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Preface

Climate is a paradigm of a complex system. Analysing climate data
is an exciting challenge. Analysis connects the two other fields where
climate scientists work, measurements and models. Climate time series
analysis uses statistical methods to learn about the time evolution of
climate. The most important word in this book is “estimation.” We
wish to know the truth about the climate evolution but have only a
limited amount of data (a time series) influenced by various sources of
error (noise). We cannot expect our guess (estimate), based on data,
to equal the truth. However, we can determine the typical size of that
deviation (error bar). Related concepts are confidence intervals or bias.
Error bars help to critically assess estimation results, they prevent us
from making overstatements, they guide us on our way to enhance the
knowledge about the climate. Estimates without error bars are useless.

The complexity of the climate system and the nature of the mea-
surement or modelling act may introduce (1) non-normal distributional
shape, (2) serial dependence, (3) uneven spacing and (4) timescale uncer-
tainties. These difficulties prohibit in many cases the classical statistical
approach to derive error bars by means of calculating the theoretical dis-
tribution of the estimates. Therefore we turn to the bootstrap approach,
which generates artificial resamples of the time series in the computer,
repeats for each resample the estimation (yielding the replication) and
calculates the error bars from the distribution of the replications. The
typical number of replications is 2000. This computing-intensive ap-
proach yields likely more realistic error bars.

Still, there is theoretical work to be done: how to best preserve the
shape and serial dependence in the bootstrap resamples, how to estimate
with smallest error bars. Uneven spacing in time series analysis has not
been the preferred study object of statisticians. Timescale uncertainties
and their effect on error bars (widening, but how much?) is almost
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viii Preface

completely unexplored. This book adapts existing and introduces new
bootstrap algorithms for handling such problems.

We test our methods by means of Monte Carlo experiments. When
the true parameter values are known, it is possible to generate random
samples and calculate bootstrap error bars and confidence intervals and
check whether, for example, a 95% confidence interval for the estimated
parameter does indeed contain in 95% of the Monte Carlo runs the known
parameter. The number of Monte Carlo runs is typically 47,500. The
computational burden increases to 2000 × 47,500. To create of this book
required relatively powerful computers. In Chapter 9, we look on what
may become possible when quantum computers exist.

Chapter 1 introduces you to climate time series and their statistical
properties. Chapter 2 gives stochastic models of serial dependence or
persistence, which are needed in Chapter 3, where bootstrap resampling,
the determination of error bars and the construction of confidence inter-
vals is explained. This concludes Part I on fundamental concepts. Chap-
ters 4, 5 and 6 employ the concepts in the univariate setting (Part II),
where the sample consists of only one time series. Chapters 7 and 8 deal
with the bivariate setting (Part III).

Each of the chapters has a section “Background material,” which con-
tains supplementary material from statistics and climatology. You find
also reported “stories”—comments, discussions and replies on certain
papers in a scientific journal. Such exchanges, as also the “discussion”
parts in read statistical papers, provide insight into the production of
science—often more intimate than what polished journal articles reveal.
The chapters have also a section entitled “Technical issues,” where you
find, besides information about numerical algorithms, listed software
with internet links.

Intuition and creativity is needed for developing statistical estimation
techniques for complex problems. Therefore I praise occasionally the
artistic scientist, not at least in response to papers that make derogative
remarks on that capacity. On the other hand, the artist in us must
not forget to look for previous work on the same subject done in other
disciplines and to scrutinize the own development by means of objective
methods, such as Monte Carlo tests.

Regarding the notation, I have tried to find a route between conven-
tion on the one hand and consistency on the other. However, the most
important symbols, including t for sampled time, x for a sampled cli-
mate variable, n for data size and {t(i), x(i)}n

i=1 for a time series sample,
possess their role throughout the book. I take this opportunity to intro-
duce the counterpart of the time series sample, the stochastic process,
{T (i), X(i)}n

i=1. I hope that not only statisticians find that traditional
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distinction (Fisher 1922) between sample (i.e., numbers) and process
(i.e., random variables) useful. Regarding the reference list, this notes
only the first of the places of a publisher and it gives, in square brack-
ets, additional information. This is not done consistently (e.g., the doi
is given mostly to identify more recent papers published by the Ameri-
can Geophysical Union). The author list may be more aptly denoted as
“first-author list.”

The URL for this book is http://www.manfredmudelsee.com/book. It has
the links to the sites of the software (including own products) and the
data. It has also, inevitably, an errata section. As the person respon-
sible for the content, I offer my apologies in advance of the discov-
ered errors, and I thank you for informing me. My email address is
mudelsee@mudelsee.com.

Sincere thanks go to my academic teachers, Augusto Mangini and
Karl Stattegger, and the hosts of my subsequent stays, Howell Tong and
Qiwei Yao, Gerd Tetzlaff, Maureen Raymo and Gerrit Lohmann. They
and the colleagues at the respective institutions (Institute of Environ-
mental Physics at the University of Heidelberg, Germany; today’s Insti-
tute of Geosciences at the University of Kiel, Germany; today’s School of
Mathematics, Statistics and Actuarial Science at the University of Kent,
Canterbury, UK; Institute of Meteorology at the University of Leipzig,
Germany; Department of Earth Sciences at Boston University, USA;
Alfred Wegener Institute for Polar and Marine Research, Bremerhaven,
Germany) helped me to shape my thinking and flourish in the field of
climate time series analysis.

The above and following had an influence, gratefully acknowledged,
on this book via discussing with me or supplying data, knowledge or
literature: Mersku Alkio, Susana Barbosa, Rasmus Benestad, André
Berger, Wolfgang Berger (whom I owe the term “ramp”), Mark Besonen,
Matthias Bigler, Michael Börngen, Armin Bunde, Steven Burns, Dragos
Chirila (who went through the whole manuscript), Ann Cowling, Michel
Cruzifix, Anthony Davison (who went through Chapters 1, 2, 3, 4, 5 and
6 of the manuscript), Cees Diks, Reik Donner, Heinz Engel, Dominik
Fleitmann, Imola Fodor, Eigil Friis-Christensen, Martin Girardin, the
late Clive Granger, Uwe Grünewald, Peter Hall, Gerald Haug, Jonathan
Hosking, Daniela Jacob, Malaak Kallache (who went through Chap-
ter 6), Vit Klemeš, Demetris Koutsoyiannis, Thomas Laepple, Peter
Laut, Martin Losch (who went through Chapter 9), Werner Metz, Al-
berto Montanari, Eric Moulines, Alfred Musekiwa, Germán Prieto, Ste-
fan Rahmstorf, Regine Röthlisberger, Henning Rust, Michael Sarnthein,
Denis Scholz, Michael Schulz, Walter Schwarzacher, Martin Trauth, Diet-
mar Wagenbach, Heinz Wanner, Eric Wolff, Peili Wu and Carl Wunsch.
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The computing centres from following institutions provided comput-
ing time: Alfred Wegener Institute and University of Leipzig. Following
institutions gave data: British Antarctic Survey, Cambridge, UK; Global
Runoff Data Centre, Koblenz, Germany; National Oceanic and Atmo-
spheric Administration, Washington, DC, USA. Libraries from following
research institutes and universities helped with literature: Alfred We-
gener Institute, Boston University, University of Massachusetts Boston,
Cambridge, Halle, Hannover, Harvard, Heidelberg, Kassel, Leipzig, Mas-
sachusetts Institute of Technology, Michigan State University and Yale.
Following institutions funded own research that contributed to this book:
British Antarctic Survey, Deutsche Forschungsgemeinschaft, European
Commission, Niedersächsisches Ministerium für Wissenschaft und Kul-
tur and Risk Prediction Initiative.

Rajiv Monsurate helped adapting the Latex style file.
Last, but not least, I thank the editors at Springer as well as former

Kluwer for their patience over the past six years: Chris Bendall, Robert
Doe, Gert-Jan Geraeds, Kevin Hamilton, Lawrence Mysak and Chris-
tian Witschel.

Hannover, Germany
December 2009 Manfred Mudelsee
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Part I

Fundamental Concepts



Chapter 1

Introduction

Superiority of quantitative methods over qualitative
—Popper

“Weather is important but hard to predict”—lay people and scientists
alike will agree. The complexity of that system limits the knowledge
about it and therefore its predictability even over a few days. It is
complex because many variables within the Earth’s atmosphere, such as
temperature, barometric pressure, wind velocity, humidity, clouds and
precipitation, are interacting, and they do so nonlinearly. Extending the
view to longer timescales, that is, the climate system in its original sense
(the World Meteorological Organization defines a timescale boundary
between weather and climate of 30 years), and also to larger spatial and
further processual scales considered to influence climate (Earth’s surface,
cryosphere, Sun, etc.), does not reduce complexity. This book loosely
adopts the term “climate” to refer to this extended view, which shall
also include “paleoclimate” as the climate within the geologic past.

Man observes nature and climate to learn, or extract information, and
to predict. Since the climate system is complex and not all variables can
be observed at arbitrary spatial and temporal range and resolution, our
knowledge is, and shall be, restricted and uncertainty is introduced. In
such a situation, we need the statistical language to acquire quantitative
information. For that, we take the axiomatic approach by assuming that
to an uncertain event (“it rains tomorrow” or “before 20,000 years the
tropics were more than 5◦C colder than at present”) a probability (real
number between 0 and 1) can be assigned (Kolmogoroff 1933). Statistics
then deciphers/infers events and probabilities from data. This is an
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assumption like others in the business: three-dimensional space, time
arrow and causality, mathematical axioms (Kant 1781; Polanyi 1958;
Kandel 2006). The book also follows the optimistic path of Popper
(1935): small and accurately known ranges of uncertainty about the
climate system enable more precise climate hypotheses to be tested,
leading to enhanced knowledge and scientific progress. Also if one shares
Kuhn’s (1970) view, paradigm shifts in climatology have better success
chances if they are substantiated by more accurate knowledge. It is the
aim of this book to provide methods for obtaining accurate information
from complex time series data.

Climate evolves in time, and a stochastic process (a time-dependent
random variable representing a climate variable with not exactly known
value) and time series (the observed or sampled process) are central to
statistical climate analysis. We shall use a wide definition of trend and
decompose a stochastic process, X, as follows:

X(T ) = Xtrend(T ) + Xout(T ) + S(T ) ·Xnoise(T ), (1.1)

where T is continuous time, Xtrend(T ) is the trend process, Xout(T ) is
the outlier process, S(T ) is a variability function scaling Xnoise(T ), the
noise process. The trend is seen to include all systematic or determi-
nistic, long-term processes such as a linear increase, a step change or a
seasonal signal. The trend is described by parameters, for example, the
rate of an increase. Outliers are events with an extremely large absolute
value and are usually rare. The noise process is assumed to be weakly
stationary with zero mean and autocorrelation. Giving Xnoise(T ) stan-
dard deviation unity enables introduction of S(T ) to honour climate’s
definition as not only the mean but also the variability of the state of
the atmosphere and other compartments (Brückner 1890; Hann 1901;
Köppen 1923). A version of Eq. (1.1) is written for discrete time, T (i),
as

X(i) = Xtrend(i) + Xout(i) + S(i) ·Xnoise(i), (1.2)

using the abbreviation X(i) ≡ X(T (i)), etc. However, for unevenly
spaced T (i) this is a problematic step because of a possibly non-unique
relation between Xnoise(T ) and Xnoise(i), see Section 2.1.2.1. The ob-
served, discrete time series from process X(i) is the set of size n of paired
values t(i) and x(i), compactly written as {t(i), x(i)}n

i=1. To restate, the
aim of this book is to provide methods for obtaining quantitative esti-
mates of parameters of Xtrend(T ), Xout(T ), S(T ) and Xnoise(T ) using
the observed time series data {t(i), x(i)}n

i=1.
A problem in climate analysis is that the observation process super-

imposes on the climatic process. Xnoise(T ) may show not only climatic
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but also measurement noise. Outliers can be produced by power loss
in the recording instrument. Non-climatic trends result, for example,
from changing the recording situation. An example is temperature mea-
surements made in a town that are influenced by urbanization (meaning
an increased heat-storage capacity). However, measurement noise can
in principle be reduced by using better instruments, and outliers and
trends owing to the observation system can be removed from the data—
climatologists denote such observation trend free data as homogeneous.

A further problem in real-world climatology is that also the time val-
ues have to be estimated, by dating (Section 1.1). Dating errors are
expected to add to the noise and make the result more uncertain.

Consider a second climate variable, Y (T ), composed as X(T ) in Eq.
(1.1) of trend, outliers, variability and noise. The interesting new point is
the dependence between X(T ) and Y (T ). Take as example the relation
between concentration of CO2 in the atmosphere and the global sur-
face temperature. In analogy to univariate X, we write {X(T ), Y (T )},
{T (i), X(i), Y (i)} and {t(i), x(i), y(i)}n

i=1 for such bivariate processes
and time series. This book describes methods only for uni- and bivari-
ate time series. Possible extensions to higher dimensions are mentioned
in Chapter 9.
{t(i), x(i), y(i)}n

i=1 need not result from the natural climate system
but may also be the output from a mathematical climate model. Such
models attempt to rebuild the climate system by connecting climate vari-
ables with governing mathematical–physical equations. Owing to the
limited performance of computers and the uncertain knowledge about
climatic processes, climate models are necessarily limited in spatial, pro-
cessual and temporal resolution (McAvaney et al. 2001; Randall et al.
2007). On the other hand, climate models offer the possibility to perform
and repeat climate experiments (say, studying the influence of doubled
concentrations of CO2 in the atmosphere on precipitation in dependence
on different model implementations of the role of clouds).

1.1 Climate archives, variables and dating
Climate archives “contain” the time series. The measured variables

(x(i), y(i)) either are of direct interest, as in case of precipitation and
temperature, or they bear indirect information (indicator or proxy vari-
ables). The estimated times (t(i)), in geosciences often called timescale,
are obtained either by direct, absolute dating methods or indirectly by
comparison with another, dated time series. Table 1.1 gives an overview
about climate archives and absolute dating methods. Table 1.2 informs
about climate variables and their proxies studied in this book. More
details are provided in Figs. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and
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Table 1.1. Main types of climate archives, covered time ranges and absolute dating
methods.

Dark shading means “frequently used,” light shading means “occasionally used.” Pl.,
Pliocene; b.p., “before the present.” Background material (Section 1.6) gives details and
references on geological epochs (also before Pliocene), archives and dating.

1.10, where some of the time series analysed in this book are presented,
and in the background material (Section 1.6).

1.2 Noise and statistical distribution
The noise, Xnoise(T ), has been written in Eq. (1.1) as a zero-mean and

unit-standard deviation process, leaving freedom as regards its other sec-
ond and higher-order statistical moments, which define its distributional
shape and also its spectral and persistence properties (next section). The
probability density function (PDF), f(x), defines

prob (a ≤ Xnoise(T ) ≤ a + δ)|δ→0 =

a+δ∫
a

f(x)dx, (1.3)

putting our incomplete knowledge in quantitative form.
For analysing, by means of explorative tools, the shape of f(x) using

time series data {t(i), x(i)}n
i=1, it is important to estimate and remove

the trend from the data. An unremoved trend would deliver a false,
broadened picture of f(x). Trend removal has been done for constructing
Fig. 1.11, which shows histograms as estimates of the distributions of
Xnoise(T ) for various climate time series. The estimation of trends is
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Table 1.2. Climate archives and variables studied in this book (selection).

Climate archive Location Time 
range (a)

Proxy variable Resolu-
tion (a) 

Climate variable 

 

Marine sediment core 
 

Eastern 
 

106 
 

δ18O, benthic 
 

103 
 

Ice volume, 
 equatorial  foraminifera  bottom water 
 Pacific    temperature 
 

Ice core 
 

Antarctica 
 

105 
 

CO2, air bubbles 103 CO2, atmosphere 
   δD, ice 102 Air temperature 
 Greenland 105 SO4 content, ice 100 Volcanic activity 
   Ca content, ice 100 Aeolian dust, wind
   Dust content, ice 100 Aeolian dust, wind
   Conductivity,a 100 Soluble material,  
   ice  wind 

   Na content, ice 100 Seasalt, wind 
 

Tree-rings 
 

Worldwide 
 

104 
 

Δ14C, wood 
 

100 
 

Solar irradiance, 
     ocean circulation 
 

Lake sediment core 
 

Boston area 
 

103 
 

Varve thickness 
 

100 
 

Windb 
 

Speleothem 
 

Southern Oman
 

104 
 

δ18O, carbonate 
 

101 
 

Monsoon rainfall 
 

Documents 
 

Weikinn 
 

103  
 

100 
 

Floods, river Elbe 
 source texts     
 

Climate model 
 

Hadley Centre, 
HadCM3 

 

102  
 

100 River runoff 

 

Direct measurements 
 

Siberia, 
North Atlantic 

 

102  
 

10–1 
 

Surface 
temperature 

 

Time range refers to the length of a record, resolution to the order of the average time
spacing (see Section 1.4). “Proxy variable” denotes what was actually measured on which
material. “Climate variable” refers to the climatic variations recorded by the variations in
the proxy variable. The ability of a proxy variable to indicate a climate variable depends
on the characteristic timescales (between resolution and time range). For example, δ18O
variations in benthic foraminifera over timescales of only a few decades do not record ice-
volume variations (which are slower). The Weikinn source texts are given by Weikinn (1958,
1960, 1961, 1963, 2000, 2002).
a Electrical conductivity of the melted water.
b Extremely thick varves (graded beds) indicate extremely high wind speed (hurricane).

one of the primary tasks in climate time series analysis and described in
Chapter 4. In Fig. 1.11, outliers, sitting at the tail of the distribution,
are tentatively marked. The variability, S(T ), has only been normalized
in those panels in Fig. 1.11 where it is not time-constant.

As the histogram estimates of the PDFs reveal, some distributions
(Fig. 1.11b, i, j) exhibit a fairly symmetrical shape, resembling a Gaussian
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Figure 1.1. Documentary data: floods of the river Elbe during winter over the
past 1000 years. x, the flood magnitude, is in three classes (1, minor; 2, strong;
3, exceptionally strong). Hydrological winter is from November to April. Data for
t ≤ 1850 were extracted from Curt Weikinn’s compilation (Weikinn 1958, 1960, 1961,
1963, 2000, 2002) of source texts on hydrography in Europe; accuracy of flood dates is
∼ 1 month. Data for t > 1850 were inferred from daily measurements of water stage
and runoff (volume per time interval) at Elbe station Dresden (Global Runoff Data
Centre, Koblenz, Germany) via a calibration of magnitude versus water stage/runoff
(Mudelsee et al. 2003). Because floods can last up to several weeks, only the peaks in
stage/runoff were used to ensure independence of the data. Total number of points is
211. Data sparseness for t / 1500 is likely caused by document loss (inhomogeneity).
One climatological question associated with the data is whether floods occur at a
constant rate or there is instead a trend. (Data from Mudelsee et al. 2003.)

(Fig. 3.1). Other PDFs (Fig. 1.11c–h, k), however, have more or less
strongly right-skewed shape. Possibly Fig. 1.11d (Vostok δD) reflects a
bimodal distribution.

Table 1.3 informs about the size of the variability, S(T ), in relation
to the uncertainty associated with the pure measurement for the time
series analysed here. S(T ) reflects the variability of the climate around
its trend (Eq. 1.1), the limited proxy quality when no directly measured
variables are available and, finally, measurement error. As is evident
from the data shown, the measurement error is often comparably small
in climatology. It is in many studies that use proxy variables one of the
major tasks to quantify the proxy error. For example, if δ18O in shells
of benthic foraminifera from deep-sea sediment cores is used as proxy
for global ice volume, bottom-water temperature fluctuations make up
nearly 1/3 of S(T ), see Table 1.3.

A relation proxy variable–climate variable established under labora-
tory conditions is not perfect but shows errors, quantifiable through
regression (Chapter 8). Assuming that such a relation holds true also in
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Figure 1.2. Marine sediment core data: δ18O record from Ocean Drilling Program
(ODP) site 846 (eastern equatorial Pacific) within 2–4 Ma. The core was drilled
from a ship through ∼ 3300 m water into the ocean floor, it has a length of ∼
460 m and a diameter of ∼ 35 cm. The oxygen isotope record (Shackleton et al.
1995b) was measured on the calcareous shells of benthic foraminifera, mainly C.
wuellerstorfi and Uvigerina spp., using a mass spectrometer. Values are given in delta
notation: δ18O =

[
(18O/16O)sample/(18O/16O)PDB − 1

]
· 1000h, where (18O/16O) is

the number ratio of oxygen isotopes 18O and 16O and PDB is “Pee Dee Belemnite”
standard. A value of 0.64h was added to all δ18O values from C. wuellerstorfi to
correct for a species-dependent offset (Shackleton and Hall 1984). The depth scale
was transformed into a timescale in several steps (Shackleton et al. 1995a). First,
biostratigraphic positions, that is, core depths documenting first or last appearances of
marine organisms, provided a rough time frame. (Unlike many other marine sediment
cores, site ODP 846 lacks a magnetostratigraphy, that is, recorded events of reversals
of the Earth’s magnetic field, which might had improved the temporal accuracy at
this step.) Second, a proxy record of sediment density was measured using a gamma-
ray attenuation porosity evaluation (GRAPE) tool. Third, the ODP 846 GRAPE
record was tuned (Section 1.6) to the combined GRAPE record from ODP sites 849,
850 and 851. This stacked GRAPE record had in turn been previously tuned to the
time series of solar insolation at 65◦N (Berger and Loutre 1991), calculated using
standard procedures from astronomy. The reason behind this cross-tuning procedure
is the observation (Hays et al. 1976) that Earth’s climatic variations in the order of
tens of thousands to several hundreds of thousands of years are influenced by solar
insolation variations. Since the sedimentation rate in the geographic region of site
ODP 846 varies with climate (Shackleton et al. 1995a), one cannot assume a constant
accumulation of the marine archive. Hence, the dates of sediment samples between
the biostratigraphic fixpoints cannot be obtained by interpolation and the GRAPE
density records had to be used to obtain an absolute timescale by tuning. Note
that time runs “in paleoclimatic manner” from the right to the left. In the same
fashion, the δ18O scale is inverted such that glacial conditions (large ice volume, low
bottom water temperature or large δ18O values) are indicated by the bottom part
and interglacial conditions by the top part of the plot. The number of data points,
n, within the shown interval is 821, the average spacing is ∼ 2.4 a. A comparison
between absolutely dated and tuned magnetostratigraphic timescales for the Pliocene
to early Pleistocene (Mudelsee 2005) suggests an average age deviation of ∼ 25 ka; this
value can also serve to indicate the magnitude of the absolute error of the ODP 846
timescale. The record indicates variations in global ice volume and regional bottom
water temperature. One task is to quantify the long-term δ18O increase, which reflects
the glaciation of the northern hemisphere in the Pliocene.
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Figure 1.3. Ice core data: deuterium and CO2 records from the Vostok station
(Antarctica) over the past 420,000 years. The core was drilled into the ice (diameter:
12 cm, length: 3623 m) and recovered in segments. The deuterium record (a) was
measured on ice material using a mass spectrometer. Values are given in delta nota-
tion: δD = [(D/H)sample/(D/H)SMOW − 1] · 1000h, where (D/H) is the number of D
particles over the number of H particles and SMOW is “Standard Mean Ocean Wa-
ter” standard. Total number of points, n, is 3311. The CO2 record (b) was measured
on air bubbles enclosed in the ice. Values are given as “parts per million by volume,”
n is 283. In b, values (dots) are connected by lines; in a, only lines are shown. The
present-day CO2 concentration (∼ 389 ppmv) is not recorded in b. The construction
of the timescale (named GT4) was achieved using a model of the ice accumulation
and flow. Besides glaciological constraints, it further assumed that the points at 110
and 390 ka correspond to dated stages in the marine isotope record. Construction of
the CO2 timescale required additional modelling because in the ice core, air bubbles
are younger in age than ice at the same depth. One climatological question associ-
ated with the data is whether variations in CO2 (the values in air bubbles presenting
the atmospheric value accurately) lead over or lag behind those of deuterium (which
indicate temperature variations, low δD meaning low temperature). (Data from Petit
et al. 1999.)

the geologic past increases the proxy error. Spatially extending the range
for which a variable is thought to be representative is a further source of
error. This is the case, for example, when variations in air temperature
in the inversion height above Antarctic station Vostok are used to repre-



1.3 Persistence 11

Figure 1.4. Ice core data: sulfate record from the NGRIP core (Greenland) over the
interval from ∼ 10 to ∼ 110 ka. The sulfate content was determined by continuously
melting the ice core along its axis and measuring SO4 of the melt water by means of a
photometer (continuous flow analysis, CFA; see Röthlisberger et al. (2000) and Bigler
et al. (2002)); ppbw, parts per billion by weight. Meltspeed and signal dispersion
limit the length resolution to ∼ 1 cm over the measured record length (1530 m). In
the young part of the record (t ≤ 105 ka), the NGRIP timescale was obtained by
tuning to the ss09sea timescale of the Greenland GRIP ice core (Johnsen et al. 2001)
using the records of ice isotopes (North Greenland Ice Core Project members 2004),
electrical conductivity and dielectric properties. In the old part, the NGRIP timescale
was obtained by tuning to the GT4 timescale of the Vostok ice core (Fig. 1.3) using
the records of δ18O and methane concentration. (An absolutely dated alternative to
the GRIP ss09sea timescale was published by Shackleton et al. (2004).) The sulfate
record was finally averaged to 1-year resolution. Using the Ca and Na records, proxies
for mineral dust and seasalt content, respectively, it is possible to remove peaks in
the sulfate record from dust and salt input—the remaining peaks in the “excess” SO4

record, shown here, likely reflect the input from volcanic eruptions via the atmosphere.
The record therefore bears the possibility to reconstruct volcanic activity throughout
the last glacial period. (Data from Bigler M 2004, personal communication.)

sent those of the total southern hemisphere. However, such uncertainties
are often unavoidable when general statements about the climate system
are sought. All individual noise influences on a climate variable (natural
variability, proxy and measurement noise) seem to produce a process
Xnoise(T ) with a PDF that is better described by a product than a sum
of individual PDFs and that likely has a right-skewed shape, such as the
lognormal distribution (Aitchison and Brown 1957).

1.3 Persistence
The other property of Xnoise(T ) besides distributional shape regards

serial dependence. The autocovariance, E [Xnoise(T1) ·Xnoise(T2)] for
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Figure 1.5. Ice core data: Ca concentration (a), dust content (b), electrical con-
ductivity (c) and Na concentration (d) from the NGRIP core (Greenland) during
the onset of Dansgaard–Oeschger (D–O) event 5. The four variables were measured
using CFA on the melted water (Fig. 1.4). ppb, parts per billion; ml−1, number
of particles per ml; Sm−1, SI unit for electrical conductivity. A data gap (hiatus)
exists at around 32,550 a in the dust-content record. Records were “downsampled”
to annual resolution. The Ca record indicates variations of mineral dust transported
to the atmosphere over Greenland, the dust content indicates atmospheric dust load,
electrical conductivity is a proxy for input of soluble material (integrating various
environmental signals) and Na is a proxy for seasalt. One climatological question is
whether the changes in all four variables happened simultaneously at the onset of
D–O event 5. D–O events are short-term warmings during the last glacial period.
(Data from Röthlisberger R 2004, personal communication.)
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Figure 1.6. Tree-ring data: record of atmospheric radiocarbon content over the past
12,410 years. The tree-ring radiocarbon equilibrates with atmospheric radiocarbon
via the photosynthetic cycle. The 14C radioactivity was measured by counting the
β particles on CO2 produced by combusting the wood material. Original sampling
resolution was yearly (individual tree-rings) and lower; data shown are 5-year averages
(n = 2483). The values are presented in delta notation (Fig. 1.3) with the oxalic acid
standard of the National Bureau of Standards, for conventional reasons “∆” is used
instead of “δ.” The timescale (given as years before present (b.p.) where “present”
is, as in “radiocarbon terminology,” the year 1950) is based on a counted tree-ring
chronology, established by matching radiocarbon patterns from individual trees. Since
the age spans of the trees overlap, it is possible to go back in time as far as shown
(and beyond). Since the radiocarbon data act as a proxy for solar activity (high
∆14C means low solar irradiance), it is possible to analyse Sun–climate connections
by studying correlations between ∆14C and climate proxy records. (Data from Reimer
et al. 2004.)

T1 6= T2, is here of interest; higher-order moments are neglected. Lag-1
scatterplots (x(i − 1) versus x(i)) of the climate time series, using de-
trended {t(i), x(i)}n

i=1 as realizations of the noise process, explore the
autocovariance structure (Fig. 1.12). It is evident that all examples ex-
hibit a more or less pronounced orientation of the points along the 1:1
line. This indicates positive serial dependence, or “memory,” also called
persistence in the atmospheric sciences. The reason for that memory
effect is twofold. First, it is characteristic for many types of climatic
fluctuations (Wilks 1995). Second, it can be induced by the sampling
of the data. A record sampled at high resolution has often stronger
persistence than when sampled at low resolution (see next section).

The lag-1 scatterplots (Fig. 1.12) reflect also the right-skewed shape
of many of the distributions (more spreading towards right-up) and let
some outliers appear.
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Figure 1.7. Speleothem data: oxygen isotope record from stalagmite Q5 from south-
ern Oman over the past 10,300 years. Along the growth axis of the nearly 1 m long sta-
lagmite, every ∼ 0.7 mm about 5 mg material (CaCO3) was drilled, yielding n = 1345
samples. The carbonate powder was analysed with an automatic preparation system
linked to a mass spectrometer to determine the δ18O values. (The (18O/16O) ra-
tio is given relative to the Vienna Pee Dee Belemnite (VPDB) standard analogously
to the description in Fig. 1.3.) The timescale (years before 1950) is based on 18
U/Th mass-spectrometric ages, obtained on separated and purified material. Dates
for samples between absolutely dated positions were obtained by linear interpolation.
Time runs from right to left. The δ18O scale is inverted “in paleoclimatic manner”
so that the transition from the last glacial to the present Holocene interglacial at
around 10 ka is “upwards.” Note that growth of stalagmite Q5 ceased at ∼ 2740 a
b.p. Climatological questions associated with the data are whether the transition to
the Holocene occurred synchronously with climatic transitions in other locations and
whether there exist solar influences on the variations in monsoon rainfall (indicated
by δ18O variations, low δ18O reflecting strong monsoon). (Data from Fleitmann et al.
2003.)

1.4 Spacing
Archives other than documentary collections or climate models require

measurements on the archive material. Material-size requirements lead
in many cases to a constant length interval, L(i), from which material for
one measurement is taken, and also the length spacing, l(i), between the
measurement mid-points on the length axis is often constant (Fig. 1.13).
Dating transfers from length into the time domain with the “sample du-
ration,” D(i), and the temporal spacing, d(i) = t(i) − t(i − 1), here in
this book briefly denoted as “spacing.” The spacing is frequently noncon-
stant: archives normally accumulate not at a constant rate. They might
also be subject to postdepositional length distortions such as compress-
ing in the case of ice cores. Archives that allow pre-sampling (visual)
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Figure 1.8. Lake sediment core data: varve thickness record from Lower Mystic Lake
(Boston area) over the past 1000 years. Multiple overlapping cores were retrieved from
the lake, split and photographed in the laboratory. The sediments consist of varves of
alternating siliciclastic (bright) and biogenic (dark) layers. The total combined length
of the records is about 2 m. Sediment blocks extracted from cores were embedded
in epoxy resin to produce petrographic thin sections and X-ray densitometry slabs.
A master, composite sequence of stratigraphy was constructed from high-resolution
imagery of observations made via petrographic microscopy, back scattered electron
microscopy and X-ray densitometry (Besonen 2006). Age control from varve counting
was confirmed by means of radiocarbon dating on terrestrial macrofossils. In addition
to varve thickness, Besonen (2006) determined the dates of graded beds based on
visual examination of the petrographic thin sections and X-ray imagery. A thick varve
and a graded bed can be jointly used as a proxy for hurricane activity in the area of
the lake. Hurricane-strength precipitation saturates the watershed, results in erosive
overland flow that entrains sediment and carries it into the lake where it is deposited
as a graded bed. This is enhanced by hurricane-strength winds that disturb vegetation
and uproot trees, exposing loose sediment (Besonen 2006). The proxy information
was verified by means of pollen data and documentary information (available from
about 1630 to the present). The time series (n = 877) covers the interval from a.d.
1011 to 1897, minor hiatuses are present (1720–1721, 1803, 1812–1818), also a major
above the depth corresponding to 1897. The record bears information on hurricane
activity in the Boston area over the past 1000 years. (Data from Besonen et al. 2008.)
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Figure 1.9. Climate model data: runoff from Arctic rivers. a Natural forcing only; b
combined anthropogenic and natural forcing. In a climate model, the physical equa-
tions for energy, momentum and mass conservation are numerically solved in time
steps over a spatial grid. HadCM3 (Gordon et al. 2000) is a coupled Atmosphere–
Ocean General Circulation Model (AOGCM) for the global domain, run by the Hadley
Centre for Climate Prediction and Research, Bracknell, United Kingdom. The at-
mospheric component has a horizontal grid spacing of 2.5◦ in latitude by 3.75◦ in
longitude and 19 vertical levels. The oceanic component has 20 vertical levels on
a 1.25◦ by 1.25◦ grid. The time step used for integrating the differential equations
representing the atmospheric component was 30min, for the oceanic component one
hour. The total interval simulated (∼ 140 years) was longer than the data shown (a
1900–1996; b 1929–2001). Plotted are annual-mean ensemble averages, for which the
model year starts on 1 December. The averages were constructed from four ensemble
runs, that is, runs with identical forcings but different initial conditions. The initial
conditions used were taken from states separated by 100 years in a HadCM3 run, in
which external forcings where set to have no year-to-year variations (“control run”).
Unlike previous models, HadCM3 does not require flux adjustments of heat and water
at the air–sea interface to maintain a stable climate without drift behaviour (Johns
et al. 1997; Stott et al. 2000). This makes the results obtained with HadCM3 more
reliable than previous results. The natural forcing included changes in the amount of
stratospheric aerosols stemming from volcanic eruptions and variations in solar irra-
diation. The anthropogenic forcing included changes in atmospheric concentrations
of CO2, methane, sulfate aerosols and ozone. The river runoff records were generated
(Wu et al. 2005) by summing the precipitation contributions from affected grid cells
north of 65◦N. Model simulations can be used to analyse past and forecast future
climate changes. Questions associated with the data are those after the size and the
timing of changes in runoff as a result of an intensified hydrological cycle caused by
anthropogenically induced warming. (Data from Wu et al. 2005.)
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Figure 1.10. Measured data: surface air temperature records from Siberia (a) and
North Atlantic (b). Data are monthly temperature anomalies with respect to the
1961–1990 means from a gridded, global set. Siberia is presented by the grid cell
50–55◦N, 90–95◦E, effectively reflecting station Krasnojarsk; the North Atlantic by
35–40◦N, 25–30◦W. Shown are the gap-free time intervals (a May 1920 to November
1991, n = 859; b July 1879 to July 2004, n = 1501). The annual cycles were removed
by subtracting the monthly averages. (Raw data from Jones and Moberg 2003.)

detection of time-equidistant sampling points, such as tree-rings, varves
(that is, annually laminated sediments) or speleothems (Fig. 1.14), ap-
pear to be the exception rather than the rule. That mixture of determi-
nistic and stochastic influences on the spacing, is pictured in Fig. 1.15.
The Elbe floods (Fig. 1.1) are an example where d(i) (or equivalently
t(i)) is the major research object, not x(i), see Chapter 6.

The nonzero sample duration, D(i), imposed by material require-
ments, can be subject to extension to D′(i) by diffusion-like processes
in the archive (Fig. 1.13). Besides physical diffusion of material, for
example in ice cores, bioturbation in sedimentary archives (mixing by
activities of worms and other animals in the upper (young) layer) can
play a role. The other data archives studied here (Table 1.1) likely have
no diffusion effects.

1900 1950 2000
Year

-2

0

2

Te
m

pe
ra

tu
re

an
om

al
y 

(°
C

)

-10

0

10
Te

m
pe

ra
tu

re
an

om
al

y 
(°

C
) a

b



18 1 Introduction

-4 -2 0 2 4
0

40

80

120

160

-50 0 50
0

20

40

60

80

100

-20 0 20 40
0

50
100
150
200
250
300
350

-5 0 5 200
0

2000

4000

6000

8000

-5 0 5
0

50

100

150

200

-5 0 5 10
0

50

100

150

200

-5 0 5
0

50

100

150

-5 0 5 10 15
0

50

100

150

200

-30 0 30
0

50
100
150
200
250
300

-1 0 1
0

50

100

150

200

0 10 20
0

100

200

300

400

500

80 -2 -1 0 1 2
0

5

10

15

20

25

a b c

fed

g h i

lkj

Figure 1.11. Statistical noise distributions of selected climate time series. a ODP
846 δ18O; b Vostok CO2; c Vostok δD; d NGRIP SO4; e NGRIP Ca; f NGRIP
dust content; g NGRIP electrical conductivity; h NGRIP Na; i tree-ring ∆14C; j Q5
δ18O; k Lower Mystic Lake varve thickness; l HadCM3 runoff. The distributions are
estimated with histograms. Data and units are given in Figs. 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8 and 1.9. In a and e–h, the trend component was estimated (and removed
prior to histogram calculation) using a ramp regression model (Figs. 4.6 and 4.7); in
b and c using a harmonic filter (Section 5.2.4.3); in d and k using the running median
(Figs. 4.16 and 4.17); in i using nonparametric regression (Fig. 4.14); in j using a
combination of a ramp model in the early and a sinusoidal in the late part (Fig. 4.18);
and in l using the break regression model (Fig. 4.12). Outliers are tentatively marked
with open circles (note broken axes in d, k). In c, the modes of the suspected bimodal
distribution are marked with arrows. In a, e–h and j, time-dependent variability,
S(T ), was estimated using a ramp regression model (Chapter 4); in d and k using
the running MAD (Figs. 4.16 and 4.17); and in l using a linear model. Normalizing
(dividing by S(T )) for those time series was carried out prior to histogram calculation.
The other time series assume constant S(T ), values are given in Table 1.3.
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Figure 1.12. Persistence of noise in selected climate time series. a ODP 846 δ18O;
b Vostok CO2; c Vostok δD; d NGRIP SO4; e NGRIP Ca; f NGRIP dust content; g
NGRIP electrical conductivity; h NGRIP Na; i tree-ring ∆14C; j Q5 δ18O; k Lower
Mystic Lake varve thickness; l HadCM3 runoff. Noise data are shown as lag-1 scat-
terplots (in each panel, x(i−1) is plotted on the ordinate against x(i) on the abscissa
as points), together with 1:1 lines (grey). Data and units are given in Figs. 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8 and 1.9. Detrending and S(T ) normalization prior to analysis
was carried out as in Fig. 1.11. Note that in d, all points are shown (unlike as in Fig.
1.11d). Outliers are tentatively marked with open circles.
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Table 1.3. Measurement and proxy errors in selected climate time series (Table 1.2).

Archive V ariable Error range

Total, S(T ) Measurement Proxy

Marine core δ18O 0.2–0.3ha 0.06hb ∼ 1/3c

Ice core CO2 content 17.5 ppmva 2–3 ppmvd Smalle

δD 10.5ha ≤ 1hd 7hf

SO4 content 40.5 ppbwg 10%h Unknowni

Ca content 43 ppbj 10%h Unknowni

Dust content 0.56 · 105 ml−1 j 10%h Unknowni

Conductivity 0.37 µS cm−1 j 10%h Unknowni

Na 28 ppbj 10%h Unknowni

Tree-rings ∆14C 6.2ha ∼ 2hk Smalll

Speleothem δ18O 0.25ha 0.08hm Unknownn

Lake core Varve thickness 0.33 mmg 0.1 mmo NAp

Climate model River runoff 93 km3a−1 q 0 NA
Direct measure- Temperature 0.69◦Cr 0.03◦Cs 0
ment 2.97◦Ct 0.03◦Cs 0

Measurement errors were usually determined using repeated measurements. Proxy errors
refer to the climate variables in Table 1.2 unless otherwise noted. NA, not applicable.
a Standard deviation of detrended {t(i), x(i)}n

i=1 (Fig. 1.11).
b Shackleton et al. (1995b).
c As ice-volume indicator, relative error. This error comes from other variations than of ice
volume: mainly of bottom water temperature and to a lesser degree of salinity (Mudelsee
and Raymo 2005).
d Petit et al. (1999).
e Raynaud et al. (1993).
f As air-temperature indicator; own determination of MS

1/2
E (Eq. 4.8) after Jouzel et al.

(2007: Fig. S4 therein).
g Average MAD value (Figs. 4.16 and 4.17), divided by 0.6745 (a standard normal distribution
has an MAD of ∼ 0.6745).
h Relative error (Röthlisberger et al. 2000).
i Trace substances are part of a complex system, involving variations at the source, during
transport (wind) and at deposition; they represent a more local or regional climate signal.
j Time-average of Ŝ(i) (Fig. 4.7).
k Reimer et al. (2004).
l ∆14C in tree-rings on yearly to decadal resolution has a (small) proxy error as atmospheric
∆14C indicator because the wood formation is not constant (the major portion is formed in
spring and early summer) and because tree-ring thickness varies (Stuiver et al. 1998). ∆14C
variations are a good proxy of solar activity variations because other influences (variations in
ocean circulation, changes in the intensity of the Earth’s magnetic field) are weak on Holocene
timescales (Solanki et al. 2004).
m Fleitmann et al. (2003).
n Unknown on longer timescales (Table 1.2) because observed monsoon rainfall time series
(Parthasarathy et al. 1994) are too short (150 a) to permit comparison.
o Time-average; depends on varve distinctiveness and human component (Besonen MR 2010,
personal communication).
p Only information about hurricane existence sought, not about hurricane strength.
q Time-average of Ŝ(i) (Fig. 4.12).
r North Atlantic, time-average.
s Upper limit (Tetzlaff G 2006, personal communication).
t Siberia, time-average.
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Figure 1.13. Sampling of time series from climate archives. The archive, document-
ing climate over a time span, is sampled (depth domain), dated (time domain) and
possibly interpolated to an evenly spaced time grid. τ denotes a typical timescale of
climatic fluctuations, Xnoise(T ). L(i), length over which material is sampled (dark
shading); l(i), length spacing between mid-points of L(i); D(i), time-domain ana-
logue of L(i); d(i), time-domain analogue of l(i), denoted as “spacing.” Light shading
indicates effects of a diffusion-like process, that is, extension of D(i) to D′(i). Diffu-
sion need not act symmetrically. Thick vertical lines indicate t(i). Terms “sediment
core”, “ice core”, etc. denote here the sampling type rather than a specific archive
(for example, a speleothem is often sampled like a “sediment core”). In case of ice
cores, t(i) often is not the average time but the time at the upper end of the sam-
ple. Real ice cores contain two sub-archives, ice material and enclosed air bubbles,
with different age–depth relations (Chapter 8). Interpolation to a fine grid (“upsam-
pling”) introduces a strong additional dependence in addition to climatic dependence;
“downsampling” introduces weak or no additional dependence. High-resolution time
series (d(i) small) have the advantage that this effect is weaker than for low-resolution
records. (Note that our usage of “grid” is not restricted to two dimensions.)

The sampled time series {t(i), x(i)}n
i=1 carries information about ob-

served climatic variations up to an upper bound equal to the record
length and down to a lower bound of

max
(
τ,D′(i), d̄

)
, (1.4)
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where d̄ is the average of d(i). Whereas the upper bound is obvious,
the lower bound is explained as follows. The “persistence time,” τ ,
of the climatic noise measures the decay of the autocorrelation func-
tion (“memory loss”) of Xnoise(T ), see Chapter 2. Deterministic influ-
ences acting on shorter timescales are by definition (Eq. 1.1) not part
of the description. Information within interval D′(i) is lost by the sam-
pling process and eventual diffusion. Information theory shows that for
evenly spaced time series (d(i) = d = const.) the lower limit is 2 d (or
one over Nyquist frequency). The factor 2 is omitted in Eq. (1.4) be-
cause for uneven spacing the bound may be lower than for even spacing
(Chapter 5).

Figure 1.14. Plain-light photomicrograph from a polished section of stalagmite S3
from southern Oman. U/Th dating of samples and the seasonally varying monsoon
precipitation pattern in the geographic region suggest that the laminae are annual.
Dark (bright) layers reflect a higher (lower) density of pores and fluid inclusions
(Fleitmann 2001). The stalagmite covers the period from approximately a.d. 1215 to
1996. Annual layer thickness and oxygen isotopic (δ18O) composition, measured on
the stalagmite, record variations in the intensity of Indian monsoonal rainfall. (From
Burns et al. (2002), with permission from the publisher.)

Interpolation of the unevenly spaced time series {t(i), x(i)}n
i=1 is in cli-

matology usually done to obtain an evenly spaced series {t′(i), x′(i)}n′

i=1.
This series can then be analysed with sophisticated statistical methods
for which currently only implementations exist that require even spac-
ing. This advantage, however, is accompanied by following disadvan-
tages. First, additional serial dependence can be introduced, depending
mainly on n′. If n′ > n (“upsampling”), that effect is strong (Fig. 1.13).
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Figure 1.15. Spacing of selected climate time series. a ODP 846 δ18O; b Vostok CO2;
c Vostok δD; d NGRIP SO4; e Q5 δ18O. Data are given in Figs. 1.2, 1.3, 1.4 and 1.7.
In d, d(i) is shown for the D(i) = 0.5 cm data; the time series with t(i) = 1 a (Fig.
1.4) is obtained from the 0.5-cm data using “downsampling.” The ice core data (b–d)
reflect to some degree the effects of ice compaction, that means, d(i) increases with
t(i). The Q5 speleothem spacing time series (e) suggests visually a strong negative
correlation with the speleothem δ18O series (Fig. 1.7). This is explained as follows.
Low (high) δ18O means strong (weak) Indian monsoonal rainfall, this in turn faster
(slower) movement of the rainwater through the soil, weaker (stronger) uptake of soil-
CO2, lower (higher) pH of the water, reduced (enhanced) solution of soil-carbonate,
less (more) material for calcite precipitation, small (large) annual stalagmite layers
and, finally, a higher (lower) temporal spacing because the depth spacing is nearly
constant (Fig. 1.7). Note that at places with other soil properties, the relation δ18O–
spacing may be different (Burns et al. 2002). The values of the average spacing, d̄, and
the coefficient of variation of spacing, CVd, which is defined as the standard deviation
of the spacing divided by d̄, are as follows. a d̄ = 2.40 a, CVd = 0.41; b d̄ = 1.46 a,
CVd = 0.82; c d̄ = 0.13 a, CVd = 0.85; d d̄ = 0.32 a, CVd = 0.47; e d̄ = 5.62 a,
CVd = 0.49.

If n′ ≈ n it is weaker, and only for n′ < n (“downsampling”) it may
be absent. That means, interpolation does not allow to go in resolution
below the limit set by Eq. (1.4). Second, depending on the type of in-
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terpolation method (linear, cubic spline, etc.), x′(i) may show serious
deviations from x(i) in terms of variability or noise properties. That is,
interpolation takes us a step further away from the observed process.

Achieving insight into shorter-term climatic processes through sam-
pling an archive is best done by increasing the resolution. Reducing d(i)
might require reducing D(i) by employing a measurement method that
consumes less material. However, the restriction imposed by diffusion
processes and climatic persistence still applies (Eq. 1.4). “Overlapped
sampling,” d(i) < D(i), is no means to obtain higher resolved informa-
tion than with d(i) ≥ D(i).

1.5 Aim and structure of this book
We have certain hypotheses about time-dependent climate processes,

about Xtrend(T ), Xout(T ), S(T ) and Xnoise(T ), which we would like to
test. Alternatively, we wish to estimate parameters of climate processes.
For that purpose, we use certain methods that take uncertainty into
account, that means, statistical methods. Smaller error bars or nar-
rower confidence intervals for the results obtained with the methods,
guarantee better testability or more accurate knowledge. To construct
confidence intervals, in principle, two approaches exist: classical and
bootstrap. The classical approach makes substantial assumptions, such
as normally distributed data, no serial dependence, and, often, even time
spacing, whereas the bootstrap approach does not make such. Since the
preceding sections showed that the assumptions made by the classical
approach may be violated when applied to climate time series analysis,
the bootstrap may yield more reliable results.

That does not imply that all results obtained on climate time se-
ries using classical methods are invalid. However, caution as regards
their statistical accuracy is appropriate. The reasons why the classi-
cal approach was used are obvious. First, the bootstrap was invented
late (Efron 1979), but it soon became accepted in the statistical com-
munity and recognized/accepted in the natural sciences (Casella 2003).
Bootstrap methods for time series (serially dependence) lag one decade
behind in their development. Second, there has been an increase in
computing power, which made bootstrap calculations feasible.

This book presents the bootstrap approach adapted to a number of
statistical analysis methods that have been found useful for analysing
climate time series at least by the author. Linear and nonlinear regres-
sion (Chapter 4), spectral analysis (Chapter 5) and extreme value time
series analysis (Chapter 6) are explained in case of univariate climate
time series analysis (Part II). Correlation (Chapter 7) as well as lagged
and other variants of regression (Chapter 8) come from the field of bivari-
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ate time series (Part III). Application of each method is illustrated with
one or more climate time series, several of which already presented. A
section (“Background material”) reports alternative techniques and pro-
vides a look at the literature that is intended to serve climatologists who
wish to learn about the statistical basics of the method, as well as statis-
ticians who wish to learn about the relevant climatology encountered.
While both lists cannot be exhaustive, this is more the aim for the also
given literature where the bootstrap approach to a statistical method
has been used in climatology and related fields as, for example, ecol-
ogy. A further section (“Technical issues”) informs about details such as
numerical accuracy and software implementations, it gives also internet
references where the computer programs implementing the method can
be obtained.

Some topics are not covered in this book. Extension to tri- and higher
dimensional multivariate time series seems to be straightforward. Meth-
ods from dynamical systems theory, attempting to describe climate as
a low-dimensional chaotic system, are likely too demanding in terms of
data size (Section 1.6). Also other methods that require even spacing
are not dealt with but briefly reviewed in Section 1.6.

However, before starting with adaptions of the bootstrap approach to
statistical methods in climatology we need to review bootstrap method-
ology for time series in some detail, which is done in Chapter 3. Neces-
sary statistical concepts such as confidence intervals or standard errors
are also explained. One bootstrap variant (“parametric bootstrap”) em-
ployed in this book assumes a statistical model of the climatological
persistence (Chapter 2). These chapters complete Part I.

Sceptics among the readers may ask whether or not the bootstrap
approach brings indeed more reliable results than the classical approach.
Therefore you will find throughout the book comparisons between both
approaches. These are based on Monte Carlo simulations, that means,
artificial time series with pre-defined attributes, for which the true result
is known a priori. In the same way, different bootstrap variants are also
compared with each other. Finally, the (adverse) effects of interpolation
are also explored by means of Monte Carlo simulations.

The final part (IV) of the book is an outlook on future directions in
climate time series analysis with the bootstrap. Chapter 9 outlines cli-
mate archive modelling to take into account timescale uncertainties and
includes “normal” extensions to novel estimation problems and higher
dimensions. We also look on paradigm changes that may result from a
strong increase in computing power in the future and influence the way
how we model the climate and analyse climate time series.
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1.6 Background material
The prologue is a translation from Popper (1935: p. 78 therein).

Other relevant books on quantification and philosophy of science are
predominantly written by physicists: Einstein (1949), Heisenberg (1969),
Lakatos and Musgrave (1970), von Weizsäcker (1985) and Sokal and
Bricmont (1998).

As statistics texts, accessible to non-statisticians, describing the
various roads to probability and estimation, may serve Priestley (1981:
Chapters 1–3 therein), Fine (1983), Davison (2003) and Wasserman
(2004). The Bayesian road (Lindley 1965; Spall 1988; Bernardo and
Smith 1994; Bernardo et al. 2003) seems not to be so well followed in
geosciences, but this may change in future. Davis (1986) is a text book
written by a geologist; Wilks (2006) and von Storch and Zwiers (1999)
were written by climatologists. The latter three contain parts on time
series analysis. As text books on time series analysis, accessible to non-
statisticians, the following can be used: Priestley (1981), Diggle (1990),
Brockwell and Davis (1996) and Shumway and Stoffer (2006); the latter
work includes software examples in the R computing environment. A
further book on time series analysis is by Anderson (1971). The only
book devoted to time series analysis of unevenly spaced data seems to be
Parzen (1984); an early review is by Marquardt and Acuff (1982); there
is a thesis (Martin 1998) from the field of signal processing. We finally
mention the Encyclopedia of statistical sciences (Kotz et al. 1982a,b,
1983a,b, 1985a,b, 1986, 1988a,b, 1989, 1997, 1998, 1999).

Climatology text books: The reports by Working Group I of the
Intergovernmental Panel on Climate Change (IPCC–WG I) (Houghton
et al. 2001; Solomon et al. 2007) are useful on weather (that is, meteo-
rology) and short-term climate. Paleoclimate, covering longer-term pro-
cesses in, say, the Holocene (last ∼ 10,000 years) and before, is described
by Crowley and North (1991), Bradley (1999) and Cronin (2010). We
finally mention the Encyclopedia of Atmospheric Sciences (Holton et al.
2003), the Encyclopedia of Earth System Science (Nierenberg 1992), the
Encyclopedia of Geology (Selley et al. 2005), the Glossary of Geology
(Neuendorf et al. 2005), the Handbook of Hydrology (Maidment 1993)
and the Encyclopedia of Ocean Sciences (Steele et al. 2001).

The form of decomposition in Eq. (1.1) of a process into trend, out-
liers, variability and noise is non-standard. Outliers are often considered
as gross errors in the data that only have to be removed. However, in
climatology, outliers may bear information on extreme events and can
also be the object of analysis (Chapter 6). The notion of systematic
behaviour of a trend leaves space for interpretation of what can be in-
cluded. Certainly worth so are nonlinear trends to account for climatic
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changes (Chapter 4). Also incorporated are harmonic signals like the
daily or annual cycle, which can be recorded in climate archives. Since
the focus here in this book is on longer-term processes, we omit to write
an own seasonal signal into Eq. (1.1); such an approach is common in
econometrics (Box et al. 1994). Other, longer-term cyclic influences on
climate are also astronomical in origin, such as variations in solar ac-
tivity or Milankovitch variations in Earth orbital parameters. However,
since their imprint in the climate system as regards amplitude, phase and
frequency, is not precisely known (and also sometimes debated), these
signals are investigated in this book by analysing the spectral properties
of the noise process (Chapter 5).

Detailed accounts of climate archives give the following. Usage
of marine sediment cores is a standard method (has been applied over
decades), see Kennett (1982), Seibold and Berger (1993) and the series of
reports on and results of scientific drilling into the ocean floor (Deep Sea
Drilling Project 1969–1986; Ocean Drilling Program 1986–2004, 1988–
2007). Ice cores (Oeschger and Langway 1989; Hammer et al. 1997) and
lake sediment cores (Negendank and Zolitschka 1993; Zolitschka 1999)
are likewise regularly employed. Usefulness of speleothems (Baker et al.
1993; Gillieson 1996; Daoxian and Cheng 2002; Fairchild et al. 2007)
is recognized since the 1990s. Dendroclimatology has a long tradition
(Douglass 1919, 1928, 1936; Schweingruber 1988). Analysis of documen-
tary climate data is described by Pfister (1999), Brázdil et al. (2005)
and Glaser (2001). Construction and use of climate models is a grow-
ing field, see McGuffie and Henderson-Sellers (1997) or Randall et al.
(2007). From this book’s data analysis view, climate modelling is simi-
lar to probing and measuring a natural climate archive.

An upper limit to the time range over which climate can be studied is
set by the age of Earth (∼ 4.6 Ga). The course of the evolution of Earth,
including its climate, division and subdivision into different geological
epochs, is described by Stanley (1989). A geological timescale refers to
a chronology of events (first or last appearance of species, reversals of
Earth’s magnetic field, climatic, etc.) which is updated as new data
and new datings become available. Currently used are: Gradstein et al.
(2004) covering the whole time range, Cande and Kent (1992, 1995)
going back before the Cenozoic (last ∼ 65 Ma) into the late Cretaceous,
Berggren et al. (1995b) for the Cenozoic and Berggren et al. (1995a) for
the last 6 Ma. (Note the various meanings of “timescale” in geosciences.)

Absolute dating methods almost entirely use one of the many
clocks provided by natural radioactive elements. A comprehensive trea-
tise is Geyh and Schleicher (1990), see also Walker (2005). K/Ar dating
(Dalrymple and Lanphere 1969) utilizes the decay of 40K. The potas-
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sium isotope has a half-life, T1/2, of 1.266 Ga (Section 8.7), it decays
into 40Ar with a chance of ∼ 11% and 40Ca (∼ 89%). One measures 40K
and also the amount of 40Ar that accumulated in a sample since argon
was removed by a process whose age is to be determined. Such a zeroing
process can be a volcanic eruption, which produced the rock sample.
The natural decay chains in uranium and thorium provide a wealth of
clocks, running on a wide range of timescales (Ivanovich and Harmon
1992). U/Th dating utilizes the decays of 234U to 230Th (T1/2 ≈ 245 ka)
and 230Th to 226Ra (T1/2 ≈ 76 ka). Since speleothems contain essen-
tially no thorium at the time of formation, dating means measuring the
amount of accumulated thorium since that time. 210Pb dating (Appleby
and Oldfield 1992) takes the decay chain of 210Pb (T1/2 ≈ 22.3 a) to
206Pb. Radiocarbon dating (Taylor 1987) employs the decay of 14C to
14N (T1/2 ≈ 5730 a). T1/2 determines the limits for a reliable age deter-
mination. For ages below, say, ∼ 0.1 · T1/2 and above ∼ 10 · T1/2, the
uncertainties introduced at the determination of the amounts of parent
or daughter products become likely too large. Using modern mass spec-
trometers, this range can be somewhat widened. Besides measurement
uncertainties and those owing to imperfectly known half-lifes, another
error source is bias that occurs when assumptions, such as complete ze-
roing or absent sample contamination, are violated. In fact, eliminating
measurement bias is often the major task in absolute dating. Using an
archive as a dosimeter for dating (Table 1.1) means to measure the dose
(effect) a sample has received over time exposed to a dose-rate (effect per
time interval). One example is electron-spin-resonance dating, where the
effect consists in the number of trapped electrons (for example in car-
bonate material in a sediment core) and the dose-rate is from natural ra-
dioactivity (Grün 1989); the other is cosmic-ray-exposure dating, where
one of the effects used regards the number of 10Be atoms transported to
an archive from the atmosphere, where cosmic rays had produced them
(Gosse and Phillips 2001). Another absolute dating method is count-
ing of yearly layers, either of tree-rings or growth layers in a stalagmite
(Fig. 1.14). The assumption that layers present a constant time interval
is crucial. Documentary data contain together with the variable usually
also the date (which is susceptible to reporting errors).

Relative dating methods rely on an assumed relation between the
measured series in the depth domain, {z(i), x(i)}nX

i=1, and another, dated
time series, {tY (j), y(j)}nY

j=1. If the relation between X and Y is simple
(linear, no lag), tY (j) can be projected onto tX(i) rather easily. If it is
more complex, a mathematical model may have to be used. Climatol-
ogists denote that procedure as correlation or “tuning.” As illustration
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we note that besides the GT4 timescale for the Vostok ice core (Fig.
1.3), two tuned timescales exist. One uses as x(i) Vostok δ18O in air
bubbles and as y(i) the precession of Earth’s orbit (Shackleton 2000);
the other uses as x(i) Vostok methane content in air and as y(i) mid-
July insolation at 30◦N (Ruddiman and Raymo 2003). One critical point
with relative dating is how well the assumed relation holds. Bayesian
approaches to timescale construction were developed by Agrinier et al.
(1999) for a geomagnetic polarity record from the Cretaceous–Cenozoic
and by Blaauw and Christen (2005) for a Holocene archive in form of
a peat-bog core. Section 4.4 gives more details and references on the
approaches.

Most before mentioned textbooks on climate and climate archives con-
tain also information on proxy variables and how well those indicate
climate. Other sources are Broecker and Peng (1982) and Henderson
(2002). δ18O in shells of marine living foraminifera (Fig. 1.2) was in the
beginning seen as a “paleothermometer” (Emiliani 1955) until Shackle-
ton (1967) showed that the major recorded climate variable is global ice
volume, although he partly withdraw later from this position (Shackleton
2000). The main idea is that polar ice is isotopically light (low δ18O) and
that during an interglacial (warm) more of that is as water in the ocean,
where foraminifera build their calcareous, δ18O-light shells. Stacks of ice
volume records, such as that from the “Spectral Analysis, Mapping, and
Prediction” (SPECMAP) project (Imbrie et al. 1984), going back nearly
800 ka, and that of Shackleton et al. (1995b), extending into the Miocene
(before ∼ 5.2 Ma), were produced and a nomenclature (Prell et al. 1986)
of marine isotope stages (MISs) erected. A recently constructed Plio- to
Pleistocene δ18O stack is by Lisiecki and Raymo (2005). Atmospheric
CO2 is rather accurately reflected by CO2 in air bubbles from Antarctic
ice cores (Fig. 1.3), mainly because CO2 mixes well in the atmosphere
(Raynaud et al. 1993). The currently longest record comes from the
European Project for Ice Coring in Antarctica (EPICA), Dome C site,
the core covering the past ∼ 800 ka (Section 8.6.1). For earlier times,
other proxies for atmospheric CO2 have to be used, such as the size
and spatial density of stomata in fossil leaves (Kürschner et al. 1996),
resulting in significantly larger proxy errors. δD variations in polar ice
(Fig. 1.3) reflect variations in air temperature as this variable deter-
mines how enriched the precipitation becomes during its net transport
from the mid-latitudes to the poles (Rayleigh destillation) (Dansgaard
and Oeschger 1989). As regards the various proxy variables from the
NGRIP ice core (Figs. 1.4 and 1.5), see the captions and references
given therein. Radiocarbon (Fig. 1.6) is produced in the upper atmo-
sphere via reactions with cosmogenic neutrons; the cosmic-ray flux is
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modulated by the Sun’s activity through the solar wind. Another influ-
ence that can be seen using ∆14C is variations in the exchange between
the oceanic carbon storage and the atmosphere, see Beer et al. (1994)
and Cini Castagnoli and Provenzale (1997). Pollen records and their
proxy quality are explained by Moore et al. (1991) and Traverse (2007).
The proxy quality of δ18O in speleothems from the Arabian peninsula
as indicator of monsoon rainfall is largely based on Rayleigh destillation
processes (Fleitmann et al. 2004, 2007a).

Ergodicity. Detrended and normalized x(i) were used for analysing
the distributional shape for the process Xnoise(T ) (Fig. 1.11). That is,
instead of an ensemble of different realizations at a particular time, one
realization was taken at different times. A process for which this re-
placement gives same results is called ergodic. Since in climatological
practice no repeated experiment can be carried out, except with climate
models, ergodicity has to be added to the set of made assumptions in
this book.

Density estimation. The histograms in Fig. 1.11 were constructed
using a bin width equal to 3.49 sn−1 n−1/3 (Scott 1979), where sn−1 is
the sample standard deviation. More elaborated approaches to den-
sity estimations use kernel functions (Silverman 1986; Simonoff 1996;
Wasserman 2006). Applications of density estimation to climatology
have been made occasional. They include analyses of the Pleistocene
ice age (Matteucci 1990; Mudelsee and Stattegger 1997) and of the re-
cent planetary-scale atmospheric circulation (Hansen and Sutera 1986).
Standard references on statistical properties of distributions are Johnson
et al. (1994, 1995) on continuous univariate and Kotz et al. (2000) on
continuous multivariate distributions. Random variables that are com-
posed of products or ratios of other random variables have since long
successfully defied analytical derivation of their PDF. Only very simple
forms, like Z = X2 + Y 2 with Gaussian X and Y , which has a chi-
squared density (right-skewed), can be solved. See Haldane (1942) or
Lomnicki (1967) for other cases.

Bioturbation in deep-sea sediments acts as a low-pass filter (Eq. 1.4)
(Goreau 1980; Dalfes et al. 1984; Pestiaux and Berger 1984). However,
since the accumulated sediment passes the bioturbation zone (the up-
per few tens of cm of sediment) unidirectionally, signal processing tech-
niques, termed “deconvolution,” have been successfully developed to use
that information to improve the construction of the timescale (Schiffel-
bein 1984, 1985; Trauth 1998). An example demonstrating what effects
have to anticipated when sampling natural climate archives such as sedi-
ment cores is given by Thomson et al. (1995), who found offsets of ∼ 1.1
ka between ages of large (> 150 µm diameter) foraminifera and fine bulk
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carbonate at same depth in a core. The most likely explanation is a
size-dependent bioturbation that preferentially transports fine material
downwards because that is cheaper in terms of energy.

Inhomogeneities in time series owing to systematic changes in the
observation system (i.e., the archive) may arise in manifold ways. It is
evidently of importance to detect and correct for these effects. A simple
case is a sudden change, such as when the time at which daily tem-
perature is recorded, is shifted. This type can be detected using meth-
ods (Basseville and Nikiforov 1993) that search for an abrupt change in
the mean, Xtrend(T ). Inhomogeneities in the form of gradual changes
in mean, or variability, may be analysed using regression techniques
(Chapter 4). Quality assessment of climate data deals predominantly
with types and sizes of inhomogeneities (Peterson et al. 1998a,b). Inho-
mogeneities in the form of periodic changes of the observation system
can influence the estimated spectral properties (Chapter 5).

Physics’ nonlinear dynamical systems theory has developed time
series analysis techniques (Abarbanel et al. 1993; Kantz and Schreiber
1997; Diks 1999; Chan and Tong 2001; Tsonis and Elsner 2007; Donner
and Barbosa 2008) that can be applied to study, for example, the ques-
tion whether the climatic variability sampled by {t(i), x(i)}n

i=1 is the
product of low-dimensional chaos. A positive answer would have serious
consequences for the construction of climate models because only a hand-
ful of independent climate variables had to be incorporated; and also the
degree of climate predictability would be precisely known (Lyapunov ex-
ponents). Although it was meteorology that boosted development of dy-
namical systems theory by constructing a simplified atmosphere model
(Lorenz 1963), we will not pursue related time series analysis methods
for two reasons. First, for most applications in climatology the data
sizes are not sufficient to allow reasonably accurate conclusions. For
example, Nicolis and Nicolis (1984) analysed one late Pleistocene (last
∼ 900 ka) δ18O time series (cf. Fig. 1.2) and found a “climatic attractor”
with dimensionality ∼ 3.1, meaning that four variables could explain
the ice age. Grassberger (1986), and later Ruelle (1990), convincingly
refuted that claim, which was based on a data size of a few hundred in-
stead of several thousand necessary (Eckmann and Ruelle 1992). Later,
Mudelsee and Stattegger (1994) analysed the longest Plio-/Pleistocene
δ18O records then available. They found no low-dimensional attractor
and could only conclude that at least five variables are acting. Since one
assumption for such analyses is that the proxy quality of the measured
variable (δ18O, indicating ice volume) holds over all timescales sampled,
the limits owing to the sampling process (Eq. 1.4) and the proxy quality
(Table 1.2) effectively prohibit exploration of low-dimensional climatic
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chaos—not to mention the amount of measurements required. Lorenz
(1991) considered that decoupled climatic subsystems with low dimen-
sionality could be found. Second, nonlinear dynamical systems methods
reconstruct the physical phase space by the method of delay-time coor-
dinates (Packard et al. 1980). Instead of using multivariate time series
{t(i), x(i), y(i), z(i), . . .}n

i=1 (forming the data matrix), this method takes
{t(i), x(i), x(i + L), x(i + 2L), . . .}n′

i=1, with n′ < n and L (integer) ap-
propriately selected. The delay-time method requires equidistance. For
many climate time series encountered in practice, this would mean in-
terpolation, which this book does not advocate (Section 1.4).

Even time spacing is also required for current implementations of
two other analysis techniques. The first, Singular Spectrum Analysis or
SSA (Broomhead and King 1986), also uses delay-time coordinates ex-
plained in the preceding paragraph to reconstruct the data matrix from
one univariate time series. The eigenvectors associated with the largest
eigenvalues yield the SSA decomposition of the time series into trend
and other more variable portions. There exists a successful approach
based on computer simulations to assess the significance of eigenval-
ues in the presence of persistence, which has been applied to observed
equidistant temperature time series (Allen and Smith 1994). Again, be-
cause for many real-world paleoclimatic time series interpolation would
have to be performed, we do not include SSA here. Note that similar
to SSA is Principal Component Analysis (PCA), also termed Empiri-
cal Orthogonal Function (EOF) analysis, which does the same as SSA
on multivariate time series. PCA is a standard method to search for
patterns in high-dimensional meteorological time series such as pressure
and temperature fields (Preisendorfer 1988; von Storch and Zwiers 1999).
The second time series analysis method that requires even spacing and is
often applied in climatology, is wavelet analysis, which composes a time
series using “wave packets,” localized in time and frequency. Percival
and Walden (2000) is a textbook accessible to non-statisticians. Appli-
cations to climatology include Fligge et al. (1999), who analyse sunspot
time series (Fig. 2.12), and Torrence and Compo (1998), who analyse
time series of the El Niño–Southern Oscillation (ENSO) climatic mode.
(El Niño is defined by sea-surface temperature anomalies in the eastern
tropical Pacific, while the Southern Oscillation Index is a measure of the
atmospheric circulation response in the Pacific–Indian Ocean region.) It
might well be possible to develop adaptions of phase-space reconstruc-
tion and nonlinear dynamical systems analysis, SSA, PCA and wavelet
analysis to explore unevenly spaced time series directly, circumventing
adverse effects of interpolation—at the moment, such adaptions seem
not to be available (but see Section 5.3 as regards wavelets).



Chapter 2

Persistence Models

Climatic noise often exhibits persistence (Section 1.3). Chapter 3
presents bootstrap methods as resampling techniques aimed at provid-
ing realistic confidence intervals or error bars for the various estimation
problems treated in the subsequent chapters. The bootstrap works with
artificially produced (by means of a random number generator) resam-
ples of the noise process. Accurate bootstrap results need therefore the
resamples to preserve the persistence of Xnoise(i). To achieve this re-
quires a model of the noise process or a quantification of the size of the
dependence. Model fits to the noise data inform about the “memory”
of the climate fluctuations, the span of the persistence. The fitted mod-
els and their estimated parameters can then be directly used for the
bootstrap resampling procedure.

It turns out that for climate time series with discrete times and uneven
spacing, the class of persistence models with a unique correspondence to
continuous-time models is rather limited. This “embedding” is necessary
because it guarantees that our persistence description has a foundation
on physics. The first-order autoregressive or AR(1) process has this
desirable property.

2.1 First-order autoregressive model

The AR(1) process is a simple persistence model, where a realization
of the noise process, Xnoise(i), depends on just the value at one time step
earlier, Xnoise(i− 1). We analyse even and uneven spacing separately.

M. Mudelsee, Climate Time Series Analysis, Atmospheric and 33
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2.1.1 Even spacing
In Eq. (1.2) we let the time increase with constant spacing d(i) = d >

0 and write the discrete-time Gaussian AR(1) noise model,

Xnoise(1) = EN(0, 1)(1),

Xnoise(i) = a ·Xnoise(i− 1) + EN(0, 1−a2)(i), i = 2, . . . , n.
(2.1)

Herein, −1 < a < 1 is a constant and EN(µ, σ2)(·) is a Gaussian random
process with mean µ, variance σ2 and no serial dependence, that means,
E

[
EN(µ, σ2)(i) · EN(µ, σ2)(j)

]
= 0 for i 6= j. It readily follows that Xnoise(i)

has zero mean and unity variance, as assumed in our decomposition (Eq.
1.2). Figure 2.1 shows a realization of an AR(1) process.
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Figure 2.1. Realization of an AR(1) process (Eq. 2.1); n = 200 and a = 0.7.

The autocorrelation function,

ρ(h) =
E

[{
Xnoise(i + h)−E

[
Xnoise(i + h)

]}
·
{
Xnoise(i)−E

[
Xnoise(i)

]}]
{

VAR
[
Xnoise(i + h)

]
· VAR

[
Xnoise(i)

]}1/2

= E
[
Xnoise(i + h) ·Xnoise(i)

]
,

(2.2)

where h is the time lag, E is the expectation operator and VAR is the
variance operator, is given by (Priestley 1981: Section 3.5 therein)

ρ(h) = a|h|, h = 0,±1,±2, . . . . (2.3)

For a > 0, this behaviour may be referred to as “exponentially decreasing
memory” (Fig. 2.2).
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Figure 2.2. Autocorrelation function of the AR(1) process, a > 0. In the case of even
spacing (Section 2.1.1) ρ(h) is given by a|h| = exp [−|h| · d/τ ], in the case of uneven
spacing (Section 2.1.2) by exp [−|T (i + h)− T (i)|/τ ]. In both cases, the decrease is
exponential with decay constant τ .

Note that the assumptions in Eq. (1.2), namely E [Xnoise(i)] = 0 and
VAR [Xnoise(i)] = 1, required the formulation of the AR(1) model as
in Eq. (2.1), which is non-standard. See Section 2.6 for the standard
formulation.

Persistence estimation for the AR(1) model means estimation of the
autocorrelation parameter, a. To illustrate autocorrelation estimation,
assume that from the time series data, {x(i)}n

i=1, the outliers have been
removed and the trend and variability properties (Eq. 1.2) determined
and used (as in Fig. 1.11) to extract {xnoise(i)}n

i=1, realizations of the
noise process. An estimator of the autocorrelation parameter, that
means, a recipe how to calculate a from {xnoise(i)}n

i=1, is given by

â =
n∑

i=2

xnoise(i) · xnoise(i− 1)

/
n∑

i=2

xnoise(i)2. (2.4)

(Chapter 3 introduces estimators and the “hat notation.”) Note that
estimator â is biased, that means, if {Xnoise(i)} is an AR(1) process with
parameter a, then E (â) 6= a. Only approximation formulas exist for the
bias in general autocorrelation estimation. Such formulas can be used
for bias correction. Similarly, also the estimation variance, VAR (â), is
only approximately known. In general, bias and variance decrease with
n. The background material (Section 2.6) gives various bias and variance
formulas, informs about bias correction and lists other autocorrelation
estimators.
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The suitability of the AR(1) model can be assessed using the estima-
tion residuals,

ε(i) = xnoise(i)− â · xnoise(i− 1), i = 2, . . . , n. (2.5)

As realizations of a standard normal random process, the residuals should
not exhibit patterns in the lag-1 scatterplot (Fig. 1.12).

2.1.1.1 Effective data size
Persistence (a > 0) means a reduced information content of a time

series compared to a situation without positive serial dependence. In a
statistical estimation, more data have then to be available to achieve
a confidence interval (Chapter 3) of same width. An effective data
size, n′, can be defined for estimators of parameters of processes with
persistence via the estimation variance. Consider the mean estimator,
X̄ =

∑n
i=1 X(i)/n, and the AR(1) process Eq. (2.1) for two cases: a > 0

and a = 0. Then

VAR
(
X̄

)
= VAR[X(i)]

/
n′µ (a > 0)

(the index refers to mean estimation) is set equal to

VAR
(
X̄

)
= VAR[X(i)] /n (a = 0).

Bayley and Hammersley (1946) show that

n′µ = n

[
1 + 2

n−1∑
i=1

(1− i/n) ρ(i)

]−1

, (2.6)

which can for the AR(1) process with the autocorrelation given in Eq.
(2.3) be readily solved using the geometric series as well as the arithmetic-
geometric series:

n′µ = n

{
1 +

2
n

1
1− a

[
a

(
n− 1

1− a

)
− an

(
1− 1

1− a

)]}−1

. (2.7)

von Storch and Zwiers (1999: Section 17.1 therein) define a related quan-
tity, the decorrelation time as

τD = lim
n→∞

n

n′µ
. (2.8)

An AR(1) process thus has τD = (1 + a)/(1− a).
Even for moderate values of n (' 50) and a (/ 0.5), the influence

of persistence on n′µ can be considerable (Section 2.6). Eq. (2.7) is
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valid only for the mean estimator. Because the definition of n′ depends
of the type of estimation (von Storch and Zwiers 1999), such formulas
have limited practical relevance. Section 2.6 gives n′ for variance and
correlation estimation.

2.1.2 Uneven spacing
In Eq. (1.2), we let the time increase with an uneven spacing d(i) > 0

and write the discrete-time Gaussian AR(1) noise model,

Xnoise(1) = EN(0, 1)(1),

Xnoise(i) = exp {− [T (i)− T (i− 1)] /τ} ·Xnoise(i− 1)
+ EN(0, 1−exp{−2[T (i)−T (i−1)]/τ})(i), i = 2, . . . , n.

(2.9)

The “loss of memory” increases with the time difference scaled by the
persistence time, τ (Fig. 2.2). The random innovation, E(·), is now
heteroscedastic instead of homoscedastic as in the case of even spacing.
It follows that this noise model for uneven spacing has zero mean, unity
variance and autocorrelation

E [Xnoise(i + h) ·Xnoise(i)] = exp [−|T (i + h)− T (i)|/τ ] . (2.10)

Estimation of the persistence time using noise data {t(i), xnoise(i)}n
i=1

is more complex than in the case of even spacing. A least-squares esti-
mation uses the sum of squares,

S(τ̃) =
n∑

i=2

[xnoise(i)− exp {− [t(i)− t(i− 1)] /τ̃} · xnoise(i− 1)]2 ,

(2.11)
and takes the minimizer as τ estimator, τ̂ = argmin [S(τ̃)]. The min-
imization has to be carried out numerically (Section 2.7). In the case
of equidistance, t(i)− t(i− 1) = d ∀i, the least-squares estimator corre-
sponds to the estimator given in Eq. (2.4), with â = exp (−d/τ̂).

The bias in the estimation of τ for unevenly spaced data seems to defy
an analytical derivation. Figure 2.3 shows the bias studied by means of
Monte Carlo simulations. The simulations demonstrate that the bias is
similar to the value in a situation with even spacing.

Suitability of the AR(1) model for uneven spacing can be assessed
using the residuals,

ε(i) = xnoise(i)− exp {− [t(i)− t(i− 1)] /τ̂} · xnoise(i− 1),
i = 2, . . . , n.

(2.12)
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Figure 2.3. Monte Carlo study of the bias in the autocorrelation estimation of an
AR(1) process, known mean, uneven spacing. Time series were generated after Eq.
(2.9) with n = 50 and τ = −1/ ln(0.7) ≈ 2.804 by means of a random number
generator (Section 2.7). The start was set to T (1) = t(1) = 1; the spacing, d(i), was
drawn from a gamma distribution with a pre-defined order parameter (Section 2.7)
and subsequently scaled such that t(n) = 50 or d̄ = 1. The “equivalent autocorrelation
coefficient” is ā = exp(−d̄/τ) = 0.7. The standard deviation of the spacing, σd, was
used as a measure of the unevenness. For each time grid (σd fixed), a number (nsim =
10,000) of time series were generated and τ̂ determined after Eq. (2.11). Shown (open
symbols) is the average of the quantity exp(−d̄/τ̂) over the simulations. Also shown
(filled symbols) is the average of the estimator â (Eq. 2.4) applied to the linearly
interpolated, equidistant time series (same start and end, same data size). (The
standard error (∼ 1/

√
nsim) of the estimation averages is smaller than the symbol

size.) The true autocorrelation value (solid line) is underestimated by the τ̂ estimator.
This negative bias is excellently described by the bias approximation (dashed line)
of White (1961) from the case of even spacing. The interpolation, on the other
hand, leads to serious overestimation. This effect is owing to the serial dependence
introduced by the interpolation (Fig. 1.13), it increases with σd. No formulas to
correct for this bias exist.

2.1.2.1 Embedding in continuous time
In continuous time, the AR(1) noise model is given in “differential

notation” by

dXnoise(T ) = a ·Xnoise(T ) dT + dW (T ), (2.13)

where a is the autocorrelation parameter, dT is a time increment and
dW (T ) is an innovation term of the Wiener process (also called Brownian
motion), W (T ). As the discrete-time model, the continuous-time AR(1)
model has an exponentially decaying autocorrelation function (Priestley
1981).
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Let us consider the continuous-time noise model to be sampled at
discrete times, which may be unevenly spaced, resulting in the discrete-
time model, {T (i), Xnoise(i)}n

i=1. Robinson (1977) showed that for a >
0, this resulting model equals the discrete-time AR(1) model given in
Eq. (2.9). The discrete-time AR(1) model is said to be embedded in
continuous time, it determines uniquely the underlying continuous-time
AR(1) model given in Eq. (2.13). This is an important property of the
AR(1) model because the embedding allows a foundation on physics,
which works in continuous time (differential equations).

2.2 Second-order autoregressive model
We assume even spacing and write the discrete-time Gaussian second-

order autoregressive or AR(2) noise model,

Xnoise(i) = a1 ·Xnoise(i− 1) + a2 ·Xnoise(i− 2) + E(i), (2.14)

where E(i) is a stationary purely random process (no serial dependence).
This AR(2) process is not strictly stationary but, conditional on a1 and
a2, only asymptotically stationary (its moments approach saturation
with i →∞); see Section 2.6. The regions of asymptotic stationarity in
the a1–a2 plane are shown in Fig. 2.4. The behaviour of the autocorrela-
tion function of the AR(2) process depends on where a1 and a2 lie. For
a2 ≥ −a2

1/4, a1 > 0 and a2 < 0, ρ(h) decays smoothly to zero and for
a2 ≥ −a2

1/4, a1 < 0 and a2 < 0, ρ(h) alternates its sign as it decays. In
the connection with spectral analysis (Chapter 5), the case a2 < −a2

1/4
is interesting, because then ρ(h) shows besides a decay a quasi-cyclical
behaviour with a period of

T = 2π/θ, (2.15)

where cos(θ) = a1/(2
√
−a2). Figure 2.5 shows a realization of the pro-

cess in Eq. (2.14).
Commonly used estimators of the AR(2) model include the Yule–

Walker estimators,

â1 = ρ̂(1) · [1− ρ̂(2)]
/[

1− ρ̂(1)2
]
,

â2 =
[
ρ̂(2)− ρ̂(1)2

] /[
1− ρ̂(1)2

]
,

(2.16)

where
ρ̂(h) = R̂(h)

/
R̂(0) , h = 1, 2, (2.17)

is the autocorrelation estimator and

R̂(h) =
n∑

i=h+1

xnoise(i) · xnoise(i− h), h = 0, 1, 2, (2.18)
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Figure 2.4. Regions of asymptotic stationarity for the AR(2) process (Eq. 2.14)
(shaded). The region for complex roots (dark shaded), which allows quasi-periodic
behaviour, lies below the parabolic, a2 < −a2

1/4.
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Figure 2.5. Realization of an AR(2) process (Eq. 2.14); n = 200, a1 = 1.0, a2 = −0.4
and E(i) = EN(0, 1)(i). The first 5000 data were discarded to approach asymptotic sta-
tionarity. The graph exhibits a quasi-cyclical behaviour with an approximate period
of 9.5 time units.

is the autocovariance estimator. Estimation bias occurs also in case of
the AR(2) model, approximations were given by Tjøstheim and Paulsen
(1983).
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2.3 Mixed autoregressive moving average model
We assume even spacing and write the discrete-time Gaussian mixed

autoregressive moving average or ARMA(p, q) noise model,

Xnoise(i) = a1 ·Xnoise(i− 1) + · · ·+ ap ·Xnoise(i− p)
+ b0 · EN(0, σ2)(i) + · · ·+ bq · EN(0, σ2)(i− q),

i = max(p, q) + 1, . . . , n.

(2.19)

Note that the model is given only for a subset of i = 1, . . . , n. Similar
conditions as in the preceding sections may be formulated for {a1, . . . , ap;
b0, . . . , bq} to ensure stationarity. The AR(1) model (Section 2.1), AR(2)
model (Section 2.2), the autoregressive model of general order (AR(p))—
these are special cases of the ARMA(p, q) model (q = 0). The moving
average process of general order (MA(q)) arises from the ARMA(p, q)
model with p = 0; it is not considered further in this book. Estimation
techniques for the ARMA(p, q) model are mentioned in the background
material (Section 2.6).

As regards the context of this book, the problem with the discrete-
time ARMA(p, q) model under uneven time spacing is that no embed-
ding in a continuous-time process can be proven. Indeed, already for
a discrete-time, real-valued Gaussian AR(1) process with a < 0 it was
shown (Chan and Tong 1987) that no embedding in a continuous-time,
real-valued Gaussian AR(1) process exists. No embedding of Xnoise(i)
means no foundation on physics. Suppose, for example, that physical
laws governing the climate system to be analysed yield an ARMA(p1, q1)
continuous-time noise model. Even with a “perfect” estimation (estima-
tion bias and variance both zero), it would then not be possible to de-
termine the model parameters {a1, . . . , ap1 ; b0, . . . , bq1} uniquely from an
unevenly spaced sample time series {t(i), xnoise(i)}n

i=1. For climate time
series, a perfect time estimation would also be required, which is not
usually possible. A further complication arises from “model aliasing.”
Bartlett (1946) showed that an evenly sampled continuous-time AR(p)
process becomes a discrete-time ARMA(p, p − 1) process (the “alias”),
which has implications already for the AR(2) model (Section 2.2). How-
ever, for a certain type of uneven spacing, namely “missing observations”
(Fig. 1.15e), where {t(i)}n

i=1 is a subset of {t(j)}m
j=1 with d(j) = const.

and m− n � m, the embedding problem vanishes and estimation tech-
niques exist (Section 2.6).

The majority of sampled climate time series, at least within this book,
exhibits uneven, irregular spacing (Fig. 1.15), for which only the sim-
ple AR(1) model ensures the embedding property. Fortunately, this
is no serious limitation as climatic theory shows that climatic noise is
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to a first order of approximation well described by the AR(1) process
(Section 2.5).

2.4 Other models
The discrete-time Gaussian ARMA(p, q) process (Eq. 2.19) composes

Xnoise(i) as a linear combination of past Xnoise(j), j < i, and innova-
tions, EN(0, σ2)(j). We briefly review other processes that can be seen as
extensions of the ARMA(p, q) process. These processes might provide
somewhat more realistic models for Xnoise(i). However, usage of many of
these models seems to be restricted to evenly spaced time series (perhaps
with missing values) because of the embedding problem (Section 2.1.2.1)
and lack of statistical theory.

2.4.1 Long-memory processes
The AR(1) process has an exponentially (“fast”) decaying autocorre-

lation function (Fig. 2.2). Also the ARMA(p, q) process has a similar
bound (Brockwell and Davis 1991),

|ρ(h)| ≤ C r|h|, h = 0,±1,±2, . . . , (2.20)

where C > 0 and 0 < r < 1. A long-memory process is a stationary
process (loosely speaking, with time-constant statistical properties such
as mean and standard deviation) for which

ρ(h) → C h2H−1 as h →∞, (2.21)

where C 6= 0 and H < 0.5. This decrease is slower than in the case of
ARMA(p, q), hence it is said to exhibit long-range serial dependence or
long memory.

Examples of long-memory processes are

1. fractional Gaussian noise and

2. fractional autoregressive integrated moving average models, denoted
as ARFIMA(p, δ, q).

The relation between the ARFIMA(p, δ, q) and ARMA(p, q) models is as
follows. δ defines (Section 2.6) a fractional difference operator, (1−B)δ,
where |δ| < 0.5 and B is the backshift operator. The backshift operator
shifts one step back in time, for example, B Xnoise(i) = Xnoise(i − 1).
The ARFIMA(p, δ, q) model is then an ARMA(p, q) model (Eq. 2.19),
where Xnoise(j) is replaced by (1 − B)δ Xnoise(j). For the trivial case
δ = 0, the ARFIMA(p, δ, q) model reduces to the ARMA(p, q) model,
which already shows the embedding problem (Section 2.3). (One can
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define a nonstationary ARIMA model by allowing δ = 1, 2, . . . .) The
ARFIMA(p, δ, q) model has H = δ (Brockwell and Davis 1991). Al-
though continuous-time ARFIMA(p, δ, q) models have been developed
(Comte and Renault 1996), the embedding for δ 6= 0 seems not yet to
have been analysed.

In the special case of the ARFIMA(0, δ, 0) model it has been shown
(Hwang 2000) that for uneven spacing the estimation of δ is biased,
with the bias depending on the spacing. It appears that in the general
case the theory of long-memory processes for unevenly spaced data is
not well developed enough to be applied in the context of the present
book. Section 2.6 gives more details on estimation of long-memory mod-
els for evenly spaced data, while Sections 2.5.2 and 2.5.3 present exam-
ples where long- and short-range models are fitted to climate series.

2.4.2 Nonlinear and non-Gaussian models
Stationary nonlinear models allow a richer structure to be given to

the noise process, Xnoise(i). Of particular interest for climatology is the
class of threshold autoregressive models (Tong and Lim 1980). Let the
real line R be partitioned into l non-overlapping, closed segments, R =
R1 ∪ R2 ∪ · · · ∪ Rl. The discrete-time Gaussian self-exciting threshold
autoregressive process of order (l; k, . . . , k) or SETAR(l; k, . . . , k) pro-
cess, where k is repeated l times, is given by

Xnoise(i) = a
(m)
0 +

k∑
j=1

a
(m)
j ·Xnoise(i− j) + E

N(0, σ2(m))
(i), (2.22)

conditional on Xnoise(i− j) ∈ Rm;m = 1, 2, . . . , l. As an example, Fig.
2.6 shows a realization of the SETAR(2; 1, 1) process,

Xnoise(i) =

{
+2.0 + 0.8Xnoise(i− 1) + EN(0, 1)(i) if Xnoise(i− 1) ≤ 0,

−1.0 + 0.4Xnoise(i− 1) + EN(0, 2)(i) if Xnoise(i− 1) > 0,

(2.23)
which may be a model of random fluctuations between two climate
regimes with different mean values and persistence times. Also quasi-
cyclical behaviour can be reproduced by threshold models. In practical
applications the number of regimes, l, is usually limited to a few. Estima-
tion is carried out iteratively: guess of l, maximum likelihood estimation
of parameters, calculation of a goodness-of-fit measure such as AIC or
a normalized version (Tong and Yeung 1991), analysis of residuals and
autocorrelation functions, improved guess of l, etc. Continuous-time
threshold autoregressive models have been formulated (Tong and Yeung
1991) but it seems that the embedding problem for unevenly spaced
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Figure 2.6. Realization of a SETAR(2; 1, 1) process (Eq. 2.23); n = 200. (The first
5000 data were discarded.)

time series has not yet been analysed. This would mainly concern the
SETAR(2; 1, 1) case.

Many more types of nonlinear persistence models can be perceived
(Section 2.6). It may for some climate data even be useful to consider in
Eq. (1.2) the process S(i)·Xnoise(i) as belonging to the class of stochastic
volatility models, for which S(i) depends on past Xnoise(i − j), j > 0,
and/or past S(i−j). This process of time-varying variability could model
“burst” phenomena such as earthquakes and serve also as a formulation
of the outlier process in Eq. (1.2). One common problem, however,
with complex, nonlinear time series models, is the embedding of the
discrete-time process in continuous time (Section 2.1.2.1). We have to
concede that complex, unevenly observed climatic processes may not be
accessible to a meaningful parametric estimation.

Also non-Gaussian random innovation terms can be used to construct
ARMA(p, q) models. In such cases, however, formulas for the estimation
bias are hardly available. One possibility is to introduce a transforma-
tion,

Xnoise(i) = f
(
X ′

noise(i)
)
, (2.24)

where X ′
noise(i) is a Gaussian process, and to infer f from a probability

density estimation (Section 1.6) using {xnoise(i)}n
i=1.

2.5 Climate theory
A dynamical view of the climate system gives motivation that climatic

persistence may to a first order of approximation be written as an AR(1)
process. This was shown by an influential paper entitled “Stochastic
climate models” (Hasselmann 1976).
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The dynamical view seems to be challenged by a series of papers claim-
ing a “universal power law” in temperature records. This law indicates
long memory, not short as the AR(1) models suggests. Long memory
of temperature fluctuations over timescales from days to decades should
seriously impact the development of climate theory. It would further
have enormous practical consequences as weather forecasts for intervals
considerably longer than what is currently feasible (a few days) would
become principally possible.

The re-analysis of some crucial data here (Section 2.5.2) makes it hard
to accept the “universal power law.” It should nevertheless be kept in
mind that the AR(1) model need not be a good higher-order description
of X(T ). However, after allowing nonlinear trends and outlier processes
(Eq. 1.2), the AR(1) model is likely not a bad candidate to describe
Xnoise(T ).

2.5.1 Stochastic climate models
The derivation of the AR(1) model of climate persistence is based on

three assumptions.

Assumption 1 is timescale separability. The climate system as a
whole (p. 3) is composed of a slowly varying component (“climate” in
original sense), representing oceans, biosphere and cryosphere, and a
fast varying component (“weather”), representing the atmosphere.

The differential equations governing the climate evolution may then be
written as

dX(T )
dT

= F (X(T ), Y (T )), timescale τX , (2.25)

dY (T )
dT

= G(X(T ), Y (T )), timescale τY , (2.26)

where τX � τY , X and Y are the slowly and fast varying components
(vectors of possibly high dimension), respectively, and F and G are some
nonlinear system operators. τY is of the order of a few days, τX of several
months to years and more (Hasselmann 1976).

It was previously thought that the influence of Y on X, of weather
on climate, could be accounted for by simply averaging,

dX(T )
dT

' F ∗(X(T )), timescale τX , (2.27)

where the modified climate system operator, F ∗, is the time average of
F (X, Y ).
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Since the work of Hasselmann (1976) it is accepted that the weather
noise cannot so easily be cancelled out. Consider 0 ≤ T ≤ τX . Then

dX(T )
dT

' F (X(0), Y (T )),

= W (T ),
(2.28)

where W is a stochastic (Wiener) process. Discretization yields

X(T + 1) = X(T ) + EN(0, σ2)(T ). (2.29)

Here we have made

Assumption 2. The unknown weather components Y (T ) add up
to yield after the central limit theorem (Priestley 1981: Section 2.14
therein) a Gaussian purely random process EN(0, σ2)(T ).

Now let T > τX . Then the time-dependence of F (X(T ), Y (T )) has to
be taken into account. Since the climate system trajectories have to be
bounded, we must invoke a negative feedback mechanism. The simplest
model for that is given by

Assumption 3. The negative feedback is proportional to the climate
variable, X(T ), yielding F (X(T ), Y (T )) = −β ·X(T ) + W (T ).

Assumption 3 makes Eq. (2.29), which is a nonstationary random walk
process (Section 2.6), to a stationary AR(1) process,

X(T + 1) = a ·X(T ) + EN(0, σ2)(T ), (2.30)

with 0 ≤ a = 1 − β < 1. (Strictly speaking, this is an “asymptotically
stationary” AR(1) process, see background material.) This explanation
of Hasselmann’s (1976) derivation of climate’s AR(1) model is from von
Storch and Zwiers (1999: Section 10.4.3 therein). Another account of the
1976 paper and its influence on climatology is given by Arnold (2001).

The suitability of the AR(1) noise model depends on how well As-
sumptions 1, 2 and 3 are fulfilled. Assumption 1 (timescale separability)
is generally thought to be well fulfilled. The root cause is that the
atmosphere has a much smaller density and heat capacity than most
of the rest of the climate system, allowing weather processes to run
faster. One caveat may be that some climatically relevant biological
processes, such as algae growth (Lovelock and Kump 1994), may act
also on short timescales. The validity of Assumption 2 is difficult to
prove. It might well be that some weather influences do not add but
rather multiply with each other, producing non-Gaussian distributional
shape (Section 1.2; Sura et al. (2005)). But Assumption 2 can be relaxed
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to recognize this, leading to non-Gaussian AR(1) models. Assumption
3 is certainly not exactly fulfilled but may be a good first-order approxi-
mation. More sophisticated feedback mechanisms would lead to higher-
order ARMA(p, q) or nonlinear models. An interesting case would be
a nonlinear dynamical climate system with several local attractors and
the occurrence probability within the attracting regions depending on
the weather noise (Hasselmann 1999; Arnold 2001). The present knowl-
edge about feedback processes is, however, too limited to permit the
theoretical derivation of the precise model form. A further point is that
external climate forcing mechanisms (e.g., volcanic eruptions) have to be
included for achieving a full set of climate equations. The size of such
forcings is currently not well understood (Section 8.4).

The dynamical equations in this section are for the evolution of high-
dimensional climate variables, X(T ), and not just for the noise part of
one variable, Xnoise(T ). In Eq. (1.1), we composed a climate variable of
trend, outliers and noise. By allowing nonlinear trends and outlier pro-
cesses, effects of violations of the assumptions made above are reduced.
This lends credence to the AR(1) noise model.

2.5.2 Long memory of temperature fluctuations?
Peng et al. (1994) introduced Detrended Fluctuation Analysis (DFA)

to measure persistence in DNA sequences. Peng et al. (1995) elaborated
DFA in more detail and applied it to heartbeat time series. Koscielny-
Bunde et al. (1996) introduced DFA to climate time series analysis and
found a “universal power law governing atmospheric variability.”

DFA uses a time series {t(i), x(i)}n
i=1 with constant spacing d > 0 to

calculate the so-called profile,

y(i) =
i∑

j=1

x(j), i = 1, . . . , n. (2.31)

The profile is divided into non-overlapping, contiguous segments of length
l (multiple of d), discarding the mod(n, l/d) last points. The y(i) series
is detrended by segment-wise fitting and subtracting polynomials of or-
der 0, 1, 2, etc. Most commonly used are mean and linear detrending.
Koscielny-Bunde et al. (1998a,b) studied the influence of different de-
trending types, also other than polynomial detrending. The fluctuation
function, F (l), is the standard deviation of detrended y(i) within a seg-
ment, averaged over all segments. F (l) is usually plotted on a double-
logarithmic scale because power laws, F (l) ∝ lα, appear in such plots as
a straight line, with slope α.
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For a polynomial of order 0 and x(i) from the Gaussian AR(1) model
in Eq. (2.1), it readily follows that F (l) ∝ l1/2. For data with long-range
dependence (Eq. 2.21), the power law F (l) ∝ lH+1/2 results, that means,
α = H + 1/2 (Talkner and Weber 2000). Thus, DFA can be seen as a
method to estimate long-range dependence.

Koscielny-Bunde et al. (1996, 1998a,b) analysed daily temperature
series covering typically the past 100 a using DFA and found α ≈ 0.65
for many records. The claimed universal long-range power-law depen-
dence would have serious theoretical and practical consequences. Govin-
dan et al. (2002) went further and analysed temperature output from
a number of AOGCMs, the currently most sophisticated mathematical
tools for climate simulation. Since the AOGCMs did not produce a sin-
gle, universal value but rather a scatter of α values, it was concluded
that the models were not able to provide realistic climate forecasts. In
particular, the predicted size of global warming would be overestimated.
Later, Fraedrich and Blender (2003) used DFA to analyse monthly tem-
perature series. They disputed the existence of the universal power law
and suggested the following: α = 1 for oceanic data, α = 0.5 for in-
ner continental data and α = 0.65 for data from the transition regions.
This led to an exchange of arguments (Bunde et al. 2004; Fraedrich
and Blender 2004), where in particular the results from the temperature
record from Siberian station Krasnojarsk were assessed controversially.
It appears that in reply to a criticism by Ritson (2004), the originators
partly stepped back (Vyushin et al. 2004) from the claimed universality
to a position with two memory laws, one for the ocean, the other for the
continents.

Here we re-analyse the Krasnojarsk temperature record and also one
series of North Atlantic air temperatures to assess whether the power-law
exponents are similar or not. It is also asked whether the power laws
are actually good models of the serial dependence in the temperature
data and whether simple AR(1) models are not already sufficient. A
simulation study helps to quantify the uncertainty of the result coming
from sampling variations. We use the same gridded raw data set as
Fraedrich and Blender (2003); also the technique for removing the annual
cycle, the orders of the DFA polynomials (0, 1) and the scaling range
of l = 1–15 a for α determination are identical to what these authors
employed. Two points may limit comparability of results. First, we
restrict ourselves to those time intervals where the monthly series have
no gaps. Fraedrich and Blender (2003) took longer series that start in
1900, without explaining how they adapted their methodology to the
case of missing data. Second, Fraedrich and Blender (2003) gave the
coordinates 30◦W, 50◦N for the North Atlantic, but the raw data for the
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grid cells around this point start clearly later than 1900. We take a grid
cell from somewhat more south that starts earlier.

The results of the DFA are as follows (Fig. 2.7). The F (l) curves show
increases that resemble on first sight a power law. The α estimates in
Table 2.1 were determined by fitting the power-law regression model to
the F (l) points inside the selected scaling range 1–15 a. Note that fits
of a linear regression model to logarithmically transformed l and F val-
ues would likely lead to a biased estimation, because Gaussian additive
(measurement) noise of X(i) and F (i) would be lost by the transforma-
tion (Section 2.6). The resulting values exhibit a variation with the DFA
detrending type that is considerably larger than the standard errors for
α, indicating systematic estimation errors. The α estimations via DFA
deviate also considerably from the values obtained via ARFIMA fits
(Table 2.1).

Table 2.1. Result of DFA study (Fig. 2.7), estimated power-law exponents α.

Station (grid point) DFA ARFIMA(1, δ, 0)

Mean Linear
detrending detrending

Krasnojarsk 0.65± 0.02 0.79± 0.02 0.61
(50–55◦N, 90–95◦E)

North Atlantic 0.58± 0.01 0.68± 0.01 0.73
(35–40◦N, 25–30◦W)

DFA errors are standard errors from unweighted least-squares regression (see Chapter 4).
ARFIMA models were fitted using Whittle’s approximate maximum likelihood technique
(Beran 1994: Chapter 5 therein) and α determined via the relation α = δ + 1/2.

A close inspection of the F (l) curves (Fig. 2.7) reveals marked devi-
ations from straight line in the double-logarithmic plots, especially for
larger l. Such a behaviour might be referred to as “crossover” (Peng
et al. 1995) and different scaling regions with different α values could be
further investigated. Philosophy of science, however, says that this is a
problematic step because it violates the principle of parsimony. A sim-
pler explanation of the F (l) curves is that the class of power-law models
is not ideally suited to describe the data.

The DFA study therefore explores also how the simplest persistence
model, AR(1), is suited to describe the data. The AR(1) model (Eq.
2.1) was fitted using the estimator Eq. (2.4) and bias correction (Eq.
2.45), yielding â′ = 0.23 (Siberia) and â′ = 0.44 (North Atlantic). For
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Figure 2.7. Detrended Fluctuation Analysis for temperature records (Fig. 1.10) from
Siberia (a) and North Atlantic (b). Shown as filled (open) symbols are fluctuation
functions, F , against segment sizes, l [months] = 4, . . . , n/4, for the mean-detrended
(linearly detrended) DFA variants. Also shown as shaded areas are the 90% confidence
bands from simulation experiments based on AR(1) model fits (dark, mean-detrended;
light, linearly detrended); the median (50%) simulation results are drawn as white
lines. Simulation results are plotted for the range l = 1–15 a, for which power laws
and the related question after the suitability of short- and long-memory models for
the data are discussed in the main text.
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both cases, nsim = 10,000 AR(1) time series were generated (identical
means, variances and autocorrelations as the data) and two DFA variants
applied (mean detrending and linear detrending). The central 90% of
simulated F (l) at each point l in the scaling region are shown as shaded
area (Fig. 2.7). This is a percentile confidence band, that is, a set of
percentile confidence intervals (Chapter 3) for F over a range of l values.
The confidence bands contain large portions of the F (l) curves from the
data. This indicates that DFA is not an ideal method to discriminate
between power-law and AR(1) models. The median simulation result
illustrates this point, where the AR(1) model produces an almost perfect
straight line, which could be mis-interpreted as power-law behaviour
(Fig. 2.7). However, systematic deviations exist between AR(1) and
power-law models in the DFA plots for larger l. These could indicate
some significant long-memory behaviour. This finding is supported by
the ARFIMA fits, which have lower AICC values (Eq. 2.46) than simple
AR(1) fits.

As regards the dispute about the universality of the power law in tem-
perature series, on basis of the AR(1) and ARFIMA estimations (Table
2.1), we conclude that the oceanic data have a stronger memory than
the land data. Because the difficulties associated with DFA in interpret-
ing the double-logarithmic plots and selecting the suitable detrending
method, ARFIMA models with their elaborated estimation techniques
(Beran 1994) are to be preferred for quantifying long memory. This
could also be the reason why DFA is almost completely absent from the
statistical literature.

Although the evidence for long-memory dependence in temperature
time series seems yet not strong, more records should be analysed with
ARFIMA estimation for achieving a better overview. However, analysing
aggregated spatial averages, such as northern hemisphere temperature
(Rybski et al. 2006), is likely unsuited for this purpose because the ag-
gregation of short-memory AR(1) processes with distributed autocor-
relation parameters yields a long-memory process (Granger 1980): the
long memory may be a spurious effect of the aggregation. This has been
noted also by Mills (2007). Aggregation is likely not a problem for the
data analysed here, which come from one station (Siberia) and less than
or equal to four stations (North Atlantic), respectively. Hemispheric av-
erages may, however, result from processing several thousand individual
records (Chapter 8).

2.5.3 Long memory of river runoff
Hurst found in an influential paper (Hurst 1951) evidence for long

memory in runoff records from the Nile. The long-memory property
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of runoff time series has subsequently been confirmed for a number of
rivers; see, for example, Mandelbrot and Wallis (1969), Hosking (1984),
Mesa and Poveda (1993), Montanari et al. (1997), Montanari (2003),
Pelletier and Turcotte (1997), Koutsoyiannis (2002), Bunde et al. (2005)
and Koscielny-Bunde et al. (2006). Hurst’s finding inspired the devel-
opment of the theory of long-memory processes (Section 2.4.1) and of
their estimation (Hosking 1984). Up to now, no widely accepted physical
explanation of the “Hurst phenomenon” of long memory, that means on
the basis of the physical–hydrological system properties, has been found
(Koutsoyiannis 2005a,b).

The paper by Mudelsee (2007) presents an explanation, which sug-
gests that a river network aggregates short-memory precipitation and
converts it into long-memory runoff. River basins (Fig. 2.8) form a
network of tributaries, confluences and reservoirs that has been geo-
metrically described as a fractal object (Rodriguez-Iturbe and Rinaldo
1997). Consider a single, hydrologically homogeneous area Aj , that is,
a reservoir with a linear input–output rule described by a dimensionless
positive constant kj . If the input to the reservoir, given by precipitation
minus evaporation, is a purely random process, then it has been shown
(Klemeš 1978) that the output, Xj(i), is an AR(1) process (Section 2.1)
with autocorrelation parameter aj = 1/(kj + 1). This further implies
that the runoff at a point in a river is not from a single reservoir but a
cascade (Klemeš 1974) of reservoirs, one feeding the next (Fig. 2.8):

Q(i) =
m∑

j=1

Xj(i), i = 1, . . . , n, (2.32)

where Xj(i) are mutually independent AR(1) processes with autocorre-
lation parameter aj . It has been shown previously that if the Xj(i) have
identical means (zero), identical standard deviations (unity) and the
aj are either beta-distributed (Granger 1980) or uniformly distributed
(Linden 1999), then for m →∞ the aggregated process Xj(i) is a long-
memory process. Monte Carlo simulations (Mudelsee 2007) reveal that
the estimated long-memory parameter δ increases with m and that sat-
uration of δ sets in already for m ≈ 100. This leads to the suggestion
(Mudelsee 2007) that long memory in river runoff results from spatial
aggregation of many short-memory reservoir contributions.

To test the aggregation hypothesis, Mudelsee (2007) studied the long-
memory parameter δ of fitted ARFIMA(1, δ, 0) models in dependence
on the basin size, A. The idea of the δ(A) estimation is that with
increasing A also the number m of contributions Xj(i) grows. Thereby
should also δ increase, from zero (m = 1) to a saturation level below
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Figure 2.8. River network. Runoff at a point (e.g., 4) is the spatial aggregation of
runoff from upstream (to the left in the picture). Shown is also a hypothetical spatial
unit j with area Aj . The basin size, A, for a point is given by the sum of the areas
Aj upstream. (From Mudelsee (2007), with permission from the publisher.)

0.5 (m large). The fact that the distribution of the aj for real rivers is
difficult to derive empirically or analytically, can be ignored at this low
level of sophistication of the hypothesis. The resulting δ(A) curve for one
of the longest available runoff records, from the river Weser (Germany)
(Fig. 2.9), basically confirms the aggregation explanation of the Hurst
phenomenon.

Mudelsee (2007) estimated δ(A) curves also for other rivers, finding
similar δ(A) increases (Elbe, Rhine, Colorado and Nile) but also in one
case (Mississippi) a δ(A) decrease. This paper discusses the validity
of the various assumptions made by the aggregation hypothesis. One
particular criticism is that the linear input–output release rule may be
violated for very large reservoirs. Another obstacle is the requirement of
very long time series (above, say, 70 years) for obtaining sufficient accu-
racy. A major criticism is that the aggregation of AR(1) processes is not
an ARFIMA process (Linden 1999), and that the result (Fig. 2.9) may
therefore be affected by estimation bias. This paper (Mudelsee 2007)
further finds little evidence for long memory in precipitation records
from the same regions as the river basins. It thus appears appropriate
to reserve the concept of the “Hurst phenomenon” for hydrological time
series, and not for climate time series in general.
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Figure 2.9. Long-memory parameter in dependence on basin size, river Weser. The δ
estimates (dots) are shown with bootstrap standard errors (Doornik and Ooms 2003).
The time series are monthly runoff values from January 1857 to April 2002. δ was
estimated using an ARFIMA(1, δ, 0) model and maximum likelihood (Doornik and
Ooms 2003). Prior to the estimations, the data were logarithmically transformed, the
annual cycle removed by subtracting the day-wise long-term averages and the linear
trends removed. This ARFIMA model had for all four river stations better AIC values
than the ARFIMA(0, δ, 0) model. (After Mudelsee 2007.)

2.6 Background material
Textbooks on the theory and estimation of ARMA(p, q) processes

were written by Priestley (1981), Brockwell and Davis (1991, 1996),
Box et al. (1994) and Chatfield (2004). Nonlinear time series models
are covered by Priestley (1988), Tong (1990) and Fan and Yao (2003).
The latter two books have the notable aim to bridge the gap between
statistics and nonlinear dynamics, see also Tong (1992, 1995). Long-
memory processes are the topic of Beran (1994, 1997), Doukhan et al.
(2003) and Robinson (2003). ARFIMA(p, δ, q) processes are reviewed
by Beran (1998) and fractional Gaussian noise processes by Mandelbrot
(1983). Tables of series and other formulas can be found in the books
by Abramowitz and Stegun (1965) and Gradshteyn and Ryzhik (2000).

The AR(1) model standard formulation is (Priestley 1981: Sec-
tion 3.5.2 therein)

Xnoise(i) = a ·Xnoise(i− 1) + E(i), (2.33)

where E(i) is a stationary purely random process with mean µε and stan-
dard deviation σε. In the general case this noise model is not stationary.
For µε 6= 0 and |a| < 1, E [Xnoise(i)] is not constant but approaches
with time a saturation value of µε/(1 − a). For µε = 0 and |a| < 1,
VAR [Xnoise(i)] is not constant but approaches with time a saturation
value of σ2

ε /(1 − a2). The case µε = 0 and |a| = 1 results in a random

0 10 20 30 40
A (103 km2)

0.0

0.1

0.2

0.3

0.4
δ̂



2.6 Background material 55

walk process (p. 60). The standard formulation in Eq. (2.33) describes
an “asymptotically stationary” process, whereas Eq. (2.1) describes a
strictly stationary process. In practical applications such as random
number generation (Section 2.7), the standard model (Eq. 2.33) can be
used if the transient sequence of numbers (say, the first 5000) is dis-
carded.

The covariance between two random variables, X and Y , is

COV [X, Y ] = E
[(

X − E [X]
)
·
(
Y − E [Y ]

)]
. (2.34)

A special case is COV [X, X] = VAR [X].
The effective data size is reduced for a persistent process. This is

shown (Fig. 2.10a) for the case of mean estimation of an AR(1) process,
where even for moderate values (n ' 50 and a / 0.5), n′µ is considerably
smaller than n. The data size reduction is quantified by Eq. (2.7). A
simplified version based on the decorrelation time (Eq. 2.8) underesti-
mates n′µ by less than 5% for n ' 50 and a / 0.5, as shown by Fig.
2.10b. Even for moderate values of n (' 50) and a (/ 0.5), the influence
of persistence on n′µ can be considerable. Eq. (2.3) is valid only for the
mean estimator. The effective data size for variance estimation of an
AR(1) process,

n′σ2 = n

[
1 + 2

n−1∑
i=1

(1− i/n) ρ(i)2
]−1

(2.35)

(Bayley and Hammersley 1946), is given by

n′σ2 = n

{
1 +

2
n

1
1− a2

[
a2

(
n− 1

1− a2

)
− a2n

(
1− 1

1− a2

)]}−1

.

(2.36)
Likewise, the effective data size for correlation estimation between two
processes X(i) and Y (i) with autocorrelation functions ρX(i) and ρY (i),

n′ρ = n

[
1 + 2

n−1∑
i=1

(1− i/n) ρX(i) ρY (i)

]−1

(2.37)

(von Storch and Zwiers 1999), is in the case of two AR(1) processes with
persistence parameters aX and aY given by

n′ρ = n

{
1 +

2
n

1
1− aXaY

[
aXaY

(
n− 1

1− aXaY

)
−(aXaY )n

(
1− 1

1− aXaY

)]}−1

. (2.38)
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Figure 2.10. Effective data size, mean estimation of an AR(1) process. a Dependence
of n′µ on n after Eq. (2.7), for various persistence values a (0.2, 0.5, 0.9 and 0.99). b
Comparison of the exact expression (Eq. 2.7) with a simplified version based on the
decorrelation time (Eq. 2.8).

Early papers in climatology on effective data size and the influence of
persistence on estimation variance include Matalas and Langbein (1962),
Leith (1973), Laurmann and Gates (1977), Thiébaux and Zwiers (1984),
Trenberth (1984a,b) and Zwiers and von Storch (1995).

Various approximate bias (and variance) formulas have been pub-
lished for estimators of the autocorrelation parameter a in evenly spaced
AR(1) models (Eqs. 2.1 and 2.33). Marriott and Pope (1954) analysed
â (Eq. 2.4) and gave

E (â) ' (1− 2/n) a. (2.39)

White (1961) gave an approximation of higher order in terms of powers
of (1/n):

E (â) '
(
1− 2/n + 4/n2 − 2/n3

)
a +

(
2/n2

)
a3 +

(
2/n2

)
a5. (2.40)
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One drawback of these approximations is that they are not accurate for
large a. For a → 1, also â → 1 (Eq. 2.4) and the bias, E (â) − a, ap-
proaches zero. This behaviour is not contained in Eqs. (2.39) or (2.40).
It is, however, contained in the bias formula of Mudelsee (2001a):

E (â) ' [1− 2/(n− 1)] a +
[
2/(n− 1)2

] (
a− a2n−1

) /(
1− a2

)
. (2.41)

Mudelsee (2001a) showed that this approximation is more accurate than
Eq. (2.40) for a ' 0.88. The estimation variance of â is to a low approx-
imation order (Bartlett 1946)

VAR (â) '
(
1− a2

)
/n (2.42)

and to a higher order (White 1961)

VAR (â) '
(
1/n− 1/n2 + 5/n3

)
−

(
1/n− 9/n2 + 53/n3

)
a2−

(
12/n3

)
a4.

(2.43)
Higher-order approximations of the first four moments of â are given by
Shenton and Johnson (1965). From a practical point of view, it is more
realistic to assume that the mean of Xnoise(i) is unknown and has to
be subtracted. In case of the AR(1) process with unknown mean, the
analogue of the estimator in Eq. (2.4) is

â =
n∑

i=2

[xnoise(i)− x̄noise]·[xnoise(i−1)− x̄noise]

/
n∑

i=2

[xnoise(i)− x̄noise]
2 ,

(2.44)
where x̄noise =

∑n
i=1 xnoise(i)/n is the sample mean. The approximate

expectation of this estimator is (Kendall 1954)

E (â) ' a− (1 + 3a) / (n− 1) . (2.45)

Monte Carlo simulations (Fig. 2.11) indicate that this approximation
can be used for bias correction in situations with uneven spacing and
moderate autocorrelation (a less than, say, 0.9). The bias-corrected au-
tocorrelation coefficient, â′, is obtained from â by inserting â′ for a on the
right-hand side and â for E(â) on the left-hand side in one of the equa-
tions describing the bias, say Eq. (2.45), and solving this equation for â′.
Approximations for the bias of least-squares and Yule–Walker estima-
tors of AR(p) processes with known/unknown mean have been given for
p ≤ 6 by Shaman and Stine (1988). Sample mean subtraction is a special
case of detrending. It follows that if we obtain {xnoise(i)}n

i=1 from the
data {x(i)}n

i=1 by removing an estimated trend function, {xtrend(i)}n
i=1

(Eq. 1.2), in principle we have to replace x̄noise in Eq. (2.44) by xtrend(i).
For trends more complex than a constant function, bias properties of
such estimators seem, however, to be analytically untractable.
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Figure 2.11. Monte Carlo study of the bias in the autocorrelation estimation of an
AR(1) process, unknown mean, uneven spacing. Identical Monte Carlo parameters
and time series properties were used as in Fig. 2.3. The estimators are also the same,
with the exception that the sample mean was removed from the time series prior to
the estimations. The negative bias approximation (dashed line) is from the case of
even spacing (Kendall 1954). See Fig. 2.3 for further explanation.

Another AR(1) parameter estimator was introduced (Houseman
2005), based on an estimation function (which has zero expectation at
the true parameter value). This author gave the estimation function ro-
bustness with respect to outliers (Chapter 3), included a linear regression
term (Chapter 4), that is, performed a joint estimation, and presented
an application to unevenly spaced water monitoring time series from
Boston Harbor.

ARMA(p, q) estimation. A least-squares estimation (Brockwell
and Davis 1991: Chapter 8 therein) can be used to fit even-spacing
ARMA(p, q) models to data {xnoise(i)}n

i=1. Besides least squares, sta-
tistical practice normally uses the maximum likelihood principle, which
means to search for the ARMA(p, q) parameters {a1, . . . , ap; b0, . . . , bq}
that maximize the likelihood that the fitted model had produced the
data (Brockwell and Davis 1991: Chapter 8 therein). This may be nu-
merically difficult but is no fundamental restriction. Another important
point is model identification, that means, selection of p and q. Guidance
for that gives the sample autocorrelation function (Eq. 2.17), which can
be compared with the autocorrelation function of the model candidate;
analogously used are the partial autocorrelation functions (Brockwell
and Davis 1991: Chapter 9 therein). Some quantitative measures of
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goodness of fit exist, such as Akaike’s (1973) information criterion (AIC).
A bias-corrected version of the AIC, referred to as the AICC (Hurvich
and Tsai 1989), is calculated from the maximized likelihood, L, plus a
penalty term for the number of parameters,

AICC = −2 ln(L) + 2(p + q + 1)n/(n− p− q − 2). (2.46)

The penalty is a mathematical expression of Ockham’s razor: it is easier
to fit a model with more parameters, or alternatively: it is preferable to
explain the data using a model with fewer parameters. The context of
this book, uneven spacing and the embedding problem for ARMA(p, q)
processes, forces us to take a rather parsimonious position by adopting
the AR(1) model (p = 1, q = 0). It could therefore be that the paramet-
ric AR(1) model misses some properties, representable in higher-order
continuous-time models, of the observed noise process. A milder case
is when the spacing arises from equidistance with some missing obser-
vations (Fig. 1.15). Then a possible solution is to use a state-space
representation, Kalman filtering and an adaption of the likelihood func-
tion. This approach has been pioneered by Jones (1981, 1985, 1986) and
Jones and Tryon (1987).

A maximum likelihood estimate for the AR(1) model with un-
even spacing is given by Robinson (1977). For even and uneven spacing,
it is useful to visually check the fit residuals (predictions for xnoise(i)
by the fitted model minus the data xnoise(i)), which are for a proper fit
realizations of a purely random process. For higher-order ARMA(p, q)
models, it seems that no one embarked on the derivation of analytical
approximations of the estimation bias.

ARFIMA(p, δ, q) models were introduced by Granger and Joyeux
(1980) and Hosking (1981). For |δ| < 0.5, the fractional difference oper-
ator (1−B)δ is defined by

(1−B)δ =
∞∑

k=0

(
δ

k

)
(−B)k

=
∞∑

k=0

Γ(δ + 1)
Γ(k + 1) Γ(δ − k + 1)

(−B)k ,

(2.47)

where B is the backshift operator and Γ(·) is the gamma function. Max-
imum likelihood and other estimation techniques are described by Beran
(1994, 1997).

Double-logarithmic transformations followed by linear regression
are generally not suited to estimate power-law models when the origi-
nal data have Gaussian error distributions. Although this has since long
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been known in various disciplines (Rützel 1976; Freund and Minton 1979;
Miller 1984; Jansson 1985; Mudelsee and Stattegger 1994), the transfor-
mation is still frequently encountered in various applied sciences today.
The low power of the double-logarithmic plot to discriminate between
scaling and no scaling in noisy data has been criticized by Tsonis and
Elsner (1995). These authors suggest a test for scaling, namely to plot
the slope with bootstrap confidence interval (Chapter 3) against the
scale and look for a plateau (constant slope). However, for too small
data sizes no plateau behaviour might be found, despite the existence of
scaling. Maraun et al. (2004) showed in a Monte Carlo study analysing
artificial time series with DFA that well over 100,000 data points may
be required. This result together with the other criticisms make DFA
irrelevant for climate time series analysis.

A random walk process arises from the case a = 1 in Eq. (2.33). For
this process, VAR [Xnoise(i)] increases linearly with time, that means, the
random walk is not stationary. In climatology, where the variables are
within certain bounds, the random walk has to be modified to serve as
a noise model. In that manner, it has been applied to short-term tem-
perature fluctuations (Kärner 2002). In case of Pleistocene timescales
(Table 1.1), Wunsch (2003) suggested a random walk for explaining the
100-ka ice-age cycle. He put bounds to the ice-volume variable Xnoise(i);
when the system attempts to leave the permitted range, it is thrown
back. Mostly other fields than climatology, such as econometrics, apply
tests of the hypothesis “a = 1” for the autoregressive process, or its
generalization (“unit-roots tests”) for the ARMA(p, q) process (Fuller
1996: Chapter 10 therein). Several bootstrap hypothesis tests (Chap-
ter 3) for unit-roots were examined by means of Monte Carlo simula-
tions (Palm et al. 2008). A climatological application is the paper by
Stern and Kaufmann (2000), where unit-roots were identified in tests of
hemispheric temperature records, circa 1855–1995. Because these tests
generally have poor power (loosely speaking, detection probability; see
Eq. (3.41)) (Chatfield 2004: Section 13.4 therein), and because of the
nonstationarity, we will not consider further random walk models for
Xnoise(i).

Further examples of time-series models fitted to climate data are
the following. It is fair to say that the vast majority of such papers
used the AR(1) process with a > 0 as a model of Xnoise(i). One classic,
from meteorology, is Gilman et al. (1963). As an example from late
Pleistocene climatology, we cite Roe and Steig (2004), who characterize
Arctic and Antarctic climate by means of the AR(1) persistence time.
Since this book adopts the AR(1) noise model, we will encounter var-
ious applications of it in the following chapters. It may be noted that



2.6 Background material 61

1600 1700 1800 1900 2000
Year

0

50

100

150

200

G
ro

up
 s

un
sp

ot
 n

um
be

r

Figure 2.12. Group sunspot number, 1610–1995. Sunspots are dark spots on the
Sun’s surface, visible from the Earth with a telescope. They present regions of re-
duced temperature. Satellite measurements, available since 1980, show that the solar
activity correlates positively with the number of sunspots (Willson and Hudson 1988),
that means, the solar constant is no constant. The group sunspot number is a way
of counting the sunspots as groups and thought to give a more accurate picture over
the previous centuries than using the individual sunspot data (Hoyt and Schatten
1998). The long lasting minimum during approximately 1645–1715 is the Maunder
Minimum. Beer et al. (1998) demonstrate that this was not a period without solar
activity variations. (Data have d(i) = 1 a and are from Hoyt and Schatten (1998).)

in hydrology cases of a < 0 (anti-persistence or blue noise) are found
(Milly and Wetherald 2002). Annual layer thickness in ice cores may
also exhibit blue noise on very short (annual) timescales (Fisher et al.
1985): if the true thickness of a layer is, say, larger than measured,
then the true thickness of a neighboured layer is likely smaller than
measured (since the overall thickness is constrained). Yule (1927) fitted
an AR(2) model to sunspot data, 1749–1924. These data (Fig. 2.12),
which exhibit quasi-periodic behaviour with period ∼ 11 a, have since
this pioneering work been the hobbyhorse of time series analysts. Tong
and Lim (1980) took a SETAR(2; 4, 12) process, which reproduces the
sunspot cycles’ asymmetry (rise and descent). Jones (1981) fitted various
ARMA(p, q) models, and Priestley (1981: Section 11 therein) compared
the fits of AR(p), ARMA(p, q) and threshold autoregressive models to
the sunspot data. Seleshi et al. (1994) fitted a high-order autoregres-
sive model to the sunspot data but found that AR(p) or ARMA(p, q)
models gave no satisfactory fit to the rainfall series, 1900–1991, from
Addis Ababa. This stimulated their search for a transformation of the
rainfall data which could produce a better relation with solar activity
variations. Matyasovszky (2001) fitted an AR(4) and threshold autore-
gressive models to the longest record of monthly instrumental obser-
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vations, the central England temperature time series (Manley 1974),
which starts in January 1659. He found four regimes, one of which has
a limit cycle of about 2 a period and might correspond to the meteo-
rological phenomenon of the quasi-biennial oscillation, which refers to
zonal wind-speed variations in the tropical stratosphere. Stedinger and
Crainiceanu (2001) considered ARMA(p, q) models for the logarithmi-
cally transformed maximum annual runoff of the river Missouri from
1898 to 1998. Koen and Lombard (1993) applied ARMA(p, q) mod-
elling to astronomical time series. Stattegger (1986) used ARMA(p, q)
processes to describe variations in the composition of heavy metals in
sedimentary deposits of rivers in Austria. Newton et al. (1991) fitted
ARMA(p, q) models to the Pleistocene SPECMAP δ18O curve. Giese
et al. (1999) searched for suitable ARMA(p, q) and ARIMA models for
δ18O variations in a Pliocene–Pleistocene deep-sea sediment core without
success. Stephenson et al. (2000) analysed the wintertime North Atlantic
Oscillation (NAO) index from 1864 to 1998, that is, the difference be-
tween standardized December–March mean sea-level pressures measured
at Lisbon and Iceland. (Other versions exist, which use Azores instead
of Lisbon.) The NAO index is used as a measure to summarize the
mean westerly atmospheric flow over the North Atlantic region, which
in turn influences the weather in Europe (Hurrell 1995). It was found
(Stephenson et al. 2000) that an ARFIMA(1, 0.13, 0) model describes
the data as good as an AR(10) model and better than the asymptotic
stationary AR(1) or random walk models. The more parsimonious long-
memory model was preferred to make NAO forecasts. Divine et al.
(2008) presented a model of piecewise AR(1) processes and a maximum
likelihood technique for estimating the autocorrelation parameters and
the change-point times. This model constitutes an interesting augmen-
tation of the SETAR(l; k, . . . , k) model. Divine et al. (2008) applied
their method to detect changes in records of the NAO, ENSO and ice
core δ18O. Kallache et al. (2005) fitted ARFIMA(p, δ, q) models to runoff
records from small rivers in southern Germany and found via an AICC
variant that the parsimonious AR(1) model, contained in the ARFIMA
model, is often a suitable description but also that frequently a nonzero
long-term parameter δ is required. These examples illustrate that there
is an interplay between what is put into the noise process and what is
put into the trend. Taking more complex noise processes does reduce
the need to consider complex trend functions. This book is devoted to
using simpler noise processes and more complex trend functions. Be-
sides the necessity to keep the noise simple because of the embedding
problem (Section 2.3), this position allows to quantify trend parameters,
that means for example, climate changes, using regressions (Chapter 4).
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2.7 Technical issues
The gamma distribution in its standard form with order parameter

a has following PDF:

f(x) = xa−1 exp(−x) /Γ(a) , x ≥ 0. (2.48)

Ahrens and Dieter (1974) devised an algorithm for generating gamma
random variables. See Johnson et al. (1994: Chapter 17 therein) for
more details on the gamma distribution.

The gamma function is defined by

Γ(z) =

∞∫
0

yz−1 exp(−y)dy. (2.49)

When z is an integer, Γ(z + 1) = z!, otherwise approximations have to
be used for calculation. Lanczos (1964) devised an algorithm for approx-
imating ln [Γ(z)]. Ratios of gamma functions can then be numerically
advantageously evaluated as Γ(a) /Γ(b) = exp {ln [Γ(a)]− ln [Γ(b)]} .

The beta distribution in its standard form with parameters p > 0
and q > 0 has following PDF:

f(x) = xp−1(1− x)q−1 /B(p, q) , 0 ≤ x ≤ 1. (2.50)

The beta function, B, is given by B(p, q) = Γ(p)Γ(q)/Γ(p + q). See
Johnson et al. (1995: Chapter 25 therein) for more details on the beta
distribution.

TAUEST is a FORTRAN 77 program that estimates the persistence
time of an AR(1) process and uneven spacing. The minimization of
the least-squares sum (Eq. 2.11) is done using Brent’s search (Press
et al. 1992). The software includes residual analysis, bias correction
and construction of a bootstrap percentile confidence interval (which is
described in Chapter 3). TAUEST is described by Mudelsee (2002). The
software is available at the web site for this book.

Jones (1981) gave FORTRAN 77 subroutines to fit data to a
continuous-time autoregressive process. This program uses a state space
representation and a maximum likelihood principle.

ITSM 2000 is a Windows package for the estimation of ARMA,
ARFIMA and other models under even spacing. It includes tools for
transformations, regression, forecasting, smoothing and spectral esti-
mation. A version for a limited data size is included in the book by
Brockwell and Davis (1996), a full version can be obtained from B & D
Enterprises, Inc. (pjbrock@stat.colostate.edu, email from 16 April 2004).
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STAR is a DOS program for fitting threshold autoregressive models
to evenly spaced time series. The book by Tong (1990) informs that the
software could be obtained from Microstar Software (Canterbury, UK).

S-Plus routines for fitting long-memory models to data are listed in
the monograph by Beran (1994). This book contains also an S-Plus
routine for the simulation of ARFIMA processes. Hosking (1984) gives
another algorithm for ARFIMA simulation.

Ox is a computer language, for which a package (Doornik and Ooms
2001) for maximum likelihood fitting of ARFIMA models is available
(http://www.doornik.com, 18 December 2005).

Random number generators are required to perform Monte Carlo
experiments such as that from Fig. 2.3. Also bootstrap resampling
(Chapter 3) uses such tools. Almost exclusively employed are pseudoran-
dom numbers, which are generated by mathematical algorithms. One
simple form is the multiplicative congruential generator, Zi = A Zi−1

(mod M), i ≥ 1, where A,M and Zi (pseudorandom numbers) are in-
tegers. Z1 is primed (seeded). Zi can be mapped onto the interval [0; 1]
to produce a uniform distribution. The uniform serves also as basis to
generate other types of distribution. For example, the Gaussian arises
from the uniform by the transformation given by Box and Muller (1958).
The success of Monte Carlo experiments and bootstrap resampling de-
pends critically on whether the generator “supplies sequences of numbers
from which arbitrarily selected nonoverlapping subsequences appear to
behave like statistically independent sequences and where the variation
in an arbitrarily chosen subsequence of length k (≥ 1) resembles that
of a sample drawn from the uniform distribution on the k-dimensional
unit hypercube” (Fishman 1996: p. 587 therein). Uniform filling of the
hypercube can be assessed by inspecting whether regular patters are ab-
sent in two- or three-dimensional hyperplanes. Park and Miller (1988)
show that good random number generators “are hard to find.” They
give also a multiplicative congruential generator with A = 16,807 and
M = 2,147,483,647, which may serve as minimal standard. Schrage
(1979) lists a FORTRAN 77 code of this generator type. Other gener-
ators are described by Press et al. (1992: Chapter 7 therein), Fishman
(1996: Chapter 7 therein) and Knuth (2001: Chapter 3 therein); the
latter book (Section 3.4.2, Algorithm P therein) contains a recipe for
producing random permutations.



Chapter 3

Bootstrap Confidence Intervals

In statistical analysis of climate time series, our aim (Chapter 1) is to
estimate parameters of Xtrend(T ), Xout(T ), S(T ) and Xnoise(T ). Denote
in general such a parameter as θ. An estimator, θ̂, is a recipe how to
calculate θ from a set of data. The data, discretely sampled time series
{t(i), x(i)}n

i=1, are influenced by measurement and proxy errors of x(i),
outliers, dating errors of t(i) and climatic noise. Therefore, θ̂ cannot
be expected to equal θ. The accuracy of θ̂, how close it comes to θ, is
described by statistical terms such as standard error, bias, mean squared
error and confidence interval (CI). These are introduced in Section 3.1.

With the exploration of new archives or innovations in proxy, mea-
surement and dating techniques, new θ̂ values, denoted as estimates,
become available and eventually join or replace previous estimates. A
telling example from geochronology is where θ is the time before present
when the Earth’s magnetic field changed from reversed polarity dur-
ing the Matuyama epoch to normal polarity during the Brunhes epoch,
at the beginning of the late Pleistocene. Estimates published over the
past decades include 690 ka (Cox 1969) and 730 ka (Mankinen and Dal-
rymple 1979), both based on K/Ar dating; and 790 ka (Johnson 1982)
and 780 ka (Shackleton et al. 1990), both based on astronomical tun-
ing. The currently accepted value is 779 ka with a standard error of 2
ka (Singer and Pringle 1996), written as 779± 2 ka, based on 40Ar/39Ar
dating (a high-precision variant of K/Ar dating). An example with a
much greater uncertainty regards the case where θ is the radiative forc-
ing (change in net vertical irradiance at the tropopause) of changes in
atmospheric concentrations of mineral dust, where even the sign of θ is
uncertain (Penner et al. 2001; Forster et al. 2007). It is evident that the

M. Mudelsee, Climate Time Series Analysis, Atmospheric and 65
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growth of climatological knowledge depends critically on estimates of θ
that are accompanied by error bars or other measures of their accuracy.

Bootstrap resampling (Sections 3.2 and 3.3) is an approach to con-
struct error bars and CIs. The idea is to draw random resamples from
the data and calculate error bars and CIs from repeated estimations on
the resamples. For climate time series, the bootstrap is potentially supe-
rior to the classical approach, which relies partly on unrealistic assump-
tions regarding distributional shape, persistence and spacing (Chap-
ter 1). However, the bootstrap, developed originally for data without
serial dependence, has to be adapted before applying it to time series.
Two classes of adaptions exist for taking persistence into account. First,
nonparametric bootstrap methods resample sequences, or blocks, of the
data. They preserve the dependence structure over the length of a block.
Second, the parametric bootstrap adopts a dependence model. As such,
the AR(1) model (Chapter 2) is our favorite.

It turns out that both bootstrap resampling types have the potential
to yield acceptably accurate CIs for estimated climate parameters. A
problem for the block bootstrap arises from uneven time spacing. An-
other difficult point is to find optimal block lengths. This could make the
parametric bootstrap superior within the context of this book, especially
for small data sizes (less than, say, 50). The block bootstrap, however,
is important when the deviations from AR(1) persistence seem to be
strong. Various CI types are investigated. We prefer a version (so-called
BCa interval) that automatically corrects for estimation bias and scale
effects. Computing-intensive calibration techniques can further increase
the accuracy.

3.1 Error bars and confidence intervals
Let θ be the parameter of interest of the climatic process {X(T )} and

θ̂ be the estimator. Extension to a set of parameters is straightforward.
Any meaningful construction lets the estimator be a function of the
process, θ̂ = g ({X(T )}). That means, θ̂ is a random variable with
statistical properties. The standard deviation of θ̂, denoted as standard
error, is

se
θ̂

=
[
VAR

(
θ̂
)]1/2

. (3.1)

The bias of θ̂ is
bias

θ̂
= E

(
θ̂
)
− θ. (3.2)

bias
θ̂

> 0 (bias
θ̂

< 0) means a systematic overestimation (underesti-
mation). se

θ̂
and bias

θ̂
are illustrated in Fig. 3.1. Desirable estimators

have small se
θ̂

and small bias
θ̂
. In many estimations, a trade-off problem
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Figure 3.1. Standard error (seθ̂), bias (biasθ̂) and equi-tailed confidence interval

(CIθ̂,1−2α = [θ̂l; θ̂u]) for a Gaussian distributed estimator, θ̂. The true parameter
value is θ; the confidence level is 1− 2α = 90%.

between se
θ̂

and bias
θ̂

occurs. A convenient measure is the root mean
squared error,

RMSE
θ̂

=
{

E

[(
θ̂ − θ

)2
]}1/2

=
(
se

θ̂
2 + bias

θ̂
2
)1/2

.

(3.3)

The coefficient of variation is

CV
θ̂

= se
θ̂

/∣∣∣E (
θ̂
)∣∣∣ . (3.4)

While θ̂ is a best guess of θ or a point estimate, a CI is an interval
estimate that informs how good a guess is (Fig. 3.1). The CI for θ is

CI
θ̂,1−2α

=
[
θ̂l; θ̂u

]
, (3.5)

where 0 ≤ 1 − 2α ≤ 1 is a prescribed value, denoted as confidence
level. The practical examples in his book consider 90% (α = 0.05) or
95% (α = 0.025) CIs, which are reasonable choices for climatological
problems. θ̂l is the lower, θ̂u the upper endpoint of the CI. θ̂l and θ̂u are
random variables and have statistical properties such as standard error
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or bias. The properties of interest for CIs are the coverages,

γl = prob
(
θ ≤ θ̂l

)
, (3.6)

γu = prob
(
θ ≥ θ̂u

)
(3.7)

and

γ = prob
(
θ̂l < θ < θ̂u

)
= 1− γl − γu. (3.8)

Exact CIs have coverages, γ, equal to the nominal value 1 − 2α. Con-
struction of exact CIs requires knowledge of the distribution of θ̂, which
can be achieved only for simple problems. In more complex situations,
only approximate CIs can be constructed (Section 3.1.3). As regards the
division of the nominal coverage between the CI endpoints, this book
adopts a practical approach and considers only equi-tailed CIs, where
nominally γl = γu = α. As a second CI property besides coverage, we
consider interval length, θ̂u − θ̂l, which is ideally small.

Preceding paragraphs considered estimators on the process level. In
practice, on the sample level, we plug in the data {t(i), x(i)}n

i=1 for
{T (i), X(i)}n

i=1. Following the usual convention, we denote also the
estimator on the sample level as θ̂. An example is the autocorrelation
estimator (Eq. 2.4).

3.1.1 Theoretical example: mean estimation of
Gaussian white noise

Let the process {X(i)}n
i=1 be given by

X(i) = EN(µ, σ2)(i), i = 1, . . . , n, (3.9)

which is called a Gaussian purely random process or Gaussian white
noise. There is no serial dependence, and the times T (i) are not of
interest. Consider as estimator θ̂ of the mean, µ, the sample mean,
written on process level as

µ̂ = X̄ =
n∑

i=1

X(i)/n. (3.10)

Let also σ be unknown and estimated by the sample standard deviation,
σ̂ = Sn−1, given in the next example (Eq. 3.19). The properties of X̄
readily follow as

seX̄ = σ · n−1/2, (3.11)
biasX̄ = 0, (3.12)

RMSEX̄ = seX̄ (3.13)
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and

CVX̄ = σ · n−1/2 · µ−1. (3.14)

An exact CI of level 1−2α can be constructed by means of the Student’s
t distribution of X̄ (von Storch and Zwiers 1999):

CIX̄,1−2α =
[
X̄ + tn−1(α) · Sn−1 · n−1/2; X̄ + tn−1(1− α) · Sn−1 · n−1/2

]
.

(3.15)
tν(β) is the percentage point at β of the t distribution function with ν
degrees of freedom (Section 3.9).

On the sample level, we write the estimated sample mean,

µ̂ = x̄ =
n∑

i=1

x(i)/n, (3.16)

the estimated standard error,

ŝex̄ =

{
n∑

i=1

[x(i)− x̄]2 /n2

}1/2

, (3.17)

and the confidence interval,

CIx̄,1−2α =
[
x̄ + tn−1(α) · sn−1 · n−1/2; x̄ + tn−1(1− α) · sn−1 · n−1/2

]
,

(3.18)
where sn−1 is given by Eq. (3.25).

The performance of the CI in Eq. (3.18) for Gaussian white noise is
analysed by means of a Monte Carlo simulation experiment. The CI
performs excellent in coverage (Table 3.1), as expected from its exact-
ness. The second CI property, length, decreases with data size. It can
be further compared with CI lengths for other location measures.

3.1.2 Theoretical example: standard deviation
estimation of Gaussian white noise

Consider the Gaussian white-noise process (Eq. 3.9) with unknown
mean, and as estimator of σ the sample standard deviation, written on
process level as

σ̂ = Sn−1 =

{
n∑

i=1

[
X(i)− X̄

]2
/(n− 1)

}1/2

. (3.19)
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Table 3.1. Monte Carlo experiment, mean estimation of a Gaussian purely random
process. nsim = 4,750,000 random samples of {X(i)}n

i=1 were generated after Eq. (3.9)
with µ = 1.0, σ = 2.0 and various n values. An exact confidence interval CIx̄,1−2α was
constructed for each simulation after Eq. (3.18) with α = 0.025. Average CI length,
empirical RMSEX̄ and empirical coverage were determined subsequently. The entries
are rounded.

n RMSEa
x̄ Nominalb 〈 CI length 〉c Nominald γe

x̄ Nominal

10 0.6327 0.6325 2.7832 2.7832 0.9499 0.9500
20 0.4474 0.4472 1.8476 1.8476 0.9498 0.9500
50 0.2828 0.2828 1.1310 1.1310 0.9501 0.9500

100 0.2000 0.2000 0.7916 0.7917 0.9499 0.9500
200 0.1415 0.1414 0.5570 0.5571 0.9499 0.9500
500 0.0894 0.0894 0.3513 0.3513 0.9500 0.9500

1000 0.0633 0.0632 0.2482 0.2482 0.9499 0.9500

a Empirical RMSEX̄ , given by
[∑nsim

i=1 (x̄− µ)2 /nsim

]1/2
.

b σ · n−1/2.
c Average value over nsim simulations.
d 2 · tn−1(1− α) · σ · c · n−1/2, where c is given by Eq. (3.24).
e Empirical coverage, given by the number of simulations where CIx̄,1−2α contains
µ, divided by nsim. Standard error of γx̄ is (Efron and Tibshirani 1993) nominally

[2α(1− 2α)/nsim]1/2 = 0.0001.

The properties of Sn−1 are as follows:

seSn−1 = σ ·
(
1− c2

)1/2
, (3.20)

biasSn−1 = σ · (c− 1) , (3.21)

RMSESn−1 = σ · [2(1− c)]1/2 (3.22)

and

CVSn−1 =
(
1/c2 − 1

)1/2
, (3.23)

where

c = [2/(n− 1)]1/2 · Γ(n/2) / Γ((n− 1)/2). (3.24)

On the sample level, we write

σ̂ = sn−1 =

{
n∑

i=1

[x(i)− x̄]2 /(n− 1)

}1/2

(3.25)
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Table 3.2. Monte Carlo experiment, standard deviation estimation of a Gaussian
purely random process. nsim = 4,750,000 random samples of {X(i)}n

i=1 were gener-
ated after Eq. (3.9) with µ = 1.0, σ = 2.0 and various n values. An exact confi-
dence interval CIsn−1,1−2α was constructed for each simulation after Eq. (3.26) with
α = 0.025. Average CI length, empirical RMSESn−1 and empirical coverage were
determined subsequently.

n RMSEa
sn−1 Nominalb 〈 CI length 〉c Nominald γe

sn−1 Nominal

10 0.4677 0.4677 2.2133 2.2133 0.9500 0.9500
20 0.3232 0.3233 1.3818 1.3819 0.9500 0.9500
50 0.2018 0.2018 0.8174 0.8174 0.9499 0.9500

100 0.1421 0.1420 0.5659 0.5659 0.9499 0.9500
200 0.1002 0.1002 0.3960 0.3960 0.9500 0.9500
500 0.0633 0.0633 0.2489 0.2489 0.9500 0.9500

1000 0.0447 0.0447 0.1757 0.1757 0.9501 0.9500

a Empirical RMSESn−1 , given by
[∑nsim

i=1 (sn−1 − σ)2 /nsim

]1/2
.

b σ · [2(1− c)]1/2.
c Average value over nsim simulations.
d

[(
χ2

n−1(1− α)
)−1/2 −

(
χ2

n−1(α)
)−1/2

]
· σ · c · (n− 1)1/2.

e Empirical coverage, given by the number of simulations where CIsn−1,1−2α contains σ,

divided by nsim. Standard error of γsn−1 is nominally [2α(1− 2α)/nsim]1/2 = 0.0001.

and use the chi-squared distribution of S2
n−1 (von Storch and Zwiers

1999) to find

CIsn−1,1−2α =
[
sn−1

[
(n− 1)

/
χ2

n−1(α)
]1/2 ;

sn−1

[
(n− 1)

/
χ2

n−1(1− α)
]1/2

]
, (3.26)

where χ2
ν(β) is the percentage point at β of the chi-squared distribution

function with ν degrees of freedom (Section 3.9).
The performance of the CI in Eq. (3.26) for Gaussian white noise is

analysed by means of a Monte Carlo simulation experiment. The CI
performs excellent in coverage (Table 3.2), as expected from its exact-
ness. The CI property length can be compared with CI lengths for other
measures of spread or variation.

3.1.3 Real world
The two theoretical examples (Sections 3.1.1 and 3.1.2) presented con-

venient settings. X(i) was normally distributed and persistence was ab-
sent, for which reasons the spacing was not relevant. The simple estima-
tors µ̂ and σ̂ could then be applied for mean and standard deviation es-
timation, which allowed to deduce their distributions as Student’s t and
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Table 3.3. Monte Carlo experiment, mean and median estimation of a lognormal
purely random process. nsim = 4,750,000 random samples of {X(i)}n

i=1 were gener-
ated after X(i) = exp

[
EN(µ, σ2)(i)

]
, i = 1, . . . , n, with µ = 1.0, σ = 1.0 and various

n values. The density function is skewed (Fig. 3.2). Analysed as estimators of the
centre of location of the distribution were the sample mean (Eq. 3.16) and the sample
median, m̂ (see background material, Section 3.8). CIx̄,1−2α was constructed after
Eq. (3.18) with α = 0.025.

n RMSEm̂ RMSEx̄ γa
x̄ Nominal Cb

10 1.1647 1.8575 0.8392 0.9500 −0.1108
20 0.7893 1.3140 0.8670 0.9500 −0.0830
50 0.4884 0.8309 0.8991 0.9500 −0.0509

100 0.3430 0.5880 0.9170 0.9500 −0.0330
200 0.2418 0.4155 0.9296 0.9500 −0.0204
500 0.1526 0.2627 0.9399 0.9500 −0.0101

1000 0.1078 0.1858 0.9442 0.9500 −0.0058

a Standard error of γx̄ is nominally 0.0001.
b Empirical coverage error of CIx̄,1−2α, given by γx̄ minus nominal value.

chi-squared, respectively. Finally, exact CIs were obtained using the per-
centage points of the distributions of the estimators.

In the real climatological world, however, such simple assumptions
regarding distributional shape, persistence and spacing cannot be ex-
pected to be fulfilled (Chapter 1). In the practical setting, further ques-
tions than just after mean and standard deviation are asked, leading to
more complex parameters, θ. The major part of the rest of this book is
devoted to such problems. Also the estimators of those parameters have
commonly more complex distributions, f(θ̂).

Example 3 (Table 3.3) goes a small step from the theoretical in the
direction of the real world. This case illustrates the effects of viola-
tions of the distributional assumption. Example 3 assumes that X(i)
are Gaussian distributed, although the prescribed true distribution is
lognormal. This leads to a Student’s t CI with an empirical coverage
that deviates from the nominal value by several standard errors (Ta-
ble 3.3). The difference is the coverage error (see next paragraph), its
absolute value decreases with the data size. This CI is not exact but only
approximate. Table 3.4 summarizes theoretical and practical settings.

Coverage error, C, is defined by means of a single-sided CI endpoint
(Efron and Tibshirani 1993), for example,

C = γl − α. (3.27)

If C decreases with sample size as O
(
n−1/2

)
, that means, if C is com-

posed of terms of powers of 1/n that are greater than or equal to 1/2,
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Figure 3.2. Lognormal density function from Example 3 (Table 3.3), with µ = 1.0
and σ = 1.0. The expression for f(x) is given by Eq. (3.61).

then the CI is called first-order accurate; if C is of O
(
n−1

)
, then the

CI is called second-order accurate; and so forth. The same CI accu-
racy applies also to two-sided CIs. Desirable approximate CIs have a
high-order accuracy. Coverage accuracy is the major criterion employed
in this book for assessing the quality of a CI. As a second property
we consider interval length, θ̂u − θ̂l, which is ideally small. Related to
CI accuracy is CI correctness (Efron and Tibshirani 1993: Section 22.2
therein), which refers to the difference between an exact CI endpoint
(which has C = 0) and an approximate CI endpoint, expanded in terms
of powers of n.

For practical situations it is conceivable that different estimators, θ̂1

and θ̂2, of the same parameter, θ, exist. Consider for example param-
eter estimation of the AR(p) model, for which Priestley (1981: Section
5.4.1 therein) gives four sets of estimators, namely exact likelihood, least
squares, approximate least squares and Yule–Walker. Each estimator
has its own properties such as standard error, bias, RMSE, CI length or
CI coverage accuracy.

An important attribute of an estimator is robustness, which means
that the θ̂ properties depend only weakly on made assumptions (shape,
persistence and spacing). Robust estimators perform better (e.g., have
smaller RMSE or higher coverage accuracy) than non-robust in non-ideal
situations. Example 3 shows that the sample median as an estimator of

0

0.1

0.2
f(x)

0 5 10
x
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the centre of location of a distribution is more robust (with regard to
RMSE

θ̂
) than the mean. In essence, because of the complexity of the

setting in the real world and the dependence on the situation and the
aims of the analysis, there is no general rule how to construct best an
estimator. It has something of an art, which is not meant negatively. In
this light, the growth of climatological knowledge does not only depend
on more and better data but also on improved methods to analyse them.

Table 3.4 shows also how real-world climatological estimation prob-
lems may be tackled. The classical approach comes from theory and
aims to extend the applicability by introducing countermeasures. Re-
garding distributional shape, a measure may be to estimate the shape of
the noise data (Section 1.6). Then one looks up and applies the estima-
tor for the parameter θ that performs for this particular shape best in
terms of a user-specified property, say RMSE. The CI follows from the
estimator’s distribution. The problem is that only for simple shapes and
parameters, knowledge is available that would allow this procedure. (In
this regard, the lognormal without is clearly simpler than the lognormal
with shift parameter (Section 3.8).) Transformations of the data, such
that the noise part has a simple shape, can also be tried, but then the
problem is that the systematic part of the model (Eq. 1.2) can take in-
tractable forms, see Atkinson and Cox (1988) on this dilemma. (The
double-logarithmic transformation described in Section 2.6 was in the
converse direction. It produced a simpler systematic part and a more
complex noise part.)

Regarding persistence, the effective data size, n′, can be used instead
of n for CI calculation. The problem here is that n′ depends on the per-
sistence model and on which estimator is used (Chapter 2). One may
take n′µ (Eq. 2.7), n′σ2 (Eq. 2.36) or n′ρ (Eq. 2.38) for the AR(1) process
and hope that deviations to the problem at hand are small. Regard-
ing spacing, it is fair to say that the classical approach mostly ignores
unevenness because its influence on n′ and the distribution of θ̂ can in
the general case not be deduced. As a result, the classical approach
often contents itself with approximate normality, that is, with f(θ̂) ap-
proaching normal shape as n → ∞. For many theoretical estimations,
approximate normality can be proven. However, the point is that in
practice n is limited and it is mostly unknown how accurate the normal
approximation of the CI is.

3.2 Bootstrap principle
Table 3.4 lists also the bootstrap approach to solve practical estima-

tion problems. These tasks include constructing CIs for estimators more
complex than the mean, and this in the presence of non-normal distribu-
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tions, persistence and uneven spacing. The main idea of the bootstrap
is to use the data to mimic the unknown distribution function, which is
now replaced by the empirical distribution function (Eq. 3.43). Mimick-
ing the data generating process is achieved by drawing random samples
from the data set. The simplest form is the ordinary bootstrap, that
means, drawing one by one with replacement. Preserving the persis-
tence properties of time series data requires adaptions of the ordinary
bootstrap, which are explained in Section 3.3. Re-applying the estima-
tion procedure to the new random samples, called resamples, yields new
estimates, called replications. Section 3.4 explains CI construction us-
ing the replications. Figure 3.3 shows the bootstrap principle and the
workflow. It gives also a simple bootstrap CI variant (bootstrap normal
CI).

The bootstrap means that numerical simulation replaces theoretical
derivation of the distribution of an estimator. This can be an improve-
ment, especially if the complexity of the problem defies obtaining an
exact theoretical result. However, also the bootstrap is not free of as-
sumptions. The main requirement is that the properties distributional
shape and persistence are preserved by the bootstrap resampling. There
is also “simulation noise,” but this can be made arbitrarily small by using
a large number of resamples, B. Assumptions made at CI construction
add to the fact that in complex situations, bootstrap CIs, like classical
CIs, are not exact but approximate. In complex cases, for small sample
size, non-smooth functionals such as the median and without underlying
theory, even the bootstrap may fail to yield acceptable results (LePage
and Billard 1992). However, bootstrap CIs seem to be more flexible and
require less strict assumptions than classical CIs (Table 3.4). A word
on usage of “simulation:” henceforth we reserve this for Monte Carlo
experiments, where statistical methods are tested by means of artificial
data from models with pre-defined properties. The bootstrap procedure,
on the other hand, is referred to as “resampling.”

3.3 Bootstrap resampling

The ordinary bootstrap, resampling one by one with replacement, is a
nonparametric method because it can virtually be applied to data from
any continuous PDF without involvement of distributional parameters.
By resampling one by one, the serial dependence in {X(i)}n

i=1 is lost.
For the analysis of time series, the ordinary bootstrap has therefore to
be adapted to take serial dependence into account. This can be done
nonparametrically, by resampling block by block of data. Alternatively,
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{t(i), x(i)}i=1        θ n ^ Sample,
estimate

{t*1(i), x*1(i)}i=1
n {t*2(i), x*2(i)}i=1

n {t*B(i), x*B(i)}i=1
n Resamples

CIθ,1–2α^ Confidence
interval

θ*1 ^   Replicationsθ*2 ^   θ*B ^   

Figure 3.3. Bootstrap principle for constructing confidence intervals. Given is a
sample of data and an estimate of a parameter of interest. Using bootstrap resampling
(Section 3.3) new data sets—resamples—are formed. The resamples ideally preserve
fully the statistical properties of the process that generated the data. For convenience
of presentation, we assume that this process (Eq. 1.2) consists only of the noise
part; the following chapters analyse bootstrap resampling where the model has also a
systematic part. In the simple case where t(i) are perfectly known and also persistence
is absent, t∗(i) = t(i), i = 1, . . . , n, and {x∗(i)}n

i=1 is obtained by drawing randomly,
one by one and with replacement, n elements from the set of sample values, {x(i)}n

i=1.
The resamples are marked with an asterisk and numbered with an index, b = 1, . . . , B.
The number of resamples, B, is typically a few thousand. The estimator is applied
to each of the resamples, yielding B new estimates—the replications. The set of
replications {θ̂∗b}B

b=1 is then used for CI construction. Several methods exist for that
purpose (Section 3.4), which can, for example, correct for estimation bias. In the
simple case of normal bootstrap confidence intervals, henceforth denoted briefly as
normal CIs, CIθ̂,1−2α = [θ̂ + z(α) · ŝeθ̂∗ ; θ̂ − z(α) · ŝeθ̂∗ ], where ŝeθ̂∗ is the sample
standard error of the replications, denoted as estimated bootstrap standard error,
and z(α) is the percentage point of the normal distribution (Section 3.9).

persistence can be modelled. The preferred model in the case of climate
time series is the AR(1) process (Chapter 2).

For convenience of presentation, this chapter omits the effects of er-
rors in the timescale, t(i), that means, it sets t∗(i) = t(i), i = 1, . . . , n, or
briefly {t∗(i)}n

i=1 = {t(i)}n
i=1 . Bootstrap adaptions for solving estima-

tion problems associated with an uncertain timescale, which are relevant
for climatology, seem not to have been developed yet in the statistical
literature. The subsequent chapters present some possible bootstrap
adaptions. These are steps into new territory.
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3.3.1 Nonparametric: moving block bootstrap
The moving block bootstrap algorithm, denoted as MBB, divides the

time series values {x(i)}n
i=1 into sequences or blocks of l consecutive

points (Algorithm 3.1). The blocks may overlap, their number is n−l+1.
MBB draws randomly a block and inserts the contained values as the
first l resample values, {x∗(i)}l

i=1. The next randomly drawn block
yields {x∗(i)}2l

i=l+1, and so forth. When the last point, x∗(n), has been
inserted, the algorithm stops; remaining block values are discarded. The
resampled times are unchanged (Algorithm 3.1). One indexes the first
resample as

{
t∗1(i), x∗1(i)

}n

i=1
and repeats MBB until B resamples exist.

A possible adaption of the MBB to uneven spacing is introduced in
Section 3.3.1.2. Other nonparametric bootstrap algorithms are described
briefly in the background material (Section 3.8).

3.3.1.1 Block length selection
Selection of the block length, l, is a crucial step because it determines

properties like bootstrap standard error or bootstrap CI coverage accu-
racy. Berkowitz and Kilian (2000: p. 20 therein) describe the trade-off
problem involved as follows: “As the block size becomes too small, the
[MBB] destroys the time dependency of the data and its average accu-
racy will decline. As the block size becomes too large, there are few
blocks and [resamples] will tend to look alike. As a result, the average
accuracy of the [MBB] also will decline. This suggests that there exists
an optimal block size [lopt] which maximizes accuracy.”

A simple block length selector can be derived from Sherman et al.
(1998), who adapted a formula from Carlstein (1986), to the MBB:

lopt = NINT

{[
61/2 · ̂̄a/(

1− ̂̄a2
)]2/3

· n1/3

}
, (3.28)

where NINT (·) is the nearest integer function and ̂̄a = exp(−d̄/τ̂) is the
estimated “equivalent autocorrelation coefficient” (Fig. 2.3) of an AR(1)
process fitted to the data with uneven spacing. (If ̂̄a → 0 and ̂̄a → 1,
then take lopt = 1 and lopt = n − 1, respectively.) In the case of even
spacing, ̂̄a can be taken from Eq. (2.4). Instead of ̂̄a, also a bias-corrected
version, ̂̄a′, can be used, see Section 2.6. Employing this block length
selector for real-world problems is evidently a simplification because it
was developed for normal shape, AR(1) persistence, even spacing and
bootstrap standard error estimation. Hall et al. (1995a) show that for
bootstrap CI estimation, lopt should increase at a slower rate with n.
On the other hand, in practice some simplification is inevitable, and
the formula might yield acceptable results. This can be assessed by
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Algorithm 3.1. Moving block bootstrap algorithm (MBB). Note: An equation like
{t∗(i)}n

i=1 = {t(i)}n
i=1 is used to denote t∗(i) = t(i), i = 1, . . . , n.

means of Monte Carlo simulations of real-world conditions, as is done in
subsequent parts of this book.

Bühlmann and Künsch (1999) presented a fully data-driven block
length selector (Algorithm 3.2). They showed the equivalence of lopt

selection and smoothing in spectral estimation (Chapter 5).
Berkowitz and Kilian (2000) presented a brute-force block length se-

lector:

1 Approximate the data generating process by a parametric model (e.g.,
ARMA).

2 Generate Monte Carlo samples from this fitted model.

Block 1

Block 2 Block n – l + 1

x (1) x (2) x (l ) x (l + 1) x (n)x (n – l + 1)

Step 1 Data {t(i), x(i)}n
i=1

Step 2 Resampled times unchanged {t∗(i)}n
i=1 = {t(i)}n

i=1

Step 3 Blocks j (see above) {x(i)}j+l−1
i=j , j = 1, . . . , n− l + 1

Step 4 Set counter c = 1

Start resampling

Step 5 Draw random block j∗ j∗ ∈ {1, . . . , n− l + 1}
Step 6 Insert block data {x∗(i)}c+l−1

i=c = {x(i)}j∗+l−1
i=j∗

If x∗(n) has been inserted Stop inserting and exit

Step 7 Increase counter c → c + l

Step 8 Go to Step 5

End resampling
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Step 1 Calculate {Y (i)}n
i=1 =

{
ÎF (X(i))

}n

i=1
, where

ÎF (X(j)) = n ·
(
θ̂ − θ̂(j)

)
Step 2 Calculate R̂(h) = n−1 ∑n−|h|

i=1 Y (i) · Y (i + |h|), h = −n + 1, . . . , n− 1

Step 3 Calculate iteratively:

b0 = n−1,

bk = n−1/3
[(∑n−1

h=−n+1 R̂(h)2
)

×
(
6

∑n−1
h=−n+1 wSC(h · bk−1 · n4/21)2 · h2 · R̂(h)2

)−1
]1/3

,

k = 1, 2, 3, 4,

b̂ = n−1/3 · (2/3)1/3
[(∑n−1

h=−n+1 wTH(h · b4 · n4/21) · R̂(h)
)

×
(∑n−1

h=−n+1 wSC(h · b4 · n4/21) · |h| · R̂(h)
)−1

]2/3

Step 4 Set lopt = NINT (̂b−1)

Algorithm 3.2. Block length selector after Bühlmann and Künsch (1999). Notes:

ÎF (X(i)) is the estimated influence function (Efron and Tibshirani 1993: Section 21.3

therein). θ̂(j) is the delete-one, jackknife value of θ̂, that is, the θ̂ value calculated from
the data with the jth point removed, see Section 3.4.4. wSC is the split-cosine window;
wSC(z) = 1 for |z| ≤ 0.8, wSC(z) = [1 + cos(5(z − 0.8)π)]/2 for 0.8 < |z| ≤ 1 and
wSC(z) = 0 for |z| > 1. wTH is the Tukey–Hanning window; wTH(z) = [1+cos(πz)]/2
for |z| ≤ 1 and wTH(z) = 0 for |z| > 1.

3 Select the parameter of interest, θ, and an estimation property of
interest, say, bootstrap CI accuracy.

4 Prescribe a search grid. For example, lsearch runs from a start to an
end value with some spacing.

5 Calculate the empirical bootstrap CI coverage error (or another prop-
erty) using the Monte Carlo samples and MBB with lsearch.

6 Select lsearch with best performance.

Other block length selectors are described briefly in the background
material (Section 3.8).

3.3.1.2 Uneven spacing
Applying the MBB to unevenly spaced time series increases the esti-

mation uncertainty because the time spacing values within the inserted
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block, {d(i)}j∗+l−2
i=j∗ , need not equal the spacing values at the insertion

place, {d∗(i)}c+l−2
i=c . This may reduce the ability to preserve serial de-

pendence.

An attempt to adapt MBB to this situation could be to resample
only blocks with spacing similar to the spacing at the insertion place.
For example, only the β% blocks with nearest spacing could be made
drawable. The unevenness in a block could be quantified by the coeffi-
cient of variation of the spacing, CVd, similarly as was done in Fig. 2.3.
In the case of equidistance, one would have CVd = 0 and take β = 100%,
that means, one would use MBB. It is, however, unclear which β value
to take for CVd > 0. A second measure could be to decrease l when
reducing the number of drawable blocks.

A Monte Carlo experiment (Section 3.8) tested a rather simple MBB
adaption: β = 50% for CVd > 0. This was applied to mean estimation
of a Gaussian AR(1) process. It turned out, however, that the accuracy
of the BCa CI was lower compared to usage of the ordinary MBB under
the same block length selector (Eq. 3.28). More Monte Carlo studies of
β choices in dependence on CVd and other spacing properties have to
be carried out to find more accurate MBB adaptions to uneven spacing.

The practical conclusion is that for small CVd and large deviations
from AR(1) persistence, one may use MBB. On the other hand, large
CVd and minor deviations from the AR(1) model indicate to employ
the parametric autoregressive bootstrap (next section). This resampling
method could have a higher relevance than MBB for practical applica-
tions because the AR(1) persistence model is generally a suitable first-
order approximation for weather and climate time series (Chapter 2).
Such a combined approach should yield acceptable results also for small
data sizes. For that purpose, we tend to prefer the ARB over the MBB
resampling type on the basis of the Monte Carlo experiments of mean
estimation (Tables 3.5 and 3.7). If CVd is large and also the deviations
from AR(1) dependence are large, both the MBB and the parametric
autoregressive bootstrap should be tried and results compared. This
difference should indicate the size of the difference of the approximate
bootstrap CIs to the exact CI.

3.3.1.3 Systematic model parts and nonstationarity

For explaining the bootstrap principle (Fig. 3.3), we assumed for con-
venience of presentation x(i) = xnoise(i). Realistic climate processes
contain more parts, like trend, outliers and variability (Eq. 1.2). The
MBB can be applied to such processes by resampling from the residuals.
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Step 1 Data {t(i), x(i)}n
i=1

Step 2 Resampled times {t∗(i)}n
i=1 = {t(i)}n

i=1

unchanged

Step 3 Residuals (Eq. 3.29) r(i) = [x(i)− x̂trend(i)− x̂out(i)]
/

Ŝ(i)

Step 4 Apply MBB

(Algorithm 3.1)

to residuals {r(i)}n
i=1

Step 5 Resampled residuals {r∗(i)}n
i=1

Step 6 Use resampled residuals

to produce resamples x∗(i) = x̂trend(i) + x̂out(i) + Ŝ(i) · r∗(i)

Algorithm 3.3. MBB for realistic climate processes, which comprise trend, outlier
and variability components.

Plugging in the estimates into the climate equation (Eq. 1.2) yields

r(i) = [x(i)− x̂trend(i)− x̂out(i)]
/

Ŝ(i), i = 1, . . . , n, (3.29)

where x̂trend(i), x̂out(i) and Ŝ(i) are estimated trend, outlier and vari-
ability components, respectively. The following chapters explain such
estimations. The residuals, r(i), are realizations of the noise process.
(Analogously, the residuals, ε(i), in Chapter 2 are realizations of a white-
noise process.) The MBB for realistic climate processes is listed as Al-
gorithm 3.3.

The trend, outlier and variability components allow to describe non-
stationary climate processes. A further type of nonstationarity regards
persistence. Consider as example ice-volume fluctuations over the past 4
Ma. In the early part (Pliocene), the persistence was weaker than in the
late part (Pleistocene), when huge continental ice-sheets had been built
up (Mudelsee and Raymo 2005). Such nonstationarity can be accounted
for by the local block bootstrap (Paparoditis and Politis 2002), where,
in the example, Pliocene resamples, x∗(i), are restricted to come from
the Pliocene data, x(i), analogously for Pleistocene resamples. The local
block bootstrap could also be applied, as an alternative to using MBB
and the residuals, to produce nonparametric trend and variability esti-
mates with CIs (Bühlmann 1998). The cited paper applies smoothing
to an ozone time series from Switzerland, 1932–1996. Evidently, the size
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of the locality region should be chosen taking prior knowledge about the
data generating process into account.

3.3.2 Parametric: autoregressive bootstrap

The autoregressive bootstrap algorithm (ARB) is the ordinary boot-
strap applied to the white-noise residuals, ε(i). We first take the resid-
uals, r(i), from the climate equation as in Eq. (3.29). Using the per-
sistence model for r(i), the residuals ε(i) are then formed. ε(i) are
treated as realizations of a white-noise process, see Eq. (2.5). We em-
ploy the AR(1) persistence model as a suitable description for climate
processes (Chapter 2). Advantageously, the distributional shape need
not be Gaussian. Even and uneven spacing are treated separately.

3.3.2.1 Even spacing

The ARB for even spacing is listed as Algorithm 3.4. Although the
bias correction (Step 7) is only approximate (Section 2.6), this is consid-
ered an important step because ignoring bias can lead to a bad bootstrap
performance (Stine 1987). Scaling, as done in Step 8 using a factor[
1− (â′)2

]−1/2, is non-standard. It has the computational advantage
that no transient behaviour is required in Step 11. Centering (Step 9)
achieves that the resample generating process has expectation zero, as
the white-noise process is supposed to have. After Step 9, a further scal-
ing with a factor [(n− 1)/(n− 2)]1/2 (Stine 1987) is omitted. This factor
is in the general case only approximate (Peters and Freedman 1984) and
its effect is considered negligible compared with the other uncertainties.
Lahiri (2003) explains the “traditional” method to generate a number of
samples that is very much larger than n at Step 10 and use those at Step
11 for extracting r∗(i) from the transient sequence. The advantage of
the non-standard formulation (Step 8) corresponds to the advantage of
strict stationarity of the non-standard formulation of the AR(1) model
(Chapter 2).

3.3.2.2 Uneven spacing

The ARB for uneven spacing is listed as Algorithm 3.5. It corresponds
basically to the ARB for even spacing, where the persistence parameter,
a, is replaced by exp{−[t(i)− t(i− 1)]/τ}. Bias correction for τ̂ at Step
7 goes via ̂̄a′ = exp(−d̄/τ̂ ′).
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Step 1 Data {t(i), x(i)}n
i=1

Step 2 Resampled times {t∗(i)}n
i=1 = {t(i)}n

i=1

unchanged

Step 3 Estimated trend, {x̂trend(i)}n
i=1, {x̂out(i)}n

i=1,
{

Ŝ(i)
}n

i=1

outliers, variability

Step 4 Climate equation {r(i)}n
i=1

residuals (Eq. 3.29)

Step 5 Assume {r(i)}n
i=1 to

come from AR(1)

model for even

spacing (Eq. 2.1)

Step 6 Estimate AR(1)

parameter (Eq. 2.4) â

Step 7 Bias correction â′

Step 8 White-noise residuals ε(i) = [r(i)− â′ · r(i− 1)]

×
[
1− (â′)2

]−1/2
,

i = 2, . . . , n

Step 9 Centering ε̃(i) = ε(i)−
∑n

i=2 ε(i)/(n− 1)

Step 10 Draw ε̃∗(j),

j = 2, . . . , n,

with replacement from {ε̃(i)}n
i=2

Step 11 Resampled climate r∗(1) drawn from {r(i)}n
i=1,

residuals r∗(i) = â′·r∗(i−1)+
[
1− (â′)2

]1/2· ε̃∗(i),

i = 2, . . . , n

Step 12 Resampled data x∗(i) = x̂trend(i) + x̂out(i) + Ŝ(i) · r∗(i),

i = 1, . . . , n

Algorithm 3.4. Autoregressive bootstrap algorithm (ARB), even spacing.
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Step 1 Data {t(i), x(i)}n
i=1

Step 2 Resampled times {t∗(i)}n
i=1 = {t(i)}n

i=1

unchanged

Step 3 Estimated trend, {x̂trend(i)}n
i=1, {x̂out(i)}n

i=1,
{

Ŝ(i)
}n

i=1

outliers, variability

Step 4 Climate equation {r(i)}n
i=1

residuals (Eq. 3.29)

Step 5 Assume {r(i)}n
i=1 to

come from AR(1)

model for uneven

spacing (Eq. 2.9)

Step 6 Estimate persistence

time (Eq. 2.11) τ̂

Step 7 Bias correction τ̂ ′

Step 8 Abbreviation â′(i) = exp{−[t(i)− t(i− 1)]/τ̂ ′},

i = 2, . . . , n

Step 9 White-noise residuals ε(i) = [r(i)− â′(i) · r(i− 1)]

×
{
1− [â′(i)]2

}−1/2
, i = 2, . . . , n

Step 10 Centering ε̃(i) = ε(i)−
∑n

i=2 ε(i)/(n− 1)

Step 11 Draw ε̃∗(j),

j = 2, . . . , n,

with replacement from {ε̃(i)}n
i=2

Step 12 Resampled climate r∗(1) drawn from {r(i)}n
i=1,

residuals r∗(i) = â′(i)·r∗(i−1)+
{
1− [â′(i)]2

}1/2

× ε̃∗(i), i = 2, . . . , n

Step 13 Resampled data x∗(i) = x̂trend(i) + x̂out(i) + Ŝ(i) · r∗(i),

i = 1, . . . , n

Algorithm 3.5. Autoregressive bootstrap algorithm (ARB), uneven spacing.
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3.3.3 Parametric: surrogate data
The surrogate data approach (Algorithm 3.6), related to ARB, is a

simulation rather than a resampling method. No residuals are drawn as
in the ARB. Instead, climate equation residuals {r∗(i)}n

i=1 are obtained
by numerical simulation (Step 8) from the persistence model with esti-
mated (and bias-corrected) parameters. Because also the distributional
shape is specified, the surrogate data approach is bounded stronger by
parametric restrictions than the ARB. Therein lies its danger: it is more
prone than the ARB to systematic errors from violated assumptions.

3.4 Bootstrap confidence intervals
Estimation of θ is repeated for the resamples, {t∗b(i), x∗b(i)}n

i=1, b =
1, . . . , B. This yields the bootstrap replications, {θ̂∗b}B

b=1. The repli-
cations are used to construct equi-tailed (1 − 2α) confidence intervals,
CI

θ̂,1−2α
, see Fig. 3.3.

Two approaches, standard error based and percentile based, domi-
nate theory and practice of bootstrap CI construction. The estimated
bootstrap standard error is the sample standard error of the replications,

ŝe
θ̂∗

=

{
B∑

b=1

[
θ̂∗b −

〈
θ̂∗b

〉]2
/

(B − 1)

}1/2

, (3.30)

where
〈
θ̂∗b

〉
=

∑B
b=1 θ̂∗b/B. The percentiles result from the empirical

distribution function (Eq. 3.43) of the replications. The accuracy of
bootstrap CIs depends critically on the similarity (in terms of standard
errors or percentiles) of the distribution of the bootstrap replications
and the true distribution, f(θ̂). Various concepts exist for accounting
for the deviations between the two distributions.

Suppressing “simulation noise” requires more resamples for percentile
estimation than for bootstrap standard error estimation. This book
follows the recommendation of Efron and Tibshirani (1993), and sets
throughout B = 2000 (or 1999 for percentile CIs). For a reasonable
α value such as 0.025, this means that a number of 50 replications are
outside the percentile bound. An own simulation study, analysing the
coefficient of variation of a CI endpoint in dependence of B, confirmed
that this choice is sufficient also in a bivariate setting (Mudelsee and
Alkio 2007).



3.4 Bootstrap confidence intervals 87

Step 1 Data {t(i), x(i)}n
i=1

Step 2 Resampled times {t∗(i)}n
i=1 = {t(i)}n

i=1

unchanged

Step 3 Estimated trend, {x̂trend(i)}n
i=1,

outliers, {x̂out(i)}n
i=1,

variability
{

Ŝ(i)
}n

i=1

Step 4 Climate equation {r(i)}n
i=1

residuals (Eq. 3.29)

Step 5 Assume {r(i)}n
i=1 to

come from

specific model

(shape, persistence)

Step 6 Estimate model

parameters

Step 7 Bias correction

Step 8 Simulate climate

equation residuals {r∗(i)}n
i=1

from estimated model

Step 9 Simulated data x∗(i) = x̂trend(i) + x̂out(i) + Ŝ(i) · r∗(i),

i = 1, . . . , n

Algorithm 3.6. Surrogate data approach.

3.4.1 Normal confidence interval
The bootstrap normal confidence interval, already given in Fig. 3.3,

is

CI
θ̂,1−2α

=
[
θ̂ + z(α) · ŝe

θ̂∗
; θ̂ − z(α) · ŝe

θ̂∗

]
, (3.31)

where z(α) is the percentage point of the normal distribution (Sec-
tion 3.9).
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3.4.2 Student’s t confidence interval
The bootstrap Student’s t confidence interval is

CI
θ̂,1−2α

=
[
θ̂ + tν(α) · ŝe

θ̂∗
; θ̂ − tν(α) · ŝe

θ̂∗

]
, (3.32)

where tν(α) is the percentage point of the t distribution function with
ν degrees of freedom (Section 3.9). It is in practice presumably always
more accurate to prefer, as this book does, Student’s t CIs over normal
CIs because they recognize the reduction of degrees of freedom. (For
data sizes above, say, 30, the difference becomes negligible.)

3.4.3 Percentile confidence interval
The bootstrap percentile confidence interval is

CI
θ̂,1−2α

=
[
θ̂∗(α); θ̂∗(1− α)

]
, (3.33)

that means, it is the interval between the 100αth percentage point
and the 100(1 − α)th percentage point of the empirical distribution of{

θ̂∗b
}B

b=1
. Because of finite B, “simulation noise” is introduced in esti-

mating percentile based CIs. B = 1999 sufficiently reduces this effect,
see the introduction to this section. One takes this value instead of 2000
because then commonly used percentage points can be evaluated with-
out interpolation (e.g., 95th percentage point = 0.95 · (1999 + 1)th =
1900th largest replication value).

3.4.4 BCa confidence interval
The bootstrap bias-corrected and accelerated (BCa) confidence inter-

val is
CI

θ̂,1−2α
=

[
θ̂∗(α1); θ̂∗(α2)

]
, (3.34)

where

α1 = F

(
ẑ0 +

ẑ0 + z(α)
1− â [ẑ0 + z(α)]

)
(3.35)

and

α2 = F

(
ẑ0 +

ẑ0 + z(1− α)
1− â [ẑ0 + z(1− α)]

)
. (3.36)
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F (·) is the standard normal distribution function (Eq. 3.49). ẑ0, the bias
correction, is computed as

ẑ0 = F−1

#
{

θ̂∗b < θ̂
}

B

 , (3.37)

where #{θ̂∗b < θ̂} means the number of replications where θ̂∗b < θ̂ and
F−1(·) is the inverse function of F (·). The acceleration, â, is computed
(Efron and Tibshirani 1993) as

â =

∑n
j=1

[〈
θ̂(j)

〉
− θ̂(j)

]3

6
{∑n

j=1

[〈
θ̂(j)

〉
− θ̂(j)

]2
}3/2

, (3.38)

where θ̂(j) is the jackknife value of θ̂. Consider the original sample with
the jth point removed, that is, {t(i), x(i)} , i = 1, . . . , n, i 6= j. The
jackknife value is then the value of θ̂ calculated using this sample of
reduced size. The average,

〈
θ̂(j)

〉
, is given by

[∑n
j=1 θ̂(j)

]/
n.

ẑ0 corrects for the median estimation bias; for example, if just half of
the replications have θ̂∗b < θ̂, then ẑ0 = 0. The acceleration, â, takes
into account scale effects, which arise when the standard error of θ̂ itself
depends on the true parameter value, θ.

3.5 Examples
In the first, theoretical example, we compare classical and bootstrap

CIs in terms of coverage accuracy (Table 3.5). The mean of AR(1) pro-
cesses with uneven spacing was estimated for two distributional shapes,
normal and lognormal. The classical CI employed the effective data size
for mean estimation, the bootstrap CI used the ARB algorithm and the
BCa method.

The classical CI performed better for the normal than for the lognor-
mal shape. This is because the normal assumption made at CI construc-
tion is violated in the case of the lognormal shape. With increasing data
size, the lognormal approaches the normal distribution (Johnson et al.
1994: Chapter 14 therein) and the difference in performance decreases.
However, this difference is still significant for n = 1000 in the example.

Also the bootstrap CI performed better for the normal than for the
lognormal shape. This may be because persistence time estimation (τ̂)
and persistence time bias correction (τ̂ ′) is less accurate for non-normally
distributed data.
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Table 3.5. Monte Carlo experiment, mean estimation of AR(1) noise processes with
uneven spacing, normal and lognormal shape. nsim = 47,500 random samples were
generated from the Gaussian AR(1) process, {X(i)}n

i=1, after Eq. (2.9) with τ = 1.
The samples from the lognormal AR(1) process were generated by taking exp [X(i)].
The start was set to t(1) = 1; the time spacing, d(i), was drawn from a gamma
distribution (Eq. 2.48) with order parameter 16, that means, a distribution with a
coefficient of variation equal to (16)−1/2 = 0.25, and subsequently scaled to d̄ = 1.
Two CI types for the estimated mean were constructed, classical and bootstrap. The
classical CI employed n′µ calculated from Eq. (2.7) with ̂̄a′ = exp

(
−d̄/τ̂ ′

)
plugged in

for a, and the t distribution (Eq. 3.18). The bootstrap CI used the ARB (Algorithm
3.5) and the BCa method (Section 3.4.4) with B = 1999 and α = 0.025.

n γa
x̄ Nominal

Distribution

Normal Lognormal

CI type CI type

Classical Bootstrap Classical Bootstrap

10 0.918 0.863 0.835 0.789 0.950
20 0.929 0.903 0.845 0.845 0.950
50 0.938 0.929 0.876 0.888 0.950

100 0.943 0.941 0.897 0.909 0.950
200 0.942 0.943 0.914 0.922 0.950
500 0.947 0.948 0.926 0.930 0.950

1000 0.947 0.949 0.933 0.937 0.950

a Standard error of γx̄ is nominally 0.001.

For small sample sizes (n / 50 (normal distribution) or n / 20 (log-
normal distribution)) the classical CI performed better than the boot-
strap CI. This advantage is likely in part owing to the fact that a formula
for the effective data size for mean estimation is known; it may disappear
for more complex estimators, where no formula for the effective data size
exists. For larger sample sizes (n ' 100 (normal distribution) or n ' 50
(lognormal distribution)) the bootstrap CI is as good as the classical CI
(normal shape) or better (lognormal shape).

In the second, practical example, Fig. 3.4 shows the transition from a
glacial (MIS 6) to the last interglacial (MIS 5) in the Vostok CO2 record.
The mean CO2 concentration was estimated for the time intervals from
140 to 177 ka (glacial) and from 115 to 130 ka (interglacial). Student’s
t CIs (Section 3.4.2) were constructed using nonparametric stationary
bootstrap resampling, a variant of the MBB, where the block length is
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Figure 3.4. Determination of mean CO2 levels in the Vostok record (Fig. 1.3b)
during a glacial and an interglacial. The interval from 140 to 177 ka represents
the glacial (MIS 6), the interval from 115 to 130 ky the interglacial (marine isotope
substage 5.5). The 95% bootstrap CIs for the estimated means are shown as shaded
bars.

not constant (Section 3.8). The number of resamples was B = 2000.
The average block length was adjusted to NINT

(
4 · τ/d̄

)
.

The mean glacial CO2 level was determined as 192.8 ppmv with 95%
CI [188.3 ppmv; 197.3 ppmv]; the mean interglacial CO2 level was 271.9
ppmv with 95% CI [268.8 ppmv; 275.0 ppmv]. Because of the reduced
data sizes in the intervals (glacial, n = 13; interglacial, n = 24), also the
accuracies of the CIs may be reduced. The enormous glacial–interglacial
amplitude in CO2 documents the importance of this greenhouse gas for
late Pleistocene climate changes, the ice age. The relation between CO2

and temperature changes is analysed in Chapters 7 and 8.

3.6 Bootstrap hypothesis tests
By the analysis of climate time series, {t(i), x(i)}n

i=1, we make, gener-
ally speaking, a statistical inference of properties of the climate system.
One type of inference is estimation of a climate parameter, θ. In addi-
tion to a point estimate, θ̂, an interval estimate, CI

θ̂,1−2α
, helps to assess

how accurate θ̂ is. The bootstrap is used to construct CIs in complex
situations regarding data properties shape, persistence and spacing. The
second type of inference is testing a hypothesis, a statement about the
climate system, using the data sample. Again, this can be a difficult task
(shape, persistence, spacing), and again, the bootstrap can be a power-
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ful tool in such a situation. Hypothesis tests are also called significance
tests or statistical tests.

A hypothesis test involves the following procedure. A null hypothesis
(or short: null), H0, is formulated. H0 is tested against an alterna-
tive hypothesis, H1. The hypotheses H0 and H1 are mutually exclu-
sive. H0 is a simple null hypothesis if it completely specifies the data
generating process. An example would be “X(i) is a Gaussian white-
noise process with zero mean and unit standard deviation.” H0 is a
composite null hypothesis if some parameter of X(i) is unspecified, for
example, “Gaussian white-noise process with zero mean.” Next, a test
statistic, U , is calculated. Any meaningful construction lets U be a
function of the data process, U = g ({T (i), X(i)}n

i=1). On the sample
level, u = g ({t(i), x(i)}n

i=1). In the example H0: “Gaussian white-noise
process with µ = 0” one could take U = X̄ =

∑n
i=1 X(i)/n, the sam-

ple mean. U is a random variable with a distribution function, F0(u),
where the index “0” indicates that U is computed “under H0,” that is,
as if H0 were true. F0(u) is the null distribution. In the example, F0(u)
would be Student’s t distribution function (Section 3.9). If in the ex-
ample the alternative were H1: “µ > 0,” then a large, positive u value
would speak against H0 and for H1. Using F0(u) and plugging in the
data {t(i), x(i)}n

i=1, the one-sided significance probability or one-sided
P -value results as

P = prob (U ≥ u |H0)
= 1− F0(u). (3.39)

The P -value is the probability that under H0 a value of the test statistic
greater than or equal to the observed value, u, is observed. If P is small,
then H0 is rejected and H1 accepted, otherwise H0 is accepted and H1

rejected. The two-sided P -value is

P = prob (|U | ≥ |u| |H0) . (3.40)

In the example, a two-sided test would be indicated for H1: “Gaussian
white-noise with µ 6= 0.” Besides the P -value, a second result of a
statistical test is the power. In the one-sided test example:

power = prob (U ≥ u |H1) . (3.41)

A type-2 error is accepting H0, although it is a false statement and H1

is true. The probability of a type-2 error is β = 1 − power. A type-1
error is rejecting H0 against H1, although H0 is true. P , the significance
probability, is therefore denoted also as type-1-error probability or false-
alarm probability; u is denoted also as false-alarm level.
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Although H0 can be a composite null, it is usually more explicit than
H1. In climatological practice, the selection of H1 should be guided
by prior climatological knowledge. H1 determines also whether a test
should be designed as one- or two-sided. For example, if H0 were “no
temperature change in a climate model experiment studying the effects
of doubled CO2 concentrations, ∆T = 0,” then a one-sided test against
H1: “∆T > 0” would be appropriate because physics would not let one
expect a temperature decrease. Because H1 is normally rather general,
it is difficult to quantify the test power. Therefore, more emphasis is
put on accurate P -values. Various test statistics, U1, U2, . . . , may be
appropriate for testing H0 against H1. The statistic of choice has for a
given data set a small type-1-error probability (small P -value) as first
quality criterion. The second quality criterion is a small type-2-error
probability (large power), preferably calculated for some realistic, ex-
plicit alternative. We can say that a test does not intend to prove that
a hypothesis is true but rather that it does try to reject a null hypothe-
sis. A null hypothesis becomes more “reliable” after it has been tested
successfully against various realistic alternatives using various data sam-
ples, see Popper (1935). It is important that H0 and H1 are established
independently of the data to prevent circular reasoning, see von Storch
and Zwiers (1999: Section 6.4 therein). As a final general remark, it is
more informative to give P -values than to report merely whether they
are below certain specified significance levels, say P < 0.1, 0.05 or 0.01.

Figure 3.5. Hypothesis test and confidence interval. The parametric null hypothesis
H0: “θ < 0” cannot be rejected against H1: “θ ≥ 0” with a P -value of α.

When H0 concerns a particular parameter value (U = θ), a CI can
be used to derive the P -value (Efron and Tibshirani 1993: Section 15.4
therein). Suppose that a test observes u = θ̂ < 0. Then select α such
that the upper CI bound equals zero. Nominally, prob(θ ≥ 0) = α (Fig.
3.5). This gives a P -value of α for the test of H0: “θ < 0” against H1:
“θ ≥ 0.” An example from a bivariate setting with data {x(i), y(i)}n

i=1
would be the comparison of means µX and µY . If the CI at level 1− 2α

θ̂ u0 =^u = θ

α P = α1–2 α

θ̂ l

CI θ,1–2 α^
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for the absolute value of the difference of means, |µX−µY |, does contain
zero, then H0: “µX = µY ” cannot be rejected against H1: “µX 6= µY ”
at the level p = 1 − 2α in this two-sided test. A criticism to this CI
method of hypothesis testing would be that the CIs are not necessarily
constructed as if H0 were true. There might be scale changes and F0(u)
depend on H0. However, the BCa CI provides a correction to this effect
(Efron and Tibshirani 1993: p. 216 therein). Another option would be
to construct a test statistic, U , such that F0(u) is the same for all H0.
Such a statistic is called a pivot.

Davison and Hinkley (1997: Chapter 4 therein) explain construction
of hypothesis tests by approximating F0(u) with F̂0(u) obtained from
bootstrap resampling or the bootstrap surrogate data approach (Sec-
tion 3.3.3). The permutation test, developed in the 1930s (Edgington
1986), is the bootstrap test with the difference that no replacement is
done for drawing the random samples. This book here puts more em-
phasis on bootstrap CIs than on bootstrap hypothesis test because CIs
contain more quantitative information. We subscribe to Efron and Tib-
shirani’s (1993: p. 218 therein) view that “hypothesis tests tend to be
overused and confidence intervals underused in statistical applications.”

An illustrative example is the case where θ is the anthropogenic sig-
nal proportion in the increase of the global temperature over the past
150 years. Specifically, θ can be defined as ∆Twith − ∆Twithout, where
∆Twith is the temperature change calculated using an AOGCM and tak-
ing human activities such as fossil fuel consumption into account, and
∆Twithout is the temperature change without the effects of human ac-
tivities (“control run”). Hasselmann (1993) and Hegerl et al. (1996)
developed the “fingerprint” approach to derive a powerful test statistic
from the high-dimensional, gridded AOGCM output, and showed that
H0: “θ = 0” can be rejected against H1: “θ > 0.” One task was to
quantify the natural temperature variability in the temporal and spatial
domains, in order to derive the null distribution. This is difficult be-
cause the observed variability contains both natural and anthropogenic
portions. It was solved using AOGCM experiments without simulated
anthropogenic forcings and a surrogate data approach (Section 3.3.3),
that means, several control runs with perturbed initial conditions. It
is evident that an estimate, θ̂, with confidence interval, CI

θ̂,1−2α
, for

the anthropogenic signal proportion would mean a step further towards
quantification.

3.7 Notation
Table 3.6 summarizes the notation.
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Table 3.6. Notation.

X(T ) Climate variable, continuous time, process level
Xtrend(T ) Trend component, continuous time, process level
Xout(T ) Outlier component, continuous time, process level
S(T ) Variability, continuous time
Xnoise(T ) Noise component, continuous time, process level
T Continuous time

X(i) Climate variable, discrete time, process level
Xtrend(i) Trend component, discrete time, process level
Xout(i) Outlier component, discrete time, process level
S(i) Variability, discrete time
Xnoise(i) Noise component, discrete time, process level
T (i) Discrete time
i Index
j Index
EN(µ, σ2)(i) Gaussian noise process with mean µ and standard deviation σ,

discrete time

x(i) Climate variable, discrete time, sample level
t(i) Discrete time, sample level
{t(i), x(i)}n

i=1 Data or sample, discrete time series
d(i) Time spacing, sample level
d̄ Average time spacing, sample level
n Data size

θ (Climate) parameter

θ̂ Estimator of (climate) parameter, process and sample levels, esti-
mate

θ̂1, θ̂2 Other estimators
PDF Probability density function

f(θ̂) PDF of θ̂
F (·) Probability distribution function
F−1(·) Inverse probability distribution function
Femp(·) Empirical distribution function

E(·) Expectation operator
VAR(·) Variance operator
g(·) Function
Γ(·) Gamma function
NINT (·) Nearest integer function

seθ̂ Standard error of θ̂

biasθ̂ Bias of θ̂

RMSEθ̂ Root mean squared error of θ̂

CVθ̂ Coefficient of variation of θ̂
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Table 3.6. Notation (continued).

CI Confidence interval

CIθ̂,1−2α Confidence interval for θ̂ of level 1− 2α

θ̂l Lower bound of CI for θ̂

θ̂u Upper bound of CI for θ̂
γl Coverage, below lower CI bound
γu Coverage, above upper CI bound
γ Coverage of CI
µ Mean
µ̂ Mean estimator
X̄ Sample mean, process level
x̄ Sample mean, sample level
γx̄ Coverage of CIx̄,1−2α

σ Standard deviation
σ̂ Standard deviation estimator
Sn−1 Sample standard deviation, process level
sn−1 Sample standard deviation, sample level
γsn−1 Coverage of CIsn−1,1−2α

z(β) = zβ Percentage point at β of the standard normal distribution
tν(β) Percentage point at β of the t distribution function with ν degrees

of freedom
χ2

ν(β) Percentage point at β of the chi-squared distribution function with
ν degrees of freedom

β Probability

nsim Number of (Monte Carlo) simulations
c Constant
c Counter
C Coverage error
O(·) Order of
〈·〉 Average

AR(1) Autoregressive process of order 1
AR(p) Autoregressive process of order p
MA(q) Moving average process of order q
ARMA(p, q) Mixed autoregressive moving average process

n′ Effective data size
n′µ Effective data size for mean estimation
n′σ2 Effective data size for variance estimation
n′ρ Effective data size for correlation estimation
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Table 3.6. Notation (continued).

a AR(1) autocorrelation parameter (even spacing)
â AR(1) autocorrelation parameter (even spacing) estimator
â′ AR(1) autocorrelation parameter (even spacing) estimator, bias-

corrected
τ AR(1) persistence time (uneven spacing)
τ̂ AR(1) persistence time (uneven spacing) estimator
τ̂ ′ AR(1) persistence time (uneven spacing) estimator, bias-corrected
ā AR(1) equivalent autocorrelation parameter (uneven spacing)̂̄a AR(1) equivalent autocorrelation parameter (uneven spacing) es-

timator̂̄a′ AR(1) equivalent autocorrelation parameter (uneven spacing) es-
timator, bias-corrected

t∗, t∗(i) Bootstrap version of discrete time, sample level

t∗b(i) Indexed bootstrap version of discrete time, sample level
b = 1, . . . , B Index
B Number of bootstrap resamples
x∗, x∗(i) Bootstrap version of climate variable, discrete time, sample level

x∗b(i) Indexed bootstrap version of climate variable, discrete time, sam-
ple level

d∗(i) Bootstrap version of time spacing, sample level
{t∗(i), x∗(i)}n

i=1 Bootstrap resample

θ̂∗ Bootstrap replication

θ̂∗b Indexed bootstrap replication

MBB Moving block bootstrap
ARB Autoregressive bootstrap
NBB Non-overlapping block bootstrap
CBB Circular block bootstrap
SB Stationary bootstrap
MaBB Matched-block bootstrap
TaBB Tapered block bootstrap

l Block length
lopt Optimal block length
lsearch Block length search value

Y (i) Variable (lopt selector after Bühlmann and Künsch (1999))

ÎF (X(i)) Estimated influence function

R̂(h) Function (lopt selector after Bühlmann and Künsch (1999))

R̂(h) Autocovariance estimator (Chapter 2)
ρ̂(h) Autocorrelation estimator (Chapter 2)
h Lag

b0, b1, b2, b3, b4, b̂ Parameters (lopt selector after Bühlmann and Künsch (1999))
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Table 3.6. Notation (continued).

wSC(·) Split-cosine window
wTH(·) Tukey–Hanning window
z Auxiliary variable

CVd Coefficient of variation of the spacing
β Percentage of drawable blocks (adaption of MBB to uneven spac-

ing)

x̂trend(i) Estimated trend component, discrete time, sample level
x̂out(i) Estimated outlier component, discrete time, sample level

Ŝ(i) Estimated variability, discrete time
r(i) Residual of climate equation, discrete time (Eq. 1.2)
r∗(i) Bootstrap version of residual of climate equation, discrete time

(Eq. 1.2)
ε(i) White-noise residual, discrete time
ε̃(i) Centred white-noise residual, discrete time
ε̃∗(i) Bootstrap version of centred white-noise residual, discrete time
â′(i) Abbreviation (ARB algorithm)

BCa CI Bias-corrected and accelerated CI
ABC CI Approximate BCa CI
ŝeθ̂∗ Estimated bootstrap standard error

θ̂∗(α) Percentage point at α of the empirical distribution of θ̂∗

α1, α2 Other α values
ẑ0 Bias correction
â Acceleration
#{} Number of cases

θ̂(j) Jackknife value of θ̂

H0 Null hypothesis
H1 Alternative hypothesis
U Test statistic, process level
u Test statistic, sample level (u is also denoted as false-alarm level)
U1, U2 Other test statistics, process level
F0(u) Null distribution

F̂0(u) Estimated null distribution
P P -value, probability of a type-1 error or false-alarm probability
β Probability of a type-2 error

M Median

M̂ Sample median, process level
m̂ Sample median, sample level
X ′(i) Size-sorted X(i)

ε Small value
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Table 3.6. Notation (continued).

θ̂∗b
l (λ) Indexed lower bootstrap CI bound over a grid of confidence levels

λ Variable, determines confidence level
p̂(λ) Empirical probability (bootstrap calibration)

y, p0, p1, p2, p3, p4, Parameters (z(β) approximation)
q0, q1, q2, q3, q4

u, v, w Parameters (error function approximation)
b, δ Parameters (lognormal distribution)
p, q Parameters (geometric distribution)

Z Set of whole numbers
S Set of numbers

AOGCM Atmosphere–Ocean General Circulation Model
MIS Marine isotope stage (sometimes also loosely used for marine iso-

tope substage)
∆T Modelled temperature change
∆Twith Modelled temperature change, with fossil fuel consumption
∆Twithout Modelled temperature change, without fossil fuel consumption

3.8 Background material
We use RMSE instead of the mean squared error (given by RMSE2

θ̂
).

RMSE, with the same units as the data, is a handy parameter.
Standard deviation estimation for Gaussian white noise seems to

have raised more interest in previous decades than today, as the dis-
cussion from 1968 in the journal The American Statistician illustrates
(Cureton 1968b,a; Bolch 1968; Markowitz 1968a,b; Jarrett 1968). For
example, the choice σ̂ = c ·Sn−1, with c given by Eq. (3.24), yields mini-
mal RMSEσ̂ among all σ estimators for Gaussian white noise (Goodman
1953). Or, σ̂ = c−1 · Sn−1 yields biasσ̂ = 0 for Gaussian white noise, see
for example Holtzman (1950). Today, it appears for practical purposes
rather arbitrary whether or not to scale Sn−1, or whether to use n − 1
or n. The resulting differences are likely much smaller than the effects
of violations of the Gaussian assumption.

The median of a distribution is defined via F (M) = 0.5. (F (·) is the
distribution function, see Eq. (3.49).) The sample median as estimator
of M is on the process level

M̂ =

{
X ′((n + 1)/2) for uneven n,

0.5 · [X ′(n/2) + X ′(n/2 + 1)] for even n,
(3.42)

where X ′(i) are the size-sorted X(i). On the sample level, m̂ results
from using x(i).
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A robust estimation procedure “performs well not only under ideal
conditions, the model assumptions that have been postulated, but also
under departures of from the ideal” (Bickel 1988). In the context of
this book, the assumptions regard distributional shape, persistence and
spacing; the performance regards an estimator and its properties such
as RMSE or CI coverage accuracy. Under ideal conditions, robust es-
timation procedures can be less efficient (have higher se

θ̂
) than non-

robust procedures. For example, for Gaussianity and n → ∞, sem̂ →
(π/2)1/2 · seµ̂ (Chu 1955). Robust estimators can require sorting oper-
ations, which makes it often difficult to deduce their distribution. The
term “robust” was coined by Box (1953); relevant papers on robust lo-
cation estimation include Huber (1964) and Hampel (1985); for more
details see Tukey (1977) or Huber (1981). Unfortunately, today’s usage
of “robust” in the climate research literature is rather arbitrary.

The empirical distribution function of a sample {x(i)}n
i=1 is given

by

Femp(x) =
number of values ≤ x

n
. (3.43)

Femp(x) is the sample analogue of the theoretical distribution function,
for example, Eq. (3.49).

Bootstrap resampling was formally introduced by Efron (1979);
this article summarizes also earlier work. Singh (1981) soon recognized
that the ordinary bootstrap yields inconsistent results in a setting with
serial dependence. A consistent estimator, θ̂, converges in probability to
θ as n increases. Convergence in probability means

lim
n→∞

prob
(
|θ̂ − θ| > ε

)
= 0 ∀ε > 0. (3.44)

Textbooks on bootstrap resampling include those written by Efron
and Tibshirani (1993), Davison and Hinkley (1997) and Good (2005).
Statistical point estimation is covered by Lehmann and Casella (1998).

The moving block bootstrap or MBB was introduced by Künsch
(1989) and Liu and Singh (1992). The MBB resamples overlapping
blocks. Carlstein (1986) had earlier suggested a method (denoted as
NBB) that resamples non-overlapping blocks and does not truncate the
final block. This may lead to resamples with data size less than n,
that means, subsampling (see below). Hall (1985) had already consid-
ered overlapping and non-overlapping block methods in the context of
spatial data. Bühlmann (1994) showed that if

1. X(i) is a stationary Gaussian process with short-range dependence,

2. θ̂ is a smooth function g ({x(i)}) of the data (e.g., the mean is a
smooth function, but the median not) and



3.8 Background material 101

3. the block length, l, increases with the data size, n, within bounds,
l = O

(
n1/2−ε

)
, 0 < ε < 1/2,

then the MBB produces resamples from a process that converges to
the data generating process. The MBB is then called asymptotically
valid. The questions after the validity and other properties of the MBB
and other bootstrap methods under relaxed assumptions (non-Gaussian
processes, long-range dependence, etc.) are currently extensively studied
in statistical science. For long-range dependence and the sample mean
as estimator with an asymptotically Gaussian distribution, MBB can
be modified to provide a valid approximation (Lahiri 1993). For long-
range dependence and non-Gaussian limit distributions, MBB has to be
changed to subsampling one single block (Hall et al. 1998). Block length
selection is less explored for long-range dependence; intuitively, a larger
length should be used than for short-range dependence. See Berkowitz
and Kilian (2000), Bühlmann (2002), Politis (2003), Lahiri (2003) and
references cited in these overviews.

Other block length selectors for the MBB and also for other non-
parametric bootstrap methods have been proposed. Hall et al. (1995a)
gave an iterative method based on subsamples and cross-validation.
As regards the subsample size, consult Carlstein et al. (1998: p. 309
therein). Although the convergence properties in the general case are
unknown, the method performed well in the Monte Carlo simulations
shown. Politis and White (2004) developed a rule that selects block
length as two times the smallest integer, after which the autocovari-
ance function (Eq. 2.18) “appears negligible.” However, for uneven
spacing the autocovariance function is not defined and this selector
not directly applicable. A related rule, based on the persistence time,
τ , of the AR(1) process for uneven spacing (Section 2.1.2), would set
l = NINT

(
4 · τ/d̄

)
; Mudelsee (2003) suggested this rule for correlation

estimation of bivariate, unevenly spaced time series (Chapter 7).
An MBB adaption to uneven spacing was analysed using a Monte

Carlo experiment. The following simple rule was employed. Instead of
allowing all n − l + 1 blocks to be drawn for insertion, only the 50%
blocks closest (plus ties) in the coefficient of variation of the spacing,
CVd, were made drawable. This was applied to mean estimation of a
Gaussian AR(1) process. The comparison between this MBB adaption
and the ordinary MBB was made in terms of coverage accuracy and
average CI length (Table 3.7). The experiment used the BCa CI and
employed the block length selector after Eq. (3.28) for the MBB and its
adaption. The result (Table 3.7) exhibits a reduced coverage accuracy
of the MBB adaption. The following deficit outweighed the advantage of
the adaption (increased similarity of CVd between sample and resample).
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Table 3.7. Monte Carlo experiment, moving block bootstrap adaption to uneven
spacing. nsim = 47,500 random samples were generated from the Gaussian AR(1)
process, {X(i)}n

i=1, after Eq. (2.9) with τ = 1. The start was set to t(1) = 1; the time
spacing, d(i), was drawn from a gamma distribution (Eq. 2.48) with order parameter
16, that means, a distribution with a coefficient of variation equal to (16)−1/2 = 0.25,
and subsequently scaled to d̄ = 1. Bootstrap BCa CIs for the estimated mean were
constructed with B = 1999 and α = 0.025. The ordinary MBB resampling algorithm
was compared with an MBB adaption to uneven spacing. The adaption made draw-
able only the 50% blocks closest (plus ties) in the coefficient of variation of the spacing.
Both the MBB and its adaption to uneven spacing yield clearly larger coverage errors
than the ARB because in that Monte Carlo experiment (Table 3.5) the prescribed
AR(1) dependence matches the assumption made by the ARB (Section 3.3.2).

n γa
x̄ Nominal 〈 CI length 〉b

Resampling method Resampling method

MBB Adapted MBB MBB Adapted MBB

10 0.591 0.623 0.950 0.836 0.864
20 0.799 0.788 0.950 0.915 0.890
50 0.874 0.861 0.950 0.685 0.672

100 0.901 0.888 0.950 0.510 0.505
200 0.913 0.903 0.950 0.374 0.372
500 0.929 0.920 0.950 0.244 0.244

1000 0.935 0.923 0.950 0.176 0.175

a Standard error of γx̄ is nominally 0.001.
b Average value over nsim simulations.

Reducing the drawable blocks to 50% reduced, in comparison with the
ordinary MBB, the variation between resamples. This in turn reduced
the variation between the replications (sample means of resamples). This
led to narrower CIs from the adapted MBB algorithm (last two columns
in Table 3.7). The CIs from the adapted MBB, finally, contained the
true µ value less often than the CIs from the ordinary MBB. This means
a reduced accuracy because the empirical coverages were in this case of
mean estimation always less than the nominal value.

Other nonparametric bootstrap resampling methods than the
MBB have been proposed. The circular block bootstrap (CBB) (Politis
and Romano 1992a) “wraps” the data {x(i)}n

i=1 around a circle such
that x(n) (Algorithm 3.1) has a successor, x(1). The CBB then resam-
ples overlapping blocks of length l from this periodic structure. That
overcomes the deficit of the MBB that data near the edges, x(1) or
x(n), have a lower probability to be resampled than data in the centre.
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Also the stationary bootstrap (SB) (Politis and Romano 1994) uses the
periodic structure to ensure stationarity of the resampling process. Also
the SB uses overlapping blocks—however, the block length is not con-
stant but geometrically distributed. Similar selectors as for the MBB
(Section 3.3.1.1) can be used for adjusting the average block length.
As regards the choice among MBB, NBB, CBB and SB, Lahiri (1999)
showed that (1) overlapping blocks (MBB, CBB, SB) are better than
non-overlapping blocks (NBB) in terms of RMSE of estimation of vari-
ance and related quantities like bootstrap standard error and (2) nonran-
dom block lengths (MBB, CBB) are, under the same criterion, at least
as good as random block lengths (SB). For estimation of the distribution
function and related quantities like CI points, less is known but there
are indications that also here MBB and CBB perform better (Lahiri
2003: Chapter 5 therein). Some recent developments are the following.
The matched-block bootstrap (MaBB) (Carlstein et al. 1998) introduces
dependence between blocks to reduce bias in the bootstrap variance by
imposing probability rules. One rule prefers resampling blocks such that
block values at the endpoints, where the blocks are concatenated, show
a higher agreement than under the MBB. The tapered block bootstrap
(TaBB) (Paparoditis and Politis 2001) tapers (weights) data by means
of a function before concatenating blocks. The idea is to give reduced
weight to data near the block endpoints. This could make the TaBB
have lower estimation bias than MBB or CBB (Paparoditis and Politis
2001). Advanced block bootstrap methods could be better than MBB
for analysing equidistant climate time series, especially in the case of
the MaBB, which shows good theoretical and simulation results when
X(i) is an AR(p) process (Carlstein et al. 1998). For uneven spacing,
it could be more important to enhance MBB by matching blocks in
terms of their spacing structure. This point deserves further study by
means of Monte Carlo experiments. Subsampling refers to a procedure
where the bootstrap resample size is less than the data size. NBB can
lead to subsampling. Also the jackknife (Efron 1979), where l = n − 1
and one block only is resampled, is a subsampling variant. A detailed
account is given by Politis et al. (1999). We finally mention the wild
bootstrap, which attempts to reconstruct the distribution of a residual
r(i) (Eq. 3.29) by means of a two-point distribution (Wu 1986; Härdle
and Marron 1991). The adaption of the wild bootstrap to nonparametric
autoregression by Neumann and Kreiss (1998) has not yet been extended
to uneven spacing, however.

The autoregressive bootstrap or ARB has been developed in the
early 1980s; relevant early papers include Freedman and Peters (1984),
Peters and Freedman (1984), Efron and Tibshirani (1986) and Find-
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ley (1986). Then Bose (1988) showed second-order correctness of the
ARB method for estimating stationary AR(p) models—not necessarily
Gaussian—and even spacing. Validity of the ARB for nonstationary
AR(p) models (e.g., random walk or unit-root processes) requires sub-
sampling, that is, drawing less than n resamples at Step 12 of the ARB
(Algorithm 3.4), see Lahiri (2003: Chapter 8 therein). The ARB was
extended to stationary ARMA(p, q) models with even spacing by Kreiss
and Franke (1992). It seems difficult to generate theoretical knowledge
about ARB performance for time series models with uneven spacing.

Other parametric bootstrap resampling methods than the ARB
have been proposed. The sieve bootstrap (Kreiss 1992; Bühlmann 1997)
assumes an AR(∞) process. Because of the high number of terms, this
model is highly flexible and can approximate other persistence models
than the AR(p) with p < ∞. Therefore the sieve bootstrap could also be
called a semi-parametric bootstrap method. The deficit of this method
regarding application to climate time series is that it is restricted to
even spacing. The parametric bootstrap for Gaussian ARFIMA pro-
cesses was shown to yield similar asymptotic coverage errors of CIs for
covariance estimation as in the case of independent processes (Andrews
and Lieberman 2002).

The frequency-domain bootstrap is explained in Chapter 5.

The surrogate data approach comes from dynamical systems theory
in physics (Theiler et al. 1992). Contrary to the assertion in the review
on surrogate time series by Schreiber and Schmitz (2000: p. 352 therein),
this approach is not the common choice in the bootstrap literature.
The same as the surrogate data approach is the so-called Monte Carlo
approach (Press et al. 1992: Section 15.6 therein).

Bootstrap CIs, their construction and statistical properties are re-
viewed in the above mentioned textbooks and by DiCiccio and Efron
(1996) and Carpenter and Bithell (2000). The challenging question “why
not replace [CIs] with more informative tools?” has been raised by Hall
and Martin (1996: p. 213 therein). This is based on their criticism that
“the process of setting confidence intervals merely picks two points off
a bootstrap histogram, ignoring much relevant information about shape
and other important features.” It has yet to be seen whether graphical
tools such as those described by Hall and Martin (1996) will be accepted
by the scientific communities. The percentile CI was proposed by Efron
(1979), the BCa CI by Efron (1987). A numerical approximation to
the BCa interval, called ABC interval, was introduced by DiCiccio and
Efron (1992). See Section 3.9 on numerical issues concerning construc-
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tion of BCa intervals. Götze and Künsch (1996) show the second-order
correctness of BCa CIs for various estimators and the MBB for serially
dependent processes. Hall (1988) determined theoretical coverage ac-
curacies of various bootstrap CI types for estimators that are smooth
functions of the data. Bootstrap-t CIs are formed using the standard
error, se∗

θ̂
, of a single bootstrap replication (Efron and Tibshirani 1993).

For simple estimators like µ̂ = X̄, plug-in estimates can be used instead
of se∗

θ̂
. However, for more complex estimators, no plug-in estimates are

at hand. A second bootstrap loop (bootstrapping from bootstrap sam-
ples) had to be invoked, which would increase computing costs.

Bootstrap calibration can strongly increase CI coverage accuracy.
Consider that a single CI point is sought, say, the lower bound, θ̂l, for
an estimate, θ̂. Let the bound be calculated for each bootstrap sample,
b = 1, . . . , B, and over a grid of confidence levels, for example,

θ̂∗bl (λ), λ = 0.01, . . . , 0.99. (3.45)

For each λ, compute

p̂(λ) =
#

{
θ̂ ≤ θ̂∗bl (λ)

}
B

. (3.46)

Finally, solve p̂(λ) = α for λ. In case a two-sided, equi-tailed CI is
sought, the calibration curve p̂(λ) = 1− 2α, where

p̂(λ) =
#

{
θ̂∗bl (λ) < θ̂ < θ̂∗bu (λ)

}
B

, (3.47)

is solved for λ. To calculate the CI points for a bootstrap sample requires
to perform a second bootstrap–estimation loop. Analysing second-loop
bootstrap methods like calibration or bootstrap-t interval construction
may require enormous computing costs. Relevant papers on calibrated
bootstrap CIs include Hall (1986), Loh (1987, 1991), Hall and Martin
(1988), Martin (1990) and Booth and Hall (1994). Regarding the context
of resampling data from serially dependent processes, Choi and Hall
(2000) report that the sieve or AR(∞) bootstrap has a significantly
better performance than blocking methods in CI calibration. However,
the sieve bootstrap is not applicable to unevenly spaced time series. This
books presents a Monte Carlo experiment on calibrated bootstrap CIs for
correlation estimation (Chapter 7), with satisfying coverage performance
despite the used MBB resampling.

Bootstrap hypothesis tests are detailed by Davison and Hinkley
(1997: Chapter 4 therein), see also Efron and Tibshirani (1993: Chap-
ter 15 therein) and Lehmann and Romano (2005: Chapter 15 therein).
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The relation between making a test statistic pivotal and bootstrap CI
calibration is described by Beran (1987, 1988). Guidelines for bootstrap
hypothesis testing are provided by Hall and Wilson (1991). An extension
of MBB hypothesis testing of the mean from univariate to multivariate
time series has been presented by Wilks (1997). The dimensionality
may be rather high, and the method may therefore be applicable to
time-dependent climate fields such as gridded temperature output from
a mathematical climate model. Beersma and Buishand (1999) compare
variances of bivariate time series using jackknife resampling. They find
significantly higher variability of future northern European precipitation
amounts in the computer simulation with elevated greenhouse gas con-
centrations than in the simulation without (control run). Huybers and
Wunsch (2005) test the hypothesis that Earth’s obliquity variations in-
fluence glacial terminations during the late Pleistocene using parametric
resampling of the timescale (Section 4.1.7).

Multiple hypothesis tests may be performed when analysing a hy-
pothesis that consists of several sub-hypotheses. This situation arises in
spectrum estimation (Chapter 5), where a range of frequencies is exam-
ined. The traditional method is adjusting the P -values of the individual
tests to yield the desired overall P -value. A recent paper (Storey 2007:
p. 347 therein) states “that one can improve the overall performance of
multiple significance tests by borrowing information across all the tests
when assessing the relative significance of each one, rather than calcu-
lating P -values for each test individually.”

The anthropogenic warming signal has stimulated much work
applying various types of hypothesis tests using measured and AOGCM
temperature data. More details on the fingerprint approach are con-
tained in the following papers: Hasselmann (1997), Hegerl and North
(1997) and Hegerl et al. (1997). Correlation approaches to detect the
anthropogenic warming signal are described by Folland et al. (1998) and
Wigley et al. (2000). A recent overview is given by Barnett et al. (2005).

3.9 Technical issues
The standard normal (Gaussian) distribution has following PDF:

f(x) = (2π)−1/2 exp
(
−x2/2

)
. (3.48)

Figure 3.1 shows the distributional shape. The distribution function,

F (x) =

x∫
−∞

f(x′)dx′, (3.49)
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cannot be expressed in closed analytical form. We use

F (x) = 1− 0.5 erfcc
(
x

/√
2
)

, (3.50)

where for x ≥ 0 the complementary error function, erfcc, is approximated
(Press et al. 1992: Section 6.2 therein) via

erfcc(u) ≈ v exp(−w2 − 1.26551223 + v (1.00002368 + v (0.37409196
+ v (0.09678418 + v (−0.18628806 + v (0.27886807
+ v (−1.13520398 + v (1.48851587
+ v (−0.82215223 + v 0.17087277))))))))), (3.51)

v = 1/(1 + w/2), (3.52)
w = |u|. (3.53)

For x < 0, use the symmetry, F (−x) = 1−F (x). For all x, this approx-
imation has a relative error of less than 1.2 · 10−7 (Press et al. 1992).
The inverse function of F (x) defines the percentage point on the x axis,
z(β), with 0 ≤ β ≤ 1. Approximations are used for calculating z(β); for
the Monte Carlo simulation experiments in this book, the formula given
by Odeh and Evans (1974) is employed:

z(β) ' −y − {[(y · p4 + p3) · y + p2] · y + p1} · y + p0

{[(y · q4 + q3) · y + q2] · y + q1} · y + q0
, 0 < β < 0.5,

(3.54)
where

y =
[
ln

(
β−2

)]1/2 (3.55)

and

p0 = −0.322232431088, p1 = −1.0,

p2 = −0.342242088547, p3 = −0.0204231210245,

p4 = −0.453642210148 · 10−4, q0 = 0.0993484626060, (3.56)
q1 = 0.588581570495, q2 = 0.531103462366,

q3 = 0.103537752850, q4 = 0.38560700634 · 10−2.

If 0.5 < β < 1 then z(β) = −z(1 − β). This approximation produces,
for example, the values z(1 − 0.025) ≈ 1.959964 and z(1 − 0.05) ≈
1.644854. For 10−20 ≤ β ≤ 1−10−20, Eq. (3.54) yields an approximation
that is accurate to seven decimal places (Odeh and Evans 1974). The
percentage point of the standard normal distribution can be used to
calculate approximate percentage points of other distributions such as
Student’s t and chi-squared (see following paragraphs). See the following
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for more details on the Gaussian distribution: Johnson et al. (1994:
Chapter 13 therein) and Patel and Read (1996).

Student’s t distribution with ν degrees of freedom has following
PDF:

f(x) =
Γ((ν + 1)/2)

(πν)1/2 Γ(ν/2)

(
1 + x2 /ν

)−(ν+1)/2
, ν = 1, 2, . . . . (3.57)

Approximations have to be used for calculating the percentage point,
tν(β). For the Monte Carlo simulation experiments in this book, the
following formula (Abramowitz and Stegun 1965: p. 949 therein) is em-
ployed:

tν(β) ' zβ +
z3
β + zβ

4ν
+

5z5
β + 16z3

β + 3zβ

96ν2

+
3z7

β + 19z5
β + 17z3

β − 15zβ

384ν3

+
79z9

β + 776z7
β + 1482z5

β − 1920z3
β − 945zβ

92,160ν4
,

(3.58)

where zβ = z(β) is the percentage point of the standard normal distri-
bution. For ν ≥ 10 and 0.0025 ≤ β ≤ 0.9975, this approximation has a
relative accuracy of less than 0.015% (own determination using Johnson
et al. (1995: Table 28.7 therein)). See Johnson et al. (1995: Chapter 28
therein) for more details on the t distribution.

The chi-squared distribution with ν degrees of freedom has follow-
ing PDF:

f(x) = exp(−x/2)xν/2−1
/[

2ν/2 · Γ(ν/2)
]
, x ≥ 0, ν > 0. (3.59)

It has mean ν and variance 2ν. Approximations are used for calculating
the percentage point, χ2

ν(β). For the Monte Carlo simulation experi-
ments in this book, the following formula (Goldstein 1973) is employed:

χ2
ν(β) ' ν

{
1− 2

9ν
+

4z4
β + 16z2

β − 28
1215ν2

+
8z6

β + 720z4
β + 3216z2

β + 2904
229,635ν3

+ (2/ν)1/2

[
zβ

3
−

z3
β − 3zβ

162ν
−

3z5
β + 40z3

β + 45zβ

5832ν2

+
301z7

β − 1519z5
β − 32,769z3

β − 79,349zβ

7,873,200ν3

]}3

,

(3.60)
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where zβ = z(β) is the percentage point of the standard normal distri-
bution. For ν ≥ 10 and 0.001 ≤ β ≤ 0.999, this approximation has a
relative accuracy of less than 0.05% (Zar 1978). See Johnson et al. (1994:
Chapter 18 therein) for more details on the chi-squared distribution.

The lognormal distribution can be defined as follows. If ln [X(i)]
is distributed as N(µ, σ2), then X(i) has a lognormal distribution with
parameters µ and σ (shape). It has the PDF

f(x) = (2π)−1/2 · σ−1 · x−1 · exp
{
− [ln(x/b)]2

/(
2σ2

)}
, x > 0,

(3.61)
where b = exp(µ). The lognormal has expectation exp(µ + σ2/2) and
variance

{
exp(2µ) · exp(σ2) · [exp(σ2)− 1]

}
. Other definitions with an

additional shift parameter ((X(i)− δ) instead of X(i)) exist. See Aitchi-
son and Brown (1957), Antle (1985), Crow and Shimizu (1988) or John-
son et al. (1994: Chapter 14 therein) for more details on the lognormal
distribution.

The geometric distribution is a discrete distribution with

prob (X = x) = p · qx, x = 0, 1, 2, . . . , (3.62)

where q = 1−p and 0 < p < 1. It has expectation q/p. See Johnson et al.
(1993: Chapter 5 therein) for more details on the geometric distribution.

BCa CI construction has numerical pitfalls. Regarding the bias
correction, ẑ0, in the case of a discretely distributed, unsmooth estima-
tor, θ̂, own experiments with median estimation and x(i) ∈ Z (whole
numbers) have shown that a higher CI accuracy is achieved when using
instead of Eq. (3.37) the following formula:

ẑ0 = F−1

#
{

θ̂∗b < θ̂
}

B
+

#
{

θ̂∗b = θ̂
}

2B

 . (3.63)

Because only a finite number, B, of θ̂∗ values are computed, θ̂∗(α1)
and θ̂∗(α2) are calculated by interpolation. If now B is too small, the
acceleration, â, too large and α too small, then α1 may become too
small or α2 too large to carry out the interpolation. The choice of
values for this book (B = 2000, α ≥ 0.025), however, prohibits this
problem. See Efron and Tibshirani (1993: Section 14.7 therein) and
Davison and Hinkley (1997: Section 5.3.2 therein) on the interpolation
pitfall, and further Andrews and Buchinsky (2000, 2002) on the choice of
B. Refer to Polansky (1999) on the finite sample bounds on coverage for
percentile based CIs. As regards estimation of the acceleration, possible
alternatives to Eq. (3.38) are analysed by Frangos and Schucany (1990).
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The balanced bootstrap (Davison et al. 1986) is a bootstrap variant
where over all n ·B resampling operations, each of the values {x(i)}n

i=1
is prescribed to be drawn equally often (B times). This can increase the
accuracy of bootstrap estimates or, instead, allow to reduce B with the
same accuracy as when using the “unbalanced” bootstrap with a higher
number of resamples. In the case of a process without serial dependence,
a simple algorithm for a balanced version of the ordinary bootstrap is
as follows (Davison and Hinkley 1997: Section 9.2.1 therein). Step 1.
Concatenate B copies of {x(i)}n

i=1 into a single set S of size n ·B. Step
2. Permute the elements of S at random and call this set S∗. Step 3.
For b = 1, . . . , B, take successive sets of n elements of S∗ as balanced re-
samples {x∗b(i)}n

i=1. In the case of serial dependence, a balanced version
of the MBB would permute blocks of elements of S. A reduced num-
ber of resamples, B, means reduced computing costs for the balanced
bootstrap. How large this gain is depends on the type of estimation.
The gain may not be large for quantile estimation (Davison and Hinkley
1997), which is required in BCa CI construction (Section 3.4.4).

2SAMPLES (Mudelsee and Alkio 2007) is a Fortran 90 program
for performing comparisons of location measures (mean and median)
and variability measures (standard deviation and MAD) between two
samples. The difference measures are estimated with BCa CI. It is freely
available from http://www.mudelsee.com (27 November 2009).

DOS and Excel resampling programs are freely available for down-

Good (2005) is a reference where routines for bootstrap resampling,
BCa and bootstrap-t CI construction can be found. Also two- and multi-
sample comparisons are included. Following languages/environments are
supported: C++, EViews, Excel, GAUSS, Matlab, R, Resampling Stats,
SAS, S-Plus and Stata.

A Matlab/R computer code for practical implementation of the
block length selector of Politis and White (2004) can be downloaded

Resampling Stats is a resampling software purchasable as stan-
dalone, Excel and Matlab versions from http://www.resample.com (2 Au-
gust 2005).

Shazam is a commercial econometrics software that includes boot-
strap resampling (http://shazam.econ.ubc.ca, 2 August 2005).

SPSS is a software package that includes bootstrap resampling and
CI construction (Version 13.0: SPSS, Inc., Chicago, IL 60606, USA;
IBM SPSS Statistics Version 18: http://spss.com/software/statistics, 5
January 2010).

load on http://userweb.port.ac.uk/~woodm/programs.htm (2 August 2005).

from http://econ.duke.edu/~ap172/ (29 June 2010).
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Univariate Time Series



Chapter 4

Regression I

Regression is a method to estimate the trend in the climate equation
(Eq. 1.1). Assume that outlier data do not exist or have already been
removed by the assistance of an extreme value analysis (Chapter 6).
Then the climate equation is a regression equation,

X(T ) = Xtrend(T ) + S(T ) ·Xnoise(T ). (4.1)

One choice is to write Xtrend(T ) as a function with parameters to be esti-
mated. A simple example is the linear function (Section 4.1), which has
two parameters, intercept and slope. A second example is the nonlinear
regression model (Section 4.2). The other choice is to estimate Xtrend(T )
nonparametrically, without reference to a specific model. Nonparametric
regression (Section 4.3) is also called smoothing.

Trend is a property of genuine interest in climatology, it describes
the mean state. This chapter deals also with quantifying S(T ), the
variability around the trend, as second property of climate. Regression
methods can be used to measure climate changes: their size and timing.
For that aim, the ramp regression (Section 4.2.1) constitutes a useful
parametric model of climate changes.

We compare the bootstrap with the classical approach to determine
error bars and CIs for estimated regression parameters. The difficulties
imposed by the data are non-Gaussian distributions, persistence and
uneven spacing. We meet another difficulty, uncertain timescales. This
leads to adaptions of the bootstrap (Section 4.1.7), where the resampling
procedure is extended to include also the time values, t(i).

The present chapter studies regression as a tool for quantifying the
time-dependence of Xtrend(T ), the relation between trend and time in
univariate time series. A later chapter (Regression II) uses regression to

M. Mudelsee, Climate Time Series Analysis, Atmospheric and 113
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analyse the relation in bivariate time series, between one time-dependent
climate variable, X(T ), and another, Y (T ).

4.1 Linear regression
The linear regression uses a straight-line model,

Xtrend(T ) = β0 + β1T. (4.2)

The climate equation without outlier component is then written in dis-
crete time as a linear regression equation,

X(i) = β0 + β1T (i) + S(i) ·Xnoise(i). (4.3)

T is called the predictor or regressor variable, X the response variable,
β0 and β1 the regression parameters.

4.1.1 Weighted least-squares and ordinary
least-squares estimation

In a simple, theoretical setting, where the variability S(i) is known
and Xnoise(i) has no serial dependence, the linear regression model can be
fitted to data {t(i), x(i)}n

i=1 by minimizing the weighted sum of squares,

SSQW (β0, β1) =
n∑

i=1

[x(i)− β0 − β1t(i)]
2 /

S(i)2 , (4.4)

yielding the weighted least-squares (WLS) estimators

β̂0 =

[
n∑

i=1

x(i)/S(i)2 − β̂1

n∑
i=1

t(i)/S(i)2
] /

W, (4.5)

β̂1 =

{[
n∑

i=1

t(i)/S(i)2
] [

n∑
i=1

x(i)/S(i)2
] /

W −
n∑

i=1

t(i)x(i)/S(i)2
}

×


[

n∑
i=1

t(i)/S(i)2
]2 /

W −
n∑

i=1

t(i)2/S(i)2


−1

, (4.6)

where

W =
n∑

i=1

1/S(i)2. (4.7)
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In a practical setting, S(i) is often not known and has to be replaced
by Ŝ(i). If prior knowledge indicates that S(i) is constant, then one
may take as estimator the square root of the residual mean square MSE

(Montgomery and Peck 1992),

Ŝ(i) = Ŝ =

{
n∑

i=1

[
x(i)− β̂0 − β̂1t(i)

]2 /
(n− 2)

}1/2

= MS
1/2
E . (4.8)

If S(i) is unknown and possibly time-dependent, the following itera-
tive estimation algorithm can be applied (Algorithm 4.1). As long as
S(i) is required only for weighting, this produces the correct estimators
also if only the relative changes of S(i), instead of the absolute val-
ues, are estimated. Analogously, if S(i) is required only for weighting
and known to be constant, then Eqs. (4.5) and (4.6) can be used with
S(i) = 1, i = 1, . . . , n and W = n. This estimation without weighting
is called ordinary least squares (OLS). For the construction of classical
CIs (Section 4.1.4), however, an estimate of S(i) has to be available.

Step 1 Make an initial guess, Ŝ(0)(i), of the variability.

Step 2 Estimate the regression parameters, β̂
(0)
0 and β̂

(0)
1 , with the guessed

variability used instead of S(i) in Eqs. (4.5), (4.6) and (4.7).

Step 3 Calculate e(i) = x(i)− β̂0 − β̂1t(i), i = 1, . . . , n. The e(i) are called the
unweighted regression residuals.

Step 4 Obtain a new variability estimate, Ŝ(1)(i) from the residuals. This can
be done either nonparametrically by smoothing (e.g., running standard
deviation of e(i)) or fitting a parametric model of S(i) to e(i).

Step 5 Go to Step 2 with the new, improved variability estimate until regres-
sion estimates converge.

Algorithm 4.1. Linear weighted least-squares regression, unknown variability.

4.1.1.1 Example: Arctic river runoff
The climate model run with natural forcing only (Fig. 4.1a) does not

exhibit a slope significantly different from zero. (See Section 4.1.4 for
the determination of regression standard errors.) The run with com-
bined anthropogenic and natural forcing (Fig. 4.1b) displays significant
upwards trends in runoff. Wu et al. (2005) conjecture that there might
be a change-point at around 1965, when the slope changed.
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Figure 4.1. Linear regression models fitted to modelled Arctic river runoff (Fig. 1.9).
a Natural forcing only; b combined anthropogenic and natural forcing. Following
Wu et al. (2005), the fits (solid lines) were obtained by OLS regression using the
data from (a) the whole interval 1900–1996 and (b) from two intervals, 1936–2001
and 1965–2001. The estimated regression parameters (Eqs. 4.5 and 4.6) and their

standard errors (Eqs. 4.24 and 4.25) are as follows. a β̂0 = 3068 ± 694 km3a−1, β̂1 =

0.102 ± 0.356 km3a−2; b 1936–2001, β̂0 = −2210 ± 1375 km3a−1, β̂1 = 2.807 ± 0.698
km3a−2; b 1965–2001, β̂0 = −13,977 ± 3226 km3a−1, β̂1 = 8.734 ± 1.627 km3a−2.

4.1.2 Generalized least-squares estimation
In a practical climatological setting, Xnoise(i) often exhibits persis-

tence. This means more structure or information content than a purely
random process has. This knowledge can be used to apply the general-
ized least-squares (GLS) estimation, where the following sum of squares
is minimized:

SSQG(β) = (x−Tβ)′ V−1 (x−Tβ) . (4.9)

Herein,

β =
[
β0

β1

]
(parameter vector), (4.10)
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x =

x(1)
...

x(n)

 (data vector), (4.11)

T =

1 t(1)
...

...
1 t(n)

 (time matrix) (4.12)

and V is an n × n matrix, the covariance matrix. The solution is the
GLS estimator,

β̂ =
(
T′V−1T

)−1 T′V−1x. (4.13)

GLS has the advantage of providing smaller standard errors of regression
estimators than WLS in the presence of persistence. Analogously, in the
case of time-dependent S(i), the WLS estimation is preferable (Sen and
Srivastava 1990) to OLS estimation. The covariance matrix has the
elements

V (i1, i2) = S(i1) · S(i2) · E [Xnoise(i1) ·Xnoise(i2)] , (4.14)

i1, i2 = 1, . . . , n. Climatological practice normally requires to estimate
besides the variability also the persistence (Chapter 2) to obtain the V
matrix. In the case of the AR(1) persistence model for uneven spacing
(Eq. 2.9), the only unknown besides S(i) required for calculating V is
the persistence time, τ . The estimated V matrix has then the elements

V̂ (i1, i2) = Ŝ(i1) · Ŝ(i2) · exp
[
−|t(i1)− t(i2)|/τ̂ ′

]
, (4.15)

i1, i2 = 1, . . . , n, where τ̂ ′ is the estimated, bias-corrected persistence
time (Section 2.6). For even spacing, replace the exponential expression
by (â′)|i1−i2|. (In the case of persistence models more complex than
AR(1), V is calculable and, hence, GLS applicable only for evenly spaced
time series.) The autocorrelation or persistence time estimation formulas
(Eqs. 2.4 and 2.11) are applied to the weighted WLS regression residuals,

r(i) =
[
x(i)− β̂0 − β̂1t(i)

]/
Ŝ(i), (4.16)

i = 1, . . . , n. Detrending by a linear regression is not the same as mean
subtraction, and the bias of those autocorrelation and persistence time
estimators need not follow the approximations given for mean subtrac-
tion (Section 2.6), but are unknown. However, the deviations are likely
negligible compared with the other uncertainties. Also in the case of un-
known persistence, an iterative procedure similar to that for WLS can
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be applied, which is called estimated generalized least squares (EGLS)
(Sen and Srivastava 1990: Section 7.3 therein). Section 4.1.4.1 gives an
EGLS procedure for the case of AR(1) persistence.

4.1.3 Other estimation types
Least squares (OLS, WLS, GLS) is one type of fit criterion. An-

other is maximum likelihood (Section 2.6, p. 58). Further criteria result
from further preferences in the regression procedure. A notable choice
is robustness against the influence of outlier data, Xout(i). This can
be achieved by minimizing instead of the sum of squares (Eq. 4.4), the
median of squares,

m̂
{

[x(i)− β0 − β1t(i)]
2 /

S(i)2
}n

i=1
. (4.17)

Preferably (background material) is to minimize the trimmed sum of
squares,

SSQT (β0, β1) =
n−j∑

i=j+1

[
x′(i)− β0 − β1t

′(i)
] /

S′(i)2 , (4.18)

where j = INT (δn), INT (·) is the integer function, 0 < δ < 0.5, x′(i)
is size-sorted x(i), and t′(i) and S′(i) are the “slaves,” correspondingly
rearranged. Trimming excludes the 2j most extreme terms from con-
tributing to the estimation. Also by the minimization of the sum of
absolute deviations,

SSQA(β0, β1) =
n∑

i=1

|x(i)− β0 − β1t(i)| /S(i) , (4.19)

outlier values (if not already excluded by means of a prior analysis)
can be given less influence on regression estimates than in least-squares
minimization. Such criteria could also be preferable (in terms of, say,
standard errors of estimates) to least squares when instead of Xout(i) we
considered heavy-tailed or skewed Xnoise(i) distributions.

The various criteria introduced so far and the related minimization
techniques represent the computational aspect of the regression estima-
tion problem. The second and perhaps more relevant aspect is suitabil-
ity of the linear regression model. In climatology this means whether
a linear increase or decrease is not too simple for describing Xtrend(T ).
Model suitability can be evaluated graphically via various types of plots
of the regression residuals (Eq. 4.16). These realizations of the noise
process should nominally not exhibit more structure than the assumed
persistence model.
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4.1.4 Classical confidence intervals
Assume that for a data set {t(i), x(i)}n

i=1 the following assumptions
hold:

1. Xnoise(i) is of Gaussian shape;

2. the covariance matrix V (Eq. 4.14), containing persistence and vari-
ability properties, is correctly estimated;

3. the linear model (Eq. 4.3) is correct.

Then CIs for the GLS estimators β̂0 and β̂1 of Eq. (4.13) can be con-
structed from their Student’s t distributions (Sen and Srivastava 1990):

CI
β̂j ,1−2α

=
[
β̂j + tn−2(α) · se

β̂j
; β̂j + tn−2(1− α) · se

β̂j

]
, (4.20)

j = 0 (intercept) and 1 (slope). The standard errors of the estimators
are (Sen and Srivastava 1990)

se
β̂j

= [C(j, j)]1/2 , (4.21)

j = 0, 1, where the matrix C is given by

C =
(
T′V−1T

)−1
. (4.22)

The GLS estimators are under the above assumptions also unbiased (Sen
and Srivastava 1990):

bias
β̂j

= 0, (4.23)

j = 0, 1. The properties of the GLS regression parameter estimators
hold of course also for WLS (a special case of GLS where V is diagonal
with unequal diagonal elements) and OLS (a special case of GLS where
V is diagonal with equal diagonal elements). In the case of OLS, the
standard errors can be written in short explicit form (Montgomery and
Peck 1992):

se
β̂0

= MS
1/2
E

{
1/n +

( n∑
i=1

t(i)/n
)2/[ n∑

i=1

t(i)2 −
( n∑

i=1

t(i)
)2/

n
]}1/2

,

(4.24)

se
β̂1

= MS
1/2
E

[
n∑

i=1

t(i)2 −
( n∑

i=1

t(i)
)2/

n

]−1/2

. (4.25)
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Figure 4.2. GLS versus OLS standard errors of linear regression estimators. GLS
standard errors, seβ̂j

, j = 0 (intercept) and 1 (slope), are given by Eq. (4.21). OLS

standard errors for the case when V is not diagonal with equal diagonal elements, are
given (Montgomery and Peck 1992) by the square root of the diagonal elements of the
matrix (T′T)−1T′VT(T′T)−1. In each panel, the ratio of standard errors is plotted
against the autocorrelation coefficient (even spacing) or the equivalent autocorrela-
tion coefficient (uneven spacing) of the AR(1) models for Xnoise(i). a Even spacing,
intercept; b even spacing, slope; c uneven spacing, intercept; d uneven spacing, slope;
filled symbols, n = 100; open symbols, n = 1000. The uneven time spacing (c, d)
was generated as t(i) = i2, i = 1, . . . , n and scaled to d̄ = 1. Here, the coefficient of
variation of the spacing, CVd, is approximately 3−1/2 ≈ 0.58. The even time spacing
has d(i) = 1.

In the case of GLS, computation of standard errors and CIs requires
normally some matrix operations (Section 4.5).

One may ask what happens when the assumptions hold and OLS is
used although V has some nonzero non-diagonal elements. The answer
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is that the OLS estimators are still unbiased (Montgomery and Peck
1992), but have larger standard errors than the GLS estimators. The
relevance of this effect for practical applications in climatology is as fol-
lows (Fig. 4.2). The size of the error reduction by GLS depends on
the autocorrelation and the spacing. For AR(1) autocorrelation, even
spacing and data sizes between 100 and 1000, the reduction in standard
errors (slope, intercept) is less than 13%; for uneven spacing with a typ-
ical CVd value of somewhat above 0.5 (Fig. 1.15), the reduction is less
than 31%. Interestingly, for even spacing the standard error reduction
becomes sizable only for large autocorrelations (above, say, 0.9) (Fig.
4.2a, b) whereas for uneven spacing this is the case over a large autocor-
relation range (Fig. 4.2c, d). Regression estimations on unevenly spaced
climate time series may therefore indeed benefit from GLS no matter
whether the autocorrelation is weak or strong.

4.1.4.1 Prais–Winsten procedure
The method by Prais and Winsten (1954) to apply EGLS estimation

under the assumption of AR(1) persistence is of high relevance for cli-
mate time series analysis. Here, variability and size of the persistence
are normally unknown and have to be estimated. In this context, the
following procedure (Algorithm 4.2) can be used to obtain CIs for the
regression parameters β0 and β1. This CI is denoted as classical because
its construction assumes noise of Gaussian shape. In many practical
situations, a single updating loop should already provide a satisfying
regression solution: start with OLS or WLS, calculate the residuals,
update V and perform GLS.

4.1.4.2 Cochrane–Orcutt transformation
Another idea to respect AR(1) autocorrelation of the noise process is

to transform the variables. Consider

β†0 = β0(1− a), (4.26)

β†1 = β1, (4.27)

T †(i) = T (i)− aT (i− 1), i = 2, . . . , n (4.28)

and

X†
noise(i) = Xnoise(i)− aXnoise(i− 1), i = 2, . . . , n. (4.29)
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Step 1 Make an initial guess of the variability, Ŝ(i). Make an initial guess
of the persistence time, τ̂ , for uneven spacing or the autocorrelation
parameter, â, for even spacing. (For notational convenience, we omit
writing a superscript.) Often the simple choices of constant variability
and absent persistence are sufficient.

Step 2 Update the V matrix after Eq. (4.15).

Step 3 Perform GLS (Eq. 4.13) to obtain updates of regression parameter es-
timates. Update also SSQG (Eq. 4.9).

Step 4 If regression parameters, and possibly also SSQG, have not changed
strongly at the preceding step, take this solution and go to Step 8.

Step 5 Calculate the unweighted regression residuals e(i). Update the vari-

ability estimate Ŝ(i) by using the e(i).

Step 6 Calculate the weighted regression residuals, r(i), after Eq. (4.16). Up-
date the persistence estimate τ̂ or â by using the r(i). Take bias cor-
rection (Section 2.6) into account.

Step 7 Go to Step 2.

Step 8 After regression parameters, and possibly also SSQG, approached the
solution at Step 4, calculate the residuals r(i) and the standard errors
(Eq. 4.21). The residuals can be used for graphical analysis (Mont-
gomery and Peck 1992). One looks whether they fail to reveal more
structure than a Gaussian AR(1) process, that means, whether the lin-
ear regression model with AR(1) noise is a suitable description of the
data. The standard errors can be used for classical CI construction
(Eq. 4.20).

Algorithm 4.2. Construction of classical confidence intervals, Prais–Winsten proce-
dure.

Then

X†(i) = X(i)− aX(i− 1), i = 2, . . . , n, (4.30)

= β†0 + β†1 T †(i) + X†
noise(i)

yields a transformed linear regression model with independent X†
noise(i)

(Cochrane and Orcutt 1949), which can be solved using OLS. Because
a is unknown, it has to be estimated from the residuals. This leads
to a similar iterative algorithm as the Prais–Winsten procedure (Sec-
tion 4.1.4.1), see also Montgomery and Peck (1992: Section 9.1.3 therein).
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Step 1 Make initial guesses of the variability (Ŝ(i)) and the persistence (τ̂ or
â).

Step 2 Update the V matrix (Eq. 4.15).

Step 3 Perform GLS (Eq. 4.13) to obtain updated β̂. Update also SSQG (Eq.
4.9).

Step 4 If regression parameters, and possibly also SSQG, have not changed
strongly at the preceding step, take this solution and go to Step 8.

Step 5 Calculate e(i). Update Ŝ(i) by using the e(i).

Step 6 Calculate r(i) (Eq. 4.16). Update τ̂ or â by using the r(i) and bias
correction.

Step 7 Go to Step 2.

Step 8 MBB: select block length (Section 3.3.1.1), guided by τ̂ or â.

Step 9 Draw first resample,
{
t∗b(i), x∗b(i)

}n

i=1
, using MBB (Algorithm 3.3) or

ARB (even spacing, Algorithm 3.4; uneven spacing, Algorithm 3.5). b,
counter.

Step 10 Use GLS with unchanged V to produce first bootstrap replication, β̂
∗b

with b = 1.

Step 11 Go to Step 9 until b = B (usually B = 2000) replications exist.

Step 12 Calculate BCa or other CI (Section 3.4.4) from
{

β̂
∗b

}B

b=1
.

Algorithm 4.3. Construction of bootstrap confidence intervals, Prais–Winsten pro-
cedure.

Because the transformed model has one data point less, we do not
consider the Cochrane–Orcutt transformation superior to the Prais–
Winsten procedure.

4.1.4.3 Approach via effective data size
A simple and fast adaption of OLS estimation to the presence of

persistence can be achieved by using the effective data size for mean
estimation, n′µ. In the case of even spacing, use the general formula (Eq.
2.6) for arbitrary Xnoise(i) or Eq. (2.7) with â′ plugged in for a for AR(1)
processes. In the case of uneven spacing and AR(1) dependence, use Eq.
(2.7) with ̂̄a′ = exp(−d̄/τ̂ ′) plugged in for a.
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Persistence increases the residual mean square, that is, (n′µ − 2) has
to be used instead of (n − 2) in Eq. (4.8). It further increases the
OLS standard errors (Eqs. 4.24 and 4.25) and widens the CI (Eq. 4.20),
by a factor of [(n − 2)/(n′µ − 2)]1/2. Because this suggestion of a fast
adaption of OLS CIs via n′µ is ad-hoc (regression is not the same as mean
estimation), its performance is tested using Monte Carlo simulations.

4.1.5 Bootstrap confidence intervals
Certain assumptions regarding the distributional shape (Gaussian) of

the Xnoise(i) distribution and the persistence model (AR(1)) were made
in preceding sections. This allowed to construct CIs for the regression
parameter estimates using the t distribution (Eq. 4.20). In the real
climate world, however, deviations from the Gaussian shape and, occa-
sionally, the AR(1) model can be expected. In those situations, CIs may
better be constructed using bootstrap resampling. We explore the MBB
(Section 3.3.1) and the ARB (Section 3.3.2) resampling algorithms. We
compare classical CIs with bootstrap BCa CIs (Section 3.4.4) in terms
of coverage accuracy and interval length.

The application of bootstrap resampling to regression problems is
straightforward. We give here (Algorithm 4.3, p. 123) the MBB and
ARB algorithms for the Prais–Winsten procedure (Section 4.1.4.1). In
practice, one updating loop (OLS–GLS) should already provide a satis-
fying regression solution.

4.1.6 Monte Carlo experiments: ordinary
least-squares estimation

The performance of following CI types for OLS regression estimators
was analysed by means of Monte Carlo experiments:

1. classical CI without taking persistence into account (i.e., calculating
MSE using n);

2. classical CI with persistence adjustment via n′µ;

3. bootstrap BCa CI with ARB resampling; and

4. bootstrap BCa CI with MBB resampling.

The MBB used the block length selector after Eq. (3.28). The results of
intercept estimation were similar to those of slope estimation; only the
latter are therefore presented.

Ignoring persistence results in a bad coverage performance already
under “ideal conditions” such as even spacing, AR(1) dependence and
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Table 4.1. Monte Carlo experiment, linear OLS regression with AR(1) noise of nor-
mal shape, even spacing: CI coverage performance. nsim = 47,500 random samples
were generated from X(i) = 2 + 2T (i) + Xnoise(i), where T (i) = i, i = 1, . . . , n and
the noise is a Gaussian AR(1) process (Eq. 2.1) with a = 1/e ≈ 0.37. Two CI types
for the estimated slope were constructed, classical and bootstrap. Construction of
classical CIs either ignored persistence and calculated via n (Eqs. 4.8, 4.20 and 4.25)
or used n′µ (Section 4.1.4.3). The bootstrap CIs used ARB (Algorithm 3.4) or MBB
(Algorithm 3.1) resampling and the BCa method (Section 3.4.4) with B = 1999 and
α = 0.025.

n γa
β̂1

Nominal

CI type

Classical Bootstrap BCa

V ia n V ia n′µ ARB MBB

10 0.851 0.900 0.809 0.718 0.950
20 0.832 0.915 0.875 0.815 0.950
50 0.819 0.932 0.915 0.867 0.950

100 0.817 0.941 0.933 0.895 0.950
200 0.819 0.945 0.941 0.913 0.950
500 0.818 0.947 0.945 0.927 0.950

1000 0.816 0.950 0.950 0.936 0.950

a Standard error of γ
β̂1

is nominally 0.001.

Gaussian shape (Table 4.1). Ignoring persistence leads to underestimat-
ing the MSE and standard errors and yields therefore too narrow CIs
(Table 4.2).

Noise of AR(1) persistence and Gaussian shape is rather easy to han-
dle for the remaining three CI types. In particular, classical CIs via n′µ
and bootstrap BCa CIs with ARB resampling performed well in terms
of coverage accuracy (Table 4.1); the classical CIs did even better than
the bootstrap CIs for small data sizes (less than 100).

Retaining the AR(1) persistence model but going from Gaussian to
lognormal distributional shape diminished only slightly the coverage per-
formance (Table 4.3). Interestingly, the classical CI via n′µ performed
also here excellently already for small data sizes.

Retaining the Gaussian distributional shape but adopting a persis-
tence model more complex than AR(1) had more severe effects on cov-
erage performance than changing the shape. In the case of AR(2) per-
sistence (Table 4.4), the classical CI via n′µ as well as the bootstrap BCa
CI with ARB resampling failed for all data sizes tested. The reason is
that the AR(1) assumption, made for n′µ calculation as well as ARB
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Table 4.2. Monte Carlo experiment, linear OLS regression with AR(1) noise of nor-
mal shape, even spacing: average CI length. Results are shown for the estimated
slope. See Table 4.1 for further details.

n 〈 CI length 〉a

CI type

Classical Bootstrap BCa

V ia n V ia n′µ ARB MBB

10 0.43790 0.69145 0.44414
20 0.15132 0.24262 0.19118
50 0.03822 0.05706 0.05316 0.04431

100 0.01354 0.02006 0.01941 0.01693
200 0.00480 0.00708 0.00697 0.00628
500 0.00121 0.00179 0.00178 0.00166

1000 0.00043 0.00063 0.00063 0.00060

a Average value over nsim simulations.

Table 4.3. Monte Carlo experiment, linear OLS regression with AR(1) noise of log-
normal shape, even spacing. nsim = 47,500 random samples were generated from
X(i) = 2 + 2T (i) + Xnoise(i), where T (i) = i, i = 1, . . . , n. The lognormal noise was
generated from a Gaussian AR(1) process (Eq. 2.1) with a = 1/e ≈ 0.37 by expo-
nentiation and subsequent scaling (Section 3.9) to mean zero and variance unity. See
Table 4.1 for further details.

n γa
β̂1

Nominal

CI type

Classical Bootstrap BCa

V ia n V ia n′µ ARB MBB

10 0.888 0.933 0.799 0.739 0.950
20 0.864 0.926 0.846 0.795 0.950
50 0.861 0.937 0.889 0.845 0.950

100 0.856 0.943 0.908 0.872 0.950
200 0.855 0.943 0.918 0.893 0.950
500 0.854 0.944 0.928 0.914 0.950

1000 0.856 0.944 0.934 0.924 0.950

a Standard error of γ
β̂1

is nominally 0.001.

construction, is violated by the AR(2) model. However, both methods
could in principle be adapted, the classical CI by calculating n′µ from
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Table 4.4. Monte Carlo experiment, linear OLS regression with AR(2) noise of
normal shape, even spacing. nsim = 47,500 random samples were generated from
X(i) = 2 + 2T (i) + Xnoise(i), where T (i) = i, i = 1, . . . , n. The AR(2) noise was
produced after Eq. (2.14) with a1 = 0.5 and a2 = −0.5, and discarding the first 5000
realizations to approach asymptotic stationarity. (The a1–a2 setting corresponds to
a quasi-cyclical noise behaviour with a period of ∼ 5.2.) The noise was scaled to
variance unitya. See Table 4.1 for further details.

n γb
β̂1

Nominal

CI type

Classical Bootstrap BCa

V ia n V ia n′µ ARB MBB

10 0.939 0.969 0.923 0.805 0.950
20 0.961 0.990 0.978 0.944 0.950
50 0.976 0.997 0.995 0.972 0.950

100 0.981 0.998 0.998 0.968 0.950
200 0.981 0.999 0.999 0.963 0.950
500 0.983 0.999 0.999 0.968 0.950

1000 0.983 0.999 0.999 0.962 0.950

a The asymptotically stationary AR(2) process has a mean equal to zero and a variance equal
to σ2

ε (1− a2)/[(1+ a2) (1+ a1− a2) (1− a1− a2)], where σ2
ε is the variance of the innovation

term (Priestley 1981: p. 128 therein). Setting σ2
ε = 2/3 thus yields VAR[Xnoise(i)] = 1.

b Standard error of γ
β̂1

is nominally 0.001.

Eq. (2.6) and the bootstrap CI by calculating the white-noise residuals
(Algorithm 3.4) from an AR(2) fit. On the other hand, the bootstrap
BCa CI with MBB resampling had a good coverage performance owing
to some robustness against violations of the AR(1) assumption.

However, retaining the Gaussian distributional shape but adopting
an ARFIMA(0, δ, 0) persistence model led to rather bad coverage per-
formance of all four types of CIs (Table 4.5). The long-range autocor-
relation of the ARFIMA model evidently cannot be captured, neither
by the classical CI via n′µ, nor by the bootstrap BCa CI with ARB
resampling.

Also the bootstrap BCa CI with ordinary MBB resampling failed in
the case of ARFIMA(0, δ, 0) noise (Table 4.5). This is because concate-
nating the independent blocks (Algorithm 3.1) introduces too strong
independence and prohibits mimicking the long-term ARFIMA persis-
tence. However, subsampling one single block (size l) and calculating
the bootstrap replications by OLS regression on the simulated series
of reduced size—yielded excellent coverages (Table 4.5). That means,
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Table 4.5. Monte Carlo experiment, linear OLS regression with ARFIMA(0, δ, 0)
noise of normal shape, even spacing. nsim = 47,500 random samples were generated
from X(i) = 2 + 2T (i) + Xnoise(i), where T (i) = i, i = 1, . . . , n. The ARFIMA(0, δ, 0)
noise with δ = 0.25, zero mean and unity variance was generated using the algorithm
of Hosking (1984). Two CI types for the estimated slope were constructed, classical
and bootstrap. Construction of classical CIs either ignored persistence and calculated
via n (Eqs. 4.8, 4.20 and 4.25) or used n′µ (Section 4.1.4.3). The bootstrap CIs
used ARB (Algorithm 3.4) or MBB (Algorithm 3.1) resampling and the BCa method
(Section 3.4.4) with B = 1999 and α = 0.025. Two implementations of the MBB
algorithm were analysed. The ordinary MBB (Algorithm 3.3) resampled n data points
by drawing random blocks of length l selected after Eq. (3.28). The subsampling MBB
resampled one single block of length l = n/2.

n γa
β̂1

Nominal

CI type

Classical Bootstrap BCa

V ia n V ia n′µ ARB MBB

Ordinary Subsampling

10 0.876 0.905 0.810 0.759 0.925 0.950
20 0.816 0.876 0.825 0.786 0.942 0.950
50 0.727 0.822 0.799 0.757 0.955 0.950

100 0.650 0.770 0.757 0.726 0.955 0.950
200 0.577 0.710 0.704 0.694 0.956 0.950
500 0.481 0.618 0.615 0.644 0.957 0.950

1000 0.415 0.546 0.545 0.604 0.954 0.950

a Standard error of γ
β̂1

is nominally 0.001.

reducing the data size made the MBB CIs wide enough. The critical
point was to correctly guess the subsampling block length, l. The guid-
ance offered by Lahiri (2003: Section 10.5 therein) for subsampling in the
case of mean estimation, namely l = c n1/2 with various c values, gave
inacceptable results for slope estimation in our case of OLS regression. A
trial-and-error search found the rule l = n/2, which worked excellently—
for slope estimation and ARFIMA(0, δ, 0) noise with δ = 0.25 only. This
rule yielded too low coverages for intercept estimation, and it yielded
too high coverages for slope estimation and ARFIMA(0, δ, 0) noise with
δ = 0.10.

The conclusions regarding the practice of climate time series analysis
in the presence of long memory are as follows. Long-memory noise makes
CIs of estimated regression parameters considerably wider than AR(1)
noise. If ignored, long memory leads therefore to overstated accuracies.
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A good measure against this is to use bootstrap MBB subsampling (Sec-
tion 3.8). In this regard, the block length selection has a decisive impact
on the coverage accuracy. A trial-and-error method, or a brute-force
search as described in Section 3.3.1.1, is therefore advisable as long as
no theoretical l selection rules are available.

A critical case is uneven spacing and long-memory noise. The ac-
curacy of MBB CIs could be reduced compared to even spacing, and
parametric implementations of the long-memory model, as an analogue
of ARB resampling, seem not to exist.

4.1.7 Timescale errors
Up to now we have assumed that in a stochastic time series process

{T (i), X(i)}n
i=1 the times T (i) were exactly known, whereas we have con-

ceded the climate variable X(i) some noise from measurement, proxy and
climate uncertainties, described by the time-dependent random variable
Xnoise(i). In the linear regression problem, this assumption leads to
X(i) = β0 + β1T (i) + S(i) ·Xnoise(i), with the regressor T (i) fixed and
known. This model is called fixed-regressor model.

For several types of climate time series, the fixed-regressor model is
adequate. For example, climate model output (Fig. 1.9) or instrumen-
tal observations (Fig. 1.10) are records with exactly known T (i). Also
documentary data (Fig. 1.1) share this feature, potentially, as far as in-
homogeneities from document loss or reporting errors can be excluded.
However, for several other climate archives, namely those recording the
climate via proxy variables (Table 1.2), the assumption T (i) = Ttrue(i)
(true time value) cannot be maintained. For example, archives such
as sediment cores, speleothems or ice cores require age determinations
(Section 1.6). Here we have to write the measured times as

T (i) = Ttrue(i) + Tnoise(i), (4.31)

i = 1, . . . , n, where Tnoise(i) is the error owing to age uncertainties. This
means further that for proxy time series we have to write the linear
regression as

X(i) = β0 + β1 [T (i)− Tnoise(i)] + S(i) ·Xnoise(i), (4.32)

i = 1, . . . , n. This model is called errors-in-variables model.
What happens when we apply OLS estimation to errors-in-variables

models (Eq. 4.32)? Consider first the following, simple form of the
timescale error:

Tnoise(i) = EN(0, S2
T )(i), (4.33)

that means, a Gaussian random process with zero mean and variance S2
T .

Let Tnoise(i) be independent of Ttrue(i) and Xnoise(i). Let Xnoise(i) be
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Table 4.6. Errors and spread of time values for dated proxy time series. The time
series types are listed in Table 1.2, and the records are shown in Figs. 1.2, 1.3b, 1.5a,
1.6 and 1.7.

Climate archive Proxy variable ST VAR [T (i)]1/2 Bias factora

Marine sediment core δ18O 25 kab 565 ka 0.998
Ice core CO2 15 kac 103 ka 0.979

Ca 13 ad 226 a 0.997
Tree-rings ∆14C 15 ae 3585 a 0.99998

Speleothem δ18O 82 af 2367 a 0.999

a Also called attenuation factor; approximated by
(
1 + S2

T /VAR [T (i)]
)−1

.
b Mudelsee (2005).
c Upper bound (Petit et al. 1999).
d Approximate “internal” uncertainty, i.e., within the time interval, no absolute value (Sec-
tion 4.2.1.4).
e Average over the individual age uncertainties ST (j) (Reimer et al. 2004).
f Average over the individual age uncertainties ST (j) (Fleitmann et al. 2003: Table S1
therein).

given by EN(0, 1)(i). Let further S(i) be constant. It can then be shown
(Draper and Smith 1981: Section 2.14 therein) that the expectation of
the OLS estimator of the slope (Eq. 4.6) is

E
(
β̂1

)
= β1

/(
1 + S2

T

/
VAR [Ttrue(i)]

)
. (4.34)

Herein, VAR [Ttrue(i)] is the variance of the true time points, which may
for practical purposes be approximated by VAR [T (i)].

As Eq. (4.34) shows, the OLS slope estimator has a negative bias, it
underestimates the true slope. On the one hand, for many practical anal-
yses of univariate proxy climate time series, the ratio S2

T /VAR[Ttrue(i)]
should be negligible and the resulting bias also. This is demonstrated
for some of the proxy time series analysed in this book (Table 4.6). By
selecting the length of a sampled archive and the depth positions where
samples are to be taken (Fig. 1.13), the experimenter has control of the
variance of the depth points and, hence, some control of the variance of
the time points {T (i)}n

i=1. It is therefore sufficient to consider in this
section only OLS estimation of the errors-in-variables model. The bias
of β̂1 can be taken into account using BCa CIs, which include a bias
correction (Section 3.4.4).

On the other hand, bivariate proxy climate records can exhibit per-
haps stronger error phenomena than univariate records. In the errors-
in-variables model

Y (i) = β0 + β1 [X(i)− SX(i) ·Xnoise(i)] + SY (i) · Ynoise(i), (4.35)
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i = 1, . . . , n, where for notational clarity SX(i) is written for S(i) and
SY (i) for the variability of the Y (i), and Ynoise(i) is Y noise, the variance
of the regressor (X) now cannot be controlled by designing the sampling
of the archive as it is the case for univariate time series (regressor T ).
The OLS estimation bias may be serious to a degree that requires to
analyse also other estimators for the errors-in-variables model. This is
done in Chapter 8.

For climate time series from dated archives, in addition to the usual
difficulties imposed by

non-Gaussian distributional shape,

persistence

and, to a lesser degree,

uneven spacing (because it restricts the persistence models to types
not more complex than AR(1)),

the difficulty from an

uncertain timescale

appears. Although the resulting bias of OLS regression estimators should
in most cases be negligible (Table 4.6), CI construction should take into
account timescale errors to achieve better coverage accuracies. Therefore
we analyse adaptions of bootstrap resampling methods: a nonparametric
(via MBB), a parametric (via ARB) and also a hybrid.

4.1.7.1 Nonparametric: pairwise-moving block bootstrap
The pairwise-moving block bootstrap or pairwise-MBB algorithm (Al-

gorithm 4.4) resamples pairs, for example, (t∗(i), x∗(i)) = (t(j), x(j)).
This deviates from the MBB (Algorithm 3.3), where {t∗(i)}n

i=1 is set
equal to {t(i)}n

i=1 and resampling is applied to the residuals. The idea
of the pairwise-MBB is to capture the T (i) uncertainties without para-
metrically modelling the timescale, namely by including the times into
the resampling procedure.

4.1.7.2 Parametric: timescale-autoregressive bootstrap
The ARB (Algorithms 3.4 and 3.5) employed a parametric AR(1)

model for resampling the noise {Xnoise(i)}n
i=1 and left the times {T (i)}n

i=1
unchanged. In the presence of timescale uncertainties, the ARB can be
adapted by parametric modelling; we denote this algorithm as timescale-
autoregressive bootstrap or timescale-ARB (Algorithm 4.5).
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Step 1 Data {t(i), x(i)}n
i=1

Step 2 Regression residuals (Eq. 4.16) r(i)

Step 3 Select block length l

(Section 3.3.1.1)

using r(i)

Step 4 Apply MBB with l (Algorithm 3.1)

to x values {x∗(i)}n
i=1 = {x(f(i))}n

i=1

Step 5 Overtake bootstrap index f(i)

for resampled times {t∗(i)}n
i=1 = {t(f(i))}n

i=1

Algorithm 4.4. Pairwise-MBB algorithm, regression estimation. By overtaking
the random bootstrap index f(i) ∈ {1, . . . , n} from x-resampling for t-resampling,
(t(j), x(j)) pairs are resampled.

Step 1 Data {t(i), x(i)}n
i=1

Step 2 Regression residuals (Eq. 4.16) r(i)

Step 3 Resample {x∗(i)}n
i=1

by applying ARB to r(i) under {t(i)}n
i=1

Step 4 Model parametrically {t∗(i)}n
i=1

Algorithm 4.5. Timescale-ARB algorithm, regression estimation. The ARB (even
spacing, Algorithm 3.4; uneven spacing, Algorithm 3.5) is first applied to the regres-
sion residuals using the time values t(i) to produce the x∗(i) resamples. Then the t∗(i)
are resampled from a parametric model of the accumulation process of the climate
archive.

A parametric model of {T ∗(i)}n
i=1 comes from a physical description

of the accumulation process of the climate archive. Consider as a sim-
ple example a linear accumulation and a number ndate of dated points
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Figure 4.3. Linear timescale model. The dating points {zdate(j), tdate(j)}ndate
j=1 are

shown as filled symbols, their dating errors Sdate(j) as vertical bars (±). (Strictly
speaking, the dating error is an unknown random variable with standard deviation
Sdate(j).) The WLS regression fitted to the dating points (solid straight line) is used
to convert the depth value, z(i), of a measurement, x(i), into time, t(i).

(Fig. 4.3), which is a good approximation for many sedimentary and
speleothem time series.

Generating the simulated time points {t∗(i)}n
i=1 is straightforward

(Algorithm 4.6). The assumptions made are:

1. linear accumulation process with

2. positive slope and

3. independent, Gaussian distributed dating errors.

The linearity assumption can be tested by analysing the residuals from
the regression of the dated depth points {Zdate(j)}ndate

j=1 as regressor on
the dates {Tdate(j)}ndate

j=1 . The constraint “positive slope” refers to the as-
sumed monotonic growth of an archive; it is taken into account by retain-
ing only those model simulations with a positive slope (Algorithm 4.6).
The Gaussian assumption regarding the dating errors should be well ful-
filled in most applications; if it appeared to be violated, the algorithm
could be easily adapted (Algorithm 4.6, Step 4). The assumption of in-
dependent dating errors should be well fulfilled. For example, in U/Th
dating the effects of dependence between dating errors owing to imper-

Depth, Z

Time, T

zdate(1)

tdate(1)

z(i )

t(i )
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Step 1 Dating points, {zdate(j), tdate(j)}ndate
j=1 ,

dating errors {Sdate(j)}ndate
j=1

Step 2 Parameter estimates β̂0, β̂1

of WLS regression to {zdate(j), tdate(j)}ndate
j=1

(linear model)

Step 3 Timescale t(i) = β̂0 + β̂1z(i), i = 1, . . . , n

Step 4 Simulated dating

points T ∗
date(j) = Tdate(j) + Sdate(j) · EN(0, 1)(j),

j = 1, . . . , ndate

Step 5 WLS regression to {zdate(j), t
∗
date(j)}ndate

j=1

Step 6 Parameter estimates,

simulation β̂∗0 , β̂∗1

Step 7 If β̂∗1 > 0, then

calculate simulated

timescale t∗(i) = β̂∗0 + β̂∗1z(i), i = 1, . . . , n

Algorithm 4.6. Timescale resampling, linear accumulation model. Note: t∗date(j) is
the realization of T ∗

date(j).

fectly known decay constants are likely negligible compared with those
from independent counting errors in the mass spectrometer.

It is also possible that the dating points reveal a break in the accu-
mulation process, known as hiatus (Fig. 4.4). Such gaps are frequently
found in sedimentary archives and speleothems. Also here, generating
the points {t∗(i)}n

i=1 is straightforward via modelling the accumulation
as a two-phase regression model. The assumptions are:

1. linear accumulation in phase I and phase II,

2. positive slopes,

3. monotonic growth and

4. a correctly determined hiatus depth, zI/II.
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Figure 4.4. Two-phase linear timescale model. The break in the accumulation occurs
at depth zI/II. See also Fig. 4.3.

The algorithm works analogously to the linear case (Algorithm 4.6).
“Monotonic growth” refers to the condition that the simulated times
t∗(i) increase also across zI/II. If zI/II is not clearly identifiable, it may
be included as an additional parameter; the model is then a change-
point regression model (Section 4.2). Evidently, multi-phase linear or
smooth nonlinear accumulation models can be constructed and used for
timescale resampling. The critical point is that the mathematical model
describes the physical accumulation process adequately.

Reliable knowledge about dating errors Sdate(j) need not always exist.
This may be so for an absolutely dated archive, where, however, the
conditions for a reliable age determination were not fulfilled, such as the
absence of contamination with old, ∆14C-poor material in radiocarbon
dating. Instead of taking too small, unreliable “machine error bars” one
can then estimate an Sdate(j) average via the residual mean square (Eq.
(4.8) for a linear model). Another example is the modelled timescale of
an ice core, where the time–depth relationship is in general nonlinear and
variable, and where the accuracy depends on the validity of modelling
assumptions. For the ice core timescale, a simple description may be
obtained via the first derivative or sedimentation rate,

Żdate(j) = [Zdate(j + 1)− Zdate(j)] /[Tdate(j + 1)− Tdate(j)] . (4.36)

This approach is further pursued in Chapter 8.

Depth, Z

Time, T

zdate(1)

tdate(1)

z(i )

t(i )

Phase I

Phase II

zI/II
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4.1.7.3 Hybrid: timescale-moving block bootstrap
A hybrid between nonparametric resampling (the x∗(i) via MBB) and

parametric resampling (the t∗(i) via the procedure of Section 4.1.7.2)
can be easily created (Algorithm 4.7). The intention of this timescale-
moving block bootstrap or timescale-MBB algorithm is to combine the
advantages of the MBB (fewer parametric restrictions than ARB) with
the situation in practice, where for many dated archives a parametric
timescale error model can be constructed on the basis of known accu-
mulation processes and sizes of dating errors.

Step 1 Data {t(i), x(i)}n
i=1

Step 2 Regression residuals (Eq. 4.16) r(i)

Step 3 Resample {x∗(i)}n
i=1

by applying MBB to r(i) under {t(i)}n
i=1

Step 4 Model parametrically {t∗(i)}n
i=1

Algorithm 4.7. Timescale-MBB algorithm, regression estimation. The MBB (Algo-
rithm 3.3) is first applied to the regression residuals. Then the t∗(i) are resampled
from a parametric model of the accumulation process of the climate archive.

4.1.7.4 Monte Carlo experiments
The Monte Carlo experiments demonstrate that even for simple mod-

els of Xnoise(i) such as Gaussian AR(1), relatively small additions of
timescale noise can invalidate the coverage performance of CIs that ig-
nore it. This is the case for the estimated slope (Table 4.7) and also
the estimated intercept (Table 4.9). If we translate the numerical entry
for n = 100 from Table 4.7 into an example of a Holocene stalagmite:
Ttrue(1) ≈ 0, Ttrue(n) ≈ 10,000 a, spacing d̄ ≈ 100 a and ndate = 2 dating
points, then Gaussian errors of Sdate(1) = Sdate(2) = 50 years, which
are indeed not large values, produce gross mis-coverages of classical (via
n′µ) and bootstrap (ARB, MBB) CIs.

On the other hand, taking timescale errors into account at CI con-
struction by parametrically modelling them (timescale-ARB, timescale-
MBB) leads to excellent coverage performance already for data sizes
as small as 50. Those CIs take successfully into account the increased
RMSE owing to timescale errors (Table 4.8): they become wider.
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Table 4.7. Monte Carlo experiment, linear OLS regression with timescale errors
and AR(1) noise of normal shape: CI coverage performance, slope. nsim = 475 (in
the case of timescale-ARB and timescale-MBB, nsim = 47,500) random samples were
generated from X(i) = 2 + 2Ttrue(i) + Xnoise(i), where Ttrue(i) = i, i = 1, . . . , n and
the noise is a Gaussian AR(1) process (Eq. 2.1) with a = 1/e ≈ 0.37. Timescale
errors were subsequently introduced as follows. A linear timescale model (Fig. 4.3)
with ndate = 2 dating points and independent, Gaussian distributed timescale errors
was used to generate the T (i) as T (i) = Ttrue(i) + EN(0, 0.25)(i) for i = 1, n, and then
by linear interpolation for i = 2, . . . , n − 1. Two CI types for the estimated slope
were constructed, classical via n′µ and bootstrap BCa with B = 1999; α = 0.025.
The bootstrap CIs used following resampling methods: ARB (Algorithm 3.5), MBB
(Algorithm 3.1), pairwise-MBB (Algorithm 4.4), timescale-ARB (Algorithm 4.5) and
timescale-MBB (Algorithm 4.7).

n γβ̂1
Nominal

CI type

Classical Bootstrap BCa

V ia n′ aµ ARBa MBBa Timescale- Timescale- Pairwise-

ARBb MBBb MBBa

10 0.81 0.66 0.56 0.925 0.907 0.70 0.950
20 0.71 0.64 0.56 0.941 0.927 0.68 0.950
50 0.59 0.57 0.47 0.950 0.943 0.54 0.950

100 0.50 0.49 0.42 0.949 0.949 0.49 0.950
200 0.39 0.38 0.34 0.949 0.948 0.36 0.950
500 0.25 0.25 0.24 0.950 0.950 0.24 0.950

1000 0.18 0.18 0.17 0.949 0.949 0.17 0.950

a Standard error of γ
β̂1

is nominally 0.01.
b Standard error of γ

β̂1
is nominally 0.001.

Tables 4.7 and 4.9 reveal also bad coverage performances of pairwise-
MBB resampling. The reason is that this resampling algorithm is not
suited for replicating the uncertainties when the timescale model has de-
terministic parts. Because this is inevitably the case for climate archives,
which exhibit systematic accumulation processes (e.g., linear growth
model, Fig. 4.3) and which are sampled not at random, the pairwise-
MBB algorithm is not helpful for quantifying climatic trends. However,
its potential for solving bivariate problems (where the data are given by
{t(i), x(i), y(i)}n

i=1) is further explored in Chapters 7 and 8.
For noise of lognormal shape and AR(1) persistence, both timescale-

ARB and timescale-MBB resampling yielded excellent coverage perfor-
mance in the presence of timescale errors (Table 4.10).
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Table 4.8. Monte Carlo experiment, linear OLS regression with timescale errors and
AR(1) noise of normal shape: RMSE and average CI length, slope. The entries for
the case of absent timescale errors are overtaken from Table 4.2; for nonzero timescale
errors the experiment described in Table 4.7 is used. See both tables also for details on
regression model and noise. The number of simulations is nsim = 47,500. The average
CI length refers to bootstrap BCa CIs (ARB and timescale-ARB resampling).

n RMSEa
β̂1

〈 CI length 〉b

Timescale error T imescale error

No Y es Noc Y esd

10 0.14049 0.21339 0.44414 0.81387
20 0.05332 0.09183 0.19118 0.35884
50 0.01411 0.03202 0.05316 0.12606

100 0.00506 0.01524 0.01941 0.05950
200 0.00179 0.00731 0.00697 0.02879
500 0.00046 0.00287 0.00178 0.01127

1000 0.00016 0.00142 0.00063 0.00560

a Empirical RMSE
β̂1

, given by

[∑nsim
i=1

(
β̂1 − β1

)2
/nsim

]1/2

.

b Average value over nsim simulations.
c ARB resampling.
d Timescale-ARB resampling.

An interesting behaviour of the coverage performance is observed (Ta-
bles 4.11 and 4.12) for AR(2) persistence. As expected, also in the
presence of timescale errors, the timescale-MBB resampling algorithm
performs slightly better than the timescale-ARB algorithm, which mis-
specifies the dependence (AR(1) instead of AR(2)). When the timescale
is without errors, this mis-specification did make usage of the ARB
nearly obsolete (and usage of MBB a duty). However, this distorting
influence of the mis-specification on the coverage performance becomes
smaller as the error of the timescale grows (Table 4.12). The reason is
that in the experiments the timescale-ARB captures correctly the er-
ror proportion due to timescale uncertainties—this part receives more
weight on coverage accuracy as the Sdate(j) values increase. This obser-
vation reiterates the importance of adequately modelling the accumula-
tion and functional form of the age–depth curve in climate archives and
accurately quantifying the size of dating errors.



4.1 Linear regression 139

Table 4.9. Monte Carlo experiment, linear OLS regression with timescale errors and
AR(1) noise of normal shape: CI coverage performance, intercept. See Table 4.7 for
details.

n γβ̂0
Nominal

CI type

Classical Bootstrap BCa

V ia n′ aµ ARBa MBBa Timescale- Timescale- Pairwise-

ARBb MBBb MBBa

10 0.75 0.61 0.50 0.930 0.912 0.64 0.950
20 0.68 0.61 0.50 0.943 0.930 0.64 0.950
50 0.51 0.48 0.42 0.949 0.944 0.46 0.950

100 0.41 0.39 0.34 0.948 0.945 0.36 0.950
200 0.30 0.29 0.25 0.950 0.949 0.26 0.950
500 0.23 0.22 0.20 0.949 0.949 0.22 0.950

1000 0.15 0.15 0.15 0.951 0.951 0.15 0.950

a Standard error of γ
β̂0

is nominally 0.01.
b Standard error of γ

β̂0
is nominally 0.001.

Table 4.10. Monte Carlo experiment, linear OLS regression with timescale errors
and AR(1) noise of lognormal shape: CI coverage performance. CI construction and
generation of Ttrue(i) and timescale errors were as in the experiment described in
Table 4.7; likewise the generation of X(i), with the difference that lognormal AR(1)
noise (Table 4.3) instead of normal AR(1) noise was added; nsim = 47,500.

n γa
β̂0

γa
β̂1

Nominal

Bootstrap BCa CI Bootstrap BCa CI

T imescale- Timescale- Timescale- Timescale-
ARB MBB ARB MBB

10 0.922 0.915 0.921 0.912 0.950
20 0.932 0.925 0.929 0.919 0.950
50 0.939 0.935 0.937 0.932 0.950

100 0.945 0.943 0.939 0.938 0.950
200 0.946 0.944 0.943 0.942 0.950
500 0.946 0.946 0.945 0.944 0.950

1000 0.949 0.949 0.948 0.948 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.
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Table 4.11. Monte Carlo experiment, linear OLS regression with timescale errors
and AR(2) noise of normal shape: CI coverage performance. CI construction and
generation of Ttrue(i) and timescale errors were as in the experiment described in
Table 4.7; likewise the generation of X(i), with the difference that normal AR(2)
noise (parameters as in the experiment shown in Table 4.4 ) instead of normal AR(1)
noise was added; nsim = 47,500.

n γa
β̂0

γa
β̂1

Nominal

Bootstrap BCa CI Bootstrap BCa CI

T imescale- Timescale- Timescale- Timescale-
ARB MBB ARB MBB

10 0.959 0.931 0.960 0.930 0.950
20 0.964 0.949 0.967 0.951 0.950
50 0.959 0.951 0.962 0.952 0.950

100 0.955 0.950 0.957 0.951 0.950
200 0.954 0.952 0.954 0.951 0.950
500 0.951 0.951 0.953 0.951 0.950

1000 0.950 0.949 0.953 0.952 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.

Table 4.12. Monte Carlo experiment, linear OLS regression with AR(2) noise of
normal shape: dependence on size of timescale errors. Generation of data (nsim =
47,500) were as in the previous experiments (Tables 4.4 and 4.7), employing a linear
timescale model with ndate = 2. The data size is fixed (n = 50). Shown are empirical
coverages of bootstrap BCa CIs for the slope; B = 1999 and α = 0.05, 0.025 and
0.005. Resampling algorithm is timescale-ARB.

Sa
date α

0.05 0.025 0.005

γb
β̂1

Nominal γc
β̂1

Nominal γd
β̂1

Nominal

0.0 0.986 0.900 0.995 0.950 0.9994 0.9900
0.1 0.976 0.900 0.991 0.950 0.9989 0.9900
0.2 0.958 0.900 0.984 0.950 0.9981 0.9900
0.5 0.918 0.900 0.962 0.950 0.9938 0.9900
1.0 0.906 0.900 0.954 0.950 0.9907 0.9900
2.0 0.901 0.900 0.951 0.950 0.9904 0.9900

a Timescale error; Sdate(1) = Sdate(2) = Sdate.
b Standard error of γ

β̂1
is nominally ∼0.0014.

c Standard error of γ
β̂1

is nominally 0.001.
d Standard error of γ

β̂1
is nominally ∼0.0005.
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4.2 Nonlinear regression
The trend model Xtrend(i) is in climatology often more complex than

a linear function. The suitability of a model is related to the time span
analysed, and extending the span may require to adopt more complex
models. Simple extensions are a parabola,

X(i) = β0 + β1T (i) + β2T (i)2 + S(i) ·Xnoise(i), (4.37)

with three parameters to be estimated, or a polynomial of general order.
Because T (i)2 can be viewed as a second regressor variable, the parabolic
model, and the polynomial in general, can be solved using multivariate
linear regression (von Storch and Zwiers 1999). Nonlinear regression
models are nonlinear in the parameters. A simple example of a “real”
nonlinear model is given by the exponential saturation function,

X(i) = β0 {1− exp [−β1T (i)]}+ S(i) ·Xnoise(i). (4.38)

Sometimes it is possible to transform the regressor in a way that a linear
model results (von Storch and Zwiers 1999: Section 8.6.2 therein). How-
ever, this may be at the cost of the simplicity of the noise process, which
is also transformed (Section 2.6). Owing to the parsimonious preference
of the AR(1) noise model, it may in climatological practice be advisable
to ignore transformations and carry out a nonlinear regression estima-
tion.

The major difference to linear regression is that estimating nonlin-
ear models normally requires elaborated numerical techniques because
exact formulas, such as those for the OLS, WLS or GLS estimators (Sec-
tion 4.1), do not often exist. Various fit criteria may be adopted, such
as robustness or maximum likelihood.

The least-squares criterion leads to searching the point β̂ in the pa-
rameter space where SSQG(β) (under GLS) has a minimum. One usu-
ally makes an initial guess, β̂(0), calculates the sum of squares and its
gradient and finds the next point, β̂(1), by going a step of defined size
into the negative gradient direction. Gradient and step-size values are
updated and the procedure repeated until stopping rules inform that the
solution is sufficiently close to a minimum.

Classical CIs for estimated parameters of a nonlinear regression can
be constructed using the gradient at the solution point β̂. Making some
“regularity assumptions” (Seber and Wild 1989: Chapter 12 therein),
the distribution of β̂ can be shown as asymptotically (for n → ∞)
normal, which enables CI construction and hypothesis tests. Because
already the linear model (Section 4.1) applied to realistic climate time
series (non-Gaussian shape, persistence, timescale errors) led to a ten-
tative preference of bootstrap CIs, the additional assumptions and the
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difficulty to assess how far n differs from ∞ in terms of CI accuracy, can-
not prevent us from considering only bootstrap CIs for the remainder of
this section. In analogy to linear regression, the bootstrap resampling
algorithms (ARB, MBB, timescale-ARB or timescale-MBB) are applied
to the residuals from the estimated nonlinear regression.

The restriction to bootstrap CIs is further justified by our selection
of two nonlinear models of climatic changes, namely the ramp and the
break model. Both are not differentiable with respect to time, and hence
no gradient and classical CI can be constructed for them.

4.2.1 Climate transition model: ramp
The ramp regression model (Fig. 4.5), written in continuous time as

Xtrend(T ) = Xramp(T ) (4.39)

=


x1 for T ≤ t1,

x1 + (T − t1)(x2− x1)/(t2− t1) for t1 < T ≤ t2,

x2 for T > t2,

has four parameters: start time t1, start level x1, end time t2 and end
level x2. The attributes “start” and “end” mean that we assume without
loss of generality that in Fig. 4.5 time increases from the left to the right.

Figure 4.5. The ramp regression model. It has four parameters: t1, x1, t2 and x2.

The ramp is the simplest mathematical expression of a (climate) tran-
sition in Xtrend(T ). Consider the questions: When did a transition start?
When did it end? What were the levels before and after the transi-
tion? As soon as we ask those—and this is often the case in climate
sciences—the ramp comes into play. As physical motivation serves a cli-
mate subsystem (described by, e.g., temperature) at equilibrium, which
is disturbed by some external action (e.g., a volcanic eruption) over
a period of time and then attains a new equilibrium state. The non-
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differentiability of the ramp with respect to time at t1 and t2 is only a
mathematical inconvenience. Since the time we have accepted threshold
behaviour or quantum phenomena in the physical world, we have also
acknowledged that nature does indeed make jumps and requires for its
description non-continuous and non-differentiable models.

4.2.1.1 Estimation
Assume the variability S(i) known. The ramp regression model can

then be fitted to data {t(i), x(i)}n
i=1 by minimizing the weighted sum of

squares,

SSQW (t1, x1, t2, x2) =
n∑

i=1

[x(i)− xramp(i)]
2 /

S(i)2 , (4.40)

where xramp(i) is the discrete-time, sample version of Xramp(T ) (Eq.
4.39).

Consider two candidate points, t̃1 < t̃2, for the change-points, t1 and
t2. Take them from the observed time points, that means, t̃1 = t(ĩ1)
and t̃2 = t(ĩ2) with 1 ≤ ĩ1 < ĩ2 ≤ n. Then the minimizers x̂1, x̂2 of
SSQW (t̃1, x1, t̃2, x2) follow (Mudelsee 2000) as

x̂2 = (K3K4/K1 + K6) /(K2K4/K1 + K5) ,

x̂1 =
(
K3 − x̂2K2

)/
K1,

(4.41)

where

K1 = k2 +
(
t̃1 k4 − k5

) /(
t̃2− t̃1

)
,

K2 = k3 −
(
t̃1 k4 − k5

) /(
t̃2− t̃1

)
,

K3 = k8, (4.42)

K4 = k1 +
[
t̃2

(
t̃1 + t̃2

)
k4 + 2k6 −

(
t̃1 + 3t̃2

)
k5

] /(
t̃2− t̃1

)2
,

K5 = k3 +
[
t̃1

(
t̃1 + t̃2

)
k4 + 2k6 −

(
3t̃1 + t̃2

)
k5

] /(
t̃2− t̃1

)2
,

K6 = k9 − k7 − 2
(
t̃1 k10 − k11

) /(
t̃2− t̃1

)
,
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and

k1 =
ĩ1∑

i=1

S(i)−2, k2 =
ĩ2−1∑
i=1

S(i)−2, k3 =
n∑

i=ĩ2

S(i)−2,

k4 =
ĩ2−1∑

i=ĩ1+1

S(i)−2, k5 =
ĩ2−1∑

i=ĩ1+1

t(i)S(i)−2,

k6 =
ĩ2−1∑

i=ĩ1+1

t(i)2 S(i)−2, k7 =
ĩ2−1∑
i=1

x(i) S(i)−2, (4.43)

k8 =
n∑

i=1

x(i) S(i)−2, k9 =
n∑

i=ĩ2

x(i) S(i)−2,

k10 =
ĩ2−1∑

i=ĩ1+1

x(i) S(i)−2, k11 =
ĩ2−1∑

i=ĩ1+1

t(i)x(i) S(i)−2.

To estimate the change-points in time, a brute-force search over all
pairs of candidate points is performed because gradient techniques are
inapplicable owing to the non-differentiability with respect to t1 and t2:

(
t̂1, t̂2

)
= argmin

[
SSQW

(
t̃1, x̂1, t̃2, x̂2

)]
. (4.44)

Because the number of pairs of search points grows with the data size as
n(n− 1)/2, it is advisable to use computational measures to keep com-
puting costs low (Section 4.5). A positive by-product of the brute-force
search is that the solution is a global optimum. Because the candidate
points t̃1 and t̃2 are from the set {t(i)}n

i=1, the solution is as “coarse”
as the spacing. This may be a problem when the spacing (at around
t̂1 and t̂2) is larger than the standard errors, set̂1 and set̂2. However,
in climatological applications this likely occurs only when we wish to
quantify a climate transition using an archive with a hiatus located at
around the place of a transition change-point.

Because in practice the variability S(i) is unknown, an iterative esti-
mation procedure via the residuals e(i) is indicated (Section 4.1.1).
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4.2.1.2 Example: Northern Hemisphere Glaciation
Application of the ramp model to the marine δ18O record ODP 846

shows that the Northern Hemisphere Glaciation was a slow climate tran-
sition (Fig. 4.6). Whereas the t1 estimate of around 2.5 Ma before
present is in general agreement with the climatological literature (Shack-
leton et al. 1984; Haug et al. 1999, 2005), the t2 estimate (3.7 Ma) is
about 0.5 Ma earlier than what was previously thought. (Mudelsee and
Raymo (2005) analysed a total of 45 δ18O records using the ramp and
found an average t̂2 of ∼ 3.6 Ma; the inter-record variation is likely
caused by contrasting temperature trends.) As outliers (defined in the
paper as more than 3S(i) away from the ramp fit), two prominent glacia-
tion peaks (termed M2–MG2) appear at around 3.3 Ma (Fig. 4.6). These
findings are robust against the estimation uncertainties (Fig. 4.6).

Figure 4.6. Ramp regression of the marine δ18O record ODP 846 (Fig. 1.2). The
long-term trend (thick line) documents the Northern Hemisphere Glaciation. The
estimated change-points (± standard errors) of this climate transition are: t̂1 =
2462± 129 ka, x̂1 = 3.63± 0.04h, t̂2 = 3700 ± 119 ka and x̂2 = 2.99± 0.04h. The
estimates were obtained by WLS using iteratively updated variability. Also S(i) was

given a ramp form (Ŝ(i) = 0.27h for t(i) ≤ 2600 ka, 0.18h for t(i) > 3550 ka and
linearly connected between these change-points). The standard errors given here are
from SB resampling (Section 3.8) using B = 400 and an average block length equal
to τ̂ = 7.7 ka. A rough method to take into account the timescale uncertainty of 25
ka is Gaussian error propagation (Mudelsee and Raymo 2005), yielding total errors of
(1292 + 252)1/2 ka ≈ 131 ka (for t̂1) and (1192 + 252)1/2 ka ≈ 122 ka (for t̂2). (After
Mudelsee and Raymo 2005.)
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4.2.1.3 Bootstrap confidence intervals
The unweighted residuals from an estimated ramp regression are given

by
e(i) = x(i)− x̂ramp(i), i = 1, . . . , n, (4.45)

where x̂ramp(i) is the discrete-time, sample version of Xramp(T ) (Eq.
4.39), with estimates (t̂1, x̂1, t̂2, x̂2) plugged in for (t1, x1, t2, x2). The
e(i) can be used to detect heteroscedasticity and assess the quality of
the fit of the variability, Ŝ(i). The weighted residuals from an estimated
ramp are given by

r(i) = e(i)
/

Ŝ(i) , i = 1, . . . , n. (4.46)

The r(i) are useful for studying model suitability of the ramp (graphi-
cally and arithmetically). They serve also for quantifying the persistence
properties of the noise (e.g., autocorrelation estimation for an AR(1) pro-
cess), which in turn are required for determining the bootstrap CIs (e.g.,
block length selection for the MBB).

The Monte Carlo experiment (Table 4.13) shows that accurate CIs for
ramp parameters can be obtained when the sample size is suffiently large
(above, say, 500). An interesting alternative to considering the change-
points in time (t1, t2) may be analysing the parameters midpoint (given
by (t1 + t2)/2), which performed better for smaller sample sizes in the
experiment, or duration (t2− t1).

4.2.1.4 Example: onset of Dansgaard–Oeschger event 5
The onset of D–O event 5, a warming, was observed via the variables

Ca content, dust content, electrical conductivity and Na content in the
NGRIP ice core (Fig. 1.5). This climate transition can be excellently fit-
ted by the ramp model (Fig. 4.7). The regression residuals, r(i), exhibit
somewhat right-skewed distributions with a few outliers (Fig. 1.11e–h)
as well as persistence (Fig. 1.12e–h). Longer-term systematic deviations
from the ramp form seem to be absent.

Answering the first question, after the synchroneity of the D–O 5
onset, Fig. 4.8 reveals that CIs of the observed change-points for all
four variables do overlap. The hypothesis of synchroneity cannot be re-
jected. Bootstrap resampling (ARB) for CI construction did not employ
timescale simulations because the four variables, measured on the same
material, have identical timescales.

For answering the second question, how long the D–O 5 warming
took, however, timescale uncertainties have to be taken into account (by
timescale-ARB resampling) because in this context “absolute” values are
sought. The covariation of sedimentation rate and δ18O variations in the
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Table 4.13. Monte Carlo experiment, ramp regression with timescale errors and
AR(1) noise of normal shape: CI coverage performance. nsim = 475 random sam-
ples were generated from X(i) = Xramp(i) + Xnoise(i), where the prescribed ramp
parameters (Eq. 4.39) are t1 = 0.3n, x1 = 2.0, t2 = 0.7n and x2 = 4.0, the pre-
scribed times are Ttrue(i) = i, i = 1, . . . , n and the noise is a Gaussian AR(1) process
(Eq. 2.1) with a = 1/e ≈ 0.37. Timescale errors were subsequently introduced as
follows. A linear timescale model (Fig. 4.3) with ndate = 2 dating points and in-
dependent, Gaussian distributed timescale errors was used to generate the T (i) as
T (i) = Ttrue(i) + EN(0, 25.0)(i) for i = 1, T (i) = Ttrue(i) + EN(0, 100.0)(i) for i = n, and
then by linear interpolation for i = 2, . . . , n − 1. The bootstrap BCa CIs were con-
structed with timescale-ARB resampling (Algorithm 4.5), B = 1999 and α = 0.025.

n γa
t̂1

γa
x̂1

γa
t̂2

γa
x̂2

γa
(t̂1+t̂2)/2

γa
(t̂2−t̂1)

Nominal

10 0.92 0.64 0.91 0.66 0.93 0.77 0.95
20 0.88 0.75 0.84 0.72 0.90 0.60 0.95
50 0.76 0.84 0.77 0.83 0.89 0.68 0.95

100 0.76 0.88 0.77 0.87 0.89 0.76 0.95
200 0.86 0.90 0.85 0.91 0.89 0.84 0.95
500 0.94 0.95 0.94 0.94 0.94 0.93 0.95

1000 0.96 0.96 0.93 0.93 0.95 0.95 0.95

a Standard error of γ is nominally 0.01.

NGRIP ice core (Fig. 4.9) reflects that timescale construction (Johnsen
et al. 2001) made the reasonable assumption that elevated temperatures
(indicated by higher δ18O) lead to enhanced ice accumulation. The
ratio is approximately 6h δ18O change per 1.8 cm/a sedimentation rate
change for the NGRIP core at around D–O 5. The δ18O measurement
uncertainty of 0.1h (North Greenland Ice Core Project members 2004)
can be used to simulate timescale uncertainties as follows. The first
point is fixed, t∗(1) = t(1). The second point is modelled as t∗(n) =
t(1) + [t(n) − t(1)]/(1 + EN(0, 1)(n) · 0.1/6). This rough procedure is
applicable for duration, but not for midpoint estimation, because only
the timescale uncertainties within the D–O 5 interval were modelled.
The result (Fig. 4.10) shows that the warming was completed within
about 100 years.

Although the numerical results are somewhat preliminary owing to
various open technical questions (logarithmic transformation of vari-
ables, linearity of δ18O/sedimentation rate changes and other uncer-
tainties at timescale construction), it is clear that ramp regression can
add to the quantitative understanding of D–O events.
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Figure 4.7. Onset of Dansgaard–Oeschger event 5, NGRIP ice core: result. Ramps
(thick lines) were fitted to the Ca, dust content, conductivity and Na records (Fig.
1.5). The estimated change-points are a t̂1 = 32,245 a, x̂1 = 59 ppb, t̂2 = 32,338 a,
x̂2 = 346 ppb, n = 770; b t̂1 = 32,241 a, x̂1 = 0.43 · 105 ml−1, t̂2 = 32,357 a,
x̂2 = 3.57 · 105 ml−1, n = 727; c t̂1 = 32,245 a, x̂1 = 0.91 µS cm−1, t̂2 = 32,345 a,
x̂2 = 2.07 µS cm−1, n = 775 and d t̂1 = 32,242 a, x̂1 = 43 ppb, t̂2 = 32,322 a, x̂2 = 97
ppb, n = 774. The estimates were obtained by WLS using iteratively updated S(i).
The S(i) fits adopted a ramp model to account for the heteroscedasticities (higher

variabilities in the earlier (colder) part); the Ŝ(i) change-points are a (32,200 a, 16
ppb)–(32,350 a, 95 ppb); b (32,200 a, 0.2 · 105 ml−1)–(32,350 a, 1.3 · 105 ml−1); c
(32,200 a, 0.2 µS cm−1)–(32,400 a, 0.7 µS cm−1) and d (32,200 a, 16 ppb)–(32,500 a,
55 ppb). Bootstrap CIs for the estimated time parameters are shown in Figs. 4.8 and
4.10.
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Figure 4.8. Onset of Dansgaard–Oeschger event 5, NGRIP ice core: estimated
change-points with confidence intervals. Shown are 95 and 90% BCa CIs for t̂1 and
t̂2, calculated with ARB resampling.

Figure 4.9. Onset of Dansgaard–Oeschger event 5, NGRIP ice core: sedimentation
rate (solid line) and δ18O (dots) variations. (δ18O data from North Greenland Ice
Core Project members 2004.)

Figure 4.10. Onset of Dansgaard–Oeschger event 5, NGRIP ice core: estimated
durations with confidence intervals. Shown are 95 and 90% BCa CIs for the duration
of the onset, calculated with timescale-ARB resampling.
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4.2.2 Trend-change model: break
The break regression model (Fig. 4.11), written in continuous time as

Xbreak(T ) =


x1 + (T − t1)(x2− x1)/(t2− t1) for T ≤ t2,

x2 + (T − t2)(x3− x2)/(t3− t2) for T > t2,

(4.47)

has four free parameters: x1, t2, x2 and x3. An alternative formulation
would comprise the four parameters t2, x2, β1 = (x2 − x1)/(t2 − t1)
and β2 = (x3− x2)/(t3− t2). Also the break is a simple mathematical
model. It can be useful for describing a change in linear trend at one
point (t2, x2), from slope β1 to β2.

Figure 4.11. The break regression model. It has four free parameters: x1, t2, x2 and
x3. (Parameter t1 is constrained as left, t3 as right bound of the time interval.)

4.2.2.1 Estimation
Assume known variability S(i) and time series data {t(i), x(i)}n

i=1.
The break model can then be fitted by minimizing the weighted least-
squares sum,

SSQW (x1, t2, x2, x3) =
n∑

i=1

[x(i)− xbreak(i)]
2 /

S(i)2 , (4.48)

where xbreak(i) is the discrete-time, sample version of Xbreak(T ) (Eq.
4.47).

Because we assume that the break is a suitable description over the
whole record length, t1 and t3 are constrained (Fig. 4.11) and only
one time point, namely t̃2 = t(ĩ2) with 1 ≤ ĩ2 ≤ n, needs to be
considered as candidate for t2. Then the minimizers x̂1, x̂2 and x̂3 of
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SSQW (x1, t̃2, x2, x3) follow as

x̂2 =
(
K1K2/K3 −K4K5/K6 −K7 + K9

)
×

(
K2

1/K3 + K2
4/K6 −K8 −K10

)−1
,

x̂1 = x̂2K1

/
K3 −K2/K3, (4.49)

x̂3 = x̂2 K4

/
K6 + K5/K6,

where

K1 =
ĩ2∑

i=1

S(i)−2
[
t(i)− t1

][
t(i)− t̃2

]/[
t̃2− t1

]2
,

K2 =
ĩ2∑

i=1

S(i)−2x(i)
[
t(i)− t̃2

]/[
t̃2− t1

]
,

K3 =
ĩ2∑

i=1

S(i)−2
[
t(i)− t̃2

]2/[
t̃2− t1

]2
,

K4 =
n∑

i=ĩ2+1

S(i)−2
[
t(i)− t3

][
t(i)− t̃2

]/[
t3− t̃2

]2
,

K5 =
n∑

i=ĩ2+1

S(i)−2x(i)
[
t(i)− t̃2

]/[
t3− t̃2

]
,

K6 =
n∑

i=ĩ2+1

S(i)−2
[
t(i)− t̃2

]2/[
t3− t̃2

]2
, (4.50)

K7 =
ĩ2∑

i=1

S(i)−2x(i)
[
t(i)− t1

]/[
t̃2− t1

]
,

K8 =
ĩ2∑

i=1

S(i)−2
[
t(i)− t1

]2/[
t̃2− t1

]2
,

K9 =
n∑

i=ĩ2+1

S(i)−2x(i)
[
t(i)− t3

]/[
t3− t̃2],

K10 =
n∑

i=ĩ2+1

S(i)−2
[
t(i)− t3

]2/[
t3− t̃2]2.
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To estimate the change-point in time, t2, a brute-force search over all
candidate points is performed:(

t̂2
)

= argmin
[
SSQW

(
x̂1, t̃2, x̂2, x̂3

)]
. (4.51)

Computing costs are clearly reduced (by a factor of ∼ n) compared with
estimating the ramp model (Section 4.2.1). The other properties the
break shares: global optimum, “coarse” t̂2 estimate and applicability of
an iterative procedure when S(i) is unknown.

4.2.2.2 Example: Arctic river runoff (continued)
Application of the break trend-change regression to the modelled

record of Arctic river runoff with combined anthropogenic and natu-
ral forcing reveals a change-point at t̂2 = 1973±6 (Fig. 4.12). This date
is close to the per-eye estimate (Wu et al. 2005) of 1965 (Fig. 4.1b). Be-
fore the change the trend is downwards, however, with large error bars;
after the change it is strongly upwards (Fig. 4.12). The runoff modelled
with natural forcing only, however, exhibits no significant slope changes
of the break fit, which agrees with the result from the linear fit (Fig.
4.1a).
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Figure 4.12. Break change-point regression fitted to modelled Arctic river runoff.
Shown is the simulation with combined anthropogenic and natural forcing (Fig. 1.9b).
For the interval 1936–2001 (n = 66), the break model was fitted using WLS (with S(i)
linearly increasing from 70 to 120 km3a−1 within the fit interval). The break fit (solid
line) has following parameter estimates with bootstrap standard errors (MBB, B =

400): change-point, t̂2 = 1973 ± 6, x̂2 = 3238 ± 26 km3a−1; slopes, β̂1 = −1.8 ± 1.6

km3a−2, β̂2 = 9.7± 3.6 km3a−2.

4.2.2.3 Bootstrap confidence intervals
The unweighted residuals from an estimated break model are given by

e(i) = x(i)− x̂break(i), i = 1, . . . , n; and the weighted residuals are given
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Table 4.14. Monte Carlo experiment, break regression with timescale errors and
AR(1) noise of normal shape: CI coverage performance. nsim = 475 random samples
were generated from X(i) = Xbreak(i) + Xnoise(i), where the prescribed break model
parameters (Eq. 4.47) are x1 = 2.0, t2 = 0.5n, x2 = 1.0 and x3 = 4.0, the prescribed
times are Ttrue(i) = i, i = 1, . . . , n and the noise is a Gaussian AR(1) process (Eq.
2.1) with a = 1/e ≈ 0.37. Timescale error simulations were performed as in the
experiment on ramp regression (Table 4.13). Bootstrap BCa CIs used timescale-ARB
resampling (Algorithm 4.5), B = 1999 and α = 0.025.

n γa
x̂1

γa
t̂2

γa
x̂2

γa
x̂3

γa
β̂1

γa
β̂2

Nominal

10 0.63 0.92 0.63 0.62 0.64 0.82 0.95
20 0.74 0.90 0.76 0.76 0.75 0.83 0.95
50 0.87 0.89 0.85 0.89 0.87 0.90 0.95

100 0.91 0.88 0.89 0.93 0.90 0.92 0.95
200 0.93 0.95 0.93 0.92 0.92 0.94 0.95
500 0.94 0.95 0.95 0.96 0.95 0.96 0.95

1000 0.95 0.95 0.95 0.95 0.95 0.94 0.95

a Standard error of γ is nominally 0.01.

by r(i) = e(i)/Ŝ(i), i = 1, . . . , n; analogously to ramp regression (Sec-
tion 4.2.1.3). Also here the residuals serve for studying model suitabil-
ity and running the bootstrap resampling technique for CI calculation.
The Monte Carlo experiment (Table 4.14) reveals that for data sizes
above 100–200, the time parameter (t2), the level parameters (x1, x2, x3)
and the slopes (β1, β2) have excellent coverage performance also for het-
eroscedastic timescale errors.

4.3 Nonparametric regression or smoothing
4.3.1 Kernel estimation

Instead of identifying Xtrend(T ) with a specific linear or nonlinear
function with parameters to be estimated, the smoothing method esti-
mates Xtrend(T ) at a time point T ′ by, loosely speaking, averaging the
data points X(i) within a neighbourhood around T ′. A simple example
is the running mean, where the points inside a window are averaged and
the window runs along the time axis. Statistical science recommends
to replace the non-smooth weighting window (points inside receive con-
stant, positive weight and points outside zero weight) by a smooth kernel
function, K. A nonparametric kernel regression estimator of the trend
is given by (Priestley and Chao 1972)

X̂PC
trend(T ) = h−1

n∑
i=1

[T (i)− T (i− 1)] K

[
T − T (i)

h

]
X(i), (4.52)
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where h is denoted as bandwidth (the index “PC” refers to the paper).
Another kernel estimator is (Gasser and Müller 1979, 1984)

X̂GM
trend(T ) = h−1

n∑
i=1

 s(i)∫
s(i−1)

K

(
T − y

h

)
dy

 X(i), (4.53)

where T (i − 1) ≤ s(i − 1) ≤ T (i) (e.g., s(i − 1) = [T (i − 1) + T (i)]/2
with s(0) and s(n) being the upper and lower bounds of the T interval,
respectively).

The kernel is a continuous and usually positive and symmetric func-
tion, it integrates as

∫
K(y)dy = 1. Common choices are the Gaussian,

K(y) = (2π)−1/2 exp(−y2/2), and the Epanechnikov kernel, K(y) =
0.75(1 − y2) with |y| ≤ 1. Whereas the choice of the particular ker-
nel is more of “cosmetic” (Diggle 1985) interest, bandwidth selection
is a crucial part because this determines bias and variance properties
of X̂trend(T ). Several techniques exist for that purpose; one of which
is cross-validation, where a cost function, composed of a bias term and
a variance term, is minimized. A later paragraph here details cross-
validation in the context of running median smoothing, Chapter 6 does
so in the context of occurrence rate estimation of extreme events. Band-
width selection for data with serial dependence, such as climate time
series, can be considerably more difficult than in dependence-free situ-
ations (see background material). A general advice is to “play” with h
and study the sensitivity of results on h. An option is to use downsam-
pled time series for determining h on data with less serial dependence.
Figure 4.13 shows a nonparametric kernel regression of the sedimen-
tation rate in the ice core from Vostok; Fig. 4.14 analogously for the
atmospheric ∆14C content.

Also variability estimation can be based on nonparametric regression.
For example (Gasser–Müller kernel with bandwidth h), calculate the
unweighted residuals,

e(i) = x(i)− x̂GM, h
trend (i), i = 1, . . . , n, (4.54)

and either fit a parametric model of S(i) to the e(i) or apply again
smoothing to the e(i). Utilizing prior knowledge, if existent, is advis-
able. This may regard parametric forms of S(i) or typical timescales on
which S(i) varies, which would then facilitate bandwidth selection for
nonparametric S(i) estimation. In principle, S(i) can also be estimated
together with Xtrend(i) in the same smoothing window. (A later para-
graph gives such an example in the context of Xout(i) estimation, which
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Figure 4.13. Nonparametric regression of the sedimentation rate in the Vostok
record. The sedimentation rate (dots) ż = [z(i + 1) − z(i)]/[t(i + 1) − t(i)], where z
is depth, is calculated from the CO2 data on the GT4 timescale (Fig. 1.3b). (Strictly
speaking, ż refers not to the “sedimentation” of the ice but to the derivative of the
depth–age curve after ice accumulation and compaction.) The smoothed curve (solid
grey line) is x̂GM

trend(t) calculated with a parabolic kernel, a cross-validated bandwidth
of h = 8 ka and boundary adjustments (“boundary kernel”).
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Figure 4.14. Nonparametric regression of the atmospheric radiocarbon record from
tree-rings. The original data (Fig. 1.6) are shown as black line. The smoothed curve
(grey line) is x̂GM

trend(t) calculated with a parabolic kernel, a bandwidth of h = 580 a and
boundary adjustments. The bandwidth was determined by applying cross-validation
to 200-year averaged segments of the original record to exlude autocorrelation effects
stemming from the residence time of a CO2 molecule in the atmosphere.

we have ignored in Eq. (4.54).) The weighted residuals follow as

r(i) = e(i)
/

Ŝ(i), i = 1, . . . , n. (4.55)
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4.3.2 Bootstrap confidence intervals and bands
In principle, CI construction for X̂GM, h

trend (i) (and for other kernels) at
a point i = i† could be tried by using the r(i) from Eq. (4.55) for boot-
strap resampling. Two notable improvements can be made at this step.
First, because X̂GM, h

trend (i) has larger bias in regions i where fewer data
points exist, particularly near the interval bounds i = 1 or i = n, than
in higher-density regions, and because the larger bias affects also r(i)
negatively in the lower-density regions, an adapted version of the local
bootstrap may be appropriate (Davison and Hinkley 1997). In this ver-
sion, the points within a neighbourhood (say, within ±3h) of the interval
bounds are excluded from being resampled. Second, because the bias,
which is inherent to nonparametric regression estimates, distorts also
the residuals, the e(i) (Eq. 4.54) and r(i) (Eq. 4.55), should, for the
purpose of providing samples to draw the r∗(i) from, be calculated with
a larger bandwidth, h′ > h. This oversmoothing is detailed by Härdle
(1990: Section 4.2 therein). It may, however, be that adopting BCa
CIs reduces bias effects in nonparametric regression. Once appropriate
r(i) are found, resampling and CI construction (i.e., CI

X̂GM, h
trend (i†),1−2α

)
proceeds for nonparametric regression as in the parametric cases (Sec-
tions 4.1 and 4.2).

A confidence band around the estimated nonparametric regression
function helps to assess the significance of highs, lows and other features
in the data. A pointwise confidence band is readily drawn by connecting
the upper and lower bounds of CI

X̂GM, h
trend (i),1−2α

for i = 1, . . . , n (Gasser–
Müller kernel). Something different is a simultaneous confidence band,
namely a compact set of points (T,X) that contains the line Xtrend(T )
with a pre-defined probability, 1−2α. The explanation is that in the case
of a pointwise band, at every position i = 1, . . . , n there is a chance of 2α
to fall outside the CI. This is in analogy to the multiplicity of statistical
tests in, for example, spectral analysis (Chapter 5). Construction of a
simultaneous confidence band at level 1−2α could be achieved by using
a pointwise band constructed from CIs at level 1−2α′, with α′ < α. The
difficulty arises from the considerable amount of positive autocorrelation
in the series of upper or lower CI bounds, which stems mainly from
the smoothing procedure (plus some climate persistence). Therefore
the simple setting α′ = α/n would fail. A quick and dirty setting is
α′ = min{α, α · 3h′/[t(n)− t(1)]}, where h′ is the bandwidth used for CI
construction (see preceding paragraph). The idea is that at 3h′ distance,
the CI points are not, or at least not strongly, autocorrelated. More
elaborated approaches to constructing simultaneous confidence bands
are given by Härdle (1990: Section 4.3 therein).
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4.3.3 Extremes or outlier detection
Nonparametric regression can also be used as a tool to detect outliers,

Xout(i), which we up to now have largely assumed to be absent. Starting
from the climate equation, X(i) = Xtrend(i)+Xout(i)+S(i) ·Xnoise(i), it
is reasonable to introduce a threshold detection parameter, z, and define
a positive extreme as follows. If

X(i) > Xtrend(i) + z · S(i), (4.56)

then

Xout(i) 6= 0 (4.57)

and, perhaps of more practical relevance, T (i) is the date this positive
extreme occurred. If the threshold is not exceeded, then Xout(i) is zero.
Negative extremes may be defined analogously.

Xout(i) is a general description that allows to include an outlier com-
ponent in the climate equation. We should employ additional, quantita-
tive measures, such as the exceedance, X ′

out(i) = X(i)−Xtrend(i)−z·S(i).
Or, we may define X ′

out(i) = [X(i)−Xtrend(i)]/S(i) to have a dimension-
less, scaled version. The extreme value analysis in Chapter 6 is based
on X ′

out(i) and the dates at which an extreme occurred.
To detect climate extremes on the sample level in time series data

{t(i), x(i)}n
i=1, it is essential to quantify Xtrend(i), which is here denoted

as “background,” and S(i) robustly, without interference by the “signal,”
Xout(i). Non-robust estimators, such as the running mean for Xtrend(i)
and the running standard deviation for S(i) estimation, are therefore
obsolete. A suitable tool for Xtrend(i) estimation is the running median,
calculated from 2k + 1 points inside a pointwise shifted window (corre-
sponding to a uniform kernel). Likewise, the running MAD is suited for
a robust S(i) estimation (Fig. 4.15).

Two detection parameters, z (threshold detection parameter) and
k (defining the smoothing bandwidth), have to be adjusted. Hampel
(1985) made extensive Monte Carlo simulations of extremes detection
on background distributions “contaminated” with (distant) extreme dis-
tributions and concluded that z = 3.5 yields good detection rates. In
a practical application it is advisable to try also more conservative (z
larger) and more liberal (z smaller) settings and study the sensitivity
of the results. Two cross-validation criteria for k selection in running-
median smoothing seem to be useful for extremes detection owing to
their robustness, namely L1-norm (Marron 1987) and median criterion
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Figure 4.15. Outlier detection. The time point analysed for an outlier is t(i†). The
background or trend value is estimated as the median over 2k + 1 points inside a

window, X̂trend(i†) = M̂ {X(i)}i†+k

i=i†−k
; the variability around that value is estimated

as the median of absolute distances to the median (MAD) over the 2k + 1 points,

Ŝ(i†) = M̂
{∣∣∣X(j)− M̂ {X(i)}i†+k

i=i†−k

∣∣∣}i†+k

j=i†−k
. In the example, the data points are

shown as filled symbols, k = 2 and the background ± variability estimate is shown
as open symbol with vertical bars. Adopting a (likely too low) threshold detection
parameter of z = 2 would make t(i†) a detected extreme because x(i†) is more than

2Ŝ(i†) away from X̂trend(i†); a threshold detection parameter of z = 3.5 would reject
the point as an extreme. For detecting outliers in the whole series, the window is
pointwise shifted. A simple solution for outlier detection near the interval bounds
(i → 1, i → n) is to extrapolate background and variability there.

(Zheng and Yang 1998):

C1(k) =

[
n∑

i=1

∣∣∣x(i)− m̂ {x(j)}i+k
j=i−k, j 6=i

∣∣∣]/
n, (4.58)

Cm(k) = m̂
{∣∣∣x(i)− m̂ {x(j)}i+k

j=i−k, j 6=i

∣∣∣}n

i=1
, (4.59)

where m̂ {x(j)}i+k
j=i−k, j 6=i is the delete-one background estimate. Optimal

k values minimize C1(k) or Cm(k). (One leaves out the point j = i to ex-
clude the trivial solution k = 0.) However, because those criteria assume
absent serial correlation, it is important in a practical application with
persistent time series to try different k values and study the sensitivity.
Also local minima of the cross-validation functions may indicate some
relevant structure (Marron 1988).

Time, t(i)

x(i)

t(i †)

2 k + 1 points
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4.3.3.1 Example: volcanic peaks in the NGRIP sulfate
record

Figure 4.16 shows detection of extremes in the annually resolved sul-
fate record from the NGRIP ice core (Fig. 1.4). The background vari-
ations are thought to represent fluctuations of oceanic sulfate input,
against which the sulfate peaks from volcanic eruptions have to be de-
tected. Sulfate peaks from other sources (dust and salt) have been re-
moved prior to the analysis using information from proxy records of
those disturbing variables (Fig. 1.4).

Bandwidth selection for background estimation does not resort to
cross-validation because of the considerable amount of positive auto-
correlation, visible already per eye (Fig. 4.16c). Instead we set k = 750,
which means a running window of width ∼ 1500 a, because this is a
typical timescale on which D–O climatic variations over Greenland and
the North Atlantic occurred during the late Pleistocene and Holocene
(Bond et al. 1997, 2001; Schulz 2002); and therefore also the oceanic
sulfate input may have varied so.

Threshold setting does not follow Hampel’s (1985) rule but tries two
conservative values (z = 5.0, 10.0) in an attempt to “guarantee” that
peaks do stem from heavy volcanic eruptions, at the cost of missing
minor eruptions. A further point is autocorrelation within the peaks,
that means, when a threshold is exceeded for a few successive years.
This phenomenon is possibly (Bigler M 2003, personal communication)
owing to the injection of eruption material into the stratosphere (upper
part of the atmosphere), where it can reside for longer time. In such
cases, only the maximum is retained (Fig. 4.16c) for further analysis of
the occurrence of the volcanic peaks (Chapter 6).

4.3.3.2 Example: hurricane peaks in the Lower Mystic
Lake varve thickness record

Figure 4.17 shows detection of extremes in the varve thickness record
from the Lower Mystic Lake in the Boston area (Fig. 1.8). The back-
ground variations represent a combination of natural and anthropogenic
(colonization, from ∼ 1630) factors.

The character of the laminated sedimentation changed after around
1870, owing to population growth, industrialization in the watershed
and permanent alteration of the lake’s natural hydraulic regime due to
dam building (Besonen et al. 2008). To prevent the influence of these
inhomogeneity factors on the detection of peaks in varve thickness, the
twentieth century part of the lake core is not considered. The task is
to detect the peaks in varve thickness for the shown interval, which are
interpreted to have arisen from hurricanes that moved through the site
region.



160 4 Regression I

Figure 4.16. Extremes detection in the NGRIP sulfate record. a Full interval; b, c
zoomed. The annual sulfate data are shown as black lines (additionally dotted in c).
The background estimate (running median, k = 750) is in each panel the lowest of
the three grey lines; the detection thresholds (running median plus z times running
MAD, k = 750) are the middle (z = 5.0) and the upper (z = 10.0) grey lines. If a
sulfate peak crosses a threshold for a few successive years (c), then only the maximum
(arrow) is retained for further analysis (“declustering,” Chapter 6).
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Figure 4.17. Extremes detection in the Lower Mystic Lake varve thickness record.
Shown are annual varve thickness as black line, background estimate (running median,
k = 8) as the lower grey line and the detection threshold (running median plus
z = 3.5/0.6745 ≈ 5.2 times running MAD, k = 8) as the upper grey line.

Bandwidth selection followed the median criterion; k = 8 means that
background and variability variations on decadal timescales are “per-
mitted.” Several threshold selections were evaluated and the optimal
compromise (liberal versus conservative) seen in z = 3.5/0.6745 ≈ 5.2
(Besonen et al. 2008). This corresponds (Table 1.3, Note g) to 3.5 “ro-
bust standard deviations.”

The number of detected peaks is 47. However, the second criterion
imposed on a varve (graded-bed), besides thickness, led Besonen et al.
(2008) to discard 11 of those events. The further analysis of the hurricane
activity (Chapter 6) therefore was based on 36 events, observed between
a.d. 1011 and 1897.

4.4 Background material
Textbooks on regression are numerous; accessible ones include the

classic Draper and Smith (1981) as well as Sen and Srivastava (1990),
Montgomery and Peck (1992), Kutner et al. (2005), Montgomery et al.
(2006) and Graybill and Iyer (1994) on linear regression, Gallant (1987)
and Seber and Wild (1989) on nonlinear regression, Bloomfield and
Steiger (1983), Rousseeuw and Leroy (1987) and Lawrence and Arthur
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(1990) on robust regression and, finally, Härdle (1990), Wand and Jones
(1995), Simonoff (1996) and Wasserman (2006: Chapter 5 therein) on
nonparametric regression. These books contain many ideas of relevance
to the practice of climate time series regression, for example (1) the
role of influential observations and leverage points, that means, points
(T (i), X(i)) whose ex-/inclusion has a large influence on regression pa-
rameter estimates, (2) the usability of regressions for predicting time
series or (3) the construction of confidence regions, that means, joint
CIs for several parameters.

Model suitability is a further point covered in depth by the men-
tioned textbooks. We emphasize the importance of visual tools (Cook
and Weisberg 1982): checking per eye how good a regression curve fits
to the data or calculating the residuals (e(i), r(i) and the white-noise
residuals) and inspecting plots of them (e.g., r(i) versus t(i), or r(i)
versus r(i − 1)) for how well they appear to be realizations of the as-
sumed noise process. Such residual tests can further be performed nu-
merically. A classical example is the test for AR(1) serial correlation
in OLS regression by Durbin and Watson (1950, 1951, 1971), where the
authors managed to analytically derive bounds for the null distribution
of the test statistic dDW =

∑n
i=2[e(i)−e(i−1)]2/

∑n
i=1 e(i)2 (the case of

straight-line subtraction is more difficult than mean subtraction). How-
ever, the Durbin–Watson test is applicable only to evenly spaced time
series and therefore of minor relevance for climate time series regres-
sion. Often calculated is another parameter, the coefficient of determi-
nation, R2 = 1−

∑n
i=1 e(i)2/

∑n
i=1[x(i)−x̄]2, with sample mean x̄, which

measures the proportion of variation “explained” by the regressor, T (i).
However, R2 depends on {T (i)}n

i=1 with, loosely speaking, higher spread
of the time points leading to higher R2 values (Montgomery and Peck
1992). Therefore, the coefficient of determination should be interpreted
with caution in settings where the predictor points are not random vari-
ables (as in Chapter 8) but can rather be (partly) designed, for example
by selecting the depth points where to take samples from a sedimentary
or speleothem climate archive.

The Gauss–Markov conditions for linear regression are:

1. E[Xnoise(i)] = 0, i = 1, . . . , n;

2. S(i) = const., i = 1, . . . , n; and

3. E[Xnoise(i) ·Xnoise(i− 1)] = 0, i = 2, . . . , n.

If those conditions are fulfilled, then the OLS estimates have, among
all the unbiased regression parameter estimates, the mimimum variance
(Odell 1983). In climate time series analysis, the question is less whether
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the Gauss–Markov conditions are fulfilled than how severely they are
violated.

Trimmed least-squares regression in the linear model (Ruppert
and Carroll 1980) is a clearly better robust method (sensitivity to data
configuration and convergence properties) than median of squares regres-
sion and today preferred (Davison AC 2009, personal communication).

Linear/nonlinear regression and bootstrap: theory. Review
papers containing various details on bootstrap resampling applied to re-
gression include the following: Efron and Tibshirani (1986), Wu (1986),
Li and Maddala (1996) and Davison et al. (2003). A short expository
note was written by Peters and Freedman (1984). Early, Freedman
(1981) had clearly distinguished between the cases of a random regres-
sor T , which we analyse in Chapter 8 (Regression II), and non-random
T , which we consider in this chapter.

Linear regression and bootstrap: examples. Kahl et al. (1993)
applied linear regression to measured records of seasonal temperature at
the surface and several atmospheric heights in the Arctic Ocean region
during 1950–1990; using ordinary bootstrap resampling these authors
were unable to find significant upwards trends for any of the four sea-
sons. Their ignorance of serial dependence does likely not invalidate the
test result, although today presumably better data are available. Karl
et al. (1995) examined linear trends in temperature and precipitation
variabilities (from diurnal to interannual ranges) in records from glob-
ally distributed stations during parts of the twentieth century; using
surrogate bootstrap resampling from AR(1) and ARMA models fitted
to the residuals, they found, for example, that day-to-day temperature
variability has decreased in the northern hemisphere. Witte et al. (1998)
determined thermal gradients using proxy temperatures from beetle as-
semblages for the glacial–Holocene transition (Termination I) in north-
ern Europe; the ordinary bootstrap was applied to construct percentile
CIs. Kiktev et al. (2003) analysed trends in high-dimensional series of
indices of daily climate extremes; the data are based on measurements
and model simulations and cover the interval 1950–1995. The authors
used MBB resampling for hypothesis testing in an adaption to high di-
mensionality (Wilks 1997). MBB resampling was applied in a linear
regression analysis of Canadian low-flow runoff series covering the inter-
val from 1954 to 2003 (Khaliq et al. 2008).

Ramp regression was elaborated by Mudelsee (2000); an early figure
of the ramp as a model of a climate transition was shown by Hare (1979:
Fig. 1B therein). The ramp was applied to quantify the Mid-Pleistocene
Climate Transition (Mudelsee and Schulz 1997), which meant an in-
crease in mean global ice mass of 0.29h (δ18O-equivalent) from ∼ 942
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to ∼ 902 ka; this increase initiated the late Pleistocene ice age. The
ramp was also applied to quantify the onset of the Indian monsoon in
the early Holocene (Fig. 4.18). Recent applications of the ramp for esti-
mating paleoclimatic change-points include the following. Hopley et al.
(2007) quantified a rapid increase in savannah grass proportions between
1.78 and 1.69 Ma ago that coincides with a pulse in African mammal
turnover (proxy: δ13C in a speleothem). Steffensen et al. (2008) showed
that climate changes in Greenland during Termination I may have hap-
pened within a few years (δD in NGRIP ice core). Tachikawa et al.
(2009) determined the onset of increases in Pacific sea-surface temper-
ature during Termination I and analysed the spatial distribution of the
change-point times (several proxy variables measured on 30 sediment
cores). Wolff et al. (2009) compared Terminations I, II and V in terms
of warming rates (δD in EPICA Dome C ice core). Fleitmann et al.
(2009) quantified the onsets of Dansgaard–Oeschger events 1 and 3–12,
between about 15 and 48 ka ago (δ18O in a stalagmite from northern
Turkey). The ramp could be further used for quantifying, for example,
the duration of geomagnetic polarity reversals (Clement 2004) with CI.

Carbon isotopic compositions are written in the delta notation
(PDB standard) as δ13C = [(13C/12C)sample/(13C/12C)PDB−1] ·1000h.

Break regression, in statistical science better known as “two-phase
regression” (Hinkley 1970, 1971), was applied (Solow 1987) to southern
hemisphere temperature, 1858–1985. Reinsel et al. (2002) studied GLS
estimation of the break model, however, under the unrealistic assump-
tion that the change-point in time, t2, is known. This method was then
applied (Reinsel 2002; Reinsel et al. 2005) to detect trend changes in
stratospheric ozone concentrations, 1977–2002, that means in particu-
lar, the effects of the Montreal Protocol on Substances that Deplete the
Ozone Layer from 1987 and its Amendments. Hinkley (1988) mentioned
and Julious (2001) studied bootstrap resampling for the two-phase re-
gression; the latter paper devised a hypothesis test for the existence of an
unknown change-point. It appears, however, that CIs for break model
parameter estimators (Section 4.2.2.3; Mudelsee 2009) have not been
previously studied. A recent application (Trauth et al. 2009) of break
regression with bootstrap CIs examined trend changes in African aridity
during the Plio-/Pleistocene (proxy: dust flux in a marine sediment core
off the coast of west Africa). Tomé and Miranda (2004, 2005) presented
an algorithm for fitting a continuous regression model with several break
points to data and applied this method to study changes of Azores tem-
perature, northern hemisphere temperature, the NAO index and Lisbon
winter precipitation. Unfortunately, no error bars or confidence intervals
for the estimated trend parameters were determined.
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Figure 4.18. Trend estimation for the δ18O record from stalagmite Q5. A combina-
tion of a portion of a ramp in the early part and a sinusoid in the late part was fitted
(OLS) as trend (grey line) to the time series (black line). Choice of the sinusoid is
motivated by the observation that Holocene changes in local solar insolation, induced
by Earth orbital changes, influenced monsoonal rainfall amounts (Fleitmann et al.
2003). The change-point estimates (open circles) with bootstrap standard errors (SB
resampling, B = 2000, time errors from statistical and dating (Fleitmann et al. 2003)
uncertainties via Gaussian error propagation) are (10,300 a (fixed), −0.77 ± 0.08h),
(9617 ± 89 a, −1.98 ± 0.03h) and (7200 ± 400 a, −1.98h). The change at 9617 a
occurred, within error bars, simultaneously with a similar change in northern tem-
peratures, as indicated by δ18O variations in the GRIP ice core (Greenland), indicat-
ing a potential influence of northern glacial boundary conditions on monsoon climate
(Fleitmann et al. 2003). The sinusoid was fitted by linear OLS regression (e.g., re-
place β1T (i) by β1 sin(T (i))). Climate extremes detection (Section 4.3.3) found three
pronounced dry extremes (arrows): a longer-lasting event at ∼ 8.2 ka and other at
∼ 9.2 and ∼ 6.3 ka.

Other change-point estimation methods for time-dependent mean
and variance exist. A collection of early Bayesian papers is Smith (1975),
Cobb (1978), Menzefricke (1981), Booth and Smith (1982) and Abraham
and Wei (1984). “Techniques for testing the constancy of regression
relationships over time“ is the title of a paper by Brown et al. (1975),
which presents “real-time” or “online” tests. Similarly did Yashchin
(1995) for “real-time,” abrupt changes in Xtrend(T ). The history of
such tests goes back to the 1950s, when Page (1954) introduced the
cumulative sum (CUSUM) chart. A CUSUM chart shows typically

S(r) =
r∑

i=1

[x(i)− µtarget] , (4.60)

where µtarget is the target mean value and S(0) ≡ 0, plotted against
r = 0, 1, 2, . . . . Deviations of the “real-time” from the target mean are as-
sessed with control limits (Barnard 1959; Goel 1982). Setting the control
limits is done by taking into account the properties (shape, persistence)
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of the data generating process (Chen and Gupta 2000; Wu 2005). How-
ever, such tests are less useful in the context of this book, which assumes
that “offline” time series are available for retrospective analysis. Tests
for variance changes were presented by Hsu (1977), Tsay (1988), Inclán
and Tiao (1994) and others. Popular in climatology (Karl and Rieb-
same 1984; Karl and Williams 1987; Yamamoto et al. 1986; Goossens
and Berger 1986; Maasch 1988; Gluhovsky and Agee 1994; Lund et al.
2007) have been retrospective tests for abrupt changes in the mean, that
is, points where Xtrend(T ) changes from one constant level to another
constant level. Those tests, performed either non-robustly on basis of
the t distribution of the mean (Section 3.1.1) or robustly based on ranks
(Kendall 1938; Mann 1945), may be useful when the objective is to de-
tect inhomogeneities in the data (Section 1.6), as has been the case in
many of the climatology studies cited. Because a jump in the mean is
not a gradual change, however, such models are rarely useful for quanti-
fying climatic trends. Pettitt (1979) presented a test for a “jump in the
distribution function” in a sequence of random variables. Esterby and
El-Shaarawi (1981) developed a maximum likelihood estimator for the
change-point in a two-phase polynomial regression model with AR(1)
noise component. Rodionov (2004) presented a CUSUM-like test for a
jump in the mean based on the t distribution and augmented (Rodi-
onov 2006) the test by means of prewhitening to take persistence into
account. Caussinus and Mestre (2004) used a penalized log-likelihood
procedure for detecting an unknown number of jumps in the mean and,
notably, outliers in a time series. The latter authors performed a Monte
Carlo experiment to study the test power in dependence on the size of
the jumps. Also discontinuous linear models, developed in econometrics
(Bai and Perron 1998), have limited applicability in climatology. Perron
(2006) reviews estimation methods from the viewpoint of econometrics,
where the change-points are denoted as “structural breaks.” He gives
results about limit distributions (n → ∞) of estimators and further in-
sight into the existing voluminous work on this topic. We also mention
Transitional Generalized Linear Models, an interesting generalization of
nonlinear regression, expressed in terms of conditional means and vari-
ances, which has been applied with MBB resampling to a pollen time
series (Brumback et al. 2000). To summarize the paragraph, we think
that parametric trend models are important for climatology. Examples
include the ramp, the break, the trapezoidal model (Schulz 2002) and
the piecewise linear model (Seidel and Lanzante 2004). We further think
that, from the trend models discussed (Fig. 4.19), the continuous types
are more realistic. One should also consider unspecified nonlinear mod-
els, which can be estimated nonparametrically (see a later paragraph).
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Figure 4.19. Regression models for trend estimation. Open/filled symbols mark
discontinuities (abrupt changes).

Structural changes versus long memory: this dichotomy be-
tween trend and noise components in a stochastic process is known
to several scientific disciplines. Econometrics accepts that separating
models with jumps in Xtrend(T ) from long-memory models is difficult
(Diebold and Inoue 2001; Granger and Hyung 2004; Perron 2006). Fig-
ure 4.20 illustrates this difficulty: the trend function is such complex
that one may be inclined to prefer a description as noise. Knowledge
about the dichotomy exists also in hydrology (Koutsoyiannis 2006) and
climatology (Rust et al. 2008). Complexity and dichotomy may lead
to pitfalls in the form of fitting physically implausible models to ob-
served climate time series. Gil-Alana (2008) analysed annual tempera-
ture (global, northern hemisphere, southern hemisphere) for the inter-
val 1861–2002 and fitted linear regression models with ARFIMA(0, δ, 0)
noise component. He also considered structural changes (two and three
regimes), finding significant trends in all cases. Unfortunately, Gil-Alana
(2008) did not present physical explanations of the long memory and of
the change-point times (e.g., 1871 and 1974 for global temperature). We
have already noted (Section 2.5.2) that aggregated series may produce
spurious long memory. In another paper, Wu and Zhao (2007: p. 403
therein) were “pleased to conclude that there is no evidence for jumps in
the mean trend” for monthly temperature (global), interval 1856–2000.
Detected jumps (or their absence) and confirmed (or refuted) long mem-
ory should lead researchers to explain such findings. Rust et al. (2008)
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give a remarkably simple explanation for detected jumps or long mem-
ory: inhomogeneities in the observed temperature records. A recently
detected inhomogeneity is the jump in mean at 1945 in hemispheric tem-
perature records. This jump is the apparent result of uncorrected instru-
mental biases in the sea-surface temperature measurements (Thompson
et al. 2008).

Time, T

Climate
trend, X trend

Figure 4.20. Climate trend function comprising many jumps.

The Mann–Kendall trend test (Mann 1945; Kendall 1938) is based
on the idea of sorting. Consider a sample {X(i)}n

i=1 in ascending order
with time, X(1) < X(2) < · · · < X(n). This may be associated with a
monotonically increasing trend function. A sample in non-perfect order
requires a minimum, U ′, of interchanges (e.g., X(1) ↔ X(2)) to reach
an ordered state. The theoretical maximum of U ′ is given by the number
of pairs of data points, n(n− 1)/2. The test statistic (Kendall’s tau),

U = 1− 4U ′

n(n− 1)
, (4.61)

is theoretically between 1 (upwards trend) and −1 (downwards trend).
Under an IID random process, X(i), the distribution of U reaches, with
increasing n, rapidly a standard normal form (Kendall 1938; Kendall
and Gibbons 1990) with E[U ] = 0 and VAR[U ] = 2(2n + 5)/[9n(n− 1)].
(There are adaption formulas for the case of ties.) The advantage of the
Mann–Kendall test within the context of climate time series analysis
is its robustness regarding the distributional shape of X(i). The ma-
jor task is to find suitable adaptions to deal with serial dependence in
the process. von Storch and Zwiers (1999: Section 6.6 therein) present
such, and they cover also other tests of the mean. One may apply the
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Cochrane–Orcutt transformation prior to the Mann–Kendall test to re-
move autocorrelation effects (“prewhitening”). Hamed (2009b) notes
that ignoring bias in autocorrelation estimation leads to a reduced test
power of this procedure. Hamed (2008) derives adaption formulas for
the variance for the case X(i) is a long-memory process. See Stuart
(1983) for a review of Kendall’s tau, which includes also references to
earlier papers than that of its originator.

The superposed epoch analysis originates from the idea of Chree
(1913, 1914) to compare the means of one variable, X(i), taken from
time intervals before and after the occurrence of events. The variable
is assumed to be a continuous random variable, and the events are as-
sumed to present the outlier or extreme component of a second variable,
Yout(i). That type of analysis belongs therefore also to the bivariate
setting (Part III). By testing the hypothesis of equal means before and
after, it is possible to study the relation between climate variables and
climate extremes. Adams et al. (2003) related the ENSO index with
the occurrence of explosive volcanism in low latitudes over the past ap-
proximately 350 years. Using MBB resampling, with the selected block
length equal to 2τ̂ (persistence time of an AR(1) process fitted to the
ENSO time series), they found significant changes in the mean, that is,
a multi-year El Niño-like response to volcanic forcing.

Quantile regression models (Koenker and Bassett 1978; Koenker
and Hallock 2001; Yu et al. 2003) do not describe the mean conditional
on time, Xtrend(T ), but a quantile of the distribution of X conditional
on time. Estimation can be achieved by employing a sum of asymmet-
rically weighted absolute residuals (instead of a least-squares sum as in
WLS). Censored quantile regression (Powell 1986) is the adaption to
the case when the range of values of X is restricted or not observable.
This may apply to climate observations. Quantile regression can be per-
formed to estimate robustly the time-dependent centre of location (50th
percentile or median). Another application field is extreme value time
series analysis (Chapter 6).

Neural networks can be viewed as complex regression models be-
tween input and output, where the numbers of regression terms and
parameters are not fixed but allowed to vary. Such models fit there-
fore to this book’s preference for putting complexity more into the trend
and less into the noise component. Examples of neural networks ap-
plied to climate time series are the following: Grieger and Latif (1994)
analysed ENSO dynamics and, related, Hsieh and Tang (1998) studied
the prediction of Pacific sea-surface temperatures for the second half of
the twentieth century. Studies on employing bootstrap resampling in
neural network estimation include those by Breiman (1996) and Franke
and Neumann (2000). Applications of the combined bootstrap–neural
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network technology to climatological problems exist few yet. Guiot and
Tessier (1997) detected pollution signals in tree-ring series with boot-
strap percentile confidence intervals. Giordano et al. (2005) presented,
in a conference paper, the prediction of hydrological time series under
usage of the sieve bootstrap, laying down their method in a later paper
(Giordano et al. 2007).

Errors-in-variables models are covered in the advanced of the text-
books mentioned in a preceding paragraph, also by Jones (1979) and
Fuller (1999) and here in Chapter 8.

Smoothing methods have since long been used to visualize determi-
nistic data features; they range from intuitive drawing per hand with the
“cosmic schwung” (Suess and Linick 1990) to more elaborated mathe-
matical attempts (Härdle and Chen 1995; Simonoff 1996). An impor-
tant class is formed by linear smoothers, which relate (process level)
the data vector X (Eq. 4.11) and the estimated trend vector X̂trend =
[Xtrend(1), . . . , Xtrend(n)]′ as X̂trend = SX, where the n × n matrix S
is called a smoother matrix. Buja et al. (1989) review linear smoothers
such as the running mean, running linear OLS regression, running poly-
nomial regression and kernel smoothing. They study also a technique
fashionable in climatology, namely cubic spline smoothing, which mini-
mizes the expression

n∑
i=1

[x(i)− xtrend(i)]
2 + λ

+∞∫
−∞

[ẍtrend(t)]
2 dt, (4.62)

where ẍtrend(t) is the second derivative (curvature) of the trend function
in continuous time. Herein, λ is the smoothing parameter; λ = 0 leads
to interpolation and λ → +∞ to OLS regression.

Bandwidth selection methods for nonparametric regression can be
divided into few classes, as illustrated by Gasser et al. (1991) for the
Gasser–Müller kernel: the first class, cross-validation, is based on delete-
one estimates (Section 4.3.3), the second, penalizing, adds a bias term
to the sum of squares before minimization. Hall et al. (1995b) consider
a third class, based on MBB resampling, which they use besides cross-
validation in their theoretical description of how short- and long-memory
serial dependence affects optimal bandwidth selection. Previously, Dig-
gle and Hutchinson (1989) studied bandwidth selection for Gaussian
AR(1) dependence. Grunwald and Hyndman (1998) considered penal-
ized bandwidth selection under non-Gaussian errors and showed as ex-
ample smoothing of daily rainfall in Melbourne, 1980–1989, with boot-
strap confidence band. Francisco-Fernández et al. (2004) and Francisco-
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Fernández and Vilar-Fernández (2005) presented bandwidth selectors for
local polynomial regression smoothing with AR(1) and other types of
serial dependence. Gijbels and Goderniaux (2004a) studied bandwidth
selection with the bootstrap in the context of change-point estimation
in nonparametric regression. They applied this to detect changes in the
record of annual temperatures from Prague during 1775–1989 (Gijbels
and Goderniaux 2004b) and the record of annual runoff from the Nile
during 1871–1934 (Gijbels et al. 2004). A caveat that may be raised
is that the assumed discontinuous trend model (Fig. 4.19h) is climato-
logically unrealistic. Previous papers on change-point estimation using
nonparametric regression include Müller (1992) and Chu (1994).

Adaptive nonparametric regression is a further smoothing de-
velopment, where the bandwidth, h, is allowed to be time-dependent.
For example, a smaller h can be used in regions where the spacing d(i)
is smaller or where the variability S(i) is smaller, enabling detection of
systematic, local, short-term trends. Local bandwidth selection methods
for the Gasser–Müller kernel regression were developed by Brockmann
et al. (1993) and Herrmann (1997). A unifying approach to nonpara-
metric regression (smoothing spline, k-nearest-neighbour, kernel) was
presented by Jennen-Steinmetz and Gasser (1988).

Bootstrap confidence band construction for nonparametric re-
gression was introduced by Härdle and Bowman (1988) and further de-
veloped to include topics such as simultaneous confidence bands (Härdle
and Marron 1991) or pivotal methods (Hall 1992). An early paper on
bootstrap confidence bands, together with an application to a Holocene
radiocarbon record from tree-rings, was presented by Hall and Tittering-
ton (1988). The ozone time series from Arosa, Switzerland, covering the
interval from the 1930s to the 1990s, was analysed by Bühlmann (1998)
using an MBB confidence band for the nonparametric trend estimation
and by Bühlmann (2002) using nonparametric regression and MBB tests
of the hypotheses “constant mean” and “constant variability.”

Detection of climate extremes has to be performed robustly be-
cause the assumed extremes should not bias estimates of trend and vari-
ability. Although Lanzante (1996) warned climatologists of this pitfall, it
seems today more the rule than the exception that non-robust methods,
such as running mean and running standard deviation, are employed.
Mudelsee (2006) reiterated the warning using as an example a Holocene
section of the sulfate record from the GISP2 ice core (Greenland). Lan-
zante (1996) reviewed robust techniques also for change-point estima-
tion and presented climatological examples. The detection method from
Section 4.3.3 was applied also by Fleitmann et al. (2008) to detect a cli-
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mate cold anomaly at around 9.2 ka before present in paleoclimate proxy
records from globally distributed sites, and by Girardin et al. (2009) to
detect wildfire events in proxy records of July monthly drought code from
28 forested ecoregions of the North American and Eurasian continents,
interval 1901–2002.

Timescale errors and their inclusion into the bootstrap resampling
procedure depend on how the timescale for a climate archive has been
constructed. (1) Timescales based on dated depth points and a regres-
sion model for the age–depth curve, constrained to strict monotonic
growth (Figs. 4.3 and 4.4), can be readily used for parametrically re-
sampling the time points by means of the dating errors (timescale-ARB
and timescale-MBB algorithms). If the size of the dating error, ST ,
is unknown, it may be estimated via formulas analogous to Eq. (4.8).
If it is known a priori (machine error), such formulas may be used for
calculating a dating error estimate and comparing it with the machine
error. Agreement would then corroborate the validity of the estimated
age–depth curve. Papers on this approach include Bennett (1994) on
the chronology of a lake sediment core dated with 14C and Spötl et al.
(2006) on a stalagmite dated with U/Th. Drysdale et al. (2004) use a
similar approach, also on a stalagmite, but make an additional, appar-
ently ad-hoc assumption that stalagmite growth may vary by a factor
of ten between the dating points, resulting in a wider confidence band.
Bennett and Fuller (2002) study the influence of the age-model selection
on the estimated date of the mid-Holocene decline of the hemlock tree in
eastern North America. In the presence of hiatuses (Fig. 4.4), it should
be worth applying regression models with a jump in the mean (Fig.
4.19g, h), additionally constrained to monotonic growth, to the con-
struction of age–depth curves with confidence bands. Heegaard et al.
(2005) offer an interesting extension to the case where the material in
an archive at a common depth is age-inhomogeneous. This can occur
in sediment cores as a result of mixing processes. (2) Timescales for
laminated archives follow directly from detected lamina depths and the
time period of lamina deposition. In applications, this period is almost
exclusively 1 year. Examples are varved lake sediments resulting from
absent bioturbation caused by low oxygen concentrations, yearly δ18O
cycles in ice cores, thickness and density cycles of tree-rings, growth lay-
ers in speleothems and also growth layers in “biological archives” such
as corals or mollusks. The error in “absolute time,” dependent on the
dating error of an absolutely dated lamina, can be clearly larger than
the “internal” time uncertainty. (3) Tuned timescales based on relat-
ing a record {tX(i), x(i)}nX

i=1 to another, dated record {tY (i), y(i)}nY
i=1

(see background material in Chapter 1) may depend strongly on the
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assumed relationship. Tuning has been often applied to erect chronolo-
gies of marine sedimentary records from the Pleistocene, with the target
y(i) being a time series of solar insolation or Earth orbital elements.
The points {tX(i)}nX

i=1 are fitted such that a cost function is minimized.
Many choices can influence the design of the cost function: curvature,
robustness, bounds of the inferred sedimentation rate, bounds of the
maximum time shift of a time point, etc. Papers include Martinson
et al. (1982), Herterich and Sarnthein (1984), Martinson et al. (1987),
Brüggemann (1992), Grieger (1992), Lisiecki and Lisiecki (2002), Huy-
bers (2002) and Huybers and Wunsch (2004). Timescale error deter-
mination may in principle be carried out using regression methods for
bivariate time series (Chapter 8), but those results could be mislead-
ing when the assumptions made (cost function) are uncertain. In such
cases of model uncertainty, an option would be to adopt (4) Bayesian
tools for constructing chronologies (Buck and Millard 2004). A new,
continuous, piecewise linear, monotone stochastic process has been sug-
gested (Haslett and Parnell 2008) to model accumulation of a climate
archive. These authors present also applications to radiocarbon-dated
lake sedimentary records.

4.5 Technical issues
The GLS standard notation of the sum of squares to be minimized

(Eq. 4.9) is with V/S2 instead of V, where S is a constant “overall”
standard deviation of Xnoise(i).

Matrix algebra is required for GLS estimation (Section 4.1.2). Let
A be a p × q matrix with elements A(i, j), where i = 1, . . . , p denotes
the row and j = 1, . . . , q the column. For example, in Eq. (4.12), p = n
(data size) and q = 2. Let B be a q × r matrix. The matrix product is
then a p × r matrix C with elements C(i, j) =

∑q
k=1 A(i, k) · B(k, j).

A vector is a matrix with q = 1. The sum C of two p × q matrices
A and B has the elements C(i, j) = A(i, j) + B(i, j). The transpose
A′ of a p × q matrix A is given by the q × p matrix C = A′ with
C(i, j) = A(j, i). The matrix I is called unit matrix if it is a p × p
matrix with I(i, j) = 1 for i = j and 0 for i 6= j. The inverse A−1

of a matrix A has the property A−1A = I. The rule “multiplication
before addition” applies also to matrices. The product of more than two
matrices is calculated “from the left,” D = ABC = (AB)C (matrix
multiplication is not commutative). See Dahlquist and Björck (2008:
Appendix A therein) for more details on matrix algebra.

Numerical linear algebra methods for solving OLS, WLS and
GLS regression problems are explained by Gentle (1998) and Dahlquist
and Björck (in press: Chapter 8 therein). LAPACK (Anderson et al.
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1999) is a collection of Fortran (77 and 90) routines, available from
http://www.netlib.org/lapack (19 December 2006). Those minimization
methods often work with the gradient technique.

Search techniques have to be applied to problems where the least-
squares sum is not differentiable with respect to a parameter. An exam-
ple is Brent’s search (Brent 1973; Press et al. 1992), which is based on
interpolation and iterated interval divisions in the golden section ratio.
As regards least-squares fitting of the piecewise linear regression func-
tions (Fig. 4.19a–c), Williams (1970) extended Hudson’s (1966) brute-
force search for two pieces (“break”) to three pieces (“ramp”); see also
Schulze (1987) on “multi-phase” regression. The size of the temporal
spacing at around an estimated change-point in time limits the accu-
racy of the change-point estimate. In practice, however, this is only a
problem when d(i) becomes larger than the size of the bootstrap stan-
dard error. The brute-force search with bootstrap resampling is ap-
plicable even to long climate time series (n above, say, 100,000) owing
to two computational modifications (see below) and today’s available
computing power.

Parallel computing allows the acceleration of extensive numerical
estimations on multiprocessor machines. As an example, the Monte
Carlo experiment on the coverage performance of BCa CIs for ramp
regression (Table 4.13) was carried out by means of a Fortran 90 pro-
gram on a four-processor workstation. Constants like k5 =

∑ĩ2−1

i=ĩ1+1
t(i)

(cf. Eq. (4.43) with S(i) = 1) were declared as two-dimensional arrays,
k5(ĩ1 = 1 : n, ĩ2 = 1 : n), calculated as (Ellis et al. 1994; Press et al.
1996)

b = (/ 0.0, 0.0, (sum(t(2 : j)), j = 2, n− 1) /)
c = (/ 0.0, (sum(t(2 : j)), j = 2, n) /) (4.63)
k5 = spread(b, dim = 1, ncopies = n) −

spread(c, dim = 2, ncopies = n)

and the estimation equations (4.41) and (4.42) were solved with whole-
array operations.

RAMPFIT (Mudelsee 2000) is a FORTRAN 77 software for WLS fit-
ting of a ramp (Eq. 4.39) to time series; it includes SB resampling, boot-
strap standard error calculation and graphical residual analysis. Two
modifications reduce computing costs of the brute-force estimation of
the ramp change-points, t1 and t2. First, when searching through the
t1–t2 grid, the constants (Eqs. 4.41 and 4.42) are not calculated new
but their values are updated. Second, the candidate change-points ĩ1
and ĩ2 are not selected from the whole set {1, . . . , n} but only a subset.
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Smoothing is included in RAMPFIT as a visual tool for tailoring these
search ranges. By setting ĩ1 = 1 and ĩ2 = n, RAMPFIT can be used as
a linear WLS regression tool. The software is available at the web site
for this book.

Breakfit (Mudelsee 2009) is a FORTRAN 77 software for WLS fit-
ting of a break model (Eq. 4.47) to time series; it includes MBB re-
sampling, bootstrap standard error calculation and graphical residual
analysis. The software is available at the web site for this book.

SiZer is an explorative, graphical software tool to assess the signif-
icance of zero crossings of derivatives (i.e., change-points) by means of

The strucchange package for R (Zeileis et al. 2002) supports test-
ing, monitoring and estimating structural changes in linear regression
models by means of CUSUM charts and other tools. It is available at
http://cran.r-project.org/web/packages/strucchange (9 December 2009).

Other nonlinear regression software with bootstrap resampling
includes the following: Huet et al. (2004) have a package for S-Plus; Sher-
man et al. (1998) mention an S-Plus code for general regression models
with MBB resampling, which can be obtained from sherman@stat.tamu.edu

(23 January 2007).
Gasser–Müller adaptive kernel nonparametric regression can

be implemented using the FORTRAN 77 subroutines and interfaces
to Matlab and S-Plus, available from the following internet address:
http://www.biostat.unizh.ch/research/software/kernel.html (3 May 2007).

Optimal median smoothing is the title of a paper by Härdle and
Steiger (1995); this expression means that no faster algorithm for run-
ning median calculation has yet been found than that presented in the
paper. The ideas behind the algorithm are the so-called double-heap
ordering structure and updating.

CLIM-X-DETECT is a Fortran 90 program (Mudelsee 2006) for
detecting extremes in time series against a time-dependent background
(Section 4.3.3). The software adapts Härdle and Steiger’s (1995) al-
gorithm to calculate also the delete-one background estimate and the
running MAD for setting the detection threshold. CLIM-X-DETECT is
available at the web site for this book.

agedepth 1.0.zip is an archive of R functions for constructing
age–depth curves using the regression approach of Heegaard et al. (2005).
It is available at http://www.eecrg.uib.no/Homepages/EinarHeegaard.htm (25
May 2010).

nonparametric regression (Chaudhuri and Marron 1999). It is available
via http://www.unc.edu/~marron/DataAnalyses/SiZer Intro.html (8 December
2009) as Java and Matlab implementations.
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WinGeol Lamination Tool is a C++ software under Windows for
automatic laminae detection using digital image analysis (Meyer et al.
2006). It is available from http://www.terramath.com (17 January 2007).

Autocomp/Match are two C++ packages for Macintosh, Unix or
Windows implementing the correlation approach of Lisiecki and Lisiecki
(2002) to timescale construction. http://www.lorraine-lisiecki.com is the
site where it can be obtained (17 January 2007).

XCM is a timescale tuning software for Matlab implementing the
cross-correlation maximization algorithm of Huybers (2002). It is avail-

BCal is an online Bayesian tool at http://bcal.sheffield.ac.uk (12
February 2010) for constructing radiocarbon timescales.

Likewise, OxCal is an online/offline Bayesian software (Ramsey 2008),
available at http://c14.arch.ox.ac.uk/oxcal.html (9 December 2009).

Isoplot is a geochronological toolkit for Excel (Ludwig 2003) imple-
menting a Bayesian approach to timescale construction; it is available
via http://www.bgc.org/isoplot etc/software.html (17 January 2007).

able from http://web.mit.edu/~phuybers/www/Mfiles/Toolbox (25 May 2010).



Chapter 5

Spectral Analysis

Spectral analysis investigates the noise component in the climate equa-
tion (Eq. 1.2). A Fourier transformation into the frequency domain
makes it possible to separate short-term from long-term variations and
to distinguish between cyclical forcing mechanisms of the climate system
and broad-band resonances. Spectral analysis allows to learn about the
climate physics.

The task is to estimate the spectral density function, and to test
for harmonic (cyclical) signals. This poses more difficulties than, for
example, linear regression because now we estimate a function and not
just two parameters. Spectral smoothing becomes therefore necessary,
and this brings a trade-off between estimation variance and frequency
resolution.

The multitaper smoothing method achieves the optimal trade-off for
evenly spaced time series. The method of choice for unevenly spaced
records is Lomb–Scargle, which estimates in the time domain and avoids
distortions caused by interpolation.

Bootstrap resampling enhances multitaper and Lomb–Scargle meth-
ods by providing a bias correction and CIs. It supplies also a detec-
tion test for a spectral peak against realistic noise alternatives in form
of an AR(1) process (“red noise”). Section 5.2.8 introduces bootstrap
adaptions to take into account the effects of timescale uncertainties on
detectability and frequency resolution.

5.1 Spectrum
Let us assume in this chapter that the climate process in continuous

time, X(T ), has no trend and no outlier components and a constant
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variability, S,

X(T ) = Xtrend(T ) + Xout(T ) + S(T ) ·Xnoise(T )
= S ·Xnoise(T ).

(5.1)

Such a process could be derived from a “real” climate process, that is,
with trend and so forth, by subtracting the trend and outlier components
and normalizing (standard deviation). Techniques for quantifying trend
and variability and detecting outliers are presented in Chapter 4.

It is then straightforward (Priestley 1981) to define a truncated pro-
cess,

XT ′(T ) =

{
X(T ) for −T ′ ≤ T ≤ T ′,

0 elsewhere,
(5.2)

and express it as a Fourier integral,

XT ′(T ) = (2π)1/2

∞∫
−∞

GT ′(f)e2πifT df, (5.3)

where

GT ′(f) = (2π)−1/2

∞∫
−∞

XT ′(T )e−2πifT dT

= (2π)−1/2

T ′∫
−T ′

X(T )e−2πifT dT. (5.4)

This introduces the frequency, f . (The symbol i in the exponent denotes√
−1.) This is a useful quantity for describing phenomena that exhibit a

periodic behaviour in time. The period (time units) is given by Tperiod =
1/f . If one associates X(T ) with movement and kinetic energy, then
2π|GT ′(f)2|df can be seen as the energy contribution of components with
frequencies within the (arbitrarily small) interval [f ; f + df ]. Regarding
the truncation, because with T ′ → ∞ also the energy goes to infinity,
one defines the power, π|GT ′(f)2|/T ′. Because the previous formulas in
this section apply to a time series rather than a stochastic process, one
uses the expectation operator to define

h(f) = lim
T ′→∞

{
E

[
2π

∣∣GT ′(f)2
∣∣ /

T ′ ]} . (5.5)
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The function h(f) is called one-sided non-normalized power spectral den-
sity function of the process X(T ), often denoted just as (non-normalized)
spectrum. It is the average (over all realizations) of the contribution to
the total power from components in X(T ) with frequencies within the
interval [f ; f + df ]. h(f) is defined for f ≥ 0 and integrates to S2. A
closely related function is

g(f) = h(f)
/
S2, (5.6)

the one-sided normalized power spectral density function, which inte-
grates to unity. A two-sided version of the spectrum, symmetric about
f = 0, is also used (Bendat and Piersol 1986).

The functions h(f) and g(f) are the Fourier transforms of the auto-
covariance and autocorrelation functions, R(τ) and ρ(τ), respectively,
provided they exist (Priestley 1981: Section 4.8 therein):

h(f) = π−1

∞∫
−∞

R(τ)e−2πifτdτ, (5.7)

g(f) = π−1

∞∫
−∞

ρ(τ)e−2πifτdτ. (5.8)

Herein,

R(τ) = E [X(T ) ·X(T + τ)] , (5.9)
ρ(τ) = R(τ) /R(0) (5.10)

and the symbol τ is used to denote a lag in continuous time. The caveat
refers to the fact that not all processes X(T ) have a spectral representa-
tion; however, the existence of the Fourier transform of the autocovari-
ance function R(τ) of X(T ) is a sufficient condition.

Turning to the discrete-time version of the climate process, X(i), we
assume also here absent trend, absent outliers and constant variability
and find

X(i) = S ·Xnoise(i). (5.11)

The spectral theory is in this case similar to the continuous-time case
(Priestley 1981: Section 4.8.3 therein), except that the frequency range
is now restricted in both directions and the discrete Fourier transform is
invoked to calculate the power spectral density functions. For example,
with even time spacing, d(i) = d > 0,

g(f) = (d/π)
∞∑

l=−∞
ρ(l)e−2πifldl, 0 ≤ f ≤ 1/(2d). (5.12)
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Herein, l denotes a lag in discrete time. The frequency fNy = (2d)−1 is
denoted as Nyquist frequency; it sets the upper frequency bound.

5.1.1 Example: AR(1) process, discrete time
Consider the discrete-time AR(1) process (Section 2.1.1) with an au-

tocorrelation parameter a on an evenly spaced timescale, d(i) = d > 0,
with n = ∞ points. Then (Priestley 1981: Section 4.10 therein),

g(f) = 2d(1− a2)
/[

1− 2a cos(2πfd) + a2
]
, 0 ≤ f ≤ 1/(2d).

(5.13)
Plots of the AR(1) spectrum (Fig. 5.1) show higher power at lower fre-
quencies for a > 0; such a spectrum is, hence, called “red.”

Figure 5.1. Spectrum of the AR(1) process (Eq. 5.13). Two parameter settings are
shown; d = 1 and fNy = 0.5.

5.1.2 Example: AR(2) process, discrete time
Consider the discrete-time AR(2) process (Section 2.2) with param-

eters a1 and a2 on an evenly spaced timescale with d > 0 and n = ∞.
Then (Priestley 1981: Section 4.10 therein),

g(f) = 2d(1 + a2)(1− a2)−1
[
(1− a2)2 − a2

1

] [
(1 + a2)2 (5.14)

+a2
1 − 2a1(1− a2) cos(2πfd)− 4a2 cos(2πfd)2

]−1
,

with 0 ≤ f ≤ 1/(2d). Plots of the AR(2) spectrum (Fig. 5.2) reveal that
besides redness such spectra may exhibit quasi-cyclical behaviour (Eq.
2.15).

0.0 0.1 0.2 0.3 0.4 0.5
Frequency, f

0.0

2.0

4.0

6.0Spectrum,
g(f )

a = 0.2

a = 0.5
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Figure 5.2. Spectrum of the AR(2) process (Eq. 5.14). Two parameter settings are
shown; d = 1 and fNy = 0.5.

5.1.3 Physical meaning
The importance of the power spectral density functions h(f) and g(f)

lies in the possibility of decomposing a process into contributions from
different frequency intervals. That allows to separate short-term from
long-term variations and also to distinguish between cyclical forcing
mechanisms of the climate system and broad-band resonances. This
means that spectral analysis permits to learn about the physics of the
sampled climate system. As always when having instead of a per-
fect knowledge only a handful of data contaminated with measurement
and, perhaps, proxy errors, the task is to estimate, namely the spec-
trum. The following sections explain methods to infer h(f) or g(f) from
{t(i), x(i)}n

i=1.
We expect the climate spectrum either as continuous (Fig. 5.3b), re-

flecting a random process, or as a mixture of continuous and line com-
ponents (Fig. 5.3c), the latter representing a deterministic, periodic in-
fluence. Note that estimating a spectrum is estimating a function from
a finite data set. This means we can expect more difficulties and a
higher susceptibility to the validness of made assumptions than for eas-
ier tasks, where only few parameters have to estimated, such as in linear
regression.

A word on the notation: The literature has developed a rich variety of
different notations (factors 2π, frequency versus angular velocity, etc.),

0.0 0.1 0.2 0.3 0.4 0.5
Frequency, f

0.0

5.0

10.0

15.0Spectrum,
g(f )

a1 = 1.0, a2 = –0.4

a1 = 0.9, a2 = –0.1
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Figure 5.3. Spectrum types. a Line spectrum; b continuous spectra; c mixed spec-
trum. Three continuous spectra are shown: red noise (solid line), blue noise (short-
dashed line) and white noise (long-dashed line). A line spectrum can be described
mathematically by means of a Dirac delta function (arbitrarily narrow, arbitrarily
high, finite integral).

and our is just one option. Likewise we say “spectral analysis” instead
of “frequency analysis” to avoid connotations with something counted.
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5.2 Spectral estimation
Estimation of the power spectral density function has in practice to be

carried out using a finite data set {t(i), x(i)}n
i=1. We expect the climate

noise process Xnoise(i), and respectively the trend- and outlier-free cli-
mate process X(i), to exhibit persistence (time domain) or redness (fre-
quency domain). Rarely, a blue background may be found (Section 2.6).
We may possibly detect peaks superimposed on the smooth background
spectrum (Fig. 5.3c), resulting from a periodic forcing process of the cli-
mate subsystem. Alternative causes of a peak could be a resonance or a
noise component more complex than AR(1) (Fig. 5.2). Because the de-
terministic astronomical cycles (daily, annual, Milankovitch), which are
harmonic processes (Section 5.2.1) with a discrete line spectrum (Fig.
5.3a), are likely not preserved without alteration in a climate archive,
especially when the timescale is uncertain, it may be difficult in practice
to distinguish between the alternatives “periodic forcing” and “complex
noise.”

5.2.1 Periodogram
The process

X(i) =
K∑

j=1

[
Aj cos (2πfjT (i)) + Bj sin (2πfjT (i))

]
+ EN(0, S2)(i) (5.15)

with i = 1, . . . , n is called harmonic process. (This is done loosely, the
strict definition requires S2 = 0.) Its parameters are {Aj , Bj , fj}K

j=1, K

and S2. It has a line spectrum (frequencies fj) sitting on a flat, constant
background stemming from the persistence-free (white) noise.

If K and {fj}K
j=1 are known, then the other parameters can be ob-

tained (Priestley 1981: Section 6.1.1 therein) by the least-squares tech-
nique, that is, by minimizing

SSQ
(
{Aj , Bj}K

j=1

)
=

n∑
i=1

{
X(i)−

K∑
j=1

[
Aj cos (2πfjT (i)) (5.16)

+ Bj sin (2πfjT (i))
]}2

.

This is in fact a regression and does not require even time spacing.
However, the solution is simple if the spacing (d) is constant, n is even
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and fj = 1/(nd), 2/(nd), . . . , 1/(2d). Then

Âj = (2/n)
n∑

i=1

X(i) cos (2πfjT (i)) (5.17)

and

B̂j = (2/n)
n∑

i=1

X(i) sin (2πfjT (i)) . (5.18)

For other frequencies, these expressions are approximate to O (1/n).
If the frequencies and other parameters of the harmonic process are

unknown, which is more realistic, then we may try to find those “hidden
periodicities” with a search technique called periodogram analysis. As-
sume from now on even n and also even spacing, d(i) = d > 0. (Uneven
spacing is treated in Section 5.2.4.) The one-sided periodogram, I(fj),
is then given by

I(fj) = (nd/2) ·
(
Â2

j + B̂2
j

)
, (5.19)

where Âj and B̂j are the least-squares estimators for a particular fre-
quency, fj .

The periodogram is calculated at trial frequencies, fj = 1/(nd), . . . ,
1/(2d). The idea is that where fj is close to a true (but unknown)
frequency of the harmonic process, the periodogram has a peak.

The expectation of the periodogram of the harmonic process (Eq.
5.15), for all f ≥ 0, is (Bartlett 1955)

E [I(f)] = 2dS2 + d(2n)−1
K∑

j=1

(
A2

j + B2
j

) [
sin (πn(f + fj))

2

sin (π(f + fj))
2 (5.20)

+
sin (πn(f − fj))

2

sin (π(f − fj))
2

]
.

The covariance of the periodogram of the harmonic process, for all f1 ≥ 0
and f2 ≥ 0, is

COV [I(f1), I(f2)] = 4d2S4(n)−2

[
sin (πn(f1 + f2))

2

sin (π(f1 + f2))
2 (5.21)

+
sin (πn(f1 − f2))

2

sin (π(f1 − f2))
2

]
.

In periodogram analysis of a harmonic process with true frequency f ′,
the expected peak of I(f) at around f ′, its width, its decay to a value of



5.2 Spectral estimation 185

2 d S2, and so forth, are determined by the terms within square brackets
in Eq. (5.20), the sinusoids. Because the periodogram is evaluated only
at discrete frequencies, fj = 1/(nd), 2/(nd), . . . , the peak at f = f ′ may
be missed. The advantage of having a larger sample size n is to search
with a finer grid. However, having a larger sample size does not decrease
the coefficient of variation of the periodogram, that is, the ratio of the
standard deviation,

STD
[
I(f ′)

]
= VAR

[
I(f ′)

]1/2

= COV
[
I(f ′), I(f ′)

]1/2

=

{√
8 dS2 for f = 0, (2d)−1,

2dS2 +O (1/n) elsewhere,
(5.22)

and the expectation (Eq. 5.20). That means, the periodogram is not a
consistent estimator. The point of selecting f1 or f2 from 0, 1/(nd), . . . ,
1/(2d) is that then COV [I(f1), I(f2)] vanishes, which allows construc-
tion of (multiple) parametric statistical tests for the existence of peri-
odogram peaks against a white-noise background (Fisher 1929; Siegel
1980). Those tests employ the fact that for Gaussian distributed X(i)
(no periodic components, K = 0), I(f) is chi-squared distributed; the
degrees of freedom are 1 for f = 0, 1/(2d) and 2 elsewhere (Priestley
1981: Section 6.1.3 therein). See the background material for more pe-
riodogram tests.

Also processes other than the harmonic (Eq. 5.15), for example, con-
tinuous-time processes, can be analysed using the periodogram (Priest-
ley 1981: Section 6.2 therein). Despite the appealing property that
asymptotically (for n → ∞) the periodogram is also here an unbiased
estimator of the spectrum, h(f), it has several serious drawbacks.

1. The data size, n, for achieving acceptable levels of bias reduction for
the periodogram may be extraordinarily high (Thomson (1982: p.
1058 therein) reports high bias values for n as large as 1.2 · 106).

2. The periodogram is not a consistent estimator of h(f) (its estimation
standard error does not approach zero as n →∞).

3. The periodogram has decreasing (with n) covariance between two
neighbouring frequencies. This brings some erratic behaviour of the
periodogram curve, which makes peak detection difficult.

In view of those points, the importance of the periodogram for cli-
mate time series analysis, for detecting peaks in the power spectral den-
sity function of Xnoise(T ), is rather small. It can provide answers for
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discrete-time, harmonic processes, which may be found in climate driv-
ing mechanisms (daily, annual and Milankovitch cycles). But, as said,
the sampled record of such a forced climate is likely influenced also by
other mechanisms, making peak detection more difficult. A further lim-
itation is that the parametric periodogram tests often assume properties
(white-noise background, Gaussian distribution) that are not realistic
for climatic noise (Chapters 1 and 2). This could, however, in principle
be overcome by tests based on resampling, see Section 5.2.3.1.

Spacing, d, and data size, n, determine the frequency search grid of the
periodogram as fj = 1/(nd), 2/(nd), . . . , 1/(2d). (This applies to even
n. For odd n, the maximum frequency is fj = (n − 1)/[2(nd)].) In the
case that the total record duration, t(n)− t(1), is pre-determined (e.g.,
when a stalagmite has been sampled over its entire length), we can, by
doing additional measurements, increase n to a value n′, decrease d to a
value d′, hold [(n−1)d] = [(n′−1)d′] constant and therefore study higher
frequencies, up to (2d′)−1. In the case we wish to have a finer search
grid, we have to use a longer record because the minimum frequency
resolution follows the relation ∆fj = (nd)−1 ≈ [t(n) − t(1)]−1. This
frequency value is also denoted as fundamental Fourier frequency.

The advantage of the periodogram, in comparison with other spec-
trum estimation methods (Sections 5.2.2, 5.2.3 and 5.2.4), lies in its
high frequency resolution (small ∆fj). Its use has therefore been ad-
vocated in a series of papers (Muller and MacDonald 1995, 1997a,b,c,
2000) dealing with the so-called “problem of the 100-ka cycle.” These
authors aimed at showing that the dominant spectral peak in late Pleis-
tocene ice-volume proxy records (δ18O) is at Tperiod = 95 ka instead of
100 ka. Although high frequency resolution is certainly desirable, we
caution against over-interpreting periodograms of climate time series.
We rather recommend to view the periodogram as one, extreme end of
the smoothing technique (namely unsmoothed) in spectral analysis. The
smoothing technique, described in the following (Sections 5.2.2, 5.2.3 and
5.2.4), trades resolution for standard error reduction and may lead to
more reliable estimates of the power spectral density function.

5.2.2 Welch’s Overlapped Segment Averaging
The periodogram is a “na-ive” (Percival and Walden 1993) estima-

tor, ĥ(f), of the power spectral density function. To overcome the un-
favourable variance property of the periodogram when (mis-)applied to
estimate continuous spectra, Welch (1967) advanced the idea of Bartlett
(1950) to divide a time series {t(i), x(i)}n

i=1 into different segments, cal-
culate the periodograms segment-wise and average them to obtain a re-
duced estimation variance. Welch (1967) allowed the segments to overlap
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Figure 5.4. Welch’s Overlapped Segment Averaging. a Time series of the obliquity
of Earth’s rotational axis over the past 1.024 Ma (n = 1024, d(i) = d = 1 ka). The
record was produced (Berger and Loutre 1991) by solving the astronomical, kinetic
equations (many-body system). The record is segmented as follows: b segment I,
points 1 to 512; c segment II, points 257 to 768; and d segment III, points 513 to
1024. The periodograms (Eq. 5.19) are calculated for segments I (f), II (g) and III
(h). The average of the periodograms (e) has a maximum at Tperiod = 512/13 ka
≈ 39.4 ka. Only a part of the frequency interval 0 to 1/2 ka−1 is shown in e–h; deg,
degrees.

(for example, by 50%), and the method is called “Welch’s Overlapped
Segment Averaging” or WOSA procedure (Fig. 5.4). Overlapping has
the positive effect that the number of segments, and therefore the num-
ber of averaged periodograms, is increased.

The negative effect of using WOSA (number of segments, nseg > 1)
is that the frequency points, where the periodograms are calculated, are
spaced wider than for nseg = 1. More precisely, the formula is ∆fj =
(nseg+1)/(2nd) > 1/(nd) for nseg > 1. This is the smoothing problem in
the spectral domain, the trade-off between spectral estimation variance
and frequency resolution. As said in the previous section, a position that
advocates undersmoothing with the extreme value nseg = 1 seems too
extreme for estimating spectra of climatic processes.
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Welch (1967) considered also tapering (weighting) the data points
X(i) within segments. Tapering is treated in the following two sections.
WOSA is not the only method to obtain better bias and variance prop-
erties of spectrum estimates. Section 5.3 gives some background and
references.

5.2.3 Multitaper estimation
Spectral smoothing can be accomplished with a general data weighting

technique called tapering (Algorithm 5.1 and Fig. 5.5). Consider the
continuous-time process X(T ) sampled as {T (i), X(i)}n

i=1. The taper is
a real function wk(T ); k indexes the tapers; the discrete-time version is
given by {T (i), wk(i)}n

i=1 and has the property
∑n

i=1 wk(i)2 = 1. The
tapered process is then given by {T (i), wk(i) ·X(i)}n

i=1. Consider further
a modified version of the periodogram (Eq. 5.19),

Ik(fj) = n · I(fj). (5.23)

A smoothed spectral estimate is then obtained by averaging a number of
K modified periodograms, which are calculated from the tapered time
series, {t(i), wk(i) · x(i)}n

i=1 with k = 0, . . . ,K − 1; see Algorithm 5.1.

Step 1 Data {t(i), x(i)}n
i=1

Step 2 Tapers, indexed by k = 0, . . . , K − 1 {wk(i)}n
i=1

Step 3 Tapered data, k = 0, . . . , K − 1 {t(i), wk(i) · x(i)}n
i=1

Step 4 Calculate modified periodograms Ik(fj)

from tapered data, k = 0, . . . , K − 1

Step 5 Average periodograms to obtain

smoothed spectral estimate ĥ(fj) = K−1 ∑K−1
k=0 Ik(fj)

Algorithm 5.1. Smoothed spectral estimation with tapering.

The periodogram is an unsmoothed spectral estimate (K = 1, w0(i) =
n−1/2). The suggestion of Bartlett (1950) was to use K > 1 and non-
overlapping, uniform tapers (Fig. 5.5). The recommendation of Welch
(1967) was to have overlap (for example, 50%) and to allow tapers that
gradually approach zero such as the Welch taper (Fig. 5.5).

It was the breakthrough of Thomson (1982) to formulate taper con-
struction as an optimization problem, in a local least-squares sense. The
solution he obtained are denoted as kth order discrete prolate spheroidal
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Figure 5.5. Tapers for spectral estimation. Shown are the functions wk(T ), k =
0, . . . , K−1, for averaging K = 3 (modified) periodograms, respectively eigenspectra;
here 0 ≤ T < 1024 and n = 1024. The Bartlett type corresponds to non-overlapping
and the WOSA type to (here) 50% overlapping segments. The WOSA type is shown
with a uniform taper (dashed lines) and a normalized Welch taper (solid lines). The
non-normalized Welch taper in continuous time is given by, for example, w′

0(T ) =
1 − [(T − 256)/256]2 for 0 ≤ T ≤ 512; the normalized Welch taper in discrete time
by w0(i) = w′

0(i)/
√∑n

i=1 w′
0(i)

2. The dpss multitaper functions have as additional

parameter a resolution bandwidth of 2W = 4/(nd); that is, wk(i) = vn,W
k (i); for

convenience of presentation these discrete functions are shown as continuous plots.

sequences (dpss). The dpss had been previously described by Slepian
(1978). Their calculation may be numerically difficult (Section 5.4). The
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dpss tapers, vn,W
k (i), depend on k, n and a parameter termed

resolution bandwidth. The dpss have more “wiggles” than Bartlett’s or
Welch’s suggestions (Fig. 5.5). The intuitive reason is that this leads to
a smaller dependence among the modified periodograms (“eigenspectra”
in the terminology of Thomson (1982, 1990a)) and, hence, to a reduced
variance of their average. The resolution bandwidth, 2W , is defined via
W = jW /(nd) with jW (not necessarily an integer) in the range from 2
to 4 (Percival and Walden 1993: Section 7.1 therein) and higher (Thom-
son (1990a: p. 545 therein) considers values up to 20). The resolution
bandwidth limits the maximum number of eigenspectra, K < 2 n d W .
A larger W value has therefore the positive effect that more eigenspectra
can be averaged and the spectral estimation variance reduced. On the
other hand, a smaller W value lets fine details in h(f) be seen better. To
summarize, the combination of the multitaper parameters K and 2W
determines estimation variance and spectral resolution.

5.2.3.1 F test
Thomson (1982: Section 13 therein) developed a statistical test for the

existence of a line component in the spectrum against a smooth back-
ground of arbitrary shape, which is considered to be better applicable
to climate time series than periodogram tests (Section 5.2.1). The idea
is to compare spectral power (variance) at a frequency with the average
background variance around (±W ) that frequency; if the variance ratio,
F (f), is high, then the hypothesis of an existing line component is ac-
cepted. Under Gaussian background processes, X(i), the variance ratio
follows an F distribution. Thomson’s recipe is as follows.

The eigenvalue problem

W∫
−W

sin (πn(f − f ′))
sin (π(f − f ′))

Un,W
k (f ′) df ′ = λn,W

k · Un,W
k (f) (5.24)

has as solution Un,W
k (f) the discrete prolate spheroidal wave functions;

the eigenvalues are λn,W
k (Slepian 1978). The Fourier transform of the

Un,W
k (f) are the dpss, vn,W

k (i). The eigenvalues are between 0 and 1.
Let the “eigencoefficients” (Thomson 1982) of a sample be given by

Yk(f) =
(
λn,W

k

)−1
W∫

−W

Un,W
k (v) · Y (f + v) dv, (5.25)

where Y (f) is the discrete Fourier transform of the sample, {X(i)}n
i=1.
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Line components in a spectrum relate to a nonzero mean function
consisting of a number of sinusoids (after detection, the sinusoidal por-
tion can be transferred to Xtrend(i)). For a single line component, the
mean, µ(f), can be estimated as

µ̂(f) =
K−1∑
k=0

Un,W
k (0) · Yk(f)

/
K−1∑
k=0

[
Un,W

k (0)
]2

. (5.26)

This determines the numerator of the variance ratio. The denominator
is determined by the eigencoefficients and the discrete prolate spheroidal
wave functions at f = 0. The variance ratio, finally, is

F (f) =
(K − 1)

∣∣µ̂(f)
∣∣2 ∑K−1

k=0

[
Un,W

k (0)
]2

∑K−1
k=0

∣∣Yk(f)− µ̂(f)Un,W
k (0)

∣∣2 . (5.27)

It is, for Gaussian X(i), F -distributed with ν and 2K − ν degrees of
freedom (Section 5.4). For testing at a pre-defined frequency, ν = 2, but
if frequency is estimated as well, ν = 3.

An alternative denominator for Eq. (5.27) can be used by integrating
(and perhaps weighting) that expression over a frequency range of width
2W (Thomson 1990a: Section 5.2 therein). Obtaining the avantage of
a possibly higher accuracy of the background power estimate may come
at the cost of missing two line components close (within 2W ) to each
other. However, such cases are likely unsolvable for noisy climate time
series.

5.2.3.2 Weighted eigenspectra
Thomson (1982: Section 5 therein) advocated use not of the un-

weighted spectrum estimator (Algorithm 5.1) but of a scheme that puts
heavier weights on eigenspectra of lower order (lower k) to reduce bias.
Hence, the expression

ĥ(fj) =
∑K−1

k=0 bk(fj)2 λn,W
k Ik(fj)∑K−1

k=0 bk(fj)2 λn,W
k

(5.28)

is the weighted multitaper spectrum estimator, where Ik(fj) is the eigen-
spectrum (Eq. 5.23) and

bk(fj) = h(fj)
/ [

λn,W
k · h(fj) +

(
1− λn,W

k

)
S2

]
(5.29)

are the weights (Percival and Walden 1993: Section 7.4 therein). Be-
cause the true spectrum, h(fj), and the true process variance, S2, are
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required to calculate the weights, an interative procedure has to be ap-
plied (Thomson 1982).

Bias reduction is a desirable aim for an estimator, but the size of the
reduction seems not to have been quantified yet for spectra typical for
climate processes. It may be that also usage of the simpler, unweighted
estimator (Algorithm 5.1), with K not too high, leads to similar results.

5.2.3.3 Zero padding

The set of frequency values for which the covariance between spec-
trum estimates via the periodogram vanishes, have a spacing of (nd)−1,
the fundamental Fourier frequency (Section 5.2.1). This limit for sepa-
rating two neighboured line components may be increased when spectral
smoothing is applied. In multitaper estimation the limit is determined
by the resolution bandwidth, 2W > (nd)−1.

Notwithstanding the limitation by (nd)−1 is the option to “artificially”
increase the resolution, by a method analogous to interpolation in the
time domain. This method is zero padding (Percival and Walden 1993).
That means, to the original detrended (zero mean) series, {t(i), x(i)}n

i=1

with d > 0, another series, {t(i), x(i) = 0}n†

i=n+1 with same d, is ap-
pended. Periodogram plots can now be made with resolution (n†d)−1.
F tests for line components in the multitaper spectrum (Section 5.2.3.1)
can now be performed on a finer grid. We reiterate that zero padding is
for such cosmetic purposes, it does not create new information.

A convenient choice is n† as a power of two, because then calculations
can be made fast using the Fast Fourier Transform (Section 5.4). n†

should not be too small; Thomson (1990a: Section 5.1 therein) recom-
mends usage of n† in the order of 4n to 10n.

5.2.3.4 Jackknife

Thomson and Chave (1991) suggested a resampling approach based on
the jackknife (leave one out) to evaluate the variability of the multitaper
spectral estimate and construct CIs. Specifically, their approach studies
not ĥ(f) but the natural logarithm, ln[ĥ(f)]. The reason is that under
chi-squared distributed ĥ(f), taking the logarithm of the estimated spec-
trum leads to a symmetrical CI. (Therefore an often made advice on the
graphical presentation is to plot the spectrum on a logarithmic scale.)
The approach (Thomson and Chave 1991) then consists of taking the
logarithms of the multitaper eigenspectra and leaving one eigenspectrum
randomly out when forming the average, that is, when calculating the
resampled spectrum, ln[ĥ∗b(f)]. The variability of the various ln[ĥ∗b(f)]
replications is then used by Thomson and Chave (1991) to construct
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Step 1 Logarithm of

eigenspectrum, ln [Ik(fj)]

k = 0, . . . , K − 1

Step 2 Logarithm of

smoothed spectral

estimate, ln
[
ĥ(fj)

]
= K−1 ∑K−1

k=0 ln [Ik(fj)]

Step 3 Jackknife version,

replication, ln
[
ĥ∗b(fj)

]
= (K − 1)−1 ∑K−1

k=0,k 6=b−1 ln [Ik(fj)]

b = 1, . . . , K

Step 4 Student’s t CI (Section 3.4.2)

Algorithm 5.2. Jackknife approach (Thomson and Chave 1991) to CI construction
for multitaper spectrum estimate. Shown here is the case without weighted eigen-
spectra and without zero padding. (Cf. Algorithm 5.1.)

for each frequency point a Student’s t CI. Algorithm 5.2 describes the
procedure.

The advantage of evaluating uncertainties of the multitaper spectrum
estimate by jackknife resampling (Thomson and Chave 1991) is twofold.
First, the CIs for ln[ĥ(f)] may be more robust against violations of the
distributional assumptions. The jackknife CIs may therefore be more
accurate than the ordinary CIs based on the chi-squared distribution.
Second, what is perhaps more important in climate spectrum analysis,
the variability of the ln[ĥ∗b(f)] replications can be used to infer also the
uncertainty of the estimated frequency value of a spectral peak. For the
latter purpose, the advice of Thomson and Chave (1991) to use a high
number of zero-padded data points (Section 5.2.3.3) is helpful because
then the resolution (n†d)−1 does not limit the accuracy of the estimated
frequency value. The jackknife approach’s drawback is that the number
of eigenspectra, K, equals the number of replications, B. Since for
acceptable accuracy levels of CI estimation a number B in the order of
2000 is required (Section 3.4), the limitation K < 2 n d W = 2jW ≤
40 (see beginning of Section 5.2.3) effectively means that no accurate
jackknife CIs for spectrum estimates can be constructed. A situation
where jackknifing leads to useful insights may be when long periods,



194 5 Spectral Analysis

Tperiod, are not of interest and the whole time series can be divided
into a large number of segments (“multisegmenting”). This was done
by Thomson and Chave (1991) for spectral estimation of high-frequency
variations of the Earth’s magnetic field, observed over a total interval of
1 month. However, in climate spectrum analysis, the researcher is often
in another situation, wishing to learn by means of the sampled archive
also about the longer periods of climate variations.

5.2.3.5 Advanced topics: CI coverage accuracy and uneven
spacing

Fodor and Stark (2000) studied the coverage performance of various
bootstrap CIs in multisegment–multitaper spectral estimation for the
case of a timescale with missing data. Among the interval types exam-
ined were the percentile CI, calibrated CIs and versions based on pivots;
among the resampling types were the jackknife applied to the eigenspec-
tra and the surrogate data approach applied to the time series values.
The major result of the simulation experiment was the considerable in-
accuracy of the various techniques for CI construction of ĥ(f), at two
pre-defined frequencies. Only bootstrap calibration after prepivoting
yielded acceptable levels of coverage accuracy (96% instead of nominal
95%). Fodor and Stark (2000) ascribed the inaccuracy to the amount
of overlap among the segments, that means, the statistical dependence
among the averaged eigenspectra.

Fodor and Stark (2000) presented an extension of the multitaper spec-
trum estimation to the special case of uneven spacing in the form of
missing observations. As said before (Section 5.2.1), the periodogram
estimation does not principally require even spacing. The extension of
Fodor and Stark (2000) consists in an adaption of the tapers, wk(i):
where x(i) is missing, wk(i) is set equal to zero, and the complete wk(i)
sequence is re-normalized. It may be that the problematic CI coverage
performances do not stem from the application of the new concept to
time series with missing values but rather from the eigenspectra depen-
dence, as concluded by Fodor and Stark (2000). In a previous paper,
Bronez (1988) introduced a new tapering scheme, called generalized pro-
late spheroidal sequences, to estimate the spectrum for the more general
case, a process sampled at an unevenly spaced time grid. Unfortunately,
studies of the CI coverage performance of this case, which often applies
to climate time series, seem not to have been published in the peer-
reviewed literature.
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5.2.3.6 Example: radiocarbon spectrum

The radiocarbon spectrum (Fig. 5.6b) shows a number of peaks; only
a few are discussed here. The low-frequency peak at 975 a period is
prominent, but has a considerable frequency uncertainty. It has, on the
other hand, a relatively high F value of 4.9 in the test for harmonic com-
ponents. Whether it has a physical origin in variations of solar activity,
the Earth’s magnetic field or ocean circulation, seems not yet clear. The
other low-frequency peak (Tperiod = 556 a) has been detected on a previ-
ous radiocarbon data set at 512 a period (Stuiver and Braziunas 1993).

The peak at 226 a period may reflect the long-term cycle named after
de Vries and Suess (de Vries 1958; Münnich et al. 1958; Suess 1965),
which is generally thought to present solar activity variations (Stuiver
and Braziunas 1993). However, in the presented analysis (Fig. 5.6) it
has an F value that is clearly lower than what Thomson (1990b) found
using the same method but an older version of radiocarbon data. (To
be more precise, Thomson (1990b) found two peaks, at 231 and (higher
significance) 208 year period, on undetrended ∆14C data with n = 282.
Using our data without detrending (Fig. 1.6) but same parameters as
in Fig. 5.6 leads to peaks at Tperiod = 222 a and 209 a.) Note also that
solar activity variations need not form a harmonic process.

The fourth peak, at 87.6 a period, is the cycle named after the work of
Gleissberg (1965), who studied nearly two millennia of auroral frequency,
a proxy for solar activity variations.

It would be wrong to conclude on the sole basis of these spectral peaks
that solar activity variations dominate the variations in atmospheric
radiocarbon content on Holocene timescales. However, the spectrum
can serve to construct a filter (Section 5.2.4.3) to extract the variations
at the periods of interest and transform them into the time domain.
These time series can then be compared with results from mathemat-
ical models of the Sun–climate system and enhance the quantitative
physical–climatological knowledge (Solanki et al. 2004). For example,
high-frequency variations such as the 10.5-year cycle in the sunspot
number (Fig. 2.12), a solar activity proxy, are attenuated in tree-ring
∆14C variations by exchange processes in the carbon system (Stuiver
and Braziunas 1993). Furthermore, the word “dominate” should be used
with caution—the area under a spectral peak is, in nearly all practical
cases of climate spectrum estimation, small compared to the total area
(i.e., the variance, S2).
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Figure 5.6. Radiocarbon spectrum, multitaper estimation. a Detrended radiocar-
bon time series, calculated by subtracting from the original data the nonparametri-
cally estimated trend (Fig. 4.14); b normalized spectral power, ĝ(f), estimated by
the multitaper technique with adaptive weighting (Section 5.2.3.2). The multitaper
parameters were set as n† = 32,768, jW = 3.0 and K = 2. Although fNy = 0.1 a−1,
only the part up to f = 0.02 a−1 is shown. Labelled are following spectral peaks: I,

Tperiod = 975 a

[(
T−1

period + W
)−1

= 789 a;
(
T−1

period −W
)−1

= 1276 a

]
, F = 4.9; II,

Tperiod = 556 a [490 a; 642 a], F = 1.6; III, Tperiod = 226 a [215 a; 239 a], F = 0.6; IV,
Tperiod = 87.6 a [85.8 a; 89.5 a], F = 2.1; the intervals denote the uncertainty from the
nonzero resolution bandwidth; also given is the F value from the test for harmonic
components.

5.2.4 Lomb–Scargle estimation
The periodogram (Eq. 5.19) as spectrum estimate can also be calcu-

lated for uneven spacing, d(i) 6= const., by inserting the least-squares
solutions Âj and B̂j (Eqs. 5.17 and 5.18). This was known before the
work of Lomb (1976) and Scargle (1982), see the introductory parts of
their papers. Scargle (1982) suggested for the case of uneven spacing,
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however, a new version of the periodogram,

ILS(fj) = d̄ ·

{[ ∑n
i=1 X(i) cos (2πfj [T (i)− τLomb])

]2

∑n
i=1

[
cos (2πfj [T (i)− τLomb])

]2

+

[ ∑n
i=1 X(i) sin (2πfj [T (i)− τLomb])

]2

∑n
i=1

[
sin (2πfj [T (i)− τLomb])

]2

}
, (5.30)

where Lomb’s (1976) time shift, τLomb, is given via

tan (4π fj τLomb) =
∑n

i=1 sin (4πfjT (i))∑n
i=1 cos (4πfjT (i))

. (5.31)

In the case of even spacing (d(i) = d = d̄), even n and fj = 1/(nd), . . . ,
1/(2d), it readily follows that τLomb = 0 and ILS(fj) = I(fj).

Scargle’s objective behind introducing the Lomb–Scargle periodogram
was that the distribution of ILS(fj) should be equal to the distribution
of I(fj). Scargle (1982, 1989) showed that this is indeed so (chi-squared
distribution) for a Gaussian white-noise process, X(i) = EN(0, S2)(i).

5.2.4.1 Bias correction
If, what is more applicable to climate spectrum estimation, X(i) is a

red-noise process on an unevenly spaced timescale, perhaps with super-
imposed peaks, the distribution of ILS(fj) cannot be calculated analyt-
ically. Here, simulation methods can be used to infer the distributional
properties of the Lomb–Scargle periodogram. Of particular interest is
its bias.

The Monte Carlo experiment (Fig. 5.7) reveals the bias of the Lomb–
Scargle periodogram for an AR(1) process and uneven spacing. The
“absolute bias,” of ILS(fj) as an estimator of non-normalized power,
h(f), can be substantial (Fig. 5.7a): the total area area under the curve,
between zero and Nyquist frequency, nominally equal to S2 = 1, is
overestimated by ∼ 40%. The bias disappears (i.e., becomes smaller
than the “simulation noise”) for an AR(1) process and even spacing
(Fig. 5.7b) and also, as has been shown theoretically, for a white-noise
process and uneven/even spacing (Fig. 5.7c). Also in peak detection,
when normalized power, g(f), and its highs and lows are analysed, which
is often done in climatology, the Lomb–Scargle periodogram exhibits
bias. That means, even if the normalization is known, the bias of the
Lomb–Scargle periodogram is significant, and it is frequency-dependent
(Fig. 5.7b).
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Figure 5.7. Bias of the Lomb–Scargle periodogram. Each panel shows non-
normalized one-sided spectral power for selected choices of AR(1) parameters and
spacings. a τ = 0.5 and uneven spacing. The {t(i)}n

i=1 were overtaken from the
Vostok CO2 record (Fig. 1.15b), which has n = 283 and CVd = 0.82, and scaled
to d̄ = 1. The {x(i)}n

i=1 were generated from an AR(1) process for uneven spacing
(Eq. 2.9). The solid line displays the average Lomb–Scargle periodogram, ILS(fj),
on {t(i), x(i)}n

i=1, taken from nsim = 1,000,000 simulated time series. The shaded
curve shows the theoretical spectrum (Eq. 5.13), with a = exp(−d̄/τ). b τ = 0.5 and
uneven/even spacing. Plotted is the same as in a, except the following: the solid line
shows the average ILS(fj), scaled such that the area under the curve equals the the-
oretical value (1.0); the dashed grey line shows the average ILS(fj) for data from an
AR(1) process with even time spacing (d(i) = 1). c τ = 0 and uneven/even spacing.
The solid black line displays the average ILS(fj) (unscaled) for uneven spacing, and
the solid grey line the average ILS(fj) for even spacing.
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Spectrum estimation for unevenly spaced time series can be enhanced
by combining the WOSA procedure with the Lomb–Scargle periodogram
(Schulz and Stattegger 1997). A bias correction for such estimates was
devised by Schulz and Mudelsee (2002). It uses a surrogate data ap-
proach to calculate a frequency-dependent bias correction factor from
the ratio of a theoretical AR(1) spectrum and the average Lomb–Scargle
spectrum of the AR(1) simulations. The bias correction (Algorithm 5.3)
is thought to be well applicable to records with background spectrum
coming from an AR(1) process, that is, climate records.

5.2.4.2 Covariance
The difficulty introduced to the spectrum estimation by the uneven

spacing comes from the fact that the covariance for the Lomb–Scargle
periodogram, COV [ILS(f1), ILS(f2)], does not vanish in the general case
(Scargle 1982). This makes not only the determination of the number of
independent frequencies a problem, it may also lead to spurious peaks,
having their origin in “true” power at another, not necessarily closely
neighboured frequency. (In spectrum estimation on evenly spaced time
series, a “true” spectral peak of the data generating process may lead not
only to a peak in the estimated spectrum close to the “true” frequency,
but also to a set of neighboured peaks—sidelobes (Percival and Walden
1993).)

A guide for detection of spurious peaks, oriented on the review of the
Lomb–Scargle method by VanDongen et al. (1997: Section 2.4 therein),
is to construct plots of COV [ILS(f1), ILS(f2)], empirically determined
using Monte Carlo simulations of AR(1) processes with same τ and
sampling times as the time series under investigation. Points in the
f1–f2 plane with large absolute covariances would then indicate where
in the estimated spectrum to look for (spurious) peaks. A second option
(Schulz and Stattegger 1997) when peaks at, say, f ′1 and f ′2 are investi-
gated, is to use a filter (next section) to remove the signal component
associated with f ′1, re-calculate ILS(fj) and look whether the peak at f ′2
still exists; and vice versa.

5.2.4.3 Harmonic filter
Scargle (1982) showed the equivalence of ILS(fj) estimation (frequency

domain) and least-squares fitting of a harmonic model to unevenly spaced
records (time domain). In analogy to that, Ferraz-Mello (1981) devised
a filter algorithm for separating harmonic signal components at a pre-
defined frequency, f ′, from the process X(i) for uneven spacing:

X ′(i) = X(i)−Xf ′(i). (5.32)
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Step 1 Time series {t(i), x(i)}n
i=1

Step 2 Spectrum estimate ĥ(fj)

from WOSA procedure with segments,

tapering, segment-wise linear

detrending and ILS(fj)

Step 3 Estimate persistence time segment-wise

with bias correction τ̂ ′

and take average over segments 〈τ̂ ′〉

Step 4 Determine area Aĥ

under spectrum within [0; (2d̄)−1]

Step 5 Generate AR(1) data (Eq. 2.9) {x∗(i)}n
i=1

with τ = 〈τ̂ ′〉

and times {t(i)}n
i=1

Step 6 Spectrum estimate ĥ∗(fj)

for AR(1) data, analogously to Step 2

Step 7 Scale ĥ∗(fj) such that area

within [0; (2d̄)−1] equals Aĥ

Step 8 Repeat Steps 5–7 until nsim (at least

1000) copies of scaled ĥ∗(fj) exist

Step 9 Take average over the nsim copies, 〈ĥ∗(fj)〉

Step 10 Theoretical AR(1) spectrum (Eq. 5.13)

with a = exp(−d̄/〈τ̂ ′〉),

subsequently scaled to area Aĥ

and denoted as hAR(1)(fj)

Step 11 Calculate correction factor c(fj) = 〈ĥ∗(fj)〉
/
hAR(1)(fj)

Step 12 Bias correction ĥ′(fj) = ĥ(fj)
/
c(fj)

Algorithm 5.3. Bias correction of Lomb–Scargle spectrum estimate.
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In Eq. (5.32), X ′(i) is the process after filtering and

Xf ′(i) = A cos
(
2πf ′T (i)

)
+ B sin

(
2πf ′T (i)

)
+ C (5.33)

is the signal; A, B and C are parameters, which can be estimated by
least squares (Ferraz-Mello 1981).

5.2.4.4 Advanced topics: degrees of freedom, bandwidth,
oversampling and highest frequency

The degrees of freedom of the chi-squared distribution of a Lomb–
Scargle spectrum estimate based on WOSA with 50% overlap and nor-
mally distributed X(i) are

ν = 2nseg

/(
1 + 2c2 − 2c2/nseg

)
, (5.34)

where c ≤ 0.5 is a constant representing the taper. A uniform taper has
c = 0.5, a Welch taper c = 0.344; further values are listed by Harris
(1978).

The discrete Fourier transform of a purely harmonic process (S2 = 0)
with frequency f ′ has (process level) a peak at f ′. The decay on the
flanks of the peak to a value of 10−6/10 ≈ 0.251 times the maximum
value defines a width in frequency, the 6-dB spectral bandwidth, Bs.
This is a useful quantity for assessing the frequency resolution, how
good closely neighboured spectral peaks can theoretically be separated
(Harris 1978; Nuttall 1981). The 6-dB bandwidth depends on n, nseg

and the type of taper.
Instead of calculating the Lomb–Scargle periodogram at frequencies

fj = 1/(nd̄), 2/(nd̄), . . . , there is no hindrance to using a finer frequency
grid. The increased number is described by the oversampling factor.
This technique of artificially increasing the frequency resolution corre-
sponds to zero padding in the time domain (Section 5.2.3.3).

Instead of letting the frequency interval end at fj = 1/(2d̄), it is
possible to study higher frequencies because for uneven spacing there
exist time intervals where d(i) < d̄, that is, the process has been recorded
at higher than average resolution. Giving guidelines for selecting the
highest frequency is difficult. The choice 1/[2min(d(i))] (Roberts et al.
1987) seems rather high; additionally restricting the extension of the
frequency range to a value of, say, 110%, may be safer; an analysis of
the d(i) distribution can be helpful. Bias correction (Section 5.2.4.1) is
not straightforward for fj > 1/(2d̄) because there the theoretical AR(1)
spectrum is not defined.
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5.2.5 Peak detection: red-noise hypothesis
Obtaining reliable CIs for estimated power spectral density functions

is difficult in climate time series analysis because there one is usually
interested also in the longer periods of variations documented in the ar-
chive and, hence, usually avoids multisegmenting. This difficulty is not
restricted to the advanced multitaper estimation (Section 5.2.3.4), it ap-
plies to all spectrum estimation methods. In this situation, hypothesis
tests (Section 3.6) may offer better insight by studying whether peaks
(or lows) in ĥ(f) are significant or not. Such information is for the cli-
mate time series analyst of major relevance because it helps to filter out
the variability, to construct and test conceptual climate models—the ac-
curacy in the absolute value of h(f) is less important. The typical test
performed in climate spectral analysis is of H0: “X(i) is an AR(1) pro-
cess, with continuous, red spectrum,” the red-noise hypothesis, against
H1: “X(i) has a mixed spectrum, with peak at fj = f ′j on a red-noise
background.”

The null distribution of ĥ(f) is obtained by fitting an AR(1) process
to {t(i), x(i)}n

i=1, that is, estimating a (even spacing) or τ (uneven spac-
ing) with bias correction, followed by bootstrap resampling. The latter
can be done as ARB (Algorithms 3.4 and 3.5) or via the surrogate data
approach. Algorithm 5.4 shows the surrogate data simulation applied to
uneven spacing (Lomb–Scargle estimation). At Step 5, τ̂ ′ is plugged in
for τ in Eq. (2.9). The peak detection test of the red-noise hypothesis
can be performed also for even spacing and other spectrum estimation
techniques. The usual caveat against the surrogate data approach, in
favour of ARB resampling, is thought to be less severe here because devi-
ations from the assumed Gaussian shape may have less effect in spectral
estimation. This is based on the observation that spectral estimates
are quadratic forms,

∑
X2, and the central limit theorem. Therefore,

instead of (or in addition to) performing bootstrap resampling for de-
riving the null distribution, one may calculate upper (lower) bounds via
the chi-squared distribution (Schulz and Mudelsee 2002). Of practical
relevance in climatology, although conventionally ignored, should be not
only peaks but also lows in ĥ(f), frequency intervals where less power
than under an AR(1) hypothesis resides.

5.2.5.1 Multiple tests

Assume for convenience even data size, even spacing and no zero
padding/oversampling. If the hypothesis test for the existence of a
spectral peak is to be carried out for one single, pre-defined frequency
f ′j ∈ {fj}n/2

j=1, then selection of the 100(1− α)th percentage point of the
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Step 1 Time series {t(i), x(i)}n
i=1

Step 2 Bias-corrected Lomb–Scargle

spectrum (Algorithm 5.3) ĥ′(fj)

Step 3 Estimated, bias-corrected

persistence time τ̂ ′

Step 4 Determine area Aĥ′

under spectrum within [0; (2d̄)−1]

Step 5 Generate AR(1) data (Eq. 2.9) {t(i), x∗(i)}n
i=1

Step 6 Bias-corrected Lomb–Scargle

spectrum estimate ĥ′∗b(fj)

for generated series

(b, counter),

scaled to area Aĥ′

Step 7 Go to Step 5 until b = B

replications exist

Step 8 Test at each fj whether

ĥ′(fj) exceeds a pre-defined

upper percentile of
{

ĥ′∗b(fj)
}B

b=1

Algorithm 5.4. Test of red-noise spectrum hypothesis for uneven spacing, Lomb–
Scargle estimation and surrogate data resampling. The size of B depends on the size
of the percentile.

empirical distribution of
{

ĥ′∗b(fj)
}B

b=1
leads to a one-sided red-noise hy-

pothesis test with a P -value equal to α. (Alternatively, the chi-squared
distribution may be used. Analogously, the 100αth percentage point is
used for testing for the existence of a spectral low.) If, what is usually the
case, the test is multiple, that means, it is to be carried out for many (if
not all) frequencies from the set {fj}n/2

j=1, then a higher frequency-point-
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wise confidence level, (1− α′) with α′ < α, has to be employed to yield
an overall P -value of α. If a test is performed multiple times, it becomes
more likely to find a significant single result.

One may define a “maximum effective number of test frequencies,”
M , via the overall prescribed P -value: (1 − α′)M = 1 − α. For small α
and large M this leads to α′ ≈ α/M . The effective number of frequencies
refers to a hypothetical situation where M frequencies f ′j are tested and
the spectrum estimates ĥ(f ′j), a set of size M , are mutually independent.
For the simple case of even data size, even spacing, Gaussian distribu-
tional shape and periodogram estimation (Section 5.2.1), independence
is fulfilled and the maximum number is M = n/2. If n is odd (other
setting unchanged), M = (n− 1)/2. Also if the Gaussian assumption is
violated not too strongly, the effects on M should be negligible.

Uneven spacing with Lomb–Scargle periodogram estimation (i.e., no
WOSA) can have a stronger influence on M . Since the periodogram
estimates are then no longer independent, M is reduced. Horne and
Baliunas (1986) and VanDongen et al. (1997) studied the effects by
means of Monte Carlo simulations. If the {t(i)}n

i=1 are more or less
uniformly distributed, the approximation M ≈ n/2 is still acceptable.
This formula may also be applied to series for which the timescale is
even with the exception of a few missing observations. However, if the
time points are highly clustered in time, one should not use the num-
ber of points, n, but rather the number of clusters, for determining M
(VanDongen et al. 1997). The effects of segmenting (WOSA) on M with
Lomb–Scargle or ordinary periodogram estimation (no tapering) can be
taken into account by using instead of n the number of points per seg-
ment: M = NINT [n/(nseg + 1)], see Schulz and Mudelsee (2002). The
effects of tapering (WOSA, Lomb–Scargle) could in principle be studied
by means of Monte Carlo simulations. Restricting the frequency range
where to study peaks is another way to reduce M , see below. Evidently,
this should be done prior to the analysis (Scargle 1982).

What practical conclusions can be drawn for peak detection in cli-
mate spectra? A typical situation is an unevenly spaced timescale with-
out strong clustering, and where the researcher is interested also in the
longer periods of variations recorded by the time series. Here, Lomb–
Scargle periodogram estimation with tapering, WOSA and nseg not too
high (less than, say, 10) is an option. To have more reliability in the low-
frequency spectrum portion, one usually follows a rule of thumb (Bendat
and Piersol 1986) to require at least two cycles per segment, that is, one
sets the minimum test frequency fj equal to [(2nseg)/(nd̄)]. This also re-
duces M . Regarding the high-frequency spectrum portion, theoretically
the uneven spacing allows inferences also for frequencies above 1/(2d̄),
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see Scargle (1982). On the other hand, an archive may a priori be known
not to preserve a high-frequency signal, for example a marine sediment
core affected by bioturbation (Fig. 1.13). Then it would make sense to
ignore a part of the high frequencies, leading to a further reduction of
M .

5.2.6 Example: peaks in monsoon spectrum
Figure 5.8 shows the Lomb–Scargle spectrum of the δ18O record from

stalagmite Q5. This allows proxy insight into the physical processes re-
sponsible for the variations of monsoonal rainfall intensities on Holocene
timescales. A high oversampling provides a fine frequency grid, ∆fj =
(nseg + 1)/(64 · 2 nd̄) ≈ 0.055/(nd̄).

The resulting spectrum exhibits a number of peaks above the upper
bounds for the AR(1) hypothesis. Peak I (Tperiod = 10.9 a) is significant
also when taking the test multiplicity into account. This peak from a
Holocene monsoon proxy record may correspond to the sunspot cycle
found in the 1716–1995 data (Fig. 5.9). Not as high confidence levels
are achieved by the three periods in the centennial band (II, Tperiod =
107 a; III, Tperiod = 137 a; IV, Tperiod = 221 a). However, it may be
unwise to ignore them at this early stage of analysis. The last peak (V,
Tperiod = 963 a), again strong, may be related to a peak in the spectrum
(Fig. 5.6) of radiocarbon variations, which contain information about
changes in solar activity. Before continuing the discussion about the
peaks in the monsoon spectrum in Section 5.2.9, we explore two further
error sources that can exacerbate spectral peak detection: aliasing and
timescale errors.

5.2.7 Aliasing
Aliasing occurs when a process X(T ) with a high-frequency compo-

nent (f ′) has been sampled at insufficient temporal resolution, that is,
when (even spacing) f ′ > fNy = (2d)−1. Then the power associated with
the high frequency is “folded” back into the analysis interval [0; fNy],
which produces a spurious spectral peak at frequency falias. This “alias”
of f ′, between 0 and the Nyquist frequency, is defined via

f ′ = 2fNy ± falias, 4fNy ± falias, 6fNy ± falias, . . . , (5.35)

see Priestley (1981: Section 7.1.1 therein) and Bendat and Piersol (1986:
Section 10.3.2 therein). The sampling process thus bears the danger of a
mis-interpretation of a spectrum caused by an unresolved high-frequency
component.

For example, the sunspot cycle with frequency f = 1/Tperiod = 1/10.5
a−1 (Fig. 5.9) could theoretically be an alias of a true, higher frequency
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Figure 5.8. Monsoon spectrum, Lomb–Scargle estimation. Input time series is the
detrended Q5 δ18O record (Fig. 4.18), a proxy for Holocene Indian monsoonal rainfall.
Time interval is from 8 ka b.p. to 2.7 ka b.p., that is, from after the cold and dry 8.2-ka
extreme (Fig. 4.18; Rohling and Pälike (2005)) to when stalagmite growth ceased (n
= 973, d̄ = 5.4 a). The spectrum (wiggly line) was calculated using the Lomb–Scargle
periodogram, WOSA (nseg = 6), tapering (Welch type) and bias correction (nsim =
10,000). The frequency range (number of fj) was oversampled by a factor 64. The 6-
dB bandwidth is ∼ 0.001 a−1. Smooth lines show (from bottom) upper 90%, 95%, 99%
and 99.9% chi-squared bounds for an AR(1) red-noise hypothesis (τ = 9.6 a); highest
bound recognizes the test multiplicity (M = NINT [n/(nseg +1)] = 139). (Bootstrap
bounds (Algorithm 5.4) are nearly identical to chi-squared bounds.) Spectral peaks
labelled from I to V, possibly reflecting solar activity variations, are discussed in the
text. (After Fleitmann et al. 2003.)

f ′ = 2fNy + falias = 2 · 0.5 a−1 + 1/10.5 a−1 ≈ 1.095 a−1. However, the
sunspot cycle has in the past decades been observed by means of satellite
measurements at much higher resolution than d = 1a without any hints
for such a 0.913-year cycle (Willson and Hudson 1988).

Aliasing means not only “folding” of power associated with spectral
peaks, it can introduce also broad-band bias in the interval [0; fNy].

The following points suggest, however, that aliasing is not a major
problem in spectral analysis of climate time series.

High time resolution. A large portion of climate time series is mea-
sured today with advanced equipment (e.g., satellites) or in laborato-
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Figure 5.9. Group sunspot number spectrum. From the original data (Fig. 2.12), the
time interval beginning after the Maunder Minimum was used (1716–1995, n = 280),
a linear trend subtracted and a multitaper spectrum estimated (n† = 4096, jW =
3.0, K = 2, W = 0.0107 a−1). The peak (I) is at Tperiod = 10.5 a [9.5 a; 11.9 a]. The
low-frequency peak (II) may be a remnant of a nonlinear trend.

ries with modern technology. This yields large data sizes, it allows a
high sample throughput and a low sample consumption, and it there-
fore leads to low d(i) values. This further means a reduced risk of
missing high-frequency components.

Limited degree of preservation of high-frequency variations within
climate archives. A proxy time series, measured on a climate archive,
is no perfect copy of a climate variable. For example: (1) Tree-ring
radiocarbon variations do not well preserve the 10.5-year sunspot
cycle or higher-frequency variations (Section 5.2.3.6). (2) Sediment
and ice cores may be affected by diffusion-like processes in the archive
(Fig. 1.13), which act as low-pass filter (Section 1.6). When high-
frequency variations are not well preserved, they cannot produce large
aliasing effects. To conclude, studying the physics of the climate
archives to be employed is a helpful pre-sampling strategy (Wunsch
and Gunn 2003).
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Uneven spacing and timescale errors. It was shown that aliasing is
absent for certain types of uneven time spacing or reduced for other
types (see background material). This finding applies also to the
case where the timescale is assumed to be correct and have an even
spacing, but dating uncertainties exist. An intuitive reason for this
beneficial effect of uneven spacing is that here a Nyquist frequency is
not well defined; also frequencies above 1/(2d̄) may be captured by
the sampling.

The risk of spurious peaks from aliasing is likely a problem only for low-
resolution, instrumental, evenly spaced time series without timescale
errors. The recommendation of Madden and Jones (2001) may then be
followed, namely to apply a low-pass filter (e.g., running mean) prior
to the spectral analysis. Background knowledge about potential, unre-
solved high-frequency variations helps to design the filter.

5.2.8 Timescale errors
In the analysis of paleoclimate time series, we anticipate timescale

errors. The time assigned to a sample, T (i), determined by dating and
possibly constructing an age–depth curve, is expected to deviate from
the true time value, Ttrue(i). Equivalently, the spacing, d(i), has an
error component. This leads to a distortion of the estimated spectrum.
Two effects are expected: (1) reductions of significance (detectability)
of peaks compared to a situation with exact timescale and (2) increases
of frequency uncertainty for a detected spectral peak.

Moore and Thomson (1991) and Thomson and Robinson (1996) stud-
ied on the process level the influence of a “jittered” spacing. The simple
case of independent Gaussian jitter,

d(i) = d + EN(0, δ2
d)(i), (5.36)

is analytically tractable. (Strictly speaking, the equation refers to the
spacing on the process level.) Its effect on the true continuous-time
spectrum, h(f), amounts (Moore and Thomson 1991; Wunsch 2000) to
a multiplication by a frequency-dependent factor:

hdistort(f) = exp
(
−4π2 δ2

d f2
)
· h(f) + c0, (5.37)

where the constant c0 serves to give the distorted spectrum, hdistort(f),
the nominal area of S2. This means, timescale errors in the form of
independent jitter add white noise (c0). As a result, spectral peaks
(Section 5.2.5) have a reduced detectability.

Several assumptions went into the derivation of Eq. (5.37) by Moore
and Thomson (1991), which limits its applicability to the practice of
climate spectrum estimation.
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No aliasing (h(f) = 0 for f > fNy = 1/(2d)). This may in practice
be violated to some degree (Section 5.2.7). In addition, for unevenly
spaced time series the Nyquist frequency is not well defined.

Independent jitter. This is not realistic for many records (e.g., from
ice or sediment cores). Moore and Thomson (1991) study AR(1)
dependence in the jitter equation (Eq. 5.36), finding potential for
larger effects on the spectrum if the dependence is strong. Still it is
questionable how relevant the AR(1) jitter model is. Ice core data
could exhibit heteroscedastic jitter owing to compaction. Timescales
derived from layer counting may better be described by means of a
random walk (Section 2.6) than by a jitter model. It is rather difficult
to obtain analytical results in such cases (Section 5.3).

Gaussian jitter distribution. This assumption is not fulfilled without
imposing a constraint to guarantee a monotonic age–depth curve.
(Note that Moore and Thomson (1991) studied data in the spatial
domain, where no such constraint is required.)

Process level. The mentioned paper does not study the spectrum
estimators on the sample level, in particular, multitaper or Lomb–
Scargle estimation.

Based on the limited relevance of available analytical results on the
effects of realistic types of timescale errors on spectrum estimates (multi-
taper, Lomb–Scargle), we suggest two numerical simulation techniques.
One quantifies the reduced detectability (Algorithm 5.5), the other the
increased frequency uncertainty (Algorithm 5.6).

The following section employs both techniques. The experiments
shown use the example of Lomb–Scargle estimation on the δ18O record
from speleothem Q5, its unevenly spaced timescale and dating errors.

5.2.9 Example: peaks in monsoon spectrum
(continued)

To complete the assessment of peaks in the monsoon spectrum (Fig.
5.8), their significance and potential error sources, we consider a num-
ber of questions. Could the peaks be a result of aliasing, caused by an
unresolved annual cycle? The first, statistical counterargument comes
from testing whether adding an annual cycle to red noise on the Q5
time grid does lead to spectrum aliases (Fig. 5.10). Only a minor peak,
at f ≈ 0.054 a−1, was found within the original frequency range 0 to
0.0924 a−1. The Q5 δ18O spectrum has no corresponding signal. The
peak at f = 1a−1 � 1/(2d̄) is rather sharp (Fig. 5.10a). However, also
broader peaks (II and III) emerged. These are spurious results from the
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Step 1 Time series {t(i), x(i)}n
i=1

Step 2 Bias-corrected Lomb–Scargle

spectrum (Algorithm 5.3) ĥ′(fj)

Step 3 Estimated, bias-corrected

persistence time τ̂ ′

Step 4 Determine area Aĥ′

under spectrum within [0; (2d̄)−1]

Step 5 Generate AR(1) data (Eq. 2.9) {t(i), x∗(i)}n
i=1

Step 6 Use timescale model

to resample times {t∗(i)}n
i=1

Step 7 Bias-corrected Lomb–Scargle

spectrum estimate ĥ′∗b(fj)

for {t∗(i), x∗(i)}n
i=1

(b, counter),

scaled to area Aĥ′

Step 8 Go to Step 5 until b = B

replications exist

Step 9 Test at each fj whether

ĥ′(fj) exceeds a pre-defined

upper percentile of
{

ĥ′∗b(fj)
}B

b=1

Algorithm 5.5. Adaption to timescale errors: test of red-noise spectrum hypothesis
for uneven spacing, Lomb–Scargle estimation and surrogate data resampling. At Step
5, τ̂ ′ is plugged in for τ . The size of B depends on the size of the percentile. The sets
of frequencies fj at Steps 2 and 7 are identical.

red noise interacting with the unevenly spaced timescale, as was found
when repeating the analysis without annual cycle. Caution is therefore
required when interpreting spectral peaks at frequencies much higher
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Step 1 Time series {t(i), x(i)}n
i=1

Step 2 Bias-corrected Lomb–Scargle

spectrum (Algorithm 5.3) ĥ′(fj)

Step 3 Estimated, bias-corrected

persistence time τ̂ ′

Step 4 Determine area Aĥ′

under spectrum within [0; (2d̄)−1]

Step 5 Spectral peak at frequency f ′j ,

area under peak
∫ f ′j+0.5Bs

f ′j−0.5Bs
ĥ′(f)df = α ·Aĥ′

Step 6 Generate AR(1) data (Eq. 2.9)
{
t(i), x∗AR(1)(i)

}n

i=1

Step 7 Generate sinusoidal data {t(i), x∗sin(i)}n
i=1

with x∗sin(i) = (2α)1/2 sin
(
2πf ′jt(i)

)
Step 8 Mix series x∗(i) = (1− α)1/2 x∗AR(1)(i) + x∗sin(i)

Step 9 Use timescale model

to resample times {t∗(i)}n
i=1

Step 10 Bias-corrected Lomb–Scargle

spectrum for {t∗(i), x∗(i)}n
i=1 ĥ′∗b(fj)

(b, counter),

scaled to area Aĥ′ ,

peak at frequency f ′∗b
j

Step 11 Go to Step 6 until b = B

(usually B = 2000 to 10,000)

versions of f ′∗b
j exist

Step 12 Calculate sef ′j
, construct CI for f ′j

using
{
f ′∗b

j

}B

b=1

Algorithm 5.6. Adaption to timescale errors: determination of frequency uncertainty
from timescale errors for uneven spacing, Lomb–Scargle estimation and surrogate data
resampling. Step 8: VAR [X∗(i)] = (1− α) + VAR [X∗

sin(i)] ≈ 1.
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Figure 5.10. Monsoon spectrum, test for aliasing. The time grid is from the unevenly
spaced Q5 δ18O record (Fig. 4.18); time interval [2.7 ka b.p.; 8.0 ka b.p.], n = 973,
d̄ = 5.4 a. a, b A sinusoid with frequency 1.0 a−1 and amplitude 0.2 is added to an
AR(1) process (Eq. 2.9) with τ = 9.6 a. A number of nsim = 10,000 time series were
generated from this combined sinusoidal–AR(1) process and the spectrum estimated
by means of the Lomb–Scargle periodogram (WOSA, nseg = 6, Welch taper, no bias
correction, oversampling factor 64). Shown is the spectrum estimate, averaged over
the simulations, for (a) an extended frequency range and (b) the range used for the
monsoon spectrum estimation on the Q5 record (Fig. 5.8). In (a), the sinusoidal
frequency appears as a prominent peak (I), but also other peaks (II–IV) emerged.
Peak IV, an alias, is at f ≈ 0.054 a−1. c, d Same as in a, b, but without sinus
component.

than the “average Nyquist frequency,” 1/(2d̄). The second, physical line
considers the sampling length, L(i), determined by the drill diameter of
0.5 mm (Fleitmann 2001). This size in the depth domain is equivalent
to an average of the sampling length in the time domain, D(i), of 3.9
years—too long to capture annual variations. See Fig. 1.13 for an ex-
planation of L(i) and D(i). Third, the climatological counterargument
builds upon the observation that present rainfall over the Q5 site occurs
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not throughout the year but predominantly during the monsoon season,
from July to September (Fleitmann et al. 2003). If that was also the
case during the Holocene, which is a reasonable assumption, then the
potential to record seasonal variations is reduced. Thus, aliasing has no
influence on the monsoon spectrum.

The timescale of stalagmite Q5 is not exactly known, it has errors
stemming from dating uncertainties. How does this influence the de-
tectability and the frequency accuracy of the monsoon peaks?

We adopt a piecewise linear age–depth model for stalagmite Q5 with
ndate = 11 dating points and average dating uncertainty 〈Sdate(j)〉 ≈ 70 a
(Fleitmann et al. 2003: Table S1 therein). Resampling the times, t∗(i),
from this model and feeding them into the red-noise test (Algorithm 5.5)
yields upper percentiles and allows a more realistic detection of spectral
peaks. The percentiles obtained in this manner (Fig. 5.11) are over
the whole frequency interval higher than the corresponding percentiles
obtained from ignoring dating uncertainties, as expected. This effect
seems in case of stalagmite Q5 not excessively large, except for higher
frequencies (Fig. 5.11b). Especially the 99.9% level becomes inflated by
the timescale errors, to such a degree that peak I at Tperiod = 10.9 a is
not significant anymore in a multiple test. The only peak in the monsoon
spectrum passing the hard test (timescale errors, multiplicity) is that at
Tperiod = 963 a.

Feeding the resampled times into Algorithm 5.6 allows to quantify the
standard error, sef ′j

, of the frequencies of the monsoon peaks owing to
timescale errors. Again, the effects are larger on the high-frequency (Fig.
5.11b) than on the low-frequency side (Fig. 5.11a). There, the half of
the 6-dB bandwidth is of the same order of magnitude as the frequency
standard error, sef ′j

. On the high-frequency side, the error interval for
the period of peak I (Tperiod = 10.9 a) is from 1/(1/10.9 + sef ′j

) = 10.6
years to 1/(1/10.9− sef ′j

) = 11.4 years.

To summarize, the contribution of spectral analysis to answering the
question after the existence of solar peaks in the spectrum of the Holocene
monsoon proxy record from stalagmite Q5 is as follows. Peak I corre-
sponds within error bars of frequency to the sunspot cycle, but tak-
ing into account timescale errors reduces its multiple test significance
considerably. Peaks II (Tperiod = 107 a), III (Tperiod = 137 a) and IV
(Tperiod = 221 a), which are partly at periods similar to what is found
for the Holocene radiocarbon record (a proxy for solar activity varia-
tions), are not statistically significant (multiple test) even when ignor-
ing timescale errors. Only peak V at Tperiod = 963 a, also a solar cycle
candidate, is significant.
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Figure 5.11. Monsoon spectrum, influence of timescale errors. Focus is on two
portions (a, b) of the original spectrum of the proxy record Q5 (Fig. 5.8). Errors
from the age determination (Fleitmann et al. 2003: Table S1 therein) were used for
timescale resampling (Section 4.1.7.2) of a piecewise linear age–depth model. The
90% bootstrap bound for the red noise (the lower of the grey lines in a and b),
obtained from B = 10,000 simulations, is higher than the 90% bound (the lowest of
the four black, smooth lines in a and b) obtained from ignoring timescale errors. Also
shown (the upper of the grey lines in a and b) is the increase in the 99.9% red-noise
bound (relative to the uppermost of the four black, smooth lines in a and b), obtained
from B = 100,000 simulations. The frequency uncertainties (horizontal bars) due to
timescale errors (Algorithm 5.6, B = 2000), expressed as standard errors, sef ′j

, are

compared with the half of the 6-dB bandwidth, Bs/2.

It would be premature for an analysis of the Sun–monsoon relation
to stop at this point. Three lines should be explored. First, the relation
can be further investigated, using the same data sets, in the time domain
by means of bandpass or harmonic filtering (Section 5.2.4.3). Second,
the climate physics of the Sun–monsoon link can be considered. This
has been done by Kodera (2004), who explained a positive correlation
between solar activity and Indian monsoon strength via a weakening of
the Brewer–Dobson circulation in the stratosphere. However, this was
established on measurement data from 1958–1999, and the feasibility of
this or other mechanisms on longer timescales is still elusive. Third,
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other records of Holocene monsoon variations need to be analysed. For
example, Neff et al. (2001) analysed a δ18O record from a stalagmite
from another cave than where Q5 is from, finding monsoon peaks at
Tperiod = 10.7 a, 226 a and 1018 a. Combining this evidence with the
information from Q5 in a new multiple test should raise the overall
statistical significance. A synopsis of evidence pro and contra the Sun–
monsoon hypothesis in a multiple statistical test, with timescale errors
taken into account, is a major task awaiting to be done.

5.3 Background material
Overviews of spectral analysis have been given plentiful. Acces-

sible ones include the classic textbooks by Priestley (1981) and Percival
and Walden (1993). The latter takes another route to the definition of
the power spectrum than given here in Section 5.1; it also focuses on
multitaper methods. John W. Tukey’s work on time series and spec-
trum analysis, done from the 1950s to the 1990s (and summarized by
Brillinger (2002)) contains useful material for the practitioner. Kay and
Marple (1981) and Bendat and Piersol (1986) offer perspectives from the
engineering side. A review of quadratic spectrum estimators, including
multitaper methods, was given by Mullis and Scharf (1991). Reviews of
spectrum analysis written by geoscientists include MacDonald (1989),
Park (1992) and Ghil et al. (2002). Stratigraphy is a geoscientific sub-
field dealing with archived temporal changes in lithic or biotic units such
as sediments. Such changes are often cyclical (Einsele et al. 1991) and
quantifiable by means of spectral analysis (Weedon 2003). This area,
cyclostratigraphy, deals also with series, {z(i), x(i)}, from the depth
domain (Fig. 1.13). A prominent example is the identification of Mi-
lankovitch cycles in sequences such as limestone–shale from the distant
geologic past (Schwarzacher 1964, 1975, 1991, 1993, 1994). There is
a discussion whether we are now living in the Anthropocene (Crutzen
2002; Crutzen and Steffen 2003; Zalasiewicz et al. 2008).

Periodogram tests belong to the historically earliest tools in statis-
tical time series analysis. A review, on which this paragraph is oriented,
was given by Priestley (1981: Section 6.1.4 therein), see also Priestley
(1997). The periodogram was not only invented by Schuster (1898), this
man also devised a test for the significance of an I(fj) value based on the
assumption of Gaussian white noise in Eq. (5.15) and the chi-squared
distribution. See Brillinger (1975) for a rigorous description of CIs and
other properties of the periodogram. Schuster (1898) applied his test
to a “supposed 26 day period of meteorological phenomena” (the dec-
lination of the Earth’s magnetic field at Prague, measured during 1870
with d = 1 day; the supposition had been made by Hornstein (1871)),



216 5 Spectral Analysis

but found little evidence in favour of a true periodicity. Later, Schus-
ter (1906) analysed monthly sunspot time series for the interval 1749 to
1901 and detected periodicities, the major one at Tperiod = 11.125 a. In
that paper, Schuster also considered nonstationarity. Gilbert Walker, a
physicist with contributions to meteorology, looked on max(I(fj))/S2,
with S2 replaced by the sample variance estimator (Walker 1914), and
found an asymptotic distribution. Fisher (1929) derived the exact dis-
tribution of a related test quantity for n odd, and also Hartley (1949)
took Walker’s test statistic, changed the denominator and derived the
distribution of this re-studentized quantity. It is natural to test not
only for one (max(I(fj))) but also for more harmonic components in
a time series, and relevant work on this topic includes that published
by Whittle (1952), Grenander and Rosenblatt (1956), Siegel (1980) and
Walden (1992). A test for the number K of frequencies to include in
the harmonic model (Eq. 5.15) was developed by Quinn (1989). A test
for peaks in the spectrum estimated with maximum likelihood (instead
of periodogram estimation) was presented by Foias et al. (1988). A se-
rious caveat against all tests described so far in this paragraph is their
assumption of a white Gaussian background noise against which to test.
We assume climate processes to have rather a non-white background,
that is, to exhibit a mixed spectrum (Fig. 5.3c). Statistical tests can
still be constructed for mixed spectra based on analysis of I(fj)/h(f),
that means, the periodogram divided by the power spectral density func-
tion of the background process. The serious practical problem here is
that h(f) is usually unknown and has to be replaced by an appropriate
estimate, and obtaining a background estimate requires in principle the
harmonic peaks to be detected. If the background spectrum has a nar-
row local maximum (e.g., an AR(2) spectrum), then it may be impossi-
ble to distinguish between background maximum and periodogram peak
(noise and signal). Periodogram test methods to deal with such a sit-
uation require adapted background spectrum estimation (Whittle 1952;
Hannan 1960, 1961; Priestley 1962a,b). An interesting alternative to
periodogram tests is Thomson’s F test using the background spectrum
estimated with the multitaper technique (Section 5.2.3.1). The tests
described so far in this paragraph were developed under the assump-
tion of even time spacing. There exists a test using the Lomb–Scargle
periodogram for unevenly spaced time series (Scargle 1982; Horne and
Baliunas 1986), which is similar to Schuster’s (1898)—including the re-
strictive assumption of white background noise. In their review of Lomb–
Scargle periodogram analysis, VanDongen et al. (1997) and Van Dongen
et al. (1999) mention the permutation test by Linnell Nemec and Nemec
(1985). However, the permutation resampling does not preserve redness,
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and, hence, also this test assumes a white background. Summarizing,
periodogram tests may be useful for analysing processes with line com-
ponents and little/no background noise (e.g., astronomical cycles, tides),
but they have little relevance for time series from climate processes with
mixed, non-white spectra. We do not share the view of Muller and
MacDonald (2000: p. 56 therein) that Priestley’s (1981: p. 420 therein)
remark of the unusefulness of the periodogram for the estimation of con-
tinuous spectra is misleading. On page 431 of his book, Priestley defends
the periodogram’s usefulness for estimating line spectra (Fig. 5.3a). The
question raised by Muller and MacDonald (2000) is more whether their
study object, Milankovitch cycles embedded in climate noise in the form
of Pleistocene ice-volume changes, should indeed be analysed by means
of periodogram estimation.

Superresolution refers to (almost) purely harmonic processes with
a line spectrum, where a higher frequency resolution (i.e., < ∆fj) than
for spectrum estimation can be achieved (Thomson 1990a). Fields for
application in climatology include frequency estimation and separation
of tide components (Munk and Hasselmann 1964). Also Hannan and
Quinn (1989) and Quinn and Hannan (2001) studied frequency separa-
bility in dependence of n, S2 and the amplitude of the sinusoidal com-
ponents. The latter book contains further statistical tests and considers
also nonstationarity in form of slowly changing frequencies.

Nonstationarity in the context of this chapter has something to
do with a “time-dependent spectrum.” The problem is that this is
not well defined; some assumptions have to be met, and some vari-
ables to be introduced, to be able to speak of a “time-dependent fre-
quency” or a “time-dependent power,” as was reiterated by Priestley
(1981, 1988). One assumption is that the time-dependences are slow
and smooth. It is possible to erect a “nonstationary spectral analysis”
on wavepackets or wavelets (Fig. 5.12) that have an oscillatory and a
smoothly damped part (Priestley 1996). The estimation means to ef-
fectively compose a time series, {t(i), x(i)}n

i=1, using shifted (in time)
and scaled (in time) versions of the “mother wavelet,” Ψ(T ). Most es-
timation algorithms seem to require (1) even spacing and (2) n to be
a power of two. Evidently, interpolation methods can free the climate
time series analyst from those two strong restrictions, but this seems
to be at the expense of introducing heteroscedasticity and introducing
or enhancing autocorrelation (Silverman 1999). The second effect could
make tests of red-noise alternatives more difficult, the first require the
analyst to reunite S(T ) with Xnoise(T ). It is fair to say that a systematic
and wide knowledge about interpolation effects on time-dependent spec-
trum estimates obtained with wavelets is not yet reached (Daubechies
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Figure 5.12. Wavelet, “Mexican hat” function, Ψ(T ) = (1− T 2) exp(−T 2/2).

et al. 1999; Vidakovic 1999; Sweldens and Schröder 2000). (For the
case of nonlinear wavelet regression (time-dependent mean), Hall and
Turlach (1997) studied interpolation effects theoretically and by means
of a Monte Carlo simulation.) Papers on the application of wavelet
estimation for unevenly spaced astronomical/climatological time series
include Foster (1996a,b), Scargle (1997), Witt and Schumann (2005)
and Milne and Lark (2009). A recent contribution from theory is Mon-
dal and Percival (in press), who propose new, unbiased estimators of
the wavelet power spectrum for even spacing with missing observations,
analyse their large sample properties and methods for CI construction.
Mondal and Percival (in press) show also an application to annual runoff
minima from the Nile for the interval from a.d. 622 to 1921. To summa-
rize, wavelet models may offer many new insights into time-dependent
climate processes, but more theoretical and simulation work needs to
be done, and software tools to be developed, to understand the robust-
ness and accuracy of results with respect to uneven spacing, aliasing and
timescale errors. Another technique applicable to slowly changing time-
dependent spectra is to form time intervals (“windows”) and estimate
the spectrum separately for the windows. For example, Berger et al.
(1998) studied the stability of the Milankovitch periods of variations in
the Earth’s orbital geometry over the interval from 1.5 Ma ago to 0.5
Ma into the future by means of a windowed multitaper estimation. Ur-
ban et al. (2000) applied the same method to look on the ENSO history
within 1840–1995 as provided by the δ18O proxy record from a coral
(d = 2 months) from the central western Pacific. The ENSO spectrum
exhibits power in the range of 2.2–15 years period, more broadly and
not in the form of sharp peaks, and the analysis (Urban et al. 2000)
shed light on the time–frequency composition of the ENSO. Schulz et al.
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(1999) used windowed Lomb–Scargle estimation with WOSA for quan-
tifying amplitude variations of the “1500-year cycle,” recorded by the
unevenly spaced δ18O record from the GISP2 ice core. The caveats
against wavelet estimation regarding robustness and accuracy of results
apply also to windowed spectrum estimation techniques. One should
bear in mind that the various difficulties in spectral analysis are ulti-
mately rooted in the ambition to estimate the spectrum at frequency
points fj , which are O (n), on the basis of a data sample of size n. Al-
lowing time-dependence introduces a second dimension, and estimating
a quantity at O

(
n2

)
time–frequency points cannot be expected to reduce

the difficulties. Genton and Hall (2007) present an interesting alterna-
tive, namely estimation of parametric models for the time-dependences
of frequency and amplitude, fitted in the time domain by means of ker-
nel functions, supported by bootstrap CIs, and applicable also to uneven
spacing. A notable tool for unevenly spaced series is also period analysis
using robust regression in the time domain (Oh et al. 2004), which can
be combined with bootstrap resampling.

The 100-ka cycle is the dominant type of changes of global ice volume
and, related, temperature and atmospheric CO2 concentrations during
the late Pleistocene (Fig. 1.3). Explaining this cycle is a challenge to the
Milankovitch theorists for two reasons (Raymo and Huybers 2008). This
theory of how variations in Earth orbital parameters influence climate
has been successful regarding changes in the obliquity (Tperiod ≈ 40 ka;
Fig. 5.4) and precession (Tperiod ≈ 19−23 ka) bands (Imbrie et al. 1992).
First, the 100-ka cycle has a distinct sawtooth shape, which is absent in
the more sinusoidal orbital time series. Second, the eccentricity compo-
nent (ellipse) has a peak in that frequency range, but associated with
clearly less power than the obliquity or precession components have.
Ideas on how to reconcile Milankovitch theory with the 100-ka cycle
include some nonlinear amplification of the eccentricity component in
the climate system (Imbrie et al. 1993) and combinations of obliquity
and precession components into a ∼ 100-ka component (Raymo 1997;
Huybers and Wunsch 2005). An astronomical cause, suggested not by
Milankovitch but Muller, is variations in orbital inclination (Tperiod ≈ 95
ka), see Section 5.2.1. Non-astronomical explanations view the 1/100
ka−1 as kind of an eigenfrequency of the ice–bedrock–carbon cycle sys-
tem (DeBlonde and Peltier 1991; Saltzman and Verbitsky 1993). It
is difficult to distinguish among the various explanations on basis of
statistical analyses by spectrum estimation because the 100-ka cycle
came into existence as late as approximately 650 ka ago, as found by
Mudelsee and Schulz (1997) using a windowed version of the harmonic
filter (Section 5.4). This short time span means large bandwidth and fre-
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quency resolution, ∆fj . Spectrum estimation for the 100-ka cycle could
be possibly improved by considering non-sinusoidal (i.e., sawtooth) basis
functions (Thomson 1982).

The multitaper method with jackknife resampling for CI or
standard error determination has been employed in studies of various
aspects of the climate system. Among them are the following. Diaz
and Pulwarty (1994) analysed centuries-long proxy records of ENSO
and records of potentially related variables by means of a cross-spectral
analysis (spectral analysis in a bivariate setting), and Rodó et al. (1997)
tested the significance of peaks in the spectra of Iberian rainfall records
from 1910 to 1994. Thomson (1997) examined variations of global tem-
perature and the logarithm of solar irradiance during nineteenth and
twentieth century and calculated jackknife CIs using jW = 6. This low
number and the resulting large sampling fluctuations could explain the
discrepancies in CI length he noted between the jackknife approach and
one based on the Gaussian assumption. Hinnov et al. (2002) investigated
the interhemispheric relations among various time series of D–O varia-
tions over the past 100 ka with cross-spectral analysis, and Prokopenko
et al. (2006) applied the same method to solar insolation time series
and a sedimentary record from Lake Baikal covering the past ∼ 1.8 Ma.
The criticism regarding the low jW values and jackknife replicates (Sec-
tion 5.2.3.4) is not restricted to the paper by Thomson (1997). Also the
other studies mentioned so far used similar low values. The jackknife
should yield more accurate results when applied to long instrumental
time series, such as oceanographic (Chave et al. 1997) or seismologic
(Prieto et al. 2007), for which multisegmenting is possible.

The Lomb–Scargle method with bootstrap resampling for bias
correction has been utilized in various climate studies. Among the
analysed archives “containing” the unevenly spaced records are the fol-
lowing: stalagmites that provide δ18O and δ13C proxy evidence about
changes in precipitation and temperature on Holocene and late Pleis-
tocene timescales (Niggemann et al. 2003; Holzkämper et al. 2004; Fleit-
mann et al. 2007a); Antarctic ice cores that give methanesulfonic acid
proxy evidence about changes in winter sea ice extent over the past 100
years (Abram et al. 2007); a loess section from Nebraska, absolutely
dated with radiocarbon and dosimeter technologies, that informs via
colour parameters and organic carbon content about drought variations
on Holocene timescales (Miao et al. 2007); a Pacific sediment core that
supplies nitrogen isotopic proxy evidence about nutrient concentrations
for phytoplankton growth (i.e., carbon sequestration) over the past 70 ka
(De Pol-Holz et al. 2007); and, finally, a sediment core from Bear Lake
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(Utah–Idaho) that documents via pollen content the regional vegetation
and climate history over the past 225 ka (Jiménez-Moreno et al. 2007).

Aliasing and uneven spacing. The effects of sampling a continuous-
time climate process X(T ) with spectrum h(f) depend on the temporal
spacing of the discrete sampling points, see Priestley (1981: Section
7.1.1 therein) and Masry (1984). Even spacing bears the risk of aliasing
(Section 5.2.7). Different types of uneven spacing can be distinguished.

1. An independently jittered spacing (Eq. 5.36) amounts to a “dis-
turbed” even spacing. (This is equivalent to the timescale model
given by Eqs. (4.31) and (4.33) for evenly spaced Ttrue(i).) Indepen-
dent jitter with δ2

d � d2 still leads to aliasing effects (Akaike 1960;
Shapiro and Silverman 1960; Moore and Thomson 1991). Instead
of a Gaussian, also another shape may be employed for the innova-
tion term in the equation, the jitter. A model of a jitter uniformly
distributed over the interval between −d/2 and +d/2 (excluding the
endpoints) respects the condition of monotonic growth for a climate
archive. Beutler (1970) shows that for frequencies below 1/(2d̄), this
jitter model leads to an alias-free spectral estimation. This paper
demonstrates also that spectral estimation can lead to meaningful
results even when the {t(i)} are unknown and only their rank is
known, a possible situation in paleoclimate time series analysis. The
independent jitter model may be applicable to climate time series
when an originally even spacing is superimposed by small time un-
certainties (e.g., radar measurements, which are influenced by the
travel time, other instrumental observations).

2. Dependent jitter means that the innovations in the spacing equation
(Eq. 5.36) are autocorrelated. Here it is more difficult than for inde-
pendent jitter to obtain analytical results on second-order properties
of a process such as the spectrum (Thomson and Robinson 1996). The
dependent jitter model may be the norm for many climate archives
such as speleothems or sediment cores (Pisias and Mix 1988). This
model was also used by De Ridder et al. (2006) for modelling the
shell growth of a mollusk (a climate archive).

3. Poisson sampling refers to a more irregular spacing, where the times
are realizations of a homogeneous Poisson process, that is, they are
uniformly distributed (Chapter 6). Then the deviation from the case
of even spacing is large and spectral estimation is alias-free (Shapiro
and Silverman 1960).

However, above mentioned papers on aliasing do not assume application
of Lomb–Scargle spectrum estimation. Instead, they study what results
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when (1) the {x(i)}n
i=1 are assumed to be realizations of a process sam-

pled on a discrete, evenly spaced time grid and (2) a spectrum estimation
method is used that assumes even spacing. Analytical results on aliasing
seem hardly to exist for unevenly spaced time series analysed with the
Lomb–Scargle method. Scargle (1989) states that aliasing is then dimin-
ished. This is supported by a Monte Carlo simulation study (Press et al.
1992: Fig. 13.8.1 therein), where the sampling was Poisson, n = 100 and
d̄ = 1. The sinusoidal component with prescribed frequency 0.81, larger
than 1/(2d̄), was detected with high confidence. An interesting discus-
sion was initiated by the suggestion (Wunsch 2000) that the so-called
“1500-year cycle,” found in late Pleistocene and Holocene climate proxy
records, is an alias of the annual cycle. Meeker et al. (2001) made it clear
that, at least for the Ca record from the GISP2 ice core (Mayewski et al.
1997), interval 30 to 36 ka, the annual cycle is not preserved because of
a finite sample duration (D(i); Fig. 1.13) and diffusion, D′(i) > D(i).
Nevertheless, this time interval displays Dansgaard–Oeschger variations
in Ca (Meeker et al. 2001: Fig. 1C therein), for which visual inspection
infers a period of roughly 1500 years. This argument against aliasing
was accepted by Wunsch (2001). A climatological objection against the
existence of the “1500-year cycle,” however, is that the weak stationar-
ity assumption (time constant second-order properties) is violated: this
“cycle” is restricted to this time interval (D–O events 5, 6 and 7), as was
shown for the GISP2 δ18O record (Schulz 2002). Amazingly, there may
exist not a cycle but rather a “1500-year pacing” of the onset of D–O
events, that is, the onsets (during the late Pleistocene) are not always
separated by ∼ 1500 years but sometimes by multiples of this period
(Schulz 2002; Rahmstorf 2003).

Timescale error influences. The piecewise linear age–depth model
with constraint “monotonic growth,” which was used for analysing the
effects of timescale errors on spectrum estimates for stalagmite Q5 (Sec-
tion 5.2.9), had been suggested previously (McMillan et al. 2002) for
sedimentary sequences in general, where the timescale is constructed us-
ing dating points and interpolation. These authors considered also the
inclusion of interpolation error models.

Sun–climate connections on timescales between those of the by ev-
eryone experienced daily and annual cycles and, on the other hand,
Milankovitch cycles (Tperiod / 19 ka) are not based on changes in the ge-
ometry but on solar activity variations. On shorter, decadal timescales
(sunspot cycle), activity variations (Woods and Lean 2007) lead to a
direct climate forcing smaller than that of greenhouse gas emissions
(Hansen and Lacis 1990), although inclusion of solar activity is in-
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dispensable for climate models to reproduce the observations (Hegerl
et al. 2007b). Solar irradiance changes on timescales between 11 years
(sunspots) and 1500 years (Bond et al. 2001) and their role for paleo-
climate where assessed by numerous authors, including Cini Castagnoli
and Provenzale (1997), Hoyt and Schatten (1997) and Bard and Frank
(2006). The paper by Rind (2002) considers nearly all timescales (up to
the age of the Earth). Pittock (1978) took a “critical look at long-term
Sun–weather relationships” and detected statistical deficits in many pa-
pers that claimed a strong Sun–climate connection. However, one may
in response extend the regret for an absent comprehensive synopsis of
the Sun–monsoon hypothesis (Section 5.2.9) to the Sun–climate system.
Required are multiple statistical tests, which take also timescale errors
into account. Regarding the spectral peak at Tperiod = 963 a (Fig. 5.8),
it may correpond to reported cycles at approximately 900 year period
(Schulz and Paul 2002; Rimbu et al. 2004; Wanner et al. 2008), but its
nature (solar or not) deserves further analysis.

Resampling in the frequency domain. The periodogram has the
property that the covariance between two points, COV [I(f1), I(f2)],
vanishes for f1, f2 ∈ {1/(nd), 2/(nd), . . .} under some conditions (normal
shape, even spacing). This led to the idea to resample (ordinary boot-
strap) periodogram values (frequency domain) and not residuals (time
domain). One technique based on that is to resample I(fj) locally,
that means close to a frequency of interest f ′, in order to determine
a confidence interval for the spectrum estimate, ĥ(f ′), see Paparodi-
tis (2002). This technique can be applied also to spectrum estimation
with tapers (Politis et al. 1992; Politis and Romano 1992b). We have
written the harmonic process (Eq. 5.15) with sinus and cosinus compo-
nents; an alternative notation uses terms Aj cos(2πfjT (i) + Φj), where
Φj is the phase. Estimation of the phase over the frequency range, the
phase spectrum, becomes important for climatology in bivariate settings.
There one is interested in leads and lags at a certain period between
two climate variables. The second resampling technique mentioned in
this paragraph resamples the phase spectrum estimates, while leaving
the amplitude spectrum estimates (Âj) intact. The resampled data are
transformed back into the time domain and serve as surrogate bootstrap
data (Nordgaard 1992; Theiler et al. 1992; Kantz and Schreiber 1997;
Hidalgo 2003). This surrogate data technique has been extended into
the “wavelet domain” (Angelini et al. 2005). These techniques apply to
evenly spaced time series, and adapting them to the case of uneven spac-
ing should be worth the effort. One problem with spectrum estimation
then, however, is that the Lomb–Scargle periodogram does not exhibit
vanishing covariances (Section 5.2.4.2).



224 5 Spectral Analysis

Other spectrum estimation methods than multitaper (even spac-
ing) or Lomb–Scargle (uneven spacing) are not recommended. The
Blackman–Tukey approach (Jenkins and Watts 1968) goes via Eqs. (5.7),
(5.8), (5.9) and (5.10) on the sample level and takes the autocovari-
ance or autocorrelation function, truncates it at a certain lag to smooth
and transforms into the frequency domain. Because of the estimation
bias and variance involved therein (Chapter 2), we subscribe to Thom-
son’s (1990a: p. 543 therein) remark that “if your spectrum estimate
explicitly requires sample autocorrelations you are almost certainly do-
ing something wrong.” Multitaper and Lomb–Scargle are nonparametric
methods. Parametric methods include fitting AR(p) models in the time
domain and taking the fitted model in the frequency domain. Various
procedures of fitting led to various names associated with such methods:
Yule–Walker, Levinson–Durbin, maximum entropy or Burg’s algorithm
(Percival and Walden 1993: Chapter 9 therein). We do not dispute their
usefulness for fitting time-series models to data, but we remain cautious
regarding parametric estimation of climate spectra. In the case of even
spacing, the bias and variance properties of the estimates these para-
metric methods produce, should be less good than those of the optimal
(least-squares sense) multitaper method. In the case of uneven spacing,
these methods are not available without interpolation.

Interpolation of an unevenly spaced time series to equidistance for
spectrum estimation is not recommended. Besides the ambiguity which
interpolation type (linear, cubic spline, Akima spline, etc.) to take,
interpolation leads generally to smoothing and distortion of the data
(Belcher et al. 1994). It may introduce spurious peaks, especially at
higher frequencies, as was demonstrated by Horowitz (1974) or Schulz
and Stattegger (1997). Interpolation may also corrupt the test of the
red-noise alternative (Section 5.2.5) because of the amount of serial de-
pendence artificially introduced.

Bispectrum. A zero-mean process X(i) can be written in the Volterra
expansion, to second order, as

X(i) =
∑

j

gj · EF(0, σ2)(i− j)

+
∑
j,k

gjk · EF(0, σ2)(i− j) · EF(0, σ2)(i− k),
(5.38)

where the gj and gjk are parameters and EF(0, σ2)(i) is a random variable
with mean zero, variance σ2 and distribution function F (Stine 1997).
The linear term (the first on the right-hand side) of the expansion gives
a complete description if F is Gaussian. The parameters gj of this term
are related to the spectral density function h(f). The nonlinear term
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is required for describing non-Gaussian or nonlinear processes. It is re-
lated (Stine 1997) to a function h(f1, f2), the bispectrum. Estimation of
the bispectrum (Subba Rao and Gabr 1984) can add to a spectral char-
acterization of an observed process. Muller and MacDonald (1997b,c)
applied bispectral analysis to evenly spaced climatological and astro-
nomical records in order to support their hypothesis that the 100-ka
cycle corresponds to variations of orbital inclination. A limitation of
bispectral analysis is that currently available implementations seem to
be restricted to even time spacing. Notwithstanding this, researchers
studying late Pleistocene global climate changes applied bispectral anal-
ysis to time series originally unevenly spaced (Hagelberg et al. 1991; King
1996; Rutherford and D’Hondt 2000). Little knowledge seems to exist
on testing noise alternatives and quantifying the robustness of bispectral
estimates against timescale errors.

The trade-off between variance and bandwidth of spectrum es-
timators has been referred to by many authors as “Heisenberg’s uncer-
tainty principle,” although the latter is a concept from quantum physics.
It would be more apt to speak of “Grenander’s uncertainty principle,”
after, for example, the paper by Grenander (1958).

5.4 Technical issues
The calculation of the dpss multitapers (Section 5.2.3) can be done

in various ways. Percival and Walden (1993: Chapter 8 therein) note
numerical integration and bypassing the problem by using substitutes
in form of trigonometric polynomials, but they favour two other calcu-
lation types, namely via a tridiagonal formulation or directly from the
defining eigenvalue problem (Eq. 5.24). For solving the latter, Bell et al.
(1993) developed an iterative algorithm, written in FORTRAN 77 and
available from http://lib.stat.cmu.edu/jcgs/bell-p-w (29 January 2008).
Own experiments with a Fortran 90 translation on 32-bit and 64-bit ma-
chines, where the numerical precision of real numbers can be adjusted
conveniently, attest the robustness of the algorithm.

The Fast Fourier Transform or FFT is a numerical algorithm (Coo-
ley and Tukey 1965) that reduces the number of operations from O

(
n2

)
to O (n log(n)). Data size n must be a power of two. The FFT was
the technical basis of the scientific revolution that came with spectral
analysis.

The F distribution with νY and νZ degrees of freedom has following
PDF:

f(x) =
(νY /νZ )νY /2

B (νY /2 , νZ /2)
· x(νY /2 )−1

(1 + x · νY /νZ )(νY +νZ)/2
, (5.39)
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where x > 0 and B is the beta function (Section 2.7). It arises as the
distribution of the ratio of two chi-squared variables (Section 3.9). Let
Y and Z be independent and chi-squared distributed with νY and νZ

degrees of freedom, respectively. Then X = [(Y/νY ) · (Z/νZ)−1] is F -
distributed (Eq. 5.39). See Johnson et al. (1995: Chapter 27 therein)
for more details on the F distribution.

Lees and Park (1995) published a C subroutine for multitaper es-
timation. It can be obtained via http://www.iamg.org (29 January 2008).
This software was used in an influential paper on signal detection against
a red-noise background of climate spectra (Mann and Lees 1996).

Multitaper.zip is a Matlab implementation of multitaper estima-
tion in the presence of missing data (Fodor and Stark 2000). It can be

2008).
mwlib is a Fortran 90 library of subroutines for multitaper esti-

mation (Prieto et al. 2009). It is available at the internet address

SSA-MTM Toolkit is a compiled software that includes multitaper
estimation in connection with SSA (http://www.atmos.ucla.edu/tcd/ssa/,
29 January 2008). Version exist for DEC, Linux, Macintosh, SGI and
Sun systems.

CYSTRATI is a FORTRAN 77 package, developed and listed by
Pardo-Igúzquiza et al. (1994), for cyclostratigraphic data analysis, in-
cluding multitaper and maximum entropy spectrum estimation.

REDFIT is a Fortran 90 program (code, Windows binaries) for
Lomb–Scargle spectrum estimation with bootstrap bias correction and
test of the AR(1) red-noise alternative (Schulz and Mudelsee 2002). It
is based on SPECTRUM (Schulz and Stattegger 1997), which has a
graphical interface but no bias correction or red-noise test. An option is
interactively working with SPECTRUM to find out suitable smoothing
parameters and then performing with REDFIT the final calculations.
RED2CON is a recent Matlab implementation of REDFIT with graph-
ical interface. The core of the programs lies in the routines for ILS(fj)
calculation (Scargle 1989). REDFIT, RED2CON and SPECTRUM are
available at the site http://www.geo.uni-bremen.de/geomod/staff/mschulz/

(29 March 2010), REDFIT also at the web site for this book.
ENVELOPE is a DOS/Windows software implementing a windowed

version of the harmonic filter (Section 5.2.4.3) for analysing slowly chang-
ing sinusoidal components (frequency f ′). The time-dependent ampli-
tude is (A2 +B2)1/2, see Eq. (5.33). It is estimated using a least-squares
criterion (Ferraz-Mello 1981; Schulz 1996). The software can be ob-

downloaded from http://www.stat.berkeley.edu/~stark/Code/ (29 January

http://wwwprof.uniandes.edu.co/~gprieto/software/mwlib.html (11 December
2009).
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tained from http://www.geo.uni-bremen.de/geomod/staff/mschulz/ (29 Jan-
uary 2008).

MATLAB Recipes for Earth Sciences is the title of a book
(Trauth 2007) with software that includes Lomb–Scargle estimation.

AutoSignal is a commercial package containing spectral analysis
tools, including multitaper and Lomb–Scargle estimation. It can be
obtained from Systat (http://www.systat.com, 29 January 2008).

CLEAN is a deconvolution algorithm for switching between frequency
and time domains while collecting iteratively the strongest spectral peaks
and their time-domain representation, respectively (Roberts et al. 1987).
It can be applied to unevenly spaced time series for spectrum estima-
tion. A surrogate data resampling approach to derive significance levels
(Heslop and Dekkers 2002) is available as Matlab package MC-CLEAN

REDFITmc2 (Mudelsee et al. 2009) is an adaption of REDFIT,
which implements Algorithms 5.5 and 5.6. See the web site for this
book.

at http://www.geo.uu.nl/~forth/Software/mc clean.zip (29 January 2008).



Chapter 6

Extreme Value Time Series

Extreme value time series refer to the outlier component in the cli-
mate equation (Eq. 1.2). Quantifying the tail probability of the PDF
of a climate variable—the risk of climate extremes—is of high socioeco-
nomical relevance. In the context of climate change, it is important to
move from stationary to nonstationary (time-dependent) models: with
climate changes also risk changes may be associated.

Traditionally, extreme value data are evaluated in two forms: first,
block extremes such as annual maxima, and second, exceedances of a
high threshold. A stationary model of great flexibility for the first and
the second form is the Generalized Extreme Value distribution and the
generalized Pareto distribution, respectively. Classical estimation tech-
niques based on maximum likelihood exist for both distributions.

Nonstationary models can be constructed parametrically, by writing
the extreme value models with time-dependent parameters. Maximum
likelihood estimation may impose numerical difficulties here. The in-
homogeneous Poisson process constitutes an interesting nonparametric
model of the time-dependence of the occurrence of an extreme. Here,
bootstrap confidence bands can be constructed and hypothesis tests per-
formed to assess the significance of trends in climate risk. A recent
development is a hybrid, which estimates the time-dependence nonpara-
metrically and, conditional on the occurrence of an extreme, models the
extreme value parametrically.

6.1 Data types
We distinguish among several types of extreme value data. One guide

for doing so is the accuracy of Xout(i), the outlier or extreme component
in the climate equation (Eq. 1.2). Even data with a very low accuracy
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can be analysed, for example, cases where only the time an extreme
occurred is known. A related guide comes from considering how the
extreme data were obtained. An example is outlier detection by imposing
a threshold (Section 4.3.3).

6.1.1 Event times
In the low-accuracy case it is just known about an event that it did

occur, that means, Xout(i) 6= 0. The time points of the events recorded
by a time series are{

Tout(j)
}m

j=1
=

{
T (i)

∣∣Xout(i) 6= 0
}n

i=1
. (6.1)

On the sample level, the set of time points inferred from analysing
{t(i), x(i)}n

i=1 is written as {tout(j)}m
j=1. The number of extreme events

is m; it is m ≤ n.
A second constraint imposed on Xout(i), besides being unequal to zero,

is independence. The observed extreme should have occurred because a
climate process generated it and not because there had previously been
another, interfering event.

6.1.1.1 Example: Elbe winter floods
The winter floods of the river Elbe (Fig. 1.1) were recorded with a

slightly higher accuracy (x′out(j) = 1, 2 or 3). For the documentary
period (up to 1850), independence of events was achieved by studying the
historical sources (Mudelsee et al. 2003). Consider the ice flood in 1784,
for which Weikinn (2000) gives 32 source texts that report about the
breaking ice cover in the last week of February, the rising water levels, the
considerable damages this and the moving ice floes caused and, finally,
the decreasing water levels in the first week of March 1784. Mudelsee
et al. (2003) considered this as one single event (tout(j) = 1784.167) and
not two (February, March).

The question after the flood risk, whether winter floods occur at a
constant rate or there exist instead changes, is analysed by means of
occurrence rate estimation (Section 6.3.2).

6.1.2 Peaks over threshold
If X(i) is known with higher accuracy, a threshold criterion may be

applied to detect extremes.{
Tout(j), X ′

out(j)
}m

j=1
=

{
T (i), X(i)

∣∣X(i) > u
}n

i=1
(6.2)

is a rule for detecting maxima with a constant threshold, u. The exten-
sion to detecting minima is straightforward.
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The peaks-over-threshold (POT) data can be analysed in two ways.
Occurrence rate estimation (Section 6.3.2) uses the sample {tout(j)}m

j=1
to infer trends in the occurrence of extremes. Fitting a generalized
Pareto distribution (Section 6.2.2) to {x′out(j)}

m
j=1 is helpful for studying

the risk of an event of pre-defined size, prob(X(i) > u + v) with v > 0.
In climatology it is also useful to consider a time-dependent threshold

to take into account effects of trends in mean, Xtrend(T ), and variability,
S(T ). To fulfill the assumption of mutual independence of the POT data,
imposing further criteria than passing the threshold may be necessary.

6.1.2.1 Example: volcanic peaks in the NGRIP sulfate
record (continued)

Outlier/extremes detection in the NGRIP sulfate record (Fig. 4.16)
employed a time-dependent threshold, Xtrend(i) + z · S(i), and robust
estimates of trend (“background”) and variability, to take into account
variable oceanic input. A second criterion was the absence of contem-
poraneous Ca and Na peaks to extract the extremes caused by volcanic
eruptions (Fig. 1.4). To satisfy the independence assumption, further
threshold exceedances closely neighboured in time were discarded (third
criterion). In general, the size of such a neighbourhood can be estimated
using persistence models (Chapter 2). Instead of taking {X ′

out(j)}
m
j=1

from {X(i)}n
i=1, one may also collect scaled extremes {X ′

out(j)}
m
j=1 from

{[X(i)−Xtrend(i)]/S(i)}n
i=1. Scaling is one form of taking nonstation-

arity into account (Section 6.3).

6.1.3 Block extremes
It may sometimes be that climate or weather data are in the form of

extremes over a certain time period. An example of such a block extreme
is the annual maximum,

X ′
out(j) = max

({
X(i)

}
T (i) within jth year of time series

)
, (6.3)

Tout(j) = jth year of time series. (6.4)

The block extremes X ′
out(j) are the input for fitting a Generalized Ex-

treme Value distribution (Section 6.2.1). The estimation result sheds
light on the risk at which an extreme of a pre-defined size and at a
pre-defined block length occurs.

Risk estimation (Section 6.2.1) assumes that an extreme is taken from
a block with a large number k (at least, say, 100) of independent ob-
servations. This can be done explicitly, by segmenting or “blocking” an
original series {X(i)}n

i=1. Alternatively, the blocking may have already
been done implicitly. An example is documentary data in form of max-
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imum annual water stage in a river, where original daily observations
have not been preserved or have simply not been made. Another pos-
sibility, theoretically also conceivable, are proxy measurements with a
machine that records not the mean value (e.g., of a concentration) but
the extreme value. In any case, the independence assumption should be
approximately fulfilled if the block length (time units) is large compared
with max(τ,D′(i)) (Fig. 1.13). For practical applications, τ and D(i)
have to be estimated.

6.1.4 Remarks on data selection
The rules for selecting {X ′

out(j)}
m
j=1 from {X(i)}n

i=1 are not uniquely
determined. This allows the analyst to explore various climate system
properties regarding extremes.

One area is threshold selection in the POT approach. Besides allowing
time-dependence, the size can be adjusted. A high (low) threshold size
for maxima detection leads evidently to fewer (more) cases and, hence,
to more conservative (liberal) results but likely also to wider (narrower)
CIs. Furthermore, a too low threshold may lead to violations of the
conditions of convergence to an extreme value distribution. Data in
form of event times have implicitly also undergone a threshold selection.
The documentary data about Elbe floods, for example, were critically
screened (Mudelsee et al. 2003) whether there is enough evidence that
merits inclusion into the flood record or there had instead been just an
elevated water level noticed by a hypercritical observer.

For block extremes, the adjustable parameter is the block length. In
the case of original data X(i) with even spacing, this corresponds to
a fixed number, k, of X(i) values per block. In the case of uneven
spacing, besides leaving the block length constant, one may also fix k.
The connection to nonparametric regression and the smoothing problem
(Section 4.3) is evident.

Henceforth we omit for convenience the prime and write {Xout(j)}m
j=1

on the process and {xout(j)}m
j=1 on the sample level.

6.2 Stationary models
In stationary models, the distribution parameters and related quan-

tities, such as risk, do not change over time.

6.2.1 Generalized Extreme Value distribution
The Generalized Extreme Value (GEV) distribution is suitable for

analysing block extremes. Our treatment follows closely that of Coles
(2001b: Chapter 3 therein).
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6.2.1.1 Model
The GEV distribution function is given by

FGEV(xout) =

exp
{
−

[
1 + ξ (xout − µ) /σ

]−1/ξ
}

(ξ 6= 0),

exp
{
− exp

[
− (xout − µ) /σ

]}
(ξ = 0),

(6.5)

where 1 + ξ (xout − µ) /σ > 0, −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞.
The parameters µ and σ identify location and scale, respectively, while
the shape parameter, ξ, determines the tail behaviour of FGEV(xout).

The importance of the GEV distribution lies in the fact that it is
the limiting distribution of the block maximum (for k large). Under
mild conditions, nearly irrespective of what the common, but generally
unknown distributional shape of the individual variables X(i) is, the
distribution of Xout(j) approaches the GEV (Fig. 6.1). This is in essence
the extreme value analogue of the central limit theorem (Coles 2001b).
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Figure 6.1. Distribution of the maximum of k independent standard normal vari-
ates. The plotted distribution functions, Fmax(x), are labelled with k. For k = 1,
the symmetric form of the standard normal distribution, FN(x) (Eq. 3.49), appears.
In general, Fmax(x) = [FN(x)]k. Letting k increase has three effects: the location
(average) is shifted to the right, the scale (standard deviation) is decreased and the
right-skewness (shape parameter) is increased. With increasing k, Fmax(x) approaches
FGEV(x). This is a theoretical example, with prescribed FN(x) and exactly determined
Fmax(x). In a practical setting, with distribution and parameters of the independent
variables unknown, Fmax(x) can still be approximated by FGEV(x).

6.2.1.2 Maximum likelihood estimation
Assume that the approximation is perfect and the block maxima

{xout(j)}m
j=1 do come from a GEV distribution (Eq. 6.5). Assume further

that ξ 6= 0. Adopting the maximum likelihood principle (Section 2.6,
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p. 58) requires then to maximize the (logarithm of the) likelihood func-
tion (Coles 2001b),

ln [L(µ, σ, ξ)] = −m ln (σ)− (1 + 1/ξ)
m∑

j=1

ln
[
y(j)

]
−

m∑
j=1

y(j), (6.6)

where

y(j) = 1 + ξ

[
xout(j)− µ

σ

]
. (6.7)

The additional condition is that y(j) > 0 ∀j.
Section 6.6 explains the case ξ = 0, for which another log-likelihood

function is used. That section covers also the regularity conditions, the
properties of the maximum likelihood estimators in dependence on the
shape parameter, ξ. To summarize, if ξ > −0.5, which is the usual
case in applications according to Coles (2001b), and assumed also here,
the maximum likelihood estimators can be applied without technical
problems.

Under the assumptions made regarding ξ and y(i), the distribution
of the maximum likelihood estimators (µ̂, σ̂, ξ̂) approaches with m →∞
multivariate normality. The covariance matrix is given by the inverse
of the Fisher expected information matrix, evaluated at the maximum
likelihood estimate (Coles 2001b). The elements of the latter matrix are
(Prescott and Walden 1980):

E

[
−∂2 ln(L)

∂µ2

]
=

m

σ2
p,

E

[
−∂2 ln(L)

∂σ2

]
=

m

σ2ξ2
[1− 2 Γ(2 + ξ) + p] ,

E

[
−∂2 ln(L)

∂ξ2

]
=

m

ξ2

[
π2 /6 + (1− γ + 1 / ξ)2 − 2q /ξ + p / ξ2

]
,

E

[
−∂2 ln(L)

∂µ ∂σ

]
=

m

σ2ξ
[Γ(2 + ξ)− p] , (6.8)

E

[
−∂2 ln(L)

∂µ ∂ξ

]
= −m

σξ
(q − p/ξ) ,

E

[
−∂2 ln(L)

∂σ ∂ξ

]
= − m

σξ2

{
1− γ + [1− Γ(2 + ξ)] /ξ − q + p/ξ

}
,

where

p = (1 + ξ)2 Γ(1 + 2ξ),
q = Γ(2 + ξ) [Ψ(1 + ξ) + (1 + ξ) /ξ ] ,

(6.9)
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the constant γ ≈ 0.5772157 is Euler’s and Ψ(·) is the digamma function
(Section 6.6). Classical CIs for the maximum likelihood estimates follow
immediately from the covariance matrix and the percentage points of
the normal distribution (Section 3.9).

6.2.2 Generalized Pareto distribution
The generalized Pareto (GP) distribution is suitable for analysing

POT extremes. The relation of the GP to the GEV distribution is as
follows. If the data generating process X(i) and the extremes selection
satisfy the assumptions, such that the block extremes have (approxi-
mately) a GEV distribution, then the POT extremes have (approxi-
mately) a GP distribution (Leadbetter et al. 1983). This is illustrated
by Fig. 6.2.

6.2.2.1 Model
The GP distribution function is given by

FGP(xout) =

1−
{

1 + ξ (xout − u)
/[

σ + ξ (u− µ)
]}−1/ξ

(ξ 6= 0),

1− exp
[
− (xout − u) /σ

]
(ξ = 0),

(6.10)
where σ > 0, xout > u, {1 + ξ (xout − u) /[σ + ξ (u− µ)]} > 0, −∞ <
ξ < ∞ and u is large (compared with the centre of location of the
distribution of X(i)). Notably, the GP parameter shape, ξ, is the same
as for the GEV distribution (Hosking and Wallis 1987). Again, the tail
behaviour of the GP distribution is determined by ξ. If ξ < 0, then
FGP(xout) has an upper bound of xout = −σ/ξ + µ, if ξ ≥ 0, then the
GP distribution has no upper bound.

6.2.2.2 Maximum likelihood estimation
Analogously to Section 6.2.1.2, assume that the approximation is per-

fect and the POT data {xout(j)}m
j=1 do come from a GP distribution

(Eq. 6.10) and that ξ 6= 0. The log-likelihood function to be maximized
is then (Coles 2001b)

ln [L(σ̃, ξ)] = −m ln (σ̃)− (1 + 1/ξ)
m∑

j=1

ln
[
y(j)

]
, (6.11)

where

y(j) = 1 + ξ

[
xout(j)− u

σ̃

]
(6.12)
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Figure 6.2. Block maxima, POT data, GEV and GP distributions. The basic as-
sumption is that many (above, say, 100) independent and identically distributed (IID)
random processes X(i) contribute to each block. The threshold is denoted as u. The
extremes, Xout(j), have a GEV distribution (block maxima) or a GP distribution
(POT). Shown are density functions, fGEV(xout) and fGP(xout); the related distri-
bution functions (F =

∫
f) are given by Eqs. (6.5) and (6.10). The tail probability,

or risk, for Xout > xp = 2.75 (shaded areas) is p = 11% (GEV) and 31% (GP),
respectively. xp is the return level, 1/p the return period (in time units).
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and

σ̃ = σ + ξ (u− µ) . (6.13)

Required is also that y(j) > 0 ∀j. The convention of writing σ̃ leads to
only two parameters to be estimated (Coles 2001b).

Standard likelihood theory leads, analogously to Section 6.2.1.2, to
classical CIs for the estimated parameters. The covariance matrix for
the maximum likelihood estimators of (σ̃, ξ) on the process level is, for
the usual case ξ > −0.5, given by (Davison and Smith 1990)

1 + ξ

m

[
2σ̃2 σ̃
σ̃ 1 + ξ

]
. (6.14)

In practice, on the sample level, the estimator values are plugged in. For
example, ŝe

ξ̂
= (1 + ξ̂)/m1/2, from which CIs can be calculated using

percentage points of the normal distribution.

6.2.2.3 Model suitability
Several conditions regarding the data have to be fulfilled to derive

(Leadbetter et al. 1983) the GP distribution.

1. The process X(i) generating the time series is serially independent.

2. The process X(i) is stationary, the distributional shape of X(i) does
not change with time, T (i).

These first two are the IID conditions.

3. The extremes or outliers are POT data, with the threshold, u, being
large.

In addition to those three, the regularity condition,

4. the parameter ξ is greater than −0.5,

leads to obtainable maximum likelihood estimators (Section 6.2.2.2) with
asymptotic (m → ∞) properties, such as the covariance matrix, Eq.
(6.14).

In practice the question is not whether preceding conditions are ful-
filled but rather how strongly they are violated.

Precautionary measures employed during the data selection proce-
dure (Section 6.1) can reduce the degree of violation and enhance the
applicability of the GP model. Regarding serial independence, this can
be achieved by taking into account the persistence properties of X(i).
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Regarding stationarity of location (and scale) of X(i), by using a time-
dependent threshold (Section 6.1.2) it is possible to correct for some
nonstationarity. The alternative would be usage of a nonstationary GP
model (similarly as in Section 6.3.1). Violations of the stationarity as-
sumption may also be detected by adopting a point-process approach
and analysing {tout(j)}m

j=1, as is done in Section 6.3.2. Regarding large
u, it is necessary to recognize that, on the other hand, a lower u means
a higher m and therefore smaller statistical uncertainties of estimated
parameters—a typical dilemma between systematic and statistical errors
that can be tackled by analysing a range of thresholds, u, and studying
the sensitivity of the results. Regarding ξ > −0.5, this condition is said
to be less a problem in practice, but nevertheless it should be tested.

In addition to the precautionary measures, it is helpful to assess the
suitability of the GP model by analysis of diagnostic plots. Such analy-
ses are presented by textbooks such as Coles (2001b: Section 4.4 therein)
and here in the example of Elbe summer floods (Section 6.2.4). Statis-
tical tests for model suitability augment graphical tools. For example,
Van Montfort and Witter (1985) present a test for ξ = 0 in the GP
model.

The question of model suitability applies also to fitted GEV distribu-
tions. Similar or same methods as for the GP distribution are applied.
Instead of sensitivity studies of the threshold, the dependence on block
length selection (k) is analysed.

6.2.2.4 Return period

Consider some large value, xp, for a positive extreme (maximum) or
outlier. This defines the tail probability, p, as p =

∫∞
xp

fGP(xout)dxout =
1 − FGP(xp). The function fGP(xout) is the density function of the GP
distribution. The return period has the numerical value 1/p, its units
are the same as of the original time values. The return period is ap-
proximately the expected time span required for observing one extreme
event, Xout, in excess of xp. The parameter xp is called return level.
(Strictly speaking, xp is defined as the level that is exceeded once with
probability p in one time unit.)

The generalization to negative extremes (minima) is straightforward.
Obviously, the concept is applicable also to other distributions such as
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the GEV. Figure 6.2 illustrates cases with return level xp = 2.75 and
tail probabilities p = 11% (GEV) or 31% (GP). If the time units were
years, then the return periods associated with xp were approximately 9
years (GEV) or 3 years (GP), and an observation xout > xp would be
called a 9-year (GEV) or a 3-year (GP) event.

We define the term “risk” as tail probability, p, following the Ency-
clopedia of statistical sciences (Gardenier and Gardenier 1988). Because
a variety of application fields of risk analysis exist, such as actuarial sci-
ences, econometrics and climatology, many risk definitions are in usage;
Thywissen (2006) lists 22, although not completely mutually exclusive,
definitions currently employed. The definition via the probability has
the advantage that this is a fundamental, real number, from which the
other parameters of interest, for example, the expected economic loss,
can be derived.

6.2.2.5 Probability weighted moment estimation
The method of probability weighted moments (PWMs) (Greenwood

et al. 1979) offers an alternative to maximum likelihood estimation of
the GP distribution parameters. In general, the PWM of a continuous
random variable X is the quantity Mq,r,s = E[Xq{F (x)}r{1 − F (x)}s].
For the GP distribution, it is convenient (Hosking and Wallis 1987) to
use the parameters

αs = M1,0,s = E[X{1− FGP(xout)}s] = σ̃ /[(s + 1) (s + 1− ξ)] , (6.15)

which exist for ξ < 1. The GP parameters expressed in terms of PWMs
are

σ̃ = 2 α0 α1 /(α0 − 2 α1) (6.16)

and

ξ = 2− α0 /(α0 − 2 α1) . (6.17)

The PWM method plugs in estimates for α0 and α1 into Eqs. (6.16) and
(6.17) to estimate the GP parameters. For example (Landwehr et al.
1979),

α̂s = m−1
m∑

j=1

(m− j)(m− j − 1) · · · (m− j − s + 1)
(m− 1)(m− 2) · · · (m− s)

xout, sort(j),

(6.18)
where {xout, sort(j)}m

j=1 is the sample sorted in ascending order. (Hosking
and Wallis (1987) give a second αs estimator.)

Asymptotically, for m → ∞, and under the condition ξ < 0.5, the
PWM estimators for the GP parameters (σ̃, ξ) have a normal distribution
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and, on the process level, following covariance matrix (Hosking et al.
1985; Hosking and Wallis 1987):

1
m(1− 2ξ)(3− 2ξ)

(6.19)

×
[

σ̃2
(
7− 18ξ + 11ξ2 − 2ξ3

)
σ̃ (2− ξ)

(
2− 6ξ + 7ξ2 − 2ξ3

)
σ̃ (2− ξ)

(
2− 6ξ + 7ξ2 − 2ξ3

)
(1− ξ) (2 + ξ)2

(
1− ξ + 2ξ2

) ]
.

In practice, the estimator values are plugged in. CIs for the PWM
estimates of the GP parameters, and also for related quantities such as
return levels, follow directly from the covariance matrix (Hosking and
Wallis 1987).

The PWM method can also be applied to estimating parameters and
related quantities of the GEV distribution (Hosking et al. 1985; Lu and
Stedinger 1992).

A method closely related to PWM is the estimation with so-called
L-moments (Hosking 1990; Hosking and Wallis 1997).

6.2.3 Bootstrap confidence intervals
The classical CIs for GEV or GP parameter estimates, calculated

from the covariance matrices, are not exact because the sample size
of the extremes, m, is not infinite. In addition to that, violations of
the underlying model assumptions (Section 6.2.2.3) may increase the
inexactness. In general, such situations favour the bootstrap approach
to deliver more accurate results. However, in the case of CI construction
for GEV or GP parameters and related quantities such as quantiles and
return periods, bootstrap resampling may not always be preferable.

The problem with the nonparametric bootstrap resampling (Section
3.3.1) is that the distribution of the bootstrap replications does not uni-
formly converge with m to the true distribution when the parameter
of interest is a quantile, see Bickel and Freedman (1981), Davison and
Smith (1990: p. 440 therein) and Angus (1993). The alternative resam-
pling, parametric surrogate data simulation (Section 3.3.3), has been
found in Monte Carlo experiments (Caers et al. 1999a; Kyselý 2008)
to give CIs with acceptable accuracies—better than from nonparametric
bootstrap resampling. The caveat against the method of parametric sim-
ulation, however, is that it prescribes a certain distribution model (GEV,
GP) to draw data from and assumes its suitability. In practice, where
m < ∞ and the limiting model distribution has been only approximately
approached, there comes additional uncertainty, which should widen the
CIs obtained from parametric simulation. It is difficult to quantify how
much wider accurate CIs would be.
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6.2.4 Example: Elbe summer floods, 1852–2002
The example of the Elbe summer floods (Fig. 6.3) explores the suit-

ability of the GEV model for hydrological time series. Prior to the
analysis, the stationarity of the data generating process was positively
tested by methods explained in Section 6.3.

The sensitivity plots for estimated shape parameter and 100-year re-
turn level (Fig. 6.3b, c) show some variations with the block length; a
value of 2 months for taking block maxima was assessed as appropriate.
For all block lengths tested, the regularity condition ξ > −0.5 is very
likely fulfilled.

In light of the variations with the block length, the possible violation
of the independence assumption of X(i) by the long-memory property
of runoff time series (Section 2.5.3) and the limited size of m = 444,
some model error has to be considered. This would add to the errors
deduced from the estimated covariance matrix for the maximum likeli-
hood estimation (Fig. 6.3). However, the density plot (Fig. 6.3d) and
the probability plot (Fig. 6.3e) reveal agreement between data and fitted
model and do not allow to reject the GEV assumption.

The Elbe flood in August 2002 was a devastating event causing 36
deaths and over 15 billion EUR economic damages (Mueller 2003; Sercl
and Stehlik 2003). What is the risk, p, of an event of this or larger
size? Although the measured water level at gauge station Dresden was
relatively accurately determined, the associated maximum runoff value
of Q = 4700 m3s−1 for the August 2002 flood (Engel et al. 2002) is less
certain; the true value may have been larger. The reason preventing
a direct Q determination was that water velocity measurements over
the entire river cross section were not possible (Engel H 2002, personal
communication). This left the stage–runoff calibration inaccurate at
such high values.

Bearing the caveat regarding data accuracy and the model errors in
mind, the inspection of Fig. 6.3f leaves the impression that the Elbe
flooding in August 2002 was clearly a larger event than a 100-year
flood—in Dresden. Statements about return periods of 200 years and
more are likely rather inaccurate. Analyses of the event in August 2002
performed for several stations along the Elbe, shed more light on the
flood risk (Engel et al. 2002; Mudelsee et al. 2004).

We remark that it is mandatory to distinguish between winter and
summer floods because they have different meteorological–hydrological
causes (see background material). The winter floods of the Elbe, for
example, do not share the stationarity property of the summer floods
for the same interval (past ∼ 150 a).
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Figure 6.3. Elbe summer floods 1852–1999, GEV estimation applied to block max-
ima. a Daily runoff, x(i), at station Dresden for the hydrological summer, from
May to October; n = 27,232. Data from Global Runoff Data Centre, Koblenz, Ger-
many. b Maximum likelihood estimates of the shape parameter, ξ, of a GEV distri-
bution in dependence on block length; standard errors (vertical lines) from the esti-
mated covariance matrix. (The block length of 2 months corresponds to m = 444.)
c 100-year return level, xp for p = 0.01, in hydrology also denoted as HQ100, in
dependence on block length; standard errors from error propagation (Section 6.5)
using the estimated covariance matrix. d Estimated GEV density function (solid
line) and histogram estimate (Section 1.6) of empirical density for block length 2
months. e Empirical probability, j/(m + 1) for j = 1, . . . , m, against model proba-

bility, exp{−[1 + ξ̂(xout, sort(j)− µ̂) /σ̂ ]−1/ξ̂}, shown as (closely spaced) dots; 1:1 line
(grey). f Return level with standard errors for fitted GEV model in dependence on
return period.
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6.2.5 Persistence
Climate processes, X(i), often show persistence (Chapter 2). This vi-

olates the independence assumption made for deriving the GEV and GP
distribution models for extremes. For short-memory persistence such as
AR(1) processes, typical for climate (Section 2.1), however, this viola-
tion does not invalidate GEV or GP estimation when the sampling of
the extremes (Section 6.1) is done appropriately. Even for certain types
of long-memory persistence, GEV or GP estimation may still be applied.
Our exposition follows closely that of Coles (2001b: Chapter 5 therein).

6.2.5.1 Condition D(un)
A stationary process {X(i)}n

i=1 satisfies the condition D(un) if for all
1 ≤ i1 < · · · < ip < j1 < · · · < jq ≤ n with j1 − ip > l > 0,∣∣∣prob {X(i1) ≤ un, . . . , X(ip) ≤ un, X(j1) ≤ un, . . . , X(jq) ≤ un}

− prob {X(i1) ≤ un, . . . , X(ip) ≤ un}

× prob {X(j1) ≤ un, . . . , X(jq) ≤ un}
∣∣∣ ≤ α(n, l), (6.20)

where the sequence α(n, ln) → 0 and ln/n → 0 as n →∞. An indepen-
dent process X(i) has zero difference, α, in probabilities. The condition
D(un) generalizes this concept. The integer l plays a similar role as the
persistence time.

6.2.5.2 Extremal index
Consider the stationary process {X(i)}n

i=1 with persistence and the
related process {X∗(i)}n

i=1 without persistence (but identical data dis-
tributions). As explained in Section 6.2.1.1, under suitable conditions
the distribution of the block maxima of {X∗(i)}n

i=1 approaches a GEV
distribution. Denote the distribution function as FGEV,1(xout). It may
be shown (Leadbetter et al. 1983) that under the same conditions also
the distribution of the block maxima of {X(i)}n

i=1 approaches a GEV
distribution, with other parameters µ and σ (but with identical ξ). De-
note this distribution function as FGEV,2(xout). It is (Leadbetter et al.
1983)

FGEV,2(xout) = [FGEV,1(xout)]
θ , (6.21)

where 0 < θ ≤ 1. The parameter θ linking the dependence and indepen-
dence cases is called extremal index.

Equation (6.21) has considerable practical consequences because it al-
lows to apply the GEV and GP estimation methods also to data from
short-memory processes. A caveat here is that the number of indepen-
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dent observations is reduced. Coles (2001b: Section 5.3.1 therein) gives
the number of nθ as effective data size with respect to the quality of the
GEV approximation.

For fitting a GP distribution to threshold extremes from short-memory
processes, Coles (2001b: Section 5.3.3 therein) notes the technique of
declustering. This takes into account that under persistence the ex-
tremes tend to occur in clusters (consecutive times). Within a cluster,
only the maximum excess over a threshold is retained for GP estimation.
Declustering is equivalent to POT data selection (Section 6.1.2) with an
imposed secondary selection criterion. To prohibit the information loss
associated with declustering, it may be worth instead to consider to re-
tain all POT values and account for the persistence by either modelling
it or adjusting the covariance matrix (see background material).

6.2.5.3 Long memory

Even if X(i) is a long-memory process (Section 2.4.1), the GEV or GP
model may be applicable. Smith (1989: pp. 392–393 therein) remarks
that if X(i) has a Gaussian distributional shape and ρ(n) log(n) → 0 for
n → ∞, then the long-range dependence “does not matter,” referring
to a paper by Berman (1964). The autocorrelation function ρ(h) for
an ARFIMA process does indeed fulfill the condition, and a suitable
transformation of X(i) may yield approximately a Gaussian shape. See
the example of river runoff (Section 2.5.3).

The major problem from long memory could be that the number of
independent observations is reduced—to a stronger degree than for short
memory. This makes the GEV or GP approximation less accurate than
in the no-memory or short-memory cases.

6.2.6 Remark: tail estimation

In practice, when analysing a sample of extremes {tout(j), xout(j)}m
j=1

obtained from a climate time series {t(i), x(i)}n
i=1, the questions often

regard the tails of the distribution of Xout. It is here at the upper values,
where the “climate risk” is located, where tail probabilities p, return
periods 1/p (in time units) and return levels xp are often associated
with events of high socioeconomical relevance (Fig. 6.2). For example,
authorities dealing with flood protection may be interested in HQ1000,
the 1000-year return level of runoff at a certain river station.

The requirement of accurate methods of tail estimation was also no-
ticed in the Earth Sciences literature, for example, by Dargahi-Noubary
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(1989). He argued in favour of the POT–GP and against the block
extremes–GEV approach because of information wastage caused by the
latter. Notably, he also remarked that methods suited for estimating
distribution parameters need not be optimal for estimating tail prob-
abilities. An example in the Earth Sciences literature, where accurate
tail estimation was an objective, was given by Caers et al. (1999b), who
applied parametric bootstrap resampling to earthquake, diamond (an
extreme with a “positive” connotation) and impact crater size data.

Smith (1987) proposed to estimate the tail probability of a GP distri-
bution (Fig. 6.2) as follows:

p̂ = m n−1
[
1 + ξ̂ (xout − u)

/̂̃σ ]
. (6.22)

Herein, ξ̂ is the estimate of the shape parameter and ̂̃σ the estimate of the
transformed scale parameter (Eq. 6.13). This tail probability estimator
is defined for xout > u (if ξ̂ > 0) or 0 < (xout − u) < −̂̃σ/ξ̂ (if ξ̂ < 0).
Smith (1987) showed by means of theoretical studies of its asymptotic
properties that this estimator has “often” a better performance than a
previous tail estimator suggested by Hill (1975).

In Eq. (6.22), the expression m n−1 is an estimate of the time-constant
rate of occurrence of an extreme event within a time unit. The term
within square brackets is the tail probability conditional on that an ex-
treme occurred. Eq. (6.22) can therefore be seen (Kallache M 2009, per-
sonal communication) as a manifestation of the hybrid Poisson–extreme
value distribution approach (Section 6.3.3) in the stationary setting, as
a counterpart to Eq. (6.42).

Smith’s (1987) estimator (Eq. 6.22) applies to “within-sample” thresh-
olds. If u > max({xout(j)}m

j=1) for positive extremes, then m = 0 and
p̂ = 0, which is not a helpful estimation. When confronted with the
task to estimate such “out-of-sample” probabilities or quantiles, other
methods (Hall and Weissman 1997; El-Aroui and Diebolt 2002; Fer-
reira et al. 2003) can be tried. These methods are based on estimating
a quantile “within” (< max({xout(j)}m

j=1) for positive extremes) and
transforming it to “outside” (> max({xout(j)}m

j=1)). A related task is
to make long-range predictions of extremes, based on extrapolation; for
that purpose Hall et al. (2002) found good coverage performance of cal-
ibrated bootstrap CIs (Section 3.8). For the analysis of climate risk,
however, long-range predictions based on “out-of-sample” estimations
bear the danger of considerable errors caused by nonstationarities. The
assumption made so far, namely that the distribution of X(i) does not
change with time, is rather strong. It may, for example, be questionable
to estimate an HQ1000 based on 150 years of data.
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6.2.7 Remark: optimal estimation
It is helpful for the analyst to recall at this point what he or she

is doing. Given is a data sample {x(i)}n
i=1 and a question about the

system the data document, the climate system. Often, instead of a
single question there is a whole complex of questions. Sometimes the
questions existed before the data, sometimes the data were earlier, and
often questions and data have evolved together, in loops. In quantitative
climatology, the questions can be translated into a parameter, θ, or a
set of parameters, which need to be estimated using the data.

The estimator, θ̂, appears as a third actor besides data and parame-
ter. For more difficult questions, the construction of an estimator is not
straightforward but a work that requires creativity. The fourth is the
confidence interval, CI

θ̂,1−2α
. Also CI construction is not straightfor-

ward, there may exist bootstrap versions, and there may exist classical
versions.

The aim of the estimation is, of course, to come close to the truth with
the parameter estimate produced by data and estimator. This can be
judged by various measures: bias, standard error, RMSE, CI length, CI
coverage accuracy, robustness, and so forth. It becomes apparent that
an optimal estimation requires to cycle through more, nested loops. In
dependence on data and parameter, the methods of estimation and CI
construction are selected that have the desired properties. This selection
may feed back and lead to other parameters to be tried, refined questions
to be asked.

As an example with regard to the content of this chapter: asking
for the optimal estimators of the parameters of a GEV distribution of
runoff maxima is not the same as asking for the optimal estimator of a
quantile (like HQ100). Knowledge about the properties of a combination
of data, estimator and CI requires usually (n < ∞ and not too simple
question) evidence from Monte Carlo simulations because of theoretical
intractability. It may be expected that existing Monte Carlo evidence
from previous studies cannot always be applied or generalized to the
combination at hand. The nested route towards an optimal estimation
can, therefore, require the climate analyst to carry out new Monte Carlo
experiments.

6.3 Nonstationary models
In the extreme value analysis of climate time series, however, it is more

realistic to assume time-dependent models: with climate changes also
risk changes may come. Already before the contribution of IPCC–WG I
to the Fourth Assessment Report (Solomon et al. 2007) appeared, the
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nonstationary analysis of climate extremes had been an active research
field. After the report, the developments in this field have received
growing attention, also by lay people and the media.

One may argue that by estimating time-dependent trend and time-
dependent variability (Section 6.1.2), taking extremes from the scaled
data,

{
[X(i)− X̂trend(i)]/Ŝ(i)

}n

i=1
, and fitting a stationary model, the

nonstationarity is taken into account, but such an analysis could miss
trends in the tail behaviour and therefore be insufficient.

One route towards a more complete analysis is to retain the extreme
value distribution models and introduce time-dependence into their pa-
rameters. We present the time-dependent GEV distribution, where the
mean, scale and shape are allowed to exhibit trends described by param-
eters. The other route is to think of the time points when an extreme
occurred, {tout(j)}m

j=1, as a realization of a nonstationary model of the
occurrence of an event (an inhomogeneous Poisson process). We show
estimation of the time-dependent occurrence rate by means of a non-
parametric technique (kernel estimation).

6.3.1 Time-dependent Generalized Extreme
Value distribution

The nonstationary GEV model is the same as the stationary (Eq.
6.5), except that allowed now are time-dependences in location, scale
and shape. A simple form of dependence is:

µ(Tout) = β0 + β1Tout, (6.23)
σ(Tout) = exp (γ0 + γ1Tout) , (6.24)
ξ(Tout) = δ0 + δ1Tout. (6.25)

(The exponential function ensures a positive scale parameter.) The log-
likelihood function (Coles 2001b) depends now on six parameters; on the
sample level,

ln [L(µ, σ, ξ)] = ln [L(β0, β1, γ0, γ1, δ0, δ1)] = −
m∑

j=1

{
ln

[
σ(tout(j))

]
+

[
1 + 1/ξ(tout(j))

]
ln

[
y(j)

]
+

[
y(j)

]−1/ξ(tout(j))
}

, (6.26)

where

y(j) = 1 + ξ(tout(j))
{

xout(j)− µ(tout(j))
σ(tout(j))

}
. (6.27)
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It is assumed that ξ(tout(j)) 6= 0; for the j for which this is not the case,
the equivalent to the “Gumbel likelihood” (Section 6.6) has to be used.
The additional condition is that y(j) > 0 ∀j.

In principle, the log-likelihood function is maximized using numer-
ical techniques. The point in the parameter space (6-dimensional in
the case here) defines the maximum likelihood estimate. Approximate
standard errors and confidence intervals follow from the information ma-
trix, analogously to Section 6.2.1.2. The parameter estimates define the
time-dependent GEV distribution, from which in turn time-dependent
tail probabilities (risks), return periods and return levels can be calcu-
lated with error bars.

It appears, however, that in practice the first step, maximization can
cause numerical problems (Smith 1989). Specifically, when ξ(Tout) is
close to zero, the selection of the appropriate likelihood function may be
difficult. Further numerical challenges (start values, stopping rule, local
versus global maxima) may be encountered when many parameters are
used to model the time-dependence, or when the time-functions contain
jumps. This should not be interpreted as a criticism of the maximum
likelihood approach but rather as an indication to employ suitable tech-
niques to difficult numerical problems. The climatological applications of
the time-dependent GEV distribution (Section 6.5) seem to have gained
their successes from limiting the number of parameters, using simple
time-dependences and constraining the values of the shape parameter,
ξ. There is no hindrance to applying maximum likelihood estimation
with trends in the parameters to the GP model (background material).

A second critical point is the inevitable extrapolation from within
the observation time interval to outside (in practice: the future). The
parameter values or the functional form of the nonstationary GEV model
may change outside, and this may then bias the estimations severely.

6.3.2 Inhomogeneous Poisson process
6.3.2.1 Model

Consider the time points {Tout(j)}m
j=1 when an extreme has occurred.

The points may have resulted from POT data or block extremes, or
those event times may constitute the only information left about the
occurrence of an extreme or outlier. Consider the number of extreme
events to be described by a discrete random variable, M . Let the number
of extremes at continuous time T be described by the random process
M(T ). Its realization consists of step functions with “unit jumps” at
Tout(j). The process M(T ) is called a point process (see Karr (1986) for
a complete definition).
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Consider the incremental process, dM(T ) = M(T + δT ) − M(T ),
which represents the number of events in the time interval [T ;T + δT ].
Let δT be arbitrarily small, so that not two or more events occur within
the interval and dM(T ) takes only two values, namely,

dM(T ) =

{
1 with probability λ · δT,

0 with probability 1− λ · δT,
(6.28)

where λ ≥ 0 is a constant. Then

E [dM(T )] = λ · δT (6.29)

and

VAR [dM(T )] = λ · δT. (6.30)

Assume further that the events occur independently of each other,

COV [dM(T1), dM(T2)] = 0 for T1 6= T2. (6.31)

The point process M(T ) is then specified as a homogeneous Poisson
process with occurrence rate parameter λ.

The parameter of interest for the analysis of climate extremes is λ. Its
units are one over time units. It gives the probability per time interval
that an extreme occurs. For studying nonstationarity and trends in
climate risk, we now introduce time-dependence and denote the function
λ(T ) as occurrence rate. The process is then denoted as inhomogeneous
Poisson process (Cox and Lewis 1966).

6.3.2.2 Nonparametric occurrence rate estimation
The kernel approach (Diggle 1985) estimates the occurrence rate as

λ̂(T ) = h−1
m∑

j=1

K
(
[T − Tout(j)] /h

)
, (6.32)

where h is the bandwidth and K is the kernel function.
Consider for heuristic reasons the following primitive occurrence rate

estimator. Divide the observation interval [T (1);T (n)] in two halves
of equal length, H = [T (n) − T (1)]/2. Let the number of events in
the first and second halve be m1 and m2, respectively. Estimate λ(T )
in the first halve as m1/H and in the second halve as m2/H. This
estimator corresponds to a uniform kernel (K(y) = 1 for |y| ≤ 1/2 and
K(y) = 0 otherwise) with bandwidth h = H and merely two estimation
time points.
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Estimations of practical relevance employ therefore quasi-continuously
distributed (many) estimation time points, T , a smooth kernel function,
K, and a suitably selected bandwidth, h—in exact analogy to kernel
density estimation and kernel smoothing (Sections 1.6 and 4.3.1; see
also Diggle (1985) and Diggle and Marron (1988)). Bandwidth selection
is treated in Section 6.3.2.4 and usage of a Gaussian kernel function,
K(y) = (2π)−1/2 exp(−y2/2), is motivated in the technical issues.

6.3.2.3 Boundary bias reduction
Usage of Eq. (6.32) may lead to bias in the form of underestimation of

λ(T ) near the boundaries, T = T (1) and T = T (n), because of “missing
data” outside of the observation interval. One option to reduce this bias
is to let h decrease towards the boundaries, to use a “boundary kernel”
(Gasser and Müller 1979). The other, adopted here, is to generate pseu-
dodata (Cowling and Hall 1996) outside of [T (1);T (n)] and estimate
λ(T ) using a constant bandwidth and the original data augmented by
the pseudodata:

λ̂(T ) = h−1
m†∑
j=1

K
([

T − T †
out(j)

]
/h

)
. (6.33)

This is the equation on which the occurrence rate estimates in this chap-
ter are based.

The original event data are {Tout(j)}m
j=1. Let the (left) pseudodata

for T < T (1) be denoted as {T ′
out(j)}

m′

j=1 and the (right) pseudodata for

T > T (n) as {T ′′
out(j)}

m′′

j=1. Then the augmented set of event data,{
T †

out(j)
}m†=m+m′+m′′

j=1
= {Tout(j)}m

j=1 ∪
{
T ′

out(j)
}m′

j=1
∪

{
T ′′

out(j)
}m′′

j=1
,

(6.34)
is the set union of original data, left and right pseudodata.

How can the pseudodata be generated? Cowling and Hall (1996)
show the equivalence of pseudodata generation and extrapolation of the
empirical distribution function of {Tout(j)}m

j=1 and give rules how to
generate the pseudodata. Consider the left boundary, the start of the
observation interval, T (1). The simplest rule is “reflection,”

T ′
out(j

′) = T (1)− [Tout(j)− T (1)] . (6.35)

Setting j = 1 gives the rightmost of the left pseudodata points. How
many pseudodata points should be generated? Since the objective in
this chapter is to estimate λ(T ) within [T (1);T (n)], pseudodata cover-
age of a time interval extending to, say, 3 h below T (1) is sufficient. The
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“reflection” rule is analogously applied to produce right pseudodata, for
T > T (n). If the objective of the analysis is forecasting, an interval
extending to beyond T (n)+3 h should be covered, that is, more pseudo-
data be generated. The “reflection” rule corresponds to an extrapolation
of the empirical distribution function with a constant rate.

Cowling and Hall (1996) give other rules, which may be applicable
when the rate, λ(T ), is expected to change at the boundaries. Of partic-
ular relevance for climatological applications is when T (n) is the present
and a future upwards trend in climate risk may exist. We note the
“two-point” rule,

T ′
out(j

′) = T (1)− 9 [Tout(j/3)− T (1)] + 2 [Tout(j)− T (1)] , (6.36)

where the fractional data Tout(j/3) are determined by linear interpola-
tion and the setting Tout(0) ≡ T (1); analogously for the right pseudo-
data.

It is evident that pseudodata generation is a crucial step on the way
to an improved occurrence rate estimate. As with any extrapolation
method, care is required in the interpretation of the results. On the other
hand, it is inevitable to make assumptions when analysing a problem.
This applies not only to the statistical “extrapolability,” but also to the
actualism that is assumed when using physical climate models for future
projections.

6.3.2.4 Bandwidth selection
Bandwidth (h) selection determines bias and variance properties of

the occurrence rate estimator (Eq. 6.33) and is therefore the second
crucial step. Brooks and Marron (1991) developed the cross-validation
bandwidth selector for kernel occurrence rate estimation. This is the
minimizer of

C(h) =

T (n)∫
T (1)

[
λ̂(T )

]2
dT − 2

m∑
j=1

λ̂j

(
Tout(j)

)
, (6.37)

where

λ̂j

(
T

)
=

m†∑
k=1, k 6=j

h−1 K
([

T − T †
out(k)

]
/h

)
(6.38)

is the delete-one estimate.
The cross-validated bandwidth can be seen as a compromise between

small h (large variance and small bias of λ̂) and large h (small variance
and large bias).
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Figure 6.4. Elbe winter floods, pseudodata generation. The heavy events (magni-
tudes 2–3) are taken from the complete record (Fig. 1.1) and plotted (a, b) as bars
(m = 73). The “twopoint” rule is used to generate four pseudodata points (b, aster-
isks) outside the observation interval. Occurrence rates are estimated with h = 35 a,
and without (a m† = 73) or with (b m† = 77) pseudodata.

6.3.2.5 Example: Elbe winter floods (continued)
The number of heavy (magnitudes 2–3) floods of the Elbe in winter

is m = 73. The first event was in 1141. However, the historical in-
formation back to 1021 was analysed (Mudelsee et al. 2003), and the
observation interval is [1021; 2002]. Pseudodata generation (Fig. 6.4)
uses the “twopoint” rule to take (climatic and other) trends in flood risk
at the boundaries into account.

The cross-validation function (Fig. 6.5) has a minimum at h = 41 a.
For suppressing potential extrapolation effects (Section 6.3.2.3) and fur-
ther reducing the bias (Section 6.3.2.4) it may be advisable to under-
smooth slightly. For this reason and for achieving consistency with re-
sults from other flood records (Elbe, summer; Oder, winter and sum-
mer), Mudelsee et al. (2003) set the analysis bandwith to h = 35 a. The
estimated flood occurrence rate (Fig. 6.4) reveals—in the case of heavy
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Figure 6.5. Elbe winter floods, cross-validation function, heavy events (magnitudes
2–3).

winter floods of the Elbe—little boundary bias. The reason is that the
occurrence rate at the boundaries is rather low.

Bandwidth selection has large effects on flood occurrence rate es-
timation. Too strong undersmoothing with h = 5a (Fig. 6.6a) al-
lows too many variations. Within the bootstrap confidence band (Sec-
tion 6.3.2.6), most of these wiggles are not significant (not shown). Too
strong oversmoothing with h = 100 a (Fig. 6.6b) reduces the estimation
variance but enhances the bias: too many significant variations in flood
occurrence rate are smoothed away. The right amount of smoothing ap-
pears to be indicated by cross-validation; an only slight undersmoothing
with h = 35 a (Fig. 6.6c) lets the significant variations appear. The exam-
ple of the heavy Elbe winter floods is pursued further in Section 6.3.2.7.

6.3.2.6 Bootstrap confidence band
A measure of the uncertainty of λ̂(T ) (Eq. 6.33) is essential for in-

terpreting results. For example, it might be asked if the low in λ̂(T ) at
T ≈ 1700 for the heavy winter floods of the Elbe (Fig. 6.6c) is real or
the mere product of sampling variability. Cowling et al. (1996) devised
bootstrap algorithms for constructing a confidence band around λ̂(T );
one is shown as Algorithm 6.1.

Step 2 of the algorithm, discretization of T , uses a large number, NT ,
in the order of several hundred, to render a smooth estimate. For Step 4,
alternative bootstrap methods, where also the size of the simulated set
is a random variable, were tested by Cowling et al. (1996). Studentiza-
tion (Step 8) draws advantage from the fact that the auxiliary variable
Tstud(T, b) is approximately pivotal (independent of T ). Alternative CI
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Figure 6.6. Elbe winter floods, bandwidth selection, heavy events (magnitudes 2–3).
The occurrence rate is estimated with pseudodata (“twopoint” rule) and bandwidth
h = 5a (a), 100 a (b) and 35 a (c).

construction methods (percentile) at this step were tested by Cowling
et al. (1996). The resulting confidence band (Step 12) is a pointwise.

The coverage performance of the confidence band (Algorithm 6.1)
was tested by means of Monte Carlo simulations (Cowling 1995; Cowl-
ing et al. 1996; Hall P 2008, personal communication). The prescribed
λ(T ) functions had the form of a sinusoid added to a linear trend. This
nonmonotonic curve resembles what may be found in climate (Fig. 6.6c).
This makes the experiments relevant in the context of this book. The
number of extreme data, j, was in the order of a few hundreds. The
Monte Carlo results revealed good coverage performance of the method
(Algorithm 6.1), and also of the alternatives in resampling or CI con-
struction.
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Step 1 Event times, augmented

by pseudodata (Eq. 6.34)
{

T †
out(j)

}m†

j=1

Step 2 Discretization of time T T ∈ [T (1); T (n)]

(NT points)

Step 3 Kernel occurrence rate

estimate (Eq. 6.33) λ̂(T )

Step 4 From data set (Step 1),

draw with replacement a

simulated set of size m†
{

T †∗
out(j)

}m†

j=1

Step 5 Kernel occurrence rate

estimate, simulated data, λ̂∗b(T )

using same h as in Step 3 (b, counter)

Step 6 Go to Step 4 until b = B

(usually B = 2000)

replications exist

Step 7 Average A(T ) = B−1 ∑B
b=1 λ̂∗b(T )

Step 8 Studentize Tstud(T, b) =
[
λ̂∗b(T )−A(T )

] [
λ̂∗b(T )

]−1/2

Step 9 Determine tα as #
{∣∣Tstud(T, b)

∣∣ ≤ tα

}
= (1− 2α) NT B

Step 10 Lower CI bound at T max
{

0, A(T )− tα

[
λ̂(T )

]1/2}
Step 11 Upper CI bound at T A(T ) + tα

[
λ̂(T )

]1/2

Step 12 Confidence band is

given by joint CIs over T

Algorithm 6.1. Construction of a bootstrap confidence band for kernel occurrence
rate estimation (Cowling et al. 1996). (Step 9 requires interpolation because the
number of cases, #, is discrete.) The CI type is called percentile-t.
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6.3.2.7 Example: Elbe winter floods (continued)
Figure 6.7 shows the occurrence rate of heavy Elbe winter floods with

90% confidence band. A very long increase starting from the beginning
of the millennium culminated in a high during the second half of the
sixteenth century, when λ(T ) ≈ 0.17 a−1, corresponding to a return
period of about 6 years. The changes to a low at around 1700 (λ(T ) ≈
0.08 a−1) and a subsequent high in the first half of the nineteenth century
(λ(T ) ≈ 0.22 a−1) are significant, as attested by the confidence band.
The upper CI bound for that high is approximately 0.31 a−1. Elbe winter
flood risk then decreased, and this trend has continued until the present.

Figure 6.7. Elbe winter floods, occurrence rate estimation, heavy events (magni-
tudes 2–3). The confidence band is shaded. Estimation parameters as in Fig. 6.6c:
pseudodata generation rule “twopoint,” h = 35 a; NT = 1322, B = 2000; confidence
level: 1− 2α = 90%.

In a short interpretation of the mathematical finding, the long-term
increase is a result of data inhomogeneity in the form of document loss. It
is likely that documents from before the invention of printing in Europe
(fifteenth century) were not many, and information about past floods
may have been lost before finding entrance into secondary compilations.
Therefore the confidence band is drawn only for the interval after a.d.
1500. The end of the sixteenth century was reportedly wet also in other
parts of central and southwest Europe (Brázdil et al. 1999). The rela-
tively low flood risk in the decades around T = 1700 may be a manifes-
tation of the dry (and cold) European climate (Luterbacher et al. 2001)
of the Late Maunder Minimum (Fig. 2.12). The downwards trend from
T ≈ 1830 to the present reflects a reduced risk of ice floods (like that in
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1784), which in turn is a product of surface warming in the Elbe region
(Mudelsee et al. 2003, 2004).

6.3.2.8 Example: volcanic peaks in the NGRIP sulfate
record (continued)

Figure 6.8 shows a number of highs and lows in occurrence of extreme
sulfate peaks in the NGRIP ice core record from ∼ 10 to ∼ 110 ka.
Applying a more liberal detection threshold (z = 5.0) leads to more
events, smaller relative errors (∝ m−1/2) and higher significances of the
changes in λ̂(T ), but also with a more conservative threshold (z = 10.0)
the changes appear as significant. Estimates close to the boundaries of
the observation interval depend on the pseudodata generation rule (not
shown) and should be interpreted cautiously.

Construction of the “excess” sulfate record (Fig. 1.4) and extremes de-
tection (Fig. 4.16) had the purpose of extracting from the ice core record
the information about the times major volcanic eruptions occurred. For
bandwidth selection, we ignore cross-validation and set h = 5 ka to be
able to inspect changes in volcanic activity on Milankovitch timescales
(' 19 ka). Ice-age climate varied on such orbital timescales (Chap-
ter 5), and studying causal relationships between volcanic activity and
ice-age climate is facilitated by having common dynamical scales. See
background material (Section 6.5).

6.3.2.9 Example: hurricane peaks in the Lower Mystic
Lake varve thickness record (continued)

Figure 6.9 shows the occurrence rate of hurricanes in the Boston
area (Lower Mystic Lake). Bandwidth selection imposes a slight un-
dersmoothing (h = 50 a); a further undersmoothing would produce too
many nonsignificant wiggles. There has been a significantly higher hurri-
cane activity during the thirteenth century; the upper bound of the 90%
CI is close to one event per decade. Hurricane activity after, and likely
also before, that period was lower. The Cox–Lewis test (Section 6.3.2.10)
about an overall trend is inconclusive (u = −1.15, p = 0.12) due to the
nonmonotonic risk curve and the limited sample size.

The climatic interpretation may notice a relation between the high in
hurricane activity and the Medieval Warm Period. The elevated hurri-
cane risk may thus be a result of the Carnot machine in the tropical At-
lantic region (Emanuel 1987, 1999), fuelled by higher sea-surface temper-
atures during that time (Keigwin 1996). However, Besonen et al. (2008:
Section 4 therein) recognized “that the LML [Lower Mystic Lake] record
is a single point source record representative for the greater Boston area,
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Figure 6.8. NGRIP sulfate record, volcanic activity estimation. Sulfate extremes
stemming from volcanic eruptions were detected (Fig. 4.16) by applying thresholds of
z = 5.0 (a) and z = 10.0 (b) and declustering. Event times (a m = 1525; b m = 475)
are shown as bars, occurrence rate as solid line, confidence band shaded. Estimation
parameters: pseudodata generation rule “reflection,” h = 5000 a; NT = 574, B =
2000; confidence level: 1− 2α = 90%.

and hurricanes that passed a few hundred km to the east or west may not
have produced the very heavy rainfall amounts and vegetation distur-
bance in the lake watershed necessary to produce a strong signal within
the LML sediments.”

6.3.2.10 Parametric Poisson models and hypothesis tests
It is possible to formulate a parametric regression model (Chapter 4)

for the occurrence rate. Since λ(T ) cannot be negative, it is convenient
to employ the exponential function. A particularly simple model is

λ(T ) = exp (β0 + β1T ) . (6.39)

Another is the logistic model,

λ(T ) =
exp (β0 + β1T )

1 + exp (β0 + β1T )
. (6.40)
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Figure 6.9. Lower Mystic Lake varve thickness record, hurricane activity estimation.
Hurricane events were detected (Fig. 4.17) by applying a threshold of z = 5.2 and
imposing a second condition (graded bed). Event times (m = 36) are shown as
bars, occurrence rate as solid line, confidence band shaded. Estimation parameters:
pseudodata generation rule “reflection,” h = 50 a; NT = 616, B = 2000; confidence
level: 1− 2α = 90%.

These two are monotonic functions, and they can be used to model
simple increases (decreases) of the occurrence rate. Section 6.5 lists
more parametric occurrence rate models. These models do not offer the
flexibility of the nonparametric kernel approach (Section 6.3.2.2). The
parametric models are better suited to a situation where the task is not
quantification of λ(T ) but rather testing whether λ(T ) shows an increase
(decrease) or not. Cox and Lewis (1966) use the simple model (Eq. 6.39)
to test the hypothesis H1: “β1 > 0” (increasing occurrence rate) against
H0: “β1 = 0” (constant occurrence rate). Their test statistic is

U =

∑m
j=1 Tout(j) /m − [T (n) + T (1)] /2

[T (n)− T (1)] (12m)−1/2
, (6.41)

which becomes, with increasing m, rapidly standard normally distributed
in shape (Cramér 1946: p. 245 therein). On the sample level, plug in
{tout(j)}m

j=1, t(1) (observation interval, start) and t(n) (observation in-
terval, end) to obtain u.
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6.3.2.11 Monte Carlo experiment: Cox–Lewis test versus
Mann–Kendall test

The Cox–Lewis statistic (Eq. 6.41) can be used to test for monotonic
trends in the occurrence of extremes, the Mann–Kendall statistic (Eq.
4.61) was developed to test for changes in Xtrend(T ). This theoretical
unsuitability of the Mann–Kendall test (Zhang et al. 2004) has, however,
not hindered climatologists and hydrologists to apply it for studying
extremes.

We analyse the performance of both tests in a Monte Carlo exper-
iment with climatologically realistic properties of the data generating
process: a persistent noise component with non-normal distributional
shape and an outlier or extreme component that exhibits an upwards
trend in occurrence rate. That means, we study the performance of the
overall procedure that is employed in practice: detecting extremes and
testing for trends in their occurrence.

0

0.5

1

1.5
f(x)

0 1 2 3 4 5 6 7 8
x

Figure 6.10. Density functions used in Monte Carlo experiment (Tables 6.1, 6.2, 6.3
and 6.4). The PDF of the noise component (solid line) is a lognormal, the PDF of
the extreme component (which replaces the noise component in the case an extreme
occurs) is a chi-squared distribution with ν = 1 degrees of freedom and shifted in x-
direction by a value of 1.0 (short-dashed line) and 3.0 (long-dashed line), respectively.

Figure 6.10 shows that in one simulation setting (the outlier compo-
nent shifted by 1.0) the PDFs of outlier and noise components overlap
to a good degree, while in the other (shifted by 3.0) the PDFs overlap
only to a strongly reduced degree.
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Table 6.1. Monte Carlo experiment, hypothesis tests for trends in occurrence of
extremes. nsim = 90,000 random samples were generated from X(i) = Xout(i) +
Xnoise(i), where T (i) = i, i = 1, . . . , n and the noise is an AR(1) process with a =
1/e ≈ 0.37, lognormal shape, mean 1.0 and standard deviation 0.5 (Table 3.5). The
number of extremes, mtrue, was prescribed. The extreme event times, Tout(j), were
generated by taking a random variable uniformly distributed over [0; 1] to the power
of κ and mapping it linearly on [T (1); T (n)]; the parameter κ served to prescribe the
trend in occurrence rate. Xout(j) was drawn from a shifted (+1 in x-direction) chi-
squared distribution with ν = 1; this extreme value replaced the value Xnoise(i) for
which the time, T (i), was closest to Tout(j). Extremes detection employed a constant
threshold of median + 3.5 MAD (Fig. 4.15) for the POT approach and a block length
of k = 12 (Fig. 6.2) for the block extremes approach. The Cox–Lewis test was applied
to the detected POT data, the Mann-Kendall test to the POT data and also the block
extremes. The significance level of the one-sided tests was α = 0.10.

n ma
true κb Empirical powerc

Test

Cox–Lewis Mann–Kendall Mann–Kendall
(POT ) (block extremes) (POT )

120 10 0.75 0.161 0.089 0.041
240 20 0.75 0.181 0.099 0.069
600 50 0.75 0.236 0.150 0.077

1200 100 0.75 0.313 0.217 0.096
2400 200 0.75 0.434 0.338 0.125
6000 500 0.75 0.680 0.619 0.194

12,000 1000 0.75 0.883 0.868 0.300

120 10 0.9 0.129 0.065 0.036
240 20 0.9 0.132 0.066 0.058
600 50 0.9 0.147 0.080 0.059

1200 100 0.9 0.166 0.093 0.065
2400 200 0.9 0.195 0.115 0.073
6000 500 0.9 0.268 0.176 0.089

12,000 1000 0.9 0.357 0.261 0.109

a True (prescribed) number of extremes.
b Prescribed occurrence rate trend parameter, λ(T ) ∝ T 1/κ−1.
c Number of simulations where H0: “no trend” is rejected against H1: “upwards
trend,” divided by nsim. Standard error is (Efron and Tibshirani 1993) nominally

[α(1− α)/nsim]1/2 = 0.001.

The results (Tables 6.1, 6.2, 6.3 and 6.4) can be summarized as follows.

1. Higher numbers of extremes allow better detectability of trends in
λ(T ).
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Table 6.2. Monte Carlo experiment, hypothesis tests for trends in occurrence of
extremes (continued). The number of simulations was in each case nsim = 47,500.
The significance level of the one-sided tests was α = 0.05. The shift parameter of the
outlier component was 1.0. See Table 6.1 for further details.

n ma
true κb Empirical powerc

Test

Cox–Lewis Mann–Kendall Mann–Kendall
(POT ) (block extremes) (POT )

120 10 0.75 0.085 0.043 0.020
240 20 0.75 0.101 0.058 0.029
600 50 0.75 0.139 0.092 0.040

1200 100 0.75 0.195 0.142 0.051
2400 200 0.75 0.297 0.238 0.070
6000 500 0.75 0.542 0.494 0.120

12,000 1000 0.75 0.797 0.785 0.200

120 10 0.9 0.065 0.030 0.018
240 20 0.9 0.069 0.035 0.026
600 50 0.9 0.079 0.044 0.029

1200 100 0.9 0.089 0.052 0.033
2400 200 0.9 0.111 0.069 0.038
6000 500 0.9 0.166 0.108 0.049

12,000 1000 0.9 0.234 0.173 0.061

a True (prescribed) number of extremes.
b Prescribed occurrence rate trend parameter, λ(T ) ∝ T 1/κ−1.
c Number of simulations where H0: “no trend” is rejected against H1: “upwards trend,”

divided by nsim. Standard error is nominally [α(1− α)/nsim]1/2 = 0.001.

2. Giving the extremes larger values (shift parameter) enhances their
detectability and the power of the tests for trends in λ(T ).

3. Performing a test at a lower significance level (α) reduces the power
(as for hypothesis tests in general).

4. A stronger trend in λ(T ) (parameter κ) can be easier detected (higher
power).

5. The best performance, for all settings studied, was achieved by the
Cox–Lewis test. For example, when the data size is n = 1200,
the shift parameter is 3.0, the prescribed number of extremes is
mtrue = 100, which is equivalent to an average λ(T ) of 1/12, and
κ = 0.75, which means an increase of λ(T ) ∝ T 0.333, then can this
upwards trend be detected by the Cox–Lewis test at the 10% level in
approximately 84.2% of all cases (Table 6.3).
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Table 6.3. Monte Carlo experiment, hypothesis tests for trends in occurrence of
extremes (continued). The number of simulations was in each case nsim = 90,000.
The significance level of the one-sided tests was α = 0.10. The shift parameter of the
outlier component was 3.0. See Table 6.1 for further details.

n ma
true κb Empirical powerc

Test

Cox–Lewis Mann–Kendall Mann–Kendall
(POT ) (block extremes) (POT )

120 10 0.75 0.267 0.145 0.064
240 20 0.75 0.377 0.200 0.069
600 50 0.75 0.622 0.379 0.080

1200 100 0.75 0.842 0.603 0.098
2400 200 0.75 0.977 0.857 0.125
6000 500 0.75 1.000 0.996 0.188

12,000 1000 0.75 1.000 1.000 0.280

120 10 0.9 0.143 0.080 0.056
240 20 0.9 0.169 0.088 0.057
600 50 0.9 0.229 0.122 0.062

1200 100 0.9 0.308 0.167 0.065
2400 200 0.9 0.442 0.246 0.070
6000 500 0.9 0.709 0.450 0.089

12,000 1000 0.9 0.909 0.696 0.106

a True (prescribed) number of extremes.
b Prescribed occurrence rate trend parameter, λ(T ) ∝ T 1/κ−1.
c Number of simulations where H0: “no trend” is rejected against H1: “upwards trend,”

divided by nsim. Standard error is nominally [α(1− α)/nsim]1/2 = 0.001.

6. The Mann–Kendall test may be applied to the block extreme data,
{Tout(j), Xout(j)}m

j=1, where the central time of a block is taken as
Tout(j). This leads to power levels that may be acceptable in practice.
However, in all simulation settings the Cox–Lewis test performed sig-
nificantly better than the Mann–Kendall test. (Note that the tuning
of the block length, k, resulted in m = mtrue. This may have elevated
the test power compared to a situation where k has to be adjusted.)

7. The Mann-Kendall test applied to the POT data leads to an inac-
ceptable test power.

We therefore recommend to use the Cox–Lewis test rather than any
form of the Mann–Kendall test for studying trends in the occurrence of
extreme events.
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Table 6.4. Monte Carlo experiment, hypothesis tests for trends in occurrence of
extremes (continued). The number of simulations was in each case nsim = 47,500.
The significance level of the one-sided tests was α = 0.05. The shift parameter of the
outlier component was 3.0. See Table 6.1 for further details.

n ma
true κb Empirical powerc

Test

Cox–Lewis Mann–Kendall Mann–Kendall
(POT ) (block extremes) (POT )

120 10 0.75 0.154 0.072 0.028
240 20 0.75 0.240 0.116 0.035
600 50 0.75 0.465 0.262 0.043

1200 100 0.75 0.728 0.474 0.055
2400 200 0.75 0.944 0.771 0.072
6000 500 0.75 1.000 0.991 0.117

12,000 1000 0.75 1.000 1.000 0.185

120 10 0.9 0.073 0.036 0.025
240 20 0.9 0.090 0.046 0.028
600 50 0.9 0.128 0.068 0.031

1200 100 0.9 0.188 0.099 0.034
2400 200 0.9 0.298 0.157 0.037
6000 500 0.9 0.567 0.329 0.048

12,000 1000 0.9 0.831 0.577 0.060

a True (prescribed) number of extremes.
b Prescribed occurrence rate trend parameter, λ(T ) ∝ T 1/κ−1.
c Number of simulations where H0: “no trend” is rejected against H1: “upwards trend,”

divided by nsim. Standard error is nominally [α(1− α)/nsim]1/2 = 0.001.

6.3.3 Hybrid: Poisson–extreme value distribution
Let us consider the estimation problem for extreme value time series

in a more general manner. In principle, the distribution function of
Xout(i) may change with time, T (i). The sample is used to estimate
properties of the time-dependent PDF. Fitting a stationary distribution
(GEV or GP; Section 6.2) corresponds to using an “estimation area”
(Fig. 6.11) with dxout arbitrarily small and δt (sample level) equal to
the whole observation interval, [t(n) − t(1)]. Fitting an inhomogeneous
Poisson process (Section 6.3.2) corresponds to using an estimation area
with δt small (in the order of the bandwidth, h) and dxout arbitrarily
large (interval from u to ∞). Fitting a GEV or GP model with time-
dependent parameters (Section 6.3.1) means using an estimation area
with dxout arbitrarily small and δt in principle also small. By writing
“in principle” we acknowledge that here the comparison is flawed and the
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Figure 6.11. Estimation area for extreme value time series. The area (dark shading)
is given by dxout · δt. In the GP case, where POT values (circles) are analysed,
δt = [t(n)− t(1)]; in the inhomogeneous Poisson case, where event times are analysed,
dxout →∞. u, threshold; xout(i) = x(i)− u.

time-dependence is actually modelled parametrically and not estimated
nonparametrically.

The hybrid model (Smith 1989, 2004) is a mixture between a non-
parametric description of the time-dependence via the inhomogeneous
Poisson process and a parametric extreme value distribution model such
as the GP. The probability that an event occurs is multiplied with the
probability that the extreme has a size within a certain interval. The
Poisson–GP hybrid model corresponds to a combined rate measure,

Λ(T, xout) = λ(T ) · fGP(xout). (6.42)

Analogously, the Poisson–GEV hybrid uses the GEV density function,
fGEV(xout).

The Monte Carlo experiment (Section 6.3.2.11) employed a hybrid
model to generate the data. Conditional on the existence of an event at
Tout(j), which is described by the occurrence rate, we drew xout(j) from
a chi-squared distribution with ν = 1.
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Fitting the hybrid model corresponds to using an estimation area with
both δt and dxout small (Fig. 6.11). Davison and Ramesh (2000) devel-
oped an estimation method for the hybrid model based on kernel smooth-
ing and maximum likelihood fitting (Section 6.5). We remark that such
“two-dimensional” (T,X) estimations may require a large sample size to
achieve acceptably small error bars.

6.4 Sampling and time spacing
The sampling of a climate archive (Fig. 1.13) can influence the de-

tectability of extreme events. Table 6.5 lists the notation for this section.
Consider the case that the spacing, d(i), is large compared with the

sample duration, D(i), or its diffusion-extended form, D′(i), and also
large compared with the persistence time, τ . It may then be that the
time series fails to record information about an extreme event, Xout(i).
This would render the series useless for the purpose of risk analysis.
Another case is a hiatus, where d(i∗) � D(i∗) and d(i∗) � τ only
at a certain point, i∗. For fitting an extreme value distribution, the
log-likelihood function may be adapted (Coles 2004) to take the absent
portion of information into account. For estimating the occurrence rate
(Section 6.3.2), it is indicated to “exclude” the hiatus prior to the anal-
ysis, that means, to shift artificially the portion of the time series before
or after the hiatus. The calculations (kernel estimation, cross-validation)
are carried out on those time-transformed data and the hiatus “included”
by inserting the time-gap in the results.

A further case is uneven spacing when hiatuses are absent. Block
extremes detection for fitting a GEV distribution may then be enhanced
by fixing the number of observations, k, per block rather than the length
of a block.

This section focuses on still another, “ice core” case, where the sam-
ple duration is large and the age–depth relation is strongly nonlinear,
leading to large changes in D(i). (In ice cores, which are influenced
by compaction, D(i) can exhibit strong trends.) This poses a detec-
tion problem for extremes because with D(i) changes also the recording
quality downcore (inhomogeneity). Note that the NGRIP sulfate record
(Section 6.3.2.8) does not suffer strongly from inhomogeneities of this
kind owing to a very high time resolution that allowed to have D(i) ≈
const. We follow Mudelsee (1999) and study the physics of the recording
system to derive a data transformation that corrects for the inhomogene-
ity.

Suppose that the archive is an ice core with a segmented sampling and
the measured variable is, for example, sulfate. The objective is to detect
the extremes stemming from an event of short duration (e.g., volcanic
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Table 6.5. Notation for Section 6.4.

i = 1, . . . , n Index, segment (top: i = 1)
n Number of segments
k Index, extreme events within segment i
D(i) Duration, segment i
Dout(i)k Duration, extreme event k within segment i
Ntrend(i) Number of particles of interest (sulfate) from background, segment

i
N̄trend(i) Number of particles not of interest (non-sulfate) from background,

segment i
Nout(i) Number of particles of interest (sulfate) from extreme events, seg-

ment i
Nout(i)k Number of particles of interest (sulfate) from kth extreme event,

segment i
N̄out(i) Number of particles not of interest (non-sulfate) from extreme

events, segment i
Fout(i)k Flux of particles of interest (sulfate) from kth extreme event, segment

i
F̄trend(i) Flux of particles not of interest (non-sulfate) from background, seg-

ment i
A(i) Exposure area to flux of particles of interest (sulfate), segment i
Ā(i) Exposure area to flux of particles not of interest (non-sulfate), seg-

ment i
X(i) Concentration of particles of interest (sulfate), segment i
Xtrend(i) Concentration of particles of interest (sulfate) from background, seg-

ment i
X ′(i) Transformed concentration of particles of interest (sulfate), segment

i

eruption) against the background trend. The sulfate concentration is

X(i) =
Ntrend(i) + Nout(i)

Ntrend(i) + N̄trend(i) + Nout(i) + N̄out(i)
. (6.43)

Assumption 1. The number of non-sulfate particles from the back-
ground dominates,

N̄trend(i) � Ntrend(i) + Nout(i) + N̄out(i). (6.44)

This is certainly fulfilled because the bulk of the material is water.

Then we have
X(i)−Xtrend(i) ≈

Nout(i)
N̄trend(i)

, (6.45)

where Xtrend(i) is the time-dependent background sulfate concentration,

Xtrend(i) =
Ntrend(i)

Ntrend(i) + N̄trend(i) + Nout(i) + N̄out(i)
. (6.46)
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Consider first the case of a single event recorded in segment i. For a
short duration, Dout(i)k=1 � D(i), there is input of material (sulfate
and non-sulfate) from the event (eruption) added to the background.
The flux of sulfate particles from the event is

Fout(i)k=1 =
Nout(i)k=1

A(i) ·Dout(i)k=1
, (6.47)

where Nout(i)k=1 is the number of such particles; here Nout(i)k=1 =
Nout(i). The area A(i) represents the susceptibility of segment i exposed
to the flux of incoming particles, mainly the perpendicular component.
The flux of non-sulfate particles from the background is

F̄trend(i) =
N̄trend(i)

Ā(i) ·D(i)
. (6.48)

Then it follows from Eq. (6.45),

X(i)−Xtrend(i) ≈
Fout(i)k=1 ·A(i) ·Dout(i)k=1

F̄trend(i) · Ā(i) ·D(i)
. (6.49)

Assumption 2. The susceptibility to incoming sulfate particles is
proportional to the susceptibility to incoming non-sulfate particles,

A(i) ∝ Ā(i). (6.50)

The degree to which this is fulfilled depends on the site and the
changes of the type of deposition (Wagenbach et al. 1996; Fischer
1997). For wet deposition, where the particles are scavenged by pre-
cipitation, the assumption should be well fulfilled because water and
particles are transported to the exposed segment by the same carrier.

This leads from Eq. (6.49) to

[X(i)−Xtrend(i)]D(i) ∝ Fout(i)k=1 ·Dout(i)k=1

F̄trend(i)
. (6.51)

This formula for one single event is only approximate. The generaliza-
tion to several extreme events per segment i is straightforward: approx-
imately,

[X(i)−Xtrend(i)]D(i) ∝
∑

k Fout(i)k ·Dout(i)k

F̄trend(i)
. (6.52)

Assumption 3. The background trend is constant over the whole
time interval.

F̄trend(i) = const. (6.53)
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This is certainly violated. However, there is confidence that the tem-
poral variability of the numerator of the term on the right-hand side
of Eq. (6.52) is clearly larger (event versus non-event) than the vari-
ability of the denominator. For example, Wagenbach (1989) reported
F̄trend(i) to be in the interval from 0.2 to 0.4 (arbitrary units) for an
Alpine ice core site.

Assumption 3 and Eq. (6.52) lead to the transformed values,

X ′(i) = [X(i)−Xtrend(i)]D(i), (6.54)

which should approximate the climatic signal of the events,

X ′(i) ∝
∑

k

Fout(i)k ·Dout(i)k. (6.55)

The transformation corrects for the dilution of the extreme values by
the background values; the degree of the dilution depends on D(i).

For the practice of extreme value analysis on segmented ice core data
(unevenly spaced timescale), a multi-stage approach is indicated. (1)
Estimate the trend component (e.g., by using the running median). (2)
Transform the data (Eq. 6.54). (3) Estimate trend and variability on the
transformed data to select the threshold for detecting the POT data.

6.5 Background material
The literature on extreme value distributions is extensive. The GEV

as the limiting distribution of a block extreme was introduced by Jenk-
inson (1955). The GP and its relation to the GEV distribution was
established by Pickands (1975). The following is a selection of statistical
books and papers that contain practical examples and are accessible to
climatologists. Hydrology had a leading role in posing questions to sta-
tistical science and motivating theoretical research. Books were written
by Gumbel (1958), Embrechts et al. (1997), Reiss and Thomas (1997),
Coles (2001b) and Beirlant et al. (1996, 2004). See also Clarke (1994:
Chapter 3 therein) for a hydrological perspective. A classic is the pa-
per (with discussion) by Smith (1989) on extreme value analysis and
trend detection in an ozone time series. Overviews with relevance for
climatology (serial dependence, nonstationarity) were given by Buishand
(1989), Coles (2004), Smith (2004) and Khaliq et al. (2006). The review
on statistical approaches in flood research by Cox et al. (2002) con-
tains a comparison of the efficiencies of estimators for block extremes
and POT data. More theoretical are the book by Leadbetter et al.
(1983) and their review (Leadbetter and Rootzén 1988) on the asymp-
totic distributional properties of extreme values from serially dependent
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Table 6.6. GEV distribution, parameter notations.

Reference Parameter

Location Scale Shape

Hosking (1985) ξ α −k
Smith (1985) µ σ −k
Lu and Stedinger (1992) ξ α −κ
Johnson et al. (1995: Eq. (22.4) therein) ξ θ 1/α
Johnson et al. (1995: Eq. (22.183) therein) ξ θ −γ
Reiss and Thomas (1997) µ σ γ
Kotz and Nadarajah (2000); Coles (2001b); this book µ σ ξ

stochastic processes. Those two and also the books by Galambos (1978)
and Resnick (1987) contain details about how the distribution of the
extreme value approaches (“gets attracted to”) one of the “families”
of the GEV distribution (i.e., special parameter cases) and the role of
the “normalizing constants” (Pickands 1975) used to scale the extreme
value—concepts this book does not present. We finally mention John-
son et al. (1995: Chapter 22 therein) and Kotz and Nadarajah (2000)
on the GEV and Johnson et al. (1994: Chapter 20 therein) on the GP
distribution.

The scaling method of taking nonstationarity into account for the
POT approach (Section 6.1.2.1) has been supported in a recent Monte
Carlo study (Eastoe and Tawn 2009).

The extreme value analogue of the central limit theorem was
established by Fréchet (1927), Fisher and Tippett (1928) and Gnedenko
(1943).

The naming and notation of the distribution types, special cases
of extreme value distributions and their parameters have developed a
rich variety over the past decades. Table 6.6 gives a selection of param-
eter notations used for the GEV distribution. Our abbreviation of the
generalized Pareto (GP) distribution is not following convention; this
abbreviates generalized Pareto distribution as GPD. Writing the GP
distribution (Eq. 6.10) with (xout − u) instead of realizations of an ex-
cess variable is non-standard. The GEV distribution is sometimes also
referred to as von Mises–Jenkinson distribution. The special case of a
GEV distribution with shape parameter ξ = 0 (Eq. 6.5) is also called
Gumbel distribution; the special cases ξ > 0 and ξ < 0 are also known as
Fréchet and Weibull distribution, respectively. A GP distribution with
shape parameter ξ = 0 (Eq. 6.10) is an exponential distribution.
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Error propagation or the delta method is performed for the
return level for a GEV distribution as follows. The return level is for
ξ 6= 0 given by xp = µ− (σ/ξ){1− [− ln(1− p)]−ξ}. The standard error
of its estimate is sex̂p

= [VAR(x̂p)]1/2. The variance is given by (Coles
2001b: Section 3.3.3 therein)

VAR(xp) ≈
(

∂xp

∂µ

)2

VAR [µ] +
(

∂xp

∂σ

)2

VAR [σ] +
(

∂xp

∂ξ

)2

VAR [ξ]

+ 2
(

∂xp

∂µ

)(
∂xp

∂σ

)
COV [µ, σ] + 2

(
∂xp

∂µ

)(
∂xp

∂ξ

)
COV [µ, ξ]

+ 2
(

∂xp

∂σ

)(
∂xp

∂ξ

)
COV [σ, ξ] , (6.56)

where the “hats” have to be inserted. On the sample level, the param-
eter estimates and the elements of the estimated covariance matrix are
plugged in.

Declustering records prior to fitting a GP distribution discards ex-
cess data and loses information, as noted by Coles (2001b). A more
efficient GP estimation may come from retaining all excess data (also
those within a cluster) and modelling the serial dependence. Fawcett
and Walshaw (2006) present Monte Carlo evidence supporting this ap-
proach and an example where the AR(1) persistence model is applied to
hourly wind-speed data from central and northern England (time inter-
val 1974–1991, 10 sites; 1975–1984, 2 sites). An alternative for efficient
GP estimation (Fawcett and Walshaw 2007) may be inflating the co-
variance matrix (Eq. 6.14). Referring to a preprint by Smith RL, this
paper advises to replace the covariance matrix by H−1VH−1, where H
is the Fisher observed information matrix and V is the covariance ma-
trix of the likelihood gradient vector. Ferro and Segers (2003) devised
an automatic declustering scheme that relies on the extremal index (Sec-
tion 6.2.5.2), which is estimated before declustering. Ledford and Tawn
(2003) developed a diagnostic tool (autocorrelation measure for extreme
values), which helps to assess whether declustering of a series has been
successful.

The efficiency of a statistical estimator refers to its standard error
under a particular parent distribution. Higher efficiency means smaller
se.

Fisher information is a measure of the amount of information pro-
vided by a sample about an unknown parameter (Kullback 1983). In
case of maximum likelihood estimation of the parameters of the GEV
distribution (Eq. 6.8), the information is related to the expectation of
the negative of the matrix that gives the curvature of the log-likelihood
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function. Efron and Hinkley (1978) gave the advice, and this is also
the modern tendency (Davison AC 2009, personal communication), to
use instead of the Fisher expected information the observed information
matrix, that means, not to use the expectation (Eq. 6.8), but rather the
numerically determined derivatives of the log-likelihood function.

Optimal estimation is a general theme, it opens a wide research
field (Section 9.5). Regarding the GEV and GP models, in addition to
estimation methods presented in Section 6.2, many articles devoted to
improving the estimation appeared, including the following. Castillo and
Hadi (1997) reviewed GP estimation methods and suggested a new one
(elemental percentile method), which is based on a two-stage procedure.
Castillo and Hadi (1997: p. 1611 therein) wrote: “In the first stage,
preliminary initial estimates of the parameters are calculated [based on
{xout, sort(j)}m

j=1]. These initial estimates are combined in the second
stage to give overall estimates of the parameters. These final estimates
are then substituted in the quantile function to obtain estimates of all de-
sired quantiles.” They provided theoretical asymptotic as well as Monte
Carlo evidence in support of their estimator. Martins and Stedinger
(2000) augmented maximum likelihood estimation of GEV parameters
with a Bayesian method to restrict values of the “critical” shape param-
eter, ξ, to “statistically/physically reasonable” ranges. Subsequently,
Martins and Stedinger (2001) extended this “generalized maximum like-
lihood estimation” to the case of GP parameters and quantiles. A full
Bayesian estimation method with computing-intensive determination of
the distribution of the GEV parameter estimates was presented by Reis
and Stedinger (2005). Bayesian methods for GP parameter estimation
were developed also to include either prior expert knowledge (Parent and
Bernier 2003b) or additional historical information (Parent and Bernier
2003a). Documentary data, although less accurate than runoff measure-
ments, may cover longer time intervals (Section 6.1) and can therefore
lead to an improved tail estimation. Hewa et al. (2007) applied an adap-
tion of PWM estimation of the GEV model, where weighting is imposed
on the extreme part of the distribution, to study low river flows in Aus-
tralia.

Time-dependent extreme value distributions have been applied
in a number of climatological and environmental studies, with the GEV
model seemingly preferred over the GP. Smith (1989) fitted the GEV
model with linearly time-dependent location (Eq. 6.23) and constant
scale and shape parameters to hourly ground-level ozone concentration
time series from a station in Texas, April 1973 to December 1986 (n =
119,905). Despite this simple form of time-dependence, he reported that
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the maximization of the log-likelihood function was nontrivial and that
numerical techniques that approximate the second derivatives (instead of
explicitly calculating them) performed better. In his later review, Smith
(2004) applied the same GEV model to wind-speed extremes, where he
allowed seasonality in the time-dependence of the location by including
terms ∼ sin(2πT/T0), where T0 = 1 a. In that paper, he compared this
model with a more elaborate model (exponential increases with time in
location and scale) for rainfall extremes from a number of stations in
the United States of America, period 1951–1997. Coles (2001a) used the
GEV model with time-dependent location and scale parameters and a
constant shape for analysing annual maxima of wind speed recorded at
stations in the United States of America between 1912 and 1987. Re-
garding time-dependence in shape, Coles (2001a: Section 2.2 therein)
remarks that “such a model is likely to be difficult to identify.” Katz
et al. (2002) considered the GEV model with linear trend in location,
exponential increase in scale and constant shape for studying extreme
precipitation and runoff events in a changing climate. Seasonality can
be taken into account at the stage of data selection by setting the block
size to 1 year or by dividing the year into seasons and building sep-
arate models. Coles and Pericchi (2003) and Coles (2004) formulated
the division of the year into two seasons as an inference problem of the
2 days of change. These papers present also an adaption of the likeli-
hood function for a GEV model to a situation where partly only annual
maxima were recorded and partly daily values exist. Their example,
rainfall in Venezuela, with d(i) = 1 year for 1951–1961 and d(i) = 1
day for 1961–1999, is not unusual within the context of direct meteoro-
logical observations. Naveau et al. (2005) applied the GEV model with
exponential trend in the location parameter to time series of lichen size
from a moraine formation in the Andes mountains with the objective to
study glacier retreats over the past approximately 700 years. Kharin and
Zwiers (2005) studied the global, gridded near-surface air temperature
and precipitation for the interval 1990–2100 using the CGCM2 climate
model driven by various greenhouse gas emission scenarios. These au-
thors applied the GEV model with linear trends in location and expo-
nential trends in scale. Interestingly, they allowed for a linear trend in
the shape parameter and found no “serious computational obstacle” to
solving the maximum likelihood estimation, although ξ̂(Tout) ≈ 0 was
found as a result for most of the grid-point time series. Kharin and
Zwiers (2005) also preferred error bars from nonparametric bootstrap
resampling over the more traditional estimates from the covariance ma-
trix. Rust et al. (2009) fitted the GEV model with seasonal trends in
location and scale (and constant shape) to daily rainfall at 689 stations
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across the United Kingdom. From their analysis of the interval from 1
January 1900–31 December 2006, they concluded that during the winter
season (Rust et al. 2009: p. 106 therein) “the entire west coast shows
a band of return levels larger than the inland and the east coast.” Pu-
jol et al. (2007) tested for trends in the GEV distribution fitted with
maximum likelihood to time series of monthly and annual rainfall max-
ima from 92 stations in the French Mediterranean region. The com-
peting models were the stationary (three parameters), and the model
with linear trends in location and scale and constant shape (five param-
eters). The test statistic employed was the deviance, which is defined
as D = 2 ln(L1 − L0), where L1 and L0 is the maximized log-likelihood
of the linear and the stationary model, respectively. Under stationar-
ity and for large m, D is approximately chi-squared distributed with
the degrees of freedom equal to the difference in number of parameters
(Coles 2001b), that is, two in this case. Zhang et al. (2004) analysed
the test power by means of Monte Carlo simulations and showed the
superiority over the Mann–Kendall test for detecting trends in GEV pa-
rameters. In a series of papers, Strupczewski et al. (2001a), Strupczewski
and Kaczmarek (2001) and Strupczewski et al. (2001b) developed the
methodology of time-dependent moments and analysed runoff extremes
from Polish rivers, interval 1921–1990. Trends in location and scale of
various degree of complexity were fitted by maximum likelihood or an
adaption of weighted least squares, and model selection was based on
the AIC, similar to the deviance test. Instead of letting, say, the lo-
cation parameter depend directly on time, one may let it depend on
another, informative variable (covariate): µ(Tout) = β0 + β1Y (Tout) is a
linear model. Smith and Shively (1995) analysed trends in ground-level
ozone concentration, X(Tout), by means of GP distributions dependent
on time and other covariates, Y (Tout), such as maximum temperature
or average wind speed. The GP distribution with time-dependent scale
parameter was applied in other work dealing with surface-air tempera-
ture extremes in the North Atlantic region during 1948–2004 (Nogaj
et al. 2006) or river floods in the Czech Republic during 1825–2003
(Yiou et al. 2006). Time-dependent GP and GEV models were fitted
to runoff records from Germany during 1941–2000 (Kallache 2007). As-
suming a constant shape parameter this author found no major numeri-
cal problems in likelihood maximization using the simplex method, even
for polynomial time-dependences in location and scale of orders up to
four (Kallache M 2008, personal communication).

Covariates, Y (i), bear information about the extremal part of the
climate variable of interest, X(i). This chapter focuses on the time, T (i),
as covariate. However, other covariates as well may help, also jointly, to
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predict X(i) extremes. This leads to methods of regression between two
processes (Chapter 8). In particular, a climate model may perform bet-
ter at predicting the Y (i) than the extremal part of X(i). Better climate
risk forecasts should then come from model-predicted Y (i). For exam-
ple, Cooley et al. (2007) use as covariates (1) mean precipitation and (2)
topography to model extreme precipitation return levels for Colorado
(time series from 56 stations, interval 1948–2001).

Semi-parametric estimation of the time-dependent GEV distri-
bution based on kernel weighting and local likelihood estimation was
introduced by Davison and Ramesh (2000) and Hall and Tajvidi (2000).
The unweighted local log-likelihood function, see Eq. (6.6), is written as
ln[L(µ, σ, ξ; y(j))], where µ, σ and ξ are the GEV parameters and y(j)
is a scaled extreme (Eq. 6.7). The weighted log-likelihood function is
formed by putting a kernel weight, K, to the local log-likelihood:

ln [L(µ, σ, ξ;T )] =
m∑

j=1

K
(
[T − Tout(j)] /h

)
· ln [L(µ, σ, ξ; y(j))] , (6.57)

where h is the bandwidth. Hall and Tajvidi (2000) present several band-
width selectors. Maximization of the weighted log-likelihood function
produces the local (in T ) maximum likelihood estimates. Davison and
Ramesh (2000) further adapted bootstrap resampling by studentizing
to determine the estimation uncertainty. They presented Monte Carlo
experiments for sample size m = 100, which demonstrated acceptable
coverage performance. The semi-parametric method was then applied to
the central England temperature time series (Section 2.6), which showed
that (Davison and Ramesh 2000: p. 202 therein) “the change in upper
extremes is mostly due not to changes in the location or in the shape of
their distribution but in their variability.” In a later paper (Ramesh and
Davison 2002), the authors applied semi-parametric local likelihood esti-
mation to study time-dependent extremes in sea-level data from Venice,
1887–1981. Butler et al. (2007) employed local likelihood estimation
to quantify trends in extremes of modelled North Sea surges for the pe-
riod 1955–2000. Another semi-parametric estimation method (Pauli and
Coles 2001; Chavez-Demoulin and Davison 2005) uses spline functions
(Eq. 4.62) to model the time-dependences of the GEV parameters. This
was applied to annual temperature maxima between 1900 and 1980 at
two stations in England (Pauli and Coles 2001) and daily winter tem-
perature minima between 1971 and 1997 at 21 stations in Switzerland
(Chavez-Demoulin and Davison 2005).

Poisson and point processes are treated in the books by Cox and
Lewis (1966), Cox and Isham (1980) and Karr (1986).
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Occurrence rate is the name employed in this book for the param-
eter λ or the function λ(T ) of the Poisson process, prohibiting misun-
derstandings from the alternatively used “intensity.”

Parametric occurrence rate models are often used in combination
with statistical tests. Loader (1992) developed tests, based on maximum
likelihood estimation, to choose among three models. The first is a
gradual change-point model

λ(T ) =

{
exp(β0 + β1T ) for T (1) ≤ T ≤ Tchange,

exp(β0 + β1T + β2) for Tchange < T ≤ T (n),
(6.58)

where Tchange is the change-point in time. It includes the second, abrupt
change-point model, which has β1 = 0, and it includes also the simple
model (Eq. 6.39), which has β2 = 0. Loader (1992) derived analyti-
cal approximations of the test powers. Worsley (1986) had previously
devised a test for the abrupt change-point model with null hypothesis
“constant occurrence rate.” Frei and Schär (2001) constructed a test for
increasing (decreasing) occurrence rate in the logistic model (Eq. 6.40)
and carried out Monte Carlo simulations to evaluate the test power. A
caveat is that their experiments do not simulate serial dependence. This
may lead to an overestimated power when applied to a climate time
series that stems from a persistent process.

Model suitability of the inhomogeneous Poisson process can
theoretically be tested using methods (Solow 1991; Smith and Shively
1994, 1995) based on the spacing of the event times, Sout(j) = Tout(j)−
Tout(j − 1). One procedure is to construct a probability plot (as in
Fig. 6.3e) to test the shape of the distribution function, the other is to
calculate the correlation (Chapter 7) between successive Sout(j) to assess
the statistical independence. Further tests are reviewed by Lang et al.
(1999).

Quantile regression (Section 4.4) may in principle be used for esti-
mating time-dependent quantiles. Few studies exist yet in climatology.
Sankarasubramanian and Lall (2003) presented a Monte Carlo experi-
ment that compares this method with the semi-parametric local likeli-
hood estimation (Davison and Ramesh 2000). Both methods exhibited
similar bias and RMSE values of quantile estimates. Sankarasubrama-
nian and Lall (2003) further applied both methods to estimate time-
dependent risk of floods in the river Clark Fork, based on daily runoff
data from the interval 1930–2000. Elsner et al. (2008) found an increas-
ing magnitude of Atlantic tropical cyclones for the period from 1981 to
2006. This result may be interpreted with caution as the study did delib-
erately not take persistence into account. Allamano et al. (2009) found
that “global warming increases flood risk in mountainous areas” on ba-
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sis of quantile regression analyses of annual maxima of 27 Swiss runoff
series over the past approximately 100 years. Unfortunately, their paper
did not provide the details required to reproduce their finding (station
names, data sizes and missing values). For example, spurious upwards
(downwards) trends might arise if missing values cluster in the earlier
(later) period. A second caveat against accepting the found significance
of the increased flood risk comes from the authors’ deliberate ignorance
of the Hurst phenomenon of long-term persistence (Section 2.5.3).

Timescale-uncertainty effects on extreme value analyses seem not
to have been studied yet. For stationary models (Section 6.2), we an-
ticipate sizable effects on block extremes–GEV estimates only when the
uncertainties distort strongly the blocking procedure. For nonstationary
models (Section 6.3), one may augment confidence band construction by
inserting a timescale simulation step (after Step 4 in Algorithm 6.1).

The Elbe flood in August 2002 has received extensive scientific
coverage. Ulbrich et al. (2003b) analyse the meteorological situation that
led to this extreme event. Engel et al. (2002) and Ulbrich et al. (2003a)
explain the hydrographical development. Grünewald et al. (2003) and
Becker and Grünewald (2003) assess the damages caused by the catas-
trophe and consider consequences such as improving the risk protection.

The Elbe flood occurrence rate since 1021 was estimated by
Mudelsee et al. (2003). This paper and Mudelsee et al. (2004) consider
besides climatological influences the following other potential factors:
deforestation, solar activity variations, river engineering, reservoir con-
struction and land-use changes. Analyses of flood risk, not only of the
Elbe, benefit from considering seasonal effects. In many parts of central
Europe, the floods in hydrological summer are caused by heavy rainfall,
in the winter additionally by thawing snow (Fischer 1907; Grünewald
et al. 1998). Breaking river ice may function as barrier, enhancing winter
floods severely (Grünewald et al. 1998). Elbe summer flood risk during
the instrumental period (from 1852) does not show trends in occurrence
of heavy floods (Mudelsee et al. 2003). This season can therefore be
analysed using a stationary model (Fig. 6.3). Elbe winter flood risk
decreased significantly during the instrumental period (Fig. 6.7).

Volcanism and climate are coupled: a volcanic eruption releases
material into the atmosphere, which changes the radiative forcing and
leads generally to cooling. This and other mechanisms have been ob-
served for the past millennium via proxy variables (Robock 2000). Vol-
canic influences on climate act also on longer timescales: the Holocene
(Zielinski et al. 1994), the late Pleistocene (Zielinski et al. 1996) and the
Pliocene (Prueher and Rea 2001). The results obtained with kernel oc-
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currence rate estimation on sulfate data from the NGRIP ice core (Fig.
6.8), interval 10–110 ka, may be compared with the findings (Zielin-
ski et al. 1996) from histogram estimation on sulfate data from the
GISP2 ice core. These authors report elevated levels of activity dur-
ing [6 ka; 17 ka] and [22 ka; 35 ka]. These time intervals, and possibly
also that of another high during [55 ka; 70 ka] (Zielinski et al. 1996:
Fig. 5 therein), agree qualitatively well with the results from NGRIP.
Quantitative agreement (at maximum a few tens of eruptions per ka)
is approached when adopting the more liberal detection threshold (Fig.
6.8a). The occurrence rate of volcanic eruptions, restricted to the tropi-
cal region and shorter timescales (period 1400–1998), was estimated by
application of a parametric logistic model to sulfate records from ice
cores (Ammann and Naveau 2003). These authors found indications for
the existence of a cycle of 76 year period in occurrence rate and adapted
the logistic model (Eq. 6.40) by adding a sinusoidal time-dependence.

A hurricane activity peak during medieval times was also found on
proxy data in the form of overwash sediment records from sites along
the North American East Coast (Mann et al. 2009), confirming the pre-
vious finding by Besonen et al. (2008). A hurricane is a tropical cyclone
in the North Atlantic–West Indies region with near-surface wind speed
equal to or larger than 64 knots or about 119 ms−1 (Elsner and Kara
1999). There is a considerable, partly heated debate in the scientific lit-
erature, before and after the Katrina hurricane in August 2005, on the
trend in hurricane risk during the twentieth century. Papers on data and
analysis include Landsea (1993), Bengtsson et al. (1996), Landsea et al.
(1996, 1997), Michener et al. (1997), Wilson (1997), Pielke and Land-
sea (1998), Elsner et al. (1999), Landsea et al. (1999), Easterling et al.
(2000), Meehl et al. (2000), Goldenberg et al. (2001), Cutter and Em-
rich (2005), Emanuel (2005), Pielke et al. (2005), Elsner (2006), Mann
and Emanuel (2006), Chang and Guo (2007), Holland (2007), Landsea
(2007), Mann et al. (2007a,b), Nyberg et al. (2007), Elsner et al. (2008),
Landsea et al. (2008), Vecchi and Knutson (2008), Knutson et al. (2010)
and Landsea et al. (2010). While the issue of the trend seems not re-
solved, it appears clear that (1) economic losses are not a good proxy
variable of hurricane occurrence or magnitude and (2) there is room for
enhancing the analyses by means of advanced statistical methods.

Heatwaves are events of extreme temperature lasting several days to
weeks. An example is the summer heat 2003 in Europe (Beniston 2004).
To capture the intensity and duration aspects of a heatwave, various in-
dex variables (Kyselý 2002; Meehl and Tebaldi 2004; Khaliq et al. 2005;
Alexander et al. 2006; Della-Marta et al. 2007) can be constructed from
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measured daily temperature series. A direct approach is the exceedance
product (Kürbis et al. 2009), an index variable formed by multiplying
the exceedance of a previous record temperature by the number of days
an exceedance occurs within a summer season. Kürbis et al. (2009) de-
vise a hypothesis test based on MBB resampling to evaluate trends in
the exceedance product and apply it to long instrumental records from
Potsdam (1893–2005) and Prague–Klementinum (1775–2004). An open
research field is the analysis of the distributional properties of function-
als like the heatwave index variables within the context of multivariate
extremes (Beirlant et al. 2004: Chapters 8 and 9 therein). In an appli-
cation to daily minimum temperature from a station in Ohio, interval
1893–1987, Smith et al. (1997) studied various functionals such as the
length of a cluster of cold extremes.

Applications of a fitted inhomogeneous Poisson process with
bootstrap confidence band to extreme events in the climate system in-
clude the following. Solow (1991) studied explosive volcanism in the
northern hemisphere, 1851–1985, and linked the upwards trend in occur-
rence rate to the increase in northern hemisphere temperature. Mudelsee
et al. (2006) estimated flood risk of the German river Werra over the
past 500 years and found trends that partly deviate from trends of neigh-
boured rivers Elbe and Oder (Mudelsee et al. 2003). This demonstrates
the spatial variability of river flood risk. Fleitmann et al. (2007b) ex-
plored, via Ba/Ca proxy evidence from a coral, events of extreme soil
erosion in Kenya, 1700–2000, and detected upwards trends that set in
around 1900, after the colonization. Girardin et al. (2006b) inferred den-
droclimatically a record of wildfires in Canada that goes back to 1769.
Augmenting this data set with other series from the region and climate
model output, Girardin and Mudelsee (2008) studied past and possible
future (up to 2100) trends in wildfire risk and conclude that past high
levels (λ̂(T ) ≈ 0.2 a−1) may again be reached. Abram et al. (2008) ex-
plored the Indian Ocean Dipole (IOD, east–west sea-surface temperature
gradient), 1846–2008, using coral proxy evidence and find an increase in
occurrence of extreme IOD events during the past decades.

6.6 Technical issues
Maximum likelihood estimation of the GEV distribution has the

following regularity conditions (Smith 1985):

for ξ > −0.5, the estimators have the asymptotic properties of mul-
tivariate normality with the covariance matrix as described in Sec-
tion 6.2.1.2;
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for −1 < ξ ≤ −0.5, the estimators may exist but do not have the
asymptotic properties;

for ξ ≤ −1, consistent maximum likelihood estimators do not exist.

The log-likelihood function to be employed for the GEV model with
ξ = 0 (“Gumbel likelihood”) is (Coles 2001b),

ln [L(µ, σ)] = −m ln (σ)−
m∑

j=1

y(j)−
m∑

j=1

exp
[
−y(j)

]
, (6.59)

where

y(j) =
[
xout(j)− µ

σ

]
. (6.60)

Kharin and Zwiers (2005: Appendix therein) describe details (starting
values, local minima) of the numerical maximization of the log-likelihood
function of the GEV model. Van Montfort and Witter (1985: Appendix
B therein) do similar for the GP model.

The digamma function Ψ(x) is the logarithmic derivative of the
gamma function, Ψ(x) = d ln [Γ(x)] /dx. See Abramowitz and Stegun
(1965: Section 6.3 therein) for more details on the digamma function.

The simplex method is a numerical search technique applicable to
optimization problems (Press et al. 1992: Section 10.4 therein) such as
high-dimensional maximum likelihood estimation. Consider a space of
dimension (number of estimation parameters) k. A simplex is a non-
degenerate geometric figure spanned by k + 1 points (starting values) in
the space. The task is to move and shrink the simplex in the space in
a way that it includes with sufficient precision the maximum likelihood
solution. The method does not perform gradient calculation for deciding
how to move/shrink, it selects among possible steps more in a brute-force
manner. It may be slower than gradient search techniques but, on the
other hand, also more robust.

Gaussian kernel functions for occurrence rate estimation offer the
advantage that Eq. (6.33) can be computed fast in the Fourier domain
(Silverman 1982; Jones and Lotwick 1984). Fourier transform algorithms
(FFT) are abundant (Monro 1975, 1976; Press et al. 1996).

Cross-validation function evaluation for kernel occurrence rate
estimation (Eqs. 6.37 and 6.38) is computationally expensive. The sec-
ond term on the right-hand side of Eq. (6.37) constitutes a sum of expo-
nentials over a rectangle (j = 1, . . . ,m; k = 1, . . . ,m†). Because of the
symmetry only approximately half of the summands have to be deter-
mined. The summands near the upper left or lower right corner of the
rectangle are small (∝ exp{−[(Tout(j)−T †

out(k))/h]2/2}), the summands
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near the 1:1 line are around unity. The following approximation could in
principle reduce further computing costs. Calculate the summands only
in the intermediate range, set the summands near (“near” defined by
machine precision) the 1:1 line equal to unity, and omit the summands
near the two corners. However, for typical sample sizes, m, in clima-
tology (less than a few thousand) and typical machine precisions (PC
and workstation systems with 32- or 64-bit processors), the reduction is
negligible (Mudelsee 2001, unpublished manuscript).

Software tools for fitting stationary extreme value distributions to
data are abundant, while programs for estimating nonstationary extreme
value models are rare.

MLEGEV is a Fortran subroutine (Hosking 1985; Macleod 1989) for
maximum likelihood estimation of the parameters of the stationary GEV
model. It serves as a basis for many software tools developed later. A
download site is http://lib.stat.cmu.edu/apstat/215 (14 July 2008).

Statistical Modelling in Hydrology is the title of a book (Clarke
1994) that contains Genstat and Matlab programs implementing various
estimation methods for stationary extreme value distributions.

Xtremes (Reiss and Thomas 1997) is a compiled Windows software
package for analysing stationary extreme value models by means of sev-
eral estimation methods, bootstrap resampling and model suitability
tests.

Flood Frequency Analysis is the title of a book (Rao and Hamed
2000) that includes Matlab programs for maximum likelihood and PWM
estimation of stationary GEV and GP distributions.

WAFO is a Matlab package (WAFO group 2000) that includes max-
imum likelihood and PWM estimation of stationary GEV and GP dis-
tributions. The software can be downloaded from the following site:
http://www.maths.lth.se/matstat/wafo (7 July 2008).

The ismev package for the R computing environment supports the
computations carried out in the book by Coles (2001b). It is available
at http://cran.r-project.org/web/packages/ismev (7 July 2008).

The evd package for the R computing environment augments ismev.
It is available at http://cran.r-project.org/web/packages/evd (7 July 2008).

EVIM is a Matlab package (Gençay et al. 2001) for stationary ex-
treme value analysis: declustering, fitting GEV and GP models and
assessing suitability. It is available at the following internet address:

Dataplot is a software (Unix, Linux, Windows) for fitting stationary
extreme value distributions with bootstrap CIs and performing model
suitability analysis. It can be obtained from the following internet ad-
dress: http://www.itl.nist.gov/div898/winds/dataplot.htm (4 July 2008).

http://www.bilkent.edu.tr/~faruk/evim.htm (7 July 2008).
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Extremes is a software tool (R language), based on ismev and evd
routines, for analysing interactively stationary extreme value models.
It is available at http://www.isse.ucar.edu/extremevalues/evtk.html (4 July
2008).

GEVFIT is a module (Stata computing environment) for maximum
likelihood estimation of a GEV model. It resides on the following in-
ternet address: http://ideas.repec.org/c/boc/bocode/s456892.html (4 July
2008).

The declustering method for GP estimation (Fawcett and Walshaw
2006) was implemented as an R code. It is available at the internet

VGAM is a mixed package (C, Fortran 77 and 90, S-Plus/R) for
fitting a wide class of regression models, so-called vector generalized
additive models (Yee and Wild 1996), to time series. This includes
not only estimation of stationary extreme value distributions but also
quantile regression (nonstationarity). The software can be downloaded

Statistics of Extremes is the title of a book (Beirlant et al. 2004)
that is accompanied by a set of routines written in S-Plus and FOR-
TRAN 77. Besides fitting stationary models and estimating distribution
parameters and quantiles, the routines for Chapter 7 of the book allow
for covariates and may be used for fitting nonstationary models. The
software resides at http://lstat.kuleuven.be/Wiley (7 July 2008).

Caliza is a Fortran 90 software for fitting a nonstationary inhomo-
geneous Poisson process with bootstrap confidence band to POT data.
It includes CLIM-X-DETECT for threshold selection and extremes de-
tection (Chapter 4). Caliza also performs the Cox–Lewis test for trends
in the occurrence of extreme events. A demo version is available at the
web site for this book.

address http://www.mas.ncl.ac.uk/~nlf8 (25 May 2010).

from http://www.stat.auckland.ac.nz/~yee/VGAM (7 July 2008).
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Chapter 7

Correlation

The correlation measures how strong a coupling is between the noise
components of two processes, Xnoise(i) and Ynoise(i). Using a bivariate
time series sample, {t(i), x(i), y(i)}n

i=1, this measure allows to study the
relationship between two climate variables, each described by its own
climate equation (Eq. 1.2).

Pearson’s correlation coefficient (Section 7.1) estimates the degree of
the linear relationship. It is one of the most widely used statistical
quantities in all branches of the natural sciences. Spearman’s correla-
tion coefficient (Section 7.2) estimates the degree of the monotonic re-
lationship. Although clearly less often used, it offers robustness against
violations of the Gaussian assumption, as also the Monte Carlo experi-
ments (Section 7.3) show.

Explorative climate data analyses should strongly benefit from corre-
lation estimates that are supported by a CI and not only a P -value of a
test of the null hypothesis of no correlation. It is then possible to take
several pairs of variables and rank the associations. One finding may be,
for example, that global temperature changes are stronger associated to
variations of CO2 than to those of solar activity (background material).
The challenge of providing accurate CIs is met by pairwise bootstrap
resampling (MBB or ARB), which takes into account the serial depen-
dence structures of both climate processes.

A second, rarely mentioned challenge appears when the processes dif-
fer in their sampling times (Section 7.5). This book introduces two novel
estimators, denoted as binned and synchrony correlation, respectively.
These are able (and outperform interpolation) to recover correlation in-
formation under the conditions of (1) persistence in the system, which
is realistic for climate, and (2) not too large spacings of the time series.

M. Mudelsee, Climate Time Series Analysis, Atmospheric and 285
Oceanographic Sciences Library 42, DOI 10.1007/978-90-481-9482-7 7,
c© Springer Science+Business Media B.V. 2010
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7.1 Pearson’s correlation coefficient
Let us assume in this chapter, for simplicity of exposition, that the cli-

mate process, X(i), has a constant trend function at level µX , a constant
variability, SX , and no outlier component. In discrete time,

X(i) = Xtrend(i) + Xout(i) + S(i) ·Xnoise(i)
= µX + SX ·Xnoise(i).

(7.1)

Assume analogously for the second climate process, Y (i), which is on
the same time points, T (i), as the first climate process,

Y (i) = µY + SY · Ynoise(i). (7.2)

The correlation coefficient is then defined as

ρXY =
E [{X(i)− µX} · {Y (i)− µY }]

SX · SY
. (7.3)

The correlation measures the degree of the linear relationship between
the variables X and Y ; ρXY is between −1 (“anti-correlation”) and 1.

For convenience of presentation we introduce here the correlation op-
erator,

CORR [X(i), Y (i)] =
COV [X(i), Y (i)]

{VAR [X(i)] · VAR [Y (i)]}1/2
. (7.4)

The definition of the correlation coefficient is thus based on the assump-
tion of time-constancy of CORR [X(i), Y (i)] = ρXY .

Let {X(i), Y (i)}n
i=1 be a bivariate sample (process level). Pearson’s

(1896) estimator of ρXY is

rXY =
1
n

n∑
i=1

(
X(i)− X̄

Sn,X

)
·
(

Y (i)− Ȳ

Sn,Y

)
, (7.5)

where

X̄ =
n∑

i=1

X(i) /n (7.6)

and

Ȳ =
n∑

i=1

Y (i) /n (7.7)
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are the sample means and

Sn,X =

{
n∑

i=1

[
X(i)− X̄

]2 / n

}1/2

(7.8)

and

Sn,Y =

{
n∑

i=1

[
Y (i)− Ȳ

]2 / n

}1/2

(7.9)

are the sample standard deviations calculated with the denominator
n (instead of n − 1). On the sample level, given a bivariate sample
{x(i), y(i)}n

i=1, plug in those values for X(i) and Y (i) in Eqs. (7.5), (7.6),
(7.7), (7.8) and (7.9). The estimator rXY is called Pearson’s correlation
coefficient. Also rXY is between −1 and 1.

7.1.1 Remark: alternative correlation measures
It is of course possible to employ other estimators. For example, Sn−1

(Eq. 3.19) may replace Sn for estimating SX or SY , leading to an (unfor-
tunate) correlation estimator that can have values < −1 or > 1. Another
option may be to subtract the sample medians (Galton 1888) and not
the sample means (Eqs. 7.6 and 7.7). More complex examples arise when
time-dependent trend functions are subtracted or time-dependent vari-
ability functions used for normalization. Such cases may be relevant for
climate time series analysis. All those examples lead to other correlation
measures than ρXY and other correlation estimators than rXY . Their
properties and CI performance can in principle be studied in the same
manner with Monte Carlo methods. Here we focus on rXY , stationary
trends and variabilities. Another measure (Spearman’s) is analysed in
Section 7.2.

7.1.2 Classical confidence intervals,
non-persistent processes

Let X(i) and Y (i) both be a stochastic process without persistence
or “memory.” Let further X(i) and Y (i) both have a Gaussian distribu-
tional shape; their joint distribution is then denoted as bivariate normal
or binormal distribution (Section 7.1.3.1). The PDF of Pearson’s corre-
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lation coefficient is then (Fisher 1915):

f(rXY ) =

(
1− ρ2

XY

)(n−1)/2 (
1− r2

XY

)(n−4)/2

√
π Γ[(n− 1)/2] Γ[(n− 2)/2]

×
∞∑

j=0

{Γ[(n− 1 + j)/2]}2

j!
(2 ρXY rXY )j . (7.10)

Numerous discussions on, and much work in the implementation of,
this celebrated formula exist in statistical science. Hotelling (1953) gave
approximations for the moments of rXY . In particular,

biasrXY =
(
1− ρ2

XY

) [
−ρXY

2n
+

ρXY − 9ρ3
XY

8n2

+
ρXY + 42ρ3

XY − 75ρ5
XY

16n3
+O

(
n−4

)]
(7.11)

and

serXY =
(
1− ρ2

XY

) [
1

n1/2
+

11ρ2
XY

4n3/2

−
192ρ2

XY − 479ρ4
XY

32n5/2
+O

(
n−7/2

)]
. (7.12)

Regarding the focus of this chapter, CI construction, it is common
practice to employ Fisher’s (1921) transformation. The quantity

z = tanh−1 (rXY ) (7.13)

approaches with increasing n a normal distributional shape considerably
faster than rXY , particularly when ρXY 6= 0. Fisher’s z has for large n
the following properties (Rodriguez 1982):

E[z] ≈ tanh−1 (ρXY ) (7.14)

and

sez ≈ (n− 3)−1/2 . (7.15)

This leads to the approximate classical CI for rXY ,

CIrXY ,1−2α =
[
tanh [z + z(α) · sez] ; tanh [z − z(α) · sez]

]
, (7.16)
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where z(α) is the percentage point of the normal distribution (Sec-
tion 3.9).

If we keep the assumption of absence of persistence for processes X(i)
and Y (i), but drop the Gaussian assumption, less is known, and no
exact formula for the distribution of rXY has been found. One recipe
is then to work with higher-moment properties of the distributions and
approximate solutions (Section 7.6). The alternative recipe is to use still
the formulas for the Gaussian case (Eqs. 7.13, 7.14, 7.15 and 7.16) and
assume robustness of this method. Johnson et al. (1995: Chapter 32
therein) give an account of the bewildering diversity of opinions in the
research literature on the suitability of this approach.

7.1.3 Bivariate time series models
A bivariate model describes not only the distributional and persis-

tence properties of two processes, X(i) and Y (i), but also the corre-
lation between them. The bivariate white-noise model characterizes
persistence-free processes and serves to build bivariate autoregressive
and higher-order processes.

7.1.3.1 Bivariate white noise
The bivariate Gaussian white noise model is given by

X(i) = EX
N(0, 1)(i), i = 1, . . . , n,

Y (i) = EY
N(0, 1)(i), i = 1, . . . , n.

(7.17)

The Gaussian random processes EX
N(0, 1)(·) and EY

N(0, 1)(·) are indexed.
The correlation coefficient between them is denoted as ρE .

The moments of this special case of the bivariate Gaussian white noise
model are by definition

E [X(i)] = E [Y (i)] = 0, (7.18)

VAR [X(i)] = VAR [Y (i)] = 1 (7.19)

and

CORR [X(i), Y (i)] = ρXY = ρE . (7.20)

In the general case, X(i) has mean µX and variance S2
X , and Y (i) has

mean µY and variance S2
Y . The binormal PDF of X(i) and Y (i) (Sec-

tion 7.6) is uniquely determined by the means, variances and correlation.
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The bivariate lognormal white noise model is given by

X(i) = exp
[
EX

N(0, 1)(i)
]
, i = 1, . . . , n,

Y (i) = exp
[
EY

N(0, 1)(i)
]
, i = 1, . . . , n.

(7.21)

The moments are (Section 3.9)

E[X(i)] = E[Y (i)] = exp(1/2), (7.22)

VAR[X(i)] = VAR[Y (i)] = e(e− 1) (7.23)

and (Section 7.6)

CORR [X(i), Y (i)] = ρXY = [exp(ρE)− 1]/(e− 1). (7.24)

7.1.3.2 Bivariate first-order autoregressive process
Extending the univariate Gaussian AR(1) process (Section 2.1) to two

dimensions yields a simple bivariate persistence model. The version for
even time spacing is

X(1) = EX
N(0, 1)(1),

Y (1) = EY
N(0, 1)(1),

X(i) = aX ·X(i− 1) + EX
N(0, 1−a2

X)(i), i = 2, . . . , n,

Y (i) = aY · Y (i− 1) + EY
N(0, 1−a2

Y )(i), i = 2, . . . , n,

(7.25)

where the white-noise innovation terms are correlated as

CORR
[
EX

N(0, 1)(1), EY
N(0, 1)(1)

]
= ρE ,

(7.26)

CORR
[
EX

N(0, 1)(i), E
Y
N(0, 1)(i)

]
=

1− aX · aY[(
1− a2

X

) (
1− a2

Y

)]1/2
ρE ,

i = 2, . . . , n,

CORR
[
EX

N(0, 1)(i), E
Y
N(0, 1)(j)

]
= 0, i, j = 1, . . . , n, i 6= j.

This model requires the autocorrelation parameters aX and aY to have
the same sign.
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The bivariate AR(1) process for even spacing (Eq. 7.25) is strictly
stationary. Its properties are

E [X(i)] = E [Y (i)] = 0, (7.27)

VAR [X(i)] = VAR [Y (i)] = 1 (7.28)

and
CORR [X(i), Y (i)] = ρXY = ρE . (7.29)

The bivariate AR(1) process for uneven time spacing is obtained in
the usual manner: replace aX by exp{−[T (i) − T (i − 1)]/τX} and aY

by exp{−[T (i)−T (i− 1)]/τY }. This leads to heteroscedastic innovation
terms, as already noticed in the univariate case. The model is given in
the background material (Eq. 7.53).

To summarize, the simple bivariate Gaussian AR(1) model, written
for even (Eq. 7.25) or uneven spacing, has three parameters. Two de-
scribe the persistence properties of the processes X(i) and Y (i), one
describes the correlation between both. The more general case in form
of means unequal to zero and variances unequal to unity, is less relevant
in the context of this chapter because the correlation estimation (Eq.
7.5) eliminates such effects.

Interesting is, however, the general formulation of the bivariate AR(1)
model, where the variable at a time, say, X(i), depends not only on its
own immediate past, X(i − 1), but also on the past of the second vari-
able, Y (i−1). This general model has more than three parameters, and
it can give rise to “identifiability” problems (Priestley 1981: Section 9.4
therein). These difficulties how to uniquely determine the number of
parameters and their values do certainly not decrease when considering
uneven instead of even spacing, see the univariate embedding problem
(Section 2.1.2.1). We therefore ignore the general formulation and avoid
the identifiability and embedding problems when describing parametric
bootstrap resampling (Sections 7.1.5.2 and 7.2.3.2) and designing Monte
Carlo experiments (Section 7.3). A further conclusion is that the possi-
ble existence, and theoretical applicability to climatology, of the general
bivariate AR(1) model with more than three parameters supports the
selection of the nonparametric bootstrap resampling algorithms (Sec-
tions 7.1.5.1 and 7.2.3.1).

7.1.4 Classical confidence intervals, persistent
processes

If we continue from before the excursion on bivariate stochastic pro-
cesses and drop not only the Gaussian assumption about the distribu-
tional shape of X(i) and Y (i), but also leave away the assumption that
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Step 1 Bivariate time series {t(i), x(i), y(i)}n
i=1

Step 2 Pearson’s rXY (Eq. 7.5)

Step 3 Fisher’s z-transformation z = tanh−1 (rXY )

Step 4 Estimated, bias-corrected

persistence time, process X(i), τ̂ ′X

using mean-detrended

time series, {x(i)− x̄}n
i=1

Step 5 Analogously, process Y (i) τ̂ ′Y

Step 6 Estimated, bias-corrected

equivalent autocorrelation

coefficient, process X(i) ̂̄a′X = exp
(
−d̄/τ̂ ′X

)
Step 7 Analogously, process Y (i) ̂̄a′Y = exp

(
−d̄/τ̂ ′Y

)
Step 8 Effective data size, n′ρ

obtained by plugging in

̂̄a′X for aX and ̂̄a′Y for aY

in Eq. (2.38)

Step 9 Approximate, classical

normal CI for rXY , CIrXY ,1−2α =

obtained from

[
tanh

[
z + z(α) ·

(
n′ρ − 3

)−1/2
]
;

re-transforming z tanh
[
z − z(α) ·

(
n′ρ − 3

)−1/2
]]

Algorithm 7.1. Construction of classical confidence intervals for Pearson’s correla-
tion coefficient, bivariate AR(1) model. Steps 3 and 9: z is Fisher’s transformed
correlation, z(α) is the percentage point of the normal distribution.

these processes are persistence-free white noise, we approach the reality
for the majority of processes occurring in the climate system. A classical
CI for rXY , which is approximate, is obtained readily by invoking the
effective data size (Chapter 2). The complete procedure is given (Al-
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gorithm 7.1) for a bivariate AR(1) process on an unevenly spaced time
grid.

7.1.5 Bootstrap confidence intervals
For processes with persistence, possibly of more complex form than

AR(1), and distributional shapes more complex than Gaussian, that
means, for the majority of climate processes, the classical CI for rXY is
not exact but approximate. The accuracy of it is expected to depend
on how strongly the properties of the process deviate from the assumed
properties. This brings naturally the bootstrap into play. Two algo-
rithms are analysed that resample data pairs, (x(i), y(i)), namely the
pairwise-MBB and the pairwise-ARB algorithm. Both resampling types
serve to construct bootstrap CIs.

7.1.5.1 Pairwise-moving block bootstrap
The pairwise-MBB (Algorithm 7.2), already introduced for regression

(Section 4.1.7.1), extends the ability of the MBB to preserve persistence
of a single process, X(i), over the length of a block, to the bivariate
setting. Because also Y (i) can exhibit the memory phenomenon, ex-
pressed by the persistence time, τY , block length selection may be more
difficult in the bivariate than in the univariate setting. Mudelsee (2003)
suggested the block length selector

lopt = 4 max (τX , τY ) . (7.30)

In practice, the (bias-corrected) persistence-time estimates τ̂ ′X and τ̂ ′Y
are plugged in. Although Monte Carlo experiments (Mudelsee 2003)
revealed acceptable coverage performance of BCa CIs for rXY , it should
be worth testing other block length selectors. This is also in line with
the “optimal estimation” strategy (Section 6.2.7).

The second selector is, thus, based on combining the bias-corrected
equivalent autororrelation coefficients, ̂̄a′X and ̂̄a′Y , in a new expression,

̂̄a′XY =
[̂̄a′X · ̂̄a′Y ]1/2

, (7.31)

and employing the univariate selector (Eq. 3.28). This yields

lopt = NINT

{[
61/2 · ̂̄a′XY

/(
1− ̂̄a′ 2XY

)]2/3
· n1/3

}
. (7.32)

Another technical measure is the z-transformation. First, a bootstrap
CI is constructed for z and then the CI bounds are re-transformed to
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Step 1 Bivariate time series {t(i), x(i), y(i)}n
i=1

Step 2 Pearson’s rXY (Eq. 7.5)

Step 3 Fisher’s z-transformation z = tanh−1 (rXY )

Step 4 Estimated, bias-corrected

persistence time, process X(i), τ̂ ′X

using mean-detrended

time series, {x(i)− x̄}n
i=1

Step 5 Analogously, process Y (i) τ̂ ′Y

Step 6 Select block length l

Step 7 Apply MBB with l
{
x∗b(i)

}n

i=1
=

{
x(f(i))

}n

i=1

(Algorithm 3.1) to x values (b, counter)

Step 8 Overtake bootstrap index f(i)

for resampled y values
{
y∗b(i)

}n

i=1
=

{
y(f(i))

}n

i=1

Step 9 Resample
{
x∗b(i), y∗b(i)

}n

i=1

Step 10 Bootstrap replications,

Pearson’s rXY and Fisher’s z r∗b
XY , z∗b = tanh−1

(
r∗b

XY

)
Step 11 Go to Step 7 until b = B

(usually B = 2000)

replications exist
{
z∗b

}B

b=1

Step 12 Calculate CI (Section 3.4)

for Fisher’s z CIz,1−2α =
[
zl; zu

]
Step 13 Re-transform lower and upper

endpoints to obtain

pairwise-MBB CI for rXY CIrXY ,1−2α =
[
tanh (zl) ; tanh (zu)

]

Algorithm 7.2. Construction of bootstrap confidence intervals for Pearson’s cor-
relation coefficient, pairwise-MBB resampling. Step 8: By overtaking the random
bootstrap index f(i) ∈ {1, . . . , n} from x-resampling for y-resampling, (x(j), y(j))
pairs are resampled.
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obtain a CI for rXY . The idea (Hall et al. 1989) is to enhance CI con-
struction by supplying replications (z∗) that are in shape closer to a
normal distribution than the alternative (r∗XY ).

7.1.5.2 Pairwise-autoregressive bootstrap
The pairwise-ARB (Algorithm 7.3) resamples pairs (x(i), y(i)) by over-

taking the random index from x-resampling for y-resampling. Also this
algorithm employs the z-transformation.

The coverage performance of CIs from the pairwise-ARB and the
pairwise-MBB algorithms are explored by means of Monte Carlo ex-
periments (Section 7.3).

7.2 Spearman’s rank correlation coefficient
Consider instead of process X(i) its rank, R(i) = rank[X(i)]. For

example, if from all X(i), it is X(7) that has the lowest value, then
R(7) = 1. Let analogously S(i) = rank[Y (i)]. The rank correlation
coefficient is then given by

ρS =
E [{R(i)− µR} · {S(i)− µS}]
{VAR [R(i)] · VAR [S(i)]}1/2

, (7.33)

where µR = E[R(i)] and µS = E[S(i)]. That means, the rank correla-
tion coefficient between X and Y is equal to the correlation coefficient
between the rank of X and the rank of Y . The rank correlation measures
the degree of the monotone relationship between X and Y ; also ρS is
between −1 and 1.

Strictly speaking, Eq. (7.33) applies only to discrete random variables
X(i) and Y (i) because continuous variables cannot be ranked (Gibbons
and Chakraborti 2003). However, for continuous variables it is possible
to define ρS as the grade correlation coefficient (background material).
This distinction between rank and grade correlation coefficient is of the-
oretical importance (Kruskal 1958) but of limited practical relevance in
the context of this book.

Spearman’s (1904, 1906) estimator of ρS uses a bivariate sample as
follows:

rS =
1
n

n∑
i=1

(
R(i)− R̄

Sn,R

)
·
(

S(i)− S̄

Sn,S

)
, (7.34)

where R̄ and S̄ are the sample means, and Sn,R and Sn,S are the sample
standard deviations calculated with the denominator n.

Assume the absence of ties in R(i) and S(i). This means a negligible
loss of generality for continuous climate variables. The case of a binary
variable, which is relevant for analysing the climate extremes component,
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Step 1 Bivariate time series {t(i), x(i), y(i)}n
i=1

Step 2 Pearson’s rXY (Eq. 7.5)

Step 3 Fisher’s z-transformation z = tanh−1 (rXY )

Step 4 Estimated, bias-corrected

persistence time, process X(i), τ̂ ′X

using mean-detrended

time series, {x(i)− x̄}n
i=1

Step 5 Analogously, process Y (i) τ̂ ′Y

Step 6 Climate equation

residuals, process X(i) {qX(i)}n
i=1 = {[x(i)− x̄] /sn,X }n

i=1

Step 7 Analogously, process Y (i) {qY (i)}n
i=1 = {[y(i)− ȳ] /sn,Y }n

i=1

Step 8 Abbreviation, process X(i) â′X(i) = exp{−[t(i)− t(i− 1)]/τ̂ ′X},

i = 2, . . . , n

Step 9 Analogously, process Y (i) â′Y (i) = exp{−[t(i)− t(i− 1)]/τ̂ ′Y },

i = 2, . . . , n

Step 10 White-noise residuals, εX(i) = [qX(i)− â′X(i) · qX(i− 1)]

process X(i) ×
{
1− [â′X(i)]2

}−1/2
,

i = 2, . . . , n

Step 11 Analogously, process Y (i) εY (i) = [qY (i)− â′Y (i) · qY (i− 1)]

×
{
1− [â′Y (i)]2

}−1/2
,

i = 2, . . . , n

Step 12 Centering, process X(i) ε̃X(i) = εX(i)−
∑n

i=2 εX(i)/(n− 1)

Step 13 Analogously, process Y (i) ε̃Y (i) = εY (i)−
∑n

i=2 εY (i)/(n− 1)

Algorithm 7.3. Construction of bootstrap confidence intervals for Pearson’s cor-
relation coefficient, pairwise-ARB resampling. Steps 6 and 7 employ the sample

standard deviations (sample level), sn,X =
{∑n

i=1 [x(i)− x̄]2 /n
}1/2

and sn,Y ={∑n
i=1 [y(i)− ȳ]2 /n

}1/2
, calculated with the denominator n.
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Step 14 Draw ε̃∗b
X (j), j = 2, . . . , n,

with replacement from {ε̃X(i)}n
i=2

(b, counter), process X(i)

Step 15 Bootstrap index, f(j), f(j) ∈ {1, . . . , n} , j = 2, . . . , n

process X(i), defined via ε̃∗b
X (j) = ε̃X(f(j))

Step 16 Resampled climate equation q∗b
X (1) drawn from {qX(i)}n

i=1,

residuals, process X(i) q∗b
X (i) = â′X(i) · q∗b

X (i− 1)

+
{
1− [â′X(i)]2

}1/2 · ε̃∗b
X (i),

i = 2, . . . , n

Step 17 Bootstrap index, f(j = 1), f(1) ∈ {1, . . . , n}

process X(i), defined via q∗b
X (1) = qX(f(1))

Step 18 Overtake random

bootstrap index,

process Y (i)
{
ε̃∗b
Y (i)

}n

i=2
= {ε̃Y (f(i))}n

i=2

Step 19 Resampled climate equation q∗b
Y (1) = qY (f(1)),

residuals, process Y (i) q∗b
Y (i) = â′Y (i) · q∗b

Y (i− 1)

+
{
1− [â′Y (i)]2

}1/2 · ε̃∗b
Y (i),

i = 2, . . . , n

Step 20 Resampled data,

process X(i) x∗b(i) = x̄ + sn,X · q∗b
X (i), i = 1, . . . , n

Step 21 Analogously, process Y (i) y∗b(i) = ȳ + sn,Y · q∗b
Y (i), i = 1, . . . , n

Step 22 Resample
{
x∗b(i), y∗b(i)

}n

i=1

Step 23 Bootstrap replications,

Pearson’s rXY and

Fisher’s z r∗b
XY , z∗b = tanh−1

(
r∗b

XY

)

Algorithm 7.3. Construction of bootstrap confidence intervals for Pearson’s cor-
relation coefficient, pairwise-ARB resampling (continued). Step 18: By overtaking
the random bootstrap index f(i) ∈ {1, . . . , n} from x-resampling for y-resampling,
(x(j), y(j)) pairs are resampled.
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Step 24 Go to Step 14 until b = B

(usually B = 2000)

replications exist
{
z∗b

}B

b=1

Step 25 Calculate CI (Section 3.4)

for Fisher’s z CIz,1−2α =
[
zl; zu

]
Step 26 Re-transform lower and upper

endpoints to obtain

pairwise-ARB CI for rXY CIrXY ,1−2α =
[
tanh (zl) ; tanh (zu)

]

Algorithm 7.3. Construction of bootstrap confidence intervals for Pearson’s corre-
lation coefficient, pairwise-ARB resampling (continued).

is treated in Section 7.6. Since the set of values R(i) and S(i) can take,
is known,

R̄ =
n∑

i=1

R(i)/n = S̄ =
n∑

i=1

S(i)/n = (n + 1)/2 (7.35)

and

Sn,R =

{
n∑

i=1

[
R(i)− R̄

]2 /n

}1/2

= Sn,S =

{
n∑

i=1

[
S(i)− S̄

]2 /n

}1/2

=
[(

n2 − 1
)
/12

]1/2
. (7.36)

This facilitates the computation of rS (Gibbons and Chakraborti 2003:
Section 11.3 therein):

rS = 1−
6

∑n
i=1 [R(i)− S(i)]2

n (n2 − 1)
. (7.37)

The estimator rS is called Spearman’s rank correlation coefficient. Also
rS is between −1 and 1.

7.2.1 Classical confidence intervals,
non-persistent processes

Let X(i) and Y (i) both be a stochastic process without persistence.
Consider the “null case” that the true rank correlation, ρS, equals zero.
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Then each combination of rank R(i) ∈ {1, . . . , n} and rank S(i) ∈
{1, . . . , n} has the same probability. The distribution of rS (Eq. 7.37)
is independent of the distributions of X(i) and Y (i); hence rS is called
a distribution-free statistic. The null distribution of rS can in theory
be exactly deduced by means of combinatorics. In practice (finite com-
puting power), this is done only if n is not larger than, say, 15, and
approximations are used for larger data sizes (van de Wiel and Di Buc-
chianico 2001; Gibbons and Chakraborti 2003). The null distribution of
rS is essential for performing statistical tests of H0: “ρS = 0.”

Consider the “non-null case” that ρS is not specified to be zero. This
is of relevance within the context of this chapter, CI construction. In
principle, the PDF of Spearman’s correlation coefficient can be derived
exactly via calculating the unequal probabilities of the (n!)2 pairs of
R(i) and S(i), given a bivariate distribution of the ranks (Henze 1979).
This method is for typical data sizes n in climatology not feasible. The
practice employs therefore approximations.

Fieller et al. (1957) suggested use of the z-transformation: the quan-
tity

zS = tanh−1 (rS) (7.38)

approaches with increasing n normal distributional shape and has

sezS ≈ 1.03 (n− 3)−1/2 . (7.39)

The approximation for the expectation of zS is less accurate and makes
the assumption of binormally distributed (X(i), Y (i)) with correlation
coefficient ρXY . Then (Fieller et al. 1957)

E [zS] ≈ tanh−1 (r̄S) + r̄S VAR [rS]
/(

1− r̄2
S

)2
, (7.40)

where (Moran 1948)

r̄S =
6

(n + 1) π

[
sin−1 (ρXY ) + (n− 2) sin−1 (ρXY /2)

]
(7.41)

and VAR [rS] is approximated by David and Mallows’ (1961) formula,
given in the technical issues (Eq. 7.65). On the sample level, plug in rXY

for ρXY . A classical CI for zS follows from using E [zS], sezS and a per-
centage point of the normal distribution; and a classical CI for rS follows
from re-transforming the bounds of CIzS,1−2α. Note that the binormal
assumption is not strong (Fieller et al. 1957) because the ranks, R(i)
and S(i), are robust and apply to a wider class of bivariate distributions
of X(i) and Y (i).
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7.2.2 Classical confidence intervals, persistent
processes

A realistic CI for rS should take persistence into account. The con-
struction algorithm for a bivariate AR(1) process on an unevenly spaced
time grid (Algorithm 7.4) is analogous to the case of Pearson’s rXY . It
employs the effective data size. Also CIrS,1−2α is approximate.

Step 1 Bivariate time series {t(i), x(i), y(i)}n
i=1

Step 2 Spearman’s rS (Eq. 7.37)

Step 3 Fisher’s z-transformation zS = tanh−1 (rS)

Step 4 Perform Steps 4–8 of the

construction algorithm of

classical normal CI for

rXY (Algorithm 7.1) τ̂ ′X , τ̂ ′Y , ̂̄a′X , ̂̄a′Y , n′ρ

Step 5 Pearson’s rXY (Eq. 7.5)

Step 6 Plug in rXY for ρXY and

n′ρ for n in Eq. (7.41) r̄S

Step 7 Plug in rXY for ρXY and

n′ρ for n in Eq. (7.65) VAR [rS]

Step 8 Plug in r̄S and VAR [rS]

in Eq. (7.40) E [zS]

Step 9 Approximate, classical

normal CI for rS, CIrS,1−2α =

obtained from

[
tanh

[
E[zS] + z(α) · 1.03

(
n′ρ − 3

)−1/2
]
;

re-transforming zS tanh
[
E[zS]− z(α) · 1.03

(
n′ρ − 3

)−1/2
]]

Algorithm 7.4. Construction of classical confidence intervals for Spearman’s rank
correlation coefficient, bivariate AR(1) models. Steps 3 and 9: zS is Fisher’s trans-
formed rank correlation, z(α) is the percentage point of the normal distribution.
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7.2.3 Bootstrap confidence intervals
The motivation for considering bootstrap CIs for rS is similar to the

case of rXY : possibly more complex persistence forms than AR(1) and
distributional shapes than bivariate Gaussian. The robustness of rank-
ing methods with respect to violations of the distributional assump-
tion (Kendall and Gibbons 1990; Gibbons and Chakraborti 2003) may
weaken the motivation. On the other hand, the inaccuracy of the for-
mula for the expectation of zS (Eq. 7.40) strengthens it. The two boot-
strap algorithms, pairwise-MBB and pairwise-ARB, are for Spearman’s
rS completely analogous to the case of Pearson’s rXY .

7.2.3.1 Pairwise-moving block bootstrap
The pairwise-MBB algorithm for constructing a bootstrap CIrS,1−2α is

displayed in shortened form (Algorithm 7.5). Also for Spearman’s rank
correlation we apply Fisher’s z-transformation of rS to bring the distri-
bution of the replications (z∗S) in shape closer to a normal distribution.
Also the two block length selectors (Eqs. 7.30 and 7.32) are overtaken.

Step 1 Bivariate time series {t(i), x(i), y(i)}n
i=1

Step 2 Spearman’s rS (Eq. 7.37)

Step 3 Fisher’s z-transformation zS = tanh−1 (rS)

Step 4 Estimated, bias-corrected

persistence times, τ̂ ′X , τ̂ ′Y

block length selection l

Step 5 Resample, pairwise-MBB with l
{
x∗b(i), y∗b(i)

}n

i=1
(b, counter)

Step 6 Bootstrap replications r∗b
S , z∗b

S = tanh−1
(
r∗b
S

)
Step 7 Go to Step 5 until b = B

(usually B = 2000)

replications exist
{
z∗b
S

}B

b=1

Step 8 Calculate CI for Fisher’s zS CIzS,1−2α =
[
zS,l; zS,u

]
Step 9 Re-transformation CIrS,1−2α =

[
tanh (zS,l) ; tanh (zS,u)

]

Algorithm 7.5. Construction of bootstrap confidence intervals for Spearman’s rank
correlation coefficient, pairwise-MBB resampling (cf. Algorithm 7.2).
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7.2.3.2 Pairwise-autoregressive bootstrap
The pairwise-ARB algorithm for constructing a bootstrap CIrS,1−2α is

displayed in shortened form (Algorithm 7.6). Also here we apply Fisher’s
z-transformation of rS.

Step 1 Bivariate time series {t(i), x(i), y(i)}n
i=1

Step 2 Spearman’s rS (Eq. 7.37)

Step 3 Fisher’s z-transformation zS = tanh−1 (rS)

Step 4 Estimated, bias-corrected

persistence times, τ̂ ′X , τ̂ ′Y

climate equation

residuals, {qX(i)}n
i=1 , {qY (i)}n

i=1

abbreviations, â′X(i), â′Y (i)

white-noise residuals, εX(i), εY (i)

centering ε̃X(i), ε̃Y (i)

Step 5 Resample, pairwise-ARB
{
x∗b(i), y∗b(i)

}n

i=1

(cf. Algorithm 7.3:

Steps 14–22 therein); b, counter

Step 6 Bootstrap replications r∗b
S , z∗b

S = tanh−1
(
r∗b
S

)
Step 7 Go to Step 5 until b = B

(usually B = 2000)

replications exist
{
z∗b
S

}B

b=1

Step 8 Calculate CI for Fisher’s zS CIzS,1−2α =
[
zS,l; zS,u

]
Step 9 Re-transformation CIrS,1−2α =

[
tanh (zS,l) ; tanh (zS,u)

]
Algorithm 7.6. Construction of bootstrap confidence intervals for Spearman’s rank
correlation coefficient, pairwise-ARB resampling (cf. Algorithm 7.3).

7.3 Monte Carlo experiments
The performance of CIs for rXY and rS was analysed by means of

Monte Carlo simulations. The experiments focused on identifying CI
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Table 7.1. Monte Carlo experiment, Spearman’s correlation coefficient with Fisher’s
z-transformation for bivariate lognormal AR(1) processes. nsim = 47,500 random
samples were generated from the binormal AR(1) process, {X(i), Y (i)}n

i=1, after Eqs.
(7.53) and (7.54) with τX = 1, τY = 2 and ρE given by Table 7.8. The lognor-
mal shape was generated by taking exp [X(i)] and exp [Y (i)]. The start was set to
t(1) = 1; the time spacing, d(i), was drawn from a gamma distribution (Eq. 2.48)
with order parameter 16, that means, a distribution with a coefficient of variation
equal to (16)−1/2 = 0.25, and subsequently scaled to d̄ = 1. Two CI types for ρS were
constructed, classical and bootstrap. The classical CI (Algorithm 7.4) used the effec-
tive data size, n′ρ. The bootstrap CI (Algorithm 7.5) used pairwise-MBB resampling,
block length selection after Eqs. (7.31) and (7.32), Student’s t (ν = 2n− 5) and BCa
interval types and B = 2000. Confidence level is 95%.

n γa
rS Nominal

True rank correlation, ρS

0.3 0.8

CI type CI type

Bootstrap Classical Bootstrap Classical

Student′s t BCa Student′s t BCa

10 0.824 0.671 0.693 0.946 0.842 0.833 0.950
20 0.867 0.800 0.764 0.977 0.900 0.842 0.950
50 0.912 0.893 0.858 0.944 0.929 0.729 0.950

100 0.957 0.922 0.823 0.930 0.920 0.645 0.950
200 0.964 0.928 0.718 0.935 0.930 0.471 0.950
500 0.964 0.927 0.608 0.946 0.945 0.228 0.950

1000 0.943 0.942 0.293 0.943 0.941 0.098 0.950

a Standard error of γrS is nominally 0.001.

types, resampling schemes and correlation measures that perform well,
in terms of coverage accuracy, in situations typical for climate time series,
namely in the presence of

non-Gaussian distributional shapes

and

nonzero, possibly different persistence times of processes X(i) and
Y (i).

The two major findings are the following.
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Table 7.2. Monte Carlo experiment, Spearman’s correlation coefficient with Fisher’s
z-transformation for bivariate lognormal AR(1) processes: influence of block
length selection. The number of Monte Carlo simulations, the properties of
{T (i), X(i), Y (i)}n

i=1 and the construction of bootstrap CIs are identical to those in
the first experiment (Table 7.1), with the exception that here block length is selected
after Eq. (7.30) instead of Eqs. (7.31) and (7.32).

n γa
rS Nominal

True rank correlation, ρS

0.3 0.8

Bootstrap CI type Bootstrap CI type

Student′s t BCa Student′s t BCa

10 0.599 0.380 0.756 0.559 0.950
20 0.723 0.592 0.837 0.712 0.950
50 0.894 0.849 0.929 0.904 0.950

100 0.954 0.915 0.924 0.909 0.950
200 0.964 0.927 0.934 0.928 0.950
500 0.963 0.926 0.947 0.946 0.950

1000 0.940 0.939 0.943 0.942 0.950

a Standard error of γrS is nominally 0.001.

1. Spearman’s rank correlation coefficient performed clearly better than
Pearson’s correlation coefficient. The latter’s use is advisable only in
situations where the Gaussian assumption is likely to be fulfilled or
where computing power allows to calibrate the CIs.

2. Classical CIs failed completely in the presence of non-Gaussian dis-
tributions.

Spearman’s rS in combination with pairwise-MBB resampling pro-
duced acceptable coverage accuracies (deviations from the nominal level
of less than, say, five percentage points) for the bivariate lognormal
AR(1) process with unequal, nonzero persistence times (Table 7.1, p.
303). It seems that data size requirements for achieving such coverages
are slightly less demanding for Student’s t CIs (n ' 100) than for BCa
CIs (n ' 200).

The choice of the block length selector had minor influence. This is
seen by comparing results from using the selector after Eqs. (7.31) and
(7.32) in Table 7.1, with those from using Eq. (7.30) in Table 7.2.
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Table 7.3. Monte Carlo experiment, Spearman’s correlation coefficient without
Fisher’s z-transformation for bivariate lognormal AR(1) processes. The number of
Monte Carlo simulations and the properties of {T (i), X(i), Y (i)}n

i=1 are identical to
those in the first experiment (Table 7.1). Also the construction of bootstrap CIs
used pairwise-MBB resampling, block length selection after Eqs. (7.31) and (7.32),
Student’s t and BCa interval types, B = 2000 and a confidence level of 95%. The
difference is that here no Fisher’s z-transformation and no re-transformation (Algo-
rithm 7.5, Steps 3 and 9, respectively) are performed and the bootstrap replications
consist not of z∗b

S , but of r∗b
S .

n γa
rS Nominal

True rank correlation, ρS

0.3 0.8

Bootstrap CI type Bootstrap CI type

Student′s t BCa Student′s t BCa

10 0.831 0.821 0.905 0.840 0.950
20 0.877 0.891 0.938 0.900 0.950
50 0.893 0.904 0.942 0.929 0.950

100 0.916 0.921 0.935 0.919 0.950
200 0.926 0.928 0.940 0.930 0.950
500 0.926 0.927 0.942 0.945 0.950

1000 0.941 0.942 0.946 0.941 0.950

a Standard error of γrS is nominally 0.001.

Fisher’s z-transformation of rS had been advocated by Fieller et al.
(1957). However, it seems not to have a major effect on bootstrap CI
coverage accuracies. This is seen by comparing Tables 7.1 and 7.3. An
early simulation study (Kraemer 1974) with data sizes n = 10 and 20
already concluded that using the z-transformation in combination with
the normal approximation of the distribution of zS is less accurate than
using instead Student’s t distribution.

Pearson’s rXY did not produce acceptable coverage accuracies for
bivariate lognormal processes—neither with uncalibrated classical CIs
nor with uncalibrated CIs from pairwise-MBB resampling (Table 7.4).
The reason is likely that the distribution of rXY is, despite the z-
transformation, skewed itself when the distributions of the input data,
X(i) and Y (i), are skewed. The second experiment with rXY , in which
{X(i), Y (i)} were binormally distributed (Table 7.5), exhibited reason-
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Table 7.4. Monte Carlo experiment, Pearson’s correlation coefficient with Fisher’s
z-transformation for bivariate lognormal AR(1) processes. The number of Monte
Carlo simulations and the properties of {T (i), X(i), Y (i)}n

i=1 are identical to those
in the first experiment (Table 7.1), with the exception that ρE is here given via Eq.
(7.24). The construction of CIs followed Algorithms 7.1 and 7.2.

n γa
rXY

Nominal

True correlation, ρXY

0.3 0.8

CI type CI type

Bootstrap Classical Bootstrap Classical

Student′s t BCa Student′s t BCa

10 0.820 0.701 0.748 0.864 0.778 0.875 0.950
20 0.876 0.808 0.805 0.904 0.859 0.807 0.950
50 0.932 0.875 0.848 0.898 0.864 0.737 0.950

100 0.939 0.866 0.836 0.895 0.856 0.684 0.950
200 0.941 0.879 0.781 0.897 0.853 0.633 0.950
500 0.907 0.876 0.767 0.899 0.846 0.554 0.950

1000 0.911 0.885 0.730 0.913 0.866 0.551 0.950

a Standard error of γrXY is nominally 0.001.

ably good coverage accuracies for n ' 100. In the second experiment,
bootstrap Student’s t CIs for rXY performed slightly better than boot-
strap BCa (too low coverage) or classical CIs (too high coverage).

The dependence of the coverage results on the true values, ρXY or ρS,
which were prescribed as 0.3 and 0.8, seems weak.

The better performance of rS in comparison with rXY is rooted in
its robustness, which in turn stems from the use of the ranks of the
values instead of the values themselves (Fieller et al. 1957). The Monte
Carlo simulations reveal that the robustness influences positively also
the property of coverage accuracy.

Pairwise-ARB resampling in combination with Student’s t CIs per-
formed less good than pairwise-MBB resampling (results not shown),
but the coverage error (some percentage points) may be acceptable in
climate sciences. Pairwise-ARB resampling in combination with BCa
CIs, on the other hand, produced clearly too large coverage errors.
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Table 7.5. Monte Carlo experiment, Pearson’s correlation coefficient with Fisher’s
z-transformation for binormal AR(1) processes. The number of Monte Carlo simula-
tions, the properties of {T (i)}n

i=1 and the construction of CIs (Algorithm 7.2) are iden-
tical to those in the previous rXY experiment (Table 7.4). The process {X(i), Y (i)}n

i=1

is binormal AR(1) after Eqs. (7.53) and (7.54) with τX = 1, τY = 2 and ρE given by
Eq. (7.57).

n γa
rXY

Nominal

True correlation, ρXY

0.3 0.8

CI type CI type

Bootstrap Classical Bootstrap Classical

Student′s t BCa Student′s t BCa

10 0.701 0.566 0.752 0.840 0.735 0.973 0.950
20 0.721 0.629 0.812 0.904 0.840 0.974 0.950
50 0.890 0.861 0.931 0.886 0.859 0.974 0.950

100 0.934 0.893 0.959 0.910 0.900 0.972 0.950
200 0.961 0.922 0.953 0.930 0.925 0.968 0.950
500 0.949 0.932 0.953 0.935 0.931 0.968 0.950

1000 0.937 0.934 0.953 0.942 0.941 0.968 0.950

a Standard error of γrXY is nominally 0.001.

Calibrating the CI increased the coverage performance dramatically
(Table 7.6), especially for the problematic case of Pearson’s rXY and bi-
variate lognormal AR(1) processes. Those accurate results demonstrate
that CI lengths (Table 7.7) of correlation estimates are rather large if

sample sizes are small,

persistence exists and

true correlation coefficients are small in size.
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Table 7.6. Monte Carlo experiment, Pearson’s and Spearman’s correlation coeffi-
cients with Fisher’s z-transformation for bivariate lognormal AR(1) processes: cali-
brated CI coverage performance. The number of Monte Carlo simulations and the
properties of {T (i), X(i), Y (i)}n

i=1 are identical to those in the first experiment (Table
7.1), with ρE given by Eq. (7.24) and Table 7.8, respectively. Calibrated Student’s
t CIs were constructed after Eq. (3.47) using two loops of pairwise-MBB resampling
with block length selection after Eqs. (7.31) and (7.32). The first loop (bootstrap
of samples) used B = 2000 resamplings, the second loop (bootstrap of resamples)
used 1000 resamplings. In the second loop, the block length was not re-estimated but
overtaken from the first loop. The spacing of the λ values for the calibration (Eq.
3.45) is 0.001.

n γa
rXY

γa
rS Nominal

True correlation, ρXY True rank correlation, ρS

0.3 0.8 0.3 0.8

10 0.917 0.836 0.912 0.959 0.950
20 0.959 0.937 0.960 0.939 0.950
50 0.964 0.947 0.944 0.929 0.950

100 0.969 0.947 0.951 0.945 0.950
200 0.966 0.946 0.970 0.948 0.950

a Standard errors of γrXY and γrS are nominally 0.001.

Table 7.7. Monte Carlo experiment, Pearson’s and Spearman’s correlation coeffi-
cients with Fisher’s z-transformation for bivariate lognormal AR(1) processes: aver-
age calibrated CI length. The number of Monte Carlo simulations is nsim = 47,500.
See Table 7.6 for further details.

n 〈 CIrXY ,95% length 〉a 〈 CIrS,95% length 〉a

True correlation, ρXY True rank correlation, ρS

0.3 0.8 0.3 0.8

10 1.691 1.028 1.743 1.744
20 1.713 0.506 1.789 0.834
50 1.593 0.291 1.709 0.263

100 1.203 0.229 1.367 0.167
200 0.929 0.184 0.890 0.135

a Average value over nsim simulations.
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7.4 Example: Elbe runoff variations
Dresden is a station on the river Elbe, from which long measured

runoff records are available (Fig. 6.3). We study how strongly the ran-
dom component in Dresden runoff variations correlate with variations in
records from other stations on the river, namely Děč́ın (70 km upstream)
and Barby (240 km downstream). The raw data are shown in Fig. 7.1.
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Figure 7.1. Elbe runoff 1899–1990, time series. The raw data are from stations
(a) Děč́ın (Czech Republic), (b) Dresden and (c) Barby (both Germany); they cover
the interval from 1 November 1899 to 31 October 1990 in daily resolution, without
missing values. (The Czech name of the river is Labe. Data from Global Runoff Data
Centre, Koblenz, Germany.)

To extract the random component, we remove the annual cycle from
the raw time series. To correct for effects of nonzero travel times of the
water (Engel et al. 2002), we bin the daily series into monthly mean
records. The resulting data size (n = 1092) is large enough to let us
expect a high accuracy of the CIs for the correlation measures.
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Figure 7.2. Elbe runoff 1899–1990, correlations. a Děč́ın versus Dresden; b Barby
versus Dresden. Prior to correlation estimation, (1) the annual cycles were removed
from the raw data (Fig. 7.1) by subtracting the day-wise long-term averages and (2)
monthly resolved records (denoted as ∆Q) constructed by binning. Each record has
a sample size of n = 1092. (See text for rXY and rS values.)

The resulting correlation values with 95% CI are as follows. Děč́ın
versus Dresden (Fig. 7.2a), rXY = 0.995 [0.993; 0.997] and rS = 0.991
[0.986; 0.995]; Barby versus Dresden (Fig. 7.2b), rXY = 0.964 [0.954;
0.972] and rS = 0.955 [0.942; 0.965]. These are calibrated Student’s t
CIs, obtained using Fisher’s transformation, pairwise-MBB resampling
(first loop, B = 2000 resamplings; second loop, 1000 resamplings) and a
λ-spacing of 0.001. The selected block lengths (first loop, overtaken for
second loop) after Eqs. (7.31) and (7.32) are (Fig. 7.2a) l = 13 and (Fig.
7.2b) l = 14.

The significantly higher correlation values of Děč́ın–Dresden compared
with Barby–Dresden bivariate runoff variations can in terms of hydrol-
ogy be interpreted to reflect the growing catchment area of the river
Elbe. While the increase between Děč́ın and Dresden is moderate (from
51,104 to 53,096 km2), it is larger when going further downstream, to
Barby (94,060 km2). That means, between Dresden and Barby clearly
more “random innovations” in the form of confluencing tributaries “dis-
turb” the water flow than between Děč́ın and Dresden. This examples
demonstrates also the superiority of CIs over mere correlation testing.
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7.5 Unequal timescales
Consider the situation that the set of time points for the X values is

not identical to the set of time points for the Y values. This is ubiqui-
tous in paleoclimatology, where we study the relation between variations
of one variable, measured on one dated climate archive, and a second
variable, from a second archive that is independent of the first archive.
The challenge imposed by these unequal timescales roots in the fact that
Pearson’s or Spearman’s recipes for estimating the degree of the relation
between the fluctuations of both variables cannot be readily applied.

The method of adaption to the case of unequal timescales that is
conventionally used in climatology, is to interpolate both time series to
a common time grid and then apply the usual estimation procedure of
rXY or rS. (We denote these interpolation correlation estimators as r̀XY

and r̀S.) One danger with that method is that the freedom of how to
select the time grid translates into an arbitrariness regarding the size of
the interpolated sample and, in turn, a risk of a biased error determi-
nation. The other danger stems from the serial dependences caused by
the interpolations, which have to be taken correctly into account.

The adaption method developed in statistical science (Hocking and
Smith 1968) focuses on missing observations, which is a special case of
unequal timescales. There, a number of common time points exist, which
allows inference of the covariance because information on the “mixing”
exists. The other points, for which data exist from either X or Y , but not
from both, are used for inference of the means and standard deviations.
This research, summarized by Kotz et al. (2000: pp. 298–305 therein),
is, however, of limited relevance for climatological applications.

1. If the unequal timescales do not at all have common time points,
which may occur with paleoclimate samples, the correlation estima-
tion is prohibited because no “mixing information” can be used.

2. Instationarities of the first or second moment may bias the estima-
tion. In particular, heteroscedasticity may lead to underestimated
standard deviations and, hence, to absolute correlation values greater
than unity (Kotz et al. 2000).

3. The assumptions made in the statistical literature, namely multivari-
ate normal distributional shape and serial independence, are typi-
cally violated in climatological applications. The properties of the
suggested estimators seem not to be known for such a more realistic
setting.

This book suggests therefore a seemingly novel estimation approach
for climate data samples, which is denoted as binned correlation. It rests
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on the concept that the nonzero persistence times (Chapter 2), seemingly
a genuine property of climate time series, allow to recover the “mixing
information” even when the two timescales differ. The condition is that
the time spacing is not much larger than the persistence times. Then
enough common data points fall within a time bin and knowledge can
be acquired on the covariance. We give a second estimation procedure,
denoted as synchrony correlation, based on selecting only those X–Y
pairs that consist of values close to each other in time.

7.5.1 Binned correlation
To consider the binned correlation (Fig. 7.3), let the two time series

have sample size nX and nY , and let the data be given on the process
level as

{TX(i), X(i)}nX
i=1 and {TY (j), Y (j)}nY

j=1 , (7.42)

respectively. Let the persistence time be denoted as τX and τY , respec-
tively. The first step is to divide the time interval from the leftmost of
the time points (denoted as T̄min) to the rightmost of the time points
(denoted as T̄max) into bins of a constant length, τ̄ . Three selection
rules for τ̄ are given in the following paragraph. If (T̄max − T̄min)/τ̄ has
a remainder, let the rightmost bin be smaller than τ̄ . The second step is
to evaluate whether a time bin contains both more than zero X points
and more than zero Y points. For example, in Fig. 7.3 the first bin,
[T̄min; T̄min + τ̄ ], contains three X points and one Y point. If the evalua-
tion is positive, then form the average (denoted as X̄(k)) of the X points
within the bin and the average (denoted as Ȳ (k)) of the Y points within
the bin, and assign as time value (denoted as T̄ (k)) the central time for
the bin. In Fig. 7.3, T̄ (1) = T̄min + (1/2) · τ̄ and T̄ (2) = T̄min + (5/2) · τ̄
(there are no Y points contained in the second time bin). The resulting
time series is {

T̄ (k), X̄(k), Ȳ (k)
}n̄

k=1
. (7.43)

This binned sample has size n̄. The binned Pearson’s correlation coef-
ficient, denoted as r̄XY , is calculated as rXY on the binned time series
(Eq. 7.43).

The bin width τ̄ is selected such that it is permissible to compare X
and Y values within the same bin. This means that the selection takes
into account the persistence times of both processes. Simple rules are

τ̄ = τX + τY (7.44)

and

τ̄ = max (τX , τY ) . (7.45)
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Figure 7.3. Binning for correlation estimation in the presence of unequal timescales.



314 7 Correlation

Monte Carlo experiments, similar to those presented in Section 7.5.3,
show the superiority (in terms of RMSEρ̂XY

) of a third rule, based on
the average spacings,

d̄X = [TX(nX)− TX(1)] /(nX − 1) ,

d̄Y = [TY (nY )− TY (1)] /(nY − 1) , (7.46)
d̄XY =

[
T̄max − T̄min

]
/(nX + nY − 1) ,

the bias-corrected equivalent autocorrelation coefficients,

̂̄a′X = exp
(
−d̄X

/
τ̂ ′X

)
,̂̄a′Y = exp

(
−d̄Y

/
τ̂ ′Y

)
, (7.47)

̂̄a′XY =
(̂̄a′X · ̂̄a′Y )1/2

,

and
τ̄ = −d̄XY

/
ln

(̂̄a′XY

)
. (7.48)

Selection of τ̄ determines the sample size, n̄, of the binned series and
the statistical properties of r̄XY . In the case of unequal timescales, the
existence of (climate-induced) persistence may have a beneficial effect.
If no persistence would be in the (climate) system, and no common
time points of X and Y exist, then n̄ would be equal to zero and no
information on the correlation between X and Y could be recovered.

7.5.2 Synchrony correlation
The synchrony correlation estimation (Algorithm 7.7) starts with se-

lecting the pair (X(imin), Y (jmin)), for which the absolute time differ-
ence, |TX(imin)−TY (jmin)|, is minimal. The algorithm takes only a per-
centage, β · 100%, of the maximum possible number of X–Y pairs; this
maximum number equals min(nX , nY ), and the pairs have the smallest
absolute time differences. The correlation estimation is then made by us-
ing those nk “synchrony pairs” and calculating Pearson’s or Spearman’s
correlation coefficient. We denote the synchrony Pearson’s correlation
coefficient as r̃XY β100%.

The synchrony correlation estimation avoids making a step away from
the original data as interpolation does. The synchrony procedure avoids
also the averaging step as the binned correlation procedure (Section 7.5.1)
does. The statistical properties of r̃XY β100% as an estimator of ρXY are
therefore potentially better (e.g., smaller RMSEρ̂XY

) than those of r̄XY

or r̀XY ; analogous expectations can be raised for Spearman’s correlation
coefficient.
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Step 1 Processes {TX(i), X(i)}nX
i=1,

{TY (j), Y (j)}nY
j=1

Step 2 Initialize counter of “synchrony pairs” cXY = 1

Step 3 Prescribe number of synchrony pairs nk = NINT [β ·min (nX , nY )]

Step 4 Absolute time differences ∆T (i, j) = |TX(i)− TY (j)|

Step 5 Determine combination, (imin, jmin) ,

for which ∆T (imin, jmin)

is minimal

Step 6 Add pair (X(imin), Y (jmin))

as number k = cXY

to the set of synchrony pairs,

remove points (TX(imin), X(imin))

and (TY (jmin), Y (jmin))

from processes, renumber,

decrease by one data sizes nX , nY

Step 7 Increase counter, cXY = cXY + 1

Step 8 If cXY = nk go to Step 9

else go to Step 4

Step 9 Calculate rXY or rS on

the set of synchrony pairs, {X(k), Y (k)}nk
k=1

Algorithm 7.7. Synchrony correlation estimation (process level).

The choice of β is crucial because it determines the bias and variance
properties of the synchrony correlation estimator. A smaller β means
a more restrictive selection of synchrony pairs, leading to a smaller nk

value and, hence, to a larger estimation variance. On the other hand,
a smaller β means that the synchrony pairs have smaller absolute time
differences and the loss of information, caused by the unequal times (and
scaled by τX and τY ), is smaller; this means further that r̃XY β100% has
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then a smaller estimation bias. The choice of β is a smoothing problem.
This book cannot offer a theoretical solution but note that the optimal
β value should depend on nX , nY , τX , τY and the spacings, dX(i) =
TX(i)− TX(i− 1) and dY (j) = TY (j)− TY (j − 1). For example, larger
nX or nY values should allow a more restrictive selection of synchrony
pairs, that is, a smaller optimal β. We explore the smoothing problem
for a range of dependence factors (nX , nY , τX , τY , dX(i) and dY (j))
using Monte Carlo simulations.

7.5.3 Monte Carlo experiments
The binned correlation and synchrony correlation are seemingly novel

estimation procedures for the situation of unequal timescales. It is there-
fore appropriate to learn about their basic statistical properties, such as
bias or standard error. This is achieved by means of Monte Carlo sim-
ulations. In case of the synchrony correlation coefficient, the simulation
results help also to assess the influence of the choice of the percent-
age of “synchrony pairs.” Both novel estimators are compared with the
conventional interpolation estimator (equidistance, n data pairs).

The simulation experiment studies ρXY and employs the bivariate
Gaussian AR(1) process. The unequal timescales for X(i) and Y (j) are
generated (Fig. 7.4) by producing a large number (10n) of data pairs on
an evenly spaced grid, discarding the majority of points and retaining
only small numbers of X and Y points (nX = nY = n). The time points
for X(i) and Y (j) can be either “well mixed” (Fig. 7.4b) or “wildly
mixed” (Fig. 7.4c); the control case of equal time points is included.
The results (Figs. 7.5, 7.6 and 7.7) and conclusions are as follows.

1. Because there is memory (persistence) in the climate system, it is in
general possible to recover information about the correlation of two
processes, X(T ) and Y (T ), that have been sampled at unequal time
points. However, the uncertainties associated with the estimation,
in particular, the absolute value of the bias, may be substantially
larger than in the case of equal timescales. The bias of the estimated
correlation is negative (underestimation) because of the noise intro-
duced by the random innovations between two time points TX(i′) and
TY (j′) (“loss of mixing information”).

2. The RMSEρ̂XY
descreases for all three estimation procedures (inter-

polation, binned and synchrony) with the data size (Fig. 7.5). The
rate of the decrease is for unequal timescales (Fig. 7.5d–i) similar to
the rate of the decrease for equal timescales (Fig. 7.5a–c).
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Figure 7.4. Monte Carlo study of correlation estimation, generation of unequal
timescales. Time series from the bivariate Gaussian AR(1) process (Eq. 7.25) were
generated on a time grid with even spacing (of 1.0), a large data size (10n) and
prescribed values for aX = exp(−1/τX), aY = exp(−1/τY ) and ρXY . (The evenly
spaced grid is displayed as vertical bars on the time axes.) First, drawing nX = n
random integers without replacement from the set {1, 2, . . . , 10n} generated the
{TX(i)}nX

i=1 (process level). The three types of timescales were subsequently gener-
ated as follows. a Equal timescales (control case) resulted from setting nY = nX and
{TY (j)}nY

j=1 = {TX(i)}nX
i=1. b Well mixed timescales resulted from drawing nY = n

random integers without replacement from the set {1, 2, . . . , 10n} and imposing the
constraints (1) TY (j) 6= TX(i) ∀ i, j and (2) TX(1) < TY (1) < TX(2) < TY (2) <
TX(3) < · · · < TX(nX) < TY (nY ). c Wildly mixed timescales resulted in the same
manner as the well mixed timescales but without imposing constraint (2). (The three
timescale types are displayed as filled symbols on the time axes.) The time series
values {X(i)}nX

i=1 and {Y (j)}nY
j=1 (process level) were, finally, taken from the large,

evenly spaced bivariate series (size 10n) according to the random integers from the
generated timescales. (For example, if TX(1) is the seventh time value of the evenly
spaced grid (size 10n), then X(1) is the seventh X value of the evenly spaced series.)

3. Longer persistence times lead in the control case of equal times (Fig.
7.5a–c) to a smaller effective data size, n′ρ, and a larger standard
error. The size of the bias is not strongly influenced (Fig. 7.6a–c).
This is described by Eq. (7.11), with n′ρ plugged in for n.

4. Longer persistence times have in the case of unequal times a twofold
effect. First, the standard error is increased (smaller effective data
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Figure 7.5. Monte Carlo study of correlation estimation in the presence of un-
equal timescales, dependence on sample size. a–c Equal timescales; d–f well
mixed unequal timescales; g–i wildly mixed unequal timescales; a, d, g persis-
tence time τX = τY = 10; b, e, h τX = τY = 20; c, f, i τX = τY = 50;
a–i ρXY = 0.8; see Fig. 7.4 as regards generation of timescales and of time se-
ries after the bivariate Gaussian AR(1) process. Each panel shows the empirical
RMSEρ̂XY

, determined via averaging (ρ̂XY − ρXY )2 over nsim = 10,000 simula-
tions, in dependence on the sample size. The analysed tools are the interpola-
tion correlation estimator r̀XY (shown as open diamonds, connected with lines), the
binned Pearson’s correlation coefficient r̄XY (filled circles) and the synchrony Pear-
son’s correlation coefficient r̃XY β100% (open circles) with optimized β (i.e., minimal
RMSEr̃XY β100%). The optimization of β was done by a brute-force search from the
set {10%, 20%, . . . , 100%}. Optimal β values for n = 10, 20, 50, 100, 200, 500, 1000
were (d) β = 1.0, 0.8, 0.4, 0.4, 0.4, 0.4, 0.4; (e) β = 0.9, 0.9, 0.7, 0.6, 0.5, 0.4, 0.4; (f)
β = 0.9, 0.8, 0.9, 0.4, 0.7, 0.4, 0.4; (g) β = 0.9, 0.6, 0.4, 0.4, 0.2, 0.2, 0.2; (h) β =
1.0, 0.5, 0.8, 0.3, 0.4, 0.2, 0.2; and (i) β = 0.7, 0.9, 0.8, 0.5, 0.4, 0.2, 0.2. For the con-
trol case of equal timescales (a–c), all three estimators (with optimized β = 1.0 ∀ n)

yielded nearly identical results. The relative error is in the order of n
−1/2
sim .
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Figure 7.6. Monte Carlo study of correlation estimation in the presence of un-
equal timescales, dependence on persistence times. a–c Equal timescales; d–f well
mixed unequal timescales; g–i wildly mixed unequal timescales; see Fig. 7.4 as re-
gards timescale generation; a, d, g interpolation correlation estimator r̀XY ; b, e, h
binned Pearson’s correlation coefficient r̄XY ; c, f, i optimized synchrony Pearson’s
correlation coefficient r̃XY β100%; a–i n = 100 and ρXY = 0.8; see Fig. 7.4 as regards
time series generation after the bivariate Gaussian AR(1) process. Each panel shows
the empirical RMSEρ̂XY

(as filled circles), the negative empirical biasρ̂XY
(as open

diamonds), determined via averaging (ρXY − ρ̂XY ) over nsim = 10,000 simulations,
and the empirical seρ̂XY

= (RMSE2
ρ̂XY

−bias2ρ̂XY
)1/2 (as open circles), in dependence

on the persistence times. Optimal β values for τX = τY = 5, 10, 20, 50, 100 were (f)
β = 0.5, 0.4, 0.6, 0.4, 1.0; and (i) β = 0.2, 0.4, 0.3, 0.5, 0.8. For the control case of equal
timescales (a–c), all three estimators (with optimized β = 1.0 ∀ τX , τY ) yielded nearly
identical results.
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Figure 7.7. Monte Carlo study of synchrony Pearson’s correlation coefficient for
unequal timescales, dependence on percentage. a τX = τY = 5; b τX = τY = 10;
c τX = τY = 20; d τX = τY = 50; e τX = τY = 100; a–e wildly mixed unequal
timescales and ρXY = 0.8. See Fig. 7.4 as regards timescale and time series generation.
Each panel shows for n = 100 (open diamonds), 200 (filled circles) and 1000 (open
circles) the empirical RMSEr̃XY β100% in dependence on the percentage (i.e., β).

size). Second, the size of the bias is reduced because a larger amount
of the “mixing information” is preserved. The RMSEρ̂XY

, composed
of standard error and bias, has a minimum for intermediate values
of τX and τY . For the studied Monte Carlo designs (Fig. 7.6d–i) the
optimum persistence times are in the range between 20 and 50 time
units.

5. A better mixing between {TX(i)}nX
i=1 and {TY (j)}nY

j=1, that is, the
well mixed case compared with the wildly mixed case, increases the
“mixing information.” This leads to a smaller size of the negative
bias (Fig. 7.6d–f compared with Fig. 7.6g–i) and to smaller RMSEρ̂XY

values (Fig. 7.5d–f compared with Fig. 7.5g–i). For the studied Monte
Carlo designs, however, this effect is not very large.

6. The order of the best (in terms of RMSEρ̂XY
) correlation estimators

is: first synchrony method, second binning method and third inter-
polation method. This is pronounced in the case of wildly mixed
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timescales, which is climatologically relevant, and persistence times
in the order of 10–20 time units (Fig. 7.5g, h). For larger persistence
times, the methods perform more similarly, with a small edge for the
synchrony estimator (Fig. 7.5f, i). The synchrony correlation coeffi-
cient outperforms the other estimators because it achieves a smaller
size of the bias by discarding data pairs with a large loss of mixing
information (Fig. 7.6g–i).

7. The choice of the optimal β value for the synchrony method is impor-
tant. With larger data sizes, the selection of “synchrony pairs” should
be more restrictive, as previously expected. The results for the stud-
ied Monte Carlo designs (Fig. 7.7) show: while for nX = nY = 100
a value of β = 0.5 to 0.3 or 0.2 is suitable, for nX = nY = 1000
one should use a value of closer to 0.2. The curves of RMSEr̃XY β100%

versus β are steeper (and hence the importance of the choice of β
stronger) for smaller persistence times (Fig. 7.7).

Monte Carlo experiments with ρXY = 0.3 (results not shown) and
unequal timescales indicate that a reduced correlation leads to a smaller
size of the negative bias and, notably, to an increased standard error.

Regarding bootstrap CI construction for r̄XY or r̃XY β100%, this may
be achievable by adapting the pairwise-MBB (Algorithm 7.2) such that
a resampling block need not contain a specified number of points but
covers a certain time span. It is important to perform bootstrap re-
sampling on the original data points, X(i) and Y (j), and not on the
processed (e.g., binning) points, X(k) and Y (k), to capture fully all as-
pects of the estimation (e.g., binning). Using the BCa interval type may
be advantageous because this CI takes estimation bias into account.

7.5.3.1 Optimal estimation
The example of a suitable selection of a correlation estimator in the

case of unequal times (e.g., choice of β) illustrates the concept of op-
timal estimation (Section 6.2.7). Given two time series from processes
{TX(i), X(i)}nX

i=1 and {TY (j), Y (j)}nY
j=1, answering accurately the ques-

tion about the correlation between both recorded random variables re-
quires first to find out the suitable estimation technique. This can be
tackled by analysing the persistence and distributional properties and
performing Monte Carlo simulations to explore the hyperspace spanned
by the model properties (τX , τY , nX , nY , dX(i), dY (j), etc.) and, as addi-
tional dimensions, the estimation properties of interest (e.g., RMSEρ̂XY

).
It may, especially for more complex estimation problems (e.g., climatol-
ogy), only then be possible to make a guided inference with a realistic
chance of coming close to the truth about the underlying processes.



322 7 Correlation

7.5.4 Example: Vostok ice core records
The Vostok ice core records (Fig. 1.3) of X(i): CO2 and Y (j): deu-

terium (proxy for temperature variations) over the past 420 ka display a
high correlation (Fig. 7.8). This sheds some light on the coupling of those
two variables, which govern (among others) the Pleistocene climate.

The data sizes are nX = 283 and nY = 3311; the average time spacings
d̄X = 1.46 ka and d̄Y = 0.128 ka; and the estimated, bias-corrected
persistence times τ̂ ′X = 38.1 ka and τ̂ ′Y = 25.6 ka. For performing the
binning procedure after Eq. (7.48), these values lead to τ̄ = 5.4 ka.
Most, but not all of the time bins contain both CO2 and deuterium
values, and the resulting binned bivariate sample has a size of n̄ = 77.
The correlation coefficient, calculated on the binned sample, is r̄XY =
0.876.

160 200 240 280 320
CO2 (ppmv)
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Figure 7.8. Vostok deuterium and CO2 over the past 420 ka, correlation. Shown is
the binned bivariate sample. The binned Pearson’s correlation coefficient is r̄XY =
0.876.

For assessing the accuracy of the correlation estimation, Monte Carlo
simulations were performed such as in Section 7.5.3, but with the design
ρXY = 0.9, τX = τ̂ ′X , τY = τ̂ ′Y and identical data sizes and timescales
({TX(i)}nX

i=1 and {TY (j)}nY
j=1). This experiment (nsim = 10,000) resulted

in empirical values of RMSEr̄XY = 0.039, biasr̄XY = −0.025 and ser̄XY =
0.030. We may safely conclude that the true correlation coefficient be-
tween temperature and CO2 variations at Vostok is somewhere between
0.85 and 0.9.

Two aspects raised by the ice core example may be studied further.
First, timescale uncertainties should in principle be amenable to analy-
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sis by means of parametric modelling (Chapter 4). The modelled times,
{T ∗

X(i)}nX
i=1 and {T ∗

Y (j)}nY
j=1, may find entrance into Monte Carlo simu-

lations for calculating the empirical RMSEr̄XY , and so forth. Regarding
the Vostok records, both are from the same ice core and only the uncer-
tainty in the age difference between ice and gas needs to be considered.
This uncertainty is, however, clearly smaller (Chapter 8) than the bin
width of 5.4 ka. The effect on the accuracy of r̄XY is therefore rather
small. Second, for climatological purposes it makes sense to allow for
time lags between variations of X(i) and Y (j). This point is pursued in
Chapter 8. Those two methodical expansions are neither restricted to
the binned coefficient nor to Pearson’s version of correlation estimation.

7.6 Background material
The binormal distribution has following PDF:

f(x, y) = (2πSXSY )−1 (
1− ρ2

XY

)−1/2

× exp

[
− 1

2
(
1− ρ2

XY

)(
(x− µX)2

S2
X

−2ρXY (x− µX) (y − µY )
SXSY

+
(y − µY )2

S2
Y

)]
. (7.49)

µX and µY is the mean, S2
X and S2

Y the variance of the univariate pro-
cesses X(i) and Y (i), respectively; ρXY = ρE is the correlation coeffi-
cient. The PDF is “slanted” for ρXY 6= 0 (Fig. 7.9). See Priestley (1981:
Section 2.12.9 therein), Patel and Read (1996: Chapter 9 therein) and
Kotz et al. (2000: Chapter 46 therein) for more details on the binormal
distribution.

The bivariate lognormal distribution is in the more general case,
with shape parameters σX and σY and scale parameters bX and bY ,
given by

X(i) = exp
[
σX · EX

N(0, 1)(i) + ln(bX)
]
, i = 1, . . . , n,

Y (i) = exp
[
σY · EY

N(0, 1)(i) + ln(bY )
]
, i = 1, . . . , n;

(7.50)

see also Section 3.9. It has the correlation (Mostafa and Mahmoud 1964)

ρXY =
[
exp (σX · σY · ρE)− 1

] /√[
exp

(
σ2

X

)
− 1

] [
exp

(
σ2

Y

)
− 1

]
(7.51)
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Figure 7.9. Binormal probability density function: contour lines and marginal dis-
tributions. Parameters: µX = 5, SX = 1, µY = 4, SY = 3 and (a) ρXY = 0 or (b)
ρXY = 0.6.

and the PDF

f(x, y) = (2πσXσY xy)−1 (
1− ρ2

E
)−1/2

× exp

[
− 1

2
(
1− ρ2

E
)(

[ln(x/bX)]2

σ2
X

(7.52)

−2ρE ln(x/bX) ln(y/bY )
σXσY

+
[ln(y/bY )]2

σ2
Y

)]
.

The bivariate AR(1) process for uneven time spacing is given
by

X(1) = EX
N(0, 1)(1),

Y (1) = EY
N(0, 1)(1),

X(i) = exp {− [T (i)− T (i− 1)] /τX} ·X(i− 1)

+ EX
N(0, 1−exp{−2[T (i)−T (i−1)]/τX})(i), i = 2, . . . , n,

Y (i) = exp {− [T (i)− T (i− 1)] /τY } · Y (i− 1)

+ EY
N(0, 1−exp{−2[T (i)−T (i−1)]/τY })(i), i = 2, . . . , n,

(7.53)
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where the white-noise innovation terms are correlated as

CORR
[
EX

N(0, 1)(1), EY
N(0, 1)(1)

]
= ρE ,

(7.54)

CORR
[
EX

N(0, 1−exp{−2[T (i)−T (i−1)]/τX})(i),

EY
N(0, 1−exp{−2[T (i)−T (i−1)]/τY })(i)

]
=

(
1− exp {− [T (i)− T (i− 1)] · (1/τX + 1/τY )}

)
×

(
1− exp {−2 [T (i)− T (i− 1)] /τX }

)−1/2

×
(
1− exp {−2 [T (i)− T (i− 1)] /τY }

)−1/2
ρE ,

i = 2, . . . , n,

CORR
[
EX

N(0, 1−exp{−2[T (i)−T (i−1)]/τX})(i),

EY
N(0, 1−exp{−2[T (j)−T (j−1)]/τY })(j)

]
= 0, i, j = 2, . . . , n, i 6= j,

CORR
[
EX

N(0, 1−exp{−2[T (i)−T (i−1)]/τX})(i), E
Y
N(0, 1)(1)

]
= 0, i = 2, . . . , n,

CORR
[
EX

N(0, 1)(1), EY
N(0, 1−exp{−2[T (i)−T (i−1)]/τY })(i),

]
= 0, i = 2, . . . , n.

This process is strictly stationary. Its properties are

E [X(i)] = E [Y (i)] = 0, (7.55)

VAR [X(i)] = VAR [Y (i)] = 1 (7.56)

and
CORR [X(i), Y (i)] = ρXY = ρE . (7.57)
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Bias and standard error of Pearson’s correlation coefficient
for distributions of X(i) or Y (i) that deviate from the Gaussian shape
can theoretically be approximated using the parameters (cumulants of
higher order) describing the deviations. Lengthy approximation formu-
las were given by Gayen (1951) and Nakagawa and Niki (1992). The
relevance of the formulas for practical climatological purposes seems to
be limited because of the considerable uncertainties in the estimation of
those cumulants from data sets limited in size.

An alternative to Fisher’s transformation is (Hotelling 1953)

zH = z − 3z + rXY

4 (n− 1)
. (7.58)

For small n, Hotelling’s zH is in distribution closer to a Gaussian shape
than Fisher’s z (Rodriguez 1982).

Spearman’s rank correlation coefficient is reviewed by Pirie
(1988). Fisher’s z-transformation and usage of the normal distribution
is not the only method for constructing classical, approximate CIs for
rS. Kraemer (1974) suggested an alternative transformation and usage
of Student’s t distribution. Otten (1973) gave for the null case ρS = 0
the exact PDF of rS for n = 13 to 16. Franklin (1988) examined the
convergence of the exact null distribution of rS to normality for n = 9
to 18. As regards the originator of rS, Pearson (1924: p. 393 therein)
thinks that there is “sufficient evidence that Galton dealt with the cor-
relation of ranks before he even reached the correlation of variates, and
the claim that it is a contribution of the psychologists [i.e., Spearman]
some thirty or forty years later to the conception of correlation does not
seem to me valid.”

The grade correlation coefficient between two continuous variables
X and Y is (Gibbons and Chakraborti 2003: Section 11 therein)

ρS = 12 E [FX(X) · FY (Y )] − 3

= 12
∫

FX(x) · FY (y) f(x, y) dx dy − 3.
(7.59)

Herein, FX(x) and FY (y) are the (marginal) distribution functions and
f(x, y) is the bivariate PDF. The case of a binormal PDF (Eq. 7.49)
with correlation coefficient ρXY = ρE can be analytically solved (Pearson
1907):

ρS =
6
π

sin−1 (ρE/2) . (7.60)

The case of a bivariate lognormal PDF (Eq. 7.52), where ρXY is re-
lated to ρE via Eq. (7.51), was solved (Table 7.8) by means of sim-
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ulations. Consider the normal distribution function (Eq. 3.49), de-
noted as FN(x). Consider further the lognormal distribution function,
FLN(x) =

∫ x
−∞ fLN(x′)dx′. Herein, fLN(x) is the lognormal PDF (Eq.

3.61). Then, FLN(x) = FN(ln(x)) for x > 0.

Table 7.8. Grade correlation coefficient, bivariate lognormal distribution. ρS was
determined from its definition (Eq. 7.59) by drawing random bivariate numbers from
the density (Eq. 7.52) and calculating the average and its standard error over nsim =
1,000,000,000 simulations. Lognormal parameters: bX = bY = 0.0 and σX = σY =
1.0.

ρa
S Accuracyb of ρS ρE

0.3 < 10−4 0.3129
0.8 < 10−4 0.8135

a Average over nsim simulations.
b Standard error over nsim simulations.

The point biserial correlation coefficient can be used as an es-
timator of the degree of the linear relationship between a continuous
variable, X(i), and a dichotomous (binary) variable, Y (i). A field for
climatological applications is the analysis of outliers or climate extremes
(Chapter 6), where, for example, Y (i) = 0 means the absence and
Y (i) = 1 the occurrence of an extreme at time T (i). Let (on the sample
level) p denote the proportion of y(i) values equal to 0; q = 1−p; x̄0 and
x̄1 be the mean x(i) value with y(i) = 0 and 1, respectively; and sn,X be
the sample analogue of the standard deviation estimator (Eq. 7.8). The
point biserial correlation coefficient is then defined (Kraemer 1982) as

rpb = (pq)1/2 (x̄1 − x̄0) /sn,X . (7.61)

It readily follows that rpb = rXY . It may be shown (Tate 1954) that if
(1) ρXY = 0 and (2) the standard deviation of X(i) is independent of
whether Y (i) equals 1 or 0, the statistic

tpb = (n− 2)1/2 rpb

(
1− r2

pb

)−1/2 (7.62)

is distributed as Student’s t with n− 2 degrees of freedom (Section 3.9).
This statistic was used by Mudelsee et al. (2004) to study whether a
relation exists between atmospheric variables (sea-level pressure, geopo-
tential height) and the occurrence of Elbe floods for the interval from
1658 to 1999. Because of the persistence of the processes that generated
the atmospheric time series, Eq. (7.62) was adapted by replacing n with
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the effective data size (determined as 0.85n to 0.90 n). Other clima-
tological examples of usage of rpb are the following. Ruiz and Vargas
(1998) study the relation between an atmospheric variable (vorticity)
and the occurrence of large rainfall at South American stations, interval
1983–1987, and Giaiotti and Stel (2001) relate thunderstorm occurrence
to geopotential height in northeast Italy, interval 1998–1999. A caveat
that applies to the interpretation of the results from both studies is that
persistence was ignored in the analyses. Bootstrap CIs for rpb were
studied by Sievers (1996), who found good coverage performance of cal-
ibrated CIs already for small data sizes (n = 10).

Kendall’s tau, employed in Section 4.4 (p. 168) for trend testing,
can also be used (and this was historically earlier) as a correlation mea-
sure. For trend testing, we count the number of interchanges to bring
{X(i)}n

i=1 into the same (monotone) order as {i}n
i=1; for correlation es-

timation, we have to bring {X(i)}n
i=1 into the same order as {Y (i)}n

i=1.
Hamed (2009a) presented adaptions of the statistical test of H0: “zero
correlation” to take into account serial dependences (short- and long-
term).

The Monte Carlo performance of bootstrap CIs for correlation
coefficients was studied by the following. Hall et al. (1989) found that
one loop of calibration of the percentile CI for rXY brings a dramatic
increase in coverage accuracy for bivariate lognormal white noise and
small data sizes (n = 8, 10, 12). Sievers (1996) confirmed this finding
for n = 19 and eight types of the distributional shape of the white
noise. Above studies used ordinary bootstrap resampling because of the
absence of serial dependence. Mudelsee (2003) analysed bootstrap BCa
CIs for rXY on bivariate Gaussian and lognormal AR(1) processes with n
between 10 and 1000. He used pairwise-MBB resampling and concluded
that acceptable levels of coverage accuracy can be achieved but that
the serial dependence reduces the effective data size to a considerable
degree. Two caveats against this study are that block length selection
was done in an ad-hoc manner (Eq. 7.30) and that the studied process
was not identical to the strictly stationary model of Eq. (7.53). The
observation that nonzero persistence has detrimental effects (larger bias
and RMSE) of correlation estimators was also quantified by Park and
Lee (2001), who analysed rS on bivariate Gaussian AR(1) processes with
n = 137. These authors tried several resampling methods in combina-
tion with a brute-force block length selection (in terms of RMSE of the
standard deviation of rS). One of their conclusions is that pairwise-ARB
resampling performed better than a pairwise version of the nonparamet-
ric SB resampling (Section 3.8). Papers from the psychology literature
report about coverage performances of bootstrap CIs for quantities that
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are related to rXY and are of relevance to that branch of investigation,
namely (1) correlation coefficients that account for range restriction or
censoring of one variable (Chan and Chan 2004) and (2) the difference
of correlation coefficients in overlapping data sequences (Zou 2007).

The Monte Carlo performance of bootstrap hypothesis tests
about correlation coefficients was studied by the following. Martin (2007)
considered H0: “ρXY = ρ′XY ” with nonzero ρ′XY . This constitutes an
important test case, not only for the climate sciences, because it does
not consider the “straw man” H0: “ρXY = 0,” but instead a more re-
alistic H0. Such a test may supply a quality of information similar to
that of a CI (Section 3.6), with additional information regarding the test
power. To resample under the null of nonzero ρXY , a “rotated” version
of the array of the original bivariate sample, {y(i)}n

i=1 versus {x(i)}n
i=1,

is used (Beasley et al. 2007: Fig. 1 therein). The two cited papers study
the empirical significances and powers for bivariate white noise with
a range of data sizes (from 10 up to 100), various distributional shapes
and several ρXY values (−0.5, 0, 0.4, 0.8). Belaire-Franch and Contreras-
Bayarri (2002) performed an analogous experiment of the empirical test
significances and powers, employing AR(1) and MA(1) models of serial
dependence and using SB resampling. Summarizing the results of the
above mentioned Monte Carlo experiments, we conclude that testing
realistic null hypotheses about ρXY can be accurately performed using
bootstrap resampling. Regarding the test of H0: “ρXY = 0,” Ebisuzaki
(1997) studied the frequency-domain bootstrap (Section 5.3) and the
classical approach (via n′ρ) using even time spacing and bivariate AR(1)
and AR(2) models with n = 8, 16, 32 and 64. He found the bootstrap
variant to produce acceptably small deviations between nominal and
empirical rejection rates, not only for the AR(1) but also the AR(2)
model. Larger deviations occurred for small n and the AR(2) parameter
approaching with a2 → −1 the boundary of the stationarity regime (Fig.
2.4). Ebisuzaki (1997) ascribed this deficit to the poor properties of the
periodogram as spectrum estimator (Chapter 5). Pyper and Peterman
(1998) did not study the bootstrap but rather the classical approach
(via n′ρ) to take into account serial dependence. They explored various
persistence models (AR(1), AR(2) and ARIMA), sample sizes (between
15 and 50), autocorrelation estimators and the effects of smoothing prior
to the correlation estimation. Prior smoothing constitutes a special case
of an alternative correlation measure (Section 7.1.1). One of their con-
clusions is that prior smoothing may reduce considerably the effective
data size and lead to a reduced power of the statistical test, see also the
paragraph here on the Sun–climate relationship.
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Binned and synchrony correlation coefficients seem to be novel
estimation tools applicable to the case of unequal timescales. Davison
and Hinkley (1997: Example 3.12 therein) consider an example from a
closely related case, where some values (of, say, Y (i)) are missing. They
consider the imputation of the missing values “to obtain a suitable bi-
variate F̂ [estimate of the distribution function], next estimate θ [i.e.,
ρXY ] with the usual sample correlation t(F̂ ) [i.e., rXY ], and then re-
sample appropriately” (Davison and Hinkley 1997: p. 90 therein). An
imputation method is to make a regression of X(i) on Y (i) (Chapter 8)
using the bivariate subsample without the missing values. The assump-
tion here is that the values are missing at random (Rubin 1976), that
means, for example, that no range restriction or censoring occurred. Al-
gorithms for imputing missing data for general estimation purposes were
presented by Dempster et al. (1977) and Efron (1994). With regard to
the temporal spacing, we have a focus on the general case of irregularity
and not on the case of missing observations from an evenly spaced grid.
This is why we almost exclusively do not consider imputation. In the
bivariate setting, however, imputation may be an interesting estimation
alternative. We note that when X and Y have no common time points,
imputation is not straightforward to implement, whereas binned and
synchrony correlation are so and may (if persistence exists and the time
points of X and Y are well “mixed”) help to recover information about
the underlying correlation.

Timescale uncertainty was also identified by Haam and Huybers
(2010) as a problem affecting the estimation of the relationship between
two processes. These authors selected the covariance measure, assumed
even spacing and allowed only one of the two processes to be influenced
by timescale errors. Furthermore, the timescale errors were assumed
to take discrete values only. For this simplified setting, they obtained
analytical and numerical results on the distribution of the maximum
of the covariance. This was in turn used as a measure of the signifi-
cance of the empirical covariance. Finally, Haam and Huybers (2010)
used this test to study the relation between variations of δ18O in a sta-
lagmite (with timescale errors) and atmospheric radiocarbon content
during the Holocene. They were unable to reject the null hypothesis
of zero covariance. This result should be assessed with some caution
because prior to the analysis the series had been interpolated to achieve
even spacing.

The smoothed bootstrap consists of adding an amount of (nor-
mally distributed) noise to resampled values, x∗(i) and y∗(i). The idea
(Efron 1982) is to circumvent the discrete distribution of the bootstrap
samples, which may lead for quantities such as the sample median to
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a bad performance (Davison and Hinkley 1997: Section 3.4 therein).
A Monte Carlo study (Silverman and Young 1987) of the RMSE of the
sample standard deviation of rXY and z demonstrated the superiority of
smoothing, especially for z and small data sizes (n ≤ 50). Young (1988)
gave a rule for adjusting the amount of smoothing. It may be that the
coverage of bootstrap CIs for correlation estimators could benefit from
smoothing. However, more theoretical knowledge on the application of
the smoothed bootstrap to time series from serially dependent bivariate
processes would be helpful.

Climatological applications of bootstrap CIs for Pearson’s rXY

include the following. Kumar et al. (1999) used MBB resampling and
percentile CIs to study the “weakening relationship between the Indian
monsoon and ENSO” during the interval from 1856 to 1997. They took
a running window of length 21 years and determined the correlation us-
ing the points of all-Indian summer monsoon rainfall (June to September
average) and equatorial Pacific sea-surface temperature anomalies (June
to August average) within the window. The obtained correlation con-
fidence band is pointwise. Such “running correlations” are often used
in explorative climatology, despite the absence of a theoretical frame-
work for nonconstant CORR [X(i), Y (i)]. Girardin et al. (2006a) used
pairwise-MBB resampling and BCa CIs (PearsonT software, Section 7.7)
to find a highly significant correlation between (a transformation of)
the Pacific sea-surface temperature and west-east atmospheric flow over
Canada during the past approximately 150 years. Boessenkool et al.
(2007) used the same method to relate the (proxy-derived) speed of the
water flow near the ocean bottom at the Iceland-Scotland ridge with
the NAO index, interval 1885–2004. They found that a positive index
(stronger sea-level pressure gradient) had reduced the water flow; the
value of rXY = −0.42 with 95% CI [−0.60;−0.20] serves to quantify the
amount of covariation. This finding has implications for our knowledge
about the meridional overturning of the Atlantic in response to climate
change—a currently debated point in scientific discussions. Prior to
correlation estimation, the NAO time series had been pre-processed by
filtering and interpolating the record (unequal times) to the time points
of the flow record (d̄ = 2.2 a); the alternative method would have been
the binning procedure (Section 7.5.1). Röthlisberger et al. (2008) also
used PearsonT to study the coupling between variations of Antarctic
temperature and sea ice extent in the ice-age climate over the past 800
ka. The proxy information, about temperature from δD and about sea
ice from the flux of seasalt Na (Fig. 1.5), comes from EPICA Dome
C, that is, the ice core with the currently longest time span of climate
information. The finding was that during mild climate stages the cor-
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relation is strong, while during cold glacial conditions it is weaker (but
still significant). Mudelsee (2003), introducing PearsonT, re-assessed
the Sun–monsoon relation on Holocene timescales documented by δ18O
variations measured in a stalagmite from Oman (Neff et al. 2001). He
chose the interpolation (unequal times) instead of the more appropriate
binned or synchrony methods. He showed that the tuning of the {t(i)}
of the monsoon proxy changed a nonsignificant correlation into a signif-
icant value, emphasizing, however, that the size of the time shifts of the
tuning was smaller than the dating errors.

The Sun–climate relationship on decadal timescales, in the inter-
val from roughly the middle of the nineteenth century to the present, has
been the subject of intense discussions over the past years. In addition to
the anthropogenic warming signal (Section 3.8), there may exist a warm-
ing signal caused by solar activity variations (Fig. 2.12). Two original
papers were in the focus. Friis-Christensen and Lassen (1991) claimed
the existence of a close association between the changes of the period of
the sunspot cycle and the variations of northern hemisphere land surface-
air temperature for the interval from 1866 to 1985. The estimation of
changes of period may be done using methods from nonstationary spec-
tral analysis (Section 5.3), although Friis-Christensen and Lassen (1991)
preferred a simpler method via smoothing (Gleissberg 1944) and taking
the time differences between maxima and minima. The missing link in
the Sun–climate relationship was later (Svensmark and Friis-Christensen
1997) suggested to consist of variations of the galactic cosmic ray flux
influencing global cloud coverage. A series of comments, criticisms and
replies to those findings were published. The impression of the author of
this book is that the latest accusations by Laut (2003) and Damon and
Laut (2004) against the two original papers, which include “unacceptable
handling of observational data” (Damon and Laut 2004: p. 374 therein),
have not been refuted in the peer-reviewed literature. This impression
has been supported by Laut P (2009, personal communication), while
Friis-Christensen E (2009, personal communication) has added that an
earlier exchange of arguments (Laut and Gundermann 2000; Lassen and
Friis-Christensen 2000) already includes his reply. One point is that the
northern hemisphere temperature record has been smoothed with a fil-
ter, apparently using pseudodata at the lower and upper interval bounds
(Jones et al. 1986: Fig. 5 therein), and also the sunspot cycle record has
been smoothed with a filter, using a technique equivalent to a boundary
kernel. Both methods of boundary-bias reduction are described in the
context of the inhomogeneous Poisson process (Section 6.3.2.3). They
are standard techniques in time series analysis, and insofar as the quota-
tion regards the use of those for graphical purposes, we think, contrary
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to Damon and Laut (2004), that the usage is acceptable. Regarding the
influence of galactic cosmic rays on climate, IPCC–WG I (Forster et al.
2007: p. 193 therein) reports: “However, there appears to be a small but
statistically significant positive correlation between cloud over the UK
and galactic cosmic ray flux during 1951 to 2000 (Harrison and Stephen-
son 2006). Contrarily, cloud cover anomalies from 1900 to 1987 over the
USA do have a signal at 11 years that is anti-phased with the galactic
cosmic ray flux (Udelhofen and Cess 2001). Because the mechanisms are
uncertain, the apparent relationship between solar variability and cloud
cover has been interpreted to result not only from changing cosmic ray
fluxes modulated by solar activity in the heliosphere (Usoskin et al. 2004)
and solar-induced changes in ozone (Udelhofen and Cess 2001), but also
from sea surface temperatures altered directly by changing total solar
irradiance (Kristjánsson et al. 2002) and by internal variability due to
the El Niño–Southern Oscillation (Kernthaler et al. 1999). In reality,
different direct and indirect physical processes [. . .] may operate simul-
taneously.” A statistical analysis of the association between solar cycle
length and temperature on basis of the original data (Fig. 7.10) may
shed some light on the issue. Let X(i) denote cycle length and Y (i)
temperature. Using the digitized data and omitting the earliest solar
data point, for which no corresponding temperature point exists in the
original paper, yields n = 23; the spacing of the resulting bivariate series
is, as the cycle length, not constant. Pearson’s correlation coefficient is
rXY = −0.956. Persistence time estimation with bias correction yields
τ̂ ′X = 45 a with 90% percentile CI [9 a; 78 a] and τ̂ ′Y = 106 a [8 a; 128 a].
The lag-1 scatterplots (Fig. 7.10c, d) show the residuals (Eq. 2.12) to
reflect clearly less autocorrelation than the original data, attesting to the
suitability of the AR(1) persistence model. The large persistence times
come obviously from the high amount of smoothing performed on both
records. The effective data size is n′ρ = 2.13. This tiny value prohibits
any interpretation of a determined association; the large absolute value
of rXY may well be spurious. Insofar as the quotation from Damon and
Laut (2004) regards the criticism of oversmoothing prior to correlation
estimation, we think they are completely right; see also Pyper and Peter-
man (1998). A recent review (Lockwood and Fröhlich 2007) found that
since 1987, trends in solar climate forcings and the global mean surface-
air temperature go in opposite directions. Evidently, it should make
sense to study the unsmoothed records and other (proxy) documents
of solar and climate variability. One may extend the view further back
in time and employ also climate models as analysis tools (Meehl et al.
2003). Bootstrap CIs should be helpful for assessing better the results
quantitatively—not only those of claimed associations but also those of
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opposing trends. A second recommendation is to consider the applica-
tion of multiple tests (Section 5.2.5.1), since the selection of the time
intervals and the type of pre-processing gives the researcher additional
freedom. These measures would allow to test harder the Sun–climate
relationship on decadal timescales, despite the fact that the existing
knowledge seems not to allow to expect a physically significant effect.
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Figure 7.10. Solar cycle length and northern hemisphere land surface-air tempera-
ture anomalies, 1866–1985. a Time series (smoothed) of cycle length (open symbols)
and temperature anomaly (filled symbols); b scatterplot between cycle length and tem-
perature anomalies; c lag-1 scatterplots, standardized cycle length (filled symbols) and
standardized cycle-length residuals (open symbols); d lag-1 scatterplots, standardized
temperature anomalies (filled symbols) and standardized temperature-anomaly resid-
uals (open symbols). (The time series are digitized values from Friis-Christensen and
Lassen (1991: Fig. 2 therein).)

Climatological applications of hypothesis tests with autocorre-
lation adjustment include the following. Rothman (2002) examined the
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correlation between X(i): strontium isotopic ratio and Y (j): isotopic
fractionation between total organic carbon and sedimentary carbonates
over the past 500 Ma. Both variables (nX = 48, nY = 46) were measured
on independent samples of marine sedimentary rocks and have therefore
independent timescales. The objective of the correlation analysis was
to derive a proxy for variations of atmospheric CO2 concentration over
such long geological periods. The author interpolated the X(i) values to
the TY (j) times and calculated Spearman’s rank correlation coefficient
as rS = −0.4. He used the frequency-domain bootstrap (Section 5.3)
to take autocorrelation effects into account (Rothman 2001) and deter-
mined a one-sided P -value of 0.17. The accuracy of the P -value may
be influenced by the following factors: (1) prior smoothing of X(i) had
been applied, (2) possibly a second interpolation (to equidistance) for
calculating the periodogram (Chapter 5) was necessary, (3) the data size
is limited and (4) the unequal timescales and the interpolation may have
introduced a negative bias into rS (Section 7.5). The net effect is not
clear: while factor (1) would tend to let P increase, factor (4) would
let P decrease and, hence, raise the level of confidence. Pyper and Pe-
terman (1998) used their approach via n′ρ to test H0: “ρXY = 0” for
bivariate samples of the survival rate of different stocks of salmon from
a bay in Alaska (time interval from 1957 to 1989, annual resolution).
Edwards and Richardson (2004) study with the same approach the re-
lation between the interannual variation in the timing of the seasonal
cycle for various functional groups (e.g., diatoms or dinoflagellates) and
sea-surface temperature, time interval 1958–2002. They find significant
correlations, which underline the impact of climate change on marine
pelagic phenology.

Causality is not the same as correlation. However, that philosoph-
ical concept (Chapter 1) of the association between an action (variable
X) and a reaction (variable Y ) should require the time arrow and be
related to the theme of this chapter. Overviews of this relation have
been published in statistics (Barnard 1982; Glymour 1998) and physics
literature (Paluš and Vejmelka 2007). One quantitative formulation of
the concept of causality comes from information theory and uses the idea
of predictability: “We say that Y (i) is causing X(i) if we are better able
to predict X(i) using all available information than if the information
apart from Y (i) had been used” (Granger 1969: p. 428 therein). Infer-
ence about this “Granger causality” requires the analysis of time series,
{t(i), x(i), y(i)}n

i=1, and may employ statistical models, linear or nonlin-
ear, possibly with a time-lag parameter (Granger and Lin 1994; Stern
and Kaufmann 2000; Triacca 2007), see also Chapter 8. Climatological
examples are the following. A bivariate linear regression model was fitted
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to temperature time series from the northern (X(i)) and the southern
(Y (i)) hemisphere, covering the interval from 1865 to 1964 (Kaufmann
and Stern 1997; Stern and Kaufmann 1999). From the estimated time
lag between the two variables, the authors concluded the existence of a
south-to-north causal order “generated by anthropogenic activities that
increase the concentration of greenhouse gases globally, but which in-
crease the concentration and effects of sulphate aerosols mainly in the
Northern Hemisphere” (Kaufmann and Stern 1997: p. 42 therein). This
conclusion was criticized as inconclusive by Triacca (2001), who pre-
ferred the direct demonstration of Granger causality of CO2 changes on
temperature changes; that, however, had been done by Tol and de Vos
(1998) using a linear regression model with a prescribed lag. This sim-
ple model type has also been utilized for demonstrating an ocean feed-
back (daily wintertime sea-surface temperature) on the NAO, performed
(Mosedale et al. 2006) using a 50-year long simulation from the climate
model HadCM3 (Fig. 1.9). More advanced, nonlinear descriptions re-
sult from employing the mutual information (Fraser and Swinney 1986;
Granger and Lin 1994),

IXY =
∫ ∫

f(x, y) log
[

f(x, y)
f(x) f(y)

]
dx dy. (7.63)

Assuming that the logarithm is taken to the base of two, IXY quan-
tifies how many bits of information about X can be predicted on the
basis of a sample of Y . The concept of mutual information has been ex-
tended to higher dimensions and related to properties of chaotic systems
(Prichard and Theiler 1995). One such extension, which is called gen-
eralized redundancy, was employed (Diks and Mudelsee 2000) to study
causal relations between variables of the Plio- to Pleistocene climate.
The P -value of the test of the null hypothesis “zero information con-
tent” (no Granger causality) was determined using SB resampling (Diks
and DeGoede 2001). One finding (Diks and Mudelsee 2000), from in-
terpolated series, was that changes of δ18O (a proxy for ice volume) do
Granger cause changes of δ13C (a proxy for the strength of formation
of North Atlantic Deep Water), and that this coupling did increase to-
wards the late Pleistocene. Other information-theoretic measures can
be applied when three variables, X, Y and Z, are available; an analysis
of data covering the past 400 years found that solar activity variations
seem to “account for a smaller-scale behavior of global temperatures than
greenhouse gases” (Verdes 2005: p. 026222-7 therein). A recent review
of causality detection using information-theoretic methods (Hlaváčková-
Schindler et al. 2007) gives more examples from climatology. Barnard
(1982: p. 387 therein) notes also that “causation does not necessarily
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imply correlation as the latter is usually measured.” He gives the simple
nonlinear model,

Y (i) = sin (πX(i)) , (7.64)

with X(i) uniformly distributed over [−1;+1], where also Y (i) varies
between −1 and +1; this model has ρXY = 0. The design of suitable
dependence measures for nonlinear processes, alternatives to Pearson’s
or Spearman’s linear measures, has something of an art. Granger et al.
(2004: pp. 651–652 therein) propose that a measure should have the
following properties:

1. It is well defined for both continuous and discrete variables.

2. It is normalized to zero if X and Y are independent, and lies between
0 and +1.

3. The modulus of the measure is equal to unity (or a maximum) if
there is a measurable exact (nonlinear) relationship, Y = m(X) say,
between the random variables.

4. It is equal to or has a simple relationship with the (linear) correlation
coefficient in the case of a bivariate normal distribution.

5. It is metric, i.e., it is a true measure of ‘distance’ and not just of
divergence.

6. The measure is invariant under continuous and strictly increasing
transformations Ψ(·). This is useful since X and Y are independent if
and only if Ψ(X) and Ψ(Y ) are independent. Invariance is important
since otherwise clever or inadvertent transformations would produce
different levels of dependence.”

Granger et al. (2004) studied several dependence measures for many
nonlinear models by means of Monte Carlo simulations.
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7.7 Technical issues
The variance of Spearman’s rank correlation coefficient is for

binormal processes (David and Mallows 1961: Eq. (Z) therein)

VAR [rS] ≈
1

n− 1
+

36
π2n (n− 1) (n + 1)2

×
[
n3

(
−0.42863279ρ2

XY + 0.08354697ρ4
XY + 0.04257246ρ6

XY

+ 0.01687474ρ8
XY + 0.00664071ρ10

XY + 0.00270655ρ12
XY

)
+ n2

(
0.1551301ρ2

XY − 0.057362293ρ4
XY − 0.18443407ρ6

XY

− 0.02271732ρ8
XY + 0.00757524ρ10

XY + 0.01329883ρ12
XY

)
+ n

(
0.36837259ρ2

XY + 0.44738882ρ4
XY − 0.08427574ρ6

XY

− 0.27929901ρ8
XY − 0.19943375ρ10

XY − 0.1386106ρ12
XY

)
+ 0.07179677ρ2

XY + 0.06467162ρ4
XY + 0.21015257ρ6

XY

+ 0.28589798ρ8
XY + 0.31704425ρ10

XY + 0.07923733ρ12
XY

]
.

(7.65)

PearsonT (Mudelsee 2003) is a Fortran 90 program for calculating
rXY with BCa CI from pairwise-MBB resampling. The software is avail-
able at the web site for this book.



Chapter 8

Regression II

Regression serves in this chapter to relate two climate variables, X(i)
and Y (i). This is a standard tool for formulating a quantitative “climate
theory” based on equations. Owing to the complexity of the climate
system, such a theory can never be derived alone from the pure laws
of physics—it requires to establish empirical relations between observed
climate processes.

Since not only Y (i) but also X(i) are observed with error, the relation
has to be formulated as an errors-in-variables model, and the estimation
has to be carried out using adaptions of the OLS technique. This chapter
focuses on the linear model and studies three estimation techniques (de-
noted as OLSBC, WLSXY and Wald–Bartlett procedure). It presents a
novel bivariate resampling approach (pairwise-MBBres), which enhances
the coverage performance of bootstrap CIs for the estimated regression
parameters.

Monte Carlo simulations allow to assess the role of various aspects of
the estimation. First, prior knowledge about the size of the measurement
errors is indispensable to yield a consistent estimation. If this knowledge
is not exact, which is typical for a situation in the climatological practice,
it contributes to the estimation error of the slope (RMSE and CI length).
This contribution persists even when the data size goes to infinity; the
RMSE does then not approach zero. Second, autocorrelation has to be
taken into account to prevent estimation errors unrealistically small and
CIs too narrow.

This chapter studies two extensions of high relevance for climatological
applications: linear prediction and lagged regression.

Regression as a method to estimate the trend in the climate equation
(Eq. 1.2) is presented in Chapter 4.

M. Mudelsee, Climate Time Series Analysis, Atmospheric and 339
Oceanographic Sciences Library 42, DOI 10.1007/978-90-481-9482-7 8,
c© Springer Science+Business Media B.V. 2010
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8.1 Linear regression
To make a regression of the predictor variable, X, on the response

variable, Y , we re-apply the errors-in-variables model (Section 4.1.7),

Y (i) = β0 + β1 [X(i)− SX(i) ·Xnoise(i)] + SY (i) · Ynoise(i), (8.1)

i = 1, . . . , n. The variability of process X(i) and Y (i) is denoted as SX(i)
and SY (i), respectively; the noise component, Xnoise(i) and Ynoise(i), is
of assumed AR(1) type with persistence time τX and τY , respectively.
One task is to estimate the regression parameters, β0 and β1, given a
bivariate sample, {t(i), x(i), y(i)}n

i=1. Another, related task is to make a
prediction of an unknown Y for a given value of X.

The errors-in-variables model (Eq. 8.1) differs from the simple model
(Eq. 4.3) in its nonzero noise component of the predictor. Several es-
timators for the errors-in-variables model have been developed to deal
with this more complex situation.

8.1.1 Ordinary least-squares estimation
The simple OLS estimation minimizes the unweighted sum of squares,

SSQ(β0, β1) =
n∑

i=1

[y(i)− β0 − β1x(i)]2 . (8.2)

This yields the estimators

β̂0 =

[
n∑

i=1

y(i)− β̂1

n∑
i=1

x(i)

] /
n (8.3)

and

β̂1 =

{[
n∑

i=1

x(i)

] [
n∑

i=1

y(i)

] /
n−

n∑
i=1

x(i) y(i)

}

×


[

n∑
i=1

x(i)

]2 /
n−

n∑
i=1

x(i)2


−1

. (8.4)

Using OLS means ignoring heteroscedasticity, persistence and errors
in the predictor variable, X. However, heteroscedasticity and persistence
can successfully be taken into account by employing WLS and GLS
estimation, respectively. The success of ignoring errors in X depends on
how large these are relative to the spread of the “true” X values (Eq.
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4.34), which are given by Xtrue(i) = X(i)− SX(i) ·Xnoise(i). If SX(i) =
SX is constant and S2

X � VAR[Xtrue(i)], the estimation bias should be
negligible. If SX(i) is not constant, one may expect a similar condition
to the average of SX(i). The decisive quantity is VAR[Xtrue(i)], which
may be difficult to control for an experimenter prior to sampling the
process.

If Xnoise(i) and Ynoise(i) are independent, the estimator β̂1 is biased
downwards (Section 4.1.7) as E

(
β̂1

)
= κ · β1, where κ ≤ 1 is the atten-

uation factor or reliability ratio,

κ =
(
1 + S2

X /VAR [Xtrue(i)]
)−1

. (8.5)

The intuitive reason of the bias downwards is that “smearing” the “true”
predictor variable, Xtrue(i), leads to a situation where the “cheapest fit
solution” in terms of SSQ is a line that is horizontally tilted (Fig. 8.1).

8.1.1.1 Bias correction
Eq. (8.5) points to a bias-corrected slope estimation. Let SX(i) = SX

be constant and known, and let the variance of the “true” predictor
values be given by VAR[Xtrue(i)] = VAR[X(i)]− S2

X . This leads to

β̂1 = β̂1,OLS

/{
1− S2

X /VAR [X(i)]
}

, (8.6)

where β̂1,OLS is the simple OLS slope estimator (Eq. 8.4). We denote
this estimation method (Eq. 8.6) as ordinary least squares with bias
correction (OLSBC). The OLSBC intercept estimator equals the OLS
intercept estimator (Eq. 8.3). In practice (sample level), plug in x(i) for
X(i).

8.1.1.2 Prior knowledge about standard deviations
Assume homoscedastic noise components, SY (i) = SY and SX(i) =

SX , and denote their squared ratio as

λ = S2
Y

/
S2

X . (8.7)

Knowledge prior to the estimation about SX , SY or λ can increase the
estimation accuracy.

If SX is known, then OLSBC can be readily performed (Eq. 8.6). Such
prior knowledge may be acquired, for example, by repeating measure-
ments. Or there may exist theoretical information about the measuring
device and, hence, SX .

If SX is only known within bounds, OLSBC estimation can still be
applied. CI construction has then to take into account the limited prior
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Figure 8.1. Linear errors-in-variables regression model, OLS estimation. The
{y(i)}n

i=1 are identical in panels a–c; the data size is n = 18; and the {x(i)}n
i=1

are realizations of a predictor variable, X(i), with constant zero (a), small (b) and
large (c) noise components, SX(i) ·Xnoise(i). The true slope is β1 = 1.0 (a). The OLS

fits (solid lines) exhibit slope estimates that are unbiased (a β̂1 = 1.0) or biased (b

β̂1 = 0.92; c β̂1 = 0.55).



8.1 Linear regression 343

knowledge. The result is a wider CI compared to the situation of perfect
prior knowledge (Section 8.3).

If only the ratio, λ, is known, then one may be tempted to employ
the method of moments estimator from the background material (Eq.
8.26) and plug in ŜX for SX in Eq. (8.6). Similarly, if only SY is known,
then one may be tempted to employ Eq. (8.26), replace therein δ =
λ1/2 by SY /ŜX and solve the equation for ŜX . However, own Monte
Carlo experiments (results not shown) revealed completely inacceptable
coverage accuracies of bootstrap confidence intervals for the slope (but
acceptable accuracies for the intercept). The reason is the inaccurate
ŜX estimation (Fuller 1987: Section 2.5 therein). Our recommendation
for the case of known λ (or SY ) is the weighted least-squares estimation
(Section 8.1.2).

If no knowledge at all exists about SX , SY or λ, then we face dif-
ficulties. One may simply try OLS but risk a biased slope estimation.
One may resort to the Wald–Bartlett procedure (Section 8.1.3), but also
this does not produce accurate results when so little is known. We dis-
courage from adopting an OLS regression of Y an X and estimating SX

via the residual mean square (Eq. 4.8), an idea found occasionally in
the literature. Own Monte Carlo experiments (similar to those in Sec-
tion 8.3, results not shown) revealed inacceptable coverage performance
of bootstrap CIs.

8.1.2 Weighted least-squares for both variables
estimation

Studying the combination of both noise components in Eq. (8.1) in the
form of SY (i) · Ynoise(i)− β1 SX(i) ·Xnoise(i) makes clear the estimation
approach via attaching weights to the observations of both variables
(Deming 1943; Lindley 1947). The variant by York (1966) and others,
who suggested minimization of the weighted least-squares sum,

SSQWXY (β0, β1) =
n∑

i=1

[y(i)− β0 − β1x(i)]2

SY (i)2 + β2
1 SX(i)2

, (8.8)

was included in the Numerical Recipes (Press et al. 1992: Section 15.3
therein). However, no general analytical solution exists and some numer-
ical difficulties have to be circumnavigated (Section 8.8). We abbreviate
this estimation procedure as WLSXY (Fig. 8.2).

8.1.2.1 Prior knowledge about standard deviation ratio
Assume SY (i) and SX(i) to be unknown, but their (squared) ratio,

λ = SY (i)2
/
SX(i)2, (8.9)
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Figure 8.2. Linear errors-in-variables regression model, WLSXY and OLS estima-
tions. The {x(i), y(i)}n

i=1 are overtaken from Fig. 8.1c. The OLS fit of X on Y

(solid line) has a slope of β̂1 = 0.55, the OLS fit of Y on X (long-dashed line) has

1/β̂′1 = 2.45 and the WLSXY fit of X on Y (short-dashed line) has β̂1 = 1.15. (The
model for the regression of Y on X is X(i) = β′0 + β′1Y (i) + SX ·Xnoise(i).)

to be constant and known. Such type of knowledge may be available in
climatological applications. Then,

SSQWXY (β0, β1) =
n∑

i=1

[y(i)− β0 − β1x(i)]2(
1 + β2

1 /λ
)
SY (i)2

, (8.10)

which is minimized (Section 8.8). The sub-case of constant SY (i) (or
SX(i)) is considerably easier to treat than the heteroscedastic sub-case.

Under the assumption of Gaussian distributional shapes of Xnoise(i)
and Ynoise(i), the WLSXY estimators equal the maximum likelihood es-
timators (Madansky 1959; Fuller 1987).

8.1.2.2 Geometric interpretation
WLSXY minimizes the sum of squares of distances between the fit line

and the data points. How to measure the distance depends on the ratio,
λ = SY (i)2/SX(i)2. The geometric interpretation is straightforward
(Fig. 8.3) and generalizable to higher dimensions (background material).

If SX(i) = 0, that means, the X(i) values are exact, then λ = ∞
and we use WLS regression of X on Y (Section 4.1.1); if further SY (i)
is constant, this amounts to OLS regression. On the other hand, if
SY (i) = 0, then λ = 0 and we use WLS regression of Y on X. (See Fig.
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Figure 8.3. Geometric interpretation of WLSXY. The lines L0, Lλ and L∞ measure
the distance from a data point to the fit line for λ = 0, 0 < λ < ∞ and λ = ∞,
respectively.

8.2 for the regression of Y on X.) If the standard deviations are nonzero
and 0 < λ < ∞, we measure the distance along the line Lλ (Fig. 8.3).
The slope of this line is equal to −λ/β̂1 (York 1967).

If heteroscedasticity is in one or both of the noise components, then
the ratio λ may vary with time (i) and, hence, the line Lλ may vary in
its slope. The difficulty of non-identifiability is introduced by unknown
λ because then it is not unequivocally determined how to measure the
distance and minimize the sum of squares.

8.1.3 Wald–Bartlett procedure
A straightforward estimation idea (Draper and Smith 1981: Section

2.14 therein) is to build two groups of the bivariate sample according
to the size of the x values, then to take for each group the centres
defined by the x and y averages and, finally, to connect the centres
using a straight line—defining the estimate of the slope. The intercept
estimate is found via the centre of the complete bivariate sample and the
slope estimate. This goes back to Wald (1940), who grouped the sample
into two halves of same size (if n is even) and Bartlett (1949), who
showed that taking three groups improves the accuracy of the regression
estimators. (Intuitively, the means of the two groups are further apart for
taking thirds than for taking halves, outweighing the deficit of reduced
data sizes.) We call this estimation Wald–Bartlett procedure (Fig. 8.4).

The Wald–Bartlett procedure can in principle be applied to any group-
ing of the set of data points, not only according to the size of the x values.
A point to note is that the grouping has to be independent of Xnoise(i)
for achieving consistency of the estimators (Wald 1940). This condition
is violated when the {Xtrue(i)}n

i=1 are unknown and the size ordering
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Figure 8.4. Wald–Bartlett procedure. The bivariate sample {x(i), y(i)}n
i=1 is divided

into three groups of same size according to the size of the x values; if n is not divisible
by 3, then take the closest grouping. Let j index the size-sorted sample. Let the
averages of {x(j)}n/3

j=1 and {y(j)}n/3
j=1, denoted as x̄1 and ȳ1, define the first group’s

centre (P1, cross), and let the averages of {x(j)}n
j=2n/3+1 and {y(j)}n

j=2n/3+1, denoted
as x̄3 and ȳ3, define the third group’s centre (P3). The line P1 P3 (long-dashed)

defines the Wald–Bartlett regression estimate of the slope, β̂1 = (ȳ3 − ȳ1)/(x̄3 − x̄1).
The centre of the complete sample (P ) is defined via the averages of {x(j)}n

j=1 and

{y(j)}n
j=1, denoted as x̄ and ȳ. The Wald–Bartlett intercept estimate, β̂0 = ȳ − β̂1x̄,

completes the linear fit (solid line).

is made on the noise-influenced observations. Monte Carlo simulations,
similar to those in Section 8.3, reveal that the inconsistency leads to an
inacceptably poor coverage performance of bootstrap CIs (for β̂0 and β̂1)
(not shown). This limits severely the applicability of the Wald–Bartlett
procedure to real-world climatological problems, where the Xtrue(i) are
usually unknown.

Wald (1940: p. 298 therein) notes that if prior knowledge exists
on the standard deviation ratio, then a consistent estimation could
be constructed. This situation is similar to WLSXY estimation (Sec-
tion 8.1.2.1).

The calculation of classical CIs (Wald 1940; Bartlett 1949) via the
Student’s t distribution assumed prior knowledge to be available, allow-
ing a consistent estimation, and the errors, Xnoise(i) and Ynoise(i), to be
serially independent and of Gaussian shape.

8.2 Bootstrap confidence intervals
Classical CIs are based on the PDF of an estimator (Chapter 3). The

PDF can be analytically determined unless the situation (estimation
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problem, noise properties) becomes too complex. The construction of
classical CIs for the linear errors-in-variables model (Wald 1940; Bartlett
1949; York 1966; Fuller 1987) made a number of assumptions from the
following:

1. Gaussian distributional shapes of the noise components, Xnoise(i) and
Ynoise(i);

2. absence of autocorrelation in the noise components;

3. absence of correlation between X(i) and Xnoise(i) as well as between
Y (i) and Ynoise(i);

4. absence of correlation between Xnoise(i) and Ynoise(i).

Some authors treat the correlation effects (points 3 and 4) and non-
Gaussian errors (point 1), see the background material (Section 8.7).
However, allowance for autocorrelations (point 2) seems to have been
made by none.

Here we are interested in linearly relating two climate processes, X(i)
and Y (i), and our sample, {t(i), x(i), y(i)}n

i=1, contains the time. The
previous chapters document that non-Gaussian distributions and persis-
tence phenomena are typical of climate processes. We cannot therefore
expect the classical method to yield accurate results for climate data.
This is, as in previous chapters, the reason to consider the bootstrap
method. An additional point is incomplete knowledge about the noise
components. Often we have no or only limited information about SY (i),
SX(i) or their (squared) ratio, λ. Such incomplete knowledge, which
may widen the CI, is quantifiable using bootstrap resampling (Booth
and Hall 1993).

One resampling algorithm is the pairwise-MBB, which has been found
useful in the context of correlation estimation (Algorithm 7.2).

The other algorithm, introduced here for the purpose of enhancing the
coverage performance in the context of fitting errors-in-variables mod-
els, is called pairwise-moving block bootstrap resampling of residuals
or pairwise-MBBres. It is based on the observation that the (linear)
errors-in-variables regression (Eq. 8.1) is a model with a deterministic
(linear) component. Since pairwise resampling seems to be handicapped
in the presence of deterministic components (Chapter 4), the idea of
the pairwise-MBBres algorithm is to take the fit and the regression
residuals, apply pairwise-MBB to the residuals and add the resampled
residuals to the fit. The new approach is that the residuals, eX(i) and
eY (i), are in two dimensions (Fig. 8.5). The pairwise-MBBres is given
as Algorithm 8.1.
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x(i )

y(i )

x(i '), y(i ')

Lλ

eX (i ')

eY (i ')

Figure 8.5. Pairwise-MBBres algorithm, definition of residuals. The line Lλ mea-
sures the distance from a data point to the fit line (Fig. 8.3). The residuals (dashed

lines) are given by eX(i) = [β̂0+ β̂1 ·x(i)−y(i)]/[λ/β̂1+ β̂1] and eY (i) = −λ ·eX(i)/β̂1.

8.2.1 Simulating incomplete prior knowledge
Assume for the convenience of exposition homoscedastic noise com-

ponents, SX(i) = SX and SY (i) = SY . For achieving an identifi-
able problem, OLSBC estimation requires information, not contained
in the sample, about SX (Section 8.1.1.2); analogously, WLSXY estima-
tion requires information about both SX and SY , or about their ratio,
δ = λ1/2 = SY /SX (Section 8.1.2.1).

In practical applications such prior knowledge is not always exact. SX

or δ are then described by random variables. Bootstrap resampling can
be augmented by a simulation step, where random numbers are drawn
from the distribution of SX or δ. This increases the uncertainty of the
OLSBC or WLSXY estimates, leading to wider bootstrap CIs compared
to a situation with exact prior knowledge (Booth and Hall 1993).

In the Monte Carlo experiments studying incomplete prior knowledge,
we use the model

√
λ∗ = δ∗ = δ · EU[1−∆; 1+∆](i), (8.11)

S∗
X = SX

/√
δ∗, (8.12)

where EU[1−∆; 1+∆](i) is an IID random process with a uniform distribu-
tion over the interval [1 −∆; 1 + ∆]. For example, ∆ = 0.5 specifies a
situation where we only know δ to lie between 0.5 and 1.5 times its true
value. Other models are possible.

The construction of bootstrap CIs (Algorithm 8.1) is adapted at Step
8, the calculation of the replications. Instead of applying to the resam-
pled data the same estimation procedure that is used for the original
data, an adapted estimation is performed (Steps 8a and 8b).
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Step 1 Bivariate time series {t(i), x(i), y(i)}n
i=1

Step 2 Parameter estimates β̂0, β̂1

from OLSBC, WLSXY or

Wald–Bartlett procedure

Step 3 Residuals (Fig. 8.5) eX(i), eY (i)

Step 4 Fit values xfit(i) = x(i)− eX(i),

yfit(i) = y(i)− eY (i)

Step 5 Bias-corrected AR(1)

parameters, â′X = â′Y

estimated on residuals,

block length selection l

after Eqs. (7.31) and (7.32)

Step 6 Resampled residuals,

pairwise-MBB with l
{
e∗b

X (i), e∗b
Y (i)

}n

i=1
(b, counter)

Step 7 Resample x∗b(i) = xfit(i) + e∗b
X (i),

y∗b(i) = yfit(i) + e∗b
Y (i), i = 1, . . . , n

Step 8 Bootstrap replications β̂∗b
0 , β̂∗b

1

Step 9 Bootstrap prediction ŷ∗b(n + 1) = β̂∗b
0 + β̂∗b

1 x(n + 1)

Step 10 Go to Step 6 until b = B

(usually B = 2000)

replications exist
{
β̂∗b

0

}B

b=1
,
{
β̂∗b

1

}B

b=1
,
{
ŷ∗b(n + 1)

}B

b=1

Step 11 Calculate CIs

(Section 3.4)

Algorithm 8.1. Construction of bootstrap confidence intervals for parameters of the
linear errors-in-variables regression model, pairwise-MBBres resampling, even spac-
ing. In case of uneven spacing, Step 5 uses τ̂ ′X = τ̂ ′Y . Step 8 can be adapted as follows
for taking incomplete prior knowledge into account. Step 8a: simulate λ∗, S∗

X ; Step
8b: use OLSBC with S∗

X instead of SX (Eq. 8.6), use WLSXY with λ∗ instead of λ
(Eq. 8.10). Steps 9 and 10: ŷ∗b(n + 1) refers to prediction (Section 8.5).
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8.3 Monte Carlo experiments
The first group of experiments (Section 8.3.1) adopts an “easy” set-

ting, where distributional shapes are Gaussian and prior knowledge is
exact. The results confirm the success of block resampling methods in
preserving serial dependence. The second group of experiments (Sec-
tion 8.3.2) shows that for realistic settings, with non-Gaussian distri-
butions or incomplete knowledge, the results are less exact. It appears
that then WLSXY estimation combined with pairwise-MBBres resam-
pling yields the relatively best results. The third group (Section 8.3.3)
quantifies coverage accuracy and RMSE in dependence on the accuracy
of the prior knowledge (standard deviation ratio). It demonstrates that
even with n →∞, the RMSE (and the CI length) for β̂1 (slope) does not
go to zero, but rather approaches finite values. On the other hand (inter-
cept), with n → ∞ does RMSE

β̂0
→ 0. The last group (Section 8.3.4),

finally, explores what happens when we mis-specify the degree of how
accurately we know the standard deviation ratio.

8.3.1 Easy setting
The easy setting (Gaussian shapes of Xnoise(i) and Ynoise(i), complete

prior knowledge) is further simplified when no autocorrelation resides
in the noise components. Table 8.1 exhibits excellent coverage perfor-
mance of bootstrap CIs with pairwise-MBBres resampling already for
sample sizes as small as 20. The excellent performance regards both pa-
rameters (intercept and slope) and all estimation procedures (OLSBC,
WLSXY and Wald–Bartlett). Similar results for OLSBC and WLSXY
were obtained using pairwise-MBB resampling (results not shown).

If there exists autocorrelation, then pairwise-MBBres resampling suc-
cessfully preserves it, where it does not matter whether the AR(1) pa-
rameters are known or, which is more realistic, have to be estimated.
However, there is one exception: the Wald–Bartlett estimation of the
intercept fails completely, independent of the sample size. Also OLSBC
and WLSXY estimations of the intercept are of reduced CI coverage ac-
curacy, but become acceptable for n above, say, 200. It is not clear why
intercept estimation is more problematic than slope estimation.

We remark that the inacceptable performance of the Wald–Bartlett
procedure occurred even in the presence of knowledge of the size of the
true predictor values, which in turn enabled a perfect grouping (inde-
pendent of the predictor noise). The three points of the (1) inacceptable
performance of CIs for the intercept, (2) not better (compared with
OLSBC and WLSXY) performance of CIs for the slope and (3) rather
strong requirement of knowledge of the size of true predictor values—
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Table 8.1. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape and complete prior knowledge: CI coverage performance.
nsim = 47,500 random samples were generated from Xtrue(i) = EN(0, 1)(i) and
Y (i) = β0+β1Xtrue(i)+SY ·Ynoise(i), i = 1, . . . , n, with β0 = 1.0 and β1 = 2.0. Predic-
tor noise was subsequently added, X(i) = Xtrue(i)+SX ·Xnoise(i). The Xnoise(i) and
Ynoise(i) are mutually independent Gaussian AR(1) processes for even spacing (Eq.
2.1) with parameters aX and aY , respectively. Construction of bootstrap CIs used
pairwise-MBBres resampling (Algorithm 8.1), block length selection after Eqs. (7.31)
and (7.32), the Student’s t interval type (ν = n − 2), B = 2000 and confidence level
95%. Prior knowledge of SX = 0.25, SY = 0.5 and the size of the {xtrue(i)}n

i=1 was
exact and utilized in the estimations; AR(1) parameters are in two cases known, in
one case unknown and estimated with bias correction.

n γa
β̂0

γa
β̂1

Nominal

Estimation method Estimation method

OLSBC WLSXY WBb OLSBC WLSXY WBb

aX = aY = 0.0 (known)
10 0.933 0.928 0.933 0.955 0.928 0.938 0.950
20 0.939 0.939 0.942 0.949 0.938 0.942 0.950
50 0.944 0.947 0.948 0.949 0.946 0.947 0.950

100 0.944 0.946 0.947 0.949 0.947 0.946 0.950
200 0.945 0.949 0.950 0.949 0.947 0.945 0.950
500 0.946 0.949 0.949 0.950 0.946 0.946 0.950

1000 0.945 0.948 0.949 0.949 0.948 0.945 0.950

aX = aY = 0.3 (known)
10 0.839 0.831 0.785 0.949 0.919 0.912 0.950
20 0.863 0.862 0.816 0.947 0.936 0.926 0.950
50 0.895 0.896 0.827 0.948 0.945 0.930 0.950

100 0.909 0.911 0.827 0.947 0.945 0.933 0.950
200 0.921 0.924 0.836 0.947 0.945 0.939 0.950
500 0.931 0.933 0.840 0.948 0.944 0.941 0.950

1000 0.935 0.938 0.844 0.950 0.949 0.945 0.950

aX = aY = 0.3 (unknown, estimated)
10 0.807 0.797 0.841 0.922 0.892 0.935 0.950
20 0.871 0.869 0.853 0.943 0.932 0.947 0.950
50 0.896 0.897 0.852 0.946 0.943 0.947 0.950

100 0.911 0.913 0.854 0.948 0.947 0.949 0.950
200 0.921 0.923 0.853 0.949 0.948 0.949 0.950
500 0.930 0.932 0.850 0.949 0.945 0.948 0.950

1000 0.934 0.937 0.849 0.949 0.948 0.949 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.
b Wald–Bartlett procedure.
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Table 8.2. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape and complete prior knowledge: CI coverage performance (con-
tinued). Design is identical to the previous experiment (Table 8.1), with the exception
that autocorrelation is ignored at CI construction.

n γa
β̂0

γa
β̂1

Nominal

Estimation method Estimation method

OLSBC WLSXY WBb OLSBC WLSXY WBb

aX = aY = 0.3 (ignored)
10 0.846 0.838 0.846 0.955 0.928 0.939 0.950
20 0.842 0.840 0.845 0.948 0.937 0.942 0.950
50 0.845 0.847 0.849 0.948 0.944 0.946 0.950

100 0.842 0.846 0.846 0.947 0.946 0.946 0.950
200 0.845 0.848 0.849 0.947 0.946 0.945 0.950
500 0.846 0.849 0.849 0.948 0.945 0.947 0.950

1000 0.846 0.848 0.849 0.946 0.948 0.946 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.
b Wald–Bartlett procedure.

provide enough support to exclude the Wald–Bartlett procedure from
consideration in the further experiments (which have more realistic set-
tings).

One experiment under the easy setting studied what happens when
autocorrelation is ignored (Table 8.2). This was achieved by prescrib-
ing positive AR(1) parameters, aX and aY , of both noise components
and resetting their estimate values to zero, â′X ≡ 0 and â′Y ≡ 0. The
detrimental effect, again on β̂0 but not β̂1, was an underestimated boot-
strap standard error, which led to too narrow CIs and too low cover-
ages. (Similar results where found when replacing pairwise-MBBres by
pairwise-MBB resampling.)

The major findings of the first experiment on CI coverage accuracy
(Table 8.1) are reflected in the results on empirical RMSE (Table 8.3).
Autocorrelation increases the estimation error of the intercept, but not
of the slope. A larger data size means a smaller estimation error of the
intercept and the slope. For n →∞, both RMSE

β̂0
and RMSE

β̂1
appear

to go to zero.
OLSBC and WLSXY estimation methods perform similarly; only for

small n and slope estimation does WLSXY seem to give smaller error
bars than OLSBC.
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Table 8.3. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape and complete prior knowledge: RMSE. Design is identical to
the experiment shown in Table 8.1.

n RMSEa
β̂0

RMSEb
β̂1

Estimation method Estimation method

OLSBC WLSXY OLSBC WLSXY

aX = aY = 0.0
10 0.237 0.245 0.645 0.289
20 0.161 0.164 0.190 0.178
50 0.099 0.101 0.110 0.105

100 0.070 0.071 0.076 0.073
200 0.049 0.050 0.053 0.052
500 0.031 0.032 0.033 0.033

1000 0.022 0.022 0.023 0.023

aX = aY = 0.3
10 0.300 0.310 5.759 0.275
20 0.211 0.216 0.188 0.174
50 0.134 0.137 0.110 0.105

100 0.094 0.096 0.076 0.073
200 0.067 0.068 0.053 0.052
500 0.042 0.043 0.034 0.033

1000 0.030 0.031 0.024 0.023

a Empirical RMSE
β̂0

, given by

[∑nsim
i=1

(
β̂0 − β0

)2
/nsim

]1/2

.

b Empirical RMSE
β̂1

, given by

[∑nsim
i=1

(
β̂1 − β1

)2
/nsim

]1/2

.

8.3.2 Realistic setting: incomplete prior
knowledge

The setting becomes more complex, or realistic, when the prior knowl-
edge about the standard deviations of the measurement noise is not
complete. We study (Table 8.4) a situation where the true ratio is
δ = SY /SX = 2.0 but one knows only that δ is between 1.0 and 3.0. The
adapted bootstrap CI construction (WLSXY with λ∗ = (δ∗)2), for both
β̂0 and β̂1, yields acceptable accuracies for normal shape and n ' 200—
under the condition that pairwise-MBBres resampling is employed. (For
climatological purposes, a 95% CI may be “acceptable” if the true cov-
erage is between, say, 92 and 98%.) The pairwise-MBBres resampling
method (Fig. 8.5) is clearly superior to the pairwise-MBB method.

Bootstrap CI construction for OLSBC estimates failed to achieve the
accuracies for WLSXY—for both resampling methods. Rather large
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Table 8.4. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal/lognormal shape and incomplete prior knowledge: CI coverage per-
formance. Design is identical to the first experiment (Table 8.1), with the following
exceptions: (1) autocorrelation parameters are unknown (and estimated with bias cor-
rection) and (2) Ynoise(i) has normal or lognormal shape. Estimation and CI construc-
tion is identical to the first experiment (Table 8.1), with the following exceptions: (1)
the Wald–Bartlett procedure is omitted; (2) prior knowledge of SX = 0.25, SY = 0.5
(δ = 2.0) is incomplete after Eqs. (8.11) and (8.12) with ∆ = 0.5; and (3) CI con-
struction is adapted accordingly (Section 8.2.1).

n γa
β̂0

γa
β̂1

Nominal

Estimation method Estimation method

OLSBC WLSXY OLSBC WLSXY

aX = aY = 0.3, Ynoise(i) normal shape, pairwise-MBBres
10 0.809 0.802 0.941 0.895 0.950
20 0.871 0.871 0.956 0.931 0.950
50 0.898 0.899 0.955 0.940 0.950

100 0.909 0.913 0.952 0.942 0.950
200 0.921 0.924 0.948 0.943 0.950
500 0.930 0.934 0.939 0.947 0.950

1000 0.937 0.939 0.927 0.952 0.950
2000 0.936 0.939 0.919 0.958 0.950
5000 0.941 0.944 0.909 0.960 0.950

aX = aY = 0.3, Ynoise(i) normal shape, pairwise-MBB
10 0.856 0.875 0.980 0.947 0.950
20 0.864 0.867 0.972 0.944 0.950
50 0.862 0.862 0.958 0.943 0.950

100 0.866 0.866 0.955 0.943 0.950
200 0.865 0.865 0.954 0.948 0.950
500 0.871 0.871 0.943 0.947 0.950

1000 0.873 0.871 0.932 0.952 0.950
2000 0.880 0.880 0.922 0.957 0.950
5000 0.891 0.889 0.915 0.962 0.950

aX = 0.3, aY = 0.8, Ynoise(i) lognormal shape, pairwise-MBBres
10 0.689 0.673 0.942 0.871 0.950
20 0.738 0.738 0.956 0.902 0.950
50 0.788 0.793 0.961 0.904 0.950

100 0.817 0.824 0.960 0.897 0.950
200 0.849 0.856 0.959 0.897 0.950
500 0.880 0.887 0.949 0.902 0.950

1000 0.894 0.901 0.936 0.917 0.950
2000 0.912 0.919 0.925 0.929 0.950
5000 0.924 0.931 0.917 0.947 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.
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sample sizes (n = 2000 and 5000) reveal the “worrisome” behaviour of
γ

β̂1
for the OLSBC estimates: they do not saturate and approach the

nominal value of 0.95 but seem rather to drift away for large n.
It becomes clear that for realistic settings (autocorrelation, incomplete

prior knowledge), WLSXY estimation combined with pairwise-MBBres
resampling is the only one-loop option to achieve acceptable levels of CI
accuracy. A second loop of resampling (calibration or bootstrap-t) may
in principle improve the accuracy, also for errors-in-variables regression
(Booth and Hall 1993).

The combination of WLSXY and pairwise-MBBres performed well
(Table 8.4) also for a rather difficult setting (stronger, unequal autocor-
relations, lognormal shape). It is interesting to note that slope estima-
tion yielded more accurate results than intercept estimation. The data
size requirements, however, become rather strong (Table 8.4). Obtaining
accurate results for data sizes in the range of 500 and below may require
calibration methods.

8.3.3 Dependence on accuracy of prior knowledge
In practical situations, our prior knowledge about the measurement

standard errors or their ratio, δ = SY /SX , may depend to a consider-
able degree on how good we know the measurement devices (calibration
standards, replication analyses, etc.) or the archives “containing” the
data (sampling error). The accuracy of that knowledge, parameterized
here in form of ∆ (Eqs. 8.11 and 8.12), should influence the estimation
RMSE and possibly also the CI accuracy. This is explored by means of
a set of simulation experiments (Tables 8.5 and 8.6), where ∆ is varied.

The selection of the other setting parameters follows the previous
Monte Carlo experiments in this section: intermediate sizes of autocor-
relation, Gaussian shape and a true standard deviation ratio of δ = 2.0.
The data size may take relatively large values (n = 2000 and 5000) be-
cause also the limiting behaviour is of interest. We employ the WLSXY
estimation and Student’s t CI constructed by means of pairwise-MBBres
resampling.

The resulting coverages (Table 8.5) approach with increasing data size
the nominal value—as they should. In general, the levels are acceptable
from n above, say, 200 (slope estimation) or 500 (intercept estimation).
In the case of slope estimation, a highly inaccurate prior knowledge
(∆ = 0.9) may require more data points for achieving a coverage level
similar to values found for smaller inaccuracies (∆ ≤ 0.7).

The resulting RMSE values (Table 8.6) for intercept estimation ap-
proach zero with increasing data size. The rate of this convergence seems
not to depend on the accuracy of the prior knowledge (∆). The RMSE
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Table 8.5. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape: influence of accuracy of prior knowledge on CI coverage perfor-
mance. Design is identical to the previous experiment (Table 8.4), with the following
fixed setting: (1) autocorrelation parameters are aX = aY = 0.3, (2) both noise
components have normal shape. Estimation and CI construction is identical to the
previous experiment (Table 8.4), with the following exceptions: (1) only WLSXY
estimation with pairwise-MBBres resampling is considered; (2) prior knowledge of
SX = 0.25, SY = 0.5 (δ = 2.0) is incomplete after Eq. (8.11) with various ∆ values.

n γa Nominal

Accuracy of prior knowledge

∆ = 0.1 ∆ = 0.3 ∆ = 0.5 ∆ = 0.7 ∆ = 0.9

Intercept estimation
10 0.774 0.772 0.802 0.773 0.782 0.950
20 0.868 0.867 0.871 0.869 0.873 0.950
50 0.895 0.898 0.899 0.897 0.902 0.950

100 0.913 0.912 0.913 0.914 0.915 0.950
200 0.924 0.924 0.924 0.925 0.928 0.950
500 0.931 0.933 0.934 0.934 0.934 0.950

1000 0.936 0.936 0.939 0.939 0.941 0.950
2000 0.940 0.939 0.939 0.942 0.944 0.950
5000 0.945 0.945 0.944 0.944 0.946 0.950

Slope estimation
10 0.873 0.877 0.895 0.877 0.875 0.950
20 0.933 0.931 0.931 0.925 0.916 0.950
50 0.944 0.942 0.940 0.936 0.916 0.950

100 0.948 0.945 0.942 0.936 0.918 0.950
200 0.947 0.948 0.943 0.938 0.920 0.950
500 0.947 0.948 0.947 0.942 0.924 0.950

1000 0.948 0.947 0.952 0.945 0.925 0.950
2000 0.946 0.950 0.958 0.946 0.924 0.950
5000 0.950 0.963 0.960 0.945 0.923 0.950

a Standard errors of γ for intercept and slope estimations are nominally 0.001.

values for slope estimation show an interesting behaviour: they do not
vanish with increasing data size but rather approach a finite value. The
reason is that the inaccurate prior knowledge about the measurement
standard errors (nonzero ∆) persists to influence the slope estimation—
an error source independent of the data size. Similar behaviours were
found also for OLSBC estimation of intercept and slope (results not
shown). The saturation value of RMSE

β̂1
depends on the accuracy of

the prior knowledge (∆), seemingly in a close-to-linear relation.
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Table 8.6. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape: influence of accuracy of prior knowledge on RMSE. The ex-
periment is the same as described in Table 8.5.

n RMSE

Accuracy of prior knowledge

∆ = 0.1 ∆ = 0.3 ∆ = 0.5 ∆ = 0.7 ∆ = 0.9

Intercept estimationa

10 0.310 0.313 0.315 0.329 0.348
20 0.217 0.219 0.220 0.227 0.241
50 0.137 0.137 0.139 0.143 0.151

100 0.096 0.097 0.098 0.100 0.106
200 0.068 0.069 0.069 0.071 0.075
500 0.043 0.043 0.044 0.045 0.048

1000 0.031 0.031 0.031 0.032 0.034
2000 0.022 0.022 0.022 0.023 0.024
5000 0.014 0.014 0.014 0.014 0.015

Slope estimationb

10 0.279 0.300 0.428 0.303 0.339
20 0.173 0.177 0.181 0.191 0.223
50 0.105 0.107 0.114 0.126 0.166

100 0.074 0.077 0.085 0.099 0.146
200 0.052 0.056 0.066 0.084 0.135
500 0.033 0.040 0.052 0.073 0.127

1000 0.024 0.032 0.047 0.069 0.125
2000 0.018 0.028 0.043 0.067 0.123
5000 0.012 0.025 0.042 0.066 0.124

a Empirical RMSE
β̂0

, given by

[∑nsim
i=1

(
β̂0 − β0

)2
/nsim

]1/2

.

b Empirical RMSE
β̂1

, given by

[∑nsim
i=1

(
β̂1 − β1

)2
/nsim

]1/2

.

To summarize, measurement error in the predictor requires to mod-
ify the OLS method to yield a bias-free slope estimation: OLSBC or
WLSXY. These modified estimation methods require prior knowledge
about the size of the measurement error. If this knowledge is not ex-
act, which is a typical situation in the climatological practice, then it
contributes to the estimation error of the slope (RMSE and CI length).
This contribution persists even when the data size goes to infinity.

8.3.4 Mis-specified prior knowledge
What happens if we make a wrong specification of the accuracy of

our prior knowledge? We study (Table 8.7) a situation where (1) the
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Table 8.7. Monte Carlo experiment, linear errors-in-variables regression with AR(1)
noise of normal shape: influence of mis-specified prior knowledge on CI coverage per-
formance. Design and estimation (WLSXY) are identical to the previous experiment
(Table 8.5). CI construction (via pairwise-MBBres resampling) is identical to that
in the previous experiment, with the following exceptions: (1) prior knowledge of
SX = 0.25, SY = 0.5 (δ = 2.0) is incomplete after Eq. (8.11) with ∆ = 0.5; (2) the
adaptive Steps 8a and 8b of Algorithm 8.1 are allowed to mis-specify ∆.

n γa
β̂0

γa
β̂1

Nominal

True ∆ = 0.5 True ∆ = 0.5
Specified ∆ Specified ∆

0.3 0.5 0.7 0.3 0.5 0.7

10 0.801 0.802 0.803 0.893 0.895 0.898 0.950
20 0.870 0.871 0.871 0.928 0.931 0.935 0.950
50 0.899 0.899 0.900 0.932 0.940 0.950 0.950

100 0.912 0.913 0.913 0.924 0.942 0.960 0.950
200 0.923 0.924 0.925 0.908 0.943 0.970 0.950
500 0.933 0.934 0.934 0.870 0.947 0.986 0.950

1000 0.939 0.939 0.940 0.827 0.952 0.994 0.950
2000 0.939 0.939 0.940 0.783 0.958 0.998 0.950
5000 0.944 0.944 0.944 0.744 0.960 1.000 0.950

a Standard errors of γ
β̂0

and γ
β̂1

are nominally 0.001.

true standard deviation ratio is δ = SY /SX = 2.0, (2) the estimation
on the sample is done with an incomplete knowledge of δ, modelled
as a uniform distribution over the interval between 1.0 and 3.0 (∆ =
0.5), and (3) the bootstrap CI construction is allowed to mis-specify
the incomplete knowledge by letting δ∗ be uniformly distributed over
the intervals between 1.4 and 2.6 (specified ∆ = 0.3) or between 0.6
and 3.4 (specified ∆ = 0.7). Specifying ∆ = 0.3 (instead of the correct
∆ = 0.5) constitutes a case of overestimation of the accuracy of the
prior knowledge, ∆ = 0.7 means an underestimation and ∆ = 0.5 is an
unbiased estimation.

The first result is that such a mis-specification has no effect on the
accuracy of CIs for the intercept. Table 8.7 displays results (for ∆ =
0.3, 0.5 and 0.7) that are, within the bounds of the “simulation noise,”
indistinguishable.

The second result is that mis-specified prior knowledge has a clear
effect on the accuracy of CIs for the slope. Table 8.7 shows results for
∆ = 0.3 and 0.7 to deviate from those for the correct value of ∆ = 0.5. If
we underestimate the accuracy of the prior knowledge about the size of
the measurement standard deviations (∆ = 0.3 instead of 0.5), then the
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CIs become too narrow and the coverage is reduced; if we overestimate
the accuracy (∆ = 0.7 instead of 0.5), then the CIs become too wide
and the coverage is inflated.

8.4 Example: climate sensitivity
The effective climate sensitivity, denoted here as Λ−1

S , is a parameter
that relates changes in annual-mean surface temperature to changes in
the radiative forcing (greenhouse gases, etc.) of the climate system. Its
units are ◦C (or K) per Wm−2. Climate sensitivity may vary with forcing
history and climatic state, reflecting the influence of varying feedback
mechanisms (amplifying or attenuating) in the climate system (Mitchell
et al. 1987). The lack of an accurate knowledge of Λ−1

S in the recent
past (since, say, 1850) is one of the major obstacles for making accurate
projections of future temperatures by means of AOGCMs (Forster et al.
2007).

The traditional estimation method for Λ−1
S seems to be via perturbed

climate models experiments, where the temperature response of the sys-
tem is studied for a range of variations of model parameters and forcing
scenarios (Forster et al. 2007). Due to the limited performance of cli-
mate models, it may be helpful to consider estimations that are based
entirely on direct observations. We therefore relate variable Y (i), the
observed temperature changes from 1850 to 2001, to variable X(i), the
radiative forcing variations. The time series with standard errors are
shown in Fig. 8.6. Since the predictor (forcing) has been determined
with error, our model is the linear errors-in-variables regression (Eq.
8.1). The estimation objective is the slope, β1 = Λ−1

S .
The result (Fig. 8.7) from WLSXY estimation of Λ−1

S is 0.85 K W−1m2.
The 95% CI, a Student’s t interval obtained from pairwise-MBBres
resampling with B = 2000 (Algorithm 8.1), is [0.47 KW−1m2; 1.24
KW−1m2]. The 90% CI, a level often used in the IPCC–WG I Report’s
chapter on radiative forcing (Forster et al. 2007), is [0.53 K W−1m2; 1.17
KW−1m2]. The climate literature often uses the “equilibrium climate
sensitivity,” which is defined as the temperature change that would be
approached in a (hypothetical) equilibrium following a doubling of the
atmospheric “equivalent carbon dioxide concentration” (representing all
greenhouse gases). This other sensitivity value is around (4 W−1m2)Λ−1

S ,
at least in the climate world of the E-R AOGCM of the National Aero-
nautics and Space Administration Goddard Institute for Space Studies,
New York (Foster et al. 2008). Thus, the WLSXY result suggests that
a CO2 doubling will lead to a temperature increase of 3.4 K.

What are the effects of autocorrelation? The block bootstrap resam-
pling took into account the relatively strong memory of temperature and
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Figure 8.6. Northern hemisphere temperature anomalies and climate forcing,
1850–2001: data. a The temperature time series, y(i), is shown (solid line) as devia-
tion from the 1961–1990 average (n = 152). The annual-mean composite was derived
using instrumental data from several thousand stations on land and sea (HadCRUT3
data set). The temperature standard error, sY (i), is shown (shaded band) as ±2sY (i)
interval around y(i); it reflects following sources of uncertainty (Brohan et al. 2006):
measurements, reporting, inhomogeneity correction, sampling, station coverage and
bias correction of sea-surface temperatures. b The radiative forcing time series, x(i),
is shown (solid line) with ±2sX(i) uncertainty band (shaded); it comprises follow-
ing components thought to influence temperature changes (Hegerl et al. 2006; Forster
et al. 2007): changes of atmospheric concentrations of greenhouse gases, solar activity
variations (Fig. 2.12) and changes of sulfate and other aerosol constituents in the tro-
posphere (lower part of the atmosphere). c Standard deviation ratio, δ = sY (i)/sX(i).
(Data from (a) Brohan et al. (2006) and (b) Hegerl et al. (2006).)
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Figure 8.7. Northern hemisphere temperature anomalies and climate forcing,
1850–2001: fit. WLSXY estimation yields a straight regression line (solid) with a

slope (i.e., effective climate sensitivity) of β̂1 = 0.85 K W−1m2. Also shown is OLS
regression line (dashed).

forcing noise components (â′X = â′Y = 0.82) by selecting a block length
of l = 18. Ignoring autocorrelation (setting l = 1) would make the CI
too narrow; for example, the 90% CI would become [0.56 KW−1m2; 1.14
KW−1m2].

The estimate and, more, the CI for Λ−1
S should be assessed, however,

with caution.

CI construction (Algorithm 8.1) used pairwise-MBBres resampling
with an assumed constant standard deviation ratio of δ = 0.66 (time-
average). This was done because of the absence of Monte Carlo
tests of adaptions of pairwise-MBBres resampling with respect to het-
eroscedastic errors. Instead we imposed an uncertainty of δ measured
by the “incomplete prior knowledge” parameter ∆ (Eq. 8.11). The
employed value of ∆ = 0.5 may have been too small and produced
a too narrow CI. Particularly, unrecognized temperature variations
not caused by measurement error or forcing changes, that is, “internal
temperature variability,” may let δ increase and reduce the sensitiv-
ity estimate (Laepple T 2010, personal communication). Note that
WLSXY estimation itself recognized heteroscedasticity.

The HadCRUT3 temperature data (Brohan et al. 2006) are down-
biased between about 1940 and the mid-1960s because of an unrec-
ognized change in 1945 in the sea-surface measurement techniques
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(Thompson et al. 2008). Since this interval is short relative to the
total observation interval, the influence of the inhomogeneity on the
Λ−1

S estimate should be small.

The tropospheric aerosol component of the forcing is known only
with a “low” to “medium–low” scientific understanding (Forster et al.
2007). The aerosol contribution to X(i) and SX(i) may be large in
error. Consequently, the error in SX(i) and δ may be large, and the
parameter ∆ may be larger than 0.5 (or even another model of the
incomplete prior knowledge required). We stress that the large error
of the predictor necessitates fitting an errors-in-variables regression
model. Ignoring this error (i.e., using OLS estimation) would strongly
underestimate the climate sensitivity (Fig. 8.7).

Volcanic eruptions, providing large negative forcing components (cool-
ing) have been ignored in the estimation (because of the many un-
knowns), although the observed temperature time series (Fig. 8.6a)
includes this effect. Since the number of large eruptions during the
151-year interval (Hegerl et al. 2006) is assessed as relatively small
(about 8 eruptions with < −2.0 Wm−2 in the northern hemisphere),
this omission should have a minor influence on the Λ−1

S estimate.

Ocean heat uptake has similarly been ignored, although observed
temperatures may show this influence. Assuming that it cannot be
neglected would (1) increase the Λ−1

S estimate and (2) widen its CI.

The analysis focused on the temperature of the northern hemisphere,
while the concept of climate sensitivity applies to the globe. The su-
periority of temperature data quality for the northern part (more sta-
tions) suggested this restriction. Obviously, other geographic parts,
including the globe, may be analysed in an analogous manner.

8.5 Prediction
A prediction is a statement about an uncertain event. In climate

sciences the events lie often in the future (forecast) but frequently also
in the past (hindcast), see the introductory examples (p. 3). In the
context of the present chapter, we wish to predict an unobserved value,
y(n + 1), given a sample, {t(i), x(i), y(i)}n

i=1, and a new observation,
x(n + 1), of the predictor variable made at time t(n + 1).

A typical situation is when a relation between a climate variable, Y (i),
and a proxy variable, X(i), is to be established. Suppose we observed
{t(i), x(i), y(i)}n

i=1 over a time interval [t(1); t(n)] but have available a
longer proxy time series, {t(i), x(i)}m

i=1 with m > n (often m � n). If
t(i) denotes age and t(i) > t(n) for i > n, then we wish “to hindcast”



8.5 Prediction 363

y(i) for i > n. An example is δ18O as precipitation proxy; y(i) is pre-
cipitation, x(i) is δ18O from a speleothem, [t(1); t(n)] = [0 a; 50 a] is the
interval for which we have instrumental measurements of y(i) (the past
50 years) and [t(1); t(m)] = [0 a; 500 a] is the interval covered by the
speleothem samples (the past 500 years). If t(i) denotes time, then we
wish to forecast. An example is climate model projections; y(i) is pre-
cipitation, x(i) is modelled precipitation (AOGCM), [t(1); t(n)] = [1950;
2010] is the interval for which we have instrumental measurements of y(i)
and [t(1); t(m)] = [1950; 2100] is the interval analysed by means of the
climate model (a typical value for the upper bound used by IPCC–WG I
(Houghton et al. 2001; Solomon et al. 2007) in its reports).

Prediction can be performed by fitting a regression model and utilizing
the estimated regression parameters. In the linear case (Fuller 1987:
Section 1.6.3 therein):

ŷ(n + 1) = β̂0 + β̂1 x(n + 1), (8.13)

where β̂0 and β̂1 have been estimated using the sample {t(i), x(i), y(i)}n
i=1

and the new observation is x(n + 1).
Which method is suitable for estimating β̂0 and β̂1?
Fuller (1987: pp. 75–76 therein) explains that usage of OLS, ignor-

ing measurement errors of the predictor, is justified when x(n + 1) is
drawn from the same distribution that generated {x(i)}n

i=1. This means
effectively that two conditions have to be met:

1. SX(n + 1) ·Xnoise(n + 1) has the same properties (range, shape, etc.)
as SX(i) ·Xnoise(i), i = 1, . . . , n;

2. Xtrue(n + 1) has the same properties as Xtrue(i), i = 1, . . . , n.

Fuller advises further to take measurement error into account when
not both conditions are satisfied. This can be done, for example, by using
WLSXY (or OLSBC) estimation. Treating the regression estimates as
if they were known parameters, Fuller (1987: p. 76 therein) gives the
following expression for the prediction standard error:

ŝe
Ŷ (n+1)

=
[
SY (n + 1)2 + β̂2

1 SX(n + 1)2
]1/2

. (8.14)

We argue that in climatology the above conditions are almost exclu-
sively not satisfied, and we advise to use WLSXY (or OLSBC) as a
more conservative approach. In the majority of applications, t(n + 1),
the time value related to the new measurement, is outside of [t(1); t(n)],
and x(n+1) does not necessarily originate from a random drawing from
the process Xtrue(i), i = 1, . . . , n. The new measurement may rather
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constitute a step in a new direction of the course of climate, and it is
safer to allow for that possibility by using WLSXY (or OLSBC).

However, the “machine error bar” (Eq. 8.14) may be too small because
it does not include the estimation errors of the regression parameters.
Therefore, it is advisable to use the bootstrap prediction error:

ŝe
Ŷ (n+1)

=

{
B∑

b=1

[
Ŷ ∗b(n + 1)−

〈
Ŷ ∗b(n + 1)

〉]2
/

(B − 1)

}1/2

, (8.15)

where
〈
Ŷ ∗b(n + 1)

〉
=

∑B
b=1 Ŷ ∗b(n + 1)/B and the determination of

Ŷ ∗b(n + 1) is explained (sample level) within Algorithm 8.1.
Another source of prediction error, difficult to quantify, stems from

the extrapolation. This regards (1) the standard deviations, SX(n + 1)
and SY (n+1), under heteroscedasticity but also (2) the possibility that
with x(n + 1) outside of the observation interval, from min(x(i)) to
max(x(i)), or with t(n + 1) outside of [t(1); t(n)], new laws set in and,
if unrecognized, may bias the prediction. A physical theory behind the
regression model may guard against such errors (background material).

8.5.1 Example: calibration of a proxy variable
Calibrating a proxy variable, X(i), means quantifying the relation

with a climate variable, Y (i), by means of regression. Since X(i) is usu-
ally observed with measurement error, the errors-in-variables equation
(8.1) has to be considered. The fitted regression curve serves for pre-
dicting an uncertain value, y(n + 1), given a new proxy measurement,
x(n + 1). Calibration is ubiquitous in quantitative paleoclimatology.
Examples: oxygen isotopic composition in a marine sediment core is a
proxy for temperature (Fig. 1.2), hydrogen isotopes in an ice core indi-
cate temperature (Fig. 1.3a). Here we look at δ18O in a coral as a proxy
for air temperature.

We make two further remarks. First, the calibration methodology ap-
plies also to predicting future climate values by means of climate models.
Second, the core of the interest lies usually in relative variations, changes
of a variable—the slope (which itself is susceptible to estimation bias).

Draschba et al. (2000) calibrated δ18O, measured in a coral taken from
a site off the coast of Bermuda, against observations of air-temperature
on that island (Fig. 8.8). The calibration curve, established for the
time interval from 1856 to 1920, was then used to make a hindcast of
temperature for the interval from 1350 to 1630 (by using measurements
from another coral located close to the site of the “calibration coral”).
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Figure 8.8. Bermuda air temperature and coral δ18O, 1856–1920: data. a The
annual-mean temperature time series, y(i), is shown only at those time points for
which δ18O values (b) are available (n = 23). The temperature standard error,
sY (i), is assumed to be constant and equal to 0.03◦C (Table 1.3). b The δ18O time
series, x(i), is unevenly spaced (d(i) = 2 or 3 a). The δ18O values have a constant
measurement error of sX = 0.07h (Draschba et al. 2000). (The temperature data
are digitized values from Draschba et al. (2000: Fig. 2c therein), the δ18O data were
downloaded from http://doi.pangaea.de/10.1594/PANGAEA.88200 (17 September
2009).)

The accuracy of the δ18O timescale, crucial for a successful calibra-
tion, is excellent owing to the presence of seasonal density banding (vis-
ible on X-ray photographs). Measurement procedures and errors (Fig.
8.8) are described in detail by Draschba et al. (2000). Sample ma-
terial requirements led to an unevenly spaced δ18O time series, with
D′(i) = D(i) = d(i) = 2 or 3 a (see Fig. 1.13 for definitions). Draschba
et al. (2000) transformed the temperature record (monthly observations)
by binning to either an annual resolution or a 3-year resolution. Their



366 8 Regression II

Figure 8.9. Bermuda air temperature and coral δ18O, 1856–1920: prediction.
OLSBC estimation yields a straight prediction line (solid) with an intercept of

β̂0 = 15.2◦C and a slope of β̂1 = −2.3◦Ch−1. Also shown is 95% Student’s t con-
fidence band (shaded), obtained from bootstrap resampling (pairwise-MBBres with
τ̂ ′X = τ̂ ′Y = 6.9 a, l = 6, B = 2000).

calibration result did not strongly depend on that choice. Here we use
the annual values from those years for which also δ18O values exist (Fig.
8.8).

The calibration curve (Fig. 8.9) has a slope that is in size larger by
a factor of approximately 1.3 than that estimated by Draschba et al.
(2000). This considerable deviation is likely the result of an ignored bias
correction in the original paper. The bias-corrected OLSBC fit curve
deviates considerably from a na-ive per-eye fit through the points (Fig.
8.9). (Interestingly, the authors considered already their slope estimate
as rather large in absolute size.) The pointwise bootstrap confidence
band allows to quantify the prediction uncertainty, also outside of the
original range of observations (Fig. 8.9).

The bootstrap prediction error (Eq. 8.15), averaged over the interval
of x values shown in Fig. 8.9, is equal to 0.25◦C, while the “machine
error bar” (Eq. 8.14) is 0.16◦C.

Two further remarks ought to be made. First, the confidence band
assumes a time-independent calibration relation and homoscedastic er-
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rors. This assumption may be violated. Second, the confidence band
may be inaccurate owing to the limited data size, as the Monte Carlo
experiments (Section 8.3) show.

8.6 Lagged regression
Let us reconsider the linear errors-in-variables model (Eq. 8.1) in con-

tinuous time, T . Assume for convenience homoscedasticity. Introduce a
time lag parameter, H, to shift the predictor variable, such that

Y (T ) = β0+β1 [X(T + H)− SX ·Xnoise(T + H)]+SY ·Ynoise(T ). (8.16)

A lag H > 0 (H < 0) means that variations of “true” Y lead over
(lag behind) variations of “true” X. This is a lagged errors-in-variables
regression model.

Measured time series are discrete in time and finite in size. Assume
for convenience even time spacing (d(i) = d = const.) and introduce a
dimensionless time lag, h = H/d, such that

Y (i) = β0 + β1 [X(i + h)− SX ·Xnoise(i + h)] + SY · Ynoise(i), (8.17)

i = 1, . . . , n− h. Given a bivariate sample, {x(i), y(i)}n
i=1, the task is to

estimate β0, β1 and h.
WLSXY estimation should in principle be possible by minimizing a

normalized sum,

SSQWXY (β0, β1, h) = (n− h)−1
n−h∑
i=1

[y(i)− β0 − β1x(i + h)]2

S2
Y + β2

1 S2
X

. (8.18)

This may be achieved technically by numerical minimization (Section 8.8)
of SSQWXY (β0, β1, h̃) for a fixed (candidate) lag, h̃, and a brute-force
search over a range of h̃ values. Intuitively, if 1 � h � n, then the error
due to the discretization of the time should be smaller than when h is
close to either bound.

A more general, realistic situation arises when the two time series
were observed at mutually unequal times. This has been explored in
the context of correlation estimation (Section 7.5), where the time gaps
could be bridged owing to the presence of persistence. The situation
becomes even more realistic (difficult), when timescale errors are intro-
duced. We analyse such an example (Section 8.6.1), where we resort
to interpolation. The taken approach is somewhat ad-hoc. The the-
oretical knowledge about estimators and their properties, let alone CI
construction, is rather limited for such situations, and the given litera-
ture (background material) does not cover this issue exhaustively.
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8.6.1 Example: CO2 and temperature variations
in the Pleistocene

One of the major contributions of ice cores as climate archives is
information about CO2 variations far back in time (late Pleistocene).
The Vostok core’s record, first drilled and measured over the past 160
ka (Barnola et al. 1987), was later extended to the full span of 420 ka
(Petit et al. 1999). The longest CO2 record currently available (past 800
ka) comes from the EPICA Dome C ice core (Siegenthaler et al. 2005;
Lüthi et al. 2008). The major finding from those ice core studies was that
not only temperature and ice volume underwent large changes during the
ice age (100-ka cycle), but also the atmospheric CO2 concentration. We
explore here the full Vostok span of changes of CO2 and temperature
(inferred via δD), shown in Fig. 1.3, to estimate the phase relations
between these changes. Such relations constitute a basis for erecting
a causal climatological theory of the late Pleistocene ice age—which
does not yet exist in sufficient detail. We follow the paper by Mudelsee
(2001b), who used lagged regression as a tool for phase relationship
estimation.

Mudelsee (2001b) deviated in some technical points from the errors-
in-variables methodology developed in the previous sections. These and
some additional points are discussed first, the results shown thereafter.

First, the time values of the predictor variable, {tX(i)}3311
i=1 , are not

identical to those of the response variable, {tY (j)}283
j=1. Allowing for

a candidate lag, H̃, requires a time shift. For those reasons, the lag
estimation used linear interpolation of the x values (Fig. 8.10), tX =
tY (j) − H̃. The fact that the lag is imposed for computational reasons
on tY (j) rather than tX(i) (Eq. 8.16), is not relevant for the estimation.

Second, the lagged regression employed a parabolic model. This per-
formed slightly better than the linear one, as evaluated by means of
the reduced sum of squares (fourth point). (A logarithmic model would
yield similar values as the parabolic (Fig. 8.12).)

Third, the predictor’s error has an upper limit of sX = 1h (Petit et al.
1999), which is clearly smaller than the standard deviation (spread) of
the x(i) values of 17h. This means only a small estimation bias when
ignoring measurement error (Mudelsee 2001b).

Fourth, the estimation (Mudelsee 2001b) used GLS (Section 4.1.2)
with the V matrix elements given by exp[−|tY (j1)−tY (j2)|/τY ]. Because
the persistence time, τY , was unknown, a second brute-force loop for τY

was nested and the overall minimum taken as solution. The resulting
reduced least-squares sum is

SSQGν(β,H, τY ) = (y −Xβ)′ V−1 (y −Xβ)
/
ν, (8.19)
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Figure 8.10. Vostok deuterium and CO2, timescales for lag estimation. The time
interval [303 ka; 304 ka] illustrates the relation between the predictor (X) variable,
deuterium, and the response (Y ) variable, lagged CO2. The candidate lag in time is

H̃. The predictor values are obtained by linear interpolation of the x and x∗ values,
tX = tY (j)− H̃ and t∗X = t∗Y (j)− H̃, respectively. (Original data shown in Fig. 1.3.)

where

β =

β0

β1

β2

 (parameter vector), (8.20)

y =

 y(1)
...

y(n− h)

 (response vector), (8.21)

X =

1 x′(1) x′(1)2
...

...
...

1 x′(n− h) x′(n− h)2

 (predictor matrix), (8.22)
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ν = n− h− 3 (degrees of freedom) and x′ is interpolated x (Fig. 8.10).
The linear model has no β2 parameter and ν = n− h− 2. The step size
of the brute-force search for Ĥ was 5 a.

The resulting lag estimate is Ĥ = −1.3 ka, that is, a lag of CO2

variations behind temperature variations. The resulting persistence time
is τ̂Y = 0.92 ka. The reduced least-squares sum in dependence on H̃ is
shown in Fig. 8.11. The resulting parabolic fit is shown in Fig. 8.12.
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Figure 8.11. Vostok deuterium and CO2, reduced sum of squares. The minimum
(i.e., lag estimate) is at H̃ = −1.3 ka. (After Mudelsee 2001b.)

Both predictor and response (x, y) exhibit measurement and proxy
errors, and both timescales (tX , tY ) show dating uncertainties. These
four error sources propagate into the estimation standard error of the
lag, ŝe

Ĥ
. Mudelsee (2001b) determined ŝe

Ĥ
by means of a parametric

surrogate data approach (Algorithm 8.2).
The first error source (x) was simulated (Mudelsee 2001b) as

x∗(i) = x(i) + xnoise(i), (8.23)

where xnoise(i) is a realization of a Gaussian AR(1) process with standard
deviation sX = 1.0h (Petit et al. 1999) and persistence time τX = 2.1
ka (Chapter 2).

The second error source (y) was simulated analogously as

y∗(i) = y(i) + ynoise(i), (8.24)

where the noise process had a standard deviation sY = 2.5 ppmv (Petit
et al. 1999) and persistence time τY = τ̂Y = 0.92 ka.

The third error source (tX) was simulated (Mudelsee 2001b) using
the depth points of the ice core samples (Petit et al. 1999) and a non-
parametric fit of the “sedimentation rate” (Fig. 4.13). The simulated
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Figure 8.12. Vostok deuterium and CO2, parabolic fit. Data points are lagged CO2

(Ĥ = −1.3 ka) against interpolated δD (n − h = 280). The fit line is given by
y = −1482− 9.05x− 0.012x2. (After Mudelsee 2001b.)

Step 1 Time series {tX(i), x(i)}nX
i=1 ,

{tY (j), y(j)}nY
j=1

Step 2 Lag estimate Ĥ

via minimization of SSQGν(β, H, τY )

Step 3 Simulated time series;
{
t∗b
X (i), x∗b(i)

}nX

i=1
,

b, counter
{
t∗b
Y (j), y∗b(j)

}nY

j=1

Step 4 Replication Ĥ∗b

Step 5 Go to Step 3 until b = B (usually B = 2000)

replications exist
{
Ĥ∗b

}B

b=1

Step 6 Calculate standard error and CIs

Algorithm 8.2. Determination of bootstrap standard error and construction of CIs
for lag estimate in lagged regression, surrogate data approach (Sections 3.3.3 and
3.4). The algorithm is applicable also to other estimation techniques than SSQGν

minimization (Step 2).

sedimentation rate was obtained parametrically (Mudelsee 2001b) by
imposing a relative, Gaussian error of 1.2%. The simulated sedimen-
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Figure 8.13. Vostok deuterium and CO2, sensitivity study of lag estimation error.

tation rate, combined with the depth points, resulted in a simulated
timescale (Section 4.1.7). In a final step, the simulated timescale was
randomly compressed or expanded to fit into the GT4 timescale error
range (Petit et al. 1999), which is ≤ 5 ka for the last 110 ka, ≤ 10 ka for
“most of the record” (interpreted as 110–300 ka by Mudelsee (2001b))
and ≤ 15 ka in the early part.

The fourth error source (tY ) was simulated on basis of the simulated
ice-ages (t∗X). The additional error contribution comes from the uncer-
tainty in the ice–gas age difference,

t∗Y = t∗X + EN(0, σ2
ice–gas)

(·). (8.25)

Petit et al. (1999: p. 434 therein) reported σice–gas to be 1 ka or more.
The surrogate data approach yielded (Mudelsee 2001b) ŝe

Ĥ
= 1.0

ka. To restate, the lag estimation result is that temperature variations
occurred 1.3± 1.0 ka before CO2 variations.

The crucial point for achieving such a small estimation error is that
x and y were measured on the same core (Vostok). This means a rather
close coupling of t∗X and t∗Y (Eq. 8.25). Only the uncertainty in the ice–
gas age difference weakens the coupling. Had CO2 been measured on a
core from a different site, no coupling would exist and t∗X and t∗Y had to
be simulated independently of each other, leading to a clearly larger lag
estimation error than in the present case.

The lag estimation result underlines the importance of the uncer-
tainty, σice–gas, in the ice–gas age difference, which contributes nearly
100% to the lag estimation error of 1.0 ka. A sensitivity study (Fig.
8.13) quantifies this contribution over a range of prescribed σice–gas val-
ues. For example, in the case of σice–gas = 0.2 ka the lag estimation error
would be ŝe

Ĥ
= 0.27 ka. In the case of a perfectly known difference
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(σice–gas equal to zero), the remaining error sources would propagate
into ŝe

Ĥ
= 0.13 ka.

As regards causal explanations of the late Pleistocene glacial cycles,
Mudelsee (2001b) noted that Vostok’s air temperature (δD) represents,
at best, the southern hemisphere and that there exists a time lag of
the variations relative to the northern hemisphere (Blunier et al. 1998).
However, the complexity of the ice-age climate may be better under-
stood, that is, the set of feasible causal scenarios (Broecker and Hender-
son 1998: Table 1 therein) further constrained, with the help of quanti-
fied phase relations.

8.7 Background material
OLSBC estimation of the slope has also been denoted as attenuation-

corrected OLS (ACOLS) estimation (Ammann et al. 2009).
The method of moments estimator of the standard deviation of

the predictor in the case of homoscedasticity, SX , is (Fuller 1987: Eq.
(1.3.10) therein):

ŜX = (2δ)−1

{
mY Y + δmXX −

[
(mY Y − δmXX)2 + 4δm2

XY

]1/2
}

,

(8.26)

where

δ = λ1/2 = SY /SX , (8.27)

the moments are

mY Y =
n∑

i=1

[y(i)− ȳ]2 /(n− 1) , (8.28)

mXX =
n∑

i=1

[x(i)− x̄]2 /(n− 1) , (8.29)

mXY =
n∑

i=1

[x(i)− x̄] [y(i)− ȳ] /(n− 1) (8.30)

and the sample means are

ȳ =
n∑

i=1

y(i) /n (8.31)
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and

x̄ =
n∑

i=1

x(i) /n . (8.32)

ŜX is plugged in for SX (Eq. 8.6).
WLSXY estimation of a linear relationship between two variables

that are both subject to error has been studied, and the geometric inter-
pretation been made, already before and at the beginning of the twen-
tieth century (Adcock 1877, 1878; Pearson 1901); see also Wald (1940)
and Fuller (1987, 1999). The method to fit a hyperplane to data with
errors in all their coordinates (possibly more than two) is also denoted
as total least squares (Nievergelt 1998).

Non-Gaussian, heteroscedastic noise components in the linear
errors-in-variables regression model can be taken into account in the
estimation using GLS, that is, using the covariance matrix, analogously
to Section 4.1.2. In practical applications to climatological problems,
where the covariance matrix is unknown and has to be estimated, an
iterative procedure may be used. Fuller (1987: Section 3.1 therein)
describes GLS estimation for serially independent noise components and
gives a result (standard errors of parameters) that is valid for large data
sizes. He advises to consider developing a model for the error structure
if the data size is small. However, it is not clear whether such a classical
approach to parameter error determination can be applied also to serially
dependent noise components.

Correlated noise components in the linear errors-in-variables re-
gression model can be taken into account. York (1969) adapts a least-
squares criterion to recognize correlation between Xnoise(i) and Ynoise(i)
and gives an example from radiometric dating. Freedman (1984) and
Freedman and Peters (1984) present two-stage regression with boot-
strap resampling as a method to treat a correlation between Xnoise(i)
and Y (i). Fuller (1987: Section 3.4 therein) presents a transformation
for dealing with correlation between Xnoise(i) and X(i).

Multiplicative measurement error may occur in form of X(i) =
Xtrue(i) ·X ′

noise(i), where the primed noise component is dimensionless.
Carroll et al. (2006: Section 4.5 therein) mention transformation meth-
ods that may be applied in this case.

Nonlinear errors-in-variables models can be estimated on basis
of several assumptions about the model and the noise properties, by
using numerical techniques for solving the maximum likelihood or least-
squares optimizations (Fuller 1987: Section 3.3 therein). A recent book
(Carroll et al. 2006) gives more details.
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The pairwise-MBBres algorithm from Section 8.2 is a response to
resolving the “quite nonstandard” (Hall and Ma 2007: p. 2621 therein)
situation, where neither the true predictor variable, Xtrue(i), nor the er-
rors, Xnoise(i), “can be directly accessed.” Previously, Efron and Tibshi-
rani (1993: Section 9.5 therein) and Davison and Hinkley (1997: Section
6.2.4 therein) considered that pairwise bootstrap resampling is applica-
ble to errors-in-variables regression problems. Linder and Babu (1994)
presented another alternative to the simple pairwise resampling. These
authors scaled the residuals in both dimensions (X, Y ) and resampled
independently from both sets. They analysed maximum likelihood es-
timation with known standard deviation ratio and tested the accuracy
of bootstrap CIs (percentile and Student’s t) by means of Monte Carlo
experiments, finding acceptable levels of accuracy. This was confirmed
in an additional simulation study of slope estimation (Musekiwa 2005)
with small data sizes (n = 20, 30). It should be interesting to investigate
further the approach of Linder and Babu (1994), adapted to the clima-
tologically more realistic situation where the standard deviation ratio is
not exactly known and the errors exhibit serial dependence.

The approaching of finite RMSE values or, equivalently, the ab-
sence of shrinking CIs with n →∞ was verified for slope estimation and
falsified for intercept estimation (Section 8.3.3). Previously, Booth and
Hall (1993) found a non-shrinking bootstrap confidence band in a Monte
Carlo experiment on prediction (Section 8.5), ŷ(n+1) = β̂0+β̂1 x(n+1).
Thus, it appears that this observation (Booth and Hall 1993) has its ori-
gin in the non-shrinking of RMSE

β̂1
.

The simulation–extrapolation algorithm (Carroll et al. 2006: Chap-
ter 5 therein) is a bias correction method based on Monte Carlo sim-
ulations. The idea is to add artificial measurement error to the data
and study the dependence of an estimate (say, β̂1) in dependence of the
size of the artificial error. Extrapolation to zero size should, so the idea,
provide an unbiased estimate.

Prediction and forecasting by means of regression and other mod-
els is reviewed by Ledolter (1986). The success of prediction depends,
of course, on the validness of the regression model and the absence of
disturbing “latent” variables (Box 1966). A physical theory behind the
model is a guard against wrong conclusions based on such disturbances.
For example, radiation physics and meteorology support the concept of
climate sensitivity (estimated by means of a regression of changes in
temperature on changes in radiative forcing, see Section 8.4) and refute
claims that time acts as a latent variable. On the other hand, a re-
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gression of annual temperature on the annual output of scientific papers
on global warming over the past, say, 150 years, would find a strong
relation (highly significant slope)—however, a spurious relation because
the latent variable time is acting and no theory exists that supports the
model.

Lagged regression as presented in Section 8.6 (that means, with
one single lag parameter, h), is a special case of rational distributed lag
models (Koyck 1954; Dhrymes 1981; Doran 1983; Pankratz 1991), where

Y (i) = β0 + β1,0X(i) + β1,1X(i + 1) + β1,2X(i + 2) + · · ·+ SY · Ynoise(i).
(8.33)

The sequence {β1,0, β1,1, β1,2, . . .} is called impulse response function.
Note that the equation ignores errors in the predictor. Fitting such
models may be performed using maximum likelihood (Dhrymes 1981) or
frequency-domain techniques (Hannan and Robinson 1973; Hannan and
Thomson 1974; Hamon and Hannan 1974; Foutz 1980). This technique
is frequently applied in econometrics. One of the rare applications to
climatology is the work by Tol and de Vos (1993), who estimated a lagged
regression of annual-mean temperature, 1951–1979, on atmospheric CO2

concentration. Insofar climate is a dispersive system, where the response
of one variable on the input of another is frequency-dependent, it should
be worth developing further such models and fitting techniques that
take into account typical properties of paleoclimatic series (measurement
errors, unequal times and uncertain timescales).

The effective climate sensitivity is usually denoted as λ−1
S . Vari-

ous estimation approaches have been carried out, Table 8.8 gives a short
overview. The approach via the heat capacity (Schwartz 2007) opened
an interesting exchange of arguments in the Journal of Geophysical Re-
search. Let C denote the effective heat capacity (change in heat per
change in temperature) per unit area that is coupled to the relevant
timescale of a perturbation (i.e., years to decades). The perturbation
regards the radiative balance of the Earth (change in forcing). Schwartz
(2007) estimated C (with standard error) to be 17 ± 7 Wa m−2K−1.
The C value reflects mainly the upper part of the ocean, which can
take up heat on the discussed timescale of (anthropogenically enhanced)
radiative perturbations. The simple equation,

τ = C · Λ−1
S , (8.34)

describes the time span (relaxation, τ) over which a radiative pertur-
bation (C) has an effect on the temperature (Λ−1

S ). Schwartz (2007)
estimated τ by fitting an AR(1) model (Chapter 2) to observational
data. The criticism on this approach (Foster et al. 2008; Knutti et al.
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2008; Scafetta 2008) was centred on the AR(1) model as over-simplistic
and estimation bias. In his reply, Schwartz (2008) kept the AR(1) model
but conceded τ to be larger (8.5±2.5 a) than in his original contribution
(5± 1 a). The revised estimate for τ leads to the entry in Table 8.8.

Table 8.8. Estimates of the effective climate sensitivity.

Λ−1
S Estimatea Approach Reference

(KW−1m2)

0.29 [0.05; 0.53]b,c Direct observations, 2000–2006 Chylek et al. (2007)

0.48 [0.24; 0.72]b,d Direct observations, 2000–2006 Chylek et al. (2007)

0.51 [−0.01; 1.03]b Physical principles (heat capacity) Schwartz (2008)

0.65 [0.09; 1.21]b Thermodynamical model Scafetta and West (2007)
0.70 [0.38; 1.55]e Climate model and observations, Hegerl et al. (2006)

1000–2001
0.85 [0.53; 1.17]c Direct observations, 1850–2001 This book

1.53 [0.40;∞]e,f Direct observations, Gregory et al. (2002)
1861–1900 and 1957–1994

a With 90% CI.
b CI calculated as ±2 standard error interval.
c Ignoring ocean heat uptake.
d Assuming strong ocean heat uptake.
e Calculated from originally estimated equilibrium climate sensitivity.
f Median given instead of estimate.

The leads and lags of carbon dioxide variations relative to those of
temperature in the Pleistocene have been studied by several researchers
on time series from ice cores from Antarctica. Previously to Mudelsee
(2001b), who estimated Ĥ = −1.3 ± 1.0 ka (a lag of CO2), the origi-
nal authors of the 0–420 ka Vostok paper (Petit et al. 1999) had found,
seemingly by per-eye inspection, that CO2 decreases lag behind tem-
perature decreases by several ka. Cuffey and Vimeux (2001: p. 523
therein) believed that the lag, “especially during the onset of the last
glaciation, about 120 ka ago,” is largely an “artefact caused by varia-
tions of climate in the water vapour source regions.” They presented
model simulations that correct for this effect and lead to Ĥ ≈ 0 ka using
the Vostok data, 0–150 ka and 150–350 ka. Subsequently, Monnin et al.
(2001) analysed high-resolution records (d̄ ≈ 0.18 ka for CO2) from the
EPICA Dome C site over the interval 9–22 ka by means of an explorative
technique (“correlation maximization”) similar to the brute-force search
(Section 8.6.1). They obtained an estimate of Ĥ = −0.41 ka, which was
assessed as not significant owing to the uncertainty of the ice–gas age
difference. Caillon et al. (2003) revisited the Vostok ice core, inspected
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the time interval around Termination III (230–255 ka) and took argon
isotopes instead of deuterium as proxy for temperature changes. The
motivation for performing the new measurements was the idea that the
poorer proxy quality of argon isotopes would be more than compensated
by the smaller timescale uncertainties. Since argon is, as CO2, contained
in the enclosed air bubbles in the ice, no uncertainty of the ice–gas age
difference influences lag estimation (Eq. 8.25). The result of correlation
maximization (Caillon et al. 2003) was a lag of CO2, Ĥ = −0.8±0.2 ka,
where the error bar value is based on an assessment of the uncertainty of
the ice accumulation (but not on an additional consideration of the proxy
errors). The “EPICA challenge” (Wolff et al. 2005), issued to paleocli-
matologists, was to predict CO2 concentration for the interval 420–740
ka on basis of the then available EPICA Dome C deuterium (tempera-
ture) and dust records (EPICA community members 2004). The simple
model, lagged regression of Vostok CO2 on EPICA deuterium (temper-
ature), calibrated on the 0–420 ka records, did not produce the worst of
the eight predictions, as was found when the EPICA Dome C CO2 series
became known. The complete interval back to 800 ka from the EPICA
ice core archive of past changes in temperature (Jouzel et al. 2007) and
CO2 (Siegenthaler et al. 2005; Lüthi et al. 2008) enables to analyse also
temporal changes of the lag, H, concepts that the ice-age climate re-
lationships changed for a while after a glacial termination (Raynaud
et al. 1993). To summarize, the overall lag of CO2 variations behind
temperature variations during the late Pleistocene appears significant.
This is a quantitative basis for developing and testing concepts about
causes and effects of long-term climate changes (Broecker and Hender-
son 1998; Saltzman 2002), about how the external astronomical forcing
(Milankovitch cycles) propagates into the geographic regions, and how
the climate variables respond. Further refining the ice-age theory is
currently an active research field (Kawamura et al. 2007; Huybers and
Denton 2008; Wolff et al. 2009). It is important to note that the char-
acteristic timescales on which the analysed Pleistocene climate changes
occurred, are relatively long: the average spacing (d̄), the estimated lag
(Ĥ) and its estimation error (ŝe

Ĥ
) are between several hundred and a

few thousand years. The late Pleistocene lag estimates are therefore
hardly relevant as regards concepts about the ongoing climate change,
which is anthropogenically enhanced since, say, 150 years. This recent
change is considerably faster than the late Pleistocene change, it leads
to CO2 levels not experienced during at least the past 800 ka and it
affects other physical processes. The consideration from physics and
meteorology that the recent change has a positive time lag (CO2 rise
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before temperature rise) is not contradicted by the finding that the late
Pleistocene change had a negative time lag. The scientifically interesting
question is whether humans are able to put a (temporary) end to the
succession of glacials and interglacials (Berger and Loutre 2002).

Errors-in-variables regression models for climatology have not
often been formulated in an explicit manner in the research literature.
Allen and Stott (2003) showed theoretically the importance of an un-
biased slope estimation for linear models that relate temperature changes
predicted by an AOGCM with observed temperature changes. Hegerl
et al. (2007a) studied in that manner proxy calibration to reconstruct
30–90◦N mean annual land-surface temperature for the past 1500 years.
Kwon et al. (2002) fitted a nonlinear model to dating samples,

Y (i) =
exp (λ40K · τFCs)− 1

exp {λ40K [X(i)− SX ·Xnoise(i)]} − 1
+ SY · Ynoise(i), (8.35)

i = 1, . . . , n. They used five paired samples of Y (i) = 40Ar/39Ar ratio
and X(i) = reference age, observed with small, homoscedastic (SX , SY ),
mutually independent measurement errors of assumed Gaussian shape.
The estimation parameters were λ40K (decay constant of 40K) and τFCs

(age of Fish Canyon sanidine age standard). Kwon et al. (2002) de-
rived maximum likelihood estimators and analysed bootstrap standard
errors based on the surrogate data approach. Their Monte Carlo study
showed that the estimates do not strongly depend on the Gaussian as-
sumption. The result, λ̂40K = 5.4755 ± 0.0170 · 10−10 a−1, leads to
a half-life estimate (Section 1.6) of T̂1/2 = ln(2)/λ̂40K = 1.266 ± 0.004
Ga. Bloomfield et al. (1996) made a multivariate nonlinear regression
of daily tropospheric ozone concentration in the Chicago metropolitan
area, 1981–1991, on a variety of predictors, including temperature, wind
speed and relative humidity. The interesting point in the context of
this chapter is that also lagged predictors (H prescribed as 1 or 2 days)
were included. Bloomfield et al. (1996) used GLS estimation (Gallant
1987: Sections 2.1 and 2.2 therein) and obtained parameter standard
errors by means of jackknife resampling (Section 3.8), which takes serial
dependence into account.

8.8 Technical issues
WLSXY minimization of SSQWXY (β0, β1) is numerically difficult

because the slope, β1, appears in the denominator of the least-squares
sum (Eq. 8.8). The routine Fitexy (Press et al. 1992) parameterizes the
slope as β′1 = tan−1(β1), scales the y values and uses Brent’s search
(Section 4.5) with a starting value for the slope from an initial OLS
estimation. (A more recent Numerical Recipes edition is Press et al.
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(2007).) Papers on the way from the work of Deming (1943) and York
(1966) to the routine Fitexy include Reed (1989, 1992) and Squire (1990).
This book follows those authors in usage of WLSXY for estimation, but
it does not so for parameter error determination; for that purpose it
uses instead bootstrap resampling. Extensions of WLSXY to nonlin-
ear regression problems (nonlinear in the parameters) were considered
by Jefferys (1980, 1981) and Lybanon (1984). A review of least-squares
fitting when both variables are subject to error (Macdonald and Thomp-
son 1992) studied besides WLSXY also other weighting techniques. It
appears that a generalized least-squares estimation method for the case
of (1) serial correlations in both X and Y errors and (2) correlation be-
tween X and Y errors, supported by a proof of optimality (in terms of,
say, RMSE) under the Gaussian distributional assumption, has not yet
been developed.

LEIV1 is another Fortran implementation of WLSXY estimation
(York 1966), available at http://lib.stat.edu/multi/leiv1 (26 October
2009).

LEIV3 is a Fortran software for maximum likelihood fitting of linear
errors-in-variables models with heteroscedastic noise components (Rip-
ley and Thompson 1987), available at http://lib.stat.edu/multi/leiv3 (26
October 2009).

Bootstrap software for errors-in-variables regression is not
abundant. Carroll et al. (2006) and Hardin et al. (2003) mention Stata

October 2009). Software for block bootstrap resampling seems to be
unavailable—limiting the ability to study errors-in-variables regression
with autocorrelated noise components.

software, available from the site http://www.stat.tamu.edu/~carroll (26
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Chapter 9

Future Directions

What changes may bring the future to climate time series analy-
sis? First we outline (Sections 9.1, 9.2 and 9.3) more short-term objec-
tives of “normal science” (Kuhn 1970), extensions of previous material
(Chapters 1, 2, 3, 4, 5, 6, 7 and 8). Then we take a chance (Sections 9.4
and 9.5) and look on paradigm changes in climate data analysis that
may be effected by virtue of strongly increased computing power (and
storage capacity). Whether this technological achievement comes in the
form of grid computing (Allen 1999; Allen et al. 2000; Stainforth et al.
2007) or quantum computing (Nielsen and Chuang 2000; DiCarlo et al.
2009; Lanyon et al. 2009)—the assumption here is the availability of ma-
chines that are faster by a factor of ten to the power of, say, twelve, by
a mid-term period of, say, less than a few decades.

9.1 Timescale modelling
Climate time series consist not only of measured values of a climate

variable, but also of observed time values. Often the latter are not evenly
spaced and also influenced by dating uncertainties. Conventional time
series analysis largely ignored uneven and uncertain timescales, climate
time series analysis has to take them into account.

The process that generated the times, {tX(i)} for univariate and also
{tY (j)} for bivariate series, depends on the climate archive. We have
studied linear and piecewise linear processes for speleothem or sedimen-
tary archives (Section 4.1.7) and nonparametric models for ice cores (Sec-
tion 8.6.1). Such types of models are the basis for including uncertain
timescales in the error determination by means of bootstrap resampling
({t∗X(i)} and also {t∗Y (j)}). In bivariate and higher dimensional estima-
tion problems, also the joint distributions of the timescale processes are
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important. See the example of the Vostok ice core (Section 8.6.1) with
the coupled timescales for the ice and the gas.

Climate archive modelling should be enhanced in the future to provide
accurate descriptions of uncertain timescales. Archive models should ev-
idently include the physics of the accumulation of the archive. One may
even think of physiological models describing the performance of humans
in layer counting of regular sequences such as varves (Table 1.3). A sec-
ond ingredient of climate archive modelling are statistical constraints,
for example, a strictly monotonically increasing age–depth curve in a
speleothem archive or an absolutely dated fixpoint in a marine sedi-
ment core. An exemplary paper (Parrenin et al. 2007) of climate archive
modelling studies the accumulation and flow in an ice sheet, into which
a core is drilled. The Bayesian approach may be suitable for combining
the inputs from physics and statistical constraints (Buck and Millard
2004).

9.2 Novel estimation problems

Chapters 2, 3, 4, 5 and 6 presented stochastic processes and estima-
tion algorithms for inferring the fundamental properties of univariate
climate processes in the climate equation (Eq. 1.2): trend, variability,
persistence, spectrum and extremes. Chapters 7 and 8 studied bivariate
processes: correlation and the regression relation between two univari-
ate processes. We believe to have covered with these chapters the vast
majority of application fields for the climate sciences.

However, in science there is always room for asking more questions,
that means in a quantitative approach, for attempting to estimate dif-
ferent climate parameters in the uni- or bivariate setting.

An obvious example of such a novel estimation problem is SSA, men-
tioned in the background material of Chapter 1. This decomposition
method has been formulated so far only for evenly spaced, discrete time
series. Interpolation to equidistance is obsolete because it biases the ob-
jectives of the decomposition (estimates of trend, variability, etc.). SSA
formulations applicable to unevenly spaced records should therefore be
developed.

Other novel estimation approaches are expected to come from the
array of nonlinear dynamical systems theory (Section 1.6). This field
has a focus more on application data from controlled measurements or
computer experiments and less on unevenly spaced, short paleoclimatic
time series. A breakthrough, also with respect to SSA, may come from
techniques of reconstructing the phase space at irregular points.



9.3 Higher dimensions 385

9.3 Higher dimensions
Climate is a complex, high-dimensional system, comprising many vari-

ables. Therefore it makes sense to study not only univariate processes
(Part II), X, or bivariate processes (Part III), X and Y , but also trivari-
ate processes, X and Y and Z, and so forth. A simple estimation prob-
lem for such high-dimensional processes is the multivariate regression,
mentioned occasionally in previous chapters (Sections 4.2 and 8.7),

Y (i) = θ0 + θ1X(i) + θ2Z(i) + · · ·+ SY (i) · Ynoise(i). (9.1)

The higher number of dimensions may also result from describing the
climate evolution in the spatial domain (e.g., X is temperature in the
northern, Y in the southern hemisphere). There is a variety of high-
dimensional, spatial estimation problems: multivariate regression, PCA
and many more (von Storch and Zwiers 1999: Part V therein).

As regards the bootstrap method, there is no principle obstacle to
perform resampling in higher dimensions. An important point is that
resampling the marginal distributions, of X and Y and Z separately, is
not sufficient; the joint distribution of (X, Y, Z), including dependences
among variables, has to be resampled to preserve the original covari-
ance structure. This requires adaptions of the block bootstrap (MBB)
approach. A further point, which may considerably exacerbate the esti-
mation as well as the bootstrap implementation, is unequal observation
times. The sets

{tX(i)}nX
i=1 , {tY (j)}nY

j=1 , {tZ(k)}nZ
k=1 (9.2)

need not be identical. Depending on the estimation problem and the
properties of the joint climate data generating process (e.g., persistence
times), the algorithm for determining θ0, θ1, θ2, and so forth, has to be
adapted. This is a step into new territory. An example from the bi-
variate setting is the “synchrony correlation coefficient” (Section 7.5.2).
A final point of complication from the move into higher dimensions is
dependence among the timescale variables. Since this type of complica-
tion can occur already in two-dimensional problems (Section 8.6.1), we
expect it in higher dimensions as well. This challenge must be met by
means of timescale modelling (Section 9.1).

9.4 Climate models
Computer models render the climate system in the form of mathemat-

ical equations. The currently most sophisticated types, AOGCMs (Fig.
1.9), require the most powerful computers. Nevertheless, the rendered
spatial and temporal scales are bounded by finite resolutions and finite
domain sizes. Also the number of simulated climate processes is limited.
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The problem of a finite spatial resolution is currently tackled by means
of using an AOGCM (grid size several tens to a few hundred kilome-
tres) for the global domain and nesting into it a regional model or
RM (grid size reduced by a factor ∼ 20) for a sub-domain of inter-
est (say, Europe). The AOGCM “forces” the RM (Meehl et al. 2007;
Christensen et al. 2007), that means, prescribes the conditions at the
boundaries of the sub-domain. Sub-grid processes, not resolved even by
the RM (e.g., cloud processes) and therefore not explicitly renderable
by the AOGCM–RM combination, can be implicitly included by em-
ploying inferred parametric relations (e.g., between cloud formation and
temperature). The AOGCM–RM combination includes many variables,
(X, Y, Z, . . .)′ ≡ X, from the climate at grid points, and many param-
eters, (θ0, θ1, θ2, . . .)′ ≡ θ, from the parameterizations (Stensrud 2007)
and other model equations. For convenience of presentation, we consider
the climate variable vector, X, and the climate model parameter vector,
θ.

Our premise of a future “quantum boost” by a factor ∼ 1012 can
make regionalization dispensable and let more realistic AOGCMs (grid
size several tens to a few hundred metres) become calculable with com-
puting times reduced from, say, a year to less than a month. Regarding
the sophistication of a climate model, the increased computing power
can also be utilized for including processes from the fields of biology
and economy (greenhouse gas emissions (Moss et al. 2010) and “climate
engineering” measures). Indeed, a finer spatial grid does require more
processes to be explicitly included. Regarding the temporal scale, the
boost should allow to simulate much larger spans (transient paleoclimate
runs) by the means of AOGCMs and their successors.

There exists, however, another field where to invest computing power,
namely the uncertainty determination of climate model results. We
sketch this area in light of the methodology presented in this book,
statistical estimation and bootstrap resampling.

Physics describes climate dynamics by means of nonlinear coupled
differential equations,

Ẋ = f (X,R, θ) , (9.3)

where the dot denotes time derivative, f is a function, and R repre-
sents uncoupled, external forcing variables (e.g., solar activity). Time
discretization yields

X(i + 1) = X(i) + ∆T · Ẋ, (9.4)

where ∆T is a time step, in an AOGCM typically in the order of minutes
to hours. From an initial climate state, X(1), the climate evolution is



9.4 Climate models 387

derived. This sample from the climate model “archive” is

{x(i)}n
i=1 . (9.5)

The climate evolution can also be observed, yielding a multivariate
time series sample,

{xo(i)}n
i=1 . (9.6)

The observations are, of course, strongly limited in the number of climate
variables, geographic locations and time resolutions. There have been
few observations made of, say, temperature in 1000 m height above sea-
level at 130◦W, 30◦S for the time interval from 1850 to 2010 and a
spacing of d(i) = ∆T = 30 minutes.

9.4.1 Fitting climate models to observations
Let us view climate modelling as an estimation problem. The task

is to estimate the model parameters, θ, given observations, {xo(i)}n
i=1.

This set shall include the “missing observations.” The task requires to
run the model and produce {x(i)}n

i=1. The less distant the model output
is to the observations, the better the fit.

Let us introduce a cost function to measure the distance,

SSQGXYZν(θ) = g
(
{xo(i)}n

i=1 , {x(i)}n
i=1

)
. (9.7)

g may be a form of a generalized least-squares cost function that takes
into account predictor uncertainty and the degrees of freedom; Sec-
tion 9.4.3 considers the design of g in more detail. The parameter esti-
mate minimizes the cost function,

θ̂ = argmin
{

g
(
{xo(i)}n

i=1 , {x(i)}n
i=1

)}
. (9.8)

The parameter vector is included in the right-hand side of the equation
because the model output, {x(i)}n

i=1, depends on it.
The outlined procedure is with current computing power not feasible

for a full estimation of AOGCM parameters. It has been performed for
a simple climate model containing only three variables (Hargreaves and
Annan 2002) and an Earth system model of intermediate complexity
(Paul and Schäfer-Neth 2005). The concept of fitting climate models to
data is also denoted as data assimilation or state estimation (Wunsch
2006).

Subsequent to the estimation, we should like to know the parame-
ter uncertainties for the fitted climate model. This knowledge may be
achieved by means of bootstrap methods, producing the replications,

θ̂
∗

= argmin
{

g
(
{x∗o(i)}

n
i=1 , {x∗(i)}n

i=1

)}
. (9.9)
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The observation resample, x∗o(i), can be obtained via the surrogate data
bootstrap (Section 3.3.3), taking into account the errors of the obser-
vation devices, the distributional shapes (which may be Gaussian or
not), the covariances (which may be rather small) and the “internal cli-
mate variability” (which may have to be estimated by means of separate
model experiments). The model output resample, x∗(i), incorporates
a new (trial) set of parameters, θ∗. However, it should also be based
on a random initial state, x∗(1), because the initial conditions are not
exactly known. x∗(1) may be taken randomly from a set of time series
values, {x∗unforced(j)}

m
j=1, of a climate model run without forcing com-

ponents (stationarity). This “ensemble technique” is already currently
being applied to quantify the uncertainty component owing to imper-
fectly known initial conditions (Randall et al. 2007; van der Linden and
Mitchell 2009). Also the forcing variable, R(i), may have to be described
stochastically for being included in the surrogate data approach.

The replications, {θ̂
∗b
}B

b=1, serve in the usual manner (Section 3.4) for
constructing CIs. Of particular interest should be the joint PDF of the
climate model parameter estimators, which may be described by means
of confidence regions in the parameter hyperspace (Smith et al. 2009;
Tebaldi and Sansó 2009). Realistic climate model error and CI deter-
mination do not require a handful of runs (current ensemble technique)
but rather B runs, with B in the usual order of 2000 or even higher
(because of the dimensionality).

9.4.2 Forecasting with climate models

Models are employed to forecast future climate, x(n + 1), at time
t(n + 1). (Indeed, forecasts are made for many time steps to cover
the typical range from the present to the year 2100.) This is achieved
in our vision by a run of the model employing the estimated, optimal
parameters, θ̂. That run has to use also a guess of the future forcing,
R(n + 1).

Of crucial importance, scientifically and socioeconomically, is to de-
termine the size of the forecasting error. The bootstrap methodology,
utilized for that purpose in the bivariate setting (Section 8.5), should be
helpful also in the high-dimensional setting.

The recommendation is to produce forecast resamples, x∗(n+1), from
which to calculate standard errors, CIs, confidence bands (over a time
span), and so forth.

How are the x∗(n+1) produced to reflect the full range of the various
sources of uncertainty?
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The parameterization uncertainty can be taken into account by re-
sampling from the set of replications, {θ̂

∗b
}B

b=1. This preserves the
covariance structure of the parameter estimates.

The initial-condition uncertainty can be taken into account by means
of the ensemble technique.

The forcing uncertainty may be difficult to include in a quantitative
manner. This step does likely necessitate the usage of separate forcing
models.

9.4.3 Design of the cost function
Designing the cost function (Eq. 9.7) is important for achieving small

standard errors and narrow CIs for the climate forecasts and the model
parameter estimates. It is rather difficult to demonstrate theoretically
the optimality of a certain cost function. One should perform Monte
Carlo simulations to find “empirically” a suitable function. The follow-
ing points may guide the design endeavour.

A least-squares technique is mandatory. It seems impossible to write
down a likelihood function (for maximization) owing to the size of
the body of the climate model equations. One may wish to make the
sum of squares more robust with respect to “outliers.” On the other
hand, one may give the “outliers” instead more weight in situations
where the focus is on modelling the climate extremes.

GLS, employing the covariance matrices (variability, persistence) of
the many climate variables, is a possible technique to reduce the
estimation standard errors. The normalization (variability) produces
dimensionless SSQG terms for each variable, which can be processed
further (e.g., summed up).

A problem is multicollinearity (correlated predictors), stemming from
spatial dependence among the climate variables (neighboured grid
points). This may indicate to reduce the number of variables in the
cost function by means of spatial binning. PCA techniques should
help evaluating geographically meaningful bins (regions).

Errors in the observations (SX , SY , SZ , . . .) should lead researchers to
consider techniques like WLSXY estimation (Section 8.1.2) to reduce
estimation bias.

Further weighting could be performed “in the time domain” to en-
force, for example, the most recent years to be more accurately sim-
ulated.
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The degrees of freedom, ν, of the observation–model combination can
be taken into account (a simple division by ν).

One may put bounds to the θ hyperspace to exclude estimation re-
sults that are inconsistent with physics (hard bounds) or prior knowl-
edge (soft bounds). Bayesian formulas may help here.

The envisaged availability of “quantum computing power” does not re-
lease us from the task of constructing efficient methods to search through
the hyperspace, to locate the minimum of the cost function: gradient
techniques, Brent’s search, hybrid procedures or Bayesian approaches
(Monte Carlo Markov Chain, see Hargreaves and Annan (2002) and
Leith and Chandler (2010)).

9.4.4 Climate model bias
Climate model bias regards, generally speaking, a function of the cli-

mate variable vector,
η = h (X) . (9.10)

The function, h, can be used to make η an index variable or extract a
geographic region. For example, we may wish to study time-dependent,
annual-mean, regional-mean, land-surface precipitation in central Eu-
rope,

η(j) = n−1
k n−1

i

∑
k ∈ region

∑
T (i) ∈ year j

Xk(i), (9.11)

where Xk(i) is precipitation at grid point k and time T (i), ni is the
number of time values within year j and nk is the number of model grid
points within central Europe.

Let us now view the modelled sequence as an estimate obtained by
means of a climate model, η̂(j). Next we consider the true sequence.
Since the truth is hidden, we take instead an observed sequence, ηo(j).
This leads, in analogy to Eq. (3.2), to the climate model bias,

biasη̂(j) = E [η̂(j)]− ηo(j). (9.12)

In the example of precipitation in central Europe, there are indications
from a range of AOGCM–RM combinations that biasη̂(j) > 0 for the
time interval from 1950 to the very recent past (Jacob D 2009, personal
communication), that is, the climate models systematically overestimate
precipitation. Similar overestimations were found for the region of Scan-
dinavia (Goodess et al. 2009).

In the context of climate forecasting (Section 9.4.2), better predictions
may therefore include a climate model bias correction. For example, if
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the model bias is simply a constant, biasη̂, then

η′(jfuture) = η(jfuture)− biasη̂, (9.13)

where jfuture indicates future (unobserved) time and the prime denotes
bias correction. Evidently, the time-dependence of the bias and also
its form (additive, multiplicative) should be analysed in such situations.
Further developments may employ more complex stochastic models of
the climate model bias (Jun et al. 2008).

9.5 Optimal estimation
Increased computer power would also allow to perform optimal esti-

mation. We have sketched this concept in previous parts of this book
(Sections 6.2.7 and 7.5.3.1). Not only climatology, other science branches
as well may benefit from optimal estimation.

Central to the investigation in natural sciences, such as climatology,
is to infer the truth from the data. This calls for the statistical language.
In quantitative climatology, the investigative questions can be translated
into a parameter, θ, which needs to be estimated using the data. The
investigation cycles through loops: question, estimation, refined question
based on the estimation result, new estimation, and so forth.

An estimator, θ̂, is a recipe how to guess θ using the data. Since the
sample size is less than infinity and the sampled climate system contains
unknown influences (noise), we cannot expect that θ̂ equals θ. However,
we can calculate the size of that error, the uncertainty. This leads to
the measures se

θ̂
, bias

θ̂
, RMSE

θ̂
and the confidence interval, CI

θ̂,1−2α
,

which is thought to include θ with probability 1 − 2α. Without having
the information contained in such measures, it is difficult to assess how
close θ̂ is to θ: estimates without error bars are useless.

For simple estimation problems (e.g., mean estimation) and simple
noise properties (e.g., Gaussian distributional shape), the error mea-
sures can be analytically derived via the PDF of an estimator. However,
climate is more complex—as regards the noise as well as the estima-
tion problem. This book advocates therefore the bootstrap resampling
approach, which allows to analyse complex problems for realistic (i.e.,
complex) properties such as non-Gaussian shape or serial dependence.

For the most part of this book, we have assumed the uncertainty to
have its origin in the complex climate system and the measured vari-
ables (proxy, measurement and dating errors). We have occasionally
considered (Sections 4.1.7.4, 4.4 and 8.3.4) another error source, a mis-
specified model. Statistical science refers to this error source as model
uncertainty; see Chatfield (1995), Draper (1995), Candolo et al. (2003)
and Chatfield (2004: Section 13.5 therein). By fitting a range of candi-
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date models it is possible to infer the range of feasible estimation out-
comes. For example, one may compare the estimated 100-year return
level, HQ100, from a Weibull fit with the estimated HQ100 from a GEV
fit to observed runoff data, and look whether the difference of the results
is comparable to the statistical standard errors. Note that model uncer-
tainty may regard also the assumed noise model (e.g., short versus long
memory). A method to reduce model uncertainty is to employ graphical
and computational tests of model suitability. As a method to quantify
model uncertainty, we may study not only the range of the estimation
outcomes but impose a weighting according to the probability that a
particular model is correct. The “model probability” may be based in a
Bayesian approach on a prior consultation of experts (Smith et al. 2009).
In the example of HQ100, there is hope that the hydrologists would put
more weight on the GEV model than on the Weibull. It is principally
possible to add model uncertainty as a new dimension to the hyperspace
of climate estimation (Fig. 9.1).

Climate is a paradigm of a complex system that requires for its anal-
ysis the bootstrap. In addition, climate opens the new problem di-
mensions of unequally spaced series and timescale errors. This book
has presented various bootstrap algorithms to adapt closely to the esti-
mation problem imposed by the data: ARB, MBB, SB, surrogate data,
timescale-ARB, timescale-MBB, pairwise-ARB, pairwise-MBB and pair-
wise-MBBres. It also described algorithms to support bootstrap resam-
pling and CI construction: block length selection, calibration, the CI
types normal, Student’s t, percentile and BCa.

The critical question is: What is the best method for inferring the
truth from the data? What is the optimal estimation method, and how
are the most accurate CIs constructed?

Future, strongly increased computing power allows to approach that
question by means of Monte Carlo experiments. We outline this optimal
estimation approach (Fig. 9.1). We reiterate that optimal estimation is
not limited to the field of climate sciences.

The hyperspace of climate estimation has many, but not infinite di-
mensions. It consists of the three subspaces Monte Carlo design, method
and measure.

The Monte Carlo design (Fig. 9.1) describes the data generating pro-
cess. The design is used to generate artificial data, to which the method
is applied. The design should, in some sense, cover the estimation prob-
lem (data and estimation) to be carried out. One group of dimensions
is occupied by the type of estimation model and the parameters. For
example, one may be interested in a linear regression model with the
two parameters intercept and slope (Chapters 4 and 8). To restate, the
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Figure 9.1. Hyperspace of climate parameter estimation. The Monte Carlo experi-
ment prescribes the stochastic model, parameters and other properties (shape, sample
size, spacing, persistence, etc.) in a way that the problem at hand (data and estima-
tion) is covered. The method regards estimation and CI construction. The optimal
estimation is determined by using a measure.

Monte Carlo parameters (e.g., prescribed intercept and slope) should
be close to the estimated parameters (estimated intercept and slope).
The other group of dimensions in the Monte Carlo subspace describe
the sample size (prescribed n, which should be close to the size of the
sample at hand), the spacing (again, similar to the spacing of the sam-
ple) and the noise properties (also similar). An option is to invest three
dimensions to model the persistence of the noise as an ARFIMA(p, δ, q)
process (which contains the simpler types such as AR(1)) and one or two
to model the shape (skewness, kurtosis). Heteroscedasticity may also be
modelled. The ARFIMA process contains the preferred parsimonious,
embedding-problem free AR(1) process (p = 1, δ = 0, q = 0). Some
dimensions have integer values (e.g., the ARFIMA parameter p), some
have real values (e.g., the slope parameter). Timescale errors may also
be modelled (additional dimensions).

The method subspace (Fig. 9.1) describes the estimation and CI con-
struction. The ticks along the estimator dimension are named least
squares, maximum likelihood, and so forth. CI construction requires
more dimensions: one for distinguishing between classical and bootstrap
CIs, and several for detailing the bootstrap methodology (block length
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selection for MBB, calibration, subsampling, etc.) and calculating the
interval bounds from the replications. Consider, for example, the brute-
force block length selector (Berkowitz and Kilian 2000): one dimension
with integer values between 1 and n− 1.

The measure subspace (Fig. 9.1) describes how to detect the optimal
estimation method for the Monte Carlo experiment: CI accuracy and
width, RMSE, bias, robustness, and so forth. It should make sense to
consider also joint measures (e.g., CI accuracy and robustness).

The hyperspace of climate parameter estimation is large. Present
computing power limits our ability to explore it and find the optimal
method for solving a (climate) estimation problem. This book has
examined many important estimation problems (regression, spectrum,
extremes and correlation) but visited only parts of the hyperspace by
means of Monte Carlo experiments. For example, in linear regression
(Chapter 4), we have studied

θ = β0 (intercept) and β1 (slope);

prescribed β0 = 2, β1 = 2;

n ∈ {10, 20, 50, 100, 200, 500, 1000};

spacing: even and uneven (timescale errors);

shape: Gaussian and lognormal;

persistence: AR(1), AR(2) and ARFIMA(0, 0.25, 0);

estimator: least squares only;

resampling: ARB, MBB, subsampling, timescale-ARB, timescale-
MBB and pairwise-MBB;

CI type: classical and bootstrap BCa;

confidence level: 90, 95 and 99%;

calibration loop: none;

and

measure: RMSE, CI accuracy and CI length.

We have found “acceptable” results (mainly judged via CI accuracy)
from the bootstrap method applied to Monte Carlo samples generated
from designed processes that are considered as close to the climate pro-
cesses. These positive results have given us confidence that the results
(estimate with CI) from analysing the observed, real climate time series
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are valid. However, we have to concede that there may exist more ac-
curate methods, resulting in particular from (computing-intensive) CI
calibration. This may be of relevance especially for small sample sizes.

The envisaged large increase in computing power may bring the fol-
lowing idea of optimal climate estimation into existence. Given a time
series, {t(i), x(i)}n

i=1, some prior information (e.g., measurement stan-
dard errors, age–depth curve) and a set of questions (parameters to be
estimated), the first task is simple: perform an initial estimation on ba-
sis of existing knowledge and experience with such types of estimation
problems. The second task requires the computing power: explore the
hyperspace (Fig. 9.1) to find the suitable method, that is, the mode of
estimation and CI construction that optimizes a selected measure for
prescribed values close to the initial estimates. Also here, intelligent
exploration methods (gradient, Brent, etc.) are useful. The third task
is to apply the optimal estimation method to the climate time series.
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Boston, 184 pp.

Choi E, Hall P (2000) Bootstrap confidence regions computed from autoregressions of
arbitrary order. Journal of the Royal Statistical Society, Series B 62(3): 461–477.

Chree C (1913) Some phenomena of sunspots and of terrestrial magnetism at Kew
observatory. Philosophical Transactions of the Royal Society of London, Series A
212: 75–116.

Chree C (1914) Some phenomena of sunspots and of terrestrial magnetism—Part II.
Philosophical Transactions of the Royal Society of London, Series A 213: 245–277.

Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK,
Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J,
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VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and
atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica.
Nature 399(6735): 429–436.

Pettitt AN (1979) A non-parametric approach to the change-point problem. Applied
Statistics 28(2): 126–135.

Pfister C (1999) Wetternachhersage. Paul Haupt, Bern, 304 pp.

Pickands III J (1975) Statistical inference using extreme order statistics. The Annals
of Statistics 3(1): 119–131.

Pielke Jr RA, Landsea C, Mayfield M, Laver J, Pasch R (2005) Hurricanes and global
warming. Bulletin of the American Meteorological Society 86(11): 1571–1575.

Pielke Jr RA, Landsea CW (1998) Normalized hurricane damages in the United
States: 1925–95. Weather and Forecasting 13(3): 621–631.

Pirie W (1988) Spearman rank correlation coefficient. In: Kotz S, Johnson NL, Read
CB (Eds) Encyclopedia of statistical sciences, volume 8. Wiley, New York, pp 584–
587.

Pisias NG, Mix AC (1988) Aliasing of the geologic record and the search for long-
period Milankovitch cycles. Paleoceanography 3(5): 613–619.

Pittock AB (1978) A critical look at long-term Sun–weather relationships. Reviews
of Geophysics and Space Physics 16(3): 400–420.

Polansky AM (1999) Upper bounds on the true coverage of bootstrap percentile type
confidence intervals. The American Statistician 53(4): 362–369.

Polanyi M (1958) Personal Knowledge: Towards a Post-Critical Philosophy. Univer-
sity of Chicago Press, Chicago, 428 pp.

Politis DN (2003) The impact of bootstrap methods on time series analysis. Statistical
Science 18(2): 219–230.

Politis DN, Romano JP (1992a) A circular block-resampling procedure for stationary
data. In: LePage R, Billard L (Eds) Exploring the Limits of Bootstrap. Wiley, New
York, pp 263–270.

Politis DN, Romano JP (1992b) A general resampling scheme for triangular arrays
of α-mixing random variables with application to the problem of spectral density
estimation. The Annals of Statistics 20(4): 1985–2007.

Politis DN, Romano JP (1994) The stationary bootstrap. Journal of the American
Statistical Association 89(428): 1303–1313.

Politis DN, Romano JP, Lai T-L (1992) Bootstrap confidence bands for spectra and
cross-spectra. IEEE Transactions on Signal Processing 40(5): 1206–1215.

Politis DN, Romano JP, Wolf M (1999) Subsampling. Springer, New York, 347 pp.

Politis DN, White H (2004) Automatic block-length selection for the dependent boot-
strap. Econometric Reviews 23(1): 53–70.

Popper K (1935) Logik der Forschung: Zur Erkenntnistheorie der modernen Natur-
wissenschaft. Julius Springer, Wien, 248 pp.

Powell JL (1986) Censored regression quantiles. Journal of Econometrics 32(1): 143–
155.

Prais SJ, Winsten CB (1954) Trend Estimators and Serial Correlation. Cowles Com-
mission, Yale University, New Haven, CT, 26 pp. [Discussion Paper No. 383]



References 439

Preisendorfer RW (1988) Principal Component Analysis in Meteorology and Oceanog-
raphy. Elsevier, Amsterdam, 425 pp.

Prell WL, Imbrie J, Martinson DG, Morley JJ, Pisias NG, Shackleton NJ, Streeter
HF (1986) Graphic correlation of oxygen isotope stratigraphy application to the
late Quaternary. Paleoceanography 1(2): 137–162.

Prescott P, Walden AT (1980) Maximum likelihood estimation of the parameters of
the generalized extreme-value distribution. Biometrika 67(3): 723–724.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes in
Fortran 77: The Art of Scientific Computing. Second edition. Cambridge Univer-
sity Press, Cambridge, 933 pp.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1996) Numerical Recipes in
Fortran 90: The Art of Parallel Scientific Computing. Second edition. Cambridge
University Press, Cambridge, pp 935–1486.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical Recipes:
The Art of Scientific Computing. Third edition. Cambridge University Press, Cam-
bridge, 1235 pp. [C++ code]

Prichard D, Theiler J (1995) Generalized redundancies for time series analysis. Phys-
ica D 84(3–4): 476–493.

Priestley MB (1962a) The analysis of stationary processes with mixed spectra—I.
Journal of the Royal Statistical Society, Series B 24(1): 215–233.

Priestley MB (1962b) Analysis of stationary processes with mixed spectra—II. Jour-
nal of the Royal Statistical Society, Series B 24(2): 511–529.

Priestley MB (1981) Spectral Analysis and Time Series. Academic Press, London,
890 pp.

Priestley MB (1988) Non-linear and Non-stationary Time Series Analysis. Academic
Press, London, 237 pp.

Priestley MB (1996) Wavelets and time-dependent spectral analysis. Journal of Time
Series Analysis 17(1): 85–103.

Priestley MB (1997) Detection of periodicities. In: Subba Rao T, Priestley MB,
Lessi O (Eds) Applications of Time Series Analysis in Astronomy and Meteorology.
Chapman and Hall, London, pp 65–88.

Priestley MB, Chao MT (1972) Non-parametric function fitting. Journal of the Royal
Statistical Society, Series B 34(3): 385–392.

Prieto GA, Parker RL, Vernon III FL (2009) A Fortran 90 library for multitaper
spectrum analysis. Computers and Geosciences 35(8): 1701–1710.

Prieto GA, Thomson DJ, Vernon FL, Shearer PM, Parker RL (2007) Confidence inter-
vals for earthquake source parameters. Geophysical Journal International 168(3):
1227–1234.

Prokopenko AA, Hinnov LA, Williams DF, Kuzmin MI (2006) Orbital forcing of
continental climate during the Pleistocene: A complete astronomically tuned cli-
matic record from Lake Baikal, SE Siberia. Quaternary Science Reviews 25(23–24):
3431–3457.

Prueher LM, Rea DK (2001) Volcanic triggering of late Pliocene glaciation: Evidence
from the flux of volcanic glass and ice-rafted debris to the North Pacific Ocean.
Palaeogeography, Palaeoclimatology, Palaeoecology 173(3–4): 215–230.

Pujol N, Neppel L, Sabatier R (2007) Regional tests for trend detection in maximum
precipitation series in the French Mediterranean region. Hydrological Sciences
Journal 52(5): 956–973.



440 References

Pyper BJ, Peterman RM (1998) Comparison of methods to account for autocorrela-
tion in correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic
Sciences 55(9): 2127–2140. [Corrigendum: 1998 Vol. 55(12): 2710]

Quinn BG (1989) Estimating the number of terms in a sinusoidal regression. Journal
of Time Series Analysis 10(1): 71–75.

Quinn BG, Hannan EJ (2001) The Estimation and Tracking of Frequency. Cambridge
University Press, Cambridge, 266 pp.

Rahmstorf S (2003) Timing of abrupt climate change: A precise clock. Geophysical
Research Letters 30(10): 1510. [doi:10.1029/2003GL017115]

Ramesh NI, Davison AC (2002) Local models for exploratory analysis of hydrological
extremes. Journal of Hydrology 256(1–2): 106–119.

Ramsey CB (2008) Deposition models for chronological records. Quaternary Science
Reviews 27(1–2): 42–60.

Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman
A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models
and their evaluation. In: Solomon S, Qin D, Manning M, Marquis M, Averyt K,
Tignor MMB, Miller Jr HL, Chen Z (Eds) Climate Change 2007: The Physical
Science Basis. Contribution of Working Group I to the Fourth Assessment Report
of the Intergovernmental Panel on Climate Change. Cambridge University Press,
Cambridge, pp 589–662.

Rao AR, Hamed KH (2000) Flood Frequency Analysis. CRC Press, Boca Raton, FL,
350 pp.

Raymo ME (1997) The timing of major climate terminations. Paleoceanography 12(4):
577–585.

Raymo ME, Huybers P (2008) Unlocking the mysteries of the ice ages. Nature
451(7176): 284–285.

Raynaud D, Jouzel J, Barnola JM, Chappellaz J, Delmas RJ, Lorius C (1993) The
ice record of greenhouse gases. Science 259(5097): 926–934.

Reed BC (1989) Linear least-squares fits with errors in both coordinates. American
Journal of Physics 57(7): 642–646. [Corrigendum: 1990 Vol. 58(2): 189]

Reed BC (1992) Linear least-squares fits with errors in both coordinates. II: Com-
ments on parameter variances. American Journal of Physics 60(1): 59–62.

Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG,
Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich
M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S,
Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor
FW, van der Plicht J, Weyhenmeyer CE (2004) INTCAL04 terrestrial radiocarbon
age calibration, 0–26 cal kyr BP. Radiocarbon 46(3): 1029–1058.

Reinsel GC (2002) Trend analysis of upper stratospheric Umkehr ozone data
for evidence of turnaround. Geophysical Research Letters 29(10): 1451.
[doi:10.1029/2002GL014716]

Reinsel GC, Miller AJ, Weatherhead EC, Flynn LE, Nagatani RM, Tiao GC,
Wuebbles DJ (2005) Trend analysis of total ozone data for turnaround and
dynamical contributions. Journal of Geophysical Research 110(D16): D16306.
[doi:10.1029/2004JD004662]

Reinsel GC, Weatherhead EC, Tiao GC, Miller AJ, Nagatani RM, Wuebbles DJ,
Flynn LE (2002) On detection of turnaround and recovery in trend for ozone.
Journal of Geophysical Research 107(D10): 4078. [doi:10.1029/2001JD000500]

Reis Jr DS, Stedinger JR (2005) Bayesian MCMC flood frequency analysis with his-
torical information. Journal of Hydrology 313(1–2): 97–116.



References 441

Reiss R-D, Thomas M (1997) Statistical Analysis of Extreme Values. Birkhäuser,
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Brüggemann W, 173
Brumback BA, 166
Buck CE, 173, 384
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Härdle W, 103, 156, 162, 170–171, 175
Hare FK, 163
Hargreaves JC, 387, 390
Harris FJ, 201
Harrison RG, 333
Hartley HO, 216
Haslett J, 173
Hasselmann K, 44–47, 94, 106
Haug GH, 145
Hays JD, 9
Heegaard E, 172, 175
Hegerl GC, 94, 106, 223, 360, 362, 377, 379
Heisenberg W, 26
Henderson GM, 29
Henze FH-H, 299
Herrmann E, 171
Herterich K, 173
Heslop D, 227
Hewa GA, 272
Hidalgo J, 223
Hill BM, 245
Hinkley DV, 164
Hinnov LA, 220
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Künsch HR, 100
Kürbis K, 279
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Pardo-Igúzquiza E, 226
Parent E, 272
Park E, 328
Park J, 215
Park SK, 64
Parrenin F, 384
Parthasarathy B, 20
Parzen E, 26, 75
Patel JK, 108, 323
Paul A, 387
Pauli F, 275
Pearson K, 286, 326, 374

Pelletier JD, 52
Peng C-K, 47, 49
Penner JE, 65
Percival DB, 32, 186, 190–192, 199, 215,

224–225
Perron P, 166–167
Pestiaux P, 30
Peters SC, 83, 103, 163
Peterson TC, 31
Petit JR, 10, 20, 130, 368, 370, 372, 377
Pettitt AN, 166
Pfister C, 27
Pickands III J, 269–270
Pielke Jr RA, 278
Pirie W, 326
Pisias NG, 221
Pittock AB, 223
Polansky AM, 109
Polanyi M, 4
Politis DN, 101–103, 110, 223
Popper K, 3–4, 26, 93
Powell JL, 169
Prais SJ, 121
Preisendorfer RW, 32
Prell WL, 29
Prescott P, 234
Press WH, 63–64, 104, 107, 174, 222, 280,

343, 379–380
Prichard D, 336
Priestley MB, 26, 34, 38, 46, 54, 61, 73, 127,

153, 178–180, 183, 185, 205, 215–217,
221, 291, 323

Prieto GA, 220, 226
Prokopenko AA, 220
Prueher LM, 277
Pujol N, 274
Pyper BJ, 329, 333, 335

Q
Quinn BG, 216–217

R
Rahmstorf S, 222
Ramesh NI, 275
Ramsey CB, 176
Randall DA, 5, 27, 388
Rao AR, 281
Raymo ME, 219
Raynaud D, 20, 29, 378
Reed BC, 380
Reimer PJ, 13, 20, 130
Reinsel GC, 164
Reis Jr DS, 272
Reiss R-D, 269–270, 281
Resnick SI, 270
Rimbu N, 223
Rind D, 223



Author Index 473

Ripley BD, 380
Ritson D, 48
Roberts DH, 201, 227
Robinson PM, 39, 54, 59
Robock A, 277
Rodionov SN, 166
Rodó X, 220
Rodriguez RN, 288, 326
Rodriguez-Iturbe I, 52
Roe GH, 60
Rohling EJ, 206
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