion m3 a year
in recent years (Zhou 2007), the amount of rainfall is minimal. Tarim River, the
largest inland river in China flows from the west to the east, while Konqi River
flows out of Lake Bosten from the north, forming the major sources of water supply
of the region. Dense vegetation is located along the rivers, forming a green corridor
which is considered as one of the most important habitation area in the aridzone of
China.

For a long history, the region had only limited human impact. With the economic
reform in recent years, the national and local governments’ policies have stimulated
considerable investment on irrigated commercial cotton farming since early 1990s.
According to the statistical yearbooks of Xinjiang (Statistics Bureau of Xinjiang
Uygur Autonomous Region 1995, 2001, 2006, 2007, 2008), the farmland of the
region grew from merely 9100 ha in 1994 to 35,500 ha in 2007, with the domination
of cotton increased from 68% to over 99%.

This study used six multispectral remotely sensed images acquired in differ-
ent years to establish a time series of land cover change, including multispectral
images from Landsat-5/TM (25 September 1994), Landsat-7/ETM+ (17 September
2000), China-Brazil Environment and Resource Satellite (CBERS-02, 15 September
2005) and Beijing-1 micro-satellite (BJ-1, 10 August 2006, 31 August 2007 and 09
September 2008). The acquisition dates of these images are chosen to cover the
rapid growing period of cotton crop, when a large contrast in multispectral data
is shown to delineate the green vegetation from other land cover types. The 2005
CBERS image was registered and geo-referenced on 1:50,000 topographic maps.
The other images were then geometrically corrected and registered on this 2005
master image. Efforts have been made to control the registration errors within half
a pixel of the correspondent image so that the errors of change detection caused by
mis-registration are less critical.
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2.2.2 Image Classification

A supervised classification method using Maximum Likelihood classifier is
employed to classify the images independently. Each image was classified into five
or six classes independently to delineate land cover types. The five or six classes
were then merged into only two classes, namely, farmland and the others. A post-
classification process was applied to the unified classification results to remove
isolated pixels using a majority filter with a 3 × 3 window. In order to make the
image data comparable at the same spatial resolution so as to establish change tra-
jectories at the pixel level, all the images need to be resampled to a 30 m resolution
after classification.

The standard method of error matrices is used to assess classification accuracy for
each image date. Both overall accuracy and Kappa index are computed as the accu-
racy assessment indices. The accuracies of these classified images are assessed inde-
pendently. Due to the difficulty of getting historical reference data, accuracy assess-
ments are conducted by visual inspection. For each classified image, more than 200
sample points including farmland and the others are randomly located on the origi-
nal image with the reference to the field investigation data as the reference data set.

2.2.3 Establishment of Land Cover Change Trajectories

Trajectory is a typical snapshot model that records each situation of observed date
during a time series. The focus of this study is the change of farmland in the study
area. For our objective land cover types in this study, only two types are represented
as the situations at each time point. Thus, the land cover trajectory in this research
is simply defined as the situation of changes between farmland and the other land
cover types. A trajectory can be specified as “farmland–others–farmland–others–
others–others”, meaning that the land was once periodically cultivated, but finally
abandoned. For a six-epoch, two-class scenario, the total number of possible tra-
jectories is 64 (26). To establish the change trajectories, all classified images are
integrated into a GIS with the raster format. After assigning value “1” (for farm-
land) or “0” (for others) to a corresponding bit position in a binary number for each
pixel of each classified image, the multi-temporal images were merged together to
identify every possible change trajectory with a unique number.

In this study, in order to reduce the risk of misunderstanding of trajectories which
might be caused by roads and residents among farmlands, roads and residents are
drawn with the help of high-resolution images (e.g., images from Google Earth) and
then excluded when counting the farmland areas.

2.2.4 Spatial Pattern Analysis

As for a traditional irrigation system in that region, the amount of water supply
impacts not only on the total area of farmland but also on the spatial pattern of
farmland change. A quantified index that can describe the structure of landscape
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is needed for modeling. Landscape metric can measure the geometric properties
of landscape elements and their relative positions and distributions (Leitao et al.
2006). Two class-level metrics, namely Normalized Landscape Shape Index (NLSI)
and Area Weighted Fractal Dimension Index (AWFDI), are computed as the indices
of land cover change and used for further regression analysis.

These two parameters can be calculated in FRAGSTATS 3.3 by the following
formulas (referred to Leitao et al. 2006; McGarigal et al. 2002):

NLSI = ei − min ei

max ei − min ei
(2.1)

AWFDI =
n∑

j=1

[(
2 ln(0.25pij)

ln(aij)

)(
aij∑n
j=1 aij

)]
(2.2)

where ei = total length of edge of class i in terms of number of cell surface includ-
ing all landscape boundary and background edge segments involving class i; pij =
perimeter (m) of patch ij; aij = area (m2) of patch ij.

To borrow the concepts of landscape when using the two indices, NLSI mea-
sures the aggregation of a class. NLSI equals 0 when the landscape consists of
a single square or maximally compact, and 1 when the patch type is maximally
disaggregated. AWFDI represents the shape complexity of a land cover type. The
value of AWFDI ranges from 1 to 2. The closer to 1 the value is, the more complex
the shape is.

Since the water supply for the study area in 2008 is much less than the same
period of the preceding years (Xinjiang Tarim River Basin Management Bureau
2008), a comparison of land cover spatial pattern between 2008 and the preceding
years is conducted as the proof that indicates how water supply impacts the spatial
pattern of land cover change in that area.

2.3 Results and Analysis

2.3.1 Classification and Area Statistics

On the basis of the assessment on only two combined classes, the classifications
have shown high accuracy between farmland and the others. According to the
assessment result form those 200 samples, the overall accuracy of image classifica-
tion ranges from 88.9 to 95.2% (from 1994 to 2008, they are 93.8, 95.2, 88.9, 90.7
92.5 and 92.3% respectively), with Kappa coefficient ranging from 0.762 to 0.896
(from 1994 to 2008, they are 0.877, 0.896, 0.762, 0.799 0.837 and 0.835 respec-
tively). The result of classifications is satisfied in terms of the following change
detection and spatial pattern analyses.

Table 2.1 illustrates the area statistics of farmland, which are compared with
some reference data found in local statistical yearbooks issued by government. The
reference data do not include some isolated administrative units in this study area,
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Table 2.1 Comparison of area statistics between images and reference data

Area statistics based on image
classification Reference data

Year Corps (ha) % of study area Cotton (ha) % of total sawn area

1994 12,200 3.2 9,100 68.2
2000 23,500 6.1 17,800 83.3
2005 34,400 9.0 28,000 97.1
2006 36,100 9.5 32,000 98.7
2007 43,500 11.7 35,500 99.3
2008 36,900 9.7

Source of reference data: Statistics Bureau of Xinjiang Uygur Autonomous Region
(1995, 2001, 2006, 2007, 2008).

so that some differences in the statistics between image and reference are expected.
The results show that the sawn area of farmland has rapidly increased till 2007 with
average annual growth rate of 10.3%. Due to the limitation of water supply, the sawn
area of farmland in 2008 decreased 15.2% comparing with the former year of 2007.

2.3.2 Trajectories of Farmland Change

Figure 2.1 shows the result of land cover change trajectories. Since the land cover
changes are mainly caused by increased farmland in the past decade with the

Fig. 2.1 Farmland change trajectories in Yuli County from 1994 to 2008
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Table 2.2 Area statistics of farmland change trajectories

Trajectory Description Area (ha)
Total area
(%)

X-X-X-X-X-X Old farmland 6190 1.85
O-X-X-X-X-X Cultivated since 2000 6130 1.83
O-O-X-X-X-X Cultivated since 2005 6070 1.81
O-O-O-X-X-X Cultivated since 2006 1840 0.55
O-O-O-O-X-X Cultivated since 2007 2670 0.80
O-O-O-O-O-X Cultivated since 2008 2610 0.78
X-O-O-O-O-O Abandoned since 2000 280 0.08
X-X-O-O-O-O Abandoned since 2005 130 0.04
X-X-X-O-O-O Abandoned since 2006 50 0.02
X-X-X-X-O-O Abandoned since 2007 140 0.04
X-X-X-X-X-O Abandoned since 2008 510 0.15
X-O-X-O-X-X . . . Ephemeral farmland 21, 680 6.47
O-O-O-O-O-O Non-farmland 28, 680 85.59

Where cover type “X” = farmland; “O” = others.

exception of 2008, the increased farmland trajectories are highlighted, represent-
ing the old farmland since 1994 and the expansions since the other study periods.
The trajectories are established without residents and main roads. Table 2.2 lists the
calculated areas of farmland trajectories.

2.3.3 Impacts of Water Supply on Farmland Changes

Because we focus on the impacts of water resource on farmland change, the selected
class-level metrics are adopted to represent the changes of farmland spatial distribu-
tions caused by water supply. The calculated metrics of farmland at each time points
are listed in Table 2.3.

As shown in Table 2.3, the decreasing trend of NLSI during the whole study
period illustrates an aggregation pattern in farmland extension that small patches
are combined into big one. The change of AWFDI significantly reflects the change
of water supply. The extension mode of farmland is a scattering mode in the fringe
of older farmland when water supply is rich. However, once being lack of water
like the situation in 2008, cultivated farmland is mainly concentrated along the river
with a less complex edge, which shows a lower value of AWFDI.

Table 2.3 Metrics of
farmland in different years Year NLSI AWFDI

1994 0.1092 1.2037
2000 0.1179 1.2424
2005 0.1014 1.2517
2006 0.0819 1.2544
2007 0.0864 1.2844
2008 0.0667 1.2576
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2.4 Discussion

With the constraint of image data acquisition, it is hard to acquire multitemporal
images from the same platform in this study area. Post-classification comparison
method has therefore been employed to cope with the multi-sensor multitemporal
images. The principal advantage of the post-classification comparison method is
that the images acquired on different dates by different sensors are independently
classified, so that the problems of radiometric calibration among images of differ-
ent dates by different sensors are minimized. However, It has been argued that the
post-classification comparison method may overestimate land cover change due to
uncertainties in data (Van Oort 2005), including those by errors in image registration
and classification, and misunderstanding of trajectories.

Another issue in trajectory analysis is the abandoned farmland arose from new
constructed residents and roads. The roads among farmland should be considered
as the signature of a well developed farmland. It is not appropriate to put them into
ephemeral trajectories. In order to minimize this kind of misunderstanding, roads
and residents are excluded in the trajectory analysis part. From Table 2.2, it should
be noted that the area of ephemeral farmland trajectories occupies 44.9% of total
farmland trajectories. Compare with the pervious study, the percentage was just
23.5% (Zhou et al. 2008a, b). The reason is that a large number of cultivations in
2007 are abandoned in 2008.

Since the area of farmland has significant decreased in 2008 due to the decrease
of water supply, it seems that farmland cultivation has reached the limit in this
region. Unless much more significant measures are in place to increase efficiency
of water use (e.g., the introduction of more advanced irrigation techniques), the
situation of unbalanced demand and supply of water resource will be worse.

2.5 Conclusions

The quick response of remote sensing has been proved to be an effective tool
for monitoring large-scare changes in earth observation. Land cover change hap-
pens widely and frequently. To understand the change itself better including change
dynamics and driving forces through analyzing spatial patterns is in emergence. This
paper has demonstrated a trajectory-analysis-based approach to model the spatio-
temporal pattern of land cover change in an aridzone environment and analyzed
the impacts of water supply on spatial and temporal pattern of land cover changes
with measured metrics. As an improvement of those existing models which are
conducted in solo aspect (e.g., trajectories of Normalized Difference of Vegetation
Index in temporally; quantitative landscape metrics analysis without spatial rela-
tion), the proposed approach does not only consider rebuilding the process of land
cover change but also describe the spatial distribution of the changes with quantified
parameters.

According to this approach, the result shows that the farmland in that region has
rapidly increased in the past decade. This reflects the impacts of local policy that
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encourage cultivation for economy increasing. However, the conflict between farm-
land extension and the demand of water resource still exists. Farmland development
has encountered the limit due to water supply. In order to better monitor land cover
change and analyze the carrying capacity of cultivation in that region, an estima-
tion model which can represent the relationship between water supply and farmland
change is the goal of future work.
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Chapter 3
A Spatial Logistic Regression Model for
Simulating Land Use Patterns: A Case Study
of the Shiraz Metropolitan Area of Iran

Amin Tayyebi, Mahmoud Reza Delavar, Mohammad Javad Yazdanpanah,
Bryan Christopher Pijanowski, Sara Saeedi, and Amir Hossein Tayyebi

Abstract Changes in global land cover and land use are occurring at a rate, mag-
nitude, and spatial extent unprecedented in human history. Land use and land cover
change is one of the most important components and major causes to global envi-
ronmental changes. This paper presents an urban expansion model which utilizes
Logistic Regression (LR) as a means to simulate and predict urban expansion pat-
tern. LR is used as the core algorithm in this model and remote sensed image with
arbitrary time interval and environmental variables have been employed in geospa-
tial information system. Socio-economic and environmental variables were used as
inputs while urban and non-urban areas were considered as outputs for LR model.
Evaluation of the model was performed with Relative Operating Characteristic
(ROC). A case study of urban expansion in Shiraz Metropolitan Area (SMA) is
presented to simulate land use change. This paper presents a version of LR model
which is parameterized for SMA and explores how factors such as road, building
area, service centre, green space, elevation and slope can influence urban expan-
sion. The area under the operating characteristic curve produced an accuracy of
68%. Having model parameters with specific time interval and assuming the exis-
tence of the same rate of urban expansion, we used the LR model presented here to
generate locations of future urban expansion.

3.1 Introduction

Humans impact the environment in a variety of ways. Stresses to natural resources
occur through both the continuing increase in size of the human population and
exacerbated by a rapid development of technologies that exploit the plant’s nat-
ural resources. Global change research analyses the natural variability of the Earth
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System and the causes, mechanisms and effects of the complex interactions between
its components and the human population. It develops procedures that make the dis-
tinction between natural variability and human-induced changes as well as create
tools that allow communities prognostic abilities to foresee changes and their con-
sequences, to identify options for counteraction and to balance adaptation to change
and mitigation of causes. Both global and regional strategies have to be developed
in order to balance the interaction between humans and the Earth System and at
the same time to ensure a sustainable development of human societies. It is at the
local and regional levels where decisions that promote sustainable development are
most likely to be implemented and where action occurs. The focus on regions and
common efforts to bridge the gap between global perspectives on change as well
as the analysis of regional impacts and the development of regional sustainable
management options must therefore be intensified.

Land use/land cover change (LUCC) is driven by the interaction in space and
time between biophysical and human factors. Urbanization is a rapid land use
change process that produces different patterns depending on the proximity to
large urban cities across the landscape (Wu, 2004). LUCC results from the com-
plex interaction of social, ecological and geophysical processes. An urban land use
system is dominated by human activities with complex spatio-temporal dynamics.
Traditionally, the global change research community has produced three kinds of
spatial land use change models: empirical estimation models, dynamic simulation
models and rule-base simulation models (He and Lo, 2007). Dynamic simulation
models and empirical estimation models have been used to model land use changes.
Rule-based simulation models are most suitable for incorporating spatial interac-
tion effects and handling temporal dynamics. However, they focus on simulation
of spatial pattern rather than on interpretation or understanding of spatio-temporal
processes of urban growth. Most dynamic simulation models cannot incorporate
enough socioeconomic variables. Logistic regression (LR) models quantify the rela-
tionship between drivers and probability of land use change. Many land use change
models have been used to project future land use changes in urban areas based
on past trends and the drivers thought to determine conversions of land between
different categories.

Information about urbanization, as analyzed from multiple time periods, can
generate useful knowledge about the patterns of urban and the possible factors
driving the changes. This information has been used by planners and resource man-
agers to make better decisions that affect the environment and local and regional
economies. Decision makers are increasingly relying on models of LUCC; there-
fore, users need appropriate ways to interpret the models and to communicate the
information that LUCC models produce (Veldkamp and Lambin, 2001; Veldkamp
and Verburg, 2004; Verburg and Veldkamp, 2004). Description and modelling of
land systems highly depend on the data availability and quality. Remote Sensing
(RS) and Geospatial Information System (GIS) provide us with an efficient spatial
capability to monitor urban expansion in urban areas. Land Transformation Model
(LTM) is a land use change model that uses Artificial Neural Networks (ANNs)
and GIS (Pijanowski et al., 2000, 2002, and 2005). Monitoring urban expansion and
land use change based on multi-temporal GIS maps and remote sensing images
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were performed in Iran, respectively (Tayyebi, et al., 2008a, 2008b; Pijanowski
et al., 2009). Empirical estimation models use statistical techniques to model the
relationships between land use changes and the drivers based on historic data.
As an empirical estimation method, LR has been used in deforestation analysis
(Geoghegan et al., 2001; Schneider and Pontius, 2001), agriculture (Serneels and
Lambin, 2001), and urban growth modeling (Allen and Lu, 2003; Landis and Zhang,
1998; Wu and Yeh, 1997). In many cases, these models fit spatial processes and land
use change outcome reasonably well (Irwin and Geoghegan, 2001). Allen and Lu
(2003) also highlighted use of statistical methods, mainly LR, to identify which
variables best represent urban change process properly. Cross tabulation matrices
are used to quantify the association between simulated and reference map (Pontius
et al., 2004a, 2004b; Pontius and Spencer 2005; Tayyebi et al., 2009a, 2009b). This
has been extended recently to include eight different kinds of calibration metrics
used to estimate model goodness-of-fit: four location-based measures and four patch
metrics (Pijanowski et al. 2006).

This paper presents an overview and application of an urban expansion model
which take advantage of GIS, LR and RS to simulate and predict urbanization in
Shiraz Metropolitan Area (SMA) of Iran. Predictor variables which are usually
important landscape features were used as inputs while urban and non-urban areas
were used as outputs in LR model. Two Landsat TM images of SMA in 1988 and
2000 were rectified and registered to Universal Transverse Mercator (UTM) WGS
1984 zone 39 N. Supervised classification was used to classify the images to differ-
ent land use categories. In addition three and two land use classes that were extracted
from the first and the second satellite images respectively, service centres were
obtained from county road maps stored as point coverage; two other classes were
added from a topographic data at a scale of 1:50,000. Our database was included
these eight classes: road, build-up area, service centre, green space, elevation, slope,
urban and non-urban areas. Having model parameters between 1988 and 2000 and
assuming the existence of the same rate in urban expansion, new urban areas of
SMA has been derived for 2012. The proposed model was evaluated with respect
to spatial and temporal sample datasets. The accuracy of the model was 68% with
ROC metrics consideration to simulate pattern of urban areas.

The structure of the rest of the paper is as follows. In following section, method-
ology introduces different steps of LR model and the underlying assumptions in
urban land use change. The next section provides a brief summary of study area,
data sources and presents how the LR is parameterized for SMA. The Results sec-
tion provides a summary of goodness of fit metrics for SMA and our conclusion
highlights future challenges and directions for LR.

3.2 Methodology

LR model was used to associate the urban growth with demographic, econometric
and biophysical driving forces and to generate an urban expansion probability map.
In a raster GIS modeling environment, the data layers are tessellated to form a grid of
cells. The nature of the LUCC of a cell is dichotomous: either the presence of urban
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growth or absence of urban growth. If binary values 1 and 0 are used to represent
urban growth and no urban growth respectively. Main stages of LR model are as
follows: (1) Data preparation; (2) Simulation process; (3) Model Evaluation and
(4) Prediction.

3.2.1 Data Preparation

The first and the second satellite images were geometrically registered to the UTM
projection system. Polynomial transformation function was used to resample the
projected images to the same resolution. Then both satellite images were classified
to different land use categories. These classes were converted to separate spatial
layers that can be used as input and output of the model. LR as a mathematical
equation was flexibly designed to have different spatial or non-spatial layers. On the
second satellite image, urban and non-urban areas were identified as output of LR.
Then, other classes of the required topographic data were added to the database.
Coding of data to create spatial layers of predictor variables are generated from a
series of base layers that are stored and managed within a GIS. Spatial or non-spatial
function relates input variables to LR model. Three classes of functions including
neighbourhoods (densities) function; site specific characteristics function and dis-
tance function from the location of a predictor cell have been used (Pijanowski et al.,
2002).

3.2.2 Simulation Process

In the application of LR, each observation is a grid cell. The dependent variable is a
binary presence or absence event, where 1 = urban areas and 0 = non-urban areas.
The function is a monotonic curvilinear response bounded between 0 and 1, given
by a logistic function of the form (Eq. (1)) (Pontius and Schneider, 2001):

P = E(Y) =
exp

(
β0 +

n∑
i=1

βiXi

)

1 + exp

(
β0 +

n∑
i=1

βiXi

) (1)

The logistic function gives the probability of urban expansion as a function of
the explanatory variables.
Where:

P: probability of urban expansion in the cell
E(Y): expected value of the binary dependent variable Y
Xi: predictor variables (socio-economic and environmental variables)
β0: constant to be estimated
β i: coefficient to be estimated for each independent variable Xi
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The logistic function can be transformed into a linear response with the transfor-
mation (Pontius and Schneider, 2001):

P′ = loge

(
P

1 − P

)
(2)

Hence

P′ = β0Xi +
n∑

i=1

βiXi (3)

The transformation (Eq. (2)) from the curvilinear response (Eq. (1)) to a linear
function (Eq. (3)) is called a logic or logistic transformation (Pontius and Schneider,
2001). The transformed function allows linear regression to estimate each β i. Since
each of the observations is a cell, the final result is a probability score (P) for each
cell. The output of LR is a map of likelihood values, which specifies the relative
likelihood of change for each cell based on the predictor variable values.

3.2.3 Model Evaluation

Relative Operating Characteristic (ROC) was used to validate the LR model.
Recently the ROC method was brought to the field of LUCC modeling to mea-
sure the relationship between simulated change and real change (Pontius, 2000;
Schneider and Pontius, 2001). ROC method is an excellent method to evaluate the
validity of a model that predicts the occurrence of an event by comparing a prob-
ability image depicting the probability of that event occurring and a binary image
showing where that class actually exists (Pontius 2002; Tayyebi et al., 2009a, 2009b;
Pijanowski et al., 2009) created when simulated and observed maps are compared.
Model validation using ROC reported a summary ROC value, a ROC curve as well
as the coordinates of the points on the curves that were used to calculate the ROC
value. ROC curve plots the rate of true positive to positive classifications against the
rate of false positive to negative classifications as threshold value is varied between
0.0 and 1.0. A non-parametric approximation using SPSS (SPSS Inc, 2003) is used
here to estimate the area under the curve produced by varying the threshold and
plotting numerous thresholds and resultant values of specificity and sensitivity.

3.2.4 Prediction

The probability map can be used for producing maps of urban distribution if
any quantitative data on the future total areas of urban distribution, for example,
urban planning data, are given. In prediction process, after the parameters of the
mathematical model were obtained and the LR model was tested successfully, the
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feed-forward algorithm was used in the LR model with new topology. In this topol-
ogy, spatial layers extracted from the second satellite image (predictor variable)
were replaced with spatial layers from the first satellite image as input for the LR in
the prediction process. The testing process that followed used driving variable grids
from all cells in the study locations but with the output values removed. Output
of LR in this phase means the future urban expansion for that region. The critical
threshold value is the lowest change likelihood value selected for cells to transition
during the period.

3.3 Parameterization of SLR for Shiraz Metropolitan Area

This section presents a complete description for LR model starting from image pre-
processing, registration, image classification and constructing the LR model. Input
layers represent phenomena which may influence the LR model. It is found that six
independent variables influence urban expansion in SMA: slope, elevation, distance
from building area, distance from service centre, distance from green space and
distance from road. Each independent variable map is standardized between 0 and
1 that indicates the relative suitability at a value of the independent variable.

3.3.1 Study Area and Data Sources

Shiraz, a metropolitan area located the center of the Fars province of Iran, is located
at Longitude 32–52′E, Latitude 29–37′N and 1540 m above the sea level in the south
of Iran (Fig. 3.1). It is 895 km away from Tehran and its area is 220 km2. Shiraz
is the place of new jobs, recreational facilities and beautiful buildings that attract
many migrants.

Over the last 50 years Shiraz has experienced tremendous in-migration of people
from rural areas and small cities. According to the 2005 census, Shiraz’s popula-
tion was estimated at 1,442,842, having increased from 848,289 in 1985. Table 3.1
summarizes trends of Shiraz population from 1985 to 2005.

3.3.2 Implementing the SLR

The Landsat images were geometrically registered to the Universal Transverse
Mercator (UTM) WGS 1984 zone 39 N. Registration errors were about 0.52 pixels.
SMA was extracted from the two Landsat images in order to have less process and
time saving for classification. The first image (1988) and the second one (2000) were
subjected to a classification of zones. Supervised classification was utilized to clas-
sify the images to different land use categories. All land use classes of SMA were
also reclassified from their original classification to Anderson Level I (Anderson
et al. 1976) for the simulating exercises. In order to classify the registered images,
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Fig. 3.1 Map of SMA

Table 3.1 Trends of Shiraz
population from 1985 to 2005 Year Population number

1985 848,289
1995 1,053,025
2005 1,442,842

three classes of interest were selected from different classes in the images namely:
road, building area and green space. In addition, locations of service centres were
obtained from county road maps at a scale of 1:50,000 and stored as point coverage.
The accuracy of testing process for the classification of Landsat TM image of 1988
was 83.42%, while it was 86.12% for Landsat TM image of 2000. Kappa standard
is 0.771 for Landsat TM image of 1988 while 0.792 for that of 2000. These param-
eters were input to ArcMap software for calculations which were different due to
type of parameters. After these calculations different layers have been stored in grid
format then each location contained its spatial configuration value from each driving
variable grid. Briefly, each value in an entire driving variable grid was normalized
from 0.0 to 1.0 by dividing each value by the maximum value contained in driving
variable grid. Effective parameters require main considerations and criteria listed as
follows.
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3.3.2.1 Absorbing Excursion Spaces

Denser urban areas which already have access to utilities like water lines, sewer
lines, electricity, and cable services among others also can be expected to attract
residential development because of the reduced cost of connecting to these services
(Pijanowski et al., 2005). Areas closest to urban areas are likely locations for urban-
ization because they are assumed to require the least monetary cost for connecting
to urban services such as water and sewer (Pijanowski et al., 2005). Here, we con-
sider absorbing excursion spaces as distance from service centre, green space and
build-up area. The distance of each cell from the nearest absorbing cell was calcu-
lated and stored as a separate variable grids. These variable grids represented the
potential effect of a location for urban expansion.

3.3.2.2 Transportation

It is widely accepted in LUCC literature that the building of roads will spur develop-
ment because of improved accessibility. Transportation, another important factor, is
the distance of each cell from the nearest road cell calculated and stored in separate
Arc/Info Grid coverage. The hypothesis is that humans need roads to access areas
where resources will be used resulting in urban change.

3.3.2.3 Landscape Feature

Landscape topography is an influential factor contributing toward build-up area uti-
lization. Elevation is important in flood prone areas. Slope is important to developers
who want to minimize landscape costs. Then, for each cell in the study area, there
is a vector of 6 by 1 measurements as input of LR model. Figure 3.2 shows six
variables compiled in Arc/Info Grid format as inputs of LR model at 1988.

There are two constraints for simulation of new urban areas in SMA. First, cells
that are urban areas in 1988 are obviously not candidates for new urban areas in
2000. Second, cells that are protected legally from new urban areas are assigned the
absolute lowest suitability value in the final suitability maps.

The second Landsat image was subjected to a classification of two zones (urban
and non-urban areas). The output vector was coded to represent cells as binary vari-
able which values from 0 (non-urban) to 1 (urban). Figure 3.3 shows this variable
as output of LR model compiled in Arc/Info Grid format at 2000.

3.4 Results and Discussions

Study area includes 245,588 cells which 85,956 (35.0%) of the cells have limitation
to undergo transition while 159,632 (65.0%) of the cells can be subjected to transi-
tion in SMA. LR model estimated 127,706 (80.0%) of the qualified cells had change
their likelihood values to 0 while 3,193 (2.0%) had likelihood their values to 1 and
other cells 28,733 (18.0%) have value between 0.0 and 1.0. Cells with values closest
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Fig. 3.2 SMA maps of the six variables used as input for the LR in 1988

to 1 were selected as locations most likely to transition. The critical threshold value,
which is the lowest change likelihood value selected for cells to transition during
the 12-year period, was 0.5. Only 3.5% of all qualified areas changed to urban area
in the observed databases. Results show that only 5,587 cells undergo the transitions
in SMA.
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Urban areas in 2000

Non-urban areas in 2000

Fig. 3.3 SMA maps of the
two-variables used as output
for the LR in 2000

3.4.1 Model Coefficients

Pontius and Schneider (2001) explain how to use the ROC technique to examine
how well a suitability map portrays the true locations in a Boolean image-for our
case the Boolean image represents actual urban expansion between 1988 and 2000.
LR as a mathematical equation was used for simulating and prediction process. LR
model was designed to have a flexible number of inputs depending on the number
of variables presented to it (Table 3.2).

A stratified random sampling method was used to extract sample subset from
the complete coverage of 1988–2000 data to train LR model. The stratified sam-
pling method assures that the generated sample subsets represent different urban
expansion patterns in the region. All inputs were normalized to a range from 0.0
to 1.0. The patterns file contained information from the six input grids and output
file for LR model so that each line in the pattern file corresponded to one location.
The output layer for LR model contained binary data represented whether a cell
location changed (1 = urban; 0 = non-urban) during the study period (Pontius and
Schneider, 2001) (Eq. (4)). To avoid over-training of LR model, the parameters of
the mathematical equation was obtained with a partial set of data by providing it
with data from every other cell in the city.

Table 3.2 Parameters of LR model in SMA

Variable Description Nature of variable

X1 Distance from road Continuous
X2 Distance from build-up area Continuous
X3 Distance from service centre Continuous
X4 Distance from green space Continuous
X5 Elevation Continuous
X6 Slope Continuous
P Probability of urban expansion Discrete
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Table 3.3 The results of LR
parameters Urbanland

Variable β Exp(β)

Constant 0.265 1.303
X1 0.001 1.001
X2 0.066 1.068
X3 −0.071 0.931
X4 0.002 1.002
X5 0.062 1.064
X6 −0.059 0.942
ROC 0.680

P = E(Y) = exp(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6)

1 + exp(β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6)
(4)

The results of LR for different land use are summarized in Table 3.3.

3.4.2 Model Evaluation

Cells that were simulated as transition to new urban areas were compared with the
cells that actually did transition during the period of study. The ROC compares
binary data over the whole range of simulated probabilities. It aggregates into a
single index of agreement, reflecting the ability of the model to predict the proba-
bility of urban land distribution at various locations on the landscape. The ROC is
a measure of the ability of the model to correctly specify location across a range
of threshold values. For our case the Boolean image represents actual development
between 1988 and 2000 in testing process. The file generated from the training pro-
cess was used to estimate output values for each location in testing process. The
testing process that followed used driving variable grids from all cells in the study
locations between 1988 and 2000 but with the output values removed. When the
map of a simulated urban expansion in 2000 is overlaid on the reference map 2000,
a contingency table is used for accuracy assessment in testing process. Cells that
were simulated as transition to new development areas were compared with the
cells that actually did transition during the period of study.

First the ranked image of probability of urbanization was sliced at a series of
threshold levels (He and Lo, 2007). A threshold refers to the percentage of cells in
the probability image to be reclassed as 1 in preparation for comparison with the
reference image. The series of thresholds was specified at an equal interval of 5%.
The threshold values are cumulative, therefore setting the equal interval thresholds
5, 10, 15. . .95 would yield 20 threshold intervals 0–5%, 0–10%, 0–15%, ... and
95–100%. ROC began with the cell ranked the highest for probability, reclassified
it as 1 and continued down through the ranked cells until 5% of the cells had been
reclassified as 1. The remaining 95% was classified as 0. This slice image was then
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Table 3.4 Contingency table showing the comparison of the slice image of predicted urban
expansion probability with the reference image

Reference image

Urban expansion (1) No urban expansion (0)

Slice image of
predicted probability

Urban expansion (1) A (True Positive) B (False Positive)
No urban expansion (0) C (False Negative) D (True Negative)

compared with the reference image. Then ROC continued for the successive thresh-
old. For each slice generated from each threshold, a two-by-two contingency table
was created based on the comparison of the slice image with the reference image
(Table 3.4). In the table, A represents the number of true positive cells which are pre-
dicted as urban expansion and are actually urban expansion in the reference image.
B is the number of false positive cells. C is the number of false negative cells. D is
the number of true negative cells. From each contingency table for each threshold,
one data point (x, y) was generated where x (Eq. (5)) is the rate of false positives
(false positive percentage) and y (Eq. (6)) is the rate of true positives (true positive
percentage):

True Positive% = A

A + C
(5)

False Positive% = B

B + D
(6)

These data points were connected to create a ROC curve from which the ROC
value was calculated. The ROC statistic is the area under the curve that connects the
plotted points. The ROC curve is shown in Fig. 3.4. The ROC value is 0.68.

3.4.3 Forecasting

To produce the spatial pattern of urban distribution given a certain amount of urban
area, the increase of the number of urban cells compared to the 1988 base urban
map was calculated. Then the number of urbanized cells was allocated to the prob-
ability map in the order of high probability value to low probability value. This
generated a growth map. Next the growth map was combined with the 1988 base
map to produce the urban distribution map. After LR model was trained and tested
successfully, the parameters were obtained and the feed-forward algorithm was used
for prediction. Assuming the same rate of urban expansion in SMA during 1988 and
2000, the predicted urban expansion for the year 2012 based on the full dataset of
urban expansion in the year 2000 was determined. Figure 3.5 shows urban expansion
in SMA in 2012 which is overlaid on SMA in 1988 and 2000.

Future urban expansion appears to be focused at the east of SMA. A great deal
of clumped development is anticipated in the North West and South East portion
of SMA. In addition, a great deal of dispersed development is anticipated in the
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Fig. 3.4 ROC curve

Non-urban areas in 2012

Urban areas in 2000

Predicted new urban areas in 2012

Fig. 3.5 Prediction of LR in 2012 for SMA

South portion of the SMA. But, there is nearly no development into the centre and
South West of SMA predicted. Because in centre of SMA, there is no space that can
be developed and in South West of SMA, there is a legal restriction for develop-
ment from the government side. What is interesting from these forecasting results
is that the model predicts new urban areas to be occurred along build-up areas. The
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Table 3.5 ROC values in
simulation process with
reduced-variable

Reduced-variable ROC value

Distance to road 0.48
Distance to build up area 0.53
Distance to green space 0.55
Slope 0.59
Distance to service centre 0.63
Elevation 0.67

model predicts that these urban expansion patterns will be different for various parts
of SMA.

For the rank order of input variables according their influence on the model
performance, we compared the predictive ability of the six versions of the reduced-
variable model of input variables. We excluded each variable and perform LR model
with other six-variables respectively. We saved the ROC for each of the six-variable
models. The resultant value represents the relative effect, of each predictor vari-
able on the model performance. The ROC values of the six-variable models were
compared against each other and it was concluded that the rank order of predic-
tor variables according their influence on the model performance was respectively:
distance from road, distance to building areas, distance from green space, slope, dis-
tance from service centre and elevation (Table 3.5). When distance to road parameter
is removed in simulation process, ROC value has maximum decline. When elevation
parameter is removed in simulation process, ROC value has minimum decrease, so,
elevation parameter has no effect in simulation process.

3.5 Conclusions

Urban expansion model has been implemented in this paper which takes advantage
of GIS, LR and RS based on the utilization of a variety of social and environmental
factors. LR modeling was used to identify and improve our understanding of the
demographic, econometric and biophysical forces that have drive urban expansion
and to find the most probable sites of urban expansion in SMA of Iran. LR model
examines the relationship between predictor variables as inputs and urban/non-
urban areas as outputs to model urban expansion. This linkage is based on the fact
that land use and land cover data are the main input parameters for urban expansion
analyses. Integration LR with GIS is essential for modelling urban changes because
of the spatial nature of many the input variables. This model also allows the user
to block out areas where development cannot occur because of either strict policy
enforcement or physical constraints.

Applying the LR model to SMA allowed us to examine impacts of different vari-
ables on model performance. The following groups of factors were found to affect
urban expansion in different degrees: distance from road, distance from build-up
area, distance from service centre and distance from green space, elevation and
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slope. With developing the six versions of LR model, each with one of the vari-
ables removed, the relative contributions of each variable on model performance
were assessed. Distance to roads was the best predictor of urban expansion during
the 1988–2000 periods in SMA. ROC metric have been employed to determine how
well LR performed on the study area. A future simulated map driven by the six
variables resulting from LR forecasts is compared with real map provide a satis-
factory means for predicting change inside of dense urban areas and urban fringes
for urban planning. A map of urban expansion probability was calculated and used
to predict future urban patterns. ROC value of 68% indicates that the probability
map is valid. The LR model predicts that these growth patterns will be different
for various parts of SMA. Not surprisingly, it that forecasted results shows that the
model predicts that urban expansion occurs along build-up areas. It was concluded
that despite LR’s lack o temporal dynamics, it was spatially explicit and allowed
much deeper understanding of the forces driving the growth and the formation of
the urban spatial pattern.
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Chapter 4
Abu Dhabi Island: Analysis of Development
and Vegetation Change Using Remote Sensing
(1972–2000)

Abdulhakim M. Abdi and Anand Nandipati

Abstract Over the past few decades new cities have appeared around the world
in undeveloped areas. And although development has expanded significantly and
become bolder and more innovative, the above-average scale at which the coun-
tries of the Persian Gulf are growing stands one level above the rest. The United
Arab Emirates obtained independence in 1971 with a GDP of 6.5 billion Dirhams
(US$ 1.6 billion); this figure ballooned to 379 billion Dirhams (US$ 103 billion) in
2004. During this timeframe, the country had undergone tremendous development
through petroleum exports and foreign investments. Needless to say, development
has permanently changed the country’s landscape. The purpose of this paper is to
investigate land cover changes in the capital Abu Dhabi and surrounding regions
from 1972 to 2000 using Landsat images. Two primary (land and vegetation) and
two secondary (shallow and deep water) features were selected as measures of
development. Remote sensing and GIS were used to perform the classification and
post-classification of images and visualize the results. Results for the two primary
features vegetation and land have shown an increase of 3700 and 17% respec-
tively between 1972 and 2000. The creation of new land from the by-products
of dredging activities has negative effects on seafloor habitat while the intensi-
fied artificial expansion of vegetation impacts groundwater resources, both being
direct consequences of rapid development. The application of sustainable methods
in development activities is crucial, particularly in this part of the world with very
few natural resources other than petroleum and natural gas.
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4.1 Introduction

Monitoring changes in the environment and the prediction of future circumstances
is an important factor in the developing world. The countries in the Persian Gulf are
facing tremendous industrialization and their landscape is changing at a tremendous
pace (Starbuck and Juanito 2006). Remote sensing plays a significant role in pro-
viding geo-information in a spatial format and also in determining and monitoring
the overall capacity of the earth (Navalgund et al. 2007).

Prior to independence in December, 1971 the United Arab Emirates (UAE) was
a group of loosely associated tribal sheikhdoms called the Trucial States. Petroleum
was discovered in the area in 1958 and Abu Dhabi began to export offshore oil
in 1962 (Library of Congress 1993). The UAE’s proven oil reserves stand at 97.8
billion barrels and as a result of the petroleum wealth the country is getting rapidly
industrialized (Alhameli and Alshehhi 2004). The UAE’s gross domestic product
was Arab Emirates Dirham (AED) 6.5 billion (US$1.6 billion) in 1972 (El Mallakh
1981), that figure swelled to AED 379 billion (US$103 billion) in 2004 (UAE-NMC
2008). In 1976, the area under cultivation in the emirate of Abu Dhabi was 28.70
square kilometers (sq.km.) which exploded to 135,000 sq.km. at the end of 1997
(MEAW 2008).

The initial study area for this project was comprised of the original Landsat
scene (185 km × 185 km) covering the central portion of the UAE, however, this
approached was abandoned because of the limited time available. Subsequently, the
area was reduced to capital, the city-island of Abu Dhabi, and the surrounding region
within an average radius of 17 km around the center of the island. This radius was
selected because it represents the maximum amount of coastal alteration around the
capital.

The current morphology of the island and its surroundings is the result of
dredging and land reclamation operations that aim to boost economic productivity.
Similarly, afforestation efforts have been extensive in order to beautify the barren
landscape of the country (Issa 2008). We found it interesting to compare the change
in morphology and the areal extent of vegetation cover from 1972, a year after the
emergence of the UAE as an independent country to the year 2000. The rationale
for selecting these time periods is that the earliest available satellite imagery for this
region dates back to 1972; the year 2000 was chosen because that was when the
most recent cloud-free, error-free and cost-free imagery for that particular area was
found.

4.2 Data

For this study we used two cloud-free images; a Landsat 1 Multispectral Scanner
(MSS) image from November 29th, 1972 and a Landsat 7 Enhanced Thematic
Mapper Plus image from August 8th, 2000. Landsat was the chosen satellite because
the spatial resolution and the areal extent of the scene cover the region of interest and
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Table 4.1 Satellites and sensors used for the study

Satellite Sensor Spectral range Bands used Pixel Res

L 1 MSS multi-spectral 0.5–1.1 μm 1, 2, 3, 4 60 m
L 7 ETM+ multi-spectral 0.450–1.175 μm 1, 2, 3, 4 30 m

the imagery was freely available. The images were downloaded from the University
of Maryland’s Global Land Cover Facility (GLCF) and were orthorectified with a
RMS geodetic accuracy of 50 m. The MSS image consists of a pixel size of 60 m
and contains four spectral bands; the ETM+ image consists of a pixel size of 30
m and contains eight spectral bands. All MSS bands (1–4) were used while the first
four ETM+ bands were used in order to work with a consistent radiometric range on
both images. As previously mentioned (see Section 4.1), the August 2000 Landsat
7 image was the most recent available in terms of cost and freedom from error, this
is due to the fact that Landsat 7’s Scan Line Corrector (SLC) had been inoperational
since May 2003 and this results in a “zigzag” effect on resultant images. About 22%
of any scene is lost due to this mishap. The United States Geological Survey (USGS)
provides a Gap-filled Systematic Correction with all Landsat imagery since May
2003 but this approach could not be applied for this project due to time constraints
(Table 4.1).

4.3 Methodology

The methodology employed in this study involves the classification and post-
classification of the satellite imagery which was adapted from the Advanced
Training Course on Land Remote Sensing from the European Space Agency
(ESA).

The area under analysis consists of low-lying land comprised of tidal mudflats,
mangrove forests, reclaimed land made of dredge-spoil plus associated dredged
channels, salt-flats, algal mats and an urban landscape. Due to the diversity of land-
scapes, we chose sets of contiguous pixels as the Spatial Unit of Analysis (SUA).
When an image interpretation process is undertaken, one of the key issues in the
delineation of discrete areal units on images is the selection of the smallest size area
entity to be mapped as a discrete area, the minimum mapping unit (Saura 2002).
The chosen Minimum Mapping Unit (MMU) for this study, based on the SUA, is
three pixels which correspond to 0.008 sq.km.

4.3.1 Feature Identification and Selection

Due to the limited availability of ancillary data, we have relied solely on aerial
imagery for feature selection and identification in the case of the Landsat 1 image.
Furthermore, single bands as well as combinations of bands were applied to achieve
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maximum possible differentiation. On the other hand, in case of the Landsat 7 image
we relied on both visual analysis and local knowledge in identifying and selecting
features.

In order to make a clear distinction between the vegetation and other features in
both images we employed the Normalized Difference Vegetation Index (Rouse et al.
1973) to both the Landsat images:

Normalized Difference Vegetation Index (NDVI) = Near Infrared − Red

Near Infrared + Red
(4.1)

In order to determine the areal extent of afforestation as well as to ascertain the
area of reclaimed land, we found it necessary to focus on four information classes;
land, vegetation, shallow water and deep water. This would give us the amount of
new land created since 1972 as well we the amount of new deep-water channels
created as a result of land reclamation efforts and the increase in the amount of
vegetation.

4.3.2 Classification

A classification system is designed based on the user’s need, spatial resolution of
selected remotely sensed data, image-processing and classification algorithms avail-
able and time constraints (Lu and Weng 2007). Since this study is not focused on
distinguishing between individual land classes apart from vegetation, different land
forms such as urban areas, reclaimed islands, salt-flats and low-lying algal mats
were aggregated into one region of interest, land. The signatures generated from
the training samples are then used to train the classifier to classify the spectral data
into a thematic map (Lu and Weng 2007). We used maximum likelihood, a para-
metric classifier. Maximum likelihood functions on the basis of computation from
the records of the classes set from training samples and each pixel is assigned to
the class with the highest probability based on training statistics. Polygons of train-
ing samples were collected from both images because of the wide generality of the
desired classes (Table 4.2).

In the resultant images, there was a distinct “salt and pepper” effect, hence post-
classification processing was necessary. For the first stage, a Sieve method was

Table 4.2 Samples collected for Landsat images (1972 and 2000)

1972 Land class Polygons/pixels 2000 Land class Polygons/pixels

Deep water 90/7387 Deep water 185/28,863
Shallow water 67/4204 Shallow water 124/25,738
Land 116/21,084 Land 326/110,442
Vegetation 10/39 Vegetation 139/14,458
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employed for the purpose of removing the isolated pixels in the classified image.
A minimum threshold of three pixels with eight neighbours were selected. Any pix-
els that did not meet the required parameters were deleted and replaced by unclassi-
fied values. Hence, another post-classification method was necessary to merge these
unclassified pixels. Majority Analysis (Stuckens et al. 2000) was performed to con-
vert the unclassified pixels within a single class into that class. In this method, a ker-
nel size of 5 × 5 was specified as well as a center pixel weight of value three, which
was be replaced based on the values of the kernel of the majority class. After a series
of tests with other post-classification methods, this was considered to be a good
choice (particularly for a classification with a persistent “salt and pepper” problem)
as it is able to eliminate the noise in the classified image. Therefore, after general-
ization, a smoother image for both the MSS and ETM+ images was produced.

4.4 Results

Determining the accuracy of the classification was performed using a Confusion
Matrix. Ground-truth region of interest (GTROI) samples were collected from each
image and were assigned the desired classes. These were then entered into the
Confusion Matrix and accuracy was assessed against the classified images. As pre-
viously mentioned (see Section 4.3.2) the only available ancillary data for 1972
came from aerial imagery and which were also used in the accuracy assessment.
The Overall Accuracy of the Landsat 1 image was 94.2% with a Kappa Coefficient
(Cohen 1960) of 0.97. The Landsat 7 image produced an Overall Accuracy of
94.07% and a Kappa Coefficient of 0.99 (Table 4.3).

The outcome of the classification displayed a significant increase in the primary
features within the temporal range of the study; the final classified images in vector
format are presented in Figs. 4.1 and 4.2. Between 1972 and 2000 new land areas
were created in the shallow and deep water which amounts to approximately 16% of
the total land area. The areal extent of vegetation increased considerably by 3700%
during the same period from 3.38 to 127.92 sq.km. These figures were anticipated
since the country’s population increased by nearly 10-fold from 309,000 to over
2,776,000 in the 28-year period between 1972 and 2000 (Oxford Business Group
2008; UAE Ministry of Information and Culture 2004) (Figs. 4.3, 4.4, and 4.5).

Even though the study area had undergone tremendous development, some of
the original land cover had been retained, for example 86.30% of the original 1972
vegetation cover (coastal mangroves) was retained, which amounts to less than 3%
of total vegetation in 2000. Similarly, all the other features experienced a retention
percentage of above 80% except shallow water, which had retention of 51.82% of
the original areal extent. This is most probably due to the dredging activities that
created new land and new deep water channels around Abu Dhabi Island (Table 4.4
and 4.5).
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Table 4.3 Accuracy Assessment of the Landsat 1 and 7 images

Percentage accuracy of the Landsat 1 image classification

Class Land (%) Vegetation (%) Shallow water (%) Deep water (%) Total (%)

Land 100.00 31.22 0.00 0.08 29.47
Vegetation 0.00 68.25 0.00 0.00 2.41
Shallow water 0.00 0.53 76.99 0.04 15.57
Deep water 0.00 0.00 23.01 99.88 52.55
Total % 100.00 100.00 100.00 100.00 100.00

Calculated producer’s and user’s accuracies for the Landsat 1 image classification

Class Prod. Acc. % User Acc. % Prod. Acc. User Acc.

Land 100.00 96.13 1514/1514 1514/1575
Land 100.00 96.13 1514/1514 1514/1575
Vegetation 68.25 100.00 129/189 129/129
Shallow water 76.99 99.76 830/1078 830/832
Deep water 99.88 91.17 2561/2564 2561/2809

Percentage accuracy of the Landsat 7 image classification

Class Land (%) Vegetation (%) Shallow water (%) Deep water (%) Total (%)

Land 93.25 15.99 0.00 0.00 33.24
Vegetation 6.75 84.01 0.00 0.00 14.04
Shallow water 0.00 0.00 93.80 0.00 12.65
Deep water 0.00 0.00 6.20 100.00 40.06
Total % 100.00 100.00 100.00 100.00 100.00

Calculated producer’s and user’s accuracies for the Landsat 7 image classification

Class Prod. Acc. % User Acc. % Prod. Acc. User Acc.

Land 93.25 93.25 1519/1629 1519/1629
Vegetation 84.01 84.01 578/688 578/688
Shallow water 93.80 100.00 620/661 620/620
Deep water 100.00 97.91 1922/1922 1922/1963

Fig. 4.1 Overview of the study area
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Fig. 4.2 Displays the 2000 classified image before (left) and after performing majority analysis

Fig. 4.3 Land cover map of Abu Dhabi in 1972
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Fig. 4.4 Land cover map of Abu Dhabi in 2000

Fig. 4.5 Change in vegetation in Abu Dhabi Island between 1972 and 2000
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Table 4.4 Change in different land covers between 1972 and 2000

Change of different land covers to vegetation between 1972 and 2000

1972 Land cover 2000 Land cover
Areal change
(sq.km.)

Percentage based on
2000 land cover area

Vegetation Land 0.31 0.06
Shallow water Land 60.62 12.55
Deep water Land 17.43 3.61
Land Vegetation 75.51 59.07
Shallow water Vegetation 48.18 37.69
Deep water Vegetation 1.22 0.96

Change of different land covers to shallow water between 1972 and 2000

1972 Land cover 2000 Land cover Areal change
(sq.km.)

Percentage based on
2000 land cover area

Land Shallow water 2.93 1.52
Vegetation Shallow water 0.03 0.01
Deep water Shallow water 32.60 16.93

Change of different land covers to deep water between 1972 and 2000

1972 Land cover 2000 Land cover Areal change
(sq.km.)

Percentage based on
2000 land cover area

Land Deep water 17.21 4.93
Vegetation Deep water 0.12 0.03
Shallow water Deep water 37.04 10.60

Table 4.5 Amount and percentage of land cover area that was retained between 1972 and 2000

1972 Land
cover

1972 Area
(sq.km.)

2000 Land
cover

2000 Area
(sq.km.)

Areal
retention
(sq.km.)

Retention percentage
based on 1972 land
cover area

Land 500.42 Land 483.13 404.77 80.89
Vegetation 3.38 Vegetation 127.83 2.92 86.39
Shallow

water
302.76 Shallow

water
192.48 156.92 51.82

Deep water 344.24 Deep water 347.36 292.99 85.11

4.5 Discussion

The countries of the Persian Gulf have simultaneously outpaced their neighbors
in the development and modernization since the discovery of petroleum. However,
this rapid development was not monitored until recently when the science of remote
sensing began to be taken up by academia and researchers in the region. We have
demonstrated that remote sensing can be used to measure the amount of change
over the course of several years in rapidly changing landscapes. This method can
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be applied to other cities in the region, and indeed worldwide, that have undergone
similar levels of development. Although the scope here was to see the change in land
and vegetation over 28 years, future work of interest may be the evaluation of how
the urban fabric and impervious surfaces of Abu Dhabi have increased since inde-
pendence and their contribution to the Urban Heat Island effect (Jones et al. 1990).

4.6 Conclusions

The area in and around the capital city of Abu Dhabi was subject to intensive
development efforts that permanently altered the landscape. These drastic morpho-
logical changes have been attributed to the surge in petroleum wealth. This study
has successfully produced a land cover map of the selected study area through the
application of a supervised classification algorithm. This study demonstrated that
remote sensing can be used in the monitoring of landscapes that quickly change in
relatively small temporal scales.

Albeit the scope of this study is limited, it does provide valuable insight into
the extent that which the UAE is changing. More research on development and its
impacts on landscapes are needed, particularly in rapidly developing nations such
as the UAE, is required and remote sensing provides an invaluable tool.
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Chapter 5
Remote Sensing of Coastal Water Quality
in the Baltic Sea Using MERIS

Andreas Neumann, Harald Krawczyk, and Stefan Riha

Abstract Remote sensing of water quality parameters using spaceborne imag-
ing spectrometers has become a widely spread technology during the last years.
Especially MERIS on ESA’s ENVISAT with its 250 m spatial resolution provides
new opportunities for applications in coastal and inland waters. To make use of the
information content of spectrally highly resolved data new retrieval algorithms had
to be developed based on bio-optical and radiative transfer modeling and inversion
by the use of principal component analysis. The paper will review the approaches
and algorithms developed at DLR for research and operational applications to assess
and monitor water quality in case-2 waters (coastal and inland waters). Special focus
will be on yellow substance dominated waters and exceptional algal blooms in the
Baltic Sea. In addition to the methodological aspect the processing system and
infrastructure to provide daily water quality services in the frames of GMES will
be introduced.

5.1 Introduction

During the last years spaceborne imaging spectrometers have been providing
higher spectral resolution data for ocean colour remote sensing in the visible-near-
infrared spectral range (400–1000 nm). To some extent MOS-IRS (Zimmermann
2000), launched in 1996, was a pacemaker in this respect and in-between was
followed by several instruments both of experimental and pre-operational status
(e.g. CHRIS, MERIS). Where on one hand this new class of instruments allows to
access, distinguish and quantify more parameters by remote sensing with increased
accuracy, the spectral dimensionality of the data require new retrieval techniques
accounting for the multivariate nature of the data (i.e. several parameters may vary
independently and influence the spectral signature measured by the instrument)

A. Neumann (B)
Remote Sensing Technology Institute, German Aerospace Center DLR,
Rutherfordstrasse 2, 2489 Berlin, Germany
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and allowing for regional and/or seasonal optimization of the inversion algorithms.
In the last years this led to the development of bio-optical and radiative trans-
fer model based techniques fulfilling these requirements. Examples are Principal
Component Inversion PCI (Krawczyk et al. 1993), Neural Network algorithms NN
(Doerffer and Schiller 1998; Niang et al. 2003; Zhang et al. 2002) or Spectral
Matching techniques SM (Heege et al. 2005; Morel and Bélanger 2006; Van Der
Woerd and Pasterkamp 2008). Since these techniques follow a consistent physi-
cal model and information theory based approach which is different to “classical”
empirical algorithms still often used in remote sensing we will discuss in the follow-
ing the physical and mathematical basis and how in particular PCI can be used to
implement dedicated case-2 inversion algorithms. The algorithms developed were
implemented in an operational processing scheme used for water quality monitoring
in the Baltic Sea in the frames of the European Global Monitoring for Environment
and Security (GMES) programme for German users. Some examples will illustrate
this operational application.

5.2 Characteristics of Optically Complex Waters

This paragraph will summarise the main points on this subject, a more extensive
discussion can be found in Sathyendranath (2000). Open ocean waters, which are
usually characterised by phytoplankton being the main varying water constituent,
can be considered as a single-variable system from the remote sensing perspective.
Chlorophyll as the dominating optically active substance is determining the “colour”
(i.e. reflectance spectrum) of the water body. For satellite measurements, i.e. top of
the atmosphere, additional variability in the measurement is caused by atmospheric
variability (e.g. aerosols, gaseous absorbers). In most cases for the atmospheric cor-
rection the atmosphere is described by Rayleigh scattering, aerosol content and a
parameter related to the size distribution of aerosols. Thus, for the inversion of
satellite ocean colour measurements in total three main variables seem sufficient for
open ocean waters (we neglect here additional variables like absorbing gases assum-
ing a proper positioning of the instrument’s spectral channels to minimise their
influence).

Because of the strong light absorption by water at wavelengths above 700 nm and
the comparably low phytoplankton concentrations usually the “black water condi-
tion” for atmospheric correction firstly introduced by Gordon (1978) can be applied
and band ratios using two or three channels in the visible range can be used to
retrieve chlorophyll concentrations.

The situation is different in inland and coastal waters or (semi-) closed basins,
such as the Baltic Sea or Black Sea, due to one or several of the following reasons:

• significantly higher phytoplankton concentrations occur, this may result in a non-
negligible signal from the water body at wavelengths >700 nm

• occurrence of several different and statistically independent optically active
constituents in the water body will lead to interpretation failures of
“one-dimensional” retrieval algorithms
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• large concentrations of inorganic scatterers in the water (in particular suspended
sediment) cause a significant signal remitted at wavelengths > 700 nm and violate
the “black water condition” for atmospheric correction

• land influence may cause variations in aerosol composition (i.e. mixtures of mar-
itime and land aerosols) and may require determination of aerosol properties from
the measurement to be used in atmospheric corrections.

For the optically active water constituents we find the following situation:

• the main groups of constituents considered are phytoplankton, dead organic mate-
rial (Seston), suspended inorganic matter (sediment) and dissolved organic matter
(Gelbstoff, DOM)

• the composition of phytoplankton species, and thus the optical properties and
resulting colour characteristics, may vary significantly with region or season

• due to different origin the colour characteristics of suspended sediments may vary
significantly with place and time

• extremely high concentrations of one or more constituents (e.g. in river plumes
or algae blooms) may optically mask other components

• in general, the different components in the water do not covary due to their
different biological or physical nature, different origin and different spread
mechanisms.

In result of this all specific requirements become valid for retrieval algorithms to
be applied to optically complex (case-2) waters:

• algorithms are needed capable to account for simultaneous occurrence of several,
non-covarying water constituents

• algorithms and models to be applied need to account for specific optical
properties of different water constituents to be able to discriminate between them

• a retrieval scheme is needed which allows to account for changing, regional
specific optical properties of the water body and

• advanced atmospheric correction algorithms are needed to account for residual
water reflectance in the near infrared as well as for varying aerosol properties.

Thus, by dealing with optically complex waters, typically found in coastal and
inland waters, we are facing a multivariate mixture of variables in the measurement.
This, finally, leads to the demand for more spectral bands and better spectral res-
olution in the measurement and for adequate, multivariate inversion techniques to
retrieve the geo-physical parameters.

5.3 Physics of the Problem

The “Colour” of the water body which is the basis for remote sensing of
water constituents is caused by the scattering and absorption properties of pure
water and the individual constituents respectively. These properties are described
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by the corresponding scattering and absorption spectra, or, if normalised to
concentrations, the specific spectral scattering and absorption coefficients (inherent
optical properties, IOPs). This means, what we “see” by measuring the reflectance
spectra, are not the concentrations of water constituents, but the result of several
superimposed scattering and absorption processes forming the resulting spectrum.

This understanding is essential for developing retrieval algorithms because it
means, from the physical point of view, that primarily we are measuring scattering
and absorption properties by remote sensing. These are then implicitly or explicitly
linked to concentrations of the single water constituents, implicitly in the case of
empirical algorithms correlating reflectances with in situ concentrations, explicitly
through the specific IOPs in the case of model-based inversion techniques.

Another important conclusion follows from this physical background: since the
scattering and absorption spectra of the single components are smooth, i.e. without
strong spectral features (except special effects like Fluorescence which are not con-
sidered here) and superimposing in the same spectral range it is almost impossible
to retrieve one single parameter without accounting for the occurrence and variation
of the others. This, finally, is the reason for the necessity of a larger number of spec-
tral bands, higher spectral resolution and extended spectral range for remote sensing
of optically complex case-2 waters.

5.4 Mathematical View

To better understand the function and problems of the retrieval (or inversion) algo-
rithms it is worth to look at the problem from a mathematical and information theory
perspective. The spectra measured for case-2 waters remote sensing are a multivari-
ate data set, i.e. variations in the measurement are caused by multiple parameters
which are not necessarily co-varying with each other. The spectral measurements
in each of the spectral channels of an instrument are statistically not independent
due to the smooth and “broadband” optical properties of the individual constituents
in the water. It is therefore hardly possible to correlate single bands to the varia-
tion of an individual constituent or one optical parameter. In fact, each available
channel contains (part of) information on each of the water constituents. Thus,
multivariate inversion techniques are the adequate tool to build retrieval algorithms
for optically complex waters. This type of inversion technique is capable to use as
much as possible spectral information (i.e. use all available spectral bands) to esti-
mate an individual parameter while at the same time accounting for other variables
influencing the spectrum.

How this approach translates into concrete algorithms? Figure 5.1 shows the
basic scheme for the inversion of a multivariate spectral measurement. In princi-
ple what is needed is a multidimensional matrix of weighting coefficients which
“maps” (transforms) the spectral reflectance values to the desired geo-physical
values. The determination of the coefficients can hardly be done using empirical
correlations, since the number of possible parameter combinations would require an
unrealistically large set of measured spectra plus corresponding in situ data.
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Fig. 5.1 Scheme of a multivariate inversion of spectral (remote sensing) measurements

Radiative transfer modelling using the specific IOPs of the relevant water con-
stituents and atmospheric parameters provides us with a possible solution. The
IOPs, of course, must be known from in situ and laboratory measurements, atmo-
spheric parameters from corresponding measurements or models. The modelling
then allows to generate a synthetic data set containing all possible combinations of
geo-physical parameters and the corresponding reflectance spectra including obser-
vation and sun geometries for a given sensor/satellite. This data set represents the
expected variety of measurements of the sensor. This “training” data set may then
be used to compute the weighting coefficients for the desired inversion. Numerical
techniques have to be applied because a direct (analytical) inversion of the model is
not possible.

There exist a number of mathematical methods to solve the inverse task.
Examples are: factor analysis, principal component inversion, neural networks or
spectral matching techniques. Due to different mathematical treatment in detail, the
resulting inversion schemes or algorithms allow different optimisation strategies and
show different behaviour in the case of non-linearities or large variation ranges of
the parameters. But the basic approach for this class of algorithms is identical, as
described above. Figure 5.2 illustrates the scheme.

5.5 Atmospheric Correction

As outlined above, the classic approach for atmospheric correction fails in the case
of high concentrations of scattering constituents in the water (e.g. high sediment
load). Atmospheric correction in these cases needs to account for residual signal
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Fig. 5.2 Scheme of training an inverse algorithm

from the water body also in the near infrared, i.e. above 700 nm. This, as one solu-
tion, leads to more complex or iterative atmospheric correction schemes, which in
addition to aerosol properties also estimate residual in-water scattering. Following
this way to the end, an even more integrated view on the problem can be developed:
Applying an atmospheric correction to the data separately, i.e. computing water
leaving radiances or reflectances from the top-of-atmosphere (ToA) measurements
does not improve the information content in the data with respect to water con-
stituents. It only removes variables related to the atmosphere from the original data
set and hence reduces the dimensionality for the inversion. But all variation due to
changing water constituents must be resolved in the ToA measurement already, oth-
erwise it may not be seen in atmospherically corrected data. Taking this into account
and also reminding that atmospheric correction for case-2 waters must account for
residual signal from the water body, it should be possible to couple the retrieval
of aerosol parameters and water constituents into an integral inversion or coupled
inversion scheme. For this case the training data set for multivariate inversion is sim-
ulated for TOA reflectances by including variations of aerosol-related parameters.
To derive the inversion schemes the identical mathematical apparatus is used as for
water leaving reflectances, but a larger dimensionality has to be accounted for.

Such an approach we tried first for the imaging spectrometer MOS-IRS flying
on board of the Indian satellite IRS-P3. The mission was a joint effort of DLR and
Indian Space Research Organisation ISRO, where the instrument was developed
and built by DLR and ISRO provided the satellite and the launch and operated the
satellite. Being planned as a proof-of-concept experiment it was flying successfully
for 8 years from 1996 to 2004 (Zimmermann and Neumann 2000). MOS-IRS was
the first imaging spectrometer in space for Earth observation and provided mea-
surements in 18 spectral channels between 408 nm and 1.6 μm. Because of very
similar instrument characteristics it was used as a precursor for MERIS, allowing
for experimental verification of algorithms developed for MERIS on ENVISAT,
which was launched in 2003. The Principal Component Inversion technique con-
sidered here was firstly developed and tested using MOS-IRS (Krawczyk et al.
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Fig. 5.3 Example for one-step inversion (MOS-IRS, central Black Sea)

1998) data and then extended to be applied to MERIS. Extensive radiative trans-
fer simulations were used to derive and optimise the inversion procedure, the results
obtained from MOS-IRS confirmed the simulations and showed very good perfor-
mance, in particular for case-2 waters. Figure 5.3 shows an impressing example
for a very complex and dynamic scene over the Black Sea: where the composite
image on the left shows the mixture of all components (water and atmosphere)
contributing to the signal measured at the satellite the inversion results illustrate
that constituents showing absorption plus scattering (Chlorophyll) are well dis-
criminated from constituents with dominant scattering (inorganic sediment) and the
atmospheric component represented by the aerosol. However, at large value of scat-
tering near the coasts saturations and masking effects occur. The methodology is
currently tested for MERIS data where the larger variation in viewing geometry due
to the large swath of 1500 km makes the problem more complex (MOS-IRS had a
200 km swath). A similar approach using neural networks for inversion has been
implemented for MERIS by Schroeder et al. (2007).

5.6 Principal Component Inversion

Here we can only give a short introduction to Principal Component Inversion, for
more details are referred to Krawczyk et al. (1993, 1998). The forward model, which
computes the reflectance spectra R from the given set of geo-physical parameters p,
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is nonlinear and consists of a radiative transfer code and the necessary inherent
optical properties of the components, as there are the wavelength-dependent specific
absorption and scattering coefficients and the scattering phase functions. The inverse
mapping R → p is the desired interpretation algorithm. For PCI the main idea is to
estimate the concentration as a linear function of the measured spectral reflectances.
But this assumption initially contradicts the nonlinear character of the direct model.
Two steps were taken to improve the situation. Firstly instead of the direct parameter
p a semi logarithmic representation q = p+0.1 log(p) is used, secondly, the covered
variability range for each parameter p is divided into sub-ranges, where the linear
assumption is much better justified (quasi-linear approach). The estimator then can
be formulated as:

q = p + 0.1∗ log(p) =
n∑

j=1

k(r)∗
ij Rj + bj (5.1)

where kij and bj are the inversion coefficients to be determined for each sub-range
r from the model, n is the number of spectral channels. The estimation shall be
optimal in a global sense, i.e. the RMS error of the entire dataset should be mini-
mized. This is a difference to so called direct model inversion methods (e.g. spectral
matching), which try to minimize every individual spectrum by finding the optimal
concentration set for a given model and single spectrum. Here a local linear regres-
sion technique is used to compute the needed coefficients. In this task the inversion
of the regression matrix of reflectances is a necessary step. Due to the high spectral
correlations this can lead to massive numerical problems. Therefore a regularisation
method must be applied, to overcome this ill-posed problem. One also must take
into account the radiometric resolution and noise in the measurement. As an optimal
information extraction and noise suppression tool, the principal component analysis
(PCA) was chosen. Figure 5.4 illustrates the steps to compute the coefficients.

The first step is the simulation of a large set of reflectances R or radiances L as
explained above. Then a principal component analysis is applied to this data set.
The eigenvalues λ determine the intrinsic dimensionality, i.e. the principal com-
ponents corresponding to the highest eigenvalues contain the main and useful part
of information and the lower eigenvalues corresponding components contain the
measurement noise. These lower principal components are omitted for further cal-
culations to increase noise stability of the developed inversion algorithm. Next the
correlation between geophysical parameters and higher principal components is
established (step 4). Since the principle components are orthogonal it can be easily
done. But his formula can not yet be used for a general interpretation, because the
result of PCA strongly depends on the statistical (covariance) properties of the initial
data set. The data set in a natural scene will never be expected the same, as that used
for the simulation. Therefore this formula must be generalized. This can be done
by back-transforming the principal components to radiances using the eigenvectors.
Finally one gets a regression formula between parameters and radiances (steps 5



5 Remote Sensing of Coastal Water Quality in the Baltic Sea Using MERIS 63

Fig. 5.4 Steps of the
principal component
inversion

and 6). Comparing with a Neural Network approach one could asses, both meth-
ods are performing a model inversion, minimizing the global interpretation error
and differing mainly in the method of “training” the interpretation coefficient sets.
Neural nets are often using backpropagation techniques, PCI uses principal compo-
nent transformation as an optimized error-noise suppressing filter. One advantage
of the PCI is the additional information about correlations between the parameters
and principal components, which allows a direct estimation of the interpretation
potential of the investigated data set. Concerning the piecewise linearization of the
data set during interpretation one has to choose the appropriate of the pre-calculated
coefficient sets. The problem is solved by trying all sets and testing the sub-range
conditions under which they were calculated. In the case of impossibility to find a
solution an invalid flag is raised.

Similar basics as described here for the Principal Component Inversion are
used in the Minimum Noise Fraction Transformation (MNF, e.g. Chen 2000).
However, there it is not the goal to build a physically based inversion to derive
geo-physical parameters directly from remote sensing measurements but to find
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optimal algorithms to reduce dimensionality and noise in the data. Since in the
described above Principal Component Inversion we use Eigenvectors normalised
to expected measurement noise the optimization effect is similar to the approach of
the MNF.

5.7 Monitoring of Water Quality

Monitoring of (coastal) water quality by the use of remotely sensed data has become
an important task during the last years (Kratzer et al. 2008). In Europe the Global
Monitoring for Environment and Security (GMES, http://www.gmes.info/) pro-
gramme by ESA and the European Commission has put a significant effort into
the development of infrastructure and services providing data and information for
coastal environmental management and the monitoring of environmental directives.
One project dealing in particular with water quality information and surveillance of
critical algal blooms in European waters is the “Marine and Coastal Environmental
Services” (MarCoast) funded by ESA (http://gmes-marcoast.com/). At DLR in the
frames of this project an operational processing chain for MERIS data has been
set up and integrated in the automated environment at the German Remote Sensing
Data Center. It serves users in Germany (governmental and public institutions on
national and state levels) with information products on a daily basis. The products
are available in the form of images as well as scientific data formats, optional GIS-
compatible formats are also available. All products are provided as daily maps and
10-day, monthly and seasonal averages.

Water quality:

• Water constituents (Chlorophyll, suspended sediment, Gelbstoff)
• RGB colour composites
• Sea surface temperature
• Water transparency

Algal bloom monitoring:

• Bloom strength indicator map
• Bloom location and extend (text)

The services are running now for three years and will be continued on a regular
basis. User access is realised via an ftp-server, in addition all data are archived in
DLR’s multimission long term archive system. Figures 5.5 and 5.6 shows examples
for the set of information products. The results in terms of geophysical parameters
have been validated against in situ measurements from regular monitoring stations
operated by state authorities of Mecklenburg-Vorpommern (German state along the
Baltic coast). Chlorophyll and sediment show good agreement except very near to
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Fig. 5.5 Operational water quality products or the Baltic Sea derived from MERIS (top left to
bottom right: Chlorophyll, suspended matter, water transparency, sea surface temperature)

Fig. 5.6 Products for the monitoring of algal blooms (left: color composite, right: bloom strength
indicator)
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the coast where bottom and adjacency effects cause problems. The accuracy of yel-
low substance, by its physical nature the weakest parameter for retrieval, is currently
not satisfactory. One cause for this may be inappropriate bio-optical model, is this
is currently investigated.

5.8 Conclusions

The physical complexity of coastal waters result in a challenge to inversion
algorithms applied to data over such waters. Model-based, multivariate inversion
techniques provide the adequate tool to solve the task. During the past years
this technique using a variety of mathematical methods and implementations has
become mature and finds a wide range of applications for environmental moni-
toring. Hyperspectral instruments which will become more and more available in
the upcoming years provide measurements with a dimensionality of an order of
magnitude larger than currently operational satellites. Also in this case multivariate
algorithms are the tool to cope with this huge information content.
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Chapter 6
Remote Sensing for Water Quality Monitoring
in Apalachicola Bay, USA

Wenrui Huang, Shuisen Chen, and Xiaojun Yang

Abstract In this paper, we provide a review on remote sensing of water quality
in coastal and estuarine ecosystems. As a case study, we further describe the use
of remote sensing to estimate total suspended solids (TSS) and chlorophyll-a in
an estuarine ecosystem, Apalachicola Bay, which is located along the northeastern
Gulf of Mexico, USA. Based on the remote sensor data and the regression mod-
els derived for the Apalachicola Bay, we found that TSS concentrations indicate
strong sediment resuspension, which may be induced by the passage of Hurricane
Frances in 2004. We also examine the effects of river flow on estuarine chlorophyll-a
concentrations by using remote sensor data, showing higher chlorophyll-a con-
centrations during the high-flow season. This study demonstrates that remote
sensing can be used as an effective tool for water-quality monitoring in coastal
ecosystems.

6.1 Introduction

Water quality is important for healthy estuarine ecosystems. Estuarine water qual-
ity can be affected by many natural and anthropogenic factors. For example, in
shallow water estuaries of the Gulf of Mexico, tides, wind, and river flows can eas-
ily re-suspend sediments, causing high turbidity and changes in salinity regimes
(Huang 2009; Huang et al. 2002; Wang et al. 2009). Among many estuaries
along the Gulf of Mexico, Apalachicola Bay is a highly productive barrier-island
estuary, which generally produces 90 percent of Florida’s commercial oyster har-
vest and the third largest shrimp catch (Whitfield and Beaumariage 1977). It is
located in the panhandle of Florida, USA (Fig. 6.1). Preservation of the ecology
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Fig. 6.1 Location of the Apalachicola Bay, Florida, USA

in Apalachicola Bay has been recognized as of state, federal, and international
importance. The bay has been designated as a National Estuarine Research Reserve,
Outstanding Florida Water, State Aquatic Preserve, and International Biosphere
Reserve. The importance of freshwater inflow to the estuarine productivity and the
aquatic ecosystem has been recognized by researchers and coastal managers for
decades (Livingston et al. 2000). The high seafood production in estuarine systems
is often associated with sufficient freshwater input. Currently, the Bay is in rela-
tively unaltered state with freshwater inflow as a major controlling factor to the
ecosystem (Livingston 1984; Livingston et al. 2000). Oyster mortality due to steno-
haline predators (salt-water fish) is a major determinant of oyster productivity in
the bay. Low salinity resulting from sufficient freshwater input limits the preda-
tors from the oyster beds and maintains the oyster productivity (Livingston et al.
2000). Fresh water carrying nutrients is also a key factor to support the growth of
oysters, shrimps, and other species in the aquatic ecosystem. Modification of river
flow patterns and reduction of flow rates will affects the circulation and salinity
in the bay. As a result, it will affect predator-induced oyster mortality and growth
(Livingston 2000).

Apalachicola Bay receives freshwater flows from the Apalachicola,
Chattahoochee, and Flint River system (ACF), which drains over 60,000 km2

of Georgia, Alabama, and Florida (Livingston 2000). Consequently, human activi-
ties such as land use change, development, and upstream water diversion in the ACF
basin greatly affect the water quality of Apalachicola Bay. The spatial and temporal
patterns of water quality in the Bay reflect the spatial and temporal heterogeneity
of these controlling factors. The spatial and temporal variability in chlorophyll-a
concentration and TSS greatly affects the spatial and temporal variations in oyster
production in the Bay (Wang et al. 2009). Hence, detecting and mapping water
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quality across the entire Bay are crucial to environmental monitoring and can help
identify sensitive and vulnerable areas for detailed study, management, or restora-
tion in the Apalachicola Bay system. Because the distributions of water quality
variables in shallow Gulf of Mexico estuaries are spatially and temporally variable,
one of the best, synoptic approaches to understand the variations in water quality
variables to support resource management practices is through remote sensing.
Remote sensor data from the Moderate-Resolution Imaging Spectroradiometer
(MODIS) can be effective in detecting water quality in bays and estuaries because
of their medium but sufficient spatial resolution, sufficient sensitivity to water
quality variables, especially suspended sediment, and nearly daily coverage.

6.2 Water Quality Indicators for Coastal and Estuarine
Ecosystems

Water quality parameters such as chlorophyll-a, total suspended solids (TSS), salin-
ity, temperature, and velocity can be useful indicators of ecosystem health for oyster
growth. The spatial and temporal patterns of water quality in the Bay reflect the
spatial and temporal heterogeneity of these controlling factors. Sediments in shal-
low waters can impact the physical and ecological environment of a water column
through sediment re-suspension and transport (Wang et al. 2008). High TSS con-
centration can cause significant mortalities of oysters during the earliest phase of
larval development, and result in decreased oyster filtration rates (e.g. Dekshenieks
et al. 2000; Wang et al. 2008). Field data measurements of sediment concentra-
tions are generally expensive or have limited spatial coverage, especially for a large
area of estuarine water (Zawada et al. 2007). The distributions of TSS concentra-
tion in the shallow Gulf of Mexico estuaries are spatially and temporally variable,
especially during a hurricane. Remote sensing provides an effective approach to
monitor TSS concentrations in the large water area to support the monitoring of
hurricane-induced sediment re-suspension and resource management practices in
Apalachicola Bay.

Chlorophyll-a concentration is an indicator of phytoplankton abundance and
biomass of microscopic plants (phytoplankton), such as unicellular algae in coastal
and estuarine waters. They are potential indicators of maximum photosynthetic
rate. High levels of Chlorophyll concentration often indicate poor water quality and
low levels often suggest good conditions. However, elevated chlorophyll-a concen-
trations are not necessarily a bad thing, unless it is the long-term persistence of
elevated levels. An increase in chlorophyll-a indicates potential eutrophication of
the system. Consistently high or variable chlorophyll-a concentrations may indicate
the occurrence of algal blooms, which can be harmful to other aquatic organisms.
Chlorophyll-a is most likely to respond to nutrients and hydrodynamics; it may
also respond to changes in freshwater flow regime, water temperature, and aquatic
sediments.
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6.3 Remote Sensing for Estuarine Water Quality Monitoring

6.3.1 TSS Monitoring

Water quality in estuarine ecosystems is affected by many natural and anthro-
pogenic factors. Water quality parameters such as colored dissolved organic
matters (CDOM), chlorophyll-a, total suspended solids (TSS), salinity, temper-
ature, and velocity can be useful indicators of ecosystem health. The spatial
and temporal patterns of the water quality in estuarine ecosystems can reflect
the spatial and temporal heterogeneity of these controlling factors. Sediments in
shallow waters can impact the physical and ecological environment of a water
column through sediment re-suspension and transport (Wang et al. 2008). High
TSS concentrations can cause significant mortalities of oysters during the earli-
est phase of larval development, and further result in decreased oyster filtration
rates (e.g. Dekshenieks et al. 2000; Wang et al. 2008). Field data measure-
ments of sediment concentrations are generally expensive or have limited spa-
tial coverage, especially for a large area of estuarine waters (Zawada et al.
2007).

Ritchie et al. (1976) found a curvilinear relationship between suspended sed-
iments and water surface radiance or reflectance (0–200+ mg/L) because the
amount of reflected radiance tends to saturate as suspended sediment concentra-
tions increase. Han and Rundquist (1994) investigated the relationships between
surface spectral reflectance and suspended sediment concentrations using spectro-
radiometer and quantum-sensor data in an 8543 L vinyl pool, under natural sunlight,
and found the association between surface spectral reflectance and suspended sed-
iment concentrations was linear at low levels (about 600 mg/L) and non-linear at
high level of suspended sediment concentrations. The utility of MODIS 250-m data
for analyzing complex coastal waters was also examined in the Northern Gulf of
Mexico (e.g. Lake Pontchartrain, Mississippi River Delta, and Mississippi Sound),
including the mapping of the concentrations of total suspended matter (0–55 mg/L)
using simple dark object subtraction (DOS) procedures of atmospheric correction
(R2 = 0.89; n = 52; MSE = 4.74; Miller and McKee 2004). Koponen et al. (2007)
archived a retrieval accuracy (R2 > 0.9) of TSS concentration (2.9–20 mg/L) with
MEdium Resolution Imaging Spectrometer (MERIS) data (300 m spatial resolution)
while the RMSE is 0.74 mg/L (16%) for TSS concentration in the Gulf of Finland
(Baltic Sea). Zawada et al. (2007) showed that satellite-based observations are useful
for inferring TSS concentrations using a spectra-matching optimization algorithm
between the particle backscattering coefficient at 400 nm and TSS (2–50 mg/L)
concentrations in Chesapeake Bay from Sea-viewing Wide-Field-of-view Sensor
(SeaWiFS) data with low determination coefficient (R2 = 0.4). Fang et al. (2008,
2009) described two methods of deriving surface suspended solid (SS) distributions.
One was from 549 nm spectral reflectance (negative correlation due to TSS dom-
inated by particles-carried organic matter) for Hyperion-based TSS concentration
mapping, resulting in reasonable spatial distributions of TSS concentration in the
Pearl River Estuary (China); the other was by linear fit between in situ reflectance
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ratio R680/R527 and TSS concentrations (R2 = 0.65, range: 7.0–241.1 mg/L) for
the salinity range of 1.74–22.12.

6.3.2 Chlorophyll-a Monitoring

In recent years, remote sensing has been successfully applied to measure
chlorophyll-a concentrations in estuarine and coastal waters (e.g. Gitelson et al.
2005; Werdell et al. 2009; Zimba and Gitelson 2006). Kallio et al. (2001) tested the
suitability of the airborne imaging spectroradiometer (AISA) for monitoring lake
water quality in four surveys carried out in southern Finland during 1996–1998;
they found the ratios L685–691/L670–677 and L685–691/L677–685 gave higher R2

(0.93 and 0.95, respectively) when the chlorophyll-a concentrations were less than
21 mg/m3. Han and Jordan (2005) developed algorithms for estimating chlorophyll-
a concentration (1.14–23.2 mg/m3) in Pensacola Bay using Landsat 7 ETM+ data;
their results indicated that the ratio of ETM+ 1/ETM+ 3 was the most effective in
estimating chlorophyll-a (R2 = 0.67; standard error (SE) = 1.55 mg/m3). Fang et al.
(2008) studied the spatial change tendency in the Pearl River Estuary (China) from
the in situ data, and found the negative linear relationship between chlorophyll-
a concentration and colored dissolved organic matters (CDOM) absorption under a
salinity of 10. The peak value of chlorophyll-a concentration of surface water in tide-
way reach was observed where the saltwater and freshwater interface. Originally, a
conceptual model was developed and used for estimating pigment concentration of
terrestrial vegetation (Gitelson et al. 2003, 2005). Using 14–0.4 ha earthen produc-
tion ponds having an average depth of 0.9 m, Zimba and Gitelson (2006) established
strong linear relationships between analytically measured chl-a (107–3000 mg/m3)
and both the three-band [R-1(650) – R-1(710)] × R(740) and the reflectance ratio
model R(714)/R(650); the three-band model accounted for 7% more variation of
chl-a concentration than the ratio model (78 vs. 71%). Gitelson et al. (2007) again
established strong linear relationships between analytically measured chl-a and both
the three-band model [R-1(675) – R-1(695)] × R(730) and the two-band model
R(720)/R(670); the three-band model accounted for 81% of variation in chl-a and
allowed estimation of chl-a with a root mean square error (RMSE) of less than
7.9 mg/m3, whereas the two-band model accounted for 79% of chl-a variability and
RMSE of estimation was below 8.4 mg/m3. The three-band model was also cali-
brated and validated using three MERIS spectral bands (660–670, 703.75–713.75,
and 750−757.5 nm), and the 2-band model was tested using two MODIS spectral
bands (λ1 = 662–672, λ3 = 743–753 nm) (Gitelson et al. 2008); under turbidity
of 1.3–78 NTU, the (1.2–236 mg/m3) predicted by the three-band algorithm was
strongly correlated with observed (R2 = 0.96), with a precision of 32% and average
bias across data sets of –4.9 to 11%, and predicted by the two-band algorithm was
also closely correlated with observed (R2 = 0.92); however, the precision declined
to 57%, and average bias across the data sets was 18–50.3%. Le et al. (2009)
validated the applicability of a semi-analytical three-band algorithm in estimating
concentration in the highly turbid, widely variable waters of Taihu Lake, China,
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and improved the algorithm using a proposed four-band algorithm. The improved
algorithm is expressed as [Rrs(662)-1−Rrs(693)-1][Rrs(740)-1−Rrs(705)-1]-1.
The two semi-analytical algorithms were calibrated and evaluated against two inde-
pendent datasets collected from 2007 (4–158 mg/m3) and 2005 (0.98–89.2 mg/m3)
in Taihu Lake. In several cases, fluorescence line height has been successfully used
for the remote detection of in case 2 waters (Gower et al. 1999).

Gons et al. (2008) assessed Chlorophyll-a concentrations and “water-leaving”
reflectance along transects in Keweenaw Bay (Lake Superior) and in Green Bay
(Lake Michigan) (two of the Laurentian Great Lakes, USA), featuring oligotrophic
(0.4–0.8 mg/m3) and eutrophic to hyper-eutrophic waters (11–131 mg/m3); a quite
strong linear relationship (R2 > 0.81; standard error (SE) < 0.049 mg/m3) was found
between concentration and fluorescence line height (FLH) computed with these
MERIS bands, respectively.

6.4 Remote Sensing of Water Quality in Apalachicola Bay

Remote sensing can provide spatial and temporal water quality data covering large
areas for estuarine and coastal ecosystem studies. Traditionally, insufficient budget
for expensive field data collections has been a major obstacle in ecosystem studies.
By using the algorithms originally developed for open ocean waters, NASA pro-
vides estimates from SeaWiFS data with 1-km spatial resolution for open ocean.
Nevertheless, the 1-km resolution estimates from SeaWiFS are too coarse that are
virtually useless for small estuarine ecosystems (such as Apalachicola Bay) with
highly optical complexity. On the other hand, MODIS imagery provides much
higher spatial resolution, and therefore is suitable to coastal ecosystems that are rel-
atively small. In recent years, we conducted several studies that aimed in monitoring
TSS and in Apalachicola Bay by using MODIS data.

6.4.1 Estimating TSS Concentrations

For non-hurricane conditions, Wang et al. (2009) developed a regression model to
estimate TSS concentrations based on remote sensor data and two field data sets in
Apalachicola Bay, which can be further enhanced by including more data for appli-
cations to extreme weather conditions. For investigating the impact of Hurricane
Frances on TSS concentrations on Apalachicola Bay, Chen et al. (2009) used an
in-water empirical method of atmospheric correction that substantially enhanced
the TSS model developed by Wang et al. (2008) for non-hurricane conditions. The
remote sensing model used 250-m Moderate Resolution Imaging Spectroradiometer
(MODIS) to estimate TSS concentrations in the Bay. The distribution of TSS con-
centrations in the shallow Gulf of Mexico estuaries was spatially and temporally
variable, especially during passage of Hurricane Frances (the average TSS and max-
imum concentration about 54.3 and 165 mg/L in the Bay, respectively) compared to
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under no-storm or hurricane condition (the average TSS and maximum concentra-
tion approximately 24–27 and 58–64 mg/L) (Chen et al. 2009). Chen et al. (2009)
also found the southwestward wind (about 50◦ from north) during the Hurricane
Frances induced southwestward currents and transport that resulted in the high
TSS concentrations near West Pass in Apalachicola Bay and the Gulf of Mexico.
Common to these studies was to relate remote sensor reflectance measured in the
red band (600–700 nm) to parameters of water column sediment concentrations.
This rationale lies on the dominated scattering from suspended materials when com-
pared to other elements such as colored dissolved organic matter and phytoplankton
absorption. The fine spectral characteristics of the MODIS Terra/Aqua instrument
plus provide data well suited for the study of TSS in complex coastal waters. The
MODIS data that are freely available and at moderately high resolution are useful
for estimating TSS concentration in small estuaries.

Using MODIS data and the regression model obtained by Chen et al. (2009),
we found relatively high TSS concentrations in Apalachicola Bay as the results
of wind-induced sediment resuspension during the Hurricane Frances in 7/21/2005
(Fig. 6.2a). The mean TSS concentration was 17.2 mg/L. The imagery shows the
large spatial variations of TSS concentrations. The maximum concentration was
60.1 mg/L, while the minimum concentration was 3.2 mg/L. The standard deviation
was 7.0 mg/L.

6.4.2 Estimating Chlorophyll-a Concentrations

Wang et al. (2009) developed a regression model of logarithmically transformed
concentration and the ratio of Band 2: Band 1 (MODIS 250 m) to mapping
chlorophyll-a concentration from MODIS imagery for Apalachicola Bay (R2 =
0.53, N = 16, P < 0.001). Huang et al. (2009) applied the regression model devel-
oped by Wang et al (2009) to investigate river inflow effects on chlorophyll-a
concentrations in the bay for year 2001 and 2008. Averaged high chlorophyll-a
concentrations are given in Fig. 6.2b and c for high-flow season (B) and low-
flow season (C). Results indicate that chlorophyll-a concentrations were much
higher in high-flow season than those in low-flow season. Large spatial differ-
ences in Chlorophyll-a concentrations also show an advantage of MODIS-250 m
data, which have much higher resolution when comparing with SeaWiFS. Due to
wind and tidal effects, higher waters in the bay was exported to low water in the
Gulf of Mexico in West Pass, and low ocean waters intruded into the Bay from
the East Pass. In general, chlorophyll-a concentration in most areas in the Bay in
low-flow season are below 10 mg/L. In high-flow season, the maximum concen-
tration reaches about 18 mg/L. Strong concentrations near inside and outside of
West Pass are the evidence of the flux of high-concentration bay water to the Gulf
of Mexico through the West Pass inlet. Away from the bay, Chlorophyll-a concen-
trations were lower in the Gulf because of the dilutions by the less-concentrated
waters.
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Fig. 6.2 Estimating water
quality indicators using
MODIS data for Apalachicola
Bay, USA. (a) The TSS
concentrations derived from
the regression model
originally developed by Chen
et al. (2009). (b and c)
Examples of averaged Chl-a
concentrations at high flow
(b) and low flow (c)
conditions
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6.5 Summary

Due to large spatial variations, traditional approaches for large-scale spatial and
temporal data collections of water quality in estuaries are often very expensive.
This paper introduces a cost-effective approach to monitor water quality in estuar-
ine ecosystems by using remote sensing. Among many satellite remote sensing data,
MODIS imagery is available at a daily basis with 250 m resolution, which is much
higher than the 1-km resolution SeaWiFS products. Although Landsat TM/ETM+
may provide data with much higher spatial resolution, its 27-day temporal resolu-
tion makes it difficult to monitor daily variations concerning estuarine dynamics.
Remote sensing-based studies of estuarine water quality in Apalachicola Bay have
demonstrated the advantages of MODIS data. Our case studies have shown that
remote sensing can be used to assess hurricane impacts on estuarine sediment resus-
pensions and TSS concentrations; remote sensing can also be used to evaluate river
inflow effects on chlorophyll-a in estuarine waters. Because chlorophyll-a and TSS
are important indicators for water quality and estuarine ecosystem, results from this
study can be used to support the environmental and ecological research as well as
water resources management in Apalachicola Bay.
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Chapter 7
Extracting Cryospheric Information over
Lowlands from L-Band Polarimetric SAR Data

Nicolas Longépé, Masanobu Shimada, Sophie Allain, and Eric Pottier

Abstract Seasonal frozen ground and snow cover are sensitive indicators of how
our home planet is changing. In the meantime, new spaceborne SAR systems have
been launched, such as the polarimetric PALSAR sensor on-board ALOS in January
2006. In this paper, the relevance of L-band polarimetric SAR data for extracting
cryospheric information is presented over lowlands. It is first demonstrated that
dry snowpack over frozen ground slightly affects the polarimetric signature. Given
the fact that PALSAR data do not enable the use of a simplistic threshold-based
method, a refined method for snow detection in PALSAR time series is outlined. A
supervised Support Vector Machine is used showing fairly good results within the
framework of a three-class classification (dry snow over frozen ground, wet snow
and free of snow). Beyond these qualitative studies, a polarimetric EM backscatter-
ing model over snow-covered frozen fields brings out the possibility for quantitative
assessments. The residual liquid water content in frozen ground over lowlands is
estimated from PALSAR measurements.

7.1 Introduction

The cryosphere is an important part of the Earth system, being so interconnected
with other parts. Recent changes in the cryosphere have had a major impact on
global climate. Seasonal snow cover and frozen ground appear to be some nat-
ural barometers of global warming. Over the last two decades, satellite remote
sensing has opened the possibility to monitor these cryospheric elements at global
scale. Synthetic Aperture Radar (SAR) imaging systems are very promising since
they overcome the night-time limitation of optical cameras and the cloud-cover. In
addition, microwave SAR sensor can provide valuable information on the vertical
structure of the observed natural media. For example, Electromagnetic (EM) waves
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at L-band (around 1.3 GHz) penetrate dry snow and can provide quantitative
information on the underlying media. However, the relationship between the EM
backscattering and the ground properties is not straightforward.

In the last 4 years, the Phased Array type L-band Synthetic Aperture Radar
sensor (PALSAR) on-board the Advanced Land Observing Satellite (ALOS) has
played a key role for the on-orbit demonstration of polarimetric SAR applications
(Rosenqvist et al. 2007). Polarimetry can provide interesting information about
the intrinsic physical properties of natural media, and was successfully tested for
forestry (Hoekman and Quiriones 2000) or crop monitoring (Skriver et al. 2005).
Nevertheless, its relevance for extracting cryospheric information over lowlands has
not been extensively proved up till now. In this paper, polarimetric PALSAR data
are used and their usefulness for seasonal snow and frozen ground monitoring is
demonstrated.

Section 7.2 sketches the relation between the polarization of the backscattered
waves received by PALSAR sensor and two different cryospheric states (dry snow
over frozen ground and wet snow). Neural networks, fuzzy iterative classifier
or statistical segmentation have been developed to classify natural media using
Polarimetric SAR data. Section 7.3 shows the need to use such a refined method
in order to detect these cryospheric states. The Support Vector Machine has been
chosen in the framework of this study. Beyond this qualitative assessment, Section
7.4 outlines a method for the retrieval of residual liquid water content in frozen
ground. This method is based on the simulation of a snow EM model adapted to this
L-band case.

7.2 Polarimetric Studies over Snow-Covered
Agricultural Fields

7.2.1 Data

PALSAR is a fully polarimetric instrument, operating at L-band (1270 MHz center
frequency) with a 21.5◦ default off-nadir angle for polarimetric acquisitions. This
mode provides the full polarimetric scattering matrix (SHH, SHV, SVH, SVV) over a
30 km width swath with a 9.36 m × 4.45 m slant range resolution. Some calibration
characteristics of the PALSAR instrument are given in Table 7.1, with the corre-
sponding pre-launch specifications. These results summarize the initial calibration
phase, which covers five months between May 16, 2006 and October 23, 2006 and
the first half-year of the operational phase. PALSAR data were calibrated and val-
idated using a total of 500 calibration points collected worldwide and distributed
target data over the Amazon (Shimada et al. 2009). Since the PALSAR radiometric
performances are better than the pre-launch specifications, PALSAR sensor is stable
enough to perform temporal polarimetric analysis.

Even though the effects of terrain relief on polarimetric SAR data can be
significantly reduced (Schuler et al. 1999), the variability of incidence angles
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Table 7.1 Radiometric performance for ALOS PALSAR (polarimetric mode)

ALOS PALSAR Pre-launch spec

Noise equivalent σ 0 <–30 dB (VV and HH)
<–34 dB (VH and HV) <–21 dB

Absolute accuracy 0,76 dB (1σ ) 1.5 dB
Signal-to-Noise ratio 8.5 dB Not specified
HH/HV cross-talk <–30 dB <–25 dB
VV/HH gain ratio 0,062 dB (1σ ) <0.2 dB
VV/HH phase difference 2,66◦ (1σ ) <5◦
Geo-location 9.7 m (σ : 5 m) <100 m

prevents from studying the polarimetric contribution of cryospheric media over
mountainous areas. For this study, the selected test site matches a large flat area
covered by agricultural fields. It is located in the north of Hokkaido Island (44.07◦
N 144.03◦ E) which represents the cold and snow prone northernmost land in
Japan. The backscattering for the HH channel acquired by PALSAR over this area
is shown in Fig. 7.1. The SAR image reveals different natural media such as bodies
of water with the Okhotsk sea on the top and three different oval lakes (weak
backscattering power over frozen water), hilly forests on the left-bottom corner
(medium backscattering due to canopy-volume contribution) and agricultural fields.
Crops such as potatoes, barley, sugar beet and soybean are sowed approximately
in mid-May and harvested from end-August to mid-October, as opposed to winter
wheat whose sowing and harvest periods take place in September and early August,
respectively. Its interaction with EM waves can be neglected in winter at L-band
since winter wheat sprouts before freezing occurs, then becomes dormant until
the soil warms up in the spring. In this paper, PALSAR data will be exclusively
analyzed over these agricultural fields.

Over this test site, eight fully polarimetric SAR data sets were acquired by
PALSAR (in May, June, August, September 2006, March, May, November 2007
and February 2008). Three acquisitions are of interest:

Fig. 7.1 Location of the test site in Hokkaido Island – Japan (left). HH backscattering acquired by
PALSAR sensor over the test area on February 15, 2008 (right)
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• Wet snow on March 2007: Snow depth, temperature, rainfall and snowfall mea-
surements were performed by automatic stations during 2007 and 2008 winters
and collected by the Japanese Meteorological Agency (JMA). PALSAR acquisi-
tion on March 30, 2007, occurred during a snow melting period. Prolonged mild
spell at the end of March reduced the snowpack from approximately 45 to 15 cm
in about 10 days. The snowpack is thoroughly wet in most locations with a good
chance of bare spots.

• Bare soil on November 2007: By using polarimetric incoherent decomposition
theorems (Cloude and Pottier 1996; Freeman and Durden 1998), data acquired
on November 15, 2007, show the lowest volume scattering contribution. At this
date, the ground is still unfrozen and no snowfall was measured by the JMA: the
fields can be considered as “bare soil”. It is in agreement with the aforementioned
sowing and harvest periods.

• Dry snow over frozen ground on February 2008: During the last polarimet-
ric PALSAR/ALOS overpass on February 15, 2008, ground-truth measurements
were conducted within the test site indicating completely dry low-density snow-
pack over frozen soil. At L-band, this snowpack can be considered as spatially
homogeneous with a 30 cm thickness and a density of 0.21 ± 0.01. Hirota et al.
(2006) investigated the relationship between daily temperature and frost depth
over this area, and proposed the following equation:

Dmax ≈ β
√

F20 (7.1)

where Dmax is the maximum frost depth and β an empirical coefficient. The soil
freezing index F20 sums days with a daily average air temperature below 0◦C until
snow depth reaches 20 cm. For this acquisition date in February, frost depth is
estimated to be equal to 14 cm.

Finally, it is worth emphasizing that the five other acquisitions are realized in the
presence of agricultural vegetation and will be used to point out the uniqueness of
the three aforementioned ones.

7.2.2 Qualitative Polarimetric Analysis

In the case of natural media, polarimetric data are generally processed using incoher-
ent averaging techniques and speckle reduction. In order to characterize the second
order statistical properties of a set of n independent matrices, n-look 3 × 3 coherency
matrix T is built as follows:

T = 1

n

n∑

i=1

kik∗T
i with k = 1√

2
[SHH + SVV, SHH − SVV, 2SHV]T (7.2)

with k the so-called target scattering vector in the Pauli polarization basis depending
on the scattering complex element Spq. In this study, a 4-look averaging in azimuth
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with a Lee refined speckle filtering (Lee et al. 1999) are applied on these polarimet-
ric PALSAR data. Numerous descriptors extracted from the coherency measured
matrix can be analyzed in order to find the best thresholds that might split data
into different classes. In Fig. 7.2, some histograms are plotted for various relevant
polarimetric descriptors acquired over the agricultural fields. The EM backscat-
tering coefficients (HH, VV and VH channels), the Freeman–Durden powers (the
single bounce Ps and volume Pvol components) and the Cloude–Pottier eigenvalue-
eigenvector parameters (the entropy H, ᾱ angle and anisotropy A)1 are illustrated.
The aim of this qualitative study is to analyze the influence of snow cover and frost
on the polarimetric signature. Consequently, these histograms have been normalized
against data acquired over bare soil condition (November 2007). The understand-
ing of scattering mechanisms is a delicate issue and largely depends on the chosen
polarimetric parameters. However, the following trends can be observed:

Fig. 7.2 Histograms of various polarimetric descriptors over agricultural fields with different
cryospheric conditions compared to the bare soil case: wet snow on March 2007 (+), dry snow
over frozen ground on February 2008 (—) and soil with small vegetation using the five other
acquisitions (o). The significance of the shift values will be discussed in Section 7.4.2

1The entropy determines the degree of randomness of the scattering process, the ᾱ angle is related
to the physics behind the scattering process (ᾱ → 0: single-bounce, ᾱ → π/4: volume, ᾱ → π/2:
double-bounce). The anisotropy A measures the relative importance of the second and the third
eigenvalues of the eigen decomposition.
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• Case of wet snow: The co-polarized backscattering coefficients σ 0
VV and σ 0

HH
(not shown) are higher in the case of wet snow cover, and the Freeman–Durden
decomposition shows an increase in the single bounce phenomena (left column).
In agreement with these observations, the diminutions of the entropy H and the ᾱ

angle confirm the increase of the single bounce contribution with wet snow cover.
• Case of dry snow with frozen ground: A slight difference can be observed

between the co-polarized backscattering coefficients of dry snow with frozen
ground and the ones of bare soil. Histograms are Gaussian-shaped centered
around –1.10 dB (σ 0

VV) and –0.54 dB (σ 0
HH-not shown) with approximately 1.6

dB standard deviation. By contrast, some polarimetric parameters provide use-
ful information (central column). Dry snow cover over frozen ground induces a
decrease of secondary mechanisms, as suggested by Pvol or σ 0

VH.
• Case of vegetation cover: As expected, some polarimetric indicators such as the

entropy H or the ᾱ angle clearly indicate that the volume contribution is higher
in case of crops. This point clearly shows that polarimetric SAR data are suitable
for crop monitoring.

Polarimetric SAR data acquired under dry or wet snow condition at L-band pos-
sess specific attributes and seem to be identifiable in time series. However, it should
be noted that the standard deviation for all of these histograms does not allow the use
of simplistic threshold-based method. A refined methodology should be outlined.

7.3 State of the Cryosphere by Means of Statistical
Learning Method

In the previous section, it was qualitatively shown that the state of the cryosphere
over lowlands and polarimetric PALSAR data establish a confusing relation. In
another hand, classification algorithms based on statistical learning methods such
as the Support Vector Machine (SVM) are used in a wide range of data mining
applications. SVM has been successfully introduced in remote sensing (Foody and
Mathur 2004; Melgani and Bruzzone 2004) and is investigated in the framework of
this study.

7.3.1 SVM Background

In this paper, SVM theory is outlined for binary classification. Further explana-
tions can be found in numerous books, especially Vapnik (1998) and Cristianini and
Shawe-Taylor (2000) . First, training SAR data x ∈ R

n are assigned to one of the
two possible clusters �i ∈ {+1; −1}. For each pixel, p stands for the number of
elements derived from the polarimetric measurements (backscattering coefficients,
channel correlation, parameters derived from incoherent decompositions. . .). In this
Euclidean space of dimension p, SVM computes a decision function (hyperplane)
which separates the positive from the negative samples. The decision function can
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be written as f (x) = wx + b where xi ∈ R
p is the ith sample vector, w ∈ [R]p a

weight vector and b a scalar. An equivalent problem consists in solving the following
constraints:

xiw + b ≥ +1(−ξ∗
i ) for �i = +1

xiw + b ≤ −1(+ξ∗
i ) for �i = −1

}
(7.3)

After some manipulations, the distance between the closest positive and negative
samples is equal to 2/ ‖w‖ where ‖w‖ is the Euclidean norm of w. Consequently, the
optimal hyperplane is given by maximizing this margin, subject to the constraints
defined by Eq. (7.3). The solution is illustrated on the top panel of Fig. 7.3.

In general, input data are non-separable and positive slack variables ξ should be
introduced in the aforementioned constraints – see ∗ in Eq. (7.3). ξ i is a measure
of the misclassification error for the ith sample vector and exceeds unity in that
case. Therefore, the generalized optimal separating hyperplane is determined by the
vector w subject to the constraints of Eq. (7.3), minimizing:

	(w, ξ ) = 1

2
||w||2 + C

∑

i

ξi (7.4)

where C is a user-defined parameter accounting for the relative importance of the
misclassification errors. In the case where linear boundary is inappropriate, data

Fig. 7.3 Linear separating
hyperplanes for the separable
case (top) and non-separable
case (bottom) by Burges
(1998)
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are projected through a “Kernel function” to another Euclidean space with higher
dimension where SVM can find a linear separating hyperplane. Choosing non-linear
kernels allows to construct classifiers that are linear in the feature space, even though
they are non-linear in the original space. This projection is very powerful compared
to the classical threshold-based classification. As a default kernel, the Gaussian
Radial Basis Function (RBF) of the form

K(xi, xj) = e−γ ||xi−xj||2 (7.5)

is usually used. It should be noted that the user-defined penalty parameter, C, and the
kernel parameters, γ , have to be optimized for each vector configuration by using a
“grid-search” with k-fold cross-validation.2

7.3.2 Methodology

In the framework of this study, a three-class classification (“dry snow over frozen
ground”, “wet snow” and “free of snow”) is realized based on the eight polarimetric
PALSAR acquisitions and the SVM method. Following Section 7.2.1, data acquired
on February 2008 (March 2007, resp.) are considered as belonging to the “dry snow
over frozen ground” class (“wet snow” class, resp.). The six others among which
the one acquired under bare soil condition are labeled as “free of snow”. The same
number of training data is randomly selected for each class (i.e. 2500 pixels). For
the “snow free” class, training data are equiprobably chosen among the 6 acquisition
dates. Numerical implementation by Chang and Lin (2001) is used with the RBF
kernel. The classifier is optimized finding the best (C, γ ) pair using a fivefold cross-
validation.

The capabilities of polarimetric PALSAR data for detecting the state of the
cryosphere are then tested over more than 250,000 pixels for each acquisi-
tion. The assessment of classification accuracy is based on the confusion matrix,
which is derived after comparison of estimated classes against true classes.
Four different SVM tests are presented in this study depending on the input
vector (the three backscattering coefficient, the Freeman–Durden decomposition
powers, the Cloude–Pottier eigenvector-based parameters or the coherency matrix).
Finally, the classical classification method based on the Maximum Likelihood (ML)
with a multivariate complex Wishart distribution of coherency matrices (Lee et al.
1994) is tested in this study. The results can be directly compared to the ones issued
from the SVM with the nine elements of the coherency matrices.

2k-fold cross-validation consists in partitioning the data set into k subsets. Of the k subsets, k – 1
subsets are used as training data, and the remaining single subset is retained as the validation data
for testing the hyperplane. The cross-validation process is then repeated k times, with each of the k
subsets used exactly once as validation data. Finally, the k results are averaged producing a single
and stable estimation.
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Table 7.2 Classification accuracies (in %) using SVM with different polarimetric parameters and
classical ML decision with a multivariate complex Wishart distribution of coherency matrices

Estimation Overall

Free Wet Dry Accuracy

SVM with Backscattering powers
Free of snow 68.9 5.8 25.4
Wet snow 11.6 50.1 38.3 68
Dry snow/frozen ground 15.4 5.7 78.9

User accuracy 94 55 29

SVM with Freeman powers
Free of snow 81.5 6.9 11.6
Wet snow 10.6 76.6 12.8 83
Dry snow/frozen ground 4.1 1.2 94.7

User accuracy 97 64 53

SVM with H/A/α powers
Free of snow 75.1 6.4 18.5
Wet snow 10.5 53.5 36 73
Dry snow/frozen ground 8.1 15.3 76.7

User accuracy 96 50 34

SVM with Coherency matrix T
Free of snow 76.2 6.2 17.6
Wet snow 13.3 52.8 34 74
Dry snow/frozen ground 12.6 6.2 81.1

User accuracy 95 55 37

ML with Wishart T
Free of snow 85.0 5.6 9.4
Wet snow 41.7 41.1 17.3 74
Dry snow/frozen ground 47.5 13.7 33.8

User accuracy 85 46 35

The confusion matrices are showed in Table 7.2. The diagonal elements represent
correctly classified pixels while the cross-diagonal elements represent misclassified
pixels. The User Accuracy indicates overestimation and is defined for each class
as the ratio between the number of correct classifications and the total number of
classifications in the category.

7.3.3 Results

First of all, we can notice that the overall classification accuracy of SVM
with the three backscattering coefficients is significantly lower than others. As
shown in the last section, backscattering coefficients are not specifically linked
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Fig. 7.4 Correlation between the soil correlation lengths determined with VV and HH chan-
nels (left). Soil roughness characteristics estimated by L-band PALSAR measurements over the
agricultural bare soil on November 2007 (right). Gray tones indicate the number of occurrences

to physical mechanisms and do not exclusively depend on cryospheric informa-
tion. SVM with Freeman powers shows the best accuracy (OA = 83%) revealing
the relevance of this polarimetric decomposition in providing complementary
powers. Other input parameters give fairly good results with overall accuracies
around 74%.

It should be noted that wet snow detection seems difficult as compared to the
“dry snow and frozen ground” case. This result is unexpected since wet snow
should have a stronger impact on the backscattering mechanism. By contrast, the
detection of dry snow cover over frozen ground is excellent with Freeman decom-
position (94.7%). Depending on the input parameters, this score varies and the
false alarm rate for the “dry snow/frozen ground” case is significant resulting in
a User Accuracy below 40%. Finally, it is shown that snow detection seems lim-
ited with the ML decision: the pseudo-distance based on the Wishart distribution is
inappropriate.

In a general manner, polarimetric L-band SAR data provide useful information
related to the state of the cryosphere. SVM classifier with appropriate polarimetric
parameters derived from PALSAR data seems particularly powerful. The results in
the case of SVM with Freeman decomposition are illustrated by Fig. 7.4. However,
this temporal representation reveals the fact that the Freeman decomposition in
September 2006 is statistically close to the “dry snow/frozen ground” case for the
SVM technique. The proposed methodology has to be improved, further optimizing
the Kernel function, and finding the most relevant polarimetric parameters using a
recursive feature elimination approach.

7.4 Quantitative Assessments

Beyond this qualitative assessment, this section introduces a methodology for
extracting quantitative cryospheric parameters over lowlands. Given the uncertain-
ties related to the soil condition in March 2007, this section will focus on the
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cryospheric conditions on February 2008. Given the penetration depth of dry snow-
pack at L-band (over 50 m), the total backscattering power in February is mainly due
to the soil contribution through the snowpack. Soil roughness is assumed constant
with the absence of plowing between the acquisitions on November 30, 2007, and
February 15, 2008. The only significant change about the ground concerns liquid
water content. In order to model the impact of dry snow and frost on the polarimet-
ric signature of February, the soil characteristics are first estimated using PALSAR
data acquired in November.

7.4.1 Bare Soil Characterization

Rough surface is generally assumed to be defined as a stationary process. It is
described by a height probability distribution function (exponential form defined
by the Root Mean Square (RMS) surface height σ soil) and a surface correlation
function (defined by the correlation length Lsoil).

The RMS surface height σ soil and the soil moisture Mv can be estimated by the
polarimetric Oh’s retrieval method (Oh et al. 2004). This method is based on a semi-
empirical polarimetric backscattering model developed both with theoretical models
(Integral Equation Model (IEM) (Fung et al. 1992) and Geometrical Optics) and an
extensive database. From radar observations of σ 0

VV, σ 0
HH and σ 0

VH, the direct model
is inverted through an inversion diagram of five different equations resulting in the
estimation of these two parameters. This algorithm is applied over the test area with
PALSAR data acquired in November 2007. The estimated median value for the soil
moisture is equal to 11.6%.3 With σ soil and Mv estimated, the soil correlation length
is then retrieved by the optimization of the IEM simulation in the co-polarized chan-
nels regarding PALSAR measurements. Cross-polarized channels are not used due
the uncertain accuracy of the IEM model to simulate multiple scattering phenomena.
Two different correlation lengths can be estimated according to the chosen channel
(VV or HH). The correlation between the retrieved correlation lengths, LVV

opt and
LHH

opt , is plotted on the left panel of Fig. 7.5.
It can be noticed that the correlation is excellent. However, the higher the correla-

tion length is, the more the values retrieved with HH channel are superior to the ones
with VV channel. IEM model linearly diverges from co-polarized PALSAR mea-
surements for low backscattering (i.e. high correlation length). This bias remains
nonetheless negligible confirming the relevance of the IEM model for simulating
the EM backscattering over bare soil. The final correlation length (average of the
two optimal Lopt) and the RMS height are plotted on the right panel of Fig. 7.5. The
regression equation (Lsoil ≈ 7.41 σsoil + 0.14) seems realistic for agricultural bare
soil. Soil characteristics retrieved from PALSAR measurements in November 2007
will be used in the following subsections.

3 This value has been confirmed by a hydrologic model proposed by Dingman (2002) coupled with
meteorological data provided by the JMA and soil information provided by Webb et al. (1991).
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Fig. 7.5 EM backscattering simulation over dry snowpack and frozen ground depending on snow
density for different residual liquid water content Mv ∈ [1–10]%. The values are normalized with
the simulated EM backscattering over the ground condition in November 2007

7.4.2 Electromagnetic Backscattering Modeling for Snow-Covered
Frozen Ground

The polarimetric signature induced by dry snow cover over frozen ground is simu-
lated in this subsection. Dry snow cover of density ρsnow induces four effects on the
EM backscattering at L-band (Shi and Dozier 2000).

• The incident wavelength within the snowpack λsnow is shorter because snow
is dielectrically thicker than air (εsnow > εair). The surface appears rougher,
inducing an increase of reflectivity.

• The snow near the ground reduces the dielectric contrast εsoil/εair → εsoil/εsnow,
reducing in turn the backscattering.

• The incidence angle at the snow–ground interface is smaller due to the refraction
within the snow.

• Volume contribution and extinction are neglected. No vertical snowpack structure
can influence the polarimetric signature.
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Finally, the total polarimetric backscattering over a dry snowpack is equal to:

Tdryshow = cos θ0

cos θsnow
R(θsnow, εsoil/εsnow, λsnow, Lsoil, σsoil) (7.6)

where θ0 and θ snow are the incidence angles in the air and within the snowpack,
respectively. R represents the 3 × 3 coherency matrix computed with the IEM
proposed by Fung et al. (1992). The hypothesis of reflection symmetry, which
is generally valid for rough surface, is used in this study. Correlation between
co-polarized and cross-polarized channels is assumed to be null.

〈
SppS∗

pq

〉
=

〈
SqqS∗

pq

〉
= 0 (7.7)

Following Eq. (7.6), the EM backscattering over the dry snowpack on February
2008 is simulated having the median soil characteristics estimated with PALSAR
data acquired in November 2007 (Lsoil = 34.4 cm, σsoil = 2.8 cm). Some polari-
metric parameters are plotted on Fig. 7.6 as function of snow density and soil
moisture content (low value in case of frost). In order to study the impact of these
two cryospheric elements, each polarimetric parameter is again normalized by the

Fig. 7.6 Classification of the cryospheric state over agricultural fields by means of SVM and
Freeman decomposition powers derived from PALSAR measurements: blue “Dry snow/frozen
ground”, red “Wet snow” and green “Free of snow”. Gray tones represent other non-used natural
media
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simulated parameter over the median bare soil condition found in November 2007
(i.e. with Mv equal to 11.6%).

Lower the soil moisture (e.g. permittivity), lower the EM backscattering
intensities, both for the co- and cross-polarized channels. EM backscattering over
dry snowpack mainly depends on this parameter at L-band. Snowpack induces also a
modification of the polarimetric signature. Single scattering |SHH + SVV|2 increases
whereas volume σ 0

VH and double bounce |SHH + SVV|2 phenomena decrease accord-
ing to the snow density. This point is in agreement with Fig. 7.2. Dry snowpack
induces a global decrease of the secondary mechanisms. In a qualitative manner, the
modifications due to dry snow and frozen ground are correctly considered with this
EM modeling.

Knowing the snow density equal to 0.21 in February 2008, polarimetric changes
measured by PALSAR can be fully explained by a soil moisture content ranging
from 4% to 9%. The uncertainties on the IEM model for predicting multiple scatter-

ing effects and correlation terms
〈
SppS∗

qq

〉
may explain this interval. However, these

residual liquid water contents are fully realistic for frozen ground.

7.4.3 Toward the Estimation of Residual Liquid Water Content
in Frozen Ground

Polarimetric signature at L-band over dry snow-covered frozen fields depends on
snow density, but furthermore on soil moisture. Given the fact that in situ snow
measurements reveal a homogeneous snow cover with a constant density over these
flat agricultural fields, the aim of this subsection is to show the feasibility of retriev-
ing the residual liquid water content in frozen ground. For this preliminary study,
we assume that the snow density is known and equal to 0.21.

The proposed methodology is based on the aforementioned EM modeling and
PALSAR data acquired on February 2008. Given the uncertainties concerning the
simulation of cross-polarized channels and co-polarized correlation terms, only the
co-polarized backscattering coefficient σ 0

VV is used for this preliminary quantitative
assessment. For each pixel, we propose to optimize the soil moisture by match-
ing the simulated and measured PALSAR histograms on February derived from a
centered Nb × Nb pixels area. Over these snow-covered frozen fields, the EM sim-
ulations depend also on the snow density assumed homogeneous and on the soil
roughness map previously estimated. The Chi-square test is then used to measure
the goodness-of-fit of the simulated distributions for the VV channel. Given VVV

palsar

and UVV
sim(Mv) two histograms corresponding, respectively, to the PALSAR distribu-

tion and the simulated σ 0
VV distribution for a given soil moisture Mv, χ2

v statistic is
equal to:

χ2
v

(
UVV

sim(Mv),VVV
palsar

)
=

∑

k

(uk − vk)2

vk
(7.8)
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Fig. 7.7 Estimation of the
residual liquid water content
in frozen agricultural fields
on February 15, 2008, by
using PALSAR co-polarized
VV channel. Gray tones
represent other non-used
natural media

where uk and vk are the simulated and measured frequency for bin k, respectively.
For each pixel over a centered Nb × Nb box, the optimal residual soil moisture is
found by minimizing the metric:

Mvopt = arg min
Mv

χ2
v

(
UVV

sim(Mv),VVV
palsar

)
(7.9)

Histogram matching prevents from estimating spatially fluctuating Mvopt which
might be induced by residual speckle effects or soil roughness modifications at pixel
scale. Results are illustrated on Fig. 7.7 using Nb = 11.

Even if the accuracy of such a method can not be assessed, the retrieved values
seem perfectly realistic with Mvopt ≈ 3 − 5%. The main limitation of this method
is that the IEM validity is not perfectly guaranteed over frozen ground. The use of
an impedance matching approach accounting for surface effects may be of interest
in the framework of this quantitative assessment (Schwank et al. 2004). Volume
contribution from the soil might also influence the results.

7.5 Conclusions

This paper shows the contribution of polarimetric L-band PALSAR data for extract-
ing cryospheric information over lowlands. The launch of this sensor on-board
ALOS satellite represents a real opportunity in the uncertain context of global
warming. It appears that the polarimetric signature over snow-covered flat bare



94 N. Longépé et al.

fields presents some interesting features at L-band. SVM classifier seems to be a
valuable tool for extracting the uniqueness of the polarimetric measurements over
“dry snow/frozen ground” or “wet snow” condition. Finally, a polarimetric L-band
snow model based on the Integral Equation Model is implemented and tested for
the particular case of frozen ground. Simulations are in relatively good agreement
with PALSAR measurements, opening the way for quantitative assessments. A
method based on local statistics (χ2 test) is finally performed in order to retrieve
the residual liquid water content in frozen ground. Results seem very promising,
even if the polarimetric EM modeling over frozen ground still remains a challenging
issue.

This work has been carried out using data acquired by the PALSAR sensor on-
board ALOS which have the long revisit time of 46 days. In the design of the
PALSAR strategy (Rosenqvist et al. 2007), the full polarimetric mode has been cho-
sen as an experimental mode to promote research and development. Out of the 16
cycles realized in 2007 and 2008, only two of them were fully dedicated to the
polarimetric mode. Regarding the methods proposed in this study, a comprehen-
sive knowledge of the natural media and its polarimetric backscattering is necessary
to extrapolate these locally developed methods to a regional or global scale context.
The forthcoming ALOS-2 satellite with an L-band SAR system on-board (scheduled
in 2013/2014) opens new prospects for a better understanding. Its shorter repeat-
pass orbit (14 days) with a true spatial and temporal consistency for the polarimetric
mode might be the key component for monitoring snow and land ice at global scale.
In addition to the proposed methods, Interferometric L-band SAR technique could
be a real asset for estimating the distribution of the Snow Water Equivalent.
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Chapter 8
Variability of Northern Hemisphere Spring
Snowmelt Dates Using the AVHRR Polar
Pathfinder Snow Cover During 1982–2004

Hongxu Zhao and Richard Fernandes

Abstract A new daily 5 km resolution Northern Hemisphere (NH) snow cover
product derived from AVHRR Polar Pathfinder data (APP), available from 1982 to
2004, has enabled the investigation of the variability of the spring snowmelt dates
at continental and hemispheric scales in association with variability of circumpolar
climate parameters. Continentally averaged and latitude band averaged snowmelt
date time series were analyzed together with melting season temperatures, preced-
ing winter precipitation and atmospheric circulations. Snowmelt dates over northern
Eurasia and North America did not show a statistically significant trend but rather
a strong interannual variability related to anomalously large-scale atmospheric cir-
culations. The average North American snowmelt date was observed to be later
than that of northern Eurasia except the year of 1998. Snowmelt dates co-varied
on interannual timescales between North America and the northern Eurasia before
1998. After 1998, snowmelt dates between the two continents are poorly related.
The change in regime may be associated with the interdecadal coupling in climate
variability between North pacific and North Atlantic. Finally, the less contribution
in interannual variability of snow factor to snow albedo feedback was explained by
analyzing seasonal snow-temperature sensitivity regions.

8.1 Introduction

Snow cover variability is believed to be an important indicator of climate change that
also strongly influences regional and global climate (Brown et al. 2007; Groisman
et al., 1994a; Qu and Hall, 2007), affects land cover characteristics and land-
atmosphere energy exchange, and modifies habitat suitability (Massom 1991). The
large-scale spatial distribution and interannual variability of snow cover over NH
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high-latitude lands has attracted considerable attention in recent years because it
is acknowledged that the snow albedo feedback is a leading factor of amplified
warming in northern high latitude regions (Hall et al. 2008). Many studies indicate
that the maximum snow-albedo feedback occurs during spring (Déry and Brown
2007; Groisman et al. 1994a; Hall and Qu 2006). Hence, the possibility of persis-
tent changes in snow cover under recent global warming will play a significant role
in the surface radiation budget (Déry and Brown 2007; Qu and Hall 2005). Based
on weekly satellite snow cover extent (SCE) over NH continents, Robinson (2003)
identified an abrupt decrease in snow cover extent occurred in the spring and early
summer since the 1980s. Brown (2000) and Ye et al. (1998) suggested a consistent
circumpolar increase in observed snowfall during the winter time. Most recently,
based on model simulations with greenhouse gas induced climate change, Raisanen
(2008) suggested that variations in snow amount at a geographical point depend
on both warming during winter and spring and increased snowfall. Hence, changes
in snow cover may depend on the relative effects of temperature and precipitation
(Raisanen 2008) with regional characteristics.

However, available snow cover datasets have limited this study. For example,
in situ snow cover datasets have limited spatial coverage and the snow courses are
often specific to their surrounding environment (Dyer and Mote 2006), with more
scarce or no observations in the circumpolar regions. Prior to 2000, satellite-based
snow cover maps produced by National Oceanic and Atmospheric Administration
(NOAA) offer at best 25 km spatial resolution (Armstrong and Brodzil 2002)
with daily temporal resolution only available after 1997 (Ramsay 1998). Wang
et al. (2005) reported that the NOAA weekly dataset consistently overestimated
snow cover extent during the spring melt period, with delays of up to 4 weeks in
melt onset. Hence these snow datasets may not be sufficient for identifying spring
snowmelt date changes.

We use recently produced daily 5 km APP snow cover maps (Zhao and Fernandes
2009) from 1982 to 2004. Both because they show good agreement with in situ
sites and because their almost continuous spatial and temporal coverage makes them
especially suitable for analysis of spring snowmelt patterns and snow albedo feed-
back in association with variability of circumpolar climate ecological parameters
(Zhao and Fernandes 2009).

Snow cover data, because of its binary nature, has apparent interannual variability
only in transient regions (Zhao and Moore 2006). As a result, climate signals can
be only identified in the marginal areas (Clark et al. 1999). As a result we will use
spring snowmelt date (Smtd) to investigate snow variability. Quantifying trends in
Smtd also provides information relevant to ecosystem studies such as caribou habitat
assessment and diagnosing impacts of climate change on permafrost.

Interannual variability in snow cover extent and snowmelt date is tightly cor-
related to local temperature and precipitation through controls of large-scale
atmospheric circulations (Clark et al. 1999; Saito et al. 2004). Understanding the
atmosphere-snow interaction is important for better understanding snow albedo
feedback and its control factors. Atmospheric circulation teleconnection patterns
characterize low frequency climate variability on regional or even hemispheric
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scales. The Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) are two
of the most important patterns characterizing the NH extratropical climate vari-
ability, especially during winter (Hurrell 1995; Thompson and Wallace 1998), and
exert influence on spring and summer climate variability (Bamzai 2003; Bojariu and
Gimeno 2003; Ogi et al. 2003; Zhao and Moore 2006). Over the North Pacific and
North America regions, the North Pacific Oscillation (NPO) and the Pacific/North
American pattern (PNA) are two most important modes, influencing North America
spring to summer climate. The positive phase of NPO is associated with above-
average surface temperatures over the eastern North Pacific, and below-average
temperatures over the central North Pacific and eastern North America (Bell and
Janowiak 1995). With strong linkage to the strength and location of the East Asian
jet stream, both NPO and PNA exert influence on spring snow variability in Canada
and the western United States.

The objectives of this paper are to investigate the variability of Smtd over the
NH lands using the new APP snow cover product, and driving effects of large-
scale atmospheric circulations on the interannual variability in Smtd. Finally a new
approach to estimate the temperature sensitive regions (TSRs) of snow cover on the
base of seasonal change in temperature (Hall and Qu 2006), is introduced, and the
results are compared with the results of Groisman at el. (1994b) which was based
on anomalous year composites. With these new TSRs, we also try to explain why
there is less contribution in interannual variability of snow factor to snow albedo
feedback.

8.2 Data and Methods

The new snow cover dataset, based on a new algorithm (Fernandes and Zhao 2008)
applied to the APP daily 5 km Equal Area Scalable Extent (EASE)-Grid composites
(Fowler et al. 2000), covers the NH polar region bounded by upper left corner (30◦N,
135ºW) and lower right corner (30◦N, 45◦E) between 1982 through 2004 (Zhao and
Fernandes 2009).

The APP snow cover products were validated using quality controlled snow
depth measurements on a daily basis between 1982 and 2004 over 67 standard-
ized in situ sites in Canada and over 260 station sites in the northern Eurasia. Smtd
was defined as the date (on which snow disappears) from which each pixel has no
snow at least for three continuous days during the melting period from Day Of Year
(DOY) 90 to 244 (corresponding April 1 to August 31) (Zhao and Fernandes 2009).

The monthly NCEP reanalysis (Kalnay et al. 1996) surface air temperature,
sea level pressure (SLP), and surface wind fields were used to explore associated
atmospheric circulations to the Smtd over the period of 1982–2004. The pre-
cipitation dataset is from the Global Precipitation Climatology Project (Huffman
et al. 1997), which is a blend of surface and satellite observations that is avail-
able since 1979. The ERA40 reanalysis monthly air temperature (see online at
http://www.ecmwf.int/research/era/) field at 2.5◦ resolution was only used to cal-
culate TSRs. The reason to estimate TSRs by using ERA40 rather than NCEP
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is because a parallel study on quantifying observational snow albedo feedback
parameters used the dataset (Fernandes et al. 2009; Qu and Hall 2007).

The AO index (AOI), defined as the normalized difference in zonal-averaged SLP
anomalies between 35◦N and 65◦N, is from (Li and Wang 2003). The NAO index
(NAOI), NPO index (NPOI, originally named EP/NP oscillation) and PNA index
(PNAI) are downloaded from Climate Prediction Center (CPC) websites, available
at http://www.cpc.noaa.gov/data/teledoc/telecontents.shtml.

The melting season is defined as a period of three months from April to June
(AMJ), the winter from January to March (JFM), and the spring from March to
May (MAM), except especially mentioned.

Rather than to estimate TSRs by choosing anomalous years (Groisman at el.
1994b), we estimated TSRs by using seasonal difference of snow fraction divided
by temperature difference from April to May (Hall and Qu 2006). For this purpose,
the APP snow cover was firstly sub-sampled to 25 km resolution from the original
5 km data and then snow fraction was estimated on the base of an approximate 2.5◦
grid cell box to match the reanalysis spatial resolution. At the same time, the all sky
APP extended daily 25 km albedo product (Wang and Key 2005) was applied. The
albedo is averaged over the same 2.5◦ grid cell box. Finally, the daily snow fraction
and daily albedo was averaged temporally to obtain monthly mean fields.

Instead of using the standard deviation to calculate interannual variability, a
robust approach has been designed to calculate the variation coefficient in Smtd,
based on a range of 68% percentile values symmetric about the median. This
new approach can capture major interannual variability without contamination of
outliers.

The statistical significance of the regressions and trends were assessed through
the use of the Student’s t-test. When testing significance of a trend in a time series,
we used a reduced effective sample size, which is a function of the lag-1 (year)
autocorrelation of the regression residuals, in the calculation of the standard error
in the trend and in the application of the t-test (Angell 1999; Santer et al. 2000).
For scalar fields, the regions where the null hypothesis can be rejected at the 90%
confidence level are indicated. With regard to wind field, regions where at least one
of its components is significant at the 90% level are indicated.

8.3 Results

8.3.1 Interannual Variability in Smtd

Figure 8.1a shows spatial distribution of the mean Smtd during 1982–2004 at 5 km
resolution over the NH. Smtd generally increases with latitude consistent with the
seasonal march of solar radiation during spring and early summer in the NH. High
altitude areas such as the western cordilleras and regions mapped as having perma-
nent ice or snow cover represent clear outliers in this pattern. The approximately
zonally distributed Smtd belts also show earlier melt dates at the western margins of
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Fig. 8.1 (a) The spatial distribution of the mean Snowmelt dates (Smtd, unit: DOY) for 1982–2003
over Northern Hemisphere APP domain. The value of 250 (white color) is assigned to permanent
snow. (b) The standard deviations of the Smtd at each pixel over the NH APP domain. Grey colors
indicate permanent snow or ice in Greenland and high latitudes or areas where Smtd is earlier than
90 DOY

continents consistent with warm Pacific and Atlantic currents. Over Eastern Siberia
and over Kamchatka peninsula the Smtd shows clearly topographical effects asso-
ciated with delayed melt dates over mountains comparing with its basin areas. The
latest melting occurs over Northeast Canada and the northern central Siberia.

Figure 8.1b shows the spatial distribution of interannual variability of Smtd. The
higher values with large scale characteristics are mainly located over the western
Siberia and northern Europe, the central North Siberian mountains, as well as the
eastern Canada and the northwest North America, although some small regions with
extreme values are seen over margin areas such as over the western cordilleras,
north most Canada, circum-Greenland, Iceland, and islands in Arctic, which are
associated with complex surface conditions. There is a latitudinal difference in these
high values between East Canada, which is over 50–60◦N latitudes, and the central
and northwest Eurasia, over 60–70◦N latitudes.

Figure 8.2 presents the time series of normalized Smtd averaged over the two
continents, the northern Eurasia (EA, solid lines) and North America (NA, dashed
lines), and different latitude bands over the respective continents as well. The mean
Smtd is respectively 140.2 and 148.8 DOY for EA and NA. The two time series of
Smtd (Fig. 8.2a) do not show statistically significant negative trends as expected
over the period of 1982–2004 rather with insignificant positive trends, 0.1 day
per decade and 0.2 day per decade over EA and NA respectively. The two time
series match to some extent in year-to-year variability between the two continents
for the period of pre-1998, but diverge since 1998, which may be associated with
interdecadal variability in the atmospheric circulations (Zhao and Moore 2009).
Figure 8.2b–d show the Smtd averaged over each latitude band for each conti-
nent. Although all show positive trends from 0.1 to 0.4 day per decade except no
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Fig. 8.2 The time series of Smtd averaged over (a) the northern Eurasia (EAmtd, solid) and
North America (NAmtd, dashed). (b) The 70–80◦N latitude band. (c) The 60–70◦N latitude band.
(d) The 50–60◦N latitude band. Thick lines are the linear trends over the period of 1982–2004
corresponding EA (solid) and NA (dashed)
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trend for Eurasian 50–60◦N band, these trends are not statistically significant even at
75% confidence level except the North American 70–80◦N band which reaching the
90% confidence level. The divergence post-1998 can also be seen for these latitude
bands.

8.3.2 Atmospheric Circulations Drive Large-Scale Interannual
Variability in Smtd

To investigate factors driving the Smtd, Fig. 8.3 shows the correlations (Fig. 8.3a
and b) and regressions (Fig. 8.3c and d) of the Smtd time series of EA and NA ver-
sus the mean melting season (AMJ) surface air temperature field (Fig. 8.3a and b)
and the spring mean (MAM) SLP and surface wind fields (Fig. 8.3c and d). From
Fig. 8.3a and b, as expected, the negative correlations are dominant over most of
area of the continents corresponding to higher Smtd values (delayed melt), confirm-
ing that there is a negative snow-temperature interaction mechanism associated with
snow albedo feedback. From Fig. 8.3c, the statistically significant pressure anoma-
lies in high latitude, producing pressure gradients between polar region and Siberia,
result in statistically significant anomalously northerlies along the continent. This
leads to reduced temperatures over this area during melting season (Fig. 8.3a). It
can also be seen that the southward extended northerlies over western Siberia cor-
respond to a cold tongue over western Asia (Fig. 8.3a). The negative temperature

Fig. 8.3 Correlations of (a) EAmtd and (b) NAmtd with AMJ mean temperature field and regres-
sions of (c) EAmtd and (d) NAmtd with SLP and wind fields. Note that in Panels (a) and (b),
correlation coefficients have been multiplied by 100, dark (light) shading areas are values larger
(less) than 15 (–15), and thresholds for the 90% (95%) confidence level is 0.35 (0.42). In Panels
(c) and (d), shaded areas are statistically significant at 90% level for SLP while wind field is only
shown at those locations where at least one of its components is significant at 90% level using
Student t-test
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correlation regions over NA (Fig. 8.3c) are related to southward transport of cold
air resulting from an anomalouly pressure gradient between central NA and eastern
NA that seems to be associated with a NPO-like pattern.

The correlations of the EA and NA Smtd with winter mean precipitation field
were also calculated (not shown). Specifically, the zero correlations over Eurasia
fall within a narrow band extending from northern Europe to northern Japan. North
of this line are positive correlations while south of this line are negative correlations,
indicating reverse effects of precipitation on Smtd. Over most of areas north of 50ºN
in NA, there are positive correlations between the Smtd and the winter precipitations
(and these positive correlations can extend from winter to spring). Negative correla-
tions are observed southwards of 50ºN. Although there are small regions statistically
significant at 90% confidence level over both continents, the large continental scale
distribution of north–south seesaw structures with positive correlation in higher lat-
itudes and negative correlations in lower latitudes, suggesting potential increase in
precipitation under recent warming in Arctic may have cancelled to some extent
the effects of increase in spring temperature on the expected negative trend in Smtd
(Min et al. 2008).

To further investigate impacts of preceding and instantaneous atmospheric circu-
lations on the spring snowmelt dates, correlations between the monthly AOI, NAOI,
NPOI and PNAI from January to June and the various Smtd indices (presented in
Fig. 8.2) are calculated and only correlation coefficients in a group that has at least
one significant at 95% confidence level for a monthly teleconnection index are pre-
sented in Table 8.1. The AOI in March is negatively correlated to EA Smtd including
all latitude bands over EA, indicating that a positive AO phase in spring will result in
earlier Smtd over EA and vice versa. This is consistent with results from Figs. 8.3a
and 8.4c and can be interpreted by comparison with Fig. 8.4a, which shows positive
temperature anomalies over EA during melting season associated with a positive
AO phase, leading to earlier melt of snow. Similarly, the AOI in April is negatively

Table 8.1 Correlation coefficients (CCs) of Smtd with teleconnection indices. Note that only those
CCs in a group with at least one significant at 95% confidence level for a monthly teleconnection
index are presented while those under 90% confidence level are not shown

EAmtd 50–60◦N 60–70◦N 70–80◦N NAmtd 50–60◦N 60–70◦N 70–80◦N

AOI (Mar) –0.43∗ –0.45∗ –0.35 –0.47∗
AOI (Apr) 0.43∗
NAOI (Feb) –0.35 –0.46∗
NAOI (May) 0.43∗ 0.53∗∗ 0.67∗∗∗ 0.56∗∗
NPO (Mar) 0.46∗
NPO (Apr) 0.57∗∗
PNA (Mar) 0.40 –0.43∗
PNA (Apr) –0.52∗∗

Note that the table only shows those correlations significant at least at 90% confidence level for
a monthly teleconnection index that has at least a correlation reaching the 95% confidence level.
The “∗” indicates significant at 95% confidence level, the “∗∗” at 99% level, and the “∗∗∗” at
99.9% level using the Student’s t-test.
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Fig. 8.4 Same as Figs. 8.3a and b but correlations of (a) March AOI, (b) Apr AOI, (c) May NAOI,
(d) MA mean NPOI, and (e) MA mean PNAI with AMJ mean temperature field. Note that the
spatial domain in Panel c combines those in Panels (a) and (b)

correlated with NA 50–60ºN Smtd, where there exists higher interannual variabil-
ity (refer to Fig. 8.1b), which can be interpreted by comparison between Figs. 8.3b
and 8.4b. The delay with a month in correlations with AOI over NA in compari-
son with over EA may be attributed to a later melt dates over NA as mentioned
earlier. The NAOI in May is positively correlated to EA Smtd and NA Smtd in
higher latitude bands over both continents (Table 8.1). This linkage can be seen
more clearly in Fig. 8.4c where the May NAOI negatively correlated to high-latitude
temperatures over these continents inducing a delayed Smtd. It is also noted that the
February NAOI is significantly correlated to EA 50–60ºN Smtd with a month ear-
lier comparing with AOI (Table 8.1). As consistent with the robust signal over North
Pacific in Fig. 8.3d, the NPO in spring (March to April) is positively correlated to
NA Smtd over 50–60ºN, where there is large interannual variability, while PNA in
the same season is negatively correlated with the Smtd. This difference indicates
reverse impacts on the East Canada Smtd in comparison with NPO through driving
temperature anomalies over NA (Fig. 8.4).

It is speculated that contribution of the preceding and instantaneous atmospheric
circulation anomalies to the snow-temperature interaction sensitivity regions will
propagate interannual variability into the snow components in the snow albedo
feedback (Groisman et al. 1994a; Qu and Hall 2007).
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8.3.3 Snow Temperature Sensitivity Regions (TSRs)

Groisman et al. (1994b) presented the relationship between snow cover and sur-
face air temperature by defining the temperature sensitivity regions (TSRs) using
1972–1992 NOAA weekly snow cover dataset. However, the surface air temper-
ature anomalous years chosen for warm (cold) groups are unevenly distributed in
1970s (1980s) respectively. If there were an artificial trend in the satellite observed
snow cover time series, say with different era sensors, the TSRs would mainly rep-
resent this effect. Hence, following Hall and Qu’s work (2006), based on 18-year
mean April and May snow and temperature observations, the seasonal snow tem-
perature sensitivity regions are given in Fig. 8.5a. The spatial pattern of this new
TSRs over NA (Fig. 8.5a) is very similar to that in Groisman et al. (1994b). But,
over southwest EA areas, the new approach leads to a more continuous distribution
in sensitivity regions in comparison with their distribution sensitive to the selection
of anomalous years. This indicates a potential improvement of seasonal snow TSRs
derived here in comparison with TSRs derived in Groisman et al. (1994b), possi-
bly due to improved snow cover information. The maximum values in the TSRs
are located over 55–65ºN which is consistent with the significant correlations of
Smtd with NCEP temperatures over both continents during snow melting season
(Fig. 8.3).

From Hall and Qu (2006), the snow albedo feedback (SAF) parameter can be
simply decomposed into components, SAF = k3+k2 ·k1, where k3 is the metamor-
phosis of the snowpack under a higher temperature, k1 is the TSRs, and k2 is the
sensitivity of surface albedo to snow cover reduction, a approximate constant in the
snow cover component (Fernandes et al. 2009; Groisman et al. 1994a; Qu and Hall
2007). Fernandes et al. (2009) recently diagnosed the SAF components using the
snow cover data set presented here together with surface albedo estimates between
1982 and 1999. Table 8.2 gives the values for the SAF components, averaged over

Fig. 8.5 (a) Seasonal snow Temperature Sensitive Tegions (TSRs) based on April to May snow
cover fraction and ERA40 monthly temperature at each grid point within APP spatial domain.
(b) Latitude dependent SAF parameter (SAF) and snow component (k2k1), as well as snow factors
(k2, k1), where k1 is averaged TSRs over latitude bands
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Table 8.2 SAF parameters averaged over 1982–2004 and APP domain as well as interannual
variability estimated by two times of standard deviation

k1 k2 k3 k4 k2 k1

Mean value –3.07 0.26 –0.64 –1.26 –0.73
Interannual variability 0.21 0.01 0.05 0.06 0.07

continental and NH domains, and their interannual variability corresponding to the
95% interval for the 18 year mean. Only k1 has a relatively large interannual vari-
ability, which dominated by interannual variability in atmosphere as analyzed in
previous section, while other factors have smaller interannual variability. Due to
the small value of k2, the interannual variability of k1 only contributes to the snow
component (k1·k2) with 26 percent. Figure 8.5b clearly shows there exists a latitude
difference in major values between k1 (55–65ºN) and k2 (65–75ºN), resulting in
cancelling not only in values but also in interannual variability in the averaged value
of k1·k2.

8.4 Summary and Discussions

In this study, based on the new daily 5 km resolution APP snow dataset, we have
produced spring snowmelt dates at each pixel over APP domain for each year
over 1982–2004 and observed an expected mean latitude-dependent patterns in
spring snowmelt dates together with areas where orographic effects are expected
to delay snowmelt. The large interannual variability in snowmelt date together
with the absence of obvious trends would be counterintuitive if one hypothesized
that the long-term spring warming alone drive snowmelt. Rather, our data pro-
vides evidence in support the more complex hypothesis that winter precipitation
and spring temperatures interact, in perhaps opposing directions, in their impacts
on snowmelt trends in the NH (Brown 2000; Dyer and Mote 2006; Robinson 2003;
Raisanen 2008; Ye et al. 1998). Furthermore, the atmospheric circulation variability
seems to dominate the interannual variability in Smtd. However the strong inter-
annual variability in snow cover only contributed around more than 20% to the
snow component in the snow albedo feedback because there is a latitude difference
between the albedo-snow sensitivity regions (k2), situating in high latitude circum-
polar regions (65–75ºN, Fig. 8.5b), and the snow-temperature sensitivity regions
(55–65ºN, Fig. 8.5a). This latitude difference between the two sensitivity factors
(Fig. 8.5d) lead to a milder and smoothened contribution of the snow component
(Fig. 8.5c) to total SAF.

As expected, negative correlations of the Smtd with surface air temperature field
clarified that earlier (latter) continental Smtd are associated with positive (nega-
tive) continental temperature anomalies during melting season, consistent with the
positive feedback between spring warming and reduced snow (Groisman et al.
1994a). Our results did not show negative trends for various large-scale spatial
domains in agreement with the results in Brown et al. (2007), who also did not
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find statistically significant trends in spring snow duration over 1979–2003 in cen-
tral North Canada from in situ, weekly NOAA and passive microwave snow datasets
and have attributed to a cooling period in this area, and the work in Vicente-Serrano
et al. (2007) who did not find any trend in the date of snow disappearance over
NH between 1988 and 2003 based on satellite passive microwave data. There are
seesaw-like structures in the correlations between preceding winter precipitations
and the Smtd over both continents. The seesaw-like structures over the both con-
tinents suggest that the increased arctic precipitation corresponding recent global
warming (Min at el. 2008; Raisanen 2008) may have delayed the continental snow
melting in spring, which might cancel, to some extent, the earlier melting effects
induced by increased spring temperature.

The NPO and the PNA clearly showed existence of significantly correlations
with NA Smtd during spring through the impacts on melting season temperatures.
Vicente-Serrano et al. (2007) also identified a negative correlation between May
PNA index and the date of snow cover disappearance over southern Canada. The
spring AO pattern significantly affects the EA Smtd through advecting warm (cold)
air into the continent corresponding to its positive (negative) phase (e.g., Wang et al.
2006). These results are consistent with those in Schaefer et al. (2004) in that the
AO influences snowmelt date in northern Europe and eastern Siberia and almost no
influence in North America. The NAO tightly correlated with NA higher latitude
Smtd in May due to combined effects of temperature and precipitation induced by
NAO anomalies. The negative correlation of winter NAO with the 50–60ºN EA
Smtd mainly resulted from temperature effects.

Recent studies show that there is nonlinearity in the climate between North
Pacific and the North Atlantic that is a function of the sign of the Pacific Decadal
Oscillation (PDO) (Zhao and Moore 2009). When the PDO is in its positive phase,
the coupling in the SLP field between the North Pacific and the North Atlantic is
stronger resulting in a leading mode of hemispheric SLP variability that resembles
the AO pattern. In contrast, when the PDO is in its negative phase, the SLP field
in the North Pacific is weakly coupled with that in the North Atlantic resulting in a
leading mode of regional scale SLP variability that resembles the NAO. The tempo-
ral trend in the co-variation in continental 60–80ºN zonal average Smtd (Fig. 8.2)
may reflect the existence of the warm PDO phase that began in 1977 followed, after
1998, by a possible reversal to a cool PDO stage (Biondi et al. 2001).

The absence of statistically significant temporal trends in Smtd may be due to
both the relative short record and also the complex influence on Smtd during the
late 20th century: increased winter precipitation in high latitude (Min et al. 2008),
increased spring temperature in Arctic (Wang and Key 2003) and neutral or reversal
atmospheric circulations conditions (Overland and Wang 2005). At the same time
we noted that the APP snow cover improved the spatial delineation of temperature
sensitive regions of snow cover over southwest Eurasia.

In addition to snow variability we also investigated the relationship between
temperature sensitive regions, and more generally surface albedo feedback com-
ponents, with climate indices. The effects of the preceding and instantaneous
atmospheric circulation anomalies on the spring snow variability have contributed
strong interannual variability to the temperature sensitivity regions. However,
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sensitivity to interannual or decadal climate trends is substantially reduced when
considering surface albedo feedback components. This suggests that while Smtd
patterns and trends may be useful indicators of climate change and variability it
may be preferable to use diagnostics such as surface albedo feedback components
to assess the performance of climate models.
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Chapter 9
MODIS Snow Monitoring Over the Tibetan
Plateau

Li Xu

Abstract Permanent and seasonal snowpack over the Tibetan Plateau (TP) is an
important component of earth climate system. Due to the limitation of conventional
observations and previous satellite image, however, the snow cover variability over
the TP has been a challenging problem for climate study. High-resolution (500 m)
snow mapping obtained from the Moderate Resolution Imaging Spectroradiometer
(MODIS) provided an excellent opportunity to define details in the spatial and tem-
poral snow cover distribution and variability in this region. In previous evaluation,
the accuracy of MODIS/Terra snow cover data is evaluated by comparing the data
with in situ Chinese station snow observations and show a overall 90% accuracy
over the TP. Statistical analysis is then performed to explore the distribution and
variability of snow cover based on the available data from 2000 to 2006. The most
persistent snow cover is located in the southern and western edges of the TP, espe-
cially major mountain ridges and the western Yarlung Zangbo Valley. The higher
snow cover fractions (SCFs) are mainly concentrated in the regions where the ele-
vation is higher than 6000 m. The snow persistence varies in different elevation
ranges and generally becomes longer with increases in the terrain elevation. In addi-
tion, the spatial distribution of the snow cover not only depends on the elevation,
but also varies with the terrain features (e.g., aspects and slopes) in the local areas.
With 7-year observational data, seasonal and interannual variability of snow cover
has been detected, but the persistence of the seasonal and interannual anomalies in
snow cover is generally lacking due to the small sample of data available. There are
slight decreasing trends in SFCs over the TP during 2000–2006.
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9.1 Introduction

The Tibetan Plateau (TP), the largest highland plateau over the world, locates at the
southwest of China with an average elevation more than 4000 m above sea level.
Due to its high elevation, the TP is often called “the roof of the world.” Seasonal
snow cover over the Tibetan Plateau (TP) is a unique feature in global snow maps
compared with same latitude other regions. With the highest mountains in the world,
snow cover can persist during all seasons over the high altitudes in the TP. Previous
studies have demonstrated that snow cover over the TP has a strong impact and forc-
ing with general circulation and Asian monsoon systems during spring and summer
(Bamzai and Shukla 1999; Wu et al. 1995; Yong 1995). In addition, snow cover over
the TP is a vital water source for eastern and southern Asia. The largest rivers of in
the nearby region, such as the Yangtze River, Yellow River and Yalung Zangbu river,
have their headwaters there. Furthermore, snow cover is a comprehensive indicator
of the mean conditions of temperature and precipitation over the TP and its sur-
rounding areas. In the global warming background, snow cover variability over the
TP is an important problem in regional climate studies (Qin et al. 2006).

However, accurate observations or monitoring of the snowpack over this region
are difficult to obtain. Before the era of “satellite meteorology,” traditional snow
observations were usually obtained from ground-based meteorological networks. In
these meteorological stations, only the presence or absence of snow along with snow
depth is measured on a daily basis by the snow stick. At present, there are only 115
conventional ground-based stations managed by the Chinese government over the
TP. Most of these stations are located in the inhabited, lower-altitude river valleys,
where elevations are usually below 4500 m. Due to the scarcity of ground-based, in
situ stations, it is difficult to adequately capture the spatial variability of snow cover,
particularly in remote, difficult to access regions such as the TP.

With advances in remote sensing technology, satellite-derived snow cover infor-
mation has become an important alternative data source. Weekly snow mapping
of the Northern Hemisphere using National Oceanographic and Atmospheric
Administration (NOAA) National Environmental Satellite, Data and Information
Service (NESDIS) data began in 1966. This snow-cover data is one of the longest
and longest satellite record of this important climatological variable, and it has been
studied intensively by Frei and Robinson (1998). Guo et al. compared the NESDIS
weekly snow product with ground snow depth observations over China in past the
30 years. They found significant differences between the NESDIS snow mapping
and in situ Chinese ground-based observations and concluded that the NESDIS
snow cover products tend to overestimate seriously snow cover over the TP. The
cause of the overestimation is mainly due to the coarse spatial resolution (89 × 89
grids over Northern Hemisphere in the NESDIS data, wherein the data do not rep-
resent well the detailed information of patchy and shallow snow cover over the TP
and, instead, just call such areas completely snow covered. Based on the passive
microwave remote sensing, Che et al. (2003) point out the serious overestimate the
snow water equivalent (SWE) over the TP and must be corrected over this region.
Ice core record also could provide snow anomalies in the some points (Thompson
et al. 1989), but its information is very limited.
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With improving in the polar-orient satellite and remote sensing technology, the
National Aeronautics and Space Administration (NASA) Earth Observing System
(EOS) Terra satellite was launched with a complement of five instruments, one of
which is Moderate Resolution Imaging Spectroradiometer (MODIS) On December
18 1999. Besides the comprehensive observations on cloud, ocean, and earth surface
characteristics available from the Terra MODIS, the snow-cover product has been
available since February of 2000. With substantially improved spatial resolution
(500 m globally), high temporal frequency (daily), enhanced capability to separate
snow and clouds (Hall et al. 2001, 2002) due to more spectral bands (particularly in
the short-wave infrared), as well as a consistently applied, automated snow-mapping
algorithm (Riggs and Hall 2002), MODIS provides an excellent opportunity to study
snow cover over large, relatively inaccessible regions such as the TP. In particular,
the single satellite platform provide excellent consistence with MODIS snow data
that are hardly to maintain in the previous dataset.

9.2 Data

9.2.1 MODIS Snow Mapping

A variety of snow and ice products are available at a variety of spatial and tem-
poral resolutions (Hall et al. 2001). These data range from 500 m resolution,
2330 km swath snow-cover map to climate-modeling grid (CMG) products on a
latitude/longitude (cylindrical equidistant projection). The 8-day composition snow
mappings in 500 m (MOD10A2-V4) and 0.05◦ climate modeling grid (CMG)
datasets (MOD10C2-V4) are obtained from the National Snow and Ice Data Center
(http://nisdc.org). Compared with the daily snow cover product MOD10A1-v4 and
MOD10C1-v4, the 8-day composition snow mappings greatly reduce the percent
of cloud obscuration or masked pixels, from near half to less than 7% over the
TP. Furthermore, the 8-day composition can cover the entire TP areas without any
missing data due to orbit swaths (Riggs et al. 2000).

According to previous study by Pu and Xu (Pu et al. 2007), an evaluation of the
MODIS 8-day composite snow cover mapping product (MOD10A2) using avail-
able in situ Chinese snow observations shows the overall accuracy is about 90%.
Total error over the TP is about 10% and this compares favorably with previous
studies showing global average errors of 8%. The omission error and snow detec-
tion rate depend on both the persistence of snow during 8-day periods and the snow
depth, i.e., very shallow snow depths (<5 cm) cause omission errors. In the snow
season (November–May), the total error is relatively larger compared to the snow
deficient season (June–October). The accuracy is highest in the lower elevation, and
the total error increases with elevation. Overall, the evaluation results show that the
8-day composite snow cover data are typically quite accurate in terms of the snow
detection rate over the TP.

Previous satellite snow products, such as the NOAA snow maps at 2 × 2◦ reso-
lution and the IMS snow maps at 24 km resolution after 1999, provide only binary
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information about presence/absence of snow. Because of the inhomogeneous and
patchy properties of snow cover in nature, the binary yes/no information does not
fully represent the snow status over the complex terrain of the TP. In practice, snow
cover is frequently, if not always, defined by the portion of land covered by snow.
Snow cover fraction (SCF) is defined as the portion of the land surface which is
“seen” by a satellite or other airborne imaging instrument as being covered with
snow and provides a better indicator of snow cover in a grid box. Before remote
sensing, however, SCF was difficult to measure directly in situ.

With MODIS high-resolution observations, MOD10C2-v4 products, defined
as snow cover fraction (SCF) at 0.05◦ climate modeling grids (CMG), have
been derived from the MOD10A2-v4 dataset. Three parameters are provided by
MOD10C2-V4 in each CMG grid, including snow cover fraction, cloud fraction
and confidence index (CI).

The snow cover fraction (SCF) or snow percent in each CMG grid is defined as

fsnow = nsnow

n
× 100

where n is the total number of pixels in this CMG grid:

n = nsnow + nclear_land + ncloud_land + ncloud_obscured + nunknown

nsnow is the total pixels identified as snow in this grid, nclear_land for snow-free land,
ncloud_obscured for cloud and nunknown for other types of land.

The fraction of the CMG grid obscured by the cloud is computed by the ratio
of cloud obscured pixel with total number of pixel. The Confidence Index (CI)
is defined as the fraction of all pixels determined to be cloud-free land which is
an index to express the confidence of information based on the number of valid
observations available in this CMG grid.

fcloud = ncloud_obscured

n
× 100 CI = nsnow + nclear_land

n
× 100

As pointed out by Hall et al. (1999), the biggest obstacle in monitoring snow
cover by visible imagery is cloud-obscuration. In the MOD10C2-V4, the percent of
cloud-obscured pixels has been reduced greatly by compositing 8 days of visible
images. Nevertheless, on average roughly 7% of the land is still obscured by clouds.
Due to the cloud obscuration, the SCF obtained from MODIS is underestimated. As
a reasonable estimation based on the visible portion of the pixels, assuming that the
cloud-obscured pixels are all snow-free, there are no underestimations of SCF. If the
snow cover percent under cloud obscuration is same as the snow cover percent in
the cloud-free area, the underestimation of SCF is equal to fsnow

∗(1 − CI)/CI. The
larger the CI, the smaller the underestimation. At the other extreme, the entire area
blocked by cloud may be snow-covered, making the maximum underestimation of
SCF equal to the cloud percent.
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Fig. 9.1 Mean cloud percent over the TP in the MOD10C2-V4 dataset during 2000–2006. Dash
line is five points moving average
Modified from Xu (2007)

Figure 9.1 shows the average cloud percent over the TP during 2000–2006. The
dash line is a 5-point moving average. In the spring and autumn, the cloud obscu-
ration is relatively low (<2%), but the cloud percent is relatively high (>6%) in the
summer. The cloud obscuration will cause a slight underestimation of SCF over the
TP. As mentioned in the previous chapter, the commission error of MODIS snow
maps is larger than omission error over the TP. As a result, the snow algorithm
overestimates the snow cover in 500 m pixels. The underestimation due to cloud
obscuration partly compensates the overestimation due to commission error. Thus,
SFCs from MOD10C2 could be used in climate analysis.

9.2.2 GTOPO30 DEM Data

In this study, the TP is defined as the region between 70–110E, 25–45 N with an
elevation higher than 2000 m which covering about 3.6 million square kilome-
ters (detail domain see (Pu et al. 2007)). The USGS GTOPO30 Digital Elevation
Model (http://edc.usgs.gov/products/elevation/gtopo30/gtopo30.html) provides ele-
vation data at 30-arc seconds (approximately 1 kilometer in the Equator). The 30-arc
seconds GTOPO30 data is resampled to 0.05◦ CMG grid by area averaging.

9.3 Seasonal Variations of Snowpack Over the Tibetan Plateau

9.3.1 Snow Distribution and Annual Cycle

The quantitative snow cover distribution over the TP was analyzed based on the SCF
observed from Terra satellite during 2000–2006 (Xu 2007). The monthly mean SCF
was computed by the weighted averaging of 8-day MOD10C2 data. Extreme spatial
variability in monthly snow cover is exhibited due to complex terrain. Specifically,
higher SCFs correspond well with the large mountains along western and southern
edge. The most persistently snow-covered areas (over 50% of area coverage and
70% of the time) are concentrated in the Himalaya, Kunlun, Karakoram ranges
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and the western part of the Yarlung Zangbo Valley, especially in the combined
areas of Karakoram and Kunlun mountains which are the most heavily glaciated
regions in the world outside of the Polar regions. In the southeastern part of the
TP, SCF is also relatively high because the moist air goes up along the Yarlung
Zangbo Valley from the southern region. In contrast, due to huge shielding from
the Himalaya and Karakoram mountains, most of the interior of the TP has less
snow-cover persistence, although the averaged elevation is beyond 4000 m (figure
not shown). The distribution of snow cover is strongly linked to the available mois-
ture over the Tibetan plateau. In the southern flank of TP, the available precipitable
water comes from the tropical ocean in the south, including the Indian Ocean and the
Arabian Sea. The decreasing dramatically from above 10 kg/m2 to near zero along
the Himalayas and Karakoram. Especially, the Pamirs and Tibetan Plateau form a
horn-shaped village in the western part of the Himalayas, which further enhances
the convergence of moisture and terrain precipitation in the western edge of TP. Due
to the huge shield effect by the Himalayas and the Karakoram, there is little mois-
ture in the vast interior of TP. In particular, the precipitable water is near to zero
in the center of TP, corresponding to the area with small SCF in the winter. On the
other hand, the available moisture in the northern flank of TP is mainly conveyed
from remote Atlantic and Arctic oceans by westerly flow, contributing to most of
the snowfall in Tianshan region. In the winter, large scale vertical motion over TP
descends, which also greatly contributes to the sublimation of snow cover in the
interior of TP.

Figure 9.2 shows the annual percentage rate of large SCF over the TP, defined
as the percent of days annually in which SCF is larger than 50%. The higher per-
centage is concentrated in the Himalayas, Kunlun, Karakoram and the western part
of Yarlung Zangbo valley, consistent with the larger SCF regions in the winter
and spring. Especially in the coalesced region of the Karakoram and the Kunlun

Fig. 9.2 The frequency of heavy snow-covered (SCF >50%) based on Snow Cover Fraction. The
black line represents the outline of TP by the contour line of 2000 m
Modified from Pu and Xu (2009)
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Mountain, the frequency is larger than 70%. In the southeastern part of TP, the fre-
quency is also relatively large due to the moist airflow that goes up along the Yarlung
Zangbo valley from the Indochina Peninsula. Most of the interior TP has a lower fre-
quency of large SCF. Only in the major huge mountain, such as the Nyainqentanglha
Mountain, is the frequency relatively higher than the nearby region. In the Qaidam
and Tarim basins, the frequency of heavy snow-cover is lowest. In the area of eleva-
tion within 2000–4000 m, the median of the duration of more than 50% in SCF is
about 22 days, compared to 56 days in region of 4000–6000 m and 195 days in the
region of above 6000 m.

The snow cover also displays large intra-seasonal variability. Figure 9.3 shows
the annual cycle of SCF and the standard deviation in the different elevation regions,
as calculated from available data over the period from February of 2000 to the end
of 2006 in 8-day time interval. Strong seasonal variabilities in SCF are found over
the whole area of the TP (Fig. 9.3a). From early October to late April, overall
SCFs over the TP are greater than 25%, with relatively large standard deviations

Fig. 9.3 Snow cover fraction (SCF) averaged over the areas in different elevation ranges: (a) Over
the whole area of the TP (>2000 m); (b) 2000–4000 m; (c) 4000–6000 m; (d) beyond 6000 m. The
curve on each panel shows the averaged SCF over the period of 2000–2006. The error bars show
the standard deviations, indicating the variations of snow cover during 2000–2006
Modified from Xu (2007)
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reflecting the inter-annual variability from year to year. The SCF, depending upon
the elevation, peaks in January at the lower elevations and is delayed as late as in
April above 6000 m, and then progressively decreases and reaches minimum values
(except above 6000 m) of about 1–5% in the July-August period. The interannual
variability is relatively small during the summer months. At elevations above 6000
m (Fig. 9.3d), the average SCFs are greater than about 60% in all seasons. In the
area above 4000 m (Fig. 9.3c and d), SCFs show two maximums, one in later fall
(November) and another in early spring (March). These two peaks are consistent
with the two maximums of annual snowfall corresponding in November and March
(figure not shown). This two-peaks characteristic reflects a possible negative (self-
regulating) snow cover feedback as suggested by Walland and Simmonds (1996):
with sudden SCF increasing after a snow storm in November, the air temperature
in the lower troposphere decreases and static stability of atmosphere increases;
this reduces the probability of later snowfall; reducing snowfall further results in
decreasing SCF by snow blowing event and sublimation in the winter; decreasing
SCF in land surface increases the sensible heating to the atmosphere and decreases
the static stability, further increasing the probability of snowstorms in March. This
negative feedback keeps the snow cover relatively stable over the TP in the winter.
Furthermore, snow blowing events by strong westerly winds at upper levels (East
Asian Jet Stream (Moore 2004)) in winter also contribute to the reduction of SCF in
the higher elevation regions.

9.3.2 Terrain Characteristics of Snow Cover Distribution

Based on the GTOPO30 DEM data, the distribution of SCF over the TP with various
terrain features is further analyzed. In geography, slope is defined as the angle of
topographic surface to the horizontal plane, and aspect refers to the direction of the
incline. Based on the regular grid of DEM, the slope is computed by the maximum
change in elevation over distance between each DEM cell with its 8 neighbors.
The slope indicates the steepness of terrain, usually shown in the upward angles
from the horizon. The aspect identifies the steepest down-slope from each cell to
its neighbors, shown in the angles of the surface clockwise from the north. The
curvature measures the second derivative of elevation at each cell, akin to the slope
of the slope, which is used to describe the convex/concave characteristics of the
terrain. A positive curvature indicates that the surface is upwardly convex in the cell
and a negative curvature indicates that the surface is upwardly concave. A value
of zero indicates that the surface is flat. Matlab function “gradientm” is used to
compute the slope and aspect based on a finite-difference approach. In this study,
the coarse CMG grid (roughly 5 km) would underestimate the local slope, because
the terrain between two adjacent points is modeled as a linear variation, while actual
terrain can vary much more abruptly over such a distance.

To study the snow cover distribution in the different aspects, the slopes are clas-
sified into four categories: northward/north-facing slopes (–45/315 < aspect < 45),
eastward/east-facing slopes (45 < aspect < 135), southward/south-facing slopes
(135 < aspect < 225) and westward/west-facing slopes (225 < aspect < 315). In
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the distribution map of the aspect (figure not shown), it is easy to recognize that
slopes are commonly southward in the southern edge of the plateau. On the other
hand, the slope is commonly northward in the northern edge. In the interior of the
plateau, the aspects are extremely inhomogeneous.

Figure 9.4 demonstrates the mean SCF variation as a function of slope in the
different aspects during four stages, the snow maximum season (February), the
ablation season (May), the minimum season (August) and the accumulation sea-
son (November). Regardless of the steepness of slopes, the snow cover fraction is
larger on the southward and eastward slopes. With increasing slope, the average SCF
increases on southward and eastward slopes. In contrast, the SCF keeps a relatively
constant value or even a slight decrease in the northward and westward slope. This
feature is also a possible result of the uplifting of moisture along the southern and
western edge of the TP. In the snow maximum season (February), the SCF does not
show much difference in the flat slopes (slope < 5◦). With increasing slope, the SCF
in southward and eastward slopes grows rapidly.

Fig. 9.4 Mean SCF as a function of slope in the different aspects during the snow maximum
season (February), the ablation season (May), the minimum season (August) and the accumulation
season (November). X-axis is the slope in degree and y-axis is the snow cover fraction in percent.
The statistics are based on the Terra snow monitoring from 2000 to 2006
Modified from Pu and Xu (2009)
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The average SCF on the eastward slope is larger than the southward slope when
the slope is larger than 10◦. This feature is more evident in the snow minimum
season (Fig. 9.4c). A possible reason is that the southward slope receives more solar
radiation than the eastward slope, leading the biggest SCF in the summer located on
the steep east-facing mountain. Snow cover in the northward and westward slopes
is not sensitive to the slope. In the ablation and accumulation season, the SCF even
decreases with the growth of the slope.

Based on the high resolution MODIS snow data, the evolution of snowlines over
the TP can be pioneer explored for the first time. In this study, the snowline is
defined as the elevation in which snow cover fraction is more than 50% (mostly-
snow-covered). Figure 9.5 shows the mean elevation of snowlines on four different
aspects.

In winter, the snowline is lowest on northward slopes (roughly 2300 m) during
January. Larger snowline differences are shown for the four different directions.
The snowline is roughly 3000 m Above Sea Level (ASL) minimum at southward
slopes. It is consistent with the common concept that the snowline on the southward
slopes is much higher than at the northward slopes. In addition, the snowline on the
windward slopes (westward slopes) is also lower than the snowline in the leeward
slopes (east slopes). The range of variation of snowlines between different aspects
is roughly 1100 m. From winter to summer, the snow cover melts and snowlines
rise correspondingly. The snowline in northward slopes rises faster than in other

Fig. 9.5 Annual evolution of snowlines in the four different aspects. The x-axis is Julian day and
the y-axis is the elevation. The snowline is defined as the elevation in which the SCF is larger
than 50%
Modified from Pu and Xu (2009)
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directions and finally reaches 5100 m. The snowline in the southward slopes, how-
ever, rises much slower and stops at 4700 m ASL maximum. In the meantime, the
difference of snowlines in the four aspects reduces to 400 m. The annual variabil-
ity of snowlines is largest in the northward slopes and smallest in the southward
slopes.

Why is the snowline at the southward slopes lower than the northward slopes
during the summer? Author speculates that this characteristic is possible as a result
of special distribution of huge mountains over the TP. The southward slopes concen-
trate at the southern edge of the TP where sufficient air moisture and terrain lifting
will produce deeper snow cover on the ground than other regions. Although south-
ward slopes receive more solar radiation during summer, the snow albedo effect
could still cause a relatively lower snowline. Further field investigations are needed
to explore the reason.

9.3.3 Snow Ablation

Snow ablation is the main land surface process during spring that influences the
exchange of water and energy with the atmosphere. Figure 9.6 shows the day of
onset of snow ablation averaged for different elevations and aspects. The onset date
is defined as the Julian day on which the SCF is continuously decreasing for at least
three 8-day periods after its peak in the winter.

In lower elevations, the snow ablation begins at the end of February. With increas-
ing elevation, snow ablation is postponed accordingly in the middle of March at
3000 m, April at 4000 m and May above 5000 m. At the same elevation, the snow
melts later on the southward and eastward slopes due to deeper snow. Below 5000 m,
snow in the northward slopes melts rough 10 days earlier compared to the southward

Fig. 9.6 Snow melting (ablation) date as a function of elevation in different aspects. The snow
melting date is defined as the Julian day on which the SCF begins continuous decreasing for at
least three 8-day periods after its peak in the winter
Modified from Pu and Xu (2009)
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slope. The departure in the melting date between the different aspects disappears
above 5500 m. From late winter to early spring (Feb-Mar), the snow in the lower
elevation regions around the edge of the TP begins to ablate. The SCF in most of
the interior of TP, however, is still increased (negative decrement) at that time. The
majority of large decrements (decrement > 10%) concentrate in the area between
2000–3000 m (39%) and 3000–4000 m (30%). In early spring (march-April), the
snow begins to ablate in the higher elevation regions at Karakoram and Yalung
Zhangbo Valley. Simultaneously, the increasing SCF in the interior of TP is signifi-
cantly reduced. The ratio of large decrement in the area of 4000–5000 m is rapidly
increased. After April, the snow is ablated over whole TP expect the permanent
snowpack and glacier regions. The large ablations concentrate in the area between
3000 and 5000 m. From May to June, more than half of the large decrement occurs
in the area above 4000 m.

9.3.4 Interannual Variability and Linear Trend

The reductions of snow cover and glacier due to global warming have been evi-
denced in the high mountains and the Polar region. Although short in length, the
time series of the mean SCF over the whole TP during 2000–2006 were analyzed
based on linear regression (Fig. 9.7). The linear trend in the mean SCF, for the whole
period, is almost flat over the TP during 2000–2006, although a slight decreasing
trend (about −0.34% per year) is found. The minimum SCF in each year also shows
a negligible trend of −0.01% per year. The maximum of SCF, however, shows
a notable decreasing trend of roughly −1.07% per year. During 2000–2006, the
maximum of SCF is roughly reduced 8%.

Although the minimum of SCF over the whole TP does not show a clear decreas-
ing trend, the snow cover fraction over 5000 m does show a notable decreasing

Fig. 9.7 Interannual variability of the average snow cover fraction over the TP from the 2000 to
2006 (dash line). The line shows the linear trend over 7 years period (–0.34%/year). The dash-dot
line shows the linear trend of the maximum SCF in the each snow year (–1.07%/year) and the dash
line shows the linear trend of the minimum SCF in each year (–0.01%/year)
Modified from Pu and Xu (2009)
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trend in the snow minimum season (August) during 2000–2006. The linear decreas-
ing trend is relatively small in the area of 5000–5250 m (−0.26%/year), but
increases with the elevation. In the area of 5750–6000 m, the decreasing rate is
largest (−0.58%/year). This decreasing trend is consistent with common specu-
lation to the response of snow cover to global warming over the TP (Qin et al.
2006).

With only 7 years of available MODIS data, however, it is hard to arrive at any
definitive conclusion regarding the linear trend of the snow-cover fraction for this
area. A longer time series of data is needed to attain more robust conclusions.

9.4 Discussion and Conclusion

Based on the accurate and consistent MODIS snow cover fraction, snow cover dis-
tribution and variability over the TP is quantitatively explored for the first time.
The snow cover distribution over the TP is extremely inhomogeneous due to com-
plex terrain. The heavy snow cover concentrates on the western edge of the TP
and Yarlung Zangbo Valley. In the interior of the TP, the snow cover fraction is
relatively small but shows larger interannual variability. The highest snow cover
fractions, typically in the range between 49 and 76%, are mostly concentrated at ele-
vations higher than 6000 m. During the summer months (e.g., July and August), the
Tibetan Plateau retains approximately 5% snow cover made up of scattered patches
of snow.

The snow cover distribution linkage with terrain characteristics is also explored.
In general, the SCF increases with elevation except in the interior of the TP. The
SCF on southward and eastward slopes is commonly larger than on the northward
and westward slopes. In the southward and eastward slopes, the SCF increases with
the growth of steepness, but is not sensitive to incline in the northward and westward
slopes. Snow cover in the concave and convex regions is relatively larger than in the
flat regions. Annual evolution of snowlines shows distinguished characteristics in
the different aspects. Special characteristics in the southward slopes are the results
of specific configurations of available moisture and huge terrains. The snow cover
ablation over TP begins in February at the lower elevation regions and delays with
increasing of elevation. The decrement in the early spring is concentrated in the area
of 2000–3000 m and moved to the area of 3000–5000 m after Apr and finally to the
area above 4000 m. Due to large interannual variability, snow cover over the TP
shows large anomalies or deviations from the climatological mean. These anoma-
lies, however, are temporally limited, usually less than 3 months. The anomalies of
snow cover do not persist into the summer.

There are slight decreasing trends in snow cover over TP during 2000–2006,
especially in the maximum SCF during winter and in the higher elevation regions
during the snow minimum season (August). A longer time series of data, however,
needs to be examined to reach a definitive conclusion about temporal trends.
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Chapter 10
The Global Geodetic Observing System
(GGOS): Detecting the Fingerprints of Global
Change in Geodetic Quantities

Hans-Peter Plag, Chris Rizos, Markus Rothacher, and Ruth Neilan

Abstract Modern geodetic observations from a wide range of space and terrestrial
technologies contribute to our knowledge of the solid Earth, atmosphere, ocean,
cryosphere, and land water storage. These geodetic observations record the “fin-
gerprints” of global change processes and thus are a crucial independent source
of high accuracy information for many global change studies. Many of the geode-
tic techniques require a globally distributed ground infrastructure, and associated
space segment elements. In the past decade and half a variety of technique-specific
services have been established under the auspices of the International Association of
Geodesy (IAG) to facilitate global coordination of geodetic activities and to ensure
the generation of high accuracy and reliable geodetic products to support geosci-
entific research. The Global Geodetic Observing System (GGOS) is an important
component of the IAG, and is intended to be an “umbrella” for the IAG Services,
with a primary coordinating function to ensure the development of an adequate
global geodetic infrastructure, and a suite of integrated multi-technique products,
that will meet the needs of scientific users. Coordination means bringing together
the different geodetic observing techniques, services and analysis methods so as to
ensure that the same standards, conventions, models and parameters are used in the
data analysis and modelling of “Earth system” processes. Integration implies the
combination of geometric, gravimetric, and rotational observations in data analysis
and data assimilation, and the joint estimation and/or modelling of all the neces-
sary parameters representing the difference components of the Earth system. The
geodetic observations collected during the last decades have facilitated major scien-
tific discoveries related to geohazards, climate and the global water cycle. Geodesy
has the potential to contribute even more to global change studies, particularly if
coordination and integration of the geodetic activities are continued.
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10.1 Introduction

Humanity is increasingly being confronted with the limitations of a restless planet,
with finite resources that cannot meet growing demands and a limited capacity to
accommodate the impact of the increasingly dominant anthropogenic factor. The
anthroposphere has grown into one of the most powerful factors in the Earth system,
which is transforming the Earth’s surface layers rapidly (Turner et al. 1990), and
which is capable of changing major system processes. To illustrate the scale of the
impact, consider the fact that more than 50% of the ice-free surface of the solid
Earth has been transformed by humans. Among experts there is a broad consensus
that humanity is changing the planet’s climate (Doran and Kendall 2009). One could
say that Earth has entered the geological epoch of the Anthropocene.

The Earth system is subject to a variety of dynamic processes driven by inte-
rior and exterior forces, operating on a wide range of temporal and spatial scales.
As a consequence, large areas of the Earth’s surface are exposed to natural haz-
ards, including geohazards, storms, storm surges, and floods. Urban settlements
are sprawling into areas at high risk from such natural hazards, thus increasing
the vulnerability of society. At the same time, natural and anthropogenic climate
change, is changing the hazards and introducing a large uncertainty into any predic-
tions of future events and developments. Considering the scale of the anthropogenic
impact on the Earth system, it is clear that decisions made today will influence the
well-being of future generations. Yet our limited capability of predicting the conse-
quences of our activities, including effectiveness of different mitigation strategies,
hampers the development of mitigation and adaptation policies.

A number of recent World Summits have emphasized the paramount importance
of sustainable development for a prosperous future of the anthroposphere and con-
firmed the necessity to reach to an operational implementation of the ethical concept
of Sustainable Development as proposed by the World Commission on Environment
and Development (1987). Understanding of the major processes in the Earth sys-
tem, and its changes over time, is one of the many prerequisites required for this
operationalization, which depends on both the capability to monitor the state of the
Earth system, and the capability to predict the future trajectories of the system under
various assumptions. Both capabilities cannot be developed without a comprehen-
sive monitoring of the Earth system. Recognizing the urgent need for a coordinated
and sustained program of Earth observation, the recent Earth Observation Summits
(EOS) have tasked the intergovernmental Group on Earth Observations (GEO) with
the implementation of the Global Earth Observation System of Systems (GEOSS).
GEOSS is designed with a focus on nine Societal Benefit Areas (SBAs) (GEO
2005), including the SBAs of Climate, Weather, and Disasters.

Geodesy provides the foundation on which most Earth observation systems are
built. In this function, the geodetic observing system is essential for Earth obser-
vation in general and GEOSS in particular. Geodesy is the science of measuring
and mapping the geometry, rotation and gravity field of the Earth including their
variations with time. These three characteristics of the Earth system are inherently
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related to the dynamics of the system, and to mass and energy transport throughout
the system.

The development of space-geodetic technologies has revolutionized the methods
of geodesy, and make possible the comprehensive monitoring of physical charac-
teristics of the Earth system with high accuracy and resolution. Since the advent
of space-geodesy about half a century ago, the accuracy of positioning in a global
geodetic reference frame has increased by roughly an order of magnitude every
decade, reaching today sub-centimetre for relative positions on global scales and
sub-millimetre per year changes in these positions. With today’s space-geodetic
techniques, changes in the surface of the solid Earth, the oceans, land surface
waters, and the ice sheets, can be measured with unprecedented accuracy and with
ever increasing spatial and temporal resolution. These geodetic observations pro-
vide critical information on geodynamic processes underlying geohazards such as
earthquakes, volcano eruptions, landslides, and subsidence, as well as changes in
the global water cycle such as melting of ice sheets, sea level rise, and changes in
land water storage. Variations in Earth rotation are inherently related to the global
dynamics of the coupled atmosphere-ocean-solid Earth system. For observations of
the time-variable Earth rotation, accuracy has also increased several orders of mag-
nitude over the last few decades. These observations are not only critical for our
understanding of the processes in the core and mantle of the solid Earth but also
provide important constraints on large-scale climate phenomena and climate mod-
els. Dedicated gravity satellite missions have improved our quantitative knowledge
of Earth’s static gravity field to a level where they now provide vital constraints
for ocean circulation models (Shum et al. 2010). Satellite observations of the time-
variable gravity field, for the first time, provide estimates of the changes in water
storage on subcontinental scales and with temporal resolutions reaching 10 days (see
Plag et al. (2009a) for references). The combination of the geodetic observations has
allowed the determination of a global terrestrial reference frame with centimetre
accuracy, an internal precision at the sub-centimetre level, and a long-term stability
on the order of 1 mm/yr or better.

Most of the technological developments in space-geodesy, and the rapidly
improved scientific understanding of the observations, have been facilitated by the
scientific expertise of the global geodetic community gathered in the International
Association of Geodesy (IAG). Over the last 15 years, the coordination of the global
geodetic infrastructure, data collection and processing, and product development
has come to a large extent through a number of technique- and product-specific
IAG Services. These today provide valuable observations and products not only
to the science community but also for a wide range of non-scientific applications.
The International GNSS Service (IGS), established in 1994, provided the prototype
model for these services. Recognizing the need to have a common voice for the
increasing number of IAG Services as well as a link between IAG as a whole and
relevant international Earth observation and research programs, the IAG initiated
the Global Geodetic Observing System (GGOS) during the IUGG meeting in 2003
as an IAG Project. After an initial definition phase and the implementation of core
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elements of the organizational structure of GGOS, at the IUGG meeting in 2007 the
IAG elevated GGOS to the status of permanent observing system of IAG.

The acronym “GGOS” has two very distinct aspects, which should be clearly
distinguished: (1) the “organization GGOS”, which consists of committees, pan-
els, bureaus, and working groups, and (2) the “observation system GGOS”, which
comprises the infrastructure of a wide range of instrument types, satellite missions,
and data and analysis centres (Plag et al. 2009b). While GGOS as an organiza-
tion has established its structure from essentially new entities, the infrastructure
for GGOS is provided to a large extent by the existing IAG Services. The organi-
zational components of GGOS are an integral part of the IAG structure (see, for
example, Beutler et al. (2009) for a description of GGOS as an organization). With
respect to the physical observing system [see, for example, Rothacher et al. (2009)
for a description of GGOS as a system], GGOS is facing a rather different situa-
tion: a considerable part of the infrastructure is provided by organizations that are
not formally (or only loosely) affiliated with the IAG. The GPS system, for exam-
ple, which is crucial for the IGS, is owned and maintained by the U.S. Department
of Defense. Satellite missions contributing to GGOS, including satellite altimetry,
satellite gravimetry, and InSAR, are implemented and operated by space agencies,
while GGOS only utilizes the observations. Dedicated infrastructure such as the sta-
tions in the global tracking networks, the analysis centres, and even the components
of the service organizations are provided on a voluntary basis. Consequently GGOS
as an observing system depends crucially on infrastructure provided by others, and
GGOS as an organization faces the challenge of ensuring, through dialogue with
the relevant providers, that this infrastructure is available on a continuous basis.
Considering the fact that the geodetic reference frames, which are made available
through the IAG Services and GGOS, provide the backbone for geospatial services
that underpin many modern societal applications, GGOS thus faces the challenge
of promoting a core, but often invisible, element of the infrastructure of a mod-
ern society to those who, on the one hand, can provide the resources to sustain this
infrastructure, and, on the other hand, can benefit from the geodetic observations and
products.

10.2 Geodesy’s Contribution to Earth Observation

Global geodesy serves Earth observation and global change science in two distinct
ways: (1) geodesy provides the reference frames required for all location-dependent
observations and thus contributes to the foundation of most Earth observations, and
(2) geodesy provides observations of the time-variable shape, gravity field, and rota-
tion of the Earth, and thus contributes to the Earth observation database. Within
geodesy, the observations and the reference frames are inherently coupled. In fact,
since the solid Earth is constantly deformed by internal geodynamic processes and
by mass and energy transport in the fluid envelope of the solid Earth, the capability
to understand and model these processes ultimately determines the accuracy of the
global geodetic reference frames.
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10.2.1 The Global Geodetic Reference Frames

Assigning time-dependent coordinates to points and objects, and describing the
motion of the Earth in space requires access to an appropriate reference system.
In geodesy, two global reference systems are basic for this purpose, namely the
celestial reference system and the terrestrial reference system, which are dynam-
ically linked to each other by the Earth’s rotational motion [see, e.g., Plag et al.
(2009a) for references). The two most accurate reference systems currently avail-
able are the International Celestial Reference System (ICRS) and the International
Terrestrial Reference System (ITRS), which are conventional coordinate systems
including all conventions for origin and orientation of the axes, scale, and physical
constants, models, and processes to be used in their realization. These two systems
are realized through their corresponding “reference frames,” i.e., the International
Celestial Reference Frame (ICRF; a set of estimated positions of extragalactic ref-
erence radio sources) and the International Terrestrial Reference Frame (ITRF; a set
of estimated positions and velocities of globally distributed reference marks on the
solid Earth’s surface), respectively. These two frames are linked to each other by
estimates of the Earth Orientation Parameters (EOPs). Based on the observations
and analysis results provided by the IAG Services, the International Earth Rotation
and Reference Systems Service (IERS) determines and provides access to the ITRF,
the ICRF, and the EOPs.

The ITRF is today the most accurate realization of a global geodetic reference
system. This well-defined, long-term stable, highly accurate and easily accessible
reference frame is the basis for all precise positioning on and near the Earth’s sur-
face. The ITRF underpins all geo-referenced data used by society for so many uses,
and it is the basis for most other reference frames, including WGS84 and the refer-
ence frame GTRF for the GALILEO system. Because of this, the ITRS and the ITRF
are not only indispensable for Earth observation in general, but also for many soci-
etal applications ranging from navigation, mapping, surveying, national and regional
reference frames, to civil engineering.

10.2.2 Role of Geodetic Observations for Science

As mentioned above, geodesy is the science of determining the geometry, gravity
field, and rotation of the Earth, and their evolution in time. Modern geodetic tech-
niques permit the measurement of changes in the geometry of the Earth’s surface
with an accuracy of millimetres over distances of several 1000 km. The secular
surface kinematics can be monitored with sub-mm/yr accuracy. Geodetic imaging
techniques increasingly gain importance, particularly when integrated with the tra-
ditional point-based approach of geodesy. Based on these geometric techniques,
temporal changes in the Earth’s shape, rotation and gravity field are provided with
increasing spatial and temporal resolution, increasing accuracy, and with decreasing
latency. The internationally coordinated global geodetic station networks provide a
continuous monitoring of the ITRF and the EOPs. In combination with ITRF, the
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Global Navigation Satellite Systems (GNSS) provide access to precise point coor-
dinates in ITRF anytime and anywhere on the Earth’s surface with centimetre-level
accuracy.

Data from a large number of space missions and other geodetic observations have
contributed to the determination of models of the Earth’s gravity field. The signif-
icant improvement in the resolution and precision of our knowledge of the Earth’s
gravity field is due to the satellite missions CHAMP and GRACE, in orbit since
2000 and 2002, respectively. In particular GRACE has pushed our knowledge of the
static geoid to centimetre-level accuracy. The European GOCE mission, launched
on 17 March 2009, will further improve precision and resolution of the static part
of the gravity field to an unprecedented level. The GRACE mission is designed to
monitor changes in Earth’s gravity field induced by mass changes at spatial scales
less than 500 km and with amplitudes of the order of 1 cm of water equivalent.

All these geodetic observations record the “fingerprints” of mass movements in
the solid Earth, ocean, atmosphere, ice sheets and terrestrial water storage; they
allow the determination of the displacement field associated with earthquakes and
the velocity and strain fields of the Earth’s surface; they scale mass and volume
changes in the ocean; they monitor the changes in ice sheets; they sense the changes
in land water storage; they measure the water content in the atmosphere; and they
provide crucial constraints for all models of geophysical processes in the Earth
system [see Plag et al. (2009a) for references].

At the accuracy level reached today in space-geodesy, the variations in the Earth’s
shape, gravity field, and rotation are caused by a number of Earth system processes
acting on a wide range of spatial and temporal scales. Meaningful interpretation
of the geodetic observations therefore requires the development of models that can
predict the geodetic observations for an increasing number of these processes with
the same accuracy as, or better than, the observations. In the course of this process,
geodesy has developed into a science making unique contributions to the under-
standing of the Earth system, its dynamics, and its response to climate change.
Consequently, with modern instrumentation and analytical techniques, the scope
of geodesy is rapidly extending from a mere monitoring of the geometric, gravita-
tional and rotational changes, to the modelling and understanding of the causes of
the observed changes. With this broader scope, geodesy contributes not only to the
scientific understanding of the Earth system but also the functioning, and security
of society in general.

10.3 GGOS: A Multi-technique, Multi-layered Yet Integrated
System

10.3.1 A Value-Chain from Observations to Applications

GGOS provides products that are pivotal for Earth observation, Earth science, geo-
information systems, and terrestrial and planetary navigation. From a value-chain
point of view, connecting observations at one end of the chain to user applications
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at the other end, GGOS comprises four main components. (1) The instrumentation
includes global terrestrial networks of geodetic stations and observatories, Earth
observing satellites, satellite navigation systems, and planetary missions. (2) The
data infrastructure comprises the infrastructure for data transfer, data management
and archiving, and data and product dissemination. (3) The data analysis covers the
complete and consistent data processing chain from the initial acquisition and the
processing of large amounts of observations, to the consistent integrated analysis
and combination of products, and the assimilation of the observations into complex
models of the Earth system or components of this system. (4) The GGOS Portal
provides a unique access point for GGOS users to all GGOS products, including
relevant metadata and documentation.

GGOS faces the challenge to develop the geodetic technologies and the observing
system so that they meet the demanding and evolving observational requirements
in terms of reference frame accuracy and availability, as well as in terms of spa-
tial and temporal resolution and accuracy of the geodetic observations. GGOS has
assessed these requirements for science, Earth observations and societal applica-
tion (see Gross et al. 2009). The most demanding observational requirements result
mostly from scientific applications. For reference frame accuracy, scientific studies
of sea level change caused by climate change appear to pose the most demand-
ing requirements of accuracy and stability at the levels of 1 mm and 0.1 mm/yr,
respectively. For the geoid, for use in ocean general circulation models to define
the mean sea surface topography, and the use with GNSS for the determination of
heights at the millimetre level requires the static geoid to be accurate and stable at
levels of 1 mm and 0.1 mm/yr, respectively. For Earth orientation parameters, the
most demanding application is likely to be the tracking and navigation of interplane-
tary spacecraft, which is a capability-driven application requiring the most accurate
EOPs that can be determined, such that they are consistent in accuracy with the
accuracy of the ITRF and ICRF.

A key element in this value chain is the theory used for the modelling and inter-
pretation of the geodetic observations. Much of the theory used today was developed
at a time when geodetic observations were at a much lower accuracy level, and parts
of the theory is not accurate enough to fully exploit the current, and much less so
future improved, accuracy. An example are the satellite gravity observations, where
theory development lags behind observation accuracy (Xu 2008), although efforts
are made to bring theory in line with the improved accuracy (e.g., Mayer-Gürr et al.
2005). Users of geodetic products will have to consider carefully any mismatch in
theory and observations, and GGOS will have to focus on bringing theory in line
with a constantly improving accuracy of the observations.

10.3.2 A System-of-Systems

From a system-oriented point of view, the global geodetic infrastructure can be
characterized as a multi-technique “system-of-systems”, which observes key geo-
metric and physical quantities of the Earth system with specialized technologies
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Table 10.1 The global geodetic observing system (GGOS)

Component Objective Techniques Responsibility

I. Geokinematics
(size, shape,
kinematics,
deformation)

Shape and temporal variations of
land/ice/ocean surface (plates,
intra-plates, volcanos,
earthquakes, glaciers, ocean
variability, sea level)

Altimetry, InSAR,
GNSS-cluster,
VLBI, SLR, DORIS,
imaging techniques,
levelling, tide
gauges

International
and national
projects,
space
missions,
IGS, IAS,
future InSAR
service

II. Earth Rotation
(nutation,
precession,
polar motion,
variations in
length-of-day)

Integrated effect of changes in
angular momentum and moment
of inertia tensor (mass changes
in atmosphere, cryosphere,
oceans, solid Earth, core/mantle;
momentum exchange between
Earth system components)

Classical astronomy,
VLBI, LLR, SLR,
GNSS, DORIS,
under development:
terrestrial
gyroscopes

International
geodetic and
astronomical
community
(IERS, IGS,
IVS, ILRS,
IDS)

III. Gravity field Geoid, Earth’s static gravitational
potential, temporal variations
induced by solid Earth processes
and mass transport in the global
water cycle

Terrestrial gravimetry
(absolute and
relative), airborne
gravimetry, satellite
orbits, dedicated
satellite missions
(CHAMP, GRACE,
GOCE)

International
geophysical
and geodetic
community
(GGP, IGFS,
IGeS, BGI)

IV. Terrestrial
Frame

Global cluster of fiducial points,
determined at mm to cm level

VLBI, GNSS, SLR,
LLR, DORIS, time
keeping/transfer,
absolute gravimetry,
gravity recording

International
geodetic
community
(IERS with
support of
IVS, ILRS,
IGS, and
IDS)

VLBI Very Long Baseline Interferometry, SLR Satellite Laser Ranging, LLR Lunar Laser Ranging,
GNSS Global Navigation Satellite Systems, DORIS Doppler Orbitography and Radio Positioning
Integrated by Satellite, InSAR Interferometric Synthetic Aperture Radar, IGS International GNSS
Service, IAS International Altimetry Service, IVS International VLBI Service for Geodesy
and Astrometry, ILRS International Laser Ranging Service, IDS International DORIS Service,
IERS International Earth Rotation and Reference Systems Service, IGFS International Gravity
Field Service, GGP Global Geodynamics Project, BGI International Gravimetric Bureau, IGeS
International Geoid Service.
Modified from Plag et al. (2009a)

(Table 10.1). The technique-specific IAG Services take care of the coordination of
infrastructure relevant for a specific technique Rothacher et al. (2009). Coordination
between techniques and combination of products from different techniques to
higher-level products is undertaken by the IERS and the International Gravity Field
Service (IGFS).
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10.3.3 A Multi-layered System

Looking from the Earth’s surface upward, the global geodetic infrastructure appears
to be layered and can be characterized by five major levels of instrumentation
and objects that actively perform observations, are passively observed, or both
(Fig. 10.1). These levels are (Rothacher et al. 2009):

Level 1: the terrestrial geodetic infrastructure, which comprises ground stations
of in situ and tracking networks, observatories, communication links, and
infrastructure for data storage, processing, modelling, and distribution;

Level 2: the Low-Earth Orbiting (LEO) satellite missions, which include dif-
ferent types of altimeters, synthetic aperture radar, gravity satellite missions,
LIght Detection And Ranging (LIDAR) sensors, and other instruments;

Level 3: the satellites of the Global Navigation Satellite Systems (GNSS) and
the LAGEOS-type Satellite Laser Ranging (SLR) satellites;

Level 4: the planetary missions and geodetic infrastructure on Moon and plan-
ets, including reflectors for Lunar Laser Ranging (LLR);

Level 5: the extragalactic radio-signal emitting quasars.

Fig. 10.1 The five layers of the global geodetic infrastructure. From Rothacher et al. (2009)

10.3.4 Integration Through Multiple Links

Independent of whether the instruments and objects in a layer are active or
passive, receivers or emitters or both, these five levels of instrumentation and objects
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are connected in various ways. Firstly, all geodetic techniques measure the “output”
of the same unique Earth system and are thus affected by the same environmental
processes, although with different sensitivities and noise sources. Most, if not all,
physical processes in the Earth system are associated with mass redistributions (see
Section 10.4). The geodetic fingerprints of these mass redistributions and changes
in the system’s dynamics are captured by the different techniques according to their
specific sensitivity. For example, displacements of the surface of the solid Earth,
oceans, ice sheets, and land water areas are observed with several independent geo-
metric and imaging techniques. Earth rotation variations are derived from several
independent techniques and through combinations of these techniques; and changes
in surface mass storage are extracted from observations of the time-variable grav-
ity field, Earth rotation, and surface displacements. Thus, the different parts of the
overall system are cross-linked through observations of the same geometric and
physical quantities, and, to a certain extent, they are inter-dependent. In the data
processing, the geodetic observations are further linked through geophysical mod-
els of the system processes. Therefore, consistency of data processing, modelling,
and conventions across the techniques and across the three main areas of geodesy is
mandatory if the full potential of the observing system is to be realized.

Most importantly, for the integration of the individual layers and systems into
a consistent observing system, the different techniques are connected through
co-location of sensors both on Earth and in space. For the separation of technique-
dependent effects from the fingerprints of the Earth system processes in the geodetic
observations, co-location of different and often complementary techniques is cru-
cial. Co-location of different techniques at the same location on Earth has vital for
ensuring the stability of the ITRF. Today, the uneven geographical distribution of
“core” stations with three or more space-geodetic techniques is a limiting factor for
the accuracy of the ITRF. GGOS must work towards a more even distribution of
core stations.

The emerging co-location of different sensors and observation types onboard a
satellite is also extremely important to establish connections between the observa-
tion techniques (Rothacher et al. 2009). This in-space co-location complements the
co-location of stations on the Earth. An example is the rapid progress achieved in
orbit determination with the tracking data of the TOPEX/Poseidon satellite using
DORIS, GPS, SLR and altimetry crossovers. GGOS is therefore promoting that
future satellite missions put emphasis on establishing links between different obser-
vation and tracking techniques. For example, it is of particular importance that all
GNSS satellites be equipped with laser retro-reflectors arrays, thus providing a link
between GNSS and SLR (Plag et al. 2009a; Rothacher et al. 2009).

10.3.5 An Integrated System Sensing Atmosphere, Hydrosphere,
and Solid Earth

Facilitated by these links through physics, models and co-location, the five
layers of the global geodetic infrastructure form the complex, integrated GGOS as
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an observing system. The major observation types acquired by this system include:
(1) observations of the microwaves emitted by GNSS satellites at the ground sta-
tions and at LEO satellites; (2) laser ranging to LEOs, dedicated laser ranging
satellites, GNSS satellites and the Moon; (3) observation of the microwaves emit-
ted by quasars using antennas in the Very Long Baseline Interferometry (VLBI)
network; (4) instrumentation onboard the LEO satellites measuring accelerations,
gravity gradients, satellite orientation, etc.; (5) radar and optical observations of the
Earth’s surface (land, ice, glaciers, sea level, ect.) from remote sensing satellites;
(6) distance measurements between satellites (K-band, optical, interferometry, etc.);
(7) measurements of other quantities on the ground related to variations in grav-
ity (with absolute and relative gravimeters), Earth rotation (for example, with ring
lasers), sea level (for example, with tide gauges), and water storage (for example,
lake groundwater levels) (see Rothacher et al. (2009) for more details). For many
of these observations, in particular, the space-geodetic observations, time measure-
ments are crucial and, ultimately, the accuracy of the geodetic observations depends
on the accuracy of time measurements.

With these observations, the geodetic infrastructure not only measures time-
variable Earth shape, gravity field, and rotation. As they propagate through the
ionosphere and troposphere, the microwaves are refracted by the atmosphere and
thus sense this component of the Earth system as well.

10.4 Global Change Results

Many of the burning questions related to the water cycle, climate variability, global
change, and geohazards cannot be solved without knowledge of energy and mass
transports throughout “System Earth” and the associated dynamics (Rummel et al.
2009). Most of the processes leading to mass and energy transport affect the Earth’s
figure (geometry), its gravity field and its rotation. Consequently, geodetic obser-
vations record the fingerprints of global change processes. However, the signals
induced by global change in geodetic observations are generally small (of the order
of parts-per-billion of the quantities), and they are often embedded in larger varia-
tions not caused by global change. Therefore, in addition to geodetic observations
with an accuracy considerably better than these signals, identifying and quantifying
the global change signals also requires accurate modelling of all known processes
in an Earth system model (Herring et al. 2009; Rummel et al. 2009).

Many scientific studies of global processes, including those related to global and
climate change, have already benefited from detailed knowledge of the Earth’s time-
variable shape, rotation, and gravity field. Over the last fifteen or so years, the global
geodetic networks have provided an increasingly detailed picture of the temporal
variations in the Earth’s shape and of the kinematics of points on the Earth’s sur-
face, including the ocean, ice cover, and land surfaces. The observations have been
used, for example, to determine improved models of the secular velocity field as an
input for studies of plate tectonics, post-glacial rebound, sea level changes, and ice
load changes, to derive models of the global strain rate field (Fig. 10.2), to study
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Fig. 10.2 Geodetic observations of Earth’s time-variable shape are used, for example, to determine
strain rate models. Shown is the second in-variant of a strain rate tensor model obtained from global
GPS observations. C. Kreemer 2009, personal communication

seasonal loading and derive seasonal variations in the terrestrial hydrosphere, to
invert for mass changes in ocean, ice sheets and land water storage, to improve
the modelling of the seasonal term in polar motion, and to study transient surface
deformations prior to, during and after earthquakes. Geodetic techniques provide
the means to observe surface deformations on volcanoes, in unstable landslide prone
areas, associated with earthquakes and fault motion, or subsidence caused by anthro-
pogenic activities such as groundwater and oil extraction (for more examples and
references, see Plag et al. 2009a). In the near future, geodetic observing techniques
will be able to determine the magnitude and displacement field of great earthquakes
in near real-time as support for early warning systems (e.g., Blewitt et al. 2006).

Variations in Earth’s rotation are induced by mass transport in the Earth sys-
tem and the exchange of angular momentum among its components. Earth rotation
observations have provided insight into many global-scale dynamic phenomena,
including sea level changes, post-glacial rebound, and hemispheric seasonal changes
in land water storage and snow load. An example at interannual time scales is the
El Niño/Southern Oscillation (ENSO) phenomenon, which is the most prominent
feature of the climate system at these time scales. ENSO events are associated with
a collapse of the tropical easterlies leading to an increase of the atmospheric angu-
lar momentum, which in turn is compensated for by a decrease of the solid Earth’s
angular momentum and an increase of the length-of-day of up to 0.5 milliseconds
(for particularly strong ENSO events). ENSO events are associated with significant
and far-reaching impacts on interannual climate, and early detection and forecasting
of the timing and magnitude of these events is of high societal relevance. Geodetic
observations of Earth rotation and sea surface height anomalies provide pivotal
constraints for both detection and forecasting (for references, see Rummel et al.
2009).

Gravity field variations are caused by many different processes in the Earth sys-
tem (Fig. 10.3), and most of these processes have geodetic fingerprints above the
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Fig. 10.3 Mass transport in the Earth system. The different processes are associated with char-
acteristic spatial scales, ranging from a few km to global, and tenporal scales from instantaneous
to secular and static. The capability of current dedicated gravity satellite missions to capture the
“fingerprint” of some of these processes is indicated. From Ilk et al. 2005

accuracy level reached by space-geodesy. For example, gravity effects of co-seismic
and post-seismic deformation associated with large earthquakes have been identi-
fied in GRACE observations (e.g., Bao et al. 2005; Panet et al. 2008). At time scales
from weeks to several decades, the largest mass redistributions on the surface of the
solid Earth occur in the hydrological cycle, and the GRACE mission is providing
unprecedented insight into the water cycle down to spatial scales of about 500 km
and on sub-monthly time scales (Fig. 10.4; for references, see Plag et al. 2009a).

Figure 10.3 illustrates that the different processes are associated with different
temporal and spatial scales, which lead to multiple geodetic signatures. Mass move-
ments in the hydrosphere have temporal scales from weeks to decades, and spatial
scales from 10 km to continental or basin scales. These mass movements load and
deform the solid Earth, impact on the gravity field of the Earth system, and change
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Fig. 10.4 Geodetic
observations of the
time-variable gravity field of
the Earth. The pictures show
a snapshot of monthly
changes in the Earth’s gravity
field with respect to the mean
field. The changes are caused
mainly by mass transport in
the fluid envelope of the solid
Earth. Courtesy NASA

the rotation of the solid Earth. The response of the solid Earth to the loads includes
an elastic response to concurrent mass redistributions, as well as a viscous response
to past mass movements. The response in Earth’s shape, gravity field and rotation
depends on the spatial scale of the loads, with surface displacements being more sen-
sitive to smaller loads than gravity and rotation. Consequently, the different geodetic
techniques have specific temporal and spatial sensitivities. Sampling of the complete
spatio-temporal spectrum with high resolution and accuracy with a set of different
techniques is therefore necessary in order to be able to invert the geodetic observa-
tions to derive mass changes associated with the individual Earth system processes.
For example, inversion of surface displacements observed with GPS and geophysi-
cal models of these displacements have errors at the level of a few centimetres at a
few hundred km wavelength, while mass estimates derived from GRACE at 200 km
have errors larger than 20 cm. A combination of integrated geodetic observations
with models of the water cycle is therefore a promising approach. For example,
results of combined inversion of observations from GRACE, SLR, VLBI, GPS and
predictions of an ocean model (ECCO) show a dramatic melting of Greenland (Wu
2008, personal communication).

There are many climate-related scientific problems that can be addressed using
combined geodetic observations. For example, one of the projects in the Global
Energy and Water Cycle Experiment (GEWEX) addresses the question of how
changes in land use and aerosol may have impacted monsoons (Lawford 2008, per-
sonnel communication). Geodetic observations can provide important constraints
on the associated changes in land water storage. Other areas are extremes: there are
periods of “quiet” variations and then there are periods of extreme variations, and
geodetic observations may help to characterize and potentially predict these peri-
ods. For example, the forecasts of the drought conditions in 2005 in Canada failed
completely (Lawford 2008, personnel communication), but using global geodetic
observations to characterize the state of the Earth system may help to improve such
forecasts. There is also an urgent need to improve season-by-season prediction. On
the one hand, geodetic observation support the validation of numerical (weather and
climate) prediction models, and, on the other hand, assimilation of these observa-
tions into prediction models may in the future improve the predictive capabilities of
these models.
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Combination of the full suite of geodetic observations with land surface hydro-
logical models helps to increase spatial resolution. An important advantage of the
geodetic observations is that they are not limited in terms of penetration depth: sub-
surface mass changes have their fingerprint in all geodetic observations. Current
challenges for an operational use of the geodetic observations, for example, in water
management, drought and seasonal predictions, include considerable differences
between observed and modelled variables, a spatial resolution of observations that
is too coarse, a temporal resolution that is too low, and a latency that is too high.

The gravity field determination from dedicated space missions has also con-
tributed tremendously to advances in a number of fields of geodesy, including
reference frames, the orbits of ocean radar altimetry satellites, laser altimeters, and
sea surface topography from satellite altimetry [see Plag et al. (2009a) for refer-
ences]. The integration of various satellite missions with the geometric techniques
created new opportunities for the study of mass transport in the Earth system in
a globally consistent way (Ilk et al. 2005). Oceanographic applications illustrate
the unique way in which the combined geodetic observations provide accurate and
quantitative constraints on the ocean mass budget, tidal dissipation, near-surface
ocean flow and its variability, and large-scale ocean mass variations (Cazenave et al.
2010; Shum et al. 2010). The observations are invaluable for understanding the
causes of sea level rise and the dynamics of ocean mass redistribution. Geodetic
observations are also crucial in reducing the current large uncertainties in future
global and local sea level predictions, a key issue hampering the development of
urgently needed adaptation policies for one of the most severe impacts of global
warming: coastal inundation (Cazenave et al. 2010; Plag et al. 2010).

In order to fully exploit the complimentary nature of the changes in Earth’s
shape, gravity field and rotation for global change studies, it will be necessary to
develop the observing system based on our understanding of the geodetic finger-
prints of these changes. However, currently other factors have a greater impact on
the development of geodetic infrastructure. As an example, we compare areas of
large on-going mass changes to the network of GPS stations. The secular trends in
surface mass as determined from GRACE is shown in Fig. 10.5. These mass changes
induce both gravity changes and surface displacements, with the ratio of surface dis-
placements to gravity changes increasing with decreasing spatial scales. Therefore,
observations of surface displacements, particularly for areas where GRACE senses
large secular mass variations, would be complementary to the gravity observations.
However, comparing the locations of GPS stations for which observations are avail-
able in public data archives, it is obvious that only some areas with large mass
decreases are well covered with GPS stations (e.g., North America), while others are
not (e.g., Greenland, Africa, South America, and Antarctica, see Fig. 10.5). Future
deployments of GNSS sites should therefore aim to reduce the mismatch between
areas with mass changes and GNSS coverage.

In the future, new measurement techniques are likely to evolve and these will be
included into GGOS. An example is GNSS reflectometry, which is based on record-
ing GNSS signals onboard LEO satellites after they are reflected off the ocean or ice
surfaces. In 2013, more than 120 GNSS satellites will be providing signals for this
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Fig. 10.5 Top: Mass changes in m/year derived from GRACE. From Watkins et al. (2008). Middle
and bottom: Location of GPS sites the Nevada Geodetic Laboratory (NGL) has discovered in public
data archives and for which NGL is downloading and analyzing data routinely. Middle: Location
of 1299 GPS sites available in 2002. Bottom: Location of 3825 GPS sites available in 2008 (GPS
site locations from Kreemer and Blewitt 2008, personal communication)
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technique. Therefore this concept has a huge potential to measure ocean and ice sur-
face topography and roughness with high spatial and temporal resolution, assisting
in ocean and ice monitoring and for global tsunami early warning systems.Another
emerging concept is the co-location of space geodetic techniques on special micro-
satellites. Such micro-satellites could be equipped with GNSS antennas for precise
orbit determination and for radio occultation studies, star sensors for attitude, an
SLR retro-reflector and a VLBI signal transmitter. As the satellite (or satellite con-
stellation) orbits the Earth it would “connect” all the global core sites and improve
co-location from space.

10.5 Future Developments

In the future, new measurement techniques are likely to evolve and these will be
included into GGOS. An example is GNSS reflectometry, which is based on record-
ing GNSS signals onboard LEO satellites after they are reflected off the ocean or ice
surfaces. In 2013, more than 120 GNSS satellites will be providing signals for this
technique. Therefore this concept has a huge potential to measure ocean and ice sur-
face topography and roughness with high spatial and temporal resolution, assisting
in ocean and ice monitoring and for global tsunami early warning systems. Another
emerging concept is the co-location of space geodetic techniques on special micro-
satellites. Such micro-satellites could be equipped with GNSS antennas for precise
orbit determination and for radio occultation studies, star sensors for attitude, an
SLR retro-reflector and a VLBI signal transmitter. As the satellite (or satellite con-
stellation) orbits the Earth it would “connect” all the global core sites and improve
co-location from space.

Currently, temporal inhomogeneities of geodetic time series due to technologi-
cal developments, changing station distribution, and improvements in geophysical
models and geodetic analysis methods are a limitation for many global change
studies. Developments in analysis capabilities through new approaches for single
techniques (such as, for example, the recent ambizap algorithm, see Blewitt 2008)
or combined analyses, improvements of the reference frame (for example, Gross
et al. 2009) and the geophysical models, as well as increased computer storage and
processing power will provide the necessary capabilities for rapid and homogeneous
reprocessing of the complete global geodetic database with the highest possible
accuracy in order to provide datasets for global change and climate studies that are
as homogeneous in time as possible. A prerequisite for exploiting the full potential
of geodesy for Earth observation, Earth system monitoring, and for many practi-
cal applications is, however, a sophisticated integration of all geodetic techniques
(spaceborne, airborne, marine and terrestrial), processing models and geophysical
background models into one system. This integration will permit – as part of global
change research – the assessment of surface deformation processes and the quan-
tification of mass anomalies and mass transport inside individual components, and
mass exchange between the components of the Earth’s system. GGOS is pivotal in
facilitating this integration.
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Chapter 11
Monitoring Radial Tectonic Motions
of Continental Borders Around the Atlantic
Ocean and Regional Sea Level Changes
by Space Geodetic Observations

Zhigen Yang and Fengchun Shu

Abstract In this paper, the possible radial tectonic motions of continental border of
both sides of the Atlantic Ocean are estimated based on the International Terrestrial
Reference Frame ITRF2000 and the NNR-NUVEL-1A plate motion model. The
technique uses the observed VLBI baseline length change rates around the Atlantic
Ocean as constraints to estimate the regional geometric change of the Earth, the
regional GPS and SLR velocity field data are also processed respectively to con-
firm the above estimated results. Primarily comparison of the radial tectonic motion
results with the observed mean sea level rises around the eastern coast of the North
America is performed. We conclude that the average land elevation of continental
border around both sides of mid-Atlantic in northern hemisphere probably has a
systematically sinking of about 1.57 ± 0.35 mm/year because of the possible radial
tectonic motion in this area. Therefore, the approximately same value of extra sea
level rise near the eastern coast of the North America probably comes from the
crustal radial tectonic motion, but the post-glacial rebound as regarded previously.
Further studies and discussion to the possible radial tectonic motions mentioned
above using the velocity field data in ITRF2005 and/or in ITRF2008 would be
considered so as to address further the estimated results in this work.

11.1 Introduction

During the past decades, the uncertainty of the horizontal components and regional
deformation solutions of Very Long Baseline Interferometry (VLBI) plate motions
is about ±1.0 mm/year. Average accuracy for global solutions of VLBI baseline
rates (∼650 global baselines or more) is better than ±1.4 mm/year (Ma 2003; Yang
et al. 2004, 2005). Studies on regional radial tectonic motions and/or deformations
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and possible earth’s geometrical changes have become possible for the intention of
better understanding regional real sea level changes (Sun et al. 1999; Ma et al. 1992;
Jin and Zhu 2003).

Over the past 51 year period, there is no significant difference in the rates of
coastal and global mean sea level rise, as found in climate model simulations of the
20th century. The best estimate of both global and coastal sea level rise remains
1.8 ± 0.3 mm/year, as found in earlier studies (White et al. 2005). The recent
estimates on the sea level rise from 1961 to 2003 is about 1.5 ± 0.4 mm/year
(Domingues et al. 2008), in good agreement with their updated estimate of near-
global mean sea level rise of 1.6 ± 0.2 mm/year (Church et al. 2004; Church and
White 2006). However, according to the estimates from satellite altimetry since
the start of the TOPEX/Poseidon (T/P) record in late 1992 (Church et al. 2004;
Leuliette et al. 2004; Church et al. 2008; Beckley et al. 2007), the sea level rise near
coastal areas may be near or over 3 mm/year. Satellite altimetry measurements by
the TOPEX/Poseidon and Jason 1 satellite covering the years 1993–2003 provide a
value of sea level rise of 3.1 ± 0.7 mm/year (IPCC 2007; Nerem et al. 2006).

Global fluctuations in sea level may result from some regional processes, such
as thermal expansion of ocean waters, changes in melt water load, crustal post-
glacial rebound (PGR) and uplift or subsidence in coastal areas related to various
tectonic processes (Cazenave and Nerem 2004), and are also controlled by many
different variables, including interactions between lithology, geomorphology and
climate (Gornitz 1991), as well as more local shelf-scale changes in coastal winds,
atmospheric pressures and freshwater runoff, and vertical land motions from large-
scale glacial isostatic rebound, local tectonic motions and the response to changes in
surface loading of the Earth from changing mass of ice sheets, glaciers and terrestrial
storage (White et al. 2005).

Munk (2003) stated that global sea levels have been rising over the past century.
It remains hotly debated, however, how fast this rise has been and which of the two
causes: expansion of ocean waters due to warming, or freshwater input from the
continents-has dominated. He cautions, however, that uncertainties in sea ice melt-
ing rates and possible biases in tide gage data do not yet allow a definitive answer.
Even with global satellite coverage, several decades of data will be required for good
estimates of the role of global warming in sea level rise. Miller and Douglas (2006)
found that sea level trends from tide-gauges, which reflect both mass and volume
change, are 2–3 times higher than rates based on hydrographic data which reveal
only volume change, thereby indicating that mass increase plays a much larger role
than ocean warming in twentieth century global sea level rise, which differs from
the conclusion that the rate of ocean warming and thermosteric rise from 1961 to
2003 is about 50% (Domingues et al. 2008). Shepherd and Wingham (2007) fur-
ther obtained that it is reasonable to conclude that, today, the East Antarctic mass is
gaining some 25 Gt/year, the West Antarctic mass is losing about 50 Gt/year, and
the Greenland mass is losing about 100 Gt/year, these trends provide a sea level
contribution of about 0.35 mm/year, a modest component of the present rate of sea
level rise of 3.0 mm/year.
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However, so far we do not have a complete understanding of regional scale
crustal deformation, especially the crustal radial tectonic motions. The geodetic
studies on crustal vertical motion and its model solution, especially the global scale
mass variations in the Earth system and a big challenge for our understanding
of the geophysical fluids were presented and suggested at the third International
VLBI Service for Geodesy and Astrometry (IVS) General Meeting, February 9–12,
2004, Ottawa, Canada (Fesissel-Vernier et al. 2004). VLBI/GPS/absolute gravity
space geodetic measurements of crustal motions can be employed to correct many
long term tide gauge records because of vertical crustal movements, improving
the geographic coverage of sea level trends (Douglas 1997). Due to the accurate
short/long-term records of sea level, and the mid-Atlantic coast areas in northern
hemisphere can potentially be affected by vertical motion of the land as pointed
above, the possible average radial tectonic motions along the continental border of
mid-Atlantic region in northern hemisphere is estimated and quantified by using
data of VLBI baseline length change rates (Ma 2003, 2005; Yang et al. 2004, 2005),
the three dimensional (3-D) data of velocity field in rectangular coordinate system
for the GPS (Heflin et al. 2004) and satellite laser ranging (SLR) (Boucher et al.
2001) measurements are analyzed to verify the above results by VLBI.

11.2 Methodology

The baseline length change Ḃ between two VLBI stations, which are located in the
two different continents, can be expressed by the following components:

Ḃ = RMol + RReg + RLoc + RGeo + RPGR + RRot (11.1)

where, the right corresponding components in Eq. (11.1), RMol is the effects from
the plate motions, RReg, RLoc, RGeo and RPGR are, respectively, from the regional
crustal motions, local crustal motions, motions caused by other geophysical rea-
sons (Gornitz 1991; Cazenave and Nerem 2004), and from the PGR, RRot represents
effects from variations of earth rotation. Using the data of VLBI baseline rates,
we have successfully detected and separated the difference of vertical deforma-
tion rates between collocated VLBI stations in the world (Yang et al. 2001, 2002;
Yang and Zhu 2005, 2006) based on different ITRF solutions. In theory, the dis-
tance measurement and its change rate estimation along baseline between two
ground VLBI stations are independent of the adopted terrestrial reference frame
(Ma 2003; Yang et al. 2004, 2005). Therefore, if using the observed baseline rates
as constraints to estimate possible radial tectonic motions, and considering that
the effects of RRot in Eq. (11.1) can be ignored due to its smaller effects, we
can well obtain a possible average radial tectonic motion rate along the continen-
tal border of mid-Atlantic region where the VLBI baselines covered in northern
hemisphere.

Write B for the single-baseline length between two VLBI stations that are respec-
tively located at continental border of both sides of the Atlantic (see Fig. 11.1), R and
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Fig. 11.1 VLBI baseline B
between stations S1 and S2, O
represents the geocentric
center of the Earth

φ respectively, for the distance from geo-center to VLBI stations and the geocentric
angle of the VLBI baseline spans, then the B can be expressed as:

B = 2R sin(ϕ/2) (11.2)

Using the differential calculus to both sides of Eq. (11.2), the possible regional
average radial rate span by VLBI baseline may be separated, and we could have the
following equation:

Ḃ = 2Ṙ sin(ϕ/2) + Rϕ̇ cos(ϕ/2)
= 2Ṙ sin(ϕ/2) + �̇ cos(ϕ/2)

(11.3)

where Ḃ is the observed baseline rate, the Ṙ represents the average radial rate of con-
tinental zone between two VLBI stations around both sides of the Atlantic, being
the unknown quantity, which need to be estimated, and ϕ̇ and �̇ are respectively
the change rate of ϕ and the change rate of arc length corresponding to the VLBI
baseline spans, which can be estimated from plate motion model. From Eq. (11.3),
the observed baseline rate Ṙ is composed of two parts, one is the 2Ṙ sin(ϕ/2), relat-
ing with the average radial rate of VLBI stations of continental zone around both
sides of the Atlantic, another one is the �̇ cos(ϕ/2), the item of horizontal motion
of the VLBI stations caused by plate motion along the baseline direction of two
target VLBI stations. Based on the NNR-NUVEL-1A plate motion model (DeMets
et al. 1994), using the observed baseline rate Ḃ as input constraint, it is possible to
accurately estimate the average Ṙ separated by several hundred to several thousand
kilometers by Eq. (11.3), to refine the crustal regional vertical or radial tectonic
motion solutions, and to improve some possible inadequacies of ITRF solutions.
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11.3 Results

The adopted distribution of the nine VLBI baselines (including two baselines that
are located at southern hemisphere, along the both sides of the Atlantic in northern
hemisphere is shown in Fig. 11.2, the baseline length change rates and its cor-
responding results of radial rate estimate are respectively shown in Table 11.1.

Fig. 11.2 Distribution of nine VLBI baselines along the both sides of east-westward continental
border of the Atlantic. The original figure is from IVS publication (Boucher et al. 2001)

Table 11.1 The Ṙ results from VLBI measurements along different latitude zone of mid-Atlantic
in northern hemisphere: PGR of ICE-5G (Peltier 2004) is removed and PGR is not removed in
bracket

VLBI baseline
Baseline rate
(mm/year)

Latitude
(◦)

Ṙ
(mm/year)

O’Higgins-HartRAO 11.5 ± 1.3 –45.1 –2.35(–2.97) ± 1.21
Fortleze-HartRAO 18.8 ± 0.4 –14.9 –4.11(–4.53) ± 0.36
Richmond-NOTO 12.4 ± 3.8 +31.2 –3.56(–3.35) ± 3.04
NRAO20-Yebes 21.9 ± 4.1 +39.5 +2.03(2.37) ± 4.28
NRAO85_3-Matera 13.7 ± 1.6 +39.6 –4.50(–4.03) ± 1.39
Westford-Matera 16.0 ± 0.2 +41.7 –3.39(–3.08) ± 0.29
Westford-Medicina 15.7 ± 0.4 +43.6 –3.85(–3.75) ± 0.42
Algopark-Wettzell 18.8 ± 0.1 +47.7 –1.21(–0.86) ± 0.10
Ylow7296-Onsala60 15.7 ± 2.4 +59.9 –1.67(–2.20) ± 2.68
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In order to verify the above estimated results, we have used the same method to
calculate the radial tectonic motion rates by using the average 3-D regional velocity
field data of GPS and SLR in rectangular coordinate system (Boucher et al. 2001;
Heflin et al. 2004), the corresponding estimated results are shown in Table 11.2 and
11.3, respectively. In which, the Ṙ results with removing and no removing effects of
PGR are respectively listed.

In the estimation above, the GPS and/or SLR baseline length change rates were
respectively estimated with weighted average of 3-D velocity field data of multi-
stations (see first column of Tables 11.2 and 11.3), the effects from regional and
local crustal motions, motions caused by other geophysical reasons, and part of
PGR etc. to the original velocity field solution of single GPS or SLR station have
been in fact treated as random errors to a large extent in the regional average
velocity field estimation of GPS and/or SLR, and also in the regional average base-
line rate solutions of GPS and/or SLR, which probably have produced relatively
larger uncertainties for the results of Ṙ in Tables 11.2 and 11.3. However, the esti-
mated radial rate results in Tables 11.1–11.3 seem to be good consistent with each
other.

The average and weighted average results of Ṙ for different space techniques in
Tables 11.1–11.3 are respectively given in Table 11.4. In the weighted estimation
above, the weight Wp is expressed as:

Table 11.2 The Ṙ results from GPS measurements along different latitude zone of mid-Atlantic
in northern hemisphere: PGR of ICE-5G removed and PGR is not removed in bracket

GPS baseline (GPS Station
number)

Baseline rate
(mm/year)

Latitude
(◦)

Ṙ
(mm/year)

SOAM(5)-AFRC(3) 26.26 ± 3.23 –31.6 –2.98(–3.42) ± 3.40
SOAM(3)-AFRC(5) 17.69 ± 11.36 –7.7 –6.38(–6.76) ± 9.30
CARB(3)-AFRC(5) –1.82 ± 11.85 +4.7 –5.30(–5.62) ± 7.81
NOAM(4)-EURA(4) 14.79 ± 6.98 +38.1 –3.43(–2.85) ± 5.69
NOAM(4)-EURA(25) 19.61 ± 2.23 +45.2 –0.35(–0.53) ± 2.53
NOAM(2)-EURA(9) 16.19 ± 3.09 +69.1 +0.38(–1.70) ± 6.85

Table 11.3 The Ṙ results from SLR measurements along different latitude zone of mid-Atlantic
in northern hemisphere: PGR of ICE-5G removed and PGR is not removed in bracket

SLR baseline (SLR
Station number)

Baseline rate
(mm/year)

Latitude
(◦)

Ṙ
(mm/year)

SOAM(3)-AFRC(2) 15.65 ± 3.97 –28.4 –6.92(–7.57) ± 3.06
SOAM(3)-AFRC(3) 12.89 ± 3.73 +33.2 –3.20(–2.82) ± 3.07
NOAM(3)-EURA(7) 19.71 ± 7.48 +34.8 +0.39(+0.87) ± 5.36
NOAM(2)-EURA(6) 18.45 ± 2.91 +44.8 –1.79(–1.43) ± 2.99
NOAM(2)-EURA(2) 16.19 ± 3.09 +54.6 +0.26(–1.98) ± 4.92
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Table 11.4 Radial tectonic motions around middle latitude zone of the North Atlantic by VLBI,
GPS and SLR, respectively. PGR of ICE-5G removed and PGR is not removed in bracket

Techniques
Average Ṙ
(mm/year)

Weighted average Ṙ
(mm/year)

VLBI –2.31 ± 0.86(–2.12 ± 0.85) –1.57 ± 0.35(–1.24 ± 0.37)
GPS –2.17 ± 1.33(–2.67 ± 1.09) –1.06 ± 0.93(–1.32 ± 0.84)
SLR –1.08 ± 0.86(–1.34 ± 0.79) –1.75 ± 0.56(–1.73 ± 0.65)

Wp = (σi)
−2 (11.4)

Here σ i is the error of Ṙ results in Tables 11.1, 11.2 and 11.3, respectively. Thus,
the adopted data number of Ṙ results for calculating the weighted average of the
different techniques is 7 for VLBI, 4 for GPS and SLR, respectively. In Table 11.4, if
we take the weighted average of Ṙ results of GPS and SLR with PGR were removed
in the third column, we then have Ṙ(GPS + SLR) = −1.57 ± 0.30 mm/year , which is
almost the same value with that of the VLBI in the third column of the Table 11.4.
This means that around the continental border area of both sides of the Atlantic,
the radial tectonic motions is much probably in existence, which would has been
included in the observed data of sea level rise.

11.4 Sea Level Rise

Holgate and Woodworth (2004) found evidence that the coastal sea level was ris-
ing significantly faster than global mean sea level. The Goddard Institute for Space
Studies (2004) had the result that sea level in New York City has risen from 2.3 to
3.8 mm/year over the last hundred years, due to the major factors including ther-
mal expansion as the ocean warming, melting of mountain glaciers and subsidence
(sinking of the East Coast due to isostatic adjustments of the crust from the last ice
age). At the coastal waters of Washington State, local sea level rise is produced by
the combined effects of global sea level rise and local factors such as vertical land
deformation (Mote et al. 2008).

Additionally, based on the report of Titus (2002), the sea level has already been
rising along the U.S. coast. IPCC (2001) estimated that global sea level will rise
9–88 cm during the 21st century. Furthermore, due to the regional subsidence, the
rise will be 15–25 cm greater in parts of the mid-Atlantic, and 5–15 cm greater
elsewhere along the Atlantic Coast, i.e. averagely, during the 21st century the sea
level rise of about 6.8 mm/year and 5.8 mm/year will occur respectively in parts
of mid-Atlantic and at elsewhere along the Atlantic Coast. According to Titus
(2002), considering the effects both subsidence and greenhouse gases, sea level is
most likely to rise by about 2 feet along most of the Atlantic Coast, that means
the sea level rise will be about 6.2 mm/year in 21st century around most of the
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Atlantic Coast area, which would threaten most wetlands along the Eastern Shore
of Chesapeake Bay, and a large number of coastal wetlands in the mid-Atlantic Titus
et al. (2009). It should be noted that the regional subsidence around both sides of
continental zone of the north Atlantic would be about 1.5–2.5 mm/year as mentioned
by Titus (2002).

The interval 1930–1980 is long enough at 50 years to establish that the mid-
Atlantic region has a systematically higher rate of sea level rise than the long term
global average of nearly 1–2 mm/year (Fig. 11.3). The approximately 1.5 mm/year
extra rise for the region comes from a possible sinking of the land, due to the
regional radial tectonic motions (VanDam and Schenewerk 1997). A similar plot
just for tide gauges along the east coast of North America and tide gauges on the
Chesapeake Bay is emphasized using a different color. Note the similarity of all
these plots.

Figure 11.4 shows, clearly, the linear trend result of 2.9 mm/year, for the entire
103-year span (black line) from 1893 to 1995, of the annual mean relative sea level
at New York City (Douglas and Peltier 2002). Rosenzweig and Solecki (2001) con-
cluded that the sea level in New York City has risen on average 2.7 mm/year or
2.3–3.8 mm/year over the last hundred years. Looking ahead, it is expected that
sea level in the area will rise on average 3.9 mm/year or anywhere from 1.8 to
6.0 mm/year by the 2050. The researchers projected a rise in sea level of 11.8–37.5
inches in New York City and 9.5–42.5 inches in the metropolitan region by the
2080s (NASA/GSFC 2006).

Barbosa and Silva (2009) analyzed the long-term sea level variability in
Chesapeake Bay, concluded that the linear trends in relative sea level rise range
from 2.66 ± 0.075 mm/year (at Baltimore) to 4.40 ± 0.086 mm/year (at Hampton
Roads) for the 1955–2007 period, confirming again a extra rise of sea level in the
region of Chesapeake Bay.

Fig. 11.3 Sea level changes
of stations along U.S. eastern
seaboard by the east coast
tide gauges from 1930 to
1980 (ICE-3G PGR removed)
(Douglas and Lilibridge
1994)
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Fig. 11.4 Mean sea level changes of New York City from 1893 to 1995. Black dots represent the
annual relative sea level measured in centimeters. The red line represents the running 20-year mean
rate of relative sea level measured in millimeters, in which the interannual variations are clear (see
Douglas and Peltier 2002)

11.5 Conclusion and Discussion

The North Atlantic, including its east-westward continental border would has a
systematically crustal radial subsidence as 1.57 ± 0.35 mm/year based on the multi-
space geodetic observations (Table 11.4), which is consistent with the estimates by
many authors, such as Titus (2002). The baseline rate measurements made by space
geodetic observing techniques, especially the VLBI, can potentially be used as con-
straints to detect and/or separate some signals, such as the regional and/or large scale
area crustal radial tectonic motions.

In the mean sea level rise of 3.0 mm/year or over mentioned above, about
1.6 ± 0.3 mm/year excessive rate of sea level rise at east coastal area of North
America can probably be interpreted by regional radial tectonic subsidence.
Therefore, the true sea level rise in this area should be about ∼1.5 mm/year, which
includes the possible less effects of thermal expansion to the sea level rise as the
ocean warming (Miller and Douglas 2006; Munk 2003). According to the estimate
by Shepherd and Wingham (2007), the Antarctica and Greenland are each losing
mass overall, which, as the best estimate, is causing sea level rise by 0.35 mm/year,
is only a modest contribution to the present rate of sea level rise of 3.0 mm/year. In
consequence, the view that the changing sea level contribution of the Antarctic and
Greenland ice sheets in the 21st century will be both small and negative as a result of
accumulating snow in Antarctica (e.g., –0.05 mm year–1) is now uncertain, because
our predictive ability is limited, continued observation is essential. Church et al.
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(2004) confirmed that a greater rate of sea level rise on the eastern North American
coast compared with the United Kingdom and the Scandinavian Peninsula is also
found.

Over the 51 year period from 1950 to 2000, there is no significant difference
in the rates of coastal and global averaged sea level rise, as found in climate model
simulations of the 20th century. The best estimate of both global average and coastal
sea level rise remains 1.8 ± 0.3 mm/year, as found in earlier studies. If extend the
reconstruction of global mean sea level back to 1870, it is found a sea level rise
from January 1870 to December 2004 of 195 mm, a 20th century rate of sea level
rise of 1.7 ± 0.3 mm/year and a significant acceleration of sea level rise of 0.013 ±
0.006 mm year−2 (Church and White 2006). Domingues et al. (2008) found that the
sum of contributions to sea level rise from 1961 to 2003 is about 1.5 ± 0.4 mm/year,
in good agreement with their updated estimate of near-global mean sea level rise
of 1.6 ± 0.2 mm/year (Church and White 2006). However, Cazenave and Nerem
(2004), and Leuliette et al. (2004) concluded that the geocentric rate of global mean
sea level rise over 1993–2003 is 2.8 ± 0.4 mm/year by T/P and Jason altimeter data,
3.1 mm/year if PGR is removed.

Our result on crustal redial subsidence along the east-westward continental bor-
der of the North Atlantic seems consistent with the conclusion that the north
hemisphere is a compressive hemisphere derived by space geodesy (Huang et al.
2002; Jin and Zhu 2003; Sun et al. 1999) because of the observed results of negative
closed difference of plate loop measured by space geodetic observations, which sug-
gests that the latitude circle is shortening. The previous discussions concluded that
the north hemisphere is a cold and compressing hemisphere, while the south hemi-
sphere is a hot and expanding hemisphere based on analyzing the data of dissipation
of earth’s heat flows, the distribution of seismic waves, and data of the magnetic
strips of global ocean floors (Fu 1976; Ma et al. 1992). Additional, our result poten-
tially validated (see Tables 11.1, 11.2 , and 11.3) the conclusion that at the north
hemisphere the contractive rate gradually decreases from the equator to the North
Polar area (Jin and Zhu 2003).

Therefore, we conclude that the systematically crustal redial subsidence may be
in existence in some regions, such as around north Atlantic area. The similar results
of modern-day tectonic subsidence in coastal Louisiana were obtained by Dokka
(2006). According to Miller and Douglas (2007) and Gehrels et al. (2006), and the
long tide gauge records in the North Atlantic and North Pacific, it was shown that
little increase in sea level before 1930, and followed by mostly a steady rise from
1930. In addition, the land subsidence associated with materials extraction and/or
underground exploitation, such as petroleum and natural gas extraction, probably
was one of potential factors. Therefore, scientists believe that the sea level rises
could far exceeded IPCC estimates (Brahic 2008), the discussion on sea level rise in
20th century and recent few decades is far from being closed.

The International Terrestrial Reference Frame ITRF2005 (Altamimi et al. 2007)
was issued in 2006, and the ITRF2008 will be issued in 2009–2010, in which the
VLBI solution will be spanned from 1980 to 2009, and GPS and SLR preliminary
solutions will respectively extended backward from 1997 to 2009 and from 1984 to
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2009. Therefore, further choosing and adopting the data of collocated sites includ-
ing the VLBI baseline rate measurements, 3-D data of GPS and SLR observations
as constraints to re-estimate and discuss the possible radial tectonic motions men-
tioned above would be necessary, so as to really confirm and better understanding
the regional radial tectonic motions along the continental border of the Atlantic,
although in this studies the regional average of data of the GPS and SLR 3-D veloc-
ity fields were used, in which the regional and local crustal motions, motions caused
by other geophysical reasons, and part of PGR can be treated to some extent as ran-
dom errors, which probably produced relatively larger uncertainties for the results
of Ṙ as seen in Tables 11.2 and 11.3. Besides, the DORIS data reductions can also be
used for the future discussion of possible regional radial tectonic motion solution.
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Chapter 12
GNSS Activities for Natural Disaster
Monitoring and Climate Change Detection
at GFZ – An Overview
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Abstract Natural hazards and climate change are of major concern to the society.
Huge losses are reported in recent years. It is widely believed that modern GNSS
technologies are effective in hazard monitoring and climate change detection and
modelling. Considering the limitations of current accuracy and reliability, sophisti-
cated strategies and models have to be developed. We introduce and overview recent
GNSS activities at GFZ in this field, including ground and satellite based atmo-
spheric sounding, reflectometry and GNSS seismology. In addition we summarize
recent hardware developments, where new robust on-site hardware systems combin-
ing GNSS receiver and other sensors (e.g. seismic sensors and weather sensors) are
developed. The main focus of our contribution is recent results of GNSS analysis
software developments for real-time applications, where multi-technique (e.g. SLR
and GNSS) and multi-system (e.g. GPS and GLONASS) data source can be han-
dled uniquely. The software can run in real-time as well as post-processing modes,
and precision of several mm for ground surface deformation can be achieved. We
overview the ground and spaced based GNSS atmosphere researches based on
the estimation and assimilation of atmosphere parameters, which are among those
parameters estimated from our GNSS software. Related projects, applying these
new developments, are also introduced.

12.1 Introduction

Natural hazards are of major concern to the society. DMISCO (Disaster
Management International Space Coordination Organization) stated: From 1994
to 2003 there were more than 300 major natural disasters on average each year,
impacting more than 100 countries, killing over 50,000 people, affecting nearly
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260 million people and causing economic damage totaling US$ 55 billion each
year (GeoForschungsZentrum Potsdam 2006). In 2008, the Wenchuan earthquake
in China caused 69,225 known deaths, 17,939 people are listed as missing, and
374,640 injured (Xinhua News Agency 2009).

For more than 10 years now, global and regional GPS/GNSS (Global Navigation
Satellite System) networks have demonstrated their potential for detecting plate
tectonic movements, strain and stress accumulation. During the mega-earthquake
off Sumatra in December 2004 a dense network of GPS stations in Thailand
demonstrated the capability for the detection and the closed monitoring of dynamic
processes during a rupture process (GeoForschungsZentrum Potsdam 2006).

To achieve the real-time deformation detecting and monitoring with GNSS, the
following tasks are most challenging:

• the design and development of a new series of multi-parameter stations running
unattended and autonomously for long periods,

• the development of new and automated GPS/GNSS software systems allowing
real-time data analysis and self-detection of events, and

• the development and test of new data communication strategies for high-rate and
high-volume data.

We present the latest progress at GFZ in the above tasks. Sections 12.2 and 12.3
introduce the developments of sensor stations and its application in Indian Ocean
Tsunami early warning system. Section 12.4 shows the progress of GNSS reflec-
tometry for surface deformation monitoring. The structure and applications of the
newly designed GNSS software are discussed in Section 12.5.

Climate changes can also be monitored and detected by GNSS technologies.
Crossing the atmosphere, GNSS signals experience propagation, which can be
modelled by atmosphere parameters. These parameters are among the various
estimated parameters of GNSS data analysis and are assimilated in atmosphere mod-
elling thereafter. Recent years we see big progresses of atmosphere modelling in
GNSS meteorology and atmospheric sounding, which improve our understanding
of climate mechanism enormously. We summarize our climate change monitor-
ing related activities in ground and space based GNSS atmospheric sounding in
Section 12.6.

12.2 GNSS Sensor Station Developments

The geodetic branch (Department 1) at GFZ has a strong background in the field of
geodetic sensor system operation such as SLR (Satellite Laser Ranging), PRARE
(Precise Range And Range Rate Equipment) and instruments on satellites (e.g.
onboard ERS-2, CHAMP, GRACE, TerraSAR-X). This includes the operation of
sensor networks and the development of task and environment adapted sensor sta-
tions with small series manufacturing. Some examples for GFZ-developed sensor
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Fig. 12.1 (a) GNSS sensor station used for GFZ-operated global network locations, following
a “no moving parts” and “off the shelf” components design philosophy. (b) GNSS sensor sta-
tion with low power consumption and service friendly design developed for the GITEWS project.
(c) Outdoor box with special passive cooling design

stations are shown on Fig. 12.1. All mentioned station designs have been tested in
a climate chamber to ensure a reliable performance under all considerable climate
conditions.

The station type on Fig. 12.1a was developed for the globally distributed, GFZ-
operated GNSS sensor station network. It reflects findings from many years of
global network operation with respect to remote hardware control, monitoring, fail-
ure recovery and repairs at remote locations. Nearly all integrated devices are “off
the shelf” components with standard dimensions (Falck et al. 2008). They have
been selected for long term operation but may be easily replaced after years by “off
the shelf” components of a later generation. The construction has no moving parts
(e.g., solid state hard disks, no fans) and produces no noise. An UPS (uninterrupt-
ible power supply) is integrated as well as a fold-out keyboard, mouse and monitor
panel. Advanced remote monitoring and control devices allow failure detection and
recovery, largely independent from local operators. The resulting key feature of this
station type is the high level of reliability and redundancy.

Another example of a GFZ developed GNSS station design is the RTR (real-
time reference) station as used for the GNSS component of the Indonesian Tsunami
Early Warning System INATEWS (see next chapter). Special requirements from the
field of operation are taken into account. Most important was to support the easi-
ness of low level service works and the capability to handle frequent mains power
outages enduring from seconds to days. The electronic components are installed in
service-friendly modules, connected through front side cables. Even “off the shelf”
components have their own extra cases to allow easy replacement in case of a mal-
function. A set of rechargeable batteries is placed next to the indoor rack or inside
the outdoor rack and allows a system operation of more than 2 days, independent of
mains power.

Both station types (Fig. 12.1a and b) are based on a 19-inch rack mount construc-
tion housed in either regular indoor or weatherproof outdoor racks (Fig. 12.1c). The
selected outdoor rack is a double wall construction, allowing passive cooling (no
fans) without any kind of open window between electronics and environment. The
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outdoor rack was not developed at GFZ, but identified as an important component
for long term field installations.

A special software package with a modular concept has been developed. It was
initially used for global network stations and adapted for the GITEWS RTR stations.
The software supports several GNSS receiver types of various manufacturers as well
as different meteorological sensor stations. It is capable of combining real time data
streaming with file based transfer to keep the communication bandwidth low. An
integrated monitor checks the status of the sensor station regularly. Automatic soft-
ware updates are possible without interruption of normal operation. This software
package is an essential precondition for near real-time and real-time applications.

12.3 GNSS-Based Component for Tsunami Early
Warning Systems

GNSS technologies offer a high potential to support tsunami early warning systems.
After the Tsunami event of 26th December 2004 the German government initi-
ated the GITEWS project (German Indonesian Tsunami Early Warning System) to
develop a tsunami early warning system for Indonesia. The new developed GNSS-
based component utilises on- and off-shore measured GNSS data and is the first
system of its kind that was integrated into an operational early warning system.
Figure 12.2 shows the GNSS-component operator desk at the Indonesian Tsunami
Early Warning Centre INATEWS at BMKG Jakarta, inaugurated on November, 11th
2008.

The new GNSS-based system covers all aspects from development, manufactur-
ing and installation of sensor station hardware, real-time data transfer issues, a new
developed automatic near real-time data processing and a graphical user interface
for early warning centre operators including training on the system (Ramatschi et al.
2008). GNSS sensors are installed on buoys, at tide gauges and as real-time RTR sta-
tions, either stand-alone or co-located with seismological sensors. The GNSS data
are transmitted via satellite links to the warning centre, where they are processed in
a near real-time data processing chain.

Fig. 12.2 GNSS operator desk at the Indonesian Tsunami Early Warning Centre
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There are two modes of data processing, the normal mode and the tsunami mode.
The latter is selected as soon as a potentially tsunami relevant event was detected
by the warning centre (strong earthquake, increased sea level at tide gauge, etc.).
The first step in tsunami mode is the processing of data from the real-time reference
stations. Then the system processes data of the 10 most relevant sensors (e.g. located
nearest to the earthquake location) in 2 min intervals. In normal mode data of all
sensors are processed in 5 min intervals, to allow a continuous sensor performance
monitoring.

For sensors on land the data processing delivers deviations from the sensor loca-
tion mean coordinates. Deviations with significant higher values than the normal
noise level are regarded as land mass movements which can occur, e.g., due to strong
earthquakes. This ground motion (plate tectonics) information is a valuable source
for a fast understanding of an earthquake’s mechanism with possible relevance for
a potential following tsunami. It is also important to know displacements for loca-
tions with tide gauge sensors to separate real, tsunami caused sea level changes from
apparent, displacement caused sea level changes which moved the tide gauge sensor.

For GNSS data measured on a buoy the processing (single baseline solution with
one on land GNSS station as reference) delivers coordinates as well. Only the verti-
cal component is of interest as it corresponds to instant sea level heights. Deviations
to the mean sea level height are an indicator for a passing tsunami wave. By this
means, ground motion and sea level height monitoring, the GNSS system supports
the decision finding process whether most probably a tsunami has been generated
or not.

The GUI (graphical user interface, see displays on Fig. 12.2) of the GNSS-based
system supports both, a quick view for all staff members at the warning centre
(24 h/7d shifts) and deeper analysis by GNSS experts. The GNSS GUI system is
implemented as a web-based application and allows all views to be displayed on
different screens at the same time, even outside the warning centre. This is part of
the concept and supports the teamwork between warning centre staff on duty or on
standby and sensor station maintenance staff.

12.4 GNSS Reflectometry

GNSS reflectometry (GNSS-R) is a promising new approach proposed by Martín-
Neira (1993) that uses GNSS signals reflected from the earth to derive information
about the height and the condition of the reflecting surface. It can be used in an
altimetric and a scatterometric manner to measure surface height as well as wind
speed, wind direction, soil moisture or sea ice extend, among others. The usability
of GNSS-R has been demonstrated in several ground-based, air-borne and space-
borne experiments. Code based and phase based GNSS-R approaches have to be
distinguished. In code based GNSS-R the reception delay between the direct and the
reflected GNSS signal is measured, which is similar to radar altimetry. Additionally
the reflected signal contains information about the scattering characteristic, which
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can be related to surface roughness. For the phase based approach coherent reflec-
tions are necessary. These can be obtained at grazing angle geometries, which are
common also in radio occultation measurements (Beyerle and Hocke 2001). The
phase interference between direct and reflected GNSS signals can be interpreted as
height variation (Helm 2008). Compared to conventional measurement techniques
GNSS-R has a variety of advantages. In contrast to monostatic methods like radar
altimetry a GNSS-R receiver aboard a low earth orbiting (LEO) satellite receives
GNSS reflections from many directions simultaneously so that GNSS-R can be
regarded as multistatic (Fig. 12.3). This results in an increase of spatial and tem-
poral resolution needed to observe mesoscale features. The GNSS signals are freely
available and are used as signals of opportunity. Considering the planned installation
of Galileo and forthcoming systems the number of GNSS satellites and therefore
the number of reflected signals is going to increase dramatically within the next
decade. Their availability will be continuous over a long time, because they are used
commercially. GNSS-R is a passive measurement technique with a low energy bud-
get. This allows the building of small and affordable GNSS-R satellites, especially
when commercial-off-the-shelf (COTS) GNSS receivers could be used. The GFZ
has carried out ground-based experiments with a modified COTS JAVAD receiver
called GNSS Occultation, Reflectometry and Scatterometry (GORS) receiver and
has demonstrated its capability to measure lake surface height at centimeter accu-
racy (Helm et al. 2008). When installed on small satellites within a constellation
this technique is believed to be applicable as a global tsunami early warning system.
A feasibility study of GFZ shows that a Sumatra like tsunami (Fig. 12.3) would be

Fig. 12.3 Simulation of
GNSS-R signal paths and
reflection tracks during a
tsunami event off-shore
Indonesia



12 GNSS Activities for Natural Disaster Monitoring and Climate Change Detection 165

detectable within 17 min with a GNSS-R Walker-constellation of 18 satellites at
900 km altitude and 60◦ inclination (Stosius et al. 2008).

12.5 GNSS Seismology

Based on the expertise on GNSS software development, a newly-designed software
package, EPOS-RT (Earth satellite Positioning and Orbit determination System in
Real-Time) (Chen et al. 2008, 2009; Ge et al. 2008; Rothacher et al. 2008), is being
developed at GFZ for data analysis of various applications, such as real-time defor-
mation monitoring (Network solution mode) and providing service for applications
based on PPP (Precise Point Positioning, PPP mode). Figure 12.4 shows the system
structure of EPOS-RT. There are three main parts: data communication, processing
kernel, and product service. Processing kernel is the main processing unit where
observation modelling, parameterization and estimation are encoded. Data com-
munication deals with input and output data. Service part manages and broadcasts
products from processing kernel to users.

Various tests and investigations were carried out. In PPP mode, satellite clocks
are estimated first, where a comparable precision can be achieved compared to IGS
final clocks.

Using the estimated satellite clock and corresponding satellite orbits, ground sur-
face deformation monitoring was carried out. During the Mw7.8 Chile earthquake,
on DoY 318, 2007, we analyzed GPS observations at station TALA, 100 km away
from the epicenter. Figure 12.5 shows the kinematic PPP results in east component,
which is the main deformation at this station. The top plot shows the time series for
the whole day, where we see a sudden offset at 15:42 UTC, 1 min after the earth-
quake hit Tocopilla town. The bottom plot shows the deformations during 20 min
before and after the earthquake epoch.

Fig. 12.4 System structure of EPOS-RT
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Fig. 12.5 Coordinate changes of TALA during Chile earthquake 2007. (a) Daily PPP solution,
displacement of ∼8 cm at East component is observed. (b) Coordinate changes of East component
during the period 20 min before and after the earthquake epoch

Network solution mode is the second solution mode of EPOS-RT. Making use of
the data from the European real-time GNSS network (baselines range from 100 km
to 420 km), Fig. 12.6 shows real-time monitoring of the station BZRG, in Bolzano,
Italy over 2 days. The system initializes within around 20 min and ambiguity fix-
ing starts thereafter. The real-time coordinate precision is better than 1.3 cm in
horizontal components and around 4 cm in height.

Fig. 12.6 Coordinates differences compared to IGS weekly combination of station BZRG in Italy,
where RMS refers to IGS coordinates



12 GNSS Activities for Natural Disaster Monitoring and Climate Change Detection 167

12.6 GNSS Atmospheric Sounding

12.6.1 Ground-Based GNSS Meteorology

Crossing the atmosphere, GNSS signals experience a propagation delay depending
on constitution of the ionosphere (electron density) and neutral atmosphere (pres-
sure, temperature, water vapor). The neutral atmosphere related zenith path delay
(ZPD) above each GPS ground station is a standard product of routine GPS data
processing and the humidity induced part of ZPD provides a valuable source of
vertically integrated water vapor (IWV) information. Regarding the key role that
water vapor plays in the Earth’s atmosphere system and the high temporal and
spatial variability of water vapor, GPS IWV observations are important for both
numerical weather prediction (e.g. Gendt et al. 2004) and climatological investiga-
tions (e.g. Nilsson and Elgered 2008). The GPS-based IWV observation technique
is characterized by several advantages in comparison to the traditional observing
systems: independence on sensor calibrations and therefore long-term stability,
all-weather capability, high accuracy and low cost. Based on its global network
observations (currently more than 300 stations), the IGS provides ZPD data starting
from February 1997. To convert ZPD to IWV meteorological information are nor-
mally required, but currently only a limited number of IGS stations are equipped
with meteorological sensors. To solve this problem, an analysis technique based on
ECMWF (European Centre for Medium-Range Weather Forecasts) analysis data
has been developed at GFZ (Heise et al. 2009). Figure 12.7 gives a general view on
IGS IWV results derived at GFZ. Good agreement for most of the stations is seen
compared to ECMWF.

The globally available GPS data sets are refined by regional observations, e.g.
for Europe (http://egvap.dmi.dk/) or Germany. The GFZ operates a near real-time
analysis center processing about 300 German GPS stations in addition to the IGS

Fig. 12.7 GPS IWV results from 2007 in comparison with ECMWF: (a) bias, (b) standard
deviation
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and EUREF networks. The EPOS GPS processing package is used to analyze ZPD,
IWV and slant delay data at hourly intervals. EPOS is based on a least-squares
adjustment of zero-differenced phase and range observations and can either run
in PPP or network mode. The Saastamoinen model and the Global or Niell map-
ping functions are used to apply tropospheric corrections. The un-modelled part
of the slant path delay is adjusted for each individual observation to consider local
atmospheric inhomogeneties. To estimate the IWV, additional meteorological obser-
vations are required. The IWV data are available with a temporal resolution of
15 min (Fig. 12.8) and give detailed information about the water vapor distribution
above Germany. Furthermore, the slant delays along the satellite-station links are
analyzed with a temporal resolution of 2.5 min (Bender et al. 2008). These data pro-
vide valuable information about the spatial water vapor distribution. 3D water vapor
fields are reconstructed either by using the GPS water vapor tomography (Troller
et al. 2006) or by assimilating the slant data to a numerical weather model (Zus
et al. 2008).

Fig. 12.8 Near real-time IWV distribution above Germany at 1 May 2008, 0:00 UTC. The stations
providing data at that time are marked with black circles
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12.6.2 Spaced-Based Atmosphere Sounding

The availability of GPS radio signals has introduced a new promising remote sens-
ing technique for the Earth’s atmosphere. The GPS based radio occultation (RO)
exploits these signals received onboard a Low Earth Orbiting (LEO) satellite for
atmospheric limb sounding. The GPS signals are influenced by the atmospheric
refractivity field resulting in a time delay and path bending of the signal. The
atmospheric excess phase is the basic observable that is measured with millimetric
accuracy. This is the basis for precise refractivity and temperature profiles (Wickert
et al. 2007, 2009; Wickert and Jakowski 2007).

The tropopause layer is one of the key regions of the atmosphere with links
to the stratosphere-troposphere exchange as well as climate research. Global
mean tropopause height shows an increase in re-analyses and radiosonde observa-
tions during the last decades. Tropopause height changes are caused by different
forcing mechanisms. One mechanism leading to an increase of the tropopause
height is a warming of the troposphere and a cooling of the lower strato-
sphere. Thus, the tropopause height could be considered as a parameter for the
detection of climate change processes and therefore the continuous identifica-
tion and monitoring of the tropopause height is an important goal in climate
research.

The most important data source for the determination of tropopause parameters
are radiosonde data whereas model analyses suffer from lower vertical resolution.
Despite good vertical resolution of radiosonde measurements a global coverage
is impossible. GPS RO enables precise refractivity and temperature profiles with
high vertical resolution (< 1 km in the tropopause region). The GPS RO tech-
nique requires no active calibration, is weather independent, and the occultations
are almost uniformly distributed over the globe. Another important characteristic is
the long-term stability of the system, e.g., the CHAMP RO experiment provides data
continuously since mid-2001. For the determination of the tropopause different defi-
nitions and concepts exist. Here the classical definition of the World Meteorological
Organization (WMO) for the first lapse rate tropopause (LRT) derived from a
temperature profile is used.

Figure 12.9a shows zonal mean first (dotted) and last (solid) LRT heights
derived from CHAMP for the period 2001–2007 for different seasons. The
tropopause has a strong meridional structure (LRT1). In the tropics (30◦S–30◦N)
the tropopause height is nearly constant. In the deep tropics (10◦S–10◦N) LRT1
reaches mean values of about 16.5 km. The strongest gradients in the tropopause
height occur between 30◦ and 60◦ on both hemispheres with mean heights
decreasing to 8–10 km (Schmidt et al. 2005). Usually a second tropopause
(LRT2) is observed in the extra-tropics during the winter months (Schmidt et al.
2006).

For the first LRT from the CHAMP data between May 2001 and December
2007 a trend analysis was performed showing a global trend of about +6.6 m/year
(Fig. 12.9b). This value is in excellent agreement with trend results derived from
longer radiosonde data sets (Schmidt et al. 2008).
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Fig. 12.9 (a) Zonal mean first (dotted) and last (solid) LRT heights derived from CHAMP for the
period 2001–2007 for different seasons (June–August, JJA; December–February, DJF; and global).
(b) Monthly global mean CHAMP tropopause height anomalies (2001–2007) and the according
linear trend (6.6 m/year)

12.7 Summary

We briefly introduced several GFZ activities related to GNSS based hazard and
climate monitoring. These activities are related to ground and satellite based
atmospheric sounding, reflectometry, GNSS seismology and corresponding hard-
ware developments. The introduced results underline the ability of GPS, in future
extended by Galileo, to be used as a powerful tool for remote sensing to detect
natural disasters and climate change related information of the systems Earth.
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Chapter 13
Satellite Imagery for Landslide Mapping
in an Earthquake-Struck Area

Xiaojun Yang

Abstract This study examines the utilities of satellite imagery for landslide map-
ping in connection to a recent major earthquake event. The study area covers part of
the Wenchuan County, Sichuan Province, China, approximately 30 km away from
the epicenter of the Sichuan Earthquake that struck on 12 May 2008. Estimated
at the magnitude of 7.9 on the Richter scale, this earthquake is cited as the 19th
deadliest earthquake of all time. The Sichuan Earthquake and its aftershocks have
triggered numerous landslides that were directly responsible for at least one-third of
the overall casualties and widespread infrastructure damage. The primary data used
are two satellite images acquired before and after the Sichuan Earthquake by Terra’s
Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and
Landsat 5 Thematic Mapper (TM). Georeferencing and radiometric normaliza-
tion are conducted before further processing the satellite scenes. A Normalized
Difference Vegetation Index (NDVI) image is computed from each of the images,
and the NDVI change after the Earthquake is analyzed. It is found that the areas
with a large NDVI decrease were largely related to earthquake-triggered landslide
activities. This study demonstrates that satellite imagery can be quite useful to map
the spatial distribution of earthquake-induced landslides quickly.

13.1 Introduction

Landslides are rock, earth, or debris flows on hillslopes due to gravity. Globally, they
constitute a major type of geological hazards that are widespread, claiming multi-
ple billions of dollars in infrastructure and property damages and numerous fatalities
every year (Dai et al. 2002; Fourniadis et al. 2007; Huang 2009; Singhroy and Molch
2004). Expansion of urban and recreational development into hillslope areas lead to
more people that are threatened by landslide hazards (Alexander 1989; Oliver 1993;
Switalski et al. 2004; Tarantino et al. 2007). Landslides are often triggered by other

X. Yang (B)
Department of Geography, Florida State University, Tallahassee, FL 32306, USA
e-mail: xyang@fsu.edu

173E. Chuvieco et al. (eds.), Advances in Earth Observation of Global Change,
DOI 10.1007/978-90-481-9085-0_13, C© Springer Science+Business Media B.V. 2010



174 X. Yang

major natural disasters or extreme events, such as earthquakes, volcanoes, flooding,
and tsunamis (Keefer 2002; Sato and Harp 2009; Wasowski 1998). Monitoring land-
slide activities and predicting spatio-temporal slope failures can help understand the
nature of terrain failure, formulate mitigation strategies, and ultimately minimize
the losses from landslide hazards (Havenith et al. 2006; Mantovani et al. 1996; Van
Westen et al. 2008).

Concerned with the spatial distribution of slope failures, landslide mapping is
essential for slope instability investigations (Alcantara-Ayala et al. 2006; Domakinis
et al. 2008; Wang et al. 2009). Both ground surveys and remote sensing can be used
for landslide mapping (Brardinoni et al. 2003). Ground surveys can help obtain
detailed, accurate information on landslide distribution and classification but are
limited by their local scales and logistical constraints when investigating a large
area or an area affected by one or more extreme events. Remote sensing, through
the use of cameras and sensors mounted on aerospace-borne platforms, can help
overcome these limitations.

With excellent spatial resolution and stereoscopic viewing, aerial photographs
have extensively been used in landslide mapping and zonation (e.g. Brardinoni et al.
2003; Chen et al. 2006; Fookes et al. 1991; Harp and Jibson 1996; Hearn 1995;
Whitworth et al. 2005). Recent innovations in remote sensing have permitted geo-
scientists with new data to advance landslide studies. Examples of such data include
high-resolution satellite imagery (e.g. Hervas et al. 2003; Nichol et al. 2006), radar
imagery (e.g. Colesanti and Wasowski 2006; Singhroy and Molch 2004), and lidar
point clouds (e.g. Chen et al. 2006; Van Den Eeckhaut et al. 2007). These recently
available remote sensor data are with high spatial resolutions, particularly suitable
for landslide identification and classification (Tsutsui et al. 2007). Because of the
on-demand acquisition, however, they may not be available for some areas where
numerous landslides occur due to extreme events such as earthquakes. On the other
hand, such high resolutions may not need for reconnaissance purposes (Weirich and
Blesius 2007).

Archival satellite imagery series are often collected in a systematic mode, allow-
ing a retrospective analysis of landslide activities (Roessner et al. 2005). Their
medium resolution and synoptic coverage allow a regional-scale assessment of land-
slide distribution (Weirich and Blesius 2007). Moreover, the parallel development
in image processing and information extraction has substantially added the values
of satellite imagery in landslide studies on different scales (e.g. Borghuis et al.
2007; Chang et al. 2007; Marcelino et al. 2009; Nichol and Wong 2005). While the
potential of satellite imagery has been recognized, further research will certainly be
maintained and will probably intensify in order to adopt these techniques for land-
slide mapping in a productive mode, thus reinforcing the absolute and comparative
utility of modern remote sensing technology.

The objective of this study was to identify a method for mapping landslide dis-
tribution in connection to a recent major earthquake event. This method was mainly
based on the use of archival satellite imagery and image processing techniques.
The following sections will provide an overview on the case study site, detail the
research methodology, and analyze the results.
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13.2 Study Area

The case study site covers part of the Wenchuan County, Sichuan Province, China,
approximately 30 km from the epicenter of the Sichuan Earthquake that struck
at 14:28:01.42 local time (06:28:01.42 Coordinated Universal Time-UTC) on 12
May 2008, estimated at the magnitude of 7.9 on the Richter scale (USGS 2008).
Cited as China’s most devastating earthquake in more than three decades, the
Sichuan Earthquake killed 69227, injured 374,643, and made 4.8 million peo-
ple homeless. Figure 13.1 shows the location of the study site, along with the
epicenter.

Physiographically, the study site is situated at the eastern edge of the Tibetan
Plateau. It is located at the Longmenshan fault zone, a northeast striking thrust struc-
ture defining the boundary between the high topography of the Tibetan Plateau to
the west and the relatively undeformed Sichuan Basin to the east (Hubbard and
Shaw 2009). The Sichuan Earthquake of 12 May 2008 occurred as the result of the
motion of the Longmenshan fault, predominately on its mid fracture known as the
Yingxiu-Beichuan fracture. The displacement of this fault zone was modeled at a

Fig. 13.1 Location of the
study area. The earthquake
epicenter shown (lower left).
The lower right figure is a
subset of Band 7 of the
Landsat TM scene acquired
on 18 September 2007,
covering the entire study area
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Fig. 13.2 Selected photos showing damages after the earthquake struck China’s Sichuan Province.
With more than 69227 casualties, this quake is cited as the worst natural disaster striking China
since the Tangshan Earthquake in 1976. Photos were taken near the epicenter. Photographed by
Xiaojun Yang

Fig. 13.3 Landslide development after the Sichuan Earthquake. Photographs were taken from
Doujiangyan to Yingxiu, which are close to the epicenter. Numerous landslides have been triggered
mostly along streams and roads. Photographed by Xiaojun Yang
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maximum of 9 m, which generated deformations of the surface greater than 3 m and
increased the stress at the northeastern and southwestern ends of the fault (USGS
2008).

With the focus of 19 km in depth, the Sichuan Earthquake and its aftershocks
created a rupture zone extending more than 200 km. They have triggered more
than 15000 incidences of rockfalls, debris flows, and other types of landslides,
along with more than 10000 potential rockfall sites (Yin et al. 2009). These land-
slides have been directly responsible for more than 20000 casualties and widespread
infrastructure damage (Figs. 13.2 and 13.3).

13.3 Research Methodology

The research methodology included several major components: data collection,
image preprocessing, image transformation, change detection, thematic accuracy
assessment, and the production of final landslide distribution map (Fig. 13.4).

Fig. 13.4 Flowchart of the
working procedural route
adopted in this study. Note
that only major procedures
are illustrated here
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13.3.1 Data Acquisition and Collection

Ideally, images from a single remote sensor are most desired for landscape change
analysis. But this may not always be possible due to other environmental and
technological constraints. For example, it is always difficult to obtain cloud-
free satellite scenes over mountainous areas due to high moistures, particularly
after an extreme event such as earthquakes or severe storms. After searching
the entire Landsat database archived by USGS EROS Data Center, we were
able to obtain a cloud-free Thematic Mapper (TM) scene acquired at 3:32:14
UTC on 18 September 2007, slightly more than eight months before the Sichuan
Earthquake. We could not find any post-event TM scenes with less cloud cover
for our study site. Note that we excluded the images from Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) because of the scan line corrector failure since 31
May 2003. Fortunately, we were able to find a good post-event scene acquired
by Terra’s Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER). The ASTER scene was acquired at 3:57:00 UTC on 23 May 2008, 11
days after the Sichuan Earthquake. The TM and ASTER scenes were used as the
primary data in this study. The specific dates, sensors, satellite scene ID or refer-
ence system, resolutions, and other environmental parameters are summarized in
Table 13.1.

Table 13.1 Characteristics of the satellite images used

Data provider
USGS EROS Data
center USGS and Japan ASTER Program

Satellite Landsat 5 Terra
Sensor Thematic Mapper (TM) Advanced Spaceborne thermal

Emission and Radio- meter (ASTER)
Scene ID or

reference system
Path 130 Row 38 035700 035709

Acquisition
Time

18 September 2007
3:32:14 UTC

23 May 2008
3:57:00 UTC

23 May 2008
3:57:09 UTC

Bands VNIR (1-4 bands)
SWIR (bands 5 and 7)
TIR (band 6)

VNIR (1–3 bands)
SWIR (4–9 bands)a

TIR (10–14 bands)
Pixel size 28.5 m (120 m for

band 6)
VNIR: 15 m; SWIR: 30 m; TIR: 60 m

Radiometric
resolution

8-bits VNIR and SWIR: 8-bits; TIR: 12-bits

Swath width 185 km 60 km
Solar azimuth 140.34◦ 122.274◦ 120.878◦
Solar elevation 53.84◦ 71.868◦ 72.028◦

aThe six ASTER SWIR bands are not useable because of saturation of values and severe
striping. This is due to the malfunctioning of the sensors as a result of anomalously
high SWIR detector temperatures since May 2008 (http://www.science.aster.ersdac.or.jp/en/
about_aster /swir_en.pdf)
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In addition to the above satellite images, we collected diverse geospatial datasets,
including the epicenter location, administration boundaries, digital elevation model
(DEM) data derived from the Shuttle Radar Topography Mission (SRTM), geolog-
ical maps, socio-economic data, and so on. These geographically referenced data
were used to facilitate satellite image-based landslide mapping at different stages.

We also conducted a limited field work to collect first-hand data concern-
ing the earthquake impacts and landslide development in Wenchuan. This in situ
investigation has been quite helpful for processing and interpretation of the satellite
images.

13.3.2 Image Preprocessing

Georeferencing, mosaicking, subset, and radiometric normalization were carried out
in the phase of image preprocessing. Establishing a common georeferencing system
for all data layers is a prerequisite for spatially corrected landscape change mapping.
The two dates of image scenes were geometrically rectified by the data providers,
namely, USGS EROS Data Center and NASA. Here, each scene was further georef-
erenced to the Universal Transverse Mercator (UTM) map projection (Zone 48 N),
the World Geodetic System (WGS) 1984 horizontal datum, and the WGS 1984 ellip-
soid. Other geospatial data layers were also georeferenced similarly so that further
integration and analysis can be possible.

A mosaicking procedure was used to combine the two adjacent ASTER scenes
in order to cover the entire study area (see Fig. 13.1). The actual image subset used
for landslide mapping covers a rectangle area of 18586 m in width and 19187 m in
height (Fig. 13.5). Therefore, both the TM and mosaicked ASTER images were
clipped with the rectangle as the mask. Note our image subset operation also

Fig. 13.5 Remote sensor data used in this study. The left is part of a Landsat TM scene acquired
on 18 September 2007, displayed in a false color composite with bands 1, 2 and 4; the right is part
of an ASTER image obtained on 23 May 2008, in a false color display with bands 1–3. Each image
is north-south oriented. The dimension of each image is 18586 m in width and 19187 m in height
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included the exclusion of the thermal bands from the TM and ASTER images for
further analysis due to their coarse spatial resolution. For the ASTER scenes, the six
SWIR bands (see Table 13.1) were also excluded for further analysis because of their
poor image quality caused by the malfunctioning of the SWIR detectors since 2007.

The two images were acquired by different sensors at different dates. To allow
meaningful detection of landscape changes based on these images, a common radio-
metric response between them should be restored (Yang and Lo 2000). For this
purpose, the relative radiometric normalization (RRN) is preferred over the abso-
lute radiometric correction method because no in situ atmospheric data at the time
of satellite overpasses are necessary. Based on the comparative research done by
Yang and Lo (2000), the RRN procedure proposed by Hall et al. (1991) was applied
to the two images in order to suppress their radiometric differences caused by the
variations among atmospheric conditions, sensor-target-viewing geometry, vegeta-
tion growing seasons, and phenological characteristics. With the TM image dated
on 18 September 2007 as the reference, the ASTER image dated on 23 May 2008
as the subject scene was then radiometrically rectified by using radiometric control
sets (see Hall et al. 1991).

13.3.3 Image Transformation

In this study, the image-to-image comparison approach was used to detect the spa-
tial occurrences of earthquake-induced landslides. This pre-classification change
detection method involves the use of either original images or derived images in
a ratioing or differencing algorithm. The use of original image bands seems to be
quite straightforward but has two major drawbacks. Firstly, when using multispec-
tral imagery for change detection, it may not be efficient to perform a band-to-band
comparison exhaustively for all bands between two dates. It is more desired to use
only a smaller number of bands for change detection. However, there is no explicit
guidance that could be used to choose specific bands in this regard. Secondly, change
detection using image bands can be complicated by the variation of image signals
caused by other external influences such as atmospheric or sun angle differences.
This can be true even when radiometrically normalized images are used. Therefore,
it is difficult to interpret the detected changes. To overcome these drawbacks, we
used derived images in change detection.

There are some different ways to transform multispectral images into a smaller
and easier to interpret set that represents most of the information from the original
dataset. Some popular image transformation techniques include principal com-
ponent analysis (PCA), independent component analysis (ICA), minimum noise
fraction (MNF), band ratioing, and a large number of vegetation indices (Jensen
2005). Our major interest was to examine the vegetation changes before and after
the Earthquake, which were further used to pinpoint the spatial distribution of land-
slide activities. Therefore, the use of a popular vegetation index became a natural
choice. To this end, we computed Normalized Difference Vegetation Index (NDVI)
from each of the TM and radiometrically normalized ASTER scenes. NDVI has
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widely been used to quantify vegetation characteristics from remote sensor data. It
was computed by using the following equation:

NDVI = NIR − RED

NIR + RED
,

where RED and NIR represent the spectral reflectance measurements obtained
in the red and near-infrared regions, respectively. RED and NIR correspond to
Bands 3 and 4 for the TM scene and Bands 2 and 3 for the ASTER scene. Note
either image digital numbers or reflectance can be used for the above compu-
tation. In any cases, the resultant NDVI image ranges from –1.0 to 1.0 in its
values.

13.3.4 Change Detection

An image differencing procedure was implemented to detect the NDVI change by
using the following equation:

�NDVI = NDVI2 − NDVI1,

where �NDVI is the change in NDVI value, NDVI2 is the NDVI image derived
from the radiometrically normalized ASTER scene acquired 11 days after the
Sichuan Earthquake, and NDV1 is the NDVI image from the TM scene obtained
slightly more than 8 months before the catastrophic event. The resulting NDVI
change image was used to create an initial landslide distribution map by highlighting
the pixels with a decrease of at least 10% in their brightness values as a direct result
of the subtraction. The determination of 10% as the threshold was made through
an interactive process using a visual image interpretation method. Note that setting
a threshold to highlight changes, as a standard practice in an image-differencing
change detection analysis (Jensen 2005), has also been used to map landslides (e.g.
Hervas et al. 2003; Rosin et al. 2000). In addition to the interactive method, some
more robust yet complicated methods such as the ones discussed by Rosin and Ellis
(1995) could be used to define the threshold value.

One more step of processing was carried out to suppress the boundary errors
that occur at the landslide distribution boundaries due to the occurrence of spectral
mixing within a pixel, image noises, and geometric registration errors of the two
input images (Yang and Lo 2002). These boundary errors are often small and in the
form of salt and pepper. These small areas have to be removed and replaced with
class values based on their surroundings. A modified 3 by 3 modal filter was used
to reduce boundary errors in the initial landslide distribution map. The modal filter
is also called focal majority filter. It is applied to an n×n pixel patch, where n is
an odd integer. A histogram of class values in the patch is generated and the value
having the highest frequency is returned as the new central value. The centre pixel’s
value thus becomes that of the most commonly occurring class within the patch. In
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this way, the small (and erroneously classified) pixels are reclassified according to
the dominant class within the patch (Yang and Lo 2002).

13.3.5 Thematic Accuracy Assessment

A standard procedure for thematic accuracy assessment recommended by Congalton
(1991) was implemented here. A total of 100 test points were chosen by using a
stratified random sampling scheme. Each of these points was assessed by using
a visual image interpretation procedure based on image elements and the refer-
ence data from field surveys and Google Earth. An error matrix was constructed,
and standard accuracy report metrics were generated, including producer accu-
racy (87.04%), user accuracy (94.00%), overall accuracy (90.00%), overall kappa
index (0.80), and conditional kappa index (0.87). The user accuracy indicates that
approximately 6.0% of landscape changes that were not caused by landslide activi-
ties were classified as landslides. The producer accuracy reveals that approximately
13% of landslide-derived landscape changes were not correctly classified as land-
slides. Overall, most of the landslides have successfully been detected and mapped.

Fig. 13.6 Spatial distribution of the landslides triggered by the earthquake struck on 12 May 2008.
Note that most of these landslides (black patches) occurred along the Mingjing River and its major
tributaries



13 Satellite Imagery for Landslide Mapping in an Earthquake-Struck Area 183

This is a good indication that the image processing and change detection proce-
dures adopted in our study have been effective in mapping the spatial distribution of
earthquake-triggered landslides from satellite imagery.

13.4 Results

Figure 13.6 illustrates the spatial distribution of landslides after the Earthquake.
Quantitatively, these earthquake-triggered landslides occupied 5903 hectares or
approximately 16.48% of the total study area. By using the original satellite scenes
and Google Earth, we visually examined the landslide distribution in relation to
other geographic features such as stream networks, terrain slope, and road networks.
We found that most of the landslides occurred along the Mingjing River and its
major tributaries (black patches in Fig. 13.6). Also some landslides occurred around
mountain summits and ridges, indicating the seismic shaking was quite strong dur-
ing the Sichuan Earthquake and its aftershocks. This distribution pattern was also
observed by other investigators who have done extensive field surveys, such as Sato
and Harp (2009) and Yin et al. (2009).

13.5 Conclusions

In this study, we have demonstrated how satellite imagery can be used to map the
spatial distribution of landslides in connection to a recent major earthquake event.
Critical to this study has been the acquisition of the two dates of satellite scenes with
one obtained before and the other after the catastrophic event. Ideally, these scenes
should be acquired by the same sensors immediately before and after the earthquake
event. But this is not always possible due to some environmental and logistical con-
straints. Radiometric normalization of the satellite imagery acquired by different
sensors at different dates has been crucial in the image-differencing change detec-
tion procedure adopted in this study. The use of derived images rather than image
bands has improved the manageability and interpretability of the detected changes in
the context of strong seismic activities. The thematic accuracy assessment indicates
that the image processing and change detection procedures identified here have been
effective in mapping the distribution of earthquake-triggered landslides. We found
that most of the large landslides triggered by the Earthquake occurred along the
Mingjiang River and its major tributaries. Some landslides occurred around moun-
tain summits and ridges, suggesting the strong impacts of seismic shaking during the
Sichuan Earthquake and its aftershocks. These remote sensing-based observations
are consistent with the findings obtained through extensive field surveys.

Given the relatively simple procedures and the good accuracy, the landslide map-
ping method identified in this study seems to be quite promising from an operational
perspective. This method can be useful for rapidly mapping landslide distribution in
connection to different catastrophic events, such as earthquakes, extreme storms, or
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tsunamis, which tend to occur more frequently from a global perspective. Mapping
landslide distribution can further help formulate geohazard mitigation strategies.

Nevertheless, we also note some limitations with the landslide mapping method
identified in this study, which were mostly related to the validity of using a threshold
value to pinpoint landslide-caused landscape changes. Further research is needed to
develop more robust methods that can help define this threshold value efficiently.

Acknowledgments The author would like to thank Florida State University for the time release in
conducting this work. The research was partially supported by the Florida State University Council
on Research and Creativity and the Chinese Academy of Sciences through the International
Partnership Project Ecosystem Processes and Services. Thanks are also due to the Global Land
Cover Facilities for sharing their data collection for the 2008 China Earthquake. Lastly, the author
wishes to thank the anonymous reviewer and Dr. Emilio Chuvieco for their time and effort in
reviewing the earlier version of the manuscript, which helped improve the scholarly quality of this
paper.

References

Alcantara-Ayala I, Esteban-Chavez O, Parrot JF (2006) Landsliding related to land-cover change:
A diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico.
Catena 2:152–165

Alexander D (1989) Urban landslides. Prog Phys Geog 2:157–191
Borghuis AM, Chang K, Lee HY (2007) Comparison between automated and manual mapping of

typhoon-triggered landslides from SPOT-5 imagery. Int J Remote Sens 7–8:1843–1856
Brardinoni F, Slaymakerl O, Hassan MA (2003) Landslide inventory in a rugged forested water-

shed: A comparison between air-photo and field survey data. Geomorphology 3–4:179–196
Chang YL, Liang LS, Han CC, Fang JP, Liang WY, Chen KS (2007) Multisource data fusion

for landslide classification using generalized positive Boolean functions. IEEE Trans Geosci
Remote 6:1697–1708

Chen RF, Chang KJ, Angelier J, Chan YC, Deffontaines B, Lee CT, Lin ML (2006) Topographical
changes revealed by high-resolution airborne LiDAR data: The 1999 Tsaoling landslide
induced by the Chi–Chi earthquake. Eng Geol 3–4:160–172

Colesanti C, Wasowski J (2006) Investigating landslides with space-borne synthetic aperture radar
(SAR) interferometry. Eng Geol 3–4:173–199

Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed
data. Remote Sens Environ 1:35–46

Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: An overview. Eng
Geol 1:65–87

Domakinis C, Oikonomidis D, Astaras T (2008) Landslide mapping in the coastal area between
the Strymonic Gulf and Kavala (Macedonia, Greece) with the aid of remote sensing and
geographical information systems. Int J Remote Sens 23:6893–6915

Fookes PG, Dale SG, Land JM (1991) Some observations on a comparative aerial-photography
interpretation of a landslipped area. Q J Eng Geol 3:249–265

Fourniadis IG, Liu JG, Mason PJ (2007) Landslide hazard assessment in the Three Gorges area,
China, using ASTER imagery: Wushan-Badong. Geomorphology 1–2:126–144

Hall FG, Strebel DE, Nickeson JE, Goetz SJ (1991) Radiometric rectification – toward a common
radiometric response among multidate, multisensor images. Remote Sens Environ 1:11–27

Harp EL, Jibson RW (1996) Landslides triggered by the 1994 Northridge, California, earthquake.
B Seismol Soc Am 1:S319–S332

Havenith HB, Torgoev I, Meleshko A, Alioshin Y, Torgoev A, Danneels G (2006) Landslides in
the Mailuu-Suu Valley, Kyrgyzstan – Hazards and impacts. Landslides 2:137–147



13 Satellite Imagery for Landslide Mapping in an Earthquake-Struck Area 185

Hearn GJ (1995) Landslide and erosion hazard mapping at Ok-Tedi copper mine, Papua-New-
Guinea. Q J Eng Geol 28:47–60

Hervas J, Barredo JI, Rosin PL, Pasuto A, Mantovani F, Silvano S (2003) Monitoring land-
slides from optical remotely sensed imagery: The case history of Tessina landslide, Italy.
Geomorphology 1–2:63–75

Huang RQ (2009) Some catastrophic landslides since the twentieth century in the southwest of
China. Landslides 1:69–81.

Hubbard J, Shaw JH (2009) Uplift of the Longmen Shan and Tibetan plateau, and the 2008
Wenchuan (M=7.9) earthquake. Nature 7235:194–197

Jensen JR (2005). Introductory digital image processing: a remote sensing perspective, 3rd edn.
Pearson Prentice Hall, NJ

Keefer DK (2002) Investigating landslides caused by earthquakes – A historical review. Surv
Geophys 6:473–510

Mantovani F, Soeters R, Van Westen CJ (1996) Remote sensing techniques for landslide studies
and hazard zonation in Europe. Geomorphology 3–4:213–225

Marcelino EV, Formaggio AR, Maeda EE (2009) Landslide inventory using image fusion
techniques in Brazil. Int J Appl Earth Observ Geoinf 3:181–191

Nichol J, Wong MS (2005) Satellite remote sensing for detailed landslide inventories using change
detection and image fusion. Int J Remote Sens 9:1913–1926

Nichol JE, Shaker A, Wong MS (2006) Application of high-resolution stereo satellite images to
detailed landslide hazard assessment. Geomorphology 1–2:68–75

Oliver S (1993) 20th-century urban landslides in the Basilicata region of Italy. Environ Manage
4:433–444

Roessner S, Wetzel HU, Kaufmann H, Sarnagoev A (2005) Potential of satellite remote sensing
and GIS for landslide hazard assessment in southern kyrgyzstan (Central Asia). Nat Hazards
3:395–416

Rosin PL, Ellis T (1995) Image difference threshold strategies and shadow detection. In:
Proceedings of the 1995 British conference on Machine vision (Vol. 1), BMVA Press Surrey,
UK, pp. 347–356

Rosin PL, Hervás J, Barredo JI (2000) Remote sensing image thresholding for landslide motion
detection. In: Proceedings of the 1st International Workshop on Pattern Recognition Techniques
in Remote Sensing, Andorra, pp. 10–17

Sato HP, Harp EL (2009) Interpretation of earthquake-induced landslides triggered by the 12 May
2008, M7.9 Wenchuan earthquake in the Beichuan area, Sichuan Province, China using satellite
imagery and Google Earth. Landslides 2:153–159

Singhroy V, Molch K (2004) Characterizing and monitoring rockslides from SAR techniques. Adv
Spa Res 33:290–295

Switalski TA, Bissonette JA, DeLuca TH, Luce CH, Madej MA (2004) Benefits and impacts of
road removal. Front Ecol Environ 1:21–28

Tarantino C, Blonda P, Pasquariello G (2007) Remote sensed data for automatic detection of
land-use changes due to human activity in support to landslide studies. Nat Hazards 1:
245–267

Tsutsui K, Rokugawa S, Nakagawa H, Miyazaki S, Cheng CT, Shiraishi T, Yang SD (2007)
Detection and volume estimation of large-scale landslides based on elevation-change analy-
sis using DEMs extracted from high-resolution satellite stereo imagery. IEEE Trans Geosci
Remote 6:1681–1696

USGS (2008) Magnitude 7.9 – eastern Sichuan, China: 2008 May 12 06:28:01 UTC
[Online] (Updated 22 May 2009). http://earthquake.usgs.gov/eqcenter/eqinthenews/2008/
us2008ryan /us2008ryan.php. Accessed 18 July 2009

Van Den Eeckhaut M, Poesen J, Verstraeten G, Vanacker V, Nyssen J, Moeyersons J, van Beek
LPH, Vandekerckhove L (2007) Use of LIDAR-derived images for mapping old landslides
under forest. Earth Surf Proc Land 5:754–769



186 X. Yang

Van Westen CJ, Castellanos E, Kuriakose SL (2008) Spatial data for landslide susceptibility,
hazard, and vulnerability assessment: An overview. Eng Geol 3–4:112–131

Wang FW, Cheng QG, Highland L, Miyajima M, Wang HB, Yan CG (2009) Preliminary investi-
gation of some large landslides triggered by the 2008 Wenchuan earthquake, Sichuan Province,
China. Landslides 1:47–54

Wasowski J (1998) Understanding rainfall-landslide relationships in man-modified environments:
A case-history from Caramanico Terme, Italy. Environ Geol 2–3:197–209

Weirich F, Blesius L (2007) Comparison of satellite and air photo based landslide susceptibility
maps. Geomorphology 4:352–364

Whitworth MCZ, Giles DP, Murphy W (2005) Airborne remote sensing for landslide hazard
assessment: A case study on the Jurassic escarpment slopes of Worcestershire, UK. Q J Eng
Geol Hydroge 38:285–300

Yang X, Lo CP (2000) Relative radiometric normalization performance for change detection from
multi-date satellite images. Photogramm Eng Rem S 8:967–980

Yang X, Lo CP (2002) Using a time series of satellite imagery to detect land use and land cover
changes in the Atlanta, Georgia metropolitan area. Int J Remote Sens 9:1775–1798

Yin YP, Wang FW, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake,
Sichuan, China. Landslides 2:139–152



Chapter 14
Relations Between Human Factors
and Global Fire Activity

Emilio Chuvieco and Chris Justice

Abstract Biomass burning is a critical factor to understand both atmospheric and
vegetation properties worldwide. Recent changes in global temperatures and socio-
economic transformations have affected traditional fire regimes, thus magnifying the
negative effects of fire upon human and ecological values. Most sources recognize
the importance of human factors in fire ignition, but few studies have tried to under-
stand human patterns of fire at global scale. This paper addresses some of those
factors, by using geographical databases covering the whole planet. Fire occurrence
was estimated from a database of hot-spots detected by the MODIS sensor, covering
the period from 2001 to 2006. Human factors are proven to be related to fire persis-
tency and seasonality, while fire density patterns are associated to human variables
for specific climates and vegetation covers.

14.1 Introduction

Most international reports on biomass burning recognize the importance of the
human factors in fire occurrence (FAO 2007). Although fire is a natural factor in
many ecosystems, human activities play a critical role in altering natural fire con-
ditions, either by increasing ignitions (Leone et al. 2003), or by suppressing natural
fires (Johnson et al. 2001; Keeley et al. 1999). Both factors are contradictory, and
act mainly through the mixture of fire policy practices, on one hand, and land uses
and demographic changes on the other.

Most develop countries have maintained for several decades a fire suppression
policy, which has lead to almost total fire exclusion. The long term impact of that
policy has implied an alteration of traditional fire regimes, commonly by increas-
ing average burn severity and size, as a result of higher fuel accumulation. Pyne
(2001), although other authors are more critical about the real implication of fire
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suppression policy (Johnson et al. 2001), or they tend to put more emphasis on the
impact of climate changes (Westerling et al. 2006). Parallel to that trend, the new
urbanization patterns in developed countries tend to favor the location of houses in
or close to forested areas, and therefore increasing both the ignition probability of
those areas (as a result of carelessness) and their vulnerability, as values at stake
increase (Cortner et al. 1990; Pyne 2001).

For developing countries, fire is still the most common tool for land clearing,
and therefore it is strongly associated to deforestation, especially in Tropical areas
(Cochrane et al. 1999; DeFries et al. 2002). The traditional use of fire in shifting
cultivation has turned in the last decades to permanent land use change, in favor of
cropland and grasslands. In addition, fire is a traditional tool to manage permanent
grasslands, which are burned annually to favor new shoots and improve palatability
(Hobbs et al. 1991).

Global and local implications of changing natural fire conditions have been
widely recognized, with major effects on air quality, greenhouse gas emissions,
soil degradation and vegetation succession (Goetz et al. 2006; Parisien et al. 2006;
Randerson et al. 2005). The role of human activities in changing those conditions
has not been assessed at global scale. Several local studies have identified factors
that are commonly associated to human fire ignition, such as distance to roads,
forest-agricultural or forest-urban interfaces, land use management, and social con-
flicts (unemployment, rural poverty, hunting disputes,) (Leone et al. 2003; Martínez
et al. 2009; Vega-García et al. 1995). On the other hand, humans not only cause
fires, but they suffer their consequences as well. Fire is recognized as a major nat-
ural hazard (FAO 2007), which imply severe losses of human lives, properties and
other socio-economic values (Radeloff et al. 2005; Reisen and Brown 2006).

The purpose of this paper is to analyze the relations between global fire activity
and human variables that both affect the causes and the impacts of biomass burning.
Since the official fire statistics provided by national bodies are mostly very inaccu-
rate or non-existent (FAO 2007), the only efficient tool to assess fire activity at global
scale is the use of hot-spots detected from satellite data. A 6-year series of Terra-
MODIS active fire detections have been used to compute several fire metrics, which
have been correlated to different human variables to identify global trends between
human and fire activity. Previous studies based also on satellite data have identified
the impact of agriculture in spatial patterns of fire activity in Latin America (Di
Bella et al. 2006), as well as the relation between fire occurrence and distances to
roads and populated areas in Russia (Mollicone et al. 2006).

14.2 Methods

14.2.1 Active Fire Database

For this study, 6 years of Terra-MODIS data (2001–2006) were used as data input
to characterize global fire activity. The following metrics were used (Chuvieco et al.
2008):
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Fig. 14.1 Average monthly density of fires detected from the MODIS sensor (in fire counts
10–5 km2). Data have been grouped in 0.5 × 0.5 degrees cells (after Chuvieco et al. 2008). To
avoid working with very small fraction numbers, the original density was multiplied by 105 to
render integer numbers in the range between 4 and 3862 (meaning a fire density between 0.00004
and 0.03862 fire counts km–2 month–1)

1. Average Fire density (AFD, counts km–2 month–1), defined as the mean den-
sity of detected fires over all years and months (Fig. 14.1). It was derived as an
indicator of fire density.

2. Length of Fire Period (LFP, months). Number of months with significant fire
activity, which are defined when monthly number of fires is more than 10% of
AFD. It is an indicator of seasonality.

3. Yearly standard Deviation of AFD (SDAFD, counts km–2 month–1), as an
indicator of fire inter-annual persistency.

A dedicated Geographic Information System (GIS) was built with the previously
commented fire metrics, as well as with the explicative human factors. The basic
grid size was 0.5x0.5º resolution, since it provided a good compromise between
planetary coverage and data processing (Giglio et al. 2006). The GIS was built only
with the cells that include a minimum fire activity, as defined by an average of
0.00004 fire counts km–2 month–1 during the 6 years of the active fire time series.
They totaled 22,381 cells, which cover 31% of the whole emerged land.

14.2.2 Explanatory Variables: Generation of GIS Database

For this analysis a series of explicative variables were derived from standard
data sources. The following human variables were included in the analysis (see
Chuvieco et al. 2008 for a further explanation): Population density in 2000
(Den2000), Population change between 1990 and 2000 (PopCh), Euclidian distance
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(EDPop) to populated places and Cost-friction distances to populated places,
considering population density (CostPop). Demographic variables were down-
loaded from the Center for International Earth Science Information Network
(CIESIN) (http://sedac.ciesin.columbia.edu/gpw/, last login February 2009). In
addition to those variables the Gross Domestic Product per Capita (GDP/Cap)
at current US dollars prices was extracted from the International Monetary Fund
(http://www.imf.org/external/data.htm, last accessed February 2009). Data were
only available at country level, but furthermore we computed the GDP by area
(GDP/km2), by multiplying GDP/Cap by population density.

In addition to socio-economic variables, land cover categories and Holdridge
life zones were included in the analysis to stratify the relationships. Land cover
proportions were computed from the Global land cover characterization (v. 2)
(http://edc2.usgs.gov/glcc/, last accessed February 2009), originally available at
1 km2, and proportions of the main land cover types for each half degree cell
were computed: Shrubs, Forest, Grass and Crops. The Holdridge Life Zones were
downloaded from the UNEP-GRID databases (http://www.grid.unep.ch/data, last
accessed February 2009) and were generated by the International Institute for
Applied Systems Analyses (IIASA) (Leemans 1990). Considering the importance
of deforestation processes in fire activity, a forest-crop interface was also calcu-
lated. Both the fire metrics and the explanatory variables were referenced to the
same 0.5x0.5 grid defined by geographical coordinates.

14.2.3 Statistical Analysis of Input Data

The input database was imported to SPSSTM statistical program (http://www.spss.
com/) for further processing. Numerical (skewness, kurtosis) and graphical (prob-
ability plots) test were computed to test the normal distribution of the input
variables, and it was found that most of them greatly depart from normal distri-
bution (Skewness > 3). Therefore, non-parametric statistics were used to measure
the relations between fire indices and explicative factors.

Boxplots and graphical exploratory variables (Tukey 1977) were applied to
search trends of associations in two (single explicative variable) and three dimen-
sions (two explicative variables).

Kruskal-Wallis one-way analysis of variance was used to test differences in medi-
ans of the explicative variables for the quartiles of the different fire indices. The
higher the rank differences, the more likely the independent variable is associated
to a particular fire index. Tests were run for all explicative variables with AFD, LFP
and SDAFD.

The Spearman ρ rank correlation (Healey 1993), was applied to measure the
strength of the relationships between AFD, LFP, GDAFD, and all explanatory
variables. The coefficient was computed as (SPSS 2006):

ρs = TxTy − ∑N
1 d2

i

2
√

TxTy
(14.1)
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where d is the rank difference between the two variables for case i; N the sample
size; Tx and Ty are:

Tx = N3 − N − STx

12
Ty = N3 − N − STy

12
;

and STx and STy are the sum of ranks for both variables. When Tx or Ty is 0 the
statistic is not computed. The significance level was computed from the Student t
distribution with N – 2 degrees of freedom, following:

t = ρs

√
N − 2

1 − ρ2
s

(14.2)

Spearman correlation coefficients were computed for the different fire metrics,
considering the whole dataset of significant fire activity, as well as for different
strata: eco-climatic zones, economic level and land covers. These partial correlations
were computed after selecting only those cells that satisfied a specific condition,
such as having a dominant boreal climate or being in the lower strata of cropland
land cover proportions.

14.3 Results

14.3.1 Spatial Patterns of Fire Indices

Fire density (Fig. 14.1) is more intense in both tropical belts, north and south of the
Equator, the former mainly in Africa and, very secondarily, Venezuela-Colombia,
and the latter, in Central Brazil, the Congo Basin, North Australia and SE Asia. The
impact of sub-Saharan African fires in this regard is enormous, with many areas in
the Congo Basin, Gulf of Guinea and Angola-Zambia-Zimbabwe with more than
0.03 fire counts km–2 month–1. Medium to high values can also be observed in
Siberia and the Alaska and Northern Canada. A significant belt of fire activity, and
with lower values than those mentioned, is also noticeable in SE United States,
Central America, a long latitude strip between 45 and 57ºN is noticeable in Central
Asia (Ukraine, South of Russia and Kazakhstan), and Far East Asia, including the
large islands.

Fire seasonal variability is more intense in the Boreal regions, where the dry and
snow-free period is short and consequently the fire season too. The opposite can be
observed in the subtropical and temperate regions of SE USA, China, Australia,
South Africa and Brazil, where fire activity last almost the whole year around.
Intermediate values were found in Central Asia and tropical Africa and SE Asia.

Finally, inter-annual variability is larger in those areas where fires affect forested
areas or mixed grass-forested, mainly in the Boreal regions of North America and
Asia. Additionally, this variable shows high values in the agricultural frontiers
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Table 14.1 Kruskall Wallis test for the different fire metrics (all of them have p < 0.001)

Fire density
(AFD)

Fire persistency
(SDAFD)

Fire seasonality
(LFP)

Den2000 272.37 3426.04 1615.07
Popch 431.67 1292.89 917.41
EDPop 793.21 4121.99 2531.84
CostPop 604.48 4101.67 2142.95
GDP/Cap 1532.52 198.27 454.68
GDP/km2 1552.86 4331.40 1950.65
Shrubs 1354.82 575.62 408.47
Forest 120.95 31.72 934.61
Grass 2747.95 707.17 443.16
Crops 614.90 2595.95 1964.78

of South and Central America, North Australia and scattered regions of Central
Africa. Fire persistency, meaning less inter-annual variations is higher in those areas
with more agricultural burnings, mainly in SE USA, China and Brazil, most India,
Central Asia and the Southern fringe of Australia and Southern Africa, including the
eastern side of Madagascar. Table 14.1 shows the results of the Kruskal-Wallis test
of the different fire metrics, showing that all explicative variables have significant
differences in the four quartiles in which the metrics were divided.

For the fire density (AFD) metric, the variables with higher differences of quar-
tiles were related to economic resources: GDP/Cap and GDP/km2, but much lower
for those associated to population distribution and population change. The land
cover variables did not provided a clear relation with AFD, with the exception of
grass and shrub covers.

Ranking differences of the explanative variables with fire inter-annual variability
showed highly significant values for distances, population density and GDP/km2,
and much lower for population change and GDP/cap (all of them p < 0.0001). In
addition, the ranks are ordered following the order of the quartiles (either positively
or negatively), meaning also a consistent trend variation between fire variability and
those explanative variables. As far as land cover concerns, the rank differences were
lower, but still high values were observed for proportion of croplands.

The rank differences for the length of the fire season (LFP) were significant for
most explanative variables, however the ranks followed the order of the LFP quar-
tiles distances, GDP/km2, Den2000 and population change, with more significant
values for the first three. Land cover proportions offered much lower rank differ-
ences and generally they did not follow the LFP quartiles trends, with the exception
of the Crop proportions (Table 14.1).

14.3.2 Relations with AFD

Spearman ρ correlations of fire density and explanative variables presented fairly
low values. For the whole set of cells (22,381) the higher coefficients were found
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for GDP/km2 and average Grass cover, the former negative and the latter positive,
both highly significant (p < 0.0001) (Table 14.2). The correlations within spe-
cific strata showed only relevant correlation for the Tropical areas, since both in
Boreal and Temperate zones none of the variables reaches ±0.3. The areas under
forest-cropland or forest-grass interface show higher correlations, especially for
those related to economic resources (GDP/Cap and GDP/km2, both negative), and
distances (EDPop, in this case with a positive sign). For medium to low agricul-
ture proportions, all human explanative variables have low correlations, while in
medium to high proportions of agriculture areas, economic and distance values are
more important. Same results were observed for Grass proportion, with higher cor-
relations for savanna ecosystems. Forest proportions strata offered generally low
correlations, for both high and low proportions, with only medium ρ correlations
for GDP/km2 and with a negative trend. Finally, the medium to low income areas
have higher negative correlation with GDP/km2, than medium to high income areas,
as well as with distances (in this case, with a positive correlation).

14.3.3 Relations with SDAFD

The Spearman correlation values with human factors were in general higher than
for the AFD variable (Table 14.3). The global model provided medium to high cor-
relation (ρ > ±0.4) for population density and distances (positive) and GDP/km2

and cropland (negative). The stratified models showed different trends for each eco-
climatic zone. For the Boreal regions, relations of land covers were generally poor,
with exception of cropland, and those associated to population density (Den2000,
GDP/km2) were higher and negative. In Temperate dry and wet climates the rela-
tions were found similar, although less clear than for boreal regions. Interestingly,
in these climates, the relation between cropland and fire variability is almost neg-
ligible. In Tropical regions, the correlations increased, with medium to high values
for most human variables, including population change in Tropical dry, which is
not observed in other strata. The land cover groups did not offer much explanation
capacity, with the exception of croplands. The highest correlations were observed
for EDpop (positive) and Den2000 and GDP/km2 (negative). Grasslands and Forest
quartile proportions revealed a similar trend as croplands, although generally with
higher ρ values. It should be emphasized that similar correlations were observed
when only low or only high proportions were considered, meaning the relations
are not affected by land cover variation. Again, distances and GDP/km2 presented
the higher ρ values, while correlations with GDP/Cap and population change are
generally very poor. The maximum correlations were observed for the stratifica-
tion of cells according to GDP/Cap, especially when only rich regions (medium
to high quartiles) were considered. The most significant variables are again corre-
lation GDP/km2 and Den2000 (with negative signs) and distances (positive sign).
In summary, the longer the distances to populated areas, the less population den-
sity and the less economic investment by area, the more inter-annual variability
of fire.
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14.3.4 Relations with LFP

The global Spearman correlation for LFP showed very interesting differences
according to the strata considered (Table 14.4). The global model showed generally
low correlation (ρ < ±0.4), with higher values distances, although in this case neg-
ative, in contrast with AFD and SDAFD variables. Likewise, Den2000, GDP/km2

and Crops had positive correlations, again contrary to the other fire metrics.
The stratified models offered remarkable differences for each eco-climatic zone.

For the Boreal regions, the correlations of LFP and human variables are very
high (ρ > ±0.6), implying that there is a very significant impact of human fac-
tors in these regions. According to the observed relations, fire season tend to last
longer where population density and economic resources increase and areas are
closer to populated places. In other climatic regions the relations are generally
poor (ρ < ±0.3), especially in Temperate and Tropical dry climates. Tropical wet
showed higher values for EDPop, GDP/km2 and GDP/Cap, but still close to ±0.3.

Stratification by land cover proportions showed interesting differences. For
instance, areas with medium to low cropland proportions exhibited medium ρ values
for all explanative variables, with the exception of GDP/Cap, while in the medium to
high cropland density areas, none was relevant. The same results were observed for
Grass proportions, medium to high correlation for low proportions and very low cor-
relation for high proportions, and exactly the opposite for Forest proportions: only
those cells with medium to high proportion of forest cover show relevant correlation
values. In summary, in areas with low crop and grass and high forest proportions,
the impact of the human factors to extend fire season is quite obvious (especially in
the last two strata), while in the rest of the areas, human factors are almost irrelevant.

Finally, a clear differentiation was also observed according to the level of eco-
nomic resources. For poor countries, the relations between fire length and human
factors was very weak, while for rich countries, medium to high correlations
(ρ > ±0.45) were computed for most variables. As in other stratifications, the signs
were positive for Den2000 and GDP/km2 and negative for distances, again implying
a positive effect of population presence to extend fire season duration.

14.4 Discussion

This paper provides a first assessment of human patterns and fire parameters at
global scale, based on quantitative relations. Although further analyses are required
to corroborate the trends identified with our data, an initial set of ideas may be
proposed based on the observed results:

Population density and distances to populated places tend to show opposite trends
in their relation with fire metrics. Population density is negatively related to fire
density and variability and positively to fire length, while distances are positively
related to fire density and variability and negatively to fire length. This implies that
fires tend to be more frequent, more seasonal and less regular far from populated
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places and in areas where population is less dense. In other words, large populated
areas, including the impact of cities, tend to reduce fire occurrence, although the
relations are relatively low. Higher correlations are found between human variables
and fire persistency, meaning that those areas with more human presence tend to
have more similar fire cycles throughout the years than areas with less population
presence.

The economic variables used in this study (GDP/kmk2 and GDP/Cap) have very
different implications. The latter offers higher relations with fire metrics for most
geographical strata. Regularly, the more economic resources available, the more
persistent the fires are, and the longer the fire season. This is especially clear in
the case of the boreal regions, most probably because of the impact of Siberian
fires.

As far as land covers concerns, the presence of grass (savannah areas) tend to
imply higher fire density, while the crop areas are negatively correlated. Agricultural
areas tend to have more recurrent fires, much less dependent of climatic varia-
tions than other land covers, especially in boreal and tropical regions. They are also
closely related to the length of the fire season, especially in the boreal regions.
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Chapter 15
The Use of Remote Sensing Data
and Meteorological Information for Food
Security Monitoring, Examples in East Africa

Michel Massart, Felix Rembold, Oscar Rojas, and Olivier Leo

Abstract Since 2001, the MARS Unit of the Joint Research Centre of the European
Commission has developed a system for crop monitoring and forecasting in food
insecure regions. This communication first provides an overall description of the
system and then focuses on one monthly bulletin prepared and published by
FOOD-SEC action of the MARS Unit in East Africa. The main example is taken
from Ethiopia. Basic data, models and information are presented as well as some
important parameters for crop monitoring.

15.1 Introduction

Food Security in the poorer countries of the world is a main concern for European
Citizens as reflected by the leading role of the European Union in the international
donor community with a yearly contribution of around 500 M. Euro. According
to the United Nations Food and Agriculture Organization (FAO 2009), 1.02 billion
people worldwide are chronically food-insecure.

Like the USAID FEWS Net or the FAO GIEWS initiatives, the FOOD-SEC
action of the MARS Unit of the European Commission Joint Research Centre (JRC)
has developed since 2001, in cooperation with the European oriented AGRI4CAST
action and in the framework of the Global Monitoring for Environment and Security
(GMES) initiative, a system for regional crop monitoring and forecasting in various
parts of the world. During an initial phase (2001–2004), four pilot areas were cov-
ered: Russia and the New Independent States, the Mediterranean Basin, Eastern
Africa and South America (MERCOSUR countries plus Bolivia). Since 2005 the
capacities of the MARS system has been extended to all the agricultural productive
and food insecure areas worldwide.
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Since 2006, FOOD-SEC action has made specific efforts to strengthen national
and regional food security and vulnerability analysis on the Horn of Africa, with
additional funding from another European Commission, Directorate General, the
DG AIDCO.

The specific objectives of the funding agreement were (1) to improve the qual-
ity and coverage of crop monitoring and forecasting activities, (2) to improve the
general knowledge and analysis of food security and vulnerability assessment, (3)
to support Governments’ capacity in implementing the EC funded Food Security
Information System projects and (4) to strengthen FOOD-SEC participation in field
missions, such as the Crop and Food Supply Assessment Missions of FAO/WFP.

15.2 Region of Interest

The first specific objective is covered by the regular publication of national crop
monitoring bulletins on the 6 countries of the Horn of Africa. These bulletins
were produced each month during the main crop season for Somalia (since 2001),
Ethiopia (2005), Sudan (2005), Eritrea (2006) and Kenya (2007). Similar bulletins
are published on South America and on Central Asia. The bulletins are based on
meteorological data, satellite remote sensing information and agro-meteorological
modelling to analyze crop conditions and to assess crop production.

15.3 Meteorological and Remote Sensing Data

15.3.1 Rainfall

Since 2001, FOOD-SEC is using the meteorological data of the European Centre
of Meteorological Weather Forecast (ECMWF) in its bulletins. The data are
acquired, pre-processed and delivered every day, every 10 days and monthly to
the MARS Unit, under MARSOP, a specific contract with three European com-
panies (ALTERRA, VITO, and METEO Consult). Several parameters, including
temperature, precipitation, radiation and potential evapotranspiration are provided
at 1 degree grid resolution and, since 2008, at 0.25 degree grid resolution world-
wide. Additional indices are also calculated on the initial data, and the latest values
are compared with the previous years and with an historical average, on absolute
and on relative value. MARS also uses the ECMWF reanalysis data archives “ERA-
40” with more than 30 years and ERA-Interim (only 20 years of archive but with a
higher spatial resolution), for historical trend studies or to build baseline information
for Early Warning Systems.

ECMWF data are meteorological forecasts based on a general circulation model,
where all the parameters except precipitation are calibrated in real time with mea-
sured data. They are used for their operational status, received worldwide, regularly
and in near real time for the bulletin preparation and publication. Nevertheless,
they have shown clear limitations, particularly for rainfall information, in some
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Fig. 15.1 Comparison between TAMSAT (a, left) and ECMWF (b, right) rainfall estimates for
the month of August 2009. The two figures show clearly the resolution improvement of TAMSAT
approach and the discrepancies between the two model estimates

specific regions. For these reasons, in 2007, FOOD-SEC has decided to invest
also in alternative rainfall data. Rainfall estimates based on METEOSAT CCD
(Cold Cloud Duration) method are now acquired from the University of Reading
(TAMSAT Project). Simultaneously synoptic station data are also collected and
archived following a systematic approach at African level. They are complement-
ing the CCD estimations and are integrated in the rainfall estimation process using
a geo-statistical approach. The increase of resolution to 5 Km grid represents
also a clear advantage of the MSG data compared to the ECMWF information
(Fig. 15.1).

15.3.2 Vegetation Condition

FOOD-SEC is using mainly SPOT VEGETATION data in its bulletins. The products
received every 10 days worldwide at 1 Km resolution grid, include several stan-
dard indices such as the Normalized Difference Vegetation Index (NDVI) and
its derivates: the Vegetation Condition Index (VCI), the Dry Matter Productivity
(DMP) and the Vegetation Productivity Indicator (VPI). Monthly composites are
also derived. The archive of SPOT VEGETATION data started in April 1998. NDVI
difference or anomaly images are computed every 10 days. They show the crop con-
dition difference between the current year and the previous year, as well as between
current year and the historical average (of the last 10 years).

Considering the small size of agriculture landscape in some regions, FOOD-
SEC has also started to acquire in 2007 MODIS 250 m resolution data over East
Africa. The data received from NASA are reprocessed by the Vlaams Instituut voor
Technologisch Onderzoek (VITO) to generate ten-daily NDVI composites. MODIS
data complement SPOT VEGETATION information for crop monitoring but they
are also expected to be used to map the agriculture areas of countries of interest
every year.
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15.4 The Models

To monitor crop development during the agricultural season two models are cur-
rently used by FOOD-SEC experts, the first one is based on meteorological data,
the second one uses satellite remote sensing observations.

The FAO Crop specific water balance (CSWB) model is a very simple but physi-
cally sound, soil water balance model which is used to assess the impact of weather
conditions on crops (Frere and Popov 1979; Gommes 1993; Senay and Verdin 2002,
2003). The water balance of the specific crop is calculated in time increments,
usually 10 days. The equation of the water balance is:

Wt = Wt−1 + R − ETA − (r + i) (15.1)

where Wt is the amount of water stored in the soil at the time t, Wt–1 the amount
of water stored in the soil at the end of the previous period (t–1), R the cumulated
rainfall during the dekad or t-period of time, ETA the actual evapotranspiration in
the t-period time, r represents the water losses due to runoff in the t-period time and
i represents the water losses due to deep percolation in the t-period time.

Two main outputs of the CSWB model are demonstrated to be positively cor-
related with the crop yield: the Actual evapotranspiration (ETA) and the Water
Requirement Satisfaction Index (WRSI). ETA has the advantage to include the radi-
ation, which is an important climatic variable susceptible to influence the crop yield
in the region. The influence of factors other than water stress which can reduce crop
yields such as water logging, mechanical damage produced by strong winds, or bio-
logical factors, such as locusts, birds, insects or plant diseases are not considered by
the CSWB model. The WRSI is an index of the CSWB model to assess the amount
of water received by the crop during any time of the season. Normally, the WSI is
used for defining qualitative yield classes (i.e. good, average and poor) or in relative
figures (percentage of an optimal yield crop). The WRSI expresses the percentage
of the maximum crop water requirements which has been met. It is calculated as
follows:

WRSI = 100
[
1 − (�|D|/WR)

]
(15.2)

where WRSI = Water Requirement Satisfaction Index expressed in percentage,
D = soil water deficit, mm/dekad and WR = maximum plant water requirement,
mm/dekad.

The water deficit, D, is set equal to zero whenever Wt from Equation (2) is zero
or positive, and D is set equal to Wt whenever Wt is negative (deep percolation
and runoff are initially assumed to be equal to zero). The values of D are then
totalled and divided by the total seasonal water requirement of the plant to cal-
culate the WRSI. When the WRSI is equal to 100, it indicates no water stress and
good crop yields, while a WRSI below 50 corresponds to poor crop yield or crop
failures.
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The CSWB model (Hoefsloot 2005) included into the FAO AgroMetShell soft-
ware package has been selected for its simplicity regarding its inputs and for its
relevance and reliability in the semi-arid context. A complete description of the
model with input and output can be found in Rojas publication (2005). In Addition
to the WRSI, specific routines of the CSWB allow to assess the planting date and to
follow the development stage of the crops of interest.

The second approach is based on the analysis of the satellite NDVI values dur-
ing the agricultural season. We used the NDVI index (Rouse et al. 1974), which
is the most popular indicator for studying vegetation health and crop production.
Research in vegetation monitoring has shown that NDVI is closely related to the
LAI (leaf area index) and to the photosynthetic activity of green vegetation. NDVI
is an indirect measure of primary productivity through its quasi-linear relation with
the fAPAR (Fraction of Absorbed Photosynthetically Active Radiation). The NDVI
is extracted and averaged for the crop areas of each administrative unit of inter-
est. For the extraction, an agriculture mask is required. Different techniques can be
applied, one of the most advanced being the CNDVI (Crop-specific NDVI) method
(Genovese et al. 2001). The method is integrated in FOOD-SEC process when the
necessary data are available. The CNDVI extracted every 10 days from the SPOT
VEGETATION data gives the profile of the crop development over the season and
provides indications on crop performance.

15.5 The Bulletins

Meteorological information, remote sensing data and model output are presented in
the monthly bulletins published by FOOD-SEC action. They are usually compared
with the previous year and with historical average.

The first page of the bulletin (Fig. 15.2) presents the general agriculture monthly
conditions of the country, displaying the Vegetation Condition Index of the current
month with a short text commenting on the season and an overall assessment of the
evolution of the season with a green to red sign.

The second page shows the rainfall conditions of the month, rainfall of each 10
days of the month and the monthly rainfall compared to last year, to the average of
the last 10 years or to an historical average of the last 30 years. Cumulative rainfall
graphs from the beginning of the season are also sometimes displayed for specific
agro-meteorological regions or watersheds.

The following pages of the bulletin display crop specific information. The most
important staple crops of the country are selected. The CSWB outputs maps (plant-
ing date, crop cycle progress or qualitative estimated yield), the NDVI monthly
difference maps with last year or with historical average and graphs of specific
NDVI profiles are presented. The profiles are displayed for the main productive
administrative units which have been selected to represent at least 50% of the
national crop production. The graphs not only show the NDVI profile of the cur-
rent season compared with last year and with an average but also the rainfall profile
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Fig. 15.2 (a–d) First pages of the Ethiopian bulletin with the country crop conditions, the rainfall
information and the specific crop condition pages
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of the current season compared to the average rainfall. The two sets of information
are complementary. Maps and graphs are commented to evaluate the potential crop
yield at the end of the season.

The crop condition assessments are only qualitative during the first part of
the agricultural season, comparing the profiles or the maps of the current season
with previous year or with historical average and identifying hot-spots of concern
(Fig. 15.3).

When possible, quantitative forecasts have been developed using various meth-
ods: in Somalia, Sudan, the Mediterranean Basin and in Central Asia, a three steps
approach has been introduced in 2005 (Fig. 15.4). The first step gives a broad
estimate of the production or the yield by looking at the historical trend and by
identifying possible periodicity. The two further refinement steps are based on
crop profile similarity analysis with previous years and on regression computation
between national statistics and several crop status indicators. The final evalua-
tion is then made by an expert, taking into consideration the results of the three
steps.

For Eritrea, yield estimates of cereals have been developed in 2008, based on
a simple linear regression model between NDVI (integrated over the season) and
the official agricultural statistics. Specific regression was calculated for each of the
four main agricultural regions using the data of the last 10 years, with an average
coefficient of determination of the regression of 0.70 (R2) (Fig. 15.5).

For Kenya, a multivariate model has been developed in 2006, involving remote
sensing NDVI in combination with Actual Evapo-Transpiration (ETA) calculated
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(a) (b)

(c) 

Fig. 15.4 (a–c) Three steps quantitative approach used in Somalia in 2005: trend analysis,
similarity and regression approach, final expert assessment
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Fig. 15.5 (a and b) Crop profiles and cereals regression model for Maekel region of Eritrea in
2009

by the CSWB model in the yield estimation (Rojas 2007). A coefficient of
determination (R2) of 0.80 has been reached with this model. Using the regres-
sion model FOOD SEC is estimating the maize production during the “Long Rains”
crop season in Kenya since 2006 (Fig. 15.6). Accuracy is assessed retroactively
comparing FOOD SEC forecasts with Governmental Statistics.

The quantitative yield forecast is a challenging research activity which can only
become operational under certain conditions such as reliable and detailed agricul-
tural statistics, precise crop phenology information and good quality estimators. In
any case, the approach can not directly include factors such as weeds, pests, con-
flicts, etc . . . In this context, field data and close collaboration with local institutions
are crucial for monitoring and especially forecasting activities.
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15.6 Some Important Parameters

15.6.1 Agriculture – Crop Mask

To monitor crop development, satellite information, such as NDVI, is specifically
extracted on crop areas. In East Africa, the AFRICOVER project produced land
cover maps for several countries in early 2000. The land cover maps developed
using the LCCS classification system (Di Gregorio and Jansen 2000) request a class
interpretation to derive a crop mask. The resolution of the final maps produced from
visual interpretation of LANDSAT data is higher than the SPOT VEGETATION
data which allows the calculation of a weighted crop specific NDVI or CNDVI.
This approach is applied in Sudan, Eritrea, Kenya and Somalia.

Ethiopia has not been covered by the AFRICOVER project (AFRICOVER
1995). A national land cover map developed by the World Bank and the Ministry
of Agriculture and Rural Development project, the “Woody Biomass Project”, is
available since 2000. The map is also based on LANDSAT interpretation but the
resolution is not fully consistent at national level. To refine the information and to
reach a “more” crop specific map, the “cultivation” class of the woody biomass map
has been crossed with elevation data which conditions the distribution of the crops
in Ethiopia (Reynolds 2007).
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In the absence of any high resolution agriculture map, the Global Land Cover
2000 product has been used as agriculture mask. The map which is available world-
wide has been produced in 2000 based on the classification of SPOT VEGETATION
data at 1 Km resolution. In the same context, other mid resolution products based
on MODIS or MERIS data are currently available, developed under various ini-
tiatives like the GMFS program or the ESA-GLOBCOVER project, they show a
clear improvement to GLC 2000 in terms of resolution. The precise accuracy of the
agriculture class still has to be assessed. However, the advantage of using an agricul-
ture mask for extracting the NDVI is highlighted by a comparison between NDVI
extractions with or without mask (Fig. 15.7). The mask improves the quality of
the information with the focus on agriculture. Nevertheless, the difference between
the use of a high resolution (LANDSAT based) and a mid-resolution mask (SPOT
VEGETATION or MODIS) is not always straightforward, at least for a qualitative
evaluation.

15.6.2 Crop Phenology

The importance of rainfall in the CSWB model is clear, as it is the main input, and
is discussed in the paper of Rojas (2007). Another element of the CSWB model is
the crop phenology and in particular the planting/sowing date. Planting date win-
dows (average planting period) are available from FAO databases like the IGAD
“Crop Production System Zone” database (Van Velthuizen et al. 1995), or often from
national sources. But the relevant input for running properly the CSWB model is the
planting date of any given year. This information can be observed on the ground. The
National Meteorological Agency (NMA) in Ethiopia is reporting crop phenology
during the cropping season for around 30 meteorological stations. This information
is valuable to calibrate the model but is unfortunately often not complete or avail-
able for the whole season. Another approach is to derive the planting/sowing date
from models based on rainfall patterns or NDVI vegetation profiles. FOOD-SEC
is currently using a model based on the accumulation of significant rainfall during
three (one with 10 mm rain plus 2 with a sum of 20 mm) dekads at the beginning
of the rainy season. The parameters of the model derived from rules defined in the
Sahel region (AGRHYMET Centre) have been adjusted for East Africa context.
VGT4AFRICA program and JRC provide also a “vegetation start of the season”
product based on NDVI profiles analysis. The product is not specifically a “crop
planting or sowing” date product but it could be used as a proxy. It thus needs to be
calibrated and validated for crops.

15.6.3 National Agriculture Statistics

The production of quantitative yield estimates needs the calibration of the model
with historical crop yield statistics. Specific attention must be paid on the spatial
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tics published by the Ministry of Agriculture-CFSAM and the CSA in Ethiopia (source SFSIS,
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level at which these data are available to be able to consider homogeneous areas, as
well as on the length of the time series of the statistics. FAO is providing agricul-
ture statistics but usually at national level or for large administrative units. To get
better spatial information, in-country collection is needed. The quality of the model
estimation relies of course on the quality of these statistics which is not always easy
to assess. In Ethiopia, two sources of agriculture statistics are available, from the
Central Statistical Authority (CSA) and from the Ministry of Agriculture (Fig. 15.8).
They are produced using two different field survey methods. Since 2006, an EU
funded project implemented by FAO is trying to reconcile the two approaches. For
their time consistency and easy availability, FOOD-SEC is using today the CSA
data in Ethiopia.

15.7 Field Assessment

At the end of the agriculture season, FOOD-SEC team is involved in national crop
assessment surveys where the FOOD-SEC products, bulletins and estimations can
be compared to ground observations.

FOOD-SEC team participates as EU Observers, to Crop and Food Supply
Assessment Missions (CFSAM) carried out by FAO and WFP at the request of the
Governments at the end of the main agriculture season.

In Ethiopia, since 2006, FOOD-SEC is also joining USDA experts for a Crop
Assessment Tour before the harvest to evaluate crop development. Information
is collected by interviewing farmers and observing fields in the main agriculture
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regions of the country. During the Tour, field photographs are taken regularly and
geo-referenced with a Global Positioning System to be further related to satellite
images or agro-meteorological outputs.

15.8 Data Dissemination

FOOD-SEC bulletins are produced 7–15 days after the end of each month and
disseminated by email using specific distribution lists per country. Each bul-
letin reaches directly around 100 persons; European Commission officers, EU
Delegations, National institutions of the country concerned, research centres and
UN institutions (FAO and WFP). The bulletins are also available on line on
the INTERNET site of the MARS Unit: http://mars.jrc.ec.europa.eu/mars/About-
us/FOODSEC.

The FOOD-SEC data maps are available on line, on the specific INTERNET
site of the MARSOP project (Fig. 15.9). On the site, NDVI temporal profiles for
specific regions of interest can be calculated. The maps are available at: http://www.
marsop.info/.

The FOOD-SEC meteorological data used in the bulletin can be extracted follow-
ing different format for specific regions of interest on: http://cidportal.jrc.ec.europa.
eu/home/idp/thematic-portals/foodsec-imageserver/.

Fig. 15.9 Examples of MARSOP site products and data dissemination procedure
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15.9 Research and Development

FOOD-SEC conducts various research and development activities to improve the
crop monitoring systems and better understand the hazards that can affect food
security. For instance:

• Analyze the trends observed on AVHRR NDVI long time series to assess the
potential impact that climate change could have on African agriculture (Vrieling
et al. 2009).

• Study on assessing drought probability and severity of impact on agriculture in
Africa based on remote sensing data (Rojas et al. 2009a,b).

• Rainfall estimates derived from satellite imagery and global circulation models
are frequently used for vegetation monitoring in many areas of Africa, due to
the shortage of observed rainfall data and the sparse network of meteorological
stations. At the same time, this scarce density of rain gauge stations makes the
calibration and validation of the modelled data nearly impossible. In this study,
a methodology was proposed for a rapid quality assessment of rainfall estimates,
which is based on the well known relationship between rainfall and NDVI (Rojas
et al. 2009a,b).
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Chapter 16
Application of an Early Warning System
for Floods

Adriana Albanese, Piero Boccardo, Fabio Giorgi, Nishshanka Prasanna
Premachandra, Olivier Terzo, and Rossella Vigna

Abstract Nowadays real time flood forecasting is becoming an important issue as
climate changes make quite inefficient those traditional flood forecasting methods
based only on historical data. Furthermore, real time flood forecasting systems are
often limited to developed countries and difficult to find in developing countries
where more than three-quarters of the world’s population are living. In this context,
the development of an early warning system for floods able to provide global cover-
age is very important. The aim of this paper is to show the improvements introduced
in the Early Warning System for Floods, developed by ITHACA organization, i.e.
mainly the calculation of those morphometric parameters necessary to understand
the basin response to heavy rainfalls and the source Real Time data adjustment nec-
essary to run the detection of critical rainfalls in near real time. This completely
automated System runs in river basin scale having a global coverage by using 3B42
and 3B42RT satellite rainfall data products of Tropical Rainfall Measuring Mission
(TRMM). The 3-hourly 3B42 data from 1998 to 2007 are used to detect all histor-
ical flood events in the past 10 years using a hydrological method based on Depth
Duration Frequency curves. The 3-hourly real time 3B42RT data with some statis-
tical adjustments are used to detect critical rainfall events and to make alerts in near
real time.
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GLIDE GLobal IDEntifier number
IDL Interactive Data Language
ITHACA Information Technology for Humanitarian Assistance, Cooperation

and Action
OCHA UN Office for the Coordination of Humanitarian Affairs
RT Return Time
SDI Spatial Data Infrastructure
SiTI Istituto Superiore sui Sistemi Territoriali per l’Innovazione
TRMM Tropical Rainfall Measuring Mission
TMPA Multisatellite Precipitation Analysis
USAID United States Agency International Development
WFP World Food Programme

16.1 Introduction

Climate projections using multi-model ensembles show increases in globally aver-
aged mean water vapour, evaporation and precipitation over the 21st century. The
models suggest that precipitation generally increases in the areas of regional tropical
precipitation maxima (such as the monsoon regimes, and the tropical Pacific in par-
ticular) and at high latitudes, with general decreases in the sub-tropics. Widespread
increases in heavy precipitation events (e.g., above the 95th percentile) have been
observed, even in places where total amounts have decreased. The observed increase
in precipitation intensity indicates that climate change might already have had an
impact on the intensity and frequency of floods. Heavy precipitation events are
projected to become more frequent over most regions throughout the 21st century
(Bates et al. 2008).

Because of the global climate change, the floods induced by storm events are
becoming more frequent than in the past; furthermore, floods are the major cause
of personal injuries and proper damages and the problems related to flooding have
greatly increased over decades because of population growth and the subsequent
development of extensive infrastructures in close proximity to rivers (Al-Sabhan
et al. 2003).

Since flooding is one of the most disastrous hazards in many regions of the world
(Schanze 2009) and it is increasing in the last years, the flood risk management has
become very relevant. However, real time flood forecasting systems are often limited
to developed countries and difficult to find in developing countries where more than
three-quarters of the world’s population are living. In this context, the monitoring of
rainfall and the development of an early warning system for floods able to provide
global coverage is very important.

This paper reports the description and the application of an Early Warning
System for Floods based on monitoring of rainfall on worldwide scale. A descrip-
tion of the structure and methodology, parameters and data requirements of the
system and the results obtained are also presented. This project is conducted by
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Information Technology for Humanitarian Assistance, Cooperation and Action
(ITHACA, www.ithacaweb.org) which is a non-profit organization founded by
Politecnico di Torino and SiTI (Istituto Superiore sui Sistemi Territoriali per
l’Innovazione, www.siti.polito.it). ITHACA conducts research activities in the field
of Geomatics and particularly it devotes its activities to monitor, analyze and fore-
cast natural disasters. This system was developed under a special request made
by World Food Programme (WFP, www.wfp.org) in order to increase efficacy in
approaching emergency preparedness related to flood events. The aim of this Early
Warning system is to give an alert in advance about the occurrence of floods around
the world monitoring the heavy rainfalls in near real time; this system can be used
by WFP or other humanitarian assistance organizations to evaluate the events and to
understand the potentially floodable areas where their assistance is needed.

16.2 The Structure of the Project

This Early Warning System is based on precipitation analysis and it uses rainfall
data from satellite at worldwide extent.

The first step in this project was the individuation of the different extreme mete-
orological events occurred in the past years using a hydrological analysis and the
calculation of cumulated rainfall values during these events. To produce this model,
it has been necessary to define a specific morphometric parameter called lag time,
evaluated for each river basin (see Section 16.3.2).

The same analysis is performed using near real time data to monitor current rain-
fall conditions every 3 h. This can be considered the proper Early Warning System
for flood events (see Secttion 16.4).

16.2.1 Data

The rainfall dataset used in this project belong to Tropical Rainfall Measuring
Mission (TRMM) Multisatellite Precipitation Analysis (TMPA). The TMPA pro-
vides a calibration-based sequential scheme for combining precipitations estimates
from multiple satellites, as well as gauge analyses where feasible (Huffman et al.
1997, 2007); in particular, in this project only two products have been used: the
3B42 and the 3B42RT (see Section 16.2.2). These gridded estimates are on a 3-h
temporal resolution and 0.25◦ by 0.25◦ spatial resolution in a global belt, extending
from 50◦ South to 50◦ North latitude.

The analysis of rainfall data are led on the basis of river catchment due to the
strict correlation between the catchment characteristics and flood effects. A hydro-
logical catchment can be considered as the geographical surface area and geologic
subsurface structure which delivers water to each trunk river. This three-dimensional
land system is bounded by a watershed (Smithson et al. 2002). The GIS water-
shed layer of HYDRO1k, developed at the U.S. Geological Survey’s Centre for
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Fig. 16.1 Stream line and drainage basin layers from HYDRO1k. The watershed layer is
constituted by a territorial subdivision from level-1 to level-6, after the HYDRO1k criterion

Earth Resources Observation and Sciences (EROS) has been used in this project
(http://eros.usgs.gov/products/elevation/gtopo30/hydro/index.html). HYDRO1k is
a geographic database developed to provide global coverage of topographically
derived datasets, including streams, drainage basins and ancillary layers derived
from a digital elevation model of the world (GTOPO30). This layer of watersheds
is constituted by a territorial subdivision at different levels, increasing details from
level-1 to level-6 (Fig. 16.1); watershed at maximum detail (level-6 basin) is here
taken as reference for the system.

16.2.2 Pre-elaboration

A pre-elaboration of rainfall data is required to work at the granularity of level-6
basin. The rainfall data are originally associated to latitude and longitude values
and then reconducted to a new territorial entity, called geodb_id. The geodb_id is
the result of the intersection between the TRMM grid and the HYDRO1k watershed
layer (Fig. 16.2), in other words it is the portion of level-6 basin area covered by the
TRMM grid cell (0.25◦×0.25◦ latitude and longitude). Once this pre-elaboration is
conducted the area weighted average rainfall is calculated for each level-6 basin and
it is the value used by the hydrological model to calculate critical rainfalls.

It has been decided to use Oracle 10 g© to load and elaborate the whole dataset
of rainfall that was structured in a data warehouse architecture (Fig. 16.3). This
allows the management of this huge dataset by performing complex data analyses
and queries.

An other pre-elaboration of data is required to transform data into a suitable
format for the database. The primitive raster format of the gridded data TRMM
3B42 and TRMM 3B42RT was transformed into the ASCII format, to be loaded
into Oracle. Both pre-elaboration procedures are performed by an ITHACA routine
elaborated in a suitable environment for the raster elaboration, the Interactive Data
Language (IDL).
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Fig. 16.2 Intersection between the HYDRO1k watershed layer and the TRMM grid; each basin
contains different new territorial entity that are the geodb_ids (in gray scale in the map)

Fig. 16.3 Early warning system architecture

The data model has been implemented with the star schema concept (Golfarelli
and Rizzi 2002), where rainfall data were stored in different tables considering two
levels of dimensional aggregation: the spatial and the temporal reference. Spatial
reference is defined with the georeferenced information from level-1 to level-6
basins. Time reference is defined with the year, month, day and 3˙h fields (Albanese
et al. 2008).

Once the data are loaded they become ready for the different analyses. In partic-
ular, the first analysis allows the detection of all historical flood events occurred in
the past (see Section 16.3); subsequently, the whole system runs in near real time in
order to find current critical rainfalls (see Section 16.4).

16.3 Analysis of Historical Data

The individuation of extreme meteorological events occurred in the past was
executed elaborating the whole dataset of 3B42 product (http://trmm.gsfc.
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nasa.gov/3b42.html), belonging to the Tropical Rainfall Measuring Mission
(TRMM) Multisatellite Precipitation Analysis (TMPA); it covers the period from
1998 to the delayed present.

The 3B42 product merge high quality (HQ)/infrared (IR) precipitation and
root-mean-square (RMS) precipitation-error estimates. This dataset is a post-real
time research-quality product and is available about 10–15 days after the end of
each month (Huffman et al. 2007). The data are produced in four stages: (1) the
microwave precipitation estimates are calibrated and combined, (2) infrared pre-
cipitation estimates are created using the calibrated microwave precipitation, (3) the
microwave and IR estimates are combined, and (4) rain gauge data are incorporated.
It is highly advantageous to include rain gauge in combinations datasets (Huffman
et al. 1997).

The hydrological analysis (see Secttion 16.3.1) is developed for the elaboration
of 3B42 data, in order to individuate critical rainfalls occurred in the last 10 years
(from 1998 to 2007).

16.3.1 Hydrological Analysis

Rainfall data have been elaborated using the hydrological method of Depth Duration
Frequency (DDF) curves and the morphometric parameter called lag time (see
Section 16.3.2) has been considered to create a time scale where critical durations
had to be detected.

Depth Duration Frequency curves represent the relation between duration d
(measured in hours) and its associated depth of rainfall h (measured in millime-
ters). For each level-6 basin, the annual maximum value from 1998 to 2007 has
been individuated for the chosen critical durations d and then the average of these
values has been calculated. The results form the empirical curve (Fig. 16.4), that is
interpolated by an analytical curve having the formula:

h = a × dn, (1)

where h is the height of rainfall (mm); d, duration of rainfall (h); a and n,
coefficients.

The statistical method of deriving the extreme events is done by the Gumbel dis-
tribution (Chow 1954) and permits the calculation of the recurrence interval of the
extreme rainfall values, measured in years and called return time (RT). Here the
return time curves has been calculated considering 2, 5 and 10 years (Fig. 16.4) and
using the frequency factor (KT) introduced by Chow (1954), function of the proba-
bility level. The formula for the KT, espressed on the basis of Gumbel distribution is:

KT = 1 − cv

[
0.45 +

√
6

π
· ln ln

(
RT

RT − 1

)]
, (2)

where KT is the probabilistic factor of growing; RT, the return time taken in account;
cv, the variation coefficient of the averages of the annual maxima, expressed by
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Fig. 16.4 DDF curves. The vertical lines represent the time span in which critical rainfalls had to
be detected

cv = σd

μd
, (3)

where σ d is the standard deviation of the maximum rainfall of duration d;
μd, the average of the maximum rainfall of duration d.

This calculation aimed at finding hydrological curves for each level-6 basin
at worldwide extent has been developed using a completely automatic procedure
developed in Octave© (a Matlab© porting open source software).

After having calculated these curves, the entity of each rainfall event was deter-
mined comparing cumulated rainfall to the historical ones (named analytical curve
in Fig. 16.4). The whole dataset of rainfall (more than 29.000 data for a single basin)
was processed following the afore mentioned procedure: the cumulated rainfalls
were calculated for the specific durations and they were compared with the level-6
analytical curve. It should not forgotten that critical durations are around lag time
(see Section 16.3.2), precisely chosen from 0.8∗lag time to 2∗lag time (delimited
in Fig. 16.5 by the two vertical lines) (Alfieri et al. 2008). The highest cumulated
rainfall in this period was considered as a critical rainfall event (represented by a
black dot, in Fig. 16.5).

The comparison between cumulated rainfall and the characteristic curve was
made by using the KT factor, considered as:

KT = hd1

adn
1

, (4)
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Fig. 16.5 Detection of critical rainfall, through the calculation of the KT factor

where hd1 is the cumulated rainfall for the duration d1 (mm); d1, duration (h); a and
n, coefficients calculated by using the formula (1).

Cumulated rainfall is considered critical when the value of KT is higher than 0.9
(Fig. 16.6).

The list of the events found with the calculation of the KT factor, constitute our
database of historical floods and it is comparable with other archives of historical
floods (e.g. Dartmouth Flood Observatory, http://www.dartmouth.edu/∼floods).

16.3.2 Automatic Calculation of Some Drainage Basin Parameters

The calculation of river channel morphometric characteristics is important to
understand the hydrologic process at basin scale.

Suitable allowance should be made in finding critical durations of rainfalls that
give peak discharge; according to many authors these durations are directly related
to time of concentration (tc). It is proven that the lag from the centroid of rain-
fall excess to the peak of the hydrograph, known as lag time (tl), is assumed to
be 0.6tc (0.6 times time of concentration) (Maidment 1992, Loukas and Quick
1996).

Time of concentration (tc) is an idealized concept and is defined as the time taken
for a drop of water falling on the most remote point of a drainage basin to reach the
outlet; in other words the time of concentration is the time after commencement of
rainfall excess when all portions of the drainage basin are contributing to flow at the
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Fig. 16.6 Plot of the KT factors found by the model, the horizontal black line is a threshold that
shows KT higher than 0.9

outlet (Maidment 1992). One of the empirical formula used to calculate the time of
concentration (tc) is Giandotti’s (Giandotti 1934, 1940, Tonini 1959):

tc = 4
√

A + 1.5L

0.8
√

zm − z0
, (5)

where A is the area of the river basin (km2); L, the length of the longest flow path
(km); zm, the medium altitude of the basin (m); z0, the altitude at the outlet (m).

The procedure for automatic calculation of the lag time uses HYDRO1k infor-
mation (GTOPO30 DEM, HYDRO1k Stream Line layer and Drainage Basin layer).
HYDRO1k provides a standard suite of geo-referenced data sets (at a resolution of
1 km) that are commonly used to process hydrologic information on a continental
scale. The basis of all the data layers available in the HYDRO1k database is the
hydrologically correct DEM. This DEM is projected into an equal area projection
(Lambert Azimuthal Equal Area projection), the cell size is 1000 m and the radius
of the sphere of influence of 6,378,137 m.

The stream line data layer distributed within the HYDRO 1 k data set is derived
from the flow accumulation and flow direction layers. Cells with upstream drainage
areas greater than 1000 km2 are selected from the flow accumulation layer and pro-
cessed through a specific function. These procedures result in a vector data layer of
streamlines with each segment of stream attributed with the upstream contributing
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drainage area. The vector streamlines are attributed with many fields, in particular
some of them are necessary in the analysis:

Pf_type=the Pfafstetter level at which the stream segment is considered “main
stream”.

Level-1 to Level-6=The Pfafstetter units in which the stream segment lie.
Strorder=Strahler stream order of the segment.
Frmup_flowlen=The upstream flowlength from the from-node. Calculated

using ARC/INFO’s FLOWLENGTH function, it is the longest path from the
from-node to the drainage basin divide (m).

Toup_flowlen=The upstream flowlength from the to-node (m).
Frmdn_flowlen=The downstream flowlength from the from-node. Again from

ARC/INFO’s FLOWLENGTH function, it is the length from the from-node
to the ocean or a terminal sink (m).

Todn_flowlen=The downstream flowlength from the to-node (m).

The drainage basin distributed with the HYDRO1k data set are derived using
the vector streamlines along with the flow direction layer. The basins are seeded
following procedures first articulated by Otto Pfafstetter and adopted for use in the
HYDRO1k dataset (Verdin and Greenlee 1996). Each polygon in the basin data
set has been tagged with Pfafstetter code uniquely identifying each sub-basin. The
six-digit Pfafstetter code assigned to each basin carries basin linkage information.
This way, basin interconnectedness can be determined by simply examining the
Pfafstetter code.

The drainage basin polygons are attributed with many fields, in particular some
of them are necessary in the analysis:

Level-1 to Level-6=Pfafstetter units of each polygon.
Dem_mean=Mean elevation value within the subbasin (m).

These parameters belonging to the HYDRO1k were used to calculate the time of
concentration with Giandotti’s formula (5), and then the lag time, using completely
automatic procedures.

The algorithm to calculate the longest flow path L was programmed in Visual
basic 6. The characteristic of this procedure is to consider the river basin structure
as a tree structure. It selects the level-6 basin and the consisting stream lines; then
it uses the Frmdn_flowlen and Todn_flowlen fields to find the node to which corre-
sponds only the to_node information and considers it as the outlet (Fig. 16.7). Then
a recursive algorithm starts from this point, and computes the length of each river
sector between two nodes up to the river basin boundary. The algorithm comes back
to the outlet and compares the calculated lengths at each node to select the longest.
The longest sector found is written in the drainage basin table in a specific field as
the longest flow path or principle river course of the basin (Fig. 16.8).

The medium altitude of the basin z was calculated using the elevation information
available in the HYDRO1k: the basin elevation characteristics were selected using
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Fig. 16.7 Simplified schema of the recursive algorithm to calculate the longest flow path for a
level-6 basin

ArcGIS spatial analyst tools and the average and minimum elevation related to each
level-6 basin was found and reported in the drainage basin table as a new field. The
area of the basin A was also calculated using ArcGIS.

16.4 Real Time System

A Real Time System is the way to monitor rainfall severity over an area of interest
in near real time. It should be able to analyze real time rainfall data to detect critical
rainfalls and to present affected areas using maps. In order to achieve these require-
ments, ITHACA developed a Real Time System which compares the real time
rainfall intensities with the curves developed by the hydrological model (see Section
16.3.1). The choice in the scientific panorama concerning real time data, excluding
meteorological forecast models, is limited to the 3B42RT, an algorithm with the
same coverage of 3B42, which offers rainfall data available in near real time.

16.4.1 Correction Factor Algorithm and Data Correction
in Real Time

The 3B42RT belongs to the TRMM Multisatellite Precipitation Analysis TMPA
(Huffman et al. 1997, 2007), a Quasi-Global, Multiyear, Combined-Sensor
Precipitation Estimates at Fine Scales. The TMPA is designed to combine
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Fig. 16.8 Flow chart of the
Visual Basic algorithm for
calculating the longest flow
path for each level-6 basin

precipitation estimates from various satellite systems, as well as land surface precip-
itation gauge analyses when possible, with the goal of finally having a calibration
traceable back to the single “best” satellite estimate.

The Real Time data are available from 2002 to today, in particular 3B42RT
is represented by HQ/VAR merged data (HQ passive microwave 3B40RT, VAR
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microwave-calibrated 3B41RT) with a simple replacement of the HQ withVAR
when the first is missing. Estimates are posted onto the web about 9 h after obser-
vation time, although processing issues may delay or anticipate this schedule,
moreover these estimates are to be considered as highly experimental, because the
calibrator used for the research product (as instance 3B42), the TRMM combined
instruments (TCI), is not available in real time and because for the RT system the
monthly gauge adjustment is not possible.

An adjustment is important to minimize the difference between the 3B42RT and
3B42 due to differences both in calibration source and in usage of gauge data.
For this purpose a statistical approach was implemented using the superimposition
between 3B42 and 3B42RT available from January 2003 to December 2007. These
data have been stored at geodb_id scale using an Extraction, Transformation and
Loading (ETL) algorithm, written in IDL. This algorithm downloads 3B42 in .hdf
format and 3B42RT in .bin format, transforms into .txt format and associates them
to: geodb_id, year, month, day. It assigns –2 for negative values and deletes the val-
ues related to over sea areas. The output is a table with two values for each 3 h
period from 2003 to 2007 (3B42 and 3B42RT) associated with geodb_id.

A specific algorithm was used to implement the mentioned statistical approach
which considers the correlation between 3B42 and 3B42RT and classifies them in n
classes on the basis of their value.

The analysis was carried out on the basis of level-6 basins which may consist up
to 20000 geodb_ids, producing millions of values at worst case (one value for each
3 h period for 5 years for 20000 geodb_ids). In this analysis, the 3B42 was plotted
against 3B42RT with having same subdivision for both axes. More subdivisions
were allocated for the lower values as 90% of data locate in this sector (Figs. 16.9
and 16.10).

Basically the values were classified into three groups as values equal to 0, greater
than 0 and less than 10, and equal or greater than 10. Then, the values greater than 0
and less than 10 were subdivided into five groups of equal interval width. The values
equal or greater than 10 were also subdivided into five groups of equal interval
width. This classification creates a grid structure (Fig. 16.10). For every ith class of
3B42RT the algorithm computes:

• number of 3B42 contained in the jth cell of i,
• average of 3B42 values contained in the jth cell of i,
• total number of 3B42 in i,
• weighted average for every ith class, obtained dividing the number of values of

the jth cell of i class by the total number of 3B42 values in i class and multiplying
the result with the 3B42 average of the jth cell of i class. This will be the value to
be assigned at the ith class of 3B42RT.

Since the data is available only for 5 years, it is necessary to find a method
to adjust the values which may fall outside the defined classes for a particular
level-6 basin, for example the values greater than the maximum recorded value
in the considered period. To solve this problem a linear regression analysis was
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Fig. 16.9 Plot of 3B42 versus 3B42RT. It is clear how the greatest quantity of data are assembled
in the bottom left corner

Fig. 16.10 Classification methodology of 3B42 and 3B42RT used by the ITHACA algorithm to
adjust 3B42RT. The greatest quantity of data falls in the area shown as A

conducted over all data and the results were stored with correction factor results in
the same file. Furthermore, the results of the regression analysis were applied for
the 3B42RT classes which do not contain enough number of past data recordings.
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This is a completely empirical method and its development was conditioned
according to the results obtained during its construction. In fact, to validate the
adjusted data they were used in the hydrological analysis to check whether it is
possible to detect all the past critical events by using them as well as using 3B42
data. Through iterated tests the final version was obtained with having few vari-
ations to the primary version to develop a more generalized one which does not
neglect any of past critical events. So the algorithm computes the value for each
i class of 3B42RT and compares it with the value given by linear regression, and
takes the greater value. Furthermore, additional weight was given for the number
of counts of higher 3B42 values as they are not very common naturally, by increas-
ing number of counts in jth cell of ith class, by multiplying a number series which
increases gradually with increasing j (Fig. 16.11).

Once the methodology was tested, the entire analysis starts with the IDL ETL
algorithm and ends up with the creation of correction factor files (Fig. 16.12).
The IDL creates a file having both 3B42 and 3B42RT data for every 3-h period
(RAIN DATA) and the combined data for a group of geodb_id(s) belonging
to a level-6 basin are created (RAIN of GEODB_ID of level-6 basin), through
a SQL query. Then the algorithm (CODE for the determination of the correc-
tion factor) runs to determine the correction factors. The created file for each
level-6 basin contains i correction factor values and the two parameters of linear
regression.

Fig. 16.11 Application of additional weight along 3B42 axis to adjust 3B42RT
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Fig. 16.12 Work flow for the correction factors determination, from the downloading of rough
3B42RT and 3B42 rainfall data to the storage of files of correction related to each specific basin

16.4.2 Detection of Critical Rainfalls in Real Time with Grid
Computing System

Once the correction factor is available for all level-6 basins, it is possible to correct
real time satellite rainfall data product directly when it is downloaded.

The real system is ready and it starts downloading 3B42RT from the FTP server
(ftp://trmmopen.gsfc.nasa.gov/) and finishes saving critical events detected in the
database (Fig. 16.13). It checks the server for the data availability in every 21600
s and downloads data available. Another Extraction Transformation and Loading
(ETL) algorithm written in IDL is used to resample the 3B42RT cell in the geodb_id
spatial resolution (see Section 16.2.2) and creates a file with the 3B42RT informa-
tion. The ETL algorithm assigns zero to the negative rainfall values and does not
consider data over sea areas.

Once rainfall values are downloaded and transformed into .txt format, the files
having rainfall data related to a single level-6 are generated; those files are consti-
tuted by geodb_id, temporal collocation, area, 3B42RT value and an empty field that
will be filled with the corrected value. This is a very important step, because within
few seconds and without passing through the Oracle database, files needed by the
hydrological model are created.

At this point this adjusted data can be used for the detection of critical events, by
using the hydrological model above described (see Section 16.3.1).
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Fig. 16.13 Work flow of the Real Time System: from the downloading of 3B42RT rainfall data in
real time to the detection of critical rainfall events

To run the system in real time, a grid architecture has been designed.
Grid computing (or the use of computational grids) is the combination of com-

puter resources from multiple administrative domains applied to a common task,
usually to a scientific, technical or business problem that requires a great number of
computer processing cycles or the need to process large amounts of data.

A grid master (grid master node) is connected to the TRMM server and to
the Oracle DBMS (Database Management System) (with historical data) and the
analysis procedures are delegated to others nodes (Fig. 16.14). In particular the
grid master node manages all the preliminary procedures of extraction and trans-
formation from the primitive data, otherwise the hydrological analysis and the
related detection of critical rainfalls are delegated to grid nodes. The designed
network is connected to a web server to store critical events and to publish
information.

The scalability of this system allows to increase or decrease in the little time the
number of the nodes, depending on the data amount.

16.4.3 Results and Conclusion

Once they are triggered, alerts are automatically mapped using the informative lay-
ers extracted from WFP Spatial Data Infrastructure (SDI) (Ajmar et al. 2008b). The
overall situation can be visualized on the web application, in order to offer an easy
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Fig. 16.14 Grid computing architecture

access to the data during the emergency also to WFP’s local offices. The web inter-
face is developed with the most advanced javascript technologies in the geoweb field
(Agosto and Dalmasso 2009).

The system shows the alerted basins with three different possible colours,
according to the severity of rains; in particular, yellow colour means pre-alert
(KT parameter is near to 1), orange indicates moderate alert (KT is between 1 and 2)
and red is for heavy alert (KT higher than 2).

At the time being, ITHACA Early Warning System for floods is under testing for
evaluation of the correctness of the alerts. The system is showing good results in
monitoring heavy rainfalls and giving reliable alerts for floods.

The flood that hit Western and Central Africa territories in September 2009 is an
example of ITHACA’s system successful recent results. At the begin of September
some of the world’s most important media involved in natural disasters monitor-
ing announced a flood event in Burkina Faso. This piece of news was reported
on September 1st by the Famine Early Warning Systems Network (FEWS NET,
http://www.fews.net), which is a United States Agency International Development
(USAID)-funded activity that collaborates with international, regional and national
partners to provide timely and rigorous early warning and vulnerability informa-
tion on emerging and evolving food security issues (www.fews.net). On the same
day the event in Burkina Faso was given the identification code FL-2009-000172-
BFA, called GLobal IDEntifier number (GLIDE, www.glidenumber.net), a globally
common Unique ID code for disasters, issued every week by Emergency Events
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Fig. 16.15 September 2009 Burkina Faso flood: example of flood event detected by ITHACA
early warning system

Database (EM-DAT, www.emdat.be) at Centre for Research on the Epidemiology
of Disasters (CRED) for all new disaster events.

The same piece of news was confirmed also by ReliefWeb (www.reliefweb.int),
the world’s leading on-line gateway to information (documents and maps) on
humanitarian emergencies and disasters. ReliefWeb was launched in October 1996
and is administered by the UN Office for the Coordination of Humanitarian Affairs
(OCHA).

ITHACA Early Warning System indicated critical rainfalls on those territories
starting from August 29th (Fig. 16.15): an alert was therefore given some days in
advance. Some other bordering countries, for example Niger, were also hit by heavy
rainfalls in the same days; again in this case, the analysis performed by ITHACA’s
system detected the critical condition in advance. The alert was confirmed during the
following days and the same alerted basins turned out to be flooded areas, as showed
in the map produced on September 3rd on the basis of satellite images (Fig. 16.16),
through a procedure developed in ITHACA’s Early Impact Project (Ajmar et al.
2008a).

After this period of evaluation and some improvements if necessary, the Early
Warning System will be available on ITHACA’s website.
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Fig. 16.16 September 2009 Niger flood: the areas alerted by ITHACA early warning system
(upper image) turned out to be flooded areas in the map (lower image) produced on the basis
of satellite images (Ajmar et al. 2008a)
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Chapter 17
L-Band and C-Band Combined Interferometric
Monitoring of the Wenchuan Earthquake

Kui Zhang, Alex Hay-Man Ng, Linlin Ge, Yusen Dong, and Chris Rizos

Abstract Satellite differential radar interferometry (DInSAR) has played a pivotal
role in observing the ground deformation caused by seismic events in recent years.
The Ms8.0 Wenchuan Earthquake occurred on 12 May 2008 have caused tremen-
dous losses in lives and properties of the people in affected areas. In this paper,
the surface co-seismic deformation field of the quake was mapped by the two-pass
DInSAR technique. Several pairs of long strip PALSAR images and one pair of
ASAR ScanSAR images were processed. The ascending (PALSAR) and descend-
ing (ASAR) results were combined to derive vertical and easting components of the
co-seismic deformation field. According to the comparison between the vertical and
easting deformation maps and the GPS observations, it is believed that the accuracy
of the DInSAR measurement of the co-seismic deformation is affected by the atmo-
spheric artifacts. Due to the reliable ASAR ScanSAR interferometric signals only
exist in the area located at the southeast of the fault zone, more descending DInSAR
results are required to obtain the vertical and easting co-seismic deformation field
in the northeast.

17.1 Introduction

On 12 May 2008, the Ms 8.0 Wenchuan Earthquake occurred on the intersection
of the Sichuan Basin and the Qinghai-Tibet Plateau (CEA 2008), which was one
of the most destructive earthquakes in China since the 1976 Tangshan Earthquake.
The economic loss caused by this quake is estimated to be 75.6 billion US dollars
(epochtimes.com 2008). As of 21 July 2008, 69197 people are confirmed dead and
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18222 listed as missing (sina.com.cn 2008). Thousands of aftershocks, some with
magnitudes greater than Ms 6.0, continued to strike the region even months after
the main shock, causing new losses in lives and properties of the people in affected
areas.

The Phased Array type L-band Synthetic Aperture Radar (PALSAR) and
Advanced Synthetic Aperture Radar (ASAR) are two of the most widely used
spaceborne SAR sensors in interferometric applications.

PALSAR is the SAR sensor installed on Japanese Advanced Land Observing
Satellite (ALOS; Rosenqvist et al. 2007). Being an upgraded sensor of the one on
JERS-1 satellite, the L-band PALSAR is able to acquire high quality SAR images.
With 23.6 cm wavelength, PALSAR has made great contributions to the study of
earth observation.

Operating in C-band, ASAR is one of the most important instruments of the
environmental satellite (ENVISAT) which is the subsequent mission of ERS-1 and
ERS-2 (Demos et al. 2000). ASAR is able to operate in five modes for different
purposes, which are Image Mode (IM), Wave Mode (WV), Alternating Polarisation
Mode (AP), Global Monitoring Mode (GM) and Wide Swath mode (WS). In WS
mode (ScanSAR), ASAR is able to acquire data in five swaths so that the spatial
coverage can be extended to over 400 km by 400 km.

DInSAR is a powerful tool to observe the ground surface deformation, first noted
by Gabriel et al. (1989). It has been applied to a wide range of applications in the
past 10 years and more (Goldstein et al. 1993; Lanari et al. 1998; Ng et al. 2009).
This technique makes use of multiple coherent SAR images acquired over the same
area to explore the difference between them. One of the most important products
generated by DInSAR is the differential interferogram. A high quality differential
interferogram is able to provide continuous observation with large spatial cover-
age. Comparing with other existing techniques, this fascinating advantage enables
DInSAR to be extremely competitive in the monitoring of ground surface change.
By using images acquired at the same location with different heading directions,
DInSAR has been extended to determine 2D or 3D ground deformation in recent
years (Ferretti et al. 2007; Fialko et al. 2001; Wright et al. 2004; Yun et al. 2006).
With the launch of numerous satellite-based SAR sensors, DInSAR has been repeat-
edly utilised to map the ground surface deformation caused by seismic events (Ge
et al. 2009; Jónsson et al. 2002; Massonnet and Feigl 1995). These results have
exerted profound influence on the research of seismology.

After the earthquake, DInSAR was carried out to map the co-seismic deforma-
tion by using PALSAR data provided by the Japanese Earth Remote Sensing Data
Archive Center (ERSDAC) and ASAR ScanSAR data provided by European Space
Agency (ESA). Due to the coverage constraint of standard PALSAR images, six
pairs of long strip PALSAR products were used to ensure sufficient spatial coverage
for mapping the co-seismic deformation field. The grey rectangles in Fig. 17.1 rep-
resent the areas covered by each PALSAR interferometric pair. On the other hand,
the ASAR ScanSAR image pair is able to cover the most of affected areas. Its cov-
erage is indicated by the red rectangle in Fig. 17.1. All SAR image pairs and their
key parameters used in this study are listed in Table 17.1.
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Fig. 17.1 The study area represented by Landsat-7 images. The epicentre is indicated by the large
red circle. The grey and red rectangles represent the area covered by L-band PALSAR and C-band
ASAR ScanSAR result, respectively. The polygons coloured by blue and pink indicate the areas
where the vertical and easting deformation maps are generated

As discussed later, the quality of each PALSAR interferometric product is gen-
erally good. To some extent, the distribution of the co-seismic deformation can be
observed from the L-band PALSAR DInSAR results. Unfortunately, most part of
the C-band ASAR differential interferogram are severely influenced by the decor-
relation. The reliable interferometric signals only exist in the areas with flat terrain.
Due to the PALSAR and ASAR images used in this study were acquired on ascend-
ing and descending orbits respectively, the vertical and easting deformation maps
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Table 17.1 PALSAR and ASAR image pairs used

Sensor Path/track Acquisition date
Perpendicular
baseline (m)

Temporal
baseline
(d)

Look
angle Headings

ASAR 247 25 January 2008 |
13 June 2008

89.8 140 30.8–42.7 Descending

PALSAR 471 29 February 2008 |
31 May 2008

123.1 92 34.3 Ascending

PALSAR 472 28 January 2007 |
17 June 2008

237.5 506 34.3 Ascending

PALSAR 473 17 February 2008 |
19 May 2008

248.7 92 34.3 Ascending

PALSAR 474 05 March 2008 |
05 June 2008

293.6 92 34.3 Ascending

PALSAR 475 20 June 2007 |
22 June 2008

–41.6 368 34.3 Ascending

PALSAR 476 08 April 2008 |
24 May 2008

–198.1 46 34.3 Ascending

in the reliable overlapping regions between PALSAR and ASAR interferograms
are calculated in this study. By comparing with the GPS observations, the accuracy
of the resulting vertical and easting components of co-seismic deformation field is
given.

In this paper, the general two-pass DInSAR processing strategy and the least
square method for deriving the vertical and easting component of the displace-
ment are briefly reviewed in Section 17.2. Then, the DInSAR results derived from
PALSAR and ASAR images are presented. The vertical and easting deformation
maps derived from DInSAR results are generated and validated with the GPS
observations.

17.2 Methodology

In this section, the two-pass DInSAR approach is firstly reviewed. Then, how to esti-
mate the vertical and easting components of the displacement by using the ascending
and descending DInSAR results is discussed.

17.2.1 Two-Pass DInSAR Approach

There are several methods of generating a differential interferogram, such as the
two-pass method, three-pass method, and four-pass method. The two-pass DInSAR
approach was used to generate the co-seismic deformation map in this study.
The reason why the three-pass and four-pass DInSAR methods were not used
for the deformation analysis is based on the following considerations. Firstly, the
atmospheric disturbances might seriously decrease the accuracy of space-borne
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interferometric measurements. If the atmospheric delay errors exist in the “topo-
graphic pair”, the quality of the differential interferogram could not be guaranteed.
Furthermore, the area affected by the main shock, as well as aftershock sequence, is
mainly dominated by mountains with steep slopes. The accuracy of the interferomet-
ric measurement over this area is strongly influenced by the serious foreshortening
and layover effects. In the worst case, the interferometric phase could be totally
uncorrelated. It is extremely difficult to correctly obtain the topographic information
from the “topographic pair” in three-pass and four-pass methods.

The two-pass DInSAR technique was firstly demonstrated in 1993 (Massonnet
et al. 1993). The following is a brief review of the steps involved in two-pass
DInSAR processing as illustrated in Fig. 17.2. Two radar images (referred to as
‘master image’ and ‘slave image’) are required. To begin with, the slave image is
carefully coregistered to the master image. Subsequently, the raw interferogram is
generated by complex conjugated multiplication of the interferometric image pair
data. The raw interferogram mainly consists of the following components: (1) the

Fig. 17.2 The simplified two-pass DInSAR processing chain
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phase induced by the pre-defined ellipsoid reference surface, (2) the phase induced
by topography, (3) the phase induced by the deformation that occurred between
master and slave image acquisitions and (4) the phase contributed by atmospheric
disturbances.

The phase caused by the pre-defined ellipsoid reference surface can be directly
removed from the raw interferogram by using the orbit information of both mas-
ter and slave acquisitions. By utilising an external DEM, the phase contributed
by the topography can be simulated and hence the differential interferogram is
obtained. Several filter techniques (Fornaro and Guarnieri 2002; Goldstein and
Werner 1998; Lee et al. 1998) can be used to denoise the differential interfero-
gram. Due to the phase values observed from the interferogram are known only
modulo 2π rad, a phase unwrapping step is required to recover the wrapped inter-
ferometric phase to the absolute phase with respect to the ground deformation.
Finally, the unwrapped phase array is geocoded to a reference coordinate system
(e.g. WGS84).

17.2.2 Estimation of Horizontal and Vertical Components

The displacement measured by both DInSAR techniques is in the line-of-sight
(LOS) direction of the radar. The displacement vector along the LOS acquired by
SAR satellite is a composite of vertical, easting and northing displacement compo-
nents. The full 3D ground displacement vector can be resolved using three or more
independent LOS measurements, unless additional assumptions on the de-formation
exist (Ferretti et al. 2007). The measured displacement vector along the LOS can be
expressed as (Fialko et al. 2001):

[
cos(θ ) − sin(θ ) cos(α) sin(θ ) sin(α)

]
⎡

⎣
DU

DE

DN

⎤

⎦ = �R,

where θ is the incidence angle at the reflection point; α, azimuth of the satel-
lite heading vector (positive clockwise from North); DU, displacement in ver-
tical direction; DE, displacement in easting direction; DN, displacement in nor-
thing direction; �R, ground displacement in the LOS direction between two
acquisitions.

However, due to the lack of SAR data acquired from different viewing angles and
orbit headings over a similar period and the poor sensitivity in measuring deforma-
tion in the north-south direction, the displacement in vertical and easting directions
are calculated by supposing that the north–south component is null. In fact, azimuth
of the satellite heading vector (positive clockwise from the north) for ascending
(PALSAR) and descending (ASAR) orbits are 9.5◦ and 190.3◦, respectively. It is
possible to approximate these values to 0◦ and 180◦, similar to Yun et al. (2006).
With this approximation, the vertical and easting displacement components can be
calculated according to the following equations:
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[
cos(θ ) ∓ sin(θ ) cos(α)

] [DU

DE

]
= �R,

where the negative sign is for PALSAR data from ascending orbit and the positive
sign is for ASAR data from descending orbit.

17.3 DInSAR Results

17.3.1 PALSAR

The final DInSAR results of PALSAR are illustrated in Fig. 17.3. To express the co-
seismic deformation field more distinctly, the final unwrapped results are rewrapped
modulo 4π rad (two cycles). Each fringe in the resulting products represents 23.6 cm
of movement in the radar line-of-sight (LOS) direction which is indicated by orange
arrow in Fig. 17.3. The co-seismic deformation filed of the Wenchuan Earthquake
can be generally observed. The quality of the results in the northwest of the fault
zone is lower than in the flat regions in the southeast. This is presumably due to:
(1) extensive vegetation coverage over the mountainous regions, (2) the earthquake
caused more intensive deformations in the northwest of the seismic fault, and (3)
the decorrelations caused by the severe foreshortening and layover effects over the
region with rough terrain.

The three arc-second resolution DEM from the Space Shuttle Topography
Mission (SRTM) was used to estimate the topographic contributions to the interfer-
ometric phase. In general, the absolute vertical accuracy of the SRTM DEM is better
than 9 m (Farr et al. 2007). However, they have to be oversampled to satisfy the pro-
cessing requirement due to their low resolution. Inevitably errors will be introduced
during the oversampling, and hence these errors will propagate into the deformation
results. In particular, the region located at the northwest of the fault zone is dom-
inated by mountains with steep slopes, where the topographic contribution to the
interferometric phase could not be completely removed.

To ensure the reliability of the phase unwrapping, the areas along the fault zone
were masked in this study, as can be seen from Fig. 17.3. The correlation of the
interferometric phase signals in these areas is totally lost. The decorrelation is most
likely due to one or more of the following reasons. Firstly, the phase difference
between two adjacent resolution elements may exceed one cycle. Secondly, large
ground movement can lead to misregistration of image pairs. Lastly, the surface of
scatterers has changed at the wavelength scale because of the earthquake (Zebker
et al. 1994). It must be noted that each differential interferogram of path 472–475 is
separated into two parts by the mask areas. Therefore, the phase unwrapping has to
be carried out for each part separately.

It is evident that there are some abnormal fringes in the regions with shadow mask
in Fig. 17.3. These regions are far away from the fault zone and hence are expected
to be less affected by the quake. The interferometric phase signals far from the co-
seismic deformation field are most likely to be contaminated by the atmospheric
disturbances.
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Fig. 17.3 Final PALSAR DInSAR results overlaid on Landsat-7 images. To express the co-seismic
deformation filed more distinctly, the final unwrapped results were rewrapped modulo 4π rad (two
cycles). The interferometric signals in the area with shadow mask are expected to be dominated by
the atmospheric disturbances. The black and orange arrows represent the satellite flight pass and
radar LOS direction, respectively

17.3.2 ASAR

The ASAR ScanSAR differential interferogram is represented by the greyscale layer
in Fig. 17.4. Apart from the area with flat terrain, the quality of the differential
interferogram is generally quite poor. Especially for the areas with rugged terrain
and heavy vegetation, the co-seismic deformation signals cannot be resolved by the
C-band ASAR interferogram. On the other hand, the quality of the L-band PALSAR
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Fig. 17.4 The ASAR ScanSAR DInSAR result. The greyscale layer represents the differential
interferogram. The area with high coherence was unwrapped. The unwrapped result was rewrapped
8.4π rad (4.2 cycles). The rewrapped result is demonstrated by the coloured layer overlapped on
the differential interferogram

interferograms is generally good over these areas. This is mainly due to the L-band
PALSAR sensor has a longer wavelength than the C-band ASAR sensor. Signals
with longer wavelength have a better capability of penetrating heavy vegetation,
which leads to less temporal decorrelation (Takeuchi and Yamada 2002).

In this study, the area with high coherence was unwrapped. In order to be more
easily compared with PALSAR results, the unwrapped result was rewrapped 8.4π

rad (4.2 cycles). The rewrapped result is demonstrated by the coloured layer overlaid
on the differential interferogram. Same as above, each fringe in the coloured layer
implies 23.6 cm of movement in the ASAR LOS direction. It can be observed
from Figs. 17.3 and 17.4 that in the areas located at the southeast of the fault
zone, the ground deformation along the LOS direction of ASAR is greater than
that of PALSAR. In addition, the co-seismic deformation filed derived from the
rewrapped result of ASAR appears more consistent compared to the PALSAR
results.
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17.4 Combined Observation

In order to properly combine the LOS estimations derived from PALSAR and
ASAR, both the ascending and descending interferograms must have sufficient
quality in the selected region. The region which met such requirement was iden-
tified by the ASAR result. The area which preserves good coherence in the ASAR
result is located at the southeast part as highlighted in Fig. 17.5. The corresponding
PALSAR data which covered the same area, i.e. south parts of Paths 473 and Path
474 (as shown in Fig. 17.1), were selected. The vertical and easting displacement
maps were derived by combining the ASAR and PALSAR interferograms based
on the assumption that the northing component was null. Two independent com-
binations, ASAR-PALSAR Path 473 and ASAR-PALSAR Path 474, were used to
derive the vertical and easting displacement maps. In fact the GPS observation data
(CMONOC 2008) suggested that the northing displacements were generally small
in the region, therefore it was expected that the northing displacements should not
have large effect to the vertical and easting displacements calculated. The resulting
vertical and easting deformation maps for ASAR-PALSAR Path 473 and ASAR-
PALSAR Path 474 are shown in Fig. 17.5. The results suggested that the horizontal
displacements due to the quake were greater than the vertical displacements in the
region of observation. The easting displacement maps in Fig. 17.5 show that the
relative movement of south part of Path 473 and Path 474 is towards the epicentre
with a peak of 92 cm. The vertical displacement maps show that the amount of sub-
sidence increases toward the fault. The peak vertical displacement reaches –25 cm
in the selected region. It can be also observed from Fig. 17.5 that there are some
abnormal deformation patterns in the areas far away from the fault zone. This is
expected to be caused by atmospheric artifacts.

17.5 Validation

To validate the results obtained, the resulting deformation in both directions were
compared against GPS data (CMONOC 2008). In this period, GPS observation data
provided 10 measurement points in horizontal direction and 7 measurement points
in vertical direction, located within the region covered by the vertical and easting
displacement maps. The location of the GPS observations corresponding to each
displacement maps are shown in Fig. 17.5. Since DInSAR measures relative phase
changes, a double difference comparison between the GPS observations and the
corresponding displacement component derived from the DInSAR results has been
carried out.

By comparing the easting displacement maps with the GPS observation data,
an acceptable correlation is observed between the DInSAR-measured and the GPS-
measured easting displacements (Fig. 17.6). It is observed that the double difference
in near field (points that are closed to each other) is smaller than the double differ-
ence in far field (points that are far away from each other). The double difference
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(a) ASAR – PALSAR path 474 (Easting) (b) ASAR – PALSAR path 474 (Vertical)

(a) ASAR – PALSAR path 473 (Easting) (b) ASAR–PALSAR path 473 (Vertical)

Fig. 17.5 The vertical and easting deformation maps derived by the proposed method. The ref-
erence points for each deformation map are illustrated by green stars. The triangles represent the
locations of the GPS observations (CMONOC 2008) used in the study
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Fig. 17.6. Comparison between the DInSAR-measured and GPS measured easting displacements

observations for the points ROXI and NEJI are much higher than others. The average
absolute difference between GPS-measured and DInSAR-measured easting dis-
placements in Path 474 is 2.4 cm with a standard deviation of 1.9 cm and in Path 473
is 10.6 cm with a standard deviation of 7.5 cm. However, if only double difference
observations in near field are considered, the average absolute difference for Path
473 drops to 1.8 cm and the standard deviation to 1.8 cm. This is because the effect
of atmospheric signal is not obvious between nearby points and hence the deforma-
tion signal is dominated. The atmospheric signal, which is not modeled, is expected
to increase for points further away from each other. The same correlation cannot be
observed when comparing the vertical displacement maps with the GPS observation
data, which is mainly because the amount of available GPS observation points are
smaller and the points are far apart (Fig. 17.7). The average absolute difference
between GPS-measured and DInSAR-measured vertical displacements in Path 474
is 4.6 cm with a standard deviation of 3.3 cm and in Path 473 is 2.0 cm with a stan-
dard deviation of 1.3 cm. The accuracy of retrieved vertical displacement results was
lower than the easting displacement in this study. This is because the dispersion in
the easting components of the sensitivity vectors is higher compared to the vertical
components; therefore the precision of the easting displacement calculated is better.
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Fig. 17.7 Comparison between the DInSAR-measured and GPS measured vertical displacements

17.6 Conclusion

The capability of ALOS PALSAR and ENVISAT ASAR ScanSAR for co-seismic
deformation mapping has been demonstrated in this study. While the ENVISAT
ASAR ScanSAR has a far larger spatial coverage than ALOS PALSAR, most part
of the ASAR ScanSAR differential interferogram are severely decorrelated. The
reason is that the wavelength of C-band microwave is shorter than L-band, which
causes the ASAR sensor more sensitive than PALSAR to the vegetation area. As
a result, for co-seismic deformation mapping, PALSAR DInSAR is more robust in
the presence of vegetation ground cover, and also more suitable for areas with high
rate of ground deformation.

In the area where the interferometric signals are reliable, the results of both
PALSAR and ASAR are combined to generate the vertical and easting compo-
nents of the co-seismic deformation. It can be seen from the retrieved deformation
map that the vertical displacements are smaller than the horizontal displacements
in the region of observation. To confirm the reliability of the results, the result-
ing vertical and easting deformation maps were validated with the GPS ground
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surveying data. The resulting easting displacements appear more consistent with
the GPS observations than the vertical displacements. According to the double dif-
ference comparison, the major factor that affects the DInSAR measurement of the
co-seismic deformation of the quake is believed to be atmospheric artifacts. If the
interferometric phase signals contributed by the atmospheric disturbances could
be eliminated, the quality of the resulting deformation maps is able to be further
improved. The valid phase signals in ASAR ScanSAR differential interferograms
only covered the regions located at the southeast of the fault zone. To generate ver-
tical and easting components of the co-seismic deformation field in the northwest,
more SAR images acquired in descending orbits are required.
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Chapter 18
Uncovering the Space–Time Patterns of Change
with the Use of Change Analyst – Case Study
of Hong Kong

Bo Huang and Hua-Leung Sin

Abstract Land use change is a complex process and a variety of factors are
involved. Recently, a new field, i.e., post-change detection analysis or change anal-
ysis, is emerging as a further step after change detection which has been extensively
studied. The study of this paper aims to uncover the spatio-temporal pattern of
urban development related to the extension of transportation networks in Hong Kong
from 1991 to 2007 including the rail and road system as an application of Change
Analyst, a spatial statistics tool designed and developed for land-use change model-
ing. Change Analyst is applied in this paper to perform logistic regression to analyze
change patterns and predict their future trend. The results show that the urbanization
process in Hong Kong, particularly the non-built-up to built-up land conversion, is
highly associated with the transportation network, surrounding land use, and prox-
imity to the central business district that basically refers to the accessibility from
the city center. It is also demonstrated that Change Analyst is a powerful tool which
assists in various land use change analyses and predictions.

18.1 Introduction

Urbanization is a term to describe urban growth. According to United Nations
Population Division of 2005 there were about 3.2 billion people living in urban
area globally, which accounted for 48.7% of total population of the world (UNPD
2005). Further, the United Nations (UN) has projected that half of the world popu-
lation would live in urban areas at the end of 2008 (UN News). With the increasing
number of people living in urban areas, the urbanization process has become one of
the prominent global issues.

There are two inter-related interpretations of urbanization – (1) physical growth
of urban area and (2) movement of people from rural to urban areas. In this study, we
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focus on the physical growth of urban area. Physical growth of urban area basically
refers to the expansion of cities. The major driven cause of physical urban growth
is the population increase in the urban area, which includes both internal population
growth and rural urban migration. As a result of population increase, more space
is needed and people would move to the periphery of a city, turning the non-urban
land into urban land, which leads to the physical growth of urban area. In most cases
this growth occurs in rural area and this process is therefore known as rural/urban
conversion.

Rural/urban conversion has been taken place at the periphery of cities around
the globe. Although the growth of urban area (and urban population) provides room
for economic development of a city, numbers of impacts do come along with the
conversion process such as impact on agricultural production, heat island phenom-
ena, increasing demand of food, water, and sewerage, etc. All these impacts have
to be solved by the decision makers. In order to plan ahead of time, understanding
urbanization and modeling urban growth become valuable for the decision making
process. Therefore, there is a need to strike a balance between the urban growth
process and these impacts.

In recent decades, change detection has been studied intensively in different
areas of remote sensing and a number of algorithms have been developed to mon-
itor the land-use/land-cover change (Mas 1999; Coppin et al. 2003; Wu 1998).
Change detection has already answered the question of “where” and “what” have
been changed. A new field of research, post-change detection analysis, is therefore
emerging as a further step to answer the question of “how” and “why” the change
occurs.

Land use change is a complex issue which is influenced by various factors (such
as geographic, political, economic, ecological, etc.). There is no universal rule of
how these factors influence land use change and each urbanization process around
the world is unique in terms of the combination and weighting of a set of factors.

Developed by the first author’s group, Change Analyst, an extension to ArcGIS,
is a GIS tool for land use change modeling and analysis. Using Change Analyst,
researchers are able to build up a model of land-use change in relation to various
causal factors and to predict the future land-use patterns.

As a case study of Change Analyst, this paper aims to uncover the special-
temporal pattern of urban development primarily related to the extension of
transportation networks in Hong Kong from 1991 to 2007.

In this chapter, Section 18.2 presents a review of related land use change models.
An introduction of study area and data preparation is presented in Section 18.3.
Sections 18.4 and 18.5 describe the methodology and the results and discussions,
respectively. Finally, the paper is summed up with a conclusion in Section 18.6.

18.2 Land Use Change Modeling

Land use change is a complex process. The non-urban land use to urban land-
use conversion, i.e., urban growth, is influenced by a number of socio-economic,
political, and environmental factors. Many previous studies have focused on the
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effects of various driving forces, including natural environmental characteristics,
demographic factors, economy, transportation, preference for proximity, neighbor-
hoods, and government policies (e.g. Cervero and Wu 1997; Mayer and Somerville
2000; Smersh et al. 2003; Angel et al. 2005).

Some of the previous studies incorporated these variables to construct bi-
temporal models. For instance, Landis and Zhang (2000) constructed a model with
four categories of variables incorporated, which include transportation network,
urban structure, locations available for change, and locations where changes were
impossible. Verburg et al. (2001), on the other hand, incorporated demographic
data in the study. These studies all tried to construct a model of urban growth
with multiple categories of variables incorporated and to project future urbanization
scenarios.

With regard to model construction, there are a number of techniques that
have been studied by researchers. These techniques include multiple regression
(Theobald and Hobbs 1998), Markov chain analysis (Lopez et al. 2001; Weng
2002), cellular automata (CA) (Clarke and Gaydos 1998; Wu 1998; Batty et al.
1999; Li and Yeh 2001), and logistic regression (Wu and Yeh 1997; Cheng and
Masser 2003). However, there are still limitations of these techniques. For instance,
multiple regression cannot ensure high generalization performances for future land-
use change projection; Markov chain analysis lacks explanatory power; Cellular
automata is a time-consuming process and it is not focused on the interpretation of
land-use change patterns (Huang et al. 2009).

Among these techniques, logistic regression is considered a more effective
tool for land-use change analysis and interpretation (Cheng and Masser 2003;
Munroe et al. 2004; Páez and Suzuki 2001). Logistic regression can produce a
functional relationship between the land use change and the driven forces rep-
resented by a set of selected explanatory variables. The significance of these
variables generated can be used for further interpretation of the weightings of dif-
ferent variables. However, Huang et al. (2009) also reported that multi-temporal
changes have not been considered in many of the post-change detection anal-
ysis studies, which became a crucial problem to be solved in land-use change
modeling.

In order to circumvent this problem, we have developed a multi-temporal spatial
regression model for land-use change analysis. In this paper, this regression model
under the support of Change Analyst, an extension to ArcGIS, is applied to study
the urban growth in Hong Kong.

18.3 Study Area

Hong Kong Special Administrative Region, commonly known as Hong Kong, is
located at the eastern part of the Pearl River Delta mouth (Fig. 18.1). The total
area is around 1104 km2 and the population is around 6.7 million. Hong Kong
is one of the most developed cities of China and one of the biggest cities of the
world.



258 B. Huang and H.-L. Sin

Fig. 18.1 Location of Hong Kong
Source: http://en.wikipedia.org/wiki/File:Hong_Kong_Location.svg

18.4 Methodology

In order to interpret the spatial-temporal patterns of land-use change, Change
Analyst is used. Change Analyst provides both binary change modeling and multi-
nomial change modeling capabilities. This paper adopts binary change modeling for
analysis.

18.4.1 Logistic Regression

Logistic regression has been widely applied in model construction with a categorical
dependent variable and both continuous and categorical independent variables. In
this paper, a binary logistic regression model is used to analyze the patterns of land-
use change with the driving force of transportation network system and to generate
an urban growth prediction map. The probability of the land-use change from non-
built-up area (value of 0) to built-up area (value of 1) is assumed to follow the
logistic curve and the general form of logistic regression is as follows:

y = a + b1x1 + b2x2 + · · · + bmxm (18.1)

y = loge

(
p

1 − p

)
= log it(P) (18.2)

P(z = 1) = ey

1 + ey
(18.3)

where x1, x2, . . . , xm are explanatory variables and the utility function y represents
a linear relationship between x and y. The parameters b1, b2, . . . , bm refer to the
regression coefficients. z is a binary response variable (0 or 1) (0 refers to no change
and 1 refers to a new unit, such as the transition from a rural unit to an urban unit).
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P refers to the probability of occurrence of a new unit, i.e., z = 1. Function y is
represented as logit(P), i.e., the log (to base e) of the odds or likelihood ratio that
the dependent variable z is 1. P increases when the y value increases.

Due to the fact that change usually occurs in clusters, spatial dependence should
be considered to avoid unreliable parameter estimation. There are two approaches
of implementation:

To build a model with autoregressive structure incorporated (Anselin 1988). For
example, a spatial lag model can be used as an extension of Eq (18.1):

y = a +
∑m

i=1
xibi + ρWy + ε (18.4)

where ρ is a coefficient on the spatially lagged dependent variable and W is a spa-
tial weight matrix. The maximum likelihood estimator (MLE) is usually adopted to
derive the parameters of such a model that best fit the data:

L = y ln
exp(a + Xβ + ρWy)

1 + exp(a + Xβ + ρWy)
− (1 − Y) ln[1 + exp(a + Xβ + ρWy)] (18.5)

The likelihood can be maximized using a simplex unvaried optimization routine
(LeSage 1998).

Spatial Autologistic Regression model or Spatial AutoLogit (SAL) model is the
logistic version of Eq. (18.4). It incorporates spatial autocorrelation (Dubin 1995,
1997; LeSage 1998). Such models are effective in regression with spatial autocorre-
lation considered (Páez and Suzuki 2001). Similar to the spatial lag model, a spatial
error model (Anselin 1988) can also be utilized to deal with spatial autocorrelation
in a regression model. Nonetheless, they are primarily used for diagnostic analysis
rather than for extrapolation-like prediction (Jetz et al. 2005).

To filter out spatial autocorrelation (Getis and Griffith 2002). This can be done
by a spatial sampling scheme for spatial autocorrelation reduction among the sam-
pled sites (Munroe et al. 2004). However, a smaller sample size might lead to some
information loss and conflicts with the large samples of asymptotic normality using
the maximum likelihood method. This issue, yet, can be minimized by appropriate
design of the spatial sampling scheme.

In this study the approach b is adopted and the sampling scheme will be discussed
in the next section of this paper.

18.4.2 Spatial Sampling

Spatial sampling aims to filter out spatial autocorrelation. Theoretically, spatial
autocorrelation should be subject to distance decay. The spatial sampling in this
study uses a non-overlapping moving window to verify the spatial autocorrelation
of observations proximate in space. A check of joins is determined each time by
comparing land use change types of “adjacent” cells. A join is sequential occur-
rences of like land use changes in adjacent cells (the central cells of the current
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sampling window and the sampling windows to the east, west, north, and south of
this window).

The size of the sampling window is critical. A small sampling window is insuf-
ficient for removing spatial autocorrelation and a large sampling window will result
in the loss of information and conflicts with the large-sample of asymptotic normal-
ity of the maximum likelihood method for its smaller sample size. In this study, a
sampling window size of 5x5 is selected after comparing different sample window
sizes.

18.4.3 GIS-Based Predictor Variables

There are six predictor variables considered in the land-use change model
(Table 18.1). These variables include sequential land use (built-up area) data and
transportation data. There are several underlying assumptions behind these selected
variables. First, it is assumed that whether a place is “urban” or not is highly
correlated with the accessibility of that place, which basically assumes a possi-
ble relationship between transportation and urbanization. Therefore, transportation
related variables (such as road, rail network, and distance of a place to the central
business district (CBD) are included. Second, it is assumed that built-up area usu-
ally develops in a place where there are already some building-area existed nearby,
this is why the variable of building density is included. At last, it is also assumed
that a built-up area would develop more likely in a gentle slope area rather than a
steep slope area. Therefore, the variable of slope is also included in the study. The
spatial distribution of these variables is shown in Fig. 18.2.

Table 18.1 Summary of predictor variables for the land use change model

Variables Definition

Dis_road Distance from the cell to the nearest major road
Dis_Rail Distance from the cell to the nearest rail station
R_Den Density of major road
B_Den Density of surrounding built-up area cell
Dis_CBD Distance from the cell to the central business district
Slope Measurement of the degree of slope

18.4.4 Data Compilation

The data used in this study include land-use data (built-up area and non-built-
up area), terrain data, and transportation network data over the time periods of
1991–1997, 1997–2001, and 2001–2007. The land-use data is extracted from the
maps of Hong Kong produced by the Lands Department and the former Building
and Lands Department of the Hong Kong government. The scale of these maps is
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Fig. 18.2 Spatial distribution of predictor variables of the data of 1997

1:200,000 except the 1991 map, which is in 1:100,000. All the data are converted
into raster format with the cell size of 180 × 180.

The land-use data include built-up area and non-built-up area. A category scan is
conducted to detect the land-use change and a bi-temporal change maps is generated
(Fig. 18.3). Table 18.2 shows the built-up area and non-built-up area in form of cells
in different years. Overall the percentage of built-up area in Hong Kong is small
(due to large area of hilly area in Hong Kong). The process of non-built-up and
built-up area conversion is slow and stable from 1991 to 2007.

The transportation network data are based on the maps published by the Lands
Department and the chronological development of rail system in Hong Kong. In the
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Fig. 18.3 Built-up area and non-built-up area of Hong Kong in different years

Table 18.2 Non-built-up area and built-up area from 1991 to 2007

1991 1997 2001 2007

Categories Cells % Cells % Cells % Cells %

Non-built-up area 32,513 95.3 32,132 94.2 31,837 93.3 31,660 92.8
Built-up area 1606 4.7 1987 5.8 2281 6.7 2457 7.2

paper maps published by the Lands Department, there are two categories of roads:
major road and secondary road. Only the major roads defined by the raw maps are
considered in this study.

18.5 Results and Discussion

18.5.1 Logistic Regression Results

The results of the binary logistic regression model are shown in Table 18.3. All the
models are statistically significant with the p value close to 0. The percentages of
correct prediction (PCP) are 97.96% for the period of 1991–1997, 98.51% for the
period of 1997–2001 and 99.41% for the period of 2001–2007.
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18.5.2 Evaluation of the Model

To testify the capability of the model, a prediction land-use map of 2003 is produced
by the model and compared to the actual land-use map of 2003 (Fig. 18.4 for the
map and Table 18.4 for the comparison of statistics).

18.5.3 Prediction Results

The following figure (Fig. 18.5) is the predicted land-use map of 2015 Hong Kong
with the use of Change Analyst and the statistics of the predict 2015 land-use map
are shown in Table 18.5.

Fig. 18.4 Predicted and actual land-use map of 2003
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Table 18.4 Comparison of statistics between predicted and real land-use data of 2003

Predicted land-use of 2003

Non-built-up area (0) Built-up area (1) Total

Real land-use
of 2003

Non-built-up area (0) 31,739 15 31,754

Built-up area (1) 67 2297 2364
Total 31,806 2312 34,118

PCP 99.8% 99.4% 99.8%

Fig. 18.5 Predict 2015 land-use map

Table 18.5 Statistics of
predicted 2015 land-use map 2015

Cell %

Non-built-up area 31,441 92.2
Built-up area 2676 7.8

According to the predicted 2015 land-use map, most of the expended Built-up
Areas in 2015 compared to 2007 are located in Kowloon peninsula, mainly east
Kowloon and west Kowloon (including the area of Kowloon Bay, Hung Hum, the
runway of previous Kai Tak Airport, Mei Foo, and the new reclamation land of west
Kowloon.
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18.6 Discussion

The study of this paper selects transportation data as the major component of the
explanatory variables and aims to uncover the pattern of urban growth in Hong
Kong in relation with transportation networks. There are some trends of non-built-
up and built-up area conversion over time in Hong Kong according to the results of
this study.

The speed of urban growth in Hong Kong is slow and stable. It is probably the
result of a relatively high urbanization rate before the 1990s and most of the devel-
opable land has been utilized already. Land is limited in Hong Kong and the urban
growth is also limited (spatially) as well.

According to the regression results, the variables of slope, distance to CBD and
distance to major roads contribute a significant and relatively stable influence over
time in the logistic regression model. The result is reasonable. Because of the nat-
ural mountainous topology, slope therefore because a critical factor influencing the
mode of urban growth in Hong Kong. The CBD of Hong Kong is Tsim Sha Tsui
and Central area. In general, urban area developed around the CBD initially. With
all other factors as the same, a place closer to the CBD is assumed to be more
likely urban than a place located away from the CBD. The result of the model has
proved this assumption to be applicable in Hong Kong. Distance to Major Roads
is another significant variable in the model. Basically this variable is related to the
accessibility of a place. In Hong Kong, road access usually has to be completed
before development to allow public transportation going into the area in the future.
Therefore, distance to major roads is also a critical factor as in the results of the
regression model.

However, the factor of distance to railway station is unstable in the model. It may
be the result of the railway policy and urban growth mode in Hong Kong. The iden-
tification of railway station location in Hong Kong is not random. A station cannot
operate until the population of the area reaches a certain amount which proves that
there is a need for a massive transportation (railway system). However, the area usu-
ally has already been developed to be a built-up area before the rail station starts its
operation. Instead of the non-built-up to built-up area conversion, the influence of a
new railway station will probably stimulate the land price increase and “re-urbanize”
the area (demolish the old building and replace it by new buildings). Therefore, the
nature of built-up area does not change.

Overall, the findings of the regression models are consistent and reasonable with
the pattern of urban expansion in Hong Kong.

18.7 Conclusion

Land use change analysis is a highlighted issue around the world especially in the
face of global change. While urbanization is undergoing in many areas around the
world, planning for better utilization of space (with the understanding that space is
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limited) is one of the major concerns of policy makers, academics, and the general
public. Change Analyst serves to be a powerful tool to provide a prediction of land
use change for the users. As the interface of Change Analyst is user-friendly, users
do not need to have any background of logistic regression techniques. For example,
policy makers can have a general scope of the future land use trend with the available
information set to be the predicting variables. Therefore, they can have a better idea
the change in the future and make relevant and appropriate policies. Education is
another example showing its applicability. For instance, in geography class, students
can use the software to understand the temporal–spatial pattern of land use change.

This study applies a logistic regression model and aims to uncover the spatio-
temporal patterns of land use change with Hong Kong as the case study. In Change
Analyst, the logistic regression model analyzes how the selected driven forces influ-
ence the conversion from non-built-up to built-up area. In addition, the regression
model also produces a predicted land-use map in the future. In general, an interpre-
tation can be drawn that slope, the distance to CBD, and the distance to major roads
are the major driven forces of urban growth in Hong Kong. This result is reasonable
and matches with the current situation of Hong Kong. The results of the analysis
show that the logistic regression model can achieve a good performance in land-use
change modeling and prediction.

However, data constraint is a key limitation. It is generally impossible to incor-
porate all variables for modeling. Simplification and generalization processes have
to be undertaken, and so loss of data and certain extent of generalization do occur
during the model construction. Therefore, a careful design and collection of data is
required for the modeling in order to have a more ideal result and a better interpreta-
tion. In addition, the current version of Change Analyst cannot deal with the problem
of multicollinearity which may occur when explanatory variables are highly cor-
related. However, it will be solved in the new version(s) of the software in the
future.
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Chapter 19
Change Detection of Sea Ice Distribution in SAR
Imagery Using Semi-variogram of Intrinsic
Regionalization Model

Yu Li and Jonathan Li

Abstract The spatial structures revealed in remotely sensed imagery are essen-
tial information characterizing the nature and the scale of spatial variation of sea
ice processes. This study evaluates the potential capability of using semi-variogram
of intrinsic regionalization model for change detection of sea ice. Up to now, the
second-order variogram has been widely used to describe the spatial variations
within an image, but it demonstrates the limitation to discriminate distinct image
spatial structures. This study introduces a different geo-statistic metric, in which
spatial structures of sea ice are considered a combination of two stochastic second-
order stationary models. Firstly, the multi-gamma model is used to characterize
continuous variations corresponding to water or the background of sea ice. The sec-
ond model is a tessellation model, in which the image domain is randomly separated
into non-overlapping cells. In each cell, a random value is independently assigned.
It is called the mosaic model. In this paper, the mosaic model is constructed by a
Poisson tessellation. The linear combination of these two stochastic models defines
the mixture model to represent spatial structures of sea ice presented in SAR inten-
sity imagery. This algorithm is applied to Radarsat-1 images acquired different days
to identify the change of sea ice.

19.1 Introduction

Sea ice imposes severe restriction on ship traffic in the Arctic, is a sensitive cli-
mate indicator, and plays an important role in exploration and exploitation of marine
resources (Johannessen et al. 2007). To evaluate the impact of sea ice on ship traf-
fic and global climate system, it is necessary to observe and monitor its change
daily, seasonally and yearly. However, extreme remoteness and harsh environments
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of Polar Regions make fieldwork very expensive and impossible in many cases.
Given this challenge, remote sensing has proved to be a powerful tool for monitor-
ing sea ice. In particular, synthetic aperture radar (SAR) systems have been shown
to be very useful due to its capability of acquiring data under all weather condi-
tion, during day and night, and over large region (Kerman 1999). SAR imagery may
exhibits the spatial heterogeneity of the retrieved sea ice property. This information
helps to characterize the nature of the processes structuring sea ice, identifying its
scale of spatial variation. This study focuses specifically on the characterization of
the spatial structures of sea ice presented in SAR data. These spatial structures are
specific to the measured change of sea ice.

In the next section the intrinsic model is outlined. In Section 19.3 the parameter
estimation for the mixture model is described. The results are discussed in Section
19.4 and finally, in Section 19.5 the conclusions are given.

19.2 Intrinsic Model Based on Bigamma and Mosaic
Random Functions

19.2.1 Intrinsic Model

From geostatistics point of view, the spatial structure and variability revealed in SAR
data can be modeled by a regionalized variable z(x), which is simply considered
as the realization of a random function Z(x) constructed at all points x of a given
region D ⊂ R2. When the random function is stationary, its moments are obviously
invariant under translations, e.g., its first two moments for points at x and x + h can
be written as

{
E[Z(x)] = m
E[Z(x) − m][Z(x + h) − m] = C(h)

(19.1)

where E is the operator of the mean value, and m is the mean and C(h) is the covari-
ance function. When m is constant C(h) only depends on the vector h, that is, the
random function is second-order stationary (Chiles and Delfiner 1999; Wackernagel
2003). A second-order random function is isotropic if its covariance function only
depends on the length ‖h‖, denoted by h for convenience, of the vector h and not
depends on its direction, that is, C(h) = C(h).

Under intrinsic hypothesis, for every vector h the increment Z(x + h) − Z(x)
is a second-order random function of x. Then the intrinsic random function can be
characterized by the moments of the increment

{
E[Z(x + h) − Z(x)] = 0
E[Z(x + h) − Z(x)]2 = 2γ (h)

(19.2)

where γ (h) is its semi-variogram function.
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Following Wackernagel (2003), the intrinsic random function Z(x) can be divided
into a sum of spatial components characterizing different spatial scale. For a two
component model

Z(x) = Z1(x) + Z2(x) (19.3)

where the increments for components are zero mean and uncorrelated, that is,

{
E [Zi(x + h) − Zi(x)] = 0, for i = 1, 2
E [(Z1(x + h) − Z1(x)) (Z2(x + h) − Z2(x))] = 0

(19.4)

Based on this idea, the intrinsic random function Z(x) is defined as a weighted
sum of two components: bigamma and Poisson mosaic random functions (Garrigues
et al. 2007), respectively, to characterize the spatial structures of sea ices in different
seasons, that is,

Z(x) = wZ1(x) +
√

1 − w2Z2(x) (19.5)

The semi-variogram of the random function can be derived by

γ (h) = E [Z(x + h) − Z(x)]2

= E
[
w (Z1(x + h) − Z1(x)) + √

1 − w2 (Z2(x + h) − Z2(x))
] 2

= w2E [Z1(x + h) − Z1(x)]2 + (1 − w2)E [Z2(x + h) − Z2(x)]2

= w2γ1(h) + (1 − w2)γ2(h)

(19.6)

where γ1(h) and γ2(h) are the semi-variogram functions of components Z1(x) and
Z2(x), respectively and will be defined in the following sections.

19.2.2 Bigamma Random Function

A random function Z1(x) is said to be a bigamma random function if the vectors
Z = (Z1(x + h), Z2(x)) for x, x + h ∈ D are distributed according to a bivariate
gamma distribution. The bivariate gamma distribution on R2 has been defined in
several forms. Most of them exploit various properties of the univariate gamma
distribution to construct bivariate families (Kotz et al. 2000).

In this paper, bivariate gamma distribution of random vector Z = (Z1(x +
h),Z1(x)) in R2 is defined by its moment generating function or Laplace transform,
which is characterized by an affine polynomial (Barndorff-Nielsen 1980; Bernardoff
2006). Given an affine polynomial

P(θ ) = 1 + βθ1 + βθ2 + β2ρθ1θ2 (19.7)
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where the parameters satisfy the conditions: β > 0 and 1 > ρ > 0. Then the moment
generating function of Z can be defined as

L(θ) = E
(
eθ1Z1(x+h)+θ2Z1(x)

) = (P(−θ ))−α

= (1 − βθ1 − βθ2 + β2ρθ2θ2)−α (19.8)

From the defined generating function, it is obvious that Z1(x) are distribution
according to a univariate gamma distribution with shape parameter α and scale
parameter β, that is, Z1(x) ∼ G(α,β). The probability density function can be
expressed as follows

f (Z1(x); α, β) = Z1(x)α−1

�(α)βα
exp

(
−Z1(x)

β

)
(19.9)

where �(·) is the gamma function.
The moments of the bigamma distribution can be obtained by differentiating

Eq. (19.8). For example, the means and variances can be obtained as

E [Z1(x)] = ∂L(θ)

∂θ1

∣∣∣∣
θ=0

= αβ (19.10)

Var [Z1(x)] = ∂2L(θ )

∂θ1∂θ2

∣∣∣∣
θ=0

= αβ2 (19.11)

The covariance C(Z1(x+h), Z1(x)) and correlation coefficient r(Z1(x+h), Z1(x))
of the bigamma random function can also be calculated by

Cov [Z1(x + h), Z1(x)]
= E [Z1(x + h)Z1(x)] − E [Z1(x + h)] E [Z1(x)] = αβ2 (1 − ρ)

(19.12)

r (Z1(x + h), Z1(x)) = Cov (Z1(x + h), Z1(x))√
Var (Z1(x + h))

√
Var (Z1(x))

= 1 − ρ (19.13)

In order to characterize the spatial structures, the ρ is assumed as exponential
function with h

ρ = ρ(h) = 1 − exp

(
−3 h

r1

)
(19.14)

Under this assumption, the Z1(x) defines a second-order stationary isotropic
bigamma random function, its covariance function can be rewritten as

Cov [Z1(x + h), Z1(x)] = αβ2 exp

(
−3 h

r1

)
(19.15)
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The second-order semi-variogram γ 1(h) is thus an exponential variogram with
range r1 and sill αβ2 as follows

γ1 (h) = αβ2
(

1 − exp

(
−3 h

r1

))
(19.16)

19.2.3 Poisson Tessellation Based Mosaic Random Function

According to Rivoirard (1994) and Lantuejoul (2002), a mosaic random field on a
domain D can be defined by partitioning the domain D into a tessellation and assign-
ing each cell of the tessellation a value drawn from a distribution such that the values
do not depend on the cells and different cells have independent values. For a flexible
and convenient tessellation, the Poisson line tessellation (Chiles and Delfiner 1999;
Lantuejoul 2002) is used to divide the domain D ⊂ R2 into small cells.

A line in R2 is specified by two parameters (a, d) ∈ [0, 2π) × [0, ∞) where a
is the direction of the unit vector orthogonal to the line and d is the distance from the
line to the origin (see Fig. 19.1a). Poison line network can be completely defined by
the intensity λ of the Poisson point process in the parameter space [0, 2π)×[0, ∞).
The Poisson lines in the network hitting the domain D form a partition of D into
convex polygons (see Fig. 19.1b).

The gamma distribution defined in Eq. (19.9) is used for the distribution from
which the values are drawn for each cell of Poisson tessellation. This defines a
random function Z2(x) following the gamma distribution with the shape parame-
ter α and scale parameter β. Note that the statistical properties of Z2(x) can be
characterized by its spatial distribution.

Given two points x and x + h in D, p(h) denotes the probability that both x and
x + h belong to the same cell. In isotropic case, p(h) = ρ(h), then the second order
moment of Z2(x) can be expressed as (Lantuejoul 2002)

E [Z2(x + h)Z2(x)] = αβ2 + α2β2p (h) + α2β2 (1 − p (h)) (19.17)

so that,

a

d

a b

Fig. 19.1 (a) 2D line with
parameter (a, d); (b)
Simulation of Poisson lines
and Poisson polygon
tessellation
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Cov [Z2(x + h), Z2(x)] = C2 (h) = αβ2p (h) (19.18)

For the Poisson mosaic random function, simple probabilistic calculations show
(Chiles and Delfiner 1999) that its covariance function is

C2 (h) = αβ2 exp (−2λh) (19.19)

Similarly, the semi-variogram γ2(h) of Z2(x) with range r2 and sill αβ2 can be
obtained

γ2(h) = αβ2
(

1 − exp

(
−3 h

r2

))
(19.20)

where r2 = 3

2
λ.

19.3 Parameter Estimation for the Mixture Model

In this section, the least squares estimation is used for the theoretical variogram to
estimate the parameters in the model. Hence, an experimental variogram estimator
acts as the data for this process.

19.3.1 Experimental Semi-variogram

In order to derive variogram from a set of observations y = {y(xi); xi ∈ D, i =
{1, . . ., n}}, the classical experimental variogram is proposed (Wackernagel 2003;
Schabenberger and Gotway 2005)

γ̂ (h) = 1

2 |N(h)|
∑

N(h)

[
y(x + h) − y(x)

]2 (19.21)

where N(h) = {
(xi, xj); xi, xj ∈ D and xi − xj = h

}
and |N(h)| = #N(h).

The variogram measures the average of squared differences between values y(xi)
and y(xj) of all pairs of positions (xi, xj) separated by a distances xi−xj = h. The rea-
sons for choosing Eq. (19.21) for the data to estimate the parameters of theoretical
variogram, mainly because of its appealing properties: simple computation, unbi-
ased estimation, evenness and attaining zero at zero h (Schabenberger and Gotway
2005). In practice, the experimental variogram is usually computed using vector h
with a tolerance ε, that is, pairs of positions xi − xj = h that satisfy xi − xj = h ± ε.



19 Change Detection of Sea Ice Distribution in SAR Imagery 275

19.3.2 Theory Semi-variogram

Substitute Eqs. (19.13) and (19.17) into (19.19)

γ (||h||) = αβ2
[

1 − ω2 exp

(
−3||h||

rbg

)
−

(
1 − ω2

)
exp

(
−3||h||

rpm

)]
(19.22)

As demonstrated in Eq. (21), the variogram of the proposed mixture model
Eq. (18) is determined by four parameters θ = (β, w, rbg, rpm) supposing that
α is a constant equal to the number of looks of SAR sensors. In this paper, those
parameters are used to characterize the spatial structure in a SAR intensity image.

19.3.3 Parameter Estimation by Least-Squares Adjustment

Least-squares adjustment technique is usually used to automatically fit a theoretical
variogram to experimental one (Cressie 1993; Wackernagel 2003; Schabenberger
and Gotway 2005). Given a theoretical variogram model within a family γ (h, θ ),
where parameter vector θ contains all unknown parameters to be estimated from the
data, let γ̂ (h) = [γ̂ (h1), ..., γ̂ (hk)]T be the values calculated from the N(hj) available
pairs by the experimental variogram estimator Eq. (19.22), consider fitting γ (h, θ )
to γ̂ (h). Suppose that γ (h, θ ) = [γ (h1, θ ), ..., γ (hk, θ )]T and γ̂ (h) satisfy a statistic
model of form

γ̂ (h) = γ (h, θ ) + μ(h) (19.23)

where μ(h) is the k × 1 error vector with zero mean and variance-covariance matrix
V(θ ) = Var[μ(h)].

By weighted least squares (Cressie 1993; Schabenberger and Gotway 2005), the
parameter vector θ can be estimated so as to minimize the weighted sum of squares

(
γ̂ (h) − γ (h, θ )

)T
W(θ)−1

(
γ̂ (h) − γ (h, θ )

)

=
k∑

j=1

|N(hj)|
2γ (hj, θ )

{
γ̂ (hj) − γ (hj, θ )

} (19.24)

19.4 Experimental Results

The proposed algorithm is tested by using SAR intensity images to identify sea ice
structures. Figure 19.2a shows the 4-looks Radarsat-1intensity images with size of
2159 2́941 pixels, vertical–vertical (VV) polarization and 30 m spatial resolution,
which is acquired on 12 May 2008 from Labrador Sea, Canada. The area shown
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HH

GG
D

DD

X

(a)

(b)

Fig. 19.2 (a) The study area
and (b) regional ice analysis
and egg codes for the study
area

in Fig. 19.2 includes four sea ice structures (DD, GG, HH, and X). Figure 19.2b
shows the regional ice analysis and the egg codes for these structures provided by
Canada Ice Service (CIS), Environment Canada. For each structure, two images are
cut for the testing images (see Fig. 19.3), where a–d indicate DD, GG, HH, and
X regions, respectively. Figure 19.4 gives the theoretical and experimental semi-
variograms for testing images shown in Fig. 19.3. Both theoretical and experimental
semi-variograms are normalized. Table 19.1 lists the estimated parameters where w
is the weight of two components in intrinsic regionalization models, which can be
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Fig. 19.3 Testing images

to indicate the density of sea ice, d is the density of sea ice in the same regions
from the egg code, r1 indicates the global texture structure of water, r2 is equal
to 3λ/2 and λ can be used to estimate the average size of sea ice sheet and the
means of estimated parameter are calculated. The results promise w as density
indicator.
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(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

Fig. 19.4 Theoretical and experimental semi-variograms
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Table 19.1 Estimated parameters

Structure Image r1 r2 w r̄1 r̄2 w̄ d

HH a1 1.7 3.8 0.22 1.5 4.2 0.21 0.2
a2 1.2 4.7 0.21

GG b1 1.4 3.3 0.31 1.5 3.3 0.31 0.3
b2 1.7 3.3 0.31

DD c1 1.4 3.8 0.51 1.5 3.8 0.50 0.5
c2 1.7 3.8 0.50

X d1 2.1 3.6 0.82 2.3 4.3 0.80 0.8
d2 2.4 5.0 0.78

19.5 Conclusions

In this study, spatial structures of sea ice revealed in a SAR intensity image are char-
acterized by intrinsic regionalization model. The algorithm is applied on Radarsat-1
SAR intensity image of Ungava Bay, Canada in order to detect the sea ice change
during twenty days in May 2008. The results demonstrate that the algorithm is use-
ful to detect sea ice change in intensity and size. However, this result is limited
by the number, the types and the small size of the sea ice. Several points of the
proposed algorithm can be improved by further studies, such as using the Voronoi
mosaic model instead of the Poisson line model.
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