
Advances in Geophysical and Environmental 
Mechanics and Mathematics

Gualtiero Badin
Fulvio Crisciani

Variational 
Formulation of Fluid 
and Geophysical 
Fluid Dynamics
Mechanics, Symmetries and 
Conservation Laws



Advances in Geophysical and Environmental
Mechanics and Mathematics

Series editor

Holger Steeb, Institute of Applied Mechanics (CE), University of Stuttgart,
Stuttgart, Germany



More information about this series at http://www.springer.com/series/7540

http://www.springer.com/series/7540


Gualtiero Badin • Fulvio Crisciani

Variational Formulation
of Fluid and Geophysical
Fluid Dynamics
Mechanics, Symmetries and Conservation
Laws

123



Gualtiero Badin
Universität Hamburg
Hamburg
Germany

Fulvio Crisciani
University of Trieste
Trieste
Italy

ISSN 1866-8348 ISSN 1866-8356 (electronic)
Advances in Geophysical and Environmental Mechanics and Mathematics
ISBN 978-3-319-59694-5 ISBN 978-3-319-59695-2 (eBook)
DOI 10.1007/978-3-319-59695-2

Library of Congress Control Number: 2017949166

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



In loving memory of Prof. Giuseppe Furlan
(1935–2016)



Foreword

In science, as in other walks of life, we are often tempted to do something that will
have an immediate impact that seems original and that will garner more funding and
get us promoted but that may have little true benefit in the long term. And so we do
it, and thereby make a Faustian bargain, not really thinking about the longer term.
But that long term might be better served if we could make more of a Proustian
bargain in which we remember the accomplishments of the past, search for the
meaning in the science, build on secure foundations and so make true advances,
even if slowly and intermittently. To proceed this way, we need a proper exposition
of those foundations and how they relate to the more applied concerns that we deal
with on a daily basis, and it is this noble task that the authors of this book have set
themselves. They have returned to the very fundamentals of Geophysical Fluid
Dynamics and given us a compelling account of how Hamilton’s principle and
variational methods provide a secure footing to the subject and give an underlying
meaning to its results.

Hamilton’s principle provides one of the most fundamental and elegant ways of
looking at mechanics. The laws of motion—whether they may be Newton’s laws in
classical mechanics or the equations of quantum mechanics—emerge naturally by
way of a systematic variational treatment from clear axioms. The connection of the
conservation properties of the system to the underlying symmetries is made
transparent, approximations may be made consistently, and the formulation pro-
vides a solid basis for practical applications. In this book, the authors apply this
methodology to Geophysical Fluid Dynamics, starting with a derivation of the
equations of motion themselves and progressing systematically to approximate
equation sets for use with the rapidly rotating and stratified flows that we encounter
in meteorology and oceanography. Along the way, we encounter such things as
Noether’s Theorem, Lagrangian and Eulerian viewpoints, the relabelling symmetry
that gives rise to potential vorticity conservation, semi-geostrophic dynamics and
the conservation of wave activity. The method also has great practical benefit, for it
is only by use of approximate equation sets that we are able to compute the future
state of the weather—the lack of the proper use of approximate or filtered equations
can be thought of as the cause of the failure of Richardson’s heroic effort to
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numerically predict the weather in 1922, and the proper use of an approximate set
was vital for the success of the effort some 30 years later by Charney, Fjortoft and
von Neumann, and still today we use approximate equation sets in climate and
weather models.

The treatment in the book is unavoidably mathematical, but it is not “advanced”,
for it makes use only of fairly standard methods in variational calculus and a little
bit of group theory. The book should be accessible to anyone who has such a
background although it is not, reusing one of Clifford Truesdell’s many memorable
remarks, a mountain railway that will take the reader on a scenic tour of all the
famous results with no effort on the reader’s part. But with just a little work, the
book will benefit meteorologists and oceanographers who wish to learn about
variational methods, and it will benefit physicists and applied mathematicians who
wish to learn about Geophysical Fluid Dynamics. And the book reminds us once
again that Geophysical Fluid Dynamics is a branch of theoretical physics, as it has
always been but as we sometimes forget.

April 2017 Geoffrey K. Vallis
University of Exeter, Exeter, England

,
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Preface

The motion of fluids from the smaller to the large scales is described by a complex
interplay between the momentum equations and the equations describing the ther-
modynamics of the system under consideration. The emerging motion comprises
several scales, ranging from microscales, to planetary scales, often linked by non-
trivial self-similar scalings. At the same time, the motion of classic fluids is described
by a specific branch of continuum mechanics. It comes thus natural that one would
like to describe the rich phenomenology of the fluid and geophysical fluid motion in
a systematic way from first principles, derived by continuum mechanics. One
of these first principles is given by Hamilton’s principle, which allows to obtain the
equations of motion through a variational treatment of the system.

A famous call for the need of a systematic derivation of the equations of Fluid
and Geophysical Fluid Dynamics lies in the memorandum sent by the mathe-
matician John von Neumann to Oswald Veblen, written in 1945 and here reported
in the Introduction to Chap. 3. The quote reads: “The great virtue of the variational
treatment […] is that it permits efficient use, in the process of calculation, of any
experimental or intuitive insight […]. It is important to realize that it is not pos-
sible, or possible to a much smaller extent, if one performs the calculation by using
the original form of the equations of motion—the partial differential equations. […]
Symmetry, stationarity, similitude properties […] applying such methods to
hydrodynamics would be of the greatest importance since in many hydrodynamical
problems we have very good general evidence of the above-mentioned sort about
the approximate aspect of the solution, and the refining of this to a solution of the
desired precision is what presents disproportionate computational difficulties […]”
(see reference to von Neumann (1963) of Chap. 3). While sadly von Neumann
intended to make practical use of such a treatment to study the aftershocks created
by nuclear explosions, the quote still summarizes some of the most important
features of the variational method: “Symmetry, stationarity, similitude properties”.
With these properties, von Neumann clearly had in mind the self-similar structure
of fluid flows (“similitude”), which is indeed the feature that allows us to study
different scales of motion through a proper rescaling of the system; he probably had
in mind also the study of the stability of the system under consideration
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(“stationarity”); but he mentions also one of the most important results from
field-theory that is the study of what he calls with the word “symmetry”. Continuous
symmetries in mechanical systems have in fact the property to be related to con-
served quantities, as it is well known by probably the most beautiful theorem in
mathematical physics, the celebrated “Noether’s Theorem”. In the specific case of
fluid dynamics, the continuum hypothesis is associated to a specific symmetry that
is the particle relabelling symmetry. Application of Noether’s Theorem results in
the fundamental conservation of vorticity in fluids, which is itself linked to the
conservation of circulation and of potential vorticity, all quantities that have pri-
mary importance in a huge number of applications, ranging from fluids, geophysical
fluids, plasmas and astrophysical fluids. It is from the particle relabelling symmetry
and Noether’s Theorem that one sees that the conservation of vorticity is a fun-
damental property of the system and does not emerge just from skilful manipulation
of the partial differential equations describing the dynamics.

The aim of this book is to go through the development of these concepts.
In Chap. 1, we give a résumé of the aspects of Fluid and Geophysical Fluid

Dynamics, starting from the continuum hypothesis and then presenting the gov-
erning equations and the conservation of potential vorticity as well as energy and
enstrophy, in various approximations.

In Chap. 2, we review the Lagrangian formulation of dynamics starting from
Hamilton’s Principle of First Action. In the second part of the chapter, Noether’s
Theorem is presented both for material particles and for continuous systems such as
fluids.

In this way, Chap. 1 will serve as an introduction to Fluid and Geophysical Fluid
Dynamics to students and researchers of subjects such as physics and mathematics.
Chapter 2 will instead serve as an introduction to analytical mechanics to students of
applied subjects, such as engineering, climatology, meteorology and oceanography.

In Chap. 3, we first introduce the Lagrangian density for the ideal fluid. The
equations of motion are rederived using Hamilton’s principle first in the Lagrangian
and then in the Eulerian frameworks. The relationship between the two frameworks
is thus revealed from the use of canonical transformations. Noether’s Theorem is
then applied to derive the conservation laws corresponding to the continuous
symmetries of the Lagrangian density. Particular attention will be given to the
particle relabelling symmetry, and the associated conservation of vorticity.

In Chap. 4, we extend the use of Hamilton’s principle to continuously stratified
fluids and to uniformly rotating flows. Different sets of approximated equations,
which constitute different commonly used approximation in Geophysical Fluid
Dynamics, are considered, as well as the form taken by the conservation of potential
vorticity in each of them. Finally, the variational methods are applied to study some
selected topics of wave dynamics.

Technical derivations of equations that might interrupt the flow of the reading
are reported in a number of appendices.
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This book should be considered as an elementary introduction. Bibliographical
notes at the end of each chapter will guide the reader to more advanced treatments
of the subject.

Hamburg, Germany Gualtiero Badin
Trieste, Italy Fulvio Crisciani
April 2017
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Chapter 1
Fundamental Equations of Fluid
and Geophysical Fluid Dynamics

Abstract The motion of fluids from the smaller to the large scales, i.e. until the
oceans and atmospheric currents, is described by a complex interplay of the momen-
tum equations and the equations describing the thermodynamics of the specific sys-
tem. The resulting set of equations constitutes the branch of physics and applied
mathematics called Fluid and Geophysical Fluid Dynamics. The continuum hypoth-
esis and the governing equations of Fluid and Geophysical Fluid Dynamics in their
inviscid form are here synthetically reviewed. Emphasis is given to the conservation
of energy, enstrophy and potential vorticity, which are written in various approxi-
mations. The obtained relationships constitute the basis for the development of the
following chapters. Chapter1 aims thus to give only a résumé of the aspects of Fluid
and Geophysical Fluid Dynamics which will be considered from the Lagrangian
and Hamiltonian point of view in the other chapters. For this reason, several steps
in deriving the governing equations are omitted and only the outlines are mostly
reported.

Keywords Fluid dynamics ·Geophysical fluiddynamics · Ideal fluid ·Conservation
laws · Rotating flows · Stratified flows · Potential vorticity · Ertel’s theorem ·
Circulation · Shallow water equations · Quasi-geostrophic equations

1.1 Introduction

Fluid dynamics deals with a wide range of scales of motions, ranging from the micro
till the planetary scales, and linked by self-similar laws. Once the laws governing
the velocity u, the pressure p and the density ρ of these fluids are established, and
the main goal is to understand, in terms of mathematical models suitably idealized,
the rich physical phenomenology exhibited by the fluids. The governing equations
are based on the continuous distribution of the fields under consideration. At the
larger scales, Geophysical Fluid Dynamics deals with large-scale motions of flu-
ids in the oceans (marine currents) and in the atmosphere (winds), as viewed by
a terrestrial observer, i.e. by an observer whose frame of reference is fixed with
the Earth. On this subject, Joseph Pedlosky [12] said “One of the key features of

© Springer International Publishing AG 2018
G. Badin and F. Crisciani, Variational Formulation of Fluid and Geophysical
Fluid Dynamics, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-319-59695-2_1
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2 1 Fundamental Equations of Fluid and Geophysical Fluid Dynamics

Geophysical Fluid Dynamics is the need to combine approximate forms of the basic
fluid-dynamical equations of motion with careful and precise analysis. The approx-
imations are required to make any progress possible, while precision is demanded
to make the progress meaningful”. In this chapter, this continuum hypothesis and
the governing equations are synthetically reviewed in the standard (i.e. nonvaria-
tional) approach. While the oceans and the atmosphere are made of viscous, and
thus dissipative, fluids, we will here concentrate in the nondissipative equations, in
order to allow for a Hamiltonian formulation of the dynamics in the following chap-
ters. Notice that not all the approximations derived in this chapter will be rederived
from variational principles in the following chapters and vice versa. Some attention
will however be dedicated here to additional approximations, as the nonvariational
derivation highlights some physical processes that might be of interest especially for
the more applied readers.

1.2 The Continuum Hypothesis

Fluid matter is slippery not only from a practical point of view, but also in the attempt
to establish principles and laws of classical physics which govern its evolution.
For instance, while the dynamics of a pointlike massive body is, basically, that of
Newton’s second law, the application of the same equation to a fluid according to
the Lagrangian description looks problematic as far as an operative definition of a
“pointlike fluid body” is not established. In order to attribute the velocity and the
acceleration to individual bodies of fluid consistently with Newton’s second law, the
concept of parcel is introduced and defined as a volume of fluid whose amount is the
same at any time. Obviously, a parcel is not pointlike but, rather, it has a finite volume
which, in general, changes its shape at each time.Hence, one shouldpose thequestion:
“How large is a parcel?”. The answer goes beyond the simple definition of parcel
(in the sense that, a priori, its volume and the related mass could be arbitrary) and
relies on the possibility to performmeasurements, at themacroscopic scale and in the
framework of classical physics, on the fluid, i.e. on its parcels. In a measure process,
a probe is put into the fluid and the output of the instrument is a number (usually
referred to SI units) which comes from the interaction of the probe with the fluid;
this number quantifies a physical property of the fluid. The process can be repeated
for each point and time. The volume of fluid to which the instrument responds is
much larger than the volume in which variations due to molecular fluctuations take
place; in this way, an undesired random variability of the output is avoided. Thus,
the volume of a parcel, and of the parcels that interact with the probe, is far larger
than the typical distance among the molecules of the fluid. This is a lower bound for
the volume of a parcel. On the other hand, the uniqueness of the number provided by
the instrument in a single measurement means that, in the interaction with the parcel,
the probe feels a uniformly distributed property of the fluid. Thus, the property of the
fluid of the parcel that interacts with the probe, and hence of every parcel, is spread
uniformly over the volume of the parcel. This is the continuum hypothesis, which
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ultimately relies on the unicity of the response of a process of measurement within
the framework of classical physics. By varying the position of the probe, different
outputs are expected and usually obtained. This fact poses an upper bound to the
volume of the parcels; in fact, the possibility to detect the variations is associated
with spatial distribution of physical quantities whenever the probe interacts with
different parcels of the same fluid demands that the volume of the parcels be far
smaller of the total volume involved in the measure process.

The same measure process described above can be interpreted from a different
point of view, by associating with each position of the probe the related numeri-
cal output of the measurement and by assuming the possibility to extend ideally
this mapping to the whole volume of fluid under investigation. In this way, named
Eulerian description, the physical property of the fluid is referred, point by point,
to the volume that includes it in terms of a field. Although the Eulerian description
is not fit for Newton’s second law, it is related to the Lagrangian description by a
kinematic constraint according to which the field property at a given location and
time must equal the property possessed by the parcel occupying that position on that
instant.

In the Lagrangian description, instead, the fluid looks like a continuous variety
of parcels, so, in principle, each parcel can be identified by a fixed tern of labels
and by time. As a parcel does not change the labels in the course of motion, the
coordinates of the parcel are a function of the labels and of time; in other words,
in the Lagrangian description, labels and time are independent variables while the
coordinates are variables dependent on the labels and on time. Hence, if a quantity
is ascribed to a parcel following the motion, the rate of change of the quantity is
simply its differentiation with respect to time. Label coordinates refer to a certain
label space, while the space coordinates refer to a certain location space, and the
relationship between these two spaces is represented by a nonsingular mapping (in
each point of the location space, there is a “labelled” parcel, and in each “labelled”
point of the label space, definite space coordinates can be attributed to the parcel
occupying that point) whose time evolution describes fluid motion. No criterion to
assign the labels is established a priori, provided that each parcel keeps the same
labels for all time.

1.3 Derivation of the Equations of Motion

1.3.1 Conservation of Mass

By definition, themass of any parcel is conserved in time. Thus, if V (t) is thematerial
volume of a certain parcel, then

d

dt

∫
V (t)

ρ(r, t)dV ′ = 0 . (1.1)
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Notice that in the following, the independent variables will sometimes be omitted.
Now, for any scalar θ included in the parcel of volume V (t), the equation

d

dt

∫
V (t)

θdV ′ =
∫

V (t)

(
Dθ

Dt
+ θ div u

)
dV ′ (1.2)

allows to transfer the time derivative of a space integral inside the space integral
itself. A derivation of (1.2) is reported in Appendix A. The velocity u appearing in
the Lagrangian derivative D/Dt = ∂/∂t +u ·∇ of (1.2) is the velocity of the parcel.
By using (1.2), Eq. (1.1) becomes

∫
V (t)

(
Dρ

Dt
+ ρ div u

)
dV ′ = 0 . (1.3)

Because Eq. (1.3) holds for every parcel, the governing equation of the density
field

Dρ

Dt
+ ρ div u = 0 (1.4)

or, equivalently,
∂ρ

∂t
+ div(ρu) = 0 (1.5)

immediately follows.

1.3.2 Incompressibility and Density Conservation

A fluid is said to be incompressible when the density of parcels is not affected by
changes in the pressure. Thus, the rate of change of ρ following the motion is zero

Dρ

Dt
= 0 . (1.6)

In other words, parcels move on trajectories along which the density field takes a
constant value. If Eq. (1.6) holds true, then (1.4) implies

div u = 0 , (1.7)

which means that the current is solenoidal. In turn, Eq. (1.7) means that every stream
tubemust be either close, or end on the boundary of the fluid, or extend in a unbounded
way in some direction.
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1.3.3 Momentum Equation in an Inertial Frame of Reference

Given that the parcel is an individual portion of fluid, in analogy with the Newton’s
second law for a pointlikemassive object, the time derivative of the linear momentum
of a parcel is assumed to be equal to the sum of the forces applied to it. The linear
momentum of a parcel is defined by

∫
V (t) ρudV ′, so its acceleration is given by

d

dt

∫
V (t)

ρudV ′ . (1.8)

Unlike a pointlike mass moving without interacting with the surrounding matter,
the forces applied to a parcel are not only body forces, such as gravity, but also
surface forces due to the interaction of each parcel with those surrounding it. The
body forces can be represented by the quantity

∫
V (t)

ρFdV ′ , (1.9)

where F is a force per unit mass that includes gravity acceleration −gk̂, where we

have used the standard notation inwhich
(
î, ĵ, k̂

)
indicate the orthogonal unit vectors

for the (x, y, z) tern. In the following, we will also indicate with
(
n̂, t̂

)
the normal

and the tangent unit vectors at a certain point of a material surface, respectively. The
fundamental surface force mainly comes from the pressure reciprocally exerted at
the boundary of the parcels in contact. The parcel included into V (t) experiences the
force

−
∫

V (t)
∇ pdV ′ , (1.10)

where p = p(r, t) is the pressure field. By using (1.8)–(1.10), Newton’s second law
results in the equation

d

dt

∫
V (t)

ρudV ′ =
∫

V (t)
(ρF − ∇ p) dV ′ . (1.11)

The l.h.s of (1.11) can be rearranged using (1.2) according to the chain of equalities

d

dt

∫
V (t)

ρudV ′ =
∫

V (t)

[
D

Dt
(ρu) + ρu div u

]
dV ′

=
∫

V (t)

[
u

Dρ

Dt
+ ρ

Du
Dt

+ ρu div u
]

dV ′

=
∫

V (t)

[
ρ

Du
Dt

+ u
(

Dρ

Dt
+ ρ div u

)]
dV ′ . (1.12)
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Recalling (1.4)–(1.5), Eq. (1.12) simplifies into

d

dt

∫
V (t)

ρudV ′ =
∫

V (t)
ρ

Du
Dt

dV ′ (1.13)

so, with the aid of (1.13), Eq. (1.11) becomes

∫
V (t)

(
ρ

Du
Dt

− ρF + ∇ p

)
dV ′ = 0 . (1.14)

After a trivial rearrangement and the use of position F = −g∗k̂, Eq. (1.14) yields the
so-called Euler’s equation in the form

Du
Dt

= −∇ p

ρ
− g∗k̂ . (1.15)

Equation (1.15) looks fit for flows of a massive (−g∗k̂ �= 0) but nonrotating Earth
or, more realistically, for flows that do not feel Earth’s rotation. This point will be
clarified at the end of Sect. 1.5.

1.4 Elementary Symmetries of the Euler’s Equation

Consider the Euler’s equation (1.15) in absence of the body force F,

Du
Dt

= −∇ p

ρ
. (1.16)

Equation (1.16) is invariant under the symmetry transformation

r → r′ = gr (r) , (1.17a)

t → t ′ = gt(t) , (1.17b)

p → p′ = gp(p) , (1.17c)

if it satisfies
Du
Dt

= −∇ p

ρ
⇒ Du′

Dt ′ = −∇′ p′

ρ
, (1.18)

i.e. if the equations ofmotion donot change under the transformation (1.17a)–(1.17c).
In (1.17a)–(1.17c), gr ∈ Gr , gt ∈ Gt , gp ∈ G p are symmetry transformations that
belong to the one-parameter groups Gr , Gt , G p. Notice that the transformation of
the pressure field is



1.4 Elementary Symmetries of the Euler’s Equation 7

gp(p) = p + p̄ or gp(p) = Cp , (1.19)

and it is thus determined through the identification of either p̄ or the nondimensional
constant C so that the transformed pressure field depends on the specific case under
consideration and satisfies the invariance of the original equation. In certain cases,
gp will be a function of the space and time coordinates.

For the following symmetries, the theses and proofs will proceed through the
statement of the symmetric transformation on the independent variables. The corre-
sponding transformations of the velocity field and on the time and space derivatives
are thus determined directly.

1.4.1 Continuous Symmetries

Equation (1.16) satisfies the following continuous symmetries:

1.4.1.1 Gauge Invariance for the Pressure Field

gr (r) = r , (1.20a)

gt(t) = t , (1.20b)

gp(p) = p + F(t) , (1.20c)

where F(t) is an arbitrary functionof time.Observing that the transformationdoes not
act on the independent variables t, r and on the dependent variable u, the invariance
is trivially proved upon substitution of (1.20a)–(1.20c) in (1.16).

1.4.1.2 Space Translations

gr (r) = r + c , (1.21a)

gt(t) = t , (1.21b)

gp(p) = p , (1.21c)

where c ∈ R
3 is a constant vector.

Proof Time differentiation of (1.21a) shows that the transformation does not act
on the velocity field, so that u′ = u. Consider, for simplicity and without loss of
generality, the space translation in the x direction x ′ = x +c. Because c is a constant,

∂

∂x ′ = ∂

∂x
. (1.22)
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And the invariance of (1.16) under (1.21a)–(1.21c) is proved upon substitution and
setting p̄ = 0, or C = 1.

Importantly, it should be noted that (1.16) is invariant also under nonuniform
translations

gr (r) = r + c(t) , (1.23a)

gt(t) = t , (1.23b)

gp(p) = p − ρr
d2c
dt2

. (1.23c)

Proof Start by noting that (1.23a) yields

u′ = u + dc
dt

. (1.24)

Using index notation, (1.23a), (1.23b) can be written as

gx(xi ) = xi + ci (t) , (1.25a)

gt(t) = t . (1.25b)

Equation (1.16) and the incompressibility Eq. (1.7), using Einstein’s summation
over repeated indices, take the form

∂ui

∂t
+ u j

∂ui

∂x j
= − 1

ρ

∂p

∂xi
, (1.26)

∂ui

∂xi
= 0 . (1.27)

Time differentiation of the first equation of (1.25a) yields

u′
i = ui + dci

dt
. (1.28)

Under (1.25a), (1.25b), the space derivatives transform as

∂

∂xi
= ∂x ′

j

∂xi

∂

∂x ′
j

= ∂
(
x j + c j

)
∂xi

∂

∂x ′
j

= δi j
∂

∂x ′
j

= ∂

∂x ′
i

, (1.29)
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where δi j is the Kronecker delta symbol, while the time derivative transforms as

∂

∂t
= ∂t ′

∂t

∂

∂t ′ + ∂x ′
i

∂t

∂

∂x ′
i

= ∂

∂t ′ + ∂ (xi + ci )

∂t

∂

∂x ′
i

= ∂

∂t ′ + dci

dt

∂

∂x ′
i

. (1.30)

Substitution in (1.16) gives

(
∂

∂t ′ + dci

dt

∂

∂x ′
i

) (
u′

i − dci

dt

)
+

(
u′

j − dc j

dt

)
∂

∂x ′
j

(
u′

i − dci

dt

)

= − 1

ρ

∂

∂x ′
j

(
p′ + p̄

)
. (1.31)

After multiplications, (1.31) yields

∂u′
i

∂t ′ + u′
j

∂u′
i

∂x ′
j

+ 1

ρ

∂p′

∂x ′
j

= −d2ci

dt2
− 1

ρ

∂ p̄

∂x ′
j

. (1.32)

Using (1.26), the l.h.s. of (1.32) is zero, so that (1.32) reduces to (1.16) if

p̄ = −ρx j
d2c j

dt2
, (1.33)

or, returning to vector notation,

p̄ = −ρr · d2c
dt2

, (1.34)

proving the invariance of (1.16) under (1.23a), (1.23b) and (1.24). Notice that in this
case, the correction term to the pressure field, p̄, depends on r.

1.4.1.3 Time Translations

gr (r) = r , (1.35a)

gt(t) = t + τ , (1.35b)

gp(p) = p , (1.35c)

where τ ∈ [0,+∞) is a constant.
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Proof As for the space translation invariance, time differentiation of (1.35a) shows
that the transformation does not act on the velocity field, so that u′ = u. The invari-
ance is thus trivially proved to hold for p̄ = 0 or C = 1 upon substitution of
(1.35a)–(1.35c) in (1.16) and noting that both the spatial and the time derivatives
remain unchanged

∇′ = ∇ , (1.36a)

∂

∂t ′ = ∂

∂t
. (1.36b)

1.4.1.4 Invariance Under Galilean Transformations

gr (r) = r + Ut , (1.37a)

gt(t) = t , (1.37b)

gp(p) = p , (1.37c)

where U ∈ R
3 is a constant velocity.

Proof Time differentiation of (1.37a) yields

u′ = u + U . (1.38)

To prove the invariance of (1.16), consider, for simplicity and without loss of gen-
erality, translations along the x direction, so that x ′ = x + Ut . The time derivative
transforms as

∂

∂t ′ = ∂t

∂t ′
∂

∂t
+ ∂x

∂t

∂

∂x

= ∂

∂t
+ ∂(x ′ − Ut)

∂t

∂

∂x

= ∂

∂t
− U

∂

∂x
. (1.39)

The time derivative for the general case transforms thus as

∂

∂t ′ = ∂

∂t
− U · ∇ , (1.40)

while the advective term in the Lagrangian derivative transforms as

(
u′ · ∇′)u′ = (u · ∇) u + (U · ∇) u . (1.41)

Due to the mutual cancellation of last terms on the r.h.s. of (1.40) and (1.41), the
Galilean covariance of (1.16) is proved.
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1.4.1.5 Rotations

gr (r) = Rr , (1.42a)

gt(t) = t , (1.42b)

gp(p) = p , (1.42c)

whereR ∈ SO(3) is the three-dimensional orthogonal rotationmatrix, with property

det R = 1 . (1.43)

Proof Time differentiation of (1.42a) yields

u′ = Ru . (1.44)

Because the pressure field is a scalar, the pressure term remains unaltered

p′ = p , (1.45)

i.e. p̄ = 0 or C = 1. Using again index notation and Einstein’s summation over
repeated indices,

xi = R ji x
′
j , (1.46)

ui = R ji u
′
j , (1.47)

and, because of (1.43),

x ′
i = Ri j x j , (1.48)

u′
i = Ri j u j . (1.49)

Then, the space derivatives transform as

∂

∂xi
= ∂x ′

j

∂xi

∂

∂x ′
j

= ∂
(
R jk xk

)
∂xi

∂

∂x ′
j

= R jk
∂xk

∂xi

∂

∂x ′
j

= R jkδki
∂

∂x ′
j

= R ji
∂

∂x ′
j

, (1.50)
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Equations (1.42a)–(1.42c) and (1.50) thus yield, from (1.16)

∂ui

∂t
+ u j

∂ui

∂x j
+ 1

ρ

∂p

∂xi
= ∂

∂t ′
(
Rki u

′
k

) + (
Rmj u

′
m

)
Rnj

∂

∂x ′
n

(
Rki u

′
k

) + 1

ρ
Rki

∂p′

∂x ′
k

= Rki

[
∂u′

k

∂t
+ (

Rmj Rnj
)

u′
m

∂u′
k

∂x ′
n

+ 1

ρ

∂p′

∂x ′
k

]

= 0 . (1.51)

Equation (1.51) yields

∂u′
k

∂t
+ (

Rmj Rnj
)

u′
m

∂u′
k

∂x ′
n

+ 1

ρ

∂p′

∂x ′
k

= 0 . (1.52)

Noting that [
Rmj Rnj

]
mn = δmn , (1.53)

Equation (1.52) reduces to (1.16).

1.4.2 Discrete Symmetries

The continuous symmetries discussed in the previous section are satisfied also in the
case of discrete transformations. Further, we consider here some additional discrete
symmetries, namely the time-reversal symmetry, the symmetry by parity reflections
and the symmetry by scaling invariance.

1.4.2.1 Time Reversal

gr (r) = r , (1.54a)

gt(t) = −t , (1.54b)

gp(p) = p . (1.54c)

Proof Direct application of (1.54b) implies

∂

∂t ′ = − ∂

∂t
. (1.55)

In turn, the time differentiation of (1.54a) yields

u′ = −u . (1.56)
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The invariance of (1.16) under the symmetry transformation (1.54a)–(1.54c) is thus
proved upon substitution, with p̄ = 0 or C = 1.

1.4.2.2 Parity

gr (r) = −r , (1.57a)

gt(t) = t , (1.57b)

gp(p) = p . (1.57c)

Proof The time differentiation of (1.57a) yields

u′ = −u . (1.58)

Noting that (1.57a) implies the transformation of the gradient operator as

∇′ = −∇ , (1.59)

substitution in (1.16) proves the symmetry of the system for p̄ = 0 or C = 1.

1.4.2.3 Scaling Invariance

gr (r) = ar , (1.60a)

gt(t) = bt , (1.60b)

gp(p) =
(a

b

)2
p , (1.60c)

where a, b ∈ R, a, b �= 0.

Proof Under (1.60a)–(1.60b), the partial derivatives transform as

∇ → ∇′ = 1

a
∇ , (1.61)

∂

∂t
→ ∂

∂t ′ = 1

b

∂

∂t
, (1.62)

Further, time differentiation of (1.60a) yields

u′ = a

b
u . (1.63)

With the position p′ = Cp, substitution into (1.16) yields
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b2

a

Du′

Dt ′ = − a

C

∇′ p′

ρ
, (1.64)

which implies that (1.16) is invariant under (1.60a)–(1.60c) for

C =
(a

b

)2
. (1.65)

1.4.3 Role of Gravity in Breaking the Symmetries
of the Euler’s Equation

What happens when the gravitational force F = −gk̂ is reinserted in the Euler’s
equation? The additional term introduces a nonhomogeneity in the vertical compo-
nent of the equation of motion. In the horizontal directions, (1.15) retains thus the
symmetries of (1.16). In the vertical direction, however, for the continuous symme-
tries, the nonhomogeneous term acts to break the rotational symmetry. Indicating
with the subscript 3, the vertical component of the velocity with the addition of the
gravity acceleration (1.51) can be written as

∂u3

∂t
+ u j

∂u3

∂x j
+ 1

ρ

∂p

∂x3
+ g = ∂

∂t ′
(
Rk3u′

k

) + (
Rmj u

′
m

)
Rnj

∂

∂x ′
n

(
Rk3u′

k

) + 1

ρ
Rk3

∂p′

∂x ′
k

+ g

= Rk3

[
∂u′

k

∂t ′
+ (

Rmj Rnj
)

u′
m

∂u′
k

∂x ′
n

+ 1

ρ

∂p′

∂x ′
k

]
+ g

= 0 . (1.66)

It is thus visible that it is not possible to factorize the term Rk3 from the gravity term
and thus to satisfy the symmetry under rotations of the Euler’s equation.

The nonhomogeneous term acts to break also all the discrete symmetries in the
vertical direction. To prove this statement for the time-reversal and parity symme-
tries, it is necessary to note only that the gravity acceleration term does not change
sign under the transformations (1.54a)–(1.54c) and (1.57a)–(1.57c), respectively.
To prove instead the lack of scaling invariance, it is simply possible to notice that
(1.60a)–(1.60c) does not act on the gravity acceleration.

1.5 Momentum Equation in a Uniformly Rotating Frame
of Reference

An observer fixed with the Earth rotates uniformly at the rate Ω around the constant
vector ���. This reference is openly not inertial, so Eqs. (1.4) and (1.15) must be
reformulated in a uniformly rotating frame. Consider an inertial frame located, only
for mathematical simplicity, in the centre of the Earth and a parcel P (r(t)) where
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r is the position vector of the parcel (embedded in the ocean or in the atmosphere)
with respect to Earth’s centre. Let uI (t) and uR(t) be the velocity of the same parcel
P detected in the inertial system (subscript I) and in a system fixed with the Earth
(subscript R), thus uniformly rotating according to ���. The system fixed with the
Earth is a right-handed Cartesian one, with the z-axis antiparallel to the local gravity
and the plane (x, y) tangent to the terrestrial sphere in a given point, of latitude φ0.
In the Northern Hemisphere, the y-axis points northward (and therefore the x-axis
points eastward). In the Southern Hemisphere, the y-axis points southward to form
again a right-handed Cartesian tern. The vectors uI (t) and uR(t) turn out to be linked
by the relationship

uI (t) = uR(t) + ��� × r(t) . (1.67)

In particular, uR = (u R, vR, wR) = (Dx/Dt, Dy/Dt, Dz/Dt). Likewise, the
acceleration of P in the inertial system, say (DuI /Dt)I , is linked to the acceler-
ation in a system fixed with the Earth, say (DuR/Dt)R , by the relationship

(
DuI

Dt

)
I

=
(

DuR

Dt

)
R

+ 2��� × uR + ��� × [��� × r(t)] . (1.68)

In the transformation law for the acceleration (1.68), the fundamental new term
is Coriolis’ acceleration 2��� × uR which takes place whenever uR �= 0. The related
force per unit mass is the further body force, besides gravity, which is typical of
Geophysical Fluid Dynamics. The importance of Coriolis’ acceleration is explained
by evaluating the ratio |DuR / Dt | / |2��� × uR| whose typical value, named Rossby
number (ε), is mostly lesser than unit on geophysical scales. This result shows that
Coriolis’ acceleration may be prevalent on the local acceleration, as actually happens
in the evolution of the geostrophic current uG = k̂ × ∇ p / 2Ωρ.

Unlike the momentum equation, both the Lagrangian derivative and the gradient
operator are covariant in passing from an inertial to a uniformly rotating frame of
reference, that is (

D

Dt

)
I

=
(

D

Dt

)
R

and ∇I = ∇R . (1.69)

By using Eqs. (1.67)–(1.69), the continuity equation turns out to retain its form (1.5)
also in a uniformly rotating system

Dρ

Dt
+ ρ div uR = 0 (1.70)

or, equivalently,
Dρ

Dt
+ div (ρuR) = 0 . (1.71)

By using again (1.67)–(1.69), the momentum Eq. (1.15) becomes
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∂uR

∂t
+ (uR · ∇) uR + 2��� × uR + ��� × (��� × r) = −∇ p

ρ
− g∗k̂ . (1.72)

Because in Geophysical Fluid Dynamics all the fields are referred only to sys-
tems fixed with the Earth, the subscript R can be dropped without ambiguity from
(1.70)–(1.72).

In the absence of rotation, the gravitational acceleration g∗ alone would tend to
form a spherical planet, while, in a rotating one, the combined gravitational (g∗) and
centrifugal (−��� × (��� × r)) accelerations cause a planet with a flattened ellipsoidal
shape. Things adjust themselves in such a way that the resulting acceleration has
the direction of the local vertical, say k̂, so that gk̂ = g∗ + ��� × (��� × r). As a
consequence, the surface of the planet is a geopotential (Φ) surface: every particle
at rest on a surface of equation Φ = const will remain at rest unless it undergoes
additional forces. Now, the direction of the geopotential is used to define the local
vertical direction k̂ and to regard the surfaces of equation Φ = const as they were
true spheres. So a local Cartesian reference can be established in the usual way and
the f -plane or β-plane approximations can be introduced [15]. Thus, the governing
equations are written as

Dρ

Dt
+ ρ div u = 0 , (1.73)

Du
Dt

+ 2��� × u = −∇ p

ρ
− gk̂ . (1.74)

In systems, such as streams and tornadoes, where the Rossby number is far larger
than unity, the horizontal pressure gradient equilibrates the local acceleration rather
than Coriolis acceleration. In this case, the dominant dynamic balance is that of
Euler’s equation (1.15) in spite of Earth’s rotation.

1.5.1 Vorticity Equation

Equations (1.72) and (1.74) are the basis to establish the governing equation of a
scalar which plays a very important role in Geophysical Fluid Dynamics, that is
potential vorticity, and in finding the conditions, expressed by Ertel’s theorem, for
the conservation of this scalar. Some preliminaries are in order.

The relative vorticity ωωω is, by definition, the curl of the velocity

ωωω = rot u, (1.75)

while the absolute vorticity ωωωa is the sum of the relative vorticity (1.75) plus the
planetary vorticity 2���, that is

ωωωa = ωωω + 2��� . (1.76)
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According to position (1.76), the total vorticity takes into account both the con-
tribution of relative vorticity due to the shear of the current, or of the wind, and
the contribution arising from the rotation of the fluid Earth, as a whole, around ���.
For future purposes, it is useful to recall the component of absolute vorticity on the
z-axis, that is ωωωa · k̂, which is given by

ωωωa · k̂ = ωωω · k̂ + 2��� · k̂ ≈ ∂v

∂x
− ∂u

∂y
+ f0 + β0y . (1.77)

In (1.77), (∂v/∂x)− (∂u/∂y) is the component of rot u on the z-axis. To explain the
quantity f0 +β0y of the same equation, start from the equation 2��� · k̂ = 2Ω sin (φ),
where φ is the latitude of the parcel which (1.76) refers to. If φ is not too far
from the latitude φ0 of the contact point between the surface of the Earth and the
Cartesian plane, then sin (φ) ≈ sin (φ0) + (φ − φ0) cos (φ0). By introducing the
Coriolis parameter f0 = 2Ω sin (φ0), the planetary vorticity gradient β0 = 2Ω cos
(φ0) / R, where R is the mean radius of the Earth, and the approximation φ − φ0 ≈
y / R, one obtains

2��� · k̂ = 2Ω sin (φ)

≈ 2Ω sin (φ0) + (φ − φ0) 2Ω cos (φ0)

≈ f0 + 2Ω

R
y cos (φ0)

= f0 + β0y . (1.78)

Equation (1.78) shows that
2��� · k̂ ≈ f0 + β0y , (1.79)

in accordance with (1.77). The approximation

2��� · k̂ ≈ f0 (1.80)

defines the dynamics in the so-called f -plane. The approximation (1.79) defines
instead the dynamics in the so-called β-plane.

After these preliminaries, consider the application of the operator rot to (1.74).
The result is

Dωωωa

Dt
= (ωωωa · ∇) u − ωωωa div u − ∇ p × ∇ρ

ρ2
. (1.81)

1.5.2 Planar Flows with Constant Density

A special case of Eq. (1.81) is that in which the fluid density is a constant and the
flow is planar. Under these hypotheses, each term at the r.h.s of (1.81) identically
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vanishes so this equation becomes

D

Dt
(ωωω + 2���) = 0 . (1.82)

Assume the motion on the (x, y) plane. Then, fluid incompressibility ∂u/∂x +
∂v/∂y = 0 is satisfied by setting

u = k̂ × ∇ψ , (1.83)

where ψ is a certain differentiable stream function. From (1.81) and (1.83), one
obtains

ωωω = (∇2ψ
)
k̂ . (1.84)

The use of (1.84) together with (1.79) into (1.82) results in the equation

D

Dt

(∇2ψ + β0y
) = 0 . (1.85)

The latter equation yields the evolution law of the stream function and hence of the
flow u. Noting that (1.83) implies u · ∇ = −∂ψ/∂y ∂/∂x + ∂ψ/∂x ∂/∂y, Eq. (1.85)
can be finally restated, in terms of the Jacobian determinant J (·, ·), according to the
more usual form

∂

∂t
∇2ψ + J

(
ψ,∇2ψ + β0y

) = 0 . (1.86)

For a list of basic properties of the Jacobian determinant, see for instance the
Appendix A of [2].

Equation (1.86) is dimensional. For reasons of homogeneity with the rest of the
book, the derivation of the nondimensional version of (1.86) is in order. This is
achieved by introducing the relationships

(x, y) = L(x ′, y′), t = (L/U )t ′, ψ = U Lψ ′, ∇2 = ∇′2/L2, J = J ′/L2 ,

(1.87)
where L , U are representative of the scale of themotion taken into account, while the
quantities with apex are nondimensional. In terms of the nondimensional variables,
after some trivial rearrangements Eq. (1.86) becomes

∂

∂t ′ ∇′2ψ ′ + J ′
(

ψ ′,∇′2ψ ′ + β0L2

U
y′

)
= 0 . (1.88)

Finally, by resorting to the nondimensional parameter

β = β0L2

U
, (1.89)
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the nondimensional version of (1.86) is obtained from (1.88) in the form

∂

∂t
∇2ψ + J

(
ψ,∇2ψ + βy

) = 0 . (1.90)

once the apices have been dropped. Thus, the only formal difference between (1.86)
and (1.90) lies in the use of (1.89) in the latter equation in place of in the former one.

1.6 Elementary Symmetries of the Vorticity Equation

In order to see how the symmetries of the Euler’s equation are modified in a rotating
framework, consider now the two-dimensional vorticity Eq. (1.90) in the f -plane,

∂

∂t
∇2ψ + J

(
ψ,∇2ψ

) = 0 , (1.91)

with (1.83), i.e.

u = −∂ψ

∂y
, (1.92a)

v = ∂ψ

∂x
. (1.92b)

In analogy with the proofs of the invariance of the Euler’s equation, Eq. (1.91) is
invariant under the symmetry transformations gt ∈ Gt , gr (r), gp ∈ G p

r → r′ = gr (r) , (1.93a)

t → t ′ = gt(t) , (1.93b)

ψ → ψ ′ = gp(ψ) , (1.93c)

if it satisfies the formal invariance

∂

∂t
∇2ψ + J

(
ψ,∇2ψ

) = 0 ⇒ ∂

∂t ′ ∇′2ψ ′ + J ′ (ψ ′,∇′2ψ ′) = 0 . (1.94)

As for the Euler’s equations, the transformation of the stream function is determined
through the identification of the field ψ̄ so that the transformed stream function
ψ ′ = ψ + ψ̄ or ψ ′ = Cψ , depending on the specific case under consideration,
satisfies the invariance of the original equation.

Once again, for the following symmetries, the theses and proofs will proceed
though the statement of the symmetric transformation on the independent variables.
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1.6.1 Continuous Symmetries

1.6.1.1 Gauge Symmetry for the Stream Function

gr (r) = r , (1.95a)

gt(t) = t , (1.95b)

gp(ψ) = ψ + F(t) , (1.95c)

where F(t) is an arbitrary function of time. The invariance is trivially proved noting
that the stream function enters the vorticity equation only within space derivatives.

1.6.1.2 Space Translations

gr (r) = r + c , (1.96a)

gt(t) = t , (1.96b)

gp(ψ) = ψ , (1.96c)

where c ∈ R
2 is a constant vector. Direct substitution of (1.96a)–(1.96c) in (1.91)

shows that the symmetry is proved for ψ̄ = 0 or C = 1.

1.6.1.3 Time Translations

gr (r) = r , (1.97a)

gt(t) = t + τ , (1.97b)

gp(ψ) = ψ , (1.97c)

where τ ∈ [0,+∞) is a constant. Also in this case, direct substitution shows that
the symmetry is proved for ψ̄ = 0 or C = 1.

1.6.1.4 Invariance Under Galilean Transformations

gx(x) = x + F(t) , (1.98a)

gy(y) = y , (1.98b)

gt(t) = t , (1.98c)

gp(ψ) = ψ − d F(t)

dt
y , (1.98d)
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and

gx(x) = x , (1.99a)

gy(y) = y + F(t) , (1.99b)

gt(t) = t , (1.99c)

gp(ψ) = ψ + d F(t)

dt
x , (1.99d)

where F(t) is an arbitrary function of time.

Proof Consider (1.98a)–(1.98d). The space derivatives are invariant under Galilean
transformation

∂

∂x
→ ∂

∂x ′ = ∂x

∂x ′
∂

∂x
= ∂

(
x ′ − F(t)

)
∂x ′

∂

∂x
= ∂

∂x
, (1.100)

∂

∂y
→ ∂

∂y′ = ∂

∂y
. (1.101)

Setting ψ ′ = ψ + ψ̄ , the zonal velocity is

u′ = −∂ψ ′

∂y′ = −∂ψ

∂y′ − ∂ψ̄

∂y′ = −∂ψ

∂y
− ∂ψ̄

∂y
= u − ∂ψ̄

∂y′ . (1.102)

At the same time, the time derivative of (1.98a) yields

dx ′

dt
= dx

dt
+ d F(t)

dt
. (1.103)

Equating (1.102) and (1.103) yields

ψ̄ = −d F(t)

dt
y , (1.104)

so that

ψ ′ = ψ − d F(t)

dt
y . (1.105)

Notice that, with the use of (1.101) and (1.105), the relative vorticity results invariant
under (1.98a)–(1.98d)

∇′2ψ ′ = ∇2ψ . (1.106)

Considering that the partial derivative respect to time transforms as
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∂

∂t ′ = ∂t

∂t ′
∂

∂t
+ ∂x

∂t

∂

∂x

= ∂

∂t
+ ∂(x ′ − F(t))

∂t

∂

∂x

= ∂

∂t
− d F(t)

dt

∂

∂x
, (1.107)

direct substitution of (1.105)–(1.107) in (1.91), and mutual cancellation of the addi-
tional terms arising from the time derivative and the velocity advection, shows the
Galilean covariance of the vorticity equation.

Analogously, (1.99d) yields

ψ ′ = ψ + d F(t)

dt
x . (1.108)

In the commonly analysed case in which g(t) = Ut , where U ∈ R
3 is a constant

velocity, (1.98a)–(1.98d) and (1.99a)–(1.99d) yield, respectively,

gx(x) = x + Ut , (1.109a)

gy(y) = y , (1.109b)

gt(t) = t , (1.109c)

gp(ψ) = ψ − U y , (1.109d)

and

gx(x) = x , (1.110a)

gy(y) = y + Ut , (1.110b)

gt(t) = t , (1.110c)

gp(ψ) = ψ + U x . (1.110d)

It is interesting to consider the covariance of the momentum equation, in the pres-
ence of rotation, under a Galilean transformation. Consider the separate components
of the two-dimensional momentum equations in the f -plane

∂u

∂t
+ (u · ∇) u − f v = − 1

ρ

∂p

∂x
, (1.111a)

∂v

∂t
+ (u · ∇) v + f u = − 1

ρ

∂p

∂y
, (1.111b)

and consider case (1.98a)–(1.98d). Using (1.107) and setting p′ = p + p̄, after a
simple cancellation (1.111a)–(1.111b), yield
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∂ p̄

∂x ′ = 0 , (1.112a)

f
d F(t ′)

dt ′ = − 1

ρ

∂ p̄

∂y′ (1.112b)

that gives

p̄ = − fρ
d F(t ′)

dt ′ y′ . (1.113)

Analogously, (1.99a)–(1.99d) yield

p̄ = fρ
d F(t ′)

dt ′ x ′ . (1.114)

It should be noted that the correction term to the pressure field, p̄, depends on the
space coordinate, as for the symmetry under nonuniform translations for the Euler’s
equation in a nonrotating framework.

1.6.1.5 Rotations

gx(x) = x cos θ − y sin θ , (1.115a)

gy(y) = x sin θ + y cos θ , (1.115b)

gt(t) = t , (1.115c)

gp(ψ) = ψ , (1.115d)

where θ ∈ [0, 2π ] increasing anticlockwise. Equation (1.91) is invariant under
(1.115a)–(1.115d) for ψ̄ = 0 or C = 1. Notice that in this case, the two-dimensional
orthogonal rotation matrix R ∈ SO(2) is

R =
(
cos θ − sin θ

sin θ cos θ

)
. (1.116)

More in general, it can be proved that (1.91) is invariant under time-dependent
rotations

gx(x) = x cos (�t) − y sin (�t) , (1.117a)

gy(y) = x sin (�t) + y cos (�t) , (1.117b)

gt(t) = t , (1.117c)

gp(ψ) = ψ , (1.117d)
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where� is a constantwith units of the inverse of a time.The invariance of (1.91) under
(1.115a)–(1.115d) and (1.117a)–(1.117d) can be proved through direct substitution
of the transformations in the vorticity equation.

A special case of (1.115a)–(1.115d) is represented by the reflection through the
origin

gr (r) = −r , (1.118a)

gt(t) = t , (1.118b)

gp(ψ) = ψ , (1.118c)

corresponding to a rotation of θ = π and that is an invariant transformation thanks
to the mutual product of the partial derivatives in the Jacobian. The transformation
of the velocity field can be obtained from direct time differentiation of (1.115a)–
(1.115d) or (1.117a)–(1.117d). In particular, the case of reflection through the origin
(1.118a)–(1.118c) implies the reversal of the velocity field

u → u′ = −∂ψ ′

∂y′ = ∂ψ

∂y
⇒ u′ = −u , (1.119)

v → v′ = ∂ψ ′

∂x ′ = −∂ψ

∂x
⇒ v′ = −v . (1.120)

1.6.2 Discrete Symmetries

1.6.2.1 Time Reversal

gr (r) = r , (1.121a)

gt(t) = −t , (1.121b)

gp(ψ) = −ψ . (1.121c)

Proof The proof proceeds noting from time derivative of (1.121a) and (1.121b) that
the time-reversal transformation reverses the velocities and the time derivative,

u → u′ = −u , (1.122)

∂

∂t
→ ∂

∂t ′ = − ∂

∂t
, (1.123)

Equation (1.121c) is instead justified by

u → u′ = −∂ψ ′

∂y′ = −∂ψ ′

∂y
= −u ⇒ ψ ′ = −ψ , (1.124)
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or analogously for v, so that

∇′2ψ ′ = −∇2ψ . (1.125)

This shows automatically the invariance of the two-dimensional vorticity equation
under the time-reversal symmetry (1.121a)–(1.121c).

It is instructive to see how the two-dimensional momentum equations in the f -
plane are invariant under time-reversal transformations. Consider the momentum
equations

∂u
∂t

+ (u · ∇) u + 2��� × u = − 1

ρ
∇ p . (1.126)

Setting p′ = p + p̄, it is visible that (1.126) is invariant under the time-reversal
transformation (1.121a)–(1.121c) for p̄ = 0. In particular, it is important to recognize
that the time-reversal transformation acts on reversing the rotation frequency, so that

���′ = −��� , (1.127)

and thus
f ′ = − f . (1.128)

1.6.2.2 Scaling Invariance

gr (r) = ar , (1.129a)

gt(t) = bt , (1.129b)

gp(ψ) = b

a2
ψ , (1.129c)

where a, b ∈ R, a, b �= 0.

Proof Notice that (1.129c) implies

∇ → ∇′ = 1

a
∇ , (1.130)

∇2 → ∇′2 = 1

a2
∇2 , (1.131)

∂

∂t
→ ∂

∂t ′ = 1

b

∂

∂t
. (1.132)

Rewriting (1.91) as
∂

∂t
∇2ψ + k̂ · ∇ψ × ∇ (∇2ψ

) = 0 , (1.133)

and setting ψ ′ = Cψ , one has
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a2bC
∂

∂t ′ ∇′2ψ ′ + a4C2k̂ · ∇′ψ ′ × ∇′ (∇′2ψ ′) = 0 . (1.134)

Simplification shows that (1.91) is invariant if

C = b

a2
. (1.135)

1.6.3 Breaking of Symmetries of the Vorticity
Equation in the β Plane

It is interesting to consider the case in which the two-dimensional vorticity equation
is in the β-plane, as expressed in (1.90)

∂

∂t
∇2ψ + J

(
ψ,∇2ψ + βy

) = 0 . (1.136)

In this case, the Galilean covariance for translations along the y direction (1.99a)–
(1.99d) and the symmetry under rotations (1.115a)–(1.115d) and (1.117a)–(1.117d)
are no longer satisfied.

To prove this statement, consider the two-dimensional vorticity equation in the
β-plane (1.90) written as

∂

∂t
∇2ψ + J

(
ψ,∇2ψ

) + β
∂ψ

∂x
= 0 . (1.137)

Direct substitution of the symmetry transformations shows that (1.137) is invariant
under gauge transformations for the stream function, space and time translations,
time reversal, parity and scaling. In particular, one should notice that the time-reversal
symmetry is not broken by the β term due to the request that β ′ = −β.

The lack of symmetry under Galilean transformation along the y direction is
simply proven noticing that, under (1.99a)–(1.99d), (1.137) transforms as

∂

∂t ′ ∇′2ψ ′ + J
(
ψ ′,∇′2ψ ′) + β

∂ψ ′

∂x ′ = −β
dg(t)

dt
, (1.138)

which differs from (1.137) due to the additional term on the r.h.s. of the equation.
Similarly, the lack of rotational symmetry can be proved through direct application

of the rotational transformation (1.115a)–(1.115d) and (1.117a)–(1.137).
It is thus visible that the symmetries that are not satisfied are the ones relying

on the isotropic properties of the vorticity equation, which are indeed broken by the
insertion of the β term.
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1.7 Energy and Enstrophy Conservation

The inviscid and unforced nature of (1.90) suggests that energy is conserved by any
flow governed by the equation above. To verify this, each term of equation (1.90) is
multiplied by ψ and the products are integrated over a certain domain D with the
use of suitable boundary conditions. This leads in a straight way to the conservation
of the integrated kinetic energy of the flow. Because of the identity

ψ

[
∂

∂t
∇2ψ + J

(
ψ,∇2ψ + βy

)] = div

(
ψ

∂

∂t
∇2ψ

)

− 1

2

∂

∂t
|∇ψ |2 + 1

2
div

[
ψ2∇ (∇2ψ + βy

) × k̂
]

, (1.139)

Equation (1.90) implies that the r.h.s of (1.139) is zero, and hence, by using also the
divergence theorem, integration over the fluid domain gives

∮
∂ D

ψ
∂

∂t
∇ψ · n̂ds − 1

2

d

dt

∫
D

|∇ψ |2 dxdy

+ 1

2

∮
∂ D

ψ2∇ (∇2ψ + βy
) × k̂ · n̂ ds = 0 . (1.140)

The first integral of (1.140) is equivalent to

ψ̄

∮
∂ D

∂

∂t
u · t̂ ds , (1.141)

where ψ̄ is the spatially constant value taken by the stream function at the boundary.
On the other hand,

∮
∂ D(∂/∂t) u · t̂ds = 0 as a consequence of the vanishing of

the normal velocity on a closed boundary. Moreover, the third integral of (1.140) is
equivalent to

ψ̄2

2

∮
∂ D

∇ (∇2ψ + βy
) · t̂ ds , (1.142)

but Stoke’s theorem implies
∮
∂ D ∇ (∇2ψ + βy

)·t̂ds = 0. In conclusion,Eqs. (1.140),
(1.141) and (1.142) yield the conservation of the integrated kinetic energy K , that is

d K

dt
= 0 , (1.143)

where

K =
∫

D

1

2
|∇ψ |2 dxdy . (1.144)

An evolution equation for the integrated potential enstrophy
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Z = 1

2

∫
D

(∇2ψ
)2

dxdy , (1.145)

can be inferred from (1.90) in analogy with the integrated kinetic energy. In this case,
each term of equation (1.90) is multiplied by ∇2ψ and the products are integrated
over the domain D by means of suitable boundary conditions. In this way, sufficient
conditions for the conservation of (1.145) can be inferred. To this purpose, consider
the identity

∇2ψ

[
∂

∂t
∇2ψ + J

(
ψ,∇2ψ + βy

)] = 1

2

∂

∂t

(∇2ψ
)2

+ 1

2
J

(
ψ,

(∇2ψ
)2) + β∇2ψ

∂ψ

∂x
. (1.146)

Because of (1.90), integration of the r.h.s. of (1.146) over D yields

d Z

dt
+ ψ̄

2

∮
∂ D

∇ (∇2ψ
)2 · t̂ ds + β

∫
D

∇2ψ
∂ψ

∂x
dxdy = 0 . (1.147)

The second term of (1.147) is zero because of Stoke’s theorem, so the latter equation
simplifies into

d Z

dt
= −β

∫
D

∇2ψ
∂ψ

∂x
dxdy . (1.148)

Equation (1.148) shows immediately that a sufficient condition for the conservation
of potential enstrophy is β = 0, that is to say that a flow confined in a region of the
f -plane, and governed by (1.90), conserves V . Another condition, independent of
β, presupposes a fluid domain of the kind,

D = [0 ≤ x ≤ X ] × [0 ≤ y ≤ Y ] , (1.149)

and a doubly periodic stream function such that

ψ(x, y) = ψ(x + X, y), ∀y ∈ [0, Y ] , (1.150a)

ψ(x, y) = ψ(x, y + Y ), ∀x ∈ [0, X ] . (1.150b)

In fact, Eq. (1.148) is equivalent to

d Z

dt
= −β

∫
D

[
∂ψ

∂x

(
∂ψ

∂x

)2

+ ∂ψ

∂y

(
∂ψ

∂x

∂ψ

∂x

)
− 1

2

∂

∂x
|∇ψ |2

]
dxdy , (1.151)

but, because of (1.149) and (1.150a), (1.150b), each of the three integrals of (1.151)
is identically zero, so the conservation of potential enstrophy,
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d Z

dt
= 0 , (1.152)

follows. A further condition for the conservation of (1.145) demands that ∂ D recedes
to infinity and ψ becomes spatially constant at infinity. In fact, Eq. (1.148) can be
restated, with the aid of the divergence theorem, as

d Z

dt
= −β

∮
∂ D

∂ψ

∂x
∇ψ · n̂ ds + β

2

∮
∂ D

|∇ψ |2 dy . (1.153)

If, at infinity, ψ = ψ̄, ∀(x, y) ∈ ∂ D and hence ∂ψ̄/∂x = ∇ψ̄ = 0, then Eq. (1.152)
is again recovered.

1.8 Conservation Laws

1.8.1 Kelvin’s Circulation Theorem and Conservation
of Circulation

The Euler’s equation (1.90) has a further conservation law, namely the conservation
of circulation, which is stated in Kelvin’s Circulation Theorem

Theorem 1.1 Consider a closed contour ∂C(t) bounding an area C. For inviscid,
barotropic flows under the influence of only conservative body forces, the circulation

Γ =
∮

∂C(t)
u · dr (1.154)

is conserved, i.e.
dΓ

dt
= 0 , (1.155)

where dr is an infinitesimal element of ∂C.

Proof By Stokes’ theorem, (1.154) corresponds to

Γ =
∫∫

C
ωωω · n̂ dC , (1.156)

which means the circulation corresponds to the flux of vorticity through the surface
C . Assuming that u is smooth enough to allow for time differentiation under the
integral and using (1.2), the time derivative of (1.154) yields



30 1 Fundamental Equations of Fluid and Geophysical Fluid Dynamics

dΓ

dt
=

∮
∂C(t)

Du
Dt

· dr +
∮

∂C(t)
u

dr
dt

=
∮

∂C(t)

Du
Dt

· dr +
∮

∂C(t)
udu

=
∮

∂C(t)

Du
Dt

· dr + 1

2

∮
∂C(t)

d|u|2 . (1.157)

The last integral on the right-hand side of (1.157) disappears as it is the integral of
a perfect differential along a closed contour.

Using the two-dimensional Euler’s equation and the continuity equation, with ρ

assumed to be constant, (1.157) yields

dΓ

dt
= −

∮
∂C(t)

∇
(

p

ρ

)
· dr . (1.158)

It should be noted that (1.158) could be written without loss of generality for the
absolute circulation Γa = Γ + 2�C .

The integral on the right-hand side of (1.158) can be written as

−
∮

∂C(t)
∇

(
p

ρ

)
· dr = −

∫∫
C

rot

[
∇

(
p

ρ

)]
· n̂dC

=
∫∫

C

1

ρ2
[∇ρ × ∇ p] · n̂dC . (1.159)

The term within square brackets in (1.159) is the baroclinic vector already seen in
the equation for the absolute vorticity (1.81). If

∇ρ × ∇ p = 0 , (1.160)

which means if

ρ = ρ(p) , (1.161)

situation that corresponds to the case in which the surfaces of constant ρ and p
coincide, the combination of (1.158) and (1.159) yields

dΓ

dt
= 0 . (1.162)

1.8.2 Potential Vorticity and Ertel’s Theorem

By expressing div u with the aid of (1.73), Eq. (1.81) takes the form
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D

Dt

ωωωa

ρ
=

(
ωωωa

ρ
· ∇

)
u − ∇ p × ∇ρ

ρ3
. (1.163)

Quite independently of the equations above, suppose that q is a certain scalar which
is conserved in the course of the motion

Dq

Dt
= 0 . (1.164)

Equation (1.164) implies the identity

ωωωa

ρ
· D

Dt
∇q = −∇q ·

[(
ωωωa

ρ
· ∇

)
u
]

(1.165)

while the dot product of ∇q with (1.163) yields

∇q · D

Dt

ωωωa

ρ
= ∇q ·

[(
ωωωa

ρ
· ∇

)
u
]

− ∇q · ∇ p × ∇ρ

ρ3
. (1.166)

Addition of (1.165) with (1.166) results in

D

Dt

(
ωωωa

ρ
· ∇q

)
= −∇q · ∇ p × ∇ρ

ρ3
(1.167)

which governs the evolution of potential vorticity Π defined by

Π = ωωωa

ρ
· ∇q . (1.168)

Based on (1.167) Ertel’s theorem claims that:

Theorem 1.2 If (1.160) or, as alternative, (1.161) hold, then the potential vorticity
(1.168) of an inviscid flow is conserved following the motion.

In the framework of Geophysical Fluid Dynamics, the gradient of the most of
geophysical scalars, say q, can be approximated by

∇q ≈ ∂q

∂z
k̂ . (1.169)

Approximation (1.169) is based on the very small value of the aspect ratio δ =
H / L in the oceans and in the atmosphere, which implies (∂/∂x) / (∂/∂z) ≈
(∂/∂y) / (∂/∂z) = O (H/L) << 1 and which in turn implies a stronger variabil-
ity in the vertical direction rather than in the horizontal for most of the geophysical
scalars. Hence, if potential vorticity is conserved and approximation (1.169) together
with (1.79) is used into (1.168), the conserved scalar is
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Π = 1

ρ

(
∂v

∂x
− ∂u

∂y
+ f0 + β0y

)
∂q

∂z
. (1.170)

Usually, the short notation ς = (∂v / ∂x)− (∂u / ∂y) is used, so that (1.170) can
be written as

Π = ς + f0 + β0y

ρ

∂q

∂z
. (1.171)

What is q? This quantity depends on the type of fluid under consideration. In
the following, different approximations of the governing equations of Geophysical
Fluid Dynamics will be considered and the corresponding form for the conservation
of potential vorticity will be reported.

It should be noted that the derivation of Ertel’s potential vorticity can be derived
from Kelvin’s Circulation Theorem. For a proof, see Appendix B.

1.9 Conservation of Potential Vorticity and Models of
Geophysical Flows

1.9.1 Shallow-Water Model with Primitive Equations

The shallow-water model deals with a constant-density, single-layer fluid in fric-
tionless motion under the effect of Earth’s rotation and, in case, of a bathymetric
modulation. The fluid is included between the bottom, say in z = h(x, y), and the
free surface, say in z = H + η(x, y, t). The constant H is a vertical length scale
which is representative of the full thickness of the layer and coincides with the depth
of the motion. Furthermore, a typical horizontal length L is necessary as well to
estimate, for instance, the gradient of the free surface elevation η. The fundamental
assumption of the shallow-water model is that L is much greater than H or, in other
terms, that the aspect ratio

δ = H / L << 1 . (1.172)

A constant density fluid implies
div u = 0 , (1.173)

while (1.74) can be written as

Du
Dt

+ 2��� × u = −∇ p̃

ρ
(1.174)

where p̃ is the perturbation pressure. Because only the local normal component of
the Earth’s rotation is dynamically significant, then
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��� ≈
(
��� · k̂

)
k̂ = f (y)k̂ (1.175)

where f (y) = f0 + β0y according to (1.79). Substitution of (1.175) into (1.174)
produces the following set of scalar equations:

Du

Dt
− f (y)v = − 1

ρ

∂ p̃

∂x
, (1.176a)

Dv

Dt
+ f (y)u = − 1

ρ

∂ p̃

∂y
, (1.176b)

Dw

Dt
= − 1

ρ

∂ p̃

∂z
. (1.176c)

The subsequent development of (1.173), (1.176a)–(1.176c) requires a scaling
analysis of these equations. To achieve this, consider the nondimensional quantities
(with the apex) (x ′, y′) = (x/L , y/L), z′ = z/H, (u′, v′) = (u/U, v/U ), w′ =
w/W, p′ = p̄/P . In terms of them, Eq. (1.173) takes the form

∂u′

∂x ′ + ∂v′

∂y′ + W L

U H

∂w′

∂z′ = 0. (1.177)

The three-dimensional nature of the flow demands that all the space derivatives are
comparable among them, and therefore, W L / U H = 1, that is to say

W = δU. (1.178)

Note that, because of (1.172), Eq. (1.178) implies W << U . Consider now
Eqs. (1.176a) and (1.176b). Because

Du

Dt
≈ Dv

Dt
≈ U 2

L
, f (y)u ≈ f (y)v ≈ f0U ,

∂ p̃

∂x
≈ ∂ p̃

∂y
≈ P

L
,

the order of magnitude P of p̃, estimated from (1.176a) and (1.176b), turns out to be

P = ρL max
{
U 2/L , f0U

} = ρLU max {U/L , f0} . (1.179)

On the other hand, the order of magnitude of the l.h.s of (1.176c) is

Dw

Dt
= δU 2

L
(1.180)

while the r.h.s of the same equation can be estimated by using (1.179), whence

1

ρ

∂ p̃

∂z
≈ LU max {U/L , f0}

H
≈ U max {U/L , f0}

δ
. (1.181)
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From (1.180), (1.181) and assuming U / f0L = ε ≤ O(1), one obtains

∣∣∣∣ Dw

Dt

∣∣∣∣ /
∣∣∣∣ 1ρ

∂ p̄

∂z

∣∣∣∣ ≈ δ2U/L

max {U/L , f0} ≤ δ2 . (1.182)

Inequality (1.182) shows that the r.h.s. of (1.176c) is much greater that the l.h.s. so
the former cannot be balanced by the latter and thus (1.176c) at the leading order
gives

∂ p̃

∂z
= 0 . (1.183)

Equation (1.183) shows that the perturbation pressure is depth independent, so the
total pressure p can be written as

p = ρg [η(x, y, t) − z] + p (z = η) (1.184)

Thus, total pressure is hydrostatic and, in this framework, the term p (z = η) is
usually constant. In turn, (1.184) yields

1

ρ

∂p

∂x
= g

∂η

∂x
, (1.185a)

1

ρ

∂p

∂y
= g

∂η

∂y
, (1.185b)

so the r.h.s of (1.176a) and (1.176b) is depth independent. Therefore, the horizon-
tal components of the current appearing at the l.h.s. of the same equations can be
consistently assumed depth independent as well, i.e.

∂u

∂z
= ∂v

∂z
= 0 . (1.186)

Based on (1.185a)–(1.185b) and (1.186), Eqs. (1.176a) and (1.176b) take the final
form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f (y)v = −g

∂η

∂x
, (1.187a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f (y)u = −g

∂η

∂y
, (1.187b)

or, in vector notation,
Du
Dt

+ f (y)k̂ × u = −g∇η . (1.188)

Moreover, because of (1.186), the vertical integration of (1.173) in the intervals
(−H + h, η) and (−H + h, z) gives
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(H + η − h)∇H · u + D

Dt
(H + η − h) = 0 , (1.189)

and

(z + H − h)∇H · u + D

Dt
(z + H − h) = 0 . (1.190)

Then, the elimination of the horizontal divergence between (1.189) and (1.190)
results in the Eq. (1.164), where

q = z − h

H + η − h
. (1.191)

Hence, the potential vorticity (1.171) takes the form

Π = ς + f0 + β0y

H + η − h
. (1.192)

Equations (1.187a), (1.187b) and the conservation of (1.192) govern the shallow-
water model. Once the horizontal boundary conditions and the initial conditions are
fixed, equations above can be integrated to produce the horizontal current field and
the free surface elevation field.

1.9.2 Quasi-geostrophic Shallow-Water Model

Large-scale circulation of geophysical flows is characterized by a horizontal length
scale L and a typical horizontal current U such that the Rossby number

ε = U

f0L
<< 1 . (1.193)

Equation (1.193) states that the Coriolis acceleration is far greater than local acceler-
ation. In this case, the dominant dynamic balance involves the Coriolis acceleration
and the pressure gradient to produce the geostrophic current

uG = (g/ f0) k̂ × ∇η . (1.194)

Equation (1.194) allows us to evaluate the scale of the perturbation pressure. In fact,
if U is the intensity of the geostrophic current and E is the amplitude of the free
surface elevation, then

E = f0U L / g . (1.195)

Estimate (1.195) is used, in turn, to derive the nondimensional version of (1.188),
that is
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ε
Du′

Dt
+ (

1 + εβy′) k̂ × u′ = −∇′η′ , (1.196)

where β = β0L2 / U , with, in this context, β = O(1). In the limit of a vanish-
ingly small Rossby number, Eq. (1.196) takes the form k̂ × u′ = −∇′η′ whence the
nondimensional geostrophic current

u′
0 = k̂ × ∇′η′

0 (1.197)

follows. The subscript 0 is reminiscent of the position ε = 0 made in (1.196) to infer
(1.197). Based on (1.197), the nondimensional relative vorticity at the geostrophic
level of approximation, say ς ′

0, is determined as a function of η′
0

ς ′
0 = k̂ · ∇′ × u′

0 = k̂ · ∇′ ×
(
k̂ × ∇′η′

0

)
= ∇′2η′

0 . (1.198)

Equation (1.197) implies ∇′
H · u′

0 = 0 so ∂w′
0/∂z′ = 0. Thus, w′

0 is depth indepen-
dent. In particular, the vertical velocity at the level of the free surface is given, in
dimensional variables, by w(z = η) = Dη/Dt . At the geostrophic level of approxi-
mation, the latter equation yields

w′
0 = εF D

Dη′
0

Dt
(1.199)

where the Froude number F = ( f0L)2 / gH ≤ O(1). But the geostrophic level
of approximation presupposes a vanishingly small Rossby number, and therefore,
(1.199) implies

w′
0 = 0 . (1.200)

The bathymetric modulation h(x, y) must be consistent with the geostrophic cur-
rent (1.194). The point is that a toomarked bottommodulation could force the current
out of balance (1.194); however, this situation does not take place provided that

h ≤ εHh′ (1.201)

where h′ = O(1) is the nondimensional bathymetric profile.
After these preliminaries, consider the nondimensional version of the conservation

of potential vorticity in the version fit for the shallow-watermodel, that is the equation
for the conservation of (1.192). The nondimensional version of the conservation of
(1.192) can be written as

(
∂

∂t ′ + u′ · ∇′
)
1 + ε

(
ς ′ + βy′)

1 + ε (Fη′ − h′)
= 0 (1.202)
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where β = O(1), F = O(1), ε << 1, and all the variables with apex are of O(1).
Because Eq. (1.202) includes the (small) parameter ε, the fields u′, ς ′, η′ appearing
into the same equation are expected to depend parametrically on ε as well and to
converge to their geostrophic limit for ε → 0. Thus, according to (1.197)–(1.200),

(
∂

∂t ′ − ∂η′
0

∂y′
∂

∂x ′ + ∂η′
0

∂x ′
∂

∂y′ + O(ε)

) 1 + ε
{
∇′2η′

0 + O(ε) + βy′
}

1 + ε
{

F
[
η′
0 + O(ε)

] − h′} = 0 .

(1.203)
By using the truncated expansion

1 + ε
{
∇′2η′

0 + O(ε) + βy′
}

1 + ε
{

F
[
η′
0 + O(ε)

] − h′} = 1 + ε
(
∇′2η′

0 − Fη′
0 + h′ + βy′

)
+ O

(
ε2

)

up to the first order in ε, Eq. (1.203) becomes

(
∂

∂t ′ − ∂η′
0

∂y′
∂

∂x ′ + ∂η′
0

∂x ′
∂

∂y′

) (
∇′2η′

0 − Fη′
0 + h′ + βy′

)
= 0 . (1.204)

Equation (1.204) is the evolution equation for the free surface elevation at the
geostrophic level of approximation η′

0 in which the inputs are the bathymetric profile
(if any) h’(x’,y’), the Froude number F and the nondimensional planetary vorticity
gradient β. Once η′

0(x ′, y′) is determined by (1.204) together with suitable boundary
and initial conditions, the time-dependent geostrophic current is given by (1.197)
and the time-dependent relative vorticity at the geostrophic level of approximation
by (1.198). Conventionally, the notation η′

0 = ψ is adopted and (1.204) is written,
after dropping the apices, in the equivalent form

∂

∂t

(∇2ψ − Fψ
) + J

(
ψ,∇2ψ + h + βy

) = 0 . (1.205)

Further forms, equivalent to (1.205), are admissible. Moreover, if F = O(ε), then
the term Fψ disappears from (1.205). On the other hand, in the f -plane, Eq. (1.205)
does not include the term βy.

1.9.3 Energy and Enstrophy Conservation for the
Quasi-geostrophic Shallow Water Model

Equation (1.205) is a generalization of equation (1.90) which includes fluctuations
of the free surface of the fluid, by means of the term −F∂ψ/∂t , and a bottom
modulation, by means of the term J (ψ, h). One can start from the identity
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ψ

[
∂

∂t

(∇2ψ − Fψ
) + J

(
ψ,∇2ψ + h + βy

)] = div

(
ψ

∂

∂t
∇ψ

)

− 1

2

∂

∂t
|∇ψ |2 − F

2

∂

∂t
ψ2 + 1

2
div

[
ψ2∇ (∇2ψ + h + βy

) × k̂
]

, (1.206)

where the r.h.s. is zero because of (1.90). Integration of the r.h.s. of (1.206) over the
while fluid domain D yields, after little algebra, the equation

d

dt

∫
D

1

2

(|∇ψ |2 + Fψ2
)

dxdy = ψ̄

∮
∂ D

∂

∂t
∇ψ · n̂

+ ψ̄2

2

∮
∂ D

∇ (∇2ψ + h + βy
) · t̂ ds . (1.207)

Both the circuit integrals on the r.h.s. of (1.207) vanish separately, so the conservation
of the integrated mechanical energy

E =
∫

D

1

2

(|∇ψ |2 + Fψ2
)

dxdy , (1.208)

that is
d E

dt
= 0 , (1.209)

immediately follows from (1.207). The basic difference between (1.209) and (1.90)
lies in the presence, in the former equation, of the available potential energy

AP E = F

2

∫
D

ψ2dxdy , (1.210)

which comes from the possibility of the fluid parcels to gain, or to loose, an amount
of potential energy owing to their vertical motion associated with the free surface
fluctuations. Note that bottom topography plays no role in the derivation of (1.209)
because only its gradient appears in the second circuit integral of (1.207).

Consider now Eq. (1.205) with flat bottom, that is

∂

∂t

(∇2ψ − Fψ
) + J

(
ψ,∇2ψ + βy

) = 0 . (1.211)

In this context, the integrated potential enstrophy is defined as

Z = 1

2

∫
D

(∇2ψ − Fψ
)2

dxdy , (1.212)

and the determination of criteria for the conservation of V is based on methods very
similar to the case (1.145). Thus, consider the identity
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(∇2ψ − Fψ
) [

∂

∂t

(∇2ψ − Fψ
) + J

(
ψ,∇2ψ + βy

)] = 1

2

∂

∂t

(∇2ψ − Fψ
)2

+ (∇2ψ − Fψ
)

J
(
ψ,∇2ψ

) + β
(∇2ψ − Fψ

) ∂ψ

∂x
. (1.213)

Because (1.148), integration of the r.h.s. of (1.213) over D yields

d Z

dt
= −β

∫
D

(
∇2ψ

∂ψ

∂x
− F

2

∂

∂x
ψ2

)
dxdy . (1.214)

Equation (1.214) is an obvious generalization of (1.148). Quite analogously,
Eq. (1.214) shows that a sufficient condition for the conservation of potential enstro-
phy (1.212) is β = 0. Another condition presupposes again boundary condition
(1.149) and the doubly periodic stream function (1.150b). In fact, Eq. (1.213) is
equivalent to

d Z

dt
= −β

∫
D

[
∂

∂x

(
∂ψ

∂x

)2

+ ∂

∂y

(
∂ψ

∂x

∂ψ

∂x

)

−1

2

∂

∂x

(|∇ψ |2 + Fψ2
)]

dxdy , (1.215)

and each of the three integrals at the r.h.s. of (1.215) are separately zero because of
(1.149) and (1.150b). Hence

d Z

dt
= 0 , (1.216)

and the potential enstrophy (1.212) is conserved.
A further condition for the conservation of (1.212) demands that ∂ D recedes

to infinity and ψ becomes spatially constant at infinity. In fact, Eq. (1.214) can be
restated, with the aid of the divergence theorem, as

d Z

dt
= −β

∮
∂ D

∂ψ

∂x
∇ψ · n̂ ds + β

2

∮
∂ D

|∇ψ |2 dy + βF

2

∮
∂ D

ψ2dy . (1.217)

If, at infinity, ψ = ψ̄ ∀(x, y) ∈ ∂ D and hence ∂ψ̄/∂x = ∇ψ̄ = 0, then Eq. (1.217)
becomes

d Z

dt
= βF

2
ψ̄2

∮
∂ D

dy . (1.218)

In turn, dy = cos θ(s)ds, where θ(s) is the angle between the unit vectors ĵ (fixed)
and t̂ (varying along ∂ D). Therefore,

∮
∂ D dy = ∮

∂ D cos θ(s)ds = 0 and Eq. (1.216)
again holds true. In conclusion, conservation of potential enstrophy is not affected
by free surface fluctuations.
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1.9.4 Quasi-geostrophic Model of a Density Conserving
Ocean

In general, a stratified flow can be conceived as resulting from a disturbance of a
hypothetical rest state, in which the current u = 0, the density has a “standard”
profile ρs = ρs(z), and the pressure pS(z) is in hydrostatic equilibrium with ρs .
The disturbance that generates the motion (u �= 0) comes from the superposition
of a density anomaly ρ̃(r, t) to the standard density and of a perturbation pressure
p̃(r, t) to the standard pressure so that the horizontal gradient of p̃(r, t) acts on the
fluid parcels and forces them to move. In the ocean case, far from coastal areas and
with the exception of the fluid layer immediately below the free surface, large-scale
circulation is characterized by a phenomenology which is summarized as follows:

• The current is almost exactly in geostrophic balance with the pressure gradient:

u ≈ ug where ρs f0ug = k̂ × ∇ p̃ (1.219)

• The fluid body is in hydrostatic equilibrium:

∂p

∂z
+ gρ = 0 (1.220)

and therefore
∂ p̃

∂z
+ gρ̃ = 0. (1.221)

• The density of each fluid parcel is conserved following the motion.

To prove the conservation of density, one should resort to the equation of state

α = α (p, ϑ, S) , (1.222)

whereα = 1/ρ is the specificvolume,p is the pressure,ϑ is the absolute temperature,
and S is the salinity, and the thermodynamic equation

δe = ϑδη − pδα + μδS (1.223)

representing a small reversible change of internal energy e, entropy η and salinity of
the sea water, in which

p = − ∂

∂α
e (α, η, S) , (1.224)

ϑ = ∂

∂η
e (α, η, S) , (1.225)

and
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μ = ∂

∂S
e (α, η, S) , (1.226)

is the chemical potential of salt in sea water.
With the aid of (1.222) and of (1.225), the specific volume can be written as an

implicit function of pressure, entropy and salinity as α = α (p, ∂e (α, η, S) /∂η, S),
whence

α = α (p, η, S) . (1.227)

In turn, Eq. (1.227) implies

Dα

Dt
= ∂α

∂p

Dp

Dt
+ ∂α

∂η

Dη

Dt
+ ∂α

∂S

DS

Dt
. (1.228)

In a isentropic and salinity-conserving ocean, by definition

Dη

Dt
= 0 ,

and
DS

Dt
= 0 ,

so Eq. (1.228) simplifies into

Dα

Dt
=

(
∂α

∂p

) (
Dp

Dt

)
.

Recalling moreover that α = 1/ρ and

∂ρ

∂p
= 1

c2
,

where c is the speed of sound in sea water, Eq. (1.228) eventually becomes

Dρ

Dt
= 1

c2
Dp

Dt
. (1.229)

In the perspective of Geophysical Fluid Dynamics, the speed of sound is far larger
than the speed of every fluid parcel and looks practically “infinite”. Hence, a reason-
able approximation of (1.229) is

Dρ

Dt
= 0 . (1.230)

Thus, the potential vorticity conserved in an isentropic and salinity-conserving ocean
is
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Π = ς + f0 + β0y

ρ

∂ρ

∂z
. (1.231)

The conservation of potential vorticity (1.231) can be cast in a quasi-geostrophic
form, to give the evolution of the geostrophic current and of the related geostrophic
fields. The aim of this section is to derive this equation.

For mathematical simplicity, both the free surface, in z = 0, and the bottom, in
z = −H , are assumed flat and therefore

w(z = 0) = 0 and w(z = −H) = 0 . (1.232)

ThemagnitudeP of the perturbation pressure can be inferred from (1.219) by sub-
stituting positions ug = Uu′ and p̃ = Pp′ into it (u′ and p′ are O(1) nondimensional
quantities) to obtain

P = f0ρsU L . (1.233)

Estimate (1.233) allows to scale the density anomaly ρ̃ by using (1.221). In fact,
from (1.221) and (1.233) one has ρ̃ = O ( f0ρsU L / gH), that is

ρ̃ = εFρsρ
′ . (1.234)

Hence, the nondimensional version of (1.221) is

∂p′

∂z′ + ρ ′ = 0 . (1.235)

The total density ρ is given by ρ = ρs + ρ̃ so, owing to (1.234),

ρ = ρs
(
1 + εFρ ′) . (1.236)

Equations (1.233) and (1.236) are now used to express the momentum equation

Du
Dt

+ ( f0 + β0y) k̂ × u = −∇ p̃

ρ
, (1.237)

in the nondimensional version consistently with (2.35) and (2.36). The resulting
nondimensional equation turns out to be

ε
Du′

Dt ′ + (
1 + βy′) k̂ × u′ = − ∇′ p′

1 + εFρ ′ . (1.238)

As the geostrophic level of approximation presupposes a vanishingly small Rossby
number ε, at such level (ε << 1) Eq. (1.238) yields k̂ × u′

0 = −∇′ p′
0, whence the

nondimensional geostrophic current follows in the form

http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_2
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u′
0 = k̂ × ∇′ p′

0 . (1.239)

Because of (1.239), the nondimensional relative vorticity at the geostrophic level of
approximation ς ′

0 is expressed as a function of p′
0, that is

ς ′
0 = ∇′2 p′

0 . (1.240)

The derivation of (1.240) goes along the same line as (1.198). Moreover, (1.239)
also implies ∂w′

0 / ∂z′ = 0. The latter equation together with (1.232) yields

w′
0 = 0 . (1.241)

Equations (1.235) and (1.236) are now used to evaluate the factor ρ−1 (∂ρ/∂z)
appearing in the potential vorticity (1.231). To achieve this, consider the chain of
equalities

1

ρ

∂ρ

∂z
= ∂

∂z
ln(ρ)

= ∂

∂z
ln

[
ρs

(
1 + εFρ ′)]

≈ ∂

∂z
ln(ρs) + εF

H

∂ρ ′

∂z′

= 1

ρs

dρs

dz
− εF

H

∂2 p′

∂z′2

= − F

H

(
S + ε

∂2 p′

∂z′2

)
. (1.242)

In (1.242), Burger’s number

S =
(

H Ns

f0L

)2

(1.243)

also known as the stratification parameter, has been introduced. Indeed, (1.243) is a
function of depth only, through the depth-dependent buoyancy frequency squared

N 2
s = − g

ρs

dρs

dz
. (1.244)

With the aid of (1.242), the nondimensional version of the potential vorticity
conservation

D

Dt

(
ς + f0 + β0y

ρ

∂ρ

∂z

)
= 0 (1.245)

takes the form, analogous to (1.202),
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(
∂

∂t ′ + u′ · ∇′
) [(

1 + ες ′ + εβy′) (
S + ε

∂2 p′

∂z′2

)]
= 0 . (1.246)

In (1.246), both β and S are O(1) quantities, while ε << 1. As Eq. (1.246) depends
parametrically on ε, the fields u′, ς ′, p′ are expected to depend parametrically on ε

as well and to converge to their geostrophic limits for ε → 0. The situation is quite
similar to the quasi-geostrophic, shallow-water model, however with an exception
that will be soon clear. The leading orders terms of potential vorticity appearing in
(1.246) constitute the quantity

S + εS
(
ς ′ + βy′) + ε

∂2 p′

∂z′2 (1.247)

so, recalling (1.239), (1.240) and (1.241) and using the expansions

p′ = p′
0 + O(ε) , (1.248a)

u′ = −∂p′
0

∂y′ + εu′
1 + O

(
ε2

)
, (1.248b)

v′ = ∂p′
0

∂x ′ + εv′
1 + O

(
ε2

)
, (1.248c)

w′ = w′
1 + O

(
ε2

)
, (1.248d)

ς ′
0 = ∇′2 p′

0 + O (ε) , (1.248e)

Equation (1.246) can be written as

(
∂

∂t ′ − ∂p′
0

∂y′
∂

∂x ′ + ∂p′
0

∂x ′
∂

∂y′ + u′
1 · ∇′ + O

(
ε2

))

×
{

S + εS
[∇′2 p′

0 + βy′] + ε
∂2 p′

0

∂z′2 + O
(
ε2

)} = 0 . (1.249)

Unlike the shallow-water model, the presence of the O(1) stratification parameter
(1.243) in the potential vorticity demands the explicit expansion of the Lagrangian
derivative up to the first order in ε (see the term εu′

1 · ∇′) to establish a consistent
conservation equation at the higher level of approximation. Setting

D0

Dt
= ∂

∂t ′ − ∂p′
0

∂y′
∂

∂x ′ + ∂p′
0

∂x ′
∂

∂y′ ,

that is
D

Dt ′ = D0

Dt ′ + O (ε) , (1.250)

Equation (1.249) yields, at the first order in ε,
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D0

Dt ′
(∇′2 p′

0 + βy′) + 1

S

D0

Dt ′
∂2 p′

0

∂z′2 + 1

S
w′
1
∂S

∂z′ = 0 . (1.251)

The last step is to express w′
1, appearing in the third term at the l.h.s. of (1.251), as

a function of p′
0. To this purpose, Eq. (1.230) is, first, reconsidered in the nondimen-

sional form

w′ = ε

S

Dρ ′

Dt ′ . (1.252)

Then, substitution of (1.235) into (1.252) results in the equation

w′ = − ε

S

D

Dt ′
∂p′

∂z′ . (1.253)

where w′ = εw′
1 + O

(
ε2

)
, p′ = p′

0 + O(ε), and the Lagrangian derivative is given
by (1.250). Finally, up to the first order in ε, Eq. (1.253) takes the form

w′ = − 1

S

D0

Dt ′
∂p′

0

∂z′ . (1.254)

The vertical velocity w′ can be eliminated from (1.251) and (1.254) to obtain, after
little algebra, the equation

D0

Dt ′

[
∇′2 p′

0 + βy′ + ∂

∂z′

(
1

S

∂p′
0

∂z′

)]
= 0 . (1.255)

Equation (1.255) is just the quasi-geostrophic version of (1.245). Analogously to
the shallow-water model, the notation p′

0 = ψ is here adopted so Eq. (1.255) can be
written, after dropping the apices, as

∂

∂t

[
∇2ψ + ∂

∂z

(
1

S

∂ψ

∂z

)]
+ J

[
ψ,∇2ψ + ∂

∂z

(
1

S

∂ψ

∂z

)
+ βy

]
= 0 . (1.256)

The quantity
∂

∂z

(
1

S

∂ψ

∂z

)
(1.257)

is named “thermal vorticity” and it is the component of (1.256) arising from the
isentropic condition (1.230). In the f -plane approximation, Eqs. (1.255) and (1.256)
do not include the terms βy′ and βy, respectively.

At the geostrophic level of approximation, vertical boundary conditions (1.232),
to be applied to the integrals of (1.256), follow from (1.254). In fact, written in terms
of ψ , Eq. (1.254) takes the form

∂

∂t

∂ψ

∂z
+ J

(
ψ,

∂ψ

∂z

)
= 0 in z′ = −1 and z′ = 0 . (1.258)
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In full analogywithEqs. (1.139) and (1.206), energy conservation of the baroclinic
flow govened by (1.256) follows from space integration of the product of the latter
equation times the stream function. However, space integration is now 3D and, in
the vertical integration, say from z = −1 to z = 0, also boundary conditions (1.232)
in the form (1.258) are invoked to include the flow in this interval. Thus, consider

∫ 0

−1
dz

{∫
D

ψ
∂

∂t

[
∇2ψ + ∂

∂z

(
1

S

∂ψ

∂z

)]
dxdy

}

+
∫ 0

−1
dz

{∫
D

ψ J

(
ψ,∇2ψ + ∂

∂z

(
1

S

∂ψ

∂z

)
+ βy

)
dxdy

}
= 0 . (1.259)

Owing to the constant value taken by the stream function on ∂ D, the 2D integral
involving the Jacobian in the second term of (1.259) is identically zero. Hence,
(1.259) can be developed further on as

− 1

2

d

dt

∫ 0

−1
dz

∫
D

|∇ψ |2 dxdydz +
∫ 0

−1

∫
D

ψ
∂

∂z

∂

∂t

(
1

S

∂ψ

∂z

)
dxdydz = 0 .

(1.260)
Integration by parts of the second term of (1.260) yields, with the aid of (1.258),

∫ 0

−1

∫
D

ψ
∂

∂z

∂

∂t

(
1

S

∂ψ

∂z

)
dxdydz

=
∫

D

[
ψ
1

S
J

(
ψ,

∂ψ

∂z

)]z=0

z=−1

dxdy

− 1

2

∫ 0

−1

∫
D

1

S

∂

∂t

(
∂ψ

∂z

)2

dxdydz . (1.261)

In turn, Stokes’ theorem allows to write the first integral at the r.h.s. of (1.261) as

∫
D

[
1

S
ψ J

(
ψ,

∂ψ

∂z

)]z=0

z=−1

dxdy = −
[
1

2S

∫
D

J

(
ψ2,

∂ψ

∂z

)
dxdy

]z=0

z=−1

= −
[
ψ̄2

2S

∮
∂ D

∇ ∂ψ

∂z
· t̂ds

]z=0

z=−1

= 0 . (1.262)

On the whole, substitution of (1.261) into (1.260) gives the conservation of total
mechanical energy

d E

dt
= 0 , (1.263)

where

E = 1

2

∫ 0

−1

∫
D

[
|∇ψ |2 + 1

S

(
∂ψ

∂z

)2
]

dxdydz . (1.264)
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In baroclinic flows, the deformation, at each depth, of the isopycnals from the flat
configuration is the source of the available potential energy

APE = 1

2

∫ 0

−1

1

S

∫
D

(
∂ψ

∂z

)2

dxdydz , (1.265)

appearing in (1.264).

1.9.5 Quasi-geostrophic Model of a Potential
Temperature-Conserving Atmosphere

In this section, we consider an isentropic atmosphere, without dissipation near the
(flat) ground and in the absence of radiative forcing. The equation of state is, formally,
the same as that of a perfect gas, i.e.

p = ρRT . (1.266)

A change of internal energy means

δe = cV δT , (1.267)

where cV is the specific heat at constant volume, and Eq. (1.223) takes the form

cV δT = T δη − pδα . (1.268)

By using (1.266) and (1.267), Eq. (1.268) yields

δη = cV
δT

T
− R

T

p
δ
( p

T

)
,

that is to say

δη = cV δ (ln T ) − Rδ
(
ln

p

T

)
.

Recalling Carnot’s Law
cP − cV = R , (1.269)

where cP is the specific heat at constant pressure, one eventually obtains

δη = cPδ (ln T ) − Rδ (ln p) . (1.270)

Because the atmosphere is assumed isentropic, δη = 0, and Eq. (1.270) gives
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D

Dt
ln

[(
T

T0

)cP
(

p0

p

)R
]

= 0 , (1.271)

where T0 and p0 are constants which make nondimensional the argument of the
logarithm. In terms of the specific heat ratio γ = cP / cV , Eq. (1.271) takes the
equivalent form

D

Dt

[
T

T0

(
p0

p

) γ−1
γ

]
= 0 (1.272)

that states the conservation of the potential temperature θ = T (p0 / p)
γ−1
γ . Thus,

the potential vorticity conserved in an isentropic atmosphere is

Π = ς + f0 + β0y

ρ

∂θ

∂z
. (1.273)

In analogy with (1.236), the nondimensional potential temperature is written as

θ = θs
(
1 + εFθ ′) . (1.274)

where θs(z) is the standard part of θ and θ ′(x ′, y′, z′, t ′) is its nondimensional anom-
aly. A part from higher order terms, the relationship

θ ′ = ∂p′

∂z′ , (1.275)

allows to express the factor ρ−1∂θ / ∂z ≈ ρ−1∂θs / ∂z appearing in (1.273) as
follows

1

ρ

∂θ

∂z
= 1

H

dθs

dz′ + εF

H

∂

∂z′

(
θs

∂p′

∂z′

)
. (1.276)

With the aid of (1.276) and in analogy with (1.246), the nondimensional version
of the potential vorticity conservation equation for the atmosphere

D

Dt

ς + f0 + β0y

ρ

∂θ

∂z
= 0 ,

takes the form

(
∂

∂t ′ + u′ · ∇′
) {

1 + ε
(
ς ′ + βy′)
ρs

[
dθs

dz′ + εF
∂

∂z′

(
θs

∂p′

∂z′

)]}
= 0 . (1.277)

By resorting to thewell-known formal expansions ofu′, ς ′, p′ in powers of ε applied
to (1.277), the latter equation yields, up to the leading order,
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w′
1ρs

∂

∂z′

(
1

ρs

dθs

dz′

)
+ dθs

dz′
D0

Dt ′
(∇′2 p′

0 + βy′)+ F
D0

Dt ′
∂

∂z′

(
θs

∂p′
0

∂z′

)
= 0 . (1.278)

The first-order vertical velocity w′
1 is the same as (1.254), so elimination of w′

1 from
(1.254) and (1.278) results in the conservation equation

D0

Dt ′

[
∇′2 p′

0 + βy′ − ρs

S2

∂

∂z′
S

ρs
+ 1

S

∂2 p′
0

∂z′2

]
= 0 , (1.279)

which is analogous to (1.255) for the ocean. Finally, in terms of the stream func-
tion ψ = p′

0, resorting to the Jacobian determinant and after dropping the apices,
Eq. (1.279) takes the usual form

∂

∂t

[
∇2ψ + 1

ρs

∂

∂z

(
ρs

S

∂ψ

∂z

)]
+ J

[
ψ,∇2ψ + 1

ρs

∂

∂z

(
ρs

S

∂ψ

∂z

)
+ βy

]
= 0 .

(1.280)
The boundary condition at the flat ground, say in z′ = 0, is the same as (1.258) which
expresses the vanishing of the first-order vertical velocity. The boundary condition at
large heights, say for z′ → ∞, is based on the principle that the energy density E ′(ψ)

of every finite portion of fluid is finite, so ψ is requested to satisfy the relationship

sup
0≤z′≤∞

E ′(ψ) < ∞ . (1.281)

In the case of an isothermal, undisturbed atmosphere, the standard density ρs(z′) is
determined by the perfect gas law together with the hydrostatic equilibrium, whence

ρs(z
′) = ρs0 exp

(−H z′/Hρ

)
, (1.282)

follows. In (1.282), H/Hρ is the ratio between the vertical scale of the motion H and
the density height scale Hρ . Under assumption (1.282), relationship (1.281) takes
the form

sup
0≤z′<∞

{
exp

(−H z′/Hρ

) [∣∣∇′
Hψ

∣∣2 + 1

S

(
∂ψ

∂z′

)2
]}

< ∞ . (1.283)

The main physical reason of the difformity between (1.256), i.e. the ocean model,
and (1.283), i.e. the atmospheremodel, lies in the compressibility of air in place of the
incompressibility of sea water. As a consequence, in the ocean, H/Hρ is vanishingly
small while in the troposphere H/Hρ = O(1). This explains the different forms of
thermal vorticity in the two systems.

The inference of energy conservation of atmospheric flows is similar to the ocean
case, the differences being due to the vertical extension of the domain, that is (0 ≤ z <

∞), to the (approximate) exponential decay to zero of air density with height and to
the (assumed) periodic behaviour with respect to longitude of the motion on the beta-
plane. Thus, a 3D integral here means

∫ ∞
0

∫
D dxdydz. Once (1.280) is multiplied by
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ρsψ/ρs0 and the product is integrated, the following equation, analogous to (1.259),
is found

− d

dt

∫ ∞

0

∫
D

ρs

2ρs0
|∇ψ |2 dxdydz

+
∫ ∞

0

∫
D

1

ρs0
ψ

∂

∂z

∂

∂t

(
ρs

S

∂ψ

∂z

)
dxdydz = 0 . (1.284)

By means of the equation

wI = − 1

S

[
∂

∂t

∂ψ

∂z
+ J

(
ψ,

∂ψ

∂z

)]
, (1.285)

and an integration by parts with respect to z in the second term of (1.284), one obtains

− d

dt

∫ ∞

0

∫
D

ρs

2ρs0

[
|∇ψ |2 + 1

S

(
∂ψ

∂z

)2
]

dxdydz

+
∫ ∞

0

∫
D

1

ρs0

∂

∂z

[
ρsψwI − ρs

2S
J

(
ψ2,

∂ψ

∂z

)]
dxdydz . (1.286)

Equation (1.286) is equivalent to

− d

dt

∫ ∞

0

∫
D

ρs

2ρs0

[
|∇ψ |2 + 1

S

(
∂ψ

∂z

)2
]

dxdydz =
[∫

D

ρs

ρs0
ψwI dxdy

]z=∞

z=0

.

(1.287)
In the absence of pressure work at the top of the atmosphere, the integrand of the
r.h.s. of (1.287) is zero and the total mechanical energy E of the flow is conserved

d E

dt
= 0 , (1.288)

where

E = 1

2

∫ ∞

0

ρs

ρs0

∫
D

[
|∇ψ |2 + 1

S

(
∂ψ

∂z

)2
]

dxdydz . (1.289)

1.9.6 Conservation of Pseudo-Enstrophy in a Baroclinic
Quasi-geostrophic Model

While the previous sections pointed out the conservation of energy in the baroclinic,
quasi-geostrophic models of the ocean and atmosphere in the β-plane, a particular
caution has to be used for the derivation of the correspondent of the enstrophy.
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Consider again the conservation of the quasi-geostrophic potential vorticity q for
a stratified fluid in the β-plane and bounded in the vertical domain z− < z < z+. In
nondimensional form,

D0

Dt
q = −β

∂ψ

∂x
, (1.290)

where

D0

Dt
= ∂

∂t
+ J (ψ, ·) , (1.291a)

q = ∇2
Hψ + ∂θ

∂z
, (1.291b)

θ = 1

S

∂ψ

∂z
, (1.291c)

∂ψ

∂x
= v . (1.291d)

The vertical boundary conditions w1(z = z−) = w1(z = z+) = 0 imply

D0w1

Dt
= 0 , in z = z− , z = z+ , (1.292)

that means
D0θ

Dt
= 0 , in z = z− , z = z+ . (1.293)

In the horizontal directions, assume double periodic boundary conditions, or assume
that the velocity goes to zero at infinite. If V is the volume occupied by the fluid,

V = S × [
z−, z+]

, (1.294)

where S is the section of the β plane occupied by the fluid. Multiplication of (1.290)
by q yields

D0

Dt
q2 = −βq

∂ψ

∂x
. (1.295)

However, it is possible to see that

q
∂ψ

∂x
= ∇2

Hψ
∂ψ

∂x
+ ∂θ

∂z

∂ψ

∂x

= ∇H ·
(

∂ψ

∂x
∇Hψ

)
− ∇Hψ · ∂

∂x
∇Hψ + ∂

∂z
(θv) − θ

∂v

∂z

= ∇H ·
(

∂ψ

∂x
∇Hψ

)
− 1

2

∂

∂x
|∇Hψ |2 + ∂

∂z
(θv) − 1

2S

∂

∂x

(
∂ψ

∂z

)2

= ∇H ·
(

∂ψ

∂x
∇Hψ

)
− 1

2

∂

∂x

[
|∇Hψ |2 + 1

S

(
∂ψ

∂z

)2
]

+ ∂

∂z
(θv) . (1.296)
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With the use of (1.296) and taking into account the boundary conditions, the inte-
gration of (1.295) over V yields

1

2

d

dt

∫
V

q2dV = −β

∫
S
[θv]z+

z− d S . (1.297)

The multiplication of (1.290) by θ yields instead

θ
D0

Dt
q = −βθv , (1.298)

which is equivalent to
D0

Dt
(θq) − q

D0

Dt
θ = −βθv , (1.299)

Using (1.293), the integration of (1.299) along z = z− yields

d

dt

∫
S
[θq]z− d S = −β

∫
S
[θv]z− d S . (1.300)

Analogously, the integration of (1.299) along z = z+ yields

d

dt

∫
S
[θq]z+ d S = −β

∫
S
[θv]z+ d S . (1.301)

The subtraction of (1.300) from (1.301) provides

d

dt

∫
S
[θq]z+

z− d S = −β

∫
S
[θv]z+

z− d S . (1.302)

Finally, the subtraction of (1.302) from (1.297) gives

d

dt

{∫
V

1

2
q2dV −

∫
S
[θq]z+

z− d S

}
= 0 , (1.303)

which expresses the conservation of the pseudo-enstrophy

Z =
∫

V

1

2
q2dV −

∫
S
[θq]z+

z− d S . (1.304)

From (1.304), it is possible to make two important observations:

• Differently from the barotropic case, the pseudo-enstrophy Z is not positive
defined;

• From the multiplication of (1.293) with θ and the following integration on S, it is
possible to derive
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d

dt

∫
S

[
θ2

]−
z d S = 0 , (1.305a)

d

dt

∫
S

[
θ2

]+
z d S = 0 , (1.305b)

which express the conservation of the positive defined quantities

∫
S

[
θ2

]
z− d S ,

∫
S

[
θ2

]
z+ d S . (1.306)

1.9.7 Surface Quasi-geostrophic Dynamics

The conserved quantities (1.306) suggest the possibility to formulate a quasi-
geostrophic model based on the material conservation of the potential temperature
θ at the boundaries. To obtain such a model consider, without loss of generality, the
motion to take place on the f -plane, and set the potential vorticity as zero

q = ∇2
Hψ + ∂θ

∂z
= 0 . (1.307)

The dynamics are thus restricted to the advection of potential temperature by the
geostrophic flow at the boundaries

D0θ

Dt
= 0 , in z = z− , z = z+ , (1.308)

where, as previously stated,

θ = 1

S

∂ψ

∂z
. (1.309)

The resulting dynamics that take the name of surface quasi-geostrophic approxima-
tion reduce the three-dimensional quasi-geostrophic problem to a two-dimensional
problem. The approximation so obtained conserves the quantities

∫
S

[
θ2]

z− d S ,

∫
S

[
θ2]

z+ d S . (1.310)

Further, in analogy with the two-dimensional Euler’s equation, the multiplication of
(1.308) with ψ and the integration over S, with the use of double periodic boundary
conditions or with the requirement that the flow goes to zero at infinity, yields

d

dt

∫
S
ψθd S = 0 , in z = z− , z = z+ , (1.311)
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i.e. to the conservation of the quantities

∫
S
[ψθ ]z− d S ,

∫
S
[ψθ ]z+ d S . (1.312)

Curiously, (1.310) and (1.312) have the same form of the conservation of enstrophy
and kinetic energy, respectively, for the two-dimensional Euler’s equation, where
the relative vorticity ∇2ψ replaces the potential temperature θ . However, in the
surface quasi geostrophic equation, (1.310) takes the place of the energy conservation,
as it expresses the conservation of kinetic energy, while (1.312) yields instead the
conservation of the helicity of the flow.

1.10 Bibliographical Note

In this bibliographical note and in the one at the end of the next chapter, we will focus
on review books, while in the chapters dedicated to the variational derivation of the
Fluid and Geophysical Fluid Dynamics equations, we will report also a selection of
research articles.

A number of textbooks are available on the derivation of the equations of Fluid
and Geophysical Fluid Dynamics. The thermodynamical equations, as well as the
equations for fluid dynamics, are carefully derived in the book by Batchelor [1].
A treatment of the thermodynamical equations for the special case of the ocean is
reported in the book by Salmon [13]. The fundamental equations of Geophysical
Fluid Dynamics are rigorously derived in the book by Pedlosky [12]. The quasi-
geostrophic equations are the focus of the book byCavallini andCrisciani [2]. Finally,
a number of applications to the phenomenology of the atmosphere and the ocean are,
for example, reported in the book by Vallis [15]. For other books, see for example
[3–11, 14, 16].
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Chapter 2
Mechanics, Symmetries and Noether’s
Theorem

Abstract The Lagrangian description of mechanics allows to derive the equations
of motion from a variational principle based on conserved quantities of the sys-
tem. In the first part of this chapter, the Lagrangian formulation of dynamics and
the properties of the Lagrangian operator are synthetically reviewed starting from
Hamilton’s Principle of First Action. In the second part of the chapter, the impor-
tant link between continuous symmetries of the Lagrangian operator and conserved
quantities of the system is introduced through Noether’s Theorem. The proof of the
Theorem is reported both for material particles and for continuous systems such as
fluids.

Keywords Classicalmechanics ·Particlemechanics ·Continuummechanics ·Vari-
ational principle · Symmetry · Noether’s Theorem · Lagrangian dynamics · Hamil-
tonian dynamics · Canonical transformations

2.1 Introduction

In this chapter, we will make a short review of the Lagrangian formalism of clas-
sical mechanics, both for systems with a finite number of degrees of freedom, i.e.
for systems of point particles, and for systems with an infinite number of degrees
of freedom, i.e. for continuous systems. The description for point particles can be
applied, for example, to study the advection of a passive tracer in a fluid flow, while
the description for continuous systems provides a framework to derive the equations
of motion for fluids.

The Lagrangian formalism is based on a variational principle and it introduces
a number of useful advantages to the study of the dynamics. In particular, the
Lagrangian formulation allows to establish an important link between the symme-
tries of the resulting Lagrangian operator and the conservation laws of the system
through the formulation of Noether’s Theorem. As it will be seen in the following
chapters, this link provides an important and powerful concept and instrument to
analyse the system, giving a physical base for the conservation of energy through the
invariance under time translations and for the conservation of vorticity through the

© Springer International Publishing AG 2018
G. Badin and F. Crisciani, Variational Formulation of Fluid and Geophysical
Fluid Dynamics, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-319-59695-2_2
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particle relabelling symmetry, which is a unique feature for fluids. This fact holds
even for a system resulting from approximate equations, if the conservation laws
concerning the original system are preserved. The reader familiar with Geophysi-
cal Fluid Dynamics will recognize the immediate usefulness of this property, given
that Geophysical Fluid Dynamics relies on approximations, some of which were
introduced in Chap.1.

2.2 Hamilton’s Principle of Least Action

Consider a system of N point particles with masses (m1, . . . ,mN ) and positions
(r1(t), . . . , rN (t)) at time t . In the following, the shorter notation mi and ri (t), with
i = 1, . . . , N , will be often used. The point particles move in a potential V . Unless
specified, we will often take the potential as function of position only, say V (ri (t)).
Each particle moves following Newton’s second law. While this system is gener-
ally described by 3N degrees of freedom, the presence of constraints in the system
can act to make the coordinates not independent: if the constraints are expressed as
f (r1, . . . , rk, t) = 0, which take also the name of holonomic constraints, then only
n = 3N−k independent coordinates can be determined in terms of generalized coor-
dinates qi (t) that form a parametric representation of the nonindependent positions
ri (t). Notice that the qi (t) must not be orthogonal coordinates. The space defined by
the generalized coordinates is also known as configuration space. The description
provided by Newton’s second law is based on a differential principle. The motion
of the point particles in the configuration space can be equivalently described using
Hamilton’s Principle of Least Action, which is based on theminimization of an action
functional and which provides an integral description of the evolution of the system,
i.e. a description depending on the entire path of the system in configuration space.
Consider the motion of the system in the time interval [t1, t2], and assume that the
position of the system at the extremes t1 and t2 is fixed. Let T be the kinetic energy
of the system. Hamilton’s Principle of Least Action thus states (see, e.g. [4]):

Theorem 2.1 Out of all possible paths by which the system point could travel from
its position at time t1 to its position at time t2, it actually travels along that path for
which the integral

I =
∫ t2

t1

(T − V ) dt (2.1)

is an extremum, whether a minimum or maximum.

The function L = T−V takes the name ofLagrange function, or simplyLagrangian.

http://dx.doi.org/10.1007/978-3-319-59695-2_1


2.2 Hamilton’s Principle of Least Action 59

Given T = T (q̇1, . . . , q̇n) and V = V (q1, . . . , qn, q̇1, . . . , q̇n, t), where n is the
total number of generalized coordinates qi (t), the Lagrangian is a function of the
kind

L = L(qi , q̇i , t), (i = 1, . . . , n) . (2.2)

Thus, according to the Principle of Least Action, the task is to find an extremum of
the functional

I =
∫ t2

t1

L(qi , q̇i , t)dt , (2.3)

in the space C2
[t1,t2] of twice differentiable functions qi (t) such that

qi (t1) = qi (t2) = 0 . (2.4)

Functions qi (t) can be conceived as being labelled by a parameter l and given by

qi (t, l) = qi (t, 0) + lηi (t) , (2.5)

where ηi (t) ∈ C2
[t1,t2] are arbitrary functions that satisfy

ηi (t1) = ηi (t2) = 0 . (2.6)

Substitution of (2.5) into (2.3) yields

I (l) =
∫ t2

t1

L[qi (t, 0) + lηi (t), q̇i (t, 0) + lη̇i (t), t]dt . (2.7)

Equation (2.7) shows that (2.3) is actually a function of the free parameter l, so the
variation δ I of I (l) is given by

δ I = ∂ I

∂l
dl =

∫ t2

t1

n∑
i=1

(
∂L

∂qi

∂qi
∂l

dl + ∂L

∂ q̇i

∂ q̇i
∂l

dl

)
dt . (2.8)

Because of (2.5), ∂qi/∂l = ηi , ∂q̇i/∂l = η̇i , and therefore, Eq. (2.8) take the
form

δ I =
n∑

i=1

∫ t2

t1

(
∂L

∂qi
ηi + ∂L

∂q̇i
η̇i

)
dtdl

=
n∑

i=1

∫ t2

t1

[
∂L

∂qi
ηi + d

dt

(
∂L

∂q̇i
ηi

)
− d

dt

(
∂L

∂q̇i

)
ηi

]
dtdl

=
n∑

i=1

{∫ t2

t1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
ηi dt +

[
∂L

∂ q̇i
ηi

]t2
t1

ηi

}
dl
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=
n∑

i=1

∫ t2

t1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
ηi dtdl , (2.9)

where the identity,

∂L

∂q̇i
η̇i = d

dt

(
∂L

∂q̇i
ηi

)
− d

dt

(
∂L

∂ q̇i

)
ηi (2.10)

has been used. The arbitrariness of functions ηi (t) leads us to conclude that

δ I = 0 ⇐⇒ d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (i = 1, . . . , n) .

In other words, Hamilton’s Principle of Least Action implies the Euler–Lagrange
equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (i = 1, . . . , n) , (2.11)

and vice versa.
In particular, if T =∑n

i=1 mi q̇2
i /2 and V = V (q1, . . . , qn), the Euler–Lagrange

equations take the form of Newton’s second law, that is

mi q̈
2
i + ∂V

∂qi
= 0, (i = 1, . . . , n) , (2.12)

so Newton’s second law is an extremal for the action

I =
∫ t2

t1

[(
n∑

i=1

1

2
mi q̇

2
i

)
+ V (q1, . . . , qn)

]
dt . (2.13)

In (2.10),
d

dt
= ∂

∂t
+

n∑
i=1

(
q̇i

∂

∂qi
+ q̈i

∂

∂ q̇i

)
, (2.14)

and the presence of q̈i (t) in (2.14) explains why the space of twice differentiable
functions qi (t) is the framework in which the variational problem δ I = 0 is posed.
Because (2.11) is thus a set of n second-order equations, the problem needs the
specification of 2n initial conditions for qi and q̇i to be specified either at t1 or t2.

The Euler–Lagrange equations and the action principle show one of the benefits
of the Lagrangian formulation of dynamics, that is that it is possible to derive the
equations of motion from the knowledge of two scalars, T and V , rather than from
all forces acting on the system.
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2.3 Lagrangian Function, Euler–Lagrange Equations
and D’Alembert’s Principle

The Lagrangian function and the Euler–Lagrange equations can be derived also in
a different way than present in the previous section, making use of two fundamen-
tal principles, namely the virtual work’s and D’Alembert’s principles. The second
of them, of dynamical nature, is just an extension of the first, which is instead of
statistical nature.

The virtual work’s principle is applied to a system of point particles in an equi-
librium, so that the sum of the forces applied to the point particle i

Fi = 0 (2.15)

is zero. Further, consider the virtual displacement δri of the point particle i as the
displacement given by the infinitesimal change of the configuration of the entire
system following the forces and the constraints associated with the system itself,
occurring while time is held constant. The virtual displacement differs from real
displacements in the way that real displacements imply a temporal evolution of the
forces and constraints, which instead does not take place in the virtual case.

Equation (2.15) implies Fi · ri = 0, and thus,

∑
i

Fi · δri = 0 , (2.16)

where the sum is intended as over all the point particles of the system. The sum of the
forces acting on point particle i can be separated in two classes: the applied forces
F(a)
i and the forces of constraint f i . Under this partition, (2.16) yields

∑
i

F(a)
i · δri +

∑
i

f i · δri = 0 . (2.17)

In the framework of systems in which the net virtual work of the forces of constraint
is zero, i.e. f i · δri = 0, (2.17) can be written as

∑
i

F(a)
i · δri = 0 . (2.18)

Equation (2.18) expresses the virtual work’s principle. It should be noted that (2.18)
does not apply, for example, in the presence of dissipative forces. While (2.18) refers
here to a steady system, it could be easily applied to unsteady systems substituting
(2.15) with Newton’s law Fi − ṗi = 0. Under this assumption, (2.16) yields

∑
i

(Fi − pi ) · δri = 0 , (2.19)
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and, once again under the assumption that the net virtual work of the forces of
constraint is zero, (2.19) yields

∑
i

(
F(a)
i − pi

)
· δri = 0 . (2.20)

Equation (2.20) isD’Alembert’s principle, which states that every state of the motion
can be considered as a state in mechanical equilibrium.

The introduction of the Lagrangian function follows from a formal development
of (2.20) making use of the generalized coordinates q j in place of the vectors ri ,
following the transformation equations

ri = ri (q1, . . . , q3N−k, t) , i = 1, . . . , N , (2.21)

where N is the number of point particles and k is the number of holonomic constraints.
From (2.21), one gets

δri =
∑
j

∂ri
∂q j

δq j , (2.22)

vi = ri =
∑
j

∂ri
∂q j

q̇ j + ∂ri
∂t

. (2.23)

Using (2.22), the first term of (2.20) yields, omitting the superscript,

∑
i

Fi · δri =
∑
i

∑
j

Fi · ∂ri
∂q j

δq j . (2.24)

If Q j =∑i Fi · ∂ri/∂q j is the j component of a generalized force, (2.24) becomes

∑
i

Fi · δri =
∑
j

Q jδq j . (2.25)

If the forces derive from a scalar potential V , so that Fi = −∇i V (q j ), the j compo-
nent of the generalized force for conservative systems can be written as

Q j = −
∑
i

∇i V · ∂ri
∂q j

= − ∂V

∂q j
. (2.26)

Using (2.22), the second term of (2.20) yields instead

∑
i

ṗi · δri =
∑
i

mi r̈i · δri =
∑
j

(∑
i

mi r̈i · ∂ri
∂q j

)
δq j . (2.27)



2.3 Lagrangian Function, Euler–Lagrange Equations and D’Alembert’s Principle 63

Because the generalized coordinates are independent, (2.20), (2.25) and (2.27)
yield

∑
i

mi r̈i · ∂ri
∂q j

− Q j = 0 , (2.28)

which is equivalent to

∑
i

[
mi ṙi · ∂ri

∂q j
− mi ṙi · d

dt

∂ri
∂q j

]
− Q j = 0 . (2.29)

Remembering that ṙi = vi and using

∂ri
∂q j

= ∂vi
∂q̇ j

,

and
d

dt

∂ri
∂q j

= ∂

∂q j

(∑
k

∂ri
∂qk

q̇k + ∂ri
∂t

)
= ∂vi

∂q j
,

which come from (2.23), Eq. (2.29) can be written as

∑
i

[
d

dt

(
mivi · ∂vi

∂q̇ j

)
− mivi · ∂vi

∂q j

]
− Q j = 0 ,

or ∑
i

[
d

dt

∂

∂q̇ j

miv2i
2

− ∂

∂q j

miv2i
2

]
− Q j = 0 , (2.30)

where T =∑i miv2i /2 is the total kinetic energy of the system. With (2.26), (2.30)
yields

d

dt

∂T

∂q̇ j
− ∂

∂q j
(T − V ) = 0 . (2.31)

Because ∂V/∂q̇ j = 0, and introducing the Lagrangian function

L = T − V , (2.32)

Equation (2.31) takes the final form

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , 3N − k , (2.33)

which are the Euler–Lagrange equations (2.11).
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It should be noted that (2.33) is valid only if dissipative forces are not present and
if the potential is independent from the velocities. For notable exception, such as the
Lorentz force and Rayleigh’s dissipation, see e.g. [4]. Finally, it should be also noted
that (2.33) involves energy terms as it derives from D’Alembert’s principle, which,
in dimensional form, expresses an energy balance.

2.4 Covariance of the Lagrangian with Respect to
Generalized Coordinates

As mentioned in the Introduction, one of the advantages of the action principle is
that it is covariant with respect to a change of generalized coordinates.

To see this, reconsider Eq. (2.11) and assume that {Qk}k=1,...,n is another set of
generalized coordinates. Then, qi = fi (Q1, . . . , Qn), that is, in short,

qi = fi (Qk) ,
∂ fi
∂Qk

�= 0 ∀i, ∀k . (2.34)

Hence,

q̇i =
n∑

k=1

∂ fi
∂Qk

Q̇k . (2.35)

Conversely, if f̂ is the inverse coordinate transformation, i.e. Qi = f̂i (q1, . . . , qn),
one has

Q̇i =
n∑

k=1

∂ f̂i
∂qk

q̇k . (2.36)

Quantities that transform under change of coordinate as (2.36) are called covariant
vectors. It should be noted that traditionally covariant (and their correspondent con-
travariant) vectors are indicated with the use of subscripts and superscripts. In this
book, we will, however, not employ this notation.

Based on (2.34) and (2.35), the Lagrangian (2.2) transforms as

L(q, q̇, t) = L
[
f (Q),∇Q f · Q̇, t

] = L̃(Q, Q̇, t) , (2.37)

where

q = q1 . . . qn , (2.38a)

Q = Q1 . . . Qn , (2.38b)

∇Q f · Q̇ =
n∑

k=1

∂ f

∂Qk
Q̇k , (2.38c)
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In the following, we will assume the position i = 1, . . . , n. Starting from (2.37), the
quantities ∂ L̃/∂Qk, ∂ L̃/∂ Q̇k, d/dt (∂ L̃/∂ Q̇k) can be evaluated as follows: the first
two quantities are

∂ L̃

∂Qk
= ∂

∂Qk
L(qi , q̇i , t)

= ∂L

∂qi

∂qi
∂Qk

+ ∂L

∂q̇i

∂q̇i
∂Qk

= ∂L

∂qi

∂ fi
∂Qk

+ ∂L

∂q̇i

∂

∂Qk

∑
j

∂ fi
∂Q j

Q̇ j

= ∂L

∂qi

∂ fi
∂Qk

+ ∂L

∂q̇i

∑
j

∂2 fi
∂Qk∂Q j

Q̇ j , (2.39)

and
∂ L̃

∂ Q̇k
= ∂L

∂q̇i

∂q̇i
∂ Q̇k

= ∂L

∂q̇i

∂

∂ Q̇k

∑
j

∂ fi
∂Q j

Q̇ j = ∂L

∂ q̇i

∂ fi
∂Qk

. (2.40)

The time derivative of (2.40) gives

d

dt

∂ L̃

∂ Q̇k
= d

dt

(
∂L

∂q̇i

)
∂ fi
∂Qk

+ d

dt

(
∂ fi
∂Qk

)
∂L

∂ q̇i

= d

dt

(
∂L

∂q̇i

)
∂ fi
∂Qk

+ ∂L

∂q̇i

∑
j

∂2 fi
∂Qk∂Q j

Q̇ j . (2.41)

From (2.39), one has

∂L

∂ q̇i

∑
j

∂2 fi
∂Qk∂Q j

Q̇ j = ∂ L̃

∂Qk
− ∂L

∂qi

∂ fi
∂Qk

, (2.42)

and substitution of (2.42) into (2.41) implies

d

dt

∂ L̃

∂ Q̇k
− ∂ L̃

∂ Q̇k
= ∂ fi

∂Qk

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
. (2.43)

Finally, because of the second equation of (2.34) and (2.11), Eq. (2.43) yields

d

dt

∂ L̃

∂ Q̇k
− ∂ L̃

∂ Q̇k
= 0 . (2.44)

Equation (2.44) retains openly the same form as (2.11), so the covariance of (2.11)
under (2.34) is proved.
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2.5 Role of Constraints

As stated in Sect. 2.2, the presence of constraints in the system can introduce mutual
dependencies between the generalized coordinates. To see how the equations of
motion can be derived from Hamilton’s principle even in the presence of constraints,
consider first the general problem of finding the extrema of a function φ(x1, . . . , xn)
that is not subject to constraints. The extrema can thus be located at the points where
∇φ = 0. In the presence of constraints determined bym equations fα(x1, . . . , xn) =
0, α = 1, . . . ,m, the problem can be solved finding the extrema of the auxiliary
function

F(x1, . . . , xn, λ1, . . . , λm) = φ(x1, . . . , xn) +
m∑

α=1

[λα fα(x1, . . . , xn)] , (2.45)

where
λα, α = 1, . . . ,m , (2.46)

are the indeterminate Lagrange multipliers of the system. The problem of finding the
extrema of the function φ(x1, . . . , xn) subject to constraints is thus turned into the
problem of finding the extrema of the auxiliary function F(x1, . . . , xn, λ1, . . . , λm)

in the absence of constraints.
Consider now a system which is described by the Lagrangian L(q1, . . . , qn,

q̇1, . . . , q̇n, t) subject to m constraints that we assume can be expressed in the form

fα(q1, . . . , qn, q̇1, . . . , q̇n, t) = 0, (α = 1, . . . ,m) . (2.47)

In analogy with the previous example, the derivation of the equations of motion can
thus be obtained from Hamilton’s Principle of Least Action as

δ

∫ t2

t1

Lcdt = 0 , (2.48)

where

Lc = L +
m∑

α=1

λα fα . (2.49)

Notice that

λα = ∂Lc

∂ fα
. (2.50)

Hamilton’s principle (2.48) thus leads to

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi , (i = 1, . . . , n) , (2.51)
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where Fi , i = 1, . . . , n, are the generalized forces

Fi =
m∑

α=1

{
λα

[
∂ fα
∂qi

− d

dt

(
∂ fα
∂ q̇i

)]}
, (i = 1, . . . , n) . (2.52)

Equations (2.47) and (2.51) constitute thus a system of n +m equations in n +m
variables describing a systemunder the action of the generalized forces (2.52) exerted
by constraints.

2.6 Canonical Variables and Hamiltonian Function

Consider the Euler–Lagrange equations (2.11), and assume that the potential V is
a function only of the position of the point particles and not of the generalized
velocities. Then,

∂L

∂q̇i
= ∂T

∂q̇i
− ∂V

∂q̇i
= ∂T

∂q̇i
= ∂

∂q̇i

n∑
i=1

1

2
mi q̇

2
i = mi q̇i = pi . (2.53)

Equation (2.53) defines thus the generalized or conjugate momentum

pi = ∂L

∂q̇i
. (2.54)

The insertion of (2.54) in (2.11) gives thus the equation for the time evolution of pi

ṗi = ∂L

∂qi
. (2.55)

It is important to notice that as the generalized coordinates qi are not Cartesian, the
conjugate momentum pi does not necessarily correspond to the linear momentum.
The pair of generalized variables (qi , pi ) takes also the name of canonical variables.
Notice that (2.54) and (2.55) allow to write the differential of the Lagrangian

dL =
n∑

i=1

(
∂L

∂qi
dqi + ∂L

∂ q̇i
dq̇i

)
+ ∂L

∂t
dt , (2.56)

in the form

dL =
n∑

i=1

( ṗi dqi + pidq̇i ) + ∂L

∂t
dt , (2.57)
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which will be useful for the derivation of the canonical form of the equations of
motion.

Consider now the case in which the Lagrangian does not depend on a given
generalized coordinate q j . In that case, the coordinate is called cyclic and (2.11)
yields

∂L

∂q j
= 0 ⇒ d

dt

∂L

∂q̇ j
= 0 . (2.58)

With (2.54), the r.h.s of (2.58) implies

dp j

dt
= 0 , (2.59)

which shows that in the case in which the generalized coordinate q j is cyclic, the
corresponding conjugate momentum p j is a constant of the motion. Conversely, if
the conjugate momentum p j is a conserved quantity of the system, the Lagrangian
L does not depend on the corresponding generalized coordinate q j .

The Lagrangian formulation of mechanics here developed depends on the set of
coordinates (qi , q̇i , t). It is possible, however, to build a different formulation aiming
at describing the equations of motion in terms of first-order equations in function
of the canonical coordinates (qi , pi , t). The new formulation can be built through a
Legendre transform of L(qi , q̇i , t) that defines the function

H(q, p, t) =
∑
i

q̇i pi − L(qi , q̇i , t) , (2.60)

which takes the name of Hamiltonian function, or simply Hamiltonian. A definition
and some of the mathematical properties of the Legendre transform are reported in
Appendix C. One should notice the important difference in the dependent variables
between the Hamiltonian function H(q, p, t) = H(q1, . . . , qn, p1, . . . , pn, t) and
the Lagrangian L(q, q̇, t) = L(q1, . . . , qn, q̇1, . . . , qn, t).

Notice that (2.60) yields, equivalently,

L(qi , q̇i , t) =
∑
i

q̇i pi − H(q, p, t) , (2.61)

which will sometimes be used.

2.7 Hamilton’s Equations

The differential of (2.60) is
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dH =
∑
i

(q̇i dpi + pidq̇i ) − dL , (2.62)

so that, using (2.57),

dH =
∑
i

(q̇i dpi − ṗi dqi ) − ∂L

∂t
dt . (2.63)

Equation (2.63) can be compared with the differential of the Hamiltonian obtained
from the chain rule

dH =
∑
i

(
∂H

∂qi
dqi + ∂H

∂pi
dpi

)
+ ∂H

∂t
dt . (2.64)

Direct comparison of (2.63) and (2.64) gives the canonical equations

q̇i = ∂H

∂pi
, (2.65a)

− ṗi = ∂H

∂qi
, (2.65b)

−∂L

∂t
= ∂H

∂t
, (2.65c)

the first two of which, i.e.

q̇i = ∂H

∂pi
, (2.66a)

ṗi = −∂H

∂qi
, (2.66b)

take the name of Hamilton’s equations.

Remark 2.1 In comparison with the Euler–Lagrange equations (2.11), which leads
to a set of n second-order equations, Hamilton’s equations are 2n first-order ordinary
differential equations for qi (t) and pi (t). The initial value problem can be solved
specifying the initial conditions qi (0) and pi (0). For geometric reasons, one should
notice that Hamiltonian dynamics take place in even dimensional spaces.

Hamilton’s equations (2.66a), (2.66b) can be derived, in full analogy with the
method of Sect. 2.2, from the Least Action Principle by finding an extremum of the
functional

I (l) =
∫ t2

t1

[
n∑

i=1

q̇i pi − H(q, p, t)

]
dt , (2.67)

where
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qi = qi (t, 0) + lηi (t), pi = pi (t, 0) + lϕi (t) , (2.68)

and
ηi (t1) = ηi (t2) = ϕi (t1) = ϕi (t2) = 0 . (2.69)

In fact, according to (2.67),

δ I = ∂ I

∂l
dl

=
∫ t2

t1

[
n∑

i=1

(
∂q̇i
∂l

pi + q̇i
∂pi
∂l

− ∂H

∂qi

∂qi
∂l

− ∂H

∂pi

∂pi
∂l

)
dl

]
dt

=
∫ t2

t1

[
n∑

i=1

(
η̇i pi + q̇iϕi − ∂H

∂qi
ηi − ∂H

∂pi
ϕi

)
dl

]
dt

=
∫ t2

t1

{
n∑

i=1

[(
q̇i − ∂H

∂pi

)
ϕi + η̇i pi − ∂H

∂qi
ηi

]
dl

}
dt

=
∫ t2

t1

{
n∑

i=1

[(
q̇i − ∂H

∂pi

)
ϕi −

(
ṗi + ∂H

∂qi

)
ηi

]
dl

}
dt + [piηi ]

t2
t1 dl .

(2.70)

Because of the arbitrariness of functions ηi , ϕi and (2.69), from (2.70) one concludes
that

δ I = 0 ⇐⇒
(
q̇i = ∂H

∂pi
and ṗi = −∂H

∂qi

)
∀i = 1, . . . , n . (2.71)

Finally, from the last equality of (2.53) and the definition of Lagrangian

H(q, p, t) =
n∑

i=1

q̇i pi − (T − V ) , (2.72)

so that, if the potential is a function only of the generalized coordinates, from (2.53),

H = T + V = E , (2.73)

so that the Hamiltonian is the total energy of the system.
In matrix form, Hamilton’s equations (2.66a), (2.66b) can be written as

(
q̇i
ṗi

)
=
(

0 1
−1 0

)( ∂H
∂qi
∂H
∂pi

)
. (2.74)

The matrix
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J =
(

0 1
−1 0

)
. (2.75)

takes the name of symplectic, or sometimes co-symplectic, matrix. The term “sym-
plectic” was introduced by the mathematician Hermann Weyl; it has origins from
ancient Greek and it means “intertwined”, as it clearly combines the variables qi
and pi . It should be noted that J is antisymmetric that means that its transpose is its
negative, i.e.

JT = −J . (2.76)

Further, it can be easily seen that the inverse of J is its transpose, so that

JT = J−1 =
(
0 −1
1 0

)
= −J . (2.77)

The properties

JJT = JT J = 1 , (2.78a)

J2 = 1 , (2.78b)

det J = 1 , (2.78c)

follow directly from (2.77) and (2.76).
The relation (2.75) offers a trivial geometrical interpretation of Hamilton’s equa-

tions in terms of the symplectic matrix. Consider in fact the rotation of coordinates
in the plane, which can be written as

(
x ′
y′

)
= R

(
x
y

)
, (2.79)

where R is the two-dimensional orthogonal rotation matrix, R ∈ SO(2), described
in 1.116 and reported here again for convenience

R =
(
cos θ − sin θ

sin θ cos θ

)
. (2.80)

It is visible thus that J is the matrix corresponding to a rotation through π/2 in the
clockwise direction and, following (2.74), the flow in phase space equals the gradient
of H rotated by the same angle. Further, one can see that a point in the phase space
moves with the speed (q̇2

i + ṗ2i )
1/2 = |∇H |.

The previous discussion can be generalized observing that the canonical equations
(2.66a), (2.66b) are not symmetric, due to the negative sign in the equation for ṗi
that is missing in the equation for q̇i . The two equations can be written in symmetric
form introducing the symplectic notation defining the vector zzz so that

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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zi = qi , (2.81a)

zi+n = pi , (2.81b)

with i = 1, . . . , n. In matrix form, zzz can be written as

zzz =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1
...

zn
zn+1

...

z2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

q1
...

qn
p1
...

pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.82)

In the same way, define the vectors

(
∂H

∂zzz

)
i

= ∂H

∂qi
, (2.83)

(
∂H

∂zzz

)
i+n

= ∂H

∂pi
, (2.84)

with i = 1, . . . , n. Once again, in matrix form,

∂H

∂zzz
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂H
∂q1
...

∂H
∂qn
∂H
∂p1
...

∂H
∂pn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2.85)

The canonical equations (2.65c) can thus be rewritten using (2.82) and (2.85) as

żzz = J
∂H

∂zzz
, (2.86)

where J is a 2n×2n squared matrix made by the four blocks composed by two n×n
null matrices and two identity matrices I composed as

J =
(

0 I
−I 0

)
. (2.87)

If n = 2, J reduces to (2.75). At the next order,
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J =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , (2.88)

and so forth.

Remark 2.2 The symplectic form of Hamilton’s equations allows for a geometric
formulation of mechanics, which has many important features that are subject of
current research. While the description of the dynamics on the symplectic manifold
is an essential part of the study of classical dynamics and of mathematical physics,
a description of the motion in local coordinates is to be preferred when explicit
quantitative results are wanted. In this book, we will follow this second route. For
a description of classical dynamics on the manifold, with attention also to infinite
dimensional systems and to fluid dynamics, the reader is referred, for example, to
[2, 9, 13].

2.8 Canonical Transformations and Generating Functions

In this section, we want to define what are the conditions to transform a set of
canonical coordinates into a new set of canonical coordinates. To do so, consider the
transformations of the kind

Qi = Qi (q, p, t) , i = 1, . . . , n , (2.89a)

Pi = Pi (q, p, t) , i = 1, . . . , n , (2.89b)

where q = q1, . . . , qn and p = p1, . . . , pn are canonical coordinates. The dependent
variables Qi and Pi are also canonical coordinates provided that there exists some
function K (Q, P, t) such that

Ṗi = − ∂K

∂Qi
, Q̇i = ∂K

∂Pi
. (2.90)

The relationship between (qi , pi ) and (Qi , Pi ) is based on the variational principles
δ
∫ t2
t1
L(q, q̇, t)dt = 0 and δ

∫ t2
t1
L(Q, Q̇, t)dt = 0 which, according to (2.61), take

the form

δ

∫ t2

t1

[q̇i pi − H(q, p, t)] dt = 0 , (2.91)

and

δ

∫ t2

t1

[
Q̇i Pi − H(Q, P, t)

]
dt = 0 , (2.92)
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respectively. We stress that if (Qi , Pi ) are canonical coordinates, then the simul-
taneous validity of (2.91) and (2.92) holds true. In turn, this request is real-
ized if the integrands of (2.91) and (2.92) differ, at most, by the total derivative
of an arbitrary function of both the old and the new canonical coordinates, say
F = F(q, p, Q, P, t). In fact, the difference between the integrals in (2.91) and in
(2.92) is given by

∫ t2

t1

dF

dt
dt = F(q, p, Q, P, t2) − F(q, p, Q, P, t1) = 0 ,

as the phase space coordinates have zero variations at the end points. Apart from
the time variable, the number of independent variables of F = F(q, p, Q, P, t) is
not 4n; in fact, relationships (2.89a), (2.89b) reduce those independent to 2n, so that
only the following possibilities are allowed:

F = F1(q, Q, t) , F = F2(q, P, t) , F = F3(p, Q, t) , F = F4(p, P, t) , (2.93)

where, for instance, F1(q, Q, t) = F1(q1, . . . , qn, Q1, . . . , Qn, t), and so on. We
now proceed to evaluate

q̇i pi − H = Q̇i Pi − K + dF1

dt
, (2.94)

keeping in mind that, in this particular case (i.e. F = F1), q and Q are independent.
Equation (2.94) yields

q̇i pi − H = Q̇i Pi − K + ∂F1

∂t
+ ∂F1

∂qi
q̇i + ∂F1

∂Qi
Q̇i , (2.95)

and, owing to the independence between q and Q, we have

pi = ∂F1

∂qi
, (2.96a)

Pi = − ∂F1

∂Qi
, (2.96b)

K = H + ∂F1

∂t
. (2.96c)

Equation (2.96a) can be solved to give

Qi = Qi (q, p, t) , (2.97)

that is (2.89a). Once (2.97) is known, Eq. (2.96b) can be used to single out (2.89b).
Moreover, Eq. (2.96c) connects the new and the old Hamiltonian functions. The
method involving the generating functions F2, F3 and F4 is analogous, with the



2.8 Canonical Transformations and Generating Functions 75

following choices of F2, F3 and F4 allowing to carry out the computations explicitly
in the same way:

F2(q, P, t) = F1(q, Q, t) − Pi Qi , (2.98)

with ∂F2/∂Qi = 0 because of (2.96b),

F3(q, P, t) = F1(q, Q, t) − piqi , (2.99)

with ∂F3/∂qi = 0 because of (2.96a), and

F4(q, P, t) = F1(q, Q, t) + Pi Qi − piqi , (2.100)

with ∂F4/∂q = 0 because of (2.96a) and ∂F4/∂Q = 0 because of (2.96b). Substi-
tution of (2.98) into (2.94) yields

pi = ∂F2

∂qi
, (2.101a)

Qi = ∂F2

∂Pi
, (2.101b)

K = H + ∂F2

∂t
. (2.101c)

Equation (2.101a) can be solved to give

Pi = Pi (q, p, t) , (2.102)

that is to say (2.89b). Once (2.102) is known, Eq. (2.101b) can be used to single
out (2.89a). The connection between the Hamiltonians is expressed by (2.101c).
Substitution of (2.99) into (2.94) yields

qi = −∂F3

∂pi
, (2.103a)

Pi = − ∂F3

∂Qi
, (2.103b)

K = H + ∂F3

∂t
. (2.103c)

Equation (2.103a) can be solved to give

Qi = Qi (q, p, t) , (2.104)

that is to say (2.89a). Once (2.104) is known, Eq. (2.103b) can be used to single out
(2.89b). The connection between the Hamiltonians is here expressed by (2.103c).
Substitution of (2.100) into (2.94) yields
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qi = −∂F4

∂pi
, (2.105a)

Qi = ∂F4

∂Pi
, (2.105b)

K = H + ∂F4

∂t
. (2.105c)

Equation (2.105a) can be solved to give

Pi = Pi (q, p, t) , (2.106)

that is to say (2.89b). Once (2.106) is known, Eq. (2.105b) can be used to single out
(2.89a). The connection between the Hamiltonians is now expressed by (2.105c).

2.8.1 Phase Space Volume as Canonical Invariant:
Liouville’s Theorem and Poisson Brackets

The results from the previous section can be easily extended to the symplectic for-
malism. Consider a system described by a set of canonical coordinates under (2.86).
Recalling the definition of covariant vectors from Sect. 2.4, in this section we will
show that the transformation (2.89a), (2.89b) is covariant.

Defining

ζi = Qi (z j ) , (2.107a)

ζi+n = Pi (z j ) , (2.107b)

(i, j = 1, . . . , n), if K is the Hamiltonian in the new coordinates, satisfying

H(zzz) = K (ζζζ ) , (2.108)

the equation of motions must satisfy

ζ̇ζζ = J
∂K

∂ζζζ
. (2.109)

At the same time,

ζ̇i = ∂ζi

∂z j
ż j , (i, j = 1, . . . , n) , (2.110)

which shows that zzz transforms covariantly. Equation (2.110) thus yields
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ζ̇i = ∂ζi

∂z j
J jk

∂H

∂zk

= ∂ζi

∂z j
J jk

∂K

∂ζl

∂ζl

∂zk

= Mil
∂K

∂ζl
, (2.111)

(i, j, k, l = 1, . . . , n), where

Mil = ∂ζi

∂z j
J jk

∂ζl

∂zk
, (2.112)

is the transformed symplectic operator. These last relationships show thatJ transforms
as a contravariant (hence the name co-symplectic) tensor with rank 2. Comparison
between (2.111), (2.112) and (2.110) states that the transformation of coordinates is
canonical, i.e., it preserves the form of Hamilton’s equations, if

(
∂ζζζ

∂zzz

)
J
(

∂ζζζ

∂zzz

)T

= J , (2.113)

or, equivalently, if (
∂ζζζ

∂zzz

)T

J
(

∂ζζζ

∂zzz

)
= J . (2.114)

An important consequence of the these results is that the phase space defined by
the canonical coordinates (qi , pi ) has the property that the volume

V =
∫

dq1 . . . dqndp1 . . . dpn (2.115)

is a canonical invariant, i.e., it is invariant under a canonical transformation of coordi-
nates. To demonstrate this property, indicate the infinitesimal volume in the original
set of coordinates with

dq1 . . . dqndp1 . . . dpn , (2.116)

and with
dQ1 . . . dQndP1 . . . dPn , (2.117)

the volume in a set of transformed coordinates (2.89a), (2.89b), under a canonical
transformation. As well known frommultivariate calculus, the two infinitesimal vol-
umes are connected by the determinant of the Jacobian matrix, i.e., the determinant
of a symplectic matrix that is equal to 1. This is an important result that states that
in conservative systems, element of volumes in the phase space is conserved. The
consequences of this result are wide and have applications in the different fields of
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mathematics and physics, ranging from chaotic dynamics to statistical mechanics.
One of them that has consequences that have parallels with fluid dynamics is given by
Liouville’s theorem. If ρ(q1, . . . , qn, p1, . . . , pn)dq1 . . . dqndp1 . . . dpn is the prob-
ability that a trajectory of the system in phase space is in the infinitesimal volume
dq1 . . . dqndp1 . . . dpn , where ρ(q1, . . . , qn, p1, . . . , pn) is the probability density
function, the invariance of the volume yields

dρ

dt
= ∂ρ

∂t
+

n∑
i=1

(
∂ρ

∂qi
q̇i + ∂ρ

∂pi
ṗi

)

= ∂ρ

∂t
+

n∑
i=1

(
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)

= 0 . (2.118)

Equation (2.118) has the same form of fluid dynamics equation for the conservation
of density (1.6), or, in general, for the evolution of a passive tracer stirred by a flow
characterized by a stream function that in (2.118) corresponds to the Hamiltonian.

In (2.118), the object

{ρ, H} =
n∑

i=1

(
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

)
(2.119)

is called a canonical Poisson bracket. For a system in equilibrium, ∂ρ/∂t = 0, and
(2.118) yields {ρ, H} = 0, which is satisfied if ρ = ρ(H), i.e. if ρ is a function of
the energy of the system.

In general, given two functions F(q1, . . . , qn, p1, . . . , pn) and G(q1, . . . , qn,
p1, . . . , pn), a canonical Poisson bracket is defined as

{F,G} =
n∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
. (2.120)

By the chain rule of differentiation, the time evolution of one of the functions, say
F , can be written as

dF

dt
=

n∑
i=1

(
∂F

∂qi

dqi
dt

+ ∂F

∂pi

dpi
dt

)
. (2.121)

Using Hamilton’s equations (2.66a), (2.66b), Eq. (2.121) gives

dF

dt
=

n∑
i=1

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
, (2.122)

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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so that, using (2.120), (2.122) yields

dF

dt
= {F, H} (2.123)

that shows that the evolution of a generic function can be determined from the Poisson
bracket of the function with the Hamiltonian of the system. Notice that (2.123) is in
agreement with the definition of the canonical equations (2.66a), (2.66b),

dqi
dt

= {qi , H} = ∂H

∂pi
, (2.124)

dpi
dt

= {pi , H} = −∂H

∂qi
. (2.125)

Relation (2.123) shows also that

{F, H} = 0 ⇐⇒ dF

dt
= 0 , (2.126)

i.e. if a function F commutes with the Hamiltonian H , it is an invariant of the motion
of the system. In particular, the invariance of the Hamiltonian is trivially proved, as

{H, H} = 0 , (2.127)

in agreement with the energy conservation of the system. The Poisson bracket is
an important geometric object in mechanics, and it is worth showing its algebraic
properties:

Theorem 2.2 Given the functions f, g, h, the Poisson bracket satisfies the following
properties (the proofs are reported in Appendix I):

1. Self-commutation
{ f, f } = 0 . (2.128)

2. Skew-symmetry
{ f, g} = −{g, f } . (2.129)

3. Distributive property

{α f + βg, h} = α{ f, h} + β{g, h} . (2.130)

where α, β ∈ R.
4. Associative property

{ f g, h} = f {g, h} + { f, h}h . (2.131)

5. The Jacobi identity
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{ f, {g, h}} + {g, {h, f }} + {h, { f, g}} = 0 . (2.132)

These properties define a nonassociative Lie algebra.
In a similar way as was done at the beginning of this section, it is possi-

ble to express the Poisson bracket in the new set of coordinates. Given two
functions f (q1, . . . , qn, p1, . . . , pn) and g(q1, . . . , qn, p1, . . . , pn) and indicating
with F(Q1, . . . , Qn, P1, . . . , Pn) and G(Q1, . . . , Qn, P1, . . . , Pn) the correspond-
ing functions in the transformed coordinates, the Poisson bracket is

{ f, g} =
(

∂ f

∂zzz

)T

J
(

∂g

∂zzz

)

=
(

∂ f

∂ζζζ

∂ζζζ

∂zzz

)T

J
(

∂g

∂ζζζ

∂ζζζ

∂zzz

)

=
(

∂ f

∂ζζζ

)T

J
(

∂g

∂ζζζ

)
, (2.133)

where, in the last passage, we have used property (2.114). The relation (2.133) shows
that the Poisson bracket is a canonical invariant of the system.

2.8.2 Casimir Invariants and Invertible Systems

A special case of (2.126) is given by a function C that commutes with every other
functions F ,

{F,C} = 0, ∀F . (2.134)

In this case, the function C takes the name of Casimir invariant, as (2.123) with
F = H trivially implies

{C, H} = 0, ⇒ dC

dt
= 0 . (2.135)

Writing (2.134) in symplectic form and considering that F is an arbitrary function
yield

J
∂C

∂zzz
= 0 . (2.136)

Relation (2.136) implies that ∂C/∂zzz belongs to the kernel of J and has important
consequences linked to the invertibility of the dynamics of the system. In fact, if J−1

exists, i.e., the Hamiltonian formulation is invertible, (2.136) implies

∂C

∂zzz
= 0, ⇒ C = const . (2.137)
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In this case, the Casmir function is said to be trivial. If instead J−1 does not exists,
i.e. the Hamiltonian formulation is not invertible, there exists at least one Casimir
that is nontrivial. In this case, the dynamics is invariant under the summation of a
Casmir to the Hamiltonian; in fact,

J
∂(H + C)

∂zzz
= J

∂H

∂zzz
+ J

∂C

∂zzz
= J

∂H

∂zzz
= żzz . (2.138)

The geometric interpretation of (2.138) relies in the idea that the motion takes place
on hypersurfaces where ∂C/∂zzz = 0, which are also called symplectic leaves. Each of
these surfaces is a regular Hamiltonian phase space where the dynamics are regulated
by H .

Remark 2.3 As remarked at the end of Sect. 2.7, in the remaining of this book we
will not make use of the Poisson bracket. It is, however, difficult to overestimate the
importance that this object covers in modern mechanics, making it thus deserving of
this very short introduction.

2.9 Noether’s Theorem for Point Particles

In this section, we will study the important link between continuous symmetries and
conserved quantities, which is explicated by Noether’s Theorem, using the symme-
tries of the Lagrangian operator. The theorem will be first exposed in its formulation
for point particles and will then be extended to continuous systems, which include
the case of fluids.

Consider a system of point particles, Noether’s Theorem thus states that

Theorem 2.3 If the Lagrangian function is invariant under a continuous and infin-
itesimal transformation of its spatial and temporal variables, the transformation
defines a scalar quantity that is a constant of motion of the system.

The proof of the theorem will be divided into a mathematical preliminary and it
will then be linked to the physics of the system.

2.9.1 Mathematical Preliminary

We start by defining the functional

I =
∫ t2

t1

L (qi , q̇i , t) dt , (2.139)

and the transformations
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t ′ = t + δt , (2.140a)

q ′
i (t

′) = qi (t) + δqi (t) , (2.140b)

q̇ ′
i (t

′) = q̇i (t) + δq̇i (t) . (2.140c)

The quantities δt , δqi (t), δq̇i (t) are arbitrary differentiable functions of time whose
higher order amplitudes are negligible. Notice that these arbitrary differentiable func-
tions can eventually be a constant. In the examples that will follow the proof, different
forms of δt, δqi (t) and δq̇i (t) will be introduced.

The transformations in (2.140a)–(2.140c) generate, through (2.139), a functional
variation δ I defined as

δ I =
∫
R′
L
(
t ′, q ′

i , q̇
′
i

)
dt ′ −

∫
R
L (t, qi , q̇i ) dt , (2.141)

where R = [t1, t2] , R′ = [
t ′1, t ′2
]
and
∫
R dt = ∫

R′ dt ′. Equation (2.141) shows
that the functional variation δ I is the difference between (2.139) calculated after
and before the transformations (2.140a)–(2.140c). As it is shown in Appendix D,
Eq. (2.141) yields, at first order, the functional variation in the form

δ I =
∫
R

{
D

Dt

[(
L − ∂L

∂q̇i
q̇i

)
δt + ∂L

∂q̇i
δqi

]
+
[

∂L

∂qi
− D

Dt

∂L

∂ q̇i

]
(δqi − q̇iδt)

}
dt ,

(2.142)
where

D

Dt
= ∂

∂t
+ q̇i

∂

∂qi
+ q̈i

∂

∂q̇i
. (2.143)

If the integrand in (2.139) is the Lagrangian L = T − V , and using the initial and
final conditions δt (t1) = δt (t2) = 0 , δqi (t1) = δqi (t2) = 0, due to Hamilton’s
principle, the equations of motion (see Sect. 2.2)

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (2.144)

hold. In this (physically relevant) case, (2.142) yields

δ I =
∫
R

D

Dt

[(
L − ∂L

∂q̇i
q̇i

)
δt + ∂L

∂ q̇i
δqi

]
dt . (2.145)

2.9.2 Symmetry Transformations and Proof of the Theorem

Among the transformations (2.140a)–(2.140c), of particular interest are the transfor-
mations denoted as
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t ′ = t + δSt , (2.146a)

q ′
i (t

′) = qi (t) + δSqi (t) , (2.146b)

q̇ ′
i (t

′) = q̇i (t) + δSq̇i (t) , (2.146c)

for which the Lagrangian function transforms under two conditions, namely

L ′ (t ′, q ′
i , q̇

′
i

)
dt ′ = L (t, qi , q̇i ) dt , (2.147a)

L ′ (t ′, q ′
i , q̇

′
i

) = L
(
t ′, q ′

i , q̇
′
i

)+ D

Dt ′
(δSΩ) . (2.147b)

Equation (2.147a) is valid because the functional (2.139) is a scalar and, under the
action of the transformations (2.140a)–(2.140c) (and (2.146a)–(2.146c) as a special
case)must transform as a scalar. Equation (2.147b), instead, expresses the covariance
of Lagrangian function specifically under the symmetry transformations (2.146a)–
(2.146c). This means that the functional dependence of the Lagrangian on the space–
time coordinates remains unaltered under transformations (2.146a)–(2.146c), apart
from the term D/Dt ′ (δSΩ). The presence of this additional term can be explained
observing that the equations of motion (2.144) are invariant under the divergence
transformation

L → L + D

Dt
[δSΩ(t, qi )] , (2.148)

where ∂Ω/∂q̇i = 0, as demonstrated in Appendix E. The strategy of the proof will
now be to substitute the transformations (2.146a)–(2.146c) in (2.147a) and (2.147b)
and to compare the results in order to find what kind of constraints (2.146a)–(2.146c)
pose on the equations of motion (2.144).

Substitution of (2.146a)–(2.146c) in (2.147a) yields

L ′ (t + δSt, qi + δSqi , q̇i + δSq̇i ) dt
′ = L (t, qi , q̇i ) dt , (2.149)

while (2.147b) yields

L ′ (t + δSt, qi + δSqi , q̇i + δSq̇i ) dt
′

= L (t + δSt, qi + δSqi , q̇i + δSq̇i ) dt
′ + D (δSΩ)

Dt
dt ′ . (2.150)

Equating (2.149) and (2.150) yields

L (t + δSt, qi + δSqi , q̇i + δSq̇i ) dt
′ − L (t, qi , q̇i ) dt + D (δSΩ)

Dt
dt ′ = 0 . (2.151)

Because

dt ′ = dt

[
1 + d

dt
(δSt)

]
, (2.152)



84 2 Mechanics, Symmetries and Noether’s Theorem

and because δS 
 1, ignoring terms of higher order, one gets

D

Dt ′
(δSΩ) dt ′ = D

Dt
(δSΩ) dt . (2.153)

Starting from (2.153), we thus pose two goals:

• To derive a test function that allows to prove the invariance of the Lagrangian
function upon a continue and infinitesimal symmetry transformation in the class
represented by (2.146a)–(2.146c);

• To obtain the correspondent conserved quantity.

In reference to the first goal, Eq. (2.151) can be rewritten using (2.152) and (2.153),
so that

L (t + δSt, qi + δSqi , q̇i + δSq̇i )

[
1 + d

dt
(δSt)

]
− L (t, qi , q̇i ) dt = − D

Dt
(δSΩ) .

(2.154)
At first order, (2.154) yields

[
δSt

∂

∂t
+ δSqi

∂

∂qi
+ δSq̇i

∂

∂q̇i
+ d (δSt)

dt

]
L (t, qi , q̇i ) = − D

Dt
(δSΩ) . (2.155)

The test consists thus in applying the operator between square brackets on the l.h.s.
of (2.155) to the assigned Lagrangian, in order to verify if it produces the term on
the r.h.s.. Notice that the function δSΩ(t, qi ) is arbitrary and may be null.

In reference to the second goal, consider the time integration of (2.151), i.e.

∫
R′
L (t + δSt, qi + δSqi , q̇i + δSq̇i ) dt

′−
∫
R
L (t, qi , q̇i ) dt+

∫
R

D

Dt
(δSΩ) dt = 0 .

(2.156)
The first two terms in (2.156) are the functional variation (2.141) that, because of
Hamilton’s principle, must have the form (2.145), yielding

∫
R

D

Dt

[(
L − ∂L

∂q̇i
q̇i

)
δSt + ∂L

∂q̇i
δSqi + δSΩ

]
dt = 0 . (2.157)

Because (2.157) is independent on the integration interval, from the same equation
it is possible to derive the conservation law

D

Dt

[(
L − ∂L

∂q̇i
q̇i

)
δSt + ∂L

∂q̇i
δSqi + δSΩ

]
= 0 , (2.158)

or (
L − ∂L

∂q̇i
q̇i

)
δSt + ∂L

∂q̇i
δSqi + δSΩ = const . (2.159)
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To summarize: every continuous anddifferential transformation (2.146a)–(2.146c)
that turns (2.155) into an identity produces a conserved quantity in the form of
(2.159).

2.9.3 Some Examples

As a preamble notice that in classical mechanics for point particles, the Lagrangian
has usually the shape

L =
∑
i

mi

2

[
(ẋ)2 + (ẏ)2 + (ż)2

]− V

⎛
⎝∑

i �= j

ri j

⎞
⎠ , (2.160)

where, using Cartesian coordinates, ri j=
[(
xi − x j

)2 + (yi − y j
)2 + (zi − z j

)2]1/2
.

2.9.3.1 Invariance for Translations of Amplitude l Along the x-axis

In terms of equation (2.146a)–(2.146c), this symmetry transformation is

t ′ = t , (2.161a)

x ′
i = xi + l, y′

i = yi , z′
i = zi , (2.161b)

ẋ ′
i = ẋi , ẏ′

i = ẏi , ż′
i = żi , (2.161c)

where δSqi = l if qi = xi and δSqi = 0 if qi �= xi . It is visible that, because
xi − x j = (xi + l)− (x j + l), the distance ri j between two particles does not change
for translations, so that the Lagrangian (2.160) does not change aswell. It is, however,
possible to proceed formally, recurring to (2.155), that for this case yields

∑
k

∂L

∂xk
= −DΩ

Dt
. (2.162)

The sum in (2.162) is applied to the space derivatives with respect to x for all the
particles of the system, so that

∑
k

∂L

∂xk
= −

∑
i

∂V

∂xi
−
∑
j

∂V

∂x j
= −

∑
i �= j

⎛
⎝∑

i

∂V

∂xi
+
∑
j

∂V

∂x j

⎞
⎠ = 0 .

(2.163)
Equation (2.163) shows that (2.155) is satisfied forΩ = const . According to (2.159),
the corresponding conserved quantity is
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∑
k

∂L

∂ ẋk
=
∑
k

mk ẋk . (2.164)

The term on the r.h.s. of (2.164), i.e. the conserved quantity, is the total (i.e. of the
entire system) linear momentum along the x-axis.

2.9.3.2 Invariance for Time Translations of Amplitude τ

In terms of equation (2.146a)–(2.146c), the symmetry transformation is

t ′ = t + τ , (2.165a)

x ′
i = xi , y′

i = yi , z′
i = zi , (2.165b)

ẋ ′
i = ẋi , ẏ′

i = ẏi , ż′
i = żi , (2.165c)

where δSt = τ . Equation (2.160) shows that the Lagrangian does not depend explic-
itly on time and thus (2.155) follows immediately from the invariance ∂L/∂t = 0
with Ω = const . As a consequence, (2.159) yields

L − mi (ẋi )
2 = const . (2.166)

Becausemi (ẋi )2 = 2T , (2.166) is the conservation of the total (kinetic plus potential)
energy of the system,

T + V = const . (2.167)

2.9.3.3 Invariance for Rotations of Amplitude α Around the z-axis

In terms of equation (2.146a)–(2.146c), the transformation is

t ′ = t , (2.168a)

x ′
i = xi + αyi , y′

i = yi − αxi , z′
i = zi , (2.168b)

ẋ ′
i = ẋi + α ẏi , ẏ′

i = ẏi − α ẋi , ż′
i = żi , (2.168c)

so that

δSqi = αyi if qi = xi , (2.169a)

δSqi = −αxi if qi = yi , (2.169b)

δSqi = 0 if qi = zi . (2.169c)

It should be noted that in this case the quantities δSqi are not constants, but they
are the product of an infinitesimal parameter α by a coordinate that is a function of
time. The same considerations are valid for the δSq̇i . Notice also that the infinitesimal
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parameter α derives from the finite rotation

x ′ = cosαx + sin αy , (2.170a)

y′ = − sin αx + cosαy , (2.170b)

after the truncation at first order of the expansion inα of the trigonometrical functions,
following the well-known approximations cosα ≈ 1 and sin α ≈ α. Using (2.169a)–
(2.169c), Eq. (2.155) yields

[
α

(
yi

∂

∂xi
− xi

∂

∂yi

)
+ α

(
ẏi

∂

∂ ẋi
− ẋi

∂

∂ ẏi

)]
(T − V ) = − D

Dt
(δSΩ) . (2.171)

Because (
ẏi

∂

∂ ẋi
− ẋi

∂

∂ ẏi

)
T = mi (ẏi ẋi − ẋi ẏi ) = 0 ,

and (
yi

∂

∂xi
− xi

∂

∂yi

)
V = 0 ,

as it is verified from the identity

∂

∂xi
(xm − xn) = ∂

∂yi
(ym − yn) = δim − δin = 0 , (2.172)

where δkl is a Kronecker delta, then (2.171) is immediately verified for Ω = const ,
for all values of α. As a consequence, (2.159) takes the form

δSqi
∂L

∂qi
= const , (2.173)

or, using (2.169a)–(2.169c),

∂

∂xi
(xm − xn) = ∂

∂yi
(ym − yn) = δim − δin = 0 , (2.174)

that is
mi (yi ẋi − xi ẏi ) = const . (2.175)

Equation (2.175) expresses the conservation of the total angular momentum about
the z-axis.
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2.9.3.4 Invariance for a Translation with Constant Velocity Along the
x-axis

In terms of (2.146a)–(2.146c), the transformation is

t ′ = t , (2.176a)

x ′
i = xi − tδv, y′

i = yi , z′
i = zi , (2.176b)

ẋ ′
i = ẋi − δv, ẏ′

i = ẏi , ż′
i = żi , (2.176c)

so that δSqi = −tδv if qi = xi else δSqi = 0; δSq̇i = −δv if qi = xi else δSq̇i = 0.
With this form for the transformation, (2.155) yields

[∑
i

(
−tδv

∂

∂xi
− δv

∂

∂ ẋi

)]
L = − D

Dt
(δSΩ) . (2.177)

Because
∑

i ∂V/∂xi = 0, (2.177) simplifies to

∑
i

∂T

∂ ẋi
= DΩ

Dt
, (2.178)

that is ∑
i

mi xi = DΩ

Dt
. (2.179)

Thus, if
Ω =

∑
i

mi xi , (2.180)

Equation (2.177) becomes an identity. Given (2.180), Eq. (2.159) determines the
conserved quantity ∑

i

(
−t

∂T

∂ ẋi
+ mi xi

)
= const , (2.181)

that is ∑
i

mi xi − t
∑
i

mi ẋi = const . (2.182)

If

xc =
∑

i mi xi∑
i mi

, (2.183)

is the coordinate of the centre of mass of the system about the x-axis, and using
(2.164), then (2.182) describes the motion of the centre of mass, that, as it is well
known, is uniform in the absence of forces that are external to the system.
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2.9.3.5 Damped Oscillator

The following example is drawn from [15] and reconsidered here in full details. It
is noticeable because, although the single-particle system taken into account does
not conserve neither energy nor momentum, Noether’s Theorem allows to derive
a conservation law which cannot emerge from the Euler–Lagrange equation alone.
The starting point is the following Lagrangian governing a damped oscillator

L = 1

2

[
mẋ2 − kx2

]
exp

(
bt

m

)
. (2.184)

Hence, the evolution is given by the Euler–Lagrange equation (2.11) which yields
the ODE

mẍ + bẋ + kx = 0 . (2.185)

In Eq. (2.185), bẋ (b > 0) is the damping termwhile kx (k > 0) is the restoring force.
The first of them obviously prevents energy conservation; in fact, (2.185) implies

mẋ ẍ + bẋ ẋ + kx = 0 .

that is to say, after time integration on (t1, t2)

E(t2) − E(t1) + b
∫ t2

t1

(ẋ)2dt = 0 , (2.186)

where E = (m/2)(ẋ)2 + (k/2)x2 is total energy of the oscillating particle. Equation
(2.186) openly shows that kinetic energy is not conserved because of the energy sink
−b
∫ t2
t1

(ẋ)2dt . The restoring force prevents linear momentum conservation. In fact,
time integration of (2.185) with x(t1) = x(t2) = 0 immediately gives

p(t2) − p(t1) + k
∫ t2

t1

xdt = 0 , (2.187)

where p = mẋ is the linear momentum of the particle. According to Eq. (2.187),
the linear momentum is not conserved because of the sink −k

∫ t2
t1
xdt . After these

preliminaries, consider again (2.184). The Lagrangian conserves its form under the
space–time infinitesimal transformation

t ′ = t + ε , (2.188a)

x ′ = x − ε

(
bx

2m

)
, (2.188b)

where positive powers of ε are hereafter neglected with respect to the first one. Thus,
(2.188a), (2.188b) can be reverted to give
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t = t ′ − ε , (2.189a)

x = x ′ + ε

(
bx ′

2m

)
, (2.189b)

Substitution of (2.189a), (2.189b) into (2.184) proves invariance. In fact,

L = 1

2

[
mẋ ′2 − kx ′2

](
1 + ε

b

2m

)2

exp

(
b

m
(t ′ − ε)

)

= 1

2

[
mẋ ′2 − kx ′2

](
1 + ε

b

m

)
exp

(
bt ′

m

)
exp

(
−ε

b

m

)

= 1

2

[
mẋ ′2 − kx ′2

](
1 + ε

b

m

)(
1 − ε

b

m

)
exp

(
bt ′

m

)

= 1

2

[
mẋ ′2 − kx ′2

]
exp

(
bt ′

m

)
,

that is to say

L(t, x, ẋ) = L(t ′, x ′, ẋ ′) . (2.190)

Invariance (2.190) leads to a conserved quantity according to Noether’s Theorem.
Transformations (2.188a), (2.188b) allow us to identify

δs t = ε , δsq = δs x = ε

(
b

2m

)
x , (2.191)

so the conserved quantity of the general theory (2.159) takes here the form

L − ∂L

∂ ẋ
ẋ −
(

b

2m
x

)
∂L

∂ ẋ
= const . (2.192)

Finally, substitution of (2.184) into (2.192) produces the explicit version of the
conserved quantity, that is to say

[
m(ẋ)2 + kx2 + bx ẋ

]
exp

(
bt

m

)
= const . (2.193)

In turn, the constant at the r.h.s. of (2.193) can be singled out by substituting the gen-
eral integral of the ODE (2.185) into the l.h.s of the same equation. The exponential
damping of the oscillator compensates exactly the exponential factor at the l.h.s. of
(2.193).
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2.10 Lagrangian Formulation for Fields: Lagrangian
Depending on a Scalar Function

The Lagrangian formulation for point particles reviewed in the previous sections can
be easily expanded for systems with an infinite number of degrees of freedom, i.e.
for continuous systems such as fluids. In this section, the formulation of Lagrangian
dynamics will be specifically introducedmaking use of a scalar function, i.e. a stream
function, ψ . Later in the chapter, the formulation will be presented for Lagrangian
functions depending on vector functions.

In a continuous system, the independent variables are the time t and the space
coordinates x, y, z, while the dependent variables that will be considered here are
the current function ψ and its first derivatives, e.g. ∂ψ/∂t , etc. The notation

(t, x, y, z) = (q0, q1, q2, q3) (2.194)

and its abbreviation
(q0, q1, q2, q3) = q (2.195)

will be used when convenient; for example, we will use the notation
∫
R d(q) =∫

R

∏3
k=0 dqk , where R ⊂ R

4 is the integration domain. Using this notation yields

ψ (t, x, y, z) = ψ (q0, q1, q2, q3) = ψ (q) , (2.196)

while the partial derivatives are expressed with the index that identifies the variable
with respect to which the derivative is taken, e.g.

∂ψ

∂qk
= ψk ,

∂2ψ

∂qk∂ql
= ψkl . (2.197)

Using this notation, the Lagrangian L is a function of all the independent and depen-
dent variables and it will be indicated as

L (qk, ψ,ψi ) , (2.198)

where k = 0, 1, 2, 3 and i = 0, 1, 2, 3.
The symbol D/Dqk generalizes the Lagrangian derivative with time as the only

independent variable, and it is defined as

D

Dqk
= ∂

∂qk
+ ψk

∂

∂ψ
+ ψkl

∂

∂ψl
. (2.199)

An important observation comes from looking at the functional
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I [ψ] =
∫
R
L (qk, ψ,ψi ) d(q) . (2.200)

From (2.200), it is visible that the Lagrangian L (qk, ψ,ψi ) does not have the
same dimensions as the Lagrangian function used in the discrete formulation. The
Lagrangian function used in continuous systems takes also the name of Lagrangian
density. In fluid dynamics, the Lagrangian density is analogous to the Lagrangian
function defined for point particles, i.e., it is defined as L = T − V where now T
and V represent the kinetic and potential energy densities. As it will be seen in the
next chapter, in fluid dynamics the kinetic energy density is expressed as the kinetic
energy of the parcels that fill up the continuum that constitutes the fluid. The potential
energy density is instead given by the contribution of the internal energy, linked to
the thermodynamics property of the fluid, and the external potential.

Analogously to the discrete case, the request

δ I = 0 (2.201)

allows to derive the equations of motion for the system. To do so, start by labelling
the functions ψ(q), ψi (q) by the label l

ψ(q, l) = ψ(q, 0) + lφ(q) , (2.202a)

ψi (q, l) = ψi (q, 0) + lφi (q) , (2.202b)

where φ(q), φi (q) ∈ C2
R are arbitrary functions satisfying φ = 0, φi = 0 on the

boundary of the domain ∂R. Then, up to leading order in l, (2.201) corresponds to

δ I =
∫
R
[L (qk, ψ + lφ,ψi + lφi ) − L (qk, ψ,ψi )] d(q)

=
∫
R

[
L (qk, ψ,ψi ) + ∂L

∂ψ
lφ + ∂L

∂ψi
lφi − L (qk, ψ,ψi )

]
d(q)

= l
∫
R

(
∂L

∂ψ
φ + ∂L

∂ψi
φi

)
d(q) , (2.203)

where Einstein’s summation over repeated indices has been used.
Equation (2.203) yields

δ I = 0 ⇐⇒
∫
R

(
∂L

∂ψ
φ + ∂L

∂ψi
φi

)
d(q) = 0 . (2.204)

Because the functions φ depend only on q,

∂φ

∂qi
= Dφ

Dqi
, (2.205)



2.10 Lagrangian Formulation for Fields: Lagrangian Depending on a Scalar Function 93

holds, so that (2.204) yields

δ I = 0 ⇐⇒
∫
R

(
∂L

∂ψ
φ + ∂L

∂ψi

Dφ

Dqi

)
d(q) = 0 . (2.206)

Splitting the integrals in (2.206), it is possible to see that the second integral can be
rewritten as

∫
R

∂L

∂ψi

Dφ

Dqi
d(q) =

∫
R

[
D

Dqi

(
∂L

∂ψi
φ

)
− φ

D

Dqi

∂L

∂ψi

]
d(q) , (2.207)

so that (2.206) yields

δ I = 0 ⇐⇒
∫
R

[
φ

(
∂L

∂ψ
− D

Dqi

∂L

∂ψi

)
+ D

Dqi

(
∂L

∂ψi
φ

)]
d(q) = 0 . (2.208)

Consider now the integral of the second term in the square brackets of (2.208),

∫
R

D

Dqi

(
∂L

∂ψi
φ

)
d(q) . (2.209)

To simplify the notation, let

Pi = ∂L

∂ψi
φ , (2.210)

with boundary conditions
Pi (∂R) = 0 . (2.211)

In the simplified notation, (2.209) is written as

∫
R

DPi
Dqi

d(q) =
∫
R

DPi
Dqi

dqi
∏
k �=i

dqk . (2.212)

Considering the integral ∫
R

DPi
Dqi

dqi , (2.213)

it is possible to see that

DPi
Dqi

dqi = ∂Pi
∂qi

dqi + ∂Pi
∂ψ

∂ψ

∂qi
dqi + ∂Pi

∂ψl

∂ψl

∂qi
dqi = dPi , (2.214)

so that (2.213) yields ∫
R

DPi
Dqi

dqi =
∫
R
d Pi = 0 . (2.215)
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Using (2.215), (2.208) reduces to

δ I = 0 ⇐⇒
∫
R

[
φ

(
∂L

∂ψ
− D

Dqi

∂L

∂ψi

)]
d(q) = 0 . (2.216)

Because the functions φ are arbitrary, (2.216) yields

D

Dqi

∂L

∂ψi
− ∂L

∂ψ
= 0 , (2.217)

which are the Euler–Lagrange equations for continuous systems.
In (2.217), it is possible to define

D

Dqi

∂L

∂ψi
− ∂L

∂ψ
= −δL

δψ
, (2.218)

where

L =
∫
RV

LdV , (2.219)

where dV = dq1dq2dq3 and RV ⊂ R
3. The r.h.s. of (2.218) defines the functional

derivative of the functionalL . For a definition of functional derivatives, see Appen-
dix F.

2.10.1 Hamiltonian for Scalar Fields

Analogously to the point-particle formulation for dynamics, from the Lagrangian
density for scalar fields it is possible to define a Hamiltonian density from a Legendre
transform of the Lagrangian density, i.e., in analogy with (2.61)

H = ∂L

∂ψ̇
ψ̇ − L . (2.220)

From (2.217), we define the canonical momentum density as

π = ∂L

∂ψ̇
, (2.221)

where we have underlined the role of the time derivative using the dot symbol. From
(2.220), the Hamiltonian density of the system can thus be defined as

H = πψ̇ − L . (2.222)
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It should be noted that, from the definition of the canonical momentum density
(2.221), the Hamiltonian density (2.222) singles out the time variable from the spatial
variables. This is different from the Lagrangian formulation in which the space and
time variables are instead treated in the same way.

Defining the Hamiltonian as the integral of the Hamiltonian density over the
spatial volume,

H =
∫
RV

HdV . (2.223)

Hamilton’s equations are defined as

ψ̇ = δH

δπ
, π̇ = −δH

δψ
. (2.224)

The comparison between (2.224) and (2.66a), (2.66b) shows that in the case of fields
the partial derivative is replaced by a functional derivative, as a straight consequence
of the fact that H is indeed a functional.

Also for the case of scalar fields, one can introduce the concept of canonical
transformations and generating functionals. Because the definition of these is essen-
tially the same for scalar and vector fields, a complete exposition will be delayed to
Sect. 2.12.2.

2.11 Noether’s Theorem for Fields with the Lagrangian
Depending on a Scalar Function

2.11.1 Mathematical Preliminary

As for the proof for point particles, we start the proof of Noether’s Theorem for fields
with the Lagrangian depending on a scalar function,with amathematical preliminary.
Given the functional (2.200) and the infinitesimal transformations of the independent
variables

q ′
k = qk + δqk , (2.225)

where δqk have the same meaning of the δqk(t) in the discrete system. The transfor-
mations (2.225) change the domain of integration from R into a different integration
domain R′. Using (2.225), it is possible to define the dependent variables

ψ ′(q ′) = ψ(q) + δψ(q) , (2.226a)

ψ ′
k(q

′) = ψk(q) + δψk(q) , (2.226b)

where q ′ = (
q ′
o, q

′
1, q

′
2, q

′
3

)
indicates the set of independent variables defined

by (2.225). Using (2.225) and (2.226a), (2.226b), it is possible to introduce the
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Lagrangian density L
(
q ′
k, ψ

′, ψ ′
i

)
and the variation

δ I =
∫
R′
L
(
q ′
k, ψ

′, ψ ′
i

)
d(q ′) −

∫
R
L (qk, ψ,ψi ) d(q) . (2.227)

Taking into account the infinitesimal behaviour of δqk in (2.225), the change of
variables implies

d(q ′) =
[
1 + ∂ (δqk)

∂qk

]
d(q) , (2.228a)

d(q) =
[
1 − ∂ (δqk)

∂qk

]
d(q ′) , (2.228b)

where the quantities in the square brackets indicate the Jacobian of the transformation
(2.225) and its inverse. As shown in Appendix G, from the expansion of (2.227) it
is possible to derive, at first order,

δ I =
∫
R

[
D

Dqk

(
Lδqk − ∂L

∂ψk
ψlδql + ∂L

∂ψk
δψ

)

+
(

∂L

∂ψ
− D

Dqk

∂L

∂ψk

)
(δψ − ψlδql)

]
d(q) . (2.229)

In the hypothesis that along the boundary of R hold the conditions δqk = 0, δψ = 0,
the request of stationarity of (2.200) yields the validity of (2.217), so that (2.229)
simplifies into

δ I =
∫
R

D

Dqk

(
Lδqk − ∂L

∂ψk
ψlδql + ∂L

∂ψk
δψ

)
d(q) . (2.230)

2.11.2 Linking Back to the Physics

Consider a particular case of the transformations (2.225) and (2.226a), (2.226b),
represented by

q ′
k = qk + δSqk , (2.231a)

ψ ′(q ′) = ψ(q) + δSψ(q) , (2.231b)

ψ ′
k(q

′) = ψk(q) + δSψk(q) . (2.231c)

Equations (2.231a), (2.231b) transform the Lagrangian density as
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L ′ (q ′, ψ ′, ψ ′
k

)
d(q ′) = L (q, ψ,ψk) d(q) , (2.232a)

L ′ (q ′, ψ ′, ψ ′
k

) = L
(
q ′, ψ ′, ψ ′

k

)+ D

Dq ′
k

(δSΩk) . (2.232b)

Equation (2.232a) shows that (2.200) is a scalar that is invariant under (2.225) and
(2.231a), (2.231b),while (2.232b) expresses the covariance of theLagrangian density
under the transformations (2.231a), (2.231b). The divergence transformation that
appears in (2.232b) is allowed because, as it is shown in Appendix H, the equations
of motion (2.217) are invariant under the substitution

L → L + D

Dk
(δSΩK ) , (2.233)

under the hypothesis ∂Ωk/∂ψk = 0. Using (2.231a), (2.231b), (2.232a) takes the
form

L ′ (q + δSq, ψ + δSψ,ψk + δSψk) d(q ′) = L (q, ψ,ψk) d(q) , (2.234)

and, analogously, from (2.232b) follows that

L ′ (q + δSq, ψ + δSψ,ψk + δSψk) d(q ′) =
L (q + δSq, ψ + δSψ,ψk + δSψk) d(q ′) + D

Dq ′
k

(δSΩk) d(q ′) . (2.235)

Because of (2.228a), (2.228b), and considering infinitesimal transformations of the
kind (2.231a), (2.231b), at order zero the approximation

D

Dq ′
k

(δSΩk) d(q ′) = D

Dqk
(δSΩk) d(q)

holds and (2.235) yields

L ′ (q + δSq, ψ + δSψ,ψk + δSψk) d(q ′) =
L (q + δSq, ψ + δSψ,ψk + δSψk) d(q ′) + D

Dqk
(δSΩk) d(q) . (2.236)

From the comparison between (2.234) and (2.236), it follows that

L (q, ψ,ψk) d(q) =
L (q + δSq, ψ + δSψ,ψk + δSψk) d(q ′) + D

Dqk
(δSΩk) d(q) , (2.237)

where, using (2.228a), (2.228b),
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L (q + δSq, ψ + δSψ,ψk + δSψk) =[
L (q, ψ,ψk) − D

Dqk
(δSΩk)

] [
1 − ∂ (δSqk)

∂qk

]
. (2.238)

Equation (2.238) can be further developed using a Taylor expansion truncated at first
order, and eliminating all the terms of order higher that the first, yielding

[
δSq

∂

∂q
+ δSψ

∂

∂ψ
+ δSψk

∂

∂ψk
+ ∂ (δSqk)

∂qk

]
L (q, ψ,ψk) = − D

Dqk
(δSΩk) .

(2.239)
Equation (2.239) allows to verify the invariance of a certain Lagrangian density under
a transformation of the kind (2.231a), (2.231b) and with an appropriate choice for
Ωi (q, ψ). To find the corresponding conserved quantity, (2.237) is integrated with
respect to d(q) over the domain R (or over R′ with respect to d(q ′)), yielding
∫
R′
L
(
q ′, ψ ′, ψ ′

k

)
d(q ′) −

∫
R
L (q, ψ,ψk) d(q) +

∫
R

D

Dqk
(δSΩk) d(q) = 0 .

(2.240)
The first two terms in (2.240) are just Eq. (2.227), with δS in place of a generic δ.
Assuming the validity of (2.217), it is possible to substitute (2.230) in (2.240), with
δS instead of δ, yielding

∫
R

D

Dqk

(
LδSqk − ∂L

∂ψk
ψlδSql + ∂L

∂ψk
δSψ + δSΩk

)
d(q) = 0 . (2.241)

Due to the arbitrariness of the integration interval, (2.241) implies the conservation
law

D

Dqk

[(
Lδklqk − ∂L

∂ψk
ψl

)
δSql + ∂L

∂ψk
δSψ + δSΩk

]
= 0 , (2.242)

where δkl is the Kronecker delta.
Summarizing: every continuous and infinitesimal transformation

(2.231a), (2.231b) that change (2.239) to an identity creates a conserved quantity
with form (2.242).

2.12 Lagrangian Formulation for Fields: Lagrangian
Density Dependent on Vector Functions

The previous exposition of the Lagrangian formulation for continuous systems and
for the corresponding version of Noether’s Theorem was based on a scalar function,
i.e. the current functionψ . In this section, we will summarize the Lagrangian formal-
ism for continuous systems, such as fluids, in which the Lagrangian is expressed as
a function of a vector function. The results will be shortly presented without formal
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proofs, which instead follow closely, apart from technical details, the proofs for the
Lagrangian formulation that makes use of the scalar function.

Introduce the notation

(t, x, y, z) = (x0, x1, x2, x3) , (2.243)

and its abbreviation
(x0, x1, x2, x3) = x , (2.244)

where, now,
∫
R d(x) = ∫R∏3

n=0 dxn , where R ⊂ R
4 is the domain of integration.

The dependent variables are the components

q1, q2, q3 , (2.245)

of the position vector q. The derivatives of each component of q with respect to each
of the independent variable are

∂qμ

∂xn
, μ = 1, 2, 3, n = 0, 1, 2, 3 . (2.246)

The following abbreviations will also be used:

∂qμ

∂xn
= qμ

n ,
∂2qν

∂xn∂xl
= qν

nl . (2.247)

Using this notation, the Lagrangian density is a function of the independent variables,
the dependent variables and their first derivatives, and it is indicated as

L
(
xn, q

μ, qν
n

)
. (2.248)

The Lagrangian derivative is instead expressed as

D

Dxk
= ∂

∂xk
+ ∂qμ

∂xk

∂

∂qμ
+ ∂

∂xk

(
∂qμ

∂xl

)
∂

∂ (∂qμ/∂xl)

= ∂

∂xk
+ qμ

k

∂

∂qμ
+ qμ

kl

∂

∂qμ

l

. (2.249)

It is important to notice that the sub- and superscripts should not be confused with
covariant and contravariant vectors, as commonly used in physics.

As for the previous section, define the functional

I =
∫
R
L
(
xn, q

μ, qμ
n

)
d(x) . (2.250)
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The equations of motion can be derived from the request

δ I = 0 . (2.251)

To do so, label the functions qμ, qμ
n by the label l

qμ(x, l) = qμ(x, 0) + lQμ(x) , (2.252a)

qμ
n (x, l) = qμ

n (x, 0) + lQμ
n (x) , (2.252b)

where Qμ(x), Qμ
n (x) ∈ C2

R are arbitrary functions satisfying qn = 0, qμ
n = 0 on

the boundary of the domain ∂R. Then, up to leading order in l, (2.251) corresponds
to

δ I =
∫
R

[
L
(
xn, q

μ + lQμ, qμ
n + lQμ

n

)− L
(
xn, q

μ, qμ
n

)]
d(x)

=
∫
R

[
L
(
xn, q

μ, qμ
n

)+ ∂L

∂qμ
lQμ + ∂L

∂qμ
n
lQμ

n − L
(
xn, q

μ, qμ
n

)]
d(x)

= l
∫
R

(
∂L

∂qμ
Qμ + ∂L

∂qμ
n
Qμ

n

)
d(x) , (2.253)

where Einstein’s summation over repeated indices has been used. Equation (2.253)
thus yields

δ I = 0 ⇐⇒
∫
R

(
∂L

∂qμ
Qμ + ∂L

∂qμ
n
Qμ

n

)
d(x) = 0 . (2.254)

As in the analysis reported in the previous section, because the functions Qμ depend
only on x , it is possible to set

∂Qμ

∂xn
= DQμ

Dxn
, (2.255)

so that (2.254) yields

∫
R

(
∂L

∂qμ
Qμ + ∂L

∂qμ
n

DQμ

Dxn

)
d(x) = 0 . (2.256)

The second integral in (2.256) can be rewritten as

∫
R

∂L

∂qμ
n

DQμ

Dxn
d(x) =

∫
R

[
D

Dxn

(
∂L

∂qμ
n
Qμ

)
− Qμ D

Dxn

(
∂L

∂qμ
n

)]
d(x) , (2.257)

so that (2.256) yields

∫
R

[
Qμ

(
∂L

∂qμ
− D

Dxn

∂L

∂qμ
n

)
+ D

Dxn

(
∂L

∂qμ
n
Qμ

)]
d(x) = 0 . (2.258)
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Considering the integral of the second term in the square brackets of (2.258),

∫
R

D

Dxn

(
∂L

∂qμ
n
Qμ

)
d(x) , (2.259)

and setting

Pn = ∂L

∂qμ
n
Qμ , (2.260)

with boundary conditions
Pn(∂R) = 0 , (2.261)

Equation (2.259) yields

∫
R

DPi
Dxn

d(x) =
∫
R

DPn
Dxn

dxn
∏
k �=n

dxk . (2.262)

Consider now the integral ∫
R

DPn
Dxn

dxn , (2.263)

because

DPn
Dxn

dxn = ∂Px
∂xn

dxn + ∂Pn
∂qμ

∂qμ

∂xn
dxn + ∂Pn

∂qμ

l

∂qμ

l

∂xn
dxn = dPn , (2.264)

Equation (2.263) yields

∫
R

DPn
Dxn

dxn =
∫
R
d Pn = 0 , (2.265)

so that (2.258) reduces to

∫
R

[
Qμ

(
∂L

∂qμ
− D

Dxn

∂L

∂qμ
n

)]
d(x) = 0 . (2.266)

Because the functions φ are arbitrary, (2.266) yields the equations of motion, i.e. the
Euler–Lagrange equations

D

Dxk

∂L

∂qμ

k

− ∂L

∂qμ
= 0 . (2.267)
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2.12.1 Hamilton’s Equations for Vector Fields

Consider theq field defined in the previous section. In full analogywith point-particle
dynamics and for the formulation of dynamics for scalar fields, from (2.267), we
define the canonical momentum densities as

πμ = ∂L

∂q̇μ
. (2.268)

The quantities qμ(x), pμ(x) define an infinite dimensional phase space of the field
and its development in time.Aswas already noted in the derivation of theHamiltonian
density for scalar fields, the time variable is here separated from the spatial variables.
In the following, we will thus split the domain R = RT × RV , where RT ⊂ R and
RV ⊂ R

3 are the time and space integration domains. We will also use the contracted
form dV = dx1dx2dx3.

In the same way as it was done for point particles, if the Lagrangian density does
not contain the field quantity qμ explicitly, the Euler–Lagrange equation (2.267)
yields the conservation law

D

Dxk

∂L

∂qμ

k

= 0 , (2.269)

i.e.
∂πμ

∂t
+ ∂

∂xi

∂L

∂qμ

i

= 0 . (2.270)

Integration over RV and use of the divergence theorem yield thus the conservation
of the quantity ∫

RV

πμdV . (2.271)

Given (2.269), the Hamiltonian density can be written as

H = πμq̇μ − L . (2.272)

Finally, denoting the Hamiltonian of the system with (2.223), it is possible to take
the variations of the latter with respect to qμ and πμ, obtaining thus Hamilton’s
equations

q̇μ = δH

δπμ
, π̇μ = −δH

δqμ
. (2.273)

2.12.2 Canonical Transformations and Generating
Functionals for Vector Fields

From the previous definitions, it is possible to introduce the formalism for canonical
transformations for fields depending on vector functions. Given the field functions
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qμ and the momentum densities πμ, we can consider integral transformations into
new field functions qμ, πμ. The old and new fields are related to the transformation
functionals

∫
RV

qμdV = G(1,μ)[t, qμ, πμ] , (2.274a)

∫
RV

πμdV = G(2,μ)[t, qμ, πμ] , (2.274b)

where now dV = dx1dx2dx3. Notice, once again, the splitting of the domain R into
the time and spatial subdomains. Assuming that the integrals can be solved, we have
thus

∫
RV

qμdV = F (1,μ)[t, qμ, πμ] , (2.275a)

∫
RV

πμdV = F (2,μ)[t, qμ, πμ] . (2.275b)

If there exists a functional

H [t, qμ, πμ] =
∫
RV

HdV , (2.276)

preserving the form of Hamilton’s equations (2.273), i.e. yielding

q̇
μ = δH

δπμ , π̇
μ = −δH

δqμ , (2.277)

then the transformations (2.274a), (2.274b), or equivalently (2.275a), (2.275b), are
said to be canonical.

The dynamics in the original and transformed coordinates are given, respectively,
by the variational principles

δ

∫
R

(πμq̇μ − H) d(x) = 0 , (2.278a)

δ

∫
R

(
πμq̇

μ − H
)
d(x) = 0 . (2.278b)

From (2.278a) consider the functional

� = L dt = δ

∫
RV

(πμdqμ − Hdt) dV , (2.279)

which takes also the nameof Pfaffian functional. In (2.279),we have used the notation
(2.219). It is possible to prove (see, e.g. [14]) that twoPfaffian functionals differing by
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a differential with respect to a parameter are equivalent. In our case, said parameter is
clearly the time. This allows to set the condition for the transformation of coordinates
to be canonical if

∫
RV

(πμdqμ − Hdt) dV −
∫
RV

(
πμdqμ − Hdt

)
dV = dF , (2.280)

where

F [t, qμ, πμ, qμ, πμ] =
∫
RV

FdV . (2.281)

In analogy with the case of point particles, one can define the different generating
functionals

F1 = F1[t, qμ, qμ] , (2.282a)

F2 = F2[t, qμ, πμ] , (2.282b)

F3 = F3[t, πμ, qμ] , (2.282c)

F4 = F4[t, πμ, πμ] , (2.282d)

from which the transformation rules for the transformation of variables to be canon-
ical can be derived. For example, for the particular case of the generating functional
F1, one has

πμ = δF1

δqμ
, (2.283a)

πμ = −δF1

δqμ , (2.283b)

H = H + δF1

δt
, (2.283c)

which has the same form of (2.96a)–(2.96c), apart from the use of the functional
derivatives instead of the partial derivatives due to the fact thatF1 is now a functional.
Analogously, the transformation rules set by the generating functionalsF2, F3, F4

take the same form as the ones set by the generating functions introduced in Sect. 2.8.

2.13 Noether’s Theorem for Fields: Lagrangian Density
Dependent on Vector Functions

Having introduces the dynamics for vector fields, we can now derive Noether’s
Theorem for this particular case. The derivation will be similar to the one for fields
depending on a scalar function.

Defining the symmetry transformations
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x ′
n = xn + δSxn , (2.284a)

q ′μ(x ′) = qμ(x) + δSq
μ(x) , (2.284b)

q ′μ
n (x ′) = qμ

n (x) + δSq
μ
n (x) , (2.284c)

the Lagrangian density transforms as

L ′ (x ′
n, q

′μ, q ′μ
n

)
d(x ′) = L

(
xn, q

μ, qμ
n

)
d(x) , (2.285a)

L ′ (x ′
n, q

′μ, q ′μ
n

) = L
(
x ′
n, q

′μ, q ′μ
n

)+ D

Dx ′
k

(δSΩk) . (2.285b)

Equation (2.285a) shows that the functional (2.250) is a scalar invariant under the
transformations (2.284a)–(2.284c), while (2.285b) shows the invariance of the form
of the Lagrangian density with respect to (2.284a)–(2.284c). The divergence trans-
formation D (δSΩk) /Dx ′

k in (2.285b)) takes into account the invariance of (2.267)
upon the substitution L → L + D (δSΩk) /Dxk .

Following the same way of reasoning of the previous sections, after some algebra,
(2.285a) and (2.285b) yield

[
δSxn

∂

∂xn
+ δSq

μ ∂

∂qμ
n

+ ∂ (δSxn)

∂xn

]
L
(
xn, q

μ, qμ
n

) = − D

Dxk
(δSΩk) . (2.286)

If (2.286) is satisfied for a certain symmetry transformation (2.284a)–(2.284c) and
for a quantity Ωk(x, q), the Lagrangian is invariant under that transformation. The
corresponding conserved quantity is defined from the equation

D

Dxk

[(
Lδkl − ∂L

∂qμ

k

qμ

l

)
δSxl + ∂L

∂qμ

k

δSq
μ + δSΩk

]
= 0 . (2.287)

2.14 Bibliographical Note

Numerous excellent books exist on classical mechanics, such as [4]. The proofs of
Noether’s Theorem here exposed follow instead [7]. For a historical, critical analysis
of [7], see, e.g. [10]. For a self-contained exposition of Noether’s Theorem and
its implications, see [15]. The same book reports an interesting discussion on why
the Lagrangian is made up by the kinetic energy minus the potential energy based
on the equipartition of energy. The original formulation of Noether’s Theorem was
formulated by EmmyNoether herself as "a combination of the methods of the formal
calculus of variations and of Lie’s theory of groups" [16]. A didactical proof and
discussion of Noether’s Theorem that makes use of Lie groups can be found for
example in the book by Olver [17]. For other books see, for example [1, 3, 5, 6, 8,
9, 11, 12, 18–20].
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Chapter 3
Variational Principles in Fluid Dynamics,
Symmetries and Conservation Laws

Abstract In this chapter, the Lagrangian density associated with fluid dynamics
will be introduced. The equations of motion will be rederived from the Lagrangian
density usingHamilton’s principle. In particular, Hamilton’s principlewill be applied
mainly in the Lagrangian framework, where the analogy to a system of point particles
will simplify the calculations. The same principle will, however, be applied also
in the Eulerian framework, and the relationship between the two frameworks will
be revealed from the use of canonical transformations. Noether’s Theorem will be
applied to derive the conservation laws corresponding to the continuous symmetries
of the Lagrangian density for the ideal fluid. Particular attention will be given to the
particle relabelling symmetry and the associated conservation of vorticity.

Keywords Fluid dynamics · Geophysical fluid dynamics · Ideal fluid · Variational
principle · Conservation laws · Circulation · Lagrangian labels · Lagrangian for
ideal fluid · Hamilton’s principle for fluids · Relabelling symmetry · Lin constraints

3.1 Introduction: Lagrangian Coordinates and Labels

In this chapter, we will introduce and analyse the Lagrangian form of the equations
for the ideal fluid. The dynamical equationswill be derived applyingHamilton’s prin-
ciple, thus making use of variational principles. It is interesting to report a quote from
a memorandum sent by the mathematician John von Neumann to Oswald Veblen, in
1945, on the necessity for further development of the study of variational calcula-
tions applied to fluid dynamics: “The great virtue of the variational treatment [...]
is that it permits efficient use, in the process of calculation, of any experimental or
intuitive insight [...]. It is important to realize that it is not possible, or possible to
a much smaller extent, if one performs the calculation by using the original form of
the equations of motion - the partial differential equations. [...] Symmetry, station-
arity, similitude properties [...] applying such methods to hydrodynamics would be
of the greatest importance since in many hydrodynamical problems we have very
good general evidence of the above-mentioned sort about the approximate aspect of
the solution, and the refining of this to a solution of the desired precision is what
presents disproportionate computational difficulties [...]” ([23], p. 357).

© Springer International Publishing AG 2018
G. Badin and F. Crisciani, Variational Formulation of Fluid and Geophysical
Fluid Dynamics, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-319-59695-2_3
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In order to proceed to introduce Hamilton’s principle for fluids, the concept of
parcels and labels, already briefly introduced in Sect. 1.2, will be studied more in
depth. Here, we thus point out preliminarily (H1) the basic kinematic constraint
which links the Eulerian with the Lagrangian descriptions, and (H2) the conservation
principle satisfied by a parcel, that is to say:

(H1) The field property at a given location and time must equal the property
possessed by the parcel occupying that position at that instant;
(H2) Because the portion of fluid included in the volume of a parcel is always the
same in the course of motion, the mass of a parcel in conserved in time.

In order to draw consequences from (H1), let q(x, t) be the value of a certain field
q in the point x at the time t . A suitable Cartesian reference (x, y, z) is understood
in the Euclidean space R, hereafter named location space. On the other hand, based
on the assumption that a parcel is a identifiable piece of matter, the identification can
be realized by associating to each parcel a label, say a = (a1, a2, a3), varying in the
so-called labelling space Ra . For instance, if x0 = (x0, y0, z0) is the position of the
centre of mass at the “initial” time t = 0, the identification (a1, a2, a3) = (x0, y0, z0)
allows to single out the considered parcel in the label space at every time after that
initial. A one-to-one mapping between R and Ra is postulated. In order to simplify
calculations, it is sometimes useful to choose the label a such that the initial density
is uniform in label space. Unless stated otherwise, and without loss of generality, in
this book we will make use of this choice starting from Sect. 3.2.

Remark 3.1 The continuum hypothesis allows us to neglect any granular aspect of
the fluid, so infinitesimalmaterial volumes of fluid are conceivable. Thus, each parcel
is characterized, time by time, only by the location of its centre of mass. In particular,
the coordinates of the centre of mass at the “initial” time coincide with the labels of
the parcel. For this reason, a one-to-one mapping between the location space and the
labelling space can be assumed.

In the Lagrangian framework, the independent variables are a1, a2, a3, t , so, in
the labelling space

x = x(a1, a2, a3, t) , (3.1a)

y = y(a1, a2, a3, t) , (3.1b)

z = z(a1, a2, a3, t) , (3.1c)

or, concisely,
x = x(a, t) . (3.2)

It should be noted that the time t is assumed to be the same in both frameworks.
After these preliminaries, the kinematic constraint (H1) takes the form

q(x, t) = q(x(a, t), t) = qa(a, t) , (3.3)

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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where qa is the value of the quantity q taken by the parcel labelled by a1, a2, a3.
The r.h.s of (3.3) describes the evolution of q by means of the alternation of different
parcels in the course of time according to the trajectories (3.1a)–(3.1c) or (3.2). In
other words, supposing that the parcel a, having the value qa , crosses point x at the
time t , in the same point x and in the same time t the field q(x, t) takes the value qa .

With reference to a given parcel, the tern of labels a is held fixed at every time,
so the time growth rate of qa(a, t) is simply ∂qa/∂t . For instance, in Lagrangian
coordinates, owing to (3.1a)–(3.1c), the velocity vector u is expressed by

u(a, t) = ∂x(a, t)

∂t
î + ∂y(a, t)

∂t
ĵ + ∂z(a, t)

∂t
k̂ . (3.4)

Consider now (H2) and set, with reference to (3.3), q = ρ where ρ is den-
sity. In the location space, the mass dm of a parcel enclosed into the volume
dV = dx dy dz is dm = ρ(x, y, z, t) dx dy dz, while in the label space,
dm = ρa(a1, a2, a3, t)da1 da2 da3. Hence,

ρ(x, y, z, t) dx dy dz = ρa(a1, a2, a3, t)da1 da2 da3 . (3.5)

The assumed one-to-one mapping between R and Ra implies

dx dy dz = ∂(x)
∂(a)

da1 da2 da3 . (3.6)

where
∂(x)
∂(a)

= |det J| (3.7)

is the determinant of the Jacobi matrix

J =
⎛
⎜⎝

∂x
∂a1

∂x
∂a2

∂x
∂a3

∂y
∂a1

∂y
∂a2

∂y
∂a3

∂z
∂a1

∂z
∂a2

∂z
∂a3

⎞
⎟⎠ , (3.8)

i.e. the determinant of the mapping above. Because of (3.6), Eq. (3.5) takes the form

ρ(x, y, z, t)
∂(x)
∂(a)

= ρa(a1, a2, a3, t) . (3.9)

In terms of the specific volume α = 1/ρ, Eq. (3.9) is

α = ∂(x)
∂(a)

αa . (3.10)

Notice that (3.10) implies that ∂(x)/∂(a) = α/αa > 0, which ensures that the
existence of the inverse mapping between R and Ra . Equation (3.9) implies
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D

Dt

[
ρ(x, t)

∂(x)
∂(a)

]
= ∂ρa

∂t
,

i.e.
∂(x)
∂(a)

Dρ

Dt
+ ρ

D

Dt

∂(x)
∂(a)

= ∂ρa

∂t
. (3.11)

Because of the Euler’s relation (see Appendix J)

D

Dt

∂(x)
∂(a)

= α

αa
div u ,

Equation (3.11) yields

1

αaρ

(
Dρ

Dt
+ ρ div u

)
= ∂ρa

∂t
. (3.12)

Relationship (3.12) shows that the counterpart of mass conservation in the location
space, expressed by

Dρ

Dt
+ ρ div u = 0 , (3.13)

is given in the labelling space by

∂ρa

∂t
= 0 , (3.14)

so ρa = ρa(a). After this preamble, we are now ready to introduce the Lagrangian
density for fluids, which will allow to derive the equations for fluid dynamics making
use of Hamilton’s principle. The derivation of the Lagrangian will first bemade in the
Lagrangian description. In this case, Hamilton’s principle will require the passage
from the sum over a number of material particles to the integral over a parcel of fluid.
Apart from this difference, the formulation of Hamilton’s principle in the Lagrangian
description presents strong analogies with the same principle formulated for material
particles.

3.2 Lagrangian Density in Labelling Space

As anticipated in the Introduction of this chapter, in order to simplify the notation, in
the rest of the chapter we will consider without loss of generality the initial density
in label space to be uniform. This allows to define
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ã1 = ρ1/3
a a1 , (3.15a)

ã2 = ρ1/3
a a2 , (3.15b)

ã3 = ρ1/3
a a3 . (3.15c)

With these, (3.5) becomes

ρ dx dy dz = dã1 dã2 dã3 , (3.16)

and thus, dropping the tildes,
1

ρ
= ∂(x)

∂(a)
, (3.17)

or, equivalently,

α = ∂(x)
∂(a)

. (3.18)

We recall from Chap.2 that the Lagrangian density has the form

L = T − V , (3.19)

where T is the kinetic energy density and V is the potential energy density. Owing
to (3.4) and (3.5), the kinetic energy density in the labelling space is

T = 1

2

∣∣∣∣
∂x(a, t)

∂t

∣∣∣∣
2

. (3.20)

The potential energy density takes into account both the intrinsic, i.e. internal, energy
of the parcel caused by mechanical compression and heating and the energy arising
from its embedding into a force field induced by an external potential.

If e(a, t) is the internal energy for unit mass and Q̇ is the rate of heating for unit
mass, the first principle of thermodynamics states that

∂e

∂t
= −p

∂α

∂t
+ Q̇ . (3.21)

Moreover, if η(a, t) is the fluid entropy for unit mass, then

ϑ
∂η

∂t
= Q̇ , (3.22)

where ϑ is the absolute temperature. Substitution of (3.22) into (3.21) trivially yields

∂e

∂t
= −p

∂α

∂t
+ ϑ

∂η

∂t
, (3.23)

http://dx.doi.org/10.1007/978-3-319-59695-2_2
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and, in turn, one easily verifies that Eq. (3.23) is satisfied by a function

e = e(α, η) , (3.24)

where
∂e

∂α
= −p ,

∂e

∂η
= ϑ , (3.25)

i.e. (1.224) and (1.225), respectively.
If no heat is added to the fluid or transferred between adjacent parcels, then Q̇ = 0

so, because of (3.22),
∂η

∂t
= 0 . (3.26)

Now, recalling (3.18) and (3.24), the internal energy takes the form

e = e

(
∂(x)
∂(a)

, η(a)
)

, (3.27)

If the external potential is represented by the field

φ = φ(x(a), t) , (3.28)

the total potential energy per unit mass is the sum of (3.27) with (3.28), and hence,

V = e

(
∂(x)
∂(a)

, η(a)
)

+ φ(x(a), t) . (3.29)

Owing to (3.20) and (3.29), the Lagrangian density is

L = 1

2

∣∣∣∣
∂x(a, t)

∂t

∣∣∣∣
2

− e

(
∂(x)
∂(a)

, η(a)
)

− φ(x(a), t) , (3.30)

and, consequently, the action I is given by

I =
∫ t2

t1

∫
Ra

[
1

2

∣∣∣∣
∂x(a, t)

∂t

∣∣∣∣
2

− e

(
∂(x)
∂(a)

, η(a)
)

− φ (x(a), t)

]
d(a)dt . (3.31)

3.2.1 Hamilton’s Equations

Notice that, under the same reasoning that lead to (2.61), the Lagrangian density
(3.30) can be rewritten as

http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_2
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L = u · ∂x
∂t

− H , (3.32)

where

u = δL

δẋ
, (3.33)

and

H = T + V = 1

2

∣∣∣∣
∂x
∂t

∣∣∣∣
2

+ e + φ , (3.34)

is the Hamiltonian density. These relations lead to Hamilton’s equations

ẋi = δH

δui
, u̇i = −δH

δxi
, (3.35)

where

H =
∫

Ra

Hd(a) . (3.36)

More generally, writing explicitly the contribution by ρa , the Lagrangian density is

L = ρau · ∂x
∂t

− H , (3.37)

with

H = ρa

{
1

2

∣∣∣∣
∂x
∂t

∣∣∣∣
2

+ e + φ

}
, (3.38)

and Lagrangian functional

L =
∫

Ra

Ld(a) . (3.39)

One can thus define the conjugate momentum density

πππa = δL

δẋ
= ρau , (3.40)

and the correspondent Hamilton’s equations

ẋi = δH

δπa,i
, π̇a,i = −δH

δxi
. (3.41)

It should be noted that the conjugate momentum density corresponds to a mass flux.
Completely analogously, in location space, the Lagrangian density is
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L = πππ · ∂x
∂t

− H , (3.42)

where the conjugate momentum density is

πππ = δL

δẋ
= ρu . (3.43)

In (3.42), the Hamiltonian density is

H = ρ

{
1

2
u2 + e + φ

}
, (3.44)

which yields Hamilton’s equations

ẋi = δH

δπi
, π̇i = −δH

δxi
. (3.45)

3.3 Hamilton’s Principle for Fluids

The action (3.31) allows the derivation of the equations of motion for fluids through
the application of Hamilton’s principle. The calculations will follow the derivation of
the Euler–Lagrange equations for fields reported in Sect. 2.13 and based on (2.251).
However, unlike Sect. 2.13, particle labels play the role of Lagrangian coordinates
and are here the independent variables. We set

x(a, t, l) = x(a, t, 0) + lQ(a, t) , (3.46)

which are considered in analogy with (2.252a)–(2.252b) and in which the functions
Q(a, t) ∈ C2

R in Ra satisfy suitable initial and boundary conditions depending on the
problem. In particular, recalling Chap.1, we will take into account fluids in either (i)
a closed domain, with no flow across ∂ Ra , satisfying

Q(a, t1) = Q(a, t2) = 0 , Q(a, t) = 0 ∀a ∈ ∂ Ra , (3.47)

(ii) in a periodic domain or (iii) in a unbounded domain. In this last case,Q and their
derivatives are requested to become zero at infinity. In the following, we will focus
on case (i), without any loss of generality for the derivations. Looking first at the
kinetic energy term, using (3.46), the variation of the Lagrangian (3.30) yields, at
first order in l

LT (x + lQ) ≈ 1

2

(∣∣∣∣
∂x
∂t

∣∣∣∣
2

+ 2
∂x
∂t

· ∂ (lQ)

∂t

)
,
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so that

LT (x + lQ) − LT (x) ≈ ∂x
∂t

· ∂ (lQ)

∂t
, (3.48)

and hence,

δ IT =
∫ t2

t1

dt
∫

Ra

d(a)
∂x
∂t

· ∂ (lQ)

∂t
. (3.49)

The identity
∂x
∂t

· ∂ (lQ)

∂t
= ∂

∂t

(
∂x
∂t

· lQ
)

− ∂2x
∂t2

· lQ , (3.50)

where ∫ t2

t1

dt
∂

∂t

(
∂x
∂t

· lQ
)

= 0 , (3.51)

because of the first equation of (3.47), allows to write (3.49) as

δ IT = −
∫ t2

t1

dt
∫

Ra

d(a)
∂2x
∂t2

· lQ . (3.52)

The potential energy terms yield instead the contribution to the variation of the action,
after linearization in e and φ,

δ IV =
∫ t2

t1

dt
∫

Ra

d(a)
[
− ∂e

∂α
δα − ∇φ · lQ

]

=
∫ t2

t1

dt
∫

Ra

d(a)
[
− ∂e

∂α
δ
∂(x)
∂(a)

− ∇φ · lQ
]

. (3.53)

Recalling that ∂e/∂α = −p, the space integral of the first term of the integrand can
be written as

∫
Ra

d(a)pδ
∂(x)
∂(a)

=
∫

R
d(x)pρδ

∂(x)
∂(a)

=
∫

R
d(x)p div (lQ) , (3.54)

where, in the last step, we have used the relation (J.9) from Appendix J. Using the
divergence theorem, (3.54) finally yields

∫
R

d(x)p div (lQ)

=
∮

∂ R
plQ · n̂ds −

∫
R

d(x)∇ p · lQ

= −
∫

R
d(x)∇ p · lQ , (3.55)
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where, once again, we have made use of the second equation of (3.47) in the last
step.

From (3.52) and (3.55), the equation

δ I =
∫ t2

t1

dt
∫

R
d(x)

{
ρ(x, t)

[
−∂2x

∂t2
− ∇φ

]
− ∇ p

}
· lQ , (3.56)

follows. In turn, Eq. (3.56) implies

δ I = 0 ⇔ ρ
∂2x
∂t2

+ ρ∇φ + ∇ p = 0 ,

that is to say
∂2x
∂t2

= − 1

ρ
∇ p − ∇φ . (3.57)

To summarize, using Hamilton’s principle (2.251), Eq. (3.57) yields the equation of
motion governing the fluids in the Lagrangian framework.

3.4 Hamilton’s Principle in the Eulerian Framework

The description of the Lagrangian density and the corresponding equations ofmotion
for fluids in Lagrangian coordinates can be extended to the Eulerian framework.
Consider the Eulerian velocity u(x, t) of a density and entropy conserving fluid. The
action corresponding to (3.31) is

I =
∫ t2

t1

∫
R

ρ

[
1

2
u2(x, t) − e (α, η) − φ (x, t)

]
d(x)dt , (3.58)

or, introducing the mass flux defined as (3.43),

I =
∫ t2

t1

∫
R

{
1

2

π2

ρ
+ ρ [−e (α, η) − φ (x, t)]

}
d(x)dt . (3.59)

As shown by [17], the action (3.58) can be constrained by the conservation of the
particle labels

ρ
∂a
∂t

+ (πππ · ∇)a = 0 . (3.60)

The constraints associated with these conservation laws enter thus in the action that
can thus be written as

http://dx.doi.org/10.1007/978-3-319-59695-2_2
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I =
∫ t2

t1

∫
R

{
1

2

π2

ρ
− ρ(e + φ) + 


 ·

(
ρ

∂a
∂t

+ (πππ · ∇)a
)}

d(x)dt , (3.61)

where 


 = (λ1(x, t), λ2(x, t), λ3(x, t)) are Lagrange multipliers. The number of
unknowns in the action functional can be reduced with the following observation: the
conservation of density and entropy in Eulerian framework introduces constraints to
the physical systems, due to the presence of the velocity field in the total derivative
of the conserved quantities. Using the mass flux, the conservation of density and
entropy can be rewritten as

∂ρ

∂t
+ div πππ = 0 , (3.62)

and

ρ
∂η

∂t
+ (πππ · ∇)η = 0 , (3.63)

respectively. It is thus possible to make the following assumptions:

(i) since the entropy is materially conserved, it is possible to identify one of the
parcel labels with it, for example a3 = η;

(ii) at the same time, the conservation of density suggests that it is possible to
identify the density with one of the remaining parcel labels, for example a2.

Making use of (i) and (ii), and renaming a1 = a, the action becomes

I =
∫ t2

t1

∫
R

{
1

2

π2

ρ
− ρ(e + φ)

+ λ1

(
ρ

∂a

∂t
+ (πππ · ∇)a

)

+ λ2

(
∂ρ

∂t
+ div πππ

)

+ λ3

(
ρ

∂η

∂t
+ (πππ · ∇)η

) }
d(x)dt , (3.64)

where the density constraint has been rewritten combining (3.60) and (3.62).
Hamilton’s principle requires (3.64) to be stationary upon variations in the variables
depending on (x, t), namely

πππ(x, t), ρ(x, t), η(x, t), a(x, t), λ1(x, t), λ2(x, t), λ3(x, t) .

The variation of the action (3.64) in the mass flux πππ(x, t) + lQ(x, t) involves the
terms π2 ρ, λ1(πππ · ∇)a, λ2 div πππ , λ3(πππ · ∇)η, thus yielding, up to the first order in l,

δ Ip =
∫ t2

t1

dt
∫

R
d(x)

{[
1

ρ
πππ + λ1∇a − ∇λ2 + λ3∇η

]
· (lQ)

}
, (3.65)
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whence yields
u = πππ/ρ = −λ1∇a + ∇λ2 − λ3∇η . (3.66)

Equation (3.66) allows to calculate the relative vorticity of the flow as

ωωω = rot u = ∇a × ∇λ1 + ∇η × ∇λ3 . (3.67)

The variation of the action (3.64) in the Eulerian densityρ(x, t)+lχ(x, t) involves
the terms π2 ρ,−ρ(e(x, t)+φ(x, t)), λ1ρ∂a/∂t , λ2∂ρ/∂t and λ3ρ∂η/∂t . Up to first
order in l, the first term yields

∫ t2

t1

dt
∫

R
d(x)

[
−u2

2

]
lχ . (3.68)

The second term, instead, yields

∫ t2

t1

dt
∫

R
d(x) {−(ρ + lχ) [e(ρ + lχ, η) + φ] + ρ[e(ρ, η) + φ]}

=
∫ t2

t1

dt
∫

R
d(x) {−lχφ − (ρ + lχ)e(ρ + lχ, η) + ρe(ρ, η)} . (3.69)

In particular, up to the first order in l,

− (ρ + lχ)e(ρ + lχ, η) + ρe(ρ, η)

= −(ρ + lχ)

[
e(ρ, η) + ∂e

∂ρ
lχ

]
+ ρe(ρ, η)

= −lχ

[
e(ρ, η) + ρ

∂e

∂ρ

]
,

so, the above integral takes the form

∫ t2

t1

dt
∫

R
d(x)

[
−lχ

(
e + ρ

∂e

∂ρ
+ φ

)]
.

Recalling (1.224), one finds

p = − ∂e

∂α
⇒ ρ

∂e

∂ρ
= p

ρ
⇒ e + ρ

∂e

∂ρ
= e + p

ρ
= h ,

where
h = e + p

ρ
(3.70)

is the enthalpy. Thus, the integral takes the form

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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∫ t2

t1

dt
∫

R
d(x) [−lχ (h + φ)] . (3.71)

Trivially, the remaining integrals yield

∫ t2

t1

dt
∫

R
d(x)

[
lχ

(
λ1

∂a

∂t
− ∂λ2

∂t
+ λ3

∂η

∂t

)]
, (3.72)

where, in the second term, the fact that χ(x, t1) = χ(x, t2) = 0 has been used, so,
on the whole,

δ Iρ =
∫ t2

t1

dt
∫

R
d(x)

{[
1

2
u2 + (h + φ)

]
− λ1

∂a

∂t
+ ∂λ2

∂t
− λ3

∂η

∂t

}
(−lχ) ,

(3.73)
whence [

1

2
u2 + (h + φ)

]
− λ1

∂a

∂t
+ ∂λ2

∂t
− λ3

∂η

∂t
= 0 . (3.74)

The quantity on the l.h.s. of (3.74) assumes the name of generalized Bernoulli
function.

The variation of the action (3.64) in the Eulerian density entropy η(x, t)+l E(x, t)
involves the terms −ρe(α, η) and λ3ρDη/Dt . The related variation is

δ Iη =
∫ t2

t1
dt

∫
R

d(x)
{
−ρe(α, η + l E) + λ3ρ

D

Dt
(η + l E) + ρe(α, η) − λ3ρ

Dη

Dt

}
,

that is to say

δ Iη =
∫ t2

t1

dt
∫

R
d(x)

{
−ρ

∂e

∂η
l E + λ3ρ

D

Dt
(l E)

}
. (3.75)

Because E(x, t) = 0 ∀x ∈ ∂ R and E(x, t1) = E(x, t2) = 0, (3.75) is equivalent to

δ Iη = −
∫ t2

t1

dt
∫

R
d(x)ρ

[
∂e

∂η
+ Dλ3

Dt

]
l E ,

whence, using (1.225),

ρ
∂λ3

∂t
+ πππ · ∇λ3 = −ρϑ . (3.76)

The variations with respect to a, λ1, λ2, λ3 can be obtained along the same lines
as above and result in the following equations

Dλ1

Dt
= 0 , (3.77)

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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Da

Dt
= 0 , (3.78)

Dρ

Dt
= 0 , (3.79)

Dη

Dt
= 0 , (3.80)

respectively. The equation for the velocity (or, equivalently, for the mass flux) (3.66),
together with the dynamic equations for the terms appearing in the same equation,
i.e. (3.74), (3.76)–(3.80), defines the Clebsch–Lin representation of the equations of
motion in the Eulerian framework. For a set of examples of the equations ofmotion in
the Clebsch–Lin representation in different approximations used in fluid dynamics,
see [32].

From this set of equations, it is possible to derive the equations of motion in
a formulation that is independent on the Lagrange multipliers of the system. To
eliminate λ2, sum the time derivative of (3.66) with the gradient of (3.74), obtaining

∂u
∂t

+ ∇
(
1

2
u2 + h + φ

)

+
[

∂

∂t
(λ1∇a) − ∇

(
λ1

∂a

∂t

)]

+
[

∂

∂t
(λ3∇η) − ∇

(
λ3

∂η

∂t

)]
= 0 . (3.81)

With the use of (3.77) and (3.78), the term within the first square bracket yields

∂

∂t
(λ1∇a) − ∇

(
λ1

∂a

∂t

)
= [(u · ∇)a]∇λ1 − [(u · ∇)λ1]∇a . (3.82)

The term within the second square bracket can instead be evaluated with the use of
(3.76) and (3.80), yielding

∂

∂t
(λ3∇η) − ∇

(
λ3

∂η

∂t

)
= [(u · ∇)η]∇λ3 − [(u · ∇)λ3]∇η − ϑ∇η . (3.83)

With (3.82) and (3.83), (3.81) becomes

∂u
∂t

+ ∇
(
1

2
u2 + h + φ

)

+ {[(u · ∇)a]∇λ1 − [(u · ∇)λ1]∇a}
+ {[(u · ∇)η]∇λ3 − [(u · ∇)λ3]∇η − ϑ∇η} = 0 . (3.84)
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Using the vector identity

A × (∇b × ∇c) = (A · ∇c)∇b − (A · ∇b)∇c ,

it is possible to rewrite (3.84) as

∂u
∂t

+ ∇
(
1

2
u2 + h + φ

)
− ϑ∇η

+ u × (∇λ1 × ∇a + ∇λ3 × ∇η) = 0 . (3.85)

It is visible that the termwithin the last brackets is the negative of the relative vorticity
(3.67), so that (3.85) can be written as

∂u
∂t

+ ∇
(
1

2
u2 + h + φ

)
− ϑ∇η − u × ωωω = 0 , (3.86)

or, using the identity

(u · ∇)u = 1

2
∇u2 − u × ωωω ,

Equation (3.86) yields

∂u
∂t

+ (u · ∇)u = −∇φ − (∇h − ϑ∇η) . (3.87)

The first term on the r.h.s. of (3.87) represents the forcing created by the external
potential φ. Making use of (1.225) and (3.70), we have

∇h − ϑ∇η = − 1

ρ
∇ p ,

so that (3.87) yields
∂u
∂t

+ (u · ∇)u = − 1

ρ
∇ p − ∇φ . (3.88)

Equations (3.88), together with (3.79) and (3.80), form the equations of motion for
the ideal fluid in the Eulerian framework.

While a derivation of the equation of motion in an Eulerian framework is possible,
as was here exposed, the analogy between the fluid motion in the Lagrangian frame-
work and the well-established formulation of classical mechanics for point particles
suggests that it is often more convenient to perform the analysis of the system in this
framework. Unless otherwise specified, the remaining of the chapter will thus follow
the formulation in the Lagrangian framework.

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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3.4.1 Equivalence of the Lagrangian and Eulerian Forms
of Hamilton’s Principle

Thederivationof the equations ofmotion fromHamilton’s principle in theLagrangian
and Eulerian framework suggests that there must be a link between the two formu-
lations. Throughout this section, we will show explicitly the factor ρa(a, t), due to
the fact that this enters in the variational derivatives.

Anticipating the result, we will show that Hamilton’s principle applied to the
Lagrangian density (3.37) can be transformed bymeans of a canonical transformation
into a variational principle for the fields u(x, t), ρ(x, t) and η(x, t). To do this, we
will demonstrate that it is possible to find a canonical transformation that, at each
time step, acts on the label variables a(x, t) and the conjugate momentum density
πππa(x, t), into the new generalized coordinates (Q(x, t), Pa(x, t)). At each time t ,
we will thus require

(a(x, t),πππa(x, t)) → (Q(x, t),Pa(x, t)) . (3.89)

Under this transformation, the Lagrangian density (3.37) will take the form (3.42)
upon the identification of the new generalized momenta Pa(x, t) with the same vari-
ables used in the Lin constraints (3.60), (3.62) and (3.63), i.e. a = a1, ρ, and η. This
choice for the new generalized momenta should not be surprising, as we have seen in
the previous section that these quantities were chosen as constraints for Hamilton’s
principle in the Eulerian framework as they are associated with conservation laws.

Recalling the introductionof canonical transformations for vector fields, following
[28] at each time t , we introduce a generating functionalF1 so that (2.283a)–(2.283b)
yield

πa,i = δF1

δai
, (3.90a)

Pa,i = −δF1

δQi
. (3.90b)

BecauseF1 does not depend on time, (2.283c) yields instead the time invariance of
the Hamiltonian. Introducing the ad hoc form for the generating functional

F1 = −
∫

Ra

d(a)ρa(a, t) [aQ1(x, t) + Q2(x, t) + η(a, t)Q3(x, t)] , (3.91)

from (3.90b) one has

http://dx.doi.org/10.1007/978-3-319-59695-2_2
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http://dx.doi.org/10.1007/978-3-319-59695-2_2


3.4 Hamilton’s Principle in the Eulerian Framework 123

Pa,1(x, t) = − δF1

δQ1(x, t)
= ρ(x, t)a(x, t) , (3.92a)

Pa,2(x, t) = − δF1

δQ2(x, t)
= ρ(x, t) , (3.92b)

Pa,3(x, t) = − δF1

δQ3(x, t)
= ρ(x, t)η(x, t) , (3.92c)

which show that, as anticipated, the new generalized momenta are a, ρ and η.
Analogously, the evaluation of (3.90a), making use of (3.43), gives

u(x, t) = − [a∇Q1(x, t) + ∇Q2(x, t) + η∇Q3(x, t)] , (3.93)

which is equivalent to the Clebsch–Lin formulation of the velocity field (3.66) upon
the identification

Qi → λi . (3.94)

Differently from the previous section, however, no constraints have been imposed to
the new generalized coordinates Qi .

Using the new generalized coordinate Qi , and the new generalized momenta
(3.92a)–(3.92c), the Lagrangian density (3.37) transforms as

L =
3∑

i=1

DQi

Dt
Pa,i − H

=
3∑

i=1

Dλi

Dt
Pa,i − H

= ρ

(
a

Dλ1

Dt
+ Dλ2

Dt
+ η

Dλ3

Dt

)
− H , (3.95)

which, after integration by parts, is completely equivalent to the Lagrangian density
in (3.64).

3.5 Symmetries and Conservation Laws

The general concept of invariance of the Lagrangian density under symmetry trans-
formations was introduced in Chap.2. Before to explore the symmetries inherent
to fluid dynamics, we would like to report the concept of symmetry as expressed
at the beginning of [9]: “The word συμμετρια was in Greek times synonymous
with something well proportioned, well balanced and was therefore related to the
ancient concept of beauty. Later, it also acquired another, more restricted, meaning,

http://dx.doi.org/10.1007/978-3-319-59695-2_2
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which is just the one that is very important in science: A figure or structure is said
to possess a symmetry under a mapping of space upon itself if it is carried into itself
by that mapping - that is, it is invariant under that mapping”. In the context of our
investigation, the space will be both the Euclidean and the label spaces; the related
transformations will be applied to the Lagrangian density whose resulting invariance
in form (i.e. covariance) implies, through Noether’s Theorem, the conservation of
fundamental quantities possessed by fluid flows.

The final aim will be to find the underlying cause for the material conservation of
potential vorticity, i.e. to link it to some fundamental symmetry in fluid dynamics.

The exposition will follow that of [22, 30, 31].

3.5.1 Preliminaries and Notation

Wewill now reconsider the formulation of Noether’s Theorem, derived in Sect. 2.13,
with a slight simplification of the notation, that will allow for a clear separation
between the time t and labels a j , j = 1, 2, 3, which is clearly valid in classical (i.e.
nonrelativistic) mechanics. Reconsider the conserved quantity (2.287), i.e.

D

Dxk

[(
Lδkl − ∂L

∂qμ

k

qμ

l

)
δS xl + ∂L

∂qμ

k

δSqμ + δSΩk

]
= 0 , (3.96)

where, again, sub- and superscripts should not be confused with covariant and con-
travariant vectors and where sum over repeated indices applies. Equation (3.96) can
be simplified neglecting the subscripts in the quantities δS and rearranging terms
within the square brackets, obtaining

D

Dxk

[
Lδxk + ∂L

∂qμ

k

(
δqμ − qμ

l δxl
) + δΩk

]
= 0 . (3.97)

It is thus possible to rename variables to adapt them to the more common notation
used in Hamiltonian fluid dynamics as

qμ → xμ → xi , (i = 1, 2, 3) , (3.98a)

xl → al , (a0 = t , a j = a1, a2, a3) , (3.98b)

qμ

k → ∂xi

∂ak
,

(
qμ
0 → ∂xi

∂t

)
. (3.98c)

With (3.98a)–(3.98c), the quantitywithin the roundbrackets in (3.97) can be rewritten
as

δqμ − qμ

l δxl = δxi − ∂xi

∂al
δal = δxi − ∂xi

∂t
δt − ∂xi

∂a j
δa j = Δxi , (3.99)

http://dx.doi.org/10.1007/978-3-319-59695-2_2
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so that (3.97) can be rewritten as

D

Dt

[
Lδt + ∂L

∂(∂xi/∂t)
Δxi + δΩ0

]

+ D

Da j

[
Lδa j + ∂L

∂(∂xi/∂a j )
�xi + δΩ j

]
= 0 . (3.100)

After this change of notation, we can proceed with the application of Noether’s
Theorem.

With (3.17), the Lagrangian density in labelling space (3.30) is

L =
3∑

i=1

1

2

(
∂xi

∂t

)2

− e

(
∂(x)
∂(a)

, η(a)
)

. (3.101)

This Lagrangian density possesses a number of symmetries. We will, however, focus
here on two important symmetries and their corresponding conservation laws: the
time translations symmetry

t ′ = t + δt , (3.102)

where δt is a constant, and the particle relabelling symmetry

a′
j = a j + δa j , (3.103)

where the δa j are quantities to be determined. The invariance of (3.101) under (3.102)
and (3.103) leads to conservation laws that are particular cases of the equation

d

dt

∫
Ra

[
Lδt + ∂L

∂ (∂xi/∂t)

(
δxi − ∂xi

∂t
δt − ∂xi

∂a j
δa j

)]
d(a) = 0 , (3.104)

that is the integral over the label domain of (3.100). The comparison between (3.104)
and (3.96) shows that δSΩk = 0, which will be the case for most of the applications
here considered. In the following, we will analyse (3.102) and (3.103) separately.

3.5.2 Time Translations Symmetry

Considering (3.102), only the kinetic term of (3.101) is involved in the transforma-
tion. Because ∂/∂t ′ = ∂/∂t , the Lagrangian density is manifestly invariant and, as a
consequence, the integrand of (3.104) yields

1

2

3∑
i=1

(
∂xi

∂t

)2

− e − 1

2

3∑
i=1

[
2

(
∂xi

∂t

)2
]

= −
[
1

2

3∑
i=1

(
∂xi

∂t

)2

+ e

]
, (3.105)
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aside for a constant multiplicative factor δt . With (3.105), (3.104) yields

d

dt

∫
Ra

[
1

2

3∑
i=1

(
∂xi

∂t

)2

+ e

]
d(a) = 0 , (3.106)

that is
d

dt

∫
R

ρ

[
1

2

3∑
i=1

(
∂xi

∂t

)2

+ e

]
d(x) = 0 . (3.107)

Equation (3.107) shows the conservation of the total mechanical energy that emerges
as a consequence of the invariance of the Lagrangian density under time translations.

3.5.3 Particle Relabelling Symmetry

Considering (3.103), only the internal energy is affected by the transformation. In
the following, we will consider first homentropic and then nonhomentropic flows.

3.5.3.1 Homentropic Flows

Recall that for homentropic flows

e = e(α) . (3.108)

We are thus interested in preliminarily finding the quantities δa j such that, consid-
ering δe = (∂e/∂α)δα, yield

δα = 0 , (3.109)

upon the insertion of (3.103) into (3.108). In compact notation, (3.109) can bewritten
as

∂(a + δa)
∂(x)

= ∂(a)
∂(x)

, (3.110)

where
∂(a + δa)

∂(x)
= ∂(a)

∂(x)
+ δ

∂(a)
∂(x)

. (3.111)

The determination of the quantities δa j that satisfy (3.109) translates thus in the
determination of the tern δa = (δa1, δa2, δa3) that satisfies

δ
∂(a)
∂(x)

= 0 . (3.112)
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This equation can be written explicitly as

∂(δa1, a2, a3)

∂(x)
+ ∂(a1, δa2, a3)

∂(x)
+ ∂(a1, a2, δa3)

∂(x)
= 0 ,

that is

∂(a)
∂(x)

[
∂(δa1, a2, a3)

∂(a)
+ ∂(a1, δa2, a3)

∂(a)
+ ∂(a1, a2, δa3)

∂(a)

]
= 0 . (3.113)

Setting the quantity between square brackets in (3.113) to zero corresponds to set

∣∣∣∣∣∣

∂
∂a1

δa1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1 0 0
0 ∂

∂a2
δa2 0

0 0 1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
1 0 0
0 1 0
0 0 ∂

∂a3
δa3

∣∣∣∣∣∣
= 0 , (3.114)

that is
diva δa = 0 . (3.115)

This equation is satisfied if
δa = rota δA(a) , (3.116)

for the vector function a → δA(a). Summarizing: so far we have proven that the
internal energy e is invariant under the relabelling transformation (3.103) if (3.116)
is satisfied.

Given (3.116), the corresponding conserved quantity is determined by (3.104) in
the form

d

dt

∫
Ra

∂L

∂(∂xi/∂t)

∂xi

∂a j
δa j d(a) = 0 . (3.117)

Introducing the vector B with components

B j = ∂L

∂(∂xi/∂t)

∂xi

∂a j
, (3.118)

Equation (3.117) takes the form

d

dt

∫
Ra

B · rota δA(a)d(a) = 0 . (3.119)

Using the identity B · rota δA(a) = diva [δA(a) × B] + δA(a) · rota B and the
boundary conditions for B on ∂ Ra , Eq. (3.119) is equivalent to

d

dt

∫
Ra

rota B · δA(a)d(a) = 0 . (3.120)
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Given the arbitrariness of the function δA(a), it is possible to set

δA(a) = δ (a1 − ā1) δ (a2 − ā2) δ (a2 − ā2) , (3.121)

where the product of the three Dirac delta functions and the following eliminations
of the overbars. In this way, (3.120) can be written as a local conservation property
rather than global, that is

∂

∂t
[rota B(t, a)] = 0 , (3.122)

which implies the conservation of the quantity

ωωωa(t, a) = rota B(t, a) . (3.123)

To determine the vector

B =
3∑

j=1

B j ê j , (3.124)

we develop its components using (3.118)

B j = ∂L

∂u

∂x

∂a j
+ ∂L

∂v

∂y

∂a j
+ ∂L

∂w

∂z

∂a j

= u
∂x

∂a j
+ v

∂y

∂a j
+ w

∂z

∂a j
. (3.125)

Substitution of (3.125) into (3.124) yields

B =
3∑

j=1

(
u

∂x

∂a j
ê j + v

∂y

∂a j
ê j + w

∂z

∂a j
ê j

)

= u∇a x + v∇a y + w∇az , (3.126)

i.e., by components,

B j = ui
∂xi

∂a j
. (3.127)

The inversion of (3.126) yields the vector

u = B1∇a1 + B2∇a2 + B3∇a3 , (3.128)

with components

u j = Bi
∂ai

∂x j
. (3.129)
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Equation (3.128) defines B as a pseudo-momentum.
Taking any scalar θ , which is conserved on fluid parcels, leads to the conservation

of
Πa = (rota B) · ∇aθ . (3.130)

In particular, the conserved scalar can be identified with the ith label of the fluid, ai ,
and as shown in Appendix K, one has the conservation of the quantity

Πi = 1

ρ
(ωωω · ∇ai ) , (3.131)

which can be recognised as the conservation of potential vorticity introduced in
Chap.1. In (3.131), the subscript i indicates the ith label of the fluid, ai .

Remark 3.2 The derivation of (3.131) is a fundamental result for fluid dynamics,
which shows that the conservation of potential vorticity does not simply arises from
skilful manipulation of the partial differential equations of the system, but that it is
associated through Noether’s Theorem to a particular symmetry, the particle rela-
belling symmetry, which is due to the continuum nature of fluids.

3.5.3.2 Kelvin’s Circulation Theorem

The fact that the vector B is a pseudo-momentum leads naturally also to the conser-
vation of circulation. In fact, the integration of (3.122) over the domain Ra yields

∂

∂t

∫
Ra

[rota B(t, a)] d(a) = ∂

∂t

∫
∂ Ra

B(t, a) · da = 0 , (3.132)

where in the second step Stokes’ Theorem has been applied. But because of (3.126),

B · da = u · dx , (3.133)

and (3.132) yields
∂

∂t

∫
∂ R

u · dx = 0 , (3.134)

which corresponds to Kelvin’s Circulation Theorem, also introduced in Chap. 1,
which is related to the conservation of potential vorticity, as shown in Appendix B.

3.5.3.3 Nonhomentropic Flows

For nonhomentropic flows, the internal energy is

http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1
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e = e

(
∂(x)
∂(a)

, η(a)
)

= e(α, η) . (3.135)

We are now interested in determining the quantities δa j so that, given δe =
(∂e/∂α)ηδα + (∂e/∂η)αδη, one has

δα = 0 , δη = 0 . (3.136)

This case differs from the homentropic case; in fact, now the vector function a →
δA(a) satisfying (3.116) can now be determined by the second equation in (3.136).
Because

δη(a) = 0 ⇒ η(a + δa) − η(a) = 0 ⇒ ∇aη · δa = 0 ,

and because of (3.116), δA is constrained by the equation

∇aη · rota δA = 0 . (3.137)

This equation is identically satisfied by

δA = δs(a)∇aη , (3.138)

for any scalar function δs(a); in fact,

∇aη · rota (δs(a)∇aη) = ∇aη · (∇aδs × ∇aη + δs rota ∇aη) = 0 .

Summarizing: the internal energy for a nonhomentropic flow is invariant under
(3.103) if

δa = rota [δs(a)∇aη] . (3.139)

Given Eq. (3.139), we can apply Noether’s Theorem: for nonhomentropic flows,
(3.119) takes the form

d

dt

∫
Ra

B · rota [δs(a)∇aη(a)] d(a) = 0 , (3.140)

whereB is the pseudo-momentum vector with components defined by (3.118). Using
the identityB·rota [δs∇aη] = diva [δs∇aη × B]+δs∇aη·rota B, and the boundary
conditions for B on ∂ Ra , (3.140) is equivalent to

d

dt

∫
Ra

rota B · ∇aηδs(a)d(a) = 0 . (3.141)

Again, given the arbitrariness of δs(a), it is possible to set

δs(a) = δ (a1 − ā1) δ (a2 − ā2) δ (a2 − ā2) , (3.142)
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where the product of the three Dirac delta functions and the following eliminations
of the overbars allows to write (3.141) as a local conservation law instead of a global
conservation law, that is

∂

∂t
[rota B(t, a) · ∇aη(a)] = 0 . (3.143)

Following the same steps leading to (3.131), (3.143) can be expressed in physical
space as

D

Dt

[
1

ρ
(rot u(t, x)) · ∇η(x)

]
= 0 (3.144)

that corresponds to the conservation of the potential vorticity in the presence of
continuous stratification

Π = 1

ρ
(rot u) · ∇η . (3.145)

Remark 3.3 The particle relabelling symmetry and, hence the conservation of
(potential) vorticity, is present also in magneto-hydrodynamics (see, e.g. [27]). This
symmetry is, however, absent from the other continuum theory of classical physics,
that is the theory of elasticity. The reason for that lies in the mathematical structure
of the Lagrangian density for fluid dynamics, in which the derivatives ∂xi/∂a j enter
the Lagrangian only through the Jacobian ∂(x)/∂(a). This immediately shows that
the particle relabelling symmetry corresponds to the request that the relabelling of
fluid particles does not affect the distribution of mass. This is not true in elasticity
theory, where the derivatives enter in the internal energy e separately.

3.6 Bibliographical Note

On the derivation of the equations of motion for the ideal fluid using a variational
approach, see, among others, [2, 3, 8, 14]. For early work on the variational deriva-
tion of the compressible equations for fluid, see instead [7, 33]. These lists are,
however, surely incomplete. In general, the review article by Salmon [30] and
the seminal book by the same author [31] contain a large number of historically
interesting references. [20, 21] offer also great reviews on the subject. Regard-
ing the derivation of the equations of motion using the Clebsch representation,
see also [10–12]. A group theory approach to the Clebsch representation was for-
mulated by [1, 19]. Particularly interesting is the analysis made by [4] both on the
significance of the Lin constraints and on the fact that if the initial conditions are such
that the vortex lines are knotted, the Clebsch representation presents singularities.
For further discussion on the canonical transformation connecting the Lagrangian
and Eulerian forms of Hamilton’s principle, see, e.g. [5, 6, 13]. For the study of
symmetries and in particular of the particle relabelling symmetry in fluid dynamics,
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see, e.g. [15, 16, 18, 25–27, 29, 30, 34]. As reported by [27], the same reference, the
first reference on the particle relabelling symmetry was in [24], where the symmetry
was called “exchange invariance”.
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Chapter 4
Variational Principles in Geophysical Fluid
Dynamics and Approximated Equations

Abstract In this chapter, the variational principle of Hamilton is applied to differ-
ent examples from Geophysical Fluid Dynamics. Hamilton’s principle is extended
to uniformly rotating flows and to incompressible flows. After an example in finite
dimensions consisting of the motion of point vortices, a set of approximated equa-
tions is considered, that is, rotating shallow water equations, rotating Green–Naghdi
equations and semi-geostrophic equations. Equations of the first and second kind
conserve potential vorticity as a consequence of the invariance of the related action
functional under relabelling symmetry. Equation of the third kind takes into account
also an ageostrophic part of theflowand conserves the so-called transformedpotential
vorticity which is based on a special Legendre transformation on the coordinates.
The case of continuously stratified fluids is then analysed. Finally, the variational
approach is applied to wave dynamics, where it can be used to both derive the equa-
tions of motion and to obtain the dispersion relation for nonlinear problems as well
as the conservation of the wave activity of the system.

Keywords Fluid dynamics · Geophysical fluid dynamics · Ideal fluid · Variational
principle · Conservation laws · Rotating flows · Stratified flows · Potential vortic-
ity · Ertel’s theorem · Circulation · Shallow water equations · Quasi-geostrophic
equations · Lagrangian labels · Relabelling symmetry · Point vortices · Approxi-
mated equations · Semi-geostrophy · Green–Naghdi equations · Wave dynamics ·
Surface waves · Luke’s variational principle ·Whitham’s averaged variational prin-
ciple ·Wave Activity ·Klein–Gordon equation ·Korteweg–deVries (KdV) equation

4.1 Introduction

In this chapter, some relevant variations on the action functional (3.31), that is,

I =
∫ t2

t1

∫
Ra

[
1

2

∣∣∣∣∂x(a, t)

∂t

∣∣∣∣
2

− e

(
∂(x)
∂(a)

, η(a)
)

− φ (x(a), t)

]
d(a)dt ,
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are expounded having in view the geophysical context and in particular exploring
the effects of rotation and stratification and of different possibilities to scale the
Lagrangian density. These variations will be here only anticipated, serving thus as a
summary, while their derivations are postponed in the following subsections.

In a uniformly rotating frame of reference with a constant rotation vector ���, the
action functional (3.31) becomes

I =
∫ t2

t1

∫
Ra

[
1

2
|ẋ|2 + ẋ · (��� × x) − e − φ

]
d(a)dt .

As a basic consequence, the conserved potential vorticity Π takes the form

Π = 1

ρ
(rot u + 2���) · ∇η .

Incompressibility of an ideal fluid changes functional (3.31) into

I =
∫ t2

t1

dt
∫

Ra

d(a)

[
1

2

∣∣∣∣∂x∂t

∣∣∣∣
2

− φ + λ

(
∂(x)
∂(a)

− α

)]
,

Before to introduce different approximations to the Lagrangian density, we con-
sider the motion of point vortices on the plane, which constitutes a finite dimensional
example with relevance for geophysical flows and which is based on the assumption
that, for a vortex in r0,

ω = Γ δ(r − r0) ,

where Γ is the circulation and δ is the Dirac delta function. For N interacting point
vortices, this system possesses the Lagrangian function

L = − 1

4π

N∑
i �= j, i, j=1

ΓiΓ j log
∣∣ri − r j

∣∣ +
N∑

i=1

Γi
(
x2

i + y2i
)

,

where the application of Noether’s Theorem shows that the first term on the r.h.s.
corresponds to the Hamiltonian and the second term corresponds to the conserved
angular momentum.

After that, the rotating shallow water equations are obtained by means of

I =
∫ t2

t1

∫
Rh

1

2
ρ

[|ẋh |2 + ẋh · (2��� × xh) − gη
]

d(xh)dt ,

where xh = xh (a1, a2, t), z = z (a1, a2, a3, t) and a3 = 0 at the free surface in
z = η. In the shallow water equations, the particle relabelling symmetry leads to the
conservation of potential vorticity

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
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Π = 1

H + η
ς ,

in the inertial case and

Π = ς + f

H + η

in the uniformly rotating case, respectively, where we recall that ς = k̂ · rot u.
The shallow water equations can be extended to the two-layer case, where the action
functional comprises an interaction term between the two layers. In this case, the
potential vorticity results to be conserved layer-wise.

If the assumption of a small vertical velocity is released, the rotating shallow
water equations turn into the Green–Naghdi equations whose action functional in
the physical space is

I =
∫ t2

t1

∫
R

ρ

[
1

2
|ẋh |2 + 1

2
|ż|2 + ẋh · (2��� × xh) − gz

]
d(x)dt .

Following, the geostrophic momentum approximation and the semi-geostrophic
dynamics on the f -plane are introduced. The geostrophic momentum approxima-
tion takes into account a suitably defined ageostrophic velocity which enters both
in the momentum and in the continuity equations to yield a more accurate descrip-
tion of the flow dynamics with respect to the shallow water approximation. The
semi-geostrophic dynamics is a further development of this subject in which the so-
called geostrophic coordinates (xs, ys) are introduced together with the free surface
elevation

ηs = ∂(a1, a2)

∂(xs, ys)
− H ,

as a function of them. Hence, potential vorticity is conserved in the form

[
∂

∂t
+ ẋ

∂

∂xs
+ ẏ

∂

∂ys

]
f0

ηs + H
= 0 .

As a further development from shallow water dynamics, a continuously stratified
fluid demands, within the Boussinesq approximation, a functional of the kind

I =
∫ t2

t1

dt
∫

Ra

d(a)

[
1

2
ρb(a3)

∣∣∣∣∂x∂t

∣∣∣∣
2

− ρb(a3)φ + p

(
∂(x)
∂(a)

− α

)]
,

where ρb(a3) is a background density field.
Chapter 4 ends with an analysis of selected topics in wave dynamics. It is shown

that in the physical space the equations for surface waves are derived by the action
functional

http://dx.doi.org/10.1007/978-3-319-59695-2_4
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I =
∫ t2

t1

∫
R

ρ

[
∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gz

]
d(x)dt ,

where ϕ is a velocity potential. Next, Whitham’s variational principle is introduced,
showing a powerful tool to obtain the dispersion relation for nonlinear problems in
wave dynamics as well as the conservation of the wave activity of the system.

4.2 Hamilton’s Principle, Rotation and Incompressibility

4.2.1 Lagrangian Density in a Rotating Frame of Reference

TheLagrangian formulation of the dynamics for the ideal fluid can be easily extended
to a uniformly rotating frame of reference. To do so, we recall from Sect. 1.5 that
the relation between the velocity in an inertial frame of reference and a frame of
reference rotating with uniform rate��� is given by (1.67), that is,

ẋI = ẋR + ��� × xR(t) . (4.1)

Using (4.1) and assuming that both the internal energy and the external potential are
unaffected by rotation, the action (3.31) can be rewritten as

I =
∫ t2

t1

∫
Ra

[
1

2
|ẋ + ��� × x|2 − e − φ

]
d(a)dt . (4.2)

Consider the variation δ I obtained applying (3.46) with boundary conditions (3.47).
The variation of the kinetic energy term can be written as

δT = 1

2

[
ẋ + lQ̇ + ��� × (x + lQ)

] · [
ẋ + lQ̇ + ��� × (x + lQ)

]

− 1

2
(ẋ + ��� × x) · (ẋ + ��� × x)

= (ẋ + ��� × x) · (
lQ̇ + ��� × lQ

) + 1

2

(
lQ̇ + ��� × lQ

) · (
lQ̇ + ��� × lQ

)

= ẋ · lQ̇ + ẋ · (��� × lQ) + (��� × x) · lQ̇ + (��� × x) · (��� × lQ) , (4.3)

where the term
(
lQ̇ + ��� × lQ

) · (lQ̇ + ��� × lQ
)
has been set to zero at first order in

lQ. The last line can be reordered factorizing the terms proportional to lQ and lQ̇,
obtaining

δT = (ẋ + ��� × x)·lQ̇+(ẋ × ���)·lQ+(��� · ���) (x · lQ)−(��� · lQ) (x · ���) . (4.4)

It is now possible to make use of the identities

http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
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(ẋ + ��� × x) · lQ̇ = ∂

∂t
[(ẋ + ��� × x) · lQ] − (ẍ + ��� × ẋ) · lQ , (4.5)

and

(��� · ���) (x · lQ) − (��� · lQ) (x · ���) = [(��� · ���) x − (x · ���)���] · lQ

= [−��� × (��� × x)] · lQ . (4.6)

Applying (4.5) and (4.6)–(4.4) yields

δT = {− (ẍ + ��� × ẋ) − ��� × ẋ − [��� × (��� × x)]} · lQ

+ ∂

∂t
[(ẋ + ��� × x) · lQ] . (4.7)

Putting together (4.7) and the terms that do not depend on the angular frequency, i.e.
(3.56), yields

δ I =
∫ t2

t1

dt
∫

R
d(x) {ρ [−ẍ − [��� × (��� × x)] − (2��� × ẋ) − ∇φ] − ∇ p} · lQ ,

(4.8)
where the integration of last term of (4.7) cancels using the boundary conditions.
Once again, Hamilton’s principle requires that δ I = 0, so that

ẍ + (2��� × ẋ) + [��� × (��� × x)] = − 1

ρ
∇ p − ∇φ . (4.9)

In the particular case, relevant for Geophysical Fluid Dynamics, in which φ is the
gravitational potential, φ = gz and ∇φ = gk̂ and (4.9) corresponds to (1.72),
with the second term on the r.h.s. representing the Coriolis force and the third term
representing the centrifugal acceleration. As discussed in Sect. 1.5, for the flows
here considered the centrifugal acceleration can be included in the gravitational
term. In the Lagrangian density, this can be accomplished by modifying the term
corresponding to the external potential in (4.2) as

φ(x) → φ(x) + 1

2
|��� × x|2 , (4.10)

which yields

I =
∫ t2

t1

∫
Ra

[
1

2
|ẋ + ��� × x|2 − 1

2
|��� × x|2 − e − φ

]
d(a)dt

=
∫ t2

t1

∫
Ra

[
1

2
|ẋ|2 + ẋ · (��� × x) − e − φ

]
d(a)dt , (4.11)

with Lagrangian density

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1
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L = 1

2
|ẋ|2 + ẋ · (��� × x) − e − φ , (4.12)

and equations of motion

ẍ + (2��� × ẋ) = − 1

ρ
∇ p − ∇φ . (4.13)

It should be noted that, in the presence of rotation, the conjugate momentum
density is

πππa = δL

δẋ
= ρa [u + (��� × x)] , (4.14)

with analogous definition for πππ .

Remark 4.1 The Lagrangian density (4.12) introduces the rotation term ẋ · (��� × x),
for which the identity

2��� = rot (��� × x) , (4.15)

holds. Interestingly, the rotation term shows a strong analogy with the term arising in
the Lagrangian density for a particle in a magnetic field. In the latter case, the kinetic
energy density includes the term qẋ ·A, which represents the interaction of a particle
with charge q in a magnetic vector potentialA. The analogy becomes apparent upon
the substitution A = ��� × x. The magnetic vector potential is linked to the magnetic
field by B = rotA = 2���. The Coriolis force ẋ× 2��� becomes thus analogous to the
Lorentz force qẋ × B.

Remark 4.2 The insertionof rotation corresponds to a gauge symmetry of the system.
Using (4.15), the terms in (4.8) that correspond to the rotation are

δ I� =
∫ t2

t1

dt
∫

R
d(x)ρ [ẍ + rot (��� × x) × x] · lQ . (4.16)

Equation (4.16) is invariant under the gauge transformation symmetry

��� × x → ��� × x + ∇ϕ , (4.17)

where ϕ is an arbitrary differentiable scalar.

4.2.2 Relabelling Symmetry in a Rotating Framework

The derivation of the potential vorticity conservation from the relabelling symmetry
can be extended in a straightforwardway to the case of a fluid in a rotating framework,
with the vorticity ∇ × u replaced by the absolute vorticity. This is visible using
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Noether’s Theorem. In fact, using the Lagrangian density in a rotating framework
(4.12), making use of (3.118), the pseudo-vector B can be written as

B̃ = B − ��� × x . (4.18)

With (4.18), the conservation law (3.143) becomes

∂

∂t

[
rota B̃(t, a) · ∇aη(a)

]
= 0 . (4.19)

Following again the same steps leading to (3.131), Eq. (4.19) yields the conservation
of the potential vorticity in a rotating framework

Π = 1

ρ
(rot u + 2���) · ∇η . (4.20)

4.2.3 Role of Incompressibility

The derivation of the equations of motion (3.57) from the Lagrangian density (3.30)
does not make any assumption on the incompressibility of the ideal fluid under
consideration, and it is thus valid for compressible fluids. For incompressible fluids,
such as, at first approximation, the ocean, the Lagrangian density is determined by
replacing the internal energy term with a constraint derived from (3.18)

L = 1

2

∣∣∣∣∂x∂t

∣∣∣∣
2

− φ + λ

(
∂(x)
∂(a)

− α

)
, (4.21)

where λ is a Lagrange multiplier, introduced in Sect. 2.5. In the Lagrangian density
(4.21), we have thus replaced the thermodynamical term of (3.30) with a dynamical
constraint.

Applying the variation (3.46) with boundary conditions (3.47) to the last term on
the r.h.s. of the action functional (3.31), now written as

I =
∫ t2

t1

dt
∫

Ra

d(a)

[
1

2

∣∣∣∣∂x∂t

∣∣∣∣
2

− φ + λ

(
∂(x)
∂(a)

− α

)]
, (4.22)

yields

δ Iλ =
∫ t2

t1

dt
∫

Ra

d(a)λδ
∂(x)
∂(a)

. (4.23)

It is visible that the spatial integrand in (4.23) matches with the first line in (3.54)
upon the identification of the Lagrange multiplier with the pressure, i.e.

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
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λ = p . (4.24)

In this case, the application of Hamilton’s principle to the Lagrangian density (3.30)
yields the same equations of motion (3.13) and (3.57) obtained from the Lagrangian
density for the compressible ideal fluid (3.31).

4.3 A Finite Dimensional Example: Dynamics of Point
Vortices

Before to start the treatment of infinite dimensional example of approximated equa-
tions using variational techniques, it is worth giving a look at a classical finite
dimensional example which is relevant to Geophysical Fluid Dynamics, which is
given by the inviscid point vortex model. Jules Charney, one of the fathers of the
quasi-geostrophic dynamics described in Chap. 1, wrote [13]: “[. . . ] the continu-
ous vorticity distribution in two-dimensional flow may be approximated by a finite
set of parallel rectilinear vortex filaments of infinitesimal cross-section and finite
strength, whose motion is governed by a set of ordinary differential equations. This
is analogous to replacing a continuous mass distribution by a set of gravitating mass
points. It has the virtue that mass, energy, linear and angular momentum continue
to be conserved, and that the motions represented are those of conceivable, though
idealized, physical systems”. In this section, we will present the simplest, inviscid
point vortex model for the Euler equation.

Consider a two-dimensional incompressible, inviscid flow in the (x, y) Cartesian
plane. The point vortexmodel consists in dividing the fluid into a number of separated
regions, with the area of each region arbitrarily small. Each vortex approaches thus
a single point with infinite vorticity and finite circulation. This can be seen in the
following way. Consider a closed contour ∂C(t) containing the vortex and moving
with the fluid. Then, as seen in Chap.1, Kelvin’s Circulation Theorem states that,
under appropriate conditions, the circulation Γ , given by (1.54), is a conserved
quantity. The point vortex approximation thus requests that, for a vortex in r0,

ω = Γ δ(r − r0) , (4.25)

where δ is the Dirac delta function, so that δ(r−r0) = ∞ if r = r0 and δ(r−r0) = 0
if r �= r0. With the introduction of the stream function ψ , (4.25) becomes

∇2ψ = Γ δ(r − r0) . (4.26)

The solution of (4.26) can thus be calculated using the Green’s function G,

ψ(r) =
∫∫

C
G(r − r0)ω(r0)dxdy , (4.27)

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1
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where G satisfies |∇G| → 0 as |r − r0| → ∞. To determine G, it is useful to pass
to polar coordinates, with radial coordinate r and with r0 = 0. Consider C to be the
circle with radius R, then the integration of the Poisson equation (4.26) yields

∫
r≤R

δ(r)d A = 1 =
∫

r≤R
div (∇G)d A . (4.28)

Using the divergence theorem,

1 =
∮

r=R
∇G · n̂dl

=
∮

r=R
G ′(r)dl

= 2π RG ′(R) , (4.29)

which in turn yields

G ′(r) = 1

2π
r , (4.30)

and thus

G(r) = 1

2π
log (|r | + const) . (4.31)

Notice that the constant acts to make the argument of the logarithm nondimensional.
Returning to Cartesian coordinates, using r0 �= 0 and using (4.31) and (4.27), thus
yields

ψ(r) = Γ

2π
log |r − r0| . (4.32)

Equation (4.32) yields the velocity at r induced by an inviscid point vortex at r0,

u(r) = dx

dt
= −∂ψ

∂y
= − Γ

2π

y − y0
|r − r0|2 , (4.33a)

v(r) = dy

dt
= ∂ψ

∂x
= Γ

2π

x − x0
|r − r0|2 . (4.33b)

Equations (4.26), (4.32), (4.33a) and (4.33b) have a singularity at r = r0. The
stream function (4.32) has an additional singularity for r → ∞. Equations (4.25)
and (4.32) can be generalized to calculate the vorticity and the associated stream
function induced by N inviscid point vortices as
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ω(r) =
N∑

i=1

Γiδ(r − ri ) , (4.34a)

ψ(r) = 1

2π

N∑
i=1

Γi log |r − ri | , (4.34b)

for i = 1, . . . , N . In particular, (4.33a) and (4.33b) can be generalized to calculate
the velocity of the vortex i , with components (dxi/dt, dyi/dt), induced by N − 1
point vortices j �= i , as

u(ri ) = dxi

dt
= −∂ψ

∂yi
= − 1

2π

N∑
j �=i,i=1

Γ j
yi − y j

|ri − r j |2 , (4.35a)

v(ri ) = dyi

dt
= ∂ψ

∂xi
= 1

2π

N∑
j �=i,i=1

Γ j
xi − x j

|ri − r j |2 . (4.35b)

The system (4.35a), (4.35b) shows that the trajectories of the vortices are embedded
in a 2N -dimensional phase space.

The system possesses the Lagrangian function

L = − 1

4π

N∑
i �= j, i, j=1

ΓiΓ j log
∣∣ri − r j

∣∣ +
N∑

i=1

Γi
(
x2

i + y2i
)

. (4.36)

The equations of motion are given by the Euler–Lagrange equations involving this
Lagrangian function.

The application of Noether’s Theorem to (4.36) shows that this system yields
a number of conserved quantities. From (2.159), the time translation symmetry,
corresponding to (2.165a)–(2.165c), applied to (4.36), yields the conservation of

H = − 1

4π

N∑
i �= j, i, j=1

ΓiΓ j log
∣∣ri − r j

∣∣ . (4.37)

The notation used to indicate this quantity is not accidental, as this quantity is the
energy of the system and H is indeed the Hamiltonian function.

The invariance for translations along the x-axis, corresponding to (2.161a)–
(2.161c), applied to (4.36), yields the conservation of the linear momentum

Mx = 1

Γ

N∑
i=1

Γi xi , (4.38)

http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_2
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http://dx.doi.org/10.1007/978-3-319-59695-2_2
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where Γ = ∑N
i=1 Γi is also a conserved quantity of the system due to Kelvin’s

circulation theorem. Analogously, the translation symmetry along the y-axis yields
the conservation of

My = 1

Γ

N∑
i=1

Γi yi . (4.39)

Finally, the invariance for rotations around the z axis (2.168a)–(2.168c) applied
to (4.36) yields the conservation of the quantity

I =
N∑

i=1

Γi
(
x2

i + y2i
)

, (4.40)

which can be recognized as the total angular momentum of the system.
The system has also a scaling symmetry for

(x, y) → λ(x ′, y′) , (4.41a)

t → λ2t ′ , (4.41b)

with λ ∈ R.
Finally, the system has also the following discrete symmetries

t → −t , Γ → −Γ , (4.42a)

(x, y) → (−x,−y) , (4.42b)

and a discrete symmetry under cyclic permutation of indices. For more details on the
symmetries of the point vortex system, see, e.g. [12].

Remark 4.3 With (4.37) and (4.40), it is possible to see that the Lagrangian function
(4.36) is

L = H + I , (4.43)

which shows that theLagrangian is not given by the kinetic energyminus the potential
energy (the energy due to the self-interaction of the vortices is trivially zero) but by
the sum of the kinetic energy and total angular momentum. From the considerations
reported in Chap.2, it should not surprise that the Lagrangian function has this form.
For example, for two-dimensional fluid flows, if the domain is not simply connected,
the Hamiltonian is not given by the energy of the system but it includes also a term
coming from the circulation. For more details, see, e.g. [69].

The Hamiltonian function (4.37) allows to introduce Hamilton’s equations for the
point vortex i as

http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_2
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Γi
dxi

dt
= ∂ H

∂yi
, (4.44a)

Γi
dyi

dt
= −∂ H

∂xi
. (4.44b)

One should notice that this is an example in which the conjugate momentum does
not correspond to the linear momentum. Equations (4.44a), (4.44b) can be rewritten
in symplectic form. Defining z = (x1, . . . , xN , y1, . . . , yN ), one has

Γ
dz
dt

= J
∂ H

∂z
, (4.45)

where J is given by (2.75).
Considered two functions f (x1, . . . , xN , y1, . . . , yN ) and g(x1, . . . , xN , y1, . . . ,

yN ), the Poisson bracket associated with the symplectic form (4.45) is

{ f, g} =
N∑

i=1

1

Γi

(
∂ f

∂xi

∂g

∂yi
− ∂ f

∂yi

∂g

∂xi

)
, (4.46)

which satisfies
{xi , Γi yi } = 1 , (4.47)

and

{xi , y j } = 0 ⇐⇒ i �= j , (i, j = 1, . . . , N ) . (4.48)

This is a beautiful property of the point vortex equations that shows that for this
system the motion in the Cartesian plane corresponds to the motion in the phase
plane. The use of the Poisson bracket (4.46) gives an other proof of the invariance
of the Hamiltonian (4.37), due to the fact Ḣ = {H, H} = 0. The invariance of Mx ,
My and I can also be inferred from (4.37) and (4.46), and in fact, direct calculation
gives

{Mx , H} = {My, H} = {I, H} = 0 . (4.49)

Generally, the presence of K invariants reduces the dimension of the phase space
from 2N to 2(N − K ), and the system is said to have N − K degrees of freedom.
If N = K , the system is said to be completely integrable. For the point vortex
model, the system is completely integrable for N ≤ 3, which results in regular or
quasi-periodic trajectories. For N > 3, the system is generally (but not always, as
it could be in the case of systems which possess additional conserved quantities)
nonintegrable, which can result in chaotic trajectories.

http://dx.doi.org/10.1007/978-3-319-59695-2_2
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4.4 Approximated Equations

The variational derivation for the equations of motion of the ideal fluid presented
in the previous sections can be extended to an entire gallery of different classes
of dynamics and approximations. We will now proceed to derive some of the most
important approximations used for fluids and geophysical fluids. The derivation of the
different Lagrangian densities is important not only for the inference of the equations
of motion but also for the analysis of their symmetries and conservation laws. In fact,
one of the advantages of the Lagrangian and Hamiltonian formulation comes from
the fact that if the symmetries of a system are preserved by the approximation applied
to the original equations, the approximated system will retain the same conservation
laws of the original system.

4.4.1 Rotating Shallow Water Equations

An important case of the fluid motion, which is relevant also for Geophysical Fluid
Dynamics, is given by the rotating shallow water equations, already presented in
Sect. 1.9.1. Let’s recall the setting: consider a fluid in a single layer with constant
density and under the effect of the Earth’s rotation. The fluid is included between a
bottom boundary z = −H +h′(x, y), where H is the characteristic depth of the layer
of the fluid and the dependence on the horizontal coordinates in h′(x, y) represents
the bathymetric modulations, and a free surface at z = η(x, y, t). Without loss of
generality, we can consider, for simplicity, the case of a flat rigid bottom boundary,
i.e. h′(x, y) = 0. Using the request of uniform density, (3.10) can be rewritten as

∂(x)
∂(a)

= 1 . (4.50)

As the perturbation pressure only depends on the modulation of the free surface, it
is independent of the depth. This request results in the relationship

∂uh

∂z
= 0 , (4.51)

where uh = (u, v), which means that the fluid is constrained to move in columns.
Under this hypothesis, the relationship (3.1a)–(3.1c) between the particle positions
and labels is modified in

x = x(a1, a2, t) , (4.52a)

y = y(a1, a2, t) , (4.52b)

z = z(a1, a2, a3, t) . (4.52c)

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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The relations (4.52a)–(4.52c) show that each column of fluid is a material filament
which is parallel to the local direction of gravity. For this filament, the pair (a1, a2)

identifies, for example, the barycentre, while a3 identifies a parcel of the filament
itself. In particular, a3 = 0 identifies the parcel located at the free surface of the fluid,
so that

a3 = 0 at z = η . (4.53)

Using (4.52a)–(4.52c) and the definition (3.7), the relation (4.50) yields

∂(x)
∂(a)

=

∣∣∣∣∣∣∣

∂x
∂a1

∂x
∂a2

0
∂y
∂a1

∂y
∂a2

0
∂z
∂a1

∂z
∂a2

∂z
∂a3

∣∣∣∣∣∣∣
= 1 , (4.54)

that is
∂(x, y)

∂(a1, a2)

∂z

∂a3
= 1 ,

or
∂a3

∂z
= ∂(x, y)

∂(a1, a2)
. (4.55)

The first-order ordinary differential equation (4.55) can be integrated making use of
(4.53), yielding

a3 = ∂(x, y)

∂(a1, a2)
(z − η) , (4.56)

or
∂(x, y)

∂(a1, a2)
= a3

z − η
. (4.57)

It should be noted that only the r.h.s of (4.57) depends on the vertical variables.
Equation (4.57) can thus be referred to any depth without changing its l.h.s. It is
convenient to consider the situation at the bottom, that is, in z = −H , and express
the vertical component a3 of the label of the parcel at the bottom as a function of the
position of the filament to which the parcel belongs, say a3 = −Ha(a1, a2). Because
any parcel at the boundary never leaves it,

∂ Ha

∂t
= 0 , (4.58)

which implies that Ha is a constant. Without loss of generality, we can rescale the
particle labels a1 and a2 by Ha , so that (4.57) yields

∂(x, y)

∂(a1, a2)
= 1

H + η
, (4.59)

http://dx.doi.org/10.1007/978-3-319-59695-2_3
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whence

η = ∂(a1, a2)

∂(x, y)
− H , (4.60)

and, from (4.57) and (4.60),

z = η + a3(η + H) . (4.61)

From the time derivative of (4.60), it is possible to derive easily the continuity
equation, in fact, using (4.58),

∂η

∂t
= ∂

∂t

[
∂(a1, a2)

∂(x, y)

]
= ∂

∂t

[
∂(x, y)

∂(a1, a2)

]−1

= −
[

∂(ẋ, y)

∂(a1, a2)
+ ∂(x, ẏ)

∂(a1, a2)

] [
∂(x, y)

∂(a1, a2)

]−2

= −
[
∂(ẋ, y)

∂(x, y)
+ ∂(x, ẏ)

∂(x, y)

] [
∂(x, y)

∂(a1, a2)

]−1

= −∂(a1, a2)

∂(x, y)
div u

= −(η + H) div u , (4.62)

where in the last step (4.59) has been used. Equation (4.62) thus yields the continuity
equation

∂η

∂t
+ (η + H) div u = 0 . (4.63)

After this preamble, it is possible to derive the Lagrangian density and thus the
action functional, for the rotating shallow water model. We make the following
assumptions:

(i) We neglect the terms in the kinetic energy involving the vertical velocity. This
choice is motivated by the fact that, as shown in the scaling arguments of
Sect. 1.9.1 and in particular in Eq. (1.178), the vertical velocity is typically
much smaller than the horizontal velocities;

(ii) We omit the internal energy term e(α, η) (notice that in this position, η indicates
the entropy and not the free surface elevation). This choice is motivated by the
fact that we are considering an incompressible, adiabatic flow. Further, the
internal energy is unaffected by variations in the positions;

(iii) We retain, however, the role of the external potential that we identify with the
gravitational potential.

The reader should compare these assumptionswith the less restrictive ones introduced
in Sect. 4.4.5. Under these assumptions, the action (4.11) can be rewritten as

http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1


150 4 Variational Principles in Geophysical Fluid Dynamics …

I =
∫ t2

t1

∫
R

ρ

[
1

2
|ẋh |2 + ẋh · (��� × xh) − gz

]
d(x)dt , (4.64)

where xh = (x, y). Using (4.61), the vertical integration of the gravitational term in
(4.64) yields

∫ η

−H
ρgzdz =

∫ 0

−1
g [η + a3(η + H)] da3 = 1

2
gη + const , (4.65)

so that (4.64) can be rewritten as

I =
∫ t2

t1

∫
Rh

1

2
ρ

[|ẋh |2 + ẋh · (2��� × xh) − gη
]

d(xh)dt , (4.66)

where the spatial domain is now restricted to the horizontal coordinates and where
the constant in (4.65) has been neglected as it acts to change the minimum of the
potential but not its shape or location. Clearly, the action (4.66) corresponds to the
Lagrangian density

L = 1

2
ρ

[|ẋh |2 + ẋh · (2��� × xh) − gη
]

. (4.67)

Setting δ I = 0 and using the results from (4.9) and

δη = η(xh + lQ) − η(xh) ≈ ∇hη · lQ , (4.68)

Hamilton’s principle yields the rotating shallow water equations

ẍh + (2��� × ẋh) = −g∇hη , (4.69)

which should be coupled to the continuity equation (4.63).
With definition (4.14), the Lagrangian density (4.67) yields the conjugatemomen-

tum density

πππ = δL

δẋ
= ρ [uh + (��� × xh)] , (4.70)

or, assuming��� = �k̂, where � is a constant, by components

π1 = ρ (u − �y) , π2 = ρ (v + �x) . (4.71)

The Lagrangian density can thus be written as

L = ρ [(u − �y) ẋ + (v + �x) ẏ] − H , (4.72)

where the Hamiltonian density is
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H = 1

2
ρ

[
u2 + v2 + gη

]
. (4.73)

4.4.1.1 The Particle Relabelling Symmetry and the Shallow Water
Equations

The application of the particle relabelling symmetry for the rotating shallow water
equations follows directly the derivationmade in Sect. 3.5.3. In the following, wewill
consider, for simplicity, the nonrotating case. As seen in Sect. 4.2.2, the extension to
the rotating case is straightforward and will be mentioned at the end of the section.

Consider the Lagrangian density (4.67) in labelling coordinates. The request
(3.112) now yields

δ
∂(a)
∂(x)

= 0 ⇒ ∂

∂a1
δa1 + ∂

∂a2
δa2 = 0 , (4.74)

which is satisfied upon introducing a scalar function δψ so that

δa1 = − ∂

∂a2
δψ , δa2 = ∂

∂a1
δψ . (4.75)

With (4.75), the corresponding conserved quantity can be determined fromNoether’s
Theorem. Written in components and using the definition of the pseudo-momentum
B, (3.117) yields

d

dt

∫
Ra

[
−Bi

∂xi

∂a1

(
∂

∂a2
δψ

)
+ Bi

∂xi

∂a2

(
∂

∂a1
δψ

)]
d(a)

= − d

dt

∫
Ra

[
∂

∂a1

(
Bi

∂xi

∂a2

)
− ∂xi

∂a2

(
Bi

∂xi

∂a1

)]
δψd(a) = 0 , (4.76)

which corresponds to the conservation of the quantity

Πa = ∂

∂a1

(
Bi

∂xi

∂a2

)
− ∂xi

∂a2

(
Bi

∂xi

∂a1

)

= ∂ Bi

∂a1

∂xi

∂a2
− ∂ Bi

∂a2

∂xi

∂a1

= ∂(B2, y)

∂(a1, a2)
+ ∂(B1, x)

∂(a1, a2)

= ∂(x, y)

∂(a1, a2)

(
∂(B2, y)

∂(x, y)
+ ∂(B1, x)

∂(x, y)

)
. (4.77)

Using (4.59), (4.77) can be written as

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
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Πa = 1

H + η

(
∂(B2, y)

∂(x, y)
+ ∂(B1, x)

∂(x, y)

)

= 1

H + η

(
∂ B2

∂x
− ∂ B1

∂y

)

= 1

H + η
rota B . (4.78)

Finally, using the steps leading to (3.131), we have the conservation of the shallow
water potential vorticity

Π = 1

H + η

(
∂(B2, y)

∂(x, y)
+ ∂(B1, x)

∂(x, y)

)

= 1

H + η

(
∂ B2

∂x
− ∂ B1

∂y

)

= 1

H + η
k̂ · rot u

= 1

H + η
ς , (4.79)

which can be recognized as the conservation of potential vorticity for the shallow
water equations introduced in Chap.1.

Remark 4.4 The analysis of the shallow water equations in Lagrangian form shows
one of the main advantages of this formulation, that is, as stated in the introduction
to this section, if the symmetries of a system are preserved by the approximation
applied to the original equations, the approximated system, i.e. the shallow water
system, will retain the same conservation laws of the original system. In this case,
the approximations leading to the shallow water equations do not break the particle
relabelling symmetry and thus allow for the derivation of the conservation of potential
vorticity.

In the presence of rotation, following Sect. 4.2.2 the conservation of potential
vorticity is modified as

Π = ς + 2��� · k̂
H + η

= ς + f

H + η
. (4.80)

4.4.2 Two-Layer Shallow Water Equations

4.4.2.1 Particle Labels in a Multilayer System

The analysis reported in the previous section can easily be extended to a layered
rotating shallow water model. Following [66], consider an incompressible fluid in

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_1
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the shallow water approximation consisting of N vertical layers with density ρi ,
i = 1, . . . , N . We set that each layer of fluid is bounded by an upper surface z =
ηi (x, y, t) and a lower surface z = ηi+1(x, y, t). The lowermost layer is bounded by
the topography that will be here considered as flat. Each layer is thus characterized
by the height

hi = ηi − ηi+1 . (4.81)

This configuration needs boundary conditions in the vertical.We assume for the upper
surface of the uppermost layer to be stress-free and that the pressure is continuous
across each internal surface, which yields

p1 = 0 , on z = η1 , (4.82a)

pi = pi+1 , on z = ηi+1 . (4.82b)

With these definitions in mind, we define with the subscript i , the layer under con-
sideration. In each layer, the fluid parcels are indicated by the labels

ai = (ai , bi , ci ) , (4.83)

where the notation (a1, a2, a3) → (a, b, c) has been used to avoid confusion between
the subscripts. In each layer, the position of each parcel is thus

xi = xi (ai , t) , (4.84)

which is a generalization of (3.2) for multilayer dynamics. We choose the labels ai

to satisfy the conservation of mass in the form

ρi dxi dyi dzi = dai dbi dci , (4.85)

i.e. we have assumed the density in label space to be uniform in each layer.
The one-to-one mapping between R and Ra implies that within each layer the

density is related to the Jacobian determinant of the map by

∂(xi )

∂(ai )
= 1

ρi
. (4.86)

In analogy with the previous section, also for the multilayer case the perturba-
tion pressure only depends on the modulation of the free surfaces, and it is thus
independent of the depth. This request results in the relationship

∂uh,i

∂z
= 0 , (4.87)

where uh,i = (ui , vi ), which means that the fluid is constrained to move in columns.
Under this hypothesis, the relationship (4.84) between the particle positions and

http://dx.doi.org/10.1007/978-3-319-59695-2_3
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labels is modified in

xi = xi (ai , bi , t) , (4.88a)

yi = yi (ai , bi , t) , (4.88b)

zi = zi (ai , bi , ci , t) . (4.88c)

With this assumption, (4.86) becomes

∂(xi , yi )

∂(ai , bi )

∂zi

∂ci
= 1

ρi
. (4.89)

Equation (4.89) can be integrated in the vertical with boundary condition ci = 0 at
the base of each layer, so that

zi = 1

ρi

∂(ai , bi )

∂(xi , yi )
ci + ηi+1 . (4.90)

In order to satisfy (4.81), we must have that at the top of the layer ci = 1 and

hi = 1

ρi

∂(ai , bi )

∂(xi , yi )
, (4.91)

so that
zi = hi ci + ηi+1 . (4.92)

By induction, and assuming flat bottom, (4.92) can be written as

zi = hi ci +
N∑

j=i+1

h j = hi ci +
N∑

j=i+1

1

ρ j

∂(a j , b j )

∂(x j , y j )
. (4.93)

The vertical coordinate in each layer zi thus depends on the labels in all the layers
below, allowing in this way a dynamical coupling between layers.

4.4.2.2 Lagrangian Density for a Two-Layer System

Once that we have introduced the particle labels and reference system for amultilayer
system, we can proceed to define the Lagrangian density for the two-layer system.

The action functional of the two-layer shallow water can be written as

I =
∫ t2

t1

[(
2∑

i=1

∫
Rai ,h

Li dai dbi

)
+

(∫
Ra1 ,h

∫
Ra2 ,h

L12 da1db1da2db2

)]
dt .

(4.94)
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The Lagrangian densities Li , i = 1, 2 are

Li = 1

2
ρi

(∣∣∣∣∂xh,i

∂t

∣∣∣∣
2

+ ẋh,i · (2��� × xh,i ) − g
1

ρi

∂(ai , bi )

∂(xi , yi )

)

= 1

2
ρi

(∣∣∣∣∂xi

∂t

∣∣∣∣
2

+ ẋh,i · (2��� × xh,i ) − ghi

)
. (4.95)

The Lagrangian density within the second bracket in (4.94), L12, represents the
interaction between the particles in the two layers and can be written as [52]

L12 = −gρ1δ(xh,1 − xh,2) , (4.96)

which implies that the fluid parcels in the upper and lower layers interact upon
“touching” each other, i.e. if they are aligned in the vertical.

Dropping the h subscripts and using

da1db1 = h1 (x1, t) dx1dy1 , (4.97)

the (labelling) space integral of the interaction term in (4.94) yields

∫
Ra1

∫
Ra2

L12 da1db1da2db2 = −g
∫

R1

[
ρ1

∫
Ra2

δ(x1 − x2) da2db2

]
h1(x1, t) dx1dy1

= −gρ2

∫
Ra2

ρ1

ρ2
h1(x2, t) da2db2 . (4.98)

The action functional (4.94) is thus

I =
∫ t2

t1

{
ρ1

∫
Ra1

[
1

2
|ẋ1|2 + ẋ1 · (2��� × x1) − 1

2
gh1

]
da1db1

+ ρ2

∫
Ra2

[
1

2
|ẋ2|2 + ẋ2 · (2��� × x2) − 1

2
gh2 − ρ1

ρ2
gh1(x2, t)

]
da2db2

}
dt.

(4.99)

Variations with respect to x1 yield the equations of motion for the upper layer, i.e.
layer 1

∂u1

∂t
+ f k̂ × u1 = −g∇(h1 + h2) , (4.100)

while variations with respect to x2 yield the equations of motion for the lower layer,
i.e. layer 2

∂u2

∂t
+ f k̂ × u2 = −g

(
∇h2 + ρ1

ρ2
∇h1

)
. (4.101)
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The application of Noether’s Theorem to the particle relabelling symmetry yields
instead immediately the conservation of the layer-wise potential vorticity

Πi = ςi + f

hi
. (4.102)

where

ςi = k̂ · rot ui . (4.103)

The analysis reported in this section can be easily extended to amultilayer rotating
shallow water model [66].

4.4.3 Rotating Green–Naghdi Equations

In the derivation of the rotating shallow water system, it has been assumed that the
vertical velocities aremuch smaller than their horizontal counterpart (see assumption
(i) of Sect. 4.4.1). It is, however, possible to relax this assumption, adding the terms
proportional to ż in the kinetic energy component of the action (4.64)

I =
∫ t2

t1

∫
R

ρ

[
1

2
|ẋh |2 + 1

2
|ż|2 + ẋh · (2��� × xh) − gz

]
d(x)dt . (4.104)

Using (4.61),
ż = η̇ (1 + a3) , (4.105)

so that the additional term in (4.104) yields

∫ 0

−1

1

2
[η̇ (1 + a3)]

2 da3 = −1

6
η̇2 . (4.106)

Using (4.106), the action functional (4.66) can thus be rewritten as

I =
∫ t2

t1

∫
Rh

1

2
ρ

[
|ẋh |2 − 1

3
(η̇)2 + ẋh · (2��� × xh) − gη

]
d(xh)dt . (4.107)

To obtain the additional terms arising in the equations of motion from the new term
in (4.104), one needs to consider only the variation of

Iη = −
∫ t2

t1

∫
Rh

1

2
ρ

(
1

3
(η̇)2

)
d(xh)dt . (4.108)

The variation yields
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δ Iη = −
∫ t2

t1

∫
Rh

1

2
ρ
1

3

{[
∂

∂t
η(t + δt)

]2

−
(

∂η

∂t

)2
}

d(xh)dt

= −
∫ t2

t1

∫
Rh

1

2
ρ
1

3

[(
∂η

∂t
+ ∂

∂t
δη

)2

−
(

∂η

∂t

)2
}

d(xh)dt

= −
∫ t2

t1

∫
Rh

1

2
ρ
1

3

(
2
∂η

∂t

∂

∂t
δη

)
d(xh)dt

= −
∫ t2

t1

∫
Rh

1

2
ρ
1

3

[
2

∂

∂t
(η̇δη) − 2η̈δη

]
d(xh)dt

= 1

3

∫ t2

t1

∫
Rh

ρη̈δηd(xh)dt , (4.109)

where

δη = ∂η

∂t
δt . (4.110)

Using the transformation

∫
Rh

d(xh) =
∫

Ra,h

∂(x, y)

∂(a1, a2)
d(ah) , (4.111)

Equation (4.109) can be further developed, in fact

∫
Ra,h

da1 da2

{
1

3
η̈δη

}
= −

∫
Ra,h

da1 da2

{
1

3
η̈η2δ

(
1

η

)}

≈ −
∫

Ra,h

da1 da2

{
1

3
η̈η2δ

(
∂(x, y)

∂(a1, a2)

)}

= −
∫

Ra,h

da1 da2

{
1

3
η̈η2

(
∂(l Q1, y)

∂(a1, a2)
+ ∂(x, l Q2)

∂(a1, a2)

)}

=
∫

Ra,h

da1 da2

{(
1

3

∂(x, y)

∂(a1, a2)

)
η̈η2

(
∂(l Q1, y)

∂(x, y)
+ ∂(x, l Q2)

∂(x, y)

)}

=
∫

Ra,h

da1 da2

{(
1

3

∂(x, y)

∂(a1, a2)

) [
l Q1

∂(η̈η2, y)

∂(x, y)
+ l Q2

∂(x, η̈η2)

∂(x, y)

]}

=
∫

Ra,h

da1 da2

{(
1

3

∂(x, y)

∂(a1, a2)

) [
l Q1

∂

∂x
(η̈η2) + l Q2

∂

∂y
(η̈η2)

]}

≈
∫

Ra,h

da1 da2

{
1

3η
∇

(
η̈η2

)
· lQ

}
, (4.112)

where in the third and in the last step, the constant terms proportional to H of (4.60)
have been neglected. On the fourth step, the Jacobi identity

A
∂(B, C)

∂(x, y)
+ B

∂(C, A)

∂(x, y)
+ C

∂(A, B)

∂(x, y)
= 0 (4.113)
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has been used with A = η̈η2 and the two different cases: (i) B = δx = l Q1 and
C = y; (ii) B = x and C = δy = l Q2.

Combining (4.112), (4.109) and the variation of the remaining terms of (4.107),
i.e. (4.69), yields the rotating Green–Naghdi equations [22]

ẍh + (2��� × ẋh) = −g∇hη − 1

3η
∇h

(
η̈η2

)
. (4.114)

These equations do not only take into account the presence of vertical accelerations
that might be important at small scales, but, through the additional nonlinear, dis-
persive term they rectify a known problem of the rotating shallow water equations,
namely the fact that in the shallow water equations the short-wavelength gravity
waves have unbounded phase speeds, which is problematic at the small scales [78].

Finally, as the additional terms in the Lagrangian density for the Green–Naghdi
equations do not violate the relabelling symmetry, these equations must satisfy the
conservation of a form of the potential vorticity. For the nonrotating case (to allow
for comparison with (4.79)), the additional term on the r.h.s. of (4.114) gives rise to
the term contributing to the potential vorticity

1

3

∂ (η̇, η)

∂(a1, a2)
.

With this term, the potential vorticity in physical space takes the form

Π = 1

H + η

[
ς + 1

3

∂ (Dη/Dt, η)

∂(x, y)

]
, (4.115)

which can be seen to differ from (4.79) for the presence of the additional nonlinear
term in the square brackets, deriving from the last term on the r.h.s. of (4.114). Further
details can be found in [34].

4.4.4 Shallow Water Semi-geostrophic Dynamics

In this section, we will develop an approximation of the shallow water equations
which are nearly geostrophic but that include a first-order correction to the flow.

The resulting dynamics, first developed in variational form by [53, 54], is called
semi-geostrophic [28] and was first derived for the shallow water case by [27]. As
the extension of the semi-geostrophic dynamics to the beta-plane still retains some
difficulties (see, e.g. [17]), the following treatment will be done in the f -plane.
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4.4.4.1 The Geostrophic Momentum Approximation

From Sect. 4.4.1, start by considering the Lagrangian density in labelling space for
the rotating shallow water equations as

L = (u − �y) ẋ + (v + �x) ẏ − H , (4.116)

with

H = 1

2

[
u2 + v2 + gη

]
, (4.117)

and where u and v are the components of the conjugate momentum density. Through
variations of the action functional corresponding to (4.116), with the usual boundary
conditions (3.47), one recovers the rotating shallow water equations, e.g. variations
in x and y yield the two separate components of (4.69), while variations in u and v
yield, respectively, the relations u = ẋ and v = ẏ. The terms proportional to u, v in
(4.116) are responsible for the acceleration terms appearing in the rotating shallow
water equations, and under the request of the flow to be nearly geostrophic it is natural
to first pose the constraint

u = 0 . (4.118)

In this case, the Lagrangian density (4.116) takes the form

L = −�yẋ + �x ẏ − 1

2
gη . (4.119)

Variations of the action functional associated to (4.118) with boundary conditions
(3.47) yield the geostrophic balance

(2��� × ẋh) = −g∇hη . (4.120)

An asymptotic derivation of (4.120) from the nondimensionalization of the
Lagrangian density is reported in Appendix L.

Neglecting the h subscript, at the next level of approximation, the rather restrictive
constraint (4.118) is replaced by the position

u = u0 , (4.121)

where
u0 = g

f0
k̂ × ∇h , (4.122)

i.e. the u, v terms in (4.116) are replaced by the geostrophic components of the
velocity. In (4.122), followingChap.1we have set 2� = f0. The approximation from
the imposition of (4.121) in (4.116) takes also the name of geostrophic momentum

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_1
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approximation [20, 21]. With this constraint, (4.116) takes the form

L = (u0 − �y) ẋ + (v0 + �x) ẏ − H , (4.123)

with

H = 1

2

[
u2
0 + v20 + gη

]
. (4.124)

Using Hamilton’s principle, it is possible to derive the equations of motion corre-
sponding to (4.123). Setting the variation x = x + lQ, at first order in l, (4.123)
yields

δL = (u0 − �y) ˙l Q1 + (v0 + �x) ˙l Q2 − �l Q2 ẋ + �l Q1 ẏ

+ (ẋ − u0) · δu0 − 1

2
gδη . (4.125)

Defining the ageostrophic velocity

u1 = ẋ − u0 , (4.126)

and using (3.50) and (3.51) for the first two terms on the r.h.s, (4.125) can be written
as

δL = (−u̇0 + f0 ẏ) l Q1 + (−v̇0 − f0 ẋ) l Q2 − 1

2
gδη + u1 · δu0 . (4.127)

The integration of the last term on the r.h.s of (4.127) gives (see, e.g. [53, 54])

∫ t2

t1

∫
Ra

(u1 · δu0) d(a)dt

=
∫ t2

t1

∫
Ra

{[
−(u0 · ∇)u1 − g

f0η
∇

(
η2k̂ · ∇ × u1

)]
· lQ

}
d(a)dt

=
∫ t2

t1

∫
Ra

{[
−(u0 · ∇)u1 − g

f0η
∇ (

η2ς1
)] · lQ

}
d(a)dt , (4.128)

where Ra is the part of the domain restricted to (a1, a2), d(a) = da1da2, and where
we have defined

ς1 = k̂ · ∇ × u1 . (4.129)

Using (4.128) into the application of Hamilton’s principle to the action functional
corresponding to (4.127) yields the equations of motion

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
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∂

∂t
u0 + u0 · ∇u0 + [u0 · ∇u1 + u1 · ∇u0] + f0k̂ × [u0 + u1]

= −g∇η − g

f0η
∇ [

η2ς1
]

, (4.130)

and

∂η

∂t
+ ∇ · [(u0 + u1) (η + H)] = 0 , (4.131)

which are called geostrophic momentum equations. The new equations of motion
(4.130) comprise (i) a geostrophic contribution ∂u0/∂t +u0 ·∇u0. This term is anal-
ogous to the Lagrangian derivative of the momentum term in the quasi-geostrophic
approximation introduced in Chap.1, in which only the geostrophic velocity advects
the momentum, and (ii) a new advective term u0 · ∇u1 + u1 · ∇u0, which, summed
to the geostrophic contribution, yields an approximation to the total acceleration

Du
Dt

=
[

∂

∂t
+ (u0 + u1) · ∇

]
(u0 + u1) . (4.132)

The approximation of (4.132) in (4.130) does not comprise the terms ∂u1/∂t and u1 ·
∇u1. This makes the geostrophic momentum equations a set of balanced equations,
which filter out gravity waves solutions. As further differences, notice that both the
Coriolis term in (4.130) and the advective velocity in (4.131) include the contribution
of the total, u0 +u1, velocity. The relative vorticity associated with the ageostrophic
velocity also contributes to a new additional term, here written as the last term on
the r.h.s. of (4.130). This set of equations is clearly more complicated than the
rotating shallow water system, and very few physical remarks can be made on the
new equations just by eye inspection. To get more insight on the system, we will now
go back to the Lagrangian density (4.123).

4.4.4.2 Geostrophic Coordinates and Semi-geostrophic Dynamics

The treatment of (4.123) is particularly difficult, due to the functional dependence of
the geostrophic velocity on the particle locations, i.e. u0 = u0[x(a, t)], which makes
the system noncanonical. To overcome this difficulty, it is possible to introduce a
Legendre transformation on the coordinates of the form

xs = x + v0
f

, (4.133a)

ys = y − u0

f
, (4.133b)

or, using (4.122),

http://dx.doi.org/10.1007/978-3-319-59695-2_1


162 4 Variational Principles in Geophysical Fluid Dynamics …

xs = x + g

f 2
∂η

∂x
, (4.134a)

ys = y + g

f 2
∂η

∂y
. (4.134b)

The new coordinates (xs, ys) are also called geostrophic coordinates, and they have
the following properties: (i) they are Lagrangian coordinates, in the sense that they
evolve following the geostrophic flow; (ii) their name is justified by the observation
that

ẋs = ẋ + u̇0 = ẋ = u0 ; (4.135)

(iii)multiplication of (4.133a), (4.133b) by f shows that the geostrophic coordinates
are related to the absolute momentum f xs = f x + u0. Obviously, the fact that the
new coordinates are Lagrangian implies that one has to be careful with the boundary
conditions, i.e. one would need that the flow is either periodic in the horizontal
directions or it goes to zero at infinity. Without loss of generality in the following,
we will assume the second possibility.

With (4.133a), (4.133b), the Lagrangian density (4.123) takes a form similar to
(4.119), that is

Ls = (−�ys) ẋ + (�xs) ẏ − H . (4.136)

From (4.60), we also define

ηs + H = ∂(a1, a2)

∂(xs, ys)
. (4.137)

The time derivation of (4.137) yields the conservation of mass in transformed
coordinates

∂ηs

∂t
+ ∂

∂xs
[(ηs + H) ẋ] + ∂

∂ys
[(ηs + H) ẏ] = 0 . (4.138)

At the same time, the analogy between the Lagrangian densities (4.136) and (4.119)
shows that in the transformed coordinates, the system satisfies the conservation of
the transformed potential vorticity

Πs = f0
ηs + H

, (4.139)

in the form [
∂

∂t
+ ẋ

∂

∂xs
+ ẏ

∂

∂ys

]
Πs = 0 . (4.140)

Notice that, using (4.137), the potential vorticity (4.139) is
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Πs = f0
ηs + H

= f0
∂(xs, ys)

∂(a1, a2)

= f0
∂(xs, ys)

∂(x, y)

∂(x, y)

∂(a1, a2)

= f0
η + H

∂(xs, ys)

∂(x, y)

= f0
η + H

{
1 + 1

f0

[
∂v0
∂x

− ∂u0

∂y

]
+ 1

f 20

∂(u0, v0)

∂(x, y)
+ h.o.t.

}
, (4.141)

where h.o.t. indicates higher-order terms.
Scaling shows that the terms within the curl brackets are respectively at zeroth,

first and second order of the Rossby number. At first order in the Rossby number,
(4.141) reduces thus to

Πs = f0 + ς0

η + H
, (4.142)

which shows that, neglecting the higher-order terms on the r.h.s,Πs is an approxima-
tion to the potential vorticity of the full rotating shallow water equations (4.80). The
comparison between (4.138) and (4.140) shows that the two are compatible only if
there exists a function �s that satisfies

f0 ẏ = ∂�s

∂xs
, (4.143a)

f0 ẋ = −∂�s

∂ys
. (4.143b)

Meanwhile, the application of Hamilton’s principle to the action functional asso-
ciated with (4.136) for variations xs = xs + lQs and with the previously specified
boundary conditions yields the equations of motion

f0 ẏ = δH

δxs
, (4.144a)

f0 ẋ = −δH

δys
, (4.144b)

where, following the notation used in Chap. 2, H indicates the Hamiltonian func-
tional found through the integration of the Hamiltonian density H over Ra . Direct
comparison of (4.144a), (4.144b) with (4.143a), (4.143b) shows that

δH

δxs
= ∂�s

∂xs
= f0 ẏ , (4.145)

and

http://dx.doi.org/10.1007/978-3-319-59695-2_2
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δH

δys
= ∂�s

∂ys
= − f0 ẋ , (4.146)

which are satisfied for

�s = 1

2

(
u2
0 + v20

) + gη , (4.147)

which shows that � is a Bernoulli function. The equalities in (4.145) and (4.146)
can be determined also through the evaluation of the functional derivatives ofH . In
fact, we have

δH =
∫

Ra

(
u0δu0 + v0δv0 + 1

2
gδη

)
d(a)

=
∫

Ra

(
u0δu0 + v0δv0 + g

∂η

∂x
δx + g

∂η

∂y
δy

)
d(a) . (4.148)

Transforming the δx and δy terms using the definition of the transformed coordi-
nates (4.134a), (4.134b), and using the geostrophic balance to express the horizontal
derivatives of the dynamic height η greatly simplifies (4.148) as

δH =
∫

Ra

[
u0δu0 + v0δv0 + f0v0δ

(
xs − v0

f0

)
− f0u0δ

(
ys + u0

f0

) ]
d(a)

= f0

∫
Ra

(v0δxs − u0δys) d(a) , (4.149)

so that

δH

δxs
= f0v0 , (4.150a)

δH

δys
= − f0u0 . (4.150b)

The system made by (4.134a), (4.134b), (4.141), (4.145)–(4.147) is the shallow
water semi-geostrophic model. As already stated in the introduction, this is a first-
order correction to the quasi-geostrophic equations that retains, however, its balanced
structure. Notably, this system has the capability to create fronts in finite time. This
can be seenmathematically through amanipulation of the potential vorticity equation
(4.141), which gives rise to a Monge-Ampère type equation, which has finite-time
singularities. For more details, see, e.g. [17].

4.4.5 Continuously Stratified Fluid

The considerations carried over in the previous sections for the fluid with uniform
density can be extended to the case with continuous stratification. We will do so
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following [39]. Consider the Lagrangian density (4.21). Without loss of generality,
we will consider the case of a nonrotating framework. Differently from the previous
sections, we will now request that the labels correspond to a background reference
state, i.e. to an equilibrium position a. Under this assumption and (4.24), the action
functional (4.22) is written as

I =
∫ t2

t1

dt
∫

Ra

d(a)

[
1

2
ρa(a)

∣∣∣∣∂x∂t

∣∣∣∣
2

− ρa(a)φ + p

(
∂(x)
∂(a)

− α

)]
. (4.151)

Notice that, due to the request on the labels, the density in label space is no longer
equal to one.We will now set the stratification making use of the Boussinesq approx-
imation introduced in Chap.1. The density in the kinetic energy term is replaced by
a constant density ρa(a) = ρ0. The density in the remaining terms is instead written
assuming

ρa(a) = ρb(a3) , (4.152)

where ρb(a3) is a background density field depending on a3 due to the identification
of this label with z0 reported at the beginning of the previous chapter.We now identify
the external potential with the gravitational potential, so that

φ = gz , (4.153)

from which we write

ρa(a)φ = ρb(a3)gz = ρb(a3)g(z − a3) + ρb(a3)ga3 . (4.154)

Notice that the last term is a constant that does not change the shape of the potential
and will thus be ignored. In a similar way, the pressure term can be written as a
background term depending only on the z coordinate and a perturbation term, so that

p

(
∂(x)
∂(a)

− α

)
= (pb(z) + δp)

(
∂(x)
∂(a)

− α

)

= −α (pb(z) − pb(a3)) + δp

(
∂(x)
∂(a)

− α

)
+ pb(z)

∂(x)
∂(a)

− αpb(a3) ,

(4.155)

where, once again, the last two terms are constants and can thus be ignored in the
following calculations. With these manipulations, the action integral (4.151) yields

I =
∫ t2

t1

dt
∫

Ra

d(a)

[
1

2
ρ0

∣∣∣∣∂x∂t

∣∣∣∣
2

+ δp

(
∂(x)
∂(a)

− α

)
− V

]
, (4.156)

where
V = ρb(a3)g(z − a3) − [α (pb(z) − pb(a3))] . (4.157)

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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With a little algebra, and assuming the hydrostatic balance to be valid, (4.157) can
be further written as

V = g
∫ z

a3

ds [ρb(a3) − ρb(s)] . (4.158)

Applying Hamilton’s principle with variation (3.46)–(4.156), with boundary condi-
tions (3.47), yields the momentum equations for the continuously stratified, incom-
pressible fluid

∂2x
∂t2

= − 1

ρ0
∇δp − g

ρ0
[ρb(a3) − ρb(z)]k , (4.159)

which should be compared, upon replacement δp → p, with Eq. (3.57). The addi-
tional term on the r.h.s. of (4.159) corresponds to a vertical acceleration imparted to
the fluid parcel by the buoyancy force when the parcel moves from its equilibrium
position a3 to z.

Variations of (4.156) on the pressure yield instead the incompressibility constraint
∂(x)/∂(a) = α.

4.5 Selected Topics in Wave Dynamics

In this final section, the variationalmethodswill be applied to some selected problems
in wave dynamics. In particular, we will first introduce Luke’s variational principle
to obtain the equations for surface water waves. Later, we will introduce Whitham’s
variational principle, which is a powerful tool that can be used to obtain the wave
dispersion relation for nonlinear problems as well as the conservation of the wave
activity of the system.

4.5.1 Potential Flows and Surface Water Waves

One of the simplest examples of wave dynamics in geophysical flows comes from
the treatment of surface water waves. Consider a fluid flow governed by the Euler
equation in a gravitational field (1.74). As for the shallow water equations, the fluid
is comprised between a flat bottom boundary at z = −H and an upper boundary set
at z = η(x, y, t).

Without loss of generality, we can consider the horizontal boundary conditions as
double periodic. For the study of these system, we introduce two approximations:

• we assume that the waves evolve in time at scales much shorter than the Earth’s
rotation, allowing thus to neglect the effects of Earth’s rotation, and the Euler’s
equation is reduced to (1.15);

http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_3
http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1
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• at the spatial scales under consideration, we consider the flow to be unsteady and
irrotational.

The second hypothesis corresponds to taking the relative vorticity (1.75) as zero

ωωω = rot u = 0 . (4.160)

As the vorticity is a solution of Euler equation, (4.160) corresponds to take the
vorticity as zero at initial time and then integrates it at all times. Equation (4.160) is
satisfied by the existence of a single-valued velocity potential ϕ satisfying

u = ∇ϕ . (4.161)

With (4.161), the continuity equation (1.7) yields Laplace equation

div u = div ∇ϕ

= ∇2ϕ

= 0 . (4.162)

We start by setting kinematic boundary conditions to our problem. At z = η, the
rate of change of η following a fluid parcel must be given by the vertical component
of (4.161), so that

Dη

Dt
− ∂ϕ

∂z
= 0 , z = η , (4.163)

or, equivalentily,

∂η

∂t
+ ∂ϕ

∂x

∂η

∂x
+ ∂ϕ

∂y

∂η

∂y
− ∂ϕ

∂z
= 0 , z = η . (4.164)

Under the assumption of flat bottomboundary, there the boundary condition is instead

∂ϕ

∂z
= 0 , z = −H . (4.165)

Returning to the dynamical equations, using (4.161) Euler equation can be written
as

∇
[
∂ϕ

∂t
+ 1

2
(∇ϕ)2 + p

ρ
+ gz

]
= 0 . (4.166)

At the interface between water and air, the term p/ρ is adsorbed in the ∂ϕ/∂t term
so that, upon integration in space, (4.166) yields

http://dx.doi.org/10.1007/978-3-319-59695-2_1
http://dx.doi.org/10.1007/978-3-319-59695-2_1
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∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gη = C(t) , z = η , (4.167)

whereC(t) is an arbitrary function of time determined by the pressure imposed at the
boundaries. As the flow is determined only by the pressure gradient and not by the
pressure itself, without loss of generality we can set C(t) = 0 and (4.167) becomes

∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gη = 0 , z = η , (4.168)

which is the Bernoulli equation at the boundary z = η. For −H < z < η, the
Bernoulli equation is

∂ϕ

∂t
+ 1

2
(∇ϕ)2 + p

ρ
+ gz = 0 . (4.169)

Since the surface given by z = η is a material surface, from (4.168) one must have

D

Dt

[
∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gη

]
= 0 , z = η , (4.170)

that is

∂2ϕ

∂t2
+ 2∇ϕ · ∇

(
∂ϕ

∂t

)
+ 1

2
∇ϕ · ∇ (∇ϕ)2 + g

∂ϕ

∂z
= 0 , z = η , (4.171)

Equations (4.162), (4.164), (4.165) and (4.171) can be solved for ϕ and η. In the
following, in the spirit of this book, this set of equations will be rederived from
variational principles.

4.5.2 Luke’s Variational Principle

The variational derivation will follow [32] and takes the name of Luke’s variational
principle. Following the previous arguments, the action functional for the system
under consideration is

I =
∫ t2

t1

∫
R

ρ

[
∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gz

]
d(x)dt . (4.172)

The action (4.172) corresponds to the Lagrangian density

L = ρ

[
∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gz

]
. (4.173)
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Application of Hamilton’s principle to (4.172) for variations in ϕ(x, t)+ l�(x, t)
yields

δ I =
∫ t2

t1

∫
R

ρ

[
δ

(
∂ϕ

∂t

)
+ ∂ϕ

∂x
δ

(
∂ϕ

∂x

)
+ ∂ϕ

∂y
δ

(
∂ϕ

∂y

)
+ ∂ϕ

∂z
δ

(
∂ϕ

∂z

)]
d(x)dt

+
∫ t2

t1

∫
Rh

ρ

[
∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gz

]
z=η

δ

(
∂ϕ

∂z

)
z=η

d(xh)dt , (4.174)

that is

δ I =
∫ t2

t1

∫
Rh

ρ

{[
∂

∂t

∫ η

−H
�dz + ∂

∂x

∫ η

−H

∂ϕ

∂x
�dz + ∂

∂y

∫ η

−H

∂ϕ

∂y
�dz

]

−
∫ η

−H

(
∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2

)
�dz

−
[(

∂η

∂t
+ ∂ϕ

∂x

∂η

∂x
+ ∂ϕ

∂y

∂η

∂y
− ∂ϕ

∂z

)
�

]
z=η

+
[
∂ϕ

∂z
�

]
z=−H

+
∫ t2

t1

∫
Rh

[
∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gz

]
z=η

δ

(
∂ϕ

∂z

)
z=η

}
d(xh)dt . (4.175)

Setting � to be zero on the domain boundary ∂ Rh , the first term of (4.175) vanishes.
The second term is the only term that is not defined on one of the vertical boundaries.
Away from those, (4.175) is thus satisfied by

∇2ϕ = 0 , z �= −H , z �= η , (4.176)

which corresponds to (4.162). On the vertical boundaries, since (4.175) must be
satisfied by arbitrary values of �, one has

(
∂η

∂t
+ ∂ϕ

∂x

∂η

∂x
+ ∂ϕ

∂y

∂η

∂y
− ∂ϕ

∂z

)
= 0 , z = η , (4.177a)

∂ϕ

∂z
= 0 , z = −H , (4.177b)

∂ϕ

∂t
+ 1

2
(∇ϕ)2 + gη = 0 , z = η , (4.177c)

which correspond, respectively, to (4.164), (4.165) and (4.168).
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4.5.3 Whitham’s Averaged Variational Principle
and Conservation of Wave Activity

The set of equations derived in the previous section can generally be treated just
in special cases due to their nonlinear form. In this section, we will follow [78] to
introduce a variational way to treat the case of dispersive waves.

Consider an action functional with general form

I =
∫ t2

t1

L

(
∂ϕ

∂t
,

∂ϕ

∂xi
, ϕ

)
d(x)dt , (4.178)

where the subscripts indicate partial derivatives. Further, assume that (4.178) allows
for wave solutions in the form

ϕ = R
{

Aeiθ
} = a cos(θ + α) , (4.179)

where a = |A| (which should not be confused with the notation for the particle
label), α = arg{A} and

θ = k · x − ωt . (4.180)

In (4.180), k = (k1, k2, k3) is the wavenumber vector and ω is the wave frequency,
defined as

ki = ∂θ

∂xi
, (4.181a)

ω = −∂θ

∂t
. (4.181b)

For linear problems, ω and k are constants, and thus, from (4.180), θ is a linear
function of xi and t . For nonlinear problems, ω = ω(x, t), k = k(x, t) and A =
A(x, t), and thus, θ is a nonlinear function of xi and t . In this case, the definitions
(4.181a), (4.181b) take local meaning. Notice also that (4.181a), (4.181b) satisfy

∂ki

∂t
+ ∂θ

∂xi
= 0 , (4.182)

and

rot k = 0 . (4.183)

With position (4.179), the arguments of the Lagrangian density in (4.178) are simply
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∂ϕ

∂t
= ωa sin(θ + α) , (4.184a)

∂ϕ

∂xi
= −ki a sin(θ + α) . (4.184b)

The Euler–Lagrange equation corresponding to the application of Hamilton’s
principle to (4.178) can be written as

∂L1

∂t
+ ∂L2

∂xi
− L3 = 0 , (4.185)

where

L1 = ∂L

∂ϕt
, (4.186a)

L2 = ∂L

∂ϕxi

, (4.186b)

L3 = ∂L

∂ϕ
. (4.186c)

It should be noted that the second term in (4.185) and Eq. (4.186b) imply summation
over repeated indices. Equation (4.185) is of second order, justifying the two con-
stants of integration a and α. Neglecting the phase α, the quantities ω, k and a are
connected by the dispersion relation

G(ω,k, a) = 0 . (4.187)

For linear problems, the dispersion relation (4.187) does not depend on A.
Whitham [78] proposed that, after the replacement of the arguments of L by

(4.184a), (4.184b), which changes the arguments of L intoω, k and a, the Lagrangian
density can be averaged over one period of the phase

Lav(ω,k, a) = 1

2π

∫ 2π

0
Ldθ . (4.188)

The original motivation for (4.188) was the assumption, based on intuitive grounds,
that the energy must be balanced overall. Notice that Lav could be also a function of
x and t , due to nonlinearities and nonuniformity of the medium. After this definition,
it is possible to introduce the averaged action

Iav =
∫ t2

t1

Lavd(x)dt . (4.189)

The averaged equations can thus be studied setting



172 4 Variational Principles in Geophysical Fluid Dynamics …

δ Iav = 0 , (4.190)

which also takes the name of averaged variational principle.
As Lav does not depend on derivatives of a, variation of (4.189) in the amplitude

yields
∂Lav

∂a
(ω,k, a) = 0 . (4.191)

This equation is a functional relationship between ω, k and a, and is thus the disper-
sion relation. As a simple example, it can be noted that because of linear problems
L must be quadratic in ϕ and its derivatives, in that case Lav takes the form

Lav = G(ω,k)a2 . (4.192)

In this case, (4.191) yields immediately

G(ω,k) = 0 . (4.193)

Notice that in (4.193), G does not depend on a.
Variations of (4.189) in θ yield instead

∂

∂t

∂Lav

∂ω
− ∂

∂xi

∂Lav

∂ki
= 0 . (4.194)

Defining the wave action

A = ∂Lav

∂ω
, (4.195)

and its flux

Bi = −∂Lav

∂ki
, (4.196)

Equation (4.194) can be written as the hyperbolic equation

∂

∂t
A + ∂

∂xi
Bi = 0 , (4.197)

which is thus an equation for the conservation of the wave action.
Using (4.181a), (4.181b), it is important to notice that Lav only depends on the

derivatives of θ and not on the level set of the same variable. Equation (4.197)
is also invariant for time translations, so that, by Noether’s Theorem, one has the
conservation of the quantity

E = ωA , (4.198)

that is the average energy density of the system. The wave activity A = E /ω is a
known adiabatic invariant for slow modulations of linear vibrating systems.
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Notice that in a system with wave–mean flow interactions, it is the total energy
given by the energy of the mean flow and of the disturbances, to be conserved, and
not the wave energy.

From the previous relationships, the energy equation can be written as

∂

∂t

(
ω

∂Lav

∂ω
− Lav

)
+ ∂

∂xi

(
−ω

∂Lav

∂ki
− Lav

)
= 0 , (4.199)

Interchanging the roles of t and xi yields the averaged momentum equation

∂

∂t

(
ki

∂Lav

∂ω

)
+ ∂

∂xi

(
−k j

∂Lav

∂ki
− Lavδi j

)
= 0 . (4.200)

The quantity

ki
∂Lav

∂ω
= ki

ω
E , (4.201)

is the momentum density, and it is a vector in the direction k and with magnitude
E /c, where c is the phase speed of the wave.

4.5.4 Example 1: The Linear Klein–Gordon Equation

As an example, we consider the linear Klein–Gordon equation

∂2ϕ

∂t2
+ β2ϕ = α2∇2ϕ . (4.202)

This is a hyperbolic equation representing, in classical terms, the vibrations for
a displacement ϕ with a restoring force proportional to ϕ and a dispersive term.
Notably, this is an important equation also in quantummechanics where it represents
a relativistic wave equation.

The Lagrangian density corresponding to (4.202) is

L = 1

2

[(
∂ϕ

∂t

)2

− α2

(
∂ϕ

∂xi

)2

ϕ − β2ϕ2

]
. (4.203)

It should be noted that the Lagrangian density is a quadratic in ϕ.
The averaged Lagrangian (4.188) for (4.203) is

Lav = 1

4

(
ω2 − α2k2 − β2

)
a2 . (4.204)

Hence, direct application of (4.191) yields the dispersion relation
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ω = (
α2k2 + β2

)1/2
, (4.205)

while the application of (4.195) and (4.198) yields the averaged wave activity

A = 1

2
ωa2 , (4.206)

and averaged energy density

E = 1

2
ω2a2 = (

α2k2 + β2
)

a2 . (4.207)

4.5.5 Example 2: The Nonlinear Klein–Gordon Equation

The Klein–Gordon equation can be generalized to its nonlinear form, here written
for simplicity in 1D

∂2ϕ

∂t2
+ β2ϕ + rϕ3 = α2 ∂2ϕ

∂x2
. (4.208)

The corresponding Lagrangian density is

L = 1

2

[(
∂ϕ

∂t

)2

− α2

(
∂ϕ

∂x

)2

ϕ − β2ϕ2 − 1

2
rϕ4

]
. (4.209)

As a result, the averaged Lagrangian (4.188) for (4.209) is

Lav = 1

4

(
ω2 − α2k2 − β2

)
a2 − 3

32
ra4 . (4.210)

It can be noted that the nonlinear term is responsible for the term of O
(
a4

)
. Direct

application of (4.191) yields the dispersion relation

ω =
(

α2k2 + β2 + 3

4
ra2

)1/2

. (4.211)

One should notice that the dispersion relation depends now on a. The application of
(4.195) and (4.198) shows that the wave activity assumes the same shape (4.206).
The energy density takes, however, the form

E = 1

2

(
α2k2 + β2 + 3

4
ra2

)
a2 . (4.212)
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4.5.6 Example 3: The Korteweg–DeVries (KdV) Equation

As a last example, consider the nonlinear 1D Korteweg–deVries (KdV) equation

∂η

∂t
+ 6η

∂η

∂x
+ ∂3η

∂x3
= 0 . (4.213)

In (4.213), the factor 6 was chosen for normalization purposes. This equation is
particularly important, as its solutions can take the form of solitary waves as well as
trains of them. Its treatment is, however, much more difficult.

Setting

η = ∂ϕ

∂x
, (4.214)

the KdV equation (4.213) becomes

∂2ϕ

∂t∂x
+ 6

∂ϕ

∂x

∂2ϕ

∂x2
+ ∂4ϕ

∂x4
= 0 , (4.215)

with Lagrangian density

L = −1

2

∂ϕ

∂t

∂ϕ

∂x
−

(
∂ϕ

∂x

)3

+ 1

2

(
∂2ϕ

∂x2

)2

. (4.216)

The problem can be treated analytically with some smart changes of variables. In
particular, it is possible to take

ϕ = βx − γ t + �(θ) , (4.217)

where � is a periodic function of θ . In (4.217), it is possible to define the pseudo-
phase

ψ = βx − γ t . (4.218)

One should notice the analogy between (4.218) and (4.180), so that

β = ∂ψ

∂x
, (4.219a)

γ = −∂ψ

∂t
. (4.219b)

and, in analogy with (4.182),
∂β

∂t
+ ∂γ

∂x
= 0 , (4.220)

hold.
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With (4.217), (4.218), using (4.180) and (4.214) one has

η = β + k
∂�

∂θ
. (4.221)

It should be noted that, due to the periodicity of �, β refers to the mean value of η,
observation that will be used for the averaged Lagrangian. In terms of (4.221), the
KdV equation (4.213) can be written as

− U
∂η

∂θ
+ 6η

∂η

∂θ
+ k2 ∂3η

∂θ3
= 0 , (4.222)

where we have indicated with
U = ω

k
, (4.223)

the nonlinear phase velocity. Equation (4.222) has integral

− Uη + 3η2 + k2 ∂2η

∂θ2
+ B = 0 , (4.224)

where A is an integration constant. Further integration yields

−Uη2 + 2η3 + k2

(
∂η

∂θ

)2

+ 2Bη − 2A = 0 , (4.225)

where B is a second integration constant. Using (4.225), the Lagrangian density
(4.216) becomes

L = k2

(
∂η

∂θ

)2

+
{

B + 1

2
(γ − U ) β

}
η − A . (4.226)

To calculate the averagedLagrangian, the phase integral of the first term of (4.226)
yields

1

2π

∫ 2π

0
k2

(
∂η

∂θ

)2

dθ = 1

2π

∮
k2 ∂η

∂θ
dη = kW , (4.227)

where

W = 1

2π

∮ [
2A − 2Bη + Uη2 − 2η3

]1/2
dη . (4.228)

Notice that W = W (A, B, U ). Meanwhile, because β refers to the mean value of η,
as seen from (4.221), the phase integral of the second term of (4.226) yields

1

2π

∫ 2π

0
ηdθ = β . (4.229)
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With (4.227) and (4.229), the averaged Lagrangian is finally

Lav = kW + βB + 1

2
βγ − 1

2
Uβ2 − A . (4.230)

The averaged Lagrangian is thus a functional Lav = Lav(ω, k, A; γ, β, B). It is
thus possible to take the following variations:

• with respect to θ , which gives

∂

∂t

∂Lav

∂ω
− ∂

∂x

∂Lav

∂k
= 0 ; (4.231)

• with respect to ψ , which gives

∂

∂t

∂Lav

∂γ
− ∂

∂x

∂Lav

∂β
= 0 ; (4.232)

• with respect to A, which gives

k
∂W

∂ A
= 1 ; (4.233)

• and with respect to B, which gives

β = −k
∂W

∂ B
. (4.234)

Equation (4.232) with (4.230) results in

∂

∂t

(
1

2
β

)
+ ∂

∂x

(
Uβ − 1

2
γ − B

)
= 0 . (4.235)

Comparison between (4.235) and (4.220) shows that

γ = −kU
∂W

∂ B
− B , (4.236)

so that, using also (4.234), Eq. (4.235) yields

∂

∂t

(
k
∂W

∂ B

)
+ ∂

∂x

(
kU

∂W

∂ B
+ B

)
= 0 . (4.237)

As the averaged Lagrangian (4.230) does not depend on ω and k, Eq. (4.231) is
automatically satisfied and does not give information on the dynamics. It is instead
possible to rewrite it in the form of an averaged momentum Eq. (4.200) so that

∂

∂t

(
k
∂Lav

∂ω
+ β

∂Lav

∂γ

)
+ ∂

∂x

(
Lav − k

∂Lav

∂k
− β

∂Lav

∂β

)
= 0 . (4.238)
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Rewriting (4.182) as
∂k

∂t
+ ∂

∂x
(kU ) = 0 , (4.239)

where we have used (4.223), Eq. (4.238) can be rewritten, making use of (4.233) and
(4.239), as

∂

∂t

(
k
∂W

∂U

)
+ ∂

∂x

(
kU

∂W

∂U
− A

)
= 0 . (4.240)

Equations (4.237), (4.239) and (4.240) may be viewed as a set of three hyperbolic
equations for A, B and U , with k given by (4.233). These equations can be written
in symmetric form as

∂WB

∂t
+ U

∂WB

∂x
+ WA

∂ B

∂x
= 0 , (4.241a)

∂WU

∂t
+ U

∂WU

∂x
− WA

∂ A

∂x
= 0 , (4.241b)

∂WA

∂t
+ U

∂WA

∂x
− WA

∂U

∂x
= 0 , (4.241c)

where the subscript indicates partial derivatives. Once (4.241a)–(4.241c) are solved,
the wave frequency ω can be determined as

ω = U

WA
, (4.242)

where we made use of (4.233), and the mean value β can be determined as

β = −WB

WA
. (4.243)

For a solution making use of the method of characteristics, see [78].

4.6 Bibliographical Note and Suggestions for Further
Reading

For research articles on the derivation of approximated equations of fluid and geo-
physical flows using Hamilton’s principle, see, for example, [5, 10, 11, 14, 15, 18,
19, 24, 26, 32, 34, 42, 47, 52, 56, 64–67, 70–72, 74–77]. This is obviously an
incomplete, selected list. For alternative derivations of the equations of motion for
the ideal fluid and for the quasi-geostrophic equations using Hamilton’s principle,
see [23, 73]. For the particular case of the semi-geostrophic equations, see [42–45,
50, 51, 53, 54, 57, 58, 63]. For recent developments on semi-geostrophic dynamics,
see, e.g. [4, 46]. For a review on the consequences of the relabelling symmetry for
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the conservation of potential vorticity in ocean dynamics, see the already cited [39].
Despite the fact that this book does not cover the derivation of the equations ofmotion
for the ideal fluid and its approximations in Hamiltonian form, and in particular their
associated Poisson brackets, for example, in the excellent reviews by [35, 36, 55,
59–61, 69]. The Hamiltonian formulation is associated with particularly powerful
criteria for the nonlinear stability, originally formulated in [2, 3] and with important
advancements by, amongst others, [1, 9, 16, 29, 30, 33, 38, 48, 49, 68]. See, e.g. the
reviews quoted above, including [25, 62]. Further, the Hamiltonian form allows for
the formulation of numerical schemes that well preserve the conserved quantities,
see, e.g. [31]. For the representation of dissipation in Hamiltonian fluid flows, see
e.g. [8, 37] and references therein. Finally, alternatives to the Hamiltonian form for
the equations for fluids are available. One of them, given by Nambu [40], proposes a
form of the equations that is solely based on Liouville’s Theorem. The Nambu form
of the equations of fluid and geophysical fluid dynamics is particularly promising.
For examples of its use, see, e.g. [6, 7, 41] and references therein. While the lists
reported in this section are necessarily incomplete, they are representative of a good
sample of different works on these topics and may provide thus as a starting point
for further reading.
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Appendix A
Derivation of Equation (1.2)

Equation (1.2) is derived in many textbooks of fluid dynamics. Here, it is explained
in its simplest, i.e. one-dimensional, form. Then, the generalization to the three-
dimensional form trivially follows. Define

Θ(t) =
∫ x1(t)

x0(t)
θ(x, t)dx . (A.1)

In (A.1), θ(x, t) is a certain fluid field and [x0(t), x1(t)] is a material interval on
Rwhich, in general, moves alongR. In the course of motion, the interval can expand
or shrink, but its content of fluid is left unchanged in time. According to Leibniz
formula,

dΘ

dt
=

∫ x1(t)

x0(t)

∂θ

∂t
dx + θ (x1, t)

dx1
dt

− θ (x0, t)
dx0
dt

. (A.2)

From the physical point of view, dx0/dt is the velocity u (x0, t) of the lower
extreme of the material interval, while dx0/dt = u (x1, t) is the velocity of the upper
extreme of the same interval. Thus, (A.2) can be written as

dΘ

dt
=

∫ x1(t)

x0(t)

∂θ

∂t
dx + θ (x1, t) u (x1, t) − θ (x0, t) u (x0, t) . (A.3)

or also as

dΘ

dt
=

∫ x1(t)

x0(t)

[
∂θ

∂t
+ ∂

∂x
(θu)

]
dx =

∫ x1(t)

x0(t)

[
∂θ

∂t
+ u

∂θ

∂x
+ θ

∂u

∂x

]
dx . (A.4)

Equation (A.4) shows that variations in time of (A.1) can be ascribed to an explicit
variation in time of θ inside the considered material interval, or to the translation
of the material interval over a part of R where θ is not constant or, finally, to the
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deformation of the material interval due to different velocities of its extremes. By
means of the introduction of the Lagrangian derivative

D

Dt
= ∂

∂t
+ u

∂

∂x
, (A.5)

Equation (A.4) takes the form

dΘ

dt
=

∫ x1(t)

x0(t)

(
Dθ

Dt
+ θ

∂u

∂x

)
dx . (A.6)

The three-dimensional generalization of (A.5) is expressed by

D

Dt
= ∂

∂t
+ u

∂

∂x
, (A.7)

where u = (u, v,w) and, in turn, the three-dimensional generalization of (A.6) is

dΘ

dt
=

∫
V (t)

(
Dθ

Dt
+ θ div u

)
dV ′ . (A.8)

where D/Dt is given by (A.7). In (A.8), V (t) is the material volume which is the
three-dimensional equivalent of [x0(t), x1(t)].



Appendix B
Derivation of the Conservation of Potential
Vorticity from Kelvin’s Circulation Theorem

Consider a system in an uniformly rotating reference frame. The following arguments
can be easily reduced to an inertial framework simply by setting Ω → 0. Following
Chap.1, define the absolute circulation

Γa =
∮

∂C
(u + ΩΩΩ × r) · dr , (B.1)

where C is a material surface. Using Euler’s equation in a rotating framework (1.74)
and following the same steps leading to (1.158), the time derivative of (B.1) yields

dΓa

dt
= −

∮
∂C

∇ p

ρ
· dr , (B.2)

that is

dΓa

dt
= −

∮
∂C

dp

ρ
. (B.3)

If ρ is constant, the conservation of the circulation (B.1) follows directly from (B.3).
Using Stokes’ theorem, the term on the l.h.s. of (B.3) can be written as

dΓa

dt
= d

dt

∮
∂C

(u + ΩΩΩ × r) · dr

= d

dt

∫
C
k̂ · rot (u + ΩΩΩ × r) dC . (B.4)

Using the identity rot (ΩΩΩ × r) = 2ΩΩΩ , (B.4) yields

dΓa

dt
= d

dt

∫
C
k̂ · (ωωω + 2ΩΩΩ) dC , (B.5)
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where ωωω is the relative vorticity (1.75). If C is an infinitesimal surface, the term on
the r.h.s. of (B.5) can be written as

D

Dt

[
(ωωω + 2ΩΩΩ) · k̂δC

]
, (B.6)

where δC is the area of the integration surface. Hence, if the term on the r.h.s. of
(B.3) is zero, i.e. if the quantity dp/ρ is an exact differential on the isobaric surface
∂C , then the quantity

Π = (ωωω + 2ΩΩΩ) · k̂δC (B.7)

is materially conserved.
This is proved trivially if ρ is a constant. Under this hypothesis, it is possible to

introduce a material volume enclosed between two surfaces of equal pressure, with
base δC and height H . The resulting volume is thus

δV = HδC . (B.8)

Because of the hypothesis of constant density, (B.8) is materially conserved, so that
(B.6) yields

D

Dt

[
(ωωω + 2ΩΩΩ)

H
· k̂

]
= 0 . (B.9)

Equation (B.9) is the conservation of potential vorticity for fluidswith internal energy
that does not depend on the entropy. In fact, in that case

∂e

∂η
= 0 ⇒ α = α(p) , (B.10)

where e is the internal energy, η the entropy and α = 1/ρ is the specific volume of
the fluid.

The hypothesis of constant density can be relaxed in favour of a more general
condition on the thermodynamics of the fluid under consideration. Denoting with ϑ

the absolute temperature of the fluid, one has

ϑdη = de + pdα , (B.11)

from which is it possible to derive

dp

ρ
= d

(
e + p

ρ

)
− ϑdη . (B.12)

The quantity

http://dx.doi.org/10.1007/978-3-319-59695-2_1
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h = e + p

ρ
(B.13)

is the enthalpy density of the fluid. Equation (B.12) yields directly

∮
∂C

dp

ρ
=

∮
∂C

dh −
∮

∂C
ϑdη . (B.14)

For an ideal fluid, the first term on the r.h.s. of (B.14) is clearly zero. Assuming
entropy conservation, i.e.

Dη

Dt
= 0 , (B.15)

from Eq. (B.14) one gets that the material path ∂C lies on an isentrope, so that
dη = 0, which results in the term on the r.h.s. of (B.3) being zero, yielding

D

Dt

[
(ωωω + 2ΩΩΩ) · k̂δC

]
= 0 . (B.16)

The vector k̂δC can be further developed taking into account the conservation of
entropy on C . In fact, in this case the unit vector k̂ is orthogonal to the isosurface C
and thus

k̂ = ∇η

|∇η| . (B.17)

Further, the surface element δC can be thought as the base of a cylinder with volume
δV , lying between two isosurfaces (i.e. isentropes) set at the δH distance, so that

δV = δHδC . (B.18)

The change of entropy δη between the two isentropes is

δη = δH |∇η| . (B.19)

Using (B.18), (B.19) yields

δC = δV |∇η|
δη

, (B.20)

and thus,

Π = (ωωω + 2ΩΩΩ) · ∇η

δη

ρδV

ρ
. (B.21)
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Because both the entropy δη and the mass ρδV are conserved, (B.21) yields the
conservation of potential vorticity

D

Dt

[
(ωωω + 2ΩΩΩ) · ∇η

ρ

]
= 0 , (B.22)

for fluids that satisfy ∂e/∂η �= 0 and ∂α/∂ϑ �= 0.



Appendix C
Some Simple Mathematical Properties
of the Legendre Transformation

Consider a function of one variable y = f (x), x ∈ R that is strictly convex, i.e.
f ′′(x) > 0,where the prime indicates derivative respect to x . TheLegendre transform
allows the transformation of the function f (x) into the new function g(p), p ∈ R.
The transform is defined geometrically through the function

F(p, x) = px − f (x) . (C.1)

which describes the distance between f (x) and the straight line y = px . The function
F has a maximum at the point x = x(p) at which f (x) is at its farthest from the
straight line y = px . The point x(p) is thus defined by the condition ∂F/∂x = 0,
i.e.

f ′(x) = p . (C.2)

Because f is convex, if x(p) exists, it must be unique. The Legendre transform of
f (x) is thus the function

g(p) = maxx [px − f (x)] = F(p, x(p)) . (C.3)

We list here some mathematical properties of the Legendre transformation.

1. Multivariable Legendre transform If f (q1, . . . , qN ) is a convex function of the
vector q = (q1, . . . , qN ), i.e. f is twice differentiable and its Hessian matrix
∂2 f/∂q2 is positive semi-definite in the entire domain, then it is possible to define
the function

F(p,q) = pq − f (q) , (C.4)
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for

p = (p1, . . . , pN ) = ∂ f/∂q , (C.5)

so that the Legendre transform is

g(p) = maxq[pq − f (q)] = F(p,q(p)) . (C.6)

As an example, consider the function f = f (x, y). Its differential is

d f = u dx + v dy , (C.7a)

u = ∂ f

∂x
, (C.7b)

v = ∂ f

∂y
, (C.7c)

so that one can define the Legendre transformation as

g(u, y) = f (x, y) − ux . (C.8)

The differential of g yields

dg = d f − x du − u dx

= u dx + v dy − x du − u dx

= v dy − x du , (C.9)

Comparison with the form

dg = ∂g

∂u
du + ∂g

∂y
dy (C.10)

gives the relations

v = ∂g

∂y
, (C.11a)

x = −∂g

∂u
. (C.11b)

All the properties listed below hold also for the multivariable case.
2. The Legendre transform preserves convexity The differential of g(p) can be writ-

ten as

dg = p dx + x dp − f ′(x)dx , (C.12)
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where f ′(x) = d f/dx . Using f ′(x) = p, (C.2) becomes

dg = x dp , (C.13)

or

g′ = dg

dp
= x . (C.14)

The second derivative yields

g′′ = dx

dp
= 1

dp/dx
= 1

f ′′(x)
> 0 (C.15)

that demonstrates that Legendre transform of f (x) is a convex function itself.
3. The Legendre transform is an involution To demonstrate this statement, use (C.2)

to rewrite (C.1) as

f (x) = x f ′(x) − F(p) = F ′(p) p − F(p) . (C.16)

For fixed x , (C.16) is equivalent to

f (x) = maxp[xp − g(p)] , (C.17)

which yields x = g′(p) for the location of the maximum in p. The comparison
between (C.17) and (C.3) shows that the Legendre transform is an involution, i.e.,
it is its own inverse.

4. Young’s inequality Consider two functions, f (x) and g(p), x, p ∈ R, which are
Legendre transforms of one another. Then, (C.3) and (C.17) imply

F(p, x) = px − f (x) ≤ g(p) . (C.18)

f and g are called dual in the sense of Young, and (C.18) is called Young’s
inequality.



Appendix D
Derivation of Equation (2.142)

In order to derive (2.142), we start substituting (2.140a)–(2.140c) in (2.141), which
yields

δ I =
∫
R′
L (t + δt, qi + δLqi , q̇i + δL q̇i ) dt

′ −
∫
R
L (t, qi , q̇i ) dt . (D.1)

Ignoring terms of higher order, (D.1) yields

L (t + δt, qi + δLqi , q̇i + δL q̇i )

= L (t, qi , q̇i ) + ∂L

∂t
δt + ∂L

∂qi
δLqi + ∂L

∂ q̇i
δL q̇i . (D.2)

The insertion of (D.2) in (D.1) gives

δ I =
∫
R′

[
L (t, qi , q̇i ) + ∂L

∂t
δt + ∂L

∂qi
δLqi + ∂L

∂q̇i
δL q̇i

]
dt ′ −

∫
R
L (t, qi , q̇i ) dt .

(D.3)

Equation (D.3) can be further developed expressing the two integrals over the same
time domain. To do so, the first integral can be modified with the substitution

∫
R′
dt ′ →

∫
R

(
1 + ∂δt

∂t

)
dt ,

so that, ignoring higher order terms

δ I =
∫
R

[
∂

∂t
(Lδt) + ∂L

∂qi
δLqi + ∂L

∂ q̇i
δL q̇i

]
dt . (D.4)

© Springer International Publishing AG 2018
G. Badin and F. Crisciani, Variational Formulation of Fluid and Geophysical
Fluid Dynamics, Advances in Geophysical and Environmental Mechanics
and Mathematics, DOI 10.1007/978-3-319-59695-2

193

http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_2
http://dx.doi.org/10.1007/978-3-319-59695-2_2


194 Appendix D: Derivation of Equation (2.142)

Because of (2.140a)–(2.140c), δqi = q ′
i (t

′) − qi (t), δq̇i = q̇ ′
i (t

′) − q̇i (t), so that
δqi and δq̇i do not depend only on the independent variable t but also on t ′. In order
to obviate this problem, it is possible to introduce a new, auxiliary, variation, called
total variation and denoted with δT , so that

q ′
i (t

′) = qi (t
′) + δT qi (t

′) and (D.5a)

q̇ ′
i (t

′) = q̇i (t
′) + δT q̇i (t

′) (D.5b)

that differ from (2.140a)–(2.140c) as (D.5a), (D.5b) refers to coordinates calculated at
the same time. Using (2.140a)–(2.140c) and (D.5a), (D.5b), it is possible to calculate
the following relationships

δqi (t) = q ′
i (t

′) − qi (t)

≈ q ′
i (t) + ∂q ′

i

∂t
δt − qi (t)

= δT qi (t) + ∂q ′
i

∂t
δt − qi (t)

= δT qi (t) + ∂

∂t
[qi (t) + δqi (t)] δt

≈ δT qi (t) + q̇iδt , (D.6)

δq̇i (t) = q̇ ′
i (t

′) − q̇i (t)

≈ q̇ ′
i (t) + ∂q̇ ′

i

∂t
δt − q̇i (t)

= δT q̇i (t) + ∂q̇ ′
i

∂t
δt − q̇i (t)

= δT q̇i (t) + ∂

∂t
[q̇i (t) + δq̇i (t)] δt

≈ δT q̇i (t) + q̈iδt . (D.7)

Equations (D.6) and (D.7) allow to make the substitutions

δqi (t) → δT qi (t) + q̇i (t)δt ,

δq̇i (t) → δT q̇i (t) + q̈i (t)δt ,

into (D.4), which yields

δ I =
∫
R

[
∂

∂t
(Lδt) + ∂L

∂qi
(δT qi + q̇iδt) + ∂L

∂q̇i
(δT q̇i + q̈iδt)

]
dt

=
∫
R

[
∂

∂t
(Lδt) + ∂L

∂qi
q̇iδt + ∂L

∂q̇i
q̈iδt + ∂L

∂qi
δT qi + ∂L

∂ q̇i
δT q̇i

]
dt . (D.8)
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Because δt a function only of time,

∂L

∂qi
δt = ∂

∂qi
(Lδt) ,

∂L

∂q̇i
δt = ∂

∂q̇i
(Lδt) ,

and thus, the first three terms on the last integrand of (D.8) reduce to D(Lδt)/Dt ,
and (D.8) yields

δ I =
∫
R

[
D

Dt
(Lδt) + ∂L

∂qi
δT qi + ∂L

∂ q̇i
δT q̇i

]
dt . (D.9)

Using the identity

∂L

∂q̇i
δT q̇i = D

Dt

(
∂L

∂q̇i
δT qi

)
− δT qi

D

Dt

∂L

∂ q̇i
, (D.10)

Equation (D.9) yields

δ I =
∫
R

{
D

Dt

(
Lδt + ∂L

∂q̇i
δT qi

)
+

[
∂L

∂qi
− D

Dt

∂L

∂ q̇i

]
δT qi

}
dt . (D.11)

At this point, the total variation δT can be eliminated using δT qi (t) = δqi (t)−q̇i (t)δt ,
obtaining thus (2.142).
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Appendix E
Invariance of the Equations of Motion (2.144)
Under a Divergence Transformation

The proof of the invariance of the equations of motion under a divergence transfor-
mation lies in applying the transformation

L → L + D

Dt
[Ω(t, qi )] , (E.1)

to (2.144) and, knowing that ∂Ω/∂q̇i = 0, in verifying that

D

Dt

∂

∂q̇i

(
L + DΩ

Dt

)
− ∂

∂qi

(
L + DΩ

Dt

)
= 0 . (E.2)

In fact,

D

Dt

(
∂L

∂q̇i
+ ∂

∂q̇i

DΩ

Dt

)
− ∂

∂qi

(
L + DΩ

Dt

)

= D

Dt

(
∂

∂q̇i

DΩ

Dt

)
− ∂

∂qi

(
DΩ

Dt

)

= D

Dt

[
∂

∂q̇i

(
∂Ω

∂t
+ q̇i

∂Ω

∂qi

)]
− ∂

∂qi

(
∂Ω

∂t
+ q̇i

∂Ω

∂qi

)

=
(

∂

∂t
+ q̇i

∂

∂qi

)
∂Ω

∂qi
− ∂2Ω

∂t∂qi
+ q̇i

∂2Ω

∂q2
i

= 0 . (E.3)
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Appendix F
Functional Derivatives

In this Appendix, we will give a brief definition of functional derivatives. Consider
a generic functional F defined as

F[q] =
∫
R
F (x, q, qx , qxx , . . . ) dx , (F.1)

where the subscripts indicate partial derivatives. Given the variation q + lQ, with
Q being an arbitrary function vanishing at the integration boundaries xi and x f , one
has

δF =
∫ x f

xi

[
∂F

∂q
lQ + ∂F

∂qx
lQx + ∂F

∂qxx
lQxx + . . .

]
dx . (F.2)

Upon integration by parts, (F.2) yields

δF =
∫ x f

xi

lQ

(
∂F

∂q
− d

dx

∂F

∂qx
+ d2

dx2
∂F

∂qxx
− · · ·

)
dx +

[
∂F

∂qx
lQ + · · ·

]x f

xi

.

(F.3)

Under the request that Q vanishes at the integration boundaries, (F.3) can be written
as

δF =
〈
δF

δq
, lQ

〉
, (F.4)

where we have defined the functional derivative of F with respect to q as

δF

δq
= ∂F

∂q
− d

dx

∂F

∂qx
+ d2

dx2
∂F

∂qxx
− . . . , (F.5)

and where the angle brackets indicate a inner product.
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Appendix G
Derivation of Equation (2.229)

To derive (2.229), substitute (2.225) and (2.226a)–(2.226b) in (2.227), so that

δ I =
∫ ′

R
L (qk + δqk, ψ + δψ,ψk + δψk) d(q ′) −

∫
R
L (qk, ψ,ψk) d(q)

=
∫
R

{
L (qk + δqk, ψ + δψ,ψk + δψk)

[
1 + ∂ (δqk)

∂qk

]
− L (qk, ψ,ψk)

}
d(q) .

(G.1)

At first order, (G.1) yields

δ I =
∫
R

[
L

∂ (δqk)

∂qk
+ ∂L

∂qk
δqk + ∂L

∂ψ
δψ + ∂L

∂ψk
δψk

]
d(q) , (G.2)

where, following (2.226a)–(2.226b),

δψ(q) = ψ ′(q ′) − ψ(q) , (G.3a)

δψk(q) = ψ ′
k(q

′) − ψk(q) . (G.3b)

Equations (G.3a)–(G.3b) show that the variations of the dependent variables are
functions also of q ′

0 . . . q ′
3, while the integration in (G.2) is performed with respect to

variables q0 . . . q3. This difficulty is solved introducing the auxiliary total variations

δTψ(q ′) = ψ ′(q ′) − ψ(q ′) , (G.4a)

δTψk(q
′) = ψ ′

k(q
′) − ψk(q

′) . (G.4b)

Using (G.4a)–(G.4b), the variations of the dependent variables become function of
the variables q0 . . . q3 only. In fact,
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δψ(q) = ψ ′(q ′) − ψ(q)

≈ ψ ′(q) + ψ ′
k(q

′)δqk − ψ(q)

= δTψ(q) + [ψk(q) + δψk(q)] δqk ≈ δTψ(q) + ψk(q)δqk , (G.5a)

δψk(q) = ψ ′
k(q

′) − ψk(q)

≈ ψ ′
k(q) + ψ ′

kl(q
′)δql − ψk(q)

= δTψk(q) + [ψkl(q) + δψkl(q)] δql ≈ δTψk(q) + ψkl(q)δql . (G.5b)

Equations (G.5a) and (G.5b) allow to make, respectively, the substitutions

δψ(q) → δTψ(q) + ψk(q)δqk , δψk(q) → δTψk(q) + ψkl(q)δql , (G.6)

into (G.2), that yield

δ I =
∫
R

[
L

∂ (δqk)

∂qk
+ ∂L

∂qk
δqk + ∂L

∂ψ
(δTψ + ψkδqk) + ∂L

∂ψk
(δTψk + ψklδql )

]
d(q)

=
∫
R

[
L

∂ (δqk)

∂qk
+ ∂L

∂qk
δqk + ∂L

∂ψ
δTψ + ∂L

∂ψ
ψkδqk + ∂L

∂ψk
δTψk + ∂L

∂ψk
ψklδql

]
d(q) .

(G.7)

Because

L
∂ (δqk)

∂qk
+ ∂L

∂qk
δqk + ∂L

∂ψ
ψkδqk + ∂L

∂ψl
ψlkδqk

= ∂

∂qk
(Lδqk) + ψk

∂

∂ψ
(Lδqk) + ψkl

∂

∂ψl
(Lδqk)

= D

Dqk
(Lδqk) , (G.8)

and

δTψk = ∂

∂qk
(δTψ) , (G.9)

substitution of (G.8) and (G.9) in (G.7) yields the equation

δ I =
∫
R

[
D

Dqk
(Lδqk) + ∂L

∂ψ
δTψ + ∂L

∂ψk

∂

∂qk
δTψ

]
d(q) . (G.10)

Using the identity

∂L

∂ψk

∂

∂qk
(δTψ) = ∂L

∂ψk

D

Dqk

(
∂L

∂ψk
δTψ

)
− D

Dqk

(
∂L

∂ψk

)
δTψ , (G.11)

(G.10) yields
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δ I =
∫
R

[
D

Dqk

(
Lδqk + ∂L

∂ψk
δTψ

)
+

(
∂L

∂ψ
− D

Dqk

∂L

∂ψk

)
δTψ

]
d(q) . (G.12)

It is nowpossible to go back to the original variations, substituting δTψ = δψ−ψlδql
in (G.12), so that

δ I =
∫
R

[
D

Dqk

(
Lδqk − ∂L

∂ψk
ψlδql + ∂L

∂ψk
δψ

)

+
(

∂L

∂ψ
− D

Dqk

∂L

∂ψk

)
(δψ − ψlδql)

]
d(q) (G.13)

that corresponds to (2.229).

http://dx.doi.org/10.1007/978-3-319-59695-2_2


Appendix H
Invariance of the Equations of Motion (2.217)
Under a Divergence Transformation

The invariance can be proved applying the transformation

L → L + D

Dqk
(δSΩk)

to (2.217) and verifying that

(
D

Dqk

∂

∂ψk
− ∂

∂ψ

)
D

Dqk
(δSΩk) = 0 , (H.1)

under the hypothesis

∂

∂ψk
(δSΩk) = 0 . (H.2)

From (H.1) and (H.2), it follows that

(
D

Dqk

∂

∂ψk
− ∂

∂ψ

) [
∂

∂qk
(δSΩk) + ψk

∂

∂ψ
(δSΩk)

]

= D

Dqk

∂

∂ψk

[
ψk

∂

∂ψ
(δSΩk)

]
− ∂

∂ψ

∂

∂qk
(δSΩk) − ∂

∂ψ

[
ψk

∂

∂ψ
(δSΩk)

]

= D

Dqk

[
∂

∂ψ
(δSΩk)

]
− ∂

∂ψ

∂

∂qk
(δSΩk) − ψk

∂2

∂ψ2
(δSΩk)

= ∂

∂qk

∂

∂ψ
(δSΩk) + ψk

∂

∂ψ

∂

∂ψ
(δSΩk) − ∂

∂ψ

∂

∂qk
(δSΩk) − ψk

∂2

∂ψ2
(δSΩk) = 0 .

(H.3)
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Appendix I
Proofs of the Algebraic Properties
of the Poisson Bracket

Let f (ηηη), g(ηηη) and h(ηηη) be three functions of ηηη, and let α, β ∈ R be two constants.
Using the symplectic notation, the Poisson bracket can bewritten as the inner product

{ f, g} =
〈
∂ f

∂ηηη
, J

∂g

∂ηηη

〉
, (I.1)

which satisfy commutativity with its arguments. The Poisson bracket thus satisfies
the following properties:

1. Skew-symmetry and self-commutativity

{ f, g} = −{g, f } . (I.2)

Proof Because J is skew-symmetric,

{ f, g} = −
〈
J
∂ f

∂ηηη
,
∂g

∂ηηη

〉
. (I.3)

But because of the commutativity of the inner product

−
〈
J
∂ f

∂ηηη
,
∂g

∂ηηη

〉
= −

〈
∂g

∂ηηη
, J

∂ f

∂ηηη

〉
= −{g, f } (I.4)

that demonstrates (I.2). The property of self-commutation

{ f, f } = 0 (I.5)

follows directly, as { f, f } = −{ f, f } ⇒ { f, f } = 0.

2. Distributive Property
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{α f + βg, h} = α{ f, h} + β{g, h} . (I.6)

Proof

{α f + βg, h} =
〈
∂ (α f + βg)

∂ηηη
, J

∂h

∂ηηη

〉

=
〈
α

∂ f

∂ηηη
+ β

∂g

∂ηηη
, J

∂h

∂ηηη

〉

= α

〈
∂ f

∂ηηη
, J

∂h

∂ηηη

〉
+ β

〈
∂g

∂ηηη
, J

∂h

∂ηηη

〉

= α{ f, h} + β{g, h} . (I.7)

3. Associative property

{ f g, h} = f {g, h} + { f, h}g . (I.8)

Proof

{ f g, h} =
〈
∂( f g)

∂ηηη
, J

∂h

∂ηηη

〉

=
〈
∂ f

∂ηηη
g + f

∂g

∂ηηη
, J

∂h

∂ηηη

〉

= f

〈
∂g

∂ηηη
, J

∂h

∂ηηη

〉
+

〈
∂ f

∂ηηη
, J

∂h

∂ηηη

〉
g

= f {g, h} + { f, h}g . (I.9)

4. Jacobi identity

{ f, {g, h}} + {g, {h, f }} + {h, { f, g}} = 0 . (I.10)

Proof If the last term of (I.10) is expanded using (2.120),

{h, { f, g}} =
{
h,

n∑
i=1

(
∂ f

∂qi

∂g

∂pi
− ∂ f

∂pi

∂g

∂qi

)}

=
n∑

i=1

({
h,

∂ f

∂qi

∂g

∂pi

}
−

{
h,

∂ f

∂pi

∂g

∂qi

})

=
n∑

i=1

(
∂ f

∂qi

{
h,

∂g

∂pi

}
+ ∂g

∂pi

{
h,

∂ f

∂qi

}

− ∂ f

∂pi

{
h,

∂g

∂qi

}
− ∂g

∂qi

{
h,

∂ f

∂pi

})
. (I.11)
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Using the identity

{
f,

∂g

∂a

}
= ∂

∂a
{ f, g} −

{
∂ f

∂a
, g

}
(I.12)

in (I.11) gives

{h, { f, g}} =
n∑

i=1

[
∂ f

∂qi

(
∂

∂pi
{h, g} −

{
∂h

∂pi
, g

})
+ ∂g

∂pi

(
∂

∂qi
{h, f } −

{
∂h

∂qi
, f

})

− ∂ f

∂pi

(
∂

∂qi
{h, g} −

{
∂h

∂qi
, g

})
− ∂g

∂qi

(
∂

∂pi
{h, f } −

{
∂h

∂pi
, f

})]

= −{ f, {g, h}} − {g, {h, f }}

+
n∑

i=1

[
− ∂ f

∂qi

{
∂h

∂pi
, g

}
− ∂g

∂pi

{
∂h

∂qi
, f

}

+ ∂ f

∂pi

{
∂h

∂qi
, g

}
+ ∂g

∂qi

{
∂h

∂pi
, f

}]
. (I.13)

Using (I.13) in (I.10) and expanding gives

{ f, {g, h}} + {g, {h, f }} + {h, { f, g}} =

=
n∑

i=1

[
− ∂ f

∂qi

{
∂h

∂pi
, g

}
− ∂g

∂pi

{
∂h

∂qi
, f

}
+ ∂ f

∂pi

{
∂h

∂qi
, g

}
+ ∂g

∂qi

{
∂h

∂pi
, f

}]

= −
n∑

i, j=1

∂ f

∂qi

∂2h

∂pi∂q j

∂g

∂p j
+

n∑
i, j=1

∂ f

∂qi

∂2h

∂pi∂p j

∂g

∂q j

−
n∑

i, j=1

∂g

∂pi

∂2h

∂qi∂q j

∂ f

∂p j
+

n∑
i, j=1

∂g

∂pi

∂2h

∂qi∂p j

∂ f

∂q j

+
n∑

i, j=1

∂ f

∂pi

∂2h

∂qi∂q j

∂g

∂p j
−

n∑
i, j=1

∂ f

∂p j

∂2h

∂qi∂p j

∂g

∂q j

+
n∑

i, j=1

∂g

∂qi

∂2h

∂pi∂q j

∂ f

∂p j
−

n∑
i, j=1

∂g

∂qi

∂2h

∂pi∂p j

∂ f

∂q j
(I.14)

where, due to the symmetry in the summation pairs i, j , the sum is zero.



Appendix J
Some Identities Concerning the Jacobi
Determinant

The 3D Jacobi determinant has been defined in (3.7). By using the same notation,
one can prove that

∂ (a)
∂ (b)

∂ (b)

∂ (c)
= ∂ (a)

∂ (c)
. (J.1)

In particular, (J.1) implies

∂ (a)
∂ (b)

∂ (b)

∂ (a)
= 1 . (J.2)

If dx/dt = u, dy/dt = v, dz/dt = w, then the differentiation rule of a functional
determinant yields

∂

∂t

∂ (x)
∂ (a)

= ∂ (u, y, z)

∂ (a1, a2, a3)
+ ∂ (x, v, z)

∂ (a1, a2, a3)
+ ∂ (x, y,w)

∂ (a1, a2, a3)
. (J.3)

Moreover, a straightforward computation shows that

∂

∂x

∂ (x)
∂ (a)

= ∂ (1, y, z)

∂ (a1, a2, a3)
+ ∂ (x, 0, z)

∂ (a1, a2, a3)
+ ∂ (x, y, 0)

∂ (a1, a2, a3)
= 0 . (J.4)

and analogously

∂

∂y

∂ (x)
∂ (a)

= 0 ,
∂

∂z

∂ (x)
∂ (a)

= 0 . (J.5)

From (J.4) and (J.5), one concludes

∇ ∂ (x)
∂ (a)

= 0 . (J.6)
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Consider

D

Dt

∂ (x)
∂ (a)

= ∂

∂t

∂ (x)
∂ (a)

+ u · ∇ ∂ (x)
∂ (a)

. (J.7)

Because of (J.3) and (J.6), using also (3.10), equation (J.7) becomes

D

Dt

∂ (x)
∂ (a)

= ∂ (u, y, z)

∂ (a1, a2, a3)
+ ∂ (x, v, z)

∂ (a1, a2, a3)
+ ∂ (x, y,w)

∂ (a1, a2, a3)

= ∂ (x)
∂ (a)

[
∂ (u, y, z)

∂ (x, y, z)
+ ∂ (x, v, z)

∂ (x, y, z)
+ ∂ (x, y,w)

∂ (x, y, z)

]

= α

αa

(
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z

)
.

that is to say

D

Dt

∂ (x)
∂ (a)

= α

αa
div u , (J.8)

which is also called Euler’s relation.
In a similar way, it is useful also to calculate the variation of the determinant of

the Jacobian. To do so, consider the variation (3.46) with boundary conditions (3.47).
We thus have

δ
∂(x)
∂(a)

= ∂(lQx , y, z)

∂(a1, a2, a3)
+ ∂(x, lQy, z)

∂(a1, a2, a3)
+ ∂(x, y, lQz)

∂(a1, a2, a3)

= ∂(x)
∂(a)

[
∂(lQx , y, z)

∂(x, y, z)
+ ∂(x, lQy, z)

∂(x, y, z)
+ ∂(x, y, lQz)

∂(x, y, z)

]

= α

αa
div (lQ) . (J.9)
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Appendix K
Derivation of (3.131)

Throughout this appendix the sum over repeated indices will be used. Consider the
i component of rota B,

[rota B]i = εi jk
∂Bk

∂a j
, (K.1)

where the Levi-Civita tensor, defined in three dimensions as

εi jk =
⎧⎨
⎩

1 i f (i, j, k) is (1, 2, 3) , (2, 3, 1) or (3, 1, 2) ,

−1 i f (i, j, k) is (1, 3, 2) , (2, 1, 3) or (3, 2, 1)
0 i f i = j or i = k or j = k ,

, (K.2)

has been used. Notice that the Levi-Civita tensor is antisymmetric. One can use the
property

εi jk = δimδkmεmjn , (K.3)

that, together with

δim = ∂ai
∂am

, (K.4)

allows to write (K.1) as

[rota B]i = εi jk
∂Bk

∂a j

= εmjn
∂ai
∂am

∂Bk

∂a j

∂ak
∂an

= ∂(ai , Bk, ak)

∂(a1, a2, a3)
. (K.5)
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The conservation of potential vorticity follows directly from (K.5). In fact, taking
any scalar θ , which is conserved on fluid parcels, (3.122) leads to the conservation
of the quantity

Πa = (rota B) · ∇aθ . (K.6)

Through the identification of the conserved scalar with the ith label of the fluid, using
(K.5) one thus has the conservation of the quantity

Πi = 1

ρ

∂(a)
∂(x)

∂(ai , Bk, ak)

∂(a1, a2, a3)

= 1

ρ

∂(ai , Bk, ak)

∂(x, y, z)
. (K.7)

Using again the Levi-Civita tensor, (K.7) can be written as

Πi = 1

ρ
εlmn

∂ai
∂xl

∂Bk

∂xm

∂ak
∂xn

. (K.8)

Using (3.127), the ∂Bk/∂xm term can be written as

∂Bk

∂xm
= ∂

∂xm

[
uo

∂xo
∂ak

]

= ∂uo
∂xm

∂xo
∂ak

+ uo
∂2xo

∂xm∂ak
. (K.9)

Using (K.9), (K.8) yields

Πi = 1

ρ
εlmn

∂ai
∂xl

[
∂uo
∂xm

∂xo
∂ak

]
∂ak
∂xn

+ 1

ρ
εlmn

∂ai
∂xl

[
uo

∂2xo
∂xm∂ak

]
∂ak
∂xn

. (K.10)

Due to the antisymmetry of the Levi-Civita tensor, the second term on the r.h.s. of
(K.10) is zero, leaving

Πi = 1

ρ
εlmn

∂un
∂xm

∂ai
∂xl

. (K.11)

Using the identity

ωi = [rot u]i = εi jk
∂uk
∂x j

, (K.12)
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equation (K.11) yields

Πi = 1

ρ
(ωωω · ∇ai ) , (K.13)

which, upon the identification θ = ai , can be recognized as the potential vorticity
(K.6).



Appendix L
Scaling the Rotating Shallow Water Lagrangian
Density

In order to derive a quasi-geostrophic shallow water model, it is useful to consider
how the Lagrangian density (4.67), i.e.

L = 1

2
ρ

[|ẋh |2 + ẋh · (2��� × xh) − gη
]

, (L.1)

can bewritten in nondimensional form. Recall the nondimensionalization introduced
in Sect. 1.9.2, i.e.

(x ′, y′) = (x/L , y/L) , z′ = z/H , (L.2a)

(u′, v′) = (u/U, v/U ) , w′ = w/W , (L.2b)

η′ = η/E , (L.2c)

2��� = f0���
′ , (L.2d)

where the apex indicates the nondimensional variables and with

E = f0UL

g
, (L.3)

because of geostrophy, and where, without loss of generality, the motion has been
restricted to the f -plane. Introducing once again the nondimensional Rossby number

ε = U

f0L
,

the nondimensional form of (L.1) is thus

L ′ = ε
∣∣ẋ′

h

∣∣2 + ẋ′
h · (���′ × x′

h) − η′ , (L.4)
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where L = L L ′ andL = H0UL f0/2 have been used. Hamilton’s principle applied
to (L.4) yields thus the nondimensional rotating shallow water equations

εẍ′
h + (2���′ × ẋ′

h) = −∇′
hη

′ , (L.5)

which should be compared with (1.196), here written in the f -plane. The nondimen-
sional form of the continuity equation (4.63) is

F
∂η′

∂t ′
+ (1 + εFη′) div′ u′ = 0 , (L.6)

where, once again,

F = ( f0L)2

gH
(L.7)

is the Froude number, introduced in Sect. 1.9.2.
From (L.5), it is possible to derive the shallow water quasi-geostrophic equations

in the same way as it was done in Chap.1, i.e. omitting primes and the h subscript,
assuming ε 
 1 it is possible tomake an asymptotic expansion of the terms appearing
in (L.4)

L = L0 + εL1 + · · · , (L.8a)

x = x0 + εx1 + · · · , (L.8b)

η = η0 + εη1 + · · · . (L.8c)

Notice that, by (4.60), one has

η0 = ∂(a1, a2)

∂(x0, y0)
− H . (L.9)

At O(1) in ε, i.e. in the limit of vanishingly small Rossby number (L.4) yields

L0 = ẋ0 · (��� × x0) − η0 . (L.10)

The application of Hamilton’s principle to (L.10) yields the geostrophic balance
(1.197),

2��� × ẋ0 = −∇η0 . (L.11)

In the same way, expansion to higher orders in ε can be performed.

Remark L.1 Notice that if instead of the f -plane one would have used the β-plane
approximation, i.e. if (1.79) and (1.175) would have been used, the same line of
reasoning would have held the so-called planetary geostrophic equations.
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